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ABSTRACT

ESTIMATION OF SNOW MICROPHYSICAL PROPERTIES WITH APPLICATION

TO MILLIMETER-WAVELENGTH RADAR RETRIEVALS OF SNOWFALL RATE

The need for measuring snowfall is driven by the roles snow plays providing freshwater

resources and affecting climate. Snow accumulations are an important resource for ecological

and human needs and in many areas appear vulnerable to climate change. Snow cover

modifies surface heat fluxes over areas extensive enough to influence climate at regional

and perhaps global scales. Seasonal runoff from snowmelt, along with over-ocean snowfall,

contributes to freshening in the Arctic and high-latitude North Atlantic oceans. Yet much

of the Earth’s area for which snowfall plays such significant roles is not well-monitored by

observations.

Radar reflectivity at 94 GHz is sensitive to scattering by snow particles and CloudSat,

in a near-polar orbit, provides vertically resolved measurements of 94 GHz reflectivity at

latitudes from 82 N to 82 S. While not global in areal coverage, CloudSat does provide

observations sampled from regions where snowfall is the dominant form of precipitation and

an important component of hydrologic processes. The work presented in this study seeks to

exploit these observations by developing and assessing a physically-base snowfall retrieval

which uses an explicit representation of snow microphysical properties.

As the reflectivity-based snowfall retrieval problem is significantly underconstrained, a

priori information about snow microphysical properties is required. The approaches typ-

ically used to develop relations between reflectivity and snowfall rate, so-called Ze-S re-

lations, require assumptions about particle properties such as mass, area, fallspeed, and

shape. Limited information about the distributions of these properties makes difficult the
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characterization of how uncertainties in the properties influence uncertainties in the Ze-S

relations.

To address this, the study proceeded in two parts. In the first, probability distributions

for snow particle microphysical properties were assessed using optimal estimation applied

to multi-sensor surface-based snow observations from a field campaign. Mass properties

were moderately well determined by the observations, the area properties less so. The

retrieval revealed nontrivial correlations between mass and area parameters not apparent in

prior studies. Synthetic testing showed that the performance of the retrieval was hampered

by uncertainties in the fallspeed forward model. The mass and area properties obtained

from this retrieval were used to construct particle models including 94 GHz scattering

properties for dry snow. These properties were insufficient to constrain scattering properties

to match observed 94 GHz reflectivities. Vertical aspect ratio supplied a sufficient additional

constraint.

In the second part, the CloudSat retrieval, designed to estimate vertical profiles of

snow size distribution parameters from reflectivity profiles, was applied to measurements

from the field campaign and from an orbit of CloudSat observations. Uncertainties in the

mass and area microphysical properties, obtained from the first part of this study, were

substantial contributors to the uncertainties in the retrieved snowfall rates. Snowfall rate

fractional uncertainties were typically 140% to 200%. Accumulations of snowfall calculated

from the retrieval results matched observed accumulations to within 13%, however, when

allowances were made for snowfall with properties likely inconsistent with the snow parti-

cle model. Information content metrics showed that the size distribution slope parameters

were moderately to strongly constrained by the reflectivity observations, while the inter-

cept parameters were determined primarily by the a priori constraints. Results from the

CloudSat orbit demonstrated the ability of the CloudSat retrieval to represent a range of

scene-dependent Ze-S relations.
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ŜSSp Covariance matrix describing uncertainties in snowfall rate P at the retrieved

state
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Chapter 1

Introduction

Snow and snow cover are significant components of the Earth’s hydrologic and climate

systems. For large areas of the Earth, fresh water to meet the needs of riverine ecosystems, of

agriculture, of human consumption, or of hydroelectric power generation derives principally

from snowmelt. Barnett et al. (2005) described them as including much of the Earth’s

land surface poleward of +/- 45◦, and most mountainous terrain except that nearest the

equator. In their study, Barnett et al. specifically looked at areas where limited storage

capacity would put these freshwater resources at risk under climate change scenarios, a

subset of the total area dependent on snow for water resources. They found that nearly

one-sixth of the world’s population live in these areas classified as snowpack-dependent and

at-risk, and approximately one-fourth of the global gross domestic product originates from

these areas.

Snow and snow cover can have potentially significant climatological impacts at regional

and perhaps global scales. Snow cover dramatically increases shortwave surface albedo of

most natural surfaces, leading to reduced shortwave radiative heat transfer into the surface.

In early energy balance climate models (e.g., Sellers, 1969), a positive feedback mechanism

was identified in which increases in snow and ice cover produced cooling which led to further

increases in snow and ice cover. The actual role of snow is more complex, involving changes

to sensible and latent heat fluxes and to longwave emission from the surface that vary over

the life of the snow cover. These other effects may offset or overcome the albedo effect,
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leading to increased net heat flux into the snow-covered surface until snowmelt occurs

(Cohen and Rind, 1991).

Modeling studies have shown that perturbations to snow cover can have far-ranging

consequences. In a study with a general circulation model, Barnett et al. (1989) found that

increased snow depths led to cooler surface air and tropospheric temperatures in regions

where snow cover was rapidly melting or had recently melted. In their study, increased snow

depth over Eurasia was associated with a weaker Asian summer monsoon. Vavrus (2007)

examined the effects of terrestrial snow cover on global climate, comparing general circula-

tion model simulations with normal and suppressed snow cover. In addition to tropospheric

warming and large increases in the surface areas occupied by permafrost, he found that the

occurrence of extreme cold air outbreaks was significantly reduced by the lack of snow cover.

Alexander et al. (2010) looked at the impacts of changes to snow cover expected to occur

due to greenhouse gas forcing over the span of a century. Reductions in snow cover and

snow depth warmed surface air temperatures in the Northern Hemisphere by 1◦-3◦C during

spring and fall seasons. Tropospheric temperatures warmed by as much as 0.6◦-0.7◦C, and

dynamical responses were identified in the troposphere and stratosphere.

Changes in snowfall at higher north latitudes may impact freshening of the North At-

lantic Ocean and the strength of the Atlantic Meridional Overturning Circulation. In the

central Arctic, surface precipitation is predominantly snow, while over the North Atlantic

(and presumably over land surfaces at similar latitudes), surface precipitation varies between

rain and snow depending on season (Clark et al., 1996) but is dependent on precipitating ice

aloft. Peterson et al. (2006) attributed more than half of the cumulative freshwater input

anomaly in the Arctic and high-latitude North Atlantic Oceans over the previous fifty years

to increases in net precipitation (precipitation minus evaporation) over land and oceans.

The increases from these sources, estimated at 20,000 km3, significantly exceeded the esti-

mated contributions from glacial melt (2000 km3) and also exceeded the contribution from

reductions in sea ice (15,000 km3).

An accurate understanding of snow microphysical properties and the processes that pro-

duce snow is essential for accurately modeling snow and assessing the susceptibility of snow

to future climate perturbations. Representations of these processes in mesoscale models
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and higher-resolution climate models use parameterizations that in turn depend on vari-

ous assumptions about snow microphysical properties. As an example, single-moment bulk

microphysical schemes may prognose snow mass mixing ratio, and rely on assumed values

for the snow size distribution intercept parameter and snow particle density in order to

diagnose other microphysical properties like slope parameter or total number concentra-

tion. In many cases, the assumed values are based on mid-latitude observations, and the

broader applicability of the assumptions, especially to high-latitude regions where snowfall

is the dominant form of precipitation, is not clear. Morrison and Pinto (2006) found that

treatments of snow number concentration in microphysical schemes with assumptions based

on mid-latitude observations were inadequate for simulating long-lived mixed-phase stratus

common to the Arctic.

The microphysical processes that produce snow and control its properties (e.g., depo-

sitional growth, riming, aggregation, collisional breakup) are linked to vertical transport

plus vertically-varying temperature and humidity. Changes in snow size distributions with

height, observed using airborne in situ measurements, have been interpreted as signatures

of these microphysical processes (e.g., Lo and Passarelli, 1982). Retrieved profiles of mi-

crophysical properties have potential use for evaluating the parameterizations of these pro-

cesses. Useful evaluations require an understanding of the variability of these properties

and the uncertainties inherent in the retrieved quantities.

The launch of CloudSat in April, 2006 made available vertical profiles of 94 GHz radar

reflectivity observed at latitudes from 82◦N to 82◦S. While designed as a cloud radar, scatter-

ing by precipitation-sized ice particles is significant at 94 GHz. The CloudSat observations

are made at near-nadir, with a footprint of approximately 1.7 km along-track by 1.4 km

cross-track (Stephens et al., 2008; Tanelli et al., 2008). The spatial sampling is not suit-

able for global mapping of surface snowfall, but the vertically-resolved observations, the

high spatial resolution and the range of latitudes observed make CloudSat a potentially

important platform for the study of snow microphysical properties and processes. With

appropriate consideration of sampling statistics, CloudSat observations may also have use

in making longer-term (seasonal to annual) estimates of snowfall accumulations.
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Retrievals may treat these microphysical properties implicitly or explicitly. This dif-

ference is encapsulated in the forward model - the component of the retrieval algorithm

that relates the snowfall rate or microphysical state x to the observations y. Examples of

retrievals for which the microphysical properties are implicit include those that use precal-

culated Ze-S relationships (Matrosov, 2007; Liu, 2008a; Kulie and Bennartz, 2009) or that

use a database of atmospheric columns containing vertically-distributed hydrometeors for

which x and y have been precalculated (Skofronick-Jackson et al., 2004; Noh et al., 2006).

Examples for which the representation of microphysical properties are explicit include those

that use a physically-based forward model to relate y to x, then apply techniques to invert

this relation (e.g., Grecu and Olson, 2008).

The primary difficulty of using explicit microphysics is the complex relation between

the microphysical state x and the observed quantities y. For radar reflectivity observa-

tions, the relevant physical quantities are the size-varying number concentration, backscat-

ter and extinction cross-sections of the snow particles. The backscatter and extinction

cross-sections can be related to particle mass and shape. In order to calculate snowfall rate,

the horizontally-projected areas of the particles, which are also shape-dependent, are needed

as well (Mitchell and Heymsfield, 2005). Particle shape varies widely over the range from

small pristine particles to large aggregates. With the simplest of representations for these

size-dependent quantities (exponential size distributions, power laws for mass and area as

functions of particle size, and assumed shape), the number of unknown microphysical pa-

rameters in a single radar bin greatly exceeds the number of measurements, resulting in a

significantly underconstrained retrieval problem.

Techniques exist for dealing with such underconstrained problems. Generally, these

techniques involve the use of a priori information about the microphysical properties in a

Bayesian probabilistic framework. For retrievals using explicit microphysics with physical

forward models, the a priori information can also be treated explicitly using variational

techniques such as optimal estimation (Rodgers, 2000). With this approach, the a priori

information about the microphysical properties is represented using probability density

functions (PDFs) which describe the expected values for these properties, their variances,

and their covariances. These PDFs become part of a cost function which is then minimized
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to obtain a posterior PDF describing the expected values and uncertainties for the retrieved

state.

The a priori microphysical information needed for the CloudSat retrieval includes snow

particle mass and horizontally-projected area, which together determine fallspeed and a

particle’s contribution to snowfall rate. These properties are often expressed using power

laws on particle size (Mitchell, 1996), and the coefficients and exponents of the power laws

function as microphysical parameters. Determining these parameters has typically involved

analysis of single-particle observations (e.g., Mitchell et al., 1990; Heymsfield and Westbrook,

2010), or bulk approaches in which particle size distributions are observed and related to

an integral property of the distribution like accumulated precipitation or radar reflectivity

(e.g., Brandes et al., 2007). Few such studies evaluated mass and area parameters simul-

taneously, so physical consistency among area and mass parameters has not been assured,

and information regarding covariances between the parameters, which can be important

retrieval constraints, has been lacking. Especially for the single-particle studies, sample

sizes have been small and the studies have been performed primarily in mountain locations,

limiting the characterization of uncertainties in the estimated parameters.

Appropriate multi-sensor observations may help determine these parameters, and such

suites of observations are becoming more common as elements of snow-focused ground vali-

dation campaigns associated with satellite observing missions. These campaigns can provide

nearly colocated measurements of bulk properties such as precipitation rate and radar reflec-

tivity at multiple wavelengths, along with size-resolved observations such as snow particle

number concentration and fallspeed. Optimal estimation is also well-suited to problems in

which multi-sensor observations are used to determine a state defined by multiple parame-

ters. Optimal estimation produces estimates of the expected values for the state variables as

well as their variances and the covariances between them. The simultaneous determination

of multiple parameters related to mass and horizontally-projected area ensures their phys-

ical consistency, and the automated nature of most of the relevant measurements ensures

substantial sampling during snowfall events. While the locations at which ground valida-

tion campaigns have been conducted are limited, the potential exists for such campaigns to

observe varied locations and snow regimes.
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1.1 Objectives and outline

The work presented in this study focused in two areas. In the first area, an effort was made

to improve the characterization of snow microphysical properties and their uncertainties.

A novel optimal estimation retrieval scheme was developed which estimates detailed snow

microphysical properties using intensive ground-based observations of snowfall. In this re-

trieval, observations of snowfall rate, snow particle size distribution, size-resolved fallspeeds

and 9.35 GHz radar reflectivity are used to estimate the parameters of power laws describ-

ing particle mass and horizontally-projected area as functions of particle size. The retrieval

results are expressed in terms of a PDF which defines the expected values and uncertainties

for these parameters. This snow microphysics retrieval was applied to four snowfall events,

two involving stratiform snowfall and two involving lake effect snow, from a ground valida-

tion campaign (the Canadian CloudSat/CALIPSO Validation Project, or C3VP; Hudak et

al., 2006a) held in southern Ontario in 2006-2007.

For this first part, the observations used for the snow microphysics retrieval are described

in Chapter 2, followed by a description of the retrieval method and the necessary a priori

estimates of the state to be retrieved in Chapter 3. Next, the uncertainties for the multi-

sensor observations and their forward models are derived in Chapter 4. Finally, the retrieval

is applied first to synthetic test cases which are used to evaluate the retrieval performance,

then to actual observations from C3VP with the results presented in Chapter 5.

In the second area, the objective was to exploit the capabilities of CloudSat by de-

veloping and evaluating a physically-based retrieval with explicit microphysics for use with

vertical profiles of 94 GHz radar reflectivity. This retrieval was formulated using optimal es-

timation with a priori constraints to address the underconstrained nature of the problem. A

priori constraints on microphysical properties were constructed using results from the snow

microphysics retrieval, along with other surface and aircraft-based in situ observations of

snow from C3VP. The snow microphysics retrieval results were also used to construct radar

scattering models that were physically consistent with the a priori microphysical proper-

ties. Evaluations of the retrieval were performed by applying it to an orbit of CloudSat

observations coincident with a C3VP snowfall event, and by applying it to observations
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from a surface-based 95 GHz radar for which coincident snowfall rate and microphysical

observations were available.

For this second part, models for particle microphysics and scattering properties are

constructed in Chapter 6 using the results from the snow microphysics retrieval, then the

CloudSat retrieval is defined in Chapter 7. This definition includes the formulation of the

retrieval, an evaluation of the measurement and forward model uncertainties, a description

of the method by which snowy scenes are identified, an assessment of the necessary a priori

estimates, and a description of the method by which snowfall rates are calculated from the

retrieved state. In Chapter 8, the retrieval is applied, first to observations from a ground-

based 95 GHz radar, then to CloudSat observations. The results from the application to the

ground-based radar observations are evaluated using coincident snowfall rate observations

and information content metrics are determined. Using the results from the application to

CloudSat observations, the relation between snowfall rate and radar reflectivity is examined

and compared to results from other studies. Additionally, for a portion of the CloudSat

observations associated with a C3VP snowfall event, the retrieval results (size distribution

parameters, snowfall rates and ice water contents derived from the retrieval results) are

compared against surface and in situ aircraft observations. Finally, the principal results are

summarized along with prospects for future work in Chapter 9.
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Chapter 2

C3VP Events

During four intensive observing periods (IOPs) in Northern Hemisphere winter 2006/07,

an extensive set of surface- and aircraft-based in situ and remote sensing observations of

clouds and precipitation were collected in south-central Ontario as part of the Canadian

CloudSat/CALIPSO Validation Project (C3VP). C3VP was a multi-agency field project,

hosted by Environment Canada and held jointly with the Tenth Cloud Layer Experiment

(CLEX-10). These observations were coordinated with passage of the National Aeronau-

tics and Space Administration (NASA) Earth Observing System afternoon constellation

(or ”A-Train”) of satellites over the operations area. The primary objectives of the experi-

ment were to provide high-quality observations that would allow validation of CloudSat and

CALIPSO data products and verification of the physical formulations used in the retrieval

algorithms (Hudak et al., 2006a). An enhanced surface measurement site was established

at the Meteorological Service of Canada’s (MSC) Centre for Atmospheric Research Exper-

iments (CARE) at Egbert, Ontario, approximately 80 km north of Toronto. Participants

included MSC, NASA through the CloudSat and CALIPSO science organizations and the

Global Precipitation Mission Ground Validation activity, and the United States Department

of Defense Center for Geosciences/Atmospheric Research.
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2.1 Observations

In addition to CARE’s normal instrumentation (a full complement of meteorological instru-

ments, dual frequency depolarization lidar, and 915 MHz wind profiler), the facility was

augmented with an extensive array of surface observing and remote sensing instruments,

a partial list including disdrometers, snowfall precipitation gauges, a vertically pointed 95

GHz (W-band) polarization radar, a vertically-pointed 9.35 GHz (X-band) Doppler radar, a

scanning multi-frequency Doppler polarization radar, profiling microwave radiometers, and

10 GHz Precipitation Occurrence Sensor System (POSS). The site and surrounding region

were also observed by MSC’s C-band polarimetric scanning Doppler radar located at King

City, Ontario, about 34 km from CARE.

2.1.1 Particle size and fallspeed

A number of instruments installed at CARE provided observations of particle size and

fallspeed, including Colorado State University’s 2-D Video Disdrometer (2DVD) (Thurai

and Bringi, 2005) and the NASA Snow Video Imager (SVI) (Newman et al., 2009). The

2DVD uses two horizontal light sheets, parallel but offset in the vertical, and each light

sheet illuminates a horizontal array of photodetectors in a line scan camera. As a particle

falls through a light sheet, it shadows some of the photodetectors, and the array is scanned

rapidly to determine which photodetectors are shadowed. A stack of horizontal shadow

images of the particle results from the scans and from this stack, information about the

horizontal dimensions of the particle can be obtained. The lightsheets are orthogonal, so

particles are observed from two different directions (Hanesch, 1999; Kruger and Krajewski,

2002; Schönhuber et al., 2007).

If a particle is observed by both cameras and the corresponding images can be matched,

the time interval between the two images can be used to determine the particle’s fallspeed.

The irregular shape of snow particles complicates image matching, since the orthogonal

views will see two distinct sides of a particle and the particle’s orientation may change.

Hanesch (1999) defined a matching algorithm which applies a number of criteria to match

particle images. The criteria are based on the vertical extent of the particles, the ratio of
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the widths observed by the two cameras, the ratio of maximum width to height, and an

allowed range of fallspeeds. Huang et al. (2010) used similar criteria, but applied weights

to each criterion and the best match was chosen based on the image whose weighted sum

is a maximum. The fallspeeds used in this work are the results of Huang et al.’s analysis of

the 2DVD observations.

Given particle sizes and fallspeeds, the particle size distribution can be determined as

N(Di) =
1

∆t∆Di

j=Npi∑

j=1

1

Ajvi,j
, (2.1)

where i is the index of the size distribution bin, Di is the characteristic particle size for the

i-th bin, ∆t is the sampling time interval, ∆Di is the width of the i-th size bin, Npi is the

number of particles in the i-th size bin, Aj is the horizontal measurement area associated

with the j-th particle, and vi,j is the fallspeed of the j-th particle in the i-th size bin. If

matching does not succeed, however, the unmatched particle cannot be used in the size

distribution calculation since fallspeed is not known and the particle’s contribution to the

size distribution via (2.1) cannot be determined (Hanesch, 1999; Huang et al., 2010). The

resulting data loss can lead to errors in the estimated size distribution.

To avoid these errors, the size distributions used for this work were obtained from a

different instrument, the Snow Video Imager (SVI), located adjacent to the 2DVD. The

SVI uses a video camera to capture 2D images of particles and so directly observes a 3D

volume defined by the camera’s 2D field of view and the depth of field (Newman et al.,

2009). For a single image frame, the size distribution is

N(Di) =
1

∆Di

j=Npi∑

j=1

1

Ai,jLi,j
, (2.2)

where Ai,j is the area of the camera field of view and Li,j is the depth of field associated

with the j-th particle in the i-th size bin. Npi is the total number of particles in the size

bin and ∆Di is the bin width. Both the field of view and depth of field vary with particle

size. Typically, multiple image frames contribute to an observed sized distribution, and the

total sample volume increases with each frame, giving
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N(Di) =
1

Nf∆Di

k=Nf∑

k=1

j=(Npi)k∑

j=1

1

AijkLijk
, (2.3)

where Nf is the number of frames and (Npi)k is the total number of particles in the k-th

image frame and the i-th bin. The SVI, then, provides an estimate of size distribution which

is independent of particle fallspeed observations.

Various definitions of D may be used with each of these instruments. For the SVI, since a

two dimensional image is obtained for each particle, D may be determined in several different

ways (Newman et al., 2009). Each image pixel represents dimensions of 0.05 mm by 0.1 mm,

nominally, so the projected area of each particle can be calculated and D can be found, for

example, as the diameter of an equal area circle. Alternately, the maximum horizontal width

can be used or the feret diameter, the length between two points at maximum separation on

the perimeter of the image. For this work, the SVI size distributions were based on the feret

diameter. For the 2DVD, a common approach is to estimate the volume of the observed

particle, then report the diameter of an equal-volume sphere, Dapp (Kruger and Krajewski,

2002; Huang et al., 2010). As described above, each orthogonal camera produces a stacked

series of line scan shadow images as a particle falls through its field of view. Provided

images can be matched, fallspeed is known and the vertical dimension of each scan line can

be determined. From this, the volume of the particle can be estimated by assuming each

scan line represents an ellipsoidal disk whose axes are equal to the lengths of the scan lines

observed by each camera (Kruger and Krajewski, 2002). For purposes of these retrievals,

an estimate of the maximum dimension DM of the particle is more useful. The rematched

2DVD data (Huang et al., 2010) provides the maximum width of each of the two scan line

images for each particle. The particle size is then taken as the larger of these two maximum

widths.

Each 2DVD line scan camera uses an array of photodetectors to map a horizontal dis-

tance of about 10 cm, giving a horizontal resolution of 0.172 mm (Camera A) and 0.1725

mm (Camera B) for this particular instrument. Vertical resolution depends on the fallspeed

of the particle and the frequency at which the line scan cameras are sampled. For this in-

strument, a fallspeed of 10 m s-1 gives a vertical resolution of 0.195 mm (Thurai and Bringi,
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2005). Vertical resolution would be proportionately finer at slower fallspeeds. As noted

above, the resolution of the SVI images is 0.05 mm x 0.1 mm. The SVI size distributions

are reported in discrete size bins of width 0.25 mm for sizes from 0 to 26 mm at 1 min

resolution, but observations of particles smaller than 0.3 mm are discarded during the SVI

image processing (Newman et al., 2009).

2.1.2 Radar reflectivity

Radar reflectivities were measured by both the McGill University Vertically Pointing X-band

(VertiX) Doppler radar (Fabry and Zawadzki, 1995) and the MSC King City radar (WKR)

(Hudak et al., 2006b). The VertiX operates at 9.35 GHz with a 2◦ beamwidth and was

configured with 37.5 m vertical resolution. Measurements were reported at 10 s intervals.

It was located at CARE in proximity to other snowfall measuring instruments. During the

first and second IOPs, the VertiX suffered degraded performance due to a hardware failure.

The VertiX was taken out of service for repairs after the second IOP and returned to service

near the end of the third IOP. Because of ground clutter, range bins below approximately

350 m above ground level (AGL) were typically not usable under snowfall conditions.

The King City radar is a C-band dual polarization scanning Doppler radar located

just north of Toronto and used for both operational and research purposes (Hudak et al.,

2006b). To provide near-surface observations in the vicinity of the CARE site during C3VP,

the radar performed frequent plan position indicator (POLPPI) scans at a 0.2◦ elevation

angle during snow events. This elevation angle placed the beam centerline approximately

320 m AGL at the CARE site. These scans used a range resolution of 125 m and azimuth

resolution of 0.5◦, but the data used in this study were averaged over a 2-km range interval

and 2◦ azimuth interval (approximately 1.1 km) located over the CARE site.

2.1.3 Snowfall rate

For snowfall, the principal precipitation observations at the CARE site were made by a

manual Tretyakov gauge installed within a vertical octagonal double fence and operated

by the Canadian Climate Centre. This configuration, referred to as a double fence in-

tercomparison reference (DFIR), is recognized as producing high-quality measurements of
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snow accumulation and was selected by the World Meteorological Organization (WMO) as

a practical secondary standard for use in the WMO intercomparison of solid precipitation

measurements (Goodison et al., 1998). At CARE, observations were recorded at 1300 and

2100 UTC (0800 and 1600 local time); however, precipitation measurements with higher

time resolution were required for the retrievals performed in this work.

Several other instruments operating at CARE during C3VP provided estimates of pre-

cipitation rates at higher time resolution, including a Vaisala FD12P and a Precipitation Oc-

currence Sensor System (POSS). Rates from both the FD12P and the POSS were recorded

at 1-minute resolution. The FD12P uses an optical scattering sensor along with a heated ca-

pacitive sensor to estimate precipitation amounts (Vaisala, 2002). The POSS is a bistatic X-

band Doppler radar which was originally developed by the Meteorological Service of Canada

as an automated instrument for detecting and typing precipitation (Sheppard, 1990). Shep-

pard and Joe (2008) have recently developed an algorithm by which the POSS can be used

to estimate precipitation rate. The algorithm relies on scattering properties modeled using

spheres and oblate spheroids for snow particles and assumes size distributions follow Sekhon

and Srivastava (1970). Rates from the FD12P were used for the retrievals. Lacking observa-

tions from replicate FD12P instruments, comparisons between the FD12P and POSS rates

were used to estimate measurement uncertainties for the FD12P rates (see Section 4.1.2).

To correct for biases in the FD12P rates, the FD12P rates were adjusted so that the

resulting accumulations matched those recorded by the DFIR. For each snowfall event used

in this study, the DFIR accumulation was calculated from the 2100 UTC measurement

the day before the event to the 1300 UTC measurement the day after the event, and the

FD12P accumulations were calculated over the same time period. The ratio of these two

accumulations was used to scale the FD12P rates for the event. The FD12P consistently un-

derestimated accumulations relative to the DFIR. The accumulation ratios (DFIR/FD12P)

ranged from 1.15 to 1.98.
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2.2 Snowfall events

The analyses presented here focus on four snowfall events which occurred during the winter

2006/07 field operations. These events were selected mainly because of completeness of the

required data, but also because they represent a modest range of snowfall conditions. Daily

operations logs from CLEX-10 (CIRA, 2009) along with comments from observers on the

ground at CARE provide details about the characteristics of three of the cases. Event A (6

December 2006) was associated with a weak low passing northeastward over Ontario that

produced snowfall at CARE mainly between about 1200 and 1530 UTC. In the vicinity of

CARE, aircraft observations showed liquid phase near cloud top with mixed phase and ice

below. The snowfall at CARE was described as light and dry early in the day, transitioning

to moderate wet snow later. VertiX echo top heights were about 4 km AGL during the

precipitation and the SVI size distributions showed tails extending to 4 mm - 8 mm (Figure

2.1). Temperatures during the most significant snowfall period were near freezing. The

24-hour snowfall accumulation for the event was 3.2 mm liquid water equivalent (LWE).

Event B (7 December 2006) consisted of lake effect snow squalls that resulted from

the cold air mass and northwesterly winds that followed the system of the previous day.

CARE received snowfall over most of the day, with a 24-hour accumulation of 10.2 mm

LWE. Temperatures were near freezing early in the day and decreased with time, reaching

255 K at the day’s end (Figure 2.2). The VertiX echo top heights were shallower than the

previous day, varying from 1 km to 3 km AGL. The SVI size distributions were similar to

those of the previous day but more variable over time. A period after 2100 UTC showed

high concentrations of particles smaller than 2 mm and was associated with the coldest

temperatures of the day.

Event C (27-28 January 2007) was a second lake effect snow event, which resulted as

a warm front near CARE shifted to the south during the evening of 27 January and cold

northwesterly winds entered the area. Snowfall occurred mainly between 0100 and 0400

UTC, at temperatures between 267 and 270 K. Snowfall rates at CARE were initially light,

but rapidly increased as a heavy snow band lingered over the site (Figure 2.3). Extremely

large snowflakes, near 10 mm in diameter, fell during the periods of heavy snow and visibility
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was near zero. The SVI size distributions showed particles with sizes up to 10 mm early in

the event. Total accumulations for the day were 4.6 mm LWE.

The final event (14 February 2007, Event D) occurred between the third and fourth IOPs,

and details of the conditions on the surface and aloft are lacking. The system producing this

snowfall was significantly deeper than the other three events, with VertiX echo top heights

extending to about 6 km AGL (Figure 2.4). Observations from precipitation gauges show

that snowfall occurred largely throughout the day and produced accumulations of 8.3 mm

LWE. This was also the coldest event, with temperatures ranging from 256 to 261 K during

the snowfall. The SVI size distributions were extremely narrow compared to the earlier

events, with the largest detected particles ranging in size from 2 mm to 3 mm for much of

the event. The characteristics of the four events are summarized in Table 2.1.

The causes for the large DFIR/FD12P accumulation ratios for events C and D are not

clear. The FD12P uses both an optical sensor and a heated capacitive sensor to estimate

precipitation rate for snow. The signal from the capacitive sensor is sensitive to the water

content of the snow and is used to compute a scale factor with which the optical estimate

of precipitation rate is adjusted, but the capacitive sensor is subject to undercatch (Vaisala,

2002). For event C, however, winds were light (Figure 2.5), suggesting that undercatch

should not have been significant. Winds were stronger for event D, generally below 5 m

s−1, but ranging as high as 6 m s−1 for short periods. Additionally, the size distributions for

event D suggest high concentrations of small particles were present (Figure 2.4). For this

event, undercatch by the Vaisala capacitive sensor may have been significant and biased the

FD12P precipitation rate estimates low.
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Table 2.1: Properties of C3VP cases. For Event B, echo top heights in parentheses are
for intermittent lake effect snow bands.The fraction of day snowing represents the fraction
of time for which the surface observations of precipitation rate were nonzero, while the
time ranges show the approximate time period over which retrievals were performed. The
maximum snowfall rates are evaluated using the 1-minute FD12P rates, rescaled to match
DFIR accumulations. Maximum values of Ze are taken from the 10-second VertiX data
for range bin 13 (approximately 450 m AGL). +The retrievals for 28 Jan 2007 also include
several results from near 20:37 UTC.

Event A B C D

Date 6 Dec 2006 7 Dec 2006 28 Jan 2007 14 Feb 2007

Fraction of day snowing 0.25 0.80 0.27 0.81

Max. rate, mm LWE h-1 2.7 5.2 5.9 3.3

Time, UTC 1230-1530 0000-2359 0100-0500+ 0130-1730

Max Ze, dB 21.3 25.5 28.8 19.7

Day accumulation, mm LWE 3.2 10.2 4.6 8.3

DFIR/FD12P accumulation ratio 1.15 1.29 1.68 1.98

VertiX echo top height, km 4.0 1.75 - 3.0 2.5 6.0 - 3.0

(1.0 - 1.5)
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Figure 2.1: C3VP observations for event A. From top panel to bottom: VertiX reflectivity,
SVI size distributions, snow accumulations from various instruments, and the 2-meter air
temperature from the meteorological tower.
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Figure 2.2: C3VP observations for event B. Panels are as described for Figure 2.1.
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Figure 2.3: C3VP observations for event C. Panels are as described for Figure 2.1.

19



212
214
216
218
220
222
224
226

A
cc

u
m

u
la

ti
o

n
, m

m
 L

W
E

FD12P
FD12P, rescaled
POSS
USCRN Geonor
DFIR

-6 -3 0 3 6 9 12 15 18 21 24 27 30 33 36 39

Time, hours UTC

250
260
270
280

T
, K

Figure 2.4: C3VP observations for event D. Panels are as described for Figure 2.1.
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Figure 2.5: Wind speeds from the meteorology tower. Panels are labeled by event in the
upper right corner. The heavy vertical lines indicate the approximate start and stop times
for precipitation per Table 2.1.
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Chapter 3

The snow microphysics retrieval

method

Optimal estimation (OE) (Rodgers, 1976, 2000) is well suited to estimation problems with

multi-sensor observations. OE requires an explicit forward model that defines a functional

relationship between the observations and the quantities to be retrieved, or state variables.

This forward model is recognized as an approximation to the true physical relationship,

so forward model errors must also be quantified along with observational uncertainties.

A tenet of optimal estimation is that measurements are used to improve an inherently

uncertain, a priori knowledge of the state variables. Consequently, the a priori knowledge

of the state must be quantified. The following sections describe the development of these

three components (forward model, forward model and observation uncertainties, and a priori

state), following a general description of the optimal estimation method.

3.1 Optimal estimation method

Given a vector of observations y and a state vector x of unknown quantities to be retrieved

from the observations, a corresponding forward model F (x, b̃) is constructed which relates

x and y. The forward model may require other parameters, b̃, not to be retrieved, where

the tilde indicates that these parameters may be known imperfectly. The forward model

is typically an approximation of the true physical relation between x and y, and there are
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uncertainties associated with both the observations y and the parameters b̃. Allowing for

these uncertainties gives the statement of the forward problem:

y = F (x, b̃) + ǫ, (3.1)

where ǫ represents the total uncertainty, due both to measurement uncertainty and to

uncertainties in the forward model. These uncertainties may be due to both systematic and

random errors.

Prior information about the state vector may be available, e.g. in the form of expected

values xa and their covariances SSSa. It is desired to find the state x̂ which maximizes the

posterior conditional probability density function P (x | y). This is done by constructing

the cost function

Φ(x,y,xa) =
(

y − F (x, b̃)
)T

SSS
−1
ǫ

(

y − F (x, b̃)
)

+ (x − xa)
T

SSS
−1
a (x − xa) , (3.2)

and minimizing with respect to x, where SSSǫ is the covariance matrix representing the uncer-

tainties ǫ. If ǫ contains systematic errors which can be identified, it is desirable to correct

for them by adjusting the model or measurements and determining a corrected SSSǫ (Marks

and Rodger, 1993).

Provided the forward model is not excessively nonlinear, the vector x̂ which minimizes

the cost function can be found by Newtonian iteration:

x̂i+1 = x̂i +
(

SSS
−1
a + KKK

T

i SSS
−1
ǫ KKKi

)−1 [

KKK
T

i SSS
−1
ǫ

(

y − F (x̂i, b̃)
)

− SSS
−1
a (x̂i − xa)

]

, (3.3)

where KKK is the Jacobian of the forward model with respect to the state vector, and KKKi =

KKK(x̂i). Iteration continues until the covariance-weighted difference in successive state vector

estimates is much smaller than the number of state vector elements. At convergence, the

covariance of the solution x̂ is obtained as
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ŜSSx =
(

K̂KK
T

SSS
−1
ǫ K̂KK + SSS

−1
a

)−1
, (3.4)

where K̂KK = KKK(x̂). As a diagnostic test of the results, a χ2 statistic is calculated using the

retrieved state vector in (3.2). A value near Ny, the number of observations, suggests correct

convergence.

Along with the estimate of the state vector and its covariance, a number of other diag-

nostic quantities can be obtained from the optimal estimation results, chiefly the averaging

kernel matrix, or AAA matrix:

AAA =
(

K̂KK
T

SSS
−1
ǫ K̂KK + SSS

−1
a

)−1
K̂KK

T

SSS
−1
ǫ K̂KK. (3.5)

AAA gives the sensitivity of the retrieval to the true state and has elements of the form

AAA =
∂x̂

∂x
=














∂x̂1

∂x1
· · · ∂x̂1

∂xN

...
. . .

...

∂x̂N

∂x1
· · · ∂x̂N

∂xN














, (3.6)

where N is the number of state vector elements.

The role of AAA can be interpreted using a linearized representation of the departure of

the solution from the a priori,

x̂ = (III −AAA)xa + AAAx + GGGyǫ, (3.7)

where GGGy gives the sensitivity of the retrieval to the measurements. This representation

illustrates that the nearer is AAA to diagonal, the more directly a particular element of x̂ is

determined by its particular true state and a priori value. As an example, ignoring for a

moment the error terms ǫ, the first element of x̂ is given by

x̂1 =

(

1 − ∂x̂1

∂x1

)

x1,a −
∑

k=2,N

∂x̂1

∂xk
xk,a +

∂x̂1

∂x1
x1 +

∑

k=2,N

∂x̂1

∂xk
xk. (3.8)
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Provided AAA is diagonal, the summations vanish and

x̂1 =

(

1 − ∂x̂1

∂x1

)

x1,a +
∂x̂1

∂x1
x1. (3.9)

From this last expression it can be seen that as the partial derivative approaches unity, the

retrieved value is determined more completely by the true state rather than the a priori.

In the general case when AAA is not diagonal, an element of the retrieved state vector is a

blend of information from multiple elements of the true state vector and the a priori state

vector. From (3.7) then, one may estimate the degree to which elements of the state vector

are determined by the true state as opposed to the a priori.

The degrees of freedom for signal, ds, describes the number of independent quantities

provided by the measurements which are significant compared to the combined forward

model and measurement uncertainties. The degrees of freedom for signal can be shown to

be equal to the trace of the AAA matrix (Rodgers, 2000).

The Shannon Information Content, H, measures how much the measurements reduce

the uncertainty in the retrieved state in comparison to the a priori uncertainty in the state

(Rodgers, 2000):

H =
1

2
log2

∣
∣
∣SSSaŜSS

−1

x

∣
∣
∣ . (3.10)

When expressed using base-2 logarithms, the information content describes binary bits of

resolution provided by the measurements, suggesting that 2H distinct states can be resolved

(L’Ecuyer et al., 2006).

3.2 Forward model governing equations

For these retrievals, the observational constraints were provided by snowfall rate, radar

reflectivity, and fallspeeds. Snowfall rate is determined by the size distribution N(D),

particle masses m(D) and fallspeeds V (D) as

P =
1

ρliq

∫ Dmax

Dmin

N(D)m(D)V (D)dD (3.11)
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where P is in depth units (e.g., mm h-1 LWE) and ρliq is liquid water density. D is a

characteristic dimension of the particles and the integration limits assert that a finite range

of particle sizes contribute to snowfall rate. D may be defined in various ways, as maximum

horizontal dimension, equal-area diameter, or equal-volume diameter for example. For (3.11)

the particular choice of D is not significant, provided a consistent choice is used for defining

size distribution, mass and fallspeed.

For modeling the radar reflectivity factor, it can be assumed that scattering by snow

particles follows the Rayleigh approximation for spheres and that attenuation by snow par-

ticles and by atmospheric gases can be ignored at 9.35 GHz. For particles in the Rayleigh

regime, Atlas et al. (1953) showed that low density, irregularly shaped dry snow particles

can be treated as equal volume spheres to calculate radar scattering properties with small

error. This assumption is examined further in the discussion of forward model errors. Ma-

trosov (1998) gave estimates of attenuation by particles and gases under winter conditions.

Attenuation in dry snow was given as 0.001 dB km-1 for a snowfall rate of 2 mm h-1 LWE,

and that for water vapor and oxygen was given as 0.01 dB km-1. Both are insignificant

contributions to forward model error for the small ranges used in this work. The effective

radar reflectivity factor is then (Battan, 1973)

Ze =
Λ4

‖Kw‖2 π5
η, (3.12)

where Λ is the radar wavelength, Kw = (n2
liq−1)/(n2

liq +2) and nliq is the complex refractive

index of liquid water. The radar reflectivity η is

η =

∫ Dmax

Dmin

N(D)σbk(D)dD, (3.13)

where σbk(D) is the backscatter cross section. Given a snow particle of size D with mass

m(D), the diameter of an equal-volume sphere with the density of ice ρice is

Dev =

(
6m(D)

πρice

)1/3

. (3.14)
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Dev is not a physical dimension of the particle, but is the diameter of a solid-ice sphere

whose volume is equal to the actual volume of the nonspherical particle. The density ρice is

that of solid ice, 0.917 g cm−3. For scattering in the Rayleigh regime by spherical particles,

the backscatter cross section for a particle of size Dev is (Battan, 1973)

σbk =
‖Ki‖2 π5

Λ4
D6

ev, (3.15)

where Ki = (n2
ice − 1)/(n2

ice + 2) and nice is the complex refractive index of ice. Combining

the relations (3.12 - 3.15) gives the equivalent reflectivity factor (hereafter, radar reflectivity,

or reflectivity) as

Ze =
36

π2ρ2
ice

‖Ki‖2

‖Kw‖2

∫ Dmax

Dmin

N(D) [m(D)]2 dD. (3.16)

As in (3.11), the particular choice of D is not significant provided a consistent choice is used

for both the size distribution and mass.

Fallspeeds are often represented as power functions of particle size, but such represen-

tations give limited information about the microphysical properties of the particles, and

the parameters of such functions are specific to the particular observations from which they

were derived (Heymsfield and Westbrook, 2010). Alternately, fallspeeds may be described

using explicit, physically-based relations (e.g., Bohm, 1989; Mitchell, 1996), which is the

approach taken here. As described by Mitchell (1996), the dimensionless Best, or Davies,

number X relates the Reynolds number Re and drag coefficient Cd for a falling particle

and is expressed in terms of the particle mass and the particle area projected normal to the

direction of motion:

X(D) = CdRe2 =
2D2ρa

µ2
g

m(D)

Ap(D)
, (3.17)

where Ap(D) is the projected area of the particle, ρa is the air density, µ is the viscosity,

and g is gravitational acceleration. Treating air as an ideal gas allows density and viscosity

to be calculated from air temperature and pressure via Sutherland’s formula (Sutherland,

1893).

Arguments based on boundary layer theory for a blunt body (Abraham, 1970) also

provide a relation between Re and Cd:
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Cd = C0

(

1 +
δ0

Re1/2

)2

, (3.18)

where δ0 is a unitless constant related to boundary layer thickness and C0 is the limiting

drag coefficient under conditions dominated by pressure drag. This expression is obtained

by considering the effective projected area to be the true projected area augmented by

the attached boundary layer. Bohm (1989) estimated values of C0 = 0.6 and δ0 = 5.83.

Combining (3.17) and (3.18) gives an expression for Re in terms of the Best number which,

as shown in (3.17), is dependent on particle mass and projected area:

Re(D) =
δ2
0

4





(

1 +
4
√

X(D)

δ2
0

√
C0

)1/2

− 1





2

. (3.19)

Finally, the fallspeed can be found from

V (D) =
Re(D)µ

ρaD
. (3.20)

Note that D appears explicitly in the expressions for V (D) and X(D), making these ex-

pressions sensitive to the choice of D. For fallspeeds of nonspherical ice particles, D is taken

typically to be the maximum dimension of the particle or the maximum dimension of the

horizontal projection of the particle.

Mitchell and Heymsfield (2005) suggested a parameterized modification to the Re − X

relation to accommodate larger particles like aggregates, arguing that the porous nature of

aggregates leads to enhancement of the boundary layer effect described by Abraham (1970):

Re(D) =
δ2
0

4





(

1 +
4
√

X(D)

δ2
0

√
C0

)1/2

− 1





2

− a0 [X(D)]b0 , (3.21)

with a0 = 0.0017 and b0 = 0.8. They found the parameterization effective for X < 108.

This relation is used with (3.17) as the primary model for fallspeed (hereafter referred to

as MH2005) in this work. The modification results in somewhat smaller Reynolds numbers

for aggregates, which have large Best numbers. At smaller Best numbers, the relation is

minimally changed from that of Mitchell (1996), and so should be adequate for pristine
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particles as well. See Figure 1 of Mitchell (1996) and Figure 2 of Mitchell and Heymsfield

(2005).

Recently, Heymsfield and Westbrook (2010) proposed a modified Best number which

appeared to better reproduce fallspeeds for particles over a wide range of area ratios, defined

as the ratio of Ap to the area of a circle of diameter D,:

X(D) =
2D2ρa

µ2
g

m(D)

Ap(D)
[rA(D)]1/2 , (3.22)

where rA(D) is the area ratio. Heymsfield and Westbrook also made estimates of C0 and

δ0, applying fits of the form of (3.18) to observations of a range of particles, and found

C0 = 0.35 and δ0 = 8.0. A fallspeed model using this modified Best number along with

(3.19) (hereafter referred to as HW2010) is also tested in this work. For HW2010, fallspeed

is then dependent on particle size D, the particle mass, the projected area, air density and

air viscosity, as well as the parameters δ0 and C0. MH2005 has additional dependencies on

a0 and b0.

3.3 Forward model implementation

To complete the forward model based on the relations described above, the variation of both

mass and horizontally-projected area with D must be represented. Power laws were used

to describe these mass-dimension and area-dimension relations (e.g. Locatelli and Hobbs,

1974; Mitchell, 1996):

m(DM ) = αDβ
M , (3.23)

Ap(DM ) = γDσ
M . (3.24)

DM denotes the maximum dimension of the particle, consistent with the requirements of

the fallspeed relations described above. These values for α, β, γ, and σ apply to the full

range of particle sizes, in contrast to the values used by Mitchell (1996) which are specific

to particular size ranges and particle habits. The values in this work should then be seen

as representative values for particles of all sizes. Particle masses are capped to be no more
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than that of an ice sphere of the same diameter. Similarly, particle areas are capped to be

no more than that of a circle of the same diameter. The coefficients and exponents α, β, γ,

and σ are then elements of the state vector x to be retrieved. Because the coefficients α and

γ are expected to be significantly more variable than the remaining state vector elements

(Mitchell, 1996), they are transformed to ln(α) and ln(γ) in the retrieval. The values for

α, β, γ, and σ in this work are in cgs units, with DM in centimeters and α and γ taking

appropriate units, depending on the power of DM , to give mass in grams and area in square

centimeters.

Care must be taken, however, in interpreting the D values associated with the disdrom-

eter observations. The disdrometers whose observations were used for this study observe

particles in elevation view rather than plan view, so dimensions are obtained from images

projected into the vertical rather than horizontal plane. This viewing geometry makes the

measurement of a particle’s maximum horizontal dimension dependent on the rotation of the

particle about the vertical axis and the canting angles. Additionally, the D values reported

by various disdrometers can differ considerably (e.g., equal area D, equal volume D, max-

imum scan line width, maximum horizontal extent) because of differences in measurement

and data processing techniques.

Depending on the shape and orientation of a particle, these dimensions can be quite

different from the true maximum dimension DM . Figure 3.1 shows the ratio, denoted as

φ, of the disdrometer-observed dimensions Dobs to the true DM obtained from simulations

for a range of particle shapes and orientations. Details of the simulations are described in

Appendix A. In extreme cases, Dobs may be as small as 30% of DM , but a more reasonable

estimate, based on judicious choice of measurement technique and on expected particle

shape, is about 80%.

Potter (1991) described the effects of misinterpreting D in the context of bulk micro-

physics parameterizations. For retrievals, misinterpreting these dimensions can cause signif-

icant forward model biases that may cause retrieval failure or erroneous convergence (again,

see Appendix A). To correct for these biases, one might make an a priori estimate of φ and

include it as an element of the forward model parameter vector b̃ with correct accounting

of its uncertainty in the model-measurement error covariance matrix SSSǫ. Alternately, one
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Figure 3.1: Values of φ, the ratio of D observed by SVI and 2DVD disdrometers to true
maximum dimension DM .
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may include φ as a variable in the state vector and allow it to be retrieved (Rodgers, 2000).

This latter approach was used for these retrievals. The variable φ, assumed to be constant

over all sizes in the observed distribution, is introduced such that

DM ≈ Dobs/φ

N(DM ) ≈ φN(Dobs). (3.25)

A single value of φ is applied to all particle sizes in the observed distribution. In essence,

then, φ is a representative mean value. The resulting state vector to be retrieved is then

x =
























ln(α)

β

ln(γ)

σ

φ
























. (3.26)

Applying the mass-dimension power law to (3.16) gives the forward model for radar reflec-

tivity

Ze =
α236

π2ρ2
ice

‖Ki‖2

‖Kw‖2

∫ Dmax

Dmin

N(DM )D2β
M dDM , (3.27)

subject to the cap on particle mass described above. Similarly, applying the mass and area

power laws to (3.11) gives the forward model for snowfall rate

P =
α

ρliq

∫ Dmax

Dmin

N(DM )Dβ
MV (DM , α, β, γ, σ)dDM (3.28)

The corresponding observation vector consists of the radar reflectivity, snowfall rate,

and particle fallspeed observations. From (3.17) and (3.22) it is apparent that fallspeeds
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are dependent on the ratio of mass to area:

m(DM )

Ap(DM )
=

α

γ
Dβ−σ

M . (3.29)

It would be possible to determine the two fallspeed parameters α/γ and β−σ independently

of the optimal estimation routine, using just the fallspeed observations. In this approach,

which is not used here, an initial retrieval would be performed to fit α/γ and β −σ to a set

of fallspeed observations. Then these values would be used as observations in the optimal

estimation retrieval, which would then determine the mass-dimension variables α and β.

Alternately, the fallspeed parameters could be determined simultaneously with the mass-

dimension parameters as part of the optimal estimation routine. This alternate approach

is desirable, since it allows the the fallspeed observations and their uncertainties to be

considered simultaneously with the observations of snowfall rate and radar reflectivity and

their uncertainties in determining the optimum retrieved state.

Although it would be possible to include in the observation vector y all the observed

particle fallspeeds, this approach would most likely give excessive weight to fitting of the

fallspeeds. Instead, mean fallspeeds and their associated standard deviations were computed

for three predetermined size ranges: V0: 4.0 +/- 0.50 mm; V1: 2.0 +/- 0.25 mm; and V2:

1.0 +/- 0.25 mm. These ranges were chosen on an ad-hoc basis to describe the shape of a

typical V (D) curve with enough separation in size to minimize redundant information and

to minimize the number of retrievals which could not be performed due to a lack of large

particle fallspeed observations. The wider bin at the largest size was needed to ensure an

adequate number of particle in most of the retrievals. A more detailed treatment that would

examine the information content for various parts of the V (D) curve could be beneficial but

is beyond the scope of this work.

Given the three mean fallspeeds, three observations are constructed. V0 is used as the

first observation. The remaining two observations are constructed as fallspeed differences:
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∆V1 = V0 − V1 and ∆V2 = V0 − V2. The resulting vector of observations is then

y =
























Ze

P

V0

∆V1

∆V2
























. (3.30)

Note that, although the size distribution is also observed by the SVI, it is considered part of

the forward model parameters, b̃, since it is independent of the state vector and information

about the size distribution is not retrieved. These size distribution parameters include both

the values of the size distribution N(Dobs) itself and the values of the independent variables

Dobs on which the size distribution is defined.

3.4 a priori estimates of the state

A priori knowledge of the microphysical state is encoded in the retrieval via the a priori state

vector, xa, and the a priori covariance matrix, SSSa. Together, these two variables describe

the prior knowledge of the PDF of the state vector, which is in the form of a multivariate

normal distribution. Given the state vector (3.26), the corresponding a priori state vector

is

xa =













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
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

(3.31)
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and the a priori covariance matrix is

SSSa =







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
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


s2(ln(αa)) s(ln(αa), βa) s(ln(αa), ln(γa)) s(ln(αa), σa) s(ln(αa), φa)

s2(βa) s(βa, ln(γa)) s(βa, σa) s(βa, φa)

s2(ln(γa)) s(ln(γa), σa) s(ln(γa), φa)

s2(σa) s(σa, φa)
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
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






(3.32)

where only the upper triangular portion has been shown, s2() are variances, and s(, ) are

covariances.

For this work, the elements of xa and SSSa were estimated using the results from prior

studies of snow microphysical properties and results from a new analysis of snow particle

observations made previously by Kajikawa (Kajikawa, 1972, 1975, 1982, hereafter referred

to as the Kajikawa observations). These prior studies, described in more detail below, made

estimates of the parameters of mass- and area-dimension power laws for snow particles. The

observations used in these studies represent a range of environmental states, and the esti-

mated parameters from these studies were treated as samples drawn from the environmental

distribution of the state vector, x. Using these samples, expected values were calculated

along with variances and covariances. These expected values, variances and covariances

were then used as the elements of xa and SSSa. Although some information regarding habit

might be obtained from the C3VP observations and used to construct habit-dependent a

priori constraints, this habit information will likely be lacking in remote sensing observa-

tions such as CloudSat reflectivity profiles. Therefore, all prior observations are combined

to construct a habit-independent a priori constraint.

This approach has a number of shortcomings. First, the breadth of sampling is limited.

The number of existing studies is small and the results in multiple studies are in some cases

derived from the same set of observations. Additionally, mountain locations were typically

used for these studies that were based on observations at the surface. Such limited sampling
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may not give an accurate accounting of the frequency of occurrence of different states.

Second, these prior studies were not oriented toward providing the information needed by

optimal estimation retrievals. Generally, estimates of uncertainties in the microphysical

parameters or distribution widths were not provided. Finally, and most significantly, the

fact that a set of parameters is an outlier when compared to other sets does not indicate a

low probability of occurrence. Instead, the outlying set may simply represent a state whose

properties lie far from the environmental mean properties. The outlying set may actually

represent a state that occurs frequently. To compensate for these limitations, one must

not make the a priori constraints too restrictive, especially in terms of penalizing outlying

states by giving them a low probability of occurrence. It may be appropriate to artificially

broaden the distribution derived from the prior observations while maintaining observed

correlations between variables.

To construct the a priori constraint, estimates were made of the expected values of α,

β, γ, σ, and φ, along with their variances and covariances. Lacking direct observations of φ,

values for φa and s2(φa) were estimated from the particle modeling described in Appendix

A as 0.825 and 0.1252 (Figure A.1, lower left panel) The value 0.825 is appropriate based

on the use of SVI feret diameter and a typical particle aspect ratio of 0.60 to 0.70 (Korolev

and Isaac, 2003). A priori covariances between φ and other state variables are unknown

and were set to zero. Also, because studies from which simultaneously estimated mass-

and area-dimension power law parameters can be determined are uncommon (the Kajikawa

observations are a rare exception), covariances between α and γ, α and σ, β and γ, and β

and σ were neglected and set to zero. The development of the remaining expected values,

variances and covariances for the mass- and area-dimension power law parameters, including

overviews of the prior studies, is now described.

Snow particle mass-dimension relations have typically been developed using one of two

general approaches. The first approach uses dimensional relationships obtained from mea-

surements of snow particles (Ono, 1969; Auer and Veal, 1970; Hobbs et al., 1974). The

dimensional relationships, such as those giving thickness as a function of plate diameter,

are used to express the particle volume which is then multiplied by an estimated density

to give mass as a function of dimension (Davis, 1974; Kim, 2004). In the second, a snow
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particle is collected and its dimension measured, then the particle is melted, typically on

either a hydrophobic surface or a filter paper, and the diameter of the resulting water drop

or water spot is measured. This allows the mass to be determined (e.g., Nakaya and Terada,

1935; Kajikawa, 1972). This second method avoids uncertainties inherent in the evaluation

of the particle volume and in the density. With the first approach, the dimensional and den-

sity relations may come from distinct, potentially inconsistent sets of observations. Most of

the data selected here to develop the a priori mass-dimension relation employed the second

method.

Power laws were used to describe the variation of snow particle mass with size as early

as 1935 (Nakaya and Terada, 1935). The reported power laws were simple, with exponents

of 1 for needles; 2 for dendrites and rimed crystals; and 3 for graupel. More recent studies

have employed power laws with variable exponents. Zikmunda and Vali (1972) developed

mass-dimension power laws for snow particles collected at Elk Mountain Observatory, at an

elevation of 3350 m above mean sea level (MSL) in the Medicine Bow range of Wyoming,

focusing on several types of rimed particles. The observations of Locatelli and Hobbs (1974)

were taken in the Cascade Mountains of Washington at elevations of 750 to 1500 m MSL

and included a range of aggregates, rimed particles and graupel. For these two studies,

particle counts were reported for each habit, along with correlation coefficients for the fit-

ted power laws, but no estimates of uncertainties in the fitted parameters. Mitchell et al.

(1990) developed mass-dimension power laws based on observations of orographic snowfall

collected at a site at 2100 m MSL near Donner Pass in the central Sierra Nevada Moun-

tains in California. Along with particle counts and correlation coefficients, Mitchell et al.

reported on the within-habit variability of the coefficients and exponents of the fitted power

laws by comparing results from two distinct winter seasons of observations. The observed

particles included various pristine shapes, both rimed and unrimed, and aggregates. Over

all the observed habits, the mean difference in α was 31%, while for β it was 10%. Maximum

differences for α and β were 75% and 32%, respectively. Mitchell (1996) compiled mass-

dimension power laws from these and other sources, and also used previously published

dimensional and density information (e.g., Auer and Veal, 1970; Heymsfield and Knollen-

berg, 1972) from both aircraft and surface observations to synthesize additional mass power
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laws. Values for α and β from these studies are tabulated by habit and particle size in Table

B.1 of Appendix B.

Area-dimension power laws can be developed directly from dimensional relationships for

simply-shaped habits (e.g., hexagonal plates and columns). For more complex shapes (e.g.,

dendrites), particle images must be analyzed. Enlarged photomicrographs may be evalu-

ated using a planimeter (Heymsfield, 1972), or by overlaying a fine grid and counting grid

squares. Areas for raster images, as might be obtained from digital cameras, scans of pho-

tomicrographs, or aircraft-borne particle probes, may be obtained by automated counting

of pixels (Heymsfield and Miloshevich, 2003); edge detection techniques have been applied

to define the edge contours of particles in such images (Heymsfield and Westbrook, 2010).

Heymsfield (1972) evaluated photomicrographs collected by Nakaya (e.g., Nakaya and Tu-

neo, 1934), measuring areas for a number of stellar and dendritic crystals using a planimeter

as an intermediate step to estimating particle density. Mitchell (1996) summarized area-

dimension power laws from a number of earlier studies (e.g., Auer and Veal, 1970; Davis,

1974; Mitchell et al., 1996). Heymsfield and Miloshevich (2003) provided power laws ob-

tained from airborne cloud particle imager and balloon replicator data, wind tunnel crystal

growth studies, and several sets of surface observations, including those of Kajikawa. Since

the Kajikawa observations were reanalyzed in this work to obtain new area-dimension rela-

tions, the new results were used in lieu of the results given by Heymsfield and Miloshevich

(2003), but other results from Heymsfield and Miloshevich (2003) were utilized. Values for

γ and σ from these studies are tabulated by habit and particle size in Table B.3 of Appendix

B.

Masahiro Kajikawa collected measurements of snow particles over several winter seasons

in Japan, observing a wide range of planar and columnar habits, including both single

crystals and some early aggregates, at Hokkaido University’s Mount Tiene observatory

(1024 m MSL) (Kajikawa, 1972, 1982) and graupel at a location near sea level in Akita on

Japan’s western coast (Kajikawa, 1975). Bullet rosettes and side planes were obtained by

Kajikawa at Akita University’s Mount Hachimantai observatory (1200 m MSL) (Heymsfield

et al., 2002). Heymsfield and Kajikawa (1987) utilized Kajikawa’s observations of the planar

crystals and graupel to develop mass-dimension power laws for these habits. Recently,
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Heymsfield and Westbrook (2010) reanalyzed Kajikawa’s particle images to obtain improved

estimates of dimensions and areas. These reanalyzed data were used to develop new area-

dimension and mass-dimension power laws based on maximum dimension, and a description

of these revised power laws is provided in Appendix B.

The new power laws derived from the reanalysis of the Kajikawa observations along with

the power laws from the earlier studies described above constitute the a priori information

about the mass- and area-dimension power laws. Where duplicate results could be identified

(e.g., some mass-dimension relations which appear both in Locatelli and Hobbs (1974)

and Mitchell (1996)), the duplicate results were omitted except for those from the original

source. Figures 3.2 and 3.3 show scatterplots of α vs β and γ vs σ, respectively. Points

are labeled by habit, and in some cases suffixes “(s)” and “(l)” are used to indicate “smaller”

or “larger” sizes of the same habit. Other suffixes are as described in Tables B.1 and B.3.

Additionally, the habits are further grouped into broad classifications which are denoted

by color. The most striking feature of both figures is the degree of correlation between

the logarithms of the coefficients (α, γ) and the exponents (β, σ). These correlations

will likely supply useful constraints for the microphysics retrieval. The color coding helps

illustrate differences between the broad classifications. For mass, graupel-like particles tend

to have larger exponents and coefficients than other particle types, and branched planar

particles tend to have smaller coefficients than other particles with similar exponents. For

area, columnar particles tend to have smaller coefficients and exponents than other particle

types, and plates tend to have larger coefficients than other particles with similar exponents.

From these samples, bivariate normal distributions were determined for the mass- and

area-dimension power law parameters (Table 3.1). As suggested by the plots (Figs. 3.2

and 3.3), the correlations between the exponents and logarithms of the coefficients are very

high. The plots also show the 1 standard deviation uncertainty bars based on the calculated

variances (shorter error bars). These distributions formed the a priori constraints for the

C3VP microphysics retrieval.
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Figure 3.2: A priori estimates for α and β.
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Figure 3.3: A priori estimates for γ and σ.
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Table 3.1: Estimates of the a priori state for use in the C3VP microphysics retrieval.

Means Correlation Variances Covariances

ln(α) -6.181 0.753 2.474 0.585

β 2.067 0.244

ln(γ) -1.556 0.836 0.392 0.118

σ 1.785 0.0507
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Chapter 4

Measurement and forward model

uncertainties

The total error ǫ (3.1) can be expanded as (Rodgers, 2000)

ǫ = ǫY + ∆F (x, b) +
∂F

∂b
(b − b̃) (4.1)

where ǫY is the contribution from measurement error, the second term on the right is the

contribution due to the forward model’s approximation of the actual physics, and the third

term is the contribution from error in the forward model parameters. These errors may

consist of both systematic biases and random components. Once recognized biases have

been corrected, the residual uncertainties are characterized by the covariance matrix SSSǫ

SSSǫ = SSSy + SSSF + KKKbSSSbKKK
T

b (4.2)

= SSSy + SSSF + SSSB

where the definitions of the terms on the right parallel those for ǫ. In the third term, which

is the contribution due to uncertainty in the forward model parameters, KKKb is the Jacobian

of the forward model with respect to the parameters and SSSb is the covariance matrix for the
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parameters. The product KKKbSSSbKKK
T

b is denoted as SSSB . The matrix SSSy has the form

SSSy =
























s2
y(Ze) 0 0 0 0

0 s2
y(P ) 0 0 0

0 0 s2
y(V0) sy(V0,∆V1) sy(V0,∆V2)

0 0 sy(V0,∆V1) s2
y(∆V1) sy(∆V1,∆V2)

0 0 sy(V0,∆V2) sy(∆V1,∆V2) s2
y(∆V2)
























. (4.3)

In this matrix and in SSSF and SSSB, the terms s2
y() and sy(, ) represent variances and covari-

ances, respectively. The covariances of the fallspeed terms result from using differences to

define the fallspeed observations ∆V1 and ∆V2. The matrix SSSF has the form

SSSF =
























s2
F (Ze) s2

F (Ze, P ) 0 0 0

s2
F (Ze, P ) s2

F (P ) sF (P, V0) sF (P,∆V1) sF (P,∆V2)

0 sF (P, V0) s2
F (V0) sF (V0,∆V1) sF (V0,∆V2)

0 sF (P,∆V1) sF (V0,∆V1) s2
F (∆V1) sF (∆V1,∆V2)

0 sF (P,∆V2) sF (V0,∆V2) sF (∆V1,∆V2) s2
F (∆V2)
























. (4.4)

For SSSF , covariances between the snowfall rate P and the fallspeed terms arise because of

common dependence on the fallspeed forward model, and covariances between P and the

radar reflectivity Ze arise because of the integrations over size distribution. Finally, the

forward models for Ze and P share common parameters from b̃, as do the forward models
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for P and (V0,∆V1,∆V 2). As a result, the form of SSSB is

SSSB =
























s2
B(Ze) sB(Ze, P ) 0 0 0

sB(Ze, P ) s2
B(P ) sB(P, V0) sB(P,∆V1) sB(P,∆V2)

0 sB(P, V0) s2
B(V0) sB(V0,∆V1) sB(V0,∆V2)

0 sB(P,∆V1) sB(V0,∆V1) s2
B(∆V1) sB(∆V1,∆V2)

0 sB(P,∆V2) sB(V0,∆V2) sB(∆V1,∆V2) s2
B(∆V2)
























. (4.5)

The following sections describe the estimation of each of these matrices.

4.1 Measurement uncertainties SSSy

4.1.1 Radar reflectivity

VertiX radar reflectivity observations were used for the retrievals because of the radar’s

proximity to other instruments, its high temporal resolution, and the continuity of its ob-

servations during periods of snowfall. For use in the retrieval, reflectivities were averaged

in linear units into 5-minute means, consistent with the averaging time for the SVI obser-

vations. Because of ground clutter, reflectivities near the surface were unusable, making

it necessary to estimate reflectivities at the surface using the features of reflectivities aloft.

Based on inspection of time-height plots of reflectivities during the four snow events, ob-

servations at the thirteenth radar range bin, with a center height of 469 m AGL, appeared

largely uncontaminated by ground clutter even under conditions of very light snow. Reflec-

tivities at lower altitudes appeared frequently to be affected by ground clutter.

The principal sources of error for the VertiX reflectivities are expected to be due to

radar calibration and due to the estimation of reflectivities at the surface using reflectivities

aloft. Other potential sources of error include beam filling and inhomogeneity of the 5-

minute samples (mixing of precipitating and non-precipitating targets). The small pulse

volume of the VertiX, along with the fact that bin 13 is well below observed echo top
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heights (Table 2.1), make significant beam filling issues unlikely. To address homogeneity,

two simple diagnostic quantities were calculated for each average: the fractional standard

deviation of Ze (in linear units), and the count of observations in the sample that have both

small reflectivities and small Doppler velocities. Small values for both quantities suggest a

sample contains observations mainly of precipitating targets with reasonably homogeneous

reflectivities. These two diagnostics were used to identify suspect retrieval results.

The calibration biases for the VertiX reflectivities were evaluated using comparisons

against observations over the CARE site by the King City C-band radar (WKR) during snow

events. The calibration accuracy of the King City radar is typically taken to be better than

+/- 1 dBZ (Thurai et al., 2008). Differences between the King City and VertiX reflectivities

may be partly due to the differences in radar wavelength. For X-band, departures from

Rayleigh scattering are expected for snow particles larger than about DM= 5 mm (Matrosov

et al., 2009), while for C-band, the Rayleigh approximation should be valid to somewhat

larger sizes. The resulting reflectivity differences will cause errors in the calibration of the

VertiX, but these errors are expected to be minor compared to other error sources discussed

below and are ignored. Comparisons were limited to dry snow cases, based on evaluations

of near-surface temperature and soundings, so that attenuation of the King City radar

beam would be negligible. The King City radar reflectivities had been provided as mean

values over a region 2 km in range by 2◦ in azimuth above the CARE site from POLPPI

scans taken during each of the four events. Specifically for these calibration comparisons, the

VertiX observations were matched in time to the King City radar observations and averaged

spatially and temporally. The centerline of the WKR beam was estimated to be at 320 m

AGL for the POLPPI scans. By limiting calibration cases to those with reflectivities larger

than 5 dBZe, the lowest range bin which could be used confidently was at a height of 350

m AGL. The VertiX reflectivity samples were then taken vertically up to a height of 750

m AGL in order to be approximately consistent with the King City radar’s beamwidth of

0.62◦, and over a two-minute time period. The VertiX reflectivity samples were weighted

using a vertically varying weight defined by a Gaussian curve with a mean of 320 m to

match the estimated WKR beam centerline height and a width parameter of 156 m to

match the WKR beamwidth. The biases were determined separately for events A and B
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combined (pre-repair) and for events C and D combined (post-repair). For events A and B

the bias was -7.72 (0.39, 80) dBZe, while for events C and D it was -2.89 (0.14, 63) where

the numbers in parentheses are the standard error and number of samples, respectively.

The vertical separation between VertiX bin 13 and the surface complicates estimating

the reflectivity at the surface. The vertical distance between VertiX bin 13 and the surface

induces a time delay between the appearance of precipitation features aloft and their ap-

pearance at the surface. Given a typical fallspeed for snow of 1 m s-1, the delay would be

about 8 minutes. To correct for the time delay, two time series were constructed for each

event: one of VertiX reflectivities at bin 13, and one of reflectivities synthesized from 2DVD

measurements at the surface using an assumed mass-dimension relation. By identifying

the occurrence of similar features in both time series, a series of time calibration pairs was

determined for each event. Each pair consisted of the time associated with the feature on

the surface, and the time at which the feature appeared in the VertiX reflectivities. The

set of calibration pairs was used to construct cubic spline interpolators that calculated the

time offsets required for bin 13 reflectivities to match the times of the surface observations.

Horizontal advection makes it extremely unlikely that a particular precipitation parcel

observed overhead by the VertiX would eventually arrive at the surface in the same location

as the radar. In an idealized environment of constant vertical wind shear and no directional

shear, precipitation parcels formed aloft and falling with constant speed follow parabolic

trajectories to the surface (Marshall, 1953). Figure 4.1 is a cartoon illustration of a pre-

cipitation generating cell advecting across the radar field of view and shows trajectories of

precipitation parcels formed by the cell at discrete times. The parcel formed by the cell and

observed by the radar at t0 will arrive at the surface some time later and some distance

downwind of the radar. The parcel that actually does arrive at the surface in the vicinity

of the radar was actually formed by the cell earlier and some distance upwind. At t0, the

parcels have advected along the portions of the trajectories marked by solid lines and are

arranged into the familiar “mare’s tail” pattern.

With increasing time, the parcels descend and advect leftward in the figure. In the

radar observations, this process produces a time series in which a region of high reflectivity

moves downward with time. Presented in time-height coordinates, the appearance is that
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Figure 4.1: Cartoon example of trajectory of precipitation parcel in time-height coordinates.

of slantwise precipitation trails (e.g., Figure 4.2), suggesting naively that a single parcel

produced over the radar at time t0 has simply drifted downward, arriving at the surface

some time in the future. In truth, however, the radar sees a series of parcels produced at

varying times in the past by the generating cell.

The parcel originating at t3- in Figure 4.1 arrives at the surface at some time t3+ in the

future. During this transit time, processes such as aggregation, sublimation and particle

size sorting can modify the parcel’s microphysical properties and its radar reflectivity. The

effects of these processes on the reflectivity could be evaluated by examining reflectivity

gradients along the parcel’s trajectory, if sufficient observations were available. Then, given

an observation of reflectivity aloft at t3-, the reflectivity at the surface could be estimated.

As noted above, however, a vertically-pointing radar observes a series of parcels, descending

in height, which were produced at varying times by the generating cell. Thus the changes in

reflectivity from parcel to parcel in the radar’s field of view represent not only the affects of

microphysical processes along the trajectories, but also changes over time in the characteris-

tics of the generating cell. Provided those changes in the generating cell are not significant,

the reflectivity observed aloft at time t0 will be reasonably similar to that at t3-, and the

required gradient can be evaluated from the series of descending parcels observed in the

radar field of view, with adjustments for time offsets. Lacking more detailed observations,
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Figure 4.2: Slanted precipitation trails in time-height coordinates. The figure shows details
of the VertiX reflectivity profiles from event D.

this assumption was used and the resulting uncertainties were estimated, as described in

the following.

In order to calculate the desired gradient, the relative time offsets δt between adjacent

vertical bins have to be determined. First, the total time offsets between the surface and

bin 13 were determined as described above. Next, the time offsets calculated in the first

step are assumed to vary linearly with height in the radar bins adjacent to bin 13. This

assumption was applied to bins 10 through 16, and is equivalent to assuming the fallspeeds

of precipitation particles are unchanging with height, which is reasonable for short vertical

distances for dry snow. Five-minute moving averages of reflectivity were constructed for

bins 10 through 16. Given a series of observation times at the surface, taken at five minute

intervals, the appropriate time offsets were calculated for bins 10 through 16 and used to

select reflectivities in each bin from the series of five-minute moving averages. Finally, a

linear least squares fit was done to determine the reflectivity gradient. Because bins below

bin 13 were used, these fits were only done provided the bin 13 reflectivity exceeded a 5 dBZe

threshold to reduce the potential for errors due to ground clutter. Mean gradients ranged

from -4 to -7 dBZe km-1, but exhibited considerable variability (Table 4.1). These results

are reasonably consistent with those of Matrosov et al. (2007), who found a mean vertical
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Table 4.1: Reflectivity gradients at bin 13 and bin 24, and errors for simulating bin 13
reflectivity using bin 24 reflectivity with the local reflectivity gradient. For mean gradients,
numbers in parentheses give the standard deviations and the numbers of samples. For
errors, the values shown are the means and, in parentheses, the standard deviations.

Mean Gradient, dB/km Errors, dBZe

Event bin 13 bin 24 Actual gradient Mean gradient Zero gradient

A -6.7 (4.4, 34) -5.4 (3.5, 31) 0.011 (1.67) -0.18 (1.96) -2.65 (1.96)

B -4.4 (8.2, 114) -3.3 (6.0, 68) 1.40 (3.16) 0.40 (3.29) -1.10 (3.29)

C -4.7 (7.1, 52) -3.6 (5.3, 50) 0.98 (3.62) 0.94 (3.59) -0.70 (3.59)

D -4.2 (3.2, 156) -4.5 (4.4, 155) 0.37 (1.97) 0.72 (2.03) -1.35 (2.03)

gradient of 5.1 dBZ km-1 from scanning X-band radar observations above the freezing level

of precipitating winter clouds on the western slope of California’s Sierra Nevada mountains.

To test the uncertainties introduced by this approach, the same analysis was repeated,

except that the local gradients were evaluated about bin 25 and used to predict reflectivities

at bin 13. For most of the events, the mean bin 25 gradients were slightly smaller than

those at bin 13, and somewhat less variable (Table 4.1). The estimated bin 13 reflectivities

were calculated in three ways: by using the instantaneous gradient, by using the event-

specific mean gradient, and by assuming zero gradient (bin 13 reflectivity equal to the time-

adjusted bin 25 reflectivity). For all three methods, the errors were approximately normally

distributed. The zero gradient method resulted in negatively-biased estimates for the bin 13

reflectivity while the other two methods produced mostly positive biases, somewhat smaller

in magnitude than those for the zero gradient method. When the instantaneous gradients

were used, biases and standard deviations were not substantially better than those when

the mean gradients were used. Consequently, the event-specific mean gradients were used

to estimate the near-surface reflectivities, and the uncertainties were modeled using the

corresponding standard deviations given in Table 4.1.
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4.1.2 Snowfall rate

The instruments used for precipitation rate measurements were introduced in Section 2.1.3.

As noted by Sheppard and Joe (2008), the lack of reference standard instruments for field

measurements of precipitation rate hinders assessment of uncertainties for observations like

those of the POSS and FD12P. Uncertainty estimates were developed for this work by

first making the FD12P and POSS rates consistent with the DFIR accumulations, then

comparing the resulting rates. For each time interval for which the DFIR reported a snowfall

accumulation over the course of the winter 2006/07 C3VP observations, the corresponding

1-minute FD12P and POSS rates were rescaled so their accumulations matched that of the

DFIR. Any required time averaging was then performed and differences between the rates

computed. Finally, the differences were binned according to precipitation rate, and mean

absolute differences determined for each bin. These mean absolute differences were used to

model the uncertainty as a function of precipitation rate (Figure 4.3). For rates less than

0.05 mm LWE h−1, the uncertainty was fixed at 0.03 mm LWE h−1. For larger rates up

to 0.5 mm LWE h−1, the uncertainty was estimated as 50% of the observed rate, while for

rates larger than 0.5 mm LWE h−1, uncertainty was estimated as 30% of the observed rate.
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Figure 4.3: Absolute differences in precipitation rates between the FD12P and POSS instru-
ments, and binned mean differences used to estimate uncertainties in precipitation rates.
Precipitation rates are 5-min averages.

4.1.3 Size resolved fallspeeds

The retrieval requires three measures of size resolved fallspeeds: V0, ∆V1, and ∆V2. As

described in Section 3.3, these measures are based on fallspeeds V0, V1, and V2 evaluated at

particle sizes DM of 4.0 +/- 0.50 mm, 2.0 +/- 0.25 mm, and 1.0 +/- 0.25 mm, respectively.

These fallspeeds are mean values, obtained by subsetting the 2DVD observations of individ-

ual particles for a given 5-minute sample into these three particle size ranges. Uncertainties

exist both in the fallspeeds of the individual particles and in their associated particle sizes.

Kruger and Krajewski (2002) provided a detailed examination of the operation of the 2DVD

and issues which affect the precision and accuracy of its observations.
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Uncertainties in the measured individual particle sizes arise because of issues such as cal-

ibration errors, the discrete resolution of the photodetector arrays, blurring and horizontal

motion of the particles (Kruger and Krajewski, 2002). Based on the results of calibration

tests using spherical particles, Brandes et al. (2007) estimated that the particle dimensions

measured by the 2DVD have standard errors ranging from 14% for particles with diameter

0.5 mm to less than 1.5% for those with diameter 10 mm. These errors are small compared

to the bin widths over which the fallspeeds are averaged. Since the 2DVD particle sizes used

in this work are the larger of the sizes obtained from either camera, particle mismatches will

also contribute to size errors. These uncertainties have not been quantified, but are expected

to be unbiased and, given adequate sample size, not significant. For the two smallest size

ranges, samples are typically on the order of 100 particles. More importantly, as described

in Appendix A, the observed particle size likely underestimates the true DM . To correct

for this bias, a small adjustment, based on the assumption of a horizontal aspect ratio of

0.6, is made to the particle size ranges. This aspect ratio may not be appropriate for all

particle shapes, but the adjustment for the 2DVD is not strongly sensitive to the choice of

aspect ratio (Figure 3.1, lower right panel).

For fallspeeds, uncertainties occur primarily due to particle matching errors, wind ef-

fects, and the discrete time intervals at which the line scan cameras are sampled (Kruger

and Krajewski, 2002), but are difficult to quantify. Wind causes higher variability in the

measured particle fallspeeds (Brandes et al., 2007). The CSU 2DVD is a low-profile model,

designed to reduce problems related to wind, and was partially surrounded at CARE by

a semi-circular double fence (Huang et al., 2010). To further reduce the impact of wind

effects, retrievals are limited to cases with winds less than 5 m s-1 at 2 m AGL. The 2DVD

scans the line scan cameras at a fixed frequency that, for the CSU instrument, is about 55.55

kHz. This causes the travel times between the planes of the two line scan cameras to be

quantized (Kruger and Krajewski, 2002), but this is a more significant issue for fast-falling

raindrops than for snow. Examining the dispersion of raindrop fallspeeds under calm wind

conditions, Brandes et al. (2007) estimated standard errors of 0.4 m s-1 for raindrops with

diameters of 0.5 mm or less, and less than 0.2 m s-1 for raindrops with diameters larger than

2 mm, but it is unclear how uncertainties for snow fallspeeds would compare. Because of
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the difficulties of identifying matching particles, especially at small particle sizes, the 2DVD

fallspeeds often exhibit large numbers of outliers at small particle sizes. The approach used

for these retrievals is to use the observed variability of the snow fallspeeds as an estimate

of the fallspeed uncertainty. Based on the results of tests described in section 4.2.2 re-

garding the effects of binning and averaging fallspeeds from the 2DVD, a filter was applied

to the binned fallspeeds before means and variances were computed. Following a method

described by Brandes et al. (2008), for each binned sample the mode fallspeed was found

and fallspeeds deviating from the mode by more than 0.5 m s-1 were discarded, then means

were computed along with the sampling variances of the mean for each filtered sample:

s2
y (V0) = s2(v0)/NV0

s2
y (V1) = s2(v1)/NV1

(4.6)

s2
y (V2) = s2(v2)/NV2

,

where v0, v1, and v2 are the set of observed single particle fallspeeds after filtering and NV0
,

NV1
and NV2

are the corresponding sample sizes. Assuming the errors in the fallspeeds are

uncorrelated, the required variances and covariances can be found as

s2
y (∆V1) = s2

y (V0) + s2
y (V1)

s2
y (∆V1) = s2

y (V0) + s2
y (V1)

sy (V0,∆V1) = s2
y (V0) (4.7)

sy (V0,∆V2) = s2
y (V0)

sy (∆V1,∆V2) = s2
y(V0).
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4.2 Forward model uncertainties SSSF

4.2.1 Radar reflectivity forward model

The principal approximations made by the reflectivity forward model are 1) that snow

particles scatter according to the Rayleigh model for spheres and 2) that the particle size

distribution is discrete and complete (i.e., not truncated), such that the reflectivity can

be accurately calculated numerically. The biases and covariances associated with these

assumptions are evaluated using the method described by Marks and Rodger (1993). Briefly,

given a state x and the approximate parameters b̃, the differences between the forward

model and higher-quality models can be found. Assembling the differences for an ensemble

of states, the bias and covariance SSSF can be determined.

4.2.1.1 Uncertainties due to backscattering properties

To evaluate the uncertainties due to snow particle scattering properties, reflectivities cal-

culated using the Rayleigh approximation for ice spheres were compared against reflectivi-

ties calculated from scattering properties obtained using the discrete dipole approximation

(DDA) model DDSCAT (version 6.1) of Draine and Flatau (1994) for a variety of parti-

cle shapes. DDA calculations were performed for several distinct pristine habits and also

for aggregate-like particles. Pristine habits included hexagonal columns (HC), hexagonal

plates (HP), two varieties of branched plates (BP1, a broad-branched crystal, P1c; and

BP2, a stellar crystal, P1d), and 6-arm bullet rosettes (B6r). DDA models for the pris-

tine habits were constructed using various mass, dimensional and density relations obtained

from published observational studies (Table 4.2). The primary aggregate model consisted of

an 8-arm rosette-like structure composed of intersecting thick hexagonal columns arranged

into a spatial configuration (Figure 4.4, right). An alternate model, consisting of 6 arms

whose centerlines are coplanar (Figure 4.4, left) was given limited testing for comparison to

the 8-arm model.

For the primary aggregate model, several mass dimension relations were tested including

1) α = 0.003, β = 1.8, 2) α = 0.00183, β = 1.4, and 3) α = 0.008, β = 2.1. The first relation

is similar to that found by Locatelli and Hobbs (1974) for “Aggregates of densely rimed
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Table 4.2: Sources of mass, area, and other dimensional constraints for pristine particle
models. “Other dimensions” includes thickness vs. diameter for HP and BP, width vs.
length for HC, and single-bullet width vs. length for B6r. B6r rosette masses from Mitchell
(1996) were for 5-arm rosettes and were scaled upward by 6/5 to represent 6-arm rosettes.
B6r were also constrained using bullet bulk density estimates from Heymsfield (1972). The
size limit for B6r was estimated by using the maximum bullet length observed by H72 of
0.8 mm and assuming two diametrically-opposed bullets. Crystal habit descriptors follow
Magono and Lee (1996). Key: AV70, Auer and Veal (1970); H72, Heymsfield (1972); M96,
Mitchell (1996).

Habit Mass Area Other dimensions Size limit, DM , mm

HC M96 AV70: C1e, C1f 2.5 (AV70, C1f)

HP M96 AV70: P1a, P1b, P2e, P2f 3.0 (M96)

BP M96: P1c M96: P1c AV70: P1c, P1d, P2a, P2b 1.0 (M96 P1c), 3.5 (AV70, P1d)

B6r M96 H72 1.6 (H72)

radiating assemblages of dendrites or dendrites” and the second matches that which they

found for“Aggregates of unrimed radiating assemblages of dendrites or dendrites.” The third

is an extreme case, similar to the that used by Locatelli and Hobbs for “Graupellike snow of

lump type”, but extended to much larger sizes. Horizontally-projected areas were estimated

using the “Aggregate hybrid approach” parameterization for area ratio of Heymsfield et al.

(2002).

Particles were assumed to be oriented with their longest axes nominally horizontal, and

to be oriented randomly about the vertical axis. The radar beam was taken to be vertically

incident. Canting angles were also applied. Matrosov et al. (2005b) found that a Gaussian

distribution with a mean of 0◦ and standard deviation of 9◦ was appropriate for canting

angles for pristine dendritic crystals. The degree to which this finding applies to irregular

and aggregate particles is not clear. As an approximation, and to accommodate DDSCAT’s

standard treatment, canting angles ranged over +/- 10◦ and were distributed uniformly in

the cosine of the angle.

Among the pristine particles, the B6r backscattering cross-sections most closely matched

those for Rayleigh ice spheres, while the other three habits exceeded the Rayleigh values.

The HP cross-sections were a factor of 2.5 larger than Rayleigh over most of the size range,
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Figure 4.4: Aggregate particle shapes. On the left is a 6-arm particle with arms in a single
plane, and on the right is an 8-arm particle with arms oriented spatially.

while the ratios for the BP and HC particles were approximately 1.5 times larger (Fig-

ure 4.5). These results are consistent with those of Atlas et al. (1953), who applied a

Rayleigh model for spheroids, and showed that the backscattered intensities from oriented

ice spheroids could be appreciably larger than those for spheres. For a vertically pointed

radar and oblate spheroids with the figure axis vertical, the backscattering intensity was

enhanced by a factor of more than 2 relative to spheres when the spheroids were extremely

flattened, similar to the DDA results for hexagonal plates. For prolate spheroids with the

figure axis horizontal, the enhancement was about a factor of 1.5 relative to spheres when

the spheroids were extremely elongated, similar to the DDA results for columns.

At small sizes, the backscattering cross-sections for aggregates were somewhat larger

than those of Rayleigh spheres. For these small sizes, the aggregate models approximate

slightly flattened, dense ice particles and would be expected to have somewhat enhanced

backscattering compared to Rayleigh ice spheres. The behavior at larger sizes is different

for the 6-arm flattened and 8-arm spatial particles. The cross-section of the more compact

6-arm particle essentially matches Rayleigh, while the cross-sections of the 8-arm spatial

particles fall to about 80% of Rayleigh. The ratios for the 8-arm spatials were only slightly

sensitive to the mass-dimension relation at these large sizes.

To determine the impact on reflectivity of these departures from Rayleigh sphere scat-

tering, an ensemble of test cases was constructed using SVI size distributions taken over

a range of snow events during C3VP. The size distribution rescaling factor φ was set to

expected values for the particular particle habit (0.65 for HC, 0.95 for HP and BP1, 0.80

for BP2 and B6r, 0.80 for aggregates). For each case, DDA reflectivities were calculated

by applying the various pristine particle backscattering cross-sections at small sizes with

either the B6pf or B8pr (0.003, 1.8) aggregate cross-sections at large sizes. At sizes beyond
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the largest (DM ≈ 10 mm) for which DDA calculations were completed, the backscattering

efficiency was estimated by extrapolating from the two largest sizes. The transition from

pristine to aggregate scattering properties was done over a size range starting at DM = 0.6

mm and ending at the size limits shown in Table 4.2, and the fraction of pristine particles

varied linearly with DM over the size range. For each pristine-aggregate particle combi-

nation, the resulting DDA reflectivities were compared against the corresponding Rayleigh

sphere reflectivities.

The DDA reflectivities were generally larger than the Rayleigh model when reflectivities

were small, and slightly smaller than the Rayleigh model when reflectivities were large

(Figure 4.6). Averaged over the ensemble of test cases, the bias of the Rayleigh sphere

reflectivities relative to the DDA reflectivities ranged from -1.5 dBZe at -5 dBZe to +1.0

dBZe at 35 dBZe. The root mean square (RMS) values of the residual errors after bias

correction varied between 0.2 and 0.6 dBZe over the same range. Consolidating all the

ensemble states, a linear bias correction was determined to be

δF (Ze) = −0.049ZRayl − 1.17, (4.8)

where ZRayl is the reflectivity in dB modeled using Rayleigh spheres and the corresponding

variance was modeled as s2
F (Ze) = 0.42.

4.2.1.2 Uncertainties due to discretization and truncation

For particles larger than 17 mm, the 2DVD can detect smaller number concentrations than

can the SVI, and the maximum detectable size for the 2DVD is significantly larger than that

for the SVI (Figure 4.7). The number concentration detection limits were calculated as one

particle per unit sampling volume per unit size interval. This difference in detection limits

suggests that the 2DVD individual particle observations can be used to estimate the effects

of discretization and size distribution truncation on the reflectivities and snowfall rates

calculated from the SVI observations. Simulated SVI size distributions can be calculated

from the 2DVD individual particle observations, then reflectivities and snowfall rates can be

calculated using both the original 2DVD observations and the simulated SVI distributions.
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Differences between the reflectivities and between the snowfall rates provide information

about the likely errors due to truncation and discretization.

To accomplish this, distinct 5-minute samples of the 2DVD individual particle observa-

tions were first binned into the size intervals used by the SVI and discrete size distributions

were calculated using (2.1). For size intervals at which the calculated size distribution fell

below the SVI minimum detectable value, the calculated distribution was set to zero, form-

ing the simulated discrete, truncated size distributions. A single case, then, consisted of

the original 2DVD single particle data, a discrete size distribution, and a discrete-truncated

size distribution.

Given a particular case of 2DVD individual particle observations and an assumed mass-

dimension relation, the reference radar reflectivity was calculated directly per (2.1), (3.16)

and (3.23) as the sum over all the particles of the backscatter cross sections per unit volume:

Ze =
α236

π2ρ2
ice

‖Ki‖2

‖Kw‖2

1

∆t

∑j=Np

j=0

D2β
j

Ajvj
. (4.9)
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Reflectivities were then calculated using the simulated SVI discrete and discrete-truncated

size distribution, using (3.27) evaluated via Simpson’s rule. The differences between these

two reflectivities and the reference reflectivity represent the forward model errors due to

discretization and due to combined discretization and truncation of the size distribution.

Provided the mass-dimension relation (3.23) is applicable over the entire size distribution,

differences in dBZe will depend on β and not on α, since dBZe differences represent ratios

of Ze. The cap on particle mass (to be no more than that of an ice sphere) means that some

dependence on α may occur but is likely to be weak because the cap affects only very small

particles.

2DVD observations from snow events on seven different days during C3VP (the four

events studied here and three additional events: 17, 20 and 22 January 2007) were used to

evaluate these errors. Values for α ranged from 0.001 to 0.009 in 0.002 increments, while

those for β ranged independently from 1.4 to 2.4 in 0.2 increments. Reflectivity differences

in dBZe and fractional snowfall rate differences were calculated for 685 distinct 5-minute

samples of the 2DVD observations, then biases and error covariances were calculated (Table

4.3). The statistical properties were largely independent of α, as was expected. The table

shows errors for both discretization only and discretization plus truncation for comparison.

Except as noted, this description focuses on the errors due to discretization plus truncation.

The reflectivity bias became more negative as β increased, ranging from -0.75 to -1.21 dBZe,

while the residual errors increased from 0.62 to 2.08 dBZe. Both biases and residual errors

in dBZe were found to be approximately linearly dependent on β (Table 4.3), and were

modeled as

δF (Ze) = −0.26β − 0.38

s2
F (Ze) = (0.99β − 0.78)2 (4.10)

4.2.2 Snowfall rate

The snowfall rate forward model is simply an integration of the product of particle mass,

size distribution and fallspeed over all particle sizes, as shown in (3.28). The snowfall
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Table 4.3: Biases, standard deviations of errors and error correlations due to size distribution
truncation and discretization for radar reflectivity and snowfall rate. Numbers outside
parentheses are due to both discretization and truncation, while those inside parentheses
are for discretization only.

Reflectivity, dBZe Snowfall rate, fractional Correlation

β Bias SD Bias SD coefficient

1.4 -0.75 (-0.64) 0.62 (0.37) 0.051 (0.053) 0.14 (0.14) 0.43 (0.59)

1.6 -0.81 (-0.64) 0.81 (0.38) 0.047 (0.051) 0.14 (0.14) 0.37 (0.54)

1.8 -0.88 (-0.64) 1.07 (0.40) 0.040 (0.045) 0.14 (0.14) 0.34 (0.50)

2.0 -0.98 (-0.65) 1.36 (0.42) 0.031 (0.037) 0.14 (0.14) 0.34 (0.46)

2.2 -1.09 (-0.65) 1.70 (0.44) 0.0198 (0.028) 0.15 (0.15) 0.35 (0.42)

2.4 -1.21 (-0.66) 2.08 (0.45) 0.0078 (0.018) 0.15 (0.15) 0.36 (0.38)

rate and reflectivity forward models share the assumption regarding the adequacy of the

discrete, truncated size distributions observed by the SVI. Snowfall rate uncertainties are

also produced by uncertainties in the forward model for fallspeed. This section focuses on

the uncertainties due to size distribution discretization and truncation, and the assessment

of uncertainties caused by the fallspeed model are deferred to the next section.

The snowfall rate biases and covariances were evaluated following the same process as

described above for radar reflectivity. The reference snowfall rates were calculated directly

from the 2DVD individual particle observations as

P =
α

∆tρliq

∑j=Np

j=0

Dβ
j

Aj
. (4.11)

Snowfall rates were then calculated with the discrete and discrete-truncated size distribu-

tions using (3.28), again evaluated via Simpson’s rule. As was true for the reflectivities,

the differences between these two snowfall rates and the reference rates provide informa-

tion about the forward model errors due to discretization and due to discretization plus

truncation. Snowfall rate differences should scale linearly with α, again except for small

departures due to the cap on particle mass. Snowfall rate biases and covariances were

evaluated in terms of fractional snowfall rate to reduce dependence on α.
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For snowfall rate, bias decreased from 5.1% to 0.78% with increasing β while the residual

errors were nearly constant at 14-15% of the reference snowfall rate (Table 4.3). Correlations

between the reflectivity and snowfall rate errors were generally about 0.35, except for the

β = 1.4 case for which the correlation was 0.43. The snowfall rate errors proved to be

exceptionally sensitive to how V (Di) was evaluated. Using a simple mean from a 2DVD

sample centered on Di and taken over a 0.25 mm size interval resulted in significant positive

biases (not shown), likely due to the effects of extreme positive outliers which become

increasingly common at smaller particle sizes. To ameliorate these effects, a filter was

applied to the fallspeed observations following Brandes et al. (2008). For each sample the

mode fallspeed was found and fallspeeds deviating from the mode by more than 0.5 m s-1

were discarded before averaging.

As was true for reflectivity, the bias in fractional snowfall rate was also approximately

linearly dependent on β. Residual errors were essentially independent of β. These were

modeled as

δF (P ) = (−0.023β + 0.083)P (4.12)

s2
F (P ) = (0.14P )2 .

Finally the error covariance between the reflectivity and snowfall rate was modeled as

sF (Ze, P ) = 0.35 (sF (Ze)) (sF (P )) . (4.13)

4.2.3 Fallspeeds

Uncertainties due to approximations in the forward model for fallspeeds are more difficult

to assess. Unlike the previously discussed sources of uncertainty for the snowfall rate and

reflectivity forward models, there are not higher-quality fallspeed models against which to

compare. In their study of previously reported laboratory and in situ measurements of ice

particle fallspeeds, Heymsfield and Westbrook (2010) estimated the uncertainty of fallspeeds

calculated with their method to be less than 30%, developing their estimate by binning single

particle fallspeed errors by area ratio and determining the median fallspeed error. Mitchell
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Figure 4.8: Comparison of fallspeeds from the MH2005 and HW2010 models, using the
Mitchell (1996) mass and area power law parameters for“Aggregates of side planes, columns
and bullets.”

and Heymsfield (2005) did not provide a similar estimate; however, examining the scatter

in the Reynolds numbers of observed particles about their model (their Figure 2), suggests

that 30% - 50% uncertainty is not unreasonable. Accordingly, an uncertainty of 30% was

adopted for fallspeeds from both models. A comparison of the two models, MH2005 and

HW2010, using the Mitchell (1996) mass and area power laws for aggregates of side planes,

columns and bullets shows modest but nonnegligible differences between the two models

(Figure 4.8), so retrievals were performed using both models.

The contribution to SSSF due to the fallspeed forward model uncertainties must be de-

termined. Provided the covariance matrix for the fallspeed uncertainties, SSSv is known, the

contribution to SSSF is given by

SSSF,v = KKKvSSSvKKK
T

v (4.14)

where KKKv is the Jacobian of the forward model with respect to the fallspeeds. The first row,

∂Ze
∂v

, is uniformly zero since Ze has no dependence on the fallspeeds. The second row, ∂P
∂v

,
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follows the numerical treatment used to integrate (3.28), and with trapezoidal integration

becomes

∂P

∂v
=

1

ρliq

[

N (DM,0)m (DM,0)
∆DM,0

2
(4.15)

N (DM,1)m (DM,1)∆DM,1 · · ·

· · ·

N (DM,K) m (DM,K)
∆DM,K

2

]

where K is the number of discrete bins in the size distribution and ∆DM are the widths of

the size bins. In the third row of Kv,
∂V0

∂v
has a value of one at the size bin at which V0 is

defined (i.e., at DM = 4mm) and is zero elsewhere. The fourth and fifth rows are obtained

similarly as ∂(V0−V1)
∂v

and ∂(V0−V2)
∂v

.

The estimate of forward model fallspeed uncertainties given above requires covariances

of the fallspeed errors as a function of particle size, SSSv. Lacking a higher-quality forward

model, estimates of SSSv were obtained by performing simple fits of the MH2005 and HW2010

fallspeed forward models to the observed 2DVD fallspeeds, then evaluating correlations

between the fitting errors. The 2DVD fallspeed observations were taken from the same

seven events used to evaluate the discretization and truncation errors. As in that evaluation,

the fallspeeds from 5-minute samples were binned into the same size distribution bins used

by the SVI, then filtered as described in Section 4.2.2 before means and standard errors

were calculated. The fallspeed forward model was then fitted to the mean fallspeeds using

a nonlinear least squares technique and fitting errors were found for each size bin. Paired

errors (error for size bin i paired with error for size bin j) were collected for each sample

over all samples, then correlations between errors were calculated, forming a fallspeed error

correlation matrix ρρρv. At the initial resolution of 1 size bin, the correlation matrix showed

considerable bin-to-bin variability, and a 5 bin x 5 bin moving window average was applied

to smooth the variations (Figure 4.9). From the error correlation matrix, the values of the

elements of the error covariance matrix SSSv are

s2
v(vi, vj) = ρρρv[i, j]f

2vivj
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Figure 4.9: Fallspeed forward model error correlations. Correlations are shown for the initial
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both the MH2005 (top) and HW2010 (bottom) fallspeed forward models.

where f is the fractional error for the fallspeeds, taken to be 30% as noted above, with vi

and vj the fallspeeds for bin i and bin j.

4.3 Uncertainties due to parameters SSSB

Parameters used by the components of the forward model include not only the density of

ice and the dielectric properties of ice and water, which are reasonably well-determined,

but also the discrete values of the size distribution N(Di), the associated sizes Di, and

environmental properties like temperature and pressure. Estimating SSSB requires that the

parameter dependencies of each forward model be identified, that variances for each of

the parameters be estimated, that the parameter covariance matrix, SSSb, be constructed,

and that the Jacobian of the forward model with respect to the parameters, KKKb, be cal-

culated. Parameter dependencies shared by the forward model components will result in

covariances between errors in the forward modeled state vector variables, as described above

when SSSB was introduced. Table 4.4 summarizes the parameter dependencies of the forward

model components. Dependencies on T and p, atmospheric temperature and pressure, arise

through the dependence of fallspeeds on atmospheric density and viscosity. Although ‖Ki‖2
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Table 4.4: Parameter dependencies of the forward model components.

Component Parameters

Ze Di, N(Di), ‖Ki‖
2

P Di, N(Di), T, p, δ0, C0, a0, b0

V0 T, p, δ0, C0, a0, b0

∆V1 T, p, δ0, C0, a0, b0

∆V2 T, p, δ0, C0, a0, b0

exhibits a dependence on temperature which would cause Ze to also be dependent on tem-

perature, this dependence is weak over the expected atmospheric temperature range and

is ignored. The matrix SSSb is shown in (4.16) and the corresponding Jacobian is shown in

(4.17) where the dots indicate extension over all the discrete values of Di and N(Di).

4.3.1 Size distribution uncertainties

The size distribution observations contribute to ǫ through several paths. The distributions

constitute part of the vector b̃ of forward model parameters for radar reflectivity and snowfall

rate, so uncertainties contribute via the third term in (4.2). Additionally, the discrete form

of the size distribution controls the resolution at which the numerical integrations in the

forward model, used to calculate reflectivity and snowfall rate, are performed. Finally, the

detection limits of the observing instrument, determined in part by the sample durations,

produce a size distribution which may be truncated in comparison to the true distribution.

The maximum size observable by the SVI is determined by the field of view and is nominally

24 mm, but minimum detectable concentrations are determined by sampling volumes which

are in turn dependent on the duration of samples. Size distribution observations from the

SVI were obtained at a nominal time resolution of 1 minute, but were averaged using distinct

5 minute samples to improve sampling volumes. These latter two error paths, discretization

and truncation, can be considered errors caused by approximate physics in the forward

model and were discussed as part of the reflectivity and snowfall rate forward model errors

above.
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Observational errors in the size distributions arise from a number of sources. As dis-

cussed in section 3.3, the particle dimension Dobs observed by the SVI will, for almost all

typical particles, underestimate the true maximum dimension DM of the particle. Adjust-

ments to the size distribution to convert N(Dobs) to N(DM ), and uncertainties in those

adjustments, are handled via the state variable φ. The remaining principal measurement

uncertainties are analytic uncertainties and sampling uncertainties. Analytic uncertainties

include uncertainties in the particle counts caused by the measurement or analysis tech-

niques, uncertainties in the measured particle size and uncertainties in the relationship used

to estimate depth of field from particle size (Newman et al., 2009). Sampling uncertainties

arise due to statistical fluctuations in the number of particles counted by the instrument.

Because of the relatively small sample volumes of these types of instruments, both sources

of uncertainty are likely significant.

To estimate the total uncertainty in a measured value of N(Dobs,i), analytic and sampling

uncertainties were modeled separately and the resulting variances added. The SVI size

distribution is determined as shown in (2.3). Both Aijk and Lijk depend on particle size:

Aijk = (Xfov − Dijk)(Yfov − Dijk) (4.18)

Lijk = fDijk (4.19)

where Xfov and Yfov are the maximum width and height of the frame, f is an empirical

factor relating particle size to depth of field, and Dijk is the particle size (Newman et al.,

2009). The relationship (4.19) was derived using the the feret diameter, the distance between

the two furthest removed points on the SVI particle image, and this is consistent with the

observed D used in these SVI data. Combining (2.3), (4.18) and (4.19) then simplifying the

indexing, the size distribution can be written as

N(Di) =
1

Nf∆Di

j=Npi,tot∑

j=1

1

(Xfov − Dij)(Yfov − Dij)fDij
. (4.20)
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Npi,tot is the total number of particles observed in the i-th bin accumulated over all image

frames. The number of frames Nf , and the frame dimensions Xfov and Yfov can be deter-

mined accurately, and ∆Di is a specified constant, leaving Npi,tot, f , and Dij as sources of

error.

The analytic uncertainty is caused by issues such as errors in the evaluation of Dij , errors

in the count of particles Npi,tot, and the uncertainty in the value of f . Errors in the measured

particle size Dobs are caused by blurring and lack of contrast in the image (Newman et al.,

2009). These errors affect the estimates of the field of view Aijk and depth of field Lijk

which then propagate as errors in the calculated size distribution via (4.20). Particle sizing

errors also cause particles to be misclassified into size intervals. These classification errors

can cause errors in the calculated size distribution, but, since undercounting in one interval

will be accompanied by overcounting in nearby intervals, the effects on integrated quantities

like reflectivity and snowfall rate calculations in the forward model are expected to be minor

and are neglected. Errors in the count of particles Npi,tot can be caused by reappearance

of particles and by obscuration. In environments with very low wind speeds a slowly falling

particle may appear in multiple frames, causing it to be counted multiple times. Winds at 2

m AGL were generally in excess of 1.5 m s-1 during the four snow events, and such repeated

counting is not expected to be a concern. Under conditions of high particle concentrations,

a particle in the background of the sample volume may be obscured by a particle in the

foreground. It is not known to what extent obscuration affects the SVI observations. Depth

of field changes approximately linearly with particle size. For small particles, for which

concentrations may be high, the depth of field is shallow, making obscuration unlikely. For

large particles, depth of field is larger but concentrations are typically low, also making

obscuration unlikely. Based on these arguments, errors in Npi,tot due to reappearance and

obscuration were neglected.

Sampling errors affect the number of particles counted in the discrete size intervals and

the distribution of particle sizes observed in a particular interval. The number of particles

Npi,tot in a particular size bin observed arriving in the disdrometer sample volume at a

particular instant is typically taken to be a random deviate distributed according to the

Poisson distribution (Joss and Waldvogel, 1969) and contributes to sampling uncertainty
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in the calculated size distribution values. The observed particles sizes Dij also vary and

are distributed according to a probability density function defined by the size distribution

(Uijlenhoet et al., 2006). For the particles occupying a particular size bin i during an

observation, both the sizes Dij of the particles and the number of particles Npi,.tot are

realizations of random variables. For purposes of estimating sampling uncertainty, then,

the form of N(Di) is that of a random sum of random variables (Feldman and Valdez-

Flores, 2010), also known as a randomly stopped sum.

Analytic uncertainty

To estimate the analytic uncertainty, we assume that Npi,tot is measured with negligible

uncertainty (e.g., overlapping or doubly-counted particles are uncommon). The measure-

ments Dij have uncertainties with variances s2(Dij) and are expected to be independent and

identically distributed. The parameter f has uncertainty independent of the uncertainties

in Dij with variance s2(f). Representing N(Di) as Ni to simplify notation, (4.20) can be

rewritten as

Ni =
1

Nf∆Di

j=Npi,tot∑

j=1

xj , (4.21)

where

xj =
1

(Xfov − Dj)(Yfov − Dj)f · Dj
(4.22)

and where the i subscript for terms inside the sum has been omitted for clarity. The

variances s2(xj) can be estimated by error propagation as

s2(xj) =

(
∂xj

∂Dj

)2

s2(Dj) +

(
∂xj

∂f

)2

s2(f). (4.23)

The variance s2(Ni) can be found as

s2(Ni) =

[(
∂Ni

∂x1

)2

s2(x1) +

(
∂Ni

∂x2

)2

s2(x2) + · · · +
(

∂Ni

∂xNpi,tot

)2

s2(xNpi,tot
)

]

. (4.24)
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Since ∂Ni

∂xj
= 1

Nf∆Di
,

s2(Ni) =

[
1

Nf∆Di

]2
[
s2(x1) + s2(x2) + · · · + s2(xNpi,tot

)
]

(4.25)

Provided the partial derivatives
∂xj

∂Dj
do not vary significantly over the size range for the bin,

the values of s2(xj) will also not vary significantly and can be approximated with a single

value s2(x), giving

s2(Ni) ≈
[

1

Nf∆Di

]2

Npis
2(x). (4.26)

Since single-particle measurements were not part of the processed SVI data, the derivatives

∂xj

∂Dj
and the variances s2(Dj) were estimated at the expected values of D on the size bin

interval between Di and Di+1. For spherical particles, the uncertainty in particle size has

been estimated at 18% (Newman et al., 2009), and that estimate was used for this work

even though nonspherical snow particles are observed. Note that Dij in this context is the

dimension observed by the disdrometer, not an estimate of the particle maximum dimension.

Newman et al. estimated the uncertainty in depth of field at 15% when particle size is known

accurately, suggesting that f has an uncertainty of 15%, which was the value used for this

work.

Sampling uncertainty

To evaluate the sampling uncertainty, Npi,tot is considered a random variable in addition

to Dj . For rainfall, the number of particles observed in a given size interval by a volume

sampling device like the SVI is often taken to be a Poisson-distributed random variable

(Joss and Waldvogel, 1969; Gertzman and Atlas, 1977; Uijlenhoet et al., 2006). The same

approach is taken here for snowfall, considering it to behave as a homogeneous marked

Poisson process during the sampling time interval. The number of particles Npi,tot appearing

in the SVI sampling volume then follows a Poisson distribution. The observed Dj form a

sequence of random variables taken to be independent and identically distributed. As a

result, the xj are also independent and identically distributed. As noted above, the size
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distribution value Ni is then the result of a random sum of random variables. Letting

yi =

j=Npi,tot∑

j=1

xj (4.27)

the variance of yi can be shown to be

V [yi] = V [xj ]E [Npi] + [E [xj]]
2 V [Npi] (4.28)

(Feldman and Valdez-Flores, 2010) by applying the law of total variance, where V [ ] indi-

cates variance and E[ ] indicates expectation. Since Npi,tot is Poisson-distributed, the best

estimate of the expectation and variance is the observed count, so that

V [yi] = Npi,totV [xj] + Npi,tot [E [xj ]]
2 . (4.29)

Thus it is necessary to estimate the expectation and variance for xj. These can be estimated

via Taylor series expansion of x(D). Since uncertainty in f does not contribute to sampling

uncertainty, the expectation can be estimated as

E[x(D)] ≈ x(µD) +
x′′(µD)

2
s2
D (4.30)

where µD and s2
D are the expectation and variance of D, respectively, and the primes

indicate derivatives with respect to D. The variance can be estimated as

V ar[x(D)] ≈
(
x′(µD)

)2
s2
D (4.31)

As noted by Uijlenhoet et al. (2006), the particle size distribution can be written as the

product of the total number concentration, Ntot, and the probability density function of

particle sizes, p(D). Taking the particle sizes to be distributed exponentially gives

N(D) = Ntotλ exp(−λD). (4.32)
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from which it can be seen that

p(D) = λ exp(−λD). (4.33)

What are needed are estimates of the expectation and variance of D on subintervals of p(D).

For a subinterval bounded by Di and Di+1, expectation and variance are defined by

µD =

∫Di+1

Di
p(D)DdD

∫Di+1

Di
p(D)dD

(4.34)

and

s2
D =

∫ Di+1

Di
p(D)(D − µD)2dD
∫ Di+1

Di
p(D)dD

. (4.35)

Evaluating these integrals for the exponential probability distribution gives

µD = Di +
1

λ
− (Di+1 − Di) exp (−λ (Di+1 − Di))

1 − exp (−λ (Di+1 − Di))
(4.36)

and

s2
D =

1

λ2
− exp (−λ (Di+1 − Di)) (Di+1 − Di)

2

(1 − exp (−λ (Di+1 − Di)))
2 (4.37)

The value of λ is estimated by linear least squares fitting of ln(Ni) to Di. Given these

last two relations and λ, the expectation and variance of D can be determined for each size

bin. From these, the expectation and variance of x(D) can be found using (4.30) and (4.31).

Next, the variance of yi can be found via (4.29). Finally, since

Ni =
1

Nf∆Di
yi, (4.38)

the variance of Ni is

V [Ni] =

[
1

Nf∆Di

]2

V [yi] (4.39)
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Figure 4.10: Comparison of uncertainties estimated from observations (square root of vari-
ance computed from samples of 5 1-minute particle size distributions) and those calculated
from the statistical model for event B (7 Dec 2006).

Size distribution uncertainty model evaluation

As a simple check on the validity of the size distribution uncertainty model, distinct samples

of the SVI observations were formed by repeatedly collecting five consecutive 1-minute SVI

size distributions from the observations for event B. Variances were computed bin by bin for

each sample. The statistical uncertainty model described above was then applied to the 5-

minute average size distribution obtained from each sample, then the modeled analytic and

sampling variances for each bin were summed. Both the empirical and modeled uncertainties

spanned approximately three orders of magnitude (Figure 4.10). At small uncertainties,

the modeled and empirical uncertainties were in good agreement. At large uncertainties,

the modeled uncertainties for the 5-minute size distributions were somewhat smaller than

the empirical uncertainties for the 1-minute size distributions. Given that the empirical

uncertainties apply to 1-minute SVI observations, while the modeled uncertainties apply to

5-minute averages of the SVI observations, the differences appear reasonable.
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4.3.2 Variances for other parameters

The remaining parameters in (4.16) for which variances are required are ‖Ki‖2, T , p, δ0, C0,

a0, and b0. The value of ‖Ki‖2 used in this work was taken to be 0.177, a value appropriate

for 9.35 GHz at 250 K from the compilation of Warren (1984). A newer compilation (Warren

and Brandt, 2008) gives updated refractive indices for ice at 266 K. Comparing values from

the two compilations shows essentially no change in the real part of the refractive index at

266 K (1.7860 versus 1.7861). The imaginary part decreases by a factor of about 4 in the new

compilation (1.0306*10-3 versus 2.2089*10-4), but this causes no significant change in ‖Ki‖2

(0.17803 versus 0.17807). The temperature sensitivity is somewhat more significant. Warren

(1984) reports microwave optical properties at temperatures of -1◦, -5◦, -20◦, and -60◦C, and

suggests interpolating the real part of the refractive index linearly with temperature, and

the logarithm of the imaginary part linearly with temperature. Following this approach

gives ‖Ki‖2 of 0.1782 at 272 K and 0.1760 at 230 K. Taking the difference in values as

the uncertainty in ‖Ki‖2 , it can be seen that this is a negligible source of uncertainty in

the forward model compared to the observational and other forward model uncertainties in

radar reflectivity.

The remaining parameters affect the calculation of fallspeeds. Temperature and pressure

are used to calculate air viscosity, δ0 and C0 describe hydrodynamic properties of particles,

and a0 and b0 are empirical constants used to improve the agreement between the MH2005

model and observed fallspeeds for aggregate particles (Mitchell and Heymsfield, 2005). The

uncertainties in fallspeeds due to uncertainties in a0 and b0 were assumed to be subsumed

in the uncertainty estimates for the fallspeed forward models, so uncertainties in a0 and

b0 were ignored. Uncertainties in δ0 and C0 were obtained by comparing the values found

by Heymsfield and Westbrook (2010) against the values used by Mitchell and Heymsfield

(2005). The respective values of δ0 were 8.0 and 5.83, and those for C0 were 0.35 and 0.6.

The differences (2.17 and 0.25) were used as the estimated uncertainties and were assumed

to be uncorrelated. Reasonable uncertainties for temperature and pressure are likely to have

minimal effects on air viscosity, and nominal uncertainties were taken to be 0.5◦ C and 1

kPa.
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Chapter 5

Snow microphysics retrieval:

Performance and results

Prior to considering the retrieval results, it is prudent to assess the performance of the

retrieval. In assessing the performance, one seeks to quantify answers to questions such as:

• How well does the retrieved state agree with the true state?

• How independent and significant are the measurements?

• By how much do the measurements improve the knowledge of the state?

Questions such as these are best answered using synthetic test cases which represent realis-

tic snowfall regimes. Given a selection of representative synthetic regimes, several metrics

may be applied which provide quantitative information about the performance of the re-

trieval under various snowfall conditions. The results of these tests with synthetic cases are

presented, followed by the results of the application of the retrieval to the snowfall events

described in Chapter 2.

5.1 Synthetic test cases

The synthetic test cases used in this work were constructed using five snowfall regimes

selected to encompass the extent of conditions observed during C3VP. The regimes were
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Figure 5.1: VertiX reflectivities versus FD12P snowfall rates from the 5-minute averages
C3VP observations. VertiX reflectivities have been corrected to ground level, and snowfall
rates have been scaled to match DFIR accumulations. Dot colors indicate the slope of an
exponential distribution fitted to the observed size distribution. Boxes indicate boundaries
used to define snowfall regimes, and large dots show averaged reflectivities and snowfall
rates for each regime.

defined using subsets of the 5-minute average C3VP observations, selected as shown in

Figure 5.1 using ranges of radar reflectivity and snowfall rate. The regimes represent condi-

tions ranging from light snow with low reflectivity to heavy snow with corresponding high

reflectivity, as well as several intermediate conditions.

The regimes were characterized by values for radar reflectivity, snowfall rate, size dis-

tribution parameters, and temperature (Table 5.1). Size distributions were modeled as

exponential. For a particular regime, the characteristic values for radar reflectivity, snow-

fall rate, and temperature were determined as simple means of the observations within the

associated subset. For the size distribution parameters, an exponential size distribution

was fit to each SVI size distribution in the subset, giving a range of values for the intercept

N0(Dobs) and slope λ(Dobs) . The characteristic values for the size distribution parameters

were then determined as the simple means of these fitted values. Higher reflectivities and
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Table 5.1: Characteristics of synthetic regimes.

Regime Description Ze P log (N0(Dobs)) λ(Dobs) T

dBZe mm LWE h-1 m-3mm-1 mm-1 K

A Very light snow 5.54 0.13 4.17 2.81 263.

B Light snow 16.0 0.405 3.66 1.31 261.

C Moderate snow, low dBZe 22.0 1.02 3.42 0.835 263.

D Moderate snow, high dBZe 28.9 1.11 2.81 0.517 271.

E Heavy snow 24.8 2.70 4.43 1.017 265.

higher snowfall rates were associated with broader distributions (smaller values of λ) (Table

5.1).

For each regime, synthetic cases were constructed by applying a predefined set of as-

sumed values for the exponents of the mass- and area-dimension relationships, β and σ, and

for φ (Table 5.2). These values were selected to span the expected ranges for these vari-

ables, using the a priori values plus or minus approximately one standard deviation. Given

the values for the exponential size distribution parameters N0(Dobs) and λ(Dobs) associated

with a particular regime, an assumed value for φ was used to construct an equivalent ex-

ponential distribution based on the maximum dimension, DM . Using this N(DM ) and the

regime’s radar reflectivity along with the assumed value for β, the corresponding value for α

was found via (3.27). Because particle masses are capped to be no larger than the masses of

equal-diameter ice spheres, a non-linear least squares fitting routine was used to determine

α. Finally, taking the assumed value for σ, the corresponding value for γ was found via

(3.28), again using a nonlinear least squares technique due to the dependence of snowfall

rate on fallspeed and due to the cap on particle area. Particle fallspeeds were modeled

using MH2005. Each synthetic case was named by the regime, followed by a sequence of

labels indicating the values of β, σ, and φ, in that order (e.g., following Table 5.2, “BP0m”

indicates regime B, using the values β = 2.6, σ = 1.785, and φ = 0.725). Combination of

the five regimes with the assumed values of β, σ, and φ provided a total of 225 possible

synthetic cases; however, 31 combinations did not result in usable cases. For these failed
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Table 5.2: Values of state variables used to generate synthetic states and the textual labels
used to identify them. Labels of “0” indicate values which are equal to the a priori values
used in the snow microphysics retrieval. Labels of “M” and “m” indicate negative deviations
from the a priori values, while labels of “p” and “P” indicate positive deviations.

Variable Values and labels

β “M”:1.6, “m”:1.9, “0”:2.067, “p”:2.3, “P”:2.6

σ “m”:1.6, “0”:1.785, “p”:2.0

φ “m”:0.725, “0”:0.825, “p”:0.925

cases, the causes of failure were either that α could not be made large enough to match

the desired radar reflectivity due to the cap on particle mass (6 cases), that γ could not

be made large enough to match the desired snowfall rate due to the cap on particle area

(21 cases), or that γ could not be made small enough to match the desired snowfall rate (4

cases).

5.1.1 Results of synthetic tests

The information content metrics for the synthetic cases show that only about 2 independent

and significant quantities are measured by the observations, and, with H ≈ 3 for most of the

synthetic cases, about 8 distinct states might be discernible within the a priori state space

(Figure 5.2 and Table 5.3). H varies principally with the regime, with regimes consisting

of lighter snow and lower reflectivity having somewhat smaller values of H than do those

consisting of heavier snow and higher reflectivity. This behavior may be because the heavier

snow regimes have broader distributions which might help constrain the exponents of the

mass- and area-dimension relations. The averaged values of H for each regime show a

marked dependence on the size distribution slope (Figure 5.3). In contrast, ds varies only

weakly over the set of synthetic cases.

The errors between the a priori state and the true states for these synthetic cases form

the baseline against which the retrieval performance can be evaluated. These errors are

the equivalent of assuming that the observations provide no information about the state,

so that the retrieval simply returns the a priori state. The fractional error of an estimated
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state variable x̂ is given by

∆(x̂) = (x̂ − x)
100%

|x| , (5.1)

where x is the true value. To compute these errors for the a priori state, the values of x̂

in (5.1) are taken to be the a priori values shown in Table 3.1. These errors are shown in

Figure 5.4.

The regular patterns exhibited by the fractional errors for β, σ, and φ are an artifact of

the method used to construct the synthetic cases: the true values for these variables were

fixed as shown in Table 5.2. For ln(α) and ln(γ), the true values vary depending on the

properties of the regime and the values of the other state variables, causing the errors versus

the a priori values to vary as well. For ln(α), shown in the top left panel of Figure 5.4,

errors vary primarily with β. Errors are predominantly negative when β is larger than its

a priori value, and positive when β is smaller than its a priori value. This pattern results

from the correlation between ln(α) and β induced by the radar reflectivity forward model,

(3.27).

The largest a priori fractional errors are associated with ln(γ). These large errors occur

with synthetic cases for which the true value of γ is moderately large (0.5 - 0.7) compared to

the a priori value of 0.211, leading to fractional errors of -250% to -500% in ln(γ). Many of

these cases are for regime D, which combines high reflectivity with moderate snowfall rate.

Presumably, γ has been made large for these cases in order to increase the particle area,

reducing fallspeeds to match the moderate snowfall rate. These cases may not be represented

well by the assumptions used in the forward models. In particular, an examination of the

subset of observations used to define regime D shows that temperatures for 10 of the 14

members of the subset were in the range of 272 K to 273 K, while the other 4 were in

the range 264 K to 269 K. Those 10 members were observed between 1230 and 1500 UTC

on 6 December, 2006. Observers on the ground reported wet, sticky snowflakes during this

period (Austin et al., 2007), while the forward model for radar backscattering is appropriate

only for dry snow.

Generally, the retrieval improves upon the a priori errors. As an example, this improve-

ment is made especially clear by comparing the panels for β errors in Figures 5.4 and 5.5.
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Figure 5.4: A priori errors for synthetic cases. Fractional errors between the a priori state
and the true state for each state variable. Two panels are provided for ln(γ), one with full
scale (bottom left) and one with reduced scale (bottom right). The axes of each panel are
as described for Figure 5.2. In all but the bottom right panel, white regions show synthetic
case configurations which did not results in usable cases.
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Table 5.3: Statistics of fractional errors in per cent and information content metrics from
the synthetic cases. The mean is given, followed by the standard deviation in parentheses.

Variable a priori Retrieval, 1-sd a priori Retrieval, 2-sd a priori

or metric

ln(α) -3.19 (7.69) -0.74 (4.28) -0.77 (3.93)

β -0.85 (15.68) 0.85 (10.79) 1.01 (8.55)

ln(γ) -44.35 (92.41) -32.66 (68.92) -20.29 (45.22)

σ 0.10 (9.09) 0.57 (8.88) 1.25 (9.46)

φ 0.97 (9.94) -0.23 (9.59) -1.17 (9.73)

H - 3.07 (0.16) 5.26 (0.184)

ds - 1.83 (0.04) 2.53 (0.03)

The lower regions of the β panel in Figure 5.4 show strong positive errors (maroon and

gold colors). These same regions in Figure 5.5 show smaller positive errors (red, orange and

yellow colors). Similar comparisons can be made for the upper regions of the β panel, where

the a priori errors are strongly negative. For ln(α), it can also be seen by comparing the

panels that the retrieval reduces the range of errors in comparison to the a priori. For the a

priori, errors for ln(α) range from -30.5% to 9.0%, while after the retrieval, the errors range

from -16.0% to 8.0%. For the remaining state variables, the performance of the retrieval is

less clear. For ln(γ), a minor narrowing of the distribution of the errors occurs (not shown).

Retrieval performance is summarized in Table 5.3, which shows the mean and standard

deviation of the fractional errors (i.e., bias and scatter) for both the a priori and the re-

trieval. Bias and scatter for both ln(α) and ln(γ) are reduced by the retrieval, although the

improvements in ln(γ) are less substantial than those for ln(α). The magnitude of the bias

in β, which is smaller than 1%, is essentially unchanged by the retrieval but the scatter is

reduced to less than 70% of its original value. For σ and φ, the retrieval has little impact,

essentially leaving the already small biases and the scatter unchanged.

These results suggest that ln(α), β, and ln(γ) are modestly constrained by the retrieval,

while the measurements provide little information regarding σ and φ. To evaluate this, the

diagonal elements of AAA as described in (3.5) may be examined. Values for ln(α) are near 1.0
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Figure 5.5: Retrieval errors for synthetic cases. Fractional errors between the retrieved state
and the true state for each state variable. The panels use the same data ranges and are
constructed as in Figure 5.4.
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(Figure 5.6) indicating that its retrieved state is determined largely by the observations. In

contrast, values for σ are less than 0.1, indicating its retrieved state is determined largely

by the a priori. The values of the AAA diagonal elements for the remaining state variables fall

between 0.1 and 0.5, indicating the retrieved state for these variables is determined jointly

by the observations and the a priori estimate of the state.

5.2 Application to C3VP snowfall events

The C3VP microphysics retrieval was applied to the four snowfall events described in Chap-

ter 2. These events consist of a mix of lake-effect and synoptically-driven frontal precip-

itation. The primary purpose of the results from these retrievals is to form reasonable

estimates of microphysical properties and their uncertainties for the CloudSat retrieval.

Consequently, the analysis presented here focuses largely on that aspect of the results, but

also examines information content properties that provide some insight into the design of

the C3VP experiment. Retrievals were performed in two different configurations, repre-

senting two different fallspeed models (MH2005 and HW2010), as introduced in Section

3.2. The results presented here are for the MH2005 configuration, with comments regarding

differences for the other configurations as necessary.

5.2.1 Retrieved properties

Retrieval results were obtained for 375 distinct samples from the four events, broken down

as 33 from event A, 173 from B, 43 from C and 126 from D. Figure 5.7 shows scatterplots

of the retrieved parameters for mass (upper panel) and area (lower panel). The a priori

state, from Table 3.1, is represented by the orange crossbars, while the blue crossbars show

the expected values and standard deviations for the posterior, retrieved state. The method

for determining this representation of the retrieved state will be discussed below. Points

are colorcoded to show the differences between events. The strongest contrasts are between

events B and D. Event B was a light snow case with intermittent lake-effect snow squalls

and fairly broad size distributions (Figure 2.2), while event D was associated with a deeper

system with much narrower distributions (Figure 2.4). The results suggest the retrieval

86



0
20
40
60
80

100

0
20
40
60
80

100

0

50

100

150

200

C
ou

nt

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1
0

20
40
60
80

100

ln(α):  A[0,0]

β:  A[1,1]

ln(γ):  A[2,2]

σ:  A[3,3]

φ:  A[4,4]
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Figure 5.7: Microphysical mass and area parameters retrieved from C3VP. Points are color-
coded by event. The orange points and error bars show the a priori expected values and
standard deviations, while the blue points and error bars show them for the retrieved state.
The heavy black points show results for larger and irregularly-shaped particles from Mitchell
(1996).

method has some ability to distinguish the characteristics of particles produced by different

microphysical processes, but that ability was not examined further in this work.

For the mass parameters, the standard deviations are reduced considerably compared

to the a priori state, especially for the coefficient α, suggesting they are well-constrained by

the observations. Retrieved values of β range mainly from 1.75 to 2.75, and α from about

0.001 to 0.01, with the expected values of the retrieved points at β=2.248, α=0.00311. The

heavy black points show values from Mitchell (1996) for a range of larger particles from that

study (Table 5.4). The expected values of α and β from this study are similar to estimates

from Mitchell for densely rimed dendrites (R2b), aggregates (S3 and S1(a)), rosettes (C2a),

and side planes (S1). These expected values are considerably different than the often-used

values described by Brown and Francis (1995) (β= 1.9, α=0.00294 in cgs units), which were
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Table 5.4: Mass and area parameters from Mitchell (1996) used in Figure 5.7.

Habit Dmin Dmax β ln (α) σ ln (γ)

µm µm (cgs)

P1d 90 1500 1.67 -8.22 1.63 -2.21

N1e 300 – 1.74 -7.01 1.414 -2.97

P1c 100 1000 1.8 -7.57 1.76 -1.56

R1b 200 2400 1.8 -6.54 1.414 -2.97

P1b 40 2000 2.02 -6.56 1.97 -0.60

S3 800 4500 2.1 -5.88 1.88 -1.48

S1(a) 600 4100 2.2 -5.71 1.88 -1.48

C2a 200 1000 2.26 -5.78 1.57 -2.44

R2b 1800 4000 2.3 -5.81 1.76 -1.56

S1 300 2500 2.3 -5.48 1.88 -1.48

P1a 100 3000 2.45 -4.91 2.00 -0.43

taken from the results of Locatelli and Hobbs (1974). Locatelli and Hobbs reported these

values for unrimed aggregates of bullets, columns and side planes, and also for aggregates of

densely-rimed dendrites or radiating assemblages of dendrites. Recent work by Heymsfield

et al. (2010) using aircraft observations from six field campaigns has suggested that values of

β near 2.1 are more appropriate for cloud and precipitating ice. They found corresponding

values of α (cgs units) of 0.00359 for warm-topped non-convective clouds, 0.00574 for cold-

topped non-convective clouds, and 0.00630 for convectively-generated clouds. The warm-

topped cloud cases included observations from C3VP. The mass-dimension relations from

Mitchell (1996) and Heymsfield et al. (2010) are all based on measurements of maximum

particle dimension, while Locatelli and Hobbs (1974) used the diameter of an equal-area

circle.

A number of studies have suggested values of α that are substantially larger than the

value of 0.00311 from this study. Brandes et al. (2007) found α = 0.00890 and β = 2.1 for

snow along Colorado’s Front Range; however, their particle size was an equivalent volume

diameter obtained from 2DVD observations and likely substantially smaller than the maxi-

89



mum dimension DM used in this work. Further, their mass-dimension relation was given as

a function of the size distribution median volume diameter, more a measure of distribution

width, rather than actual particle size. Muramoto et al. (1995) presented a density relation

which, based on their definition of particle volume, can be converted to a mass-dimension

relation with α = 0.00987 and β = 2.594. For particle size, they used the width of the

particle as observed by a side-viewing camera with no correction for viewing geometry (i.e.,

φ used in this work). As was shown in Section 3.3, this approach underestimates DM .

Similar to Brandes et al. (2007), they presented their density relation as a function of the

mean particle size of the observations, rather than as a function of actual particle size.

Magono and Nakamura (1965) gave a density relation for observations of wet and dry snow.

Using only their dry snow observations and converting their densities to masses using their

definition of particle volume, a best-fit mass-dimension relation gives α = 0.00907 and β =

1.82. Constraining β to 2.25 gives α = 0.00722. They collected the snow particles on a flat

surface, measured the longest horizontal dimension and the dimension normal to that, then

used the geometric mean of those dimensions as the particle size. Again, this underestimates

DM .

Differences in how particle size is measured can have a substantial impact on estimates

of α. Using φ as was defined in (3.25) and letting αM be the value of α determined when

particle size is given by DM , the value α′ associated with some other measure of particle

size Dobs can be evaluated using

α′Dβ
obs = αMDβ

M (5.2)

= αM

(
Dobs

φ

)β

=

(
αM

φβ

)

Dβ
obs

Estimating φ as 0.8 and using the expected value of β of 2.248, α′ will be a factor of 1.7

larger than αM . A significant part of the differences in mass-dimension coefficients may

be explained by these differences in the treatment of particle size. Differences may also

be due to differences in independent variables (median volume diameter or mean particle
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size instead of actual particle size). The results of Heymsfield et al. (2010) indicate that

differences in microphysical processes lead to differences in mass-dimension parameters, and

the representativeness of these C3VP results should be explored further; however, when

making comparisons against other studies it is also essential to ensure that the parameters

are determined using similar definitions of particle size.

For the area-dimension parameters, the differences between the retrieved and a priori

state are less substantial (Figure 5.7, lower panel). The standard deviations and the ex-

pected values for ln (γ) and σ are similar to those for the a priori state. As was done for the

mass plot, several points from Mitchell (1996) which are representative of larger, irregular

particles are shown for comparison. The two points nearest the expected values for the

retrieved state correspond to densely rimed dendrites (R2b), aggregates (S3 and S1(a)),

rosettes (C2a), and side planes (S1) (Table 5.4), the same habits that best matched the

results for the mass parameters. Unlike the situation with the mass-dimension parameters,

previous estimates of area-dimension parameters were based solely on particle maximum

dimension, DM . All known evaluations of area-dimension parameters were incorporated

as the a priori state for the retrieval, and the retrieved values are consistent with those

evaluations.

For φ, the parameter which relates the disdrometer-observed particle dimension to the

true maximum dimension, the standard deviation is not substantially reduced but the ex-

pected value is reduced. Smaller values of φ are associated with narrower distributions

(Figure 5.8), and there is some contrast between events B and D, but the significance of

these differences has not been evaluated. The CloudSat snowfall retrieval will be cast in

terms of particle maximum dimension DM , so φ will not be necessary in its formulation;

however, φ does provide some insight into the biases that are inherent in disdrometer and

imager observations of snow particles. An understanding of these biases, and how they

impact estimates of snow microphysical properties, is essential for the application of these

sorts of ground validation observations.

Histograms of the A-matrix values (not shown) associated with each of the retrieved

parameters confirm the impressions given by Figures 5.7 and 5.8. The values associated with

ln (α) range between 0.9 and 1.1, indicating it is strongly constrained by the measurements.
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Figure 5.8: Microphysical shape parameter φ retrieved from C3VP. Colors for points and
error bars are as in Figure 5.7. The black horizontal line shows the a priori expected value.
The location of the prior and posterior error bars along the horizontal axis is not significant.

Values larger than 1 are unexpected, but have been reported previously (Connor et al.,

2008) and may be related to nonzero a priori covariances. Values associated with β and

ln (γ) are about 0.3, indicating a mix of information from the observations and the a priori

constraints. Values associated with σ and φ average near 0.1, and suggest these parameters

are influenced primarily by the a priori.

For each of the 375 samples, the microphysical retrieval produced an estimate of the

expected values of ln (α), β, ln (γ), σ and φ and their covariance matrix, describing a

five-dimensional normal PDF that represents the retrieved state. For use in the CloudSat

snowfall retrieval, these PDFs must be combined into a single representative PDF from

which expected values and a covariance matrix can be obtained. This single PDF can be

constructed by Monte Carlo sampling all of the 375 individual PDFs to produce a synthetic

pooled sample that is representative of all the retrieval results. Samples containing 20,000

points, each point consisting of a vector [ln (α) , β, ln (γ) , σ, φ], were drawn for each of the 375

retrieved PDFs, and these samples were accumulated into the pooled sample. Because the

number of retrievals per event varied considerably, weighting was applied to the points in the

pooled sample to equalize the importance of the events. Expected values and the covariance

matrix were then calculated for the pooled sample. Ten realizations were performed and

the final set of 10 expected value vectors and 10 covariance matrices were averaged. As

noted above, φ is not required for the CloudSat snowfall retrieval, so it was omitted from
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this analysis. From this pooled sample, expected values and the covariance matrix were

evaluated. For the MH2005 version of the retrieval, the resulting expected values were


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
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


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
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(5.3)

and the covariance matrix was

SSS =



















s2 (ln (α)) s (ln (α) , β) s (ln (α) , ln (γ)) s (ln (α) , σ)

s (β, ln (α)) s2 (β) s (β, ln (γ)) s (β, σ)

s (ln (γ) , ln (α)) s (ln (γ) , β) s2 (ln (γ)) s (ln (γ) , σ)
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
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.

Table 5.5 compares the prior expected values, variances and covariances against their pos-

terior values. As was anticipated from Figure 5.7, the variances and covariances associated

with the mass parameters have decreased, while those associated with the area parameters

have changed little. For the mass parameters, this raises the question as to whether the

posterior distribution obtained from the C3VP is an improved representation of the true

distribution, or whether it represents a subset of the true distribution. Eventually, this ques-
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tion can be answered in part by applying similar analyses to observations from additional

experiments. For the present work, this posterior distribution is taken to be representative

of the true distribution of these microphysical parameters.

One of the key questions to be answered by this analysis is whether covariances exist

which were not present in the a priori. From (5.4), it can be seen that covariances that mix

mass and area parameters (e.g., s (ln (α) , ln (γ))) are nonzero, while they were zero in the

a priori. The corresponding correlation matrix is

ρρρcorr =



















1.000 0.731 0.202 0.139

0.731 1.000 0.049 0.090

0.202 0.049 1.000 0.831

0.139 0.090 0.831 1.000



















(5.5)

showing nontrivial correlations between ln (α) and ln (γ) (0.202), between β and σ (0.090),

and between ln (α) and σ (0.139). The first two, in particular, likely arise because of

the dependence of fallspeed on α
γ and on β − σ. These off-diagonal elements will help

constrain the CloudSat retrieval forward model uncertainties caused by uncertainties in the

microphysical parameters.

Table 5.5 also shows the results from the retrieval when configured with the HW2010

model for fallspeeds. The posterior state for the HW2010 configuration is essentially un-

changed from that for the MH2005 configuration. For the CloudSat snowfall retrieval, the

results from the MH2005 configuration were used.

5.3 Uncertainties and observing system design

The information content metrics provided by the microphysics retrieval provide a concise

way to quantify the influence of changes in the observing system on the retrieval perfor-

mance. For the observations themselves, significant uncertainties arose because of ground

clutter in the VertiX radar profiles, the lack of replicate observations of snowfall rate, and
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Table 5.5: Comparison of prior and posterior PDFs for the microphysics retrieval. “Exp” is
expected value, “Var” is variance, and “Cov” is covariance.

Prior Posterior, MH2005 Posterior, HW2010

Exp Var Cov Exp Var Cov Exp Var Cov

ln(α) -6.181 2.474 0.585 -5.723 0.592 0.212 -5.676 0.591 0.204

β 2.067 0.244 2.248 0.142 2.212 0.137

ln(γ) -1.556 0.392 0.118 -1.379 0.335 0.103 -1.498 0.377 0.114

σ 1.785 0.0507 1.813 0.046 1.794 0.049

the relatively small sample volume of the SVI. Additionally, uncertainties in the fallspeed

forward model were substantial, estimated at 30% of the observed fallspeeds. Using the

synthetic test cases, an experiment was performed in which a series of improvements was

applied to these uncertainties and the information content metrics reevaluated.

First, it was assumed that reflectivity observations could be made with reduced ground

clutter contamination, allowing the observed reflectivity to be nearer the surface observa-

tions of snowfall rate, size distribution and fallspeeds. This allowed the uncertainties defined

in Table 4.1 to be omitted. Next, the uncertainties for the observed FD12P snowfall rates

were reduced to half their values, simulating the improvements that would result from hav-

ing four replicate snowfall rate observations. Third, more accurate size distributions were

assumed, equivalent to increasing the SVI sample volume by a factor of six. This could

be achieved by deploying additional instruments, by enlarging the field of view or depth

of field of the SVI camera, by increasing the sample times, or by a combination of these

changes. Finally, a more accurate fallspeed model was assumed, with uncertainties reduced

from 30% to 10% of observed fallspeeds.

Results of these tests are shown in Table 5.6. Initial values of H and ds are shown, along

with the new values resulting from incrementally applying the improvements. The improve-

ments to the observations themselves led to negligible improvements in ds and modest im-

provements in H. This result is consistent with the interpretation of degrees of freedom for

signal and information content. Reducing uncertainties in existing measurements does not

introduce new independent information, but does allow the retrieval to better resolve the
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Table 5.6: Changes in information content metrics due to improvements in observational
and forward model uncertainties.

Initial Ze P N(D) Fallspeed

H 3.07 3.86 3.87 3.90 4.80

ds 1.83 1.89 1.90 1.90 2.32

retrieved state. Improvements to the fallspeed forward model, however, produced substan-

tial improvements in H and more significant improvements in ds. Not only is the retrieved

state better resolved, but the retrieval is utilizing more of the information available in the

observations. This simple experiment illustrates that proposed improvements to observing

systems need to be considered in concert with the capabilities of the retrieval system.
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Chapter 6

Particle models

In order to calculate radar reflectivities and snowfall rates for the snowfall retrieval scheme,

size-resolved microphysical and radar scattering properties must be modeled for snow par-

ticles. As described in Section 3.2, particle mass and horizontally-projected area largely

control a particle’s fallspeed for given environmental conditions. Together, particle mass

and fallspeed determine a particle’s contribution to snowfall rate. Horizontally-projected

area is determined by particle shape and orientation. Scattering by ice particles at 94 GHz

depends on particle mass and, for larger precipitation-sized particles, also on particle shape

and orientation. Even for small particles, nonsphericity may cause scattering properties to

depart from the traditional Rayleigh model for spheres, as was shown in the evaluation of

X-band forward model uncertainties for the snow microphysics retrieval (Section 4.2).

The required particle models must describe these properties in a physically consistent

way, and the results from the snow microphysics retrieval provide a physically consistent

description of some of these properties. The expected values for the microphysical param-

eters ln (α), β, ln (γ) and σ given by (5.3) determine expected values for particle mass

and horizontally-projected area as a function of snow particle size, from which size-resolved

fallspeeds can be determined (Figure 6.1). The expected values for mass and horizontally-

projected area also provide some constraints on particle scattering properties. The uncer-

tainties for these microphysical parameters, described by the covariance matrix given in

(5.4), contribute to uncertainties in the particle properties and in the quantities such as

snowfall rate and radar reflectivity calculated from them. The methods for propagating
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Figure 6.1: Masses, horizontally-projected areas, and fallspeeds versus snow particle size
DM based on the expected values for ln (α), β, ln (γ) and σ from the microphysics retrieval.
Fallspeeds are per MH2005.

the uncertainties of the microphysical parameters into the calculations for snowfall rate and

radar reflectivity will be presented in Chapter 7. In this chapter, the expected values for

these parameters are used to construct the required particle models and to assess other

sources of uncertainty related to the particle models.

While the properties required to calculate snowfall rate (Figure 6.1) are easily determined

from the microphysical parameters, the application of these properties to determine radar

scattering properties is less straightforward. Over the range of particles sizes needed for the

CloudSat retrieval, the scattering behavior of particles varies widely and the use of mass as

the only constraint is not sufficient. Studies of radar backscatter at 94 GHz for a variety
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of particle shapes suggest that the Rayleigh approximation begins to fail at rev values of

100 to 300 µm (Schneider and Stephens, 1995; Liu and Illingworth, 1997) where rev is the

equivalent volume radius (i.e., the radius of a solid-ice sphere with volume equal to the

actual ice volume of the non-spherical particle):

rev =

[
m (DM )

ρice

3

4π

]1/3

, (6.1)

with ρice the solid ice density of 0.917 g cm−3. Deviations of particle shape from spherical

also preclude the use of Mie theory (van de Hulst, 1981). Based on comparisons of 94

GHz backscatter properties of spheres with the properties of randomly oriented cubes and

hexagonal columns, Mie theory is adequate in an approximate sense only for rev < 500 µm

(Liu and Illingworth, 1997).

Small particles may have near-pristine shapes, but larger particles are typically produced

by aggregation and are irregular in shape. Aggregates are the dominant form of particle in

vigorous mid-latitude storms (Jiusto and Weickmann, 1973), and Hobbs et al. (1974) iden-

tified aggregates as producing more than half the total mass of solid precipitation near the

crest of the Cascade Mountains. The particle models must be representative of aggregates

in the larger particle sizes. Attempts have been made to simulate millimeter-wavelength

scattering properties of irregular, aggregate-like particles with Mie theory using spheres

composed of a mixture of air and ice (the soft sphere approximation); however, compar-

isons against less approximate methods have shown the inability of soft sphere models to

reproduce scattering properties across multiple frequencies (Petty and Huang, 2010). While

the CloudSat retrieval uses only 94 GHz reflectivity observations, the potential future appli-

cation of multiple frequency active and passive observations to the snowfall retrieval problem

makes desirable the accurate modeling of multi-frequency scattering properties. Therefore,

some information about particle shape must be provided for these models, and the method

employed to calculate scattering properties should consider this shape information.
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6.1 The discrete dipole approximation (DDA) method

While a number of techniques may be applied to calculate scattering properties for non-

spherical ice particles (see e.g. Bohren and Singham (1991) for an overview), two methods,

the discrete dipole approximation (DDA: Draine, 1988; Draine and Flatau, 1994) and the

finite difference time domain method (Tang and Aydin, 1995), allow arbitrary geometries.

The DDA, the method used for this work, replaces a continuous target with an array of

discrete dipoles with specified polarizability. Subject to the incident electric field, which

includes both the applied field and the fields generated by other dipoles, an oscillating

dipole moment is induced at each point and the oscillating dipole, in turn, generates an

electric field. The relation between the incident fields and the dipole polarizations is ex-

pressed as a set of coupled linear equations which are solved to find the polarizations. The

various single scattering properties are then determined using the polarizations. The DDA

implementation used for this work is DDSCAT (Drain and Flatau, 2010).

Given a desired particle shape, an appropriate dipole array must be constructed within

that shape. DDSCAT requires that dipoles be placed on a simple cubic lattice. As each

dipole represents a small element of mass, the number of dipoles must be such that the

particle has the required mass. Additionally, the dipole array must be constructed so that

an accurate DDA calculation is obtained. The primary criteria for accuracy are 1) that the

spacing d between dipole locations be small compared to the wavelength of the applied field

and 2) that the number of dipoles be sufficient to adequately describe the particle shape

(Drain and Flatau, 2010). Based on comparisons versus Mie results for spheres, Draine and

Flatau (1994) found that when accurate calculations of backscattering cross sections are

needed, the criteria are satisfied by requiring

|n| 2π

Λ
d < 0.5 (6.2)

where n is the complex refractive index of the dipole material and Λ is the wavelength of

the incident radiation, and by requiring Ndipoles > 104, where Ndipoles is the total number
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of dipoles. The requirement given by (6.2) defines an upper limit on dipole spacing:

d <
Λ

4π |n| (6.3)

For more complex shapes the second criterion, that the number of dipoles be sufficient

to adequately describe the particle shape, is more difficult to assess because of the lack

of exact scattering properties. Okamoto et al. (1995) and Okamoto (2002) attempted to

address this lack by comparing the results of DDA simulations performed with increasing

values of Ndipoles. For randomly oriented particles, accuracies of 10% for Ze were obtained

when the criterion (6.2) was satisfied. However, the smallest aspect ratio (thickness divided

by maximum dimension across the face of a planar particle) examined was 1/3, while for

pristine planar crystals, aspect ratios may be in the range of 0.01 to 0.1 (Auer and Veal,

1970).

Following Okamoto’s approach, a set of DDA calculations was made for a large planar

particle for which the number of dipoles used through the thickness of the plate, Ns, was

increased from 2 to 6. At Ns = 2, both the requirement on dipole spacing (6.2) and the

requirement on Ndipoles were met. Increases beyond Ns = 6 were not computationally

feasible at this particle size. Because of the requirement that the dipoles be located on a

cubic lattice, small increases in the number of dipoles along the small dimension of a particle

can dramatically increase the total number of dipoles. Doubling the number of dipoles along

along a single dimension reduces the lattice spacing by a factor of 2 and results in an 8-fold

increase in the total number of dipoles. The calculations showed differences in σbk of less

than 3% and in σext of less than 5% (Table 6.1), with the cross sections systematically

decreasing as the number of dipoles was increased. Given that DDA particle shapes are

highly idealized representations of natural, irregular snow particles, this level of uncertainty

is not objectionable. For the scattering calculations used to produce the particle models

in this work, the lattices for planar particles are constructed to allow no fewer than two

dipoles through the thickness of the plate.

101



Table 6.1: Variation in scattering properties for a sector plate particle (rev = 789.7µm) with
changes in Ns, the number of dipoles across the small dimension of the plate. σbk and σext

are the backscatter and extinction cross-sections, respectively.

Ns Ndipoles σbk, mm2 σext, mm2

2 13,608 1.145 0.919

4 112,528 1.122 0.899

6 383,442 1.116 0.880

6.1.1 Particle shapes

It is necessary then to define desired particle shapes for use in the DDA calculations. The

information on mass and horizontally-projected area obtained from the snow microphysics

retrieval is not sufficient to uniquely define the particle shape, so assumptions must be made.

It is visually apparent that for a typical snow particle, the distribution of mass within the

volume envelope occupied by the particle is not isotropic. Rather, the mass is usually

somewhat spatially clustered, or clumpy. This feature is particularly true for aggregates.

For millimeter wavelengths, it is likely that the scattering properties of snow particles are

not strongly sensitive to the fine structure of the spatial distribution of mass, but will

be sensitive to the larger-scale structure (Matrosov, 2007). The objective of an assumed

particle shape is then to reasonably capture the gross features of the spatial distribution of

mass, but not to attempt to replicate particular fine features.

A broad distinction may be made between planar and spatial particles. As noted previ-

ously, pristine planar crystals may have aspect ratios of 0.01 to 0.1 (Auer and Veal, 1970).

In contrast, aspect ratios for snow particles with DM< 1.0 mm have been measured to be

around 0.6 - 0.8 using a Cloud Particle Imager (Korolev and Isaac, 2003), although it should

be noted that the observations were made at an inclination angle of 45◦ to horizontal. This

observing angle would tend to overestimate aspect ratios for oblate particles oriented with

their minor axis vertical. Additionally, planar particles would tend to present the planar

face to a vertically-pointing radar, while spatial particles would present a more irregular

face.
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To address these factors, scattering calculations were made for a variety of shapes. For

planar particles, a branched plate-like shape with six branches, designated as shape SPp, was

used (Figure 6.2, upper left). While hexagonal plates and needles may have suitably small

aspect ratios, here defined as the maximum vertical dimension divided by the maximum

horizontal dimension DM , their shapes are not sufficiently adjustable to meet the constraints

on horizontally-projected area obtained from the microphysics retrieval. With the branched

planar shape, the horizontally-projected area may be altered by changing the width of the

branches. For narrow widths, the shape is much like a stellar crystal (P1d) (Magono and

Lee, 1996) and has a small horizontally-projected area. As the branch width increases, the

shape approaches that of a crystal with broad branches (P1c) and at the limit of maximum

branch width, is a hexagonal plate (P1a). For purposes of comparison, calculations were

also done for hexagonal plates (shape HPp) which met the mass constraints from the snow

microphysics retrieval but not the constraints on horizontally-projected area.

Spatial particles were represented with clusters of thick hexagonal branches and with a

scalene ellipsoid (Figure 6.2). These spatial shapes are considered to be simplistic, some-

what abstract representations of aggregate particles. For the clusters, the orientation of

the branches controls the aspect ratio of the particle and for a given aspect ratio, the

horizontally-projected area may be altered by changing the branch thickness. Three dif-

ferent configurations were examined: B6pf, with six branches all lying in the horizontal

plane (Figure 6.2, upper middle); B8pr-30, with eight branches six of which intersected the

horizontal plane at angles of 30◦ (Figure 6.2, lower left); and B8pf-45 with eight branches

six of which intersected the horizontal plane at angles of 45◦(Figure 6.2, lower right). For

shape B6pf, both aspect ratio and horizontally-projected area get smaller as the branch

thickness is reduced. Shape B8pr-30 has an aspect ratio of about 0.5, and B8pr-45 has an

aspect ratio near 0.70.

The scalene ellipsoid is a simple shape which also has the ability to meet the constraints

on horizontally projected area and aspect ratio, but whose shape is fundamentally differently

than the branched particles (Figure 6.2, upper right). Given a desired size DM , the length

of the major horizontal axis is set to this size and the length of the vertical axis is set to

0.5DM . This choice provides the same aspect ratio as the B8pr-30 shape. The length of the
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Figure 6.2: Examples of shapes for dipole arrays: SPp, upper left; B6pf, upper middle; Ep,
upper right; B8pr-30, lower left; and B8pr-45, lower right.

minor horizontal axis is adjusted to match the required horizontally projected area. In the

event the required length is less than 0.5DM , the minor horizontal axis is set to 0.5DM and

the required area is achieved by placing continuous porosities at random locations extending

vertically through the particle. This approach ensures that the shape of the particle is such

that it would fall with the proper orientation.

6.2 Construction of dipole arrays

Given a desired shape (SPp, B6pf, B8pr-30, B8pr-45, or Ep), dipole arrays must be con-

structed for a range of particle sizes. To construct an array for a particle with maximum

dimension DM , first particle mass m and horizontally-projected area Ap are determined

using the power laws and values of α, β, γ, and σ from the snow microphysics retrieval.

From the horizontally-projected area, the non-dimensional area ratio rA can be calculated

as

rA =
4Ap

πD2
M

. (6.4)

and instances of the desired shape can be selected which match the area ratio to within a

small error, taken to be 1%. For the Ep shape, in the event rA< 0.5, a shape with rA= 0.5

is used and the correct rA is achieved when the dipole array is constructed.

Given an instance of the shape which matches the required area ratio, a three-dimensional

cubic lattice with lattice spacing d is defined inside the shape (Figure 6.3, upper panel).

Possible values for d are obtained by dividing the maximum dimension DM by integer num-
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bers of dipoles. The resulting lattice spacing must comply with the requirement of (6.3),

and any which do not are discarded. Dipoles are considered to consist of solid ice. At 94.0

GHz, the complex refractive index for ice is 1.782 - i2.708e-03, taken from Warren (1984)

for a temperature of 250K, and this refractive index gives a maximum allowable value for

d of 142 µm per (6.3). To permit the resulting dipole arrays to be used for calculations up

to 183.0 GHz (a high frequency passive microwave observation channel) in future work, the

maximum allowable value of d was further reduced to 73 µm, based on a refractive index of

1.782 - i4.324e-03, also from Warren.

Given a value for d, the mass of a single dipole is d3ρice and, knowing the required

particle mass m, the required number of dipoles is

Ndipoles =
m

d3ρice
. (6.5)

If Ndipoles exceeds the minimum allowed value of 104, and if the lattice has enough nodes on

which to place the dipoles, the lattice spacing is acceptable. In practice, a range of values

of d will produce acceptable lattices. To reduce required computing resources, a lattice is

chosen which makes the number of dipoles as small as possible without falling below the

minimum value of 104.

In essentially all cases, the number of available lattice nodes exceeds Ndipoles. In those

cases, the dipoles are placed randomly on the lattice nodes in such a way that the particle

dimension DM and horizontally-projected area Ap are maintained at the required values

(Figure 6.3, middle and lower panels). The resulting particle, rather than being solid ice,

contains porosities. For the spatial particles, the combination of the gross structure imposed

by the particle shape (B6pf, B8pr-30, B8pr-45, Ep) along with the porosities is intended to

resemble aggregates of smaller, more structured particles. The porosities are normally not

permitted to extend uninterrupted vertically through the particle in order to preserve Ap.

The exception is the Ep shape when rA< 0.5, in which case such porosities are allowed in

order to produce the required rA. This approach gives a particle model that matches the

desired shape and that also matches the required DM , Ap, and m. The matched values

of DM , Ap, and m ensure that the particle will have the desired fallspeed properties. The
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random placement of dipoles does mean that the modeled scattering properties will have

some amount of random variation. As noted earlier, however, scattering properties at

millimeter wavelengths should not be strongly sensitive to the fine details of the particle

structure. Additionally, since radar reflectivity is obtained by integrating over the particle

size spectrum, the effects of random variations in scattering properties on radar reflectivity

should be further reduced. The results from the DDA modeling were used to verify this

expectation, as will be discussed in Section 6.4.

6.3 DDA calculations

DDA calculations were performed for discrete sizes ranging from DM= 0.025 mm to DM=18.

mm using DDSCAT version 7.1 (Drain and Flatau, 2010). The upper size limit was de-

termined partly by computer hardware limitations. At the largest sizes, computer random

access memory requirements were near 8 gigabytes for the aggregate particle models. For

initial testing and evaluation, size increments varied from 0.025 mm for small particles to

1 mm for large particles. The suitability of this arrangement is examined as part of the

evaluation of the DDA results (Section 6.4.4). Shapes such as SPp and HPp cannot be

considered realistic at the larger particle sizes, but modeling such shapes may provide use-

ful information about the sensitivity of scattering properties to particle shape. Particles

were assumed to be oriented randomly with their longest dimension lying nominally in the

horizontal plane (i.e., rotations in the horizontal plane were uniformly sampled), and were

illuminated with a vertically incident, linearly polarized plane wave. Additionally, canting

angles were applied, having values ranging over +/- 10◦ but sampled uniformly in the cosine

of the angle following DDSCAT’s standard method. This approach is an approximation,

based roughly on the canting angle distributions found by Matrosov et al. (2005b) for pris-

tine dendritic particles. Dipoles were modeled as solid ice, with a density of 0.917 g cm-3

and a refractive index of 1.782 - i2.708e-03, consistent with Warren (1984) for a temperature

of 250K and frequency of 94 GHz. Although the dielectric properties of ice at 94 GHz vary

with temperature, the dependence is weak and using a constant value is not a significant

source of error over the range of expected atmospheric temperatures.
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Figure 6.3: Cartoon illustrating the construction of a dipole array for DDA calculations.
Given a desired shape which meets the specified maximum dimension and horizontally-
projected area, first a cubic lattice is constructed within the shape (upper panel). Next,
dipoles are placed so that the horizontally-projected area is completely occupied by dipoles
(middle panel). Finally, the remaining dipoles, sufficient in number to meet the specified
mass, are placed randomly on the lattice (lower panel).
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6.3.1 Scattering properties

The DDA method models a number of particle scattering properties. Of primary relevance

to this work are the backscattering and extinction cross-sections. DDSCAT provides the

extinction efficiency relative to the cross-sectional area of an equivalent volume sphere

Qext =
σext

πr2
ev

=
σabs + σsca

πr2
ev

(6.6)

where σext, σabs, and σsca are the extinction, absorption and scattering cross-sections, re-

spectively, and rev is as given by 6.1. For backscattering, DDSCAT provides the differential

backscatter cross-section normalized by πr2
ev

Qbk =
1

πr2
ev

∂σsca

∂Ω

∣
∣
∣
∣
Θ=π

(6.7)

where Ω is solid angle and Θ = π indicates the derivative is evaluated in the backscattering

direction. For simulating radar reflectivities, the backscatter cross-section is calculated from

Qbk as

σbk = 4πQbkπr2
ev. (6.8)

Figure 6.4 shows the resulting backscatter cross-sections for the planar SPp shape. For

comparison, cross-sections for Rayleigh spheres, Mie spheres and the HPp shape are shown

also. Cross-sections are plotted versus rev, and the relation between DM and rev is shown

in Figure 6.5. Since the DDA dipoles are taken to be solid ice, as are the Rayleigh and Mie

spheres, particles with the same rev contain the same mass. For rev below about 0.7 mm,

the SPp and HPp shapes have similar cross-sections. At these small sizes, the constraint on

horizontally-projected area gives large area ratios, causing the SPp particles to be similar

in shape to the HPp particles.

As was true in the analysis of X-band scattering properties, the backscatter cross-sections

for these plate-like particles exceed the cross-sections for spheres in the Rayleigh regime,

consistent with predictions by models for Rayleigh backscatter by oblate spheroids (Atlas et

al., 1953). At the point where the HPp cross-sections fall below those for Rayleigh spheres,
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Figure 6.4: Backscatter cross-sections for planar particle models compared to Rayleigh and
Mie solid ice spheres. For the nonspherical particles, the cross-sections are for a vertically-
incident radar beam, and the equivalent volume radius rev is as given by (6.1).
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Figure 6.5: Particle maximum dimension DM as a function of equivalent volume radius rev

for the mass-dimension relation used for the particle models.
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the size parameter based on rev

xev =
2πrev

Λ
(6.9)

has a value of about 1.4. At rev larger than about 0.7 mm, the cross-sections for the HPp

shape fall below those for the SPp shape. For a given size, the HPp particle has the same

mass as the SPp particle, but has a larger horizontally projected area. Consequently, the

HPp particle is thinner than the SPp, while the SPp is thicker and much of the mass is

concentrated near the center of the particle. Additionally, for rev larger than about 0.73

mm, the HPp particles have an insufficient number of dipoles to ensure that the entire

plate area is occupied by dipoles. As a result, there are porosities extending through the

plate. These through-porosities occupy 20-30% of the plate area. These factors appear to

be sufficient to cause the HPp cross-sections to fall below those of the SPp particles. Neither

shape shows evidence of the resonance at rev= 0.8 mm that is apparent in the results for

the Mie spheres.

Figure 6.6 shows the backscatter cross-sections for the spatial particles. As before, cross-

sections for Rayleigh and Mie spheres are shown for comparison. The cross-sections for the

more compact shape, B6pf, are similar to those for spheres for sizes up to rev= 0.35 mm.

For the more spatially extended particles B8pr-30, B8pr-45 and Ep, the cross-sections fall

below those for Rayleigh spheres at rev= 0.15 - 0.2 mm, corresponding to size parameters

of 0.3 - 0.4. For the branched particles, as the aspect ratio of the particle increases, the

backscatter cross-section decreases, although for some sizes the cross-sections for B8pr-30

and B8pr-45 are almost equal. The B8pr-30 and B8pr-45 shapes show Mie-like resonances,

albeit with much smaller amplitude than the Mie sphere resonance at rev= 0.8 mm, while

the B6pf shape shows none. The Ep shape shows markedly smaller cross-sections than the

branched particles over most of the size range, and exhibits strong resonance features.

Over most of the shown size range, the cross-sections for the two extremes of the

branched particles (B6pf versus B8pr-45) differ by at least an order of magnitude, indicating

that additional information is needed to adequately constrain the scattering properties for

these spatial particles. The observations previously described by Korolev and Isaac (2003)

suggest that, for particles smaller than DM= 1.0 mm, aspect ratios should be no larger
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Figure 6.6: Backscatter cross-sections for spatial particle models compared to Rayleigh and
Mie solid ice spheres. For the nonspherical particles, the cross-sections are for a vertically-
incident radar beam, and the equivalent volume radius rev is as given by (6.1).

than 0.6 - 0.8. Magono and Nakamura (1965) used photographs of snow particles taken in

elevation view to determine the horizontal and vertical dimensions of snow particles. They

found that for particles with Dobs < 10. mm, aspect ratios were near 1.0, and that for

larger particles, the horizontal dimension was substantially larger than the vertical dimen-

sion. Matrosov et al (2005a) found that scattering models based on particles with aspect

ratios of 0.6 gave better agreement to aircraft-observed dual-frequency radar ratios than did

models based on particles with aspect ratios of 1.0. These results suggest that the B8pr-30

or B8pr-45 shapes are more representative of the backscattering properties of true snow

particles, especially in larger sizes, than is the B6pf shape.

Extinction cross-sections for planar and spatial particles are shown in Figures 6.7 and

6.8. The most striking difference in comparison to the backscatter cross-sections is the

reduced sensitivity to shape. At the largest sizes, the differences in extinction cross-sections

among the spatial particles are no more than +/- 30% relative to the B8pr-30 cross-sections.

The less compact B8pr-45 shape has larger cross-sections than the more compact B8pr-30

and B6pf shapes, opposite the behavior shown for the backscatter cross-sections. One might
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Figure 6.7: Extinction cross-sections for planar particle models compared to Rayleigh and
Mie solid ice spheres. For the nonspherical particles, the cross-sections are for a vertically-
incident radar beam, and the equivalent volume radius rev is as given by (6.1).

expect, then, that the very thin SPp shape would have the smallest extinction cross-sections,

but instead the SPp has the highest. One significant difference between the SPp and B6pf

shape is that the SPp shape presents a planar surface to the incident beam, while the B6pf

and other spatial shapes present a more oblique surface. This difference may contribute to

the enhanced extinction from the SPp shape compared to the spatial shapes.

The planar shapes SPp and HPp have similar extinction cross-sections for rev less than

0.7 mm. For rev above 0.7 mm, the differences increase, with the SPp cross-sections ex-

ceeding those of the HPp shape by a factor of about 3. As described in relation to the

backscatter cross-sections, these differences seem linked to the thinness of the HPp shape

and the presence of porosities extending through the plate. At smaller sizes, extinction

cross-sections are similar to those for solid ice spheres up to rev= 0.25 mm (spatial shapes)

and up to rev= 0.4 mm (planar shapes). As was true for the backscatter cross-sections,

the extinction cross-sections for planar shapes at these small sizes somewhat exceed the

Rayleigh sphere values.
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Figure 6.8: Extinction cross-sections for spatial particle models compared to Rayleigh and
Mie solid ice spheres. For the nonspherical particles, the cross-sections are for a vertically-
incident radar beam, and the equivalent volume radius rev is as given by (6.1).

6.4 Assessments

Uncertainties in these particle models will impact the performance of the CloudSat re-

trieval. To gain further insight into the suitability of the models, several assessments were

performed to evaluate how the differences and uncertainties in the models affect reflectivity

and attenuation.

6.4.1 SVI dataset

The size distributions for these assessments were obtained from the SVI observations for

C3VP. The SVI operated nearly continuously at CARE during the 2006/07 C3VP observing

season, capturing size distribution observations for snowfall events both during and outside

the IOPs. The observations at 1-minute resolution were averaged using distinct 5-minute

samples as was done for the snow microphysics retrievals. These distributions, based on the

feret diameter, were converted to distributions on maximum dimension DM using φ=0.778,

the value obtained from the snow microphysics retrieval. To increase the likelihood that

the distributions were representative of dry snow, the dataset was screened using the air

temperature observed at the 10-m meteorology tower at CARE. Distributions for which the
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temperature was greater than 273 K were discarded. In all, about 9400 of the 5-minute

averaged size distributions contained non-zero particle counts and of these about 7300 were

frozen, giving over 600 hours of snow observations.

6.4.2 Shape and reflectivity

To evaluate the suitability of the particle models, reflectivities were simulated using the

particle models in conjunction with the SVI size distribution dataset, and the simulated re-

flectivities were compared against simultaneously observed W-band radar reflectivities. The

observed radar reflectivities were provided by the Airborne Cloud Radar (ACR) (Sadowy,

1999), a 95 GHz profiling radar deployed on the ground at the CARE site during C3VP.

Although a formal calibration of the ACR was not performed immediately prior to C3VP,

a previous intercomparison between the ACR and the University of Massachusetts Cloud

Profiling Radar System showed average differences of 0.3 dBZe (Sekelsky et al., 1999). For

the reflectivity comparisons presented here, the calibration error for the ACR reflectivity

was assumed negligible, and it is noted that a nonnegligible bias in the ACR calibration

could affect the results presented below.

The ACR pointed vertically, and was operated with a vertical range resolution of 120

m and a time resolution of about 2.8 s. The range bin nearest the surface was centered

at 197 m AGL. Comparisons of the reflectivities in this bin versus reflectivities in the

adjacent bin above suggest this lowest bin was not substantially affected by ground clutter

for reflectivities above about -15 dBZe, so observations from this lowest bin were used.

Comparisons were limited to cases for which the observed reflectivity was greater than -15

dBZe and the near-surface air temperature was less than 273 K. Valid cases were obtained

for twelve distinct snow events occurring over 13 days from 2 December 2006 to 26 February

2007. Reflectivities in linear units were averaged in time using 5-minute samples, consistent

with the treatment of the SVI observations. Given the proximity of the radar observation

to the ground, unattenuated reflectivity was used for these comparisons. From (3.12) and

(3.13), the unattenuated equivalent reflectivity factor for non-Rayleigh scatterers is given
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by

Ze =
Λ4

‖Kw‖2 π5

∫ DM,max

DM,min

N(DM )σbk(DM )dDM . (6.10)

Since the DDA particle properties are defined on sizes different than the SVI DM , the DDA

properties were interpolated to the SVI sizes. Interpolations were done using the backscatter

efficiencies (6.8), giving backscatter efficiencies at the SVI sizes which were then converted

to backscatter cross-sections.

Of the five shapes considered, the B8pr-30 shape provided the best agreement to the full

range of observed reflectivities, with a bias over all observations of -0.03 dBZe (Figure 6.9).

The more compact shapes B6pf and SPp substantially overestimated reflectivities for most

of the observed reflectivity range, while the less compact B8pr-45 and Ep underestimated

reflectivities. Obviously, the use of the SPp shape over the full size range observed by the

SVI represents an unrealistic and severe extrapolation. The largest observed dimensions

DM for this type of pristine shape (e.g., P1b, P1c, P1d, P1e) are typically 1 to 2 mm (see

Tables B.1, B.3, B.4, B.5, B.6, and B.7 and associated references) while the particle models

extend to DM= 18 mm. Nevertheless, the result serves to illustrate the magnitude of errors

that may be caused by the ill-considered use of such models.

The difference in bias between the B8pr-30 and the B8pr-45 shapes is due to differences

in the vertical aspect ratios: the branches of the B8pr-30 particle make an angle of 30◦ with

the horizontal plane, while those of the B8pr-45 particle make an angle of 45◦. The vertical

aspect ratio for the B8pr-30 particle is about 0.5 while that for the B8pr-45 is near 0.7,

resulting in a particle that is more extended along the direction of propagation of the radar

beam. Additionally, for a given particle size, the branches of the B8pr-45 particle are likely

somewhat wider than those of the B8pr-30 particle. This increase in width is necessary for

the particles to have equal Ap. The wider branches would cause the B8pr-45 particle to

have somewhat larger volume than the B8pr-30 particle. Since for a given size, the particles

have the same mass (i.e., the same number of dipoles), the dipoles in the B8pr-45 shape

will not be as closely packed as in the B8pr-30 shape. In contrast, the Ep particle has the

same vertical aspect ratio as the B8pr-30, but for most DM the volume of the Ep particle

substantially exceeds that of the B8pr-30, leading to a much less dense arrangement of
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Figure 6.9: Comparisons of observed W-band reflectivities from the ACR versus those
simulated using DDA models for various particle shapes. Comparisons are for cases with
observed reflectivities larger than -15 dBZe and near-surface air temperatures less than 273
K. Cases include 12 snow events occurring on 13 days between 2 December 2006 and 26
February 2007. Observed reflectivities are at 197 m AGL, in the ACR range bin nearest the
surface. The blue points indicate SVI size distributions with less than 100 particles in the
sample and with those particles distributed across five or fewer size bins. The reflectivity
biases, computed over all the well-sampled (black) points, are shown on each panel.

dipoles for the Ep particle. The resulting reflectivity bias for the Ep particle is similar to

that of the B8pr-45, but the backscatter cross-sections are quite different for the two shapes

(Figure 6.6).

The comparisons shown in Figure 6.9 also highlight the possible effects of the limited

sample volume of the SVI compared to the radar. The blue points are cases for which the SVI

detected fewer than 100 particles over the 5-minute sample with those particles distributed

in five or fewer size bins, suggesting the size distributions may have been insufficiently

sampled. An examination of the ACR operator’s log (Austin et al., 2007) showed that

many of these cases were associated with the initiation or termination of snowfall at the

surface, or with low level stratocumulus absent precipitation.
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6.4.3 Random dipole effects

The random placement of dipoles on the lattice causes small variations in the scattering

properties. To evaluate these variations and their influence on simulated reflectivities, four

distinct realizations of the dipole arrays for the B8pr-30 shape were constructed and used to

calculate backscatter and extinction cross-sections. These realizations were then used along

with the SVI dataset to calculate radar reflectivity per (6.10) and specific attenuation

k =
10

ln(10)

∫

N(DM )σext(DM )dDM . (6.11)

Evaluations were limited to cases for which the SVI size distribution was well-sampled (more

than 100 particles observed or particles distributed over more than five size bins). At small

particle sizes, the backscatter cross-sections were largely insensitive to the dipole locations

as shown by the small fractional uncertainties (Figure 6.10). This result is consistent with

the expectation that scattering properties are primarily sensitive to the equivalent volume

diameter in the Rayleigh regime, as shown in (3.15). At larger sizes, fractional uncertainties

were about 0.05, with values for particular sizes as large as 0.15 and as small as 0.015. As

expected, since these random variations are uncorrelated over the range of particle sizes,

the resulting uncertainties in the modeled radar reflectivity are negligible (Figure 6.11).

Extinction is less affected by the randomness of the dipole locations than is backscat-

tering. Fractional uncertainties in the extinction cross-sections are typically about 0.01

(Figure 6.12, lower panel). When integrated over the size distribution, the resulting values

of the one-way specific attenuation have uncertainties that are typically less than 0.002 dB

km−1 (Figure 6.13). The resulting uncertainties in the attenuation of the radar beam will

be insignificant, and were ignored.

6.4.4 Truncation and discretization

By necessity, the DDA calculations can be applied to only a limited number of discrete sizes

and over a limited size range. The choice of sizes and size range will introduce uncertainties

into modeled radar reflectivities. The SVI dataset was again used to evaluate these uncer-

tainties. For truncation, it was necessary to have size distributions and scattering properties
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Figure 6.10: The variations in σbk for shape B8pr-30 due to the random placement of
dipoles. The upper panel shows the mean and standard deviation (dotted line and error
bars) along with data points from the distinct realizations. The bottom panel shows the
fractional uncertainty for an individual realization, given by the standard deviation divided
by the mean value.
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Figure 6.11: Histogram of radar reflectivity uncertainties for shape B8pr-30 due to the
random placement of dipoles.
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Figure 6.12: The variations in σext for shape B8pr-30 due to the random placement of
dipoles. Panels are as described for Figure 6.10.
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Figure 6.13: Histogram of uncertainties for specific attenuation, k, for shape B8pr-30 due
to the random placement of dipoles.
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Figure 6.14: Histograms of truncation errors for reflectivity (left panel) and specific atten-
uation.

which extend beyond the upper size limit of DM= 18 mm that was used for the particle

property models. To produce the required size distributions, exponential distributions on

DM

N(DM ) = N0 exp(−λDM ) (6.12)

were fit to each size distribution in the SVI dataset (again limited to well-sampled distri-

butions) to find the slope and intercept parameters N0 and λ for that distribution. The

parameters were then used to calculate size distribution values for sizes up to 40 mm. Us-

ing the scattering properties for the B8pr-30 particle model, backscatter and extinction

cross-sections for these large sizes were found by linearly extrapolating Qbk and Qext using

the two largest particle sizes from the DDA results. Reflectivities and specific attenuation

were then calculated with both the standard and augmented range of sizes. Errors in both

reflectivity and specific attenuation were near zero for well over half the samples (Figure

6.14). The bias and scatter (mean and standard deviation of the truncation errors) were

-0.11 (0.57) dBZe and -0.04 (1.97) dB km−1. The comparatively large scatter in the errors

for specific attenuation was due to fourteen outliers out of over 4800 datapoints for which

the fitted values of λ were exceptionally small, less than 0.15 mm−1. Removing these points

reduced the bias and scatter for the specific attenuation to -0.005 (0.07) dB km−1 for the

specific attenuation, and that of the reflectivity to -0.09 (0.42) dBZe.
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Discretization errors were evaluated using three versions of the B8pr-45 scattering prop-

erties that use different particle size resolutions: the standard resolution, one with high

resolution, and one with low resolution. In the high resolution version, the spacing between

particles sizes is halved and in the low resolution version, the spacing is doubled (Figure

6.15). Since σext tends to be a smoothly varying function of particle size, specific attenua-

tion is not strongly sensitive to discretization errors (Figure 6.16, right panels). In contrast,

reflectivity shows strong sensitivity, with discretization errors about a factor of ten larger

in magnitude for low resolution compared to standard resolution (Figure 6.16, left panels).

The bias and scatter for the reflectivity discretization errors were -0.001 (0.021) dBZe for

standard resolution and 0.15 (0.13) dBZe for low resolution. For specific attenuation, the

values were -0.001 (0.020) dB km−1 for standard resolution and 0.001 (0.016) dB km −1 for

low resolution.
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Figure 6.16: Histograms of discretization errors for reflectivity (left panels) and specific at-
tenuation. The upper panels shows errors for standard resolution relative to high resolution,
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the vertical axes are logarithmic.
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Chapter 7

The CloudSat snowfall retrieval

As was described in section 3.2, snowfall rate depends on the abundance of particles of

different sizes (the size distribution), the masses of those particles, and their fallspeeds.

Fallspeed in turn depends on particle masses, horizontally-projected areas, and environ-

mental conditions. In particular, snowfall rate depends on the microphysical properties

of mass and horizontally-projected area. As was true for the snow microphysics retrieval,

radar backscattering at 94 GHz is sensitive to size distribution and particle mass; however,

at this higher frequency, backscattering is also sensitive to particle shape. With even simple

models of the size distribution and of particle mass and area, observations of 94 GHz radar

reflectivity alone are insufficient to constrain the models adequately to determine snowfall

rate. To address this insufficiency, optimal estimation (Section 3.1) was used for the Cloud-

Sat snowfall retrieval. This approach enables the use of a priori information which helps

constrain the retrievals.

By necessity, a number of the a priori assumptions used by the retrieval are particular

to cloud ice and snow. Therefore, before applying the retrieval to a particular radar ob-

servation, it must be determined whether snow is present. This scene characterization is a

critical element of the retrieval algorithm, and serves three important roles. First, it must

evaluate whether snow is present in the scene observed by the radar. If so, a retrieval is

performed. This evaluation helps ensure that the retrieval is applied appropriately. Second,

if snow is present, the scene characterization must determine whether the snow observed by

the radar is reaching the surface in the form of snow. Generally, CloudSat’s observations
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near the surface are obscured by ground clutter, and retrievals are made only for range bins

somewhat above the surface. Temperature differences might cause snow aloft to arrive at

the surface as rainfall. Finally, the scene characterizations directly determine the frequency

of occurrence with which snow occurs in the resulting data product.

Because of ground clutter, the estimate of snowfall rate nearest the surface from the

retrieval may be from several hundred meters to over a kilometer above the surface. If the

retrieval is successful and the scene characterization shows that surface precipitation will

be in the form of snow, an estimate must be made of the surface snowfall rate. This is done

using the retrieval results from the lowest uncluttered radar bins.

The sections that follow start by describing the CloudSat data products used for the

retrieval and the formulation of the retrieval. Next, measurement and forward model un-

certainties are estimated. The results from the C3VP snow microphysics retrieval and the

particle model development, including the covariance matrix for the microphysical parame-

ters, are used to estimate uncertainties for radar reflectivity forward model. Following this,

the scene characterization is described and the a priori estimates for the state variables are

developed. Finally, the method for calculating profiles of snowfall rate and surface snow-

fall rates, including uncertainties, from the retrieval results is presented. This method also

makes use of the C3VP snow microphysics retrieval results and the particle models, and

the covariance matrix for the microphysical parameters is used to estimate snowfall rate

uncertainties.

7.1 CloudSat and the Cloud Profiling Radar

CloudSat became operational in June, 2006, flying in formation as part of the A-train con-

stellation of satellites (Stephens et al., 2008). The constellation follows a sun-synchronous

orbit with an altitude of 705 - 730 km and an inclination of 98.2 degrees. The constellation

makes its equator crossing around 1:30 pm local solar time and has an orbital period of

about 99 minutes, resulting in a ground track that repeats every 16 days. The sole instru-

ment on CloudSat is the Cloud Profiling Radar (CPR), operating at 94 GHz. The CPR

points near-nadir and has a range resolution of 485 m, but oversampling is used to provide
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data at a vertical resolution of 240 m. The along-track and cross-track resolutions are 1.7

and 1.4 km, respectively, and the minimum detectable signal is nominally about -30 dBZ

(Tanelli et al., 2008).

The fundamental user dataset for CloudSat is the“Geometric Profile”, or 2B-GEOPROF,

product (Mace, 2007). The 2B-GEOPROF algorithm examines the profile of backscattered

power received by the radar, determines the significance of the signal, then reports the profile

of equivalent reflectivity factors (Ze) along with a mask indicating the significance of the

reflectivity in each radar range bin. For valid radar data not contaminated by surface clutter,

the mask values range from 6, indicating an echo of low significance, to 40, indicating a

strong echo. The mask can be loosely taken as an indicator of the likelihood that a particular

echo is due to the presence of hydrometeors. When a range bin is likely contaminated with

surface clutter, the mask value is set to 5. The mask and reflectivity profiles provided by

2B-GEOPROF are the primary inputs to the snowfall retrieval algorithm. Distinguishing

snowfall from rain in the CloudSat observations requires temperature information. This

information is taken from the ECMWF-AUX product, an ancillary product derived from

the European Centre for Medium-Range Weather Forecasts reanalysis data (Stephens et al.,

2008). ECMWF-AUX provides profiles of temperature, humidity, and pressure subsetted

to the CloudSat ground track and interpolated vertically to CloudSat’s range resolution.

These temperature profiles are used to determine the phase of precipitation aloft and at

the surface, and, along with pressure profiles, to calculate fallspeeds. Over ocean, the

2C-PRECIP-COLUMN product (Haynes et al., 2009) makes estimates of the melted mass

fraction for precipitation reaching the surface. When available, these estimates are used to

distinguish rain and snow at the surface; otherwise, the CloudSat snowfall retrieval makes

an independent estimate of the melted mass fraction using ECMWF-AUX temperatures.

The remainder of this chapter describes the structure of the CloudSat snowfall retrieval and

the application of these datasets.
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7.2 Retrieval formulation

7.2.1 Theoretical basis

At the higher frequencies used by cloud radars, scattering by precipitation-sized particles

generally does not follow the Rayleigh approximation, and attenuation of the radar beam

by hydrometeors and gases may be significant. Under these conditions and assuming single

scattering, the effective radar reflectivity factor as a function of range from the radar is

given by

Ze(R) =
Λ4

‖Kw‖2 π5
exp

[

−2

∫ s=R

s=0
βext(s)ds

] ∫ Dmax

Dmin

N(D,R)σbk(D,R)dD (7.1)

where R is the range, s is the position along the path of the beam, σbk(D,R) is the backscat-

ter cross-section for particle size D at range R, N(D,R) is the size distribution at range

R, Λ is the radar wavelength, ‖Kw‖2 is the dielectric factor for water, and βext(s) is the

volume extinction coefficient along the path of the radar beam. The exponential term is

the two-way transmission between the radar and the observed radar volume at range R and

represents losses in the transmitted and reflected power due to scattering and absorption

along the path to the target.

The volume extinction coefficient includes contributions due to scattering and absorption

by hydrometeors and due to absorption by gases, and is given by

βext(s) =

∫ Dmax

Dmin

N(D, s)σext(D, s)dD +
∑

i

kabs,i(s)ρi(s) (7.2)

where N(D, s) is the hydrometeor size distribution at position s, σext(D, s) is the hydrome-

teor extinction cross-section, kabs,i(s) is the mass absorption coefficient for gas species i, and

ρi(s) is the corresponding gas density. At 94 GHz, gaseous attenuation is predominantly

due to water vapor; the two-way attenuation by water vapor in tropical atmospheres can

approach 5 dB (Stephens et al., 2002). The 2B-GEOPROF product provides estimates of

the two-way gaseous attenuation, and the snowfall retrieval algorithm uses these estimates

to correct the 2B-GEOPROF reflectivities before a retrieval is performed.
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Attenuation by frozen hydrometeors may also be substantial. In a study that used

simulated vertical profiles containing dry snow and thick ice clouds to model CloudSat

observations, Matrosov and Battaglia (2009) found the two-way attenuation could reach

from 2 to 5 dB for snowfall rates ranging from 5 to 16 mm LWE h-1. Under these heavier

snow conditions, however, they showed multiple scattering will also be non-negligible for

CloudSat’s viewing geometry. In the simulated profiles they examined, multiple scattering

was found to enhance reflectivities by 3-6 dBZ, partially offsetting the effects of attenuation

by hydrometeors. The enhancement by multiple scattering in these simulated profiles was

found to be similar to enhancements estimated experimentally for thick ice anvils by Bouniol

et al. (2008). This compensating behavior in heavy snow caused the multiply-scattered at-

tenuated reflectivity to lie between the singly-scattered nonattenuated and singly-scattered

attenuated reflectivities (Figure 7.1). For light snow, with reflectivities less than about

10 dBZe, Matrosov and Battaglia (2009) found attenuation and multiple scattering to be

insignificant.

The results of Matrosov and Battaglia show that both the singly-scattered attenuated

and nonattenuated reflectivities are biased estimates of the multiply-scattered attenuated

reflectivity. Absent an explicit multiple scattering model for heavy snow, the multiply-

scattered attenuated reflectivity may be approximated using the singly-scattered attenuated

and nonattenuated reflectivities as bounding values. Additionally, the uncertainties for this

approximation can be estimated from the difference in the singly-scattered attenuated and

nonattenuated reflectivities.

Liquid hydrometeors also produce attenuation. While the CloudSat snowfall retrieval

will not be applied to profiles thought to contain liquid cloud and rain, supercooled liquid

water may also attenuate the radar beam. A single-wavelength, nadir-pointing radar such

as the CPR lacks means for identifying the presence of supercooled water. While a number

of techniques have been proposed for detecting supercooled water (using differential radar

reflectivity (Hogan et al., 2002), Doppler spectra (Zawadzki et al., 2001), and dual frequency

radar observations (Gosset and Sauvageot, 1992)), none of these can be utilized with CPR

observations. Some potential exists for the application of combined radar-lidar techniques

(Hogan et al., 2003) given the availability of colocated observations from the CPR and from
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Figure 7.1: Evaluation of 94 GHz attenuation and multiple scattering effects for various
snowfall profiles as modeled by Matrosov and Battaglia (2009) using soft ice sphere phase
functions (upper panel) and solid ice sphere phase functions (lower panel). Lines repre-
sent single scattering with no attenuation (dot-dash), single scattering with attenuation
(dash), and multiple scattering with attenuation (solid). Curve sets (1), (2), and (3) rep-
resent different snowfall characteristics as indicated by values for N0 and λ. Figure copy-
right American Geophysical Union, 2009, used in accordance with AGU Terms of Use,
http://www.agu.org/pubs/authors/tou.shtml.
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the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite

(Winker et al., 2007). Future developments may allow for treatment of attenuation by

supercooled liquid water in the retrieval; for this work, this attenuation is omitted.

7.2.1.1 Size distribution

The particle size distribution enters the forward model through the calculation of reflectiv-

ity and, when attenuation by hydrometeors is considered, through the calculation of βext.

Distributions of snow particle sizes are frequently characterized as exponential

N(D) = N0 exp (−λD) (7.3)

where λ is the slope of the distribution and N0 its intercept. D may be either the melted

drop diameter or an actual dimension of the particle. The inverse of λ is a measure of the

characteristic particle size of the distribution. Small values of λ indicate that the charac-

teristic particle size of the distribution is large. When particles are spherical and D extends

from zero to infinity, 1
λ is proportional to the median volume diameter of the distribution

(Sekhon and Srivastava, 1970). Aircraft observations, typically made with optical array

probes, provide size distributions based on actual particle dimensions rather than melted

diameter. Exponential behavior, especially at larger particle sizes, has been confirmed in

aircraft-based in situ observations under a wide range of atmospheric conditions (Braham,

1990; Passarelli, 1978; Lo and Passarelli, 1982; Gordon and Marwitz, 1984; Houze et al.,

1979; Woods et al., 2008) . For observations at the surface, estimates of size distribu-

tions based on actual particle dimensional have been far less common. Rogers (1973) used

photographs of snowflakes to develop estimates of snow size distributions based on actual

dimensions. Rogers also found snow size distributions to be exponential. For the Cloud-

Sat snowfall retrieval, an exponential form is used in which D is the maximum particle

dimension, DM .

A number of studies based on aircraft observations have noted departures from exponen-

tial behavior. These departures often take forms in which concentrations of small particles

129



are enhanced or suppressed compared to an exponential fitted to the large-particle portion of

the spectrum. Herzegh and Hobbs (1985) labeled these forms “super-exponential” and “sub-

exponential”, respectively. Processes such as aggregation, fragmentation, riming-splintering

and size-sorting, among others, all act to shape the size distribution and likely account for

these departures to varying degrees. Other factors related to instrument performance, such

as reduced sensitivity to small particles (Gordon and Marwitz, 1984) or particle shattering

at instrument inlets (Field et al., 2006) may also affect the observed concentrations of small

particles.

Brandes et al. (2007) evaluated both exponential and gamma forms for snow size dis-

tributions observed by a 2D video disdrometer over the course of several winter seasons.

Gamma distributions have the capability to represent sub- or super-exponential behavior.

Although about 22% of the observed snow distributions exhibited super-exponential fea-

tures, more commonly the fitted gamma distributions were nearly equivalent to exponential

distributions, with the mode of the distribution of fitted shape parameters being near a

value of one. Heymsfield et al. (2008) examined the adequacy of exponential distributions

for snow, looking at the ability of a fitted exponential distribution to reproduce ice water

contents and Rayleigh reflectivities calculated directly from the binned particle size dis-

tributions. They found that parameters derived from higher moments of the particle size

distribution, which are more directly related to ice water content and radar reflectivity, pro-

duced exponential distributions which generally provided good agreement with IWC and

Ze values calculated from the observed, binned size distributions. Given these results, the

exponential form appears a reasonable choice. Uncertainties associated with the use of the

exponential distribution will be considered in the assessment of forward model uncertainties

(Section 7.3.4).

7.2.2 Retrieval implementation

The CloudSat retrieval uses the optimal estimation technique previously described in Sec-

tion 3.1. Observational constraints for this retrieval are provided by the vertical profile of
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reflectivities observed by CloudSat and corrected for gaseous attenuation,

y =














Ze1

...

ZeN














(7.4)

where N is the number of radar range bins containing snow. Because of the large range of

Ze, the values used for the retrieval are in decibels.

The state at each radar bin is described by the exponential size distribution parameters

N0 and λ. Values for N0 may range over several orders of magnitude, so log (N0) was

retrieved instead. The variability of λ is significantly smaller than that of N0; however,

examination of the fitted exponential distributions from C3VP snow events, used earlier

for evaluating discretization and truncation errors, showed that the distribution of values

for λ was strongly non-Gaussian (Figure 7.2). The log-transformed values are much less

skewed, and accordingly, log(λ) was retrieved instead. The corresponding state vector to

be retrieved is then

x =





























log (N0)1

...

log (N0)N

log (λ)1

...

log (λ)N







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
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
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
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

. (7.5)
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Figure 7.2: Distributions of λ and log (λ) obtained from fits to the SVI-observed size dis-
tributions on DM for snow events from C3VP.

and the associated covariance matrix is

SSSx =


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s2 (log (N0)1) · · · · · ·
s (log (N0)1 ,

log (λ)N )

. . .

... s2 (log (N0)N )
...

... s2 (log (λ)1)
...

. . .

s (log (N0)1 ,

log (λ)N )

· · · · · · s2 (log (λ)N )
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. (7.6)

Following the reasoning described in the discussion of multiple scattering and attenu-

ation, both the singly-scattered attenuated and nonattenuated reflectivities are modeled.

Applying the exponential distribution with (6.10), the singly-scattered nonattenuated re-

flectivity Zess,na at range bin i is

Zess,na
(

N0,i;λi; b̃i

)

=
Λ4

‖Kw‖2 π5

∫ DM,max

DM,min

N0,i exp (−λiDM ) σbk(DM , b̃i) dDM . (7.7)
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The backscatter cross-section σbk has been written to show its dependence on a vector of

parameters b̃i as well as on DM . The vector b̃i includes the parameters for the mass-

and area-dimension relations α, β, γ, and σ which were used to construct the particle

models from which the scattering properties were calculated. The tilde indicates that these

parameters are approximations of the true values. Following (7.1) and (7.2), the singly-

scattered attenuated reflectivity Zess,a is

Zess,a
(

N0,i;λi; b̃i;Ri

)

= Zess,na
(

N0,i;λi; b̃i

)

(T (R0,i))
2 (7.8)

where R0,i is the range to bin i and T is the one-way transmission to the radar bin:

T (R0.i) = T0,i = exp

[

−
∫ s=R0,i

s=0
βext(s) ds

]

. (7.9)

Since reflectivities have been corrected for gaseous attenuation, the volume extinction coef-

ficient βext is

βext(s) =

∫ DM,max

DM,min

N0(s) exp (−λ(s)DM ) σext(DM , b̃(s)) dDM . (7.10)

The dependence of T on the vertical profile of N0 and λ has been omitted from the notation

for clarity.

The results of Matrosov and Battaglia (2009) shown in Figure 7.1 suggest that the

multiply-scattered attenuated reflectivity Zema,a falls approximately midway between Zess,a

and Zess,na in decibel units. Accordingly Zems,a at radar bin i is approximated as the

geometric mean of the two singly-scattered reflectivities in linear units,

Zems,a
i ≈ [Zess,na

i Zess,a
i ]

1/2
(7.11)

≈ Zess,na
i T0,i.
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The vector F of forward modeled reflectivities is then

F =














dBZems,a
1

...
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N
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
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


=


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
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1 T0,1

...
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N T0,N


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
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

(7.12)

or, in decibel units,

F =














dBZess,na
1 + dBT0,1

...

dBZess,na
N + dBT0,N




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





(7.13)

where dBT0,i = 10 log (T0,i). This approach amounts to an estimated bias correction applied

to the singly-scattered nonattenuated reflectivities dBZess,na
i .

Uncertainties in the forward modeled reflectivities F arise due to the approximate nature

of (7.11) and due to uncertainties in the terms from which is calculated. These uncertainties,

along with the uncertainties in the observed reflectivities, are evaluated in the following

section.

7.3 Measurement and forward model uncertainties SSSǫ

The error covariance matrix SSSǫ describes the uncertainties associated with model-measurement

differences for the CloudSat retrieval and is composed of two terms:

SSSǫ = SSSy + SSSF (7.14)

where SSSy is the covariance matrix describing the measurement uncertainties and SSSF is the

forward model error covariance matrix. Following the definition of the observation vector
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(7.4), the form of SSSǫ is

SSSǫ =














s2 (Ze1) · · · s (Ze1, ZeN )

...
. . .

...

s (ZeN , Ze1) · · · s2 (ZeN )














(7.15)

where s2 () are the reflectivity variances at each range bin and s () are covariances between

reflectivities at different bins.

7.3.1 Measurement uncertainties SSSy

Uncertainties in the CloudSat observed reflectivities arise from causes related to the CPR

and to the assumptions about the observations. A primary assumption is that each radar

range bin is filled with the scatterers of interest. In regards to estimates of snowfall, this

assumption may fail at the edges of precipitation columns, for example. An evaluation

of errors due to partial beam filling and the development of techniques to identify affected

observations is beyond the scope of this work and such errors are omitted. Remaining sources

of uncertainty include uncertainty in the absolute radiometric calibration and measurement

noise. Calibration errors, which would result in a bias in the measured reflectivities, are

expected to be less than 2 dB based on a prelaunch calibration error budget (Tanelli et al.,

2008), but the value of this bias is unknown. The noise characteristics of the CPR vary

with signal strength. For reflectivities above -10 dBZ, one standard deviation of noise as a

fraction of the mean signal is about -16 dB, while for reflectivities below -10 dBZ, noise is

an increasing fraction of the signal, reaching 0 dB at the minimum detectable signal of -30

dBZ (R. Austin, personal communication, 4 November, 2008). The resulting uncertainties

range from 3 dBZ for a reflectivity of -30 dBZ to about 0.1 dBZ for reflectivities above -10

dBZe. (Figure 7.3). To construct SSSy, variances for each range bin are computed as the

squares of these uncertainties and uncertainties in distinct range bins are considered to be

uncorrelated, resulting in a diagonal form for SSSy.
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Figure 7.3: Upward uncertainties (Ze + δZe) based on one standard deviation of noise for
the CloudSat CPR.

7.3.2 Forward model uncertainties SSSF

The forward modeled reflectivities F given by (7.12) have uncertainties due to two sources:

first, the approximate nature of the transmission-based bias correction for multiple scatter-

ing and attenuation given in ( 7.11); and second, the uncertainties in the singly-scattered

nonattenuated reflectivities Zess,na
i . Assuming the errors from each of these two sources are

uncorrelated, SSSF can be written as the sum of two covariance matrices:

SSSF = SSSF1 + SSSF2, (7.16)

where SSSF1 is the covariance due to the approximate bias correction and SSSF2 is the covariance

due to uncertainties in Zess,na
i . An explicit evaluation of SSSF1 would require explicit modeling

of radiative transfer with multiple scattering for a range of snowfall scenes (e.g., Matrosov

and Battaglia, 2009). Lacking this, the values of Zess,na and Zess,a place upper and lower

bounds on the expected value of Zems,a and can be used to make a rudimentary estimate

of this uncertainty. In the results from Matrosov and Battaglia (2009) shown in Figure 7.1,

Zems,a for soft ice sphere phase functions falls slightly above the midpoint of the interval,

while Zems,a for solid ice sphere phase functions falls slightly below the midpoint. The

estimate used here is that the uncertainty in Zems,a is one-half the difference between
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Zems,a and Zess,na in decibel units. The resulting estimate of the variance is then

s2 (dBZems,a
i ) =

[
1

2
(dBZess,na

i − dBZems,a
i )

]2

(7.17)

=

[
1

2
dBT0,i

]2

where the expressions from (7.13) have been used. This simple approach is not sufficient to

diagnose vertical correlations in these uncertainties, so covariances between radar bins are

set to zero, and SSSF,1 is

SSSF1 =














[
1
2dBT0,1

]2
0

. . .

0
[

1
2dBT0,N

]2
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


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



. (7.18)

The covariance matrix SSSF2 contains contributions from uncertainties in dBZess,na
i . Two

distinct sources contribute to these uncertainties,

SSSF2 = SSS
ss,na
B + SSS

ss,na
F (7.19)

where SSS
ss,na
B is the covariance matrix describing uncertainties due to the forward model

parameters b̃ and SSS
ss,na
F is the covariance matrix describing uncertainties due to other as-

sumptions in the calculation of Zess,na. These two matrices are evaluated in the following

sections. Note that per (7.7) the vector b̃ includes the microphysical parameters α, β, γ, and

σ used to construct the particle models and calculate scattering properties. Uncertainties

in these properties contribute to uncertainties in σbk, which in turn produce uncertainties

in Zess,na. These uncertainties are quantified in SSS
ss,na
B . For the CloudSat retrieval, only

the uncertainties in the singly-scattered nonattenuated reflectivities Zess,na are required.

As part of this development, however, contributions to uncertainties in attenuation are also

discussed.
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7.3.3 Uncertainties due to parameters, SSS
ss,na
B

The full forward model equation (7.7) for the singly-scattered nonattenuated reflectivity

shows explicitly that the modeled reflectivity is dependent on the microphysical parameters

α, β, γ, and σ used to construct the particle models. The covariance matrix SSS
ss,na
B quantifies

the uncertainties in radar reflectivity due to the uncertainties in those parameters and is

calculated as

SSS
ss,na
B = KKKbSSSbKKK

T

b (7.20)

where KKKb is the Jacobian of the forward model reflectivities with respect to the parameters

b̃ and SSSb is the covariance matrix for the parameters. The general form of SSSb is

SSSb =


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
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. . .

...
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. . .
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
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

. (7.21)

where the submatrices SSSb,i,j are covariance matrices given by

SSSb,i,j =







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
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
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s (ln (αi) , ln (αj)) s (ln (αi) , βj) s (ln (αi) , ln (γj)) s (ln (αi) , σj)

s (ln (αi) , βj) s (βi, βj) s (βi, ln (γj)) s (βi, σj)

s (ln (αi) , ln (γj)) s (βi, ln (γj)) s (ln (γi) , ln (γj)) s (ln (γi) , σj)

s (ln (αi) , σj) s (βi, σj) s (ln (γi) , σj) s (σi, σj)
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
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
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(7.22)

and it is recognized that for i = j, the diagonal elements reduce to the variances s2 (ln (αi)),

s2 (βi), etc. Values for SSSb,i,i are set to values provided by the results of the snow microphysics
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retrieval and do not vary vertically:

SSSb,i,i =







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










0.592 0.212 0.090 0.023

0.212 0.142 0.011 0.007

0.090 0.011 0.335 0.103

0.028 0.007 0.103 0.046


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

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




. (7.23)

For i 6= j, SSSb,i,j is the matrix describing the covariances between parameters at distinct

range bins i and j. To determine values for SSSb,i,j, it is reasonable to assume some degree

of vertical correlation for the errors in these parameters, and that these correlations decay

over some vertical scale height, h. Modeling the decay in correlations as an exponential,

the covariance between two parameters at different range bins, s(βi, σj) for example, can

be estimated as

s (βi, σj) = ρcorr(βi, σj)
(
s2 (βi) s2 (σj)

)1/2

= ρcorr(βi, σi) exp (−δhi,j/h)
(
s2 (βi) s2 (σj)

)1/2
(7.24)

where δhi,j is the vertical distance between range bins i and j and ρcorr is the correlation.

At present, an analysis to determine h has not been performed and h is set to the dimension

of a single range bin.

The required form for KKKb is then

KKKb =














KKKb,1,1 · · · KKKb,1,N

...
. . .

...

KKKb,N,1 · · · KKKb,N,N


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







(7.25)
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where the submatrices KKKb,i,j are the Jacobians of the forward modeled reflectivity for range

bin i with respect to the parameters at range bin j:

KKKb,i,j =

[

∂Zei

∂(ln(αj))
∂Zei

∂(βj)
∂Zei

∂(ln(γj))
∂Zei

∂(σj)

]

. (7.26)

When i = j, KKKb,i,i is the Jacobian of the forward modeled reflectivity at range bin i with

respect to the local parameters:

KKKb,i,i =

[

∂Zei

∂(ln(αi))
∂Zei

∂(βi)
∂Zei

∂(ln(γi))
∂Zei

∂(σi)

]

. (7.27)

In the case of a single scattering forward model with no attenuation, the forward modeled

reflectivities are sensitive only to the local scattering properties as determined by the local

parameters. In that case, the submatrices KKKb,i,j are zero for i 6= j, and KKKb is block diagonal.

In the general case of a forward model with attenuation and/or multiple scattering, the

reflectivity for a particular range bin will also be sensitive to the scattering properties along

the path between the bin and the radar. In that case, the submatrices KKKb,i,j for which i ≥ j

will be nonzero. Regardless of the type of forward model, reflectivities will not be sensitive

to the scattering properties in bins further from the radar, thus KKKb,i,j = 0 for i < j. As

a result, for models with multiple scattering or attenuation, KKKb will have lower triangular

block form.

7.3.3.1 Estimating KKKb

Because analytic expressions are not available that relate the scattering properties to the mi-

crophysical parameters, the derivatives that appear in KKKb,i,j must be evaluated numerically,

for example,

∂Zei

∂ (bj)
≈ Zei(bj + δbj) − Zei(bj)

δbj
, (7.28)

where bj is the unperturbed value of an element of the microphysical parameter vector b̃ and

δbj is the perturbation. These evaluations must be performed repeatedly as the retrieval

iterates, as they are dependent on the current estimate of the state. Single sided differences
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are considered sufficiently accurate to estimate these contributions to the forward model

uncertainty, and reduce execution time compared to double sided differences.

Calculating the perturbed radar reflectivity, Zei(bj + δbj) in the example above, re-

quires the perturbed scattering properties, i.e., scattering properties for particle models

constructed using the perturbed microphysical parameters. The perturbations to a param-

eter should be small, but large enough that the resulting difference in Ze is distinguishable

from the uncertainty in Ze. If fZe is the fractional uncertainty in Ze, a reasonable approach

(Dennis and Schnabel, 1983) is to take

δbj =
√

fZebj . (7.29)

Normally fZe would be determined by the precision of the calculation of Ze; however,

the use of random dipole locations for the DDA calculations of the scattering properties

introduces additional uncertainties. From the tests on these uncertainties (Section 6.4.3),

the fractional uncertainty for Ze in linear units is typically less than 0.02, suggesting that

δbj ≈ 0.15bj .

Perturbations of 15% were applied to each of the microphysical parameters, then DDA

particle models were constructed and scattering properties calculated. The perturbed scat-

tering properties were then compared to the uncertainties in those properties due to the

random dipole locations. In the upper panels of Figures 7.4 and 7.5, ratios larger than 1

indicate the perturbations to the scattering property exceed the uncertainties for that prop-

erty. Ratios exceed 1 for most of the particle sizes. At small sizes, the ratios are greatly

in excess of 1, in response to the small uncertainties. For these small sizes, the scattering

properties are in the Rayleigh regime and are largely insensitive to the random dipole lo-

cations. At larger sizes, the ratios are mostly on the order of 1 to 10, with ratios for a few

sizes falling slightly below 1. The results suggest that the perturbed scattering properties

are adequate for calculating the numerical derivatives needed for KKKb.

The derivatives for reflectivity and specific attenuation were evaluated using the size

distributions from the SVI dataset. Reflectivity increases with increasing α but decreases

with increasing β (Figure 7.6, upper panels). Increasing α causes mass to increase over the
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Figure 7.5: Magnitude of perturbations in σext compared to uncertainties in σext due to
random dipole locations for the B8pr-30 shape. Lower and upper panels are otherwise as
described for Figure 7.4.
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Figure 7.6: Derivatives of reflectivity with respect to the microphysical parameters α, β, γ,
and σ used to construct the particle models. Derivatives for α and γ are taken with respect
to the natural logarithms of these parameters.

entire size distribution, while increasing β causes masses to decrease for DM< 1 cm and

increase for DM> 1 cm,

∂m

∂β
=

∂

∂β
αDβ

M = αDβ
M ln (DM ) . (7.30)

Negative values for ∂dBZe
∂β indicate that the reflectivities are dominated by contributions

from particles smaller than 1 cm. Conversely, reflectivity decreases with increasing γ but

increases with increasing σ (Figure 7.6, lower panels). Increasing γ causes horizontally

projected areas Ap to increase over the entire size distribution, while increasing σ causes

Ap to decrease for DM< 1 cm and increase for DM > 1 cm, parallel to the behavior for β.

For a given mass and shape, increasing Ap produces a less compact particle, which tends to

decrease reflectivity.

Specific attenuation behaves similarly to reflectivity. Specific attenuation increases with

increasing α but decreases with increasing β (Figure 7.7, upper panels), responding to

changes in mass in the same manner as reflectivity. Specific attenuation decreases with
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Figure 7.7: Derivatives of specific attenuation with respect to the microphysical parameters
α, β, γ, and σ used to construct the particle models. Derivatives for α and γ are taken
with respect to the natural logarithms of these parameters. Specific attenuation, k, is in
dB km−1.

increasing γ but increases with increasing σ (Figure 7.6, lower panels), responding to changes

in Ap again in a manner consistent with the response of reflectivity to changes in Ap.

It would be useful to know how significantly the uncertainties in individual parameters

α, β, γ, and σ contribute to uncertainties in the reflectivity and specific attenuation. In

the formal evaluation of Sss,na
B via (7.20), however, the contribution due to uncertainty in

a single parameter can not be isolated because of the presence of covariances between the

parameters. In an approximate sense, estimates of these contributions can be obtained from

the products of the derivatives and the parameter uncertainties (Table 7.1). Uncertainties

for the parameters were estimated as the square roots of the variances shown in (7.23) and

derivatives were estimated as the simple means of the values shown in Figures 7.6 and 7.7.

The results suggest that uncertainties in reflectivity are dominated by contributions from α

and β, while uncertainties in specific attenuation are due mainly to uncertainties in α.
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Table 7.1: Estimates of the contributions of uncertainties in α, β, γ, and σ to uncertainties
in reflectivity and specific attenuation.

Reflectivity Specific Attenuation

Parameter s(b) ∂dBZe
∂b |s(dBZe)| ∂k

∂b |s(k)|

ln(α) 0.769 10.4 8.00 0.163 0.125

β 0.377 -16.7 6.30 -0.061 0.023

ln(γ) 0.579 -2.22 1.29 -0.027 0.016

σ 0.214 5.62 1.20 0.017 0.004

7.3.4 Uncertainties due to other forward model assumptions, SSS
ss,na
F

In addition to the explicit dependence on the microphysical parameters α, β, γ, and σ

used to construct the particle models, the forward modeled reflectivity depends on other

assumptions described earlier: the choice of particle shape, the random placement of the

dipoles in the DDA models, discretization and truncation of the integrations over the size

distribution, and the use of the exponential distribution. These dependencies are respon-

sible for additional uncertainties in the forward modeled reflectivities. Uncertainties due

to random dipole placement, discretization and truncation were discussed earlier as part

of the evaluation of the particle models. The remaining sources, shape and the use of the

exponential distribution, are evaluated here.

7.3.4.1 Uncertainties due to shape

Determining the uncertainties due to shape is difficult because, as demonstrated in the as-

sessments of the particle models (Section 6.4) , the choice of an unrealistic particle shape

can produce similarly unrealistic simulated reflectivities even when the particle model meets

other microphysical constraints. The comparisons between observed and simulated reflec-

tivities with various shapes showed that the B8pr-30 particle shape provided reasonable

agreement with the observed reflectivities. The differences between the observed and sim-

ulated reflectivities for this shape include all error sources in the observations and forward

model, including shape, microphysical parameters, and sampling differences between the
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ACR and SVI observations used to construct the comparisons. To isolate uncertainties due

to shape, it is necessary to compare particles which meet similar microphysical constraints

(mass, horizontally projected area, and aspect ratio), but which do so with different, rea-

sonable shapes. The shapes used for these comparisons are the B8pr-45, which has a larger

aspect ratio compared to the B8pr-30, and the Ep, which has the same aspect ratio as

the B8pr-30 but has a more isotropic distribution of mass. Both of these particles are

less compact than the B8pr-30 and produce reflectivities that are biased low compared to

the observations (Figure 6.9). Presumably, more compact but reasonable shapes could be

constructed (smaller aspect ratio, less isotropic distribution of mass) which would be un-

biased or positively biased. For each of these shapes, simulated reflectivities and specific

attenuations were calculated using the SVI dataset and differenced from the B8pr-30 simu-

lated reflectivities and specific attenuations. These differences were decomposed into biases

and variances. The variances can be considered to represent the differences for particle

models similar to the B8pr-45 or Ep shapes but which have been modified to give unbi-

ased reflectivities and specific attenuations compared to the B8pr-30 shape, while the total

differences (biases plus variances) represent the differences for the actual B8pr-45 and Ep

particle models.

The resulting error estimates are shown in Figures 7.8 and 7.9. Reflectivity errors for the

B8pr-45 shape range from near zero to 3 dB. The total reflectivity errors for the Ep shape

ranges from 1 dB at low reflectivities to almost 6 dB at large reflectivities, while the error

contributions from the variance are generally between 1 and 2 dB. The Ep shape is likely not

representative of the larger aggregates typically present in high-reflectivity snowfall events,

so the large total errors at reflectivities above 10 dBZe are considered unlikely. Accordingly,

the uncertainty in reflectivity due to shape is taken to be a constant value of 2 dBZe. For

values of βext below about 0.00025 m1, all uncertainties increase approximately linearly

with the value of βext. Above this value, the error contributions due to variance decrease

while the total errors continue to increase, indicating the errors are dominated by the bias

term. As an intermediate approximation to these results, the fractional uncertainty in βext

is taken to be 0.1.
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Figure 7.8: Errors in reflectivity for the Ep and B8pr-45 shapes compared to the B8pr-30
shape. Errors are decomposed into variance only and total (bias plus variance).
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7.3.4.2 Uncertainties due to assumed size distribution form

Departures of the true particle size distribution from the assumed exponential forme may

also contribute to uncertainties between the forward model and the measurements. To

evaluate these uncertainties, reflectivities and specific attenuation were evaluated using the

B8pr-30 particle model with two different forms for the size distribution: 1) the observed

discrete size distributions in the SVI dataset, and 2) exponential distributions fitted to the

discrete SVI distributions. For each discrete SVI distribution, snowfall rate was calculated

using the MH2005 model, and the corresponding fitted distribution was adjusted by scaling

the intercept parameter N0 to reproduce the same snowfall rate. Errors due to the assumed

exponential distribution are negligible at high reflectivities but increase as reflectivity di-

minishes (Figure 7.10). A small positive bias is present below 0 dBZe, amounting to about

+0.35 dB at -15 dBZe . The bias is negligible, and the total uncertainty is modeled using

a fit to a simple decaying exponential for reflectivities larger than -15 dBZe (Figure 7.11):

s2
F (dBZe) = [exp (− (dBZe + 14) /16)]2 . (7.31)

Uncertainties in specific attenuation tend to increase with increasing reflectivity but are

largely unbiased and negligible (Figure 7.12).

7.3.4.3 Estimate of SSS
ss,na
F

The remaining contributions to the forward model uncertainties, due to discretization, trun-

cation, and the random locations of the dipoles, were assessed in Section 6.4. The results

from those assessments are summarized in Table 7.2, along with the results from the uncer-

tainty assessments in this section. For the CloudSat retrieval, only the uncertainties in the

singly-scattered nonattenuated reflectivity Zess,na are required. The contributions shown

in Table 7.2 are expected to be uncorrelated. As a result, SSS
ss,na
F is diagonal and contains

elements given by

Sss,na
F [i, i] = (0.42)2 + (2.)2 + [exp (− (dBZess,na

i + 14) /16)]
2
. (7.32)
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Figure 7.10: Differences between reflectivities calculated using the B8pr-30 with observed
SVI size distributions and those calculated from fitted exponential distributions.
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Table 7.2: Estimates for contributions to uncertainties in reflectivity and attenuation.

Source Reflectivity, dBZe βext, m−1

δF s2() δF s2()

Discretization 0. 0. 0. 0.

Truncation 0. (0.42)2 0. 0.

Random dipoles 0. 0. 0. 0.

Shape 0. (2.)2 0. (0.1βext)
2

Exp. dist. 0. per (7.31) 0. 0.
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7.4 Scene characterization

Scene characterization determines whether a retrieval should be performed and, if so,

whether the retrieved snowfall reaches the surface without significant melting. Because

ground clutter obscures the echos in the radar bins nearest the surface, these two evalua-

tions are done independently.

To determine if a retrieval should be performed, clutter-contaminated range bins are

removed from the profile using the 2B-GEOPROF cloud mask. Starting from the base of

the profile, if the cloud mask value is less than or equal to the ground-clutter-indicating

value of 5, the bin is removed. The lowest remaining bins are examined for significant radar

returns, again using the cloud mask. If significant returns are present at the base of the

profile, the lowest contiguous layer of significant returns is identified as a hydrometeor layer.

The characteristics of this hydrometeor layer are then evaluated. First the reflectivity

profile in the layer is examined to determine if precipitation is present. At this point, the

reflectivity profile has been corrected for gaseous attenuation. If the reflectivity at the base

of the layer exceeds the precipitation threshold, a search is made for the precipitation echo

top. The threshold for identifying precipitation and the precipitation echo top is taken to

be -15 dBZe. This threshold is based on the identification of very light liquid precipitation

at -10 dBZe in Ka-band radar observations by Stephens and Wood (2007) and the “Rain

possible” and “Snow possible” thresholds of Haynes et al. (2009). The contiguous layer

between the base and the precipitation echo top is identified as a precipitation layer.

Next, temperatures in the precipitation layer are examined to determine whether the

precipitation is frozen, with three possible outcomes:

1. If all temperatures are below 0◦ C, the precipitation is considered to be snow.

2. If temperatures at the base of the layer are above freezing, but all other temperatures

are below freezing, the position of the melting level within the layer is determined. If

the melting is shallow, such that the melted mass fraction is expected to be less than

0.1, and occurs only at the base of the precipitation, the precipitation is considered

to be snow. Using the results of the melting layer model of Haynes et al. (2009),
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the maximum allowed thickness of the melting layer is 240. m. With an assumed

environmental lapse rate of 6◦ C km−1, this approach is equivalent to assuming snow

exists at temperatures up to 1.5◦ C. A similar threshold (2◦ C) was found by Liu

(2008a) based on an analysis of present weather reports from shipboard and land

station observations.

3. In all other cases, the precipitation is characterized as not snow.

Retrievals are performed only for the first two outcomes.

Next the surface conditions are characterized. If the 2C-PRECIP-COLUMN product

has produced an estimate of the melted mass fraction at the surface, this estimate is used to

distinguish rain from snow using a threshold of 0.1. If not, the temperature at the surface,

here taken to be the ECMWF-AUX temperature in the radar bin identified as the surface

bin in the 2B-GEOPROF product, is examined. If it is below freezing, precipitation at the

surface is taken to be snow. If the temperature at the surface is above freezing, the height

above the surface of the melting level is determined. As was done for the profile evaluation,

if the depth of melting is less than 240. m, the precipitation is considered to be snow. In

all other cases, the precipitation is taken to be not snow.

7.5 A priori estimate of the state

The a priori estimate of the state describes the prior knowledge of the joint PDF of the

state variables, the vertical profiles of exponential size distribution parameters. In form it

consists of a vector of expected values and the corresponding covariance matrix, having the

same structure as the state vector x (7.5) and its covariance matrix SSSx (7.6). The a priori

estimate was developed from the SVI dataset and also from size distributions measured by

Particle Measuring Systems 2D-C and 2D-P probes flown on the National Research Council

Canada’s Convair-580 during three C3VP research flights. Figure 7.13 shows the N0 and

λ values obtained from fits of the exponential size distribution function to the observed

size spectra. Results of the same analysis performed on 2D-P observations of cloud and

precipitating ice for the Wakasa Bay research flight on 27 Jan 2003 (Lobl et al., 2007) are
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Figure 7.13: A priori estimates of λ and N0 obtained from fits to size distributions from
the SVI dataset (black circles) and from C3VP aircraft observations (blue circles). Larger,
colored symbols represent values obtained from literature as noted in the legend, while the
magenta “+” symbols shows fits to size distributions from a single research flight from the
Wakasa Bay field experiment.

also shown, as are results from seven additional studies. Two of these earlier studies utilized

surface observations (Rogers, 1973; Brandes et al., 2007) taken in and near the Front Range

of the Rocky Mountains while the remaining five employed aircraft observations: Gordon

and Marwitz (1984) and Gordon and Marwitz (1986) reported on observations over the

central Sierra Nevada, Braham (1990) on lake effect snow over Lake Michigan, Passarelli

(1978) on synoptic snowfall over central Illinois, and Woods et al. (2008) on both orographic

and frontal wintertime precipitation in the Pacific Northwest. The results shown in the

figure suggest that the C3VP observations adequately represent snowfall from a number

of different regimes, although the number concentrations from several studies are at the

margins of the C3VP observations.
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The size distribution slope parameter λ varies with temperature in the C3VP observa-

tion. This variation is apparent in both the SVI and aircraft data (Figure 7.14). Similar

log-linear variation with temperature has been described previously for exponential size

distribution parameters (e.g., Houze et al., 1979; Woods et al., 2008; and works reviewed

in Ryan, 1996). Since vertical profiles of temperature are available with the CloudSat

ECMWF-AUX product, such relationships can be used to help construct the a priori con-

straints for the retrieval. A linear fit was constructed between log (λ)and T using the

combined aircraft and SVI data, then residual standard deviations (RSDs) between the fit

and the observations were calculated by binning the fitted and observed values in intervals

of 2 K. The results of the fit and the bounds determined by +/- 1 RSD are shown by the

colored lines in Figure 7.14 (both panels). Points on the blue lines indicate the locations at

which the RSDs were calculated. The figure also shows values from the additional studies

mentioned above for comparison (lower panel). The narrow temperature ranges for the

Wakasa Bay and Brandes et al. observations make comparisons against the C3VP tem-

perature dependence uninformative. The Rogers (1973) observations are largely outside

the bounds of the RSDs, but are generally consistent with the C3VP histogram at warmer

temperatures. The aircraft observations other than Wakasa Bay follow a temperature trend

similar to the C3VP observations.

Log-linear relations between the size distribution intercept parameter N0 and tempera-

ture also have been described previously (again see Woods et al., 2008 and works reviewed in

Ryan, 1996). Intercept parameters from the C3VP surface and aircraft observations exhibit

a log-linear variation with temperature as well (Figure 7.15). In contrast to the results for

log (λ), values of log (N0) from the comparison studies lie mostly above the +1 RSD bound,

but would lie largely within a +2 RSD bound.

Based on the similarity between the results from C3VP and results from other exper-

iments, a priori states derived from the C3VP observations can be expected to represent

a broader range of snowfall regimes and were used to develop a priori constraints for the

CloudSat retrieval. Expected values for log (λ) and log (N0) were estimated from the linear

fits as

log (λap) = −0.03053(T − 273.) − 0.08258, (7.33)

154



 1

 10

 100

C
o

u
n

t

lo
g

(λ
)

T, K

-1

-0.5

 0

 0.5

 1

 1.5

 2

 230  240  250  260  270

230 240 250 260 270 280
T, K

-1

-0.5

0

0.5

1

1.5

2

lo
g(

λ)
 (

m
m

-1
)

Figure 7.14: Dependence of log (λ) on temperature. Upper panel: The shaded gray shows
the 2D histogram of log (λ) versus T for the C3VP surface and aircraft observations. The
central line (red) shows the best-fit linear relationship, while the upper and lower blue lines
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show the locations at which RSDs were calculated. Lower panel: Fit results compared with
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and

log (N0,ap) = −0.07193(T − 273.) + 2.665. (7.34)

with λ in mm−1 and N0 in m−3 mm−1. The RSDs for log (N0) and log (λ) show little

variation with temperature (Figures 7.15 and 7.14), except in the vicinity of 240 K, where

they increase substantially. The number of samples is small near this temperature, and the

large RSDs are in response to a few outlying points with small λ and N0 values. Accordingly,

variances were treated as constant and were estimated as the squared RSDs averaged over

all temperatures,

s2 (log (λap)) = 0.133, (7.35)

s2 (log (N0,ap)) = 0.95. (7.36)

To determine covariances between log (N0,ap) and log (λap), the observed values from the

C3VP observations were again subsetted in temperature intervals of 2 K and correlation

coefficients were calculated for each interval. The correlation coefficients ranged from 0.39

to 0.91 with a mean and standard deviation of 0.72 and 0.12. The a priori covariance

was then modeled as 0.72 (s (log (λap)) s (log (N0,ap))). These covariances, which apply to

log (λap) and log (N0,ap) values for an individual radar bin, appear as off-diagonal elements

in SSSa. While correlations likely exist between vertically separated radar bins, knowledge of

these correlations is lacking and a topic for further research. The dependence of log (λap)

and log (N0,ap) on temperature does impose some degree of structure on the vertical profiles

of these values. Accordingly, other off-diagonal elements in SSSa are set to zero.

7.6 Snowfall estimation

Provided a retrieval is successful, the snowfall rate profile is calculated. Snowfall rates

are calculated for each radar bin in the precipitation layer. For the assumed exponential
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distribution, the snowfall rate in depth units at radar bin i is

P
(

N0,i;λi; b̃i;Ti; pi; δ0;C0

)

=
α

ρliq
N0,i • (7.37)

∫ DM,max

DM,min

exp(−λiDM )Dβ
MV (DM , b̃i;Ti; pi; δ0;C0)dDM

where b̃i = (α, β, γ, σ), Ti is the bin temperature, and pi is the bin pressure. Fallspeeds are

modeled per MH2005, and δ0 and C0 are parameters of that model as introduced in Section

3.2.

If the scene characterization indicated snow would be present at the surface, the surface

snowfall rate is estimated as that at the bottom of the snowfall rate profile. Although

a simple microphysical model (e.g. Matrosov and Battaglia, 2009) might be used for this

estimate, the development and uncertainty characterization of such a model is left for future

work.

Uncertainties for P are determined in a manner similar to that used for the forward

model uncertainties. The total uncertainty in P , represented by the covariance matrix

ŜSSp, can be decomposed into ŜSSP,x, the uncertainties attributable to the uncertainties in

the retrieved state x̂; ŜSSP,b, the uncertainties in the microphysical parameters b̃; ŜSSP,v, the

uncertainties in the fallspeed model; and ŜSSP,exp, the assumed exponential form for the size

distribution:

ŜSSP = ŜSSP,x + ŜSSP,b + ŜSSP,v + ŜSSP,exp (7.38)

where the carets indicate the uncertainties are evaluated at the retrieved state. Note that

ŜSSP,b includes uncertainties due to both the explicit dependence of P on α and β as shown

in (7.37) and the implicit dependence on b̃ through the fallspeed model. The remaining

fallspeed uncertainties are included in ŜSSP,v. These remaining uncertainties are related to the

representativeness of the fallspeed model; to uncertainties in the fallspeed model parameters

δ0, C0; and to uncertainties in the environmental variables T and p.

The uncertainties attributable to the uncertainties in the retrieved state are evaluated

as

ŜSSP,x = K̂KKP,xŜSSxK̂KK
T

P,x (7.39)
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where ŜSSx is the covariance matrix of the retrieved state and K̂KKP,x is the Jacobian of (7.37)

with respect to the state variables,

K̂KKP,x =


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



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. (7.40)

The uncertainties attributable to the forward model parameters b̃, are evaluated similarly,

as

ŜSSP,b = K̂KKP,bSSSbK̂KK
T

P,b. (7.41)

SSSb the covariance matrix for the microphysical parameters ln (α), β, ln (γ) and σ determined

by the C3VP snow microphysics retrieval results and shown by (7.21), while K̂KKP,b is the

Jacobian of (7.37) with respect to those parameters,

K̂KKP,b =














K̂KKP,b,1,1 0

. . .

0 K̂KKP,b,N,N














. (7.42)

The submatrices K̂KKP,b,i,i are given by

K̂KKP,b,i,i =

[

∂Pi

∂(ln(αi))
∂Pi

∂(βi)
∂Pi

∂(ln(γi))
∂Pi

∂(σi)

]

. (7.43)
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The uncertainties in snowfall rate attributable to fallspeed uncertainties are evaluated

in two parts. First, the contributions due to the representativeness of the fallspeed model

are evaluated. These representativeness errors, described in Section 4.2.3, are given by

the covariance matrix SSSv and are considered to be uncorrelated between radar bins. Since

snowfall rate P in a given radar bin is independent of the state and parameters in other

bins, the variance s2
a (P )i for radar bin i can be found as

s2
a (P )i =

(

K̂KKP,v

)

i
SSSv

(

K̂KKP,v

)
T

i
(7.44)

where
(

K̂KKP,v

)

i
is the Jacobian of (7.37) with respect to the fallspeeds at the distinct particle

sizes used for the particle models

(

K̂KKP,v

)

i
=

[

∂Pi

∂vi,0
· · · ∂Pi

∂vi,K

]

(7.45)

and K is the number of distinct particle sizes. The uncertainties in δ0, C0, Ti and pi are

also expected to be independent and uncorrelated between radar bins. The variance s2
b (P )i

due to uncertainties in these parameters is found as

s2
b (P )i =

(
∂Pi

∂δ0

)2

s2 (δ0) +

(
∂Pi

∂C0

)2

s2 (C0) +

(
∂Pi

∂Ti

)2

s2 (Ti) +

(
∂Pi

∂pi

)2

s2 (pi) . (7.46)

The variances for δ0, C0, pi are as described in 4.3.2. Uncertainties for Ti are taken to

be 0.85, consistent with values from Eyre et al. (1993) for the lower troposphere. The

covariance matrix ŜSSP,v is then a diagonal matrix whose nonzero elements are given by the

sum of (7.44) and (7.46)

ŜSSP,v =














s2
a (P )0 + s2

b (P )0 0

. . .

0 s2
a (P )N + s2

b (P )N














. (7.47)

160



Uncertainties due to the assumed exponential form for the size distribution are evalu-

ated in a manner similar to that used for the reflectivity and specific attenuation. Snowfall

rate was evaluated using the B8pr-30 particle model with two different forms for the size

distribution: 1) the observed discrete size distributions in the SVI dataset, and 2) exponen-

tial distributions fitted to the discrete SVI distributions. For each discrete SVI distribution,

radar reflectivity Ze was calculated, and the corresponding fitted distribution was adjusted

by scaling the intercept parameter N0 to reproduce the same reflectivity. Snowfall rates

were then calculated using the observed discrete distribution and the fitted distribution

with scaled N0. Uncertainty was estimated as the difference between the pair of snowfall

rates. Figure 7.16 shows fractional differences as a function the snowfall rate. Although the

errors are largely unbiased, for snowfall rates below 0.1 mm LWE h−1 the distribution of

errors is skewed; nevertheless, as a first approximation the bias and skewness is ignored. A

log-linear fit between the scatter in the fractional error and the snowfall rate

f = −0.06 log (P ) + 0.05 (7.48)

is used to estimate the fractional uncertainty due to the use of the exponential distribution.

The corresponding variance in the snowfall rate at radar bin i is then

s2
exp (P )i = f2P 2

i . (7.49)

Information about vertical correlations for this type of uncertainty is lacking. For this work,

these uncertainties are assumed to be uncorrelated in the vertical, and ŜSSP,exp is then

ŜSSP,exp =




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


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

s2
exp (P )0 0

. . .

0 s2
exp (P )N
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
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


. (7.50)
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Figure 7.16: Fractional differences between snowfall rate calculated using the B8pr-30 parti-
cle model with observed SVI size distributions and those calculated from fitted exponential
distributions.
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Chapter 8

Retrieval Results

8.1 Application to ACR observations

The observations by the Airborne Cloud Radar (ACR) during C3VP provide the opportu-

nity to compare retrieved snowfall against coincident measurements of snowfall rates and

accumulations. Snowfall rate observations were obtained from the Vaisala FD12P and were

scaled to provide unbiased accumulations relative to the DFIR. These observations were

described previously in Section 2.1.3, and the ACR observations were introduced in Section

6.4.2. As was noted in that section, the calibration error in the ACR was taken to be neg-

ligible. The ACR was operated only during snow events of interest during IOPs. Generally

these coincided with satellite overpasses and aircraft operations. In all, about 28 hours

of ACR radar profiles were recorded at approximately 2.8 s intervals. These observations

represent 17 distinct snow events that occurred over 18 days between 3 November 2006 and

2 March 2007; however, most of the accumulations were concentrated during nine of the

events (see Table 8.1 later in this section). The data include three of the cases (A, B, and C)

used in the snow microphysics retrieval. Of the nearly 36,000 ACR profiles, approximately

7300 are from these three cases.

The retrieval was applied to the ACR reflectivities observed in the range bin nearest the

surface, at 197 m AGL. Temperatures and pressures needed by the retrieval to perform the

scene characterization, calculate fallspeeds and establish the a priori states were obtained

from nearby surface meteorology observations. The scene characterization was modified to
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evaluate only this ACR reflectivity and this near-surface air temperature. Because the view-

ing geometry for the ACR is significantly different than that for CloudSat, it is unlikely that

the multiple scattering correction (7.11) is appropriate; however, because the attenuation

between the radar and the first range bin is negligible, this correction and the associated

uncertainty (7.17) will also be negligible. Consequently, no changes were required to the

radar reflectivity forward model and its uncertainties. The retrieved ACR snowfall rates,

PACR, were matched to the nearest-in-time observed snowfall rate, PFD12P . Because of the

difference in temporal resolution (1 minute versus 2.8 seconds), a particular value of PFD12P

was typically matched to multiple values of PACR.

Time series of PACR and PFD12P show a high degree of agreement over most of the

observing period (Figure 8.1, upper panel). Two notable exceptions occur near time indices

25000 and 32500, when the FD12P recorded snowfall rates above 1 mm LWE h−1 while the

retrieved values are substantially smaller. Examining the time series of ACR reflectivities

shows that the ACR did not observe high reflectivities during these periods (Figure 8.1,

lower panel). The first of these anomalies occurred 22 February 2007 from 11:20 to 12:05

UTC while the second occurred 1 March 2007 between 22:15 and 22:50 UTC. For both, the

ACR operator made note of the heavy snowfall, suggesting that both the FD12P and the

ACR observed similar snowfall rates (Austin et al., 2007).

For the 14 February anomaly, the ACR operator noted that precipitation in the form of

ice pellets began at 10:40 UTC (Austin et al., 2007). By 11:15 UTC the precipitation con-

sisted of snow mixed with ice pellets. This transition is apparent in the SVI observations.

Between 11:00 and 12:00 UTC, the SVI showed a transition between two size distributions

(Figure 8.2). Initially the distributions were narrow and had relatively high concentrations

of small particles. Within a 10-minute span the distributions broadened considerably. They

were approximately exponential for sizes above DSV I= 1.5 mm, but had a pronounced

superexponential shape at sizes below 1.5 mm. By 12:25 UTC, the precipitation had tran-

sitioned to light snow. Temperatures recorded at the meteorology tower remained between

0◦C and -0.5◦C during the period from 10:40 to 12:25 UTC. A radiosonde launched at 11:30

UTC, however, showed a shallow freezing layer above the surface with temperatures warm-

ing to near 0◦ C at 890 - 900 hPa. VertiX observations at 10:50 UTC confirmed an apparent
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Figure 8.1: Upper panel: Time series of snowfall rates retrieved from ACR reflectivities and
observed. Lower panel: Corresponding time series of ACR reflectivities. Each time index
indicates a 2.8 s observation by the ACR. Snowfall rates retrieved for the ACR used the
reflectivity in the range bin nearest the surface, at 197 m AGL.
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Figure 8.2: SVI size distributions during the 14 February anomaly.

melting level near 1 km AGL, with mean Doppler velocities of around 3 m s−1 below that

level. At 11:15 UTC, the ACR operator reported there was “still a hint of a melting level

at ˜0.7 km.” Because of the melting within the precipitating column, this particular scene

would have been rejected by the normal CloudSat scene characterization.

For the 1 March anomaly, surface temperatures were considerably colder at -5◦C. A

sonde was launched at 20:00 UTC. Temperature decreased with height to -9◦C at 900 hPa,

then increased to a maximum of -2◦ at 835 hPa. At the time of a sonde launch at 02:30 UTC

on 2 March, temperatures at 750 hPa were near 0◦ C. The -15 dBZe echo tops for the ACR

were at 5 to 7 km AGL during this anomaly, well above the melting level height observed in

the sonde. The ACR operator reported snow, at times heavy, between 20:43 UTC and 02:09

UTC on 2 March, but gave no details of the characteristics. The VertiX and SVI had been

taken out of service at this time, so additional information about the scene is limited, but

the Environment Canada forecast for the day called for heavy snow mixed with ice pellets,

transitioning to freezing rain. If the melting level had been present during the anomaly, the

standard CloudSat scene characterization would have rejected this scene. Lacking additional

microphysical or visual observations of the snowfall, further characterization of the cause of

the discrepancy between the retrieved versus observed precipitation rates is not possible.
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Figure 8.3: Comparison of snowfall rates retrieved from ACR reflectivities with observed
FD12P rates. The central line of points in black is the 1:1 line, and the gray stippling shows
the upper and lower uncertainty bounds on the retrieved rates based on +/- 1 standard
deviation. The spread in the upper and lower uncertainty bounds is due to the dependence
of the uncertainty in PACR on the uncertainties in the retrieved state. Snowfall rates
retrieved for the ACR used the reflectivity in the range bin nearest the surface, at 197 m
AGL.

Figure 8.3 compares PACR and PFD12P against the expected uncertainties in PACR.

The time series of retrieved and observed precipitation rates were subsampled into distinct

1-minute samples, then the rates and PACR uncertainties were averaged. The uncertainties

for PACR are about 140% to 200% of the retrieved rate. Sources of uncertainty will be

examined in more detail in the discussion of the application of the retrieval to CloudSat

observations in Section 8.2. PFD12P generally lies within the uncertainty bounds on PACR.

Of the approximately 1600 subsamples, the differences between PFD12P and PACR exceed

1s(PACR) in only 228 cases, and exceed 2s(PACR) in only 116 cases. These comparisons

ignore the 30% to 50% uncertainties in PFD12P . Evaluated over all the subsamples, the bias

of PACR relative to PFD12P is -0.066 mm LWE h−1. The high PFD12P values at the right

of the plot are attributable to the anomalies discussed above.
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Accumulations may also be calculated from PACR and PFD12P (Figure 8.4). The ac-

cumulations were calculated both with (upper panel) and without (lower panel) the two

anomalies described above. Uncertainties in PFD12P were modeled as described in Section

4.1.2. Uncertainties in accumulations were calculated by assuming errors in precipitation

rate were correlated within snow events, but uncorrelated between events. Accumulations

are substantially in agreement during the first 16 hours but diverge somewhat beyond that.

In the upper panel, the final difference between the accumulations is 2 mm. With the

anomalies removed, that difference is reduced to 0.8 mm. The FD12P accumulations fall

well within the uncertainties of the ACR accumulations. In the case the anomalies are

removed, the mean accumulation from the ACR falls largely within the uncertainties of the

FD12P accumulation.

The uncertainties in the microphysical properties introduce uncertainties in the forward

modeled reflectivities as was described in Section 7.3.3. These uncertainties were extracted

from the ACR retrieval results and are shown in Figure 8.5 (upper panel) as a function

of observed reflectivity. The contributions from these microphysical property uncertainties

dominate the total uncertainty in the forward modeled reflectivity. For large reflectivi-

ties, the large uncertainties allow the retrieval to depart substantially from the observed

reflectivity (Figure 8.5, lower panel). As a result, the retrieved snowfall rates for these

high-reflectivity cases will likely be smaller than would be expected based on the observed

reflectivity.

8.1.1 Information content

A number of metrics related to information content were introduced in the description of

the optimal estimation method (Section 3.1): the Shannon Information Content, H; the

averaging kernel matrix, AAA; and ds, the number of degrees of freedom for signal. Figure

8.6 shows these metrics for the ACR retrievals. Values for H vary between 0.4 and 1.2,

indicating that the measurements resolve between 1.3 and 2.3 distinct states. The degrees of

freedom for signal, ds, shows that the retrieval produces somewhat less than one independent

piece of information that is significant compared to the measurement and forward model

uncertainties. The lower two panels of Figure 8.6 show the diagonal elements of AAA, whose
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Figure 8.4: Snow accumulations computed from PACR and PFD12P . The accumulations
are for 17 snow events observed by the ACR on 18 days between 3 November 2006 and 2
March 2007, but accumulations are principally from nine events (Table 8.1). The events
were concatenated sequentially in time and the time axis indicates the cumulative time over
all events. The upper plot shows accumulations from all ACR observations, while in the
lower plot the two anomalous events have been removed. The dashed lines bounding the
accumulation show the accumulation uncertainties.
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Table 8.1: Accumulations by event for the ACR retrievals. Two distinct events, indicated as
(a) and (b), occurred on 20 Jan 2007. Duration shows the elapsed time of ACR observations
for which retrievals were performed.

Accumulations

Date Duration ACR FD12P

h mm LWE

3 Nov 2006 0.98 0.065 0.11

2 Dec 2006 0.16 0.007 0.00

6 Dec 2006 4.00 0.86 0.80

7 Dec 2006 1.08 0.038 0.093

8 Dec 2006 0.34 0.018 0.00

17 Jan 2007 0.09 9.3e-04 0.00

19 Jan 2007 0.46 0.061 0.13

20 Jan 2007 (a) 0.32 0.004 2.8e-04

20 Jan 2007 (b) 0.59 0.079 0.0

22 Jan 2007 4.29 0.92 0.90

23 Jan 2007 0.76 0.017 0.00

26 Jan 2007 0.93 0.045 0.085

27 Jan 2007 3.36 0.57 1.06

19 Feb 2007 0.97 0.26 0.18

22 Feb 2007 2.72 0.59 0.91

26 Feb 2007 2.41 0.58 0.64

1 Mar 2007 4.23 1.35 2.48
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Figure 8.5: Upper panel: Uncertainties in forward-modeled reflectivity due to uncertainties
in the microphysical properties of the particle models. Lower panel: Reflectivity produced
by the retrieval compared to the observed reflectivity.

171



0 0.5 1 1.5
H

0

200

400

600

800

-0.2 -0.1 0 0.1 0.2
A[log(N 0)]

0

2000

4000

C
ou

nt

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A[log( λ)]

0

500

1000

1500

0.3 0.4 0.5 0.6 0.7 0.8 0.9
ds

0

500

1000

Figure 8.6: Distributions of information content metrics for the ACR retrieval.

sum gives ds. While the element relevant to λ , AAA [log (λ)], is consistently positive, the

element for No , AAA [log (N0)] is near zero and is at times negative. These results show that

log (λ) is moderately to strongly constrained by the reflectivity observation, while log (N0)

is largely dependent on the a priori constraint.

The shape of the size distribution plays a significant role in determining the values of

these metrics. Information content H increases as the distribution narrows (Figure 8.7,

panel a). The increase in H accompanies a substantial increase in the magnitude of the

sensitivity of the forward model to log (λ) (panel b). This increased sensitivity allows the

observed reflectivity to better constrain the retrieved state, particularly the value of log (λ).
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Figure 8.7: Information content metrics and the forward model Jacobian as functions of λ.

As a result, AAA [log (λ)] increases from 0.4 to 0.95 as λ increases (panel c). The behavior

of AAA [log (N0)] (panel d) is quite different. The values are small and are positive for small

values of λ, but become negative as λ increases.

While the forward model is strongly sensitive to log (λ), its sensitivity to log (N0) is

3-4 times smaller in magnitude. This sensitivity has a constant value of 10 owing to the

reflectivity in dBZe being a linear function of log (N0). Consequently, the retrieved value

of log (λ) is influenced more strongly by the observations, while the the retrieved value of

log (N0) is influenced more by the a priori estimate of the state. This difference is reflected

in panels (c) and (d) of Figure 8.7.

The negative values of AAA [log (N0)] do not seem to fit the normal paradigm which de-

scribes the AAA matrix (Section 3.1). Their explanation reveals details of a significant behav-

ior of this retrieval. In the application of the retrieval to a single radar bin, the value of
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AAA [log (N0)] is given by

AAA [log (N0)] =

[

s2
(

log
(

N̂0

))( ∂dBZe

∂ log (N0)

)2

+ (8.1)

s
(

log
(

N̂0

)

, log
(

λ̂
))( ∂dBZe

∂ log (N0)

)(
∂dBZe

∂ log (λ)

)]

[
s2
y (dBZe)

]−1
,

where the carets indicate retrieved values. In the first set of brackets on the right side, the

sign of the first term is clearly positive, while that of the second term depends on the signs

of the covariance and the two partial derivatives, which are the elements of the Jacobian

of the forward model. As was shown above, ∂dBZe
∂ log(N0)

is positive while ∂dBZe
∂ log(λ) is negative.

The covariance for the retrieved state changes very little from the a priori covariance, which

is positive and represents a substantial positive correlation between log (λ) and log (N0).

This second term, then, is negative and as the magnitude of ∂dBZe
∂ log(λ) increases, the sign of

AAA [log (N0)] changes from positive to negative.

These terms represent competing influences on the retrieved value of log (N0). These

competing influences arise from the a priori covariance and from the Jacobian of the forward

model. The positive covariance requires that a positive adjustment in log (λ) be accompa-

nied by a positive adjustment in log (N0). In contrast, the Jacobian terms have differing

signs. If the difference between the observed and forward model reflectivity calls for a

positive adjustment to log (λ), the corresponding adjustment to log (N0) would be negative.

Figure 8.8 shows this process schematically. The size distribution that represents the

initial state is shown by the solid line. Assuming that the forward modeled reflectivity

for this state overestimates the observed reflectivity (a positive error), two responses are

possible: log (λ) could be increased, narrowing the distribution; and log (N0) could be

decreased, reducing the amplitude of the distribution. Absent the covariance between log (λ)

and log (N0), the retrieval would apply both adjustments, likely giving more weight to

the adjustment of log (λ) because of the stronger sensitivity of the forward model to that

variable. These adjustments are represented by the heavy arrows labeled δ log (N0) and

δ log (λ). Because of the positive covariance between log (N0) and log (λ), however, an
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increase in log (λ) produces an opposing response that increases log (N0), shown by the

upward-pointing heavy arrow. The resulting size distribution is shown by the dashed line.

For small λ (broad distributions), the magnitude of ∂dBZe
∂ log(λ) is relatively small, so the

covariance-driven adjustment is small and does not overcome the initial reduction in log (N0).

In these cases, log (N0) decreases in response to a positive error in the modeled reflectivity.

This net response is consistent with the sensitivity of the forward model to log (N0) and

AAA [log (N0)] is positive. For large λ (narrower distributions), the magnitude of ∂dBZe
∂ log(λ) is

larger. The covariance-driven adjustment is larger also and does overcome the initial re-

duction in log (N0). As a result, log (N0) increases in response to the positive error in the

modeled reflectivity. Since this net response opposes the sensitivity of the forward model,

AAA [log (N0)] is negative.

The combination of the strong positive covariance between log (N0) and log (λ) and

the comparatively weak sensitivity of the reflectivity to log (N0) limits the behavior of

the retrieval. For narrower distributions, the retrieval is prevented from simultaneously

increasing log (λ) and decreasing log (N0) in response to a positive error in reflectivity. The

opposing behavior, decreasing log (λ) and increasing log (N0) in response to a negative error

in reflectivity, is also restricted. While correct in a climatological sense since log (λ) and

log (N0) are positively correlated, in nature there are likely scenes for which such responses

would give a more accurate retrieval. This reasoning demonstrates how other measurements,

specifically those with better sensitivity to log (N0), would benefit the retrieval.

8.2 An application to CloudSat observations

CloudSat observations of snowfall events near CARE are useful for examining the perfor-

mance of the snowfall retrieval. CARE is situated near the intersection of ascending and

descending segments of the CloudSat ground track. As a result, within the span of the 16-

day repeat cycle of the CloudSat orbit, CloudSat passes over the vicinity of CARE on two of

those days. On the ascending segment, the CloudSat groundtrack lies 46 km east of CARE

at its nearest point, while for the descending segment, the nearest point lies 24 km east

of CARE. The ascending and descending segments pass near CARE at about 18:30 UTC
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and 07:30 UTC, respectively. For several snow events during the C3VP IOPs, snow was

observed both on the ground at CARE and by aircraft at the time of a CloudSat overpass.

One such event occurred on 22 January 2007. The snowfall retrieval was applied to the

entire orbit of CloudSat observations associated with this event (CloudSat granule 3916).

The granule consists of 37,081 CloudSat profiles at latitudes between 82◦N and 82◦S. First,

the retrieval results from the full orbit are characterized in terms of the uncertainties in

the retrieved snowfall rates and the relationship between reflectivity and snowfall rate, then

results from the retrieval in the vicinity of CARE are examined and compared against

ground and aircraft observations. For this particular orbit, the retrieval produced snowfall

rates for about 52,000 radar reflectivity observations.

8.2.1 Snowfall rate uncertainties

As was described in section 7.6, the covariances for the retrieved state log (λ) and log (N0)

along with other variance sources can be propagated into the snowfall rate calculation to

give an explicit estimate of the posterior variance of the snowfall rate. Per (7.38), these

other sources are the variances in the microphysical parameters for the forward model (α,

β, γ, and σ), variances in the fallspeed parameterization, and variances due to the assumed

exponential distribution. From the retrieval results for this orbit, variances from each of

these sources were tabulated separately, then binned by snowfall rate and averaged. Figure

8.9 shows the resulting fractions of the total snowfall rate variance due to each of these

sources. Almost 90% of the snowfall rate variance is due to the variances in the retrieved

state and in the microphysical parameters. The contribution due to the assumption of

an exponential distribution is negligible, and that due to the variances in the fallspeed

parameterization is about 10% - 15%. As snowfall rates increase, the contribution from the

retrieved state variances increases, while that from the microphysical parameters decreases.

The uncertainties in snowfall rate, taken to be the square root of the variances, were

evaluated similarly by binning the uncertainties by snowfall rate then averaging and taking

standard deviations. Mean fractional uncertainties range from 145% to 175%, and the

range for +/- 1 standard deviation extends from about 140% to 200% (Figure 8.10). The

uncertainties have a pronounced minimum at a snowfall rate of about 0.08 mm LWE h−1.
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Figure 8.9: Contributions to total variance in snowfall rate from distinct sources.

Above 1 mm LWE h−1, the means and standard deviations become quite variable due to

the small number of samples in each bin.

In Figure 8.11, fractional uncertainties are shown by source as a function of snowfall rate.

These fractional uncertainties were calculated simply as the square root of the individual

variance (state, microphysical parameters, fallspeed parameterization, or exponential dis-

tribution) divided by the total variance. Note that since the total uncertainty is calculated

as the square root of the sum of the variances, this sort of decomposition of the uncertainty

sources is not mathematically accurate, but does allow the trends in each source to be shown

as a function of snowfall rate. For snowfall rates below about 0.08 mm LWE h−1, uncer-

tainties due to all four sources increase with decreasing snowfall rate. Above 0.08 mm LWE

h−1, the uncertainties due to the retrieved state increase with increasing snowfall rate, while

the other terms stay approximately constant or decrease. Thus the increase in fractional

uncertainties above 0.08 mm LWE h−1 shown in Figure 8.10 is caused by increases in the

uncertainties attributable to the retrieved state.

The calculation of the snowfall rate uncertainties contributed by the retrieved state is

given in matrix form, applicable to a profile of retrieval results, by (7.39). For a single radar
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Figure 8.10: Fractional uncertainties in snowfall rate for CloudSat granule 3916. The central
line shows mean fractional uncertainties and the error bars show +/- 1 standard deviation.
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Figure 8.11: Fractional uncertainties in snowfall rate for CloudSat granule 3916, separated
by source. Note that the sum of fractional uncertainties from all sources in this plot is
larger than the total fractional uncertainty in Figure 8.10 because the total uncertainty is
calculated as the square root of the summed variances.
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bin, the calculation can be written as

s2 (P ) =

(
∂P

∂ log (N0)

)2

s2 (log (N0))

︸ ︷︷ ︸

Term A

(8.2)

= +

(
∂P

∂ log (λ)

)2

s2 (log (λ))

︸ ︷︷ ︸

Term B

+ 2
∂P

∂ log (N0)

∂P

∂ log (λ)
s (log (N0) , log (λ))

︸ ︷︷ ︸

Term C

.

Terms A and B are positive, but term C is negative because the covariance is positive and

the partial derivatives differ in sign. The magnitude of term C is slightly smaller than the

sum of terms A and B. The value of s2(P ) is then the result of the sum of terms A and

B being largely offset by term C, as shown by Figure 8.12. The increase in s2(P ) with

increasing snowfall snowfall rate is not attributable to a single dominant source in (8.2),

as all three terms increase in magnitude with increasing snowfall rate. Table 8.2 shows

typical values for the elements of (8.2) for snowfall rates between 0.1 and 1.0 mm LWE

h−1. The variance of log (N0) is a factor of 10 larger than that of log (λ), suggesting that

improvements to the uncertainties in retrieved values of log (N0) could be a means to reduce

the uncertainties in snowfall rate; however, the derivative term associated with log (N0) is

about a factor of 10 smaller than that for log (λ). As a result, a fractional improvement

to the variance of log (N0) will have a similar impact on snowfall rate uncertainties as the

same fractional improvement in the variance of log (λ).

8.2.2 Reflectivity-snowfall rate relations

The relationship between reflectivity and snowfall rate is often described using so-called

Ze-S relations, typically using the general form

Ze = aSb (8.3)

where S is snowfall rate. Note that in earlier notation, P was used to represent snowfall

rate to distinguish it from covariance matrices SSS, but “Ze-S” will be used in this discussion.
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Figure 8.12: Terms A, B, and C from (8.2) versus snowfall rate. The range of snowfall rates
coincides with the range in Figure 8.11 for which snowfall rate uncertainties attributable to
the uncertainties in the retrieved state are increasing with snowfall rate.

Table 8.2: Typical values for the elements of (8.2). The values are averages over snowfall
rates between 0.1 and 1.0 mm LWE h−1.

Element Average
(

∂P
∂ log(N0)

)2
0.30

(
∂P

∂ log(λ)

)2
3.45

∂P
∂ log(N0)

∂P
∂ log(λ) -1.02

s2 (log (N0)) 0.94

s2 (log (λ)) 0.094

s (log (N0) , log (λ)) 0.27
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Such relations encapsulate assumptions about particle masses, fallspeeds, size distributions,

and frequency-dependent radar backscattering properties. At 94 GHz, where scattering

by precipitation-sized particles is non-Rayleigh, assumptions about particle shape are also

incorporated via the backscattering properties. Given these assumptions, snowfall rate and

reflectivity may be calculated via (3.11) and, if attenuation is neglected, (6.10).

The relation between reflectivity and snowfall rate may also be extracted from the

snowfall retrieval results. Because the retrieval incorporates scene-dependent estimates of

the a priori state, forward model uncertainties, and attenuation in a probabilistic framework,

the resulting Ze-S relation is not linear in log-space; rather, a distribution of reflectivities and

expected values of snowfall rate is produced, with each snowfall rate having an associated

variance that describes a normally distributed PDF.

The distribution of the retrieved snowfall rates and observed reflectivities for granule

3916 is shown as a 2D frequency distribution in Figure 8.13. The histogram itself, in

grayscale, shows the distribution of expected values of snowfall rates, calculated using the

expected values of log (λ) and log (N0) from the retrieval results. To account for differences

in the frequency of occurrence of different reflectivity values, a CFAD-like treatment (Yuter

and Houze, 1995) was used. The samples were subset into 1-dBZe bins and the snowfall

rates in each subset were histogrammed using bins evenly spaced in the log of the snowfall

rate. For each subset, the bin counts were normalized by the bin widths and by the total

number of points in the subset.

The variance of the snowfall rate estimated from the retrieval results is typically sub-

stantial, and causes the posterior distribution of snowfall rates to be much broader than the

distribution of expected values shown in Figure 8.13. The width of this posterior distribu-

tion of snowfall rates was estimated by using Monte Carlo sampling to construct a synthetic

distribution. For each retrieved snowfall rate and its variance, a sample of 500 snowfall rates

was drawn from the corresponding normal distribution. These samples were accumulated

along with the corresponding observed reflectivities. This synthetic distribution was subset

into 1-dBZe bins, then the mean and standard deviation of snowfall rate was calculated for

each subset. In Figure 8.13, the means are shown with the heavy black line while the upper

bounds based on +1 standard deviation are shown by the thin black line. Note that since
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Figure 8.13: Frequency histogram of observed reflectivities and retrieved snowfall rates
from CloudSat granule 3916 in grayscale. The black lines show the mean (heavy) and mean
plus one standard deviation (thin) of snowfall rate for each reflectivity bin. The remaining
lines are Ze-S relations from other studies: red: Liu (2008a); orange: Matrosov (2007);
cyan, medium blue, and dark blue: Kulie and Bennartz (2009), models LR3, HA, and SS,
respectively.

the standard deviations are larger than the rates themselves, the lower bounds cannot be

represented on the logarithmic scale used for snowfall rate.

As 94 GHz radars have not traditionally been used for precipitation research, only a

few studies (e.g., Matrosov, 2007; Liu, 2008a; Kulie and Bennartz, 2009) have developed

applicable Ze-S relations. Representative relations from these studies are shown in Figure

8.13. Differences among the relations are likely attributable mainly to differences in scat-

tering property models and size distribution assumptions, although differences in fallspeeds

will have some affect. Given these differences, the resemblance of the Ze-S relation from

CloudSat to that of the Kulie and Bennartz HA relation is striking. More significantly, these

results illustrate that although the CloudSat snowfall retrieval nominally relates snowfall to

reflectivity in a way similar to these other relations, it allows for a more complex relation

than a simple power law.
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8.2.3 Results from CARE

The weather for the 22 January 2007 snowfall event was characterized by an extensive,

deep, snow-producing system that was over CARE at the time of the 07:30 UTC descend-

ing overpass. The system was associated with a low pressure center that was moving from

northeastern Indiana into northwestern Ohio during the time of the overpass. A weak low

level trough extended from the low pressure center eastward over Lake Erie and into central

New York. The system produced light to moderate snowfall over the region north of the

trough, covering much of Michigan, southern Ontario and western New York with snow.

Observers on the ground at CARE indicated moderate to heavy snowfall occurred between

about 03:00 and 08:30 UTC, consisting predominantly of stellar crystals and aggregates

early in the event. The DFIR at CARE showed an accumulation of 2.6 mm liquid water

equivalent for the 24 hours prior to 13:00 UTC on 22 January, and snowfall rates from

the FD12P peaked around 1.5 mm LWE h−1(Figure 8.14). The National Research Council

Canada’s Convair-580 research aircraft operated near CARE prior to the overpass, per-

forming a spiral descent followed by straight flight legs at several altitudes, then flew along

the CloudSat ground track during the overpass. Figure 8.15 shows the profiles of CloudSat

reflectivity from the segment of the overpass near CARE. As noted above, CARE is located

approximately 24 km west of this segment.

Figure 8.16 shows the snowfall rates and retrieved size distribution parameters for the

scene in Figure 8.15. Peak snowfall rates are near 0.35 mm LWE h−1, located in two distinct

cells that spatially correspond with peak reflectivities. Values for λ generally increase toward

the surface. This pattern is consistent with the temperature-based a priori constraint, but is

also clearly influenced by the variations in reflectivity. For example, between 43◦ and 43.5◦

latitude, values for log (λ) near the top of the precipitation at 2.5 km AGL are similar to

values near 4.5 km between 44◦ and 44.5◦, even though the temperatures at these altitudes

are quite different. In contrast, values for log (N0) show predominantly vertical variation

with weaker horizontal structure. These behaviors are consistent with the information

content analysis for the ACR retrieval results, which showed that the retrieved values of
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Figure 8.15: CloudSat CPR reflectivities for the 22 January 2007 07:30 UTC pass near
CARE. The latitude of CARE is 44.2◦.
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log (λ) were determined in large part by the reflectivity observations, while retrieved values

of log (N0) were determined mainly by the a priori state.

Observations of instantaneous precipitation rates or short-term (e.g., hourly) accumula-

tions near the CloudSat ground track are lacking. The nearest instantaneous precipitation

rates, shown in Figure 8.14, were at CARE, located approximately 24 km west of the ground-

track. Figure 8.17 shows the estimated snowfall rates at the surface and the uncertainties

obtained from the CloudSat retrieval. The peak rates from CloudSat are about 0.35 mm

LWE h−1, considerably smaller than the peak rates observed at CARE (1.5 mm LWE h−1).

At the time of the CloudSat overpass at 07:30 UTC, snowfall at CARE was weakening and

had decreased to about 0.2 mm LWE h−1. The low snowfall rates from CloudSat may rep-

resent a region of weaker precipitation, but more complete observations would be required

to confirm this.

Environment Canada does operate a number of synoptic and climate observing stations

in the vicinity of CARE and the CloudSat groundtrack, however. These synoptic and

climatic observations of snowfall are typically reported as accumulations over 6-hour or

24-hour intervals. Comparisons of these accumulations for a single snowfall event against

accumulations estimated from CloudSat-retrieved instantaneous snowfall rates are likely of

limited quantitative value, but can give a qualitative indication of retrieval performance.

Accumulation observations from these stations, lying within a +/- 1◦ latitude and longitude

box centered on CloudSat’s groundtrack at CARE’s latitude of 44.2◦, were obtained from the

Environment Canada National Climate Data and Information Archive (http://climate.

weatheroffice.gc.ca/climateData/canada_e.html, data provided by Peter Rodriguez).

The available observations were limited to 24-hour accumulations. The locations of the

CloudSat groundtrack, CARE and the stations are shown in Figure 8.18.

For CARE, 24-hour accumulation measurements are made nominally at 08:00 local time,

or 13:00 UTC when standard time is in effect, and this is thought to be true for climate

stations in the vicinity of CARE (Peter Rodriguez, 22 May 2008, personal communication).

CloudSat accumulations and uncertainties were synthesized by taking the instantaneous

retrieved snowfall rates and uncertainties from the groundtrack segment shown in Figure

8.18, then multiplying them by an estimated duration of precipitation in the 24 hours
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Figure 8.16: Retrieval results for the 22 January 2007 07:30 UTC CloudSat overpass near
CARE.
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Figure 8.17: Snowfall rates at the surface and uncertainties from CloudSat for the 07:30
UTC overpass on 22 Jan 2007.

prior to 13:00 UTC. This duration of precipitation at CARE, estimated by examining the

FD12P precipitation rate time series (Figure 8.14), was 12.4 hours. Four stations reported

accumulations substantially higher than the CloudSat accumulations, while four reported

no accumulations (Figure 8.19). Of the four with no accumulations, three reported missing

values for total rain and total snow but reported zero for total precipitation, while the fourth

(at 44.20◦N, 78.93◦W) reported zero for all three values. Other reported accumulations are

in fair agreement with the CloudSat accumulations. Averaged over the entire latitude range,

the CloudSat accumulation is 1.52 mm LWE. The average of the observed accumulations

including the zero values is 1.26 mm LWE, while with the zero values excluded it is 1.45

mm LWE.

The Convair-580 did not perform a spiral through the storm at the CloudSat ground

track during the overpass, but did perform a spiral near CARE between 06:00 and 06:24

UTC. The aircraft was instrumented with a Nevzorov hot-wire probe (Korolev et al., 1998)

and a Counterflow Virtual Impactor (CVI) (Twohy et al., 1997) for measuring total water

content, in addition to the 2D-C and 2D-P probes. Figure 8.20 compares size distribution
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Figure 8.19: Observed snow accumulations compared against accumulations synthesized
from snowfall rates retrieved from CloudSat. Black squares indicate observed accumulations
that were reported as zero.

parameters obtained from the retrieval and from aircraft observations. The aircraft obser-

vations are from the entire duration of the 22 January flight. Retrieved values and their

uncertainties were binned into 0.5 km height increments and averaged. For the aircraft, the

parameters fitted to the 2D-C and 2D-P observations were similarly binned, then means

and standard deviations were computed. The agreement between the retrieved and observed

profiles for log (λ) are quite good. For log (N0), the uncertainties in the retrieved values are

substantially larger than the observed standard deviations, and there is a tendency for the

retrieval to underestimate log (N0) up to about 5 km.

Figure 8.21 shows ice water contents computed using the retrieved size distribution pa-

rameters with the masses from the retrieval particle model. Total water contents observed

by the Nevzorov probe and CVI during the spiral descent near CARE are shown for com-

parison. The cloud was glaciated, with temperatures ranging from 236 K to 262 K during

the spiral. The Nevzorov liquid water content measurements were not recorded during this

flight, but the CLEX-10 operations log indicates very little supercooled liquid water was
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Figure 8.20: Vertical profiles of retrieved and observed size distribution parameters for the
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Figure 8.21: Comparison of observed and retrieved water contents from the 22 January 2007
snow event. Observed values were obtained during an aircraft spiral descent near CARE
approximately an hour prior to the CloudSat overpass. Nevzorov and CVI measurements
are total water content, while the retrieval values are ice water content.

present (CIRA, 2009), presumably based on King probe observations. The retrieved values

are in general agreement with those from the Nevzorov at altitudes below 3 km. For higher

altitudes, the retrieved values are larger than those from the Nevzorov but similar to those

from the CVI. Using observations from the entire C3VP experiment, Korolev et al. (2008)

found that when large particles were present, ice water contents measured by the CVI could

be a factor of 1.5 to 2 larger than those measured by the Nevzorov, but that the Nevzorov

agreed well with ice water contents calculated from 2D probe observations. They concluded

that additional studies are required to resolve the discrepancies.
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Chapter 9

Discussion and conclusions

A means has been developed for quantifying snowfall that will help to fill in the understand-

ing of the hydrologic cycle, particularly in higher latitudes where snowfall is a significant

component of the cycle and where measurements are lacking. This means leverages the ob-

servations of radar backscattering profiles available from a satellite-based cloud radar, the

CloudSat Cloud Profiling Radar, or CPR. The radar is nadir-looking only, but the orbital

configuration is such that the satellite observes latitudes from near 82◦N to 82◦S, providing

a unique view of the structure of clouds and precipitation in remote regions of the Earth.

Although designed as a cloud radar, scattering by precipitation-sized particles including

snow is significant at the 94 GHz frequency of the radar.

Just as importantly, this research has aimed to assess the strengths and limitations of

these observations when used to estimate snowfall. One critical component of this assess-

ment is an appropriate characterization of the errors in the estimated snowfall rates. A

second critical component is an evaluation of so-called information content metrics, quan-

tities which illustrate how the reflectivity observations influence the retrieved state, the

estimated snowfall rates and the associated uncertainties. Although a number of studies

have developed relationships between 94 GHz reflectivity and snowfall rate, this work pro-

vides a more complete accounting of the sources of uncertainty and the propagation of these

sources into the snowfall rate. This more complete accounting provides for a robust eval-

uation of the information content metrics. The limitations revealed by these information

content metrics can provide guidance about the configuration of future observing systems.
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9.1 Overview of the method

The fundamental obstacle addressed in this work is the non-uniqueness of the relationship

between radar reflectivity and the microphysical properties of snow particles within a radar

range bin. Radar reflectivity alone cannot completely constrain even a simplistic repre-

sentation of snow particle properties (mass, area and number concentration as functions

of particle size) needed to determine snowfall rate. A solution is to incorporate suitable

a priori information via Bayesian techniques. This approach was used here, implemented

using optimal estimation. Optimal estimation provides the mechanisms not only for incor-

porating a priori information, but also for propagating measurement, model and a priori

uncertainties into the retrieved quantities and for extracting information content metrics.

Although limited generally to purely Gaussian representations of probability density func-

tions, it provides a tractable means to initially address these issues.

Prior information about snow microphysical properties is essential to the snowfall re-

trieval. This information, which describes the expected values and uncertainties in the

microphysical properties in the scene observed by the radar, has by necessity often been

given cursory treatment in the development of radar-based snowfall retrievals. Early in the

work, it was realized that the available a priori information on these properties was insuffi-

cient for use in the optimal estimation snowfall retrieval algorithm. While estimates of the

best-fit parameters of mass- and area-dimension relations for various habits were available

in the literature, there was no reasonable way to construct the required probability density

functions for these parameters. In many cases, estimates of both mass and area parameters

were not available from the same sample of particles. Thus there was little guarantee of

consistency between the mass and area representations.

To address this issue, a bootstrap approach was used. A retrieval was developed which

could estimate the probability density functions for these microphysical properties using

multisensor observations of snowfall. The results from application of this retrieval to a set

of field experiment data then formed the prior microphysical information needed by the

snowfall retrieval.
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Consequently, the work progressed in two parts. First, the optimal estimation retrieval

algorithm was constructed for estimating the probability density functions of the significant

microphysical parameters for snow. The algorithm was designed around the observations

available from a highly instrumented ground site used for a snowfall field validation cam-

paign. This algorithm was conditioned using an a priori estimate of these properties that

was drawn from an extensive set of ground-based measurements of snow properties. Un-

certainties for the observations and the associated forward models were characterized. The

algorithm was applied to observations from four events, including snow from both synoptic

front and lake-effect processes. The resulting PDFs from individual retrievals were then

pooled using a Monte Carlo technique to give a single representative PDF for the micro-

physical properties.

Second, the optimal estimation method was applied to the problem of retrievals from

CloudSat CPR observations. The state to be retrieved was defined as vertical profiles of the

parameters of exponential size distributions. The expected values from the PDFs of micro-

physical properties from the first part were used to design particle models with physically

consistent mass, area, fallspeed and radar scattering properties. The discrete dipole approx-

imation was applied to a range of particle shapes. This approach allowed forward model

uncertainties due to shape to be evaluated, and comparisons against observed reflectivities

provided guidance for the selection of a representative shape. Sensitivities of scattering

properties to the microphysical parameters were also calculated. These sensitivities allowed

the uncertainties in microphysical properties to be propagated into the uncertainties in the

retrieved state, and thence into the calculated snowfall rates. A priori estimates of the

PDFs of the state variables, the exponential distribution parameters, were derived from

aircraft and surface observations from the field validation campaign, but were shown to be

consistent with aircraft and surface observations from other field experiments. The resulting

retrieval was applied to 94 GHz radar observations from the ground validation site, and also

to an orbit of CloudSat observations.
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9.2 Principal results

9.2.1 The snow microphysics retrieval

The snow microphysics retrieval of the first part represents a novel approach to integrating

independent observations of Rayleigh-regime radar reflectivity, snowfall rate, particle fall-

speeds and size distributions to extract snow microphysical properties. Traditional processes

for determining these properties can be onerous (e.g., measuring diameters of melted drops

to determine the mass of individual particles) or make less complete use of the observa-

tions to look at restricted aspects of the microphysical properties (e.g., 2DVD disdrometer

estimates of snow particle volume combined with precipitation accumulation to estimate

snow particle bulk density). The snow microphysics retrieval produces estimates of size-

dependent particle mass and area that give a consistent representation of Rayleigh scattering

properties, fallspeeds and snowfall rate for a population of particles. Additionally, these esti-

mates are constructed as PDFs. These PDFs provide information about the variability and

uncertainties of these properties, and so have use as inputs to Bayesian retrieval methods.

The results of the retrieval’s application to the C3VP observations showed nontrivial

correlations between ln (α) and ln (γ), between β and σ, and between ln (α) and σ. These

correlations, likely the result of the dependence of fallspeed on α
γ and β−σ, are new results

which were not apparent in the a priori estimates of these parameters because of the limita-

tions of previous analyses. These correlations form off-diagonal elements in the covariance

matrix describing the multidimensional PDF for these parameters, and potentially have

significant effects on Bayesian retrievals which incorporate these PDFs.

The retrieval was tasked with determining five pieces of information (ln (α), β, ln (γ), σ,

and φ) from five observations (Ze, P , V0, ∆V1, and ∆V2). The information content metrics

from synthetic tests showed that, given the a priori information, only about two independent

and significant pieces of information were provided by the measurements. The measurements

contributed principally to the determination of ln (α), with less significant contributions to

the determination of β and ln (γ). Relatively little information was provided for σ and

φ. Nevertheless, the inclusion of φ was found to be essential for correct performance of

the retrieval. The Shannon Information Content, H, for these synthetic tests was near
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3, indicating that approximately 8 distinct states can be resolved within the state space

defined by the a priori.

These information content metrics were used to characterize the benefits that might be

achieved by improvements to various aspects of the observations and the retrieval. In par-

ticular, the impacts of reduced uncertainties for a number of the inputs to the retrieval were

evaluated. The significant uncertainties were due to ground clutter in the VertiX radar pro-

files, which necessitated the use of reflectivities well above the ground; to the lack of replicate

observations of snowfall rate; to the small sample volumes of the SVI; and to uncertainties

in the fallspeed forward model. The simulated uncertainty reductions were achieved by

assuming that radar reflectivity could be measured adjacent to the other observations; that

four replicate snowfall rate measurements were available; that the SVI sample volume was

doubled; and that the fallspeed forward model uncertainties were reduced to 10%. While

modest improvements to H, the Shannon Information Content, and to ds, the degrees of

freedom for signal, were obtained from the first three improvements, the most significant

improvements were achieved when the fallspeed forward model uncertainties were reduced.

The overall improvements were an increase from 3.07 to 4.80 for H and an increase from

1.83 to 2.32 for ds.

9.2.2 The CloudSat snowfall retrieval

The combined information about particle mass and area obtained from the snow micro-

physics retrieval was exploited in an innovative way for the development of particle scat-

tering models. The discrete dipole approximation model for each particle was constructed

using solid-ice dipoles; the placement and number of those dipoles was configured to match

not only the mass, but also the horizontally projected area for that particle, ensuring the

particle had proper fallspeed characteristics and eliminating the need for approximate treat-

ments of the dipole dielectric properties. Mass and horizontally-projected area, however,

were found insufficient to constrain scattering properties to match observed 94 GHz reflec-

tivities; proper vertical aspect ratio was also necessary. Simulated reflectivities calculated

using various particle models and observed SVI size distributions were compared against

observed reflectivities from the ACR. These particle models used the same mass-dimension
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and area-dimension relations but different shapes. Biases computed from these comparisons

showed the best agreement between the simulated and observed reflectivities was provided

by the B8pr-30 shape, an 8-arm branched spatial shape with a vertical aspect ratio of 0.5.

This shape was selected for use in the CloudSat retrieval.

A simple evaluation was performed in which the CloudSat retrieval was applied to ACR

observation from C3VP. The retrieved snowfall rates generally agreed with observed rates.

Uncertainties in the retrieved rates were typically 100% - 200% and these bounds encom-

passed most of the observed rates from the FD12P. Uncertainties in the microphysical

properties were the dominant contribution to uncertainties in the forward modeled reflec-

tivity, especially for higher reflectivities associated with heavier snow rates. Two anomalies

were identified and, in one case, associated with snowfall with microphysical properties that

were inconsistent with the assumptions of the retrieval. Of the total accumulation measured

during the ACR observations, the retrieval captured 87% with the anomalies removed, 73%

with the anomalies included.

Information content metrics showed that, given the a priori information about the size

distribution parameters, log (N0) was only weakly constrained by the observations. log (λ)

was moderately constrained for broad distributions and more strongly constrained for nar-

rower distributions. An unusual, negative value for the AAA diagonal element associated with

log (N0) was shown to be due to the strong positive covariance between log (λ) and log (N0)

in the a priori. The vertical variations of N0 and λ within a snow-containing column con-

struct a picture of the microphysical processes occurring in the column. With this retrieval,

part of that picture is revealed through λ. The remainder of the picture, however, relies

heavily on a priori assumptions describing the temperature dependence of log (N0) and the

covariance between log (N0) and log (λ). The need is clear for additional measurements

which would more strongly constrain log (N0).

From the application of the retrieval to an orbit of CloudSat data, PDFs of snowfall

rate were obtained as a function of reflectivity and cast as a Ze-S relation. The Ze-S

relation allows concise comparisons between the results of different studies, but is a limited

representation of the true nature of the results of a snowfall retrieval scheme. The expected

values from the CloudSat relation bore similarity to a number of recently published Ze-
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S relations for 94 GHz radar observations. Most significantly, however, the comparison

illustrated the ability of the CloudSat retrieval to explicitly quantify the uncertainties for

the retrieved snowfall rates. Truly useful comparisons of such relations can be made when

the associated uncertainties are understood.

9.3 Prospects for future work

While insights regarding snowfall at higher latitudes and remote regions will be valuable,

higher value will be provided if questions can be answered about the nature of the micro-

physical processes producing that snowfall. Given the demonstrated sensitivity of polar

climates in general circulation models to greenhouse-gas-induced perturbations, ensuring

the adequacy of the parameterizations used by these models seems essential. The zeroth-

order question is whether snowfall is reproduced correctly in such models. A first-order,

and much richer, question is to ask whether a particular parameterization which might be

adequately reproducing observed snowfall is doing so for the right reasons. Answers to such

questions will benefit from the results of work like this, especially if the influence of the a

priori assumptions on the retrieved state can be reduced.

A fundamental need, then, is to enhance the measurement-based information the re-

trieval can provide about N0, and about λ when distributions are broad. The likely path to

meet this need is to incorporate additional observations into the retrieval. Dual-wavelength

radar observations have been used to estimate the characteristic particle size, another mea-

sure of the distribution width. High frequency microwave brightness temperatures have

been shown to be sensitive to ice water path in clouds containing precipitation-sized ice

particles. Using the foundation established by the radar-only CloudSat retrieval, additional

observations can be introduced and information content metrics evaluated. Toward this

end, the DDA models used in this work were constructed to allow calculations of scattering

properties for frequencies up to 183 GHz. Calculations for several common radar frequencies

(C, Ku and Ka) have been completed and will be extended to include appropriate passive

microwave observing frequencies.
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A principal concern with the present work is the representativeness of the particle models

used in the CloudSat retrieval. These models were derived primarily from surface obser-

vations from a single field experiment. While the retrieved microphysical properties used

to develop the particle models are not inconsistent with observations from other sources, a

number of steps may be taken to improve confidence in these models. An obvious first step

is to apply the microphysics retrieval to observations from other field experiments. An ini-

tial candidate is the Light Precipitation Validation Experiment (LPVEx), a campaign held

in southern Finland September - December 2010. This experiment will provide a rich set of

observations of snow using instrumentation similar to C3VP but in a maritime-influenced

environment quite different from that of C3VP.

As a second step, aircraft-based radar and in-situ observations can provide several of the

quantities needed for the microphysics retrieval, such as Rayleigh-regime radar reflectivity

and particle size distributions. Although other observations are lacking (precipitation rate

and fallspeeds), the aircraft platform adds observations such as water content and direct

measurements of the horizontally-projected areas of particles via images from 2D probes.

The optimal estimation framework used for the microphysics retrieval is readily adaptable to

these other observations. These sorts of analyses applied to observations from aircraft spirals

could provide potentially useful information about the vertical variations and correlations

of microphysical properties, and could help reduce forward model uncertainties caused by

uncertainties in microphysical properties. Analyses of observations from several aircraft-

based field experiments have been initiated.

Finally, the limited testing of the retrieval presented in this work clearly does not demon-

strate its validity at global scales. The narrow field-of-view sampling of the nadir-viewing

radar and the often high spatial variability of precipitation act to limit the significance of

comparisons of retrieved and observed snowfall at small space and time scales. Two av-

enues suggest themselves for further testing of the retrieval. First, basin- or regional-scale

comparisons between CloudSat-derived and observed seasonal accumulations may be useful.

These comparisons could be made using locations that have been heavily instrumented for

hydrometeorology purposes (e.g., the National Oceanic and Atmospheric Administration’s

Hydrometeorology Testbed HMT-West effort in the American River Basin of California
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and Nevada). With appropriate compensation for CloudSat’s sampling of such a region,

meaningful comparisons might be developed. Second, synthetic testing could be pursued.

Simulations of snowfall events using high-resolution (e.g., cloud-resolving) models could

function as synthetic testbeds to which the retrieval could be applied. Although not re-

ported in this work, such a simulation has been completed for a C3VP snow event using

Colorado State University’s Regional Atmospheric Modeling System (RAMS), and will be

used in this manner. LPVEx will provide additional opportunities for such simulations and

tests.
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Appendix A

Disdrometer dimensional errors

To evaluate the magnitudes of these differences, a series of simulations were done using

idealized snow particles modeled as scalene ellipsoids. The ellipsoids were defined using

three distinct dimensions: a long dimension “a” lying nominally in the horizontal plane

along the x axis, a short dimension “b” also lying nominally in the horizontal plane normal

to“a”and along the y axis, and a short vertical dimension“c”normal to the horizontal plane

and lying along the z axis. The true maximum dimension of the particle is 2a. Particle

orientation was varied by applying uniformly distributed rotations about the z axis and

canting at two distinct angles about the x and y axes. The canting angles were distributed

over the range of +/- 21◦ and weighted per a normal distribution with a standard deviation

of 9◦ based on the estimates of Matrosov et al. (2005b) for pristine particles.

Various measures of particle dimension consistent with the disdrometer observations

were estimated from the simulations, averaged over all orientations and compared with the

true maximum dimension for a range of particle aspect ratios defined by b/a and c/a. Table

A.1 summarizes these measures. The value of a was fixed at 0.5, giving a true maximum

dimension of 1.0, while 0.05 ≤ b ≤ a and 0.05 ≤ c ≤ b. These ranges produced particles that

varied from column-like to plate-like to spherical. Values for φ, the ratio of the observed to

the true maximum dimension, ranged from 0.3 to 1.0 (Figure 3.1). The measure based on

area (DSV I,ec) is sensitive to both the vertical aspect ratio c/a and the horizontal aspect

ratio b/a, while those based on maximum width or feret diameter are minimally sensitive to

the vertical aspect ratio. Of the latter, the measure based on feret diameter shows somewhat
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Table A.1: Definitions of particle dimensions measured by SVI and 2DVD disdrometers.

Dimension Description

DSV I,ec Diameter of a circle with area

equal to that observed by the SVI

DSV I,w Distance between horizontal extrema

of the SVI particle image

DSV I,f Distance between the two furthest removed points

on the SVI particle image (feret diameter)

D2DV D,w Maximum of the horizontal extrema obtained

from the two oblique 2DVD particle images

less sensitivity to the horizontal aspect ratio than do those based on width. Calculations

using canting angles with a standard deviation of 18◦ showed similar results. The variation

in φ is due mainly to the variation in particle shape, rather than canting angle, provided

canting angles are not extreme.

How significant are the errors introduced by treating a disdrometer observation of D

as the maximum dimension? An exponential size distribution based on the true maximum

dimension DM is

N(DM ) = N0,M exp(−λMDM ). (A.1)

Transforming this distribution to use Dobs as the independent variable gives

N(Dobs) = N(DM )
∂DM

∂Dobs
=

N0,M

φ
exp(−λM

φ
Dobs). (A.2)

where it has been assumed that φ is constant over the entire distribution. The transfor-

mation from DM to Dobs results in a distribution with steeper slope and larger intercept.

Although the zeroth moments are the same for both distributions, higher order moments

are different and quantities such as reflectivity which depend on higher order moments will

be affected. Reflectivities can be calculated for both cases, one in which the disdrometer

truly observes DM and a second in which Dobs is erroneously taken to be DM . Applying

the mass power law (3.23) with the distribution (A.2) and calculating reflectivity per (3.16)
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Figure A.1: Figure 3.1, reproduced here for convenience. Values of φ, the ratio of D observed
by SVI and 2DVD disdrometers to true maximum dimension DM .
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gives

Ze,obs =
36α2

π2ρ2
ice

‖Ki‖2

‖Kw‖2

N0,M

φ

Γ(2β + 1)

(λM/φ)2β+1
, (A.3)

while that for distribution (A.1) is

Ze,M =
36α2

π2ρ2
ice

‖Ki‖2

‖Kw‖2 N0,M
Γ(2β + 1)

λ2β+1
M

, (A.4)

where Γ is the gamma function. The ratio of the reflectivities is

Ze,obs

Ze,M
=

No,M/φ

N0,M

λ2β+1
M

(λM/φ)2β+1
= φ2β . (A.5)

Taking a typical horizontal aspect ratio of 0.6 (Korolev and Isaac, 2003) gives φ ≈ 0.82

for Dobs = DSV I,f . A common estimate for b is 1.9 (Brown and Francis, 1995), resulting

in a reflectivity ratio of 0.47. Thus Ze modeled using N(Dobs) will be underestimated by

3.2 dBZ. In order for a modeled value of Ze,obs to match an observed Ze, the coefficient

α would have to be overestimated by almost 50%. The cap on particle mass exacerbates

this effect. A secondary but significant effect of this overestimate of particle mass is that

particle areas would also have to be overestimated in order to match observed fallspeeds.

Because of the cap placed on particle areas, the fallspeed forward model might be unable

to match observed fallspeeds, causing the retrieval to either fail to converge or to produce

large χ2 values.
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Appendix B

A priori data sets

The a priori mass-dimension relations used in this work include results from Zikmunda and

Vali (1972), Locatelli and Hobbs (1974), and Mitchell et al. (1990), as well as relations from

Mitchell (1996) which do not duplicate results from the earlier studies. Values of α and

β for these studies are tabulated in Table B.1. Additionally, new power laws were derived

from the Kajikawa observations introduced in Section 3.4. The methods used to develop

these new power laws and the resulting parameter values are described in section B.1 below.

Similarly, a priori area-dimension relations used in this work include results from Heyms-

field (1972), Mitchell (1996), and Heymsfield and Miloshevich (2003), except that the results

in Heymsfield and Miloshevich (2003) given for observations by M. Kajikawa are omitted

in favor of the results shown in Section B.1 below. Values for γ and σ from these studies

are tabulated in Table B.3 below, and those derived from the Kajikawa observations are

described in section B.1 below.

B.1 Analysis of Kajikawa observations

Kajikawa (1972, 1975, 1982) made observations of snow particles representing a wide range

of habits over a number of winter seasons. The observations included measurements of

fallspeeds, photomicrographs of individual particles, and measurements of melted drop di-

ameters from which particle masses could be assessed. Heymsfield and Kajikawa (1987) uti-

lized Kajikawa’s observations of the planar crystals and graupel to develop mass-dimension
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Table B.1: A priori estimates of α and β for various habits. P(a) is “Assemblages of planar
polycrystals in cirrus clouds”. Suffixes on the habit codes indicate densely rimed (R), rimed
(r), fragments (f) and aggregated (a). In some cases, habit codes are approximate based on
textual descriptions in the referenced sources. The values for bullet rosettes (C2a) from M96
are for 5-arm rosettes. M96: Mitchell (1996); LH74: Locatelli and Hobbs (1974); Mea90:
Mitchell et al. (1990); ZV72: Zikmunda and Vali (1972).

Habit α β Dmin Dmax Source

(cgs) µm µm

P1a 0.00739 2.45 15 100 M96

P1a 0.00739 2.45 100 3000 M96

N1e 0.1677 2.91 30 100 M96

N1e 0.00166 1.91 100 300 M96

N1e 0.000907 1.74 300 – M96

R1b 0.00145 1.8 200 2400 M96

P1b 0.00614 2.42 10 40 M96

P1b 0.00142 2.02 40 2000 M96

P1c 0.00583 2.42 10 100 M96

P1c 0.000516 1.80 100 1000 M96

P1d 0.00583 2.42 10 90 M96

P1d 0.000270 1.67 90 1500 M96

C2a 0.00308 2.26 200 1000 M96

P(a) 0.00739 2.45 20 450 M96

R4b 0.042 3.0 500 2000 LH74

R4b 0.0492 2.8 500 3000 LH74

R4b 0.0702 2.7 500 1000 LH74

R4c 0.0291 2.6 800 3000 LH74

R4a 0.0350 2.9 800 3200 LH74

R3b 0.00743 2.1 500 2200 LH74

R3a 0.00527 2.4 800 2800 LH74

R1b 0.00658 2.3 800 2000 LH74

R2b 0.00299 2.3 1800 4000 LH74
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Table B.2: Continuation of Table B.1.

Habit α β Dmin Dmax Source

(cgs) µm µm

P7b(R) 0.00491 2.1 800 2800 LH74

P7b(a) 0.00183 1.4 2000 10000 LH74

P7b(Ra) 0.00294 1.9 2000 12000 LH74

S3(a) 0.00294 1.9 1000 3000 LH74

S1(a) 0.00100 1.4 500 4000 LH74

N1a 0.000309 1.8 600 2700 Mea90

R1a 0.000755 2.1 500 2800 Mea90

N1e 0.000757 1.8 200 1500 Mea90

R1b 0.001451 1.8 200 2400 Mea90

N2c 0.00107 1.8 200 2600 Mea90

N2c(r) 0.00199 1.9 300 4900 Mea90

C1e 0.0255 2.6 200 600 Mea90

P1a 0.00885 2.5 200 1000 Mea90

P7a 0.00239 2.1 200 3000 Mea90

S1 0.00419 2.3 300 2500 Mea90

R3b 0.0108 2.2 200 2800 Mea90

R3b(f) 0.00135 1.7 300 1900 Mea90

S1(a) 0.00333 2.2 600 4100 Mea90

S3 0.00277 2.1 800 4500 Mea90

P7a(a) 0.000414 1.8 800 7700 Mea90

R3b(fa) 0.0034 2.0 500 4800 Mea90

R4b 0.079 2.53 750 2300 ZV72

R4c 0.035 2.15 600 1900 ZV72
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Table B.3: A priori estimates of γ and σ for various habits. P(a) is “Assemblages of planar
polycrystals in cirrus clouds” for M96 and“Aggregate planar crystals” for HM03. The values
for bullet rosettes (C2a) from M96 are for 5-arm rosettes, and the C2a values from HM03
are based on samples consisting predominantly of 5-arm rosettes. Suffixes on the habit
codes indicate densely rimed (R), rimed (r), fragments (f) and aggregated (a). In some
cases, habit codes are approximate based on textual descriptions in the referenced sources.
M96: Mitchell (1996); H72: Heymsfield (1972); HM03: Heymsfield and Miloshevich (2003).

Habit γ σ Dmin Dmax Source

(cgs) µm µm

P1d 0.109 1.52 240 – H72

P1c 0.178 1.62 300 – H72

P1e 0.178 1.62 300 – H72

P2g 0.122 1.37 700 – H72

P1a 0.25 1.85 15 100 M96

P1a 0.65 2.00 100 3000 M96

N1e 0.684 2.00 30 100 M96

N1e 0.0696 1.50 100 300 M96

N1e 0.0512 1.414 300 – M96

R1b 0.0512 1.414 200 2400 M96

P1b 0.24 1.85 10 40 M96

P1b 0.55 1.97 40 2000 M96

P1c 0.24 1.85 10 100 M96

P1c 0.21 1.76 100 1000 M96

P1d 0.24 1.85 10 90 M96

P1d 0.11 1.63 90 1500 M96

R2b 0.21 1.76 1800 4000 M96

S1 0.2285 1.88 300 2500 M96

C2a 0.0869 1.57 200 1000 M96

S1(a) 0.2285 1.88 600 4100 M96

S3(a) 0.2285 1.88 800 4500 M96

P(a) 0.2285 1.88 20 450 M96

R4b 0.50 2.0 500 3000 M96

C2a 0.0982 1.649 100 1000 HM03

C2a(a) 0.1272 1.68 200 1500 HM03

C2a(a) 0.1461 1.753 100 1400 HM03

C2a 0.1076 1.554 380 1610 HM03

N1e 0.0479 1.589 90 470 HM03

S1 0.254 1.834 130 1140 HM03

S1 0.1178 1.591 380 1680 HM03

S1(a) 0.245 1.859 510 2100 HM03

P1a,P1b 0.384 1.864 130 970 HM03

P1c,P1e 0.0558 1.426 270 980 HM03

P1c,P1e 0.192 2.00 1110 3770 HM03

P(a) 0.204 1.623 1740 4760 HM03
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power laws for these habits. Recently, Heymsfield and Westbrook (2010) applied digital im-

age edge detection techniques to Kajikawa’s particle images to obtain improved estimates

of dimensions and areas, using the resulting data in conjunction with the fallspeed obser-

vations to evaluate and improve particle fallspeed models. The data are nearly unique,

representing some of the few observations for which simultaneous evaluations of particle

habit, dimension, mass, and area can be made.

As part of this work, these reanalyzed data were used to develop new mass-dimension

and area-dimension power laws which were then incorporated into the a priori constraints

for the snow microphysics retrieval. In all, fits were performed for 24 distinct single-particle

habits (437 particles); 8 varieties of early aggregates (185 particles), consisting of 2-6 crystals

of similar habit; and 5 types consisting of rosettes or of assemblages containing side planes

(79 particles). The reanalyzed single-particle data consist primarily of planar particles.

Properties of some of these single particles, observed at the surface at Hokkaido University’s

Mount Teine Observatory (1024 m MSL) at temperatures of -7◦C, were previously described

by Kajikawa (1972). The early aggregates were also observed at Mount Tiene Observatory

(Kajikawa, 1982). The rosettes and assemblages were collected at the surface at Akita

University’s Mount Hachimantai Observatory (1200 m MSL) at temperatures of -9◦ to -11◦

C (Heymsfield et al., 2002).

Particles were first grouped by habit, then fits were performed using a Python-based

implementation of ODRPACK (Boggs et al., 1992; Jones et al., 2001) configured for or-

thogonal distance regression. Uncertainties in mass, area and dimension were not provided

with the data and were estimated. Measurement uncertainties for particle dimension are

likely dependent on magnification and contrast in the original photomicrographs, as well

as the resolution at which the images are digitized. Visual examination of typical pho-

tomicrographs (e.g., Figures 2 and 3 from Kajikawa (1972), and Figure 2 from Mitchell et

al. (1990)) suggests that uncertainties in D on the order of 0.025 to 0.05 mm would be

reasonable, although this estimate is undoubtedly influenced by the resolution at which the

photomicrographs were reproduced for publication. Other factors influence the dimensional

uncertainty. After settling onto the collection surface, particles could be oriented such that

the true DM would not be evident in the image. Portions of particles may collapse or de-
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form after they are collected. Limited depth of field may cause portions of spatial particles

and aggregates to be out of focus when photographed, causing those portions to be ignored

during edge detection. See for example Figure 4 of Heymsfield et al. (2002). Estimating the

magnitudes of the uncertainties for these additional factors is difficult without additional

data. Lacking this data, it was assumed that each photomicrograph adequately represent

the dimensions of the particle, that edge detection identifies the complete outline of the

particle, and that DM is determined with an uncertainty of 0.05 mm.

The techniques commonly used to determine particle mass in these observations were to

measure the diameter of liquid droplets resulting when the snow particles were melted on a

substrate of silicone oil or on a substrate of white Vaseline. The former technique results in

nearly spherical liquid droplets and was used for the single particle observations as described

by Kajikawa (1972), while the latter technique produces nearly hemispherical droplets and

was used for the early aggregate observations (Kajikawa, 1982). For the spherical droplets,

the measured diameter associated with an observed mass m is given by

Dsphere =

(
6m

πρliq

)1/3

(B.1)

where ρliq is the density of liquid water. Assuming this diameter is measured to the same

uncertainty 0.05 mm as is DM and ignoring any additional errors due to nonsphericity or

breakup of a particle into multiple drops, an estimate of the error δm in mass is given by

δm = ρliq
π

6

[

(Dsphere + 0.005)3 − D3
sphere

]

(B.2)

where Dsphere is in cm. The above expressions were used to evaluate errors for the pristine

particles, and similar expressions developed for hemispherical droplets were applied for the

early aggregates, rosettes and assemblages.

Uncertainties for area were estimated using the standard deviations of samples of parti-

cles with identical habit and approximately equal dimension. For each habit, particles were

binned by dimension using bins of width 0.05 mm. Twenty three bins contained three or

more particle, and standard deviations were computed for each of these bins. The standard
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deviations varied approximately linearly with the measured areas (Figure B.1). Uncertain-

ties for area were modeled as 12% of the measured area, with minimum uncertainties set at

0.0001 cm2 based on the lower limits of the results in Figure B.1.

Table B.4 gives mass-dimension fit results for the pristine habits, while Table B.5 con-

tains results for the early aggregates, rosettes, and assemblages. The habit codes follow the

scheme of Magono and Lee (1996), and the early aggregates are indicated by the suffix“(a)”

added to the habit code. Estimated uncertainties for α and β are shown in parentheses

following the fitted values. Also shown is the covariance between α and β, and the normal-

ized χ2 value for each fit. A normalized χ2 value near 1.0 suggests a good fit. Tables B.6

and B.7 give area-dimension fit results in the same format. Poor fits, as evidenced by large

uncertainties or unphysical values for the fitted parameters, generally occur when the range

of particle sizes for a particular sample is small (e.g., the C1h, P4b, P1b(a), C2b and CP2a

habits).
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Figure B.1: Standard deviations of area (upper panel) and mass (lower panel) for samples
from the reanalysis of Kajikawa’s snow particles.
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Table B.4: Mass fit results for Kajikawa pristine particles.

Habit N Dmin Dmax α β Covariance Normed

µm µm (cgs) chi-sq

P1a 32 25 149 0.00364 (0.00375) 2.47 (0.46) 0.00171 1.45

C1h 8 30 54 0.00451 (0.00253) 2.13 (1.74) 0.0439 0.161

P1b 19 39 162 0.00297 (0.00352) 2.53 (0.55) 0.00193 0.269

P2e 18 47 211 0.00190 (0.00164) 2.42 (0.48) 7.76e-04 0.450

P2f 5 83 234 0.00253 (0.00278) 2.37 (0.63) 0.00173 0.0363

P2g 10 70 280 0.0106 (0.0110) 3.50 (0.71) 0.00774 0.368

R1c 6 75 270 0.00107 (7.85e-04) 1.75 (0.39) 3.02e-04 1.60

R2a 16 70 220 4.05e-04 (2.32e-04) 1.01 (0.31) 7.12e-05 2.94

P6c 17 155 488 3.40e-04 (1.57e-04) 1.60 (0.39) 6.06e-05 0.809

P6d 26 197 650 5.95e-04 (1.22e-04) 2.18 (0.21) 2.44e-05 0.704

P1c 35 50 276 0.00129 (6.10e-04) 2.30 (0.25) 1.48e-04 0.313

P1d 23 39 237 3.78e-04 (4.08e-04) 2.18 (0.56) 2.23e-04 0.163

P1e 56 57 533 5.13e-04 (1.01e-04) 2.20 (0.16) 1.50e-05 0.234

P1f 4 81 433 6.48e-04 (5.60e-04) 2.60 (0.77) 4.11e-04 0.193

P2a 11 72 298 0.00156 (0.00141) 2.46 (0.61) 8.46e-04 1.16

P2b 6 98 442 5.16e-04 (2.56e-04) 1.69 (0.35) 8.61e-05 0.149

P2c 30 132 562 5.18e-04 (1.41e-04) 1.98 (0.23) 3.14e-05 1.76

P4b 3 155 190 0.0279 (0.117) 3.86 (3.21) 0.376 0.105

R1d 48 71 525 3.85e-04 (6.20e-05) 1.48 (0.13) 7.48e-06 2.73

R2b 30 110 474 0.00111 (2.18e-04) 1.79 (0.16) 3.30e-05 5.81

P7a 3 124 320 0.00150 (0.00143) 2.41 (0.68) 9.42e-04 0.344

P7b 8 116 332 7.91e-04 (7.19e-04) 2.28 (0.66) 4.69e-04 0.696

R2c 11 302 620 3.59e-04 (1.28e-04) 1.03 (0.39) 4.82e-05 1.01

R3b 5 196 364 2.46e-04 (2.08e-04) 0.73 (0.66) 1.36e-04 1.93
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Table B.5: Mass fit results for Kajikawa early aggregates, rosettes and other assemblages.

Habit N Dmin Dmax α β Covariance Normed

µm µm (cgs) chi-sq

P1e(a) 52 190 790 3.32e-04 (3.52e-05) 1.84 (0.120) 3.94e-06 4.06

P1c(a) 4 190 400 3.87e-04 (2.66e-04) 1.95 (0.567) 1.46e-04 9.40

P2e(a) 16 165 530 4.32e-04 (1.15e-04) 1.81 (0.233) 2.57e-05 3.00

P2a(a) 69 180 770 4.64e-04 (3.92e-05) 1.81 (0.091) 3.36e-06 5.44

P1b(a) 4 155 235 0.0155 (0.0217) 3.49 (0.839) 0.0181 0.473

R1c(a) 3 115 370 8.65e-05 (5.27e-05) 0.482 (0.386) 1.95e-05 0.174

P6d(a) 11 255 660 3.59e-04 (5.99e-05) 1.74 (0.200) 1.08e-05 5.55

R1d(a) 23 220 630 3.48e-04 (6.23e-05) 1.52 (0.182) 1.08e-05 2.85

C2b 5 40 60 9.82e-05 (8.81e-08) -2.20 (3.01) 2.65e-07 0.248

S3 15 55 145 3.95e-04 (3.74e-04) 1.47 (0.407) 1.51e-04 0.596

S2 15 65 180 9.53e-04 (9.80e-04) 1.88 (0.468) 4.57e-04 0.383

CP2a 5 75 120 0.0329 (0.107) 3.29 (1.42) 0.151 0.383

C2a 32 40 185 0.00218 (0.00110) 2.03 (0.218) 2.37e-04 0.596
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Table B.6: Area fit results for Kajikawa pristine particles.

Habit N Dmin Dmax γ σ Covariance Normed

µm µm (cgs) chi-sq

P1a 32 25 149 0.525 (0.116) 1.96 (0.09) 0.0109 1.41

C1h 8 30 54 1.28 (2.21) 2.18 (0.55) 1.21 0.136

P1b 19 39 162 0.429 (0.105) 1.91 (0.11) 0.0112 0.788

P2e 18 47 211 0.414 (0.087) 2.02 (0.11) 0.00943 1.77

P2f 5 83 234 0.291 (0.100) 1.78 (0.18) 0.0178 0.605

P2g 10 70 280 0.596 (0.145) 2.24 (0.15) 0.0211 1.17

R1c 6 75 270 0.186 (0.048) 1.51 (0.13) 0.00607 1.25

R2a 16 70 220 0.286 (0.070) 1.72 (0.13) 0.00906 2.80

P6c 17 155 488 0.268 (0.038) 1.81 (0.11) 0.00410 1.38

P6d 26 197 650 0.370 (0.035) 2.08 (0.09) 0.00301 0.846

P1c 35 50 276 0.295 (0.038) 1.88 (0.06) 0.00236 1.48

P1d 23 39 237 0.172 (0.031) 1.78 (0.09) 0.00259 0.790

P1e 56 57 533 0.291 (0.016) 1.94 (0.04) 5.67e-04 1.33

P1f 4 81 433 0.220 (0.042) 1.78 (0.12) 0.00472 0.271

P2a 11 72 298 0.231 (0.045) 1.71 (0.12) 0.00532 1.17

P2b 6 98 442 0.186 (0.040) 1.62 (0.13) 0.00526 1.64

P2c 30 132 562 0.212 (0.024) 1.62 (0.09) 0.00200 1.47

P4b 3 155 190 0.883 (1.517) 2.54 (0.97) 1.47 0.0618

R1d 48 71 525 0.335 (0.023) 1.89 (0.05) 0.00108 1.59

R2b 30 110 474 0.352 (0.035) 1.91 (0.07) 0.00243 1.47

P7a 3 124 320 0.349 (0.117) 2.02 (0.21) 0.0239 0.304

P7b 8 116 332 0.595 (0.156) 2.45 (0.18) 0.0274 1.14

R2c 11 302 620 0.406 (0.079) 2.10 (0.21) 0.0159 3.26

R3b 5 196 364 0.318 (0.112) 1.91 (0.27) 0.0297 2.94
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Table B.7: Area fit results for Kajikawa early aggregates, rosettes and other assemblages.

Habit N Dmin Dmax γ σ Covariance Normed

µm µm (cgs) chi-sq

P1e(a) 52 190 790 0.156 (0.009) 1.74 (0.06) 4.69e-04 3.69

P1c(a) 4 190 400 0.148 (0.043) 1.50 (0.22) 0.00919 1.71

P2e(a) 16 165 530 0.154 (0.022) 1.72 (0.11) 0.00233 5.89

P2a(a) 69 180 770 0.201 (0.010) 1.76 (0.05) 4.51e-04 2.86

P1b(a) 4 155 235 0.568 (0.388) 2.22 (0.39) 0.152 0.497

R1c(a) 3 115 370 0.090 (0.022) 1.17 (0.15) 0.00304 1.96

P6d(a) 11 255 660 0.246 (0.026) 2.08 (0.11) 0.00281 1.36

R1d(a) 23 220 630 0.164 (0.017) 1.65 (0.10) 0.00156 2.31

C2b 5 40 60 – – – –

S3 15 55 145 0.254 (0.095) 2.05 (0.16) 0.0151 3.40

S2 15 65 180 0.134 (0.045) 1.65 (0.15) 0.00665 0.650

CP2a 5 75 120 0.266 (0.312) 2.01 (0.51) 0.158 0.758

C2a 32 40 185 0.408 (0.091) 2.17 (0.09) 0.00838 3.43
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