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ABSTRACT 

 
 

 
PREDICTION OF SELENIUM IN SPRING CREEK AND FOSSIL CREEK, COLORADO 

 
 
 
 The role and importance of selenium as an environmental contaminant has gained 

widespread attention among research scientists, natural resource managers, and federal 

and state regulatory agencies during the last two decades.  Selenium has been listed on 

Colorado’s Clean Water Act Section 303(d) List of Impaired Waters for Spring Creek and 

Fossil Creek in the city of Fort Collins.  Selenium is one of the most hazardous of the trace 

metals, following mercury, with a narrow range between dietary deficiency and toxicity.  

Identifying selenium sources and understanding the environmental processes controlling 

how selenium is introduced to streams is critical to managing and mitigating the effects of 

elevated concentrations.   

  A modeling approach was used to predict selenium concentrations with 

exploratory variables including 15 geospatial landscape parameters, precipitation, and 

streamflow for 5 sub-watersheds within Spring Creek and Fossil Creek watersheds.  A 

correlation analysis was applied with surface water selenium concentrations and the better 

exploratory variables identified.  Selected variables were used in a multiple linear 

regression model.  Various combinations of different variables determined the best 

performing model, and included the area of shale, area of moderate to strongly alkaline 

soils, and the length of streams with an adjusted R2 of 0.99, [Se µg/L = 24.038 + 9.516(ALK) 

– 0.782(STR) -1.039(SHL)]; where ALK = area (km2) of moderate to strongly alkaline soils; 

STR = length (km) of streams; SHL = area (km2) of shale. 
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 Additional multiple linear regression models were developed in ArcGIS® using 

Ordinary Least Squares (OLS) Regression, and Geographically Weighted Regression (GWR) 

with area weighted geospatial variables.  The best performing OLS model used only area 

(km2) of wetlands, with an adjusted R2 of 0.98, [Se µg/L = -6.584 + 170.509(wetlands)].  

Similarly, the best performing GWR model included area of wetlands, with an adjusted R2 of 

0.98.  The second best performing GWR model included area of shale, with an adjusted R2 

of 0.66.   

Limitations of this model include a very small sample size of water quality sampling 

stations, which limits the statistical power of multiple regression models used.  Additional 

techniques applied in basin delineations with landscape element coupling for identification 

of hydrologic and/or chemical response units can further develop the platform for future 

modeling efforts targeting unmonitored watersheds. 
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 CHAPTER 1 – INTRODUCTION 
 
 
 

1.1  Sources and Effects of Selenium 
  

Selenium (Se) is a nonmetal related to sulfur (S) and tellurium (Te), and is toxic at 

elevated concentrations (Lemly, 1993; Presser, et al., 1994).  Sources of Se include 

irrigation drainwater, fly-ash from coal-fired power plants, weathering of seleniferous 

shales and soils, and releases from metallic ore mining and smelting (Canton and Derveer, 

1996).  Other sources are selenized fertilizer and municipal wastewater discharge 

(Shamberger, 1983; Fordyce, 2005).  Distributed naturally across the globe, areas 

underlain by Cretaceous marine or sedimentary rocks that are weathered and eroded can 

produce high selenium soils in many areas of the western United States, notably the San 

Joaquin Valley of California (Presser, et al., 1994), Montrose Arroyo Basin (Butler, 2001), 

Lower Gunnison River Basin (Butler and Leib, 2002), and Grand Valley of the Colorado 

River in Western Colorado (Leib, 2008).  Shales are the principal sources of selenium-toxic 

soils of the Rocky Mountain foothills (Shamberger, 1983). 

 Little industrial application was made of selenium until the early 20th century when 

it began to be used as a red pigment, and to improve glass and ceramic manufacturing 

(Fordyce, 2005).  Since the 1930s, selenium is widely used in insecticides, fertilizer, and 

anti-dandruff/antifungal pharmaceuticals, as well as the manufacture of electrodes, 

photocells, selenium cells, semiconductor fusion mixtures, toning baths in photography and 

X-ray xerography (Shamberger, 1983; Fordyce, 2005).  

Bioconcentration, bioaccumulation and biomagnification of selenium in aquatic and 

terrestrial systems has been studied, but only in the last few decades.  Adverse effects in 
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aquatic birds due to selenium had not been reported until 1986, when high rates of 

embryonic deformity and death in wild aquatic birds was documented in the San Joaquin 

Valley of California at the Kesterson National Wildlife Refuge (Ohlendorf et al., 1986).  The 

wildlife refuge is the terminus of subsurface agricultural drains with Se concentrations 

ranging between 100 and 350µg/L.  This study showed deformities that were often 

multiple and included missing or abnormal eyes, beaks, wings, legs and feet due to Se 

biomagnifications, attributed to Se toxicosis.  The selenium source was determined to be 

selenium carried by irrigation drainwater (Ohlendorf et al., 1986).   

Because concerns were expressed by the United States Congress and environmental 

groups that adverse effects from irrigation drainwater might occur elsewhere in the nation, 

the United States Department of the Interior (USDOI) implemented the National Irrigation 

Water Quality Program (NIWQP) (Seiler, 1995).  The purpose of this program is to 

complete comprehensive surveys of USDOI irrigation-drainage land and facilities by 

making evaluations of water quality, biologic, and geologic data, which are used to identify 

areas with contamination problems that warrant reconnaissance investigations.   

Reconnaissance investigations were designed to use existing information and the results of 

field-screening studies conducted by USDOI to determine whether irrigation drainage has 

caused, or has the potential to cause, harmful effects on human health, fish and wildlife, or 

beneficial use of water (Seiler, 1995).  The middle Arkansas River basin, in southeastern 

Colorado and southwestern Kansas was selected for a reconnaissance investigation in 

1988, where samples of water, bottom sediment, and biota were collected.  Surface water 

selenium concentrations were found to range from 1µg/L to 52µg/L and the maximum 

concentration found in ground water was 29µg/L.  The maximum concentration found in 
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bottom sediment was 5.4µg/L.  It was determined that drainage from irrigated land 

underlain by marine shale was the selenium source (Mueller et. al., 1991). 

Selenium has been found to bioconcentrate and biomagnify in the planktonic food 

chain with resultant dietary toxicity to fish and aquatic birds (May et al. 2008).  A study in 

the Solomon River Basin of Kansas found that all benthic invertebrate samples (n=20) 

except one and 97% of the fish sample set (n=195) exhibited selenium concentrations 

considered to be ranked as a high hazard.  Dietary toxicity and reproductive impairment 

were found to occur in fish and aquatic birds in excess of 5µg/L and 4µg/L, respectively.  In 

Belews Lake, NC, adverse effects in green sunfish (Lepomis cyanellus) were observed with 

selenium concentrations as low as 5 to 10µg/L, and dietary selenium toxicity has been 

shown in similar concentrations of 5 to 10µg/L dry weight (Sorensen et al., 1984; Goettl 

and Davies, 1978).  Biomagnification of selenium in water can be concentrated from 100 to 

more than 30,000 times in the food organisms eaten by fish and wildlife, which exposes 

them to a highly concentrated dietary source of contamination further affecting offspring in 

eggs (Lemly, 1999). 

  Selenium is one of the most hazardous of the trace metals, following mercury 

(Luoma and Rainbow, 2008), yet nutritionally essential in small amounts.  Of all the 

elements, it has one of the narrowest ranges between dietary deficiency (<40µg/day) and 

toxic levels (>400µg/day) (Fordyce, 2005).    It has been stated that everything is toxic, it is 

just a matter of dose; however, toxicity can be defined by the dose with which causes 

adverse health effects or more specifically by the factors influencing uptake, critical organ, 

critical dose, critical effects, and biological half-life (Nordberg and Cherian, 2005).  

Bioaccumulation and biomagnification can occur in aquatic insects, fish, plants and 
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terrestrial animals greatly increasing the threat of contaminate exposure, yet further 

research is needed to understand the complex nature of selenium due to the various 

elemental forms and physiological factors that affect toxicity.  There is still a great deal of 

uncertainty about harmful doses of selenium to humans, but a maximum recommended 

dietary intake of 400µg/day has been proposed (WHO, 1996).   

Many of the symptoms found in terrestrial animals with high selenium intake can be 

expected to occur in humans as well through drinking water or other dietary intake from 

foods.  On the basis of selenium requirement studies, a range of 50-200µg/day  has been 

recommended by the U.S. National Research Council (NRC) for adults, however plants and 

animals retain the element in great concentrations due to its bioaccumulative nature in 

which selenium can be bioconcentrated 200-6000 times (Fordyce, 2005).  Therefore the 

most important exposure route to selenium for animals and humans is the food eaten, as 

concentrations are orders of magnitude greater than in water and air in most cases (WHO, 

1996).   

Acute oral doses of selenite and other selenium compounds cause symptoms such as 

nausea, diarrhea, abdominal pain, chills, tremor, and numbness in limbs, irregular 

menstrual bleeding, and marked hair loss (WHO, 1996).  Irrigation and flooding can 

provide the mechanism in seleniferous soils for plant and crop uptake of precipitated 

selenium via wetting and drying of soils.  Drinking water from wells can receive 

contaminated water through the percolation of surface water and movement of selenium 

bearing groundwater.  One documented case of selenium toxicity in a water source shows a 

family exposed for about 3 months to well-water containing 9,000µg/L selenium.  They 
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suffered from loss of hair, weakened nails, and mental symptoms but recovered when they 

stopped using the water from the well (WHO, 1996).   

The relationship between human illness and a drinking water supply containing 

high and low concentrations of selenium was examined in two representative samples of 

residents from a rural Colorado community.  One sample group was exposed to high 

concentrations of selenium (50 to 126 µg/L), and the other group was exposed to lower 

concentrations of selenium (1 to 16 µg/L).  The drinking water standard and Maximum 

Contaminant Level (MCL) for Se in Colorado is 50µg/L (CDPHE, 2010b).  Urine of persons 

using the high selenium water supply contained significantly more selenium than urine of 

persons using the low selenium water, but there were no significant differences between 

the two groups in the incidence or prevalence of any disease entity studied (Hammer, 

1981).   

Although selenium is classified formally as a nonmetal in the periodic table of 

elements, it is also referred to as a metalloid as it exhibits properties that fall between 

metals and nonmetals (Chapman et al., 2009).  Selenium is located in the oxygen group 6A 

and has an atomic number of 34.  Selenium has been shown to occur in four oxidation 

states and many forms (Table 1).  The most common form in flowing rivers is dissolved 

selenate, although selenite, ogano-selenide and/or elemental selenium can also become the 

primary form depending on biological transformation and site characteristics.  

Forms and concentrations of selenium in a soil solution are governed by various 

physical-chemical factors expressed in terms of pH, dissociation constants, solubility 

products, and oxidation-reduction potentials (Geering et al., 1968).  Sediment redox 

potential and pH were found to be the key factors in the biochemistry of selenium in 
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Table 1 – Chemical forms of selenium in the environment (adopted from Fordyce, 2005) 

Oxidative state Chemical forms 

Se2- Selenide (Se2, HSe-, H2Seaq) 

Se0 Elemental selenium (Se0) 

Se4+ Selenite (SeO2-3, HSeO-3, H2SeO3aq) 

Se6+ Selenate (SeO2-4, HSeO2-4, H2SeO4aq) 

Organic Se Selenomethionine, Selenocycteine 
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relation to its solubility and its distribution among the various chemical species in a 

laboratory study conducted using Kesterson Reservoir sediments in California 

(Masscheleyn et al., 1990).   Four different redox levels (-200, 0, 200, and 450 mV) and four 

suspension pH levels (6.5, 7.0, 8.5, and 9) were selected and maintained during the 

incubation period.  In general, selenium solubility was found to be low with low redox 

levels and high with high redox potentials.  The pH affected both the levels and chemical 

forms of dissolved selenium, but the selenium solubility was lowest in the incubations at 

neutral pH.  Total soluble selenium concentrations substantially increased upon oxidation 

or increase in sediment redox potential.  Selenide comprised 80-100% of the total soluble 

selenium under reduced conditions (-200 mV).  Oxidation of selenide to selenite was rapid, 

and above 200 mV selenite slowly oxidized to selenate.  Under highly oxidized conditions 

(450 mV), selenate became the major species in solution constituting 95% at higher pH 

levels (8.5, 9) to 75% at lower pH levels (7.5, 6.5) (Masscheleyn et al., 1990).  The species 

distribution with its various oxidation states and pH can be seen in the derived Eh-pH 

diagram (Figure 1).  The Eh-pH diagram shows that in acidic and neutral soils, inorganic Se 

occurs as very insoluble Se4+ complexes of oxides and oxyhydroxides.  In neutral and 

alkaline soils, Se6+ is the main oxidation state, being soluble and hence more readily 

available for uptake by plants (Dissanayake and Chandrajith, 1999).  The area enclosed by 

solid lines shows the stability field and the normal range of surface conditions where redox 

levels are between -0.4 and 1.0V and pH levels between 4 and 8.5s.u.   

Increasing the residence time of water in ponds and when recycling occurs in canals 

and/or backwater areas, as well as plant productivity and contact time between sediment 
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Figure 1 – Eh-pH diagram of Se in soils (from Dissanayake and Chandrajith, 1999) 
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and water all drive selenium transformations (Luoma and Rainbow, 2008).  Plant uptake of 

selenate is slow and the release of the transformed products builds a pool of selenite and 

particulate organo-selenide in solution.  Bioavailability grows with time because of the 

slow rate at which selenite and organo-selenide transform to selenate (Luoma and 

Rainbow, 2008).  The proportion of selenium in the water column can be variable due to 

microbial activity, which promotes the reduction of the selenate form, as well as adsorption 

to sediment particulates followed by settling.  Ninety percent of the total selenium in an 

aquatic system may be in the upper few centimeters of sediment (Lemly and Smith, 1987).  

Still, high flows and flood events in river systems disrupt the river bed and re-suspend 

selenium bearing sediments back into the water column where they can become 

bioavailable again through further reactions.  With respect to persistent contaminants, 

aquatic systems are dynamic and selenium can be cycled back into the biota and remain at 

elevated levels for years after waterborne inputs of selenium are stopped (Lemly, 1997).   

Across the western USA, 640,000 km² of land have the proper combination of 

climate, geology and soils to be Se-contaminated; 8,100 km² of these lands are irrigated  

(Seiler et al., 1999).  Regions with an arid or semi-arid climate, where evaporation is 

greater than precipitation, and source rocks made of organic rich shales or marine 

sedimentary rocks are lands susceptible to selenium contamination.  These arid and semi-

arid regions of the country are also much more likely to redistribute selenium 

concentrations and loads into receiving waterways through irrigation for crop production 

and disturbances associated with land use changes.  Irrigation leaches soluble forms of 

selenium and transports them through the soil (Ohlendorf et al., 1986).  Urban 

development and mining operations can also greatly increase the mobility of selenium.  
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Grading or other soil mixing activities, especially in and around streams further 

exacerbates the problem by introducing seleniferous material to water, thereby dissolving 

and mobilizing selenium (Luoma and Rainbow, 2008).   

The United States Environmental Protection Agency’s (EPA) National 

Recommended Water Quality Criteria for chronic levels of selenium is 5µg/L (EPA, 1995), 

which is based upon the aquatic life table value criteria in EPA’s 1987 Selenium Criteria 

Document (EPA, 1987).  The EPA’s criteria are not required law but recommendations for 

the guidance of states and tribes to adopt their own water quality standards for the 

protection of aquatic life and human health. Concentrations in undisturbed waters are as 

low as 0.07µg/L Se yet concentrations above 0.2µg/L Se can suggest contamination, 

whether enhanced by anthropogenic activities or natural processes (Luoma and Rainbow, 

2008).   

Water quality standards for selenium as selenate (Se6+) in the State of Colorado is 

the Table Value Standard (TVS), acute = 18.4µg/L and chronic = 4.6µg/L (CDPHE, 2010a).  

Attainment of chronic metal standards in the state of Colorado, specifically dissolved 

metals in both streams and rivers, is based upon the 85th percentile of the ranked data 

(CHPHE, 2009).  Chronic means the level not to be exceeded by the concentration as an 

average of all samples collected during a thirty day period to protect genera from chronic 

toxic effects, whereas acute means the level not to be exceeded for either a single sample or 

calculated as an average during a one-day period (CDPHE, 2012).  Acute and chronic values 

adopted as stream standards for Se; however, are levels not to be exceeded more than once 

every three years on average (CDPHE, 2012).   
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TVS numeric values serve as interim guidance for the Water Quality Control 

Commission (WQCC) in establishing numeric standards for specific basins and individual 

stream segments.  Standards are segment specific and may be different due to the 

bioaccumulation nature of selenium, and the adsorption to particulate matter.   

 

1.2  Problem Definition   

  The role and importance of selenium as an environmental contaminant has gained 

widespread attention among research scientists, natural resource managers and federal 

and state regulatory agencies during the last two decades (Lemly, 1993; Chapman et al., 

2009).  Section 303(d) of the Federal Clean Water Act (CWA) requires states to report to 

the U.S. Environmental Protection Agency (USEPA) a list of water bodies that are water-

quality impaired.  Recently, selenium has been listed on Colorado’s Section 303(d) List of 

Impaired Waters for several segments of the lower Cache la Poudre watershed around the 

city of Fort Collins (CDPHE, 2010c).  Stream segments of interest are segments where the 

85th percentile of the ranked data for Se was above the (chronic) table value standard of 

4.6µg/L (Table 2). 

The Water Quality Control Division (WQCD) conducts water quality assessments 

across the state triannually, which are reported in the 305(b) Report fulfilling the 

obligation to the CWA.  The 2010 Update to the 2008 305(b) Report was released as an 

integration report that includes the 2008-2009 water quality assessments, as well as 

provide the State’s revised assessments that were conducted over the past five years.  

Roughly 94,455 miles of the state’s 105,344 river miles were assessed and 10,673 miles of 

Colorado streams and rivers were found to be impaired and require a Total Maximum Daily  



12 
 

 

 

 

 

 

 

 

Table 2 – Colorado’s Section 303(d) List of Impaired Waters on the Cache la Poudre River 
(CDPHE, 2010c).  

Colorado's Section 303(d) List of Impaired Waters - April 2010 

Waterbody Identification 
WBID 

Segment Description 
Clean Water Act 
Section 303(d) 

Impairment 

COSPCP11 

Mainstem of the Cache la Poudre 
River from Shields Street in Ft. Collins 
to a point immediately above the 
confluence with Boxelder Creek 

Selenium 

COSPCP12 
Cache la Poudre River, Box Elder 
Creek to South Platte River 

Selenium 

COSPCP13a 

All tributaries to the Cache la Poudre 
River, including all wetlands, from 
the Monroe Gravity canal to the 
confluence with the South Platte 
River 

Selenium 
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Load analysis (TMDL) (CDPHE, 2010d).  Selenium was found to impair 7,478.41 miles of 

Colorado’s rivers, whereas the second leading cause of impairment for Colorado rivers is 

Escherichia coli, affecting 1,666.02 river miles (CDPHE, 2010d).  It is the CDPHE’s objective 

to prioritize the impaired stream segments of the Cache la Poudre River for development of 

a TMDL.  Waterbody identification COSPCP13a, which includes the Cache la Poudre River 

and all tributaries through the Fort Collins area, was assigned a low priority for TMDL 

development followed by restoration efforts (CDPHE, 2010c).  Developing a TMDL involves 

the quantification of loads for the pollutant of interest, helping to identify point and non-

point sources and a contaminant reduction strategy.  This process takes into account all 

available data on the characterization and sources of selenium, including current  

hydrologic and water quality conditions.   Fossil Creek, a tributary to the Cache la Poudre 

River in Fort Collins, Colorado, was first listed on the CWA Section 303(d) List for selenium 

in 2006 (EPAb, 2012), followed by other Cache la Poudre River segments in 2010 (Table 2).  

A TMDL analysis has not been completed for any of the Cache la Poudre River segments 

listed for selenium (EPAb, 2012).   

 The WQCD prioritizes impaired stream segments for TMDL development to identify 

where the Division and public should focus their resources.  Priorities are initially based on 

consideration of the severity of impairment to the classifications for the segments, and 

secondary factors include: endangered or declining native species, public interest, and 

administrative needs (CDPHE, 2009).   Adequate data, as well as quality statistical analysis, 

is not always available and stream segments considered high priority may need further 

review.  Waters designated “low” and “medium priority” may be targeted for further data 

collection and analysis as well, before they may be amenable to TMDL development. 
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Statistics are important in the analysis of ambient water quality data for the 

characterization of the waterbody in question and statistical models can further facilitate 

solutions to remediate the pollutant(s). 

 

1.3  Statistical Models 

 Statistical models have been used extensively for the prediction, estimation and 

assessment of pollutant loads in surface water.  A water quality model has been compared 

for accuracy against two different rating curve methods in five watersheds in Maryland for 

estimating nutrient loads, which are used to determine current loads for a waterbody 

ensuring that TMDLs are met (Dorianne and Moglen, 2008).  The load-derived method and 

the concentration-derived method were applied forming a regression relationship and  

differences were examined between model fitness using Nash-Sutcliffe (NS) coefficients. 

Coefficients between 0.0 and 1.0 are considered acceptable, and coefficients <0 are 

considered unacceptable (Nash and Sutcliffe, 1970).  

The load-derived method was characterized by developing a rating curve between 

the pollutant load and the corresponding discharge.  The concentration-derived method 

was characterized by developing a rating curve between the measured pollutant 

concentration and the corresponding discharge.  According to the NS coefficients, the 

concentration-derived method performed slightly better.  Users of rating curves to develop 

pollutant loads; however, must recognize that the load-derived method is fundamentally 

flawed because it is based on a relationship between two dependent variables: load and 

discharge (Dorainne and Moglen, 2008).  It was determined that the correct rating curve 
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approach in estimating nutrient  load, in the absence of continuous observations, should be 

based on the independent variables of pollutant concentration and discharge. 

There is a need for selenium characterization using geospatial methods that 

determine sources of selenium contributing to surface waters and a water quality model 

designed to predict concentrations.  While most water quality models constitute 

contaminant loads, concentration values should be investigated and just as important is the 

ability to predict the concentrations for unmonitored locations.  Due to the lack of 

resources and funding, many water quality monitoring and assessment agencies are unable 

to predict or verify the water quality in these areas, making management decisions difficult.  

The integration and use of a GIS for the prediction of selenium in surface water can greatly 

benefit the understanding of selenium dynamics and regulatory agencies.  

 

1.4  GIS Models 

 The importance of water quality deterioration due to contaminant inputs, and the 

need for effective targeting of mitigation approaches and river catchment management, has 

led to the development of a variety of water quality models (Rothwell, 2010).  The use of a 

GIS as a tool for water quality and natural resource management has become of increasing 

interest, as the software development becomes more sophisticated and applicable to 

decision making without allocating unnecessary time and money in the field.  GIS has been 

used to predict surface water quality problems associated with nonpoint-source 

agricultural pollution (Gilliland and Baxter-Potter, 1987, Tim and Jolly, 1994, Tong and 

Chen, 2002), heavy metals and mine waste pollution (Kern and Stednick, 1993, Xiao and Ji, 

2007), nutrient contamination (Rothwell et. al., 2010), and groundwater contamination via 
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hard-rock mining pollution (Rodda et al., 1999).  Landscape characteristics are the basis 

and often considered the most important factors in spatial analysis used to determine the 

relationships linking landscape variables with water quality and the contaminant(s) in 

question; whether it is the source, causal mechanism, or the variability associated with 

diurnal, temporal, and spatial fluctuations.   

A case study in the Tri-State Mining District (Missouri, Kansas, and Oklahoma), used 

multi-temporal Landsat® imagery to characterize land use and land cover and quantify the 

relationship between landscape metrics and surface water quality (Xiao and Ji, 2007).  

Landscape characteristics were significantly correlated to stream water quality in mine 

waste-located watersheds, and affected the water quality as much as in agricultural or 

urban watersheds.  Regression analysis results showed landscape metrics could account 

for as much as 77% of the variance of water quality variables, suggesting that landscape 

metrics were useful in predicting water quality. The proportion of mine waste area 

accounted for <60% of the variance of heavy metal concentrations in stream water, 

suggesting that it is possible to predict water quality with only a single landscape metric; 

although the predicting power of single metric models would be limited.  Catchment 

characteristics along the riparian zone have also been used to predict chemical parameters 

in a GIS (Smart et al., 2001).  In particular, the parent material and geochemistry of the 

riparian zone, when combined with a simple hydrological flow path model, could be used to 

accurately predict stream water chemistry.  

Landscape and/or catchment characteristics have also been used to develop  

Hydrological Response Units (HRUs) in a GIS (Kouwen et al., 1993, Ocampo et al., 2006, 

Vigiak et al., 2006).  HRUs are individual units or subbasin groupings captured by 
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homogenous elements in relation to hydrologic responses.  Testing the practicability of 

defining hydrologic response units as combinations of soil, land use and topography for 

modeling infiltration at the hillslope and catchment scales has been attempted (Vigiak et al., 

2006).  Due to spatial heterogeneities of rainfall variability, canopy interception, soil 

sealing and infiltration, identifying hydrologic response units was difficult.  With the 

addition of chemical dynamics in landscape elements when identifying HRUs, Chemical 

Hydrologic Response Units (CHRUs) may be developed.  A GIS was coupled with 

hydrochemical software and synoptic water sampling and analysis to develop a new 

technology for the identification of water quality problems, one that identifies potential 

sources and addresses these sources before a substantive impact occurs (Kern and 

Stednick, 1993).  The method developed, Chemical-Hydrologic Resource Information 

System, enabled the user to visualize metal concentrations in space, identify stream 

segments probably below the water quality standard, and those predicted to exceed the 

standard.  CHRUs and GIS analysis has also been used to delineate spatial distribution in 

the Broel River Basin in Germany to compare model calculated chemical balances with 

measured output at gages (Bende et al., 1995). 

 The assistance of spatial analysis to identify sources and/or predict concentrations 

of selenium in a GIS has been attempted before.  A regression model used a GIS to identify 

and assess potential sources of selenium in the Kendrick Reclamation Project Area of 

Wyoming (See et al., 1992).  This area has a long history of selenium contamination 

showing effects on invertebrates, fish and terrestrial animals.  The model was developed 

using median selenium discharges from each subbasin as a dependent variable regressed 

on measured physical and chemical characteristics of the hydrologic subbasins as the 
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independent variables.  Results of this study indicated two things; one that soils with 

typical total selenium concentrations can supply large selenium discharges to tributary 

streams if irrigation intensity as measured by area of irrigated land and length to irrigation 

canals, is large.  The second is that the use of GIS-generated information for a regression 

model provided a method that generally defines areas that might constitute sources of 

selenium in streams.  In terms of selenium concentration prediction, a geostatistical case 

study was developed through the use of ordinary and ordinary lognormal kriging, and 

through Bayesian estimation for predicting the selenium concentration in soils using data 

that are subject to measurement error (Orton et al., 2009).   

 Statistics within the framework of a GIS or geostatistics are very useful and 

important in the analysis of numerical data in that it provides a graphical representation of 

the spatial data distribution. Spatial statistics are a set of exploratory techniques used to 

describe and model spatial distributions, patterns, processes and relationships (ESRI, 

2011).  Spatial statistics use the following in their mathematics: area, length, proximity, 

orientation, and spatial relationships.   

Traditional statistics is similarly the study of the collection, organization, analysis, 

and interpretation of data.   Statistical models describe how one or more variables are 

related to one or more variables.  Statistical tests can be applied to statistical models to 

help determine if a hypothesis is true or quantify evidence against a hypothesis being true. 

Despite the State’s efforts in water quality monitoring for Se in the surface waters of 

the Cache la Poudre River basin, no other data regarding potential sources, mobility or 

TMDL development could be found.  A better site characterization is needed, as well as a 

better understanding of the spatial extent of contamination in the Cache la Poudre River 
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basin.  A predictive model based on a landscape and catchment investigation for this region 

will provide data of source inputs (natural and anthropogenic), and landscape dynamics 

(e.g. slope, soils, geology, and land use) that contribute to the accumulation and transport 

mechanisms of Se.  Identifying point source inputs of selenium, such as wastewater 

treatment plants and mining operations, as well as non-point sources, such as selenium 

bearing rocks and soils can additionally be used in modeling techniques to observe the 

distribution of selenium concentrations in streams.   

The purpose of this study is to develop a modeling approach to predict Se 

concentrations using specific landscape properties and a statistical evaluation of a 

landscape assessment necessary for the characterization of the lower Cache la Poudre 

River watersheds.  The modeling approach could be applied in small to large watersheds, 

such as the 22.19 km² watershed of Spring Creek in Fort Collins, CO to the 4,895 km² 

watershed of the Cache la Poudre River in north-central Colorado (USGS, 2012a). 

 

1.5  Hypothesis and Objectives 

Although chemical transport modeling based on similar landscape properties and 

spatial analysis in a GIS for selenium and watershed management has been applied before, 

the need to understand dynamics within the Fort Collins regional environment and to be 

able to predict selenium concentrations in Spring Creek and Fossil Creek is important for 

management practices and potential TMDL development.  The study hypothesis is that a 

statistical model using spatial landscape elements can predict selenium concentrations in 

these surface waters. 
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Study objectives: 

1. Integrate a Geographic Information System (GIS) with the following landscape 

elements: elevation, land use land cover, soil pH, geology, irrigation, and 

hydrography data for application in selenium prediction and watershed assessment 

2. Develop a traditional statistical model using geospatial landscape data, streamflow, 

and precipitation to predict selenium concentrations in Spring Creek and Fossil 

Creek 

3. Develop a GIS spatially weighted statistical model using geospatial landscape data, 

streamflow, and precipitation to predict selenium concentrations in Spring Creek 

and Fossil Creek 
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CHAPTER 2 - METHODS 
 
 
 

2.1  Site Description 
 
Cache la Poudre River 

 The Cache la Poudre River Basin is the largest tributary drainage to the South Platte 

River Basin.  The headwaters begin in Rocky Mountain National Park in north-central 

Colorado as a high-gradient stream descending quickly in an easterly direction along 

Highway 14 in the “Poudre Canyon.”  The river exits the mountainous region at the mouth 

of the canyon near the town of Bellvue in a more gentle landscape of rolling to relatively 

flat high plains.  Flowing southeast through the cities of Fort Collins, Timnath and Windsor, 

the Cache la Poudre River ends at the confluence with the South Platte River east of the city 

of Greeley, Colorado (Figure 2).   

 

Study Area 

The study area is located near Fort Collins, Colorado.  The city of Fort Collins has a 

population of 143,986 (U.S. Census, 2010) with a semi-arid climate.  Elevation is roughly 

1,500 m above sea level, and the average yearly precipitation is 355 to 383 mm (WRCC, 

2012).  Areas of interest specifically are Spring Creek and Fossil Creek from Horsetooth 

Reservoir in the foothills at the western edge of Fort Collins to their confluences with the 

Cache la Poudre River southeast of Fort Collins and south of Timnath (Figure 2). 
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Figure 2 – Location map of the Cache la Poudre River and study area of Spring Creek and 
Fossil Creek near Fort Collins, Colorado (Data sources: USDA – NRCS Geospatial Data 
Gateway, USGS National Hydrography Dataset , National Atlas) 



23 
 

2.2  Water Quality and Streamflow  

Water Quality Data 

Water quality and streamflow data were organized into a database spreadsheet 

within Microsoft® Excel®.  The water quality sampling efforts conducted by the WQCD, 

which were used to list sections of the lower Cache la Poudre River watershed on the CWA 

303(d) Impaired Waters List, include the following: selenium (µg/L), hardness as CaCO3 

(mg/L), pH (s.u.), temperature (°C), dissolved oxygen (mg/L), location coordinate values 

for sampling stations, and the time and date of sampling measurements.  This particular 

dataset was provided by the WQCD and included sampling dates between January 2003 

and December 2008, and between March 2006 and December 2008 for Spring Creek and 

Fossil Creek, respectively (Hillegas, 2011).  This represents all the available data.  Within 

the study area, there are 3 sampling stations on Spring Creek and 2 sampling stations on 

Fossil Creek (Table 3; Figure 3). 

 

Streamflow Data 

Streamflow data were gathered by the City of Fort Collins Utilities Department and 

provided by the Department of Civil and Environmental Engineering at Colorado State 

University (Olson, Chris; personal communication, June 2012).  The location coordinate 

values, river stage (ft), river discharge (cfs), and the date of measurements were provided.   

Within the study area, there are 5 stream gauging stations on Spring Creek and 3 on Fossil 

Creek (Table 4; Figure 3).  Streamflow measurements are from January 2003 and July 2006, 

and between September 2006 and December 2008 for Spring Creek and Fossil Creek, 

respectively.  Much of the streamflow data are from February or March through October 
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Table 3 – Water quality sampling stations and locations on Spring Creek and Fossil Creek 

Colorado Department of Public Health and Environment Water Quality 
Sampling Stations 

Stream/River Location Latitude Longitude 

Spring Creek Shields Street 40.56242 -105.0956 

Spring Creek College Avenue 40.562478 -105.077309 

Spring Creek Edora Park 40.56467 -105.044916 

Fossil Creek College Avenue 40.51341 -105.07644 

Fossil Creek Trilby Road 40.494716 -105.051287 
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Figure 3 – Map of Colorado Department of Public Health and Environment water quality 
sampling stations and City of Fort Collins streamflow gauging stations on Spring Creek and 
Fossil Creek (Data sources: USDA – NRCS Geospatial Data Gateway, USGS National 
Hydrography Dataset) 
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Table 4 – Streamflow gauge stations on Spring Creek and Fossil Creek 

City of Fort Collins Streamflow Gauge Stations 

Gauge ID Stream/River Location Latitude Longitude 

6083 Spring Creek Taft Hill Road 40.551632 -105.11448 

6203 Spring Creek Center Avenue 40.564097 -105.08378 

6053 Spring Creek 
Burlington Northern Rail Road 

(BNRR) 
40.562655 -105.079607 

6163 Spring Creek Timberline Road 40.566550 -105.03930 

6093 Fossil Creek College Avenue 40.512928 -105.076858 

6293 Fossil Creek Fairway Estes Dam 40.49351 -104.991174 

6283 Fossil Creek Trilby Road 40.494716 -105.051287 
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or November.  Streamflow data are incomplete.  Missing streamflow values were estimated 

using the drainage-area ratio method (Emerson et. al., 2005).   

 

Precipitation Data 

Precipitation data were acquired from the National Oceanic and Atmospheric 

Administration’s National Climatic Data Center (NCDC, 2013).  Data from the NCDC 

includes daily precipitation measurements for Fort Collins.  The dates selected for this data 

correspond to the water quality sampling efforts for selenium, which were between 

January 2003 and July 2006, and between September 2006 and December 2008 for Spring 

Creek and Fossil Creek, respectively.   

 

2.3  Geographic Information System 

Data Sources 
 

A geospatial model was built using ArcGIS® Version 10.1 , ESRI®, within a 

Microsoft® Corporation Windows® 7 Home Premium based Hewlett-Packard® Company 

desktop computer.  Landscape element datasets used in the basin assessment for the Se 

prediction model were downloaded from a variety of sources (Table 5).   Soils data were 

accessed from the United States Department of Agriculture (USDA) - National Resources 

Conservation Service’s (NRCS) Soil Survey Geographic Database (SSURGO).  Soils pH layer 

can then be retrieved, which is found in the soil chemical properties within the attribute 

folders of the soils database.  Geology and Land Use Land Cover datasets were downloaded 

from the USDA – NRCS Geospatial Data Gateway.  National Elevation Dataset (NED) 1/3 arc 

second (approximately 10m), also referred to as a Digital Elevation Model (DEM), was 



28 
 

 

 

 

 

 

 

 

Table 5 – Landscape elements used in GIS model with data source and website. 

Geographic Information Datasets 

Landscape 
Elements 

Data Source Website 

Soils 
USDA-NRCS SSURGO                                 

(Soil Survey Geographic Database) 
http://websoilsurvey.sc.egov.
usda.gov/App/HomePage.htm  

Geology 
USDA-NRCS                                  

Geospatial Data Gateway 
http://datagateway.nrcs.usda.

gov/  

Land Use 
Land Cover 

USDA-NRCS                                     
Geospatial Data Gateway 

http://datagateway.nrcs.usda.
gov/ 

Elevation 
USGS                                                       

Seamless Data Warehouse 
http://nationalmap.gov/viewe

r.html 

Hydrography 
USGS                                                   

National Hydrography Dataset 
http://nhd.usgs.gov/data.html 

Irrigation 
CWCB - DWR - CDSS                      

(Colorado Decision Support 
Systems) 

http://cdss.state.co.us/GIS/Pa
ges/Division1SouthPlatte.aspx 

 

  

http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
http://datagateway.nrcs.usda.gov/
http://datagateway.nrcs.usda.gov/
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accessed from the United States Geological Survey’s (USGS) Seamless Data Warehouse.  

Hydrography data came from the USGS National Hydrography Dataset (NHD) database.  

The Colorado Water Conservation Board (CWCB) and Colorado Water Resource’s water 

management system, Colorado’s Decision Support System (CDDS), was used to attain the 

most recent irrigated land coverage.  Irrigation geospatial data consists of polygons 

representing land areas that are consistently irrigated or watered.   

 

Watershed Delineation 

Geospatial landscape assessment involves the delineation of Spring Creek and Fossil 

Creeks’ watersheds.  Spring Creek is located centrally in Fort Collins, whereas Fossil Creek 

is located on the southern outskirts of Fort Collins and has additional natural spaces and 

agricultural land.  Original source DEM raster layer was processed using the Fill, Flow 

Direction, and Flow Accumulation Tools within Spatial Analyst, an extension of ArcMap, 

creating several raster hydrology layers.  Two Pour Point vector (point) shapefiles were 

created, one for each watershed, as well as the specification of the pour points themselves.  

The final step in creating the watersheds was to run the Watershed Tool with the Flow 

Direction and Pour Point layers, thereby delineating the watersheds (Figure 4).  Raster 

based watersheds were then converted into vector based polygon features, allowing the 

imported vector landscape element layers to be analyzed with spatial statistics. 
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Figure 4 – Map of Spring Creek and Fossil Creek delineated watershed boundaries (Data 
sources: USDA – NRCS Geospatial Data Gateway, USGS National Hydrography Dataset) 
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Sub-watershed delineation 

Delineation of sub-basin watersheds is needed for an approach and future 

development of a selenium prediction model using CHRUs.  Note that the term sub-basin 

watershed refers to the smaller delineated watershed boundaries of CHRUs.  Not only can 

these sub-basin watersheds be linked chemically and hydrologically for flow path 

modeling, but the statistical assessment of existing landscape elements identified spatially 

by the use of sub-basin watersheds is useful for characterizing the study area, as well as for 

determining the most influential landscape element(s) on surface water selenium 

concentrations.  In order to delineate sub-basin watersheds within the Spring Creek and 

Fossil Creek drainage basins, a series of terrain preprocessing tools were run to generate 

stream layers.  There are several stream tools in the Arc Map extension Arc Hydro Toolbox 

under the Terrain Preprocessing tool set, which aid in the development of watershed 

delineations, such as the Stream Definition, Stream Segmentation, and Catchment Grid 

Delineation tools.  Catchment Polygon Processing tool, the last step in watershed  

delineation, was run creating a polygon feature class enabling the application of spatial 

statistics and data extraction techniques.   

There were 13 sub-basin watersheds and 21 sub-basin watersheds delineated in 

Spring Creek and Fossil Creek, respectively (Figure 5).  Sub-watershed delineations also 

included the creation of separate watershed basin layers that captured all the land area 

upstream of each CDPHE water quality sampling stations (Figure 6).  Note that the term 

sub-watershed refers to the medium sized delineated watershed boundaries upstream of 

the CDPHE stations.  Through this process, three sub-watershed layers were created within 

the Spring Creek study area and two sub-watershed layers were created within in the  
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Figure 5 - Map of sub-basin watershed boundaries within Spring Creek and Fossil Creek 
watershed boundaries.  Numbers denote sub-basin watershed labels. (Data source: USDA – 
NRCS Geospatial Data Gateway) 
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Figure 6 – Map of sub-watershed layers delineated upstream of each CDPHE water quality 
sampling station for Spring Creek and Fossil Creek with CDPHE water quality sampling 
stations (Data source: USDA – NRCS Geospatial Data Gateway) 
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Fossil Creek study area with respect to the number of CDPHE water quality sampling 

stations (Table 3).  Although Figure 6 shows the sub-watershed layers overlayed on top of 

each other, each colored layer (e.g. sub-watershed layer) includes all areas upstream of its’ 

respective water quality sampling station.  It is important to delineate the spatial area 

upstream of each water quality sampling station for statistical purposes with respect to 

sampled selenium concentrations. 

 

A. National Hydrography Dataset: 

Originally, the NHD data set consisted of many types of flow lines.  Because NHD 

data were clipped to the watersheds of Spring Creek and Fossil Creek in north-central 

Colorado, only the data that exists in this geographical location was actually used and 

needed.  For example, there was a flow line type of Coastline, which is not applicable here. 

The NHD data within Spring Creek and Fossil Creeks watersheds consists of five flow line 

types with their associated class cell values and class name.   Because these 5 flow line 

types are not all necessary for modeling or assessment purposes, they were reclassified 

into the two flow line types of Stream/river and Canal/ditch (Table 6.)  The reclassified 

flow line types are also meant to replicate landscape elements used to assess potential 

selenium sources in a similar study in the Kendrick Reclamation Project Area in Wyoming 

(See et al., 1992). 

 

B. Soil Survey Geographic Database: 

The surface soil pH dataset was retrieved through the Soil Survey Geographic 

Database (SSURGO).  Using the Soil Data Viewer 6.0 interface, an add-in to ArcMap, the soil  
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Table 6 – Original and reclassified NHD flow line types for Spring Creek and Fossil Creek 
watersheds from USGS, 2010 

Flow Line Types and Reclassification 

  Cell Value Class Name 

Original Flow Line 
Types 

334 Connector 

336 Canal/ditch 

428 Pipeline 

460 Stream/river 

558 Artificial Path 

Reclassified Flow 
Line Types 

460 Stream/river 

336 Canal/ditch 
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database can be accessed for many different soil properties and characteristics.  A map 

form of the data can be generated, as well as “User Interface Descriptions” and an 

“Aggregation Report” (Appendix A and B).  The soil pH dataset had 7 pH values with a 

range of 6.7 to 8.5 s.u.  Since 7 soil pH values would make statistical evaluations of 

landscape element parameters complex, the dataset was reclassified using the category 

class format in which 3 soil pH category classes were developed (Table 7).  Because 

sediment pH has been found to be a key factor in the biochemistry of selenium in relation 

to its solubility, the separation of the higher pH values into 2 alkaline classes (slightly 

alkaline and moderate to strong alkaline), creating 3 classes instead of 2, was done to 

better differentiate the effect soil pH may have on surface water selenium concentrations 

(Masscheleyn et al., 1990).  The soil pH classes were based on USDA’s NRCS soil survey 

classification (USDA, 1993) (Appendix C). 

 

C. Land Use Land Cover Dataset: 

There were 15 land use land cover types represented in the existing dataset in the 

Spring Creek and Fossil Creek watersheds.  Because 15 classes would make statistical 

evaluations of landscape element parameters complex, the dataset was reclassified into 5 

classes (Table 8).  Land use land cover thematic classes are categorized by the National 

Land Cover Database (NLCD), which serves as the definitive Landsat – based, 30-meter 

resolution, land cover database for the nation; whose products are created by the Multi-

Resolution Land Characteristics Consortium (USGS, 2012c; MRLC, 2012).  The land use land 

cover classification key was attached with the original downloaded data  
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Table 7 –SSURGO soil pH values found in the Spring Creek and Fossil Creek watersheds 
with modified class categories from USDA, 1993 

Soil pH Values and Category Classes 

pH Value (s.u.) Class 

6.7 - 7.1 Neutral 

7.2 - 8.1 Slightly Alkaline 

8.2 - 8.5 Moderate to Strong Alkaline 
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Table 8 – Land Use Land Cover original and reclassified classes in the Spring Creek and 
Fossil Creek watersheds from MRLC, 2012  

Land Use Land Cover Original and Reclassified Classes 

  Cell Value Class Name 

Original Land 
Use Land 

Cover Classes 

11 Open Water 

21 Developed, Open Space 

22 Developed, Low Intensity 

23 Developed, Medium Intensity 

24 Developed, High Intensity 

31 Barren Land (Rock, Sand, Clay) 

41 Deciduous Forest 

42 Evergreen Forest 

43 Mixed Forest 

52 Shrub/Scrub 

71 Grassland/Herbaceous 

81 Pasture/Hay 

82 Cultivated Crops 

90 Woody Wetlands 

95 Emergent Herbaceous Wetlands 

Reclassified 
Land Use 

Land Cover 
Classes 

11 Open Water 

21 Developed 

41 Vegetated 

82 Agriculture/Barren 

90 Wetlands 
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(Appendix D).  Out of the 15 classes, there were only 5 completely distinct class types (e.g. 

developed, vegetated, water).  Basically, any land use land cover class that exhibits similar 

characteristics was grouped together into one class.  For example, the original land use 

land cover classes showed 4 different classes of “Developed,” which were separated based 

on severity.  Open space, low intensity, medium intensity, and high intensity “Developed” 

classes were reclassified into one singular “Developed” class.  All vegetation type classes 

including shrub/scrub and grassland/herbaceous classes were grouped together.  

Similarly, all agriculture or non-vegetated classes including barren land, pasture/hay, and 

cultivated crops were grouped together into the agriculture/barren class.  It is important to 

group the agricultural and barren type lands together as these have been shown in arid to 

semi-arid lands, such as the Fort Collins study area, to either be selenium contaminated or 

contribute to (Seiler et al., 1999).   

 

ModelBuilder and Geospatial Variables 

Geospatial statistics were used to characterize the landscape within the study area 

of Spring Creek and Fossil Creeks’ watersheds.  Using ArcMap’s ModelBuilder, a series of 

analysis tools were completed in one step, which included several overlay and statistical 

processing tools (Figure 7).  ModelBuilder is an application used to create, edit, and 

manage models, similarly known as workflows that string together sequences of 

geoprocessing tools, feeding the output of one tool into another tool as input (ESRI, 2012).  

The landscape parameter layers, which are the previously reclassified landscape element 

layers, were added to ModelBuilder along with spatial statistical processing tools resulting 

in geospatial variables (Table 9).   
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Figure 7 – ModelBuilder layout showing workflow from left to right from top image to 
bottom image 
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Table 9 –Landscape elements, derived parameters, spatial statistic types and geospatial 
variables 

Geospatial Variable Analysis 

 Landscape 
Element 

Landscape Parameter Spatial 
Statistic Type 

Geospatial Variable 

Geology Shale Calculate Area  Area of shale 

Irrigation Irrigated Land Calculate Area  Area irrigated 

Land Use Land 
Cover 

Ag-Barren/Vegetated/ 
Developed/Wetland/   

Open Water 
Calculate Area  

Area of Ag-Barren/ 
Vegetated/Developed/ 
Wetland/Open Water 

Soils 
pH                    

Acidic/Neutral/Alkaline 
Calculate Area  

Area of Neutral/Slightly 
Alkaline/Moderate to 

Strongly Alkaline/Other 

Hydrography Streams Line Statistics 
Length of 

Streams/Canals 
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The following details the steps applied in the ModelBuilder environment: 

1. Watershed layers were added as inputs and intersected with landscape sub-

parameter layers, which were also added as inputs 

2. The union tools were added as inputs, which were then strung between the 

resulting  union output layers and the originally added input watershed layers 

3. All of the successive processing steps involved the addition of attribute fields as 

inputs followed by spatial statistical types, such as area and length 

 

2.4   Statistical Model 

 Selenium Prediction Statistical Model 

Relationships between selenium concentrations, geospatial variables, streamflow, 

and precipitation were examined through application of a statistical package.  Multiple 

linear regression analysis was performed using Microsoft® Excel software’s add-in 

“Anaylsis Toolpak” as a prediction model for surface water selenium concentrations in 

Spring Creek and Fossil Creek.  The general form for a multiple liner regression model is as 

follows (adapted from USGS, 1991): 

yi = β0 + β1 x1 + β2 x2 + … + βk xk + ε 

where     y       is the response variable and i is the number of observations 

     β0     is the intercept 

     β1     is the slope coefficient for the first explanatory variable 

     β2     is the slope coefficient for the second explanatory variable 

     βk     is the slope coefficient for the kth explanatory variable, and 

     xi-k   are the independent variables 
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     ε       is the remaining unexplained noise in the data (the error). 

 

Dependent variables consisted of the 85th percentile values of ranked selenium 

concentrations from 3 CDPHE water quality stations on Spring Creek and 2 CDPHE water 

quality stations on Fossil Creek resulting in a total of 5 dependent variable values.  17 

exploratory variables consisted of 15 spatial variables determined geo-statistically, 

streamflow, and precipitation.   Spatial variables were extracted from the GIS for each 

watershed drainage basin layer upstream of each water quality sampling station resulting 

in a total of 5 values for each of the 15 geospatial variables (Figure 6).  The 5 streamflow 

stage values applied in the model were first organized by date and location to correspond 

with CDPHE selenium water quality sampling efforts.  Secondly, streamflow values were 

developed from averaging the hourly measured stage values between 8:00am and 6:00pm 

for each day CDPHE water quality samples were taken, which were also sampled between 

the times of 8:00am and 6:00pm.  Lastly, these values were then averaged at each location 

with respect to the 5 CDPHE water quality stations resulting in 5 independent streamflow 

values.  Precipitation values were first organized by date to correspond in time 

(day/month/year) with selenium water quality samples, which were organized by the 5 

water quality stations.  The precipitation dataset was reduced by averaging the daily 

precipitation values from each of the 5 sets of values resulting in 5 individual values for 

inclusion into the statistical model.  

A Pearson product-moment correlation analysis was applied with the dependent 

and exploratory variables for examination of relationships.  Pearson correlation coefficient 

(Pearson r) allowed the determination of strength and direction of a relationship between 
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two variables.  This helped to enable a reduction of exploratory variables exhibiting the 

strongest relationships with selenium for inclusion into various multiple regression models 

before determining the best fitting multiple regression model.  The multiple regression 

model was assessed using the adjusted coefficient of determination (R2), which provides a 

measure of how well results are likely to be predicted by the statistical model (Draper and 

Smith, 1998).  In addition, an F-test was computed for the coefficients associated with each 

exploratory variable to test the overall significance between the observed and predicted 

selenium values.   

  

Statistical Model Validation 

 To evaluate the performance of the statistical model, the Nash–Sutcliffe efficiency 

(NSE) method was used.  The NSE was applied to the observed and predicted values for 

model assessment.  The NSE has been broadly used in water quality assessment and 

modeling studies (Motovilov, et al., 1999, Moriasi, et al., 2007, Prasad, et al., 2011).  Nash–

Sutcliffe efficiency is a normalized statistical measure that explains the model efficiency as 

a fraction of the observed value variance that is reproduced by the model (Nash and 

Sutcliffe, 1970).  NSE specifies the fit of observed values compared to the predicted values 

in a 1:1 line.  NSE is computed as shown in equation 1: 

𝑁𝑆𝐸 = 1 − [
∑ (𝑜𝑖 − 𝑝𝑖)

2𝑛
𝑖

∑ (𝑜𝑖 − 𝑜𝑎𝑣𝑔)
2𝑛

𝑖

] 

where oi is the observed value, pi is the predicted value and oavg is the mean of the observed 

data (Prasad, et al., 2011).  NSE ranges between -∞ and 1.0.  Values between 0.0 and 1.0 are 

considered acceptable levels of model performance, whereas values < 0.0 indicate that the 
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mean observed value is a better indicator than the predicted value, which indicates 

unacceptable performance (Moriasi et al., 2007). 

 

2.5   GIS Statistical Model 

GIS Selenium Prediction Statistical Model 

Relationships between selenium concentrations, geospatial variables, streamflow, 

and precipitation were explored in a Geographic Information System environment.  Within 

the GIS, Ordinary Least Squares (OLS) regression was a necessary step in building a 

properly specified spatial regression model for use in Geographic Weighted Regression 

(GWR).  OLS was performed as a prediction model for surface water selenium 

concentrations in Spring Creek and Fossil Creek, but more importantly as a statistical tool 

for identifying exploratory variable(s) for inclusion in a GWR model.  OLS is a global 

regression model, which computes a single equation calibrated using data from all features, 

which assumes the relationships between the dependent variable and exploratory 

variable(s) are static or fixed.  GWR is a local regression model, which computes an 

equation for every feature in the dataset where each equation is calibrated using data from 

nearby features thereby allowing relationships to vary across the study area.  The general 

form for OLS regression is identical to what was presented for multiple linear regression.  

With OLS regression, the actual magnitude of a response variable is modeled as a function 

of the magnitudes of one or more continuous explanatory variables; however, it was the 

probability of being in one of the two response groups that is modeled when the response 

is a binary categorical variable (USGS, 1991). 



46 
 

OLS regression was performed using the identical dependent variables applied in 

the multiple regression model, but an area weight was applied to the exploratory variables 

to account for the spatial aspects of nested sub-watersheds overlaying each other.  

Dependent variables consisted of 5 selenium concentration values determined from the 

85th percentile of ranked selenium concentrations from the water quality stations.  

Exploratory variables consisted of 15 area weighted geospatial variables, streamflow, and 

precipitation, which were developed for each watershed drainage basin layer upstream of 

each CDPHE water quality station resulting in a total of 5 values for each variable.  Similar 

to the Microsoft® Excel multiple regression modeling efforts, multiple OLS regression 

model runs were completed by inserting and deleting exploratory variables to determine 

the best fitting model. 

 

OLS Statistical Model Assessment and Validation 

 A summary and diagnostics report was written as output after OLS processing is 

completed.  The components of the OLS summary and diagnostics reports help to 

determine model performance and model significance among other model validity 

measures.  There are 6 checks that must be assessed and met in determining a properly 

specified model before moving on to GWR (ESRI, 2013).   

1. Model performance - The OLS model was assessed for performance using a 

coefficient of determination (R2).   

2. Statistically significant coefficients - Coefficients of explanatory variable(s) were 

assessed by the Probability and Robust Probability (p-value).   
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3. Defensible variable relationships - Coefficients of explanatory variable(s) were 

assessed for the proper type of relationship expected  

4. No multicollinearity - Redundancy among variables was assessed by the Variance 

Inflations Factor (VIF)  

5. Normal distributed residuals - Model bias was assessed by the Jarque-Bera statistic.   

6. Randomly distributed model residuals - Residual spatial autocorrelation was 

assessed by running the Spatial Autocorrelation (Moran’s I) tool. 

Overall model statistical significance was assessed by the Joint F-Statistic and Join Wald 

Statistic (ESRI, 2013).  

  A Geographic Weighted Regression model was then developed using the 

statistically significant exploratory variable(s) from the OLS results, which was were 

shown to provide a properly specified model for use in GWR.  GWR is used to better refine 

results first obtained from the OLS regression model with the addition of a regression 

equation fit to every feature in the dataset.  Furthermore, the regression equations were 

calibrated from nearby features and the associated equations allowing relationship to vary 

across the study area.  The GWR model was assessed using the adjusted coefficient of 

determination (R2) and compared with the OLS regression results. 
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CHAPTER 3 – RESULTS 
 
 
 

3.1  Overview  
 

A selenium assessment study was performed using surface water quality data taken 

from 3 sampling stations on Spring Creek and 2 sampling stations on Fossil Creek of the 

Cache la Poudre River basin in Fort Collins, Colorado between the years of 2003 and 2008.    

This is the most recent data.  The 2012 Update to the 2010 305(b) Report does not indicate 

any new or revised water quality assessments for Spring Creek or Fossil Creek.  

Additionally, the 2014 Update to the 2012 305(b) Report was cancelled.  A GIS was 

developed with the following landscape elements: elevation, land use land cover, soil pH, 

geology, irrigation, and hydrography to predict the 85th percentile selenium concentration.  

Traditional and GIS statistical models were developed to predict selenium concentrations 

in Spring Creek and Fossil Creek.   

 

3.2  GIS Cartographic Display of Landscape Elements 

Cartographic maps of the geospatial data were created for data extraction and 

application in statistical models, as well for spatial assessment and visualization purposes.  

The following maps of landscape elements and parameters include: irrigation (Figure 8), 

geology (Figure 9), land use land cover (Figure 10), soil pH (Figure 11), and hydrography 

(Figure 12).   
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Figure 8 – Map of irrigated parcels within Spring Creek and Fossil Creek watershed 
boundaries (Data source: CWCB – DWR – CDSS Colorado Decision Support Systems) 
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Figure 9 – Map of Cretaceous age geology rock type shale within Spring Creek and Fossil 
Creek watershed boundaries (Data source: USDA – NRCS Geospatial Data Gateway) 
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Figure 10 – Map of land cover data classes within Spring Creek and Fossil Creek watershed 
boundaries (Data source: USDA – NRCS Geospatial Data Gateway) 
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Figure 11 – Map of soil pH values from the soil surface of 0 cm to 122 cm depth within 
Spring Creek and Fossil Creek watershed boundaries (Data source: USDA – NRCS – SSURGO 
Soil Survey Geographic Database) 
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Figure 12 – Map of hydrography flowline types within Spring Creek and Fossil Creek 
watershed boundaries (Data source: USGS National Hydrography Dataset) 
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3.3  Statistical Analysis of Se Concentrations 

Surface water selenium concentrations for Spring Creek were plotted over time 

(Figures 13 to 15) and summary statistics prepared (Table 10).  Out of the 25 samples 

taken at the Shields Street station, 19 samples were higher than the Colorado Table Value 

Standard (TVS) of 4.6µg/L.  The College Avenue and Edora Park sampling station each had 

9 samples taken, all of which were below the Colorado TVS.   

Surface water selenium concentrations for Fossil Creek were plotted over time 

(Figures 16 and 17) and summary statistics were prepared (Table 11).  Out of the 10 

samples taken at the College Avenue station, 8 samples were higher than the Colorado TVS 

and out of the 10 samples taken at the Trilby Road station, 5 samples were above the 

Colorado TVS.   

Although many selenium concentration values were above the Colorado chronic 

Table Value Standard of 4.6µg/L, it is the 85th percentile of ranked data that determines the 

standard and whether or not the stream reach in question is listed as impaired (CDPHE, 

2009).  Selenium data were ranked to determine the 85th percentile at each sampling 

station (Figure 18).  The 85th percentile values were also plotted in a bar graph with the 

Colorado chronic TVS for selenium indicated to reflect which stream segments are not 

meeting the current selenium water quality standard (Figure 19).  The bar graph shows 

that the 85th percentile of ranked selenium data is 8.2µg/L for the Spring Creek at Shields 

Street sampling station.  Spring Creek at College Avenue and Edora Park show that the 85th 

percentile of ranked data is below the chronic TVS at 2.7µg/L and 2.1µg/L, respectively.  

The 85th percentile for Fossil Creek at College Avenue and at Trilby Road is 13.7µg/L, 

higher than the chronic TVS.    
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Figure 13 – Plot of selenium concentrations over time from water quality samples taken 
from Spring Creek at Shields Street 

 
Figure 14 - Plot of selenium concentrations over time from water quality samples taken 
from Spring Creek at College Avenue 

 
Figure 15 – Plot of selenium concentrations over time from water quality samples taken 
from Spring Creek at Edora Park 
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Table 10 – Summary statistics of selenium concentrations from Spring Creek 

Statistic 
Spring Creek 
Shields Street 

Spring Creek 
College Avenue 

Spring Creek 
Edora Park 

Number of Samples 25 9 9 

Mean (µg/L) 6.18 1.70 1.39 

Median (µg/L) 5.30 1.32 1.25 

Maximum (µg/L) 14.10 2.86 1.99 

Minimum (µg/L) 2.10 1.00 1.00 

Standard Deviation (µg/L) 2.84 0.67 0.44 

Skewness  1.06 0.72 0.60 
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Figure 16 – Plot of selenium concentrations over time from water quality samples taken 
from Fossil Creek at College Avenue 

 
Figure 17 – Plot of selenium concentrations over time from water quality samples taken 
from Fossil Creek at Trilby Road 
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Table 11 – Summary statistics of selenium concentrations from Fossil Creek 

Statistic 
Fossil Creek 

College Avenue 
Fossil Creek 
Trilby Road 

Number of Samples 10.00 10.00 

Mean (µg/L) 10.19 8.58 

Median (µg/L) 6.34 5.08 

Maximum (µg/L) 29.76 21.17 

Minimum (µg/L) 2.20 1.03 

Standard Deviation (µg/L) 8.89 7.34 

Skewness  1.62 0.97 
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Figure 18 – Probability distribution functions.  Cumulative frequency vs. selenium 
concentrations with 85th percentile concentrations identified 

 

 

Figure 19 – Histogram depicting the 85th percentile of selenium concentrations with the 
CDPHE chronic selenium TVS identified 
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3.4  Geospatial Statistical Analysis of Landscape Parameters 

Geospatial statistical analysis was performed using ModelBuilder in a GIS 

environment.  As an approach to a selenium prediction model using CHRUs to predict 

selenium upstream of any water quality monitoring station, statistical processing in 

ModelBuilder workflows were run with landscape characteristics on sub-basin watershed 

layers.  A total of 13 sub-basin watersheds were delineated in Spring Creek and a total of 21 

sub-basin watersheds were delineated in Fossil Creek (Figure 5).  Results of the statistical 

processing tools and Model Builder workflows were totaled and are listed by landscape 

parameters for Spring Creek and Fossil Creek sub-watersheds reflected by the 5 CDPHE 

water quality sampling station locations within Spring Creek and Fossil Creek (Table 12).  

The landscape parameter statistical values were area-weighted for the same 5 sub-

watersheds of Spring Creek and Fossil Creek for inclusion in the GIS models (Table 13). 

 

3.5  Statistical Model Results 

Relationships between selenium concentrations, geospatial variables, streamflow, 

and precipitation were examined by a correlation analysis (Table 14 and Table 15).  The 

Pearson correlation coefficient (Pearson r) allowed the determination of strength and 

direction of a relationship between two variables.  Variables with a Pearson correlation 

coefficient between -0.8 and -1.0, and between 0.8 and 1.0 were considered to have a 

strong relationship with selenium.  A total of 8 exploratory variables exhibited a Pearson r 

between -0.8 and -1.0, and between 0.8 and 1.0 which included: shale (0.847), agriculture 

(0.869), vegetated (0.883), pH_mod_alk (0.888), stream (0.831), water (-0.865), pH_neutral 

(-0.917), and pH_other (-0.808). 



61 
 

 

 

 

 

 

 

 

Table 12 – Landscape parameter values for Spring Creek and Fossil Creek sub-watersheds. 

Landscape Parameters 
Sub - Watersheds 

SC 
Shields 

SC 
College 

SC 
Edora 

FC 
College 

FC 
Trilby 

 Area (sq km) 12.02 17.34 21.88 27.36 38.16 

Irrigated Parcels (sq km) 1.16 1.39 1.30 1.37 2.38 

Shale (sq km) 7.64 10.05 9.21 23.55 30.17 

Land Cover       
(sq km) 

Ag/Barren 1.41 1.93 1.77 6.46 7.94 

Developed 6.24 11.38 14.97 3.44 11.62 

Open Water 0.14 0.16 0.14 0.03 0.09 

Vegetated 3.64 4.78 4.38 16.65 17.22 

Wetland 0.58 0.67 0.62 0.78 1.28 

Soil pH,  0 to 
122cm deep 

(Standard Units 
grouped) (sq km)                                                     

Slightly Alkaline 11.40 17.34 21.13 22.33 31.04 

Moderate to Strongly Alkaline 0.07 0.11 0.10 5.01 6.81 

Neutral 0.21 0.23 0.21 0.00 0.00 

Other 0.34 0.48 0.44 0.01 0.31 

NHD Flowline (sum of km) 20.70 37.43 41.35 52.58 72.18 

NHD Flowline  
(km) 

Canal/Ditch 9.77 22.11 24.30 9.59 16.24 

Stream/River 10.93 15.32 17.05 42.99 55.94 
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Table 13 – Landscape parameter values are area-weighted for Spring Creek and Fossil 
Creek sub-watersheds.  Total area values are not weighted.  

Landscape Parameters 
Sub-Basin Watershed  

SC 
Shields 

SC 
College 

SC 
Edora 

FC 
College 

FC 
Trilby 

 Area (sq km) 12.02 17.34 21.88 27.36 38.16 

Irrigated Parcels (sq km) 0.13 0.10 0.08 0.07 0.12 

Shale (sq km) 1.11 1.11 0.88 5.76 4.56 

Land Cover        
(sq km) 

Ag/Barren 0.2 0.21 0.17 1.68 1.30 

Developed 0.72 1.20 1.58 0.77 1.09 

Open Water 0.03 0.02 0.02 0.00 0.01 

Vegetated 0.69 0.64 0.50 3.88 2.82 

Wetland 0.08 0.06 0.05 0.12 0.12 

Soil pH,  0 to 
120cm deep 

(Standard Units  
grouped) (sq km)                                                     

Slightly Alkaline 1.62 2.03 2.25 5.50 4.53 

Moderate to Strongly Alkaline 0.01 0.02 0.01 0.96 0.80 

Neutral 0.02 0.02 0.01 0.00 0.00 

Other 0.06 0.06 0.05 0.00 0.02 

NHD Flowline (sum of km) 2.56 3.97 4.14 11.25 9.31 

NHD Flowline  
(km) 

Canal/Ditch 0.92 2.38 2.40 1.78 1.73 

Stream/River 1.63 1.59 1.74 9.47 7.58 
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Table 14 – Correlation analysis output with Pearson coefficients indicated in bold and 
underlined for strong variable relationships with selenium 

 
  
Table 15 – Continuation of the correlation analysis output  

 
 

 
 

 
  

Se_85th Precip_mm Staff Gauge_m Area Irigation Shale Agriculture Developed Water

Se_85th 1.000

Precip_mm 0.012 1.000

Staff Gauge_m 0.626 -0.433 1.000

Area 0.642 -0.632 0.953 1.000

Irigation 0.541 -0.410 0.959 0.883 1.000

Shale 0.847 -0.469 0.884 0.938 0.827 1.000

Agriculture 0.869 -0.455 0.856 0.923 0.788 0.998 1.000

Developed -0.626 -0.398 0.213 0.133 0.269 -0.197 -0.251 1.000

Water -0.865 0.296 -0.470 -0.630 -0.315 -0.792 -0.831 0.628 1.000

Vegetated 0.883 -0.458 0.780 0.880 0.694 0.979 0.990 -0.348 -0.898

Wetland 0.671 -0.395 0.970 0.918 0.986 0.905 0.876 0.116 -0.464

pH_slight_alk 0.482 -0.738 0.927 0.980 0.878 0.864 0.840 0.302 -0.502

pH_mod_alk 0.888 -0.404 0.865 0.916 0.795 0.996 0.998 -0.263 -0.825

pH_neutr -0.917 0.377 -0.764 -0.854 -0.654 -0.963 -0.978 0.399 0.923

pH_other -0.808 0.064 -0.208 -0.366 -0.044 -0.586 -0.639 0.810 0.952

Flowline 0.591 -0.707 0.926 0.992 0.878 0.927 0.909 0.161 -0.604

Canal -0.766 -0.544 -0.016 -0.002 0.056 -0.312 -0.356 0.926 0.619

Stream 0.831 -0.493 0.895 0.954 0.824 0.998 0.996 -0.163 -0.793

Vegetated Wetland pH_slight_alk pH_mod_alk pH_neutr pH_other Flowline Canal Stream

Se_85th

Precip_mm

Staff Gauge_m

Area

Irigation

Shale

Agriculture

Developed

Water

Vegetated 1.000

Wetland 0.799 1.000

pH_slight_alk 0.788 0.885 1.000

pH_mod_alk 0.984 0.883 0.826 1.000

pH_neutr -0.993 -0.768 -0.746 -0.978 1.000

pH_other -0.732 -0.210 -0.214 -0.639 0.779 1.000

Flowline 0.868 0.906 0.989 0.895 -0.828 -0.331 1.000

Canal -0.415 -0.087 0.193 -0.388 0.487 0.769 0.063 1.000

Stream 0.977 0.901 0.884 0.993 -0.963 -0.582 0.940 -0.282 1.000
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A multiple linear regression analysis was performed using Microsoft® Excel as a 

prediction model for the 85th percentile surface water selenium concentrations in Spring 

Creek and Fossil Creek (Table 16).  Different combinations of the strongly correlated 

variables were applied in a regression analysis before determining the best fitting multiple 

regression model. 

A combination of 3 variables including pH_mod_alk (area of moderate to strongly 

alkaline soils) Pearson r = 0.888, stream (length of streams) Pearson r = 0.831, and shale 

(area of shale) Pearson r = 0.847, provided the best fit model with an adjusted R2 value of 

0.99, and a p-value of 0.01.  ANOVA output for Significance F is 0.012.  Regression 

coefficients for Intercept, pH_mod_alk, stream, and shale are 24.038, 9.516, -0.782, -1.039, 

respectively.  P-values for the regression coefficients of Intercept, pH_mod_alk, stream, and 

shale are 0.01, 0.01, 0.03, and 0.06, respectively.  A summary of the regression coefficients 

in a fitted line is as follows: 

[𝑆𝑒 µ𝑔/𝐿 = 24.038 + 9.516(𝐴𝐿𝐾) − 0.782(𝑆𝑇𝑅) − 1.039(𝑆𝐻𝐿)] 

ALK = area (km2) of moderate to strongly alkaline soils 

STR = length (km) of streams  

SHL = area (km2) of shale 

 

Statistical Model Validation Results 

 The Nash–Sutcliffe efficiency (NSE) method was used to evaluate the performance of 

the statistical model.  NSE was applied to the observed and predicted values for model 

assessment (Table 20).  Calculated NSE coefficient of 0.90 for SC Shields, 0.99 for SC 

College, 0.99 for SC Edora, 0.99 for FC College, 0.99 for FC Trilby, and 0.99 for the NSE total  
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Table 16 – Multiple regression dependent and independent variables  

Variable 
Type 

Regression Model Variables 
Sub - Watersheds  

SC 
Shields 

SC 
College 

SC 
Edora 

FC 
College 

FC 
Trilby 

y Selenium (µg/L) 8.20 2.70 2.10 13.70 13.70 

x Shale (sq km) 7.64 10.05 9.21 23.55 30.17 

x 

Land Cover (sq km) 

Ag/Barren 1.41 1.93 1.77 6.46 7.94 

x Vegetated 3.64 4.78 4.38 16.65 17.22 

x Open Water 0.14 0.16 0.14 0.03 0.09 

x Soil pH,  0 to 122cm 
deep (Standard 
Units grouped)      

(sq km)                                                     

Mod. to Str. Alkaline 0.07 0.11 0.10 5.01 6.81 

x Neutral 0.21 0.23 0.21 0.00 0.00 

x Other 0.34 0.48 0.44 0.01 0.31 

x NHD Flowline  (km) Stream/River 10.93 15.32 17.05 42.99 55.94 
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indicate an acceptable level of model performance for each individual sub-watershed 

predictions as well as for the overall model.  

 

3.6  GIS Statistical Model Results 

Relationships between selenium concentrations, geospatial variables, streamflow, 

and precipitation were explored in a Geographic Information System environment. 

Ordinary Least Squares regression was performed as a spatial prediction model for surface 

water selenium concentrations in Spring Creek and Fossil Creek, which is a necessary step 

in building a properly specified spatial regression model for use in Geographic Weighted 

Regression.  Unlike the multiple regression model in Microsoft® Excel, the OLS regression 

model was developed using area-weighted variables (Table 13).   

Similar to the Excel multiple regression model, OLS regression requires manual 

selection of variables.  Wetlands (area of wetlands) provided the best fit model, with an 

adjusted R2 of 0.98 and p-value < 0.05.  Regression coefficients of Intercept (-6.584) and 

Wetlands (170.509) show p-values < 0.05.  A summary of the regression coefficients in a 

fitted line is as follows: 

[𝑆𝑒 µ𝑔/𝐿 = −6.584 + 170.509(𝑤𝑒𝑡𝑙𝑎𝑛𝑑𝑠) − 0.782] 

An output map of over/under predictions was produced after OLS regression 

processing was completed, which is used to help determine if key explanatory variables are 

missing due to clustering (Appendix E).  To ensure regression residuals are spatially 

random, the Spatial Autocorrelation (Moran’s I) tool produces an output for visual analysis 

(Appendix F).  Summary results and a diagnostics output are also written after OLS 
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processing to address the 6 checks in determining a properly specified model (Appendix 

G).   

A Geographic Weighted Regression model was developed using the statistically 

significant exploratory variable “wetlands” from the OLS results.  GWR was used to better 

refine results first obtained from the OLS regression model with the addition of a 

regression equation fit to every feature in the dataset (Appendix H).  The GWR model with 

wetlands applied as the independent variable resulted in an adjusted R² value of 0.98.  

Shale (area of shale), provided the second best performing GWR model, with an adjusted R2 

of 0.66.  The measured and predicted 85th selenium concentration values were plotted 

against each other from both the best performing Excel multiple linear regression model 

and the best performing GWR model (Figure 20).  Because GWR develops an equation for 

each feature, an example of regression coefficients for Intercept and Wetlands for the SC 

Edora sub-watershed is -6.585 and 170.535 with a local R2 of 0.98.  Similar to the OLS 

results output, GWR produced an over/under predictions map.  More importantly, this 

output map has the ability to be reconfigured to map the wetland coefficients for each 

feature in the study area thereby identifying the most appropriate location(s) to address Se 

contamination through additional site investigation and management practices (Figure 21).   
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Figure 20 - Measured versus predicted 85th selenium concentration values (µg/L) for Excel 
multiple linear regression and Geographic Weighted Regression models. 
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Figure 21– Geographic Weighted Regression output with the wetland coefficient mapped 
for each sub-watershed 
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CHAPTER 4 – DISCUSSION 
 
 
 

4.1 Integration of Landscape Elements within a GIS Environment 
 
Landscape Element Development and GIS Integration 

Landscape elements were integrated into a Geographic Information System for 

model development for the prediction of surface water selenium concentrations along 

Spring Creek and Fossil Creek in Fort Collins, Colorado.  The GIS was used to aid organizing, 

viewing, manipulating, and editing of the geospatial data.  Past studies, including those of 

See et al., 1992; Tong and Chen, 2002; Xiao and Ji, 2007; Rothwell et al., 2010; Leib et al., 

2012; and Phung and Stednick, 2012, have completed water quality investigations and 

predictions applying GIS generated landscape characteristics before.  For this study, a 

literature review with respect to selenium and selenium response provided the initial 

background information required for watershed investigations and consequently the 

identification of landscape elements with linkages to selenium for study area 

characterization and integration within a GIS environment.  Landscape elements included 

the following: elevation, land use land cover, soil pH, geology, irrigation, and hydrography 

data.   

Landscape element classes from land use land cover and soil pH datasets were 

reclassified to better categorize properties that have been demonstrated in previous 

studies to show relationships with selenium (Ohlendorf et al., 1986, Masscheleyn et al., 

1990, Seiler, 1995).  Using ModelBuilder, a geoprocessing workflow tool within ArcGIS, 

spatial data was created, edited, modeled, and extracted specific to the study area and 

statistically processed for spatial physical characteristics (ESRI, 2012).  Physical 
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characteristics included the area and length of landscape elements, which provided 

statistical values and thus the geospatial variables. 

Geospatial variables were first extracted out of the study area from smaller sub-

basin watersheds as a future modeling approach using CHRUs (Figure 5).  These smaller 

watershed boundaries were delineated through hydrologic response (e.g. slope and general 

topography) and could potentially identify locations of selenium contamination with the 

integrated geospatial variables.  Practicability of defining hydrologic response units as 

combinations of spatial landscape elements for modeling purposes has been tested before 

(Vigiak et al., 2006).  Hydrologic units could also potentially be used in a prediction model 

for unmonitored areas.  Studies have been established where hydrologic response units 

were developed with the addition of chemical dynamics for development of CHRUs (Kern 

and Stednick, 1993; Bende et al., 1995).  However; no studies were found linking selenium 

with CHRUs.  Geospatial variables were successfully extracted in the much smaller scale 

sub-basin watersheds as a practical start for this type of spatial modeling.  Methods used 

can be replicated and reproduced for other areas outside of this study area with respect to 

basin delineations and geospatial variable extraction.  Chemical attributes or selenium 

concentrations however, were not acquired in these smaller sub-basin watersheds for this 

study.  

 Due to the location of the CDPHE water quality sampling locations, sub-watersheds 

were delineated upstream of 3 sites along Spring Creek and 2 sites along Fossil Creek.  

Geospatial variables were again successfully extracted from these 5 sub-watersheds for 

incorporation in selenium prediction model development.  The process and methods used 

to integrate landscape elements within a GIS environment is not new, however; this study’s 
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focus on selenium and its geospatial relationships to landscape elements within the Fort 

Collins regional environment has not been done to date. 

 

4.2 Development of Traditional and GIS Statistical Models for Se Prediction 
 

Traditional and GIS statistical models were developed using geospatial landscape 

data to predict selenium concentrations in Spring Creek and Fossil Creek.  Dependent 

variables consisted of the 85th percentile values of ranked selenium concentration values 

from 3 CDPHE water quality stations on Spring Creek and 2 CDPHE water quality stations 

on Fossil Creek resulting in a total of 5 dependent variable values.  17 exploratory variables 

consisted of 15 spatial variables determined geo-statistically, streamflow, and 

precipitation.   GIS integrated geospatial variables were extracted for each watershed 

drainage basin layer upstream of each water quality sampling station resulting in a total of 

5 values for each of the 15 geospatial variables. 

 

Geospatial Variables  

  Geospatial variables were established by area and length of landscape elements 

bounded within watersheds.  See et al., (1992) similarly used area and length of landscape 

elements for variables in a regression model; however, their study focused on median 

selenium discharges rather than selenium concentrations.  Geospatial variables were used 

for study area characterization.  
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Correlation Analysis  

A Pearson product-moment correlation analysis provided an assessment of the 

linkages between geospatial variables developed from landscape characteristics, 

precipitation, streamflow, and surface water quality selenium concentrations.  To reduce 

the number of geospatial variables for inclusion in multiple regression models, regression 

coefficients from simple linear regression analyses were used as criterion values rather 

than Pearson correlation coefficients (Leib et al., 2012).  A p-value of 0.01 was the first 

criterion used to select variables for multiple regression models.  For this study’s 

correlation analysis, variables with a Pearson correlation coefficient between -0.8 and -1.0, 

and 0.8 and 1.0 were considered to have a strong relationship with selenium, enabling a 

reduction of exploratory variables exhibiting the strongest relationships with selenium for 

inclusion into multiple regression models before determining the best fitting multiple 

regression model.    A total of 8 exploratory variables exhibited this criteria, which 

included: shale (0.847), agriculture (0.869), vegetated (0.883), pH_mod_alk (0.888), stream 

(0.831), water (-0.865), pH_neutral (-0.917), and pH_other (-0.808).  Choosing a lower cut-

off value for Pearson r values would have created more variables for inclusion in regression 

models.  

Other studies showed that the 8 exploratory variables chosen for this study’s 

regression model development were related to elevated selenium concentrations.  Shales 

have been shown to be the principal sources of selenium-toxic soils of the Rocky Mountain 

foothills of the United States (Shamberger, 1983).  Median selenium discharge is highly 

correlated with the area of Cody Shale and total sub-basin area (See et al., 1992).  

Agriculture has been shown to be directly related to selenium, as well as when the regional 
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environment exhibits areas underlain by Cretaceous marine or sedimentary rocks that are 

weathered, and when applied fertilizer is manufactured with selenium (Shamberger, 1983; 

Presser, et al., 1994; Fordyce, 2005).  Coupled with the proper landscape characteristics, 

selenium contamination has also been determined to be caused by irrigation drainwater 

(Ohlendorf et al., 1986; Seiler, 1995).  Selenate, the most important species of selenium in 

relation to this study and surface water quality, has been shown to be the most prevalent at 

higher pH levels (8.5 and 9 s.u.) when under highly oxidized conditions providing the use of 

moderately alkaline soils to be reasonable for model use (Masscheleyn et al., 1990).  Soil pH 

geospatial variable applied in the correlation analysis for moderately alkaline soils was 

classified between the range of 8.2 and 8.5 pH standard units, which was also determined 

based on the range of soil pH s.u. found to occupy the study area, 6.7-8.5 s.u. (Table 7). 

 

Traditional Statistical Model 

Dependent variables applied in the multiple regression model consisted of 5 

selenium concentration values determined from the 85th percentile of ranked selenium 

concentrations from 3 CDPHE water quality stations on Spring Creek and 2 CDPHE water 

quality stations on Fossil Creek (Table 16).  Exploratory variables consisted of 3 variables 

including pH_mod_alk (area of moderate to strongly alkaline soils, stream (length of 

streams), and shale (area of shale), which provided the best fit model, adjusted R2 = 0.99.  

Previous studies using regression models have found the variables of length of streams and 

area of shale to have influence on selenium concentrations (See et al., 1992; Leib et al., 

2012).  See et al., (1992) determined from a traditional stepwise regression analysis, that 

area of irrigated land and length of irrigation canals within each sub-basin were the most 
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important factors explaining the variability of median selenium discharges (R2 = 0.97).  

Leib et al., (2012) determined that sub-basin area and the area of irrigated area over 

Mancos shale were the most important landscape variables in determining the best fit 

stepwise regression model (R2 = 0.82).  Pearson r value for basin area for this study was 

0.64, which suggests that selenium concentrations increase as basin area increases.  The 

use of soil pH however, measured as the area of alkaline soils as used in this study, has not 

been found in any previous studies looking at selenium response and/or prediction.   

An adjusted R2 value of 0.99 from this study’s regression model suggests that the 

overall model permanence is excellent and that the geospatial variables are good 

predictors of selenium.  An F-test p-value of 0.01, indicates statistical significance between 

the observed and predicted selenium values.  The NSE method was used to evaluate the 

performance of the statistical model.  Calculated NSE coefficients of 0.90 for SC Shields, 

0.99 for SC College, 0.99 for SC Edora, 0.99 for FC College, 0.99 for FC Trilby, and 0.99 for 

the NSE total indicate an acceptable level of model performance for each individual sub-

watershed predictions as well as for the overall model.  Prasad et al., (2011) calculated NSE 

coefficients of 0.82-0.86, 0.65-0.82, and 0.70-0.82 when predicting dissolved oxygen in 

three dimensions in Chesapeake Bay for a surface layer, middle layer, and bottom layer, 

respectively.  This study’s NSE scores further demonstrate that the model presented here 

has the ability to predict observed selenium concentrations and that the model could be 

used in management or regulatory settings for selenium prediction and might provide 

identification of selenium sources in streams. 
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GIS Statistical Model 

Unique to this study, specifically relating to selenium response and prediction, is the 

use of ArcGIS’s modeling relationships capabilities. Ordinary Least Squares regression was 

performed as a spatial prediction model for surface water selenium concentrations, as well 

as a necessary step in building a properly specified spatial regression model for use in 

Geographic Weighted Regression.   The OLS regression model was developed using the 

area-weighted geospatial variables as an attempt to accommodate the spatial aspects and 

response of the variables in relation to the size of the watersheds they are occupying.  

Because the sub-watersheds themselves are “nested” in some cases or on top of each other, 

area-weighted variables were meant to eliminate the possible altercations associated with 

multiple area values being summed together from one sub-watershed to another.  For 

example, the area of shale in relation to the area of the most downstream sub-watershed of 

SC Edora spatially includes the area of shale from both the upstream watersheds of SC 

College and SC Shields.  By applying the area-weight, the area of shale in relation to the area 

of a sub-watershed is proportional to each sub-watershed modeled. 

Wetlands, single exploratory variable, provided the best fit model after selection of 

variables.  Xiao and Ji, 2007 found that the use of a single landscape metric, proportion of 

mine waste area, could predict surface water quality (R2 = 0.60). The use of wetlands, 

measured as area of wetlands, as applied in this study has not been found in any previous 

studies pertaining to selenium response and/or prediction.  This model’s adjusted R2 value 

of 0.98, suggests that the overall model permanence is excellent and that the geospatial 

variables are good predictors of selenium.  The purpose of GWR is to better refine results 

from OLS regression.  GWR results compared to OLS results, regarding adjusted R2 values, 
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does not seem to suggest an improvement.  GWR results output map does however provide 

additional benefits not capable in other modeling methods.  The independent variables’ 

regression coefficients for each feature in the study area were mapped providing a visual 

display of areas that might provide the most effective management efforts with respect to 

selenium contamination (Figure 21).  In this case, the mapped GWR wetland coefficients 

show Spring Creek to be the most important watershed for cost effective selenium 

management measures.  The sub-watersheds of Spring Creek moving upstream show 

wetland coefficients to be more important than Fossil Creek sub-watersheds as well, 

possibly a spurious correlation due the nesting of watersheds and wetland area from 

upstream to downstream. 

Previous studies with respect to selenium management and selenium modeling 

have not shown soil pH, specifically the area of moderate to strongly alkaline soils, or the 

area of wetlands to have been considered as selenium response variables.  These landscape 

characteristics are shown here to be highly correlated with selenium.  It is advisable to 

further research the use of landscape characteristics, with regards to area and length in a 

GIS for selenium prediction and management.  Additionally, constraints existed on the 

number of variables that could be included in the regression models due to the sample size 

or number of selenium observations determined from using 5 sub-basins for which surface 

water selenium concentrations could be predicted. 
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CHAPTER 5 – CONCLUSIONS 
 
 
  
 In this study, 17 exploratory variables developed from landscape characteristics and 

environmental factors were analyzed in relation to the 85th percentile of ranked surface 

water selenium concentrations from 3 sub-watersheds in Spring Creek and 2 sub-

watersheds in Fossil Creek in Fort Collins, Colorado.  Landscape characteristics included 

sub-watershed area, shale, irrigated parcels; (land use land cover) ag/barren, developed, 

open water, vegetated, wetland; (soil pH) slightly alkaline, moderate to strongly alkaline, 

neutral, other; (NHD flowline) sum of flowline, canal/ditch, and stream/river. 

Environmental factors included precipitation and streamflow. 

Integration of landscape elements within a GIS was relatively simple in terms of 

data collection and the uploading into an ArcGIS environment.  Processes involved with 

geostatistical analyses worked well in that variables as measured by area and length were 

easily integrated within the traditional regression model and GIS regression models.  

Rather than using average or median values for relationship investigation and prediction 

similar to other studies, the 85th percentile values of ranked surface water selenium 

concentrations were used for which water quality standards for selenium are based.   

A correlation analysis provided a clear depiction of strong relationships between 

exploratory variables and selenium.  Results from this study indicate that the geospatial 

variables pH_mod_alk (measured as area of moderate to strongly alkaline soils), streams 

(measured as length of streams), and shale (measured as area of shale) provide the best fit 

traditional regression model using Microsoft® Excel, adjusted R2 = 0.99.  This model 

suggests these variables to be the most important and reliable predictors of selenium in 
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Spring Creek and Fossil Creek watersheds.  Summary of the regression coefficients in a 

fitted line is as follows: 

[𝑆𝑒 µ𝑔/𝐿 = 24.038 + 9.516(𝐴𝐿𝐾) − 0.782(𝑆𝑇𝑅) − 1.039(𝑆𝐻𝐿)] 

ALK = area (km2) of moderate to strongly alkaline soils 

STR = length (km) of streams  

SHL = area (km2) of shale 

Results from this study also indicate that the geospatial variable wetlands, 

measured as area of wetlands, provided the best fit regression model using both Ordinary 

Least Squares Regression, adjusted R2 = 0.98, and Geographically Weighted Regression, 

adjusted R2 = 0.98, when area weighted.  Summary of the OLS regression coefficients in a 

fitted line is as follows: 

[𝑆𝑒 µ𝑔/𝐿 = −6.584 + 170.509(𝑤𝑒𝑡𝑙𝑎𝑛𝑑𝑠) − 0.782] 

GWR develops an equation for each feature; therefore, an example of regression 

coefficients for Intercept and Wetlands for the SC Edora sub-watershed is -6.585 and 

170.535.   

Because both GIS regression model methods resulted in an adjusted R2 = 0.98, 

neither model can be said to be better than the other when comparing this particular 

statistical measure.  A GIS based approach can however provide useful information not 

possible using only traditional regression model packages.  The GIS approach provides 

spatial aspects to landscape elements led by visualization of patterns and through GWR 

analysis, identification of contaminated areas depicted through regression coefficients.   

Results from regression methods used in GWR, explicitly the regression coefficients, can be 
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used to help prioritize areas, Spring Creek watershed in this case, where management 

practices and TMDL development might be most cost effective.   

Constraints existed in both the traditional multiple linear regression model as well 

as in the GIS spatial Geographic Weighted Regression model.  Limitations of both of these 

models include a very limited number of water quality sampling locations and 

subsequently a limited number of selenium concentrations.  Due to these limitations, care 

should be applied when using any of these models in other areas of Colorado. 
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CHAPTER 6 - RECOMMENDATIONS 
 
 
 

Additional modeling efforts and field investigations in the lower Cache la Poudre 

River system near Fort Collins including Spring Creek and Fossil Creek would increase the 

ability to predict selenium concentrations and gain a better understanding of sources and 

transport mechanisms with respect to selenium contamination. 

Recommendations for future studies include: 

1. A second Se prediction model developed and applied with the same methods 

present herein with the addition of the Box Elder Creek watershed near Fort Collins.  

The watershed size at the confluence with the Cache la Poudre River is a logical 

choice as an additional basin for model validation. 

2. A larger number of selenium observation locations to increase the statistical 

strength when predicting selenium concentrations.  This would involve an increase 

in selenium sampling locations, as well as the delineation of additional watersheds 

and subsequently additional geospatial variable values. 

3. Future modeling efforts can be built out of the process outlined in this study for 

development of CHRUs.  Selenium sampling from much smaller basin areas can be 

used for model development designed to predict selenium concentrations in upper 

watershed basins which are typically unmonitored. 

 
Application to Regulatory Environment  
 

Analysis of landscape characteristics from this study can provide regulatory 

agencies with watershed characterization data for selenium in Spring Creek and Fossil 

Creek watersheds’.  Correlation and regression analyses results point to the landscape 
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elements of shale, streams, wetlands, and soil pH as important selenium response 

variables.  Watershed assessment studies regarding these suspected selenium sources and 

transport mechanisms could eventually lead to a depiction of the hydrologic and ecologic 

structure and function, which could allow the quantification of the role of selenium 

reduction strategies in water quality management.  This information will help in TMDL 

development, and overall protection of the stream and local community health.  Isolation of 

high risk areas for selenium will reduce cost and time for agencies as well.  The spatial 

processes utilized and resulting data could also be used in future construction of a 

geospatial model calibrated with existing observed water quality data that predicts Se 

concentrations in chemical hydrologic response units.  This model could further be 

designed for application in unmonitored watersheds, from local areas to extreme locations 

difficult to reach in the field saving money and time for regulatory agencies. 
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APPENDIX A - Soil Data Viewer User Interface (pHwater) 
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APPENDIX B - Aggredation Report 
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APPENDIX C - USDA’s NRCS Soil Survey Classification  
 

  



98 
 

  



99 
 

APPENDIX D - Land Use Land Cover Classification Key 
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APPENDIX E - OLS map output of regression residuals (over/under predictions) 
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APPENDIX F - Spatial Autocorrelation Report 
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APPENDIX G - Summary of OLS Results and OLS Diagnostics 
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APPENDIX H - Geographic Weighted Regression Results Output 
 

 
 


