
DISSERTATION

COOPERATIVE CONTROL OF MOBILE SENSOR PLATFORMS IN DYNAMIC

ENVIRONMENTS

Submitted by

Shankarachary Ragi

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2014

Doctoral Committee:

Advisor: Edwin K. P. Chong

Diego Krapf
J. Rockey Luo
Juliana Oprea

Copyright by Shankarachary Ragi 2014

All Rights Reserved

ABSTRACT

COOPERATIVE CONTROL OF MOBILE SENSOR PLATFORMS IN DYNAMIC

ENVIRONMENTS

We develop guidance algorithms to control mobile sensor platforms, for both centralized

and decentralized settings, in dynamic environments for various applications. More precisely,

we develop control algorithms for the following mobile sensor platforms: unmanned aerial

vehicles (UAVs) with on-board sensors for multitarget tracking, autonomous amphibious

vehicles for flood-rescue operations, and directional sensors (e.g., surveillance cameras) for

maximizing an information-gain-based objective function. The following is a brief description

of each of the above-mentioned guidance control algorithms.

We develop both centralized and decentralized control algorithms for UAVs based on

the theories of partially observable Markov decision process (POMDP) and decentralized

POMDP (Dec-POMDP) respectively. Both POMDPs and Dec-POMDPs are intractable

to solve exactly; therefore we adopt an approximation method called nominal belief-state

optimization (NBO) to solve (approximately) the control problems posed as a POMDP or a

Dec-POMDP.

We then address an amphibious vehicle guidance problem for a flood rescue application.

Here, the goal is to control multiple autonomous amphibious vehicles while minimizing the

average rescue time of multiple human targets stranded in a flood situation. We again pose

this problem as a POMDP, and extend the above-mentioned NBO approximation method

to solve the guidance problem.

In the final phase, we study the problem of controlling multiple 2-D directional sensors

while maximizing an objective function based on the information gain corresponding to

multiple target locations. This problem is found to be a combinatorial optimization problem,

so we develop heuristic methods to solve the problem approximately, and provide analytical

ii

results on performance guarantees. We then improve the performance of our heuristics by

applying an approximate dynamic programming approach called rollout.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor Dr. Edwin K. P. Chong

for his support and guidance throughout my stay at Colorado State University (CSU), for

giving me the opportunity to work on a variety of challenging research problems, and for

giving me the freedom in choosing the research problems of my interest. I would also like to

thank Dr. Diego Krapf, Dr. Rockey Luo, and Dr. Juliana Oprea for serving as my doctoral

committee members.

I am forever indebted to my loving parents, Ragi Venkatachary and Ragi Venkata Ra-

manamma, for their constant support and encouragement throughout my life. I would like

to extend my appreciation to my sister Ragi Kalpana for sharing my childhood experiences

and memories, and for filling my childhood with joy.

I would like to thank my friends and colleagues at CSU, Chintan Joshi, Thiyagarajan

Chockalingam, Sahil Mehta, Manish Mohanpurkar, Kaustubh Gadkari, Athul S. Chandran,

Arunachalam Lakshminarayanan, Yajing Liu, Wenbing Dang, Ramin Zahedi, Yang Zhang,

and Zhenliang Zhang, for accompanying me through my stay at CSU. My regards also go

to my friends from IIT Madras (where I did my undergraduate studies) Anuprem, Karthik,

Jyothi, Vasanth, and Vikas who visited my place in Fort Collins during my university holidays

and made these holidays completely fun-filled.

I would like to acknowledge the following agencies for supporting my research on UAV

guidance (covered in Chapter 4): Northrop Grumman Corporation (via RMATI program)

and AFOSR (via contract FA9550-09-1-0518). I would also like to acknowledge Fulbright

Foundation for supporting my research on AAV guidance (covered in Chapter 6). I would

like to acknowledge my collaborators Dr. ChingSeong Tan (a faculty member at Multimedia

University in Malaysia) and Dr. Hans D. Mittelmann (a faculty member from the School

of Mathematical and Statistical Sciences at Arizona State University) for their insightful

discussions and valuable suggestions during my research.

iv

TABLE OF CONTENTS

Abstract . ii

Acknowledgements . iv

LIST OF FIGURES . viii

1 INTRODUCTION . 1

2 CENTRALIZED GUIDANCE CONTROL FRAMEWORK 4

2.1 Partially Observable Markov Decision Process . 4

2.1.1 Optimization Objective . 5

2.1.2 Optimal Policy . 7

3 DECENTRALIZED GUIDANCE CONTROL FRAMEWORK 9

3.1 Decentralized Partially Observable Markov Decision Process 9

3.1.1 Objective and Optimal Policy . 11

4 UAV GUIDANCE FOR TRACKING MULTIPLE TARGETS VIA POMDP . . . 14

4.1 Introduction . 14

4.2 Problem Specification . 16

4.3 POMDP Formulation and the NBO Approximation Method 16

4.3.1 POMDP Ingredients . 17

4.3.2 Optimal Policy . 18

4.3.3 NBO Approximation Method . 19

4.3.4 Stationary Target Scenario: Performance Bounds 23

4.3.5 UAV Kinematics . 25

4.3.6 Empirical Study of NBO . 26

4.4 Wind Compensation . 30

4.5 Collision Avoidance . 34

4.5.1 Collision avoidance between UAVs and obstacles 34

4.5.2 Collision avoidance among UAVs . 36

4.6 Evading Threats . 39

4.6.1 Threat Motion Model . 39

v

4.6.2 Threat belief state evolution . 41

4.6.3 Enhancement to the objective function . 43

4.6.4 Empirical Study . 44

4.7 Tracking Evasive Targets . 45

4.7.1 Evasive Target Motion Model . 46

4.7.2 Target Belief State Evolution . 47

4.7.3 Empirical Study . 48

4.8 Track Swap Avoidance . 48

4.8.1 Problem Description . 50

4.8.2 Enhancement for Mitigating Track Swaps 51

4.8.3 Empirical Study . 53

4.9 Concluding Remarks . 53

5 DECENTRALIZED GUIDANCE CONTROL OF UAVS WITH EXPLICIT OPTI-
MIZATION OF COMMUNICATION . 56

5.1 Introduction . 56

5.2 System and Problem Description . 58

5.3 Communication Between Agents . 59

5.4 Problem Formulation . 60

5.4.1 Dec-POMDP Ingredients . 60

5.4.2 Objective and Optimal Policy . 64

5.5 NBO Approximation Method for Dec-POMDP . 65

5.6 Simulation Results . 68

5.6.1 Dec-POMDP Approach vs. Greedy Approach 70

5.6.2 Optimized Communication Scheme vs. Fixed Communication Scheme 72

5.7 Concluding Remarks and Future Work . 74

6 GUIDANCE OF AUTONOMOUS AMPHIBIOUS VEHICLES FOR FLOOD RES-
CUE SUPPORT . 79

6.1 Introduction . 79

6.2 Problem Specification . 80

6.3 Problem Formulation . 82

6.4 Objective and Optimal Policy . 85

vi

6.4.1 NBO Approximation Method . 86

6.4.2 AAV Kinematics . 88

6.5 Simulation . 90

6.6 Conclusions and Remarks . 92

7 DIRECTIONAL SENSOR CONTROL: HEURISTIC APPROACHES 99

7.1 Introduction . 99

7.2 Problem Specification . 100

7.3 Approximate Solutions . 103

7.3.1 Continuous Optimization . 103

7.3.2 Heuristic Approaches . 104

7.3.3 Rollout on a Heuristic Approach . 106

7.3.4 Mapping of Sensors to Targets . 109

7.4 Simulation Results and Further Discussion . 113

7.5 Concluding Remarks . 117

8 CONCLUSIONS AND REMARKS . 120

REFERENCES . 123

vii

LIST OF FIGURES

2.1 Symbolic representations. 6

4.1 Three UAVs tracking two targets. 28

4.2 Performance comparison: Variable-speed UAVs (speed: 11 m/s - 26 m/s) vs. fixed-
speed UAVs (speed: 15 m/s). 29

4.3 One UAV tracking two targets. 29

4.4 UAV tracking a stationary target. 30

4.5 Cumulative cost from the NBO policy for the scenario in Figure 4.4 along with its lower
and upper bounds. 31

4.6 UAV tracking a target in the presence of wind. 34

4.7 Tracking performance comparison. 35

4.8 UAV tracking a target while evading obstacles. 37

4.9 Two UAVs tracking a target while avoiding collisions. 38

4.10 Distance between the UAVs as a function of time (for scenario in Figure 4.9). 38

4.11 Cumulative frequency of performance measures for various values of γ in (4.6). 40

4.12 UAV tracking a target while evading a threat. 44

4.13 Distance between the UAV and the threat as a function of time in the scenario Figure 4.12. 45

4.14 Cumulative frequency of performance measures for various values of γ in the scenario
Figure 4.12. 46

4.15 UAV tracking an evasive target. 49

4.16 Performance comparison of Evas-model and CV-model for the scenarios in Figure 4.15. 50

4.17 UAV tracking three targets. 52

4.18 UAV tracking three targets while mitigating track swaps. 52

4.19 Performance comparison for various statistical distances. 54

5.1 Two UAVs tracking two targets; β = 1 . 71

5.2 Two UAVs tracking two targets; β = 50 . 72

5.3 Two UAVs tracking two targets; β = 100 . 73

5.4 Performance with respect to average target-location error for various values of β 74

5.5 Performance with respect to average communication cost for various values of β 75

5.6 Two UAVs tracking two targets via Dec-POMDP approach 76

5.7 Two UAVs tracking two targets via Greedy approach 76

viii

5.8 Dec-POMDP approach vs. greedy approach . 77

5.9 Fixed communication scheme vs. optimized communication scheme 78

6.1 Flood Scenario . 80

6.2 Free body diagram of an AAV . 90

6.3 Simulation of Scenario I with NBO approach, average rescue time=25.5 steps 93

6.4 Simulation of Scenario I with greedy approach, average rescue time=40.5 steps 94

6.5 Simulation of Scenario II with NBO approach, average rescue time=42 steps 95

6.6 Simulation of Scenario II with greedy approach, average rescue time=62.5 steps 96

6.7 Performance comparison for Scenario I: NBO approach vs. greedy approach 97

6.8 Performance comparison for Scenario II: NBO approach vs. greedy approach 98

7.1 Field-of-view of a sensor . 103

7.2 Counterexample to show that our objective function is not continuous monotone (Case 1).113

7.3 Counterexample to show that our objective function is not continuous monotone (Case 2).114

7.4 Solution from H1 . 115

7.5 Solution from RH1 . 116

7.6 Solution from MH1 . 117

7.7 Counterexample to show that our objective function is not string-submodular 118

ix

CHAPTER 1

INTRODUCTION

In this study, a mobile sensor platform is a system with the following characteristics: 1)

senses the environment, e.g., via optical sensors, radar, and sonar; 2) communicates with

other mobile sensor platforms or a base station; 3) runs computations via an on-board com-

puter; 4) has controllable aspects, e.g., sensing direction, location, and waveform. Per the

above definition, the following systems can be considered as mobile sensor platforms: any

autonomous vehicle with on-board sensors (e.g., unmanned aerial vehicles, autonomous am-

phibious vehicles, unmanned underwater vehicles), and directional sensors (e.g., PTZ cam-

era). The cooperative control of mobile sensor platforms is an active area of research with

increasing focus on both defence and civilian applications like crop monitoring, surveillance,

tracking, convoy protection, search and rescue operations (e.g., flood rescue support and

fire-fighting support), and wildfire suppression. The autonomy for mobile sensor platforms,

especially for the examples of mobile sensors listed before, is becoming increasingly impor-

tant because of the nature of missions, where the missions are dull, dirty, and dangerous

for humans. With this motivation, we develop guidance control methods for the following

applications:

• Controlling multiple unmanned aerial vehicles (UAVs) for tracking multiple targets.

• Controlling multiple autonomous amphibious vehicles (AAVs) for flood rescue support.

• Controlling directional sensors for maximizing an information-gain-based objective

function.

In the first phase (Chapters 4 and 5), we develop guidance control methods for UAVs

tracking multiple targets in both centralized and decentralized settings. In the centralized

1

setting, we assume that there is a notional fusion center, which collects measurements from

the sensors, applies data fusion on the observations, maintains and updates the posterior

distribution on the system-state variables, computes a control plan for the mobile sensor

platforms to maximize (or minimize) a certain reward (or cost). In this setting, we develop

the UAV guidance method based on the theory of partially observable Markov decision pro-

cess (POMDP). A POMDP is a mathematical framework useful for solving resource control

problems. It is intractable to solve a POMDP exactly. Therefore, the literature on POMDPs

has focused on approximation methods [1]. In our study, we adopt an approximation method

called nominal belief-state optimization (NBO) to solve our UAV guidance control problem

posed as a POMDP. A detailed description of POMDP is covered in Chapter 2. We then

extend this algorithm to incorporate wind disturbance on UAVs, collision avoidance (among

UAVs, and between UAVs and obstacles), threat evasion, evasive-target tracking, and tracks-

swap avoidance. In the decentralized setting, there is no fusion center (or central controller),

and each UAV is an independent decision maker. In this setting, we develop a decentralized

control method for UAVs, while inducing coordination among the UAVs by allowing commu-

nication between the UAVs, and this communication comes at a cost. Here, the development

of our decentralized guidance control algorithm is based on the theory of decentralized par-

tially observable Markov decision process (Dec-POMDP). A Dec-POMDP, like a POMDP, is

hard to be solved exactly. Therefore, we extend the above-mentioned NBO method to solve

our UAV guidance problem posed a Dec-POMDP. A detailed description of Dec-POMDP is

provided in Chapter 3.

In the second phase (Chapter 6), we study the problem of controlling autonomous am-

phibious vehicles (AAVs) for flood rescue operations. More precisely, we develop guidance

control algorithms for AAVs to minimize the average rescue time of human targets stranded

in a flood situation. We pose this problem as a POMDP, and we extend the above-mentioned

NBO method to solve this guidance problem. We then compare the performance of this al-

gorithm with a “greedy” approach.

2

In the third and final phase (Chapter 7), we study the problem of controlling directional

sensors for maximizing the information gain corresponding to multiple targets. This is

a combinatorial optimization problem, and the computation time increases exponentially

with the number of sensors. Therefore, we develop polynomial-time heuristic approaches

to solve this problem approximately. We then apply an approximate-dynamic-programming

approach called rollout on our heuristics to improve the performance of the heuristics. We

then compare the performance of these heuristic approaches analytically and empirically.

3

CHAPTER 2

CENTRALIZED GUIDANCE CONTROL

FRAMEWORK

2.1 Partially Observable Markov Decision Process

Partially observable Markov decision process (POMDP) [1] is a mathematical framework

useful for solving resource control problems. A POMDP can also be viewed as a hidden

Markov reward process. In general, a POMDP is hard to solve exactly. Therefore, the

literature on POMDP methods has focused on approximation methods [1]. A POMDP

evolves in discrete time-steps; in this study we assume that the length of each time-step is

T seconds. We use k as the discrete-time index. The following are the key components of a

POMDP:

States. The states are the features of the system that possibly evolve over time and are

relevant to the problem of interest. Let xk ∈ X represent the state of the system at time k,

where X be the set of all possible states.

Actions. The actions are the controllable aspects of the system, i.e., the transition of

the system from the current state to the next state depends on the current actions. Let

ak ∈ A represent the actions at time k, where A is the set of all possible actions.

State-Transition Law. The state-transition law defines the conditional probability

distribution over the next state xk+1 given the current state xk and the current action ak,

i.e.,

xk+1 ∼ pk(·|xk, ak),

where pk represents a conditional probability distribution over the state space X.

4

Observations and Observation-Law. Let zk ∈ Z be the observation at time k, where

Z is the observation space. The observation law specifies the condition distribution over the

observation space Z given the current state xk and possibly the current action ak, i.e.,

zk ∼ qk(·|xk, ak),

where qk represents a conditional probability distribution over the observation space Z.

Cost Function. The cost function at time k represents the cost (a real number) of

taking an action ak given the current state xk. Let Ck : X × A → R represent the cost

function at time k.

Belief State. The belief-state at any given time is the posterior distribution over the

state space X given the history of observations and actions. Let bk ∈ B represent the

belief-state at time k, where B is the set of all distributions over the state space X.

Figure 2.1(a) shows a symbolic representation of the POMDP process. The POMDP

process begins at time k = 0 at a (random) initial state. As the process evolves, the state

transitions to a (random) next state from the current state according to the state-transition

law given the action. An action taken at a given state incurs a cost, which is given by

the cost function. At every time-step, the system generates an observation, which depends

on the current state and action. At every time-step, this observation is used to infer the

actual underlying state. However, there will be some uncertainty in the knowledge of the

underlying state; this uncertainty is represented by the belief state. The belief state is the

posterior distribution over the underlying state, which is updated according to the Bayes’

rule. A POMDP can be viewed as a fully-observable Markov decision process (MDP) with

state space B as shown in Figure 2.1(b).

2.1.1 Optimization Objective

A POMDP problem boils down to an optimization problem, where the objective is to

find actions over a time horizon H such that the expected cumulative cost is minimized.

The expected cumulative cost, to be minimized over the action sequence u0, u1, . . . , uH−1, is

5

Current state

Current decision
epoch

Next decision epoch

Next state
A

ct
io

n

A
ct

io
n

Co
st

Co
st

O
b

se
rv

at
io

n

O
b

se
rv

at
io

n
(a) POMDP with state space X .

Current belief
state

Current decision
epoch

Next decision epoch

Next belief
state

A
ct

io
n

A
ct

io
n

Co
st

Co
st

(b) Fully observable MDP with state space B.

Figure 2.1: Symbolic representations.

6

given by:

JH = E

[
H−1∑
k=0

C(xk, uk)

]
. (2.1)

The action chosen at time k should be allowed to depend on the history of all observable

quantities till time k − 1. If an optimal choice of such actions exist, then there exists an

optimal sequence of actions that depend only on the “belief-state feedback” [1]. Therefore,

the objective function JH can be written in terms of the belief states as follows:

JH = E

[
H−1∑
k=0

c(bk, uk)

∣∣∣∣∣ b0

]
, (2.2)

where c(bk, uk) =
∫
C(x, uk)bk(x) dx and b0 is the given initial belief state.

2.1.2 Optimal Policy

Given the optimization problem, the goal is to find, at each time k, the optimal policy

π∗k : B → U such that if the action uk = π∗k(bk) is performed at time k, the objective function

(2.2) is minimized. According to the Bellman’s principle of optimality [2], the optimal

objective function value can be written in the following form:

J∗H(b0) = min
u

{
c(b0, u) + E

[
J∗H−1(b1)

∣∣ b0, u
]}
, (2.3)

where b1 is the random next belief state, J∗H−1 is the optimal cumulative cost over the horizon

H − 1 : k = 1, 2, . . . , H − 1, and E[·|b0, u] is the conditional expectation given the current

belief state b0 and an action u taken at time k = 0. The Q-value of taking an action u given

the current belief state b0 is as follows:

QH(b0, u) = c(b0, u) + E
[
J∗H−1(b1)

∣∣ b0, u
]
.

The optimal policy (from Bellman’s principle) at time k = 0 is given by:

π∗0(b0) = arg min
u

QH(b0, u). (2.4)

The optimal policy at time k is given by:

π∗k(bk) = arg min
u

QH−k(bk, u). (2.5)

7

We assume a long horizon, which makes the dependence on the horizon of the ECTG negli-

gible, and the optimal policy stationary. Therefore, the stationary optimal policy at time k

is given by

π∗(bk) = arg min
u

Q(bk, u)

where

Q(bk, u) = c(bk, u) + E [J∗H(bk+1) | bk, u] . (2.6)

In practice, the second term in the Q value (6.3) is hard to obtain exactly. There

are several methods in the literature to obtain the Q-value approximately, which include:

heuristic ECTG [3], parametric approximation [4,5], policy rollout [6], hindsight optimization

[7, 8], foresight optimization [9].

8

CHAPTER 3

DECENTRALIZED GUIDANCE CONTROL

FRAMEWORK

3.1 Decentralized Partially Observable Markov Deci-

sion Process

Decentralized partially observable Markov decision process (Dec-POMDP for short) [10]

is a mathematical framework useful for modeling multi-agent resource control problems where

the decision making is decentralized. The Dec-POMDP approach has the following advan-

tages: 1) it offers a general approach to dealing with resource management in a multi-agent

scenario with decentralized control, 2) it is a non-myopic approach, which trades off short-

term for long-term performance, 3) in comparison to the existing greedy/myopic approaches

in the literature, the Dec-POMDP approach results in more effective exploitation of limited

resources in a decentralized setting. In addition, we explicitly optimize the communication

between the agents. In general, solving a Dec-POMDP exactly is intractable. We can extend

centralized POMDP (partially observable Markov decision process) approximation methods

to solve the Dec-POMDP. The Dec-POMDP evolves in discrete time-steps, where the length

of each time-step is T seconds. We use k as the discrete-time index. For the purpose of this

study, we assume that the decision epochs at each agent are synchronized. In this study,

an agent is an autonomous system that has sensing, computational, and communication

abilities.

In this study, we assume that there is an underlying communication network over which

the agents can communicate information to each other. We will not concern ourselves with

the details of this underlying network. Instead, for each pair of agents, we will treat the

9

end-to-end path through the network between them as an abstract communication link over

which the two agents can exchange information. To account for the cost of communicating

information over the network, we assign a numerical value to each communication link (which

we will call the cost of the link). For example, we can define the cost of a link as a value

that is proportional to the distance between the two associated agents. The following are

the key components of a Dec-POMDP.

Agents. We assume that there are N agents in the system. Let I = {1, . . . , N} represent

the set of agents.

States. The states are the features of the system that possibly evolve over time and are

relevant to the problem of interest, i.e., the state of each agent, the state of the environment,

and other relevant features of the system. Let xk ∈ X represent the state of the system at

time k, where X be the set of all possible states.

Joint Actions. The joint-action is a tuple, the components of which are actions corre-

sponding to individual agents. Let uk = (u1
k, . . . , u

N
k) represent the joint-action, where uik is

the action-vector at agent i. The local action at any agent may include control commands

that may influence the state transition of the local agent, and communication decisions like

whom to communicate with, when to communicate, and what to communicate.

State Transition Law. The state transition law specifies the next-state distribution

given the current state and joint-action, i.e., xk+1 ∼ pk(·|xk, uk), where pk is a conditional

probability distribution.

Observations and Observation Law. Each joint-observation is a tuple, the compo-

nents of which are observations generated by individual agents via on-board sensors. Let

zk = (z1
k, . . . , z

N
k) be the joint-observation vector at time k, where zik represents the obser-

vation at agent i. The observation law specifies the distribution of joint-observations given

the current state and joint-action, i.e., zk ∼ qk(·|xk, uk), where qk is a conditional probability

distribution. The observations at each agent can be used to infer the underlying state, albeit

with some uncertainty.

10

Cost Function. A cost function C(xk, uk) specifies the cost (real number) of being in a

given state xk and performing a joint-action uk. The cost function may include a performance

measure (e.g., tracking error in a tracking application) and the cost of communication.

The Dec-POMDP starts at a random initial state x0 (whose distribution is given), and at

any typical time-step k, the state xk transitions to xk+1 given the joint-action vector uk. The

joint-action uk performed at the current state xk incurs a global cost C(xk, uk). As a Dec-

POMDP evolves over time as a dynamical process, the agents may not know the underlying

state exactly, but each agent generates observations of the underlying state, providing the

agent with clues of the actual underlying states. Given the Dec-POMDP formulation, the

goal is to find joint-actions over a horizon H such that the expected cumulative cost, over a

time horizon H, is minimized.

An agent may not know the action taken and the observation generated at another

agent. An agent may decide to communicate with another agent, and these decisions to

communicate are embedded into the joint-action vector uk. The communication among the

agents incurs a cost, which is embedded in the global cost function C(xk, uk). The local

observations allow each agent to infer, with some uncertainty, what states actually occurred.

This uncertainty is represented by the local belief-state, which is the a posteriori distribution

of the underlying state given the history of local observations and local actions made by that

agent, including the information gathered from other agents. Just as in centralized POMDPs,

in the decentralized case the local belief-state will be used as “feedback” information that

is needed for controlling the system. In other words, we seek an optimal joint-policy that

depends only on the local belief-states.

3.1.1 Objective and Optimal Policy

The problem is to minimize the cumulative cost over horizon H, given by

E

[
H−1∑
k=0

C(xk, uk)

]
.

11

In the centralized case (if it was a POMDP problem), this objective function can be written

in terms of “global” belief-states:

J(b0) = E

[
H−1∑
k=0

c(bk, uk)

∣∣∣∣∣b0

]
,

where c(b, u) =
∫
C(x, u)b(x) dx, bk is the “global” belief-state, i.e., the posterior distribution

at time k, and E [·|b0] represents conditional expectation given the initial belief-state b0 at

time k = 0. The goal is to pick the joint-actions over time so that the objective function

is minimized. In general, the actions chosen for agents at each time should be allowed to

depend on the entire history of observations and actions up to that time. However, if an

optimal choice of such a sequence of actions exists, then there is an optimal choice of actions

that depends only on “belief-state feedback.” Hence, if we ignore the decentralized nature

of the problem, what we seek is an optimal policy, which maps the belief-state at each time

to the joint-action tuple at that time. The optimal policy is characterized by Bellman’s

principle [2], according to which the optimal action at time k is

π∗(b0) = arg min
u
{c(b0, u) + E [J∗(b1)|b0, u]} ,

where b0 is the initial belief-state, b1 is the random next belief-state, and E[J∗(b1)|b0, u] is

the expected future cost of action u, which is also called the expected cost-to-go (ECTG). We

assume a long horizon, which makes the dependence on the horizon of the ECTG negligible,

and the optimal policy stationary.

Let us define the Q-value of taking action u at belief-state b as follows:

Q(b, u) = c(b, u) + E [J∗(b′)|b, u] , (3.1)

where b′ is the random next belief-state. Therefore, the optimal policy is given by

π∗(b0) = arg min
u
Q(b0, u).

In the decentralized case, we do not have access to the “global” belief-state. Instead,

every agent maintains a local belief-state, which may vary from agent to agent (because the

12

observation histories differ from agent to agent). Our approach is for each agent to compute

its own local action as follows. The agent i computes, at time k,

πi(bik) = arg min
u
Q(bik, u), (3.2)

where bik is the local belief-state at agent i at time k. In other words, an agent i computes

a joint-action by taking into account only its local belief-state. After the computation of

the joint-action, agent i implements its local component. Our approach maintains the looka-

head (non-myopic) property that is a common theme among POMDP solution approaches,

allowing us to account for the future impact of actions in our decision making.

In practice, it is intractable to compute the Q-value. Therefore, the literature on POMDP

methods has focused on approximation methods [1]. In Chapter 5, we extend one such

method called nominal belief-state optimization (NBO) to solve a UAV guidance problem

posed as a Dec-POMDP.

In the next three chapters, we present two applications of POMDP and an application

of Dec-POMDP, where we develop guidance control methods for—UAVs for target tracking

in centralized and decentralized settings, and autonomous amphibious vehicle guidance for

flood rescue support.

13

CHAPTER 4

UAV GUIDANCE FOR TRACKING MULTIPLE

TARGETS VIA POMDP

4.1 Introduction

This chapter presents a path-planning algorithm to guide autonomous unmanned aerial

vehicles (UAVs) for tracking multiple ground targets based on the theory of partially ob-

servable Markov decision processes (POMDPs) [1,11]. The algorithm collects measurements

from the sensors (mounted on the UAVs), constructs the tracks, and computes the control

commands for the UAVs. The focus of this chapter is to show how to guide UAVs with

control variables: forward acceleration and bank angle subject to constraints, account for

wind disturbance on UAVs, avoid collisions between UAVs and obstacles and among UAVs,

guide UAVs to track targets while evading threats, guide UAVs for tracking evasive targets,

and guide UAVs for tracking targets while mitigating track swaps.

The literature is replete with path-planning algorithms for autonomous vehicles; a general

survey of these algorithms can be found in [12]. What makes our path-planning method for

UAVs different and worth studying is the combination of the following features naturally

within the POMDP framework: 1) Our method involves real-time calculation of guidance

commands in response to feedback information. 2) Our method has a “look-ahead” property,

in that the guidance control at each time-step takes into account the impact of the control

over a time horizon into the future. 3) Our method incorporates explicit dynamic constraints

on the UAV motion. 4) Our cost criterion is based on tracking error.

Although these features are not novel in their own right, the contribution of this chapter is

to combine them naturally within the POMDP framework. For example, the path-planning

14

algorithms presented in [13–18] also incorporate “look-ahead” and can be implemented in

real-time. However, only [14, 17] incorporate the dynamic constraints on UAV motion and

only [15] incorporates the tracking error as a cost criterion. Our POMDP method is an

integrated approach where all the above features are fused in a single framework—the guid-

ance commands are calculated in real-time (with look-ahead) while incorporating dynamic

constraints on UAV motion in response to feedback information, where the cost criterion

is tracking error. There are many other methods in the literature that are not designed

specifically for UAVs but are designed for autonomous robots (mostly ground-based) in gen-

eral; e.g., [19–22]. In the recent past, POMDPs have been used to design path-planning

algorithms for UAVs. The approach in [23] is similar to that of ours in that the authors used

POMDP for designing a UAV guidance algorithm for target tracking and also considered

collision avoidance, but differs from our approach in that the authors did not incorporate

the dynamic constraints on UAV motion. There are also methods in the recent literature

(e.g., [24,25]) where POMDPs are used to develop path-planning algorithms for autonomous

robots in general, where the focus was not on UAVs. There are also many schemes in the

literature for wind compensation (e.g., [26, 27]) and collision avoidance (e.g., [28–31]). Our

study differs from these in that we show how to account for wind compensation and collision

avoidance naturally in the context of our POMDP framework. The authors in [32] posed

collision avoidance problem as a POMDP, but differs from our method in that: 1) they

used a simplified motion model for an aircraft, where the aircraft can maneuver only in the

vertical direction and 2) their approach did not involve target tracking.

In practice, POMDP problems are intractable to solve exactly. There are several ap-

proximation methods in the literature to solve a POMDP [1]. In this study, we use an

approximation method called the nominal belief-state optimization(NBO) [11], which is com-

putationally efficient compared to the above mentioned methods. This chapter shows how

a variety of features of interest in UAV guidance for target tracking can be incorporated

15

naturally into the POMDP framework by plugging in the appropriate components into the

framework.

4.2 Problem Specification

The targets move on a 2-D plane on the ground. We use a simplified UAV motion model,

where the altitude of a UAV is assumed to be constant. The 2-D position coordinates of

each UAV are varied by applying the controls—forward acceleration and bank angle. The

UAVs are mounted with sensors that generate the position measurements of the targets.

These measurements have random errors that are spatially varying, i.e., the measurement

error covariance of a target depends on the locations of sensors (UAVs) and the target. A

UAV is controlled by forward acceleration (which controls the speed) and bank angle (which

controls the heading angle). The values of these control variables are restricted to lie within

certain minimum and maximum limits. We model obstacles as regions of various shapes

(e.g., circles, rectangles) in the surveillance region that block the path of UAVs and also act

as occlusions. For the purpose of this study, a threat is a ground vehicle that actively pursues

UAVs that are tracking it. An evasive target is a ground vehicle that actively moves away

from UAVs to avoid being tracked. The objective is to minimize the mean-squared error

between the tracks and the targets. In Sections 4.5, 4.6, and 4.8, we modify the tracking

objectives to avoid collisions between UAVs and obstacles and among UAVs, evade threats,

and mitigate track swaps.

4.3 POMDP Formulation and the NBO Approxima-

tion Method

A POMDP (partially observable Markov decision process) is a controlled dynamical pro-

cess in discrete time useful for modeling resource control problems (e.g., our guidance prob-

lem). A POMDP can also be interpreted as the controlled version of a hidden Markov reward

16

process. The following subsection defines the key components of POMDP with respect to

our guidance problem.

4.3.1 POMDP Ingredients

States. The POMDP states represent those features in the system that possibly evolve

over time. We define three sub-systems: the sensors, the targets, and the tracker. Therefore,

the state at time k is given by xk = (sk, χk, ξk,Pk), where sk represents the sensor state,

χk represents the target state, and (ξk,Pk) represents the tracker state. The sensor state

includes the locations and velocities of the UAVs and the target state includes the locations,

velocities, and accelerations of the targets. The tracker state is a standard in the Kalman

filter [33,34], where ξk is the posterior mean vector and Pk is the posterior covariance matrix.

Actions. The actions are the controllable aspects of the system. In this problem, the

actions include the forward acceleration and the bank angle of each UAV. More precisely,

the action at time k is given by uk = (ak, φk), where ak and φk are vectors containing the

forward acceleration and bank angle respectively for each UAV.

Observations and Observation Law. The POMDP states are not fully observable;

only a random observation of the underlying state is available at any given time. Let χpos
k and

spos
k be the position vectors of a target and a sensor/UAV respectively. Then the observation

of the target’s position is given by

zχk =


χpos
k + wk if target

is visible,

no measurement otherwise,

(4.1)

where wk represents a random measurement error whose distribution depends on the loca-

tions of the UAV (spos
k) and the target (χpos

k). The sensor and the tracker states are assumed

to be fully observable.

State-Transition Law. The state-transition law specifies the next-state distribution

given an action taken at a current state. Since we defined three sub-systems, it is convenient

17

to define the state-transition law for each sub-system separately. The sensor state evolves

according to sk+1 = ψ(sk, uk), where ψ is a mapping function (defined later). The target

state evolves according to χk+1 = f(χk) + vk, where vk represents an i.i.d. random sequence

and f represents the target motion model (also defined later). Finally, the tracker state

evolves according to the Kalman filter equations with a data association technique called

joint probabilistic data association (JPDA) [33, 35]. When the target observations are not

available (when occluded), only the prediction step in the Kalman filter is performed and

the update equation is not performed.

Cost Function. The cost function specifies the cost of taking an action in a given state.

We use the mean-squared error between the tracks and the targets as the cost function:

C(xk, uk) = Evk,wk+1

[
||χk+1 − ξk+1||2

∣∣xk, uk] .
Belief State. The belief state is the posterior distribution of the underlying state, which

is updated incrementally using Bayes rule given the observations. The belief state at time k

is given by bk = (bsk, b
χ
k , b

ξ
k, b

P
k), where bsk = δ(s− sk), bξk = δ(ξ − ξk), bPk = δ(P− Pk) (since

the sensor and the tracker states are fully observable), and bχk is the posterior distribution

of the target state.

4.3.2 Optimal Policy

Given the POMDP formulation, the objective is to choose actions over a time horizon

H, k = 0, 1, . . . , H − 1, such that the expected cumulative cost is minimized. The expected

cumulative cost over the time horizon H can be written as:

JH = E

[
H−1∑
k=0

C(xk, uk)

]
.

The action chosen at time k should be allowed to depend on the history of all observable

quantities till time k − 1. If an optimal choice of such actions exist, then there exists an

optimal sequence of actions that depends only on “belief-state feedback” [1]. Therefore, the

18

objective function can be written in terms of the belief states as follows:

JH = E

[
H−1∑
k=0

c(bk, uk)

∣∣∣∣∣ b0

]
,

where c(bk, uk) =
∫
C(x, uk)bk(x) dx.

As discussed in Chapter 2, the optimal policy from Bellman’s principle [2] is given by

π∗0(b0) = arg min
u

QH(b0, u),

where the “Q-value” of taking an action u is given by

QH(b0, u) = c(b0, u) + E
[
J∗H−1(b1)

∣∣ b0, u
]
.

In practice, the second term in the Q-value (above) is hard to obtain exactly. A number of

methods have been studied in the literature [1,3–9] to approximate the Q-value. We use one

such approximation method called the nominal belief-state optimization (NBO), which was

introduced in [11] along with other approximations and techniques specific to our guidance

problem.

4.3.3 NBO Approximation Method

Although there are several approximation methods in the literature to solve POMDPs,

we use the NBO method because it is computationally less burdensome than other POMDP

approximation methods. In practice, a UAV guidance algorithm should be implementable in

real-time, which requires an approach that is not computationally burdensome. Therefore,

we choose NBO approximation method, which is computationally efficient. The algorithm

run-time in MATLAB for NBO method is approximately 350 milliseconds on a lab computer

(Intel Core i7-860 Quad-Core Processor (8MB Cache, 2.80 GHz)). The algorithm run-time

can be greatly reduced on a better processor and also by optimizing the code.

Let us assume there are Ntargs targets. We can represent the target state as χk =

(χ1
k, χ

2
k, . . . , χ

Ntargs

k), where χik represents the state of the ith target. Let the track state be

19

ξk = (ξ1
k, . . . , ξ

Ntargs

k) and Pk = (P1
k, . . . ,P

Ntargs

k), where (ξik, Pi
k) is the track state corre-

sponding to the ith target. We use a linearized target motion model with zero-mean noise

to model the target-state dynamics, as given below (∀i):

χik+1 = Fkχ
i
k + vik, v

i
k ∼ N (0,Qk) , i ∈ {1, . . . , Ntargs} (4.2)

and the observations (at any UAV) are as follows:

zχ
i

k =


Hkχ

i
k + wik if target

is visible,

no measurement otherwise,

where wik ∼ N (0,Rk (χik, sk)), Fk is the target motion model (same for all targets), and Hk

is the observation model (4.1) (same for every target) according to which only the position

of a target is observed. The state of the ith target (χik) includes its 2-D position coordinates

(xk, yk), its velocities (vxk , v
y
k) and accelerations (axk, a

y
k) in x and y directions, i.e, χik =

[xk, yk, v
x
k , v

y
k , a

x
k, a

y
k]

T. Therefore, the observation model is of the form Hk = [I2×2,04×4]. We

adopt the constant velocity (CV) model [33,34] for target dynamics (4.2), which defines Fk.

Since we assumed Gaussian distributions, the belief state corresponding to the ith target

can be expressed (or approximated) as:

bχ
i

k (χ) = N
(
χ− ξik,Pi

k

)
,

where ξik and Pi
k are the track states corresponding to the ith target, which evolve according

to the JPDA algorithm [33,35].

According to the NBO method, the objective function can be approximated as follows:

JH(b0) ≈
H−1∑
k=0

c(b̂k, uk),

where b̂1, b̂2, . . . , b̂H−1 is a nominal belief-state sequence and the optimization is over an action

sequence u0, u1, . . . , uH−1. The nominal belief-state sequence for ith target can be identified

20

with the nominal tracks (ξ̂ik, P̂
i
k), which are obtained from the Kalman filter equations [33,34]

with exactly zero-noise sequence as follows:

b̂χ
i

k (χ) = N
(
χ− ξ̂ik, P̂i

k

)
, (4.3)

ξ̂ik+1 = Fkξ̂
i
k,

P̂i
k+1 =



[
[P̂i

k+1|k]
−1 + Sik+1

]−1

if measurement

available,

P̂i
k+1|k otherwise,

where

P̂i
k+1|k = FkP̂

i
kF

T
k + Qk,

Sik+1 = HT
k+1

[
Rk+1

(
ξ̂ik+1, sk+1

)]−1

Hk+1

and sk+1 = ψ(sk, uk) (ψ is defined in the next subsection). In equation (4.3), the nominal

error covariance matrix i.e., P̂i
k+1 depends on the availability of the observations in the

future time. Since the availability of these observations cannot be known for certain, we can

guess by assuming the location of the target at time k + 1 as ξ̂i,pos
k+1 (component of nominal

track-state corresponding to the ith target at time k+ 1) and checking its line of sight from

the sensor location, i.e., spos
k+1. The cost function, i.e., the mean-squared error between the

tracks and the targets, can be written as c(b̂k, uk) =
∑Ntargs

i=1 Tr P̂i
k+1. Therefore, the goal

is to find an action sequence (u0, u1, . . . , uH−1) that minimizes the cumulative cost function

(truncated horizon [11])

JH(b0) =
H−1∑
k=0

Ntargs∑
i=1

Tr P̂i
k+1,

where P̂i
k+1 represents the nominal error covariance matrix of the ith target at time k +

1. Here, we adopt an approach called “receding horizon control,” according to which we

optimize the action sequence for H time steps at the current time-step and implement only

the action corresponding to the current time-step and again optimize the action sequence for

H time-steps in the next time-step. When there are multiple UAVs, the nominal covariance

21

matrix for the ith target (based on data fusion techniques) at time k + 1 is expressed as

follows:

P̂i
k+1 =

[
Nsens∑
j=1

(
P̂i,j
k+1

)−1
]−1

,

where Nsens represents the number of UAVs and P̂i,j
k+1 is the nominal covariance matrix of

the the ith target computed at the jth sensor.

Our approach is related to model predictive control (MPC), as argued by the authors

of [36]. According to [36], the MPC method is a type of rollout algorithm (an approximation

method to solve MDPs and POMDPs) with a particular base policy, where the stability

property of MPC is a special case of the cost improvement property of rollout algorithms

that employ a sequentially improving base policy. In other words, MPC can also be viewed

as an approach to solve a POMDP.

The measurement error, i.e., wk in (4.1) is distributed according to the normal distribution

N (0,Rk (χk, sk)), where Rk reflects p% range uncertainty and q radian angular uncertainty.

If rk is the distance between the target and the sensor at time k, then the standard deviations

corresponding to the range (σrange(k)) and the angle (σangle(k)) are written as σrange(k) =

(p/100) ∗ rk and σangle(k) = q ∗ rk. The information matrix depends on the inverse of the

measurement covariance matrix, which depends on the distance between the sensor and

the target. Therefore, the information matrix blows up when the UAV is exactly on top

of the target (i.e., when rk = 0 the sensor’s location overlaps with the target’s location

in our 2-D environment). To address this problem, we define the effective distance (reff)

between the sensor and the target as follows: reff(k) =
√
r2
k + b2, where rk is the actual

distance between the target and the sensor and b is some non-zero real value. Therefore, the

standard deviations of the range and the angle are given by σrange(k) = (p/100)reff(k) and

σangle(k) = qreff(k). If θk is the angle between the target and the sensor at time k, then Rk

is calculated as follows:

Rk = Mk

 σ2
range(k) 0

0 σ2
angle(k)

MT
k

22

where

Mk =

 cos(θk) − sin(θk)

sin(θk) cos(θk)

 .
Clearly, the eigenvalues of the matrix Rk are {σ2

range(k), σ2
angle(k)}.

4.3.4 Stationary Target Scenario: Performance Bounds

Let (u∗0, u
∗
1, . . . , u

∗
H−1) be the optimal action sequence and J∗H be the corresponding op-

timal cumulative cost. Let (P∗i1 ,P
∗i
2 , . . . ,P

∗i
H) be the sequence of error covariance matrices

for the ith target obtained from the optimal action sequence (u∗0, . . . , u
∗
H−1) given a set of

prior covariance matrices for all target at time k = 0. Therefore, the optimal cumulative

cost function is given by

J∗H =
H−1∑
k=0

Ntargs∑
i=1

Tr P∗ik+1.

We now derive bounds on J∗H for the stationary target scenario. In general, it is difficult to

derive bounds on the optimal cumulative cost for a dynamic-target scenario. So, we chose the

stationary target scenario, making the derivation of these bounds tractable. Having these

bounds also allows us to compare (albeit indirectly) the performance of the NBO policy with

that of the optimal policy (discussed in Subsection 4.3.6.3).

Proposition 3.1: In a stationary-target scenario (i.e., the targets are located at fixed

locations and are immobile at all times), if (P1
0,P

2
0, . . . ,P

Ntargs

0) are the (prior) covariance

matrices of targets at time k = 0 and are positive definite, then
Ntargs∑
i=1

H−1∑
k=0

M2

Tr
[
(Pi

0)−1
]

+ (k + 1)C
≤ J∗

H ≤ H
Ntargs∑
i=1

TrPi
0,

where M is the rank of the matrix Pi
0, which is the same for all i and

C = 2/min{(pb/100)2, (qb)2}.

Proof: Upper Bound. Let (Pi
1,P

i
2, . . . ,P

i
H) be the error covariance matrices for the

ith target associated with an arbitrary action sequence (u0, . . . , uH−1). Let JH represents

the cumulative cost function corresponding to this sequence. Therefore,

JH =
H−1∑
k=0

Ntargs∑
i=1

Tr Pi
k+1.

23

Since the targets are stationary, the state evolution for the ith target is given by χik+1 = χik

∀i ∈ {1, . . . , Ntargs}. Therefore, for any target i and for k ≥ 0, if the observation is available,

then

Pi
k+1 = Pi

k −Pi
kH

T
k

[
HkP

i
kH

T
k + Rk

]−1
Pi
k, (4.4)

and if the observation is not available, then Pi
k+1 = Pi

k. When the observation is available,

Tr Pi
k+1 = Tr Pi

k − Tr
[
Pi
kH

T
k (HkP

i
kH

T
k + Rk)

−1Pi
k

]
,

which implies Tr Pi
k+1 ≤ Tr Pi

k, since the second term in RHS of (4.4), i.e., Pi
kH

T
k (HkP

i
kH

T
k +

Rk)
−1Pi

k is a positive semi-definite matrix, the trace of which is non-negative. Therefore, for

both cases, i.e., when the observation is available and also when not available, the following

is true: Tr Pi
k+1 ≤ Tr Pi

k for all k ≥ 0 and for all i. Therefore, it can be easily verified that

for all i and for all k ≥ 0, Tr Pi
k ≤ Tr Pi

0. Therefore,

J∗H ≤ JH ≤ H

Ntargs∑
i=1

Tr Pi
0.

Lower Bound. According to the information filtering (inverse covariance filtering)

equations, for any stationary-target i at time k = 1,

(Pi
1)−1 = (Pi

0)−1 + HTR−1
0 H,

which implies

Tr
[
(Pi

1)−1
]

= Tr
[
(Pi

0)−1
]

+ Tr
[
HTR−1

0 H
]
.

Since the prior covariance matrices corresponding to each target at k = 0 are positive definite,

we can easily verify from the information filtering equations that Pi
k is positive definite for

all k and for all i. Since, the observation model is of the form H = [I,0],

Tr
[
(Pi

1)−1
]

= Tr
[
(Pi

0)−1
]

+ Tr
[
R−1

0

]
.

For any k, the eigenvalues of Rk are {σ2
range(k), σ2

angle(k)}. Therefore,

Tr
[
R−1

0

]
= 1/σ2

range(0) + 1/σ2
angle(0) ≤ C,

24

where C = 2/min{(xb/100)2, (yb)2}. This inequality can be easily verified from the previous

subsection (towards the end), where the description of the measurement covariance matrix

is provided.

If (λ1, . . . , λM) are the eigenvalues of a positive definite matrix A, then the eigenvalues

of A−1 are (1/λ1, . . . , 1/λM). From Cauchy’s inequality,

M∑
i=1

λi ≥M2/

M∑
i=1

1/λi.

Since the trace of a matrix is the sum of its eigenvalues, Tr A ≥ M2/Tr [A−1]. From this

argument and the previous argument,

Tr Pi
1 ≥M2/Tr

[
(Pi

1)−1
]
≥M2/

(
Tr
[
(Pi

0)−1
]

+ C
)
.

Similarly, we can extend the above inequality for any time-step k, which is as follows:

Tr Pi
k ≥M2/

(
Tr
[
(Pi

k−1)−1
]

+ C
)
≥M2/

(
Tr
[
(Pi

0)−1
]

+ kC
)
.

Therefore, the cumulative cost function obtained from the action sequence (u0, . . . , uH−1)

satisfies the following inequality:

JH =
H−1∑
k=0

Ntargs∑
i=1

Tr (Pi
k+1) ≥

H−1∑
k=0

Ntargs∑
i=1

M2/
(
Tr
[
(Pi

0)−1
]

+ C(k + 1)
)
.

The above inequality holds true for every possible action sequence, so it also holds true for

the optimal action sequence (u∗0, u
∗
1, . . . , u

∗
H−1). Therefore, the following is true:

J∗H ≥
H−1∑
k=0

Ntargs∑
i=1

M2/
(
Tr
[
(Pi

0)−1
]

+ (k + 1)C
)
.

4.3.5 UAV Kinematics

In this subsection, we define the mapping function ψ introduced in Section 4.3 to describe

the evolution of the sensor (UAV) state given an action, i.e., sk+1 = ψ(sk, uk). The state of

the ith UAV at time k is given by sik = (pik, q
i
k, V

i
k , θ

i
k) , where (pik, q

i
k) represents the position

25

coordinates, V i
k represents the speed, and θik represents the heading angle. Let aik be the

forward acceleration (control variable) and φik be the bank angle (control variable) of the

UAV, i.e., uik = (aik, φ
i
k). The mapping function ψ can be specified as a collection of simple

kinematic equations that govern the UAV motion. The kinematic equations of the UAV

motion [37] are as follows:

V i
k+1 =

[
V i
k + aikT

]Vmax

Vmin
,

θik+1 = θik + (gT tan(φik)/V
i
k),

pik+1 = pik + V i
kT cos(θik),

qik+1 = qik + V i
kT sin(θik),

where

[v]Vmax
Vmin

= max {Vmin,min(Vmax, v)} ,

where Vmin and Vmax are the minimum and the maximum limits on the speed of the UAVs.

4.3.6 Empirical Study of NBO

The NBO method is implemented in MATLAB, where the optimization problem discussed

in Section 4.3.3 is solved using the command fmincon (gradient-based search algorithm).

The measurement error, i.e., wk in (4.1) is distributed according to the normal distribution

N (0,Rk (χk, sk)), where Rk reflects 10% range uncertainty and 0.01π radian angular un-

certainty. In all our simulations, the time horizon H is set to be H = 6. Setting H = 6

means that at the current time-step, we plan for 6 time-steps into the future, implement the

control action for the current time-step, and discard the next 5 planned actions (these were

actions computed purely for planning purposes). At the very next time step, we re-plan for 6

time-steps, and so forth. This kind of planning is called “receding horizon control.” The goal

of this empirical study is to illustrate the flexibility of the POMDP framework in being able

to incorporate features of interest simply by “plugging in” the appropriate feature model

into the framework, and to compare the quantitative performance over varying parameter

values.

26

This subsection shows the simulation of a few scenarios to demonstrate the coordinated

behavior among the UAVs and the ability of the algorithm to track multiple targets with a

single UAV. This subsection also provides empirical results to evaluate how the agility in UAV

motion affects the quantitative tracking performance. In these simulations, the trajectory of

a target is represented by a sequence of circles and the trajectory of a UAV is represented

by a curve joining the arrows (size of an arrow is proportional to the instantaneous speed of

the UAV) that point toward the heading direction of the UAV.

4.3.6.1 Coordinated UAV Motion

Figure 4.1 shows the simulation of a scenario with three UAVs and two targets, which

depicts the scenario at the end of the simulation. Both targets start at the bottom, and as the

simulation progresses, one target moves towards the north-east and the other target moves

towards the north-west. In all our simulations, the targets move at a constant speed. The

UAVs start at the bottom and move according to the kinematic equations in Section 4.3.5,

with controls obtained from the command fmincon, which minimize the cost function. The

UAVs coordinate to maximize the coverage of the targets as shown in Figure 4.1. There is

no explicit assignment of the UAVs to the targets. We are only optimizing the control action

vector, which specifies the actions (bank angles and forward accelerations) corresponding to

all UAVs. The behavior of the UAVs in Figure 4.1, i.e., the left-most UAV following the left-

most target, is an “emergent property” of our approach. To evaluate how the agility in UAV

motion affects the quantitative tracking performance, the scenario in Figure 4.1 is simulated

for 1000 Monte Carlo runs with variable-speed UAVs and then with fixed-speed UAVs. This

allows us to contrast the tracking performance (measured in average target location error)

of variable-speed UAVs with that of the fixed-speed UAVs. Figure 4.2 shows the cumulative

frequency of the average target-location errors for both fixed-speed and variable-speed UAVs.

It is evident from Figure 4.2 that variable-speed UAVs give better performance over fixed-

speed UAVs.

27

UAV

Target

Figure 4.1: Three UAVs tracking two targets.

4.3.6.2 Weaving Between Targets

Figure 4.3 shows the simulation of a scenario with one UAV and two targets, which

depicts the scenario at the end of the simulation. Both targets start from the left and move

towards the right with constant speed. The UAV weaves between the targets as shown in

Figure 4.3, so that the average speed of the UAV towards the right is close to the speed

of the targets. Also, the tracks get refined by looking at the targets from different angles,

which is achieved by weaving between the targets. This scenario demonstrates the ability of

the planning algorithm to maximize the coverage of multiple targets with a single UAV.

4.3.6.3 Stationary Targets

We simulate a scenario with one UAV and one stationary (immobile) target, as shown

in Figure 4.4. The stationary target motion model is used to represent the target dynamics,

i.e., χk+1 = χk. The bounds in proposition 3.1 are derived for the optimal cumulative cost

28

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Average target−location error (m)

C
um

ul
at

iv
e

fr
eq

ue
nc

y
Empirical CDF (Monte Carlo runs: 1000)

Variable−speed
UAVs

Fixed−speed UAVs

Figure 4.2: Performance comparison: Variable-speed UAVs (speed: 11 m/s - 26 m/s) vs.
fixed-speed UAVs (speed: 15 m/s).

Figure 4.3: One UAV tracking two targets.

starting at time k = 0 over horizon H (i.e., till time k = H − 1), given prior covariances

at time k = 0. These bound can be easily extended to optimal cumulative cost starting

at any arbitrary time k > 0 over horizon H (i.e., till time k + H − 1) by replacing the

prior covariances Pi
0 in proposition 3.1 with Pi

k. For the scenario in Figure 4.4, we plot (as

shown in Figure 4.5) the cumulative cost over horizon H = 6 obtained from the NBO policy

(JNBO
H (k)) as a function of time k along with the lower and upper bounds on the optimal

29

Stationary target

UAV

Figure 4.4: UAV tracking a stationary target.

cumulative cost given by

JLB
H (k) =

Ntargs∑
i=1

k+H−1∑
j=k

M2/Tr
[
(Pi

k)
−1
]

+ C(j + 1),

JUB
H (k) = H

Ntargs∑
i=1

Tr Pi
k

respectively. Figure 4.5 shows that the cumulative cost of the NBO policy is close to the

lower bound of the optimal cumulative cost, which suggests that NBO is close to optimal.

4.4 Wind Compensation

If unaccounted for, wind drags the UAVs from their planned paths, which results in

tracking performance degradation. This section presents a wind-compensation method in

the context of the POMDP framework. More precisely, we incorporate the state of wind

(i.e., wind speed in x and y directions) into the framework to nullify its effect on UAVs. To

model the dynamics of wind, we use autoregressive model of order p. This model has been

used in the past by several researchers (e.g., [38, 39]) to model the dynamics of the wind.

30

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Time

C
um

ul
at

iv
e

co
st

 o
ve

r
ho

riz
on

 H

Cumulative cost
from NBO policy : J

H
NBO (k)

Lower bound: J
H
LB (k)

Upper bound: J
H
UB (k)

Figure 4.5: Cumulative cost from the NBO policy for the scenario in Figure 4.4 along with
its lower and upper bounds.

Let wxk and wyk represent the speed of wind in x and y directions respectively at time k,

which evolve according to the autoregressive model given by the following equations:

wxk+1 =

p∑
i=1

Aiw
x
k−i+1 + ek+1,

wyk+1 =

p∑
i=1

Aiw
y
k−i+1 + ek+1,

where (A1, . . . , Ap) represents the model coefficients and ek+1 ∼ N (0,Qwind). Here, we

assume that the wind speeds in x and y directions vary only with time and not space. This

wind model is incorporated into the POMDP framework by including the state of the wind

into the POMDP state space. Here, we set p = 3. We define an augmented wind-speed

vector (for x−direction) as follows: W x
k = [wxk , w

x
k−1, w

x
k−2]T. The wind-speed vector evolves

according to

W x
k = AautoregW

x
k−1 + Ek, (4.5)

31

where

Aautoreg =


A1 A2 A3

1 0 0

0 1 0


and Ek = [ek, 0, 0], where ek ∼ N (0,Qwind). The evolution of the wind-speed vector for

y-direction can be written similarly as above.

The NBO method requires a nominal belief-state sequence of future states of the targets

and the sensors (UAVs) given the actions. Since our planning algorithm has a lookahead

property, it is important to have a UAV motion model that correctly predicts the trajectory

of each UAV. Figure 4.6(a) shows the simulation of a scenario with one UAV and one target

in the presence of wind. In the simulations, the wind speed in the north direction is dominant

compared to the wind speed in the east direction (this kind of behavior can be set at the

start of the simulation by appropriately initializing the wind-speeds in x and y directions).

Figure 4.6(a) shows a snapshot at the end of the simulation where wind was unaccounted

for, which resulted in drifting of the UAV from its desired course. As a result, the tracking

performance (measured in average target-location error) gets deteriorated.

To nullify the effect of wind, the estimated wind speeds are incorporated into the kine-

matics of the UAV motion. The modified location update equations are as follows:

pik+1 = pik + V i
kT cos(θik) + wxk,estT,

qik+1 = qik + V i
kT sin(θik) + wyk,estT,

where wxk,est and wyk,est are the estimates of wind speeds in x and y directions at time k.

The speed and bank angle update equations remain the same as in Subsection 4.3.5. The

wind speed estimates are obtained by tracking the wind-speed vector using the Kalman

filter. In general, aircrafts measure the true airspeeds (speed of aircraft with respect to the

surrounding atmosphere) via a device called pitot tube. Since the aircraft knows its actual

speed and direction (through GPS, Radio NAV etc.), the wind speed and direction can be

computed. This justifies the availability of the measurements of the wind state at each time

32

epoch. The observation models for wind speeds in x and y directions are given by

W x
k,obs = HwindW

x
k + nxk,

W y
k,obs = HwindW

y
k + nyk,

where Hwind = [1, 0, 0], nxk ∼ N (0,Rx
wind) and nyk ∼ N (0,Ry

wind). Therefore, the estimates

of wind, i.e., wxk,est and wyk,est are obtained from the Kalman filter equations given the state

evolution model (4.5) and the observation model (as above). Therefore,

wxk,est = W x
k,est[1],

wyk,est = W y
k,est[1],

where W x
k,est[1] represents the first element of the Kalman filter estimate of the wind-speed

vector (in x-direction) W x
k,est and W y

k,est[1] represents the first element of the Kalman filter

estimate of the wind-speed vector (in y-direction) W y
k,est. The nominal estimates of wind-

speed vectors over the time horizon H (required to compute the approximate objective

function for NBO method) is obtained by evolving the Kalman filter equations for wind-

state with exactly zero noise sequence as follows:

Ŵ x
k+1,est = AautoregŴ

x
k,est,

Ŵ y
k+1,est = AautoregŴ

y
k,est,

where Ŵ x
k,est and Ŵ y

k,est are the nominal estimates of the wind-speed vectors at time k for

x and y directions respectively. This wind-compensation method is not limited to just

autoregressive wind-model (as in our example); we can incorporate any wind model into our

framework. A more rigorous method for estimating wind parameters can be found in [40].

Figure 4.6(b) shows the simulation of the same scenario as in Figure 4.6(a), but with

modified UAV kinematic model (as discussed before). With wind compensation, the UAV

trajectory stays close to that of the target’s, which improves the tracking performance. This

scenario is simulated (with and without wind compensation) for 500 runs and the average

33

target-location error is calculated at the end of every run, which is plotted in Figure 4.7.

From Figure 4.7, it is evident that the wind-compensation method improves the tracking

performance significantly compared to the case where wind was unaccounted for.

Target

UAV

(a) No wind compensation.

(b) Wind compensation.

Figure 4.6: UAV tracking a target in the presence of wind.

4.5 Collision Avoidance

4.5.1 Collision avoidance between UAVs and obstacles

Suppose that the targets are moving on the ground in the presence of obstacles where the

UAV flying altitude is lower than the height of the obstacles. A collision between the UAVs

and the obstacles may happen if the obstacles are unaccounted for. These obstacles also act

as occlusions, i.e., a sensor cannot generate the measurement of a target if it is occluded. The

authors in [11] did treat occlusions but not collision avoidance. This section shows how to

avoid collisions between UAVs and obstacles in the context of POMDP framework. To avoid

34

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Average target location error (m)

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF

No wind compensation

Wind compensation

Figure 4.7: Tracking performance comparison.

collisions, we include a penalty term (that increases as the UAVs come close to obstacles)

in the objective function. Let Ntargs represent the number of targets and Nsens represent the

number of UAVs. The new objective function is written as follows:

JH =
H−1∑
k=0

(
Ntargs∑
i=1

Tr P̂i
k+1 + γ

Nsens∑
j=1

P coll,j
k+1

)
, (4.6)

where P coll,j
k+1 is a collision penalty function corresponding to the jth UAV and γ is a scaling

factor. For the purpose of our 2-D simulation environment, we model the obstacles as regions

of various shapes in the plane (surveillance region), i.e., square, rectangle, and circle. We

can use any continuous function as the collision penalty function provided that the function

increases as a UAV approaches an obstacle. For our simulation, we use a simple linear

function as the penalty function as follows:

P coll,j
k+1 = D − djk+1

if djk+1 < D, and P coll,j
k+1 = 0 otherwise, where djk+1 is the distance between the jth UAV

and the closest obstacle from its location at time k + 1 and D is a constant such that the

35

penalty function is non-zero only when djk+1 is less than D (the idea is that the obstacles

should not affect the planning algorithm when the UAVs are far from the obstacles). We

assume that a UAV can detect its distance from the surrounding obstacles. Therefore, djk+1

(∀j) is available at all times. Since our controller acts at discrete time epochs, at each time

epoch (or decision epoch), only one obstacle effects our decision. However, if a UAV is in

between two obstacles, then, the closest obstacle could alternate between the two obstacles

from one time epoch to the next, leading to a situation called “chattering.” In the scope of

our work here, we do not concern ourselves with the practical undesirable ramifications of

this kind of rapid switching or chattering. Indeed, in practice some filtering of the command

signal might be necessary to smooth out the command over time to mitigate the possible

“chattering.”

A scenario is simulated with one UAV and one target, where the target moves in the

presence of obstacles. Figure 4.8(b) shows a snapshot at the end of the simulation. Both

the target and the UAV start at the left and as the target moves towards the right, the

UAV follows the target while evading the obstacles. If there were no obstacles, the UAV

trajectory would have been close to that of the target as in Figure 4.8(a). When the UAV

goes far from the target (when avoiding obstacles), the trace objective increases. However,

the penalty from the collision penalty function is reduced (γ in (4.6) is set to a sufficiently

large value to induce this behavior).

4.5.2 Collision avoidance among UAVs

Consider a multi-UAV scenario, where all UAVs are flying at the same altitude. To avoid

collisions among the UAVs, a penalty function is incorporated into the objective function

similar to (4.6), as follows:

JH =
H−1∑
k=0

(
Ntargs∑
i=1

Tr P̂i
k+1 + γ

Nsens∑
j=1

P coll,j
k+1

)
,

where P coll,j
k+1 = D−djk+1 if djk+1 < D, and P coll,j

k+1 = 0 otherwise, where djk+1 is the distance be-

tween the jth UAV and the closest neighboring UAV at time k+1, i.e., djk+1 = mini,i 6=j d
ji
k+1,

36

Target

UAV

(a) No obstacles.

Target
Obstacle UAV

(b) Obstacles in the path of the UAV.

Figure 4.8: UAV tracking a target while evading obstacles.

where djik+1 is the distance between the jth UAV and the ith UAV. The significance of D

(above) is that a UAV contributes to the penalty function only if it approaches another UAV

such that the distance between them is less than D. This penalty function penalizes those

actions (over time) that cause any two UAVs to come close to each other, which effectively

avoids collisions among the UAVs. Suppose that the safe-distance (minimum spacing be-

tween two aircrafts, which is maintained to avoid mid-air collisions) between two aircrafts

is 100m. The value of D is set equal to the safe-distance, i.e., D = 100. Figure 4.9 shows

the simulation of a scenario where two UAVs are tracking one target with enhancement to

the objective function. To demonstrate the effectiveness of our collision avoidance enhance-

ment, we plot the distance between the two UAVs as a function of time for the scenario in

Figure 4.9 for γ = 10. From Figure 4.10, it is evident that, with the enhancement to the

objective function (as discussed above), the distance between the UAVs is greater than D,

37

Figure 4.9: Two UAVs tracking a target while avoiding collisions.

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Time

D
is

ta
nc

e
be

tw
ee

n
th

e
U

A
V

s
(m

)

Safe−distance
Distance between
 the UAVs

D = 100m

Figure 4.10: Distance between the UAVs as a function of time (for scenario in Figure 4.9).

i.e., the safe-distance, at all times. This shows that the enhancement to the objective func-

tion enables the planning algorithm to guide the UAVs for tracking a target while avoiding

collisions among the UAVs by keeping a safe distance (D) between them.

38

We introduce a performance metric called Collision Threat Index (CTI) for the scenario

in Figure 4.9, which is defined as the fraction of time the distance between the UAVs is

less than D. The scenario in Figure 4.9 is simulated for 1000 Monte Carlo runs for various

values of γ in (4.6). Figure 4.11(a) shows the plot of the cumulative frequency of CTI for

various values of γ. It is evident from Figure 4.11(a) that the performance with respect

to CTI can be improved by increasing the value of γ. However, increasing the value of γ

reduces the tracking performance with respect to the average target location error, which is

evident from Figure 4.11(b). Figure 4.11(b) shows the plot of the cumulative frequency of

average target location errors for various values of γ. In summary, γ can be used to tune

the tradeoff between the performance with respect to CTI and the performance with respect

to average target location error. This approach can be easily extended to 3-D collision

avoidance maneuver by: 1) defining a 3-D motion model for UAVs; and 2) having a penalty

metric (similar to the one we had for the 2-D case) to penalize the control actions that bring

two UAVs close to each other.

4.6 Evading Threats

For the purpose of this section, a threat is a ground vehicle that actively pursues UAVs

that are tracking it. Each threat knows the locations of all UAVs at all times and aligns

its direction of motion toward the closest UAV at every time-step. Our goal is to design

the guidance algorithm in such a way that the UAVs track targets while avoiding threats

by keeping a safe distance from them. The next subsection defines the threat motion model

that describes the evolution of the threat state.

4.6.1 Threat Motion Model

Let χtk represent the state of a threat at time k, which includes the position coordinates

(xk and yk) and speed (vk) of the threat, i.e., χtk = [xk, yk, vk]
T. The threat state evolves

39

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Collision threat index

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF (1000 runs)

γ = 0.1

γ = 0.04

γ = 0.02

γ = 0

(a) CTI.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.2

0.4

0.6

0.8

1

Average target location error (m)

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF (1000 runs)

γ = 0

γ = 0.02

γ = 0.04

γ = 0.1

(b) Average target location error.

Figure 4.11: Cumulative frequency of performance measures for various values of γ in (4.6).

according to the following equation:

χtk+1 = Φkχ
t
k + nk, nk ∼ N (0,Qt

k), (4.7)

40

where Qt
k represents the process noise covariance matrix and

Φk =


1 0 cos(hk)T

0 1 sin(hk)T

0 0 1

 ,
where hk is the heading angle of the threat, which is given by

hk = tan−1

(
yclosest UAV
k − yk
xclosest UAV
k − xk

)
,

where (xclosest UAV
k , yclosest UAV

k) represent the position coordinates of the closest UAV from

the threat at time k and (xk, yk) represent the position coordinates of the threat at time k.

The heading angle equation (above) captures the pursuing property of the threat.

4.6.2 Threat belief state evolution

The observation of the threat state is given by ztk = Hkχ
t
k + wk, wk ∼ N (0,Rk). Since

the threat state evolves according to (4.7), i.e., χtk+1 = f(χtk) + nk, the Kalman filter or

the extended Kalman filter cannot be used to evaluate the threat state estimate because

the function f(·) is nonlinear and not differentiable. Therefore, a heuristic approach is

adopted to write the Kalman filter equations to evaluate the threat state estimate. The

threat belief state can be expressed (or approximated) as: btk(χ) = N (χ− ξtk,Pt
k), where ξtk

and Pt
k evolve according to a heuristic Kalman filter (differs from the Kalman filter only in

the prediction step), where the prediction step is written as follows: ξtk|k−1 = Φ̂kξ
t
k−1 and

Pt
k|k−1 = Φ̂kP

t
k−1Φ̂

T
k + Qt

k, where Φ̂k is the approximation of Φk in (4.7), which is evaluated

as follows:

Φ̂k =


1 0 cos(ĥk)T

0 1 sin(ĥk)T

0 0 1

 ,
where

ĥk = tan−1

(
ŷclosest UAV
k − ŷk
x̂closest UAV
k − x̂k

)
, (4.8)

41

where (x̂closest UAV
k , ŷclosest UAV

k) are the position coordinates of the estimated closest UAV

from the threat at time k and (x̂k, ŷk) are the estimated position coordinates of the threat at

time k. The closest UAV from the threat can be found by evaluating the Euclidean distances

between the threat and each UAV. The location of the threat is known only with uncertainty,

which is given by the posterior distribution of the threat state. Therefore, we cannot evaluate

the exact Euclidean distance between the threat and a UAV. So, we evaluate the Mahalanobis

distance [41], which is a statistical distance, between the threat and a UAV. The closest UAV

from the threat is estimated as follows: 1) We evaluate the Mahalanobis distance [41] of the

position coordinates of each UAV i (si,pos
k) from the probability distribution (Gaussian) of

the threat’s location given by N (ξt,pos
k ,Pt,pos

k), where ξt,pos
k represents the first two elements

of the threat state estimate ξtk and Pt,pos
k represents a 2 × 2 sub-matrix of the threat state

error covariance matrix Pt
k, such that

Pt
k =

 Pt,pos
k Ak

AT
k Bk

 .
The Mahalanobis distance of the ith UAV from the probability distribution of the threat’s

location is given by

Di
M =

√
[si,pos
k − ξt,pos

k]T[Pt,pos
k]−1[si,pos

k − ξt,pos
k].

2) We estimate the closest UAV I from the threat as follows: I = arg miniD
i
M.

The nominal threat belief state (b̂χ,tk) is identified with the nominal tracks of the threat

(ξ̂tk,P̂
t
k) as follows:

b̂χ,tk (χ) = N
(
χ− ξ̂tk, P̂t

k

)
,

ξ̂tk+1 = Φ̂kξ̂
t
k,

P̂t
k+1 =

[
(P̂t

k+1|k)
−1 + Sk+1

]−1

,

42

where

P̂t
k+1|k = Φ̂kP̂

t
kΦ̂

T
k + Qt

k,

Sk+1 = HT
k+1

[
Rk+1

(
ξ̂tk+1, sk+1

)]−1

Hk+1.

Similar to the previous sections, we incorporate the constant velocity (CV) model (4.2) for

target dynamics into the NBO method. The next subsection describes an enhancement to

the objective function to guide UAVs for tracking targets while evading threats.

4.6.3 Enhancement to the objective function

Let Ntargs represent the number of targets and Nsens represent the number of UAVs. To

guide the UAVs for tracking targets while avoiding threats, we include a penalty metric in

the objective function. This penalty term increases whenever a UAV comes close to a threat.

Therefore the Euclidean distance between the locations of a UAV and the closest threat from

the UAV can be used as a penalty metric. As mentioned in the previous section, we cannot

evaluate the Euclidean distance between a UAV and a threat because of the uncertainty in

the location of the threat. Therefore, as before, we use the Mahalanobis distance [41], which

is a statistical distance, between a UAV and its closest threat as the penalty metric. The

new objective function is written as follows:

JH(b0) =
H−1∑
k=0

(
Ntargs∑
i=1

Tr P̂i
k+1 + γ

Nsens∑
j=1

Gj
k+1

)
, (4.9)

where γ is a scaling constant and

Gj
k+1 =

 D − djk+1 if djk+1 < D,

0 otherwise,
(4.10)

where djk+1 = minm Dm
M(sj,pos

k+1), where sj,pos
k+1 represents the position coordinates of the jth

UAV and Dm
M(sj,pos

k+1) represents the Mahalanobis distance of sj,pos
k+1 from the probability dis-

tribution of the location of mth threat, i.e., N (ξ̂t,pos,m
k+1 , P̂t,pos,m

k+1), where ξ̂t,pos,m
k+1 represents the

first two elements of ξ̂t,mk+1 and P̂t,pos,m
k+1 represents the top-left-corner 2×2 sub-matrix of P̂t,m

k+1.

43

Threat

Target UAV

Figure 4.12: UAV tracking a target while evading a threat.

The next subsection demonstrates the effectiveness of this enhancement with an empirical

study.

4.6.4 Empirical Study

Figure 4.12 shows the simulation of a scenario with one UAV, one threat, and one target.

In this simulation, we set D = 100 in (4.10). To demonstrate the effectiveness of the

enhancement to the objective function (4.9), we plot the distance Dthreat-UAV between the

UAV and the threat as a function of time in the scenario Figure 4.12, which is shown in

Figure 4.13. It is evident from Figure 4.13 that the UAV tracks the target while maintaining

a safe distance, Dsafe (= D), from the threat.

We introduce a performance metric called the Threat Index for the scenario in Figure 4.12,

defined as the fraction of time the distance between the UAV and the threat is less than D.

We simulate the scenario in Figure 4.12 for 1000 Monte Carlo runs for various values of γ

used in (4.9). Figure 4.14(a) shows the plot of the cumulative frequency of threat indices

44

0 20 40 60 80 100 120
0

100

200

300

400

500

600

Time

D
is

ta
nc

e
(m

)

D
safe

D
threat−UAV

Figure 4.13: Distance between the UAV and the threat as a function of time in the scenario
Figure 4.12.

for various values of γ. From Figure 4.14(a), it is evident that the performance with respect

to Threat Index can be improved by increasing the value of γ. However, the performance

with respect to average target location error degrades with increasing γ, which is evident

from Figure 4.14(b). In summary, the parameter γ can be used to tune the tradeoff between

the performance with respect to Threat Index and the performance with respect to average

target location error.

4.7 Tracking Evasive Targets

For the purpose of this section, an evasive target is a ground vehicle that actively moves

away from UAVs that are tracking it, to avoid being tracked. In this section, all targets

are evasive. Each target knows the locations of all UAVs at every time-step. The state of

a target evolves according to the evasive target motion model as described in the following

subsection.

45

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threat index

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF (1000 runs)

γ = 0

γ = 0.5

γ = 1

γ = 10

(a) Threat index.

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Average target location error (m)

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF (1000 runs)

γ = 0

γ = 0.5

γ = 1

γ = 10

(b) Average target location error.

Figure 4.14: Cumulative frequency of performance measures for various values of γ in the
scenario Figure 4.12.

4.7.1 Evasive Target Motion Model

Our evasive target motion model is very similar to the threat motion model presented

in the previous section. Let χk represent the state of a target at time k, which includes

the position coordinates (xk and yk) and speed (vk), i.e., χk = [xk, yk, vk]
T. The target state

46

evolves according to χk+1 = Φkχk+nk, nk ∼ N (0,QEvas
k), where QEvas

k represents the process

noise covariance matrix and

Φk =


1 0 cos(hk)T

0 1 sin(hk)T

0 0 1

 ,
where hk is the heading angle of the target, which is given by

hk = π + tan−1

(
yclosest UAV
k − yk
xclosest UAV
k − xk

)
,

where (xclosest UAV
k , yclosest UAV

k) are the position coordinates of the closest UAV from the

target at time k and (xk, yk) are the position coordinates of the target at time k. The above

heading angle equation differs from (4.8) in that the former induces an addition of π radians,

representing motion away from the closest UAV.

4.7.2 Target Belief State Evolution

As before, the observation of the target state is given by zk = Hkχk+wk, wk ∼ N (0,Rk).

The target belief state bχk and the nominal target belief state b̂χk evolve according to the

heuristic Kalman filter equations as in Section 4.6.2. However, the heading angle estimate

(used in Φ̂k) is evaluated according to the following equation:

ĥk = π + tan−1

(
ŷclosest UAV
k − ŷk
x̂closest UAV
k − x̂k

)
,

where (x̂closest UAV
k , ŷclosest UAV

k) are the position coordinates of the estimated closest UAV

from the target at time k (the closest UAV from the target is estimated in the same way

we estimated the closest UAV from a threat in the previous section) and (x̂k, ŷk) are the

estimated position coordinates of the target at time k. We incorporate the nominal tar-

get belief-state update equations (described above) into the NBO method. The objective

function is given by

JH(b0) =
H−1∑
k=0

(
Ntargs∑
i=1

Tr P̂i
k+1

)
,

47

where P̂i
k+1 is the nominal error covariance matrix corresponding to the ith target at time

k + 1, which is obtained from the nominal target belief-state update equations (described

above).

4.7.3 Empirical Study

To demonstrate the effectiveness of incorporating the evasive target motion model into

the NBO method (as described in Section 4.7.2), we compare its performance with the use

of a target motion model that does not account for the evasive property of the target (in

particular, constant velocity model). First, we simulate a scenario with one UAV and an

evasive target while adopting the constant velocity model (henceforth referred to as the CV-

model) [33,34] for evasive target dynamics (which means the target is evasive, but we are not

accounting for the evasive property of the target) (4.2). Second, we simulate the previous

scenario, while adopting the evasive target motion model (presented in Section 4.7.2) for

target dynamics. The plots of one UAV tracking an evasive target with the CV-model

and with the evasive target motion model (Evas-model) are shown in Figure 4.15(a) and

Figure 4.15(b) respectively. We simulate these scenarios for 1000 Monte Carlo runs and

plot the cumulative frequency of average target location errors, as shown in Figure 4.16.

From Figure 4.16, it is evident that by adopting the Evas-model over the CV-model for the

dynamics of an evasive target, the performance with respect to average target location error

is improved significantly.

4.8 Track Swap Avoidance

A track swap is a switch in the association between the tracks and the targets. The

identities of the targets are interpreted through the association between the tracks and the

targets. Therefore, a track swap switches the identities of targets, which is undesirable.

The likelihood of a track swap depends on the tracker state, which in-turn depends on the

locations of UAVs relative to the targets. Therefore, the track swaps can be mitigated by

appropriately controlling the UAVs. This is achieved by incorporating a metric into the

48

UAV

Target

(a) NBO with CV-model.

Target

UAV

(b) NBO with Evas-model.

Figure 4.15: UAV tracking an evasive target.

objective function that represents the risk of a track swap. Although this enhancement was

introduced in [11], our work builds on it by incorporating multiple candidate metrics and

comparing their performance for variable-speed UAVs via Monte Carlo simulations.

49

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Average target location error (m)

C
um

ul
at

iv
e

fr
eq

ue
nc

y
Empirical CDF (1000 runs)

CV−model

Evas−model

Figure 4.16: Performance comparison of Evas-model and CV-model for the scenarios in
Figure 4.15.

4.8.1 Problem Description

Suppose that a UAV is tracking three targets as shown in Figure 4.17. In this scenario, the

bottom two targets come in close proximity to each other periodically and the topmost target

remains far from the bottom two targets. Our planning algorithm maximizes the coverage of

the targets by guiding the UAV to weave between the topmost target and the bottom targets

(as shown in Figure 4.17), which is achieved by minimizing the overall trace objective. The

likelihood of a track swap is high when the measurement sources are ambiguous. In the

scenario of Figure 4.17, when the UAV is far from the bottom targets, i.e., when the UAV

is close to the topmost target, the likelihood of a track swap (corresponding to the bottom

targets) is high because the chance that the sources of the measurements from the bottom two

targets becoming ambiguous is high. The following subsection presents an enhancement [11]

to mitigate track swaps.

50

4.8.2 Enhancement for Mitigating Track Swaps

The similarity between the target state distributions is a good predictor for a track

swap because the likelihood of the measurement sources becoming ambiguous is high when

the similarity between the target state distributions is high. The target state distributions

depend on the tracker states and the locations of the UAVs over time. Therefore, we can

control the UAVs appropriately such that the target state distributions are less similar.

The similarity between the probability distributions can be measured as the inverse of a

statistical distance between the distributions. To minimize the likelihood of a track swap,

we incorporate a term that is inversely proportional to a statistical distance (between the

target state distributions) into the objective function. The new objective function is written

as

JH =
∑
k

(
Ntargs∑
i=1

Tr Pi
k+1 + γ(1/Dk+1)

)
,

where γ is a scaling factor, Ntargs represents the number of targets, and

Dk+1 = min
p 6=q; p,q∈S

D(χpk+1||χ
q
k+1),

where S = {1, 2, . . . , Ntargs} and D(χpk+1||χ
q
k+1) is a statistical distance between the distri-

butions of the pth target and the qth target.

There are several statistical distances defined in the literature: KL-divergence [42], Bhat-

tacharya distance [43], Hellinger distance [44], and worst-case chi-square distance (see [11]

for a description of the worst-case chi-square distance). We simulate a scenario with three

targets and one UAV with the above new objective function (where we use the worst-case

chi-square distance to measure the similarity between distributions) as shown in Figure 4.18,

where the UAV stays close to the bottom targets in contrast to the behavior in Figure 4.17.

This reduces the similarity between the distributions of the bottom targets, which reduces

the chance of a track swap. KL-divergence, Bhattacharya distance, and Hellinger distance

are average-case measures of how often the state values from the distributions fall in a small

neighborhood of each other, whereas worst-case chi-square distance is a worst-case measure.

51

UAV

Target

Figure 4.17: UAV tracking three targets.

Target

UAV

Figure 4.18: UAV tracking three targets while mitigating track swaps.

The authors of [11] explain that a worst-case measure is more suited to track swap prediction

than an average-case measure, which is corroborated in the next subsection via an empirical

study.

52

4.8.3 Empirical Study

We simulate 2000 runs of the scenario where a UAV tracks three targets (as described

in Section 4.8.1) with and without the enhancement in the objective function. In every run,

we calculate the fraction of track swaps—a metric to evaluate the tracking performance—

according to the following method.

Fraction of Track Swaps : Let NTS represent the number of track swaps, defined as follows.

We check for a track swap only at instances when the bottom targets are the farthest apart.

These instances occur periodically as can be seen in Figure 4.17 and Figure 4.18. At each of

these instances, we evaluate the associations between the tracks and the targets. Whenever

the association at a particular instance differs from the association in the previous instance,

we increment NTS by one. At the end of the simulation, we evaluate the fraction of track

swaps as follows: fraction of track swaps = NTS

N
, where N represents the total number of

instances we evaluate the track associations.

In our simulations, we use the following notation to represent the statistical distances: 1)

KL-divergence: DKL-div, 2) Hellinger distance: DHell-dist, 3) Bhattacharya distance: DBhatt-dist,

and 4) worst-case chi-square distance: Dχ2 . Figure 4.19 shows the plot of the cumulative

frequency of fraction of track swaps for various statistical distances. From Figure 4.19, it

is evident that the enhancement to the objective function improved the performance, with

respect to the fraction of track swaps, significantly for all candidate statistical distances. It is

also evident that Dχ2 is the best among other statistical distances in mitigating track swaps.

This shows that the worst-case chi-square distance is an appropriate metric for predicting

track swaps—corroborating the claim in [11].

4.9 Concluding Remarks

The results from Subsection 4.3.6 show that variable-speed UAVs give better tracking

performance over fixed-speed UAVs, which demonstrates that the higher the agility in UAV

motion, the better the tracking performance. Agile UAVs give better performance because

53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

Fraction of track swaps

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF (2000 Monte Carlo runs)

Tr P

Tr P + γ (1/D
KL−div

)

Tr P + γ (1/D
Hell−dist

)

Tr P + γ (1/D
Bhatt−dist

)

Tr P + γ (1/Dχ2)

Figure 4.19: Performance comparison for various statistical distances.

they can quickly change the geometry compared to fixed-speed UAVs. The results from

Subsection 4.3.6.3 show that the cumulative cost of the NBO policy is close to the lower

bound of the optimal cumulative cost, which suggests that NBO is close to optimal. The

results from Section 4.6 demonstrate that the target location error is strongly influenced by

the UAV information enhancement maneuvers, which in turn depend on the threat motion

model. The UAVs try to move close to the targets to increase the tracking performance, and

at the same time they try to move away from threats in order to increase the performance

with respect to threat index. If the UAVs try to maximize only the tracking performance,

then the performance with respect to threat index degrades, and if the UAVs try to maximize

only the performance with respect to threat index, then the tracking performance degrades,

i.e., the goals of maximizing these two performances conflict each other. This implies that we

need to have a control on the tradeoff between these two performances. Therefore, we show

in this chapter (in Section 4.6) that the tradeoff between the performances with respect

54

to threat index and average target location error can be tuned with a parameter γ. The

authors of [11] explain that a worst-case measure is more suited to track swap prediction than

the following average-case measures: KL-divergence, Bhattacharya distance, and Hellinger

distance. An average-case measure tells how often the state values from the distributions

fall in a small neighborhood of each other, whereas worst-case chi-square distance [11] is a

worst-case measure. The empirical results from Section 4.8 support the argument that the

worst-case chi-square distance Dχ2 is an appropriate metric in predicting track swaps over

other statistical distances. The results in this chapter were published in [45,46].

55

CHAPTER 5

DECENTRALIZED GUIDANCE CONTROL OF

UAVS WITH EXPLICIT OPTIMIZATION OF

COMMUNICATION

5.1 Introduction

There has been a growing interest in the development of guidance methods for unmanned

aerial vehicles (UAVs) for target tracking. Our work in the past [11, 45, 46] was focused on

centralized guidance, where there was a notional central controller that collects measure-

ments from the sensors on-board the UAVs, forms tracks on the targets, computes control

commands for the UAVs, and sends them back to the UAVs. But that approach did not

account for the cost of communication. In general, the communication among the UAVs or

between UAVs and a central controller (e.g., ground station) involves a nonzero cost.

The decentralized control of UAVs was studied before in various contexts, e.g., decentral-

ized UAV formation flight [47,48], decentralized cooperative search in an uncertain environ-

ment by UAVs [49], decentralized model predictive control of UAVs [50], and decentralized

task assignment for UAVs [51]. In this study, we design a decentralized guidance control

method for UAVs for target tracking based on the theory of decentralized partially observ-

able Markov decision process (Dec-POMDP). Each UAV has a fixed communication range,

i.e., two UAVs can directly (with no relays) communicate with each other only if the distance

between them is less than a constant value. The communication network among the UAVs

is dynamic in the sense that a communication link between two UAVs forms when they are

within each other’s communication range, and breaks otherwise. At each time instance, any

two UAVs can communicate with each other if there exists a path between them through

56

the network. The communication among the UAVs involves a nonzero cost, and we explic-

itly optimize the communication decisions (at the network level) of each UAV (with whom

to communicate and when to communicate) along with the kinematic controls. In this ap-

proach, a UAV collects measurements of targets from the on-board sensors, forms tracks on

the targets based on the local observations and the information received from other UAVs,

and computes the joint kinematic control commands and the communication decisions. This

kind of communication-aware motion planning for mobile agents has been studied before,

e.g., [52]. However, our approach differs from the existing communication-aware planning

approaches in that we place our planning method in the context of Dec-POMDP.

Dec-POMDP [10] is a mathematical framework useful for modeling resource control prob-

lems where the decision making is decentralized. The Dec-POMDP approach has the fol-

lowing advantages: 1) it offers a general approach to dealing with resource management in a

multi-agent scenario with decentralized control, 2) it is a non-myopic approach, which trades

off short-term for long-term performance, 3) in comparison to the existing greedy/myopic

approaches in the literature, the Dec-POMDP approach results in more effective exploitation

of limited resources in a decentralized setting. In addition, we explicitly optimize the com-

munication between the UAVs (also called agents) at the network level. In general, solving

a Dec-POMDP exactly is intractable. Instead, we extend a centralized POMDP (partially

observable Markov decision process) approximation method to solve the Dec-POMDP. We

seek a solution to our guidance control problem that is implementable in real-time (a typical

requirement). Therefore, we need an approximation method with computational require-

ments that are not prohibitive. In this study, we choose an approximation method called

nominal belief-state optimization (NBO), which we used in the past [11, 45, 46] to solve a

centralized POMDP. The NBO method is less expensive (in time-consumption) than other

approximation methods.

57

The Dec-POMDP evolves in discrete time steps, where the length of each time step is T

seconds. We use k as the discrete-time index. For the purpose of this study, we assume that

the decision epochs at each agent are synchronized.

5.2 System and Problem Description

Targets. The targets are ground-based vehicles and are assumed to be moving in 2-D

(our framework easily extends to 3-D, with a concomitant additional computational cost).

Unmanned Aerial Vehicles. For the purpose of this study, we assume that the UAVs

fly at a constant altitude, i.e., the UAVs move in 2-D (again, our framework easily extends

to 3-D). The kinematics of each UAV is controlled by forward acceleration and bank angle.

Each UAV is equipped with an on-board sensor that generates the position measurements

of the targets. For simplicity, we assume that the locations and velocities of every UAV in

the system are available at each UAV (e.g., by communicating GPS coordinates).

Measurement Error. The sensors on-board each UAV generate measurements of the

target locations. The measurement of a target location at a sensor is corrupted by a spatially

varying random error that depends on the relative location of the target with respect to the

location of the sensor/UAV.

Communication. Each UAV has communication capabilities, i.e., each UAV can trans-

mit and receive information to/from other UAVs, subject to certain constraints. The next

section provides a detailed description of the communication between the agents.

Tracker. Each UAV is equipped with a tracker (tracking algorithm) that maintains

tracks on each target and updates them via Kalman filter equations given the local observa-

tions and the information received from other UAVs.

Objective. Our goal is to control each UAV, in a decentralized setting, such that a cost

metric, which includes the mean-squared error between the tracks and the targets and the

cost of communication, is minimized (discussed later).

58

5.3 Communication Between Agents

In this study, the UAVs communicate with each other over a network. Each UAV has a

fixed communication range of dc, i.e., each UAV can transmit or receive information to or

from another UAV only if the distance between them is less than dc. We define the notion

of a communication link between a pair of UAVs as follows. At each time step, there exists

a communication link between a pair of UAVs if the distance between them is less than dc,

and there exists no link otherwise. A pair of UAVs, not within the communication range of

each other, can still exchange information by relaying the information through the network.

The network is dynamic, i.e., the links between the UAVs form and break with time. At

each time step, a UAV can send or receive information to or from another UAV if there

exists a path (a sequence of links connecting UAVs) between them through the network.

We assume that communication delays are sufficiently small relative to the time duration

between decision epochs that any information communicated at discrete-time k is received

in time for decision-making at discrete-time k+1. To account for the cost of communicating

information over the network, we assign a numerical value to each communication link, and

we refer to this value as the cost of the link. For simplicity, the value of the cost of the link

between a pair of agents, if it exists, is assumed to be proportional to the distance between

the two associated agents. More precisely, if dijk is the distance between the ith and the jth

UAVs at time k such that there exists a link between them (i.e., dijk < dc), then the cost of

the link is αdijk , where α is a given proportionality constant. The cost of a path through the

network is the sum of the costs of the links that form the path. At any time step, a pair

of UAVs cannot communicate with each other if there exists no path between them through

the network.

The communication among the agents is restricted in the following ways:

• At each decision epoch, an agent can communicate with at most one other agent.

The rationale for this restriction is that allowing for multiple agent destinations per

59

decision epoch results in prohibitive computational requirements when making optimal

communication decisions over a long time horizon (planning over a long horizon is a

characteristic of the Dec-POMDP formulation).

• If an agent i decides to communicate with agent j at time k, then the agent i can

choose and send to j one of the L locally generated target observations in the past L

time steps (including the current-step). We set the value of L to a sufficiently small

value so that the computational requirement is not prohibitive.

5.4 Problem Formulation

In this section, we cast the UAV guidance problem into the framework of a decentralized

partially observable Markov decision process (Dec-POMDP for short). To cast the UAV

guidance problem into the Dec-POMDP framework, we need to define the following key

components in terms of our guidance problem as follows.

5.4.1 Dec-POMDP Ingredients

Agents. There are N agents (or UAVs) in the system. Let I = {1, . . . , N} represent

the set of agents.

States. We account for the following three subsystems in specifying the state: the

UAV(s), the target(s), and the tracker (includes the state of the tracking algorithm at each

agent). More precisely, the state at time k is given by xk = (sk, χk, Tk), where sk represents

the UAV state, χk represents the target state, and Tk represents the joint track state. The

UAV state sk includes the locations and velocities of each UAV. The target state χk includes

the location and velocity of each target. The joint track state is given by Tk = (T 1
k , . . . , T

N
k),

where T ik = (ξik,P
i
k) is the state of the tracking algorithm at agent i, where ξik is the posterior

mean vector and Pi
k is the posterior covariance matrix.

Joint Actions. The joint action is a tuple, the components of which are actions corre-

sponding to individual agents. Let uk = (u1
k, . . . , u

N
k) represent the joint action, where uik is

60

the action vector at agent i. The local action vector uik includes the kinematic controls and

the communication decisions for the ith UAV at time k. The kinematic controls of a UAV

includes its forward acceleration and bank angle. The communication decision at agent i at

time k can be represented by (gik, l
i
k), where gik ∈ I ∪ {0} \ {i} is the ID of the agent with

whom agent i will communicate at time k (gik = 0 means that agent i will not communicate

with any other agent at time k), and lik ∈ {k − L, . . . , k} is the chosen time step from the

past L time steps (starting from k) such that the agent i will send to agent gik its local target

observation generated at time step lik. The local action at agent i for i = 1, . . . , N can be

represented by uik = (aik, g
i
k, l

i
k), where aik includes the kinematic controls (forward accelera-

tion and bank angle) for agent/UAV i, and (gik, l
i
k) represents its communication decision at

time k.

State Transition Law. The state transition law specifies the next-state probability

density given the current state and joint action, i.e., xk+1 ∼ pk(·|xk, uk), where pk is a

conditional probability density. Since we have several sub-systems to describe the state, we

define the state-transition law separately for each sub-system. The state of UAV i for i =

1, . . . , N evolves according to the kinematic equations given the actions/control commands,

i.e., sik+1 = ψ(sik, a
i
k) (see below for an explicit definition of ψ), where aik represents the

local kinematic controls (forward acceleration and bank angle). The state of the ith UAV

at time k is given by sik = (pik, q
i
k, V

i
k , θ

i
k) , where (pik, q

i
k) represents the position coordinates,

V i
k represents the speed, and θik represents the heading angle. The kinematic control action

for UAV i is given by aik = (f ik, φ
i
k), where f ik is the forward acceleration and φik is the bank

angle of the UAV. The kinematic equations of the UAV motion [45] are as follows:

V i
k+1 =

[
V i
k + f ikT

]Vmax

Vmin

θik+1 = θik + (gT tan(φik)/V
i
k),

pik+1 = pik + V i
kT cos(θik),

qik+1 = qik + V i
kT sin(θik),

61

where [v]Vmax
Vmin

= max {Vmin,min(Vmax, v)}, Vmin and Vmax are the minimum and the maximum

limits on the speed of the UAVs, g is the acceleration due to gravity, and T is the length of

the time step.

The target state evolves according to

χk+1 = Fχk + ek, ek ∼ N (0,Q) . (5.1)

We use the constant velocity model to represent the kinematics of a target (see [34] or [33]

for the definition of F and Q). Finally, the track state at each agent evolves according to the

Kalman filter update equations given the local observations and the observations received

from other agents.

Observations and Observation Law. Each joint observation is a tuple, the compo-

nents of which are observations made by individual agents. Let zk = (z1
k, . . . , z

N
k) be the

joint observation vector at time k, where zik represents the observation at agent i. The ob-

servation law specifies the probability density of joint observations given the current state

and joint action, i.e., zk ∼ qk(·|xk, uk), where qk is a conditional probability density. The

observations at agent i, represented by zik, includes the observation of the UAV state, i.e.,

the current location and velocity of each UAV, the local track state T ik, and the target state.

We assume that the UAV and the local track states are fully observable at an agent, and the

target state is not fully observable; instead, at each time step the agent has access only to

a random measurement of the target state that is a function of the locations of the targets

and the agent. Specifically, the observation corresponding to the target state, at agent i for

i = 1, . . . , N , is given by

zi,χk = Hχk + wik, w
i
k ∼ N

(
0,R

(
χk, s

i
k

))
, (5.2)

where H is the observation model and R(·) is the measurement covariance matrix that

depends on the locations of the targets and the agent. We assume that the agents generate

noisy observations of the 2-D target positions. An agent i for i = 1, . . . , N upon receiving

information about the target-state (i.e., target observations) from other agents, fuses the

62

locally generated observations with the observations received from other agents, and updates

the local track state.

Cost Function. A cost function C(xk, uk) specifies the cost (real number) of being in a

given state xk and performing a joint action uk. The cost function includes the mean-squared

tracking error and the cost of communication (details are discussed later).

The Dec-POMDP starts at a random initial state x0 (whose probability density is given),

and at any typical time step k, the state xk transitions to xk+1 given the joint action vector uk.

The joint action uk performed at the current state xk incurs a global cost C(xk, uk). As a Dec-

POMDP evolves over time as a dynamical process, the agents may not know the underlying

state exactly, but each agent generates observations of the underlying state, providing the

agent with clues of the actual underlying states. Given the Dec-POMDP formulation, the

goal is to find joint actions over a horizon H such that the expected cumulative cost, over a

time horizon H, is minimized.

An agent may not know the action taken and the observation generated at another

agent. An agent may decide to communicate with another agent, and these decisions to

communicate are embedded into the joint action vector uk. The communication among the

agents incurs a cost (as discussed in Section 5.3), which is embedded in the global cost

function C(xk, uk). The local observations allow each agent to infer, with some uncertainty,

what states actually occurred. This uncertainty is represented by the local belief-state, which

is the a posteriori density of the underlying state given the history of local observations and

local actions made by that agent, including the information gathered from other agents. Just

as in centralized POMDPs, in the decentralized case the local belief-state will be used as

“feedback” information that is needed for controlling the system. In other words, we seek

an optimal joint policy that depends only on the local belief-states.

63

5.4.2 Objective and Optimal Policy

The problem is to minimize the cumulative cost over horizon H, given by

E

[
H−1∑
k=0

C(xk, uk)

]
.

In the centralized case (if it were a POMDP problem), this objective function can be written

in terms of “global” belief-states as follows:

J(b0) = E

[
H−1∑
k=0

c(bk, uk)

∣∣∣∣∣b0

]
, (5.3)

where c(b, u) =
∫
C(x, u)b(x) dx, bk is the “global” belief-state, i.e., the posterior density

at time k, and E [·|b0] represents conditional expectation given the initial belief-state b0 at

time k = 0. The goal is to pick the joint actions over time so that the objective function is

minimized. In general, the actions chosen for agents at each time should be allowed to depend

on the entire history of observations and actions up to that time. However, if an optimal

choice of such a sequence of actions exists, then there is an optimal choice of actions that

depends only on “belief-state feedback.” Hence, ignoring for the time being the decentralized

nature of the problem, what we seek is an optimal policy, which maps the belief-state at each

time to the joint action tuple at that time. The optimal policy is characterized by Bellman’s

principle [2], according to which the optimal action at time k is

π∗(b0) = arg min
u
{c(b0, u) + E [J∗(b1)|b0, u]} ,

where b0 is the initial belief-state, b1 is the random next belief-state, and E[J∗(b1)|b0, u] is

the expected future cost of action u, which is also called the expected cost-to-go (ECTG). We

assume a long horizon, which makes the dependence on the horizon of the ECTG negligible,

and the optimal policy stationary.

Let us define the Q-value of taking action u at belief-state b as follows:

Q(b, u) = c(b, u) + E [J∗(b′)|b, u] , (5.4)

64

where b′ is the random next belief-state. Therefore, the optimal policy is given by

π∗(b0) = arg min
u
Q(b0, u).

In the decentralized case, we do not have access to the “global” belief-state. Instead,

every agent maintains a local belief-state, which may vary from agent to agent (because the

observation histories differ from agent to agent). Our approach is for each agent to compute

its own local action as follows. The agent i computes, at time k,

πi(bik) = arg min
u
Q(bik, u), (5.5)

where bik is the local belief-state at agent i at time k. In other words, an agent i computes

a joint action by taking into account only its local belief-state. After the computation of

the joint action, agent i implements its local component. Our approach maintains the looka-

head (non-myopic) property that is a common theme among POMDP solution approaches,

allowing us to account for the future impact of actions in our decision making.

In practice, it is intractable to compute the Q-value exactly. Therefore, the literature on

POMDP methods has focused on approximation methods [1]. We extend one such method

called nominal belief-state optimization (NBO) to solve our Dec-POMDP approximately.

This method was introduced in [11] to solve a centralized UAV guidance problem, which

was posed as a POMDP. The following subsection extends the NBO method to solve the

current Dec-POMDP problem. In our description of the NBO method, as an approximation

method for the function Q in (5.5), we will approximate the function J in (5.3) instead. This

approximation to J is then optimized to approximate J∗, which is a part of function Q as

indicated in (5.4).

5.5 NBO Approximation Method for Dec-POMDP

The computation complexity of the joint communication decisions at an agent i is ex-

ponential in the number of UAVs N and the length of the horizon H, which is prohibitive.

For this reason, in the NBO method, we adopt a heuristic approach as follows. With regard

65

to the communication decisions, we let each agent optimize only its “local” communication

decisions over the time horizon H. More precisely, we let an agent i optimize only its own

communication decisions gik (with whom to communicate) and lik (what to communicate),

along with the (global) joint kinematic controls over the time horizon H. We let each agent

optimize the joint kinematic controls (along with local communication decisions) to induce

coordination among the agents. After the computation of joint kinematic controls, an agent

implements its local component at each time step. Therefore, we use the following objective

function at agent i:

J(bi0) = E

[
H−1∑
k=0

c(bik, ak, g
i
k, l

i
k)

∣∣∣∣∣b0

]
,

where bik is the local belief-state at time k, ak is the joint action corresponding to the kine-

matic controls, (gik, l
i
k) is the local communication decision, and c(·) is the local cost function

that depends on the local belief-state, joint kinematic controls, and local communication

decisions.

We assume that b0 is Gaussian. Therefore, by (5.1) and (5.2), the local target belief state

can be expressed (or approximated) as bi,χk (χ) = N (χ− ξik,Pi
k), where ξik and Pi

k evolve

according to the Kalman filter (or information filter) equations given the local observations

and the observations received from other agents. The agent i, when it decides to communicate

with agent j, sends its local target-observation generated at time k − a (a ∈ {0, . . . , L}) to

agent j. At agent i, the local track state variables ξik and Pi
k evolve according to the Kalman

filter equations given the locally generated target-observations and the target-observations

(time-stamped) received from other agents.

In the NBO method, the objective function at agent i is approximated as follows:

J(bi0) ≈
H−1∑
k=0

c(b̂ik, ak, g
i
k, l

i
k),

where b̂i1, b̂
i
2, . . . , b̂

i
H−1 is a nominal local belief-state sequence. The nominal (local) target

belief-state sequence can be identified with the nominal local tracks (ξ̂ik, P̂
i
k), which are

obtained from the Kalman filter equations with exactly zero-noise (nominal noise) sequence

66

Algorithm 1 Information Filter for NBO

if gik 6= 0 then . (if i decides to communicate with gik)
if lik = k then . (if i decides to send current observation to gik)

P̂i
k+1|k = FP̂i

kF
T + Q

V ← (P̂i
k+1|k)

−1

V ←
[
V + HT

[
R
(
ξ̂ik+1, s

gik
k+1

)]−1

H

]
else . (if i decides to send an observation from the recent past to gik)

Rollback the information filter at i to time step lik and re-run the information filter algo-
rithm with the assumption that the observation from agent gik was available at time step lik, and
update P̂i

k, and then do the following
P̂i
k+1|k = FP̂i

kF
T + Q

V ← (P̂i
k+1|k)

−1

end if
end if

. (updating with the locally generated observation)

V ←
[
V + HT

[
R
(
ξ̂ik+1, s

i
k+1

)]−1
H

]
P̂i
k+1 = V −1

as follows:

b̂i,χk (χ) = N
(
χ− ξ̂ik, P̂i

k

)
,

ξ̂ik+1 = Fξ̂ik,

and the evolution of P̂i
k is described in Algorithm 1, where sik+1 evolves according to the

UAV kinematic equations (defined earlier in Subsection 5.4.1) given the control commands.

In the NBO method, each agent i computes the path costs originating from i over the

time horizon H. These path costs depend on the locations of the neighboring agents over

the time horizon H. Each agent implements its control actions independently (i.e., there is

no central controller), which means that an agent has no access to the future locations of its

neighboring agents. Therefore, each agent computes the path costs over the horizon H by

evolving (only for predictive-lookahead purposes) the locations of other agents according to

the locally computed joint kinematic controls.

Given the communication decision (gik, l
i
k) at agent i, we compute P̂i

k by assuming that

the agent i receives an observation from agent gik generated at time lik. The rationale for

doing this is as follows. When an agent i sends an observation from time step lik to an agent

67

j, only agent j perceives the benefit of this action as the measurement fusion happens at

agent j. The agent i, however, does not directly perceive the benefit from this measurement

fusion at j because our system is decentralized. Therefore, the agent i computes the benefit

(from measurement fusion) of sending the observation from time lik to agent j approximately

by assuming that agent j sends the observation generated at time lik to agent i and that the

measurement fusion happens at agent i. This idea is captured in the equations presented in

Algorithm 1.

The NBO cost function, which includes the mean-squared error between the tracks and

the targets and the cost of communication, can be written as

c(b̂ik, ak, g
i
k, l

i
k) = Tr P̂i

k+1 + βαD̂
i,gik
k ,

where β is a scaling factor, α is a given proportionality constant, and D̂
i,gik
k is the length of

the shortest path between agents i and gik (obtained from Dijkstra’s algorithm, where the

length of each path is the path cost defined earlier) if there exists at least one path between

i and gik or D̂
i,gik
k is a (relatively) large and constant value otherwise (i.e., when there exists

no path). The function D̂
i,gik
k is evaluated at agent i by evolving the locations of other UAVs

with the locally computed joint kinematic controls. Therefore, the cumulative cost function

at agent i is given by (with truncated horizon [11,45,46])

JH(bi0) =
H−1∑
k=0

(
Tr P̂i

k+1 + βαD̂
i,gik
k

)
. (5.6)

Here, we adopt an approach called “receding horizon control,” according to which we

optimize the action sequence for H time steps at the current time step and implement only

the action corresponding to the current time step and again optimize the action sequence

for H time steps in the next time step.

5.6 Simulation Results

We implement our approach in MATLAB, where we use the command fmincon (an

optimization tool in MATLAB) to minimize the objective function in (5.6). The length of

68

the time horizon H is set to six time steps. The target measurement error, i.e., wik in (5.2)

is distributed according to the normal distribution N (0,Rk (χk, s
i
k)), where Rk reflects 10%

range standard deviation and 0.01π radian angular standard deviation. For the purpose of

simulations, we set the value of α in (5.6) to be 0.01. In Figures 5.1, 5.2, 5.3, 5.6, and 5.7,

the trajectory of a target is represented by a sequence of small circles and the trajectory of

a UAV is represented by a curve joining the arrows that point toward the heading direction

of the UAV.

We define the following performance metrics: 1) average target-location error and 2)

average communication cost. The average target-location error is computed as follows. At

every time step, we compute the squared distance (squared error) between the actual target

location and the estimated target location from each UAV and we find the average of these

errors (from each UAV’s target location estimate). We summate these average errors over the

simulation runtime; the mean of these average errors (from each Monte Carlo run) is called

the average target-location error. The average communication cost is computed as follows.

At every time step, based on who is communicating with whom, we summate (over each pair

of communicating UAVs) the costs of these communications, and we call the output of this

summation CommCost-per-step. At every step of the simulation runtime, we compute the

CommCost-per-step, and the mean of these CommCost-per-steps (from each Monte Carlo

run) is called the average communication cost.

We simulate a scenario with two UAVs and two targets as shown in Figures 5.1. In Fig-

ure 5.1, the two targets start at the bottom, and as time progresses, the right target moves

toward the north-east and the left target moves toward the north-west. In this scenario, the

value of β in (5.6) was set to be 1. It is evident from Figure 5.1 that the UAVs coordinate

with each other, with the aid of communication, to track the targets that are moving away

from each other (of course, this motion is not known to the UAVs beforehand). This figure

shows one UAV following the right target and the other UAV following the left target, which

demonstrates the coordination among the UAVs in maximizing the coverage of targets. In

69

summary, our approach induces coordination among the UAVs even with restricted commu-

nication (as in Section 5.3) and with relatively low computational time. Figures 5.2 and 5.3

depict the simulation of the above scenario with β = 50 and β = 100 in (5.6) respectively.

To provide insight into the computational complexity, we evaluate the average time it

takes to compute the control commands for each UAV in MATLAB. The average computa-

tional time is 5.2 sec with H = 6 on a lab computer (Intel Core i7-860 Quad-Core Processor

with 8MB Cache and 2.80 GHz speed). This computation time can be greatly reduced on a

better processor and by further optimizing the code (e.g., by performing parallel computa-

tions).

Next, we conduct an empirical study to evaluate the affect of β on the performance

with respect to average target-location error and average communication cost. We simulate

the above scenario (with two UAVs and two targets) for 50 Mote-Carlo runs for β = 1,

β = 50, and β = 100 in (5.6). For each β and in each Mote-Carlo run, we compute the

average target-location error and average communication cost. Figure 5.4 shows the plots

of the cumulative frequency of average target-location errors for each value of β. This plot

demonstrates that the performance with respect to average target-location error degrades

as the value of β increases, as expected. Figure 5.5 shows the plot of cumulative frequency

of average communication costs for each value of β. This plot demonstrates that the per-

formance with respect to average communication cost improves as the value of β increases,

again as expected. Therefore, we can use β as a tuning parameter to trade off between the

performances with respect to average target-location error and average communication cost,

which is evident from Figures 5.4 and 5.5.

5.6.1 Dec-POMDP Approach vs. Greedy Approach

In this subsection, we compare the performance of our Dec-POMDP approach with a

greedy approach (defined as follows). In the greedy approach, the UAVs do not communicate

with each other, and each UAV optimizes only its own kinematic controls over the time

70

UAV

UAV starting locations

Target starting locations

Target

Figure 5.1: Two UAVs tracking two targets; β = 1

horizon (H = 6). Clearly, our Dec-POMDP approach induces cooperation among the UAVs

by letting each UAV optimize the joint kinematic controls (along with local communication

decisions), and the greedy approach is non-cooperative in the sense that each UAV behaves

in a non-cooperative manner by optimizing only its own kinematic controls. We implement

these two approaches for a scenario with two UAVs and two targets. Figures 5.6 and 5.7

depict the behavior of the UAVs in the Dec-POMDP and greedy approaches respectively. We

run this simulation for 200 Monte Carlo runs, and compare the performances (with respect to

average target-location error) of these two approaches, as depicted in Figure 5.8. Figure 5.8

demonstrates that our Dec-POMDP approach significantly outperforms the greedy approach.

It is unsurprising that the Dec-POMDP approach outperforms the greedy approach. The

purpose of Figure 5.8 is to show the quantitative difference in performance between these

approaches. Specifically, the Dec-POMDP approach results in average target location-error

71

Figure 5.2: Two UAVs tracking two targets; β = 50

values that are approximately three times smaller compared to that of the greedy approach.

5.6.2 Optimized Communication Scheme vs. Fixed Communication Scheme

In our Dec-POMDP approach, we explicitly optimize the communication among the

UAVs along with the joint kinematic controls. We now compare the performance of this

approach with an approach where the communication scheme is fixed, i.e., not optimized.

We call this new scheme the “fixed communication scheme.” An overview of this scheme is

given below.

Fixed Communication Scheme. In this scheme, we do not optimize the communica-

tion decisions, i.e., we only optimize the joint kinematic controls at each UAV. Each UAV,

at each time step, sends the observations generated in the current time step to its closest

neighbor among all the neighbors in its communication range. Since communication deci-

sions cannot be controlled anymore, the action space of the Dec-POMDP includes only the

kinematic controls of the UAVs. Moreover, the cost function that is used does not penalize

72

Figure 5.3: Two UAVs tracking two targets; β = 100

the communication (i.e., β = 0 in (5.6)). However, we incorporate the benefits (from mea-

surement fusion) of this fixed communication scheme while computing trace objective in the

NBO cost function in (5.6) (with β = 0).

We implement these two approaches for a scenario with three UAVs and two targets.

Figure 5.9 depicts the performance comparison of the fixed communication scheme and the

optimized communication scheme with respect to both the performance measures—average

target-location error and average communication cost. It is evident from Figure 5.9 that

the performance of the fixed communication scheme is slightly better than the optimized

communication scheme with respect to average target-location error, which is to be expected

because the fixed communication scheme does not use the communication cost in its cost

function and is focused on minimizing only location error. However, the optimized communi-

cation scheme significantly outperforms the fixed communication scheme in terms of average

communication cost.

73

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Average target−location error

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF

β = 1
β = 50
β = 100

Figure 5.4: Performance with respect to average target-location error for various values of
β

5.7 Concluding Remarks and Future Work

In this study, we designed a decentralized guidance control method for UAVs track-

ing multiple targets based on the theory of decentralized partially observable Markov deci-

sion process (Dec-POMDP). We extended a POMDP approximation method called nominal

belief-state optimization (NBO) to solve our decentralized guidance control problem, which

we posed as a Dec-POMDP. Although the communication between the UAVs was restricted,

the NBO method achieved coordination among the UAVs, as evident from the simulation

results in Section 5.6. The results also demonstrate that the parameter β can be used as a

tuning parameter to trade off between the performances with respect to the average target-

location error and the average communication cost. Specifically, when we increased the value

of β (which is the weight on the cost of communication) the performance with respect to

average target-location error (or tracking error) degraded while the performance with respect

74

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Average communication cost

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF

β = 1

β = 50
β = 100

Figure 5.5: Performance with respect to average communication cost for various values of
β

to average communication cost improved. In other words, the UAVs communicate less often

at the expense of degraded tracking performance when we increase the value of β.

We then compared the performance of our Dec-POMDP approach with a greedy ap-

proach. In the Dec-POMDP approach, each UAV optimizes joint actions and implements

its local component. In contrast, in the greedy approach, each UAV only optimizes its

own kinematic controls. We showed quantitatively how much our Dec-POMDP approach

outperforms (with respect to average target-location error) the greedy approach.

In our Dec-POMDP approach, we optimized the communication decisions along with the

UAV kinematic controls by including the communication decisions in the Dec-POMDP ac-

tion space. To demonstrate the effectiveness of this approach, we compared the performance

of this optimized communication scheme with a different scheme called the fixed communica-

tion scheme. In this fixed communication scheme, each UAV communicates with its closest

neighbor among all the neighbors in its communication range. Our results demonstrated

75

Figure 5.6: Two UAVs tracking two targets via Dec-POMDP approach

Figure 5.7: Two UAVs tracking two targets via Greedy approach

that the performance of the fixed communication scheme is slightly better than the opti-

mized communication scheme with respect to the average target-location error, which was

expected because the fixed communication scheme does not use the communication cost in

its cost function and is focused on minimizing only location error. However, the optimized

communication scheme significantly outperformed the fixed communication scheme in terms

of average communication cost.

In our study, we did not incorporate communication delays, i.e., we assumed that com-

munication delays are sufficiently small relative to the time duration between decision epochs

that any information communicated at discrete-time k is received in time for decision-making

at discrete-time k + 1. It would be interesting to see how communication delays affect the

performance of these decentralized UAV guidance algorithms. The results in this chapter

were published in [53,54].

76

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Average target−location error

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF

Dec−POMDP
approach

Greedy approach

Figure 5.8: Dec-POMDP approach vs. greedy approach

77

10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

Average target−location error

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF

Fixed communication
scheme

Optimized communication
scheme

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Average communication cost

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF

Fixed communication
scheme

Optimized communication
scheme

Figure 5.9: Fixed communication scheme vs. optimized communication scheme

78

CHAPTER 6

GUIDANCE OF AUTONOMOUS AMPHIBIOUS

VEHICLES FOR FLOOD RESCUE SUPPORT

6.1 Introduction

Various guidance algorithms for autonomous amphibious vehicles (AAVs) are being de-

signed and tested to fight today’s global warming disasters such as flooding, typhoon, and

hurricane [55–57]. With this motivation, we present a guidance framework to control multi-

ple AAVs to rescue multiple victims (henceforth called targets) in a flood situation, where

the flood water (interchangeably called river) flows along a valley as shown in Figure 6.1. A

target is said to be rescued when an AAV is within the circular region of radius ddist-thresh

on the 2-D plane around the target. In general, AAVs are equipped with various advanced

sensors such as polarized stereo vision, laser scanning, and SONAR [58–60]. The sensors

on-board an AAV generate the (noisy) measurements corresponding to the targets and the

river. Our goal is to design a path-planning algorithm that guides the AAVs so that ev-

ery target gets rescued, while maximizing a performance measure (discussed later). The

algorithm runs on a notional central fusion node, which collects the measurements from the

sensors on-board each AAV, fuses them and updates the tracks on the targets and the river

state (discussed later), computes the control commands for the AAVs, and sends the control

commands back to the AAVs.

Guidance control methods [55,61–63] for AAVs are normally based on a standard three-

layered system architecture that requires human-machine interactions. We design the guid-

ance algorithm based on the theory of partially observable Markov decision process (POMDP)

[11,45]. There are several other autonomous control methods in the literature for AAVs and

79

AAV Victim/TargetRiver

N

S

W E

ref

kd

Figure 6.1: Flood Scenario

underwater vehicles, e.g., [64–66]. Our approach differs from these existing approaches in

that we place the guidance problem in the context of POMDP, wherein this approach has a

look-ahead property, which trades off short-term for long-term performance.

6.2 Problem Specification

The AAV guidance problem is specified as follows:

• Targets. In this study, we assume that there are multiple mobile targets (flood victims)

located in a river, being drifted down by the flood water, as shown in Figure 6.1.

• Autonomous Amphibious Vehicles (AAVs). There are multiple autonomous

amphibious vehicles (AAVs) located on the shore, as shown in Figure 6.1. An AAV is

controlled by the following kinematic controls: forward acceleration and steering angle.

Each AAV is equipped with on-board sensors that generate measurements of targets

80

and the river depth. In this problem, AAVs float when moving in the river. For the

purpose of this study, we assume that the number of AAVs and the number of targets

is the same.

• Environmental Conditions. The elevation map of the region is known a priori. The

landscape for this problem is shown in Figure 6.1, which shows a river flowing along a

valley from the north toward the south. The state of the river includes the depth dref
k

at a reference point on the map (lowest point in the landscape, e.g., some location at

the bottom of the valley as shown in Figure 6.1).

• River Model. Typically a river flows slowly near the coastlines (where the river is

shallow), and flows quickly far from the coastlines (i.e., toward the center of the river

where the river is deep). In this chapter, we assume that the river flows from the

north toward the south in a v-shaped channel as shown in Figure 6.1. We adopt the

logarithmic velocity profile to model the velocity of the flow (see [67] for a detailed

description). According to this model, the speed of the river, at the surface, at the

location (p, q) at time k is given by

wk(p, q) = C1 [log(dk(p, q)) + C2] ,

where dk(p, q) is the depth of the river at the location (p, q) at time k, and C1 (a

function of the viscosity and the density of flood water) and C2 are constants (see [67]

for more details).

• Observations. The sensors on-board an AAV generate noisy observations of target

locations and the depth of the river directly beneath the vehicle, i.e., the sensors

generate the observations of the depth of the river only when the AAV is in the river.

• Objective. A target is said to be rescued if there is an AAV within a circular region

of radius ddist-thresh around the target. The objective is to minimize the average rescue

81

time, where the average is over the number of targets, and the rescue time of a target

is defined as the time it takes to rescue the target.

6.3 Problem Formulation

We cast the AAV guidance problem into the framework of a partially observable Markov

decision process (POMDP). A POMDP is a mathematical framework useful for solving

resource control problems, and enables us to exploit approximation methods for POMDPs

to design our AAV guidance algorithm. A POMDP evolves in discrete time-steps. We use k

as the discrete-time index. To cast the AAV guidance problem into the POMDP framework,

we need to define the following key components in terms of our guidance problem as follows.

States. Let xk represent the state of the system at time k. The state of the sys-

tem includes the state of the vehicles (AAVs) sk, river state (depth of the river at a

reference location) dref
k , target state χk, and track states (ξriv

k , P riv
k , ξtarg

k , P targ
k), i.e., xk =

(sk, d
ref
k , χk, ξ

riv
k , P riv

k , ξtarg
k , P targ

k). The vehicle state sk includes the locations and the veloci-

ties of the AAVs at time k. The river state dref
k is the depth of the river at the reference point

at time k. The reference point is the lowest point in the elevation map, i.e., some location at

the bottom of the valley in the landscape, as shown in Figure 6.1. Here we assume that the

flow direction of the river is the same everywhere and is known a priori. The target state

χk includes the locations and the velocities of the targets at time k. The track states repre-

sent the state of the tracking algorithm, where ξriv
k and P riv

k are the mean and the variance,

standard in Kalman filter equations, corresponding to the river state, and similarly, ξtarg
k is

the mean vector and P targ
k is the covariance matrix corresponding to the target state.

Observations and Observation Law. The vehicle and the track states are assumed

to be fully observable. The river and the target states are only partially observable. The

observation of the river state at an AAV is given by

zriv
k =

 dref
k + nriv

k if AAV is in river

no measurement otherwise,
(6.1)

82

where nriv
k ∼ N (0, Rk), and Rk is the measurement variance. The sensors at an AAV generate

the measurement of the river-state only when the AAV is in the river. In practice, the sensors

on an AAV measure the depth of the river exactly below the AAV. We wrote the observation

model (6.1) as if the sensors are generating the observations of the depth of the river at the

reference point. The rationale behind this assumption is that we can always calculate the

depth of the river at the reference point given the elevation map and the observed depth of

the river at a different location. The observation of the jth target at an AAV is given by

zχ
j

k =


Hχjk + ntarg

k if there is

line-of-sight,

no measurement otherwise,

where H is the target-state observation model, χjk is the state of jth target, and ntarg
k ∼

N (0, Sk) where Sk is the measurement covariance matrix. The line-of-sight between the

target and the AAV is blocked sometimes, e.g., whenever the target sinks in the water.

Actions. The actions include the controllable aspects of the system. In this problem, the

actions include the decisions on the assignment of AAVs to targets, and kinematic control

commands for AAVs. Let uk be the action tuple at time k, which is given by uk = (gk, ak),

where ak represents kinematic control vectors (includes forward acceleration and steering

angle for each AAV), and gk is a vector, which represents the assignment of AAVs to targets,

i.e., gk(i) = j means that the ith AAV is assigned to the jth target. For the purpose of

this study, the number of AAVs and the targets is the same. Each AAV is assigned to only

one target, and each target gets assigned only one AAV, i.e., gk represents a one-to-one

correspondence between the AAVs and the targets.

State-Transition Law. The state-transition law specifies the next-state distribution

given the current state and the action. The transition function for the vehicle state is given

by: sk+1 = ψ(sk, ak, ξ
riv
k), where ψ (defined later) represents the AAV kinematic model, sk

is the vehicle state, ak is the kinematic control vector (includes forward acceleration and

steering angle), and ξriv
k is the estimated river state at time k. The river state evolves

83

according to the following equation:

dref
k+1 = dref

k + ok, ok ∼ N (0, U riv
k),

where U riv
k is the process variance corresponding to the river state evolution. The target

state evolves according to

χk+1 = Fχk + ek, ek ∼ N (0, U targ
k), (6.2)

where F represents the target motion model, and U targ
k is the process covariance matrix cor-

responding to the target state evolution. The track states evolve according to the Kalman

filter equations given the observations from the sensors on-board the AAVs. When the ob-

servations are not available, the track states evolve according to the Kalman filter equations,

where only the prediction step is performed and the update step is not performed.

Cost. The cost function represents the cost of performing an action at the current state.

The cost function is given by

C(xk, uk) =
N∑
i=1

1

{
E
[∥∥∥si,pos

k+1 − ξ
gk(i),targ,pos
k+1

∥∥∥ ∣∣∣xk, uk] > ddist-thresh

}
,

where si,pos
k+1 represents the 2-D position coordinates of ith AAV, and ξj,targ,pos

k+1 represents the

estimated 2-D position coordinates of the jth target at time k + 1, || · || is the Euclidean

norm (everywhere in this chapter), and 1{·} is the indicator function which equals 1 when

the expected distance between the AAV and the target at time k + 1 is greater than some

threshold distance ddist-thresh and 0 otherwise.

Belief State. The belief state bk is the posterior distribution of the state at time k.

The vehicle and the track states are assumed to be fully observable, i.e., the belief-state

corresponding to the vehicle state is given by bsk(s) = δ(s− sk), where δ(·) is the Kronecker

delta function. Similarly, the belief-states corresponding to the track states can be written in

terms of the actual track states. The belief-states corresponding to the river and the target

are the posterior distributions of dref
k and χk respectively given the history of observations.

84

6.4 Objective and Optimal Policy

The goal is to find the action sequence (u0, u1, . . . , uH−1) such that the expected cu-

mulative cost over a time horizon H is minimized. The expected cumulative cost is given

by

JH = E

[
H−1∑
k=0

C(xk, uk)

]
.

We can write the expected cumulative cost in terms of the belief states given the initial

belief-state b0 (similar to the treatment in [11,45]) as follows:

JH(b0) = E

[
H−1∑
k=0

c(bk, uk)

∣∣∣∣∣ b0

]
,

where c(bk, uk) =
∫
C(x, uk)bk(x) dx and b0 is the belief state at time k = 0. From Bellman’s

principle of optimality [2] the optimal objective function value is given by

J∗H(b0) = min
u

{
c(b0, u) + E

[
J∗H−1(b1)

∣∣ b0, u
]}
,

where b1 is the random next belief state, J∗H−1 is the optimal cumulative cost over the horizon

H − 1, k = 1, 2, . . . , H − 1, and E[·|b0, u] is the conditional expectation given the current

belief state b0 and the current action u at time k = 0. Let us define the Q-value of taking

action u given the current belief state b0:

QH(b0, u) = c(b0, u) + E
[
J∗H−1(b1)

∣∣ b0, u
]
. (6.3)

The optimal policy (from Bellman’s principle) at time k = 0 can be written as

π∗0(b0) = arg min
u

QH(b0, u).

In general, it is hard to obtain the Q-value exactly. There are several approximation methods

in the literature: heuristic expected-cost-to-go (ECTG) [68], parametric approximation [4],

policy rollout [6], hindsight optimization [69], and foresight optimization [9]. In this chapter,

we use one such approximation method called nominal belief-state optimization (NBO),

which was introduced in [11] along with other approximations and techniques specific to

85

guidance problems. The rationale behind choosing NBO method over other methods to

solve POMDP is that it is relatively inexpensive in terms of computation time, i.e., the

computational requirements are not prohibitive unlike other approximation methods. The

following subsection provides a brief description of the NBO method.

6.4.1 NBO Approximation Method

The computational requirements of obtaining the optimal assignments of AAVs to targets

(gk) over a long horizon is prohibitive. Also, we expect that the optimal assignment of AAVs

to targets (gk) over a long horizon does not change with time. For these reasons, in the NBO

method, we keep the assignment of AAVs to targets fixed. In other words, in approximating

the expected cost-to-go in (6.3), gk remains fixed over the planning horizon H. Therefore, we

drop the subscript k from gk in the objective function used in the planning based on (6.3),

i.e., gk = g for all k. In the NBO approximation method, we use the following objective

function, written in terms of belief states:

JH(b0) = E

[
H−1∑
k=0

c(bk, ak, g)

∣∣∣∣∣ b0

]
,

where ak represents the kinematic controls for the AAVs, and g is the assignment of AAVs

to the targets.

The belief-states corresponding to the river state and the target state are given by

briv
k (d) = N

(
d− ξriv

k , P riv
k

)
,

btarg
k (χ) = N

(
χ− ξtarg

k , P targ
k

)
,

where (ξriv
k , P riv

k , ξtarg
k , P targ

k) are the track states corresponding to the river and the target

states respectively, which evolve according to the Kalman filter equations. In the NBO

method, we approximate the objective function as follows:

JH(b0) ≈
H−1∑
k=0

c(b̂k, ak, g),

86

where b̂1, . . . , b̂H−1 is a nominal belief-state sequence and the optimization is over an action

sequence g, a0, . . . , aH−1. We obtain the nominal belief-states by evolving the current belief-

state with exactly zero-noise sequence over the horizon H (similar to the treatment in [11]

and [45]). Therefore, the objective function from the NBO method is given by:

JNBO(b0) =
H−1∑
k=0

N∑
i=1

1

{∥∥∥ŝi,pos
k+1 − ξ̂

g(i),targ,pos
k+1

∥∥∥ > ddist-thresh

}
,

where ŝi,pos
k+1 is the nominal position of the ith AAV (defined below), N (ξ̂j,targ

k+1 , P̂ j,targ
k+1) is the

nominal belief-state of the jth target at time k + 1, where ξ̂j,targ,pos
k+1 (component of ξ̂j,targ

k+1)

represents the position estimate of the target. This nominal target belief-state is obtained

by evolving the track state component ξ̂j,targ
k with exactly zero-noise sequence as follows:

ξ̂j,targ
k+1 = F ξ̂j,targ

k .

The evolution of vehicle state depends on the river state estimate ξriv
k . In the NBO method,

ξriv
k is replaced with ξ̂riv

k in the AAV kinematic model ψ(·), where (ξ̂riv
1 , . . . , ξ̂riv

H) are the

nominal track state components corresponding to the river state, and the obtained positions

of the ith AAV ŝi,pos
k+1 are called nominal positions.

Here, we adopt an approach called “receding horizon control,” according to which we

optimize the action sequence for H time steps at the current time-step, implement only the

action corresponding to the current time-step, and again optimize the action sequence for

H time-steps in the next time-step. The length of the planning horizon H should be large

enough for an AAV to receive a benefit by moving toward a target. Due to computational

constraints, we cannot have an arbitrarily long horizon. Therefore we truncate the length

of the horizon to a few time-steps (we set H = 12 in our simulations), and append the cost

function with an appropriate expected cost-to-go (ECTG). The following is a distance-based

ECTG:

Jdist-ECTG
H =

N∑
i=1

∥∥∥ŝi,pos
H − ξ̂g(i),targ,pos

H

∥∥∥ ,
where ŝi,pos

H is the nominal position of the ith AAV and ξ̂j,targ,pos
H is the estimated location of

the jth target (from NBO approach) at time k = H. Therefore, the objective function from

87

the NBO method is given by

JNBO(b0) =
H−1∑
k=0

N∑
i=1

1

{∥∥∥ŝi,pos
k+1 − ξ̂

g(i),targ,pos
k+1

∥∥∥ > ddist-thresh

}
+ Jdist-ECTG

H ,

where Jdist-ECTG
H is the distance-based ECTG.

6.4.2 AAV Kinematics

The kinematic equations of an AAV vary depending on whether the AAV is in the river or

on the land. When the AAV is in the river, we take into account the speed of the river to write

the kinematic equations. The steering and thrust generation of the vehicle is modeled based

on the work done by the authors of [56,70], which is designed using single drive system. The

vehicle is front-wheel driven on land. When the AAV is in the river, it is propelled using the

centrifugal pump from the front wheels. The following subsections describe the kinematics

of AAV on the land and in the river.

6.4.2.1 Kinematics of AAVs on the Land

This subsection provides the definition of ψ, which was introduced in Section 6.3, when

the vehicle is on land. Let sk = (pk, qk, vk, θk) be the state of the vehicle at time k, where

(pk, qk) represents the location of the vehicle on the 2-D plane, vk represents the speed of

the vehicle along the heading direction, θk represent the heading angle of the vehicle at

time k. Let ak = (fk, φk) represent the action vector of the vehicle, where fk represents

the acceleration along the direction of the front wheels and φk represents the steering angle

of front wheels. The (simplified) schematic of a basic four-wheeled vehicle is shown in

Figure 6.2. The control variable fk lies within the interval [−fland, fland], where fland (or

−fland) is the maximum acceleration (or deceleration), and the control variable φk lies within

the interval [−δland, δland], where δland is the maximum steering angle. The function ψ can be

88

specified by a set of non-linear kinematic equations, as shown below:

pk+1 = pk + vkT cos(θk),

qk+1 = qk + vkT sin(θk),

vk+1 = vk + fkT cos(φk),

θk+1 = θk −
2fkT

2L

W 2 + L2
sin(φk), (6.4)

where T is the length of the time-step, W is the width of the vehicle, and L is the distance

between the front-axle and the rear-axle. The derivation of the heading angle update (6.4)

is as follows. When the front-wheels of the vehicle are oriented at a particular angle φk with

respect to the main axis of the vehicle (as shown in Figure 6.2), the heading direction of the

vehicle at time k + 1 is derived as follows:

α = arctan(W/L),

θk+1 = θk +
T 2

√
L2 +W 2

(f θk,1 − f θk,2),

= θk +
fkT

2

√
L2 +W 2

[sin(α− φk)− sin(α + φk)],

= θk −
2fkT

2

√
L2 +W 2

[cos(α) sin(φk)],

= θk −
2fkT

2L

W 2 + L2
sin(φk).

6.4.2.2 Kinematics of AAVs on the River

This subsection provides the definition of ψ, when the vehicle is in the river. The kine-

matic equations of the AAV motion are as follows:

pk+1 = pk + vkT cos(θk) + ŵxk(pk, qk)T,

qk+1 = qk + vkT sin(θk) + ŵyk(pk, qk)T,

89

L

W

,1kf


k
k



(,)k kp q

kv

,2kf


kf

Figure 6.2: Free body diagram of an AAV

where ŵxk(pk, qk) and ŵyk(pk, qk) are the estimated speeds of the river at the location (pk, qk)

in x and y directions respectively, which are obtained from the river state estimate ξ̂riv
k and

the river model presented in Section 6.2. The speed and the heading angle update equations

remain the same as in the case of land. When in water (or river), the control variable fk

lies within the interval [−fwater, fwater], where fwater is the maximum acceleration, and φk lies

within the interval [−δwater, δwater], where δwater is the maximum steering angle. Typically,

the values of fwater and δwater are much smaller compared to that of fland and δland.

6.5 Simulation

We implement the NBO method in MATLAB, and we use the command fmincon (MAT-

LAB’s optimization tool) to solve the optimization problem. For performance comparison,

we also implement a greedy approach, where we pick uniformly at random one of the N !

possible assignments of N AAVs to N targets at the start of the simulation and this as-

signment is fixed throughout the simulation. In the greedy approach, we optimize only the

90

current kinematic controls for an AAV such that its distance from the estimated location

of its assigned target, in the next time-step, is minimized. Our simulation environment is

two dimensional, i.e., the AAVs, the river, and the targets move on a 2-D plane. According

to the river model, the speed of the river stream wk at a location (p, q) on the 2-D plane is

given by wk = C1[log(dk(p, q)) + C2], where dk(p, q) is the depth of the river at (p, q), and

C1 and C2 are constants. Since the depth of the river is not fully observable, we estimate

dk(p, q) as follows. The elevation map of the landscape is known a priori, i.e., if we know

the depth of the river at a particular location, we can obtain the depth of the river at all

locations. Therefore, we estimate the depth of the river at location (p, q), i.e., d̂k(p, q) using

the estimated depth of the river at the reference point d̂ref
k (= ξ̂riv

k). Therefore, the estimated

speed of the river at location (p, q) is given by ŵk(p, q) = C1[log(d̂k(p, q)) + C2]. We set the

length of the horizon H to 12 time-steps, and the length of the times-step T to 1 second. In

the simulations, the flooded river flows along a valley in the landscape from the north toward

the south as shown in Figure 6.1. Since the simulations are in 2-D, the river flows toward the

−y direction, and the river speed in x direction (toward the east) is zero at every location.

Therefore, the estimated speeds of the river at location (p, q) in x and y directions are given

by ŵxk(p, q) = 0 and ŵyk(p, q) = −C1[log(d̂k(p, q)) +C2]. Here, we model the dynamics of the

target motion by the constant velocity model (see [33] for the definition of the variables F

and Utarg in (6.2)).

In the simulations, an AAV is represented by a rectangle, and the line connecting the

rectangles represents the trajectory of the AAV. We define a performance metric called

average rescue time—the average of the rescue times for each target (the rescue time of a

target is the time elapsed after the start of the simulation until it is rescued). The POMDP

cost function defined in Section 6.3 is reflective of this performance metric. We simulate

two scenarios: Scenario I and Scenario II. In Scenario I, there are two AAVs, each one

located on the opposite banks of the river, and two targets are moving (being drifted by

the moving water) in the river, as shown in Figure 6.3. Figure 6.3 shows a snapshot of the

91

scenario at the end of the simulation with the NBO approach, where the average rescue

time is 25.5 time-steps. We also simulate Scenario I with the greedy approach, as shown in

Figure 6.4, where the average rescue time is 40.5 time-steps. In Scenario II, there are two

AAVs on the left bank of the river, and two targets are moving in the river. We simulate this

scenario with both the NBO and the greedy approaches. Figure 6.5 shows the snapshot of

the scenario with the NBO approach at the end of the simulation, where the average rescue

time is 42 time-steps, and Figure 6.6 shows the simulation of the same scenario with the

greedy approach, where the average rescue time is 62.5 time-steps. The simulation of these

two scenarios demonstrates that the NBO approach achieves a better coordination among

the AAVs compared to the greedy approach while rescuing the targets, as evident from the

average rescue times.

We compare the performance of the NBO approach with that of the greedy approach

through Monte-Carlo simulations. We simulate Scenario I and Scenario II with the NBO and

the greedy approaches separately for 50 Monte-Carlo runs. In each scenario, we compute the

average rescue time in every run for both the NBO and the greedy approaches. Figures 6.7

and 6.8 show the plots of the cumulative frequencies of average rescue times for the NBO and

the greedy approaches for Scenarios I and II respectively. Figures 6.7 and 6.8 demonstrate

that the NBO approach significantly outperforms the greedy approach.

6.6 Conclusions and Remarks

We designed a guidance algorithm for autonomous amphibious vehicles (AAVs) to rescue

moving targets in a 2-D flood scenario, where the flood water flows across the scene and the

targets move in the flood water. We designed this algorithm based on the theory of par-

tially observable Markov decision process (POMDP). Since a POMDP problem is intractable

to solve exactly, we used an approximation method called nominal belief-state optimization

(NBO). We simulated a few scenarios with two AAVs and two targets to demonstrate the

coordination among the AAVs achieved by the NBO approach. We defined a performance

92

Starting locations of targets

AAV’s starting location AAV’s starting location

River flow direction
y

x

Figure 6.3: Simulation of Scenario I with NBO approach, average rescue time=25.5 steps

metric called average rescue time to compare the performance of our approach with a greedy

approach. Our results show that the NBO approach outperforms the greedy approach sig-

nificantly. This was expected because, unlike the greedy approach, the NBO approach has

a lookahead property, i.e., the NBO approach trades off the short-term performance for the

long-term performance. Although the greedy approach achieves coordination among the

AAVs in that the AAVs eventually rescue all the targets, but the performance in terms of

average rescue time, which is crucial in these kind of rescue missions, is poor compared to

our NBO approach. The results in this chapter were published in [71,72].

93

Figure 6.4: Simulation of Scenario I with greedy approach, average rescue time=40.5 steps

94

y

x
River flow direction

AAV
starting
locations

Target starting locations

Figure 6.5: Simulation of Scenario II with NBO approach, average rescue time=42 steps

95

Figure 6.6: Simulation of Scenario II with greedy approach, average rescue time=62.5 steps

96

20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average rescue time

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF

Greedy approach
NBO approach

Figure 6.7: Performance comparison for Scenario I: NBO approach vs. greedy approach

97

20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Average rescue time

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Empirical CDF

Greedy approach
NBO approach

Figure 6.8: Performance comparison for Scenario II: NBO approach vs. greedy approach

98

CHAPTER 7

DIRECTIONAL SENSOR CONTROL: HEURISTIC

APPROACHES

7.1 Introduction

Directional sensors constitute a class of sensors that have a limited field-of-view, e.g.,

surveillance cameras, infrared sensors, and ultrasound sensors. The methods to control the

directions of these sensors are gaining importance owing to a wide range of applications, in-

cluding surveillance, detection (e.g., human feature detection), and tracking. In this study,

we develop tractable solutions to the problem of assigning directions to multiple 2-D direc-

tional sensors to maximize the information gain corresponding to multiple target locations.

Directional sensor control has been studied before in various contexts [73–76]; a general sur-

vey of this topic can be found in [77], where the focus is on coverage issues in directional

sensor networks.

In this study, we assume a joint prior Gaussian distribution for the target locations, and

we assume that the sensor locations are known exactly. A directional sensor has a limited

field-of-view (FOV), where the area sensed by the sensor is given by a sector in a circular

region around the sensor as depicted in Figure 7.1. The direction of the FOV of a sensor

can be changed by appropriately changing the direction of the sensor. The direction of a

sensor can take several discrete values in the interval [0, 2π). A directional sensor generates

a measurement of a target if and only if the target lies within the FOV of the sensor. We

assume that there is a notional fusion center, which collects the measurements from each

sensor, and fuses them to form global estimates of target locations.

99

The objective is to assign a direction to each sensor while maximizing an objective func-

tion based on the information gain corresponding to target locations. This problem is hard

to solve exactly because of its combinatorial nature, and also the computation time increases

exponentially with the number of sensors. In this study, we develop polynomial-time heuris-

tic approaches, and provide bounds on the optimal information gain. We apply rollout on

these heuristic approaches (as in [78]) via a dynamic programming formulation [2] to improve

the performance of our heuristics with respect to the above objective function.

We then address the above problem using a different formulation, where the objective

is to find a mapping of sensors to targets while maximizing the above-mentioned objective

function. This problem is also combinatorial in nature, so we extend one of the heuristic

approaches, developed for the previous formulation, to solve the mapping problem approxi-

mately.

Section 7.2 provides a detailed description of the problem. In Section 7.3, we discuss var-

ious heuristic approaches to solve the above problem approximately, and we discuss natural

sufficient conditions on objective functions that lead to provable guaranteed performance for

our heuristics. However, we show via counterexamples that our objective function does not

satisfy these sufficient conditions, suggesting that the nature of the problem is highly non-

trivial. Sections 7.4 and 7.5 provide simulation results and concluding remarks respectively.

7.2 Problem Specification

Targets. There are N targets in 2-D, where (χ1, χ2, . . . , χN) represent the locations of

the targets. The target locations are not known exactly. However, we assume a joint prior

Gaussian distribution for the target locations.

Directional Sensors. There are M directional sensors in 2-D, where (s1, s2, . . . , sM)

represent the locations of the sensors. The sensor locations are known exactly. Let Θ =

{1, . . . , K} be the set of directions each sensor can take, where each direction is a value in

the interval [0, 2π). Let u = (u1, . . . , uM) be the control vector, where ui ∈ Θ, i = 1, . . . ,M ,

100

is the direction of the ith sensor. The field-of-view of a sensor, pointed at a particular

direction θ ∈ Θ, is shown in Figure 7.1, where r and α are the radial and angular sensing

ranges of the sensor respectively. Because our focus is on solution methods for the problem of

controlling directional sensors, rather than on detailed sensor modeling, we adopt a simple 2-

D sensing model as shown in Figure 7.1. The 2-D conical field-of-view model in Figure 7.1 is

an appropriate approximation to the sensing behavior of many directional sensors, including

surveillance cameras [79] and phased arrays [80]. In the case of surveillance cameras, the

limited radial range in our sensing model is well justified by the constraint that the camera

cannot detect the presence of targets up to a given maximum size located outside a certain

range from the camera, when the size of the target image is smaller than a single pixel.

Measurement Errors. Each sensor generates a 2-D position measurement of a target

only if the target lies within the FOV of the sensor. These measurements are corrupted by

random errors that depend on the relative location of the target with respect to the sensor

and the direction of the sensor. The measurement of the jth target at the ith sensor is given

by

zij =


Hχj + nij if target lies within

FOV of sensor,

no measurement otherwise,

where nij ∼ N (0,Z(si, ui, χj)), H is an observation model, and Z(·) is the measurement

error-covariance matrix, which depends on the direction of the sensor and the locations of

the target and the sensor.

Fusion. The observations obtained from the sensors are fused to form a global estimate

for each target. Let N (ξprior
j ,Pprior

j), j = 1, . . . , N , be the prior distributions (Gaussian)

of the target-locations. Given the observations and the prior distributions, we evaluate the

posterior distribution of the target-locations by fusing the observations. The target obser-

vations are not Gaussian; the evaluation of the true Bayesian posterior distribution is not

tractable. Therefore, we approximate the posterior distribution of jth target as N (ξj,Pj),

101

j = 1, . . . , N , where ξj and Pj are evaluated according to Algorithm 2, where zij is the

observation generated at sensor i.

Algorithm 2 Approximate Posterior Distribution

A =
[
Pprior
j

]−1

y = Aξprior
j

for i = 0 to M do . Information filtering equations
if Sensor i generates observation then

A← A+ HT
[
Z
(
si, ui, ξ

prior
j

)]−1

H

y ← y + HT
[
Z
(
si, ui, ξ

prior
j

)]−1

zij

end if
end for
Pj = A−1

ξj = A−1y

Objective. The objective is to compute u, i.e., the directions for the sensors, such that

the following objective function (based on information gain) is maximized:

−E

[
N∑
j=1

log det(Pj)

]
,

where the expectation is over the prior joint-distribution of target locations, and Pj is the

posterior distribution of the jth target, which is evaluated using Algorithm 2 given the

locations of the targets—these target locations are used only to check if the targets fall

within the FOV of the sensors.

Information theory provides a way of quantifying the amount of signal-related information

that can be extracted from a measurement. This theory also provides tools for assessing

the fundamental limitations of different measurement systems in achieving objectives such

as detection and tracking, and these fundamental limits can be related to the amount of

information gain associated with a specific measurement method. This motivated us to

choose an information-theoretic objective function (see [81] for more arguments on behalf of

using an information-theoretic objective function).

102

x

y

Sensor
direction

Field-of-view

Sensor



r

 / 2

Figure 7.1: Field-of-view of a sensor

Optimal Solution. The optimal directions for the sensors are given by

u∗ = arg max
u∈ΘM

R(u), (7.1)

where

R(u) = −E

[
N∑
j=1

log det(Pj(u))

]
(7.2)

and Pj(u), j = 1, . . . , N , are evaluated according to Algorithm 2 given the control vector

u. We approximate the expectation by a Monte Carlo method. Specifically, we generate

several samples from the joint prior distribution of the target locations, and we compute the

average (over the samples) objective function value for a given control action. The above

problem is a combinatorial optimization problem, where the computational time required to

find the optimal solution is O(KM). Since the computational time increases exponentially

with the number of sensors M , we are interested in deriving tractable heuristic methods that

are polynomial with respect to the number of sensors.

7.3 Approximate Solutions

7.3.1 Continuous Optimization

We obtain an upper bound on the optimal objective function value by “relaxing” the

discrete property of our problem and solving its continuous version. The continuous version

103

of our combinatorial optimization problem is stated as follows:

maximize
(u1,...,uM)

R(u1, . . . , uM)

subject to 0 ≤ ui < 2π, i = 1, . . . ,M.

The optimal objective function value stands as an upper bound to the optimal objective

function value of our original problem. The solution to the above problem can be obtained

via a nonlinear programming (NLP) solver. Specifically, we adopt the simulated annealing

algorithm to solve the above problem.

In the following subsection, we present several heuristic approaches to solve our problem

approximately. The solutions of these heuristics provide a lower bound on the optimal

objective function value (discussed later). Because it is hard to compute the optimal objective

function value, we use the upper bound above on the optimal objective function value, i.e.,

the solution from the above-mentioned continuous optimization approach, to see how close

the heuristics are to the optimal.

7.3.2 Heuristic Approaches

Let u = (u1, u2, . . . , uM) represent a solution to our problem. The optimal solution is

given by

u∗ = arg max
ui∈Θ,i=1...,M

R(u1, . . . , uM),

where Θ = {1, . . . , K}. As we discussed earlier, the computation complexity to obtain the

optimal solution through (7.1) is O(KM), which is exponential in the number of sensors M .

So, we are interested in developing heuristic approaches that are polynomial in the number

of sensors. The following algorithm, called H1, generates the solution uH1 = (ū1, . . . , ūM),

104

where

ū1 = arg max
u∈Θ

R(u,Ø, . . . ,Ø),

...

ūk = arg max
u∈Θ

R(ū1, . . . , ūk−1, u,Ø, . . . ,Ø),

...

ūM = arg max
u∈Θ

R(ū1, . . . , ūM−1, u),

where Ø at any jth location in the solution u = (u1, . . . , uM), i.e., uj replaced by Ø, means

that the senor j is ignored while computing the objective function (as if the sensor j does

not generate any observations and does not influence the objective function). Therefore,

the algorithm H1 generates an approximate solution uH1 = (ū1, . . . , ūM), and the objective

function value fromH1 is R(ū1, ū2, . . . , ūM). The computational complexity ofH1 is O(KM),

which is now linear with respect to the number of sensors.

We now present a second heuristic approach H2, where H2 generates the solution uH2 =

(û1, . . . , ûM). In contrast to the previous heuristic approach, this approach may not generate

the elements of the solution vector in the order û1, . . . , ûM . Let (p1, . . . , pM) be the order in

which the elements of the solution vector are generated, where (p1, . . . , pM) is a permutation

of (1, . . . ,M). This algorithm is evaluated stepwise, with a total of M steps. At each step,

a sensor is assigned a direction, and this assignment is fixed for the rest of the steps, as

described below.

1. In the first step, for each sensor i, we associate a direction that maximizes the objective

function that depends only on the direction of sensor i, i.e., we ignore the rest of the

sensors when we are associating a direction to the sensor i. Let p1 and ûp1 be the sensor

and its associated direction respectively that gives the maximum objective function

105

value among all the associations. Now, we assign direction ûp1 to sensor p1, and this

assignment is fixed for the rest of the steps in the algorithm.

2. In the kth step, we associate a direction to each sensor j ∈ {1, . . . ,M}\{p1, . . . , pk−1},

while maximizing the objective function, which now depends on the directions of the

sensors p1, . . . , pk−1 (computed in the previous k− 1 steps) and the direction of sensor

j. Let (pk, ûpk) be the sensor-direction pair that has the maximum objective function

value from the above computation. At kth step, we assign direction ûpk to the sensor

pk.

3. We repeat the above step until the last sensor pM is assigned a direction.

4. At the end of the algorithm, we are left with the solution (û1, . . . , ûM).

The computational complexity of this approach is O(KM2). In both the heuristics H1 and

H2, since we do not search all possible directions exhaustively, the objective function values

from these approaches stand as lower bounds on the optimal value.

Note that the algorithm H1 requires an ordering among the sensors, and the objective

function value from H1 depends on this order. But the objective function value from H2

is independent of the ordering of sensors as H2 does not require any ordering among the

sensors.

7.3.3 Rollout on a Heuristic Approach

Given a heuristic approach that solves a combinatorial optimization problem step-wise

like ourH1, the authors of [78] have utilized dynamic programming formulation [2] to improve

the performance of the heuristic. Specifically, they use an approximate dynamic program-

ming approach called rollout to improve the performance of the given heuristic. We adopt

a similar technique, and apply rollout on our heuristics to improve their performance (with

respect to the objective function value).

106

We can obtain the exact optimal solution (step-wise) using the dynamic programming

[2] approach as follows. We start at a dummy (artificial) initial state; the state of the

algorithm at the 1st stage is (u1). The state (of the algorithm) at the kth stage is of the

form (u1, . . . , uk), also called k-solution. The terminal state is (u1, . . . , uM). The control

variable at state (u1, . . . , uk−1) is uk ∈ Θ. We get a reward at the end of the Mth step

called terminal reward, which is given by our original objective function R(u1, . . . , uM). Let

J∗(u1, . . . , uk) be the optimal value-to-go (see [78] for details) starting from the k-solution,

which is the optimal terminal reward given that (u1, . . . , uk) are already assigned to the

sensors 1, . . . , k. The optimal solution to our problem (u∗1, u
∗
2, . . . , u

∗
M) can be obtained from

the following equations:

u∗k = arg max
u∈Θ

J∗(u∗1, . . . , u
∗
k−1, u), k = 1, . . . ,M. (7.3)

In general, the optimal value-to-go J∗(·) is hard to obtain, which is in fact true for our

problem. For practical purposes, J∗(·) is replaced with a heuristic value-to-go J̄(·), which is

usually easy to obtain.

LetH be any heuristic algorithm, which generates the path of states (̄i1, ī2, . . . , īM), where

īk = (ū1, . . . , ūk). Let J̄ (̄ik) represent the heuristic value-to-go starting from the k-solution

īk = (ū1, . . . , ūk), from the algorithmH, i.e., we useH to evaluate the value-to-go. The value-

to-go from the algorithm H is equal to the terminal reward obtained from the algorithm H,

i.e., J̄ (̄ik) = R(ū1, ū2, . . . , ūM). Therefore, the following is true: J̄ (̄i1) = J̄ (̄i2) = . . . = J̄ (̄iM).

We use this heuristic value-to-go in (7.3) to find an approximate solution to our problem.

We call this approximation algorithm “Rollout on H” (RH in short; the same notation was

used in [78]) due to its structure, which is similar to an approximate dynamic programming

approach called rollout. The RH algorithm starts with the original dummy state, and

generates the path (i1, i2, . . . , iM) according to the following equation:

ik = arg max
j∈N(ik−1)

J̄(j), k = 1, . . . ,M

107

where, ik−1 = (u1, . . . , uk−1), and

N(ik−1) = {(u1, . . . , uk−1, u)|u ∈ Θ}, k = 1, . . . ,M.

The following lemma is adapted from [78]. For completeness, we provide its proof.

Lemma 3.1: The algorithm RH is sequentially improving with respect to H, i.e., J̄(i1) ≤

J̄(i2) ≤ . . . ≤ J̄(iM), where (i1, i2, . . . , iM) is the path generated by the RH algorithm.

Proof: Let (i1, i
i1
2 , . . . , i

i1
M) be the complete solution from H given i1, which is obtained

from the first step of RH. We can easily verify that J̄(i1) = J̄(ii12). Let i2 be the solution

obtained from the second step of RH, i.e.,

J̄(i2) = max
j∈N(i1)

J̄(j).

But

max
j∈N(i1)

J̄(j) ≥ J̄(ii12) = J̄(i1).

Therefore, J̄(i2) ≥ J̄(i1). We can extend this argument for the rest of the steps in RH,

which proves the result J̄(i1) ≤ J̄(i2) ≤ . . . ≤ J̄(iM).

The authors of [78] have argued that rollout on a heuristic performs no worse than the

heuristic in a different context. We will now extend this argument to our problem and prove

that RH outperforms H.

Theorem 3.2: The algorithm RH outperforms H, i.e., R(̄iM) ≤ R(iM), where īM and iM

are the final paths generated by the algorithms H and RH respectively.

Proof: We can easily verify that J̄ (̄i1) = J̄ (̄i2) = . . . = J̄ (̄iM) = R(̄iM). Since

(i1, . . . , iM) is the path generated by RH, and since

i1 = arg max
j∈Θ

J̄(j),

the following is true: J̄(i1) ≥ J̄(j) for all j ∈ Θ. Since ī1 ∈ Θ, therefore J̄(i1) ≥ J̄ (̄i1).

Therefore, from the above result and Lemma 3.1, we can obtain the following result:

R(iM) = J̄(iM) ≥ . . . ≥ J̄(i1) ≥ J̄ (̄i1) = R(̄iM).

108

The above result proves that applying rollout on a heuristic approach guarantees to

improve the performance of the heuristic with respect to any objective function. The above

rollout approach can be viewed as a one-step lookahead approach (or simply one-step rollout),

as we optimize, at every stage, the control for the current step by maximizing the value-to-go

given the control for the current step. At the expense of increased computational burden, we

can further improve the solution from the above rollout by the following approach: optimize

the controls for the current and the next steps combined (i.e., for two steps) by maximizing

the value-to-go given the controls for the current and the next steps. This can be viewed

as a two-step rollout. Similarly, we can generalize this to an m-step rollout; however as m

increases, the computational requirement also increases. When m = M , the rollout approach

finds the exact optimal solution by exhaustively searching through all possible directions,

with computational complexity O(KM) as in the case of (7.1).

7.3.4 Mapping of Sensors to Targets

In this subsection, our problem formulation differs from the formulation in the previous

section. Here, our goal is to map the sensors to the targets while maximizing the objective

function defined in the previous subsection. Mapping a sensor to a target gives rise to an

assignment of a specific direction to the sensor via the following procedure: a direction that

minimizes the angular difference between the direction of the sensor and the direction of the

mean of the target’s a priori distribution with respect to the sensor’s location. Essentially,

we are again evaluating the directions for sensors, as in the previous subsections, although

indirectly via evaluating a mapping from the set of sensors to the set of targets. The

motivation behind formulating this mapping problem is that if the number of targets is

less than the number of directions a sensor can take, then the set of feasible solutions is

smaller for this new formulation of the problem.

The above mapping problem is also a combinatorial optimization problem, where the

computational complexity is now O(NM), where N is the number of targets and M is the

109

number of sensors. Therefore, we can simply use the heuristic approaches developed in the

previous section to solve the current problem, where the set of controls for each sensor now

is the set of targets, in contrast to sensor directions being controls in the previous problem.

For a given mapping from sensors to targets, we compute the objective function value as

described in (7.2) given the directions of sensors, which are indirectly obtained from a given

mapping of sensors to targets.

Let us extend the heuristic algorithm H1 from the previous section to solve the above

problem, and let this new heuristic algorithm be calledMH1 (short for mapping heuristic).

In these heuristics, as discussed before, we evaluate directions to sensors stage-wise, i.e.,

assign a direction to the first sensor, then to the second sensor, and so on. Let uk be the

direction assigned to the kth sensor at stage k. Let

U = {(u1, . . . , uk)|k = 1, . . . ,M, uk ∈ Θ}

be the set of all possible stage-wise controls, where (u1, . . . , uk) at kth stage are the assigned

directions to sensors 1, . . . , k respectively. We can notice that the objective function in

heuristic algorithm H1 is defined on the set U .

At this point, it would be interesting to ask if we can provide performance guarantees for

H1 over MH1. Naturally, such a result would necessitate imposing appropriate restrictions

on the objective function. In the following, we will explore what seems to be a reasonable

such restriction, based on which we will prove that under such a restriction H1 outperforms

MH1. However, as we will see later, our problem is sufficiently nontrivial as to frustrate

even a reasonable sufficient condition.

To proceed with this investigation, we now provide a definition of a reasonable sufficient

condition under which a provable performance guarantee can be achieved.

Definition 1: Given any function R : U → R, and for every pair of elements in U of

the form (û1, . . . , ûk) and (ū1 . . . , ūk) for any k that satisfies the condition R((û1, . . . , ûk)) ≥

110

R((ū1 . . . , ūk)), then R is said to be continuous monotone if

R((û1, . . . , ûk, a)) ≥ R((ū1 . . . , ūk, a)),

for every a ∈ Θ.

Example Let ri : Θ→ R for i = 1, . . . ,M , and let

R((u1, . . . , uk)) =
k∑
i=1

ri(ui),

for k = 1, . . . ,M . We can easily verify that the above additive objective function is contin-

uous monotone.

Let R : U → R be any generic objective function, and let uH1 be the directions for sensors

obtained from H1 and let uMH1 be the directions for sensors fromMH1 using the objective

function R.

Theorem 3.3: If R is continuous monotone, the algorithm H1 outperforms MH1 with

respect to R, i.e., R(uH1) ≥ R(uMH1).

Proof: Let uH1 = (û1, . . . , ûM) and uMH1 = (ū1, . . . , ūM). The first element of uH1 ,

i.e., û1 is evaluated as follows:

û1 = arg max
a∈Θ

R((a)),

whereas ū1 is obtained (albeit indirectly) by assigning sensor 1 to each target and checking

which assignment maximizes the objective function value. In other words, there exists Θ1 ⊆

Θ such that

ū1 = arg max
a∈Θ1

R((a)),

which implies that R((û1)) ≥ R((ū1)). Since R is continuous monotone, by definition

R((û1, a)) ≥ R((ū1, a)) for every a ∈ Θ. Therefore, maxa∈ΘR((û1, a)) ≥ maxa∈Θ R((ū1, a)).

We can extend the above discussion on the first step of MH1 algorithm to its second step,

i.e., there exists Θ2 ⊆ Θ such that ū2 = arg maxa∈Θ2 R((ū1, a)). We can easily verify that

111

maxa∈ΘR((û1, a)) ≥ maxa∈Θ2 R((ū1, a)) or R((û1, û2)) ≥ R((ū1, ū2)). We can extend this ar-

gument for the rest of the steps, which proves the result R((û1, . . . , ûM)) ≥ R((ū1, . . . , ūM)).

Unfortunately, as alluded to before, things do not turn out as conveniently as one would

have desired. More specifically, our objective function (7.2) is in fact not continuous mono-

tone. We will demonstrate this claim with the following counterexample. Nonetheless, the

above theorem provides a useful result comparing the performance of H1 and MH1 for any

generic continuous monotone objective function.

Example Let us consider a scenario with two sensors a,b and two targets as shown in

Figures 7.2 and 7.3. In these figures, the FOV of each sensor is π/5, i.e., α = π/5 in

Figure 7.1. We approximate the expectation in the objective function by the following

Monte Carlo method. We generate 50 samples from the (joint) target location distribution.

For a given control vector u, we compute the objective function R(u) from each sample;

the objective function value for the given control vector is given by the average of these 50

objective function values. In these figures, the sensors are represented by small circles, the

target (prior) distributions are represented by the error concentration ellipses, and the FOVs

are represented by 2-D cones. For this scenario, we compute our objective function values

for the following two cases:

1. sensors a and b are assigned directions 0 and π/2 respectively as shown in Figure 7.2,

and

2. sensors a and b are assigned directions −π/2 and π/2 respectively as shown in Fig-

ure 7.3.

The following are the objective function values for the above cases: R((0)) = 8.05, R((−π/2)) =

7.36, R((0, π/2)) = 9.65, R((−π/2, π/2)) = 10.37. Therefore, R((0)) > R((−π/2)), but

R((0, π/2)) < R((−π/2, π/2)), which proves that our objective function (7.2) is not contin-

uous monotone.

112

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

b

a

Figure 7.2: Counterexample to show that our objective function is not continuous monotone
(Case 1).

7.4 Simulation Results and Further Discussion

We implement the heuristic approaches presented in the previous section in MATLAB for

a scenario with six sensors and nine targets, where each sensor can take 10 possible directions

{0, 2π/10, 2(2π/10), . . . , 9(2π/10)}. Figures 7.4, 7.5, and 7.6 depict the locations of targets,

sensors, and the solution from the approachesH1, RH1, andMH1 respectively. The solution

from each of these approaches are the directions computed for the sensors (can be interpreted

from the FOVs of sensors shown in these figures while using Figure 7.1 as reference). Table 7.1

compares the objective function values of the solutions obtained from each of the heuristic

approaches discussed in this study along with the objective function value from continuous

(relaxed) optimization. This table corroborates the result in Theorem 3.2 that the rollout

on a heuristic approach outperforms the heuristic approach.

Table 7.1 demonstrates that the objective function values from the heuristics are relatively

close to that of the relaxed problem (upper bound), which implies that the solutions from

our heuristics are close to optimal. This prompts us to question if in fact we could have

known beforehand that our heuristics are provably close to optimal because our problem

113

−4 −2 0 2 4 6 8 10 12

0

2

4

6

8

10

a

b

Figure 7.3: Counterexample to show that our objective function is not continuous monotone
(Case 2).

Table 7.1: Objective function values from various approaches
Approach Objective function value
Relaxed (upper bound) 46.67
H1 42.71
RH1 44.03
H2 43.76
RH2 44.93
MH1 41.06

exhibits properties that are known to result in provable suboptimality bounds. We will now

investigate this question.

In a recent study [82,83], it was shown that if an objective function is string-submodular 1,

then the “greedy strategy” performs at least as good as (1−1/e) ≈ 0.63 of the optimal. The

definition of the above-mentioned greedy strategy in [82] is exactly the same as our heuristic

algorithm H1. The following is an interesting observation from the results in our study. The

objective function value from H1 is

R(uH1) = 0.91Rrelaxed ≥ 0.91Roptimal ≥ (1− 1/e)Roptimal,

1An objective function is said to be string-submodular if it has the following properties: forward-monotone
and diminishing returns. See [82] or [83] for the definition of these properties.

114

−4 −2 0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

H−1

Figure 7.4: Solution from H1

i.e., the objective function value from algorithm H1 is at least as good as (1− 1/e)Roptimal.

We further compare the objective function values from H1 and the relaxed approach (which

provides an upper bound on the optimal objective function value) for various scenarios with

varying numbers of sensors and targets; Table 7.2 summarizes the results.

Table 7.2: Comparison of objective function values from H1 and the relaxed approach.
Scenario R(uH1)/Rrelaxed

3 sensors, 5 targets 0.92
3 sensors, 9 targets 0.90
4 sensors, 5 targets 0.77
4 sensors, 9 targets 0.92
6 sensors, 9 targets 0.91

Table 7.2 demonstrates that our heuristic algorithm H1 is at least as good as (1 −

1/e)Roptimal for every scenario considered. This observation suggests that our objective

function may have a string-submodular type property. Unfortunately, things are once again

not quite as straightforward as one would have expected. Alas, our objective function turns

out not to be string-submodular, as we show in the following counterexample. This suggests

115

−2 0 2 4 6 8 10 12 14

2

4

6

8

10

12

14

RH−1

Figure 7.5: Solution from RH1

that our problem possesses highly nontrivial features that elude currently known analytical

machinery.

Example Let us consider a scenario with three sensors and one target as shown in Figure 7.7.

Let the sensors be a, b, and c. Without loss of generality, let a → b → c be the sequence

in which directions are computed. Let us assign π/3, 3π/4, 3π/4 to the sensors a, b, and c

respectively. We can easily verify the following:

R((π/3,3π/4))−R((π/3)) ≤

R((π/3, 3π/4, 3π/4))−R((π/3, 3π/4)),

where R is our objective function. The above inequality shows that our objective function

does not have the diminishing returns property (again, see [82] or [83] for details), thus

proving that our objective function is not string-submodular.

116

−6 −4 −2 0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

MH−1

Figure 7.6: Solution from MH1

7.5 Concluding Remarks

We investigated the problem of controlling the directional sensors for maximizing an

information-gain-based objective function. We identified that this problem is a combina-

torial optimization problem, and developed heuristic approaches (H1 and H2) to solve the

problem approximately. We further improved the performance of our heuristics by applying

an approximate dynamic programming approach called rollout. The rollout on our heuristic

approach outperforms the heuristic approach, and our empirical results are in agreement

with this.

We then addressed this problem via a different formulation, where the goal was to find an

optimal mapping from the set of sensors to the set of targets that maximizes our information-

gain-based objective function. This problem is also combinatorial in nature, so we extended

the heuristic approach H1, developed for the previous formulation, to solve this mapping

problem approximately, and we called this new heuristic algorithm MH1. We investigated

natural sufficient conditions on objective functions that lead to provable guaranteed perfor-

mance for our heuristics. Specifically, we proved that if an objective function is continuous

117

−5 0 5 10
4

6

8

10

12

14

16

a b

c

Figure 7.7: Counterexample to show that our objective function is not string-submodular

monotone, thenMH1 outperformsH1 with respect to the objective function value. However,

we showed via a counterexample that our objective function does not satisfy this sufficient

condition, suggesting that the nature of the problem is highly nontrivial. Nonetheless, the

above result provides an analytical comparison of performances of H1 and MH1 for any

generic continuous monotone objective function.

Our empirical results show that our heuristic algorithm H1 performed very close to the

upper bound on the optimal, i.e., close to optimal, leading us to wonder whether our objective

function possesses a property that would guarantee H1 to perform close to optimal. So, we

investigated this question, and found a recent study in the literature that showed that if an

objective function is string-submodular, then the greedy strategy (H1 in our study) performs

at least as good as (1− 1/e) of the optimal. So, we further compared the performance of H1

for several scenarios with varying numbers of sensors and targets, and the results demonstrate

that for each scenario the objective function value from H1 is at least as good as (1 − 1/e)

of the optimal. However, we found a counterexample proving our objective function is in

fact not string-submodular. This again suggests that our problem possesses highly nontrivial

features that elude currently known analytical machinery. It remains an interesting future

118

study to understand why the performance of our heuristic algorithm is so close to optimal.

The results in this chapter were published in [84,85].

119

CHAPTER 8

CONCLUSIONS AND REMARKS

In the first phase of this study, we developed guidance control methods for unmanned

aerial vehicles (UAVs) for multitarget tracking in both centralized and decentralized settings.

In the centralized setting, the algorithm development was based on the theory of partially

observable Markov decision process (POMDP). Because it is hard to solve a POMDP exactly,

we adopted an approximation method called nominal belief-state optimization (NBO). We

then derived bounds on the optimal cost function value for this problem, and demonstrated

through empirical study that the cost function value from NBO is close to the optimal cost’s

lower bound, thus proving that the NBO performs close to optimal. We then extended

the algorithm to incorporate wind disturbance on UAVs, collision avoidance (among UAVs,

and between UAVs and obstacles), threat evasion, evasive target tracking, and track-swap

avoidance. In the decentralized setting, the algorithm development was based on the theory

of decentralized POMDP (Dec-POMDP). A Dec-POMDP is also hard to be solved exactly.

Therefore, we extended the above-mentioned NBO method to solve the decentralized UAV

guidance problem posed as Dec-POMDP. We then compared the performance of our Dec-

POMDP approach with a “greedy” approach. We showed quantitatively how much our Dec-

POMDP approach outperforms (with respect to average target-location error) the greedy

approach.

In the second phase, we developed guidance control methods for autonomous amphibious

vehicles (AAVs) for flood rescue support. More precisely, we designed a guidance algorithm

for AAVs to rescue human targets stranded in a flood situation. We designed this algorithm

based on the theory of POMDPs, and again used the NBO method to solve the POMDP

120

approximately. Our results show that the NBO approach outperforms a “greedy” approach

significantly.

In the third phase, we studied the problem of controlling directional sensors (e.g., surveil-

lance cameras) for maximizing an information-gain-based objective function. More precisely,

the goal was to assign a direction (from a discrete and finite set of directions) to each sensor

while maximizing the objective function. This turned out to be a combinatorial optimization

problem, which is hard to be solved exactly. Therefore, we developed heuristic approaches

(H1 and H2) to solve the problem approximately. We further improved the performance of

our heuristics by applying an approximate dynamic programming approach called rollout.

We analytically proved that the rollout on our heuristic approach outperforms the heuristic

approach, and corroborated this with empirical results. We then addressed this problem via

a different formulation, where the goal was to find an optimal mapping from the set of sen-

sors to the set of targets that maximizes our information-gain-based objective function. This

problem is also combinatorial in nature, so we extended the heuristic approachH1, developed

for the previous formulation, to solve this mapping problem approximately, and we called

this new heuristic algorithm MH1. We investigated natural sufficient conditions on objec-

tive functions that lead to provable guaranteed performances for our heuristics. Specifically,

we proved that if an objective function is continuous monotone, thenMH1 outperforms H1

with respect to the objective function value. However, we showed via a counterexample that

our objective function does not satisfy this sufficient condition, suggesting that the nature

of the problem is highly nontrivial. Our empirical results show that our heuristic algorithm

H1 performed very close to the upper bound on the optimal, i.e., close to optimal, leading

us to wonder whether our objective function possesses a property that would guarantee H1

to perform close to optimal. So, we investigated this question, and found a recent study in

the literature that showed that if an objective function is “string-submodular”, then the H1

performs at least as good as (1 − 1/e) of the optimal. So, we further compared the per-

formance of H1 for several scenarios with varying numbers of sensors and targets, and the

121

results demonstrate that for each scenario the objective function value from H1 is at least as

good as (1−1/e) of the optimal. However, we found a counterexample proving our objective

function is in fact not string-submodular. This again suggests that our problem possesses

highly nontrivial features that elude currently known analytical machinery. It remains an

interesting future study to understand why the performance of our heuristic algorithm is so

close to optimal.

122

REFERENCES

[1] E. K. P. Chong, C. Kreucher, and A. O. Hero, “Partially observable Markov decision
process approximations for adaptive sensing,” Disc. Event Dyn. Sys., vol. 19, pp. 377–
422, 2009.

[2] R. Bellman, Dynamic Programming. Princeton, NJ: Princeton University Press, 1957.

[3] C. Kreucher, A. O. Hero, K. Kastella, and D. Chang, “Efficient methods of non-myopic
sensor management for multitarget tracking,” in Proc. 43rd IEEE Conf. Decision and
Control, Paradise Island, Bahamas, 2004, pp. 722–727.

[4] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming. Belmont, MA:
Athena Scientific, 1996.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA: MIT Press, 1998.

[6] D. P. Bertsekas and D. A. Castanon, “Rollout algorithms for stochastic scheduling
problems,” J. Heuristics, vol. 5, pp. 89–108, 1999.

[7] E. K. P. Chong, R. L. Givan, and H. S. Chang, “A framework for simulation-based
network control via hindsight optimization,” in Proc. 39th IEEE Conf. Decision and
Control, Sydney, Australia, 2000, pp. 1433–1438.

[8] G. Wu, E. K. P. Chong, and R. Givan, “Burst-level congestion control using hindsight
optimization,” IEEE Trans. Autom. Control, vol. 47, pp. 979–991, 2002.

[9] D. P. Bertsekas, Dynamic Programming and Optimal Control. Belmont, MA: Athena
Scientific, 2007, vol. 2.

[10] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The complexity of decen-
tralized control of Markov decision processes,” Math. Oper. Res., vol. 27, pp. 819–840,
2002.

[11] S. A. Miller, Z. A. Harris, and E. K. P. Chong, “A POMDP framework for coordinated
guidance of autonomous UAVs for multitarget tracking,” EURASIP J. Adv. Signal
Process., vol. 2009, 2009.

[12] S. M. LaValle, Planning Algorithms. Cambridge, UK: Cambridge University Press,
2006.

[13] C. Geyer, “Active target search from UAVs in urban environments,” in Proc. IEEE Int.
Conf. Robotics and Automation, Pasadena, CA, 2008, pp. 2366–2371.

123

[14] J. Tisdale, H. Durrant-Whyte, and J. K. Hedrick, “Path planning for cooperative sens-
ing using unmanned vehicles,” in Proc. ASME Int. Mechanical Engineering Conf. and
Exposition, Seattle, WA, 2007, pp. 715–723.

[15] R. He, A. Bachrach, and N. Roy, “Efficient planning under uncertainty for a target-
tracking micro-aerial vehicle,” in Proc. IEEE Int. Conf. Robotics and Automation, An-
chorage, AK, 2010.

[16] Y. Kim, D. Gub, and I. Postlethwaite, “Real-time path planning with limited informa-
tion for autonomous unmanned air vehicles,” Automatica, vol. 44, pp. 696–712, 2008.

[17] J. B. Saunders, O. Call, A. Curtis, R. W. Beard, and T. W. McLain, “Static and
dynamic obstacle avoidance in miniature air vehicles,” in Proc. Infotech at Aerospace
Conf., Arlington, VA, 2005.

[18] C. G. Cassandras and W. Li, “A receding horizon approach for dynamic UAV mission
management,” in Proc. SPIE 17th Annu. Int. Symp., Orlando, FL, 2003, pp. 284–293.

[19] X. Ma and D. A. Castanon, “Receding horizon planning for dubins traveling salesman
problems,” in Proc. 45th IEEE Conf. Decision and Control, San Diego, CA, 2006, pp.
5453–5458.

[20] Y. Lu, X. Huo, O. Arslan, and P. Tsiotras, “Incremental multi-scale search algorithm
for dynamic path planning with low worst-case complexity,” IEEE Trans. Syst. Man
Cybern. B, Cybern., vol. 41, pp. 1556–1570, 2011.

[21] W. Ren, J. Sun, R. W. Beard, and T. W. McLain, “Nonlinear tracking control for
nonholonomic mobile robots with input constraints: an experimental study,” in Proc.
American Control Conf., Portland, OR, 2005, pp. 4923–4928.

[22] W. Li and C. G. Cassandras, “A cooperative receding horizon controller for multivehicle
uncertain environments,” IEEE Trans. Autom. Control, vol. 51, pp. 242–257, 2006.

[23] P. W. Sarunic, R. J. Evans, and B. Moran, “Control of unmanned aerial vehicles for pas-
sive detection and tracking of multiple emitters,” in Proc. IEEE Symp. Computational
Intelligence in Security and Defense Applications, Ottawa, Canada, 2009.

[24] S. Candido and S. Hutchinson, “Minimum uncertainty robot path planning using a
POMDP approach,” in Proc. IEEE Int. Conf. Intelligent Robots and Systems, Taipei,
Taiwan, 2010, pp. 1408–1413.

[25] H. Kurniawati, Y. Du, D. Hsu, and W. S. Lee, “Motion planning under uncertainty for
robotic tasks with long time horizons,” Int. J. Robot. Res., vol. 30, pp. 308–323, 2011.

[26] N. Ceccarelli, J. J. Enright, E. Frazzoli, S. J. Rasmussen, and C. J. Schumacher, “Micro
UAV path planning for reconnaissance in wind,” in Proc. American Control Conf., New
York City, NY, 2007, pp. 5310–5315.

124

[27] T. G. McGee and J. K. Hedrick, “Path planning and control for multiple point surveil-
lance by an unmanned aircraft in wind,” in Proc. American Control Conf., Minneapolis,
MN, 2006, pp. 4261–4266.

[28] L. E. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars, “Probabilistic roadmaps for
path planning in high-dimensional configuration spaces,” IEEE Trans. Robot. Autom.,
vol. 12, pp. 566–580, 1996.

[29] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile robots,”
IEEE Trans. Syst. Man Cybern., vol. 19, pp. 1179–1187, 1989.

[30] I. K. Nikolos, K. P. Valavanis, N. C. Tsourveloudis, and A. N. Kostaras, “Evolutionary
algorithm based offline/online path planner for UAV navigation,” IEEE Trans. Syst.
Man Cybern. B, Cybern., vol. 33, pp. 898–912, 2003.

[31] B. A. Kumar and D. Ghose, “Radar-assisted collision avoidance/guidance strategy for
planar flight,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, pp. 77–90, 2001.

[32] S. Temizer, M. J. Kochenderfer, L. P. Kaelbling, T. Lozano-Perez, and J. K. Kuchar,
“Collision avoidance for unmanned aircraft using Markov decision processes,” in Proc.
AIAA Guidance, Navigation, and Control Conf., Toronto, Canada, 2010.

[33] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems. Boston,
MA: Artech House, 1999.

[34] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking
and Navigation. NY: Wiley-Interscience, 2001.

[35] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association. London, UK:
Academic Press Inc., 1988.

[36] D. P. Bertsekas, “Dynamic programming and suboptimal control: A survey from adp
to mpc,” Fundam. Issues Control, Eur. J. Control, vol. 11, 2005.

[37] B. R. Geiger, J. F. Horn, A. M. DeLullo, and L. N. Long, “Optimal path planning of
UAVs using direct collocation with nonlinear programming,” in Proc. AIAA Guidance,
Navigation, and Control Conf., Keystone, CO, 2006, paper 2006–6199.

[38] P. Ailliot, V. Monbet, and M. Prevosto, “An autoregressive model with time-varying
coefficients for wind fields,” Environmetrics, vol. 17, pp. 107–117, 2006.

[39] A. V. Boukhanovsky, H. E. Krogstad, L. J. Lopatoukhin, and V. A. Rozhkov, “Stochas-
tic simulation of inhomogeneous metocean fields: part i: annual variability,” in Proc.
2003 Int. Conf. Computational Science, Melbourne, Australia, 2003, pp. 213–222.

[40] A. Cho, J. Kim, S. Lee, and C. Kee, “Wind estimation and airspeed calibration using a
UAV with a single-antenna GPS receiver and pitot tube,” IEEE Trans. Aerosp. Electron.
Syst., vol. 47, pp. 109–117, 2011.

125

[41] P. C. Mahalanobis, “On the generalised distance in statistics,” in Proc. Nat. Institute
of Sciences of India, Calcutta, India, 1936, pp. 49–55.

[42] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Ann. Mathematical
Statistics, vol. 22, pp. 79–86, 1951.

[43] A. Bhattacharyya, “On a measure of divergence between two statistical populations
defined by their probability distributions,” Bull. Calcutta Math. Soc., vol. 35, pp. 99–
109, 1943.

[44] L. L. Cam and G. L. Yang, Asymptotics in Statistics. Berlin, Germany: Springer,
2000.

[45] S. Ragi and E. K. P. Chong, “Dynamic UAV path planning for multitarget tracking,”
in Proc. American Control Conf., Montreal, Canada, 2012, pp. 3845–3850.

[46] ——, “UAV path planning in a dynamic environment via partially observable Markov
decision process,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, pp. 2397–2412, 2013.

[47] H. Min, F. Sun, and F. Niu, “Decentralized UAV formation tracking flight control
using gyroscopic force,” in Proc. Int. Conf. Computational Intelligence for Measurement
Systems and Applications, Hong Kong, 2009, pp. 91–96.

[48] H. Rezaee and F. Abdollahi, “A synchronization strategy for three dimensional decen-
tralized formation control of unmanned aircrafts,” in Proc. 37th Annu. Conf. IEEE
Industrial Electronics Society, Melbourne, Australia, 2011, pp. 462–467.

[49] Y. Yang, A. A. Minai, and M. M. Polycarpou, “Decentralized cooperative search by net-
worked UAVs in an uncertain environment,” in Proc. American Control Conf., Boston,
MA, 2004, pp. 5558–5563.

[50] A. Richards and J. How, “Decentralized model predictive control of cooperating UAVs,”
in Proc. 43rd IEEE Conf. Decision and Control, Paradise Island, Bahamas, 2004, pp.
4286–4291.

[51] M. Alighanbari and J. P. How, “Decentralized task assignment for unmanned aerial
vehicles,” in Proc. 44th IEEE Conf. Decision and Control, Seville, Spain, 2005, pp.
5668–5673.

[52] A. Ghaffarkhah and Y. Mostofi, “Communication-aware motion planning in mobile
networks,” IEEE Trans. Autom. Control, vol. 56, pp. 2478–2485, 2011.

[53] S. Ragi and E. K. P. Chong, “Decentralized control of unmanned aerial vehicles for
multitarget tracking,” in Proc. 2013 Int. Conf. Unmanned Aircraft Systems, Atlanta,
GA, 2013, pp. 260–268.

[54] ——, “Decentralized guidance control of UAVs with explicit optimization of communi-
cation,” J. Intell. Robot. Syst., to be published.

126

[55] M. Frejek and S. Nokleby, “Design of a small-scale autonomous amphibious vehicle,”
in Proc. Canadian Conf. Electrical and Computer Engineering, Niagara Falls, Canada,
2008, pp. 781–786.

[56] E. Papadopoulos and M. Misailidis, “On differential drive robot odometry with ap-
plication to path planning,” in Proc. European Control Conf., Kos, Greece, 2007, pp.
5492–5499.

[57] Y. Tee, Y. Tan, B. Teoh, E. Tan, and Z. Wong, “A compact design of zero-radius steering
autonomous amphibious vehicle with direct differential directional drive - UTAR-AAV,”
in Proc. IEEE Conf. Robotics, Automation, and Mechatronics, Singapore, 2010, pp.
176–181.

[58] Q. P. Ha, T. H. Tran, S. Scheding, G. Dissanayake, and H. F. Durrant-Whyte, “Control
issues of an autonomous vehicle,” in Proc. 22nd Int. Symp. Automation and Robotics
in Construction, Ferrara, Italy, 2005.

[59] W. Masayoshi, “Research and development of electric vehicles for clean transportation,”
J. Environ. Sci., vol. 21, pp. 745–749, 2009.

[60] T. Brunl, Embedded Robotics, 3rd ed. Germany: Springer, 2008.

[61] T. H. Tran, Q. P. Ha, R. Grover, and S. Scheding, “Modelling of an autonomous am-
phibious vehicle,” in Proc. Australasian Conf. Robotics and Automation, Canberra, Aus-
tralia, 2004.

[62] R. Manduchi, A. Castano, A. Talukder, and L. Matthies, “Obstacle detection and ter-
rain classification for autonomous off-road navigation,” Autonomous Robots, vol. 18, pp.
81–102, 2004.

[63] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb, and R. Chatila,
“Autonomous rover navigation on unknown terrains: Functions and integration,” Int.
J. Robot. Res., vol. 21, 2002.

[64] T. H. Tran, “Modelling and control of unmanned ground vehicles,” Ph.D. Dissertation,
University of Technology, Sydney, Australia, 2007.

[65] S. A. Watson and P. N. Green, “Design considerations for micro-autonomous underwa-
ter vehicles (AUVs),” in Proc. IEEE Conf. Robotics, Automation, and Mechatronics,
Singapore, 2010, pp. 429–434.

[66] ——, “Propulsion systems for micro-autonomous underwater vehicles (AUVs),” in Proc.
IEEE Conf. Robotics, Automation, and Mechatronics, Singapore, 2010, pp. 435–440.

[67] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. Pergamon Press, 2000,
ch. IV.

[68] C. Kreucher, A. O. H. III, K. Kastella, and D. Chang, “Efficient methods of non-myopic
sensor management for multitarget tracking,” in Proc. 43rd IEEE Conf. Decision and
Control, Paradise Island, Bahamas, 2004, pp. 722–727.

127

[69] E. K. P. Chong, R. L. Givan, and H. S. Chang, “A framework for simulation-based
network control via hindsight optimization,” in Proc. 39th IEEE Conf. Decision and
Control, Sydney, Australia, 2000, pp. 1433–1438.

[70] Y. Tee, B. Teoh, D. E. B. Tan, Z. Wong, C. Tan, and Y. Tan, “Design considerations of
autonomous amphibious vehicle (utar-aav),” in Proc. IEEE Conf. Sustainable Utiliza-
tion and Development in Engineering and Technology, Petaling Jaya, Malaysia, 2010,
pp. 13–18.

[71] S. Ragi, C. S. Tan, and E. K. P. Chong, “Feasibility study of POMDP in autonomous
amphibious vehicle guidance,” in Proc. 2013 IFAC Symp. Intelligent Autonomous Ve-
hicles, Gold Coast, Australia, 2013, pp. 85–90.

[72] ——, “Guidance of autonomous amphibious vehicles for flood rescue support,” Math.
Probl. Eng.,, vol. 2013, 2013.

[73] Y. Wang and G. Cao, “Minimizing service delay in directional sensor networks,” in
Proc. 2011 IEEE INFOCOM, Shanghai, China, Apr. 2011, pp. 1790–1798.

[74] H. D. Ma and Y. H. Liu, “Some problems of directional sensor networks,” Int. J. Sensor
Netorks, vol. 2, pp. 44–52, 2007.

[75] J. Ai and A. A. Abouzeid, “Coverage by directional sensors in randomly deployed wire-
less sensor networks,” J. Comb. Optim., vol. 11, pp. 21–41, 2006.

[76] G. Fusco and H. Gupta, “Placement and orientation of rotating directional sensors,” in
Proc. 7th Annu. IEEE Communications Society Conf. SECON, Boston, MA, Jun. 2010.

[77] M. A. Guvensan and A. G. Yavuz, “On coverage issues in directional sensor networks:
A survey,” Ad Hoc Networks, vol. 9, pp. 1238–1255, 2011.

[78] D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu, “Rollout algorithms for combinatorial
optimization,” Journal of Heuristics, vol. 3, pp. 245–262, 1997.

[79] C. J. Costello and I. J. Wang, “Surveillance camera coordination through distributed
scheduling,” in Proc. 44th IEEE Conf. Decision and Control, Seville, Spain, Dec 2005,
pp. 1485–1490.

[80] G. P. Kefalas, “A phased-array ground terminal for satellite communications,” IEEE
Trans. Commun. Technol., vol. 13, no. 4, pp. 512–525, 1965.

[81] A. O. Hero, C. M. Kreucher, and D. Blatt, “Information theoretic approaches to sensor
management,” in Foundations and Applications of Sensor Management, A. O. Hero,
D. Castanon, D. Cochran, and K. Kastella, Eds. New York: Springer, 2008.

[82] Z. Zhang, E. K. P. Chong, A. Pezeshki, W. Moran, and S. D. Howard, “Submodular-
ity and optimality of fusion rules in balanced binary relay trees,” in Proc. 51st IEEE
Conference on Decision and Control, Maui, HI, Dec. 2012, pp. 3802–3807.

128

[83] Z. Zhang, Z. Wang, E. K. P. Chong, A. Pezeshki, and W. Moran, “Near optimality of
greedy strategies for string submodular functions with forward and backward curvature
constraints,” in Proc. 52nd IEEE Conference on Decision and Control, Florence, Italy,
Dec. 2013, pp. 5156–5161.

[84] S. Ragi, H. D. Mittelmann, and E. K. P. Chong, “Directional sensor control for max-
imizing information gain,” in Proc. SPIE 8857, Signal and Data Processing of Small
Targets 2013, San Diego, CA, 2013.

[85] ——, “Directional sensor control: heuristic approaches,” submitted for publication.

129

