Report
 On Reaes ch Completed Jnder
 J. Waldo Smith Eydraulic Fellowship

NATURAL EOUGENESS IN ARTIEICIAL CEANNELS

Submitted
by

Arthux Willis Van\% Ful Resear ch Fellow

through

Colorado Agricultural and Mechanical College Fort Collins, Colorado

For the year
$$
1950-1951
$$

This study of Natural Soughness in Autificial Channels was

 ociginally planned by the hydranlics staif of the Civil Engineezing Department at Colorado Agricultural and Mechanical College. The detailed planning. however, together with the design and construction of the flume, and the teling and analyaing of the data were done by the research iellow as a part of a master's thesis bearing the same title.Funds contributed for the project were:

Fellowship - ASCE	$\$ 1,000.00$
Erpenses - ASCE	$\$ 00.00$
Expenses - Colo. A and M College	1.099 .00
Total	$\$ 2.899 .00$

Because nearly all of the expense budget was needed for materials, most of the construction of the flume and screens was done by the research fellow. Occasional assistance was given by other graduate atudents. The designs for the flume and clearing space in the laboratory for the flume began in August of 1950. The flume wes completed early in March and preliminary tests and alterations were finizhed by the lirst of April. April was spent collecting data and the rough draft of the thesis was completed and question able data were checked in May. The research was brought to a close on June 4. 1951.

Introcluction
Open channels and canals are needed to convey water for many purposes such as water supply, drainage, navigation, flood control, water power, and irrigation. In consection with irrigation, for eamaple, water must be brought from the many storage roservoirs and divergion dams to the land for crop use. The trangportation of this water has been a problem
of major engineering importance in the past and will continue to be as long as there is wrter Ror irsigetion.

The onjective in any camal deaign is to canyy the required amount of weter as exiticiently as possible. The canals are ofen lined with gravel, rocin, soil. concrete, or any of a number of the many manufectured linings. This lining is generally used to prevent erosion and possible failure and is one of the determining fiectorg in the resiatince offered the flow of water by the canal. The resistance coeficient is the meanure of resistance to Rlow and is generally taken for conditions of steady, uniform flow.

Pest VTork in This Field

Engineers have developed several formulae for the determination of the discharge of canais and natural etreams. These are for the most past based on expirical relations. Of the many proposed, only two have gained generel recognition. These two equations are:
(1) the Chazy equation,

$$
\begin{equation*}
Q=C A \sqrt{R S} \tag{1}
\end{equation*}
$$

and (2) the Mamzing equation.

$$
\begin{equation*}
Q=\frac{1.486}{n} A R^{2 / 3} \mathbb{S}^{3 / 2} \tag{2}
\end{equation*}
$$

Resistance to thow in pipes, which has certain similarities to resietance to flow in open channels, was investigated by Niluradse wio developed a rouginess standard by cementing aand grains of defanite size to the inside of pipes. Once the standard was established in these pipes artificially roughened with the sand grains, the results from commerciallymanufactured pipes could be compared and classified according to the standard.

Purpose of Research

The purpose of the research carried on for the J. Walco smith Hydraulic Fellowship was to determine the relationship between artificial

Roughness and the woughness of natures stream gravels lati loosely in a controllable artificial channel. This relationship is necesaery to correlate tho wroth done in the pest with artikicial roughnegses and the theoretical Rorminae developed from the results, With the roughness of natural materials mucin as stream gravels used in canal linings.

Analysis of the Problem

The variables for a dimensional analysis of the subject can be selected from the basic principles of mud mechanics and hydraulics. The variables affecting the how in open channels can be classified into three main groups es follows:

The geometry of the channel and the roughness.

$$
\begin{aligned}
& d \text { - depth } \\
& B-\text { width } \\
& \lambda \text { - shape } \\
& k \text { - roughness } \\
& S \text { - slope }
\end{aligned}
$$

The flow -- assume steady and uniform,
V - velocity

The properties of the fluid.
β - viscosity
ρ - density
$\Delta \gamma$-difference in the specific weight of the fluid in the channel and trait of the atmosphere above it.

These variables may be expressed in functional form as

$$
\phi_{1}\left(d, B, \lambda, k, \varepsilon_{0}, \mu, \rho, \Delta \gamma\right)=0
$$

If d, V, and ρ are chosen as the repeating variables and dimensional analysis is employed, the variables can be reduced to six in number:

$$
\begin{equation*}
\phi_{2}\left(\mathrm{~B} / \mathrm{d}, \lambda, d / \mathrm{k}, \mathrm{~S}, \quad \mathrm{dV} \rho / \mu, \quad \mathrm{V} / \sqrt{\frac{\Delta \gamma d}{\rho}} ;=0\right. \tag{4}
\end{equation*}
$$

λ = shape of the charnel
$d / k=$ relative roughness or the depth of flow divided by the diameter of the roughness
S = slope
$d V \rho / \beta=$ Re $=$ Reynolds number, the inertia forces relative to the viscous forces
$V / V \sqrt{\frac{\Delta \gamma d}{0}}=F r=$ Froude number, the inertia forces relative to the gravitational forces
Tine Froude number above includes both inertia forces and the Rैrae of graviny, and by using it as the dependent variable and assuming that the velocity is proportional tu the square root of the slope, Eq. 4 becomes:

$$
\begin{equation*}
V=\sqrt{g} \phi_{L}(B / d, \lambda, d / k, R e) \sqrt{d S} \tag{5}
\end{equation*}
$$

or:

$$
\begin{equation*}
V=c_{1} \sqrt{d S} \tag{6}
\end{equation*}
$$

in which:

$$
\begin{equation*}
C_{1}=\sqrt{g} \phi_{3}(B / d, \lambda, d / k, R e) \tag{7}
\end{equation*}
$$

As it is the aim of the dimensional analysis to combine the variables into dimensionless parameters, Eq. ? above was divided by \sqrt{g} giving the following:

$$
\begin{equation*}
C_{2}=D_{1} / \sqrt{g}=\dot{C}_{3}(B / d, \lambda, d / k ; R e) \tag{8}
\end{equation*}
$$

To simplify the analysis of the results obtained in the experimental work, certain of the variables were held constant. The channel was kept rectangular and the foughness was placed only on the bottom of the channel so that the relative width could be considered infinitely large and the channel shape factor could be cunsidered a constant.

This reduces Eq. 8 to:

$$
\begin{equation*}
C_{2}=\phi_{4}(\mathrm{~d} / \mathrm{k}, \mathrm{Re}) \tag{9}
\end{equation*}
$$

Experimental Equipment and Procedure

The general layout of the equipment used for the experiments is shown in Fig. 1. The equipment consisted of a large tilting flume 43 it long, with an adjustable side which made it possible to use widths from Δ ft to 8 ft. The depth of the flume was 2 ft measured perpendicular to the bottom of the channel. The water for the experiments was supplied to the system by a $14-2 n$. propeller-type pump and was returned to the sump after passing through the flume. The flow was regulated by a valve at the entrance to the $8-\mathrm{ft}$ by $8-\mathrm{ft}$ head box and partial regulation was also obtained with a bypass valve on the pump outlet. The water entering the flume passed through a needle gate made of tapered vertical slats to give an even distribution of flow across the section and backwater was controlled by another set of needle gates at the exit.

The flume was supported by four sets of teleacoping jacks made of pipe. The jacis could be adjusted first in 4 -in. increments for rough adjustment and then screws in the top of the jacks were used to make the final fine adjustment. Measurement of the discharge was made using a 10-1/2-in; stainless-steel orifice plate placed in the 14 -in. line and connected to a water manometer.

The roughness used in this study consisted of stream gravel screened over a narrow size range. The screens used were hand made of $1 / 4-i n$. steel pencil rod welded at the points of contact. Those screens obtained from a local manufacturer proved unsatisiactory because of too wide a variation in the spacing. Although fabricating the screens by hand was a time-consuming and tedious job, this procedure was justified because of the need to use equipment whica could be duplicated for research elsewhere. The screen openings measured $7 / 3,1-1 / 8,1-3 / 4,2-1 / 4,3-1 / 2$, and $4-1 / 2 \mathrm{in}$. clear spacing. The sizes thus obtained were designated $1-$, 2 - , and 4-in. gravel.

Nearly 10 cu yds of gravel wes screened to obtain enough of the three sires to cover the $43-\mathrm{fit}$ by 4 -fit floor of the flume to a thickness thought to be adecuate. The gravel vas lifted up to the flume by a chain hoist mounted on an overhead \&-in, rail. The rail and loading equipment were designed and built for the job and proved very satisiactory. The 1-in, and 2 -in. gravel was placed loosely in the flume and allowed to find its own position, the rockg were placed by hand in the case of the $4-\mathrm{in}$. gravel as it was too large for the limited supply of water to move. The placing was done so that the rocks were shingled in as natural a manner as poseible.

The deptil of the water was measured with the aid of hook gages in wells outside the Slume and independent of the flume so that they remained stationary when the flume was tilted. The depth was taken as the height of water above the floor of the flume minus a mean thickness of gravel layer.

The flume was deaigned and constructed from $2-i n$. by $4-i n$. lumber and $1 / 2-\mathrm{in}$. waterprooz (exterior) plywood. It was supported on two $6-i n$. I-beams set 4 -ft apart. These beams, in turn, were held up with 4 sets of jacks as previously described. The jacks were made of pipe welded to old automobile brake drums as bases. Two sets were on hand and served as guides for building the other two sets. The water entered the flume from a permanent 14-in, water line in the laboratory near the head box.

Before actual teating began, the $2-i n$. gravel (and later the $2-i n$. gravel) was placed loosely ins the flume and allowed to find its most stable position of least resistance to the flow. In many cases the rocks seemed to pile up in somewhat of a pyramid with the rocks on top of the piles locked Sirmily in place. After the 2 -in. gravel had adjusted to its most
stable condition, a 6-in, rolling wave of water could pass down the flume without caucing movement of the gravel. If the gravel particlea were disturbed, nommel flow would often move them the entire length of the flume.

When the gravel was first placed in the fluae, it was amoothed mechanically as much as possible. Then it was left free to move under the influence of the water so that each particle could seek its own reating place much the same as in nature. When the water was first introduced, considerable movement took place with a very small flow. This movement into pyran.ids or dunes gave a very rough appearing bottom to the chamad. The Now, however, seemed less turbulent after this dune action was completed than when the water first passed over the smoothed gravel. The apparent loss in turbulence aiter the formation of dunes, points out the possibility that the composite roughness of all the eeparate particles of gravel is leasened by the mutual interference brought on by the natural placement of the gravel by the water.

The possibility of fastening the particles firmly to the bed of the flume was studied, but because of the unnaturalness and dificulty of duplication it wes believed that the procedure described was the most "standard" method. The $4-i n$. rocks were too large to move with the flow available and wiere all hand placed in a random shingling effect such as was observed in the case of the 1 -in. and 2 -in. material. Figs. 8 to 15 show the rocks as they were found during and after festing.

Before any experimenta were run with a particular size gravel after it wase placed in the flume and leveled, the gravel was brought to a state of equilibrium as described. When testing was ready ro begin, the chamel was get to the deaired slope and then checked with a surveyors level.

The pump was started and the klow was regulated with both the valve at the hesd box and the by-pass valve at the pump. When the minimum flow that covld be read on the water manometer was reached, teating began. Each experiment was called a run and each group of ruas for 2. cottain slope was celled a set. All sets with a certein size gravel were cailed \& series. The 2 -in. gravel constituted series I with the 1 -in. making up series If and the $4-i n$, series III. For each geries of suns the slopes were changed in 0.5 percent increments to make 5 sets and the cischarges were varied to give about 5 runs per set. Beceuse almost no trouble from backvater was encountered at very low depths, the initial run for each set of experiments was made at a lovr discharge. Beclswater was corrected by adjusting the needle gates to obtain both M_{1} and M_{2} curves so that the true normal depth could be deter mined more accurately. The hook gagea in the stilling wells were set each time and the extent and nature of the backwater curve was observed. At very low depths, the M_{2} curve vas insignificant because the backwater was restricted to the extreme ends of the flume. As the discharge was selected for each new run, hook gages and the needle gates were adjusted so that normal depth occurred o- the surface of the water was parallel to the bed. For final determination of the mean depth, only gages at distances of 15 to 30 feet from the entrance were used. When in place, the gage 10-fit from the entrance seemed to be in the zone of unestablished flow. When the flow became established, the turbulence originating from the bed had wosked its way upward to cause an irregular surface where the eddies appeared and spread horizontally. The gage 40 -ft from the head box was in the zone of efiect from the exit conditions and therefore was only used to measure the backwater curve in determining the mean
dopth. After the mean depth van established, the discharge manometer was suad. Then the hook gages were read after which the cliccharge menometer was read the second time. The discharge wes coraputed for an averege of the manometer readings.

When a semies was completed with one size gravel, that gravel wan removed and the nest sime was placed in the flume and brought to a stable condition. After the gravel showed no further aigns of movement, teating began as in the previous series.

About one quarter of the flume length was needed to establich steady flow and a. short leagta was used at the lower cad of the flume in correcting for hoclewater. A longer flume would have been much more ceairable. Furbermore, because the turbulence condition changed along a larige part of the $43-$ fit length of the flume (as evidenced with the 1 -in. cravel) and becauee of baclswater effects, a flume of considerable length would be essential to obtain accurate data for flat slopes or mnall gravel sizes.

Interpretation of Besults

In the climensional analysis approach to the problem, it was decided that the data taken could beat be presented by plotting the resistance coefficient $C \quad g$ as some function of the relative roughness $d k$ and Reynolds number Re. After some study, however, such a plot seemed unnecessary because the conditions were always turbulent and the variation with Reynolds number was inaignificant. Instead, Manning's in vs the relative roughneas, dft was viotted for the convenience of those who prefer to work with Manning's equation.

The results of the ztudy are plotted on Figs. 16 and 17 and both show some of the same tendencies. The relative roughness d /is is the depth of the water divided by the dimmeter of the gravel used. The value of Chewy's C was computed from the formula $C=\frac{Q}{A \sqrt{d S}}$.

The nee of d instead of the hyciraulic zadins is juntified es there was no 2romghmess pleced on the sties amd the chamnel could be considered infinitely Wide. Manning's is was computed mom the equation $n=\frac{1.486}{V} d \quad 2 / 3 \quad$ S/2

The fact has been proved in the past that the values of Chery's C ond Ifanning'g n are not comatsne for all types of nlow in a particular channel ins a particular state of repair. Mig. 16 and 17 were plotted to establith the variation of these coefficiente of roughness with the change in the relative roughness. In Fig. 16, the plot of Chezy's resistance conficient ageinst the relative rouglaness, there beems to be a smooth curve for the three sizes of grevel at the greatest slope whicis was 2.5 percant. The points for the smaller slopes driffed somewhat from this cuzve possibly because of the limitations of the equipment. In Fif. 17, the piot of Manaing's on vi cifk tho wollive roughness, the curve shows an increase in roughness with depth up to about d / k equal to 2 or 3 . The curve then has \& gradual reveral of the slope watil the normal decrease in n for an increase in depth becomes manifest for larger values of d / k.

The curves change slope at a value of relative roughness of about 2. E1 Samni (3) (University of Calisornia, Berkeley) found in his vonls on pressures exerted on bed material that for a relative roughness of over 2_{0} channel roughness could be expected but below that value it changed to chanel irregularity. The plots in Fig, 16 and 17 seem to dmply that this phenomencon applies to netural roughness in on artificial channel as well. Although a relative roughness of 2 is not practical for isrigation canalis. this study does show that the characteristics for channels do change for very low depths of flow. This change to channel irregulatiry at low values of relative rougineas should be investigated further.

Suggeations for Further Study

The data presented in this report show a definite need for more research with a larger water supply and a longer flume. Although the
dats were teken over a normow sange, cue to the limitations of the equipment, the tronds chown in the plote of the data indicate that considevable information could be oliteined withs a longer flume and a larger vater Eupply. The use of gravel screened over a nazrow size range roerits fur then study as the present plots show some tendency for grouping by sizen. A wider range of velative roughness values will be needed to establish a relationship betveen naturel and artisicial roughneeses.

AcknowledGements

The writer wishes to express his appreciation to the members of his graduate committee made up of Dr. M. L. Albertson, Professor D. V. Hexris, and Mr. Carl Rohwer, and to Dr. D. Er. Peteraon, Head of the Civil Engineering Department, for their coungel and advice in the conduct of the research. An expression of gratitude is also due the library ctaff for their assistance in locating material and to those who helped in the construction and cperation of the flume.
2. Bosin, Fisnmi Emile Experiences nouvelles sur L'ecourement en doversoir. Faris, 1888. 530n. Enbis for comments by Ganguillet and Kutter (4) and Kowlogen (6).
2. Kingtein, Elans A. and Banks, R. D. Fluid Jesiatance os composite roughness. American Geophysical Union Transactions, August. 1950: 603-610.
3. El-Samni, El-Sayed Ahmed Eydrodynamic forces acting on particles in the siream bed. Thesis (Ph.D.) University of Califormie 1948.
4. Genguillet, E. and Kutter, W. R. A general formula for the uniform flow of water in rivers and other channels. New York, John Wiley and Sons, 1889. 240p.
5. Johmson, Joe W. Laboratory investigations on bed-load transportation and bed roughness. Washington, D. C.. Soil Conservation Service, March, 1943. 116p.
6. Keulegan Garbis H. Lawis of turbulent flow in open channels. Journal of Research of the National Bureau of Standards. 21:707-741, December 1938. Research Paper 1151.
7. Nikuradse, J. Stromungagesetze in rauhen Rohren, Forschungaargeiten aui dem Gegiete des Ingenieur Wegens. 361(4):1-22. July-August 1933.

Basis for comments by Keulegan (6) and Powell (8). (9).
8. Powell, Ralph W. Flow in a channel of definite roughness. American Society of Civil Engineerg. Transactions. 111:531-577, 1946.
9. Powell. Ralph W. Resistance to flow in smooth channels. American Geophysical Union Transactions, 30, (6), 875-878. December 1949.
10. Powell, Ralph W. Resiatance to nlow in rough chamnels. American Geophysical Union Transactions, 31, (4)。 575-582, Auguæt 1950.
11. Robinson, A. R. Artificiel roughness in open channels. Thesis (MS) Colorado A and M. College 1950.
12. Rouse, Hunter Flwid mechenica for hydraulic engineeng. Hew York and London, McGraw-Hinl Book Company, 1938. 422p.
4. Ecobey. F. C. Flow of water in irrigation and gimilar canals. Washington, D. C. U.S. Depariment of Agriculture. Technical Bulletin No. 652. 1939. 79 p.

LIST OF FIGURES

Figure

1. Layout diagram of equipment.
2. Section plan of flume showing construction details.
3. Section plan of flume showing construction details.
4. Fourteen inch supply line and regulating valve at the head box.
5. Vicw of entrance bafiles and adjustrble side.
6. Underside view of Elume showing telacoping jacks and piezometer connections.
7. Arrangement of screens for separating gravel into sizes.
8. 4-in. gravel after testing was completed.
9. 4-in. gravel with water flowing approximately 3-in. deep.
10. 2-sin. gravel showing rough character of surface of bed.
11. 2-in. gravel after completion of teats.
12. \quad-in. gravel with water flowing over it.
13. 2-in. gravel with top half of the rocks showing at point taken as datum.
14. 1-in. gravel after completion of tests.
15. Movement of bed near entrance of flume which occurred at a slope of $2-1 / 2$ per cent.
16. Graph of resistance coefficient vs relative roughness.
17. Graph of Manning ${ }^{\prime}$ B n va relative roughness.

Fig. 8
4-in. gravel after testing was completed

Fig. 13
2-in. gravel with top half of the rocks showing at point taken as datum

Fis. 14
1-in. gravel efter completion of tests

Fig. 15 Movement of
bed near entrence
of flume whichi
occurred at \&
slope of $2-1 / 2 \%$

d / s

BIG. 17

Table 1. - EXPERTMEASAE DATA IFOR TWO-INCE GRAVEL (series I).

Auis	Slope	Digela	$\begin{aligned} & d \\ & \text { it } \end{aligned}$	Vel ff per sec	$c / \sqrt{5}$	n	d/
1	0.005	3.32	0.385	2.16	8.68	0.02485	2.30
2	11	3.48	. 390	2.23	8.90	0.02415	2. 33
3	4	5.39	. 528	2.55	8.73	0.02562	3.16
4	11	6.15	. 576	2.66	3.72	0.02672	3.45
5	"	8.42	. 684	3.08	9.26	0.02585	4.10
6	"	3.50	. 631	3.12	9.38	0.02505	\$.08
7	11	6.92	. 594	2.91	9.40	0.02899	3.56
3	0.010	2.92	. 290	2.52	8.34	0.02571	1.67
9	"	\&.66	. 384	3.03	8.60	0.02572	2.30
10.	"	6.14	- 457	3.36	8.73	0.02603	2.74
18.	"	7.51	- 52.4	3.58	8.73	0.02680	3.14
12	0.015	3.31	. 268	3.09	8.56	0,02800	1.60
13	"	5.70	. 392	3.68	8.30	0.02690	2. 35
14	8	5.95	. 410	3.63	8.14	0.02690	2.46
15	11	7.87	. 868	3.99	8. 36	0.02780	2.80
86	"	8.35	. 504	4.14	8.37	0.02711	3.02
17	11	4.57	. 339	3.37	8.33	0.02585	2.03
18	0.020	8. 50	. 468	4.54	8.68	0.02787	2.130
19	8	6.27	. 379	4.14	8.37	0.02597	2. 27
20	"	4.84	.314	3.85	8.52	0.02495	1.38
21	"	2.94.	. 221	3.32	8.76	0.02303	1.32
22	0.025	8.54	. 425	5.02	8.58	0.02632	2.54
23	"	7.36	. 388	4.74	8.47	0.02606	2.32
24	"	6.15	. 345	4.46	8.44	0.02579	2.06
25	8	4.99	. 298	4.19	8.57	0.02507	1.78
26	"	3.25	. 213	3.81	9.20	0,02188	1.28

Table 2. - EXPERMMENTAL DATA FOR ONE-INCE GRAVEL (seriee II).

Vel
Disch d

Run	Slope	cis	8 d.	sec	C/ $\sqrt{6}$	n	d / k
1	0.005	3.68	0. 4.86	1.85	6.54	0.03422	5.94
2		5.85	. 636	2.30	7.17	0.03383	7.62
3	"	7.27	. 724	2.51	7.35	0.04186	8.67
4	"	S.83	. 902	2.75	7.65	0.03731	9.60
5	0.010	3.37	. 370	2.27	6.56	0.03354	4. 13
6		6.16	. 522	2.95	$7.20{ }^{\circ}$	0.03330	6.25
7	"	7.76	. 588	3.30	7.54	0.03113	7.04
8	"	8.78	. 634	3.46	$7.63{ }^{\circ}$	0.03108	7.58
9	"	5.24	. 471	2.78	7.09	0.03218	5.64
10	0.015	2.95	. 294	2.51	6.66	0.03165	3.52
11		5.57	. 413	3.37	7.53	0.02968	4.95
12	"	6.97	. 470	3.71	7.77	0.02959	5,62
13	"	3.61	. 529	4.11	8.18	0.02862	6.28
14	0.020	2.74	. 24.5	2.80	7.04	0.02922	2.93
15	"	6.24	. 390	4.00	7.96	0.02753	4.67
16	"	8.65	. 464	4.66	8.50	0.02719	5.55
17	"	4.89	. 333	3.67	7.88	0.02679	3.98
18	0.025	8.57	. 406		9. 20	0.02386	4.86
19	"	7.18	. 367	4.89	8.97	0.02409	4.39
20	"	6.05	. 330	4.50	8.86	0.03328	3.95
21	"	4.75	. 283	4.20	8.79	0.03624	3.39
2.2	\cdots	3.05	. 212	3.60	8.70	0.03933	2.54

$\sec C / \sqrt{8}$

$0.03 £ 22$	5.94
0.03383	7.62
0.04186	8.67
0.03731	9.60

4. 43
6.25
7.04
7.58
5.64
3.52
4.95
5.62
6.28
2.93
4.67
5.55
3.98
4.86
. 39
5. 25
3.39
2.54

Table 3. - EKPEPMEYENMAL DATA TOR FOUR-TNCK GRAVEL (serien TII).

I6un	Slope	$\begin{gathered} \text { Disch } \\ \text { cis } \end{gathered}$	$\stackrel{\mathrm{d}}{\mathrm{ft}}$	Vel fit per عee	C) \sqrt{g}	n	d. 1
1	0.005	3.78	0.412	2.37	3.73	0.02604	3.24
2	"	6.02	. 574	2.62	8.62	0.02711	1.72
3	n	6.8A	. 618	2.77	3.78	0.02745	3.86
4	${ }^{3}$	8.65	.726	2.98	8.67	0.02362	2.18
5	0.010	3,31	. 362	2.63	7.69	0.02892	1.02
6	8	6.05	. 497	3.048	7.57	0.02948	1.85
7	1	7. 25	. 555	3.27	7.74	0.03000	1.67
8	0	8.30	.623	3. 53	7.87	0.03043	1.87
9	0.015	2. 38	. 206	2. 39	9.14	0.02183	0.62
10	-	4.71	. 345	3.81	8.22	0.02615	1.04:
11	1	5.81	.401	3.62	8. 18	0.02697	1.20
12	11	7.96	-480	4.146	8.57	0.02682	3.44
13	0.020	3.32	. 248	3.35	8.40	0.02483	0.74
14	18	5.85	. 372	3.93	7.99	0.02782	d. 12
15	\%	7.07	. 421	4.20	8.04	0.02316	1.26
16	11.	8.65	.478	4.52	8.12	0.02804	1.46
17	0.025	2.45	. 155	3.95	11.18	0.01676	0.4 .6
18	"	4.61	. 278	4.18\%	8.74	0.02366	0.84
19	1	6.04	. 341	4.43	3. 22	0.02598	3.02
20	11	7.67	. 400	4.79	8.43	0.02632	1. 20
21	11	3,65	. 224	4.07	9.56	0.02095	0.67

