
DISSERTATION

ALGORITHMS AND GEOMETRIC ANALYSIS OF DATA SETS THAT ARE

INVARIANT UNDER A GROUP ACTION

Submitted by

Elin Rose Smith

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2010

COLORADO STATE UNIVERSITY

July 27, 2010

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER

OUR SUPERVISION BY ELIN ROSE SMITH ENTITLED ALGORITHMS AND

GEOMETRIC ANALYSIS OF DATA SETS THAT ARE INVARIANT UNDER A

GROUP ACTION BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

Dan Bates

Michael Kirby

Ross McConnell

Advisor: Chris Peterson

Department Head: Simon Tavener

ii

ABSTRACT OF DISSERTATION

ALGORITHMS AND GEOMETRIC ANALYSIS OF DATA SETS THAT ARE

INVARIANT UNDER A GROUP ACTION

We apply and develop pattern analysis techniques in the setting of data sets that are

invariant under a group action. We apply Principal Component Analysis to data sets

of images of a rotating object in Chapter 5 as a means of obtaining visual and low-

dimensional representations of data. In Chapter 6, we propose an algorithm for finding

distributions of points in a base space that are (locally) optimal in the sense that

subspaces in the associated data bundle are distributed with locally maximal distance

between neighbors. In Chapter 7, we define a distortion function that measures the

quality of an approximation of a vector bundle by a set of points. We then use

this function to compare the behavior of four standard distance metrics and one

non-metric. Finally, in Chapter 8, we develop an algorithm to find the approximate

intersection of two data sets.

Elin Rose Smith
Department of Mathematics

Colorado State University
Fort Collins, Colorado 80523

Fall 2010

iii

ACKNOWLEDGEMENTS

“We are so often caught up in our destination that we forget to appreciate the journey,

especially the goodness of the people we meet on the way.” – Author Unknown

There are several people who deserve thanks for making significant contributions

to my mathematical career and to the work presented in this paper. I would first

like to thank my advisor, Chris Peterson, for his support, knowledge, and unending

enthusiasm for all things.

I am grateful to those who have been a part of my committee, Chris Peterson,

Michael Kirby, Ross McConnell, Dan Bates, and Jeff Achter, for their excellent ques-

tions, comments, and insights.

The Pattern Analysis Lab at Colorado State University provided the technical

resources for this work. In addition, I appreciate the supportive group of researchers

and students in the lab with whom I have had the pleasure of working.

I have recently had the good fortune to collaborate with Louis Scharf and Tony

Maciejewski, of the Electrical Engineering Department. I would like to take this

opportunity to thank them for many enjoyable meetings and great ideas.

I am indebted to the students, faculty, and staff of Colorado State University.

Looking back on six years of hard work, I remember not the hours but the study

sessions with friends, the instruction and friendship of my teachers, and the students

in my classes through whom I discovered my love of teaching.

And last, but certainly not least, I am thankful to my family and friends for their

laughter, support, and love.

iv

Contents

1 Introduction 1

2 Background 3
2.1 Introduction . 3
2.2 Principal Component Analysis . 4
2.3 The Singular Value Decomposition 7
2.4 Vector Bundles . 9
2.5 The Grassmann Variety and Principal Angles 10
2.6 Commonly Used Distance Metrics . 13
2.7 Unitarily Invariant Functions . 16
2.8 The Illumination Space of an Object 18
2.9 The Koszul Complex . 19
2.10 Group Actions . 21

3 Data Sets That are Invariant Under a Group Action 25
3.1 Introduction . 25
3.2 The Trivial Group . 26
3.3 The Symmetric Group . 27
3.4 The Special Orthogonal Group . 30
3.5 SO(n,R)× SO(n,R) . 31
3.6 Extensions . 31

4 Processing High Speed Data Using the Fast Fourier Transform 33
4.1 Introduction . 33
4.2 Control Data Sets . 34
4.3 Data Set of a Rotating Object . 34
4.4 Methods . 35
4.5 Results . 35

4.5.1 Control Data Sets . 35
4.5.2 Data Set of a Rotating Object 43

4.6 Aliasing . 47

5 A Geometric Representation of a Rotating Object 49
5.1 Introduction . 49
5.2 Methods . 50

v

5.3 Results . 53

6 An Algorithm for Determining Optimal Camera Location Distribu-
tion 72
6.1 Introduction . 72
6.2 Implementation . 74

6.2.1 A Koszul Complex as a Trial Data Set 74
6.2.2 Red Filter Images as a Line Bundle Data Set 77
6.2.3 Red, Green, and Blue Filter Images as an Approximation of an

Illumination Space Data Set 93
6.3 Distance Functions . 95

7 A Measure of Distortion 106
7.1 Introduction . 106
7.2 Results . 107

7.2.1 Red Punch Bowl Data Set . 107
7.2.2 Red Punch Bowl with One Tape Data Set 108
7.2.3 Red Punch Bowl with Two Tapes Data Set 110
7.2.4 Punch Bowl with Four Tapes Data Set 113
7.2.5 Volleyball Data Set . 116

8 Artificially Rotating Data 122
8.1 Projections and Eigenpictures . 122

8.1.1 Introduction . 122
8.1.2 Methods . 122
8.1.3 Results . 124

8.2 Artificial Rotation as a Means of Intersecting Data Sets 128
8.2.1 Introduction . 128
8.2.2 Methods . 129
8.2.3 Results . 132

A Matlab Code for Implementation of Algorithms 146
A.1 Nearest Neighbor Dispersion Algorithm – Local 146

A.1.1 Main Program . 146
A.1.2 Basic Distance Function . 150
A.1.3 Find New Index Function . 152

A.2 Intersection of Data Sets . 156
A.2.1 Step 1 . 156
A.2.2 Step 2 . 157

vi

Chapter 1

Introduction

The focus of this paper is in the application and development of pattern analysis

techniques in the setting of data sets that are invariant under a group action. Pattern

analysis techniques have immediate applications in a variety of fields, including face

and object recognition, data reduction, medicine, genetics, and astronomy [9, 11, 29,

33, 41, 50], to name just a few. In this paper, we focus, in particular, on data sets in

the context of image analysis. Data sets of images lend themselves to visual analysis

and hence can provide intuition for developing methods of analysis.

We use techniques from a range of fields, including geometric data analysis, linear

and multilinear algebra, algebraic geometry, differential geometry, Fourier analysis,

and signal processing [2, 13, 21, 24, 26, 27, 28, 31, 37, 39, 44, 45, 47, 49]. The analysis

of group actions in the setting of image recognition and classification has been fruitful

yet there remain a number of outstanding open problems [5, 10, 7, 11, 22, 31, 35, 43,

52].

We begin the paper with a discussion of some standard pattern analysis techniques

and background information in Chapter 2. Then in Chapter 3, we give examples of

data sets that are invariant under a group action as the context for the data sets that

we study in later chapters.

We establish in Chapter 4 that in data collection, noise is introduced by the

1

overhead lights as well as by the camera itself. We present a method for removing the

noise from the lights along with the results of its application to a data set of images.

The main objects of study in this paper are data sets of images of a rotating

object. We apply Principal Component Analysis to such data sets in Chapter 5 as a

means of obtaining visual and low-dimensional representations of the data.

In Chapter 6, we consider the following problem. Suppose that a fixed number

of images, say n, are to be collected from locations along a circle around an object.

We develop an algorithm to find distributions of the n camera locations which are

(locally) optimal in the sense that subspace representations of the object at the n

locations are distributed with maximal distance between neighbors. We refer to this

algorithm as the Nearest Neighbor Dispersion Algorithm.

In Chapter 7, we define a function that measures the success of an application

of the Nearest Neighbor Dispersion Algorithm. We use this function to compare the

behavior of some standard distance metrics and one non-metric.

Finally, in Chapter 8, we develop an algorithm to find the approximate intersection

of two data sets. The context for this problem is this. Suppose that two sets of images

are collected along two distinct great circles on a sphere surrounding an object. The

underlying geometry suggests that there exist two pairs of images from the two data

sets that correspond to the antipodal points of intersection of the great circles. These

pairs of images should be similar, up to rotation. The success of this algorithm is

measured visually by the output images from the algorithm.

2

Chapter 2

Background

2.1 Introduction

A classical problem in pattern analysis is concerned with classification – given a

training set of data, can we separate the set into meaningful classes and correctly

classify novel data? This question occurs frequently in a variety of fields, including

face recognition, medicine, genetics, and astronomy [9, 11, 29, 33, 41, 50], to name

just a few. One of the main goals of the work presented in this paper is to find

an optimal representation of the space of illumination spaces associated to various

perspectives of an object that may then be used successfully in classification problems.

The techniques we use come from a variety of fields, including geometric data analysis,

linear and multilinear algebra, algebraic geometry, differential geometry, basic Lie

theory, Fourier analysis, and signal processing [2, 13, 20, 21, 26, 24, 27, 28, 31, 37,

39, 44, 45, 47, 49]. One technique that is frequently employed in data analysis and

which we apply in our work is Principal Component Analysis. In Section 2.2, we

summarize the main theory for this technique, using the notation and derivation

provided in [31]. In Section 2.3, we develop the basic theory and properties pertaining

to the singular value decomposition, which we apply to a variety of data sets. We give

a brief introduction to vector bundles in Section 2.4. Then in Section 2.5, we review

3

the Grassmann variety and principal angles. We use principal angles as a measure

of distance between illumination spaces. Distance functions and unitarily invariant

functions are discussed in Sections 2.6 and 2.7. In Section 2.8, we state the definition

of the illumination space of an object along with some of its properties. In Section 2.9,

we introduce the Koszul complex, a chain complex with which we construct a trial

data set. The main content of this paper is in development of techniques for analysis

of data sets that are invariant under a particular group action. We therefore close

the chapter with Section 2.10, in which we give a brief review of group actions.

2.2 Principal Component Analysis

Principal Component Analysis is a technique used frequently in classification prob-

lems, missing data reconstruction, and dimensionality reduction; see for example [9,

29, 30, 31]. Principal Component Analysis (PCA) is known under several names,

including the Karhunen-Loève (KL) expansion, proper orthogonal decomposition

(POD), and empirical orthogonal functions (EOFs). To begin, consider a data set

represented as a matrix X, where each column represents a single sample. Samples

often represent variation in time, pose, illumination, or camera location. The goal of

PCA is to find the optimal ordered unitary basis for X in the sense that given any

truncation of the basis, the mean squared error over all unitary bases is minimized.

Throughout this discussion, we assume that the data has been mean-subtracted.

Given a data matrix X composed of column vectors x(1), . . . ,x(p), we define the mean

of the vectors x(1), . . . ,x(p) to be

〈x〉 :=
1

p

p∑
µ=1

x(µ).

We mean-subtract X by subtracting 〈x〉 from each x(µ) of X. The geometric effect of

mean-subtraction is to move the centroid of the data set to the zero of the coordinate

system.

4

Let us start by stating more explicitly what we mean by an optimal basis. Suppose

our data set X is n−dimensional. Let B =
{
φ(1), . . . , φ(n)

}
be an ordered unitary

basis for X. Any point x ∈ X can be expressed in terms of this basis: x = α1φ
(1) +

· · ·+αnφ
(n). The d−term truncation of this expansion for x is given by xd = α1φ

(1) +

· · · + αdφ
(d). The mean squared truncation error is given by ε =

〈
‖x− xd‖2

〉
, where

the norm denotes the Euclidean norm, and 〈∗〉 is the usual average. We define B

to be an optimal basis if, among all unitary bases, B minimizes the mean squared

truncation error, ε.

One method of constructing such an optimal basis B from a data set X is given

by Principal Component Analysis. Before we state the basis of the algorithm, we

make one observation. A basis B which minimizes the mean squared truncation error

simultaneously maximizes the mean squared projection of the data onto itself. This

property can be seen as follows. The mean squared truncation error is

ε =
〈
‖x− xd‖2

〉
=

〈(
n∑

j=d+1

αjφ
(j),

n∑
k=d+1

αkφ
(k)

)〉

=

〈
n∑

j,k=d+1

αjαk
(
φ(j), φ(k)

)〉

=

〈
n∑

j=d+1

α2
j

〉
, due to the orthogonality of the

{
φ(j)
}n
j=1

,

=

〈
n∑

j=d+1

(
x, φ(j)

)2〉
.

Hence, to construct a basis B, which minimizes mean squared truncation error,

we need only construct a basis that maximizes the first d squared projections of the

data onto the basis. That is, we wish to construct B so that it maximizes〈
d∑
j=1

(
x, φ(j)

)2〉
.

Given this framework, we may now state the steps of the Principal Component

Analysis construction of an optimal basis.

5

• step 1 Find W1, the best one-dimensional subspace.

• step 2 Find W2, the best one-dimensional subspace orthogonal to W1.

• step i Find Wi, the best one-dimensional subspace such that Wi ⊥ Wj for all

j < i,

where ‘best’ is in the sense that the subspace maximizes the mean squared projection

of all columns of X onto itself.

These steps may be carried out to construct B using Lagrange multipliers. This

method of construction is known as the direct method. An alternative method for

computing B is given via the singular value decomposition of the matrix X. The left-

singular vectors ofX are the columns of B, and the singular values are the square roots

of the eigenvalues of the matrix XXH , where H denotes the Hermitian transpose.

For details on the equivalence of these two methods, see [31]. Throughout the work

described in this paper, we use the singular value decomposition consistently as the

method to determine the best d−dimensional representation of the data. We therefore

use Section 2.3 to state the singular value decomposition explicitly.

One final important fact about the optimal basis B determined by Principal Com-

ponent Analysis is that any truncation of B captures more statistical variance than

any other basis of the same dimension. Let
{
ψ(i)
}n
i=1

be a different basis for X. Given

an element x ∈ X, let the d−term truncation of the expansion of x be written as

xd =
∑d

j=1 βjψ
(j). We define a measure of the variance of X with respect to the basis

given by
{
ψ(i)
}n
i=1

to be

ρj =
〈
β2
j

〉
.

Suppose also that the d−term truncation of x with respect to the basis B is xd =

α1φ
(1) + · · ·+ αdφ

(d). It can be shown that

d∑
j=1

ρj ≤
d∑
j=1

〈
α2
j

〉
.

6

Equality occurs when the basis
{
ψ(i)
}n
i=1

is the basis given by PCA. Hence, PCA

constructs a basis capturing more variance than any other basis.

2.3 The Singular Value Decomposition

We begin by stating the existence of the decomposition.

Theorem 2.1. (Singular Value Decomposition)

Let X ∈ km×n, with k = R or C, and let ` = min {m,n} . Then there exist unitary

matrices U and V defined over k and a diagonal matrix Σ such that

X = UΣV H ,

where U has size m×m, V has size n×n, and Σ has size m×n, and where H denotes

the Hermitian transpose.

For both k = R and k = C, the entries of Σ = diag
(
σ(1), . . . , σ(`)

)
are nonnegative

real numbers and are conventionally ordered by σ(1) ≥ · · · ≥ σ(`) ≥ 0. We refer to

the values σ(1), . . . , σ(`) as the singular values of X. Given a choice of ordering of the

singular values, the matrix Σ is uniquely determined by X. If m > n, then Σ is of the

form

σ(1) 0

. . .

0 σ(n)

0 0

...
...

0 · · · 0

,

and if m < n, then Σ is of the form

7

σ(1) 0 0 · · · 0

. . .
...

...

0 σ(m) 0 · · · 0

 .

A constructive proof of the singular value decomposition (SVD) is given in [31].

We now state a few important properties of the SVD that will be useful in our work.

We first note the relationship between the number of nonzero singular values and

the rank of X. Since Σ is a diagonal matrix, the rank of Σ is equal to the number of

nonzero singular values. Also, orthogonal transformations leave the rank unchanged.

Therefore, since X = UΣV H , we must have that rank(X) is equal to the number of

nonzero singular values.

Next, let rank(X) = r and define Σi = diag(0, . . . , 0, σ(i), 0, . . . , 0). Then

X = UΣV H

= U(Σ1 + · · ·+ Σr)V
H

= UΣ1V
H + · · ·+ UΣrV

H

= σ(1)u(1)v(1)H + · · ·+ σ(r)u(r)v(r)H

=
r∑
j=1

σ(j)u(j)v(j)H .

It follows that column i of X is given by

x(i) =
r∑
j=1

σ(j)v
(j)
i u(j).

And hence, the set of the first r left singular vectors form a basis for the column space

of the matrix X. This property implies that we may apply the SVD to find a change

of basis for X.

We also note that the left singular vectors are frequently referred to as eigenvectors

because they are in fact eigenvectors of the matrix XXH . To see this, observe that

X = UΣV H and U, V orthogonal implies XHU = V ΣH . Although the property that

8

the left singular vectors are eigenvectors of XXH holds in general, we will discuss

only the case when m ≥ n and X has full rank. Then for each i = 1, . . . , n, we have

XHu(i) = σ(i)v(i)

XXHu(i) = σ(i)Xv(i)

XXHu(i) =
(
σ(i)
)2

u(i),

where we have used the fact that XV = UΣ. Therefore the left singular vectors of X

are eigenvectors of XXH with eigenvalues equal to the singular values squared.

In practice, we frequently compute what is referred to as the thin SVD, as opposed

to the SVD described above. The thin SVD enjoys many of the properties of the SVD,

but is less computationally expensive. The thin SVD is used when m > n and is given

by X = ÛΣ̂V H , where Û is the matrix U without the last m − n columns, and Σ

is an n × n diagonal matrix defined by diag
(
σ(1), . . . , σ(n)

)
. The computation of the

thin SVD is significantly faster than the standard SVD if m >> n. The matrix Û

is not orthogonal in general, but since we often only require the computation of the

first few left singular vectors, this is acceptable.

2.4 Vector Bundles

Many data sets have a natural structure as a vector bundle, as is the case with several

of the data sets discussed in this paper. We therefore give a brief review of vector

bundles here. For more details on this topic, see [45] or [46]. Recall that a vector

bundle parametrizes a family of vector spaces E via a space X. We refer to a vector

bundle as real if the vector spaces are defined over R and as complex if the vector

spaces are defined over C. Let k be a field equal to either R or C. We formally define

a topological vector bundle as follows.

Definition 2.2. A (topological) vector bundle E of rank r over X is a (topological)

base space X and a (topological) total space E, together with a projection π : E → X,

9

satisfying the following two conditions:

• There exists an open cover
⋃
Ui of X where each π−1(Ui) is isomorphic to Ui×kr

via a fiber-preserving isomorphism ϕi. That is, if p is the natural projection onto

Ui, then the following diagram commutes for each i.

π−1(Ui)
ϕi

> Ui × kr

Ui

p

<
π >

• The maps ϕi are linearly compatible. By this, we mean that on Ui ∩ Uj, the

following composition is a linear map of kr for every fixed x :

ϕj ◦ ϕ−1
i : (Ui ∩ Uj)× kr → (Ui ∩ Uj)× kr

(x, v) 7→ (x, (ϕj ◦ ϕ−1
i (v)).

The definition of a vector bundle above is in the category of topological spaces.

We can similarly define vector bundles in other categories. For instance, we might be

interested in vector bundles in the category of differentiable manifolds or algebraic

varieties. In the setting of discrete data sets, we frequently make the assumption that

we are sampling from a differentiable vector bundle. For more on vector bundles,

see [18, 23, 38, 40].

2.5 The Grassmann Variety and Principal Angles

In order to analyze a given data set, we frequently require some measure of distance

between points in the set. In several of our data sets, points in the set are viewed

as points in the Grassmann variety. We begin with a general definition of the Grass-

mannian.

Definition 2.3. The Grassmann variety, or Grassmannian, is defined to be the set

of all linear subspaces of a vector space V of a fixed dimension k.

10

Throughout this paper, we will work with the real Grassmannian, and will denote

by Gr(k, n) the set of all k-dimensional subspaces of Rn. As a special case, consider

Gr(1, n). This is the set of linear subspaces of Rn, and we therefore have the following

equivalence:

Gr(1, n) ∼= Pn−1(R).

For more on the Grassmannian, see [23, 25, 45, 46].

Any measure of distance on the Grassmannian must be a unitarily invariant func-

tion if we wish to measure distance in a consistent way. Fortunately, much work

has been done on unitarily invariant norms; we briefly summarize this work in this

section. We will begin with the definition and computation of principal angles and

will list some of the most commonly used metrics on the Grassmannian. We will close

with a discussion of the connection between unitarily invariant norms and principal

angles.

Principal angles are defined recursively. Informally, the process of finding principal

angles is as follows. We are given two subspaces X and Y of kn, with k = R or k = C.

Begin by finding the smallest angle achieved between any pair of vectors, one from X

and one from Y. This angle is the first principal angle, θ1. Suppose that the vectors

x ∈ X and y ∈ Y have angle θ1 between them. Then the second principal angle

can be found by finding the smallest angle achieved between a pair of vectors in the

spaces given by the orthogonal complement of x in X and the orthogonal complement

of y in Y. Each successive principal angle is found by repeating this process. There

are always t principal angles, where m = min {dim(X), dim(Y)} . More formally,

principal angles are defined as follows.

Definition 2.4. Let X, Y ⊆ kn, with k = R or k = C, dim(X) = s, dim(Y) = t,

and m = min {s, t} . Then the ordered principal angles θ1, . . . , θm ∈
[
0, π

2

]
are defined

recursively as

θj := max
x∈X

max
y∈Y

xHy = xHj yj

subject to ‖x‖ = ‖y‖ = 1, and xHxi = 0, yHyi = 0 for all 1 ≤ i ≤ j − 1.

11

For more on principal angles, see [1, 36]. The numerical computation of principal

angles is closely related to the computation of the singular value decomposition.

Computing principal angles via singular the singular value decomposition has been

shown to be a numerically stable method [14, 22]. Bjorck and Golub prove the

following theorem in [8], which states the general relationship between principal angles

and the singular values of a particular matrix.

Theorem 2.5. Let X and Y be subspaces of kn, with k = R or k = C, and let

dim(X) = s, dim(Y) = t, and m = min {s, t} . Let QX and QY be unitary bases for

X and Y, respectively. If the singular values of QH
XQY are σ1, . . . , σm then σi = cos θi

for each i = 1, . . . ,m, where θi is the ith principal angle.

Using this theorem along with the following lemma, we can show that the com-

putation of principal angles via singular values is independent of choice of unitary

basis.

Lemma 2.6. Let X, Y ⊆ kn, with k = R or k = C, dim(X) = s, dim(Y) = t,

and m = min {s, t} . Let QX and QY be unitary bases for X and Y, respectively.

Let the singular values of the matrix QH
XQY be σ1, . . . , σm. If WX and WY are any

other unitary bases for X and Y, then the singular values of the matrix WH
XWY are

σ1, . . . , σm.

Proof. Since QX and WX are both unitary bases for the same space X, there exists

a unitary change of basis matrix M1 such that WX = QXM1. Similarly, there exists

a unitary matrix M2 such that WY = QYM2. Let D be the matrix WH
XWY , and let

the singular value decomposition of QH
XQY be QH

XQY = UΣV H . Then

D = WH
XWY

= (QXM1)
H (QYM2)

= MH
1 Q

H
XQYM2

= MH
1 UΣV HM2

=
(
MH

1 U
)

Σ
(
V HM2

)
.

12

Hence, the singular values of D are the same as those of QH
XQY .

The following corollary will be useful in Section 2.7.

Corollary 2.7. Let X and Y be two subspaces of kn, with k = R or k = C. The com-

putation of the principal angles between X and Y via singular values is independent

of the choice of unitary basis for either space.

2.6 Commonly Used Distance Metrics

We consider four metrics and one non-metric on the Grassmannian. We will briefly

discuss the context for each one along with its definition. We then discuss the special

case of these metrics in Gr(1, n), the space of linear subspaces of n−dimensional space.

The differential topology on the Grassmannian has several realizations, and it

is frequently the case that different realizations lead to different associated distance

metrics. Let us begin with the realization of the Grassmannian as a quotient of the

orthogonal group. It can be shown that

Gr(k, n) =
O(n)

O(k)×O(n− k)
.

For more details on this equivalence, see [34]. In [4], Basri and Jacobs show that

the standard metric on O(n) descends to a metric on Gr(k, n). In other words, the

standard metric respects cosets when the Grassmannian is viewed as a quotient group.

This metric is referred to as the geodesic distance, or arc length, and has been shown

to be useful in packings in the Grassmannain [3]. It is defined as follows (for details,

see [16]).

Definition 2.8. Suppose that two subspaces X, Y ⊆ Rn have principal angles θ =

(θ1, . . . , θm) . Then the geodesic distance metric is defined to be

dg(X, Y) =

√√√√ m∑
i=1

θ2
i = ‖θ‖2 .

13

Second, the Grassmannian can be viewed as a submanifold of projective space via

the Plücker embedding. That is,

Gr(k, n) = P(nk)−1(R) ⊂ P(ΛkRn).

Given this embedding, the Grassmannian inherits the Fubini-Study metric on projec-

tive space (see [23]).

Definition 2.9. Suppose that two subspaces X, Y ⊆ Rn have principal angles θ =

(θ1, . . . , θm) . Then the Fubini-Study distance metric is given by

dFS(X, Y) = arccos (Πm
i=1cos θi).

Third, using the projection described in [12], the Grassmannian can be viewed as

a submanifold of Euclidean space:

Gr(k, n) ⊂ R(n2+n−2)/2.

Restricting the usual Euclidean distance metric to Gr(k, n), we obtain the chordal,

or projection F, distance metric. The chordal distance metric has been shown to be

useful in packings in the Grassmannian (see [3, 12]).

Definition 2.10. Suppose that two subspaces X, Y ⊆ Rn have principal angles θ =

(θ1, . . . , θm) . Then the chordal distance metric is given by

dc(X, Y) =

√√√√ m∑
i=1

(sin θi)2 = ‖sin θ‖2 .

Finally, we can view points in the Grassmannian as subspaces of Rn and use the

usual subspace distance defined in [21].

Definition 2.11. Suppose that two subspaces X, Y ⊆ Rn have principal angles θ =

(θ1, . . . , θm) . Then the subspace distance metric is given by

dss(X, Y) = max
i=1,...,m

{sin θi} = ‖sin θ‖∞ .

14

We also consider one measure of distance, which in most cases, is not a metric. It

deserves consideration given that it has been used successfully in other contexts (for

example, in the separability of face illumination spaces [10, 7]).

Definition 2.12. Suppose that two subspaces X, Y ⊆ Rn have principal angles θ =

(θ1, . . . , θm) . Then the smallest principal angle distance function is given by

dspa(X, Y) = min
i=1,...,m

{θi} .

In general, this measure of distance is not a metric because if X, Y ⊆ Rn with

dim(X) > 1 and dim(Y) > 1, then it is possible to have dspa(X, Y) = 0 even though

X 6= Y. For example, two planes that intersect in a line would have distance zero even

though they are distinct objects.

Note that if we consider one-dimensional subspaces of Rn, then several of these

distance measures are the same. Suppose that L and M are linear spaces in Rn. Then

θ = θ1, and we have

dg(L,M) =

√√√√ 1∑
i=1

θ2
i

=
√
θ2
1

= |θ1|

= θ1

= min ({θ1})

= dspa(L,M),

since principal angles are nonnegative by definition. Also, since each θi ∈
[
0, π

2

]
, we

have

dFS(L,M) = arccos
(
Π1
i=1cos θi

)
= arccos (cos θ1)

= θ1

= dspa(L,M).

15

Again using the fact that principal angles are in the interval
[
0, π

2

]
, we have that the

chordal distance metric is equal to the subspace metric in this case:

dc(L,M) =

√√√√ 1∑
i=1

(sin θi)2

=
√

(sin θ1)2

= |sin θ1|

= sin θ1

= max ({sin θ1})

= dss(L,M). (2.13)

2.7 Unitarily Invariant Functions

In defining a function on the Grassmannian, we require that it be unitarily invariant.

The nature of unitarily invariant functions and principal angles are in fact closely

related. We first give two definitions and then we state this connection. For further

details, see [48].

Definition 2.14. A matrix norm ‖·‖ on km×n with k = R or k = C is unitarily

invariant if for any unitary matrices A and B, we have
∥∥AHMB

∥∥ = ‖M‖ for any

matrix M ∈ km×n.

Definition 2.15. A vector norm Φ : Rn → R is a symmetric gauge function if Φ is

an absolute norm and is permutation invariant. That is, Φ must satisfy each of the

following:

1. If x 6= 0, then Φ(x) > 0.

2. Φ(αx) = |α|Φ(x), for α ∈ R.

3. Φ(x+ y) ≤ Φ(x) + Φ(y).

4. If P is a permutation matrix, then Φ(Px) = Φ(x).

16

5. Φ(|x|) = Φ(x).

Von Neumann showed in [51] that if ‖·‖ is a unitarily invariant matrix norm, then

there exists a corresponding symmetric gauge function Φ that is a function of the

singular values of its argument. Part of this connection is easy to see: Suppose that

‖·‖ is a unitarily invariant norm and that a matrixM has singular value decomposition

UΣV H . Then we have

‖M‖ =
∥∥UΣV H

∥∥
= ‖Σ‖ .

Therefore, ‖·‖ is a function of the singular values of its argument.

In addition to the connection due to Von Neumann, there exists a connection in

the other direction: a bi-variate function on the Grassmannian defined in terms of

principal angles (and hence defined in terms of the singular values of a specific matrix)

is unitarily invariant. We conclude this section with a proof of this fact.

Consider the natural action of the unitary group on the vector space kn given

by multiplication on the left. This induces an action on the subspaces of kn. In the

following theorem, we say that a function is unitarily invariant if its evaluation is

unaffected by such an action.

Theorem 2.16. Let X, Y ⊆ kn, with k = R or k = C, dim(X) = s, dim(Y) = t,

and m = min {s, t} . Let the principal angles between X and Y be θ = (θ1, . . . , θm) .

Define f to be the natural map

f : Gr(s, n)×Gr(t, n) → Rm

(X, Y) 7→ (θ1, . . . , θm) .

Then f is unitarily invariant.

Proof. Let X, Y ⊆ kn. Recall from Theorem 2.5 and Corollary 2.7 that principal

angles between spaces can be computed via arccosines of singular values independently

17

of choice of unitary basis. Let us therefore begin by choosing unitary bases QX and

QY for the spaces X and Y. Suppose that the singular values of QH
XQY are σ1, . . . , σm.

To show that f is unitarily invariant, we need only show that after an action of the

unitary group on both X and Y, the singular values of the appropriate matrix are

equal to σ1, . . . , σm. A unitary action on X and Y can be realized by left multiplication

of QX and QY by a unitary matrix. Let A be a unitary matrix. Then we have

(AQX)H (AQY) = QH
XA

HAQY

= QH
XQY .

It follows that the singular values of (AQX)H(AQY) are equal to the singular values

of QH
XQY , and hence the computations of the principal angles between the two pairs

of spaces are equal as well. Therefore, f is unitarily invariant.

As a consequence of this theorem, all of the distance measures defined in Sec-

tion 2.6 are unitarily invariant. Note also that because principal angles are defined in

terms of singular values, the singular value decomposition gives a numerically stable

means of computing the approximate distance between any pair of subspaces. We

also have a way of creating new distance measures that are unitarily invariant: we

can weight the measures we have discussed already, or we can create new ones as

functions of the singular values. The advantage gained by Theorem 2.16 is that to

create new unitarily invariant distance functions, we need not look farther than those

functions which can be written in terms of the principal angles. For more on unitarily

invariant functions, see [32].

2.8 The Illumination Space of an Object

In this section, we give a brief review of the illumination space of an object. The fact

that an object can appear dramatically different under varying lighting conditions

suggests two potential approaches to object recognition algorithms. One is to seek

18

an illumination invariant image (see for example [42]). The second approach is to

represent an object by its appearance under a variety of lighting conditions. Recent

papers have shown that representing the various illuminations of an object can be

extremely useful in object recognition algorithms (see for example [10, 7]). A repre-

sentation of an object that contains information about the appearance of the object

under all possible lighting conditions is the illumination space.

If we consider all possible illuminations of an object from all light source locations,

then the result is an infinite dimensional space. Such an space is difficult to compute

and to use in object recognition algorithms. However, several papers have demon-

strated that the illumination space of an object is in fact close to being flat. That is,

the illumination space is close to lying on a low-dimensional linear space [4, 6, 19].

The structure of the illumination space is known as well. In [6], Belhumeur and

Kriegman prove two facts about the illumination space. Assume that the set of images

is collected at a fixed resolution and that the object is convex and has a Lambertian

reflectance function. Assume also that an arbitrary number of point light sources at

infinity are used. Then the illumination space of the object is a convex cone in Rn

and its dimension is equal to the number of distinct surface normals.

Because of the nature of the illumination space as a low-dimensional object, we

consider it reasonable to approximate the illumination cone with few eigenimages

when we have a convex object. In some cases, we will take a one-dimensional approx-

imation. In others, we will approximate it with the three color filter sheets given by

capturing images using the red, green, and blue color filters.

2.9 The Koszul Complex

We will use the Koszul complex as a means of creating a data set, so we give a brief

introduction to the definition and some properties here. We follow David Eisenbud’s

introduction in [17].

19

Definition 2.17. Suppose R is a ring and x ∈ R. We define the Koszul complex of

x to be the complex K(x) :

0 −→
0

R
x−→

1

R−→ 0.

The cohomological degree is given above each copy of R. Many authors define the

degree in the opposite order, but we will keep this ordering to be consistent with [17].

We denote by H i(K(x)) the homology of K(x) at degree i.

In this example, we have

H1(K(x)) =
ker(0)

im(x)
=

R

(x)
.

And

H0(K(x)) =
ker(x)

im(0)
= AnnR(x).

Note that x is a nonzerodivisor precisely when H0(K(x)) = 0. K(x) is therefore a

free resolution of R
(x)

when x is a nonzerodivisor.

The Koszul complex can be similarly defined for any number of variables. Let us

look at the Koszul complex of two ring elements x and y.

Definition 2.18. Suppose R is a ring and x, y ∈ R. We define the Koszul complex

of x and y to be the complex K(x, y) :

0 1 2

0 −→ R
(xy)−→ R2 (−y x)−→ R −→ 0.

Now we have

H2(K(x, y)) =
ker(0)

im(−y x)
=

R

−yR + xR
∼=

R

(x, y)
,

H1(K(x, y)) =
ker(−y x)

im
(
x
y

) =
{(a, b)| − ay + bx = 0}
{rx, ry|r ∈ R}

,

and

H0(K(x, y)) =
ker
(
x
y

)
im(0)

= AnnR(x, y).

It can be shown that if x is a nonzerodivisor, H1(K(x, y)) = 0 if and only if

x, y is a regular sequence. Since H2(K(x, y)) ∼= R
(x,y)

, we have that K(x, y) is a free

20

resolution of R
(x,y)

when x, y is a regular sequence and x is a nonzerodivisor. This fact

generalizes in the following way.

Theorem 2.19. Suppose that R is a local ring with maximal ideal m, and that

x1, . . . , xn is a sequence of elements in m. Then x1, . . . , xn is a regular sequence iff

Hn−1(K(x1, . . . , xn)) = 0. When this happens, K(x1, . . . , xn) is the minimal free res-

olution of R
(x1,...,xn)

.

2.10 Group Actions

In this paper, we present a variety of data sets, each of which is invariant under an

action by a group. We therefore finish this chapter with a review of group actions. We

follow the framework of Dummit and Foote in Chapters 1 and 4 of [15]. Throughout

this section, let G be a group and A a set. We begin with the definition of a group

action.

Definition 2.20. A map f : G × A → A, denoted ·, is a group action if it satisfies

the following two properties:

• g1 · (g2 · a) = (g1g2) · a, for all g1, g2 ∈ G and for all a ∈ A, and

• 1 · a = a for all a ∈ A.

Let us state a theorem that gives an equivalent way to think about group actions

in general before considering specific examples.

Theorem 2.21. An action by the group G on the set A is in one-to-one correspon-

dence with the set of homomorphisms from G into SA, the symmetric group on the

elements of A.

Proof. First, for each g ∈ G, we may define a map σg : A→ A, where σg(a) : = g · a.

We begin by showing that each σg is in fact a permutation of A. That is, each σg is

a bijection from A to A.

21

σg is one-to-one:

Suppose that there exist a, b ∈ A such that σg(a) = σg(b). Since G is a group, there

exists g−1 ∈ G, and therefore we have

σg−1 (σg(a)) = σg−1 (σg(b))

g−1(g · a) = g−1(g · b)

(g−1g) · a = (g−1g) · b

1 · a = 1 · b

a = b.

σg is onto:

Since G is a group, there exists 1 ∈ G, and by definition of a group action, we have

1 · a = a. Therefore, we have that each σg is a permutation of A.

We next claim that the map ϕ : G→ SA defined by g 7→ σg is a homomorphism. We

must show that ϕ(g1g2) = ϕ(g1) ◦ ϕ(g2) for all g1, g2 ∈ G. We will show that this

equality is true by showing that it holds for all elements a in A. Let a ∈ A. Then we

have

ϕ(g1g2)(a) = σg1g2(a)

= (g1g2) · a

= g1 · (g2 · a)

= σg1(σg2(a))

= ϕ(g1) ◦ ϕ(g2).

The map ϕ is referred to as the permutation representation associated to the action

of G on A. What we have done so far is to show that given a group action G×A→ A,

we have a way to assign a homomorphism from G to SA. We will show that there is a

bijection between actions of G on A and homomorphisms from G to SA by showing

that there is an inverse to this assignment.

Suppose that ϕ : G → SA is a homomorphism. Then define a map G × A → A by

22

g · a := ϕ(g)(a). It should be clear from the definitions that the maps between group

actions and homomorphisms from G to SA are inverses.

Let us now take a look at some examples.

Example 2.22. The trivial group action is the action by which the group action is

g · a = a for all g ∈ G and for all a ∈ A. In this case, each element g ∈ G is

associated to the identity permutation. This example shows that the map that defines

the associated permutation representation need not be injective. When it is injective,

we say that the action is faithful. The kernel of the action G× A→ A is defined as

{g ∈ G | g · a = a ∀a ∈ A} . In this example, the kernel is all of G and the action is

faithful only when |G| = 1.

Example 2.23. Let D2n be the dihedral group of order 2n. Recall that the dihedral

group is the set of symmetries of a regular n-gon. With a fixed labeling of the vertices

of the n-gon, we have that each α ∈ D2n defines an element σα ∈ Sn. The map

D2n×{1, 2, . . . , n} → {1, 2, . . . , n} defined by (αi, i) 7→ σα(i) is a faithful group action

of D2n on {1, 2, . . . , n} . In the case when n = 3, the map is surjective. Hence in this

case, we have that there is an isomorphism between D6 and S3. For any n larger than

3, this is not the case. The fact that it is the case when n = 3 tells us that every

permutation of the vertices is achievable by a symmetry of the triangle.

One very important property of a group action for our work is the following.

Definition 2.24. Let X be a subset of A, and suppose that there exists a group action

of G on A. Denote by GX the set

GX := {g · x| g ∈ G, x ∈ X} .

If GX = X, then we say that X is invariant under the group action of G.

Note that since 1 ∈ G, we always have that X ⊆ GX. The content of this definition

is therefore in the containment of GX in X. We give one example and one non-

example.

23

Example 2.25. Consider the dihedral group of order 8, with the square having the

following labeling of vertices.

1 2

4 3

Let X be the set of reflections about the vertical axis of the square (as a set of orderings

of the vertices, it is {[1, 2, 3, 4] , [2, 1, 4, 3]}). Note that X is a subgroup of D8. There

is a group action of D8, and therefore X, on the set {1, 2, 3, 4} , defined by α · i = j,

where j is the element of {1, 2, 3, 4} to which i is sent under the motion α on the

square. The subset {1, 2} is invariant under the action of X, but the set {1, 2, 3} is

not.

Finally, we state a property of group actions that we will require of some data

sets defined by group actions.

Definition 2.26. A group action G on A is said to be transitive if for every x, y ∈ A,

there exists g ∈ G such that g · x = y.

Example 2.27. The dihedral group D8 acts transitively on {1, 2, 3, 4} because for any

pair (i, j) ∈ {1, 2, 3, 4} × {1, 2, 3, 4}, there is some motion of the square that sends i

to j. The action of the subgroup X on {1, 2, 3, 4} described in the previous example is

not a transitive action, because, for instance, there is no element of X that sends 1

to 3.

24

Chapter 3

Data Sets That are Invariant

Under a Group Action

3.1 Introduction

We present here examples of data sets that can be understood through group actions

as well as ways in which they may be analyzed. For a brief introduction to group

actions, see Section 2.10. The applications that we discuss are in the context of

image analysis. The general goal is the following: suppose that we are given a data

set, which is invariant under an action of a particular group G. Suppose also that we

choose two elements of the data set, x and y. In some cases, we will seek to determine

if x and y are equivalent under the group action. That is, we wish to know if an

element g exists such that g · x = y. In other cases, we start with a transitive action

and seek to find an element g ∈ G, such that g · x = y. Because we are working

with real data sets, there is also induced noise. This means that we cannot hope for

symbolic computations that find such a g. Rather, we hope to find numeric methods,

which allow us to find an approximation of g with some reliability. We present here

a couple simple examples for the purpose of discussion. For a more detailed analysis

of equivalence of subspaces associated to matrices, see for example [53].

25

3.2 The Trivial Group

Let us begin with the simplest case, that of the trivial group. If our group G consists

only of the identity element, then we seek to know when two elements are equivalent

under multiplication by the identity. This question is trivial if there is no noise, but

when noise exists, it becomes an interesting question.

Example 3.1. Let us consider the set of matrices of size m× n, with real entries. If

the noise is known to be bounded by a sufficiently small ε, then it will be possible to

put the matrix into reduced row echelon form, with the assumption that values within

some value cε of zero are made to be zero. This gives a way to compare matrices. For

example, consider the matrix

A =

1 2 3

4 5 6

7 8 9

 .
Let B be the matrix attained by adding random noise to each entry of A. That is, we

add a random number in the interval [−ε, ε] to each entry of A. With ε = 10−13, we

get

B =

0.99999999999992 2.00000000000005 3.00000000000006

4.00000000000010 4.99999999999996 5.99999999999997

7.00000000000009 7.99999999999998 8.99999999999994

 .
Let cε = 1.598721155460225 ∗ 10−14. Then the reduced row echelon form of B is the

3× 3 identity matrix, even though

rref(A) =

1 0 -1

0 1 2

0 0 0

 .
Changing ε to 10−14, we get rref(B) = rref(A).

An alternative method of determining if A is equivalent to B under the action of

the trivial group is to use principal angles. Suppose that we flatten both A and B

26

and then normalize. Call the normalized, flattened vectors Af and Bf , respectively.

Then the singular value of ATfBf is the cosine of the principal angle between the two

linear subspaces of R9. With ε as large as 10−7, the principal angle is numerically

zero, so this method performs significantly better than simply computing the reduced

row echelon form. Even up to ε = 10−1, we find a principal angle of approximately

0.011724 radians, suggesting that principal angles still detect the closeness of the

matrices A and B.

3.3 The Symmetric Group

Let us now consider an action of a subgroup of Sn on GL(n,R). Note that Sn acts on

a matrix M ∈ GL(n,R) by permuting the columns of M. Equivalently, Sn is the set

of matrices P, which have exactly one one in each row and in each column, and the

action is post-multiplication by P.

Now let G be the subgroup of Sn consisting of cyclic permutations. G is the set

of permutations on {1, 2, . . . , n} defined by

σ(ai) = ai+k(modn).

Example 3.2. There are many settings in which the action of G on GL(n,R) might

occur and in which we might seek to determine if two elements of GL(n,R) are equiv-

alent. Suppose that observations are made of an object with periodic behavior. Let

us assume that two data sets, D1 and D2, are collected, each containing information

about one complete period. Let us also assume that a third data set, D3, is created by

making observations of a different object. We would like to be capable of determining

that D1 and D2 are equivalent and that D3 is not equivalent to either D1 or D2. This

question is one that we can describe in the language of the action of G on GL(n,R) :

given the nature of these data sets, we have that D1 ≡ D2, but D3 6≡ Di for i = 1, 2.

The technique of computing reduced row echelon form that worked well with min-

imal noise in the previous example is now of no use. This is due to the fact that, in

27

general, column swaps result in different reduced row echelon forms. For example, let

A be the matrix as defined in the previous example and let B be the cyclic permutation

of A given by

B =

3 1 2

6 4 5

9 7 8

 .
Even without adding in noise, we get that the reduced row echelon form of B is

rref(B) =

1 0 0.5

0 1 0.5

0 0 0

 ,
while

rref(A) =

1 0 -1

0 1 2

0 0 0

 .
We can use the method of computing principal angles that was used in the previous

example, but we find that its signal is weaker. As an example, if we use the matrix

B above, we find that the smallest principal angle between the flattened, normalized

vectors is approximately 0.251978 radians. This is significantly larger than the prin-

cipal angles that suggested equivalence of matrices in the previous example. However,

computing principal angles gives some advantage in that the method shows robustness

with added noise. If we do the same computation, but this time add noise to B with

ε as large as 10−7, the principal angle remains 0.251978.

A better technique than either reduced row echelon form or principal angles in

this setting is to take advantage of a property of the discrete Fourier transform. We

give a brief review of the transform and the property that we wish to use here before

returning to this problem.

Recall that given a sequence {xn}N−1
n=0 , the Fourier transform of {xn}N−1

n=0 is defined

28

to be the sequence {Xk}, where

Xk = F ({xn})k =
N−1∑
n=0

xne
−2πikn
N .

The behavior of the sequence Xk given a circular shift of the sequence xn is known

and is described by the shift theorem. We state it and give a proof here.

Theorem 3.3. Fix an integer m and suppose that F({xn})k = Xk. Then

F({xn−m})k = Xke
−2πikm

N ,

where the indices of the sequence {xn−m} are taken mod N.

Proof. We have

F({xn−m})k =
N−1∑
r=0

xN−m+re
−2πikr
N

= e
−2πikm

N

N−1∑
r=0

xN−m+re
−2πik(−m+r)

N ,

= e
−2πikm

N

N−1∑
r=0

xN−m+re
−2πik(N−m+r)

N ,

= e
−2πikm

N Xk,

where we have used the periodicity of the exponential function.

One consequence of the shift theorem is that a circular shift of the sequence {xn}

results in an output sequence whose coefficients have the same magnitude as the co-

efficients in the original output sequence Xk. We can therefore exploit this property

in our example. There are several approaches we can take to exploit this property; we

will discuss one here and will use another in Chapter 8.

If one data matrix Di is equivalent to a different data matrix Dj under the action

by G, then the magnitude of the Fourier coefficients of each row will be the same.

So we can start by taking the difference of the absolute values of the coefficients

row by row. In the example above, we find that the difference in the magnitudes are

29

numerically zero for ε as large as 10−7. Note, however, that it is possible that each row

was permuted by a different cyclic permutation. Therefore, this method can be used

to determine when two data sets are not equivalent, but more is needed to determine

that they are equivalent. Once it has been determined that the rows of each matrix

have approximately equal magnitudes of Fourier coefficients, one can inspect whether

or not there exists a cyclic permutation of the columns. The advantage is that it is

often the case that one must inspect a significantly smaller set of matrices for a cyclic

permutation after eliminating the majority using Fourier coefficients.

3.4 The Special Orthogonal Group

In Chapters 5, 6, and 7, we consider a data set that is invariant under an action of the

special orthogonal group, SO(n,R). The setup for data set collection is the following.

Images of an object on a rotating record player are captured. For some data sets, we

use only grayscale intensity images; these are generated using a linear combination of

the amount of light received on each pixel in the red, green, and blue color filters. The

linear combination is given by vgray = 0.2989vred + 0.5870vgreen + 0.1140vblue, where v∗

represents the value of the pixel in the given color filter. In other data sets, we use

the information from all three color filters individually, and in others, we retain all

the information for all three color filters.

The camera is located at roughly the same height as the object so that the camera

captures side views of the object. Although we rotate the object on the record player,

we are, in effect, modeling the situation in which an object is fixed and a camera is

allowed to move in a circle about the object. Because any motion of the camera along

the circle results in an image that is in the data set, we say that the data is invariant

under an action of SO(2,R).

We exploit the invariance of this set under the action by SO(2,R) in several

ways. Because SO(2,R) ∼= S1, each data point taken during a single rotation can

30

be viewed as corresponding to a point on S1. In Chapter 5, we use this fact to get a

visual representation of the closed loop corresponding to data sets collected for several

different objects.

In Chapters 6 and 7, we again use this structure of the data set to construct a

vector bundle over S1 on which we can apply an algorithm to determine (locally)

optimal camera location distribution.

3.5 SO(n,R)× SO(n,R)

In Chapter 8, we combine a data set of images of a rotating object with artificial

rotation. That is, for each image of the object, we artificially generate images that

represent rotation of the camera along the axis between the camera and the object.

In this way, we model a data set in which the camera is allowed to move along a circle

around the object and is allowed to rotate along its own horizontal axis. Therefore

the data set is invariant under an action by the group SO(n,R) × SO(n,R). We

exploit this invariance by designing an algorithm which can detect the intersection of

two such data sets.

3.6 Extensions

We note here that the data sets we study in this paper are fixed under several varia-

tions of state that may not be fixed in many real-world settings. For instance, when

we collect images of a rotating object, we assume that the images are registered to

have roughly the same origin of rotation. In contrast, large variations in registra-

tion occur if, for example, the camera being used is hand-held. An extension of this

work would therefore expand these algorithms to be applied to a data set which is

invariant under an action, not just of the special orthogonal group, but of the group

SE(n). Recall that SE(n) is the special Euclidean group, or the symmetry group of

31

n−dimensional Euclidean space. That is, we would like to allow not only for rotations

of an object, but also for shifts of camera location.

32

Chapter 4

Processing High Speed Data Using

the Fast Fourier Transform

4.1 Introduction

The standard wall socket on a typical building in the US provides a rectified 60Hz

current. As a consequence, lights powered by such a source pulse at a rate of 120 cycles

per second. This pulsating of a light source is far too fast to be observed by the human

eye but can be observed through the aid of a high speed camera. A phenomenon

known as aliasing can occur when an object is illuminated with such lighting and a

sequence of images of the object are captured at a rate comparable to 120 frames per

second. An acoustic version of this phenomenon is the background beating one can

hear when listening to two slightly differing frequencies. In this chapter, we present

evidence that the variation in lighting is observed in our collected data. We then

apply the Fourier transform as a method for removing these oscillations.

33

4.2 Control Data Sets

We begin with examples of data sets consisting of pictures of a stationary object.

Eight data sets of approximately 2000-4000 pictures each are collected at a rate of

1000 pictures per second and a resolution of 256 × 256 pixels. All analysis is done

separately for each color filter and for grayscale. One data set is collected under

overhead and supplemental lighting, which is powered by an alternating current. The

other data sets are collected under lighting powered by a direct current. The pictures

are of a stationary object, so any variation in images is from either the light sources

or the camera itself.

4.3 Data Set of a Rotating Object

Pictures are captured at a rate of approximately 220 pictures per second and at a

resolution of 512× 512 pixels. The object is rotating at 331
3

rotations per minute. In

this example, the object is a white, silver, and blue tennis shoe. A picture of the shoe

can be seen in Figure 4.1. All analysis is done separately for each of the three color

filters as well as for grayscale.

Figure 4.1: Shoe

34

4.4 Methods

As described in Chapter 5, each digital image matrix can be flattened to a point in

Rr2 , where the resolution is r× r. After flattening each image matrix in this way and

considering it as a column vector, we construct a data matrix, X, by concatenating

column vectors in order of time of image capture. We use sufficiently many images to

capture approximately one full rotation of the object. Hence, the number of columns

of X varies slightly throughout analysis by data set and by filter.

Let X̂ be the projection of X into R3 via the method described in Section 5.2.

Hence X has 3 rows and the number of columns of X is equal to the number of

pictures in the data set. Define v(i) to be the row vector given by the ith row of X̂

for i = 1 . . . 3. Let f(i) be the discrete Fourier transform of v(i). Note that the vectors

f(i) have the property that the first entry is the sum of the entries in v(i) and that

the rest of the entries in each f(i) come in conjugate pairs. Entry 2 is the complex

conjugate of the last entry, entry 3 is the complex conjugate of the second-to-last

entry, and so forth. In this experiment, we keep the first 10 coefficients as well as the

corresponding 9 coefficients at the end of the vector f(i). The rest of the coefficients

are set to zero. The number 10 gives good results in this example, but any number

may be used with slightly varying results. Using less than the first 5 coefficients or

more than the first 20 leads to noticeably worse reconstructions. We next compute

vectors g(i) by performing the inverse discrete Fourier transform on the zeroed f(i)’s.

4.5 Results

4.5.1 Control Data Sets

Stationary Data Under AC Lighting

In Figures 4.2-4.4, we see various views of the 3-dimensional projections of the sta-

tionary punch bowl under alternating current lighting in the red, green, and blue

35

filters. Observe that there is a strong signal, which produces similar results in each

of the three filters. If we plot the points as a time series with each point plotted in

the order in which it was captured, then we see that the points travel back and forth

along the arch. This is highly suggestive that one end of the arch corresponds to

maximal light, while the other corresponds to minimal light.

(a) View 1 (b) View 2 (c) View 3

Figure 4.2: Stationary Data Under AC Lights, Red Filter

(a) View 1 (b) View 2 (c) View 3

Figure 4.3: Stationary Data Under AC Lights, Green Filter

Observe the graph of the absolute value of the Fourier coefficients, shown in Fig-

ure 4.5. We see that there are several frequencies at which the data gives a relatively

strong signal. However, the overwhelming majority of the Fourier basis vectors have

a large magnitude. Hence, the basis vectors corresponding to those frequencies alone

do not provide a good representation of the alternating current. It will therefore be

necessary in any processing of the data using the Fourier transform to zero out a

significant number of basis vectors.

36

(a) View 1 (b) View 2 (c) View 3

Figure 4.4: Stationary Data Under AC Lights, Blue Filter

Figure 4.5: Absolute Value of Fourier Basis Coefficients

In Figure 4.6, we see the plot of the red filter data projected onto one dimension.

That is, we plot only the first coordinate of the three-dimensional projection. In order

to make the plot less crowded, we show only the first 100 points. Note that the AC

light data set is periodic, with period approximately 1000
120

= 81
3
. This is consistent

with the period of the alternating current, suggesting that this variation is, in fact, a

result of the pulsating of the lights.

Figure 4.6: First Coordinate of Projection

37

Stationary Data Under DC Lighting

The projections of a stationary red punch bowl collected under direct current lighting

are shown in Figures 4.7 and 4.8. In contrast to the projection of the AC data in

the red and green filters, the data sets corresponding to DC lighting are distributed

about a single point in space and appear to have no organization with respect to

time. Surprisingly, we see that the data in the blue filter is distributed about eight

points in space. Because the lighting for this data set is powered by a direct current,

it seems likely that this variation has a source within the camera.

(a) Red Filter (b) Green Filter

Figure 4.7: Stationary Red Punch Bowl Under DC Lights, Red and Green Filters

(a) View 1 (b) View 2 (c) View 3

Figure 4.8: Stationary Red Punch Bowl Under DC Lights, Blue Filter

Given that images of a red object show unusual structure in the blue filter only

suggests that the camera generates structured noise when there is very little light in

a given filter. We therefore collect two more data sets of stationary objects under

direct current lighting. The first is a set of pictures of a blue cup. If the hypothesis

38

is correct, we should see a distribution of points about 8 locations in the red filter

and a distribution about one location in the green and blue filters. The results of

this experiment are presented in Figures 4.9-4.11. Note that we do not see such

distributions. We do, however, see some structure in each of the filters. We can again

conclude that there is some source of structured noise from the camera itself.

(a) View 1 (b) View 2 (c) View 3

Figure 4.9: Stationary Blue Cup Under DC Lights, Red Filter

(a) View 1 (b) View 2 (c) View 3

Figure 4.10: Stationary Blue Cup Under DC Lights, Green Filter

In Figures 4.12-4.14, we see the results of a projection of a data set of pictures of

a blue cup with red and green tape attached. If any set should generate a random

distribution of points about one location in space for each filter, this is it. We see,

however, that some unusual structure still exists in the projection.

We test the hypothesis that the noise is somehow related to the lighting by taking

pictures of a direct current light source. The projection of this data set is shown in

Figure 4.15. Note that here we actually see well-distributed points about one location

39

(a) View 1 (b) View 2 (c) View 3

Figure 4.11: Stationary Blue Cup Under DC Lights, Blue Filter

(a) View 1 (b) View 2 (c) View 3

Figure 4.12: Stationary Blue Cup with Red and Green Tape, DC Lights, Red Filter

in each filter. It is therefore reasonable to assume that any other structure in the data

is not a result of the direct current lighting.

Finally, we collect a data set by taking pictures of nothing. That is, we cover

the lens of the camera and take pictures. The projection of this data set is shown

in Figures 4.16 and 4.17. Here again, we see a well-behaved distribution in the red

and green filters and an unusual distribution in the blue filter. We must conclude

that the camera adds some noise to any collected data set, with the blue filter being

most susceptible. Because the noise structure changes upon collection of different

data sets, it is not something that we can consistently correct. It is, however, on a

relatively small scale.

40

(a) View 1 (b) View 2 (c) View 3

Figure 4.13: Stationary Blue Cup with Red and Green Tape, DC Lights, Green Filter

(a) View 1 (b) View 2 (c) View 3

Figure 4.14: Stationary Blue Cup with Red and Green Tape, DC Lights, Blue Filter

(a) Red Filter (b) Green Filter (c) Blue Filter

Figure 4.15: Spotlight (DC Light)

41

(a) Red Filter (b) Green Filter

Figure 4.16: No Light, Red and Green Filters

(a) View 1 (b) View 2 (c) View 3

Figure 4.17: No Light, Blue Filter

42

4.5.2 Data Set of a Rotating Object

In Figures 4.18, 4.20, 4.22, 4.24, and 4.26, we show the results of this experiment with

no processing to remove the effects of the lights. Let X̂ denote the projection of X

as described in Chapter 5. Figures 4.18, 4.20, 4.22, and 4.24 show plots of each row

of X̂ in the various filters. Figure 4.26 shows the projection into R3 for each filter.

Each point is an ordered triple defined by a column of X̂.

Figures 4.19, 4.21, 4.23, and 4.25 show the plots of the g(i), that is, the recon-

struction of the rows of X̂ after zeroing some Fourier coefficients. Figure 4.27 shows

the reconstruction of the projection to R3 using the g(i) for each filter. These recon-

structions suggest that the actual curves representing the data in R3 are smooth and

not self-intersecting.

(a) First Coordinate of X̂ (b) Second Coordinate of X̂ (c) Third Coordinate of X̂

Figure 4.18: Rows of X̂ Before Processing, Red Filter

(a) First Coordinate of X̂ (b) Second Coordinate of X̂ (c) Third Coordinate of X̂

Figure 4.19: Rows of X̂ After Processing, Red Filter

43

(a) First Coordinate of X̂ (b) Second Coordinate of X̂ (c) Third Coordinate of X̂

Figure 4.20: Rows of X̂ Before Processing, Green Filter

(a) First Coordinate of X̂ (b) Second Coordinate of X̂ (c) Third Coordinate of X̂

Figure 4.21: Rows of X̂ After Processing, Green Filter

(a) First Coordinate of X̂ (b) Second Coordinate of X̂ (c) Third Coordinate of X̂

Figure 4.22: Rows of X̂ Before Processing, Blue Filter

44

(a) First Coordinate of X̂ (b) Second Coordinate of X̂ (c) Third Coordinate of X̂

Figure 4.23: Rows of X̂ After Processing, Blue Filter

(a) First Coordinate of X̂ (b) Second Coordinate of X̂ (c) Third Coordinate of X̂

Figure 4.24: Rows of X̂ Before Processing, Grayscale

(a) First Coordinate of X̂ (b) Second Coordinate of X̂ (c) Third Coordinate of X̂

Figure 4.25: Rows of X̂ After Processing, Grayscale

45

(a) Red Filter (b) Green Filter (c) Blue Filter (d) Grayscale

Figure 4.26: Projections into R3 Before Processing

(a) Red Filter (b) Green Filter (c) Blue Filter (d) Grayscale

Figure 4.27: Projections into R3 After Processing

46

4.6 Aliasing

We note here that the plots of the individual coordinates of X̂ are examples of aliasing.

In the plots of the first coordinate, for example, it appears that there are two sine

waves superimposed on another signal. We claim that this is an effect of our sampling

rate and does not represent the alternating current signal or the signal from the data.

Recall that we capture pictures at approximately 220 pictures per second, and

the rectified current completes 120 cycles per second. It follows that by the time we

capture the second picture, the current for the lights has already completed more

than one cycle. Therefore, one should not expect to observe the actual sine wave of

the alternating current.

As an example of the artifacts one can see as a result of aliasing, we have included

Figures 4.28 and 4.29. All graphs are samples of sin(60x) + log(x) over the interval

[0, 10π]. In Figure 4.28a, we see that with very frequent sampling, the true nature of

the function is observable. To get a good view of the function in Figure 4.28a, the

figure must be significantly enlarged. We get the strongest effects from aliasing in

Figure 4.29b, where the sampling rate is a multiple of the frequency of sin(60x).

(a) 10,000 Samples (b) 1000 Samples (c) 800 Samples (d) 620 Samples

Figure 4.28: Various Samplings of sin(60x) + log(x)

47

(a) 610 Samples (b) 600 Samples (c) 500 Samples

Figure 4.29: Various Samplings of sin(60x) + log(x)

48

Chapter 5

A Geometric Representation of a

Rotating Object

5.1 Introduction

We use a high speed digital camera to capture a sequence of still images of an object.

The object rotates along the axis through the center of the object and perpendicular

to the axis between the object and the camera. A digital image can be stored as a

matrix of integer entries, where each integer is a measure of the intensity of light on the

corresponding pixel. This matrix can then be viewed as a point in a high-dimensional

vector space Rn. Let X be the data set consisting of points in Rn corresponding to

images of one object at various stages of rotation. We conjecture that for certain

choices of projection into lower dimensional space, such a data set will project to a

sampling of a curve homeomorphic to S1. In this paper, we focus on projections of

data sets using Principal Component Analysis.

49

5.2 Methods

Images are collected using a Phantom Vision High Speed Camera 4.2 as collections of

three matrices, one for each filter color: red, green, and blue. The image resolution

is either 512 × 512 or 256 × 256, depending on the data set. We will denote the

resolution of an image by r × r. Hence, one image is represented by three r × r

matrices. Throughout this chapter, we conduct analysis in each filter individually.

We therefore refer to an image as one r × r matrix. We will use p to denote the

number of images in a given data set.

Given a digital image I collected in a chosen filter, we wish to map it to a point

in Rn, for some large n. Under this map, we want each integer entry of I to be

preserved, so we use n = r2. There are many ways to map a matrix I to Rn; we use

the following method. Concatenate rows of I in order from top to bottom. Hence,

the map is given by

Rr×r → Rr2

I 7→ v, defined by

vi = Ijk, where j =

⌊
i

r

⌋
+ 1, and k = imodr.

Mapping a matrix into Rn in this way is referred to as flattening a matrix.

We take pictures of an object spinning on a record player. We complete this

experiment for data sets consisting of images of the following objects: an orange

plastic jack o’ lantern; a (somewhat flat) red, white, and blue volleyball; a shiny, red

punch bowl on a stand; and a red punch bowl with white tape on it. We place varying

numbers of pieces of tape on the punch bowl in order to create data sets with different

types of symmetry. The first of these data sets is images of a punch bowl with one

piece of horizontal tape. The second is of a punch bowl with one horizontal piece on

one side and two pieces of tape forming an × on the other side. The third data set

is of a punch bowl with two vertical pieces of tape on opposite sides of the bowl, one

horizontal piece in between, and an × opposite the horizontal piece. The final set is

50

of a punch bowl with vertical pieces of tape on opposite sides and horizontal pieces

on the opposite sides in between. Pictures of these objects can be seen in Figure 5.1

and in Figures 5.2 to 5.5. We note here that the strength of the light source varies

dramatically in the red punch bowl data sets, but that the tape is clear in each set

and therefore the light variation should have little effect on projection results.

(a) Jack o’ Lantern (b) Volleyball (c) Punch Bowl

Figure 5.1: Original Images: Jack O’ Lantern, Volleyball, and Punch Bowl

(a) Punch Bowl (b) Tape

Figure 5.2: Original Images: Punch Bowl with One Tape Data Set

(a) Punch Bowl (b) Tape 1 (c) Tape 2

Figure 5.3: Original Images: Punch Bowl with Two Tapes Data Set

51

(a) Punch Bowl (b) Tape 1 (c) Tape 2 (d) Tape 3 (e) Tape 4

Figure 5.4: Original Images: Punch Bowl with 1 Pair and 2 Different Tapes Data Set

(a) Punch Bowl (b) Tape 1 (c) Tape 2 (d) Tape 3 (e) Tape 4

Figure 5.5: Original Images: Punch Bowl with 2 Pairs Tapes Data Set

52

We create a data matrix X, consisting of all flattened images of a rotated object.

This is done by concatenating column vectors in Rn representing images of the object.

Concatenation is ordered by time of image capture. We compute the singular value

decomposition of X, to get matrices U, Σ, and V satisfying X = UΣV >. Recall that

the matrix U consists of ordered left singular vectors, or principal components. The

first column of U gives the mean of the data. Each successive column, or principal

component, captures the next most important feature of the data. Therefore, by

using the second, third, and fourth columns of U to project the data into R3, we

simultaneously mean-subtract the data and get a representation of each picture in R3

which contains information about the three most important features of the object.

That is, we have chosen to project onto the three vectors which capture more statis-

tical variance in the data than any other three orthonormal vectors. If Û is columns

two through four of U , then the projection π is given by

π : Rr2×p → R3×p

X 7→ Û>X.

The image of X is a matrix, each of whose columns is a three-tuple corresponding to

an image in the original data set. While many low-dimensional representations of the

data can be useful, we choose to project into R3 because it is the largest dimension

in which we can get a natural visual representation of the data.

5.3 Results

We begin with projections into R3 for each data set and each filter for three data sets.

Each of these sets of images were captured at a rate of approximately 220 pictures

per second and at a resolution of 512 × 512 pixels. Enough pictures are used to

capture approximately three rotations of the object. The objects used in these sets

are the jack ’o lantern, the volleyball, and the punch bowl. Results for all objects are

53

from data collected under direct current lighting to rule out any effects from lighting

variation. The projections are shown in Figures 5.6, 5.7, and 5.8.

(a) Red Filter (b) Green Filter (c) Blue Filter (d) Grayscale

Figure 5.6: Projections into R3 of Jack o’ Lantern

(a) Red Filter (b) Green Filter (c) Blue Filter (d) Grayscale

Figure 5.7: Projections into R3 of Volleyball

(a) Red Filter (b) Green Filter (c) Blue Filter (d) Grayscale

Figure 5.8: Projections into R3 of Punch Bowl

54

We note here that the most well-behaved curves belong to the volleyball. We con-

jecture that this is due to the fact that the volleyball has more features to distinguish

one image from another. In contrast, the red punch bowl looks very similar from every

angle and its corresponding projection into R3 appears to sample a continuous but

not differentiable curve. We also note that in each projection, the points appear to

lie on a non-self-intersecting closed loop. Therefore, these experiments give support

to the conjecture that this method of projection of a data set consisting of at least

one full rotation of an object does indeed result in a curve homeomorphic to S1.

We also present in Figures 5.9 through 5.20 the eigenpictures for each object in

each filter. That is, we have used the inverse of the flattening map to unflatten each

column of the projection matrix Û . These give some insight into the most important

features of the images with which to differentiate one perspective of an object from

another. Note that we do not use the same color scale for each picture; the colors used

to represent pixel values have been scaled to display variation within each picture.

In Figures 5.21 through 5.23, we display the eigenpictures corresponding to columns

one through 14 of the matrix U. Only eigenpictures two through four are used in

the projection to R3, but considering more eigenpictures allows one to see the way in

which Principal Component Analysis creates an ordered basis. Columns which appear

early in U contain coarse information about the data, whereas ones which appear later

pick up higher frequency information. Observe in Figure 5.24 that eigenpictures 1000

through 1002 contain very high frequency information. A careful examination of these

eigenpictures reveals that they are not entirely random noise but instead contribute

to the fine detail components of images in the original set.

55

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.9: Eigenpictures: Jack o’ Lantern in Red Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.10: Eigenpictures: Jack o’ Lantern in Green Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.11: Eigenpictures: Jack o’ Lantern in Blue Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.12: Eigenpictures: Jack o’ Lantern in Gray Filter

56

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.13: Eigenpictures: Volleyball in Red Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.14: Eigenpictures: Volleyball in Green Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.15: Eigenpictures: Volleyball in Blue Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.16: Eigenpictures: Volleyball in Gray Filter

57

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.17: Eigenpictures: Punch Bowl in Red Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.18: Eigenpictures: Punch Bowl in Green Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.19: Eigenpictures: Punch Bowl in Blue Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.20: Eigenpictures: Punch Bowl in Gray Filter

58

(a) Eigenimage 1

(mean)

(b) Eigenimage 2 (c) Eigenimage 3 (d) Eigenimage 4 (e) Eigenimage 5

Figure 5.21: Eigenpictures: Jack o’ Lantern in Gray Filter

(a) Eigenimage 6 (b) Eigenimage 7 (c) Eigenimage 8 (d) Eigenimage 9 (e) Eigenimage 10

Figure 5.22: Eigenpictures: Jack o’ Lantern in Gray Filter

59

(a) Eigenimage 11 (b) Eigenimage 12 (c) Eigenimage 13 (d) Eigenimage 14

Figure 5.23: Eigenpictures: Jack o’ Lantern in Gray Filter

(a) Eigenimage

1000

(b) Eigenimage

1001

(c) Eigenimage

1002

Figure 5.24: Eigenpictures: Jack o’ Lantern in Gray Filter

60

In Figures 5.25 to 5.36, we have projections of the red punch bowl with varying

numbers of pieces of white tape. These data sets are collected at a speed of 1000

pictures per second and a resolution of 256×256. Enough pictures are used to capture

approximately one rotation of the object. The light source is powered by a direct

current, as before.

Figures 5.25 to 5.27 show projections of images of a red punch bowl with one

piece of white tape attached. The points colored red represent images in which some

portion of the tape is visible. We see that the blue points, corresponding to images in

which no tape is visible, all project to a small region in R3. This is expected since each

of the images in which only red punch bowl can be seen is relatively indistinguishable

from other images in which only red punch bowl can be seen.

Figures 5.28 to 5.30 display projections of a red punch bowl with pieces of tape

on opposite sides of the bowl. One one side is a horizontal piece of tape, and on

the other is two pieces of tape that form an ×. The points colored red correspond to

images in which some portion of the horizontal piece of tape is visible, while those

colored green correspond to the × tape region. Notice that the projections of the

two different shapes of tape trace out paths in different regions of R3. Therefore,

classification methods using PCA should be capable of distinguishing between the

two pieces of tape.

Figures 5.31 to 5.33 show projections of the data set of the red punch bowl with

two vertical pieces of tape, one horizontal piece, and one ×. The points colored red

correspond to images in which the horizontal tape is visible, the green correspond to

the × tape, and the cyan and magenta correspond to different vertical stripes. We

see a similar phenomenon here as with the single piece of white tape data, in that all

of the points where no tape is visible project to the same region. This example shows

that our conjecture about each data set projecting to a curve homeomorphic to S1 is

false. This set appears to project to four curves connected at a point, each of which

is homeomorphic to S1.

61

Figures 5.34 to 5.36 are projections of the data set with two pairs of similar pieces

of tape, one pair being vertical strips, and one pair being horizontal strips. The

vertical strips are opposite each other, as are the horizontal strips. The projection

is similar to the other set with four pieces of tape, except that now we see two pairs

of curves homeomorphic to S1 connected at a point. Notice that again the curves

corresponding to different shapes of tape largely occupy separate regions of space.

These results suggest that shape recognition algorithms based on PCA are likely to

be successful, but perspective recognition algorithms are not.

(a) View 1 (b) View 2 (c) View 3

Figure 5.25: Red Punch Bowl, One Tape, Red Filter

(a) View 1 (b) View 2 (c) View 3

Figure 5.26: Red Punch Bowl, One Tape, Green Filter

62

(a) View 1 (b) View 2 (c) View 3

Figure 5.27: Red Punch Bowl, One Tape, Blue Filter

(a) View 1 (b) View 2 (c) View 3

Figure 5.28: Red Punch Bowl, Two Different Tapes, Red Filter

(a) View 1 (b) View 2 (c) View 3

Figure 5.29: Red Punch Bowl, Two Different Tapes, Green Filter

63

(a) View 1 (b) View 2 (c) View 3

Figure 5.30: Red Punch Bowl, Two Different Tapes, Blue Filter

(a) View 1 (b) View 2 (c) View 3 (d) View 4

Figure 5.31: Red Punch Bowl, 1 Pair and 2 Different Tapes, Red Filter

(a) View 1 (b) View 2 (c) View 3

Figure 5.32: Red Punch Bowl, 1 Pair and 2 Different Tapes, Green Filter

64

(a) View 1 (b) View 2 (c) View 3

Figure 5.33: Red Punch Bowl, 1 Pair and 2 Different Tapes, Blue Filter

(a) View 1 (b) View 2 (c) View 3

Figure 5.34: Red Punch Bowl, Two Pairs of Tape, Red Filter

(a) View 1 (b) View 2 (c) View 3

Figure 5.35: Red Punch Bowl, Two Pairs of Tape, Green Filter

65

(a) View 1 (b) View 2 (c) View 3

Figure 5.36: Red Punch Bowl, Two Pairs of Tape, Blue Filter

66

In Figures 5.37 to 5.48, we see the eigenimages used for each of these projections in

each filter. Note that images are not normalized for intensity. Therefore eigenimages

are biased to represent perspectives with higher intensity images, such as where tape

is visible.

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.37: Eigenpictures: Punch Bowl, 1 Tape in Red Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.38: Eigenpictures: Punch Bowl, 1 Tape in Green Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.39: Eigenpictures: Punch Bowl, 1 Tape in Blue Filter

67

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.40: Eigenpictures: Punch Bowl, 2 Tapes in Red Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.41: Eigenpictures: Punch Bowl, 2 Tapes in Green Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.42: Eigenpictures: Punch Bowl, 2 Tapes in Blue Filter

68

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.43: Eigenpictures: Punch Bowl, 1 Pair and 2 Different Tapes in Red Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.44: Eigenpictures: Punch Bowl, 1 Pair and 2 Different Tapes in Green Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.45: Eigenpictures: Punch Bowl, 1 Pair and 2 Different Tapes in Blue Filter

69

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.46: Eigenpictures: Punch Bowl, 2 Pairs of Tape in Red Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.47: Eigenpictures: Punch Bowl, 2 Pairs of Tape in Green Filter

(a) Eigenimage 1 (b) Eigenimage 2 (c) Eigenimage 3

Figure 5.48: Eigenpictures: Punch Bowl, 2 Pairs of Tape in Blue Filter

70

In view of the projections of objects with symmetry into R3, let us discuss the more

general situation. Suppose that an object looks exactly the same from two different

points of view. Then the images corresponding to those two perspectives occupy the

same point in pixel space, Rn. Therefore, the projection of those two points to R3

will be the same because a projection is a legitimate function and cannot have two

different outputs for the same input.

Now suppose that an object has a sequence of images that is identical to a sequence

of images from a different perspective. Suppose also that the first sequence projects

to the path α. Then we must have that the second sequence also projects to α. The

projection is a 2-to-1 map above α. It follows that if α is a loop, then the image of

the projection consists of at least two loops. If noise is present in the data, we will

see two distinct but spatially close loops. If there is no noise, we will see the same

loop traversed twice.

Because the real data that we collect has noise, there are no pictures that are

exactly alike, but many are similar. Therefore, we see that sometimes a great number

of pictures get projected to almost the same point in space. For example, with the

data set of a punch bowl with one piece of white tape, approximately 1250 out of

1722 pictures are mapped to a relatively small region: if the mean of the 1250 points

is m, then all 1250 points p have the property that the norm of |p −m| is less than

40.59, whereas |p−m| is as large as 994 for points corresponding to locations where

tape is visible.

The noise in the data and the slight variation in the objects themselves also allows

us to see distinct paths corresponding to sequences of pictures that appear to be the

same. For example, the projections of the two different vertical strips of tape are two

loops that are nearly identical but are nevertheless distinct.

71

Chapter 6

An Algorithm for Determining

Optimal Camera Location

Distribution

6.1 Introduction

In this chapter, we develop and apply an algorithm which finds minimal energy point

configurations on a vector bundle over S1 using a distance measure on the Grass-

mannian. Consider the following problem. Place an object at the center of a circle

of possible camera locations. Suppose that the number of camera locations and the

resolution of the camera are fixed. At each camera location, we take a fixed number

of images and find a finite dimensional vector space representation for the set. In

this way, we attach a point on the Grassmannian to a finite but large number of

points on the circle. One example of such a data set would be to collect images under

varying illumination and attach the illumination space of the object at each point on

the circle. Given this setup, we seek to determine the best n locations from which to

take pictures in order to approximate the given vector bundle.

Note that depending on the convexity and symmetry of the object, the answers

72

vary drastically. If a perfectly symmetric object is placed at the center of the sphere,

then every distribution should be optimal. If an object looks completely different

from every angle, then the optimal distribution should be uniform. In contrast, if an

object has little variation in features on one particular side, say side L, but has large

variations in features on a different side, say side R, then the optimal camera location

distribution will involve very few pictures of side L and many pictures of side R. We

propose two algorithms to determine camera location distributions.

Algorithm 6.1. (Nearest Neighbor Dispersion Algorithm – Global)

Input: An initial configuration C of n points on S1, parameters ε, d, T, and k, a

unitarily invariant function ∂ on the Grassmannian, and a data bundle over S1.

Output: A final configuration C of n points on S1.

Algorithm:

• Pick a point x ∈ C at random.

• Let the vector spaces associated to the points in C be denoted
{
Uxj
}n
j=1

.

• For each xj 6= x, compute the singular value decomposition of UH
x Uxj to get the

corresponding principal angles between the subspaces Ux and Uxj .

• Compute the distance ∂(Ux, Uxj) between Ux and Uxj for each xj 6= x. Denote

the j which gives the smallest distance by jmin.

• Move x by a distance ε in such a way that its distance with xjmin increases.

Repeat. After each k iterations, decrease ε by d. Complete the above steps a total of

T times.

Algorithm 6.2. (Nearest Neighbor Dispersion Algorithm – Local)

Input: An initial configuration C of n points on S1, parameters ε, d, T, and k, a

unitarily invariant function ∂ on the Grassmannian, and a data bundle over S1.

Output: A final configuration C of n points on S1.

Algorithm:

73

• Pick a point x ∈ C at random.

• Let the vector spaces associated to the points in C be denoted
{
Uxj
}n
j=1

.

• Denote by xa the point in C that achieves the smallest distance to x on S1 on

one side and by xb the point in C that achieves the smallest distance to x on

S1 on the other side. For both j = a and j = b, compute the singular value

decomposition of UH
x Uxj to get the corresponding principal angles between the

subspaces Ux and Uxj .

• Compute the distance ∂(Ux, Uxj) between Ux and Uxj for j = a and j = b.

Denote the j which gives the smallest distance by jmin.

• Move x by a distance ε in such a way that its distance with xjmin increases.

Repeat. After each k iterations, decrease ε by d. Complete the above steps a total of

T times.

The two algorithms are driven by different information and can produce very

different results. In both cases, we hope that by annealing the distance by which a

point moves in a given step, the camera locations will converge to a local (and possibly

global) minimum of an energy function f. Measuring distances on the Grassmannian

instead of on S1 should lead to a camera location distribution which will provide

a (locally) optimal n-location representation of the vector bundle associated to the

object.

6.2 Implementation

6.2.1 A Koszul Complex as a Trial Data Set

We begin by constructing the Koszul complex as a trial data set on which to im-

plement the algorithm. This setting differs from the data set of images in several

74

ways. First, we have an infinite set of possible locations. It is therefore possible to

pack points into a region more tightly than in the real data setting. Second, it takes

significantly longer for the algorithm to converge to a stable set than in the real data

setting. Finally, because the points on the circle do not correspond to a perspective

of an object, it is more difficult to judge the success of the algorithm. We treat this

set as an initial set on which to get the algorithm working.

We use a certain Koszul complex to define a rank three vector bundle over S1.

However, it also has a natural line bundle associated to it via the kernel. It is possible

to get a visual representation of the final configuration’s line bundle (and hence, also

of the associated rank three vector bundle) over S1 by plotting each line as a point on

S2. We do this by plotting the intersection of each line with the upper hemisphere of

S2. We show the result of this visualization in Figure 6.1. Based on the approximately

even spacing of the points, we believe the algorithm is performing well on this set.

The final configuration used to generate this line bundle is shown in Figure 6.2. This

configuration is the result of an initial configuration of 200 randomly spaced points.

The local version of the Nearest Neighbor Dispersion Algorithm was used to obtain

this configuration, using five million steps and the Fubini-Study metric.

Applications of the global version of the Nearest Neighbor Dispersion Algorithm

on this set are unsuccessful. We conjecture that the global version requires a higher-

dimensional ambient space in order to succeed. This is a question for future research.

Because the local version of the algorithm produces good results in this initial setting

and the global version does not, we choose to focus on the application of the local

version of the algorithm when we work with other data sets. Henceforth, when we

refer to the Nearest Neighbor Dispersion Algorithm, we implicitly mean the local

version.

75

Figure 6.1: Line Bundle for Final Configuration

Figure 6.2: Final Configuration with 200 Points

76

6.2.2 Red Filter Images as a Line Bundle Data Set

We construct three line bundle data sets over S1 in the following way. Using the high-

speed camera, we capture pictures of a red punch bowl with one or more pieces of

white tape on it as it rotates on a record player. Pictures are collected at a resolution

of 256×256 and at a rate of 1000 pictures per second. We use only the red filter, and

we flatten each image as described in Section 5.2. Hence, at each point in our sample

of S1, we attach a vector with real entries of length 2562 = 65, 536. In this way, we

simulate a camera moving along a circle, capturing pictures of a stationary object at

the center.

Because we have a finite sample of S1, the number of camera locations that can

appear in the final configuration is equal to the number of pictures needed for one

rotation of the object. The object rotates at an approximate rate of 331
3

rotations

per minute, so one rotation corresponds to approximately (1000 pictures per second)

× (60 seconds per minute) × (1
33 1

3

minutes per rotation) = 1800 pictures.

Our first data set consists of pictures of a red punch bowl with one horizontal

piece of white tape on it. Images from the set can be seen in Figure 5.2. We exper-

imentally determine that the following values for the parameters ε, d, T, and k work

well: ε ≈ 0.11 radians (or 6.35◦), k ≈ 5000, and T ≈ 14. We set the parameter d to

be approximately 0.018 radians, or 1.06◦ for the first five iterations. For the last nine

iterations, we set d to be approximately 0.004 radians, or 0.211◦.

In Figures 6.3 to 6.11, we show the final configuration of camera locations after

running the algorithm on a random starting configuration. We show the results from

two implementations of the algorithm for each of 10, 15, 20, 25, 30, 35, 40, 45, and

50 points. The green asterisks on the circle mark the beginning and end of the

set of locations in which some portion of the white tape is visible. Note that, as

expected, the points tend to converge to the region where the white tape is visible.

Also, the number and location of points outside the visible tape region varies. This

is unsurprising because there is nothing to distinguish locations that lie outside the

77

visible tape region.

(a) Run 1 (b) Run 2

Figure 6.3: Final Configurations, 1 Tape: 10 Points

(a) Run 1 (b) Run 2

Figure 6.4: Final Configurations, 1 Tape: 15 Points

78

(a) Run 1 (b) Run 2

Figure 6.5: Final Configurations, 1 Tape: 20 Points

(a) Run 1 (b) Run 2

Figure 6.6: Final Configurations, 1 Tape: 25 Points

79

(a) Run 1 (b) Run 2

Figure 6.7: Final Configurations, 1 Tape: 30 Points

(a) Run 1 (b) Run 2

Figure 6.8: Final Configurations, 1 Tape: 35 Points

80

(a) Run 1 (b) Run 2

Figure 6.9: Final Configurations, 1 Tape: 40 Points

(a) Run 1 (b) Run 2

Figure 6.10: Final Configurations, 1 Tape: 45 Points

81

(a) Run 1 (b) Run 2

Figure 6.11: Final Configurations, 1 Tape: 50 Points

82

For our second data set, we use the same parameters ε, d, T, and k. Images of a

red punch bowl with tape on two sides are collected at a rate of 1000 pictures per

second and a resolution of 256×256 pixels. The tape on one side is a short horizontal

piece. On the opposite side, we place two short pieces of tape to form an ×. Figure 5.3

shows images from the data set.

In Figures 6.12 to 6.20, we show the final configuration of camera locations after

running the algorithm on a random starting configuration. The green asterisks denote

the start and end of the section in which the horizontal piece of tape is visible. The

black asterisks denote the start and end of the section in which the × tape is visible.

Note that the points tend to converge to those two regions. As before, the number

and location of points outside the visible tape regions varies with each run of the

algorithm.

(a) Run 1 (b) Run 2

Figure 6.12: Final Configurations, 2 Tapes: 10 Points

83

(a) Run 1 (b) Run 2

Figure 6.13: Final Configurations, 2 Tapes: 15 Points

(a) Run 1 (b) Run 2

Figure 6.14: Final Configurations, 2 Tapes: 20 Points

84

(a) Run 1 (b) Run 2

Figure 6.15: Final Configurations, 2 Tapes: 25 Points

(a) Run 1 (b) Run 2

Figure 6.16: Final Configurations, 2 Tapes: 30 Points

85

(a) Run 1 (b) Run 2

Figure 6.17: Final Configurations, 2 Tapes: 35 Points

(a) Run 1 (b) Run 2

Figure 6.18: Final Configurations, 2 Tapes: 40 Points

86

(a) Run 1 (b) Run 2

Figure 6.19: Final Configurations, 2 Tapes: 45 Points

(a) Run 1 (b) Run 2

Figure 6.20: Final Configurations, 2 Tapes: 50 Points

87

For our next data set, we use the same parameters ε, d, T, and k. Images of a red

punch bowl with tape on four locations are collected at a rate of 1000 pictures per

second and a resolution of 256×256. The tape on one side is a short horizontal piece.

On the opposite side, we place two short pieces of tape to form an ×. On the two

sides in between the horizontal and × tape, we place a short vertical piece of tape.

Images from this data set can be seen in Figure 5.4.

In Figures 6.21 to 6.29, we show the final configuration of camera locations after

running the algorithm on a random starting configuration. The green asterisks denote

the start and end of the section in which the horizontal piece of tape is visible. The

black asterisks denote the start and end of the two sections in which the vertical tape

is visible. The yellow asterisks denote the start and end of the section in which the

× tape is visible. Note that the points tend to converge to those four regions. The

regions with the vertical tape seem to attract more points than the others.

(a) Run 1 (b) Run 2

Figure 6.21: Final Configurations, 2 Horiz., 1 Vert., 1 × Tape: 10 Points

88

(a) Run 1 (b) Run 2

Figure 6.22: Final Configurations, 2 Horiz., 1 Vert., 1 × Tape: 15 Points

(a) Run 1 (b) Run 2

Figure 6.23: Final Configurations, 2 Horiz., 1 Vert., 1 × Tape: 20 Points

89

(a) Run 1 (b) Run 2

Figure 6.24: Final Configurations, 2 Horiz., 1 Vert., 1 × Tape: 25 Points

(a) Run 1 (b) Run 2

Figure 6.25: Final Configurations, 2 Horiz., 1 Vert., 1 × Tape: 30 Points

90

(a) Run 1 (b) Run 2

Figure 6.26: Final Configurations, 2 Horiz., 1 Vert., 1 × Tape: 35 Points

(a) Run 1 (b) Run 2

Figure 6.27: Final Configurations, 2 Horiz., 1 Vert., 1 × Tape: 40 Points

91

(a) Run 1 (b) Run 2

Figure 6.28: Final Configurations, 2 Horiz., 1 Vert., 1 × Tape: 45 Points

(a) Run 1 (b) Run 2

Figure 6.29: Final Configurations, 2 Horiz., 1 Vert., 1 × Tape: 50 Points

92

6.2.3 Red, Green, and Blue Filter Images as an Approxima-

tion of an Illumination Space Data Set

We create a data set of images of a red, white, and blue volleyball on the record player.

With this data set, we use all three color filters. The three-dimensional vector space

that we attach at each point can be seen as an approximation of the illumination

space at that point. In this way, we sample a data set with a natural structure as a

rank three vector bundle that is a subbundle of the trivial bundle over S1.

Images are cropped to have a resolution of 256 × 256. Only a portion of the

volleyball is visible in each image; no other background objects can be seen. Images

are captured at a rate of approximately 220 pictures per second. Our data set of

pictures representing one rotation of the volleyball has 425 pictures. Because each

view of the volleyball has something to distinguish it, we expect that the points will

converge to an approximately uniform distribution. Figures 6.30 to 6.32 show the

final configurations for 2 runs of the algorithm on each of 10, 15, and 20 points using

the Fubini-Study metric. The points are spread out somewhat evenly.

(a) Run 1 (b) Run 2

Figure 6.30: Final Configurations, Volleyball: 10 Points

93

(a) Run 1 (b) Run 2

Figure 6.31: Final Configurations, Volleyball: 15 Points

(a) Run 1 (b) Run 2

Figure 6.32: Final Configurations, Volleyball: 20 Points

94

6.3 Distance Functions

For a given configuration C on S1, and for a given choice of distance funtion on the

Grassmannian, we may gain some understanding of the data set by graphing the

distance function based at each point of C. What we mean by this is the following:

Fix a point x ∈ C. Let Y ⊂ S1 be the finite set of possible camera locations. For

each y ∈ Y, we calculate ∂(x, y), for a chosen unitarily invariant norm, ∂, on the

Grassmannian. Hence, for a fixed x, we have a function of y, which describes the

closeness of x to each other point y in C. We compute this evaluation of the distance

function based at the point x for each x ∈ C.

In Figures 6.34 to 6.43, we see the figures corresponding to the distance func-

tion based at each point of a 50 point configuration. This configuration, shown in

Figure 6.33, is a final configuration after running the Nearest Neighbor Dispersion

Algorithm on the data set of images of the red punch bowl with one piece of white

tape. For an introduction to this data set, see Section 5.2. Points one through five are

the only points in the region of S1 in which no portion of the tape is visible. Notice

that the figures corresponding to these five points have remarkably different distance

function graphs than those of the other 45 points. For each base point x in the first

five points of the configuration, x has zero distance with itself but has a minimum

distance of 0.00820±0.00015 with every other sample point on S1. This suggests that

there is negligible distance between each pair of points in the region with no visible

tape. In contrast, we see a distance function that appears to be an approximation of

a continuous function for all points in the region in which some tape is visible. This

contrast suggests that such distance functions could be used for feature recognition.

95

Figure 6.33: Final Configuration, 1 Tape: 50 Points

(a) Point 1 (b) Point 2 (c) Point 3 (d) Point 4 (e) Point 5

Figure 6.34: 1 Tape: Distance Function Based at Points 1-5

(a) Point 6 (b) Point 7 (c) Point 8 (d) Point 9 (e) Point 10

Figure 6.35: 1 Tape: Distance Function Based at Points 6-10

(a) Point 11 (b) Point 12 (c) Point 13 (d) Point 14 (e) Point 15

Figure 6.36: 1 Tape: Distance Function Based at Points 11-15

96

(a) Point 16 (b) Point 17 (c) Point 18 (d) Point 19 (e) Point 20

Figure 6.37: 1 Tape: Distance Function Based at Points 16-20

(a) Point 21 (b) Point 22 (c) Point 23 (d) Point 24 (e) Point 25

Figure 6.38: 1 Tape: Distance Function Based at Points 21-25

(a) Point 26 (b) Point 27 (c) Point 28 (d) Point 29 (e) Point 30

Figure 6.39: 1 Tape: Distance Function Based at Points 26-30

(a) Point 31 (b) Point 32 (c) Point 33 (d) Point 34 (e) Point 35

Figure 6.40: 1 Tape: Distance Function Based at Points 31-35

97

(a) Point 36 (b) Point 37 (c) Point 38 (d) Point 39 (e) Point 40

Figure 6.41: 1 Tape: Distance Function Based at Points 36-40

(a) Point 41 (b) Point 42 (c) Point 43 (d) Point 44 (e) Point 45

Figure 6.42: 1 Tape: Distance Function Based at Points 41-45

(a) Point 46 (b) Point 47 (c) Point 48 (d) Point 49 (e) Point 50

Figure 6.43: 1 Tape: Distance Function Based at Points 46-50

98

The figures with the results of the same experiment for the data set of the punch

bowl with two pieces of tape are shown in Figures 6.45 to 6.54, with the final config-

uration shown in Figure 6.44. Figures 6.56 to 6.65 and Figure 6.55 show the results

for the data set of the punch bowl with four pieces of tape (two vertical strips, one

horizontal, and one ×). For introductions to these two data sets, see Section 5.2. In

both data sets, we see similar behavior, in that the distance function based at a point

in a region with tape visible appears to be continuous, and when no tape is visible,

the distance function is discontinuous.

Figure 6.44: Final Configuration, 2 Tapes: 50 Points

(a) Point 1 (b) Point 2 (c) Point 3 (d) Point 4 (e) Point 5

Figure 6.45: 2 Tapes: Distance Function Based at Points 1-5

99

(a) Point 6 (b) Point 7 (c) Point 8 (d) Point 9 (e) Point 10

Figure 6.46: 2 Tapes: Distance Function Based at Points 6-10

(a) Point 11 (b) Point 12 (c) Point 13 (d) Point 14 (e) Point 15

Figure 6.47: 2 Tapes: Distance Function Based at Points 11-15

(a) Point 16 (b) Point 17 (c) Point 18 (d) Point 19 (e) Point 20

Figure 6.48: 2 Tapes: Distance Function Based at Points 16-20

(a) Point 21 (b) Point 22 (c) Point 23 (d) Point 24 (e) Point 25

Figure 6.49: 2 Tapes: Distance Function Based at Points 21-25

100

(a) Point 26 (b) Point 27 (c) Point 28 (d) Point 29 (e) Point 30

Figure 6.50: 2 Tapes: Distance Function Based at Points 26-30

(a) Point 31 (b) Point 32 (c) Point 33 (d) Point 34 (e) Point 35

Figure 6.51: 2 Tapes: Distance Function Based at Points 31-35

(a) Point 36 (b) Point 37 (c) Point 38 (d) Point 39 (e) Point 40

Figure 6.52: 2 Tapes: Distance Function Based at Points 36-40

(a) Point 41 (b) Point 42 (c) Point 43 (d) Point 44 (e) Point 45

Figure 6.53: 2 Tapes: Distance Function Based at Points 41-45

101

(a) Point 46 (b) Point 47 (c) Point 48 (d) Point 49 (e) Point 50

Figure 6.54: 2 Tapes: Distance Function Based at Points 46-50

102

Figure 6.55: Final Configuration, 2 Horiz., 1 Vert., 1 × Tape: 50 Points

(a) Point 1 (b) Point 2 (c) Point 3 (d) Point 4 (e) Point 5

Figure 6.56: 4 Tapes: Distance Function Based at Points 1-5

(a) Point 6 (b) Point 7 (c) Point 8 (d) Point 9 (e) Point 10

Figure 6.57: 4 Tapes: Distance Function Based at Points 6-10

103

(a) Point 11 (b) Point 12 (c) Point 13 (d) Point 14 (e) Point 15

Figure 6.58: 4 Tapes: Distance Function Based at Points 11-15

(a) Point 16 (b) Point 17 (c) Point 18 (d) Point 19 (e) Point 20

Figure 6.59: 4 Tapes: Distance Function Based at Points 16-20

(a) Point 21 (b) Point 22 (c) Point 23 (d) Point 24 (e) Point 25

Figure 6.60: 4 Tapes: Distance Function Based at Points 21-25

(a) Point 26 (b) Point 27 (c) Point 28 (d) Point 29 (e) Point 30

Figure 6.61: 4 Tapes: Distance Function Based at Points 26-30

104

(a) Point 31 (b) Point 32 (c) Point 33 (d) Point 34 (e) Point 35

Figure 6.62: 4 Tapes: Distance Function Based at Points 31-35

(a) Point 36 (b) Point 37 (c) Point 38 (d) Point 39 (e) Point 40

Figure 6.63: 4 Tapes: Distance Function Based at Points 36-40

(a) Point 41 (b) Point 42 (c) Point 43 (d) Point 44 (e) Point 45

Figure 6.64: 4 Tapes: Distance Function Based at Points 41-45

(a) Point 46 (b) Point 47 (c) Point 48 (d) Point 49 (e) Point 50

Figure 6.65: 4 Tapes: Distance Function Based at Points 46-50

105

Chapter 7

A Measure of Distortion

7.1 Introduction

Any configuration of points on S1, along with associated vector spaces, which is used

as a representation for a vector bundle, admits some loss of information. In this

chapter, we develop a function that can be used to measure the amount of distortion

introduced by using a given vector bundle approximation. We will call this function

a distortion function.

We define a distortion function in the following way. Fix a set of allowable camera

locations L = {`i}ni=1 on S1, an associated data bundle where each xi ∈ S1 has

attached vector space Uxi , and a choice of distance measure ∂ on the Grassmannian.

The distortion function is a function of a configuration C of points on S1. For each

element `i of L, calculate the distance of the associated vector space U`i to the vector

space Uxj , for each xj in C. That is, for a fixed `i ∈ L, find ∂(U`i , Uxj) for each xj ∈ C.

Associate to each `i ∈ L a value mi, defined to be the minimum distance achieved by

any Uxj . The output of the distortion function for a given configuration C is the sum

of all the mi’s.

That is, the distortion function is a function of a configuration C = {xj}rj=1 and

106

is defined to be

D(C) :=
∑
`i∈L

min
xj∈C

∂
(
U`i , Uxj

)
.

Note that the distortion function is positive by definition. The distortion function is

an approximation of the integral∫
min
xj∈C

∂
(
Uθ, Uxj

)
dθ.

7.2 Results

7.2.1 Red Punch Bowl Data Set

This data set is described in Section 5.2 and consists of pictures of a red punch bowl,

with no distinguishing features from any single perspective. We expect that the data

set of images of the red punch bowl has a distortion approximately the same for a

random set of points, an evenly spaced set of points, and a set of points that is the

result of running the Nearest Neighbor Dispersion Algorithm. We present here the

results for each of these configurations.

We calculate the distortion for 15 different random sets of 25 points on S1. The

mean of these distortions is 23.6296, with a variance of 0.0114. The best configuration,

in the sense that it yields the smallest distortion, has a distortion of 23.5028. The

fact that the variance of the distortion is small across random sets of points suggests

that it is unlikely that there exists a special configuration with very little distortion.

This seems reasonable given the nature of the set.

The distortion for an evenly spaced configuration of points is 23.4578.

Finally, we use the final configurations after five runs of the Nearest Neighbor

Dispersion Algorithm on 25 randomly spaced points. The mean distortion from these

five configurations is 23.4582, with a variance of 0.0037. The minimum distortion

from these five configurations is 23.4040. This is only a slight improvement on the

random and evenly spaced configurations.

107

7.2.2 Red Punch Bowl with One Tape Data Set

This data set consists of images of a red punch bowl with one horizontal piece of white

tape on it. This distinguishes a region of S1, in which the attached vector spaces have

some significant distance between each other and between points outside the region.

We should therefore expect that the Nearest Neighbor Dispersion Algorithm will lead

to a configuration which represents the underlying vector bundle better than a random

or evenly spaced configuration.

We again begin by calculating the distortion for 15 different random sets of 25

points on S1. The mean distortion of this set is 27.3445, with a variance of 17.1226.

The best configuration, in the sense that it yields the smallest distortion, has a

distortion of 22.5814. The variance of the distortions for this set is significantly larger

than that of the set of images of the red punch bowl with no tape. It is therefore

likely that for this data set, there exist special configurations with relatively little

distortion.

The distortion for an evenly spaced configuration of points is 22.9980, slightly

larger than the distortion of the best random configuration.

On the other hand, after three runs of the Nearest Neighbor Dispersion Algorithm

on 15 sets of 25 randomly distributed points, we get the following distortions: 16.2834,

16.1563, and 16.2101. Each of these configurations gives a significant improvement

over the random and evenly spaced configurations. Notice that the variance is also

small (0.0041), suggesting that the algorithm will give consistently good results for

this data set.

Let us now consider other numbers of points. We find configurations using the

Nearest Neighbor Dispersion Algorithm for varying numbers of points, from two to 70.

The output of the distortion function has relatively large variance for small numbers

of points. We therefore calculate the distortion for 15 different runs of the Nearest

Neighbor Dispersion Algorithm for two to 24 points. The variance is small for large

numbers of points, so we calculate the distortion for only three runs of the Nearest

108

Neighbor Dispersion Algorithm for every 5th number of points from 25 to 70 points.

In Figure 7.1, we show the results of these calculations. The x−axis represents the

number of points in a configuration C. Figure 7.1a shows the average distortion over

all runs of the algorithm, while Figure 7.1b shows the minimum distortion over all

runs of the algorithm.

(a) Distortion Function Based on Average (b) Distortion Function Based on Min

Figure 7.1: 1 Tape: Distortion Function

109

The variance of the distortion for the 15 runs of the algorithm on 2 to 24 points

is shown in the following table.

Number of Points 2 3 4 5 6

Distortion Variance 1577.4652 33.5681 20.4302 26.0622 12.1847

Number of Points 7 8 9 10 11

Distortion Variance 5.9277 2.7740 1.8415 0.8430 0.9650

Number of Points 12 13 14 15 16

Distortion Variance 0.3420 0.2129 0.1806 0.1464 0.0254

Number of Points 17 18 19 20 21

Distortion Variance 0.0223 0.0184 0.0332 0.0090 0.0332

Number of Points 22 23 24

Distortion Variance 0.0061 0.0214 0.0033

The variance of the distortion for the 3 runs of the algorithm on 25 to 70 points

is shown in the following table.

Number of Points 25 30 35 40 45

Distortion Variance 0.0041 0.0019 0.0001 0.0000 0.0010

Number of Points 50 55 60 65 70

Distortion Variance 0.0023 0.0009 0.0020 0.0001 0.0005

7.2.3 Red Punch Bowl with Two Tapes Data Set

This data set is described in Section 5.2 and consists of images of a red punch bowl

with one horizontal piece of white tape on one side and one pair of white tape pieces

that form an × on the opposite side. Hence there are two distinguished regions of S1

in which the attached vector spaces have significant distance between each other and

between points outside the region. We therefore expect that with this set, as with

the red punch bowl with one piece of tape data set, the Nearest Neighbor Dispersion

Algorithm will lead to a configuration which represents the underlying vector bundle

better than a random or evenly spaced configuration.

110

We calculate the distortion for 15 different random sets of 25 points on S1. The

mean distortion is 141.8079, with a variance of 211.0433. The best configuration, in

the sense that it yields the smallest distortion, has a distortion of 123.2293. Note

that the variance of the distortions is very large. It is therefore probable that there

exist special configurations with relatively little distortion.

The distortion for an evenly spaced configuration of points is 127.7814, slightly

larger than the distortion of the best random configuration.

After three runs of the Nearest Neighbor Dispersion Algorithm on 15 sets of 25

randomly distributed points, we get the following distortions: 104.7388, 105.5406, and

105.5080. Each of these configurations is an improvement over the random and evenly

spaced configurations. Notice that the variance is also small (0.2059), suggesting that

the algorithm will give consistently good results for this data set.

We find configurations using the Nearest Neighbor Dispersion Algorithm for vary-

ing numbers of points, from two to 70. As with the one tape data set, the output

of the distortion function has relatively large variance for small numbers of points.

The variance is consistently small for sufficiently large numbers of points after the

algorithm has been run. We therefore calculate the distortion for 15 different runs of

the Nearest Neighbor Dispersion Algorithm for two to 24 points. We calculate the

distortion for three runs of the Nearest Neighbor Dispersion Algorithm for every 5th

number of points from 25 to 70 points. In Figure 7.2, we show the results of these

calculations. Figure 7.2a shows the average distortion over all runs of the algorithm

at a given number of points, while Figure 7.2b shows the minimum distortion over

all runs of the algorithm. The x−axis again represents the number of points in a

configuration.

111

(a) Distortion Function Based on Average (b) Distortion Function Based on Min

Figure 7.2: 2 Tapes: Distortion Function

112

The variance of the distortion for the 15 runs of the algorithm on 2 to 24 points

is shown in the following table.

Number of Points 2 3 4 5 6

Distortion Variance 5625.8623 6883.8176 1611.6328 1178.8943 1545.1464

Number of Points 7 8 9 10 11

Distortion Variance 1764.7899 1982.2719 506.4759 602.9781 994.5140

Number of Points 12 13 14 15 16

Distortion Variance 924.8896 1.6737 406.3475 36.2721 1.8548

Number of Points 17 18 19 20 21

Distortion Variance 130.7021 5.3107 230.0736 9.0631 9.6844

Number of Points 22 23 24

Distortion Variance 7.9975 10.6192 0.1123

The variance of the distortion for the 3 runs of the algorithm on 25 to 70 points

is shown in the following table.

Number of Points 25 30 35 40 45

Distortion Variance 0.3214 0.3367 1.5156 0.3217 1.5245

Number of Points 50 55 60 65 70

Distortion Variance 2.1565 0.5407 0.1290 0.3654 0.1264

7.2.4 Punch Bowl with Four Tapes Data Set

This data set is described in Section 5.2 and consists of images of a red punch bowl

with tape on four sides. There is one horizontal piece of white tape on one side and one

pair of white tape pieces that form an × on the opposite side. There is a vertical strip

of tape on the two sides in between the horizontal and × tapes. There are therefore

four distinguished regions of S1 in which the attached vector spaces have significant

distance between each other and between points outside the region. Hence, we expect

that the Nearest Neighbor Dispersion Algorithm will lead to a configuration which

represents the vector bundle better than a random or evenly spaced configuration.

113

We calculate the distortion for 15 different random sets of 25 points on S1. The

mean distortion is 158.5277, with a variance of 269.6836. The best configuration,

in the sense that it yields the smallest distortion, has a distortion of 127.0842. The

variance of the distortions is large; therefore, it is probable that there exist special

configurations with relatively little distortion.

The distortion for an evenly spaced configuration of points is 160.2952, relatively

large compared to the best random configuration but about as good as the mean

random configuration distortion.

After three runs of the Nearest Neighbor Dispersion Algorithm on 15 sets of 25

randomly distributed points, we get the following distortions: 120.8192, 122.8273,

and 122.8704. Each of these configurations is an improvement over the random and

evenly spaced configurations. Also, the variance is small (1.3736), suggesting that

the algorithm will give consistently good results for this data set.

We find configurations using the Nearest Neighbor Dispersion Algorithm for vary-

ing numbers of points, from two to 70. The output of the distortion function has

relatively large variance for small numbers of points and is consistently small for

sufficiently large numbers of points after the algorithm has been run. We therefore

calculate the distortion for 15 different runs of the Nearest Neighbor Dispersion Algo-

rithm for two to 24 points. We calculate the distortion for three runs of the Nearest

Neighbor Dispersion Algorithm for every 5th number of points from 25 to 70 points.

In Figure 7.3, we show the results of these calculations. Figure 7.3a shows the average

distortion over all runs of the algorithm at a given number of points, while Figure 7.3b

shows the minimum distortion over all runs of the algorithm.

114

(a) Distortion Function Based on Average (b) Distortion Function Based on Min

Figure 7.3: 2 Horiz., 1 Vert., 1 × Tape: Distortion Function

115

The variance of the distortion for the 15 runs of the algorithm on 2 to 24 points

is shown in the following table.

Number of Points 2 3 4 5 6

Distortion Variance 8634.4663 5486.4677 6697.6518 4623.8463 10856.0459

Number of Points 7 8 9 10 11

Distortion Variance 4460.3491 7211.6925 12186.9608 11350.4149 5813.1843

Number of Points 12 13 14 15 16

Distortion Variance 3588.6172 4319.2542 62.4439 38.8679 31.3581

Number of Points 17 18 19 20 21

Distortion Variance 46.2916 43.3193 47.0027 65.5488 47.5921

Number of Points 22 23 24

Distortion Variance 58.9935 83.1293 31.2248

The variance of the distortion for the 3 runs of the algorithm on 25 to 70 points

is shown in the following table.

Number of Points 25 30 35 40 45

Distortion Variance 1.3736 27.3523 12.5073 5.4980 0.4629

Number of Points 50 55 60 65 70

Distortion Variance 0.0014 4.4310 15.1902 4.1607 1.4954

7.2.5 Volleyball Data Set

The volleyball data set consists of images of a red, white, and blue volleyball, with

each view having some distinguishing feature. We use all three color filters and hence

assume that we have a rank three vector bundle. We expect that a roughly uniform

distribution of points will have a low distortion value, and that a random distribution

will have slightly larger distortion.

Let us begin by fixing a distance function and comparing the distortion over

random and evenly spaced sets of points to the distortion after the algorithm has

been run. We calculate the distortion for 5 different random sets of 20 points on S1

116

using the Fubini-Study metric. The mean of the distortions for this set is 1567.0857,

with a variance of 908.8164. The best configuration, in the sense that it yields the

smallest distortion, has a distortion of 1520.0779.

The distortion for an evenly spaced configuration of points is 1436.0169, a signif-

icant improvement over every randomly generated configuration.

Finally, we measure the final configurations after three runs of the Nearest Neigh-

bor Dispersion Algorithm on 20 randomly spaced points. With the Fubini-Study

metric and the usual parameters, we get configurations with distortions of 1512.7078,

1593.2825, and 1485.1701, which are approximately the same as the evenly spaced

configuration and better than most of the random configurations.

In Figure 7.4, we show the distortion function for five runs of the algorithm with

the Fubini-Study metric on random sets of two to 24 points. In the table below, we

show the variance for the distortion corresponding to these configurations.

The variance of the distortion for the 5 runs of the algorithm on 2 to 24 points

using the Fubini-Study metric is given below.

Number of Points 2 3 4 5 6

Distortion Variance 2730.3091 489.8366 8798.4427 7120.2832 12757.5389

Number of Points 7 8 9 10 11

Distortion Variance 1975.5630 2132.6311 3565.9060 7257.9882 3065.9247

Number of Points 12 13 14 15 16

Distortion Variance 346.8440 111.8989 3918.3117 1259.2306 1428.0483

Number of Points 17 18 19 20 21

Distortion Variance 3021.9938 2691.4559 1676.3971 1729.6772 3951.5757

Number of Points 22 23 24

Distortion Variance 6473.4569 3358.6594 1083.1993

An interesting aspect of the color filter data set is that it is a data set on which

we can compare the various distance functions that we discuss in Section 2.6. We

compute the distortion over five runs of the Nearest Neighbor Dispersion Algorithm

117

for each of the five different distance measures on each number of points from two to

24. The results of these runs are presented in Figures 7.4 to 7.8. A close observation

of the scales on these figures reveals that the distance measure defined by the small-

est principal angle consistently minimizes distortion far better than the four distance

metrics. Note however, that the smallest principal angle distance function produces

smaller values than the other distance metrics on other configurations as well. In

the following table, we show the minimal distortion achieved for each of five random

configurations, one evenly spaced configuration, and five runs of the Nearest Neighbor

Dispersion Algorithm on a set of 20 points. For a fixed distance function, the Nearest

Neighbor Dispersion Algorithm does not, in general, provide configurations that are

significant improvements over uniform or random distributions of points. This is not

unsurprising given the nature of the object.

Best Distortion: Configurations of 20 Points, Volleyball Data

Random Uniform NNDA

Fubini-Study metric 1520.0779 1436.0169 1485.1701

Geodesic metric 1634.2040 1511.3790 1644.0872

Chordal metric 1422.5835 1364.0296 1476.0362

Subspace metric 1140.3706 1064.5326 1104.2550

Smallest principal angle function 257.7373 252.3587 267.3751

118

(a) Distortion Function Based on Average (b) Distortion Function Based on Min

Figure 7.4: Volleyball: Distortion Function, Fubini-Study Metric

(a) Distortion Function Based on Average (b) Distortion Function Based on Min

Figure 7.5: Volleyball: Distortion Function, Geodesic Metric

119

(a) Distortion Function Based on Average (b) Distortion Function Based on Min

Figure 7.6: Volleyball: Distortion Function, Chordal Metric

(a) Distortion Function Based on Average (b) Distortion Function Based on Min

Figure 7.7: Volleyball: Distortion Function, Subspace Metric

120

(a) Distortion Function Based on Average (b) Distortion Function Based on Min

Figure 7.8: Volleyball: Distortion Function, Smallest Principal Angle Distance Func-

tion

121

Chapter 8

Artificially Rotating Data

8.1 Projections and Eigenpictures

8.1.1 Introduction

By capturing pictures of an object on a record player, we are, in effect, allowing the

camera to move around the equator of a sphere with the object in a fixed position in

the center of the sphere. In this section, we discuss one way of modeling a different

situation: the camera is in a fixed position and is allowed to rotate. That is, the

camera rotates along an axis between itself and the center of the object.

8.1.2 Methods

We begin with one picture of an object. In the experiment described in this section,

we work with a data set of images of a red, white, and blue volleyball. Images

are taken at a rate of approximately 220 pictures per second and at a resolution of

512× 512 pixels. We present the results pertaining to pictures taken in the red filter.

We attempt to align the center of the picture with the center of the volleyball, so

that the rotation of the camera simulates rotation of the object.

We wish to rotate a picture, I, by every integer degree about its center. However,

122

most integer degree rotations result in an object which is no longer a matrix. For

example, in Figure 8.1b, we see an image rotated by 38 degrees; it is no longer

rectangular and its entries do not align with the entries of a rectangular matrix of

similar size. We therefore embed each rotation of I in the center of a sufficiently large

matrix of zeros (with a resolution of 512 × 512, the smallest size necessary to fit all

possible integer degree rotations is 724×724). We will use Ĩθ to denote an embedding

of a rotation of I by θ degrees in the counterclockwise direction. Since it is the case

that most entries of Ĩθ corresponding to a location in the original image I cannot be

filled in directly by entries of I, we must use interpolation to completely determine

Ĩθ.

We now have each integer degree rotation of I embedded in a larger matrix, but

we have introduced a great deal of statistical variance by embedding the rotated I’s

in matrices of zeros. We therefore cover each Ĩθ with a mask, Z. We define Z to be a

matrix of ones and zeros, where an entry of Z is defined to be zero if there exists at

least one θ for which Ĩθ has a value of zero due to the original embedding. All other

values of Z are defined to be one. Now we can take the componentwise product of

Z with each Ĩθ and obtain a masked rotation of I, called ĨZθ . This process is seen in

Figure 8.1. Note that the coloring is scaled, and therefore zeros do not appear black.

(a) Red Filter (b) Rotated 38◦ (c) Mask (d) Rotated,Masked

Figure 8.1: Rotation and Masking of Volleyball A

We flatten each ĨZθ by recording entries in a column vector in order from left to

right, top to bottom. We store only those entries which lie inside of the mask. That

is, we store only the entries which correspond to an entry of 1 in Z. Now we can

123

concatenate these vectors in order of degree of rotation in a data matrix, X. When

the resolution is 512× 512, this results in a matrix X of size 204, 699× 360.

We determine the first several principal components of the data using the singular

value decomposition as explained in Chapter 2. Let U,Σ, V be given by the singular

value decomposition so that X = UΣV >. We project X into two and three dimensions

using columns 2-3 and 2-4 of U, respectively. As before, we discard the first column

of U in order to mean-subtract the data.

8.1.3 Results

We present the results for two different original pictures, Volleyball A and Volleyball

B, shown in Figure 8.2. In Figures 8.3 and 8.4, we show the projection of X into two

dimensions and into three dimensions for Volleyball A and B, respectively. In both

cases, we get a very good approximation of a circle as the image of the projection into

two dimensions. However, the circle resulting from Volleyball A is traced out once,

but in the case of Volleyball B, the circle is traced out twice. Most frequently, the

result of the projection is similar to that of Volleyball A.

(a) Volleyball A (b) Volleyball B

Figure 8.2: Original Volleyballs

124

(a) 2-D (b) 3-D, View 1 (c) 3-D, View 2

Figure 8.3: Projection of Volleyball A into Two and Three Dimensions

(a) 2-D (b) 3-D, View 1 (c) 3-D, View 2

Figure 8.4: Projection of Volleyball B into Two and Three Dimensions

125

A visualisation of the first seven eigenpictures, or unflattened principal compo-

nents, for the two volleyballs can be seen in Figures 8.5 through 8.8. Each figure is

obtained by unflattening the given column vector of U as part of a masked matrix.

Note that aside from the eigenpicture corresponding to the mean, the eigenpictures

appear to come in pairs of similar energy. Again, coloring has been scaled, so zeros

do not appear black.

(a) 1: Mean (b) 2 (c) 3

Figure 8.5: Volleyball A: Eigenpictures One Through Three

(a) 4 (b) 5: Unused (c) 6: Unused (d) 7: Unused

Figure 8.6: Volleyball A: Eigenpictures Four Through Seven

(a) 1: Mean (b) 2 (c) 3

Figure 8.7: Volleyball B: Eigenpictures One Through Three

126

(a) 4 (b) 5: Unused (c) 6: Unused (d) 7: Unused

Figure 8.8: Volleyball B: Eigenpictures Four Through Seven

127

Notice that in the case of Volleyball A, the eigenpictures are ordered by frequency

of relative extrema. This is not the case with the eigenpictures for Volleyball B. We

conjecture that the times when the projection into two dimensions traces a circle more

than once coincide with the eigenpicture pairs which are not ordered by frequency of

relative extrema.

In the projections into R2 which trace the circle once, the angle of rotation θ is

preserved. In those which trace the circle more than once, the angle is preserved

up to an integer multiple corresponding to the number of times the circle is traced

out. Therefore, this projection gives us a method for recovering the angle (up to a

multiple) between two pictures chosen randomly from the set.

8.2 Artificial Rotation as a Means of Intersecting

Data Sets

8.2.1 Introduction

In this section, we combine artificial rotation with multiple data sets in order to

find locations where the data sets match. Consider the following situation. Fix an

object at the center of a sphere. Allow the camera to travel along a great circle while

capturing images of the object. Call this great circle C1. Now move the camera and

allow it to travel along a great circle, C2, with C2 6= C1, again capturing images as it

travels. Since we have two distinct great circles on a sphere, there must be two points

of intersection. In this section, we develop an algorithm to find these two points.

In the collection of real data, we note that images are not allowed to be collected

at every possible location on a given great circle Ci but instead are collected at a finite

number of locations. Therefore, we seek an algorithm that finds two points that get

as close as possible to the two points of intersection of C1 and C2.

Notice that the images in the data sets at the points of intersection will be the

128

same up to a rotation by an angle equal to the angle of incidence between the great

circles. Given this observation, let us consider the situation from a different point

of view. If we allow the camera to be placed anywhere on the sphere and to rotate

along the axis between itself and the object, then the space of all camera locations

and orientations is the special orthogonal group SO(3). Image collection on Ci creates

a map f from a surface into pixel space. Note that the surface is two-dimensional

because at each point of a great circle Ci, which is one-dimensional, we attach a circle

given by all rotations of the camera from that particular perspective. Hence, each set

of camera locations and orientations along Ci used in the collection of a data set is

a sample from a two-dimensional surface inside SO(3). If we take f(C1) ∩ f(C2), the

intersection of the two data sets in pixel space, we expect a one-dimensional object,

namely two circles. These two circles correspond to two images from each original

data set along with all of their artificial rotations. We can exploit this fact in the

creation of our algorithm by working not just with the images from the data sets, but

also with their artificial rotations.

8.2.2 Methods

Throughout this section, we will focus on a data set of images of a volleyball collected

at 1000 pictures per second using all three color filters at a resolution of 256×256. In

order to create a smaller data set on which to run the algorithm, we reduce this set in

three ways: we take every 5th picture, we combine the color filter images to produce

grayscale images, and we reduce to a resolution of 64× 64 by averaging 4× 4 blocks

of pixels. An image from this data set is shown in Figure 8.9. We give some notation

and then we state the general algorithm for finding the two points of intersection. We

explain each step in more detail after the outline of the algorithm.

Fix a data set corresponding to images collected along the great circle Ci. For each

picture, we artificially rotate by each integer degree, mask, and flatten to obtain a

vector. We will denote by I ij the vector corresponding to the jth image in the ith data

129

Figure 8.9: Original Volleyball, 64× 64 Resolution

set.

Because we are working with rotations of an image, we would like to use the

discrete Fourier transform. Let M be a matrix of size m1 × m2, where m1 is the

number of entries inside the mask, and where each column represents an image at a

particular stage of rotation. We generate a vector using the Fourier transform in the

following way. We begin by creating a vector w, of size 1×m1. The vector w has entries

equal to zero or one, with ones in those locations that correspond to the right half of

the center row and the right half of the row one below center of an image before it is

flattened. If each column of M is a flattened image, then the product wM is a vector

of size 1 ×m2, whose entries carry information about the two half-rows in the right

center of the mask of each image. We then compute the discrete Fourier transform

and retain the first
⌊
m2

2

⌋
+ 1 coefficients. We denote the vector containing these

coefficients by F(M). Note that retaining only the first
⌊
m2

2

⌋
+1 coefficients results in

no loss of information because Fourier coefficients come in complex conjugate pairs.

Depending on the step of the algorithm, we use different portions of the vector F(M).

When we use a subset of the entries in F(M), we will denote the vector being used

by FS(M), where S is a list of the indices of the entries in F(M) to be used. We can

now state the algorithm.

Algorithm 8.1. (Outline)

Input: Two sets of images collected along two great circles, C1 and C2, respectively,

a choice of unitarily invariant function ∂ on the appropriate Grassmannian.

130

Output: The two locations at which the data sets agree: at images I1
min(R1) and

I1
min(R2) in C1 and at I2

ind(I1
min(R1)

)
and I2

ind(I1
min(R2)

)
in C2.

Algorithm:

1. Narrow the search to two regions in C1 in which the match can occur. Call these

regions R1 and R2.

2. Find the two images in C1 at which the best match occurs. Simultaneously, find

the images in C2 at which the best match is achieved. This part of the algorithm

is achieved by the following steps:

(a) To each image I1
j of C1, associate a minimum distance to C2. Denote by

ind(I1
j), the index of the image in C2 at which the minimum distance is

achieved.

(b) Find the image in C1|R1 that achieves the smallest distance to C2. Call this

image I1
min(R1). Similarly, find I1

min(R2), the image in C1|R2 that achieves the

smallest distance to C2.

Step one of the algorithm requires narrowing the search to two regions in the first

data set of images. That is, we find two ranges of images, which correspond to two

regions of the circle of camera locations C1. This is done in the following way. Fix an

image vector I1
j in C1. Create a matrix M(I1

j) of size m1×360 by setting each column

equal to I1
j . We will use F(M(I1

j)) to compare images in C1 to rotations of images in

C2. For each I2
k , create a matrix of rotations N(I2

k) of size m1 × 360 by setting each

column r equal to a flattened, masked rotation of the image I2
k by r degrees, for r

from 0 to 359. Then compute F(N(I2
k)). Now we define the distance d from I1

j to the

set C2 to be

d = min{dk}k∈C2 ,

where

dk =
∥∥∣∣F(M(I1

j))
∣∣− ∣∣F(N(I2

k))
∣∣∥∥ .

131

Letting j range over the image vectors in the data set on C1, we obtain a vector V

whose jth entry quantifies the closeness of the jth point on C1 to the entire set C2. If

the two data sets match well, we should see two regions R1 and R2 of V in which the

distances between C1 and C2 are small relative to the other regions. These regions

should also correspond to regions of the circle that are approximately 180 degrees

apart since the intersection of two distinct great circles must occur at antipodal

points.

Step two of the algorithm gives a means of determining which image in the region

C1|Ri achieves the best match with an image in C2. The process is similar to the

process in step one with two differences. First, we create M(I1
j) using rotations by

every integer degree of I1
j , instead of by repetitions of I1

j . Second, we normalize the

vectors F(M(I1
j)) and F(N(I2

k)) before computing the vector V. Once we have V, we

find the locations that give a min in the regions R1 and R2. For each of these two

locations, we also know the index k of the image in C2 which yields the closest point.

Hence, we have found the two pairs of images where the data sets intersect.

8.2.3 Results

We show the result of step one of the algorithm using only the first Fourier coefficient

in Figure 8.10. That is, we compute V using FS(·), where S = {1}. We get similar

results using a larger set of coefficients, but we choose to use only the first coefficient

because it gives very good results. Note that there are two very distinct regions R1

and R2 in which a match between data sets can occur. Also notice that these regions

correspond to locations which are approximately 180 degrees apart.

In Figure 8.11, we show the vector V computed using S = {5, . . . , 60}. That is, we

use the 5th to the 60th normalized Fourier coefficients of the rotations of the images.

Again, the choice of which Fourier coefficients to use is somewhat arbitrary. We try

a number of different choices of S, and this particular choice seems to yield the best

results.

132

Figure 8.10: Step 1 - Plot of V : Min Distances from Points in C1 to the Set C2

Figure 8.11: Step 2 - Plot of V : Min Distances from Points in C1 to the Set C2

In Figures 8.12 and 8.13, we show the original images from C1 and C2 that are

given as the final output of the algorithm. In Figure 8.12, we see the match obtained

in region R1 of C1. Figure 8.13 shows the match in region R2 of C1. Visual inspection

of these results suggests that the algorithm was successful in finding the two points

where the data sets agree.

133

(a) Min in C1|R1 (b) Corresponding Image in C2

Figure 8.12: Intersection in R1

(a) Min in C1|R2 (b) Corresponding Image in C2

Figure 8.13: Intersection in R2

134

The volleyball data set gives a good demonstration of why both of the two steps

of the algorithm described above are necessary. In Figure 8.14, we show the match

determined by the minimum of the vector V that is the output at the end of step one.

It shows that this step finds images which share some features but are not necessarily

rotations of each other.

(a) Min in C1|R1 (b) Corresponding Image in C2

Figure 8.14: Intersection in R1 : Step One Data Only

In Figures 8.15 and 8.16, we see the pairs of images that correspond to the two

deepest minima achieved in the vector V that is the output at the end of step two.

In other words, these are the two pairs that are found if there is no restriction to

two regions R1 and R2, a priori. Notice that the connections between images in

the two sets found using this method are quite strong. Unfortunately, they are due

to symmetries of the object as opposed to the intersection of the two great circles.

Hence, step one of the algorithm is necessary.

(a) Min in C1 (b) Corresponding Image in C2

Figure 8.15: Intersection: Step Two Data Only

135

(a) Second Best Min in C1 (b) Corresponding Image in C2

Figure 8.16: Intersection: Step Two Data Only

136

Conclusion

Pattern analysis is a field that continues to grow and change as technology and al-

gorithms improve. Whenever data is collected, noise is introduced; we devote one

chapter of this paper to this topic. The main contributions of this paper are the

following: we apply Principal Component Analysis as a means of visualizing data,

we present two new algorithms, and we define a function to measure the success of a

data bundle approximation.

We find in Chapter 4 that noise can be introduced from the camera itself. Also,

when data is collected under lighting that is powered by an alternating current, we

find that a sufficiently high rate of image capture results in unintentional variation in

the illumination conditions.

The main topic of study in this paper is data sets of images of a rotating object.

Such data sets can be considered as sets that are invariant under an action of the

special orthogonal group, SO(2). We apply Principal Component Analysis to several

such data sets in Chapter 5 in order to obtain visual and low-dimensional represen-

tations of the data. We find that the projection via Principal Component Analysis

results in a closed loop, as expected. However, the nature of the curve varies signifi-

cantly with changes in the object of study. In particular, while we have a map from

S1 into pixel space, it is not necessarily the case that the image of the projection will

approximate a curve that is homeomorphic to S1.

In Chapter 6, we consider the problem of approximating a data bundle over S1

using a fixed number of points. The data sets being studied in this problem are

137

again thought of as sets that are invariant under an action of the special orthogonal

group, SO(2). We present an algorithm to find distributions of points on S1 that

are close to being (locally) optimal distributions in the sense that the associated

subspace representations of the object are distributed with maximal distance between

neighbors. We refer to this algorithm as the Nearest Neighbor Dispersion Algorithm.

In Chapter 7, we define a function that measures the success of an approximation

of a data bundle. We apply this function to configurations obtained from an applica-

tion of the Nearest Neighbor Dispersion Algorithm as well as to uniform and random

configurations. This gives us a means of determining if and when the Nearest Neigh-

bor Dispersion Algorithm improves upon alternative configurations. In addition, it

gives a method for determining how many points in S1 ought to be used once a

distortion tolerance has been chosen.

Finally, in Chapter 8, we present an algorithm to find the approximate intersection

of two data sets. The context for this problem is that two sets of images are collected

along two distinct great circles on a sphere surrounding an object. By adding images

to the data sets that correspond to rotation of the camera, we make the set of locations

and orientations of the camera equal to SO(3). Image collection therefore creates a

map from SO(3) into pixel space. Thus, the intersection of the data sets in pixel

space is the intersection of the image of this map when applied to two two-dimensional

objects in SO(3). We exploit this fact in order to create an algorithm to find the two

pairs of images that represent the intersection of the great circles. The visual results

of the algorithm when applied to a data set of images of a volleyball suggest that the

algorithm is successful in this case. We hope in the future to apply it to a variety of

data sets to determine its robustness and to improve upon its efficiency.

In future projects, we would like to expand this work to be applied to data sets

that are invariant under other groups. In particular, we hope to consider actions of

the Euclidean group and/or the special Euclidean group. We also intend to improve

upon the efficiency of the two algorithms. There are many possibilities for the def-

138

inition of the distortion function defined in Chapter 7. We would like to compare

various definitions of a distortion function for the amount of information obtained via

evaluation. Finally, in the setting of approximating data bundles, we would like to

consider other algorithms and other base spaces, such as a higher dimensional sphere

or a torus.

139

Bibliography

[1] Afriat, S. N. Orthogonal and oblique projectors and the characteristics of

pairs of vector spaces. Proceedings of the Cambridge Philosophical Society 53

(1957), 800–816.

[2] Axler, S. Linear Algebra Done Right, second ed., vol. 1. Springer-Verlag, 1997.

[3] Barg, A., and Nogin, D. Bounds on packings of spheres in the grassmann

manifold. IEEE Trans. Information Theory 48, 9 (2002), 2450–2454.

[4] Basri, R., and Jacobs, D. Lambertian reflectance and linear subspaces.

PAMI 25, 2 (2003), 218–233.

[5] Baumberg, A. Reliable feature matching across widely separated views. Com-

puter Vision and Pattern Recognition, IEEE Computer Society Conference on 1

(2000), 1774.

[6] Belhumeur, P. N., and Kriegman, D. J. What is the set of images of

an object under all possible illumination conditions? International Journal of

Computer Vision 28, 3 (1998), 245–260.

[7] Beveridge, J., Draper, B., Chang, J.-M., Kirby, M., Kley, H., and

Peterson, C. Principal angles separate subject illumination spaces in ydb and

cmu-pie. IEEE Transactions on Pattern Analysis and Machine Intelligence 31,

2 (2009), 351–356.

140

[8] Bjorck, A., and Golub, G. H. Numerical methods for computing angles

between linear subspaces. Mathematics of Computation 27, 123 (1973), 579–594.

[9] Cangelosi, R., and Goriely, A. Component retention in principal com-

ponent analysis with application to cdna microarray data. Biology Direct 2, 2

(2007).

[10] Chang, J.-M., Kirby, M., Kley, H., Peterson, C., Draper, B., and

Beveridge, J. R. LNCS 4844. Springer Berlin / Heidelberg, 2007, ch. Recog-

nition of Digital Images of the Human Face at Ultra Low Resolution Via Illumi-

nation Spaces, pp. 733–743.

[11] Chang, Y., Hu, C., Feris, R., and Turk, M. Manifold based analysis of

facial expression. Image and Vision Computing 24, 6 (2006), 605–614.

[12] Conway, J., Hardin, R., and Sloane, N. Packing lines, planes, etc.: Pack-

ings in grassmannian spaces. Experimental Mathematics 5 (1996), 139–159.

[13] Cox, D., Little, J., and O’Shea, D. Using Algebraic Geometry, vol. 185 of

Graduate Texts in Mathematics. Springer-Verlag New York, Inc., 1998.

[14] Drmac, Z. On principal angles between subspaces of euclidean space. SIAM

Journal on Matrix Analysis and Applications 22 (2000), 173–194.

[15] Dummit, D. S., and Foote, R. M. Abstract Algebra. John Wiley and Sons,

Inc., 2004.

[16] Edelman, A., Arias, T., and Smith, S. T. The geometry of algorithms

with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998), 303–353.

[17] Eisenbud, D. The Geometry of Syzygies: A Second Course in Commutative

Algebra and Algebraic Geometry. Springer Science + Business Media, Inc., 2005.

141

[18] Eisenbud, D., and Harris, J. The Geometry of Schemes, vol. 197 of Graduate

Texts in Mathematics. Springer-Verlag New York, Inc., 2000.

[19] Epstein, R., P.W., H., and Yuille, A. 5±2 eigenimages suffice: An em-

pirical investigation of low-dimensional lighting models. IEEE Workshop on

Physics-Based Modeling in Computer Vision (1995).

[20] Gibson, C. Elementary Geometry of Algebraic Curves: An Undergraduate In-

troduction. Cambridge University Press, 1998.

[21] Golub, G. H., and Van Loan, C. F. Matrix Computations, third ed. Johns

Hopkins University Press, 1996.

[22] Golub, G. H., and Zha, H. Perturbation analysis of the canonical subspaces.

Linear Algebra and its Applications 210 (1994), 3–28.

[23] Griffiths, P., and Harris, J. Principles of Algebraic Geometry. Wiley &

Sons, 1978.

[24] Hartshorne, R. Deformation Theory, vol. 257 of Graduate Texts in Mathe-

matics. Springer New York Dordrecht Heidelberg London, 2010.

[25] Hassett, B. Introduction to Algebraic Geometry. Cambridge University Press,

2007.

[26] Horn, R. A., and Johnson, C. R. Topics in Matrix Analysis. Cambridge

University Press, 1991.

[27] Hotelling, H. Analysis of a complex of statistical variables into principal

components. Journal of Educational Psychology 24 (1933), 417–441.

[28] Jolliffe, I. Principal Component Analysis. Springer, 1986.

142

[29] Kara, S., Güven, A., and İçer, S. Classification of macular and optic nerve

disease by principal component analysis. Computers in Biology and Medicine 37,

6 (2007), 836–841.

[30] Kim, T.-K., Arandjelovic, O., and Cipolla, R. Boosted manifold prin-

cipal angles for image set-based recognition. Pattern Recognition 40, 9 (2007),

2475–2484.

[31] Kirby, M. Geometric Data Analysis. John Wiley & Sons, Inc., 2001.

[32] Li, Q., Zhang, Y., and Li, C.-K. Unitarily invariant metrics on the grass-

mannian space. Electronic and Computer Engineering Journal (2004).

[33] Liu, Z.-Y., Chiu, K.-C., and Xu, L. Improved system for object detection

and star/galaxy classification via local subspace analysis. Neural Networks 16,

3-4 (2003), 437–451.

[34] Markoe, A. Analytic Tomography. Cambridge University Press, 2006.

[35] Matas, J., Burianek, J., and Kittler, J. In Proc. BMVC. 2000, ch. Object

Recognition using the Invariant Pixel-Set Signature, pp. 606–615.

[36] Miao, J., and Ben-Israel, A. On principal angles between subspaces in Rn.

Linear Algebra and its Applications 171 (1992), 81–98.

[37] Milnor, J. Topology from the Differentiable Viewpoint, revised ed. Princeton

University Press, 1997.

[38] Okonek, C., Schneider, M., and Spindler, H. Vector Bundles on Complex

Projective Spaces. Birkhäuser Boston, 1980.

[39] Pearson, K. On lines and planes of closest fit to systems of points in space.

Philosophical Magazine 2 (1901), 559–572.

[40] Potier, J. L. Lectures on Vector Bundles. Cambridge University Press, 1997.

143

[41] Raychaudhuri, S., Stuart, J. M., and Altman, R. B. Principal compo-

nents analysis to summarize microarray experiments: application to sporulation

time series. Pacific Symposium on Biocomputing (2000), 455–466.

[42] Riklin-Raviv, T., and Shashua, A. The quotient image: Class-based re-

rendering and recognition with varying illuminations. IEEE Transactions on

Pattern Analysis and Machine Intelligence 23 (2001), 129–139.

[43] Schaffalitzky, F., and Zisserman, A. ECCV 2002, LNCS 2350. Springer

Berlin Heidelberg, 2002, ch. Multi-view Matching for Unordered Image Sets, or

“How Do I Organize My Holiday Snaps?”, pp. 414–431.

[44] Schenck, H. Computational Algebraic Geometry, vol. 58 of London Mathemat-

ical Society Student Texts. Cambridge University Press, 2003.

[45] Shafarevich, I. R. Basic Algebraic Geometry, vol. 1-2. Springer-Verlag, 1994.

[46] Smith, K., Kahanpää, L., Kekäläinen, P., and Traves, W. An Invita-

tion to Algebraic Geometry. Springer-Verlag New York, Inc., 2000.

[47] Steenrod, N. The Topology of Fibre Bundles, vol. 14 of Princeton Mathematical

Series. Princeton University Press, 1951.

[48] Stewart, G., and Sun, J.-g. Matrix Perturbation Theory. Boston: Academic

Press, 1990.

[49] Trefethen, L. N., and Bau, III, D. Numerical Linear Algebra. SIAM, 1997.

[50] Vailaya, A., Jain, A. K., and Zhang, H. J. On image classification: city

images vs. landscapes. Pattern Recognition 31, 12 (1998), 1921–1935.

[51] Von Neumann, J. Some matrix-inequalities and metrization of matrix-space.

Tomsk Univ. Rev. 1 (1937), 286–300.

144

[52] Wang, T., and Shi, P. Kernel grassmannian distances and discriminant anal-

ysis for face recognition from image sets. Pattern Recognition Letters 30, 13

(2009), 1161–1165.

[53] Wei, M., and De Pierro, A. R. Perturbation analysis of the canonical

subspaces. Linear Algebra and its Applications 279 (1998), 135–151.

145

Appendix A

Matlab Code for Implementation

of Algorithms

A.1 Nearest Neighbor Dispersion Algorithm – Lo-

cal

A.1.1 Main Program

% INPUTS:

% ColsofU −− a matrix o f s i z e

% (# p i x e l s) x (rank o f v e c t o r bund le) x(# p o s s i b l e l o c a t i o n s)

% each cho ice o f 3 rd c o o r d i n a t e g i v e s a v e c t o r space f o r

% t h a t l o c a t i o n on S ˆ1.

% n −− # of camera l o c a t i o n s to d i s t r i b u t e .

% mchoice −− cho ice o f d i s t a n c e measure .

% Options are 1 , 2 , 3 , 4 , or 5 , corresponding to

% Fubini−Study , Geodesic , Chordal , Subspace , and

% S m a l l e s t p r i n c i p a l angle , r e s p e c t i v e l y .

% numsteps −− # of i t e r a t i o n s to go through PER STEPSIZE .

146

% Usua l l y 5000.

% vbrank −− rank o f v e c t o r bund le .

% i n i t i a l s t e p s i z e −− i n i t i a l jump s i z e . I t r e p r e s e n t s the

% number o f spaces a p o i n t can jump in the f i r s t s e t o f

% s t e p s . Spaces have s i z e 2∗ p i /numpics . Usua l l y s t a r t wi th

% i n i t i a l s t e p s i z e =30.

% OUTPUTS:

% t h e t a s f i n a l −− a n g l e s determining l o c a t i o n s o f p o i n t s in

% f i n a l c o n f i g u r a t i o n .

% Points −− complex numbers g i v i n g p o i n t l o c a t i o n s on u n i t

% c i r c l e in f i n a l c o n f i g u r a t i o n .

numpics=s ize (ColsofU , 3) ; %number o f p i c t u r e s in the data s e t

% determines the number o f p o s s i b l e camera l o c a t i o n s in the

% c o n f i g u r a t i o n .

% Put n p o i n t s on the sphere in a random d i s t r i b u t i o n :

t h e t a s i n d s=randperm(numpics) ;

t h e t a s i n d s=sort (t h e t a s i n d s (1 : n)) ;

dt=2∗pi/numpics ;

the ta s=t h e t a s i n d s ∗dt ;

% t h e t a s i n d s i s an nx1 v e c t o r o f random l o c a t i o n s on the

% c i r c l e . The l o c a t i o n s are g iven by i n d i c e s in [1 , numpics] ,

% each o f which corresponds to an ang l e : index ∗2 p i /numpics .

Points=exp(1 i ∗ the ta s) ; %nx1 v e c t o r o f complex numbers on S ˆ1.

147

Or ig ina lPo in t s=Points ;

for k=[i n i t i a l s t e p s i z e :−5:10 9 :−1 :1]

s t e p s i z e=k ;

for j =1:numsteps

% Pick a p o i n t a t random :

ptind=f loor (rand∗(n−0.000001))+1;

% random index −− an i n t e g e r in [1 , n]

ind=t h e t a s i n d s (pt ind) ;

% ind i s the l o c a t i o n o f the randomly chosen p o i n t .

Q=ColsofU (: , : , ind) ; %space corresponding to ind .

% Find i n d i c e s o f two n e i g h b o r s o f ind :

i f ptind==1

near1=n ;

else

near1=ptind −1;

end

i f ptind==n

near2 =1;

else

near2=ptind +1;

end

near1=t h e t a s i n d s (near1) ;

near2=t h e t a s i n d s (near2) ;

Q1=ColsofU (: , : , near1) ;

148

Q2=ColsofU (: , : , near2) ;

S1=svd (Q1’∗Q) ;

S2=svd (Q2’∗Q) ;

% S1 and S2 conta in the p r i n c i p a l a n g l e s t h a t we w i l l

% use to measure the d i s t a n c e between the v e c t o r space

% at ind and t h o s e at the n e i g h b o r i n g p o i n t s .

d i s tance1=b a s i c d i s t a n c e (S1 , mchoice) ;

d i s t ance2=b a s i c d i s t a n c e (S2 , mchoice) ;

% b a s i c d i s t a n c e f u n c t i o n uses one o f f i v e c h o i c e s

% f o r d i s t a n c e measure to c a l c u l a t e d i s t a n c e based

% on p r i n c i p a l a n g l e s .

[mdist , indexmin]=min ([d i s t ance1 d i s tance2]) ;

i f indexmin==1

indmin=near1 ;

o ther ind=near2 ;

else

indmin=near2 ;

o ther ind=near1 ;

end

t h e t a s i n d s (pt ind)=findnewindex (ind , indmin , other ind , . . .

ColsofU , s t e p s i z e , numpics , mchoice) ;

% findnewindex f u n c t i o n determines what the new

% l o c a t i o n o f ind shou ld be .

149

t h e t a s i n d s=sort (t h e t a s i n d s) ;

end

end

t h e t a s f i n a l=t h e t a s i n d s ∗dt ;

Points=exp(1 i ∗ t h e t a s f i n a l) ;

t=linspace (0 ,2∗ pi) ;

f igure ; hold on ;

plot (Or ig ina lPo int s , ’+ ’)

plot (exp(1 i ∗ t))

axis square

plot (Points , ’ ro ’) ;

A.1.2 Basic Distance Function

function d i s t ance=b a s i c d i s t a n c e (S , mchoice)

% INPUTS:

% S −− a matrix o f s i n g u l a r v a l u e s .

% mchoice −− a cho ice o f d i s t a n c e measure .

% OUTPUT:

% d i s t a n c e −− the e v a l u a t i o n o f the d i s t a n c e measure

% with i n p u t s g i ven by the p r i n c i p a l a n g l e s on the

% d i a g o n a l o f S .

% Occas iona l l y , numerical c a l c u l a t i o n s r e s u l t in s i n g u l a r

% v a l u e s t h a t are s l i g h t l y l a r g e r than one , which l e a d s to

% imaginary d i s t a n c e s . We f o r c e such s i n g u l a r v a l u e s to be

% e q u a l to one .

150

nang les=s ize (S , 1) ;

for j =1: nang les

i f S(j)>1 && abs (S(j)−1)<10ˆ(−4)

S(j)=1;

end

% I f the s i n g u l a r v a l u e s are s i g n i f i c a n t l y l a r g e r than one ,

% we break the program and debug .

i f S(j)>1

disp (’One or more s i n g u l a r va lue i s > 1 . ’)

return

end

end

i f mchoice==1

temp=1;

else

temp=zeros (1 , nang les) ;

end

for j =1: nang les

i f mchoice==1

temp=temp∗S(j) ;

e l s e i f mchoice==2

temp (j)=acos (S(j)) ;

e l s e i f mchoice == 3

temp (j)=sin (acos (S(j))) ;

e l s e i f mchoice==4

temp (j)=sin (acos (S(j))) ;

end

151

end

i f mchoice==1 %Fubini−s tudy

d i s t ance=acos (temp) ;

e l s e i f mchoice==2 %Geodesic

d i s t ance=sqrt (sum(temp . ˆ 2)) ;

e l s e i f mchoice==3 %Chordal

d i s t ance=sqrt (sum(temp . ˆ 2)) ;

e l s e i f mchoice==4 %Subspace

d i s t ance=max(temp) ;

else %s m a l l e s t p r i n c i p a l ang l e on ly

d i s t ance=acos (S (1)) ;

end

A.1.3 Find New Index Function

function newthetas ind=findnewindex (ind , indmin , other ind , . . .

ColsofU , s t e p s i z e , numpics , mchoice)

% INPUTS:

% ind −− index in [1 , numpics] o f p o i n t to be moved .

% indmin −− index o f c l o s e s t n e i g h b o r i n g p o i n t .

% o t h e r i n d −− index o f f a r t h e s t n e i g h b o r i n g p o i n t .

% ColsofU −− matrix o f v e c t o r spaces a t t a c h e d at p o s s i b l e

% p o i n t l o c a t i o n s .

% s t e p s i z e −− jump s i z e a l l o w e d f o r the g iven i t e r a t i o n .

% numpics −− # of p i c t u r e s in the data s e t .

% mchoice −− cho ice o f d i s t a n c e measure .

% Options are 1 , 2 , 3 , 4 , or 5 , corresponding to

152

% Fubini−Study , Geodesic , Chordal , Subspace , and

% S m a l l e s t p r i n c i p a l angle , r e s p e c t i v e l y .

% OUTPUT:

% newtheats ind −− new l o c a t i o n o f ind .

% New l o c a t i o n i s determined by moving ind in both

% p o s s i b l e d i r e c t i o n s , then determining which move y i e l d s a

% g r e a t e r d i s t a n c e wi th indmin . The two moves are as f a r as

% p o s s i b l e in the g iven d i r e c t i o n wi thou t jumping over or

% l a n d i n g on the n e a r e s t p o i n t .

L i s t o f i n d s=sort ([ind , indmin , o ther ind]) ;

%Cases in which the p o i n t has no space to move :

i f ind==1

i f L i s t o f i n d s (2)==2 && L i s t o f i n d s (3)==numpics

newthetas ind=ind ;

return

end

e l s e i f ind==numpics

i f L i s t o f i n d s (1)==1 && L i s t o f i n d s (2)==numpics−1

newthetas ind=ind ;

return

end

else

i f ind−1==L i s t o f i n d s (1) && ind+1==L i s t o f i n d s (3)

newthetas ind=ind ;

return

153

end

end

i f ind==L i s t o f i n d s (1)

newth1=ind+s t e p s i z e ;

while newth1>=L i s t o f i n d s (2) %ind has jumped over another

%p o i n t . Need to move i t back .

newth1=newth1−1;

end

newth2=ind−s t e p s i z e ;

i f newth2<=0 %Need index to wraparound .

newth2=newth2+numpics ;

while newth2<=L i s t o f i n d s (3) %ind has jumped .

newth2=newth2+1;

end

i f newth2==numpics+1

newth2=1;

end

end %I f no wraparound , then newth2 cannot have jumped .

e l s e i f ind==L i s t o f i n d s (3)

newth1=ind+s t e p s i z e ;

i f newth1>numpics

newth1=newth1−numpics ;

while newth1>=L i s t o f i n d s (1)

newth1=newth1−1;

end

i f newth1==0

newth1=numpics ;

154

end

end %I f no wraparound , then newth1 cannot have jumped .

newth2=ind−s t e p s i z e ;

while newth2<=L i s t o f i n d s (2)

newth2=newth2+1;

end

else %ind==L i s t o f i n d s (2)

newth1=ind+s t e p s i z e ;

while newth1>=L i s t o f i n d s (3)

newth1=newth1−1;

end

newth2=ind−s t e p s i z e ;

while newth2<=L i s t o f i n d s (1)

newth2=newth2+1;

end

end

%I f there ’ s on ly one cho ice f o r which way to go , p i c k t h a t :

i f newth1==ind

newthetas ind=newth2 ;

return

end

i f newth2==ind

newthetas ind=newth1 ;

return

end

Q1=ColsofU (: , : , newth1) ;

155

Q2=ColsofU (: , : , newth2) ;

Qindmin=ColsofU (: , : , indmin) ;

S1=svd (Q1’∗Qindmin) ;

S2=svd (Q2’∗Qindmin) ;

d i s t ance1=b a s i c d i s t a n c e (S1 , mchoice) ;

d i s t ance2=b a s i c d i s t a n c e (S2 , mchoice) ;

[mdist , indmdist]=min ([d i s tance1 , d i s t ance2]) ;

i f indmdist==1

newthetas ind=newth2 ;

else

newthetas ind=newth1 ;

end

A.2 Intersection of Data Sets

A.2.1 Step 1

% INPUTS:

% DMa −− a data matrix , each o f whose columns i s the f i r s t

% 181 Fourier c o e f f i c i e n t s f o r one image from data s e t a .

% DMb −− a data matrix , each o f whose columns i s the f i r s t

% 181 Fourier c o e f f i c i e n t s genera ted from a l l i n t e g e r

% degree r o t a t i o n s o f an image from data s e t b .

% range2use −− Fourier c o e f f i c i e n t s to use f o r each image .

% u s u a l l y e q u a l to 1 .

ndatapts1=s ize (DMa, 2) ;

156

ndatapts2=s ize (DMb, 2) ;

Minloc=zeros (1 , ndatapts1) ;

MinDists=zeros (1 , ndatapts1) ;

ComparisonDists=zeros (ndatapts1 , ndatapts2) ;

for j =1: ndatapts1

for k=1: ndatapts2

ComparisonDists (j , k)=norm(abs (DMa(range2use , j)) − . . .

abs (DMb(range2use , k))) ;

end

[MinDists (j) Minloc (j)]=min(ComparisonDists (j , :)) ;

end

figure ; plot (MinDists)

A.2.2 Step 2

% INPUTS:

% Ca −− data s e t a . Ca i s a 4−D matrix o f images c o l l e c t e d

% along g r e a t c i r c l e C1 .

% Cb −− data s e t b . Cb i s a 4−D matrix o f images c o l l e c t e d

% along g r e a t c i r c l e C2 (d i s t i n c t from C1) .

% DMa −− a data matrix , each o f whose columns i s the f i r s t

% 181 Fourier c o e f f i c i e n t s genera ted from a l l i n t e g e r

% degree r o t a t i o n s o f an image from data s e t a .

% DMb −− a data matrix , each o f whose columns i s the f i r s t

% 181 Fourier c o e f f i c i e n t s genera ted from a l l i n t e g e r

% degree r o t a t i o n s o f an image from data s e t b .

157

% range2use −− Fourier c o e f f i c i e n t s to use f o r each image .

% u s u a l l y e q u a l to 5 : 6 0 .

% rangeformin1 −− determined from s t e p 1 o f the a l gor i thm .

% In t h i s example , i t i s 3 0 : 7 5 .

% rangeformin2 −− determined from s t e p 1 o f the a l gor i thm .

% In t h i s example , i t i s 200 :240 .

ndatapts1=s ize (DMa, 2) ;

ndatapts2=s ize (DMb, 2) ;

Minloc=zeros (1 , ndatapts1) ;

MinDists=zeros (1 , ndatapts1) ;

ComparisonDists=zeros (ndatapts1 , ndatapts2) ;

% Normalize Fourier c o e f f i c i e n t s to be used :

for j =1: ndatapts1

DMa(range2use , j)=abs (DMa(range2use , j)) . / . . .

norm(abs (DMa(range2use , j))) ;

end

for j =1: ndatapts2

DMb(range2use , j)=abs (DMb(range2use , j)) . / . . .

norm(abs (DMb(range2use , j))) ;

end

% C a l c u l a t e min d i s t a n c e from each image in data s e t a to

% data s e t b .

for j =1: ndatapts1

for k=1: ndatapts2

158

ComparisonDists (j , k)=norm(abs (DMa(range2use , j)) − . . .

abs (DMb(range2use , k))) ;

end

[MinDists (j) Minloc (j)]=min(ComparisonDists (j , :)) ;

end

% Find minima in a a l l o w e d r e g i o n s :

[a , b]=min(MinDists (rangeformin1)) ;

[c , d]=min(MinDists (rangeformin2)) ;

% Plot two p a i r s o f images corresponding to i n t e r s e c t i o n

% of data s e t s : (p l o t p i c s i s a f u n c t i o n c r e a t e d f o r

% t h i s purpose .

p l o t p i c s (b+rangeformin1 (1)−1 , Minloc , Ca , Cb, Mask)

p l o t p i c s (d+rangeformin2 (1)−1 , Minloc , Ca , Cb, Mask)

159

