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ABSTRACT 
 
 

CONTROL SYSTEM DESIGN FOR PLASMA POWER GENERATOR 
 
 
 

The purpose of this research is to develop advanced control strategies for precise control over 

power delivery to nonlinear plasma loads at high frequency. A high-fidelity 

MATLAB/Simulink simulation model was provided by Advanced Energy Industries, Inc 

(AE) and the data from this model was considered as the actual model under consideration. 

The research work requires computing a mathematical model of the plasma power generator 

system, analyzing and synthesizing robust controllers for individual operating points, and then 

developing a control system that covers the entire the grid of operating points. The modeling 

process involves developing computationally simple near-linear models representing relevant 

frequencies and operating points for the system consisting of nonlinear plasma load, RF Power 

Amplifier, and a Match Network. To characterize the (steady-state) mapping from power setpoint 

to delivered power the steady-state gains of the system are taken under consideration. Linear and 

nonlinear system identification procedures are used to adequately capture both the nonlinear 

steady-state gains and the linear dynamic model response. These near-linear or linear models 

with uncertainty description to characterize the robustness requirements are utilized in the 

second stage to develop a grid of robust controller designed at linear operating points. The 

controller from -synthesis design process optimizes robust performance for allowable 

perturbations as large as possible. It does all this while guaranteeing closed-loop stability for all 

allowable perturbations. The final stage of the research focuses on developing Linear Parameter 

Varying (LPV) controllers with non-linear offset. This single controller covers the entire 

operating range, including the case that the desired signals to track may vary over wide regions 
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of the operating envelope. LPV controllers allows actual power to track the changing setpoint in 

a smooth manner over the entire operating range.  
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CHAPTER 1 

 INTRODUCTION 

 

This research project is in collaboration with Advanced Energy Industries based in Fort 

Collins and it involves developing advanced control strategies for radio frequency power supply. 

AE is a leading supplier of RF plasma generators which delivers power to nonlinear plasma loads 

at high frequency. 

Plasma processing systems are commonly utilized to change the surface qualities of 

materials in a range of sectors. For example, many processes in the production of modern 

integrated circuits use plasmas for etching sub-micrometer features or depositing atomically thin 

layers of materials. 

A plasma processing system typically consists of a processing chamber and a power supply 

system for creating and maintaining plasma inside the chamber. The plasma is an electrical load 

with a characteristic impedance that the power generator drives. The impedance of a processing 

plasma, on the other hand, is not always constant and might change based on process circumstances 

and other variables. Variations in plasma impedance may have an unfavorable effect on the 

generator's power delivery, which is normally optimized solely for a specific load impedance. Due 

to changes in the physical properties of the plasma at different power levels, these variances may 

cause unwanted drifts or perturbations in process variables such as etch or deposition rates. As a 

result, plasma processing systems frequently include impedance matching and control mechanisms 

or circuitry that react to variations in plasma impedance and maintain desirable levels of plasma 

power supply. 

In order for the generators to distribute power efficiently, these power supplies often use a 



 

2  

network to match the plasma load impedance. To cope with changes in impedance and at least 

keep the average impedance matched, the generator is modulated at a higher rate than the network 

used to match the impedance. The plasma load in the plasma chamber can vary depending on the 

gas combination, gas pressure, and changes in the plasma device. The plasma generator has quick 

dynamics, enabling for rapid and high-level power setpoint changes. It's worth noting that the load 

impedance matched at the generator is a function of the load's power. The output power, on the 

other hand, is a function of the matched impedance. The system's unique feedback loop makes 

control design an intriguing and demanding task. We will be looking into three major areas for the 

development of control systems as described in the sections below. 

1.1 SYSTEM LEVEL MODELLING 

Beyond the conventional goal of generating a relatively realistic model of the physical 

system under examination, the modeling efforts discussed here have certain unique goals. The 

models provided here are primarily intended to aid in the design, analysis, and optimization of 

control systems. As a result, we must possess the following characteristics: 

• System level models, which include all physical components as well as any current control 

scheme features that may be kept in the design. 

• Capture both linear and nonlinear effects adequately. 

• Relatively high overall accuracy. 

• Structures that are simple, such as nonlinear-static and linear-dynamic. 

• Low order, for example, is computationally simple. 

• Cover the whole operating envelope, which may need the use of many interconnected models for 

various operating points. 

• Define the nominal performance as well as the uncertainty ranges. 
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The fundamental purpose of system level modeling is to develop a process for efficiently 

obtaining models, as mentioned above. In later stages of the project, these models will be used to 

design controller 

1.2 CONTROLLER DESIGN 

To establish the robustness requirements, the robust controller design approaches 

developed here rely on a (gain-scheduled) set of linear models at a grid of operating points, with 

uncertainty descriptions. The goal becomes that of finding a controller K(z) minimizing the peak 

value of µ across frequency for a single setpoint. In order to apply the µ synthesis design technique 

to our problem, we first need to decide on the design system interconnection. This contains the 

physical model of our system, but it includes much more than that. In addition, the Design 

Interconnection will specify:  

1. What uncertainties are present in the system?  

2. Which disturbance signals act on the system?  

3. Which signals do we wish to penalize in the optimal control problem?  

4. What are the control signals, and measurements, available to us?  

1.3 ROBUST CONTROLLER DESIGN 

Having developed a grid of robust controllers across the operating envelope utilizing µ  

synthesis, with the controller operating points spaced apart by about 500W, we also need the controller 

to handle arbitrary waveforms transitioning across multiple operating points. Hence, we develop Linear 

Parameter Varying (LPV) controllers to handle the entire operating range. To achieve this, we 

implement an interpolation algorithm such that at each sample time we measure power and compute 

its nearest two neighbors in terms of controller operating points.  
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1.4 THESIS STRUCTURE 
 

The structure followed in this thesis is as follows: 

 Chapter 1: Introduction to the research topic and brief description of the research 

 Chapter 2: Literature review  

 Chapter 3: Introduction to the problem statement through AEs current system 

overview. 

 Chapter 4: Discussion of the theoretical approaches to system modeling, controller 

design around a setpoint, and LPV control system design 

 Chapter 5: Discussions include the process of applying the theoretical methods in the 

AE system and the results 

 Chapter 6: Conclusion and future work 
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CHAPTER 2 
 

LITERATURE REVIEW 

 
 

 
A technique and apparatus for altering interactions between a nonlinear load and an 

electrical generator is presented in an AE patent published [1] in 2009. The engine of the 

generator receives a control input as the main control signal. The main control signal governs at 

least one of the electrical generator's output power, output current, and output voltage given to the 

nonlinear load, the engine being a power amplifier or a converter. Sensors are used to measure the 

impedance of the nonlinear load. Finally, a compensation signal is fed to the generator that renders 

the transfer function of the output power of the generator with respect to the main control signal 

substantially insensitive to variations in the impedance of the nonlinear load.  

A second AE patent published in 2017 [2] entails a method for adjusting the source 

impedance of a generator as a control mechanism that responds to changes in the plasma 

impedance and maintain desired levels of power delivery to the plasma. As an example, a method 

includes generating a first signal and applying it to the first input of a combiner. A second signal 

is generated and applied to the second input of the combiner. These two signals are then combined 

to produce power that can be delivered to the plasma load. A controller variable impedance is 

provided to the isolation port of the combiner. To modify the source impedance of the power 

supply system the controllable variable impedance can be adjusted.  

The textbook chapter by Skogestad [3] discusses how to represent uncertainty and analyze 

its effects on structured singular value µ. To analyze the robust stability of our uncertain system 

we made use of the MΔ-structure, where M represents the transfer function of the new feedback 

system generated by the uncertainity. The D-K iteration method combining H∞-synthesis and µ-
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analysis synthesizes an optimal µ-controller by minimizing the peak value over frequency of the 

upper bounds for a scaled problem.  
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CHAPTER 3 
 

AE CURRENT SYSTEM OVERVIEW 

 
 

The overall scheme portrayed in figure 3.1 below depicts the control architecture currently 
in use by AE. 
 
 

 

 
Figure 3.1: Advanced Energy Current Control Architecture 

 
 

This appears to be a standard feedback control strategy. The feedback control algorithm 

employs PI control, or simply integral control, in conjunction with an integrator reset mechanism 

that remembers and resets the integrator for each system state/power level encountered. Industry 

demands have shifted to multi-level pulsing, which has made the integrator's reset scheme 

substantially more difficult. As a result, AE is looking into improved control systems that can meet 

the more demanding performance standards, especially without the use of any kind of integrator 

resetting mechanism. 

However, while industry rivalry has previously looked into the use of feedforward and 

adaptability for similar systems, with some success, robustness and performance requirements are 

always increasing.  

 

The control system design will be tackled chapters 4 and 5 of the thesis, so we’ll save a 

Nonlinear Plant to be 

Controlled

Controller Algorithm

Generator Power 

Hardware with RF 

Match

Plasma Load
Output Sensors 

(External Devices)

Internal Feedback 
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Desired User Input 

Power Setpoint 
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comprehensive discussion of these components, as well as the research issues/approaches that go 

with them, until then. For the time being, we are focusing on establishing system models that will 

help the subsequent design work in section 4.2, which will be detailed in the sections that follow 

in this thesis report. Before we discuss system modeling approaches, let us mention and describe 

the components in the Digital Twin model of the plasma power system provided by AE.  

3.1 DIGITAL TWIN 

The Digital Twin essentially involves simulating the real-world AE generator systems, 

matches, and interactions with plasma chambers in the context of power delivery to a high degree 

of accuracy. 

  Main Functional Blocks The model consists of four major blocks representing:  

1. The RF Generator 

 2. The Match Hardware 

 3. The Plasma Reactor 

 4. The Sensing Hardware 

 

Figure 3.2: Digital twin main functional blocks 
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The RF Generator block represents the hardware and functionality of the generator. Since 

the RF Generator block is the only block of concern for this research, we will briefly describe the 

major constituents under this system. 

1. The user Multi-Level Pulsing (MLP) setpoint input and creation.  

2. The measurement and control (M&C) Multi-Processor System on Chip (MPSoC). 

3. The RF Power Amplifier. 

 

Figure 3.3: The RF Generator Hardware Components and Functionality 
 

The user MLP setpoint input and creation This block ensures the desired CW/DLP the user 

desires is transformed into a meaningful signal that is sent to the onboard M&C MPSoC. This 

block uses solely Simulink components that can be automatically converted into embedded C 

and/or HDL for Rapid Prototyping. 

The M&C MPSoC This block embodies the centralized control algorithms and measurements 

processing. The processed measurements are passed through the measurement hardware, the 

output of which is passed to the controller which outputs the electric control signals which are then 

fed to the whole voltage, power delivery, match, and frequency control interconnected hardware 

system. In Fig. 3.4 the M&C MPSoC consists of two hardware and functional elements: 1. The 
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measurement unit. 2. The controller system. In fact, the RF Measurement unit as well as the 

controller system have been designed solely with blocks that can automatically be converted into 

embedded C/HDL code that can go directly onto a generator. Furthermore, the accuracy by which 

the modeling of these hardware elements and their functionality have been modeled can allow the 

Digital Twin end-user to run HIL simulations through MATLAB/Simulink’s FIL/HIL/SIL 

connection capabilities.  

 

Figure 3.4: The M&C MPSoC’s Hardware Components and Functionality 
 

RF Power Amplifier The RF Power Amplifier unit consists of the following three functional 

hardware blocks: 1. The Sensor Systems. 2. The Digital Down Conversion Systems. 3. The 

Calibration Systems. The RF PA Outputs are selected and passed to the sensor systems. The 

sensors then convert these quantities into their digital (discretized and quantized) equivalents 

which are then passed to the calibration systems that determine based on the 

generator/match/reactor system’s characteristic impedance the actual values of the forward power, 

reflected power, and load power. These values are then passed to output interface which collects 

them all together and outputs them from the RF Measurement unit as a single bus signal. 
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Figure 3.5: The RF Measurement Hardware Components and Functionality 
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CHAPTER 4 

THEORETICAL APPROACH 
 
 

The plasma power generator system can be represented by mathematical equations which 

are useful in the analysis and design of control systems. Let us look into the theoretical approaches 

into system modeling in the subsections that follow.  

4.1 SYSTEM LEVEL MODELING 

Beyond the conventional goal of generating a relatively realistic model of the physical 

system under examination, the modeling efforts discussed here have certain unique goals. The 

models provided here are primarily intended to aid in the design, analysis, and optimization of 

control systems. As a result, we must possess the following characteristics: 

• System level models, which include all physical components as well as any current control 

scheme features that may be kept in the design. 

• Obtain both linear and non - linear effects adequately. 

• Relatively high overall accuracy. 

• Structures that are simple, such as nonlinear-static and linear-dynamic. 

• Low order, for example, is computationally simple. 

• Cover the whole operating envelope, which may need the use of many interconnected models for 

various operating points. 

• Define the nominal performance as well as the uncertainty ranges. 

4.1.1 MODEL DEVELOPMENT APPROACH 

In order to deliver the attributes discussed in the preceding subsection we propose a general 

model development structure of the form illustrated in figure 4.1. For the generator functioning, 

the major scheduling parameters are Impedance and Frequency. The values are entered into a grid 



 

13  

of available Nonlinear Static Models in the Nonlinear Steady State Model Lookup. For specified 

values of Impedance and Frequency, this model component is essentially a nonlinear gain (no 

dynamics) that captures the fluctuation of the overall system gain with power level. 

x[k+1] = f(x[k],u[k])

Δ 

Impedance Frequency

Power

Setpoint

Controller

Nonlinear

Static Model

Linear Dynamic Model

with Uncertainty

Nonlinear 

Steady State 

Model Lookup

Linear Dynamic 

Uncertain 

Model Lookup

+

+
G(z) Power

Delivered

 

 
Figure 4.1: Model Development Architecture 

 

The Linear Dynamic Uncertain Model Lookup block receives the fundamental scheduling 

variables, Impedance and Frequency, as well as the precise Power Setpoint. An array of Linear 

Dynamic Model with Uncertainty elements is contained in this block. The Linear Dynamic 

Uncertain Model Lookup picks a specific Linear Dynamic Model with Uncertainty, which 

becomes the system model's next component. It depicts the system's linear dynamics at this exact 

operational point (Impedance, Frequency, and the Power Setpoint). The model is often a discrete-
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time LTI system (Pulse Transfer Function – G(z), or State Space representation) that represents 

the tiny signal dynamics in the vicinity of the operational point. 

4.1.2 UNCERTAINTY CHARACTERIZATION 

Uncertainty characterization is also included in linear dynamics. This captures the 

dynamics' unpredictability, and it will be a key component of the robust controller design 

processes, allowing for a-priori consideration of specific stability and performance guarantees. A 

Controller could be part of the overall system, or it could be part of the existing control strategy 

that we choose to integrate. The final result of the whole endeavor is a model from Power Setpoint 

to Power Delivered for the overall system.  The model is specifically designed for controller 

design, with an emphasis on optimization, robustness, and adaptation/learning. 

To completely characterize the model, we must examine the variability of the data in 

relation to our system model, which is accomplished by repeatedly applying the same inputs and 

describing the output variability as shown in figure 4.2.  In this section, we will describe the process 

for uncertainty characterization, which can be readily applied to an actual physical setup with 

access to experimental data. This amounts to placing bounds on the size of the uncertainty .    

 

Figure 4.2: Linear-plus Uncertainty Model for Robust Controller Design 
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The first step is to create the nominal model using the process that will be described in sections 

5.1.1 and 5.1.2. Then apply the test signal Vphase to each operational point and collect the time 

series data Vphase[k] and Pdel[k]. Apply a Fast Fourier Transform (FFT) to this time series data 

to get Vphase(ej) and Pdel(ej), which are frequency domain representations. A variety of tools, 

such as the Matlab fft command, can be used to accomplish this.  

This procedure is performed several times, resulting in several copies of Gdata(ej). To 

characterize the uncertainty size in the frequency domain, we now use the nominal model transfer 

function by choosing W(ej) as the smallest limit satisfying: 

j j j
data| tf 1(e ) G (e ) | | W(e ) |   

 

The value of |W(ej)| now characterizes the uncertainty size, since we guarantee that for 

all possible uncertainties (z) we have: |𝛥(𝑒𝑗𝛺)| ≤ | 𝑊( 𝑒𝑗 𝛺) | 
As a result, our uncertainty is constrained by |W(ej)|. All that is left to do is fit a stable, minimum-

phase transfer function W(z) to the frequency response magnitude data |W(ej)| for (robust) 

controller design (ignoring the phase response). We built tools (coded as the Matlab fitsysmag 

command) based on the Matlab Robust Control Toolbox commands genphase and fitsys to 

accomplish this. The resulting stable, minimum-phase weight W(z) is suited for robust controller 

design approaches.  

4.2 CONTROLLER DESIGN 

In this section we discuss the controller design approaches, with a primary focus on robust 

control. To specify the robustness requirements, the robust controller design approaches developed 

here rely on a (gain-scheduled) set of linear models at a grid of operational points, with uncertainty 
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descriptions from the system modeling efforts. 

4.2.1 ROBUST CONTROL FOUNDATION 

For any matrix (or vector), M, we denote the largest singular value as 𝜎̄(𝑀). Given a 

transfer matrix P(z) we denote its H-infinity norm by: ‖𝑷‖∞ ≐ 𝑠𝑢𝑝𝛺∈[0𝜋]𝜎̄(𝑷(𝑒𝒋𝛺)) 

The above statement holds for the general MIMO case, but note that in the SISO case this 

definition reduces to: 

 ‖𝑷‖∞ ≐ 𝑠𝑢𝑝𝛺∈[0 𝜋]|𝑷(𝑒𝒋𝛺)|  
which is simply the peak value on the Bode (magnitude) plot. 

The structured singular value, , is a (constant) matrix function.  It depends upon the 

underlying block structure of the uncertainties, which is defined as follows.  The block structure 

K is a set of positive integers: 

 𝐾 = (𝑘1, … , 𝑘𝑚)  

which specifies the dimensions of the perturbation blocks.   

This determines the set of allowable (block-diagonal) constant matrix perturbations, namely: 

 𝑋𝐾 = {𝛥 = block diag(Δ1𝐶 , … , 𝛥𝑚𝐶 ): 𝛥𝑖𝐶 ∈ 𝐶𝑘𝑖×𝑘𝑖}  

Now the structured singular value,, of a matrix M, with respect to a block structure K, is 

defined as: 

  
  1

( ) min { ( ) : det( ) 0}
KK XM I M 



   
 

This function is being introduced since it is at the heart of robust control analysis and design. We'll 

explore later how to calculate/optimize the structured singular value over frequency to solve 
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general robust stability and performance difficulties. To move forward, we'll go over some key 

tools from optimal and robust controller design theory. 

4.2.2 CONTROLLER SYNTHESIS TOOLS 

Consider the problem of generic synthesis depicted in Figure 4.3. P(z) is the nominal 

transfer matrix (assumed to be specified a-priori), and K(z) is the controller in this illustration (to 

be designed). A (block-diagonal) structured uncertainty perturbs the closed loop system. 

Exogenous disturbances, error signals, measurements, and control signals are represented by the 

signals w,z,y,u in this diagram. We will soon propose a precise definition for structured 

uncertainty, which describes unknown or unmodeled dynamics. 

 

Figure 4.3: Design Interconnection for Controller Synthesis 

We will explore the general design challenge of selecting K(z) in order to achieve robust 

performance, that is, selecting K(z) such that the perturbed closed loop system is stable and the 

worst-case gain from exogenous disturbances (w) to error signals (z) is modest, for all permitted. 

Note that this is what is meant by "robust performance," since it means that despite perturbations, 

the system will remain stable and massive disturbances will only create modest error signals. Of 
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course, this ambiguous assertion will be rendered mathematically rigorous and also computable, 

for both analysis and controller design. 

A set of structured dynamic perturbations are defined as: 𝑀(𝑋𝐾) ≐ {𝜟 𝑠𝑡𝑎𝑏𝑙𝑒: 𝜟(𝑒𝒋𝛺) ∈ 𝑋𝐾 for all Ω ∈ [0  𝜋]} 
In this perspective, the frequency response of any unmodeled dynamics is seen as the 

constant matrix uncertainty stated earlier (specifically XK). It's also worth noting that the earlier-

mentioned block diagonal structure (XK) enables us to solve situations with numerous sources of 

uncertainty. 

The transfer matrix from w to z is denoted by Tzw (z). Our performance aim is to keep the 

gain of this transfer matrix low (because it is the transfer matrix from disturbance to error), which 

we will measure as its H∞ norm. As a result, our steadfast performance target might be described 

as follows: Choose K(z) so that the perturbed closed loop system in figure 3.4 is stable, and ||Tzw||∞ 

≤ 1, for all  𝛥𝜀𝑀(𝑋𝐾) with ||||∞< 1. 

Note that the above result is applicable to MIMO systems and the result is normalized, with 

performance/uncertainty bounds set to unity. In reality, however, any desired level of robustness 

and performance may be specified because all signals/uncertainties can be weighted and the 

weights are simply absorbed into P(z). The selection of an appropriate P(z) and weights is, in fact, 

at the heart of the design process. 

Since it can be proven that robust performance in figure 4.3 is exactly similar to robust 

stability in figure 4.4, this problem can be transformed into a  synthesis problem. We've 

introduced an extra "performance" uncertainty p here, which closes the loop from w to z in figure 

4.3 and results in this equivalency. 

The nominal closed loop transfer matrix derived from P(z) and K(z) is defined as 

M(P,K)(z) (see figure 5.2). The following well-known robust performance theorem is derived from 
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these definitions. Assume that the nominal system M(P,K)(z) is stable (by selecting K(z) 

appropriately). The perturbed closed loop system in figure 4.3 is then stable, and this holds true 

for ||Tzw||∞ ≤ 1 for all ||||∞< 1 iff. 𝑠𝑢𝑝𝛺∈[0𝜋]𝜇𝐾(𝑴(𝑷, 𝑲)(𝑒𝒋𝛺)) ≤ 1 

 

Figure 4.4: Equivalent Robust Stabilization Problem 

 

Robust control theory is based on this result. Simply take the nominal closed-loop system 

M(z), run M(ej) as a frequency sweep, and compute at each frequency µ(M). The resulting cross-

frequency peak value of precisely solves the robust stability and performance difficulties 

highlighted in figure 4.3. We can also reorganize any linear fractional interconnection of systems 

and (many) uncertainties into the conventional robustness analysis form of figure 4.3, as previously 

indicated. 

4.2.3 -SYNTHESIS FOR CONTROLLER DESIGN 

Given the preceding result, our goal shifts to the generic synthesis problem of finding a 

controller K(z) that minimizes the peak value of µ across frequency: 
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𝑖𝑛𝑓𝑲𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑖𝑛𝑔 𝑠𝑢𝑝𝛺∈[0𝜋]𝜇𝐾(𝑴(𝑷, 𝑲)(𝑒𝒋𝛺)) 

This controller improves robust performance (i.e., it minimizes the gain from w to z in 

figure 4.3 for permitted uncertainties as large as possible) (robustness). All of this is accomplished 

while ensuring closed-loop stability for all permissible perturbations . 

The design approach for -synthesis incorporates the following stages: 

1. Begin by collecting information and creating a model for the nominal physical system. 

2. Select a suitable interconnection structure for modeling the (perturbed) system, taking into 

account the uncertainty structure that resilience is sought. This includes disturbances as well as 

signals that should be penalized or minimized. 

3. Determine the appropriate weights to reflect the required performance standards as well as any 

information about the uncertainties that is available (uncertainty characterization). 

4. In Matlab, implement the -synthesis design. 

Despite the fact that these methods are based on computer-aided optimization, the process is far 

from automated, and engineering judgment is still necessary. 

4.2.4 ROBUSTNESS ANALYSIS TOOLS 

Since we are concerned with analysis results in this subsection we assume both P(z) and 

K(z) (and hence M((P,K)(z)) have already been chosen by the design engineer.  Furthermore, the 

design engineer has chosen a stabilizing controller K(z), i.e., the nominal closed-loop system M(z) 

is stable. Consider M(z): 

𝑀(𝑧) = (𝑀11(𝑧) 𝑀12(𝑧)𝑀21(𝑧) 𝑀22(𝑧)) 

Then we have the following robustness analysis results: 

Robust Stability:  The perturbed closed loop system in figure 4.3 is stable for all ||||∞< 1 iff: 𝑠𝑢𝑝𝛺∈[0𝜋]𝜇𝐾(𝑴11(𝑷, 𝑲)(𝑒𝒋𝛺)) ≤ 1 



 

21  

Robust Performance:  The perturbed closed loop system in figure 4.3 is stable, and ||Tzw||∞ ≤ 

1, for all ||||∞< 1 iff: 𝑠𝑢𝑝𝛺∈[0𝜋]𝜇𝐾(𝑴(𝑷, 𝑲)(𝑒𝒋𝛺)) ≤ 1 

 

4.3 LINEAR PARAMETER VARYING (LPV) CONTROL 

By this stage let us assume we would have built a grid of reliable controllers that span the 

operating envelope, with the controller operating points spaced roughly 500W apart. The overall 

control scheme covers the complete operating envelope (in this case, 0 - 4,500W), while each 

individual controller only runs in a limited range (say, up to 500W from its designed operating 

point). This is enough to keep any specified setpoint values in place. However, we must modify 

this strategy if we want to handle arbitrary waveforms that may transition between many 

operational locations. The development of a single Linear Parameter Varying (LPV) controller 

that can manage the whole operating range is critical. LPV controllers are reliant on a set of factors. 

Although this dependency is nonlinear, the controllers themselves are linear. 

4.3.1 ROBUST LPV CONTROLLER 

For the robust controller consider the Controller–K-Linear block in Figure 5.40 (discussed 

later in section 5.3). The robust control algorithm's basis is the Discrete-Time State-Space block, 

which can be formally represented as: 

x[k 1]  Ax[k ]  Bu[k ] 

y[k ]  Cx[k ]  Du[k ] 
 

Note that this is Linear Time-Invariant (LTI) since the A, B, C, D matrices are constant. Now 

consider allowing these matrices to vary as: 

x[k 1]  A( )x[k ]  B( )u[k ] 

y[k ]  C( )x[k ]  D( )u[k ] 
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where ρ is a parameter vector. This represents an LTI system for frozen values of ρ; however, 

when is permitted to vary, this explains an LPV system. It's also worth noting that each of the 

matrices; A(ρ), B(ρ), C(ρ), and D(ρ) could have a nonlinear reliance on this collection of values. 
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CHAPTER 5 

APPLICATION TO AE SYSTEM AND RESULTS 
 
 

In this section we will look into application of the theoretical approaches mentioned in the 

previous chapter onto the plasma power generator digital twin model provided by AE, and 

subsequently carry out system modeling, control design and robust LPV control design. 

5.1 MODELS 

The process and results of carrying out system modeling and identification is detailed in 

the subsections that follow. 

5.1.1 MODELING PROCESS 

Static nonlinear models are based on the steady-state gains of the system under 

consideration. As a result, the constant output levels for given constant inputs can be used to 

characterize them. This is usually accomplished through the system's step reaction. 

Consider a 1,000W Power Setpoint as an example of one operating point. In figure 5.1, the 

results of this AE simulation model are shown. 

 

Figure 5.1: AE Simulation Model System Step Response for 1000 W 
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We wish to characterize the mapping from Phase Voltage (Vphase) to the Power Delivered (Pdel) 

by extracting the steady-state values for these signals. These steady state values are named 

Vphasess and Pdelss for steady-state Vphase and steady-state Pdel respectively. Small data 

windows can be averaged if necessary to reduce the impact of noise and other factors. 

 
 

Figure 5.2: Vphase and Pdel for a Power Setpoint Step of 1000 W 
 

Carrying out the steady state analysis for the signals in figure 4.3 results in: 

Vphasess = 0.84V, Pdelss = 998W 

This corresponds to our first data point in the nonlinear static mapping, namely: 

Vphasess = 0.84V  →  Pdelss = 998W 

We can now repeat this operation across the whole operating envelope from 500 - 4,500W.  

Carrying out this process results in the data shown in table 5.1. 

Table 5.1:  Steady State Values for Vphasess and Pdelss across Operating Envelope 
 

setpoint vphasess pdelss 
500 1.045 502 

1000 0.839 998 
1500 0.692 1499 
2000 0.576 2003 
2500 0.480 2497 
3000 0.396 3003 
3500 0.320 3506 
4000 0.253 4012 
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Table 5.1 now provides us with the whole static nonlinear model (for Impedance = 50 and 

Frequency = 13.4MHz) for the entire working envelope. In practice, this might now be used as a 

lookup table with the required interpolation. The fitting of a static nonlinear curve to this data is 

likewise straightforward, as shown in figure 5.3. 

 

Figure 5.3: Nonlinear Static Gain from Vphase to Pdel 
 
 

This static increase is evidently nonlinear. The nonlinearity looks to be minimal, and the 

function is close to being affine. This may not always be the case, but in any event, we may 

characterize any system of interest using the process presented here.    

5.1.2 LINEAR DYNAMIC MODELS 

To simulate the dynamic response, we require an input signal that is centered around the 

target operating point of 1,000W, but includes tiny signal changes away from it. For example, a 

signal made consisting of tiny increments superimposed on a steady-state 1,000W signal can be 

used. There are various options for such a signal, however we utilized a two-sided 25W square 

wave superposed on a steady 1,000W signal for demonstration purposes. Figure 5.4 depicts the 

simulation findings. 
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Figure 5.4: AE Simulation Model Dynamic Response around 1000 W 
 

Extracting the Vphase and Pdel signals from the AE simulation data yields the signals in figure 

5.5. 

                       

Figure 5.5: Vphase and Pdel Signals for Dynamic Signal around 1000 W 
 

 

We must first preprocess these signals to allow for a better match before we can proceed 

with model fitting. The first step is to eliminate the (nonlinear) steady-state offsets, which were 
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already taken into account in our model. Table 5.1 provides an easy way to obtain the values (in 

this case for an operating point of 1,000W, which is highlighted). This will result in signals that 

are (in both cases) centered around zero, which is ideal for a linear mapping. Figure 5.6 depicts 

the linearized signals. 

 

Figure 5.6: Vphase and Pdel Linearized Prior to Fitting  
 

Our original operating point is now mapped to the origin for both signals (prior to fitting a 

linear model). Since the linear model is only intended to capture dynamics in the neighborhood of 

the operating point, we mask the first part of the signal (in this case the first 0.15 milliseconds) to 

remove this transient as shown in figure 5.7. 

                 

Figure 5.7: Linearized Vphase and Pdel - PreProcessed Prior to Linear Model Fit  
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The signals are now ready to be fitted into a linear dynamic model. To fit a Discrete-Time 

Transfer Function model operating at a sample rate of Ts = 2.5x10-7 seconds, we use some of the 

Matlab System Identification tools (from the AE model) [6]. The GUI interface was used, as it 

provides a variety of appropriate techniques and alternatives. Figure 5.8 illustrates a sample 

screenshot. 

 

Figure 5.8: Matlab System Identification GUI Screenshot 

 

Figure 5.9 shows the input-output (u1-y1) signals that correspond to the preprocessed Vphase and 

Pdel data from figure 5.6. 

                

Figure 5.9: System ID Matlab Tool for Linear System Fit  
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Selecting a 2nd order linear model fit results in the fitted response shown in figure 5.10, which 

corresponds to the following transfer function: 

-2060 z^-1 

----------------------------- 

1 + 0.1592 z^-1 - 0.4763 z^-2 

Name: tf1 

Sample time: 2.5e-07 seconds 

Discrete-time identified transfer function. 

Parameterization: 

Number of poles: 2   Number of zeros: 1 

Number of free coefficients: 3 

 

Figure 5.10: Linear Dynamic 2nd Order Fit (Blue) to Simulation Data (Black) for Pdel  

 

Despite the low order transfer function, the fit error is observed to be fairly minimum (model data 

in blue, and original simulation data in black). Indeed, we expect this fit to be accurate enough for 
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its intended purpose, however, proof of that fact will have to wait till later. 

We now have a linear model fit that seems to work well. Of course, the linearized signals 

from figure 5.7 were used in this fit. It's important to remember that the actual signals (while still 

blanking the first 0.15 milliseconds to avoid the initial transient) look like figure 5.11. 

   

Figure 5.11: Vphase and Pdel Dynamic+Steady State Response  

This is the actual response of the AE system. We must include both the nonlinear steady-

state gains and the linear dynamic model response to reconstruct this response. This is easily 

accomplished by creating a simple simulation model like the one shown in figure 5.12. 

tf1(z)Vphase Pdel

Vphasess

+ +

+
-

Pdelss
 

Figure 5.12: Simple Identified Model for AE Digital Twin Model 

This model incorporates both linear and nonlinear effects. Figure 5.13 shows a comparison of the 

output of the simple model in figure 5.12 with the output of the high-fidelity AE Digital Twin 

model (see figure 3.2) full size on the left and zoomed in (on a typical part) on the right. 
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Figure 5.13: Digital Twin Simulation (Red) Compared to Simple Model (Blue) 

 

The simple model adequately captures both steady-state and transient/dynamic effects 

(note simple model data is in blue, and Digital Twin simulation data is in red). This approach is 

only useful for minor alterations in the selected operating point (in this case 1,000W). The fit is 

very good in the vicinity of the operating point at 1,000W, as can be observed. A large initial 

transient in the simple model (Blue) is due to the fact that we are starting from 0W, which is a long 

way from our operating point of 1,000W, and so our simple model is not very accurate in this 

region. This will not be a problem for controller design because controllers will be built similarly 

around operating points, with a scheduling method that combines them into a single nonlinear 

control approach for the whole operating envelope. 

Table 5.1 depicted the static nonlinear model data across this operating envelope. Tables 5.1and 

5.2, when combined, provide a complete set of simple models, such as those shown in figure 5.12, 

for the whole operating envelope. 

 

 

 



 

32  

Table 5.2:  Linear Transfer Function Models Across Operating Envelope 

Setpoint Transfer Function (2 poles, 1 zero) fit 
500 -5036 z^-1 

---------------------------- 
1 + 0.6558 z^-1 + 0.807 z^-2 

77.83 

1000 -2060 z^-1 
----------------------------- 

1 + 0.1592 z^-1 - 0.4763 z^-2 

83.55 

1500 -9076 z^-1 
---------------------------- 

1 + 0.6762 z^-1 + 0.625 z^-2 

88.5 

2000 -1.105e04 z^-1 
----------------------------- 

1 + 0.6803 z^-1 + 0.5291 z^-2 

89.92 

2500 -2915 z^-1 
------------------------------ 

1 + 0.08739 z^-1 - 0.5743 z^-2 

86.68 

3000 -3157 z^-1 
---------------------------- 

1 + 0.147 z^-1 - 0.6306 z^-2 
 

90.31 

3500 -1.48e04 z^-1 
----------------------------- 

1 + 0.6819 z^-1 + 0.3666 z^-2 

91.82 

4000 -3581 z^-1 
----------------------------- 

1 + 0.1499 z^-1 - 0.6696 z^-2 

89.32 

 

 

5.2 CONTROLLER DESIGN 

In this section we discuss the controller design approaches with a primary focus on robust 

control. As previously stated, we will treat the Digital Twin (Matlab/Simulink model) from Figure 

3.2 as if it were the true physical system under discussion. 

5.2.1 DESIGN INTERCONNECTION P(Z) FOR AE SYSTEMS 

In addition to containing the physical model (G0(z)), the design interconnection P(z) will 

specify the following: 

 Uncertainties are present in the system () 
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 Disturbance signals act on the system (w) 

 Signals to be penalized in the optimal control problem (z) 

 Control signals (u), and measurements (y), available to us 

This sets the basic framework for the design tradeoffs.  After several different iterations, we finally 

settled on a design interconnection of the form shown in figure 5.14.  First note that if we make 

the obvious definitions: 

 𝑤 = (𝑤1𝑤2)   𝑧 = (𝑧1𝑧2)  

then figure 5.14 fits exactly into the structure of figure 4.3, and so this defines a design 

interconnection P(z).  Indeed, if we omit the dashed boxes for  and K(z) in figure 5.14, then what 

is left is exactly P(z). 

 

wwt1

wwt2

zwt1 zwt2 uwt1 uwt2

G0(z)K(z)

 

w1

w2

z1 z2

u y
+ + +

+ +

-

 

Figure 5.14:  General Template for Design Interconnection P(z) 

 

The measurements (y) and control signals (u) in this case are Pdel and Vphase respectively 

(i.e., Delivered Power and Phase Voltage).  We choose to employ (weighted) multiplicative 

unstructured uncertainty at the plant's input because we have insufficient precise knowledge about 

the uncertainty sources. This is based on our design experience with various systems, where this 

uncertainty description has shown to be quite useful. 
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Consider first the disturbance signals (w). The reference input is represented by the signal 

w1. This is the signal to be monitored, and it is part of our primary performance goal, but the 

controller treats it as a disturbance that is attempting to increase the tracking error in this 

formulation. At first glance, this may appear to contradict our common sense, although it is 

mathematically comparable in terms of optimization. The w2 signal denotes measurement noise. 

Although it functions at the same time as w1, it is more convenient to have it as a separate signal 

for weight selection and to prevent some technical concerns that can lead to a singular control 

problem. 

Now consider the penalty signals (z). This is the set of signals that the controller 

optimization will attempt to reduce. The principal penalty signal z1 is the tracking error for the 

delivered power. The major purpose of the control strategy is to reduce this error. However, if we 

simply penalized this signal, we might end up with a singular control problem or one that relies on 

excessive control activity (which in practice would saturate Vphase). As a result, we've included 

a z2 penalty on control authority. This eliminates the problems caused by the aforementioned 

issues. 

5.2.2 PERFORMANCE AND UNCERTAINTY WEIGHT SELECTION 

The selection of weighting functions is crucial to both robust controller design procedures 

like  -synthesis and optimum controller synthesis methodologies like H-optimal control. These 

weights define the tradeoffs between performance and robustness goals, as well as the optimization 

criteria. 

We specify the continuous-time form of the weights in what follows for convenience of 

presentation and understanding (and this is how they will be specified in the design interconnection 

– see figure 5.15 later). The design process, on the other hand, automatically converts them to 

discrete-time using something similar to a bilinear transformation: 
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𝑊(𝑧) = 𝑊(𝑠)|𝑠= 2𝑇𝑠(𝑧−1𝑧+1) 

where for the AE designs presented here the sample period is Ts = 250ns (2.510-7 seconds). 
 

Uncertainty Weights: For illustrative purposes here these may be simply chosen as: 

 𝑢𝑤𝑡1 = 𝑢𝑤𝑡2 = √0.07  

representing about 7% multiplicative (relative) uncertainty. 

Disturbance Inputs: The major disturbance input is w1, which is the reference input (desired 

power level) to be tracked, with a weight of wwt1. This weight could be chosen to reflect the 

signal's spectrum. Because we can't expect to follow extremely high frequency (or very fast) 

signals, it's usually a low-pass filter, and it's also usually rigorously correct (consider the limiting 

values of the above argument as frequency tends to infinity). The true reference input (for intended 

power level) in our situation is normally a series of step functions, but the AE system filters this 

using a critically-damped second-order system to provide a more sensible signal to track. In light 

of this, the following is a good alternative for wwt1: 

𝑤𝑤𝑡1 = 𝐾𝜔02𝑠2 + 2𝜉𝜔0𝑠 + 𝜔02 

where reasonable parameter choices are  = 1 (critical damping), 0 = 2,000 rad/s, and K = 10-3 

The disturbance input w2 is used to account for measurement noise, and it typically goes all the 

way up to high frequencies. As a result, biproper (i.e., not strictly proper) or constant functions are 

commonly used. A constant function (representing a flat noise spectrum, or in other words white 

noise) is a viable choice in this case, such as: 𝑤𝑤𝑡2 = 10−5 

Since the DC gain of wwt1 is given as K = 10-3, this is a noise level about 1% of that value. 

 

Penalty Signals:  The tracking error (z1) is the principal penalty signal (for desired power level). 

This weight's spectrum is often set to match the bandwidth of the desired tracking performance 
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(and once again, for reasons discussed earlier, it is usually strictly proper). A first order transfer 

function of the form:  

𝑧𝑤𝑡1 = 𝐾̂𝑠 + 𝑝 

where reasonable parameter values are 𝐾̂ = 105  and p = 103 

To avoid the usage of excessive control authority for Vphase, it is critical to add a penalty 

on z2 signal (which in practice will just saturate). Because substantial high-frequency changes in 

control authority are particularly undesirable, the weight zwt2 is usually a high-pass filter or a 

constant. In any event, due to the limiting situation (as frequency goes to infinity) of the foregoing 

argument, it is generally biproper (not exactly proper). A decent choice for the AE system was 

discovered to be: 𝑧𝑤𝑡2 = 5 

Figure 5.15 depicts the final connectivity, which was developed in Simulink (it implements 

the P(z) illustrated schematically in figure 5.14). 

 

 

Figure 5.15:  Simulink Design Interconnection P(z) 
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5.2.3 SIMULATION MODELS AND IMPLEMENTATION ON AE DIGITAL TWIN 

The AE Digital Twin Matlab/Simulink model is shown in figure 3.2. It gives a complete 

closed-loop system model, including the AE control scheme. Figure 5.5 is the AE setpoint and 

Vphase controller which forms the basis of the AE control scheme.  

 

Figure 5.16:  Full AE Control Scheme 

The initial portion of the control system (Model Reference) generates the filtered setpoint 

(using a second-order filter). The central portion of the controller from figure 5.16, which is shown 

in figure 5.17, we see that it consists of two main components. The first component (Adjustment 

mechanism) is responsible for adaption (based on L1 adaptive control theory). PID control is 

implemented in the second component (Control Law). 

 

Figure 5.17: AE Vphase Controller 

 

To test our controller designs on the AE Digital Twin we simply swap out the controller in 

figure 5.17 with our new controller.  The overall control scheme is illustrated in figure 5.18, and 
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the (zoomed-in) Vphase controller is shown in figure 5.19. 

 

 

Figure 5.18:  New Full Control Scheme 

 

Figure 5.19:  New Vphase Controller 

 
The robust controller is implemented in the block Controller-K-Linear, as a State Space 

representation. Nonlinear offsets are implemented as can be seen in figure 5.20, which also 

implements several other variable changes and formats, so that it interacts correctly with the rest 

of the Digital Twin nonlinear simulation. 
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Figure 5.20:  Robust Controller Digital Twin Implementation 

 

Our controller designs now have full nonlinear simulation capability thanks to the Digital 

Twin implementation. However, we'd like to examine what the simple linear models (used for 

design) predict for performance for comparison purposes. As a result, we created a simple linear 

simulation model in Simulink, which is depicted in figure 5.21. 

 

 

Figure 5.21:  Linear Simulation Model 
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The linear simulation model in figure 5.21 uses the same (State Space) linear controller 

(Controller-K-Linear) as the nonlinear simulation model in figure 5.20. As illustrated in figure 

5.12, the plant model has been replaced with the simple discrete-time transfer function model 

G0(z) with appropriate offsets. The design templates and simulation models mentioned in this 

paragraph are now being utilized to create and test robust controllers for the AE system, as detailed 

in the section below. 

5.2.4 BASELINE AE SYSTEM 

To establish a baseline, we examine the performance of the current AE control system. We 

perform the Digital Twin simulation with a test signal fluctuating around a setpoint of 1,000W. 

Figure 5.22 depicts the outcome.  

 

Figure 5.22:  Baseline Performance of Existing AE Control System 

 

This control system works effectively, and in figure 5.23, we can observe the transient 

reaction of one of the stages in greater detail (Desired Power Level is shown in blue and Delivered 

Power is in yellow). 
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Figure 5.23:  Baseline Transient Performance of Existing AE Control System 

The reaction is smooth and stable, with no overshoot or oscillation, as can be seen (though 

there is some ripple due to noise etc.). It quickly settles to a steady state tracking error of zero. 

Figure 5.24 (overall response) and figure 5.25 (response) show the results of using the baseline 

AE control system on our simple linear model for comparison (zoomed in on one of the steps). We 

simplified the AE control model for the linear model to a linear PID controller without adaptation 

(to make the entire system linear), whereas the Digital Twin simulation employs the full AE control 

scheme with PID plus adaptation. 

 

Figure 5.24:  Baseline AE Control System on Linear Model 
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Figure 5.25:  Baseline Transient Performance on Linear Model 

 

Note that these linear model plots show 4 traces:  

 Raw Setpoint (Green) - the input square wave for the desired power level 

 Filtered Setpoint (Yellow) - the above setpoint after the second order filter 

 Nonlinear Response (Red) - delivered power from nonlinear simulation 

 Linear Response (Blue) - delivered power from linear simulation 

For comparison, the first three traces (Raw Setpoint, Filtered Setpoint, and Nonlinear 

Response) were simply recorded from the Digital Twin nonlinear simulation. The linear model 

simulation is only responsible for the final trace (Linear Response). Since the information from 

the Digital Twin nonlinear simulation is already stored in this plot, we will only show these 

linear model simulation graphs from now on. The linear model provides a pretty realistic 

approximation of the nonlinear response, as seen in figure 5.25. It's also smooth and stable, with 

no overshoot or oscillation, and it settles to zero steady-state tracking error in a similar amount of 

time. However, it excludes higher-order effects (such as ripple due to noise). 
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5.2.5 -SYNTHESIS DESIGN AT A SETPOINT 
 

Using the tools discussed previously, we constructed a -synthesis controller for a setpoint 

of 1,000W using the linear model (G0(z)). Figures 5.26 (total response) and 5.27 (individual 

reaction) demonstrate the results (zoomed in on one of the steps). 

 

Figure 5.26:  Response of -Synthesis Controller Designed for 1,000W Setpoint 

 

 
Figure 5.27:  Response of -Synthesis Controller Designed for 1,000W Setpoint (zoomed in) 
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In comparison to the present AE control technique in this operating zone, the reaction is 

clearly improved (compare figures 5.25 and 5.27). It keeps the characteristics of a smooth and 

stable response, with no overshoot or oscillation, and it settles to zero steady state tracking error. 

However, the response time has improved dramatically. Indeed, whether comparing the nonlinear 

(red) or linear (blue) responses to the filtered setpoint (yellow), it is clear that the responses almost 

completely track it, with very little lag. The linear model is an excellent approximation of the 

nonlinear response, and both models demonstrate nearly perfect tracking of the filtered setpoint. 

As a result of our simulation results, the -synthesis controller (without adaptation) is capable of 

delivering great outcomes. 

5.2.6 ROBUSTNESS ANALYSIS 

In order to carry out robust performance analysis for the -synthesis controller we need a 

 plot across frequency is shown in figure 5.28. 

 

Figure 5.28:  Robust Performance -Analysis Plot 

We note that the peak  value across frequency is given as: 
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𝑠𝑢𝑝𝛺∈[0𝜋]𝜇𝐾(𝑴(𝑷, 𝑲)(𝑒𝒋𝛺))   =  0.07 

As a result, stable performance at the specified levels is attained (peak value below unity). 

This means that even if worst-case perturbations at the stated levels occur, the system is guaranteed 

to stay stable and deliver the specified performance. This is when the power of robustness results 

comes into play. They provide stability and performance guarantees in the worst-case scenario. 

 

5.2.7 -SYNTHESIS DESIGN ACROSS THE OPERATING ENVIRONMENT 
 

 
We can simply repeat this method for a grid of setpoints over the operating environment 

now that we've defined our design process for a setpoint. Figures 5.29, 5.30, and 5.31 demonstrate 

designs with operating points of 1,000, 1,500, and 2,000 watts, respectively. Figure 5.32 shows a 

zoomed-in plot for the 2,000W level. 

 

 

 

Figure 5.29:  Performance of -Synthesis Controller Designed for 1,000W 
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Figure 5.30:  Performance of -Synthesis Controller Designed for 1,500W 

 

Figure 5.31:  Performance of µ-Synthesis Controller Designed for 2,000W 
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Figure 5.32:  Performance of -Synthesis Controller Designed for 2,000W (zoomed in) 

5.2.8 ROBUST CONTROLLER OPERATING RANGE 

In this stage, we analyze how the controllers designed up to this point operate at setpoints 

other than the one for which they were designed. Our first investigations revealed that even minor 

deviations from the operating point resulted in poor performance and even instability. We 

discovered the problem after some inquiry, and the solution required us to review the system 

identification process. Although the linear models (G0(z)) in table 5.2 (section 5.1.2) were correct 

for modeling, they were not suitable for controller design. This is because no effort was taken to 

ensure that the models varied smoothly between operating points, which could have an adverse 

effect on the controller design. There was also some overfitting, which can lead to superfluous 

data. To solve this, we re-fit the data from table 5.2 using models that are limited to the following: −𝐶𝑧 − 𝑎 
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where C>0 and a>0 (to avoid pathological sampling issues in the controller).  This process 

resulted in the models shown in table 5.3. 

Table 5.3:  Refit for Linear Transfer Function Models across Operating Envelope 

Setpoint (in W) G0(z) 
500 -1310 

z - 0.41 
1000 -1405   

z – 0.53 
1500 -1500 

z – 0.65 
2000 -1500 

z – 0.65  
2500 -1575 

z – 0.62 
3000 -1690 

z – 0.65 
3500 -1780 

z – 0.65 
4000 -1860 

z – 0.65 
 
 

 
The generated models (for G0(z)) were then utilized to re-design the -synthesis controllers 

throughout the operating envelope. The resulting performance at each setpoint was comparable to 

that shown in figures 5.29–5.32. The performance far from the design operating point, on the other 

hand, was much enhanced, as illustrated in figures 5.33–5.37. All of these data use the same 

controller, which was intended for a 1,500W operating point but was tested over a wide range of 

working points. 
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Figure 5.33:  Robust Controller Designed at 1,500W and Tested at 1,000W 

 

 

Figure 5.34:  Robust Controller Designed at 1,500W and Tested at 1,500W 
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Figure 5.35:  Robust Controller Designed at 1,500W and Tested at 2,000W 

 

 

Figure 5.36:  Robust Controller Designed at 1,500W and Tested at 1,000W (zoomed in) 
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Figure 5.37:  Robust Controller Designed at 1,500W and Tested at 1,500W (zoomed in) 

 

 

 

Figure 5.38:  Robust Controller Designed at 1,500W and Tested at 2,000W (zoomed in) 

 

The sturdy controller is shown to be capable of delivering excellent performance across a 

wide working range. It's worth noting that, while performance is excellent at operating locations 

other than the design point, it degrades significantly as you move away from it. Figures 5.37 and 

5.38, for example, show the identical 1,500W controller being tested at 1,500W and 2,000W, 

respectively. It obviously outperforms the competition in terms of design. Compare figures 5.32 
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and 5.38 to further explain this point. Both of these images depict the performance at 2,000W. 

Figure 5.32, on the other hand, employs a 2,000W controller, and figure 5.38 uses a 1,500W 

controller. Moving away from the design point, slight decline in performance is noted. 

These are great findings, and our testing has proven that the robust control design technique 

provided here can deliver high levels of robust performance throughout a wide working range, 

with a grid of such controllers covering the entire operating range. However, one should not expect 

that a single powerful controller will cover the entire needed working range. This is implausible 

for many systems, and it turns out to be the case for the AE system under consideration. When we 

operate a single controller outside of its design parameters, performance and even stability can 

suffer. Figure 5.39 shows an attempt to use the 1,500W controller design for a 2500 W setpoint. 

The response is visibly unstable and therefore, a grid of robust controllers, rather than a single one, 

is required to cover the specified operating range. 

 

 

Figure 5.39:  Unstable Response for Controller Designed at 1,500W and Tested at 2,500W
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5.3 ROBUST LPV CONTROLLER 

It's important to note that in order to link a grid of controllers, each of which is designed to 

work over a specific range, the handoff between controllers must be flawless (sometimes referred 

to as bumpless transfer). The following is how we propose to accomplish this. We use the measured 

power and compute its nearest two neighbors in terms of controller operating points at each sample 

time, k. We choose the A,B,C,D matrices for the two controllers in question and use an 

interpolation algorithm to construct the A,B,C,D matrices for our controller at that sample time, k. 

Every sample undergoes the same procedure. When we use the measured power as our parameter, 

it's clear that we're dealing with an LPV system. 

The LPV controller implemented in Matlab/Simulink is shown below in figure 5.40. In 

addition to the usual error input, e (which is fed into the controller), it also receives the measured 

power, y, which constitutes the varying parameter for the LPV controller (i.e., determines the 

appropriate A, B, C, D matrices). 

 

 
Figure 5.40: LPV Controller Implemented in Matlab/Simulink 

 
 
    

Figure 5.41 shows the implementation structure inside the Discrete-Time LPV Controller 

block. The measured power, y, is used to first compute the grid interpolation point (k,f), and then 

to calculate the resulting A, B, C, D matrices for the LPV controller. Finally, as a Discrete-Time 

State-Space system, the LPV controller employs these A, B, C, D matrices to process the error 

signal, e, and generate the corresponding output.          
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Figure 5.41: LPV Controller Implementation Structure 

 

The overall LPV control system architecture implemented on the AE Digital Twin is shown 

below in figure 5.42. For comparison, recall the single robust controller implementation in figure 

5.20, and it can be observed that the structure is largely similar, but with some enhancements, 

which we describe below. 

 

Figure 5.42:  LPV Controller Implementation on AE System 
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The main change of course is the use of the Discrete-Time LPV Controller block described 

above (which replaces the Controller-K-Linear Discrete-Time State-Space block from earlier). As 

described earlier it receives both the error signal, e, and the measured power, y, which are utilized 

as described above. The next major change is the Vphase Bias block, which is shown below in 

figure 5.43. 

 

 

Figure 5.43: Vphase Bias Nonlinear Offset 

 
This block computes the steady-state nonlinear offset needed for Vphase (instead of the 

simple constant offset shown in figure 5.20). It employs a similar interpolation strategy (grid point 

calculation followed by interpolation). However, because this is a static nonlinear function with 

no dynamics, it is not as complex as the previous LPV controller. It should be noted that the grid 

interpolation point in this case is not based on measured power, but rather on the power setpoint, 

ym. This essentially implies that Vphase Bias block is a feedforward term for the overall controller. 

It ensures that the transient response is excellent while responding rapidly to the setpoint changes.  

 

5.4 RESULTS AND DISCUSSION 

The AE Digital Twin Simulink model was used to test the design approaches described up 

to this point. We used test signals that covered the entire operating range of 0 – 4,500W. Figures 

5.44 and 5.45 show typical simulation run examples. This controller design approach clearly 

produces solutions that run across the entire operating envelope, with actual power tracking the 

desired setpoint/trajectory at all times. It should be noted that the previous work described in the 

µ synthesis controllers delivered solutions at a grid of operating points but was incapable of 
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moving between operating points or moving far from the current operating point. 

 

Figure 5.44: Simulation run for LPV controller on AE Digital Twin with Multi-Level Input 

 

 

Figure 5.45: Simulation run for LPV controller on AE Digital Twin with Trajectory Following 

The existing AE control scheme includes a second order filter on the reference input. It 

serves several functions, so we retain it in the control system here. Therefore, the desired-setpoint 

signal is not   a pure square wave, but rather a filtered one. 

The desired-setpoint signal in figure 5.44 clearly shows the switching between 
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setpoints/levels. It is also evident that the control scheme handles level switching without issue. 

Over the entire operating range, the actual power tracks the changing setpoint accurately, 

validating the LPV controller design process. 

In figure 5.45 the first part of the desired-setpoint signal varies in a continuous fashion, 

rather than just switching between setpoints. The actual power level follows this trajectory 

flawlessly, demonstrating that it can do more than just switch between and hold setpoints. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 
 
 

This research commenced by successfully carrying out a literature survey and review of 

the current state of art of the plasma load dynamics and the RF plasma generator electronics in 

analytical and numerical terms. From the existing Simulink AE digital-twin model and data, a 

series of system identification procedures were carried out at each of the operating points across 

an operational range from 500 – 4500 W. A nonlinear static model fitting is achieved by 

interpolation of the data points. From dynamic response simulations, a linear dynamic model 

fitting is performed using Matlab System Identification tools. The actual simple-model of the 

system includes both the nonlinear steady-state gains and the linear dynamics, and it adequately 

captures both these effects. Therefore, it forms a nominal model for our plant. For uncertainty 

characterization, the variation in the outputs is characterized by applying the same inputs and is 

bounded. This forms the basis for robust controller design approaches. A design interconnection 

for the robust control analysis is developed based in the uncertainties, disturbance signals, signals 

to be penalized, and control signals present in the system. To ensure that the optimization problem 

does not treat all penalty signals equally, robust control designs such as µ -synthesis and H∞ - 

control choose weights that set the tradeoffs between performance and robustness. µ -synthesis 

design across the operating envelope provided a grid of robust controllers to cover the desired 

operating range. Applying it to the Digital Twin system provided by AE depicted a significant 

improvement over the existing control scheme. To be able to handle arbitrary waveforms as part 

of multi-level setpoint power inputs, a single Linear Parameter Varying (LPV) controller is 

developed for the entire operating range.  
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A bumpless transfer method is necessary for a seamless handoff between these controllers 

and is implemented in Matlab/Simulink as an LPV controller block. This control scheme 

performed well over the operating range on the AE Digital Twin with multi-level input as well as 

trajectory following. We created a process for designing robust LPV controllers that makes use of 

advanced tools from robust control theory to improve the robust performance of the resulting 

closed-loop systems. Based on the structured singular value, this robust performance comes with 

strict stability and performance guarantees. These tools enable the creation of a single robust LPV 

controller that covers the desired operating range.  

For future work, it is also desirable to implement some form of adaptation. This could be 

to compensate for unknown a-priori plant dynamics or variations over time. A variety of adaptation 

schemes involves the use of L1 adaptive control. These schemes can be used to improve the 

capabilities of existing control approaches in a variety of ways, one of which is to use a 

multiplicative architecture. We can also implement the advanced control systems in System on 

Chip (SoC) devices by coding the control systems in VHDL and C++.  
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