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ABSTRACT OF THESIS 

INITIAL DEVELOPMENT OF A MULTISTAGE CANCER MODEL BASED ON 

SYRIAN HAMSTER EMBRYO (SHE) CELL TRANSFORMATION STUDIES 

To better incorporate biologic information into quantitative cancer modeling, 

the two-stage MVK (Moolgavkar-Venzon-Knudson) model has been modified 

for use with SHE cell neoplastic progression. Conceptually, five phenotypic 

stages are included in this model: normal cells can either become senescent 

or mutate into immortal cells followed by anchorage-independent growth and 

tumorigenic stages. Cells in each stage have distinct division, death and 

mutation rates, and mutation is assumed to occur during cell division. Model 

development and related experiments were focused on studying the abilities 

of lead, arsenic, c~romium, and a mixture of these three metals to induce 

progression of SHE cells from one phenotype to the next. Cell division and 

death rates were assessed using flow cytometric analysis for inclusion in the 

model. Cell division rates were measured using bromodeoxyuridine (BrdU) 

incorporation with propidium iodide staining, which allows for the calculation 

of potential doubling time, a measure of cell cycle time that takes growth 
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fraction, but not cell loss, into account. Potential doubling times of normal 

SHE cells ranged from 12 to 59 hours, depending on the degree of 

confluence of cell cultures. Cell death was measured by a flow cytometry 

method based on propidium iodide staining specifically related to membrane 

damage. The mean cell death rate is approximately equal to 1 % of the 

average value of division rates. The individual metals and their mixture did 

not induce immortalization or further mutations of SHE cells in our laboratory 

following a 2-day exposure. However, the growth of SHE cells was inhibited 

by 5.4 pM of arsenic, with ce]]s becoming senescent after only 1 6 population 

doublings; whereas, normal cells and cells exposed to lower arsenic 

concentrations lasted for at least 30 population doublings. The model 

developed in our laboratory successfully predicted the growth of normal cells. 

The cell senescence rates under the impact of arsenic exposure were also 

calculated. Mechanisms responsible for induction of cellular senescence in 

SHE cells exposed to arsenic may be involved in the apparent inability of 

arsenic to induce neoplasia in experimental animals. 

Kai-hsin Liao 
Department of Chemical and Bioresourece Engineering 

Colorado State University 
Fort Collins, CO 80523 

Fall 1999 
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CHAPTER 1 

Introduction 

1 . 1 Purpose of the project 

To further incorporate biologic information into quantitative cancer 

modeling, the two-stage MVK model (Moolgavkar-Venzon-Knudson; refer to 

Section 2.2.b; Moolgavkar et a/., 1988; Dewanji et a/., 1989) has been 

modified for use with Syrian hamster embryo (SHE) cell neoplastic 

progression. /n vitro cell culture offers the advantage that cells from 

different stages of the transformation process can be isolated for detailed 

studies. Therefore, it is ideal to measure the parameters needed for 

biologically-based dose-response modeling from in vitro studies. 

Model development and related experiments were focused on studying 

the abilities of lead (Pb2 +), arsenic (As3 +), chromium (Cr3 + + Cr6 +; 1: 1 ratio), 

and a mixture of these three metals to induce progression of SHE cells from 

one phenotype to the next. Laboratory measurements of metal- and metal 

mixture-induced changes in key cell parameters were used to verify the 

development of this modified multi-stage carcinogenesis model. 
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Figure 1. 1 Modified multistage carcinogenesis model for SHE cell 
neoplastic progression 

Five phenotypic stages are included in this model : normal,. senescent, 
immortal, anchorage-independent growth, and tumorigenic. Cells in each 
stage have distinct division, death, and mutation rates, and mutation is 
assumed to occur only during cell division. a j and ~j are the cell division 
and death rates, respectively for cells in stage i. y is the rate of 
senescence of normal cells. Pi is the probability of mutation that a stage i 
cell divides into one stage i cell and one stage j + 1 cell. 
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1 .2 Modified multistage model of SHE cell neoplastic progression 

SHE cells have been used to study neoplastic progression for many 

years, and, as a result, the phenotypic changes exhibited by the cells during 

the carcinogenic process are well defined. Two important advantages of the 

SHE cell system are that the cells exhibit a low frequency of spontaneous 

transformation and that they readily demonstrate neoplastic transformation 

upon treatment with chemical carcinogens (Barrett, 1 993). 

The two-stage clonal growth model that I have chosen to use for the 

cancer modeling purposes in SHE cells incorporates cell division, death, and 

mutation rates into the mechanistic description of malignant transformation 

(Conolly and Kimbell, 1994). Cell division and death determine the 

population growth within each stage. It is further assumed that mutation 

only occurs at cell division. 

The modified multistage carcinogenesis model for SHE cell neoplastic 

progression is shown in Figure 1 .1. Normal cells in culture cease 

proliferation after a limited number of cell divisions, a process called cellular 

senescence. Escaping from senescence to become immortalized is the first 

important step during carcinogenesis in SHE cells and in many other cell 

types. Chemical carcinogens will, at some frequency, induce mutations in 

normal SHE cells that allow them an unlimited life span in culture. As stated 

above, these mutations are assumed to occur only during cell division. 
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I mmortalized cells are easily detected over the background of normal cells by 

continued passage in culture. Over time, normal cells cease proliferating and 

die, while the immortalized clones will gradually take over the culture. 

However, some chemical carcinogens may inhibit the growth of SHE cells 

and shorten their life span instead of inducing immortalization. 

Upon continued treatment with carcinogens, immortalized SHE cells 

will subsequently acquire additional mutations, some of which will confer the 

next important phenotype, that is, anchorage-independent growth. There is 

a strong positive correlation in SHE cells between anchorage-independent 

growth and tumorigenicity (LeBoeuf et al., 1990). Anchorage-independent 

growth can be readily detected by plating the cells in semi-solid media such 

as methylcellulose or soft agar. Colony-forming efficiency under these 

conditions is indicative of a cell's transformed nature. Finally I anchorage­

independent cells may undergo further genetic alterations that confer the 

tumorigenic phenotype, i. e. the ability to grow tumors in immuno­

compromised mice or newborn hamsters. 

In this thesis, I have focused on the first stage (normal cells) and the 

two stages connected to it, immortal and senescent cells. However, it is 

important to note that all the experimental methods developed in our 

laboratory so far can be applied to all of the stages of the carcinogenic 

process in SHE cells. If the model developed through these initial studies 
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appears to be consistent with experimental data for the first two stages, the 

same principles and experimental techniques can be easily applied to the 

subsequent two phenotypic stages. 

Based on the conceptual model presented above, equations can be 

written to describe the time-dependent changes in the populations of normal, 

immortal, and senescent cells. It is assumed that the rate of change in the 

number of normal cells, dN(t)/dt, is proportional to the number of normal cells 

at any time: 

dN(t) 
dt = N(t)· [a1(t)- A(t)]- y(t)· N(t) (1 . 1 ) 

In Equation 1 .1, 0.1 and 131 represent the specific rate of cell division and 

death (units of 1/time) for normal cells; whereas, V is the rate at which 

normal cells convert to senescent cells. 

Similarly, the rate of change in the immortal cells, dl (t)/dt, has the 

same exponential growth property (with 0.2 and 132 being the specific rate of 

cell division and death, respectively), but there is also input of mutated 

normal cells: 

In Equation 1 .2, Jll represents the probability of mutation that a normal cell 
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divides into one normal cell and one immortal cell. Since Jl is a probability 

based on the number of cell divisions, it should be multiplied by division rate, 

Cl, and the number of normal cells. 

The rate of change in senescent cells, dS{t)/dt, is proportional to the 

cell senescence rate, y, and the number of normal cells (Equation 1.3) 

because all senescent cells are converted from normal cells. 

dS(t) 
dt = y(t)·N(t) (1 .3) 

The growth of cells in anchorage independent growth and tumorigenic 

stages will be predicted by the computer simulation method proposed by 

Conolly and Kimbell (refer to Section 2.2.b; Conolly and Kimbell, 1 994). The 

cell growth will be treated stochastically for cells with smaller populations 

and assumed to be deterministic for cells with larger populations. 

As mentioned above, arsenic, lead, chromium, and the mixture of 

these three metals were examined for their effect on the progression of SHE 

cells from one phenotype to the next. Cell division and death rates were 

assessed using flow cytometric analysis for inclusion in the model. Mutation 

rates could be measured by fluctuation analysis. Details of the methods are 

discussed in Chapter 3. 
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CHAPTER 2 

Literature Review 

2. 1 Carcinogenesis 

Cancer is a disease caused by uncontrolled cell proliferation. The 

growth of 50 trillion individual cells, which compose the healthy human 

body, are carefully controlled to meet the whole body's needs (Cooper, 

1 992a). Cancer begins when cells become oblivious to the factors that 

control the proliferation of normal cells and continue to proliferate when they 

should not. Cancerous cells are capable of invading nearby tissues from the 

site where they began and become lethal when the tissues and organs 

needed for the survival of the whole body are disrupted (Weinberg, 1 996). 

Two gene classes play major roles in the formation of cancer. They 

regulate the life cycle of the cell through cell growth and division. Proto­

oncogenes motivate cell growth, while tumor suppressor genes inhibit cell 

growth (Weinberg, 1996). Proto-oncogenes can become oncogenes through 

mutation, which results in unending proliferation of cells. Nevertheless, 

tumor suppressor genes are inactivated by mutations that allow cells to 

ignore braking signals and divide excessively (Weinberg, 1 996). It is believed 
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that mutation in at least 6 or more growth-control genes must take place for 

the development of a cancerous tumor (Weinberg, 1996). 

There is strong evidence from human epidemiologic studies and animal 

experiments that the induction of cancer occurs in more than one stage 

(Moolgavkar and Knudson, Jr., 1 981). Based on in vivo experiments, the 

stages of carcinogenesis were historically defined as initiation, promotion, 

and progression (Boyd and Barrett, 1 990). Initiation results from an 

irreversible genetic alteration, while promotion is defined as the clonal 

expansion of initiated cells to a preneoplastic focus or benign tumor. 

Progression is considered as the conversion of a preneoplastic focus or 

benign tumor to a malignant tumor (Boyd and Barrett, 1 990). 

Carcinogens can increase the incidence of cancer in two general ways. 

Initiating agents, or initiators, induce genetic alterations that result in 

uncontrolled cell proliferation (Cooper, 1992b). This group of carcinogens 

includes numerous chemicals and radiation. Other carcinogens, called 

promoting agents or promoters, stimulate cell proliferation instead of 

inducing mutation. Promoters are only effective in inducing tumors when 

initiation stages have been developed (Cooper, 1992b). Examples of 

promoters include hormones and cigarette smoking (Moolgavkar, 1983). 

8 



2.2. Models for carcinogenesis 

This section begins with the discussion of the development of cancer 

models, followed by a review of the MVK (Moolgavkar-Venzon-Knudson) 

two-stage model which formed the basis of the model developed in this 

thesis. 

2.2.a Development of cancer models 

The multistage theory of cancer-inducing mechanism, which assumes 

a cancer cell is the end-result of a series of discrete mutations, was proposed 

by Nordling (Nordling, 1953). Motivated by the theory, Armitage and Doll 

derived a quantitative multistage model (Armitage-Doll multistage model) I 

which relates the logarithm of incidence rate linearly to the logarithm of age, 

and describes the incidence rate as directly proportional to the dose of an 

applied carcinogen (Armitage and Doll, 1 954). The linearized multistage 

model (Nordling, 1953; Crump, 1996), a generalization of the Armitage-Doll 

multistage model, is the default model for carcinogen risk assessment used 

by Environmental Protection Agency (EPA; Crump, 1996). In the approach 

used by EPA, cancer risks are estimated from a conservative procedure for 

low-dose extrapolation calculated from the data of 2-year animal experiments 

(Portier and Edler, 1990). The linearized multistage model and Armitage-Doll 

multistage model are statistical dose-response models rather than biological 
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models, since actual physiological phenomena, e.g. cell proliferation, are 

ignored in the models. 

To incorporate the kinetics of cell division and death into cancer 

model, Armitage and Doll proposed a two-stage model (Armitage and Doll, 

1 957), the Armitage-Doll two-stage model, which assumes deterministic 

exponential growth for normal and intermediate cells. The stochastic nature 

of the growth of intermediate cells were then introduced to the two-stage 

model by Moolgavkar and colleagues (the MVK model; Moolgavkar, 1979; 

Moolgavkar and Knudson, Jr., 1981; Moolgavkar, Dewanji, and Venzon, 

1988). 

2.2.h The MVK two-stage model for carcinogenesis 

The MVK two-stage model for carcinogenesis (Moolgavkar, 1979; 

Moolgavkar and Knudson, Jr., 1981; Moolgavkar, Dewanji, and Venzon, 

1988) has been recommended as the major model for the risk assessment of 

environmental agents in recent years (Tan, 1991). The advantages of this 

model are that it involves genetic changes and cell proliferation, which are 

believed to be crucial factors in the carcinogenesis process, while remaining 

simple enough to be applicable to human incidence data (Tan, 1991). The 

applications of the MVK two-stage model include the evaluation of risk 

factors of female breast cancer (Moolgavkar et al., 1 980) and the successful 
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fitting of the incidence functions of all human cancers (Moolgavkar and 

Knudson, Jr., 1981). 

The MVK two-stage model incorporates two features: a) transition of 

normal cells to cancer cells via an intermediate stage, as the result of two 

discrete, heritable, and irreversible events, and b) growth and death of 

normal and intermediate cells (Figure 2.1; Moolgavkar and Knudson, Jr., 

1 981 ). The growth of the normal tissue is assumed to be deterministic since 

numerous normal cells are expected to exist at any time. However, the 

growth of intermediate cells is treated stochastically because the transition 

of intermediate cells from normal cells is a rare event. In a small time 

interval, Llt, a normal cell may divide into two daughter normal cells with 

probability atLlt or it may die (or differentiate) with probability PtLlt. It may 

also divide, with a small probability (p,Llt), into one normal cell and one 

intermediate cell which has suffered the first event. During Llt, an 

intermediate cell may in turn divide into two daughter intermediate cells, die 

(or differentiate), or divide into one intermediate and one malignant cell, with 

probabilities of a2Llt, P2Llt, or P2Llt, respectiveJy (Moolgavkar and Knudson, 

Jr., 1981). With the subscripts to distinguish cells in different stages, a, p, 

and P are the birth, death, and transition rates per cell per year. It is 

assumed, in the MVK model, that the number of intermediate cells mutated 

from normal cells by time t is a random variable, which has a Poisson 

1 1 



First Event Second Event 

Figure 2. 1. Two-stage MVK model for carcinogenesis 

N, normal cells; I, intermediate cell; D, dead or differentiated cell; M, 
malignant cells. 011 birth rate (per cell per year) of normal cells; Il, death or 
differentiation rate (per cell per year) of normal cells; J.11 1 rate (per cell per 
year) at which the first event occurs. °21 1l2t and J.12 are defined similarly. 
This figure was adapted from (Moolgavkar and Knudson, Jr"1 1981). 
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distribution with expectation ~,X(s)ds, where Xis) is the number of 

normal cells at time s (Moolgavkar and Knudson, Jr., 1981). 

From the MVK model, the incidence function I(t), which is the rate that 

tumors occur in previously tumor-free tissue, can be computed as 

(2.1 ) 

The details of the mathematical derivation of the MVK model were discussed 

by Moolgavkar and colleagues (Moolgavkar, 1979; Moolgavkar and Knudson, 

Jr., 1 981). The age-specific incidence rate at age t per 100,000 individuals 

in a population is then calculated by /(t) x 105 (Moolgavkar and Knudson, Jr., 

1981 ). 

The MVK two-stage model was incorporated with the phenomena of 

lIinitiation" and IIpromotion" in carcinogenesis and resulted in successful 

predictions. In the framework of the MVK model, the initiator, which acts at 

the level of DNA as mutagens, affects the transition rate of the first event 

(Pt), whereas the promoter, which acts at the cell surface to cause cell 

proliferation, increases the proliferation rate of intermediate cells, i.e. 

increases a2, decreases fJ2' or both (Moolgavkar, 1983). By incorporating 

hormones and cigarette smoke as promoters, the model made a good 

quantitative description of the epidemiology of breast and lung cancers, 

13 



respectively (Moolgavkar, 1983). 

The analytical solutions of the MVK two-stage model have been 

limited by the number of piecewise-constant intervals, within which the birth 

and death rates are assumed to be constants. The computer simulation of 

the clonal growth cancer model proposed by Conolly and Kimbell (Conolly 

and Kimbell, 1 994) eliminated this constraint. The computational efficiency 

could be highly increased if the growth of intermediate cells are treated as 

stochastically for clones with smaller population and assumed to be 

deterministic for clones with larger population. The improvement on the 

MVK model achieved by computer simulation made this model even more 

applicable to carcinogenesis studies. 

2.3 SHE cell transformation assay 

The Syrian hamster embryo (SHE) cell transformation system was first 

used to examine the carcinogenicity of chemicals by Berwald and Sachs 

(Berwald and Sachs, 1963; Berwald and Sachs, 1965). SHE cells have a 

stable and diploid karyotype. Syrian hamsters contain 44 chromosomes, 

which are similar in morphology and number to human chromosomes 

(Barrett, 1979). SHE cell cultures are prepared from whole embryos and 

contain a mixture of cell types. Some cell types in the mixture have the 

capacity to undergo neoplastic transformation, whereas others have the 
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ability to metabolize chemical carcinogens (Barrett, 1979). In vivo, the liver 

is able to metabolize relatively innocuous precursors to toxic metabolites, a 

process called metabolic activation (Ballantyne et 81., , 995). The ability of 

cells in vitro to metaboHze chemical carcinogens is an important 

consideration when extrapolating carcinogenicity data from an in vitro 

system to humans. 

With the feature of multistep neoplastic progression, the SHE cell 

transformation system has been widely used to study the carcinogenesis 

process, which was believed to include initiation, promotion, and progression 

stages in vivo (Boyd and Barrett, 1 990). This system also provides the 

advantages of a low frequency of spontaneous transformation and readily 

demonstrable neoplastic transformation upon treatment with chemical 

carcinogens (Barrett, 1 993). 

The pathway of SHE cell neoplastic development following carcinogen 

treatment was best described by Barrett (Barrett, 1993) and shown in Figure 

2.2. The earliest phenotypic alteration is morphological transformation, 

characterized by a disorganized and crisscrossed growth pattern in colonies. 

Morphological transformation was not included in the pathway because it is 

not essential for progression to later neoplastic phenotypes, although it is 

associated with an increased probability of the neoplastic progression 

(LeBoeuf, Kerckaert, Aardema, and Gibson, 1990). 
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Figure 2.2. Pathway of Syrian hamster embryo cell neoplastic development 

Normal cells in culture cease proliferation and become senescent after a 
limited number of cell divisions. At least three genetic changes must occur 
before the normal cells become tumorigenic. This figure was adapted from 
(Barrett, 1 993; Preston et al., 1994)). 
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Normal cells in culture cease proliferation after a limited number of 

cell divisions, a process called cellular senescence. Some cells lose 

senescence genes and become immortal, which is a necessary step for 

malignant progression. Cellular senescence is believed to be controlled by 

senescence genes which are activated at the end of the life span of normal 

cells and cause a block to DNA synthesis via down-regulation of cell cycle 

control (Barrett, 1 993). Malfunction of these genes allow cells to escape 

cellular senescence. Senescence genes have been mapped in some 

chromosomal regions, but have not been identified yet (Barrett, 1993). 

At least two additional genetic changes must occur before the 

immortal cell lines become tumorigenic. The changes include (1) loss or 

inactivation of a tumor suppressor gene followed by (2) activation of an 

oncogene (Barrett, 1993; Koi and Barrett, 1986). Cell hybrids between 

carcinogen-induced immortal and tumorigenic cells were formed to determine 

the inactivation of the tumor suppressor gene (Koi and Barrett, 1986). Cells 

retain the ability to suppress tumorigenicity in early passages of immortal cell 

lines (sup +); this ability was reduced or lost in later passages (sup·) (Koi and 

Barrett, 1 986). The phenotype of the sup· cell lines is the ability of cells to 

grow in soft agar in the presence of mitogenic stimuli (Koi et al., 1989; 

Preston et al., 1994). The tumor suppressor genes inactivated in SHE cell 

transformation system remain unidentified; candidates include the putative 
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tumor suppressor genes H19 and TM-1 (Preston, Lang, Maronpot, and 

Barrett, 1994; Hao et al., 1 993; Prasad et al., 1 993). 

The oncogenes activated before cells become tumorigenic in this 

model (Figure 2.2) include the Ha-ras proto-oncogene and non-ras genes 

(Barrett, 1993; Gilmer et al., 1988). The tumorigenicity of cells are 

determined by the ability to form progressively growing tumors in newborn 

hamster or immunocompromised mice. 

Mechanistic studies of genetic and cellular basis of the SHE cell 

transformation system are still in progress. In this particular project, we 

approached this system from a quantitative perspective by incorporating 

cancer modeling with the MVK two-stage model. 

2.4 Metals tested in this project 

Arsenic, chromium, lead, and a mixture of these three metals were 

tested using SHE cell transformation assay. The background of these metals 

are discussed below. 

2.4.a Arsenic 

Arsenic is a ubiquitous constituent in the earth's crust and has been 

used by human since as early as 2000 B.C. It is also a common soil and 

water contaminant that has been found in at least 781 of 1,300 sites on 
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National Priorities List identified by EPA (ATSDR, 1993a). Arsenic can exist 

in three valence states: elemental (zero oxidation state), trivalent (arsenite), 

or pentavalent (arsenate) arsenic (Jolliffe, 1 993). The toxicity of arsenic to 

mammals depends on the valence state, the physical state, and the rates of 

absorption and elimination. Trivalent arsenite is more toxic than pentavalent 

arsenate. The toxicity of inorganic arsenic is usually greater than organic 

arsenic. Arsine gas (AsH3), which is used as a dopant in the production of 

arsenic semiconductors, is the most toxic of all the arsenical compounds 

(Jolliffe, 1 993). 

Arsenical compounds have been used in medicine, electronics, 

agriculture, and wood preservation. For medicinal applications, Fowler's 

solution (1 % potassium arsenite), were used to treat a variety of diseases, 

e.g. psoriasis and syphilis, before 1940. Arsenicals are still used in the 

medicine of sleeping sickness today (Jolliffe, 1993). Because the use of III-V 

semiconductors are increasing, gallium arsenide (GaAs) and indium arsenide 

(lnAs) use in the electronics industry are expected to increase (Yamauchi and 

Fowler, 1994). Therefore, environmental pollution of arsenic by these 

industries is inevitable. Ingesting arsenic-containing water and food is the 

main route of arsenic exposure for general population. Arsenic toxicity 

caused by drinking the well water contaminated by natural sources was 

reported in the United States, Taiwan, Germany, the United Kingdom, Chile, 
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and Argentina (A TSDR, 1990a). 

Arsenite inhibits critical sulfhydryl-containing enzymes and can cause 

overt toxicity results (ATSDR, 1990a). Nevertheless, arsenate can 

competitively substitute for phosphate and causes hydrolysis of high energy 

bonds, as a results, energy needed for cellular metabolism can lose (ATSDR, 

1 990a). Interconversion of trivalent and pentavalent arsenic can be caused 

by oxidation-reduction reactions in vivo. Arsenite can be biomethylated to 

methylarsonic acid and dimethylarsinic acid for renal excretion (Morton and 

Dunnette, 1994). 

Chronic arsenic inhalation is strongly related to lung cancer in human. 

Chronic ingestion of arsenicals is also closely associated with human skin 

cancer and possibly cancers of the liver, kidney, lung, bladder, and colon. 

However, the linkage of cancers to arsenic exposure could not be 

substantiated in experimental animals (ATSDR, 1990a). 

Among other health effects, Blackfoot disease, a peripheral vascular 

disease, was caused by drinking arsenic contaminated well water in Taiwan. 

Raynaud's phenomenon and acrocyanosis were reported in Chile as a result 

of the contamination of the city's drinking water supply (ATSDR, 1990a). 

Hyperpigmentaion, hyperkeratosis, anemia, and leukopenia were also 

reported to be associated with chronic arsenic exposure (ATSDR, 1990a). 
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2.4.b Chromium 

Chromium is commonly used in several industrial processes and has 

been found in at least 115 of 1300 National Priorities List sites that were 

identified by the EPA (ATSDR, 1993b). Chromium has two main forms, 

trivalent (Cr[lll]) and hexavalent (Cr[VI]), that are encountered in biological 

systems (Cohen et al., 1993). Cr(lll) compounds exist naturally in chromite 

ore, whereas Cr(VI) compounds rarely occur naturally and are produced from 

industrial processes, such as chrome plating, leather tanning, pigments, as an 

antirust agent for water-cooled machinery (Costa, 1997). 

Cr(lll) is an important dietary element at very low concentration 

(A TSDR, 1 990b). The trivalent chromium is believed to play an essential role 

in the metabolism of insulin, in the form of "glucose tolerance factor" (GTF) 

which is a complex of Cr(lll), nicotinic acid, and possibly amino acids 

(ATSDR, 1993c). Cr{lll) also plays an important role in the metabolism of fat 

and cholesterol (A TSDR, 1990b). 

Cr(VI) is not needed by human bodies and is extremely toxic. Under 

physiological conditions, Cr(VI) exists as chromate anion (Cr04-
2
), which 

structurally resembles several tetrahedral physiological anions, such as P04-
3 

and S04-2
• As a result, Cr{VI) is readily transported into all cells of the body 

using the general anion transport system (Cohen, Kargacin, Klein, and Costa, 

1993; Costa, 1997). 
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Inhalation, ingestion, and dermal absorption are the routes by which 

chromium enters human body. Cr(VI) is more readily absorbed by body than 

Cr(lll) in all of these three routes because Cr(VI) can penetrates cell 

membranes easily. After entering the body, Cr(lll) tends to bind to plasma 

proteins such as transferrin, an iron-transporting protein (Cohen, Kargacin, 

Klein, and Costa, 1993). In contrast, by using preexisting anion transport 

mechanisms, Cr(VI) crosses cell membranes and is reduced to Cr(lll) inside 

the cell (ATSDR, 1990b; Cohen, Kargacin, Klein, and Costa, 1 993). As a 

result, Cr(lll) accounts for most of the chromium in the body. Bone marrow, 

lungs, lymph nodes, liver, kidney, and spleen have the greatest uptake of 

CrOll) (A TSDR, 1 990b). 

A variety of health effects have been reported for environmental 

exposure to chromium. In Woburn, MA, a fourfold increase in leukemia was 

caused by a high level of Cr(VI) in drinking water consumed by children 

(Costa, 1 997). The level of DNA-protein crosslinks was found to be 

increased in people living in Jersey City, NJ, where chromium-containing slag 

was used as landfill in residential areas (Costa, 1 997). Other effects caused 

by exposing to chromium includes respiratory distress, asthma, skin rashes 

(Costa, 1 997), dermatitis with eczema, liver abnormalities, renal tubular 

necrosis, and, last but not least, lung cancer (ATSDR, 1990b). 
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It has been firmly established in epidemiological studies that an 

increased incidence in respiratory cancers develops following exposure to 

Cr(VI) particles and dusts in industrial processes (Cohen, Kargacin, Klein, and 

Costa, 1 993). Inhaled Cr(VI) has been classified as a human carcinogen by 

EPA and the International Agency for Research on Cancer (ATSDR, 1990b). 

There is not sufficient evidence indicating that Cr(lll) is a human carcinogen. 

In more recently published epidemiological studies, evidence shows 

that soluble Cr(VI) also induces other types of cancers besides respiratory 

cancers, including cancers in kidney, urinary tract, bladder, testes, stomach, 

prostate, and brain (Costa, 1997). Due to the fact that Cr(VI) can be 

absorbed readily by inhalation, ingestion, and skin, these results are expected 

(Costa, 1997). 

Depite the epidemiological evidence indicating that Cr(VI) causes 

human cancers, there is no animal model with natural exposure routes 

(inhalation, ingestion, or dermal absorption) that has shown unequivocally 

positive results for carcinogenicity of Cr(VI) (ATSDR, 1990b). However, 

intratracheal or intrabronchial implantations, intratracheal instillation, and 

subcutaneous implantation of Cr(VI) compounds did induce the formation of 

tumors at the site of application in some studies (Cohen, Kargacin, Klein, and 

Costa, 1993; ATSDR, 1990b). 
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2.4.c Lead 

Since lead has been used from the beginning of civilization, it can be 

found in every part of our environment, including in at least 922 of 1 300 

National Priorities List sites identified by the EPA (ATSDR, 1993d). Most of 

the lead in our environment was from man-made sources such as batteries, 

metal solder and pipes, ammunition, roofing, and x-ray shielding devices. 

Earlier, lead also existed in gasoline, paints, ceramic products, and caulking, 

but the usage was reduced recently due to the health concerns (ATSDR, 

1 993d). Humans could be exposed to lead from drinking water transported 

by lead-soldered plumbing, eating food grown on soil contaminated by lead 

(unleaded gasoline is not required for agricultural vehicles), eating lead­

containing paint chips, and ingesting or breathing contaminated soil, air, or 

water near waste sites (ATSDR, 1993d; ATSDR, 1992). 

Organic lead that is absorbed by the body through inhalation and skin 

contact is metabolized by the liver. Inorganic lead enters the body through 

inhalation and ingestion without undergoing biologic transformation (ATSDR, 

1 992). Smaller particles of the inhaled lead deposited in lower respiratory 

tract are completely absorbed. Ten to 15% of ingested lead, as well as 

larger particles of the inhaled lead which are deposited in upper respiratory 

and moved to gastrointestinal tract by ciliary action and swallowing, are 

absorbed (Putnam, 1986). After being absorbed, lead is distributed to three 
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compartments, blood, soft tissues (kidney, brain, liver, and bone marrow), 

and bones (ATSDR, 1992). Bone contains approximately 95 % of the total 

body burden of lead and serves as an inert pool. Bone lead, which has a 

half-life more than 25 years, can cause elevated blood levels over time, 

especially when the body is under physiologic stress. 

Lead can cause a variety of health effects ranged from relatively mild 

effects to chronic disease and even death. Based on animal studies, the 

Department of Health and Human Services determined lead acetate and lead 

phosphate may reasonably be anticipated as carcinogens (ATSDR, 1993d), 

whereas carcinogenicity of lead in humans is still undetermined due to 

inadequate evidence. Lead also causes central nervous system effects in 

adults, expressed by behavioral changes, impaired concentration, and fatigue 

(ATSDR, 1992). Studies showed that children with high tooth lead levels 

had larger deficits in speech and language processing, psychometric 

intelligence scores, and attention than children with lower tooth lead levels 

(ATSDR, 1 992). For hematological effects, lead inhibits the production of 

hemoglobin by interfering several enzymatic steps in the heme pathway, 

which results in anemia due to the decreased number of red blood cells. For 

reproductive effects, lead causes sterility, increased rate of stillbirths, and 

increased rate of miscarriages (Putnam, 1986). 
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CHAPTER 3 

Materials and Methods 

3.1 Cell culture techniques 

All cell culture techniques and protocols were modified from previous 

studies in our laboratory (Smith, 1997) and those from Dr. LeBoeuf's 

laboratories at The Proctor & Gamble Company (LeBoeuf I Kerckaert, 

Aardema, and Gibson, 1990) for modeling purposes. 

3.1.a Culture medium 

Dulbecco's Modified Eagle's Medium-LeBoeuf's modification (DMEM-L; 

Quality Biological Inc., Gaithersburg, MD) was used throughout the study. 

DMEM-L is a modification of low glucose (1000 mg/L) while DMEM is with 

an equimolar concentration of MgCI2 replacing MgS041 0.75 gIL NaHC031 

and a reduced concentration of phenol red {5 vs. 15 mg/L} (LeBoeuf, 

Kerckaert, Aardema, and Gibson, 1990). Twenty percent of fetal bovine 

serum (FBS; Summit Biotechnology, Ft. Collins, CO) was used in the medium 

for clonal growth and 10% of FBS was used in the medium for serial 

passage of cell lines. L-Glutamine (Life Technologies, Grand Island, NY) was 
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added to achieve 4 mM final concentration. Penicillin-Streptomycin (5000 

units/mL penicillin/5000 pg/mL streptomycin; Life Technologies) was used as 

antibiotics and diluted at 1:100 into the solution. The complete medium 

yields a pH of 6.7 while incubated at 37°C with 10% CO2 , 

3.1.b Isolation of primary embryo cells 

Golden Syrian hamsters (Charles Rivers Laboratories, Kingston, NY) at 

gestation day 13 were the sources of the primary embryo cells. The 

methods were previously described by Smith (Smith, 1997) and LeBoeuf et 

al. (LeBoeuf et al., 1989; LeBoeuf and Kerckaert, 1986). Twenty-five to 30 

embryos were obtained from three pregnant animals which were sacrificed 

by CO2 asphyxiation. Embryos were then decapitated, eviscerated, and 

washed in calcium-magnesium-free Hank's Balanced Salt Solution (CMF­

HBSS; Life Technologies) containing Penicillin-Streptomycin (200 units/mL 

penicilJin/200 pg/mL Streptomycin; Life Technologies). To collect cells, the 

embryo tissue pieces were dissociated with CMF-HBSS containing 1 .25 % 

(v/v) trypsin (40X Enzar-T, Intergen Company, Purchase, NY) and 2.5% 

(v/v) pancreatin (4X NFU, Life Technologies). 

Cell viability and density were counted by exclusion of Trypan blue 

stain (0.40/0, Life Technologies) on a Hemacytometer. Twenty million viable 

cells were seeded in each T-150 culture flask (150 cm2 tissue culture flask; 
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Corning). After 24 hours, cells were detached from the flasks using 5 mL of 

Trypsin-EDTA (0.05% Trypsin, 0.53 mM EDTA.4Na; Life Technologies) at 

37°C for five minutes. The cells pooled from flasks were counted and 

diluted to 2 x 106 cells per mL in culture medium with 7.5 % (v/v) dimethyl 

sulfoxide (DMSO; Hybri-Max, Sigma Chemical). One-mL aliquots of this cell 

suspension were frozen in 2-mL cryogenic tubes (Wheaton) at -80°C for 24 

hours and then transferred to liquid nitrogen storage for up to six months. 

3. 1.c Cell preparation for clonal growth 

Syrian hamster embryo (SHE) cells were exposed to chemicals for 48 

hours during the clonal growth period. Two sets of cells were required for 

clonal growth. First, a feeder layer, which was irradiated to cease 

proliferation, was seeded, and then a target layer was plated out above the 

feeder layer and exposed to chemicals. For feeder layer preparation, a vial of 

cryopreserved SHE cell isolate was thawed and seeded in a T -1 50 culture 

flask with 30 mL of culture medium, then incubated at 10% CO2, 37°C, and 

saturated humidity. The cells were re-fed with fresh medium after four hours 

to eliminate the DMSO used in cryopreserving. Three days later, cells were 

trypsinized and gamma irradiated at 5000 rads with a Sherpard & Son Mark 

1, 6000 Curie 137 cesium source. After irradiation, ce)Js were spun down at 

900 x 9 for 10 minutes, resuspended in 10 mL medium, counted, and diluted 
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to 1 0000 cells per mL. This dilution was plated out in 1 OO-mm petri dishes 

(Falcon) at 10 mL per dish as the feeder layer. 

To prepare the target cells, another vial of SHE ceB isolate was thawed 

and seeded in T-25 culture flask with 5 mL of culture medium on the same 

day with feeder layer being plated out. These cells were re-fed with fresh 

culture medium after four hours and grown overnight. The target cells were 

then trypsinized, counted, and diluted to 2000 cells per mL. One hundred 

and two hundred micro liters of this solution, for control and chemical-treated 

groups, respectively I were added to each 100-mm petri dish containing 

feeder layer and 1 0 mL culture medium. These amounts achieved 200 and 

400 target cells per dish for control and chemical-treated groups, 

respectively. After 24 hours, the cells were dosed with the individual test 

metals and the metal mixture in 5 mL of medium and incubated for 48 hours. 

The culture medium containing chemicals was then replaced and the cells 

were allowed to grow for seven days. 

3.1.d Colony isolation and passage 

After seven days of clonal growth, approximately 30 colonies were 

sefected randomly and isolated from control and metals-treated groups, and 

18 colonies from SaP-treated group. To isolate colonies, plastic cloning 

cylinders (Sigma Chemical) were placed on selected colonies and the cells in 
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the cylinders were washed with CMF-HBSS. The cells were then trypsinized 

with drops of Trypsin-EDT A and transferred to separate 60-mm petri dishes 

with 4 mL of culture medium, one colony per dish. It was important at this 

stage to be able to analyze independent colonies, based on the assumption 

that a colony is the expansion of a single parental cell. 

Following the colony isolation, cells needed to be passaged once a 

week. For the control group, each isolate was re-plated at 4 x 104 cells in 4 

mL of culture medium per 60-mm petri dish. For other groups, 1/20 of cells 

were re-plated in each 60-mm petri dish containing 4 mL of culture medium. 

Each isolate was re-plated in parallel in two dishes to prevent the loss of 

isolates due to contamination. Cell lines were determined to be senescent 

when they did not need to be passaged for more than three weeks and 

expressed cytoplasmic spreading. 

3.1.e Growth inhibition study 

During the experiments to induce immortal SHE cell lines in our 

laboratory, arsenic was found to inhibit the growth of SHE cells rather than 

extend the life span. As a result, an experiment was designed to study the 

dose-response growth inhibition caused by arsenic. A vial of cryopreserved 

SHE cells was seeded in T -150 flask and re-fed after 4 hours. Following 

three days of incubation, cells were re-plated in 60-mm petri dishes at 
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4 x 104 cells per dish and incubated for 24 hours. Cells were then exposed 

to arsenic for two days at four concentrations, i.e. LCso of arsenic to SHE 

cells obtained from cytotoxicity studies (Section 3.2) and three 

concentrations below it. The cells were washed and passaged after the 

exposure. The procedures of passaging cells were identical to those 

described in the previous sections. 

3.2 Cytotoxicity study 

To obtain the chemical treatment concentrations for our studies and 

model development, the toxicities of the selected metals {lead, arsenic, 

chromium} and the mixture of these three metals were assessed in SHE cells 

using the MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; 

thiazolyl blue) assay. The chemicals used in this study were lead acetate 

trihydrate, sodium m-arsenite, and the mixture of chromium chloride 

hexahydrate [chromium(lll)] and chromium oxide [chromium(VI)] in a 1: 1 

ratio; all chemicals listed above were purchased from Sigma Chemical 

Company. SHE cells were plated at 96 well tissue culture plates at 6000 

cells per well and incubated for 24 hours. Single metals at graded 

concentrations were added to the medium and cells were treated for 48 

hours. Equi-toxic concentrations were used in the mixture studies followed 

by the single metal studies. 
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After treatment, the cells in each well were incubated with 50 pg of 

MTT (Sigma Chemical) for four hours. MTT yields a ye1Jowish solution when 

dissolved in culture medium. Dehydrogenase enzymes in live cells could 

cleave the tetrazolium ring of MTT and convert it to insoluble purple MTT 

formazan (1-[ 4,5-Dimethylthiazol-2-yl]-3,5-diphenylformazan). Absorbance 

was read on a microplate reader at 550 nm after the MTT formazan crystals 

were dissolved by 100 pL of DMSO. LCso is defined by the concentration at 

which the chemical results in 50% inhibition of absorbance at 550 nm and 

was determined by log plots of percentage of control absorbance versus 

metal concentration. 

3.3 Cell division rate measurement 

Cell division rates were measured using bromodeoxyuridine (BrdU) 

incorporation with propidium iodide staining, which allows for the calculation 

of potential doubling time (Tpot )' Tpot is a measure of cell cycle time that 

takes cell growth fraction, but not cell (oss, into account (Steel, 1977; 

Wilson, 1994). After obtaining Tpotl the cell division rate, a, was calculated 

from the equation 

In2 
a=--

~Ol 
(3.1 ) 
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3.3.a Potential doubling time method 

The division rate was estimated from the potential doubling time that 

could be calculated by Equation 3.2, 

(3.2) 

where Ts is the period of DNA synthesis, LI (labeling index) is the fraction of 

cells synthesizing DNA, and A is a correction factor for the nonlinear 

distribution of cells through the cell cycle (Steel, 1977; Wilson, 1994). 

Potential doubling times were measured in flow cytometry by pulse-

labeling cells with bromodeoxyuridine (BrdU) and detected its incorporation 

into DNA by the use of fluorescent antibodies. The cells were then 

counterstained by propidium iodide to measure the DNA content. Estimation 

of Tpot values relied upon distinction of cells in different stages of the cell 

cycle. The cell cycle contains four stages (Figure 3.1). The cell increases in 

size and prepares for DNA replication in the G1 (gap one) phase. In the S 

(synthesis) phase, the cell replicates its nuclear DNA. In the next gap period 

(G 2 phase), the cell confirms that DNA replication is complete before it 

proceeds through mitosis (M), in which the cell finally divides into two 

daughter cells. 

The results from a representative flow-cytometry study are shown in 

Figure 3.2 and discussed here to illustrate the method. Each window in 

33 



Figure 3. 1. The four stages of a cell cycle 

The cell cycle proceeds clockwise through four successive stages (G 1: gap 1 
; S: synthesis; G2 : gap 2; M: mitosis) 

34 



Oh 2h 

o 5 1,0 15 20 25 30 35 40 45 50 o 5 10 15 20 25 30 35 40 45 50 

R.ed fluorescence (DNA content) 

Figure 3.2. Bivariate histograms of BrdU Fncorporation versus DNA content 

Panels present bivariate histogra,ms obtained from cells stained at 0, 2, 4, 
and 6, hours after BrdU pullls,e-labelin'g. X-ax.is is intensity of red 
fluorescence (DNA content), y-axis is intensity of green f lluorescence (SrdU 
incorporated). All cells were stained by propidium iodide with intensities 
proportional to DNA content, while cells in S phase during SrdU pulse~ 

:Iabeling were, labe'lled by BrdU (green contours). 
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Figure 3.2 is a bivariate histogram containing the green fluorescence (BrdU 

incorporated) on y-axis and red fluorescence (DNA content) on x-axjs. The 

left-top window presents the histogram immediately after BrdU pulse-labeling 

(0 hour). The cells labeled with BrdU (S phase) lay between two groups 

without green fluorescence, G1 on the left and G2/M on the right. 

After two hours, the green population (S phase cells) moved to the 

right while a small population appeared as G1 phase cells. That is because 

most of the BrdU-labeled cells moved through S phase to G2/M and a small 

population were in or had completed mitosis and divided into daughter cells 

(i. e. G 1 cells) . At later time points (i. e. four and six hours), there was an 

increasing number of cells that had divided and now appeared on the left side 

as G1 phase cells. 

Ts can be measured by the relative movement of the BrdU labeled cells 

through a certain region (Begg et a/., 1985). The relative movement (RM) is 

calculated as 

(3.3) 

where FL represents the mean red fluorescence intensity of the BrdU labeled 

cells (Figure 3.3). FG1 and FG2/M are the mean red fluorescence intensity of G1 

and G2/M cells, respectively. FL is approximately in the middle of FG1 and 
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Figure 3.3. The schematic plot for the calculation of relative movement 

Elements contained in Equation 3 .3, used to calculated the relative 
movement, are indicated schematically. FL represents the mean red 
fluorescence of the BrdU labeled cells. F G, and F G2/M are mean red 
fluorescence of G, and G2 /M cells, respectively . 
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FG2/M at time zero, i.e. RM is approximately equal to 0.5. FL will approach 

FG2/M as time passes and RM will be equal to one at Ts. 

By setting RM equal to 0.5 at time zero (Begg, McNally, Shrieve, and 

Karcher, 1 985), the DNA synthesis time can be calculated as 

0.5 
1; = RM _ 0.5 x t (3.4) 

where t is the sampling time. Labeling index is calculated as the proportion 

of cells labeled by BrdU. By assuming "A equal to one, Tpot can be obtained 

from Equation 3.2. 

3.3.b Bromodeoxyuridine/propidium iodide staining protocol 

SHE cells were plated in parallel on 60-mm petri dishes at 4 x 104 cells 

per dish. After 72 and 120 hours, 10 pM of BrdU (Sigma Chemicals Co.) 

was used to pulse-Jabel the cells for 20 minutes. Fresh medium was added 

to the cells after BrdU was removed, and the cells were grown for another 3 

hours. BrdU-labeled cells were then trypsinized and fixed in 70% ethanol, 

which helped propidium iodide to penetrate the plasma membrane. Fixed 

cells could be stored in 70% ethanol at 4°C for months before staining. 

The staining protocol was modified from Larsen (Larsen, 1994). The 

first step of staining was to partially denature DNA to allow access of the 

monoclonal antibody to its epitope on the incorporated BrdU. To achieve the 
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denaturation, 0.2 mg pepsin (Sigma Chemical Co.) was dissolved in each mL 

of 2N HCI and incubated with cells at 37°C for 15 minutes. To terminate 

the denaturation, 1 M Tris (Trizma base, Sigma Chemical Co.) was added to 

the cells which were then washed with PBS. Monoclonal mouse anti-BrdU 

antibody (Dako) was added and incubated with cells for 30 minutes at room 

temperature. After the anti-BrdU antibody was washed out, fluorescein 

isothiocyanate (FITC)-conjugated rabbit anti-mouse antibody (Dako) was used 

to bind to anti-BrdU for 15 minutes at room temperature. For the last step of 

staining, 10 pg/mL of propidium iodide combined with 1 mg/mL of RNase 

were added to create specific DNA binding. Cells were filtered through 53-

pm nylon mesh (Small Parts Inc., Miami Lakes, FL) before flow cytometric 

~nalysis. 

3.4 Cell death rate measurement 

The cell death rates were measured by staining cells with propidium 

iodide. This dye is only taken up by dead cells through the damaged 

membrane and is excluded by live cells (Ormerod, 1 994). Propidium iodide 

binds to nucleic acids and fluoresces red after entering dead cells. By setting 

a gate in the forward angle light scatter (FALS), which is an indicator of cell 

size, debris and clumps could be excluded from flow cytometric 

measurement (Figure 3.4A). Cells screened by FALS were examined on the 
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Figure 3.4. Histograms for death rate measurement 

A: Cells screened by forward angle light scatter: cells in delineated area 
were analyzed for propidium iodide uptake (8). B: Dead cells, which take 
up propidium iodide, show bright red fluorescence (delineated area). 
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basis of their uptake of propidium iodide (Figure 3 .4B), and the fraction of 

death cells in sample was obtained from these measurements. 

SHE cells were plated in parallel at 40000 cells per dish. Samples 

were harvested at 72, 96, and 120 hours after plating. Two mL of Trypsin­

EDTA was used to detach the cells at 37°C for five minutes. In addition, 

medium from the culture and 3 mL of CMF-HBSS used to wash cells were 

collected since dead cells did not attach. After all cells were collected, they 

were shipped to the flow cytometry lab and centrifuged. The pellets were 

resuspended in 1 mL of 50 ,ug/mL propidium iodide and incubated at room 

temperature for five minutes. The stained cells were filtered through a 53-

,um nylon mesh before flow cytometric analysis. 

Since the flow cytometric measurement only provides the percentage 

of dead cells, the total number of cells were counted to allow calculation of 

the number of dead cells. A dish of cells was harvested at the same time 

and by same procedure as were the cells measured in flow cytometry. These 

cells were centrifuged, resuspended in 1 mL of culture medium, and counted 

in hemocytometer under the microscope. 

3.5 Flow cytometric analysis 

Samples were analyzed with an EPICS V cell sorter (Coulter, Miami, 

FL) interfaced to a Cicero data acquisition and display system (Cytomation, 

41 



Inc., Ft. Collins, CO). Cells were illuminated by an argon ion laser at 488 nm 

(500 mW). FITC fluoresces at wavelengths between 515 to 530 nm and 

propidium iodide fluoresces at wavelengths longer than 61 0 nm. 

For division rate measurement, a gating on peak vs. integral 

fluorescence of the propidium iodide signal was set to eliminate clumped 

cells. Thirty thousand counts of nuclei were triggered by the signal of 

propidium iodide fluorescence. 

For death rate measurement, the gating was set on forward-angle light 

scatter to eliminate debris and clumped cells. Twenty thousand cells were 

counted for each sample. 

3.6 Computer and software packages 

The simulation programs were written in MATLAB® (The MathWorks 

Inc., Natick, MA) and ACSL Tox (ACSL = Advanced Continuous Simulation 

Language; Pharsight Co., Mountain View, CAl software packages. The 

programs were executed using a Gateway P5-200 personal computer 

(Gateway, Inc., San Diego, CAl. 
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CHAPTER 4 

Results and Discussion 

4.1 Toxicities of metals to SHE cells 

The results of cytotoxicity studies of chromium, arsenic, and lead to 

Syrian hamster embryo (SHE) cells are shown in Figure 4.1 and 4.2. The 

calculated LC50 of chromium was 3.6 pM (Figure 4.1 A) and that of arsenic 

was 5.4 pM (Figure 4.18). Lead was not very toxic to SHE cells and killed 

fewer than 50% of the cells, even at the relatively high concentration of 1 

mM (Figure 4.2A). As a result, 100 pM of lead was assumed to have equi­

toxicity to the LC50s of the other two chemicals, and this level was used in 

the metal mixture toxicity study. I.e., multiple dilutions were made from the 

mixture of the LC50s of chromium and arsenic, as well as 100 pM of lead 

(Figure 4.28). The LC50 estimated for the mixture was at the individual 

concentrations of 2.2 pM of chromium, 3.2 pM of arsenic, and 60 pM of 

lead. These results show that a mixture of the three metals exhibited less­

than-additive toxicity, suggesting antagonistic interaction at the level of cell 

killing. 
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Figure 4. 1. Cytotoxicity studies of chromium and arsenic to SHE cells 

Cytotoxicity of chromium (A) and arsenic (8) to SHE cells were analyzed by 
MTT assay. The estimated LCsos were 3.6 pM for chromium (A) and 5.4 pM 
for arsenic (8). 

44 



ro 
> 
.~ 

:J 
(J) 

~ 

10 100 1000 

[PbOAc] JlM 

0.001 0.01 0.1 10 

Fraction of the mixture of 3.6 JlM of Crt 5.4 JlM of As, 
and 100 IlM of Pb 

Figure 4.2. Cytotoxicity studies of lead and metal mixtures to SHE cells 

Cytotoxicity of lead (A) and metal mixtures (8) to SHE cells were analyzed 
by MTT assay. For the metal mixture study, multiple dilutions were made 
from the mixture of the LCsos of Cr and As, as well as 100 pM of Pb. The 
estimated Leso for the mixture was at the individual concentrations of 3.2 
pM of As, 2.2 pM of Cr, and 60 pM of Pb. 
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4.2 Attempted induction of immortal cell lines 

Separate cultures of SHE cells were treated by the LC50s of chromium, 

arsenic, and the metal mixture, and by 100 pM of lead for two days. 

Approximately 30 colonies from each chemical treatment were isolated and 

attempted for their ability to become immortal cells following serial passages. 

All cell isolates became senescent before the completion of 21 passages, 

which was calculated to be the equivalent of 112 population doublings. 

Senescent cells were observed to be morphologically distinguishable from 

normal cells (Figure 4.3). Senescent cells were much larger than normal cens 

and were characterized by cytoplasmic spreading, while normal cells grew in 

a flowing manner. The life spans of cell isolates, which were defined as the 

population doublings cells have grown until senescence, were shown in Table 

4. 1. All of the As-treated cell isolates became senescent at the second 

passage, and none of them proliferated for more than 22 population 

doublings, while at least one cell isolate from each of the other three 

treatment groups grew for more than 58 population doublings. These results 

showed that As at 5.4 pM inhibited the growth of SHE cells. The cell isolate 

with longest life span in this experiment lasted for 112 population doublings. 

It was treated with benzo[a]pyrene (BaP), our positive control agent for 

immortalizing SHE cells (LeBoeuf, Kerckaert, Aardema, and Gibson, 1990). 

The cell isolates that lasted longest for Cr and Pb grew for 69 and 101 
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Normal Cells 

CtrU Sp3 1121/99 

Senescent Cells 

Ctrl29p3 1121/99 

Figure 4.3. Examples of normal and senescent SHE cells 

Normal cells have fibroblast characteristics when confluency was reached . 
Senescent cells were much larger than normal cells and expressed 
cytoplasmic spreading. 
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population doublings, respectively. No additive effect was observed in the 

mixture-treated cells, which included one isolate with 58 population 

doublings. 

Thus, none of the treatments induced immortal cells. The reason that 

immortal cell lines were not induced from the positive control group could be 

the exposure period. The experimental protocol was adapted from LeBoeuf 

et al. (LeBoeuf, Kerckaert, Aardema, and Gibson, 1990), in which BaP 

successfully induced immortal SHE cell lines, except that a 2-day exposure 

was used in our laboratory instead of the 7 -day exposure used by LeBoeuf et 

al. Using the 2-day exposure was based on the consideration of applying the 

model to volatile organic chemicals later. Two volatile chemicals, 

trichloroethylene and 1 ,2-dichloroethane, dissolved the plastic dishes in 

previous 7-day exposure studies from our laboratory (Smith, 1997). The 

shorter exposure might not have been sufficient for BaP to induce mutation 

under the culture conditions we selected. 

Arsenic was found to inhibit the growth of SHE cells. Cells exposed 

to chromium, the metals mixture, and BaP showed smaller degrees of growth 

inhibition compared to cells exposed to arsenic. Lead did not inhibit the 

growth of SHE cells. Since arsenic exhibited the greatest impact on the 

growth of SHE cells, the following model development focused on the effect 

on cell growth induced by arsenic. The cell division and death rates 
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Table 4.1: Life Spans of Cell Isolates 

Population Number of cell isolates from each chemical treatment 

Doublings As Cr Pb Mixture Control SaP 

15-20 25 21 6 21 7 15 

20-25 5 6 17 7 10 1 

25-30 1 2 7 

30-40 2 1 1 

40-50 1 2 

50-60 1 1 2 

60-70 2 2 

80-90 1 

>100 1 1 1 

Total 30 30 30 30 32 18 

measured from control cells, while obtained from the experiments described 

above, were also used in the model development. 

4.3 Growth inhibition study by arsenic 

Arsenic was observed to inhibit the growth of SHE cells from the 

results described in Section 4.2. A dose-response study was designed to 

further study the growth inhibition effect caused by arsenic. Four graded 

concentrations of arsenic, 0.5, 1.0, 2.0, 5.4 pM, were used in this study, 

where the highest concentration was the LCso of arsenic to SHE cells. SHE 
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cells were exposed to arsenic for 2 days and their life spans were determined 

following serial passages. Since there was no significant difference observed 

between the growth of cell isolates in the previous experiment (Section 4.2), 

cells were exposed to arsenic at the density of 4 x 104 cells per dish instead 

of 400 cells per dish which was used in clonal growth. Arsenic at 5.4 pM 

shortened the life span of SHE cells, and the cells only grew for 1 6 

population doublings before becoming senescent (Figure 4.4). SHE cells 

exposed to lower concentrations, 0.5, 1.0, 2.0 pM, grew for more than 30 

population doublings and did not show significant difference in growth from 

control cells. 

Cellular senescence induced by arsenic has not been previously 

reported. However, arsenic was found to induce mitotic inhibition in Chinese 

hamster ovary cells (Lee et al., 1986). Furthermore, in vivo, arsenic was 

observed to cause inhibition of the promotion of preneoplastic lesions in rats 

(Pott et al., 1 998) and to decrease tumor incidence in mice (Kanisawa and 

Schroeder, 1967), although the processes underlying these effects remain 

unknown. Mechanisms involved in the induction of cellular senescence by 

arsenic in vitro may also be responsible for the effects observed in vivo. 

Induction of cellular senescence has also been reported with exposure to 

radiation (Peters, 1996). 
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Figure 4.4. Effect of arsenic on the growth of SHE cells 

Cells exposure to 5.4 pM of only grew for 16 population doublings before 
becoming senescent. All cells exposed to lower concentrations, 0.5, 1 .0, 
2.0 pM, grew for more than 30 population doublings and continued to grow 
beyond the numbers of population doublings shown above. 
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4.4 Cell division rates 

The cell division rate (a) was calculated from the equation (Steel, 

1977), 

In2 
a=--

T;,OI 
(3.1 ) 

where Tpot is the potential doubling time (Section 3.3). The calculations for 

Tpot values are shown in Appendix A. It was observed in normal cells that 

Tpot was a function of time after each passaging of the cells (Figure 4.5); this 

effect is presumed to be a result of IIcrowding". This result can be explained 

by the phenomenon of IIdensity-dependent inhibition of cell division" I which 

assumes that norma1 cells in culture stop dividing when a confluent 

monolayer is formed (Alberts et al" 1994). Furthermore, a reduction of cell 

growth rates was detected when membrane contact occurred in a study 

conducted by video time-lapse microscopy in newborn rat dorsal root 

ganglion cells (Bandtfow et al., 1 990). 

Short Tpot (high cell division rate) was observed while the cell density 

was low.. As the cell numbers increased, longer Tpot (low cell division rate) 

was measured due to decreased space for cens to grow. Examples of the 

impact of cell density on Tpot are shown in Figure 4.6, where the measured 

Tpot was 13 hours on the third day after the cells were passaged (Figure 
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Figure 4.5. The change of potential doubling time (Tpot) as a function of 
time after cell passage in SHE cell culture system. 

Tpot was observed to be a function of time after each passaging of the cells. 
The dots represent measured values with error bars representing ± one 
standard deviation. The line represents the result of nonlinear regression 
from the exponential equation Tpot= 12.4+0.0913*exp(O.0432*time). This 
regression had a standard error of the estimate equal to 1.75 h. 
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Cul 40 pS 1128/99 

Ctrl 36 pS 1/29/99 

Figure 4.6. Examples of the impacts of cell densities on Tpot measured 

The first picture (A) was taken on 3 rd day after cells were passaged, when 
the cell density was low and Tpot measured was 13 hours. The other 
picture (8) was taken on the fifth day and there was less space for cells to 
grow. As a result, the measured Tpot was 23 hours. 
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4.6A), and 23 hours on the fifth day (Figure 4.68). Tpot values measured 

from different normal cell isolates showed very consistent results (Appendix 

A). The dots and error bars in Figure 4.5 represent the means and standard 

deviations of Tpot values from different normal cell isolates. To incorporate 

the Tpot values measured into the model as the cell division rate, a nonlinear 

regression calculated by SigmaPlot@ was used to predict the relation between 

Tpot (h) and time after cells were passaged (h), 

Tpot = 12.4 + 0.0913. eO.0432.,ime (4.1 ) 

This regression had a standard error of the estimate equal to 1.75 h. The 

standard error of the estimate (Sy.x) is defined as, 

1 ~ A 2 

SYIX = ---=-3 i..J (1'; - 1';) 
n ;=1 

(4.2) 

where ~ and Y; are the observed and predicted values, respectively, and n is 

the sample size (Kleinbaum et al., 1 998). The range of values representing 

the underlying population generally falls within two standard errors of the 

observed sample mean {SPSS Inc., 1997}. 

4.5 Cell death rates 

Time course studies were used to determine cell death rates. To 

obtain the numbers of dead (0) cells, the total number of cells, which was 
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counted on a hemocytometer, were multiplied by the fraction of dead cells, 

which was obtained from propidium iodide staining and flow cytometric 

analysis (Section 3.4). The cell death rate (~) was assumed to be constant 

within each passage and was defined as the value that made the following 

two equations having the best fit to the experimental data of normal (N) and 

dead (D) cells. 

dN(t) 
dt = N(t)· [a (t) - ft] 

dD(t) 
--= N(t)·p 

dt 

(4.3) 

(4.4) 

where a is the cell division rate. a is a variable and was obtained from 

Equations 3. 1 and 4. 1 (Section 4.4). 

A computer program was written in MATLAB® (Appendix B) to 

optimize the death rate,~. The optimization was achieved by minimization 

of the objective function, 

b
. . F . '"' [(predicted - obSerVed)2] o yectlve unctIon = L..J b d)W (4.5) 

(0 serve 

where w is the heteroscedasticity parameter. In this optimization, W = 2 was 

used to represent relative weighting. 
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The mean cell death rate was calculated as 2.95 x 10-4 ± 6.36 x 10.5 

(h01
). This is approximately equal to 1 % of the average value of division 

rates. No significant differences were observed between the cell death rates 

of control and arsenic-treated cell lines. 

4.6 Biologically-based dose-response (BBDR) model of the growth of SHE 

cells within one passage 

A BBDR model for the growth of SHE cells was developed after ce11 

division and death rates were measured. For normal SHE cells, Equation 1.1 

was applied into the model with the senescence rate (y) set equal to zero for 

early passages, which gives the simplified relation, 

dN(t) 
dt = N(t)·[a(t)- P] (4.3) 

where N denotes the number of normal cells, and a and ~ are the cell 

division and death rates, respectively. The measurement of cell division rate 

was discussed in section 4.4, and death rate in section 4.5. Since only 

normal and senescent stages will be discussed here, the subscript one in 

Equation 1.1 will be ignored. 

After every cell passage, there was a lag time in culture before cell 

division started. In the meantime, the cells spread out and adapted to the 

new environment. The lag time (T1ag) defined in this thesis is only for 
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modeling purposes; the mechanism of the lag phase was not studied here. 

The cell numbers were assumed to be unchanged during the lag time, and 

controlled by the division and death rates measured after T1ag • Cell counts 

from the third, fourth, and fifth days after cells were passaged were used to 

determine the value of T,ago The starting time of the integration of Equation 

4.3 which fitted the data best was determined to be T1ag • The optimization 

of T ,ag was achieved by a computer program (Appendix C) written in 

MATLAB® which minimized the objective function (Equation 4.5) between 

the integration (predicted) and cell counts (observed). 

The (ag time was determined to be 41 .9 hours, and the result of 

modeling output versus data is shown in Figure 4.7. The cell numbers 

remained unchanged between zero and 41 .9 hours, followed by a fast 

growing phase. As cell density increased, the cells grew at a lower rate due 

to the decreasing of space. The end point of this model was the time the 

next passage proceeded (seven days). 

4.7 BBDR model of the growth of SHE cells through the life span 

To apply the model to more than one passage, the dilution we made in 

each passage should be taken into account. The cell number used to verify 

the model (Ncorrected) was calculated as the cell number counted while cells 

being passaged (Ncount) multiplied by the dilution factor at previous passage, 
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Figure 4.7. BBDR modeling of the growth of SHE cells within one passage 

The line represents the modeling output of differential equation 
dN (t) Idt :::: N (t) x [0 (t)-~] (Appendix C) with 41.9 hours of lag time (T'ag)' The 
dots represent the normal cell counts from the third, fourth, and fifth days 
after cells were passaged. 
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i.e. using the equation, 

N N corrected, i-1 

corrected, i == N count• i X 4 X 104 (4.6) 

where the value in denominator, 4 x 1 0 4
, is the cell number at the beginning 

of every passage. The integration of Equation 4.3 was used repeatedly for 

all passages, while the initial number of cells of each passage was equal to 

the last value of previous passage (Appendix D). The result of BBDR 

modeling output versus experiment data is shown in Figure 4.8. These cells 

had been treated by arsenic for 2 days at graded concentrations, i. e . • , 

control; 0, 0.5 11M; T, 1.0 11M; 0, 2.0 11M; 0, 5.4 11M. As is the case with a 

single passage (Figure 4. 7), there is a lag phase in the beginning of each 

passage, followed by a fast growing phase with low cell density. With the 

increasing of cell numbers, cells grew at a lower rate. Cells were passaged 

weekly and another lag phase started at this point. 

To further verify if the ability of arsenic to inhibit the growth of SHE 

cells, the standard error of estimating Tpot (Section 4.4) should be considered 

in the model. In other words, there is no significant difference among the 

growth of cell lines if their corrected cell numbers fall in the area between 

two lines which formed by the integration of Equation 4.3 with cell division 

rates calculated from Tpot ± 1.75 (h). The result in Figure 4.9 indicated that 

there is no significant difference in growth between the cell lines treated with 

60 



1014 

1013 

1012 

1011 

L-

a> 1010 .c 
E 
::J 109 
c 

a> 108 

0 

107 

106 

105 

104 

0 200 400 600 800 1000 

Time (h) 

Figure 4.8. BBDR modeling of the growth of SHE cells through the life span 

The line represents the modeling output where the integration of Equation 
4.3 was used repeatedly in every passage. The symbols represent the 
corrected cell numbers where the dilution factor at each passage was taken 
into account. These cells had been treated by arsenic for two days at graded 
concentrations, i.e. e, control; 0, 0.5 pM; T, 1.0 pM; 0, 2.0 pM; 0, 5.4 
pM. 
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Figure 4.9. BBDR modeling of the growth of SHE cells with the standard 
error of estimating TpDt taken into account 

The solid line represents the modeling of SHE cell growth with cell division 
rate calculated from Equation 4. 1. The dashed lines reflect the uncertainty 
of the model based on the Tpot standard error (1.75 h). The symbols 
represent the corrected cen numbers of cells exposed to arsenic for two days 
at graded concentrations, i.e . • , control; D, 0.5 pM; ., 1.0 pM; 0, 2.0 pM; 
0,5.4 pM. 
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three low concentrations of arsenic and control cells. As we expected from 

the discussion in Section 4.3, SHE cells exposed to 5.4 pM of arsenic 

showed a significant inhibition of cell growth at the third and fourth 

passages. This cell line stop growing at the fourth passage. This gave us 

the information required for determining the cell senescence rate. 

It was also calculated by a computer program (Appendix E) that when 

the means of Tpot values multiplied by a factor of 0.93, the resulting model 

output fitted the control cell counts (e in Figure 4.9) best. 

4.8 The estimation of senescence rates 

The potential doubling times measured from the third and fourth 

passages of cells exposed 5.4 pM of arsenic were much higher than from the 

normal cells, which is the result of increases of senescent cells. These 

potential doubling times incorporated with the data collected from the 

growth of normal cells provided the information for estimating cell 

senescence rates. The senescence rate was assumed to be zero, prior to the 

third passage of this cell line. 

4.8.a The correlation between senescence rates and potential doubling times 

The potential doubling time measured reflected the growth of a 

population containing both normal and senescent cells. Thus the more 
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senescent cells existed in the population, the higher the Tpoto Base on this 

result and the observation from Figure 4.9, i.e. a significant inhibition of cell 

growth was observed at the third and fourth passages in this cell line, we 

concluded that cells exposed to 5.4 pM of arsenic started to become 

senescent at the third passage and continued the process at the fourth 

passage where all cells stopped growing. 

To calculate the number of senescent cells, Equation 1.3 was recalled 

and Equation 1.1 was rewritten as, 

dN(t) 
dt = N(t), [anormal (t) - ft] - r (t)· N(t) (4.7) 

dS(t) 
dt = r (t), N(t) (1.3) 

where Nand S denote the number of normal and senescent cells, 

respectively, and 0, p, and V denote the cell division, death, and senescence 

rates, respectively. The ceB death rate, p, was calculated in Section 4.5 and 

assumed to be constant. Cell division rate with subscript normal is the rate 

we discussed in Section 4.4. The division rate of normal cell (onormal) should 

be distinguished from the division rates measured at the third and fourth 

passages of the cells exposed to 5.4 pM of arsenic, 0mix t which is the rate of 

a mixed population of normal and senescent cells. Since 0mix reflected the 
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growth of the mixed population, we should discuss it from the summation of 

Equations 4.7 and 1 .3, i. e. 

d[N(t) + Set)] 
dt = N(t)· anormal(t) - N(t)· jJ (4.8) 

Since the potential doubling time, which was used to calculated cell division 

rate, was defined as a cell cycling time that takes growth fraction but not 

cell loss into account, Equation 4.8 was rewritten as, 

d[N(t~; S(t)] = [N(t) + S(t)]. amix(t)- N(t)· fJ (4.9) 

From Equation 4.8 and 4.9, the fraction of the normal cells in the mixed 

population was calculated as, 

N(t) ----.;--== 
N(t) + Set) anormal(t) 

(4.10) 

By incorporating Equation 3.1 into this equation, it could be rewritten as, 

N ( t ) Tpotllormal ( t ) --....;......;.--== 
N(t) + Set) Tpotmix (t) 

(4.11 ) 

According to our assumption that cells exposed to 5.4 pM of arsenic were in 

the process of becoming senescent at the third and fourth passages, cell 
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numbers counted in these passages were considered as the total number of 

normal and senescent cells, i.e. N(t) + S(t). Thus the numbers of normal as 

well as senescent cells at these two passages were calculated from Equation 

4.10 and cell counts. 

4.8.b The correction of the potential doubling time according to crowding 

factor 

While using Tpot values measured at the third and fourth passages to 

calculate the senescence rates, Tpot values were corrected according to the 

"crowding" factor because Tpot values are affected by both the IIsenescent" 

and II crowding" factors at these two passages. To correct the crowding 

factor, the change of Tpot as a function of cell number per plate is shown in 

Figure 4.10. The cell numbers were calculated by the same program used to 

predict the of growth of cells within one passage as shown in Figure 4.7. 

The division rates were calculated by means of Tpot values (Equation 4.1) 

multiplied by a factor of 0.93 to obtain the best fit to control cells (Section 

4.7). 

Whether the senescent cell populations had great impact on the Tpot 

values was verified by normalizing the Tpot values by the Tpot values measured 

at the third day after the cells were passaged (Figure 4.11 ). The normalized 

Tpot values provided information about the -change of Tpot values within each 
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Figure 4. 10. The change of potential doubling time fTpoJ as a function of cell 
density 

The means of Tpots (Equation 4.1) multiplied by a factor of 0.93 was used to 
calculate the division rates (0) in the equation, dN(t)/dt:= N(t) x [o(t}-[3], which 
was used to calculate the cell number in each dish. 
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Figure 4. 11. The effect of senescent cell population on potential doubling 
time (Tpot)' 

Potential doubling times were normalized according to the value measured at 
the third day after passage in each cell line. The dashed-dot line represents 
the standard curve which on1y reflected the crowding factor on normalized 
Tpot and was normalized from Figure 4.10. The symbols, ., 0, ., and \) 
represent the normalized Tpots of control cells and cells exposed to the three 
lower concentration of As (0.5, 1.0, and 2.0 pM), respectively. 
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passage, with all data presented on a comparable scale. The standard curve, 

which represented a function that the change of Tpot values was only related 

to the crowding factor (dashed-dot line in Figure 4. 11), was normalized from 

Figure 4.10. In all samples shown in Figure 4.11, Tpot values were only 

measured on the third and fifth days after cell passage. 

The changes of the normalized Tpot values in control cells and cells 

exposed to the three lower concentration of arsenic (e, 0, T, and 0 in Figure 

4. 11) all followed the same pattern the standard curve had, which suggested 

their Tpot values were only affected by cell densities. For cells exposed to 

5.4 JiM of arsenic, the normalized Tpot values increased 1.76 and 1 .88 folds 

at third and fourth passages in a time span of 2 days, but with only slight 

increases in the cell numbers. The normalized Tpot values of standard curve 

only increased 1 .04 folds with the same amount of change in the cell 

numbers. These results suggested that the senescent cells in the population 

slowed the growth of the whole population. 

4.8.c The prediction of the growth of a cell population including normal and 

senescent cells 

For a cell population including both normal and senescent cells, the cell 

growth was much slower than for a population consisting only of normal 

cells. Therefore, the cell division rates calculated in Section 4.4 could not be 
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used here, i. e. the cell divisio!", rates applied to Equation 4.9 should be 

estimated separately. It was assumed that the changes of Tpot values with 

time of these mixed population followed the same pattern the normal cells 

had. Three parameters exponential equations similar to Equation 4.1 

(Tpot=Yo+aoeb.time; Yo' a, b are constants) can be used to fit the data of Tpot 

values versus time after passages. Available data for the mixed population 

cells were the Tpot values and cell numbers from third and fourth passages of 

the cells exposed to 5.4 pM of arsenic. Two Tpot values, at 72 and 1 20 

hours after cells being passaged, from each of these two passages were 

measured ° Since at least three data points were needed for the three 

parameters exponential equation, the cell number counted in the end of the 

passage was incorporated to the data fitting of Tpot ' The cell growth was 

simulated by a computer program (Appendix F) which first fitted the 

distribution of Tpot values with the three parameters exponential equation by 

finding the Tpot in the end of the passage, i.e. the Tpot resulting the calculated 

cell number fitted the experimental data best. The modeling predictions, 

which using the integration of Equation 4.9, of the cell growth of the mixed 

cell populations are shown in Figure 4.12. 
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Figure 4. 12. The prediction of the growth of a cell population including both 
normal and senescent cells 

The solid and dashed line represent the modeling predictions of the growth of 
the cells exposed to 5.4 pM of As at the third and fourth passages, 
respectively. The dots represent the experimental data of cell numbers from 
this cell line. The Tpots used in this model was optimized by the computer 
'program as shown in Appendix F, with the results that 
Tpot = 0.843 + 17.4 *eO.0120-t for the third passage and 
Tpot = 31.8 + 2.89*eo.025S-t for the fourth passage. 
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4.8.d The optimization of cell senescence rate 

The senescence rates (y) was defined as the values that result in the 

best predictions of the number of senescent cells (S) (calculated from 

Equation 1 .3) and normal cells (N) (calculated from Equation 4.7). The 

predicted numbers of senescent cells were verified by the experimental data 

calculated from Equation 4.11, whereas the summation of predicted normal 

and senescent cells were verified by the data calculated from Equation 4.9. 

The optimization of the cell senescence rates was achieved by a 

program (Appendix G) executed by ACSL. The results of optimization are 

shown in Figure 4.13 where the values between 336 and 528 hours 

represent the cell growth of the third passage of the cells exposed to 5.4 pM 

of arsenic and those between 528 and 768 hours represent the fourth 

passage. The senescence rates estimated was 0.0543 h-1 for the third 

passage and 0.057 h-1 for the fourth passage. The solid line and solid circles 

denote the experimental data of total and senescent cells, respectively. The 

predicted values of normal (from Equation 4.7), senescent (from Equation 

1 .3), and total cells (the summation of previous two numbers) are expressed 

by the dot, dashed, and dashed-dot lines, respectively. Most of the 

predicted numbers of senescent cells (dashed line) were higher than the 

experimental data (dots). The predicted numbers of total cells (dashed-dot 

line) were higher than experimental data (solid line) at the third passage and 
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Figure 4. 13. The estimation of cell senescence rate 

the values between 336 and 528 hours represent the cell growth of the 
third passage of the cells exposed to 5.4 pM of arsenic and those between 
528 and 768 hours represent the fourth passage. The solid line and solid 
circles denote the experimental data of total and senescent cells, 
respectively. The predicted values of normal, senescent, and total cells are 
expressed by the dot, dashed, and dashed-dot lines, respectively. The 
estimated senescence rates were 0.0543 h-1 for the third passage and 0.057 
h-1 for the fourth passage. 
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lower at the fourth passages.~ 

The deviation of the predicted values from experimental data was 

assumed to be caused by the overestimated division rates of normal cells. A 

high senescence rate was obtained at third passage in order to compensate 

the overestimated division rate. The high senescence rate meant more 

normal cells becoming senescent cells, which resulting in the extremely low 

number of normal cells in the end of the third passage, i.e. in the beginning 

of the fourth passage. Since only the normal cells proliferated and the initial 

value was low, the total cell number was not able to match the experimental 

data in the fourth passage. 

The assumption that the division rates of normal cells were 

overestimated was based on the observation that the senescent cells were 

much larger than the normal cells (Figure 4.3). Since the senescent cells 

occupied much larger areas than the normal ceJJs did, i.e. normal cells grew 

slower in the mixed population than we estimated, the crowding factor for 

estimating cell division rates should be modified. It was estimated from a 

program written in ACSL (Appendix H) that the division rates of the normal 

cells should be multiplied by a factor of 0.34 to correct the crowding effect. 

The senescence rates were estimated as 0.0103 h-1 for the third passage and 

0.0175 h-1 for the fourth passage (Figure 4.14) with the corrected normal 

cell division rates. The model made very good predictions of the total cell 
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numbers. Unlike the results in Figure 4.13, the predicted cell numbers 

followed the same growth pattern the experimental data had at both the third 

and fourth passages in Figure 4.14. Although the prediction of senescent 

ceU numbers were not as good as of the total cell number, the experimental 

data of total cel) numbers, which were obtained directly from the counting, 

were more reliable than the data of senescent cell numbers calculated by the 

ratio of potential doubling times. The modeling predictions of the growth of 

the cells in mixed population was incorporated the predictions for normal 

cells and is shown in Figure 4. 1 5. 
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Figure 4. 14. The estimation of senescence rates with corrected normal cell 
division rates 

The normal cell division rates were multiplied by a factor of 0.34 to correct 
the crowding effect due to the different sizes of senescent and normal cells. 
Cell senescence rates were estimated as 0.0103 h-1 at the third passage and 
0.0175 hot at the fourth passage. As in Figure 4.13, the solid line and solid 
circles denote the experimental data of total and senescent cells, 
respectively. The predicted values of normal, senescent, and total cells are 
expressed by the dot, dashed, and dashed-dot lines, respectively. 
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Figure 4. 15. The modeling predictions of the gro wth of normal cells and 
cells in the population including both normal and senescent cells 

The solid line represents the modeling predictions of the growth of normal 
SHE cells. The dashed lines reflect the uncertainty of the model based on 
the Tpot standard error. The dashed-dot line represents the predictions of the 
growth of the cens in a mixed population including normal and senescent 
cells The symbols represent the cell numbers of cells exposed to arsenic for 
two days at graded concentrations, i.e . • , control; 0, 0.5 pM; "Y, 1.0 pM; 
0, 2.0 pM; 0, 5.4 pM. 
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CHAPTER 5 

Conclusions 

The biologically-based dose-response model developed in our 

laboratory was proven to predict the growth of normal Syrian hamster 

embryo (SHE) cells successfully. The model was biologically-based since the 

cell division and death rates applied in the model were measured by flow 

cytometry, and the cell numbers calculated by the model were consistent 

with the experimental data. The flow cytometric methods used in here could 

be applied to other cell lines easily for modeling purpose. 

Results from cytotoxicity studies show that a mixture of the three 

metals (arsenic, chromium, and lead) are less-than-additive, suggesting 

antagonistic interaction at the level of cell killing. No immortal cell line was 

observed after serial passages of the cells exposed to the Le50 of the three 

metals individually and as a mixture. 

For normal SHE cells, the cell division rates decreased as cell densities 

increased due to the shortage of space for cell growth. The potential 

doubling times, which were directly measured by flow cytometry and used to 

calculated division rate, ranged from 12 to 59 hours, depending on the 

degree of confluence of cell cultures. As a result, a fast growth phase 
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followed the lag phase (Figure 4.9) and the cell growth slowed down as cell 

numbers increased. The cells were passaged once a week and another cycle 

followed the same growth pattern began then. The cell death rates we 

measured were much smaller than the division rate, which was a result 

expected under exponential growth conditions. 

SHE cells exposed for two days to 5.4 JJM of arsenic, which was the 

LCso of arsenic to SHE cells analyzed by MTT assays, expressed growth 

inhibition at the third and fourth passage. These cell lines only grew for 1 6 

population doublings before becoming senescent, while control cells and 

those exposed to lower concentrations of arsenic grew for at least 30 

population doublings. The cells exposed to lower concentrations, 0.5, 1.0, 

and 2.0 JJM, of arsenic did not express significant differences in growth rates 

from control cells. 

Cell senescence rates were estimated from the experimental data 

generated from the cells exposed to 5.4 JJM of arsenic. This cell line grew 

much more slowly than the control cell line during the third and fourth 

passages. This decreased growth rate was caused by the increase of 

senescent cells in the population. While estimating the senescence rate, the 

division rate of normal cells should be multiplied by a factor of 0.34 to 

correct the crowding effect due to the different sizes in normal and 

senescent cells. The senescence rates were measured as 0.0103 and 
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0.0175 h-1 for the third and fourth passages, respectively (Figure 4.14). 

Mechanisms responsible for induction of cellular senescence in SHE 

cells exposed to arsenic may be involved in the apparent inability of arsenic 

to induce neoplasia in experimental animals. The genetic changes associated 

with arsenic-induced senescence in vitro may be related to the absence of 

tumor development in test animals. In combination with an appropriate 

human in vitro system, the SHE cell system could serve as a tool for 

comparing differences in carcinogenic mechanisms of arsenic between 

laboratory animals and humans. 
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CHAPTER 6 

Future Directions 

All the techniques for measuring cell division and death rates 

developed in our laboratory could be applied to other cell lines for modeling 

purposes. The model has the potential to be applied to in vitro human cell 

lines, and further incorporate their in vivo counterpart with physiological­

based pharmacokinetic/pharmacodynamic modeling for risk assessment. 

With the successful prediction of the growth of Syrian hamster 

embryo (SHE) cells, it is worthwhile to improve the experimental system. 

The first improvement is to passage cells every five days instead seven days. 

Since the cell growth is strongly dependent on the crowding effect on the 

culture plate, a shorter period between each passage could reduce the impact 

of cell density on cell division rates. For example, the data in Figure 4.4 

imply that a 5-day passage frequency would be adequate, since the cells still 

grew at relative high rate at the fifth day before the crowding effect had 

strong impact on the growth. Furthermore, the consistency of the assay can 

be improved by quantifying the ratio of metabolizing to transformable cell 

types in the initial cell population. 
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Improvements also could be made to better estimate the cell 

senescence rates. In our experiments, we successfully predicted of total cell 

numbers with adjusted normal cel1 division rates, but the senescent cell 

numbers predicted were lower than the experimental data (Figure 4.13). In 

order to obtain more information for estimating the cell senescence rates, 

potential doubling times should be measured every day instead of the third 

and fifth days after cells start the process of becoming senescent. 

There was a lag phase, in which the cell numbers stayed unchanged, 

in the beginning of each passage in our model. This lag phase was actually a 

undetermined area where insufficient amount of cells were accumulated for 

flow cytometric analysis. To study the detail of the behavior of cells in this 

time period, the experiment should start with a large amount of cells in every 

passage. As a result, culture plates with larger area should be used to 

compensate the crowding effect caused by the increased initial cell numbers. 

To further study the abilities of the chemicals chosen in this thesis to 

induce neoplastic transformations in SHE cells for modeling purpose, it is 

worthwhile to repeat the experiments with seven day exposure instead of 

two day period. As soon as the cells immortal or later stages are obtained, 

the parameters of cell growth in each stage could be estimated and thus the 

quantitative cancer model will be completed. 
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The mutation rate jJ was not estimated in the thesis due to the 

unavailability of immortal cell lines. Since it is an important parameter in the 

model, the calculation of mutation rates are discussed as follows. 

Fluctuation analysis proposed by Luria and Delbruck (Luria and Delbruck, 

1 943) were widely used to estimate cell mutation rates in vitro (Crawford et 

al., 1983; Kraemer et al., 1986; Bois et al., 1991; Bois et al., 1992; 

Dumontet et al., 1996). The distribution of the numbers of mutation in 

series of similar cultures which are plated in parallel is analyzed (Luria and 

Delbruck, 1 943). The mutation rate is then calculated as 

(6.1 ) 

where v is the mutations per cell per division cycle, Po represents the fraction 

of culture with no mutants, Nf and No are the final and initial number of cell 

(Luria and Delbruck, 1943). The term (-In Po) in Equation 6.1 is the number 

of mutations per culture (m) calculated from the equation 

D -m 
.Lo = e (6.2) 

with the assumption that the distribution of all mutations is according to 

Poisson's law (Luria and Delbruck, 1943). For example, if one out of 30 

colonies isolated become immortal cell line in my experiment, the fraction of 

culture with no immortalization occurred {Po} is equal to 29/30 and the 
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number of mutation per culture (m) is 0.034. 

The mutation rate estimated by fluctuation analysis can not be directly 

applied to the model proposed in this thesis, since the mutation rate /11 in this 

model is defined as the probability of mutation that a stage i cell divides into 

one stage i cell and one stage i + 1 cell, i.e. the number of mutation per cell 

division. With the derivation discussed in Appendix I, the mutation rate /1 in 

the model can be calculated as 

(6.3) 

For the control cells in my experiments, isolated colonies can expand 

to approximately 5 x 106 cells (Nf), which is assumed to start with 1 cell (No), 

and no immortal cell lines were observed from 30 isolated colonies. Thus the 

spontaneously mutation rate /11 for normal cells become immortal cells is less 

than 

-In(29 / 30) 9 
---6--= 6.8 x 10- mutation per cell division 

5 x 10 -1 

Mutation rates have been broadly defined as mutation per cell per 

generation (Luria and Delbruck, 1943), mutation per viable cell (Bois, 

Naaktgeboren, and Simons, 1991), mutation per time unit (Moolgavkar and 

Knudson, Jr., 1981). With modeling purpose in SHE cell system, the 
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mutation rate can be estimated from Equation 6.3, a modified form of 

fluctuation analysis. 
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Appendix A: Calculations of potential doubling times 

Part A Data used to calculate the T for normal ce11s in Figure 4 5* . oot . 
Cell isolate Passage Sampling Relative DNA Labeling Potential 

time (days movement synthesis time index doubling time 
after passage) (RM) (Ts; hour) (LI) (T pot; hour) 

Control 36 p4 2 days 0.87 4.1 0.320 13 

Control 40 p4 2 days 0.84 4.4 0.399 11 

Control 43 p4 2 days 0.87 4.0 0.346 12 

Control 15 p3 3 days 0.81 4.8 0.377 13 

Contro139 p3 3 days 0.85 4.3 0.327 13 

Control 43 p3 3 days 0.83 4.5 0.367 12 

Control 38 pI3 3 days 0.86 4.2 0.299 14 

Control 36 p8 3 days 0.83 4.5 0.260 17 

Control 38 p8 3 days 0.80 5.1 0.303 17 

Contro140 p8 3 days 0.87 4.1 0.239 17 

Control 38 p9 3 days 0.75 6.0 0.372 16 

Control 36 p4 4 days 0.81 4.8 0.232 21 

Contro140 p4 4 days 0.74 6.3 0.327 19 

Control 15 p3 5 days 0.77 5.6 0.248 23 

Control 36 p8 5 days 0.83 4.6 0.193 24 

Contro138 p8 5 days 0.80 5.0 0.198 25 

Control 40 p8 5 days 0.85 4.3 0.166 26 

Control 29 p2 5 days 0.78 5.8 0.197 30 

Control 38 p13 5 days 0.75 6.0 0.198 31 

Control 27 p3 5 days 0.74 6.3 0.240 26 

Control 34 p6 5 days 0.78 5.3 0.188 28 

Control 19 p3 5 days 0.71 7.1 0.229 31 

Control 15 p4 5 days 0.77 5.5 0.173 32 
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Part A. (Continued) 

Cell isolate Passage Sampling Relative DNA Labeling Potential 
time (days movement synthesis time index doubling time 

after passage) (RM) (Ts; hour) (LI) (Tpot; hour) 

Control 36 p9 6 days 0.74 6.2 0.112 55 

Contro138 p9 6 days 0.73 6.5 0.102 63 

Control 27 p4 6 days 0.71 7.1 0.109 65 

Control 34 p7 6 days 0.70 7.5 0.161 46 

Control 19 p4 6 days 0.66 9.2 0.142 65 

* All sample were fixed by 70% ethanol at 3 hours after BrdU pulse-labeling 

Part B. Data measured for growth inhibition study by arsenic* 

Cell isolate Passage Sampling Relative DNA Labeling Potential 
time (days movement synthesis time index doubling time 

after passage) (RM) (Ts; hour) (LI) (Tpot; hour) 

Control I p4 3 days 0.81 4.8 0.395 12 

Arsenic 0.5 p4 3 days 0.82 4.7 0.342 14 

Arsenic 1.0 p4 3 days 0.79 5.2 0.362 14 

Arsenic 2.0 p4 3 days 0.81 4.8 0.315 15 

Arsenic 5.4 p3 3 days 0.78 5.3 0.128 42 

Arsenic 5.4 p4 3 days 0.77 5.6 0.114 50 

Control I p4 5 days 0.75 6.0 0.243 25 

Arsenic 0.5 p4 5 days 0.79 5.2 0.237 22 

Arsenic 1.0 p4 5 days 0.76 5.7 0.221 26 

Arsenic 2.0 p4 5 days 0.75 6.0 0.235 25 

Arsenic 5.4 p3 5 days 0.74 6.3 0.086 74 

Arsenic 5.4 p4 5 days 0.76 5.8 0.062 94 

* All sample were fixed by 70% ethanol at 3 hours after BrdU pulse-labeling 
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Appendix B: Optimization of cell death rate 

%This is a program written in Matlab to optimize cell death rates by 
%"fmins" command, a built-in function in Matlab to minimize the given 
%function using a NeIder-Mead type simplex search method, with function 
%file "Dr_mf". Function file "Dr_df" is used to solve differential 
%equations. 

clear 

tc=[O 24 50.25]; %Sampling times (h) 
%Experimental data of live cells 
%Experimental data of dead cells 

Nc=[9.25E4 2.00E5 5.125E5]; 
Dc=[1073 2060 3792.5]; 

r=2i %Heteroscedasticity parameter in Objective Function; r=2: relative 
%weighting 

BN=fmins ( 'Dr_mf' , [0.00027 Nc (1) Dc (1) ] , [] , [] , r, tc, Nc, Dc) ; 
%BN: optimization results; In parenthesis after fmins: filename of 
%function file, initial guess, options, blank, and parameters 
%passed to function file; 

beta=BN (1) %Cell death rate (h- 1
) 

NO=BN{2:3) %Optimized initial numbers of live and dead cells 

[t,N]=ode23 ('Dr_df' , [0:1:60] ,NO, [] ,beta) i 

%ode23: the built-in function in Matlab for solving ordinary 
%differential equation using Runge-Kutta 2nd order algorithm; N: 
%the solutions for differential equations with respect to time, t 
%(h); N(l) : live cells, N(2): dead cells. In parenthesis after 
%ode23: filename of function file, time span, initial values, 
%blank, parameter passed to function file. 

semilogy(t,N,tc,NC, 'o',tc,Dc, ,A,) 

xlabel('Time (h) ') 
ylabel('Cell Number') 
title('Prediction of Death Rate') 

%Plot experimental and simulation 
%data on semi-log plot 

%This is the function file, "Dr_mf", to optimize cell death rate 

function err=Dr_mf(BN,r,tc,Nc,Dc) 
%err: function to be minimized; BN: variables to be adjusted; r, 
%tc, Nc, Dc: parameters passed from main program 

beta=BN (1); %Cell death rate (h-1
) 
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NO=BN(2:3}j %Optimized initial numbers of live and dead cells 

[tiN] =ode23 ('Dr_dfl, [tc 60] ,NO, [] ,beta) i 

err=O; 
for i=l:length(Dc) 

errl=(N(i,l) -Nc{I» ..... 2./Nc(I) ..... r; 

err2= (N (i,2) -Dc (I» . "'2. /Dc (I) . "'ri 

err=err+errl+err2j 
end 

%Solving differential 
%equations 

%Objective function for live 
%cells 
%Objective function for dead 
%cells 

%This is the function file, "Dr_dfll, to solve differential equations 

function NP=Dr df{t,N,init,beta) 
%NP(l): dN/dtj NP(2): dD/dtj init: default setting; beta: cell 
%death rate passed from main program. 

pl=4.130ge-63; p2=-4.411ge-S6i 
p3=2.0404e-49j p4=-5.3603e-43; 
pS=8.824ge-37; p6=-9.4923e-31j 
p7=6.7745e-25; p8=-3.2320e-019; 
p9=1.0824e-013j plO=-S.3390e-8j pll=O.0554j 

alfa=pl*N{l) .A10+p2 *N(l) ."'9+p3*N(1) .A8+p4 *N(1) ."'7+p5*N(1) .A 6+p6*N(1) ."'5+ 
p7*N(1) ..... 4+p8*N(1) ..... 3+p9*N{1) .A2+plO *N(1) ..... l+pllj 

%alfa: cell division rates (h- 1
), functions of cell number per 

%dish, N(l), fitted by a polynomial of degree 10. 

NP(l, :)=N(l) .*(alfa-beta)j 
NP{2, :)=N(l) .*beta; 

%dN/dt=N*{alfa-beta) 
%dD/dt=N*beta 
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Appendix C: Optimization of lag time 

%This is a program written in Matlab to optimize lag time by "fmins" 
%command, a built-in function in Matlab to minimize the given function 
%using a NeIder-Mead type simplex search method, with function file 
%"Tl mf". Function file "TI df" is used to solve differential 
%equations. 

clear 
NO=4e4; %Initial number of normal cell per dish 

tc7=[69.5 93.25 117.5]; 
NC38_7=[2.35ES 3.7SE5 9.70E5]; 
tc8=[71.33 95.17 112.5]; 
Nc38_8=[2.70ES 4.90E5 8.S0ES]; 

%Experimental data of sampling time 
%Experimental data of cell number 
%Experimental data of sampling time 
%Experimental data of cell number 

[tc I]=sort([tc7 tc8]); %Data collected from different experiments are 
%sorted by magnitude for optimization program 

Nns=[Nc38_7 Nc38_8]; 
Nc=Nns(I); 

r=2i %Heteroscedasticity parameter; r=2: relative weighting 
Tlag=fmins('TI_mf', [42.4], [], [] ,r,tc,Nc) 

%Tlag: optimization result of lag time; In parenthesis after 
%fmins: filename of function file, initial guess, options, blank, 
%and parameters passed to function file; 

[t, N] =ode23 ( 'TI_df' , [Tlag 43: 1: 168] ,NO) i 

%ode23: the built-in function in Matlab for solving ordinary 
%differential equation using Runge-Kutta 2nd order algorithm; N: 
%number of normal cells solved by differential equations with 
%respect to time, t (h). In parenthesis after ode23: filename of 
%function file, time span, initial values. 

yO=12.4363; a=9.132E2; b=4.323E2; 
Tpot=yO+a*exp(b*t); %Potential doubling time (h); a function of 

%time, t 

plot{ [O;t], [NOiN] ,tc7,Nc38_7, 'x' ,tc8,Nc38_8, '0 1
) 

%Plot predicted and experimental results 
xlabel('Time after cells being passaged (h) ') 
ylabel('Cell Number') 
title{'Simulation of the Growth of NORMAL Cell within One Passage') 

96 



%This is the function file, "TI_mf", to optimize lag time 

function err=TI_mf{Tlag,r,tc,Nc) 
%err: function to be minimized; Tlag: variables to be adjusted; 
%r, tc, Nc: parameters passed from main program. 

NO=4e4; %Initial number of normal cell per dish 
[t,N]=ode23{'TI_df', [Tlag tc 168] ,NO); 

%Solving differential equations 

err=O; 
for i=l:length(tc) 

err1=(N(I+1)-Nc(I» ."'2./Nc(I) ."'ri 

err=err+errl; 
end 

%Objective function for normal 
%cells 

%This is the function file, "TI_df", to solve differential equations 

function NP=Tl_df(t,N) %NP: dN/dt 

yO=12.4363; a=9.132E-2; b=4.323E-2; 
Tpot=yO+a*exp(b*t)i %Potential doubling time; a function of time, t 

alfa(1)=log(2)/Tpot; 
beta(1)=O.000295j 

%Cell division rate (hOl
); alfa={ln 2)/Tpot 

%Cell death rate (hol
) 

NP(l, :)=N(l) .*(alfa(l)-beta(l)} i %dN/dt=N*(alfa-beta) 
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Appendix 0: BBDR model of the growth of SHE cells 

%This is a program written in Matlab to model the growth of SHE cells. 

clear 
NOpl=4e4.*ones(3,1)i %Initial number of normal cells at passage 1 

%For Passage 1 
[ttpl, N2pl (: ,1)] =ode23 ('mdl_tfl' , [41.9,43: 1: 168] , NOpl (1) ) ; 

%ode23: the built-in function in Matlab for solving ordinary 
%differential equation using Runge-Kutta 2nd order algorithm; 
%N2pl(:,I) number of normal cells in exponential growth phase 
%solved by differential equations with respect to time, ttpl. In 
%parenthesis after ode23: filename of function file, time span, 
%initial value. 

tp1=[O;ttpl]i %Time points in Passage 1; exponential and lag phases 
Npl(:,l)=[NOpl{l) iN2pl(:,I)]i %Normal cell number in Passage 1; 

%exponential and lag phases 
NOp2(1)=N2pl(length(N2pl{:,1»,1); %Initial number for Passage 2 

%For upper bound of uncertainty of model in Passage 1 
[ttpl,N2pl (:, 2)] =ode23 ('mdl_tfe', [41.9,43: 1: 168] ,NOpl (2) , [] ,I) ; 

%N2pl(:,2) upper bound of normal cells in exponential growth phase 
%solved by differential equations with respect to time, ttpl. In 
%parenthesis after ode23: filename of function file, time span, 
%initial value, blank, parameter passed to function file (1: upper 
%bound) . 

NOp2(2)=N2pl{length(N2pl{:,2»,2)i 
%Upper bound of normal cell number in Passage 1; exponential and 
%lag phases 

Npl{:,2)=[NOpl(2)i N2pl{:,2)]i 
%Initial value for upper bound in Passage 2 

%For lower bound of uncertainty of model in Passage 1 
[ttpl,N2pl (: , 3)] =ode23 ('mdl_tfe' , [41.9,43: 1: 168] ,NOpl (3) , [] , -1) ; 

%N2pl(:,3) lower bound of normal cells in exponential growth phase 
%solved by differential equations with respect to time, ttpl. In 
%parenthesis after ode23: filename of function file, time span, 
%initial value, blank, parameter passed to function file (-I: 
%lower bound) . 

NOp2(3)=N2pl(length(N2pl(:,3»,3) ; 
%Lower bound of normal cell number in Passage 1; exponential and 
%lag phases 

Npl(:,3)=[NOpl(3)i N2pl(:,3»)i 
%Initial value for lower bound in Passage 2 
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%For Passage 2; refer to the section of Passage 1 
[ttp2,N2p2 (:,1)] =ode23 ('mdl_tf1', [41.9,43 :1:168] ,NOp2 (1»; 
tp2=[tp1(length(tp1» ;ttp2+tp1(length{tp1»]; 

%Transfer the time points from those based on single passage 
%(ttp2) to based on life span (tp2); the differential equation was 
%solved at time points based on single passage since the potential 
%doubling times are functions of time after passage 

Np2(:,1)=[NOp2(1);N2p2(:,1)]; 
NOp3(1)=N2p2{length(N2p2(:,1» ,1); 

%For upper bound of uncertainty of model in Passage 2 
[ttp2,N2p2(:,2)]=ode23('mdl_tfe', [41.9,43:1:168] ,NOp2(2), [] ,1); 
NOp3(2)=N2p2(length{N2p2(:,2» ,2); 
Np2 ( : ,2) = [NOp2 (2) ;N2p2 ( : (2) ] ; 
%For lower bound of uncertainty of model in Passage 2 
[ttp2,N2p2 (: ,3)] =ode23 ('mdl_tfe', [41.9,43 :1:168] ,NOp2 (3), [], -1); 
NOp3(3)=N2p2(length{N2p2(:,3»,3); 
Np2 ( : , 3) = [NOp2 (3) ; N2p2 ( : , 3) ] ; 

%For Passage 3; refer to the section of Passage 1 and 2 
[ttp3,N2p3 (: ,1)] =ode23 ('mdl_tf1', [41.9,43:1: 192] ,NOp3 (1» ; 
tp3=[tp2(length(tp2» ;ttp3+tp2(length(tp2»]; 
Np3(:,l)=[NOp3(1);N2p3(:,l)]; 
NOp4 (1)=N2p3(length{N2p3 (:,1» ,1); 

%For upper bound of uncertainty of model in Passage 3 
[ttp3,N2p3 (: ,2)] =ode23 ('mdl_tfe', [41.9,43 :1:192] ,NOp3 (2), [], 1); 
NOp4(2)=N2p3{length(N2p3(:,2»,2); 
Np3 ( : ,2) = [NOp3 (2) ;N2p3 ( : ,2) ] ; 
%For lower bound of uncertainty of model in Passage 3 
[ttp3,N2p3(:,3)]=ode23 ('mdl_tfe', [41.9,43:1:192] ,NOp3(3), [] ,-1); 

NOp4 (3)=N2p3 (length (N2p3 (:,3» ,3); 
Np3 ( : , 3) = [NOp3 (3) ; N2p3 ( : , 3) ] ; 

%For Passage 4; refer to the section of Passage 1 and 2 
[ttp4,N2p4 (: ,1)] =ode23 ('mdl_tf1', [41.9,43 :1:216] ,NOp4 (1» ; 
tp4=[tp3(length(tp3»;ttp4+tp3(length(tp3»] ; 
Np4 ( : , 1) = [NOp4 (1) i N2p4 ( : , 1) ] i 

NOp5(1)=N2p4(length{N2p4{:,l»,l)i 
%For upper bound of uncertainty of model in Passage 4 
[ttp4,N2p4 (: ,2)] =ode23 ('mdl_tfe' , [41.9,43: 1 :216] ,NOp4 (2) , [] ,1) i 
NOpS(2)=N2p4(length(N2p4(:,2»,2); 
Np4{:,2)=[NOp4(2);N2p4{:,2)]i 
%For lower bound of uncertainty of model in Passage 4 
[ttp4,N2p4 (:,3)] =ode23 ('mdl_tfe', [41.9,43 :1:216] ,NOp4 (3), [] ,-1); 
NOpS(3)=N2p4(length(N2p4{:,3»,3) ; 
Np4 ( : , 3) = [NOp4 (3) i N2p4 ( : , 3) ] ; 

%For Passage S; refer to the section of Passage 1 and 2 
[ttpS ,N2pS (: ,1) ] =ode23 ('mdl_tf1' , [41.9,43: 1: 168] ,NOpS (1) ) ; 
tpS=[tp4(length(tp4» ;ttpS+tp4(length{tp4»]; 
NpS(:,l)=[NOpS{1)i N2pS(:,1)] ; 
NOp6(1)=N2pS(length(N2p5{:,1»,1); 

%For upper bound of uncertainty of model in Passage S 
[ttpS,N2pS (: ,2)] =ode23 ('mdl_tfe', [41.9,43 :1:168] ,NOpS (2), [], 1); 
NOp6(2)=N2p5(length(N2p5(:,2»,2); 
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NpS(:,2)=[NOpS(2)jN2pS(:,2)]i 
%For lower bound of uncertainty of model in Passage 5 
[ttpS,N2pS(:,3)]=ode23 {lmdl_tfe' , [41.9,43:1:168] ,NOpS(3), [] ,-I) j 

NOp6(3)=N2pS(length(N2pS(:,3»,3)i 
NpS ( : , 3) = [NOpS (3) j N2pS ( : , 3) ] j 

tcount=[0,168,336,528,744] j %Sampling times for groups other than S.4 
%tLM of As 

tcount54=[O,168,336,528,768] j %Sampling times for cells exposed to 5.4 
%tLM of As 

N_ctrl=[4.00E4 3.06E6 1.90E8 1.2SE10 8.39Ell] j 

%Cell counts for control cells 
N_as05=[4.00E4 2.08E6 9.98E7 5.39E9 2.10E11]j 

%Cell counts for cells exposed to O.S tLM of As 
N_asl=[4.00E4 1.88E6 9.40E7 4.89E9 1.7IE11]j 

%Cell counts for cells exposed to 1 tLM of As 
N_as2=[4.00E4 1.48E6 4.74E7 1.99E9 7.76EIO] j 

%Cell counts for cells exposed to 2 tLM of As 
N_as54=[4.00E4 1.20E6 2.64E7 1.32E8 4.62E8]j 

%Cell counts for cells exposed to S.4 tLM of As 

%Plot predicted and experimental results 
semilogy(tpl,Npl(:,l),tp2,Np2(:,l),tp3,Np3(:,l),tp4,Np4(:,l),tp5,NpS(:,l 
) ) 

hold on 
semilogy {tpl, Npl ( : ,2: 3) , 1 - • 1 ,tp2, Np2 ( : ,2: 3) , , - . I , tp3, Np3 ( : ,2: 3) , I_ 

• I , tp4 , Np4 ( : ,2 : 3) , I - • 1 , tpS, NpS ( : ,2 : 3) , I - • I ) 

semilogy(tcount,N_ctrl, '+',tcount,N_asOS, 'p',tcount,N_asl, 's',tcount,N_a 
s2, Id',tcountS4,N_asS4, 'hI) 
hold off 

xlabel('Time after passage (h) I) 
ylabel('Cell Number'} 
title('Simulation of Cell Growth through 5 Passages') 

%This is the function file, umdl_tfl", to solve differential equation 

function NP=mdl_tfl(t,N) %NP: dN/dt 

yO=12.4363j a=9.132E-2; b=4.323E-2j 
Tpot=yO+a*exp{b*t); %Potential doubling time; function of time, t 
alfa(l}=log(2)/Tpotj %Cell division rate; alfa=(ln 2)/Tpot 
beta(l)=0.00029Sj %Cell death rate 

NP(l, :)=N(l) .*(alfa(l)-beta(l)} i %dN/dt=N*(alfa-beta) 

%This is the function file, umdl_tfe", to solve differential equations 

function NP=mdl_tfe(t,N,init,Pl) 
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%NP: dN/dt; init: default setting; Pl: parameter passed from main 
%program. 

yO=12.4363; 
a=9.132E-02; 
b=4.323E-02: 

if Pl==O %Cell division rate calculated by the mean of Tpot 
Tpot=yO+a*exp(b*t); %Potential doubling time; function of time, t 

elseif Pl>O %Upper bound: cell division rate calculated by Tpot + 
%standard error of estimating Tpot 

Tpot=1.7454+yO+a*exp(b*t)i 
else %Lower bound; cell division rate calculated by Tpot -

%standard error of estimating Tpot 
Tpot=-1.7454+yo+a*exp(b*t); 

end 

alfa(1)=log(2)/Tpoti 
beta{l)=O.000295; 

%Cell division rate; alfa=(ln 2)/Tpot 
%Cell death rate 

NP (1, :) =N (1) . * (alfa (1) -beta (1» ; %dN/dt=N*(alfa-beta) 
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Appendix E: Optimization of potential doubling time 

%This is a program written in Matlab to optimize lag time by "fmins" 
%command, a built-in function in Matlab to minimize the given function, 
%i.e. optimize the factor that the mean of potential doubling time have 
%to be multiplied by to provide best prediction of control cell line, 
%using a NeIder-Mead type simplex search method, with function file 
%\\Tl_mf". Function file "TI_df" is used to solve differential 
%equations. 

clear 
NO=4e4; %Initial number of normal cell per dish 

r=2; %Heteroscedasticity parameter; r=2: relative weighting 
Sigma=fmins ( I Si_mf I , [1] , [] , [] , r) 

%Sigma: optimization result of the factor that the mean of 
%potential doubling time have to be multiplied by to provide best 
%prediction of control cell line; In parenthesis after fmins: 
%filename of function file, initial guess, options, blank, and 
%parameters passed to function filei 

[t,N] =ode23 ('Si_dfl, [41.9 43 :1:168] ,NO, [] ,Sigma) i 

%ode23: the built-in function in Matlab for solving ordinary 
%differential equation using Runge-Kutta 2nd order algorithm; N: 
%number of normal cells solved by differential equations with 
%respect to time, t. In parenthesis after ode23: filename of 
%function file, time span, initial values, blank, parameter passed 
%to function file. 

yO=12.4363i a=9.132E-02i b=4.323E-02; 
Tpot=yO+a*exp(b*t); %Potential doubling time; function of time, t 

%The next section is the simulation of cell growth through 5 passages 

%Passage 1 
NOp(1)=4e4; %Initial number of normal cells at passage 1 
[ttp1,N2p1] =ode23 (I Si_df', [41.9 43: 1: 168] ,NOp (1) , [] I Sigma) ; 

%N2p1 number of normal cells in exponential growth phase solved by 
%differential equations with respect to time, ttp1. In parenthesis 
%after ode23: filename of function file, time span, initial value, 
%parameter (optimized result) passed to function file. 

tp1=[O;ttp11i %Time points in Passage 1; exponential and lag phases 
Np1=[NOp(1)iN2p1]i %Normal cell number in Passage 1; exponential 

%and lag phases 
NOp(2)=N2p1(length{N2p1»i %Initial number for Passage 2 
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%Passage 2 
[ttp2,N2p2]=ode23 ('Si_df' ,[41..9 43:1:1681 ,NOp{2), [] ,Sigma}; 
tp2=[tp1(length(tp1»;ttp2+tp1(length(tp1»] ; 

%Transfer the time points from those based on single passage 
%(ttp2) to based on life span (tp2); the differential equation was 
%solved at time points based on single passage since the potential 
%doubling times are functions of time after passage. 

Np2=[NOp(2} ;N2p2]; 
NOp(3)=N2p2(length(N2p2}) ; 

%Passage 3 
[ttp3,N2p3]=ode23 ('Si_df' , [41.9 43:1:192] ,NOp(3), [] ,Sigma); 
tp3=[tp2(length(tp2» ;ttp3+tp2(length(tp2}»); 
Np3=[NOp(3);N2p3) ; 
NOp(4)=N2p3(length(N2p3»i 

%Passage 4 
[ttp4,N2p4]=ode23 ('Si_df', [41.9 43:1:216] ,NOp(4), [] ,Sigma) i 

tp4=[tp3(length(tp3» ittp4+tp3(length(tp3»] i 

Np4=[NOp(4) iN2p4]; 
NOp(5)=N2p4(length(N2p4» i 

%Passage 5 
[ttp5, N2ps] =ode23 (' Si_df' , [41.9 43: 1: 168] , NOp (5) , [] , Sigma) ; 
tp5=[tp4{length(tp4» itt pS+tp4(length(tp4»] i 

NpS=[NOp(s);N2p5] ; 

tcount=[0,168,336,528,744]i %Sampling times for groups other than 5.4 
%J.LM of As 

tcount54=[O,168,336,528,768]; %Sampling times for cells exposed to 5.4 
%JlM of As 

N_ctrl=[4.00E4 3.06E6 1.90E8 1.2sEIO 8.39E11]i 
%Cell counts for control cells 

N_as05=[4.00E4 2.08E6 9.98E7 5.39E9 2.10E11]; 
%Cell counts for cells exposed to 0.5 JlM of As 

N_as1=[4.00E4 1.88E6 9.40E7 4.89E9 1.71E11]; 
%Cell counts for cells exposed to 1 J.LM of As 

N_as2=[4.00E4 1.48E6 4.74E7 1.99E9 7.76E10] i 

%Cell counts for cells exposed to 2 JlM of As 
N_as54=[4.00E4 1.20E6 2.64E7 1.32E8 4.62E8]i 

%Cell counts for cells exposed to 5.4 JlM of As 

%Plot predicted and experimental results 
figure 
semilogy(tp1,Np1,tp2,Np2,tp3,Np3,tp4,Np4,tps,Nps) 
hold on 
semilogy(tcount,N_ctrl, '+',tcount,N_asOs, 'p',tcount,N_as1, 's',tcount,N_a 
s2, 'd',tcounts4,N_ass4, 'hI) 
hold off 
xlabel('Time after passage (h) ') 
ylabel{'Cell Number') 
title('Simulation of Cell Growth through 5 Passages') 
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%The next section is the curve fitting of cell division rate versus cell 
%number per dish 
p=polyfit(N,log(2) ./(Sigma.*Tpot) ,10); 

%Finds the coefficients of a polynomial peN) of degree 10 that 
%fits the data in a least-squares sensei 10g(2) ./(Sigma*Tpot): 
%cell division rate. 

%Plot the curve fitting and experimental results 
figure 
plot (N,10g{2) ./(Sigma.*Tpot» 
hold on 
plot {N,polyval (p,N) , ,+,) 
hold off 
xlabel{'Cell number per plate') 
ylabel{'Division rate, alfa (l/h)') 
title('Cell division rate versus cell density') 

%This is the function file, "Si_mf", to optimize the factor that the 
%mean of potential doubling time have to be multiplied by to provide 
%best prediction of control cell line. 

function err=Si_mf(Sigma,r) 
%err: function to be minimized; Sigma: variables to be adjusted; 
%r: parameter passed from main program. 

%The next section is the simulation of cell growth through S passages; 
%refer to main program illustrated above 

NOp(1)=4e4; 
[ttp1, N2p1] =ode23 ( 'Si_df' , [41.9 43: 1: 168] ,NOp (1) , [] ,Sigma) ; %120 
tp1=[0;ttp1]; 
Np1=[NOp(1)i N2pl]i 
NOp(2)=N2p1(length(N2p1»i 

[ttp2,N2p2] =ode23 ('Si_df', [41.9 43:1:168] ,NOp(2), [] ,Sigma); %216 
tp2=[tp1(length(tp1»i ttp2+tp1(length(tpl»]i 
Np2=[NOp(2)i N2p2] ; 
NOp(3)=N2p2(length(N2p2»j 

[ttp3,N2p3]=ode23{'Si_df', [41.9 43:1:192],NOp(3), [],Sigma)j %192 
tp3=[tp2(length(tp2»jttp3+tp2{length(tp2»]i 
Np3=[NOp(3);N2p3]i 
NOp(4)=N2p3{length(N2p3»; 

[ttp4,N2p4] =ode23 ('Si_df', [41.9 43 :1:216] ,NOp (4), [] ,Sigma) i %216 
tp4=[tp3(length(tp3»jttp4+tp3(length(tp3»]i 
Np4=[NOp(4)i N2 p4]i 
NOp(S)=N2p4(length{N2p4»i 

[ttpS,N2pS] =ode23 ('Si_df', [41.9 43 :1:168] ,NOp(S), [] ,Sigma) i 

tpS=[tp4(length(tp4»i ttpS+tp4(length{tp4»]i 
NpS=[NOp{S)i N2pS]i 
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tcount=[O,168,336,528,744] ; 
N_ctrl=[4.00E+04 3.06E+06 1.90E+08 1.25E+10 8.39E+ll]; 

err=O; 
for i=2:length(N ctrl) 

errl=(NOp{i)-N ctrl(i}} .A2 ./N ctrl{i) .Ari - - %Objective function 
err=err+errli 

end 

%This is the function file, "Si_df", to solve differential equations 

function NP=Si_df(t,N/init,Sigma) 
%NP: dN/dti init: default setting; Sigma: parameter passed from 
%main program. 

yO=12.4363i a=9.132E-02i b=4.323E-02i 
Tpot=yO+a*exp{b*t}; %Potential doubling time; function of time, t 

alfa(1)=log(2)/(Sigma*Tpot)i 
beta(1)=O.OOO295i 

%Cell division rate; alfa=(ln2)/Sigma*Tpot 
%Cell death rate 

NP{l, :)=N(l}.* (alfa(l) -beta(l»; %dN/dt=N*(alfa-beta) 
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Appendix F: Prediction of the growth of a mixed cell population 

%This is a program written in Matlab to predict the growth of a mixed 
%cell population including normal and senescent cells, where the cell 
%division rates are optimized using 2 experimental data for Tpot and 1 
%data from cell counts. A 3-parameter exponential equation is used to 
%predict the distribution of Tpot via the "fmins" command, a built-in 
%function in Matlab to minimize the given function using a NeIder-Mead 
%type simplex search method, with function files "Cf_mf" and "Cf_cff". 
%Function file "Cf df" is used to solve differential equations. 

clear 

tf=192; Nf=2e5; 
Tpm=[42 74] i 

%Nf is cell number counted at time tf 
%Tpots measured at 72 and 120 hours after passage 

NO=4e4i %Initial cell number 

Tpf=fmins ( I Cf_mf I, [1000] , [] , [] , Tpm, tf, Nf) 
%Tpf: optimized result for the Tpot at time tf; In parenthesis 
%after fmins: filename of function file, initial guess, options, 
%blank, and parameters passed to function file; 

ts=[72 120 tf] '; 
Tp= [Tpm Tpf] I i 

%Sampling times, 72, 120, and tf hours after passage 
%TpotS i experimental data Tpm and optimized result Tpf 

%The distribution of Tpot is optimized using function file "ef_mf" as 
%described above. The next 4 lines are used to calculate the optimized 
%result via the equation Tpot=C(1)+c(2)*exp(lambda*t) which is written in 
%a matrix form Tp=A*c; Tp denotes Tpot ; t is time after passage. Details 
%are described in the function file "Cf_mf". 
lambda=fmins('Cf_cff',O.Ol, [], [] ,ts,Tp)i 
A{:,1)=ones(length(ts),l) ; 
A(:,2)=exp(lambda.*ts); 
C=A\Tpi 

[t, N] =ode23 ( I Cf_df I , [41.9,43: 1: tfl , NO, [] , lambda, c) ; 
%ode23: the built-in function in Matlab for solving ordinary 
%differential equation using Runge-Kutta 2nd order algorithm; N: 
%total cell numbers solved by differential equations with respect 
%to time t. In parenthesis after ode23: filename of function file, 
%time span, initial value, blank, parameters passed to function 
%file {"lambda" and "c" allow function file to use optimized Tpot 
%distribution to calculate cell division rate} . 
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%Plot experimental and predicted results 
plot{t,N,tf,Nf"A,) 
xlabel('Time after passage (h) ') 
ylabel(1Cell Number') 
title('Cell Number vs. Time for As 5.4 p3 1

) 

%This is the function file, "Cf_mf", to optimize the distribution of Tpot 
%using 2 experimental data for Tpot and 1 data from cell counts via the 
%equation Tpot=c (1) +c (2) *exp (lambda*t); t: time after passage 

function err=Cf mf(Tpf,Tpm,tf,Nf) 
%err: function to be minimized; Tpf: variables to be adjusted; 
%Tpm, tf, Nf: parameter passed from main program. 

NO=4e4i %Initial cell number 
ts=[72 120 tfl'i %Sampling times, 72, 120, and tf hours after passage 
Tp= [Tprn Tpf] , ; % TpotS ; experimental data (Tpm) and value to be 

%optimized Tpf 

%The next section is to optimize the 3 parameters (c(l), c(2), lambda) 
%in the equation Tpot=c(1)+c(2)*exp(lambda*t) which is written in matrix 
%form Tp=A*c; Tp denotes Tpot 
lambda=fmins ( 'Cf_cff I ,0.01, [] , [] , ts, Tp) ; 

%lambda: optimized result; In parenthesis after fmins: filename of 
%function file, initial guess, options, blank, and parameters 
%passed to function file; 

A(:,l)=ones(length(ts),l); 
A(:,2)=exp{lambda.*ts); 
c=A\Tpi 

[t,N] =ode23 (' Cf df', [41.9,43: 1: tfl ,NO, [] , lambda, c) ; 
%Solve differential equation; N: total cell numbers solved by 
%differential equations with respect to time t. In parenthesis 
%after ode23: filename of function file, time span, initial value, 
%blank, parameters passed to function file ("lambda" and "c" allow 
%function file to use optimized Tpot distribution to calculate cell 
%division rate) . 

err=abs{N(length{N»-Nf) %Error of the predicted cell number at 
%time tf 

%This is the function file, "ef_cff", to optimize the 3 parameters 
% (c (1), c (2), lambda) in the equation Tpot=C (1) +c (2) *exp (lambda*t) which 
%is written in matrix form Tp=A*c; Tp denotes Tpot 

function err = Cf_cff(larnbda,ts,Tp) 
%err: function to be minimized; lambda: variables to be adjusted; 
%ts, Tp: parameter passed from main program. 

A{:,l)=ones{length(ts),l)i 
A(:,2)=exp(lambda.*ts) ; 
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c 
z 

A\Tpi 
A*Ci %Predicted values for TpotS 

err = norm(z-Tp)i %Norm of the vector containing errors between 
%predicted values (z) and experimental data (Tp) 

%This is the function file, "Cf_df", to solve differential equations 

function NP=Cf_df(t,N,init,lambda,c) 
%NP: dN/dt; init: default setting; lambda, c: parameters passed 
%from main program. 

%Cell division rates are calculated by the optimized Tpot distribution: 
%Tpot=C(1)+c(2)*exp(lambda*t) which is written in matrix form Tp=A*Ci Tp 
%denotes Tpot 
A(:,l)=ones(length(t),l)i 
A(:,2)=exp(lambda.*t)i 
Tpot=A*cj 

alfa(1)=log{2) ./Tpot; 
beta(1}=O.00029Si 

%Cell division ratei alfa=(ln2)/Tpot 
%Cell death rate 

NP (1, :) =N (1) . * (alfa (1) -beta (1» i %dN/dt=N*(alfa-beta) 
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Appendix G: Optimization of senescence rate without adjusting division rates 

!This is a program written in ACSL to optimize cell senescence rates y 
!by ACSL Optimize with the parameter saved in "Cr3.m" file. 

PROGRAM Senescence rate estimation 

INITIAL 

VARIABLE TIME=O. 
CONSTANT NO=4e4 !Initial number of normal cells 
CONSTANT SO=O.O !Initial number of senescent cells 
CONSTANT gammal=0.OS74 !Initial guess for y at 3rd passage 
CONSTANT gamma2=0.0574 !Initial guess for V at 4th passage 
CONSTANT beta=0.000295 !Cell death rate (l/h) 
!Constants start with "p" are the parameters in the polynomial which 
!describes the relation between cell division rates and cell numbers 
CONSTANT pl=4.l462e-64, p2=-S.9308e-57, p3=3.6672e-50 
CONSTANT p4=-1.2847e-43, pS=2.8100e-37, p6=-3.9935e-31 
CONSTANT p7=3.7338e-25, p8=-2.30l3e-19, p9=9.6871e-14 
CONSTANT p10=-5.0492e-8, p11=0.05912858 
TSTOP=432. !Length of experiments (hour) 
POINTS=TSTOP*2. !Number of points in plot 
CINT=TSTOP/POINTS !Communication interval 

END !End of Initial Segment 

DYNAMIC 

DERIVATIVE 
!Lag phase at passage 3 
IF (TIME .LE. 41.9) THEN 
RN=O. !RN: Rate of change for normal cell # 
RS=O. !RS: Rate of change for senescent cell # 

!Exponential growth phase at passage 3 
ELSE IF (TIME .LE. 192.) THEN 
alfa=p1*NS**10+p2*NS**9+p3*NS**8+p4*NS**7+p5*NS**6+p6*NS**S+& 
p7*NS**4+p8*NS**3+p9*NS**2+plO*NS**1+pl1 
!alfa: cell division rate (l/h); function of cell number; NS: 
!total # of cells 
RN=N*(alfa-beta-gamma1) !N: normal cell # 
RS=N*gamma1 

!Lag phase at passage 4 
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ELSE IF (TIME .LE. 233.9) THEN 
RN=O. 
RS=O. 
NS30=NS 

!Exponential growth phase at passage 4 
ELSE 
NSF=NS*4e4/NS30 
!Convert accumulated total cell # (NS) to total cell # in single 
!dish (NSF) 
alfa=pl*NSF**10+p2*NSF**9+p3*NSF**8+p4*NSF**7+p5*NSF**6+p6*NSF**5& 
+p7*NSF**4+p8*NSF**3+p9*NSF**2+plO*NSF**1+pll 
RN=N*(alfa-beta-gamma2) 
RS=N*gamma2 
END IF 

N=INTEG (RN, NO) 
S=INTEG(RS,SO) 
NS=N+S 

!Integrate RN (dN/dt) with initial value NO 
!Integrate RS (dS/dt) with initial value SO 

END lEnd of Derivative Segment 

TERMT(TIME .GE. TSTOP) 

END !End of Dynamic Segment 

END !End of program 

IThis is the command file 

! File: CR3.cmd 
set weditg=.false. 
set hvdprn=.false. 
output /clear 
PREPARE TIME,N,S,NS 

!suppress output from schedule 
!suppress hihg volume display 
!suppress output 

start !run the simulation as soon as loaded 

%This is the m file which saved the parameters of optimization 

% File: Cr3.m 

% Optimization algorithm 
% Values: 0 test run, 1 default, 2 NeIder-Mead, 3 GRG2 
OpAlgorithm = 3 

% Do not use the data set feature. 
OpDataSets = [] 
% Experimental data 
% The data values themselves. 
OpExperData = [ ••. 
gamma] 
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% The names of the data matrices. 
% (Used for display only.) 
OpDataNames = [ ... 
IIgamma ll ] 

% The enable/disable flags for data matrices. 
% (Used for display only.) 
OpEnable = [ ... 
1 ] r 

% Model variables to fit against experimental data. 
OpTargetNames = [ 
"NSII ... 
IISI1 ] 
% Error model. Rows correspond to variables being fit. 
% First column: heteroscedasticity parameter. 
% Second column: whether to vary heteroscedasticity parameter or hold it 
fixed. 
OpErrModel= [ ... 
2 0 
2 0] 

% ACSL constants to be adjusted as parameters. 
OpAdjustable= [ ... 
"GAMMA1" 
"GAMMA2" ], 
% Starting values. 
OpStartValues = [ 

0.0574 
0.0574 ]' 

% Constrained parameters (if any). 
OpConstrained= [ ... 
"GAMMA1" 
"GAMMAl" 
IIGAMMA211 
I1GAMMA2" ] I 

% constraints 
OpConstraints 

o 

(if any). 
[ 

-1 
1 1 

0.057 -1 
1 1 

OpDescriptors = [ ] 
OpExogColumns = [ ] 
% Descriptor values 
% Descriptor values for the enabled data matrices 
OpAllExpers = [] 
OpExperiments = [] 
% Exogenous data 
OpAllExogNames = [] 
% No exogenous data are present. 
OpExogData = [] 

% Scripts run for each experiment. 
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% No special commands are run before each experiment is simulated. 
OpScriptNames = [] 
OpAllScriptNames = [] 

% Whether objective function is displayed during parameter estimation. 
OpVerbose=O 

% Whether we run scripts at conclusion 
% 0 = run no scripts, 1 = run if successful, 2 
OpConcludeAct=l 

% Script or scripts if any to run at conclusion. 
OpConcludeScript=[ 
"cmpplain" 
"setop" ] 

% End of file 
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Appendix H: Optimization of senescence rate with corrected division rates 

!This is a program written in ACSL to optimize cell senescence rates V 
!with modified division rate (multiplied division rate a by a factor 5) 
fusing ACSL Optimize with the parameter saved in "CrS.m" file. 

PROGRAM Senescence rate estimation with modified division rate 

INITIAL 

VARIABLE TIME=O. 
CONSTANT NO=4e4 !Initial number of normal cells 
CONSTANT SO=O.O !Initial number of senescent cells 
CONSTANT gamma1=O.0574 !Initial guess for V at 3rd passage 
CONSTANT gamma2=O.OS74 !Initial guess for V at 4th passage 
CONSTANT beta=0.000295 !Cell death rate (l/h) 
CONSTANT delta=l. !Initial guess for 5 
!Constants start with "pll are the parameters in the polynomial which 
!describes the relation between cell division rates and cell numbers 
CONSTANT pl=4.1462e-64, p2=-5.9308e-57, p3=3.6672e-50 
CONSTANT p4=-1.2847e-43, p5=2.8100e-37, p6=-3.9935e-31 
CONSTANT p7=3.7338e-25, p8=-2.3013e-19, p9=9.6871e-14 
CONSTAnT plO=-5.0492e-8, p11=O.05912858 
TSTOP=432. !Length of experiments (hour) 
POINTS=TSTOP*2. !Number of points in plot 
CINT=TSTOP/POINTS !Communication interval 

END !End of Initial Segment 

DYNAMIC 

DERIVATIVE 

lLag phase at passage 3 
IF (TIME .LE. 41.9) THEN 
RN=O. !RN: Rate of change for normal cell # 
RS=O. !RS: Rate of change for senescent cell # 

!Exponential growth phase at passage 3 
ELSE IF (TIME .LE. 192.) THEN 
alfa=pl*NS**lO+p2*NS**9+p3*NS**8+p4*NS**7+p5*NS**6+p6*NS**5+& 
p7*NS**4+p8*NS**3+p9*NS**2+plO*NS**1+pl1 
!alfa: cell division rate (l/h); function of cell number; NS: 
!total # of cells 
RN=N*(delta*alfa-beta-gammal) 
IN: normal cell #i alfa is multiplied by the factor delta 
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RS=N*gammal 

[Lag phase at passage 4 
ELSE IF (TIME .LE. 233.9) THEN 
RN=O. 
RS=O. 
NS30=NS 

[Exponential growth phase at passage 4 
ELSE 
NSF=NS*4e4/NS30 
[Convert accumulated total cell # (NS) to total cell # i~ single 
Idish (NSF) 
alfa=pl*NSF**10+p2*NSF**9+p3*NSF**8+p4*NSF**7+pS*NSF**6+p6*NSF**S& 
+p7*NSF**4+p8*NSF**3+p9*NSF**2+plO*NSF**1+pll 
RN=N*(delta*alfa-beta-gamma2) 
RS=N*gamma2 
END IF 

N=INTEG (RN,NO) 
S=INTEG(RS, SO) 
NS=N+S 

[Integrate RN (dN/dt) with initial value NO 
!Integrate RS (dS/dt) with initial value SO 

END !End of Derivative Segment 

TERMT(TIME .GE. TSTOP) 

END lEnd of Dynamic Segment 

END lEnd of program 

!This is the command file 

! File: CRS.cmd 
set weditg=.false. 
set hvdprn=.false. 
output /clear 
PREPARE TIME,N,S,NS 

!suppress output from schedule 
[suppress hihg volume display 
!suppress output 

start !run the simulation as soon as loaded 

%This is the m file which saved the parameters of optimization 

% File: CrS.m 

% optimization algorithm 
% values: 0 test run, 1 default, 2 NeIder-Mead, 3 GRG2 
OpAlgorithm = 3 

% Do not use the data set feature. 
OpDataSets = [] 
% Experimental data 
% The data values themselves. 
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OpExperData = [ ... 
gamma] 
% The names of the data matrices. 
% (Used for display only.) 
OpDataNames = [ ... 
"gamma 11 ] 

% The enable/disable flags for data matrices. 
% (Used for display only.) 
OpEnable = [ ••• 
1 ] I 

% Model variables to fit against experimental data. 
OpTargetNames = [ 
"NS" ... 
liS" ] 

% Error model. Rows correspond to variables being fit. 
% First column: heteroscedasticity parameter. 
% Second column: whether to vary heteroscedasticity parameter or hold it 
fixed. 
OpErrModel= [ ... 
2 0 
2 0] 

% ACSL constants to be adjusted. 
OpAdjustable = [ 
"DELTAII ... 
"GAMMAl" .•• 
IIGAMMA2" ] 

% Starting values of the ACSL constants. 
OpStartValues = [ 
1 0.0574 0.0574 ] 

% Constraints. 
% List of parameters on which there are constraints. 
OpConstrained = [ ••• 
"DELTAII .. . 
"DELTA" .. . 
"GAMMAl li 

"GAMMAl" 
"GAMMA2" 
"GAMMA2 11 

% Constraints themselves. One constraint per row. 
OpConstraints= [ ... 
o -1 
1 1 
o -1 
1 1 
o -1 
1 1 

OpDescriptors = [ ] 
OpExogColurnns = [ ] 
% Descriptor values 
% Descriptor values for the enabled data matrices 
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OpAllExpers ;:;; [] 
OpExperiments = [] 
% Exogenous data 
OpAllExogNames = [] 
% No exogenous data are present. 
OpExogData = [) 

% Scripts run for each experiment. 
% No special commands are run before each experiment is simulated. 
OpScriptNames = [] 
OpAllScriptNames = [] 

% Whether objective function is displayed during parameter estimation. 
OpVerbose=O 

% Whether we run scripts at conclusion 
% 0 ;:;; run no scripts, 1 = run if successful, 2 = run always 
OpConcludeAct=l 

% Script or scripts if any to run at conclusion. 
OpConcludeScript=[ 
IIcmpplain" 
"setop·' ] 

% End of file 
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Appendix I: Derivation of mutation rates 

The mutation rate J1 is modified from fluctuation analysis proposed by 
Luria and Delbruck {32}. The derivation of mutation rates discussed here is 
represented by the immortalization of normal cells. In Chapter 1, the 
mutation rate J1, is used in Equation 1.2 that 

dIet) 
dt = I(t)- [a2(t)- P2(t)] + Pt(t)- al(t)· N(t) (1.2) 

where I and N are the number of immortal and normal cells, respectively, O 2 

and ~2 are the division and death rates of immortal cells, 0 1 is the division 
rate of norma' cells, and Jl1 represents the probability of mutation that a 
normal cell divides into one normal cell and one immortal cell, i.e. the number 
of mutation per cell division. In contrast, the mutation rate obtained from 
fluctuation analysis (v) is defined as the mutations per cell per division cycle 
and calculated as 

(6.1 ) 

where Po represents the fraction of culture with no mutants, Nf and No are 
the final and initial number of cell {32}. 

To modified v for the modeling purpose, the relation between the unit 
udivision cycle" , denoted as 1:, and time unit lit" is defined as 

a] 
r=--·t 

In2 
(I. 1 ) 

When t = 0, 1: is equal to O. When t = {In 2)/01, i.e. potential doubling time, 1: 

is equal to 1 at which cells complete one division cycle. Since it is assumed 
that mutation only occurs at cell division, potential doubling time is counted 
as cell cycle time which ignores the impact of cell death. 

With division cycle defined as above, the number of immortal cells 
mutated from normal cells (1m) during time interval dt is calculated as 
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dI = v·N·dr m 

at = v·N·(-·dt) 
In2 

(1.2) 

where a, is assumed to be constant. This assumption is true from passage 
to passage, since the cell division rates are very consistent between 
passages in my experiments. However, in order to fully accomplish the 
assumption, experimental design should be modified that cells have to be 
passaged before confluency is reached to reduce the impact of crowding 
factor on division rates 0, within each passage. 

By applying Equation 6.1 into Equation 1.2, dIm can be rewritten as 

-lnR 
dI = 0 • a . N· dt (1.3) 

m N -N t 
f 0 

By comparing Equation 1.3 to Equation 1.2, the mutation rate J11 in the 
model can be calculated as 

-lnR o 
PI= N -N 

f 0 

(1.4) 
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