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ABSTRACT OF DISSERTATION 

PLANT COMMUNITY AND ECOSYSTEM CHANGE ON CONSERVATION 

RESERVE PROGRAM LANDS IN NORTHEASTERN COLORADO 

The Conservation Reserve Program (CRP) is an important transitional land 

use that converts formerly cultivated land to perennial vegetation across the U.S. In 

the shortgrass steppe region of eastern Colorado, CRP currently includes nearly 1 

million hectares of land seeded with native and introduced perennial grasses. 

Establishment of perennial grasses encourages the recovery of plant community and 

ecosystem properties altered by tillage and crop production practices. The objective 

of my dissertation was to determine how time since CRP enrollment, seed mix, and 

environmental variability affect plant community composition, vegetation structure, 

net primary production, and soil carbon and nitrogen relative to undisturbed 

shortgrass steppe. 

As time since CRP enrollment increased, CRP fields transitioned from a 

species rich annual forb and grass community to a perennial grass dominated 

community with low species richness. Seed mix determined which perennial grasses 

increased in dominance, but slow and variable recovery allowed for a dynamic plant 

community composed of species with different life forms, photosynthetic pathways, 

and origins. Patterns of precipitation and interactions among species affected the 

relative differences in canopy cover between functional types. 

Vegetation structure was indirectly influenced by time since CRP enrollment 

and seed mix through plant community composition. There was an increase in plant 
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basal cover and height, and decrease in plant density as perennial grasses replaced 

annual grasses and forbs. These structural attributes constrained aboveground net 

primary production (ANPP), but only when water was not limiting. CRP fields had 

the potential to support twice as much ANPP as undisturbed shortgrass steppe in 

years above mean annual precipitation. However, belowground biomass and 

belowground net primary production (BNPP) were significantly lower in CRP fields 

than undisturbed shortgrass steppe, which has implications for their long-term 

survival in a water limited region. 

Soil organic carbon was correlated to carbon input through BNPP from 

perennial grasses and increased at the plant scale as time since CRP enrollment 

increased. At the field scale, the carbon storage resulting from this increase was low 

in CRP fields compared to undisturbed shortgrass steppe. Nitrogen was closely 

linked to carbon in plants and soil and its availability was correlated to soil organic 

nitrogen, quantity and quality ofbelowground inputs, and precipitation. 
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Chapter 1: Introduction 

The patchwork of land uses in the short grass steppe region of Colorado 

includes nearly 1 million hectares of land producing wheat each year (USDA 

National Agricultural Statistics Service 2008). Since this region is semiarid with 

marginal land for cropping, wheat is grown in rotation with a year-long fallow period 

to store soil water (Hart 2008). Dryland wheat-fallow cropping is unlike other 

disturbances, to which shortgrass steppe species have adapted (Milchunas et al. 

1988), with long-term ecological consequences. Above and belowground 

components of a diverse plant community are destroyed and replaced with an 

annually harvested crop, which reduces the recovery potential of shortgrass steppe 

species (Coffin et al. 1996). Low plant inputs coupled with increased soil erosion and 

decomposition through tillage practices have led to losses in soil organic carbon and 

nutrient availability (Burke et al. 1995). 

These changes in plant community composition and ecosystem properties can 

be reversed following the cessation of cropping practices. Early research described 

slow and variable plant community succession after the abandonment of cultivated 

fields in the shortgrass steppe region (Shantz 1917, Savage and Runyon 1937, Judd 

and Jackson 1939, Costello 1944). Constraints on water availability and the 

reproductive potential of shortgrass species can explain this recovery pattern (Hyder 

et al. 1971, Samuel1985, Coffin and Lauenroth 1992). Despite short-term 

dominance of different functional types following disturbance, shortgrass species 

come to dominate the plant community in the long-term(> 50 years; Coffin et al. 

1996). Ecosystem properties also change over the course of succession (Odum 1969). 
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Plant functional types and species differ in their structure and allocation of 

production, which can influence soil properties in the shortgrass steppe (Vinton and 

Burke 1995). Some fractions of SOC and nutrient availability can recover within 50 

years of cropping cessation and are dependent on the establishment of perennial 

grasses (Burke et al. 1995). 

Although changes in plant community and ecosystem properties occur 

through succession following the cessation of cropping practices, human activity can 

modify the trajectory of recovery. Since 1985, the federal government has paid 

farmers to take their land out of production and seed their fields with perennial 

vegetation through the Conservation Reserve Program (CRP). CRP is an extensive 

land use nationwide and in Colorado currently includes an area equivalent to the land 

producing wheat (USDA Farm Service Agency 2008). CRP fields in the shortgrass 

steppe region are seeded with a variety of seed mixes that contain perennial grasses to 

reduce soil erosion through the establishment of plant cover (Skold 1989). 

There are few studies which examine plant community and ecosystem change 

on CRP land. The research that does exist is largely descriptive of plant community 

and vegetation structure associated with suitable avian habitat (Burger et al. 1990, 

Millenbah 1996, McCoy et al. 2001). Other studies are not specific to CRP land use, 

but address plant community and ecosystem change following the conversion from 

cropping to perennial grassland (i.e. Paschke et al. 2000, Brown and Bugg 2001, 

Camill et al. 2004, Zeiter et al. 2006, Foster et al. 2007). Results from this body of 

research can provide insight about recovery in CRP fields. Baer et al. (2002) 

examined CRP plant community and ecosystem changes in the tall grass prairie 
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region, where precipitation is higher than short grass steppe. A comparison of my 

results to this study can lead to an understanding of how precipitation drives recovery 

patterns in CRP fields. 

Research that addresses changes in soil carbon and nitrogen in CRP fields is 

more common (Gebhart et al. 1994, Follett et al. 2001, Kucharik et al. 2003) and 

suggests variable recovery rates. Two studies specific to the shortgrass steppe 

(Robles and Burke 1997 and 1998, Reeder et al. 1998) determined that recovery is 

slow in the first ten years ofCRP enrollment. My study expands on these studies 

because it examines two decades of recovery following reenrollment in CRP and 

addresses the effect of using different seed mixes. 

CRP fields can be used to test the rate of development and the duration of 

persistence of species and functional types that occur in succession using models 

developed in the shortgrass steppe (Judd and Jackson 1939, Costello 1944, Coffin et 

al. 1996). Early (recently enrolled) CRP fields are likely influenced by the seed bank, 

dispersal and vegetative spread from neighboring fields. Low precipitation and high 

potential evapotranspiration in the shortgrass steppe region (Lauenroth and Bradford 

2006) can limit plant establishment and growth, as well as the rate of succession 

through their influence on soil moisture. However, short-term wet-dry cycles drive 

fluctuations in species composition, especially in highly perturbed areas (Milchunas 

et al. 1990). Interactions among species and species modification of their 

environment can further contribute to changes in plant community composition 

during succession (Connell and Slatyer 1977). The plant community in late (older) 

CRP fields is more likely determined by species that established from the CRP seed 
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m1x. Since allowable seed mixes contain both native and introduced species (not 

native to northeastern Colorado), CRP fields can have a plant community that is 

compositionally similar or very different from undisturbed shortgrass steppe. Late 

CRP fields may also be influenced by colonizing perennial grasses, which compete 

with seeded perennial grasses. 

Time since CRP enrollment and seed mix can indirectly affect vegetation 

structure and net primary production (NPP) through plant community composition. 

The species that establish in CRP fields may have a different growth form and 

allocation strategy than undisturbed shortgrass steppe. Bouteloua gracilis, the 

dominant perennial bunchgrass in the shortgrass steppe, has a relatively low above- to 

belowground NPP ratio (Milchunas and Lauenroth 2001 ), which makes it resistant to 

grazing and drought. In contrast, CRP fields may have more annual species that can 

grow at high density and allocate more NPP above- than belowground (Lauenroth et 

al. 1978). Many of the perennial grass species in the CRP seed mix are native to 

regions with greater water availability, where light is a more limiting factor in plant 

growth (Lauenroth and Coffin 1992). These species may also allocate more to 

aboveground NPP, but may have to compensate in a low water environment by 

having lower density and/or basal cover compared to undisturbed shortgrass steppe or 

restrict growth to years with high water availability. Potential differences in 

vegetation structure, such as height and basal cover, between fields seeded with 

mostly native and introduced perennial grasses may lead to differences in NPP (Lieth 

and Whittaker 1975, Lauenroth and Sala 1992). 
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CRP fields can store anthropogenic sources of carbon (C) from the 

atmosphere through the recovery of soil organic carbon (SOC; Burke et al. 1995, 

Conant et al. 2001) lost during wheat cropping. SOC is the largest terrestrial pool of 

organic C (Schimel1995) and has a long residence time (Oades 1988), making it an 

important reservoir for C storage. Much effort has been made to elucidate global 

controls regulating inputs and outputs of SOC using meta-analysis (Post et al. 1982, 

Post and Kwon 2000) and modeling (Parton et al. 1987) approaches, while less effort 

has been made to link SOC to exchanges with the vegetation and atmosphere using an 

empirical approach. The size and dynamics of SOC in CRP fields are influenced by 

the quantity and quality of plant inputs, which may change with time since CRP 

enrollment and seed mix. Outputs from SOC, including soil respiration may also 

vary with time since CRP enrollment and seed mix due to changes in the plant and 

microbial community, soil resources and physical characteristics. Since C uptake and 

storage is tightly linked to the nitrogen (N) cycle (Vitousek and Howarth 1991, Diaz 

et al. 1993), it is equally important to understand how N pools and fluxes may be 

affected in CRP fields. 

The overall objective of my dissertation is to determine how time since CRP 

enrollment, seed mix, and environmental variability affect the following variables in 

CRP fields relative to the shortgrass steppe: 

1. Plant community composition 

2. Vegetation structure and net primary production 

3. Soil carbon and nitrogen 
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To accomplish my objective, I selected CRP fields in the West Greeley Conservation 

District, near the Central Plains Experimental Range (CPER, Shortgrass Steppe Long 

Term Ecological Research site) located 60 km northeast ofF ort Collins, Colorado 

(40° 49' N, 107° 47' W). I used uncultivated shortgrass steppe sites on the CPER to 

compare to CRP fields. CRP fields were divided into those seeded with native and 

introduced perennial grasses. To address time since CRP enrollment, I established a 

chronosequence (Stevens and Walker 1970) that consisted of three field age classes: 

early (2 years after CRP enrollment), mid (7 years), and late (18 years). I only 

included fields seeded with a native seed mix in the chronosequence to minimize 

differences in the potential vegetation. To address seed mix, I controlled for field age 

and compared late CRP fields seeded with native perennial grasses to late CRP fields 

seeded with introduced perennial grasses. I measured and estimated plant community 

composition and a suite of ecosystem properties for 3 years (2005-2007) in each field 

to account for the effect of environmental variability, particularly precipitation. 

The dissertation chapters are divided according to the variables outlined in my 

objective. Chapter 2 focuses on plant community composition, including plant 

species, functional type, and community-level patterns in CRP fields; Chapter 3 

focuses on vegetation structure and net primary production in CRP fields; and 

Chapter 4 focuses on soil carbon and nitrogen in CRP fields. Chapter 5 summarizes 

my findings and presents the conclusions from my dissertation. 
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Chapter 2: Plant Community Dynamics on Conservation Reserve Program 
Lands in Northeastern Colorado 

Introduction 

Plant community composition is a key attribute of ecosystems that can 

provide insight into how species associate, function, and interact with each other and 

the abiotic environment. Changes in plant community composition occur in space 

due to environmental heterogeneity and in time with short-term fluctuations in plant 

populations and longer-term successional change (Delcourt et al. 1983, van der 

Maarel 1988). The spatial and temporal dynamics of plant community composition 

are influenced by disturbance, which disrupts community structure and increases the 

availability of resources (White and Pickett 1985). The subsequent processes of 

colonization and species replacement occur on a dynamic mosaic of patches in the 

landscape (Watt 194 7) and are mediated by environmental conditions (Bazzaz 1979), 

availability of propagules (Egler 1954), and human activity (Westhoff 1971 ). 

The impact disturbance has on plant community composition and trajectory of 

succession depends on characteristics of the disturbance (Sousa 1984, Coffin and 

Lauenroth 1988). Dryland (non-irrigated) wheat cropping is an extensive land use 

that utilized over one million hectares of former shortgrass steppe in Colorado during 

2007 (USDA National Agricultural Statistics Service 2008). Tillage practices destroy 

above and belowground plant components at the field scale, unlike drought and 

grazing, to which shortgrass species have adapted (Milchunas et al. 1988). Seeding 

the field with an annually harvested crop replaces the diverse composition of 

perennial grasses, herbaceous dicots, subshrubs, and cacti. Cultivation also alters the 
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physical and chemical characteristics of the soil (Burke et al. 1989), which can affect 

plant community dynamics. 

Following the cessation of cropping, plant communities undergo succession. 

Without belowground perennial organs intact, plant establishment must occur from 

seeds that survived the disturbance or dispersed into the fields, or from vegetative 

spread from the edge of the field. Dispersal events are dependent on the location and 

reproductive traits of plants in the area surrounding the field, as well as site 

conditions for germination and establishment (Bazzaz 1979). Low precipitation and 

high potential evapotranspiration in the shortgrass steppe (Lauenroth and Bradford 

2006) can limit plant establishment and growth, as well as the rate of succession 

through their influence on soil moisture. However, short-term wet-dry cycles drive 

fluctuations in species composition, especially in highly perturbed areas (Milchunas 

et al. 1990). Interactions among species and species modification of their 

environment can further contribute to changes in plant community composition 

during succession (Connell and Slatyer 1977). 

Human activity can modify the trajectory of natural succession. The USDA 

Conservation Reserve Program (CRP) has converted cultivated land to perennial 

vegetation and currently includes nearly 1 million hectares in Colorado (USDA Farm 

Service Agency 2008). CRP land is seeded with perennial grasses and forbs, which 

can modify the rate of succession. Established perennial plant cover meets 

management objectives, including reduction in soil erosion and improvement of water 

quality (Skold 1989). Since allowable seed mixes may contain species and varieties 

12 



that are not native to northeastern Colorado, CRP fields can have a plant community 

that is compositionally very different from undisturbed shortgrass steppe. 

I constructed a general model of plant community dynamics on CRP fields to 

account for perennial grasses in the CRP seed mix (Burger et al. 1990, Millenbah et 

al. 1996) by modifying old-field succesional models developed in the shortgrass 

steppe (Judd and Jackson 1939, Costello 1944, Coffin et al. 1996). Like previous 

models, my modified model includes a forb and annual grass vegetation stage 

immediately following the cessation of cropping (Fig. 1 ). This stage is replaced by a 

seeded perennial grass stage and a subsequent colonizing perennial grass stage. 

Colonizing perennial grasses disperse from neighboring fields, with short-lived 

species establishing before long-lived shortgrasses (Savage and Runyon 1937, Judd 

1974, Lauenroth and Milchunas 1992). I used the modified model to test the rate of 

development and the duration of persistence of each of these stages. 

My objective was to determine plant community composition in CRP fields 

relative to undisturbed short grass steppe and to better understand the controls of plant 

community variability in these fields. Specifically, I addressed the following 

questions: 

1) How does time since enrollment affect plant community composition in CRP 

fields? 

2) How does seed mix affect plant community composition in CRP fields? 

3) How does environmental variability affect interannual change in plant 

community composition in CRP fields and undisturbed shortgrass steppe? 
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Methods 

Study sites 

My study was conducted at undisturbed shortgrass steppe sites within the 

Central Plains Experimental Range (CPER, Shortgrass Steppe Long Term Ecological 

Research site) located 60 km northeast of Fort Collins, Colorado (40° 49' N, 107° 47' 

W), and CRP sites located within 13 km to the south and 3 km to the west of the 

CPER. The climate is semiarid with a long-term (1969-2007) mean annual 

precipitation of332 mm (a= 99 mm), 80% of which falls between April and 

September, and a mean annual temperature of 9 .6°C (a = 1.1 °C). Undisturbed 

shortgrass steppe has a long-term (1939-1990) mean annual aboveground net primary 

production of 97 g m-2 with a range of 62-143 g m-2 (Lauenroth and Sala 1992). 

These sites had been long-term moderately summer grazed, but I excluded them from 

grazing during the study. 

I partitioned CRP sites into those seeded with perennial grasses native to 

northern Colorado and those planted with perennial grasses that are not native to 

northern Colorado (introduced). The native seed mix contained Agropyron smithii* 

(- 30% weight of all seed), Bouteloua gracilis (-- 20% ), Bouteloua curtipendula (----

20% ), other perennial grasses (- 20%; Nassella viridula, Schizachyrium scoparium, 

Panicum virgatum, and Sorghastrum nutans) and Dalea purpurea (- 10%). The 

introduced seed mix contained either Agropyron intermedium ( 1 00%) or Bromus 

inermis (1 00%), which are both perennial grasses from Europe and Asia. To address 

time since CRP enrollment, I established a chronosequence (Stevens and Walker 

* plant nomenclature follows Great Plains Flora Association 1986 
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1970) that consisted ofthree field age classes: early, mid, and late. All fields in the 

chronosequence were seeded with a native seed mix to minimize differences in the 

potential vegetation. I sampled each field for 3 years to account for environmental 

variability. Early fields represented 2-4 years after CRP enrollment, mid fields 

represented 7-9 years after CRP enrollment, and late fields represented 18-20 years 

after CRP enrollment. To address the effect of using different seed mixes, I 

controlled for field age and compared late CRP fields seeded with native perennial 

grasses to late CRP fields seeded with introduced perennial grasses over the course of 

the three year study. 

All fields were in a non-irrigated wheat-fallow rotation prior to CRP 

enrollment. The year of CRP enrollment, fields were seeded with a sterile sorghum 

cover crop to protect the seedbed and discourage annual weed growth (NRCS 1991 ). 

A year later, fields were double-disked and drill seeded with perennial grasses ( ~ 0.5 

g m-2 seed) to a 1.3 em depth and 20 em spacing between rows. Surface soil (0-5 em) 

textures were loamy sand, sandy loam, and sandy clay loam. All sites had a similar 

topographic relief ( < 3% slope). I replicated each of the six field types three times for 

a total of eighteen fields sampled ( 6 field types x 3 field replicates = 18 fields 

sampled). 

Sampling Methods 

I measured species composition in 40 ~ m2 circular quadrats in each field in 

late August/early September 2005, 2006, and 2007. Quadrats were spaced 20m apart 

along 5 evenly-spaced transects and occurred a minimum of 100 m from the field 

edge to minimize edge effect. I estimated canopy cover class (0-1 %, 1-5%, 5-15%, 
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15-25%, 25-40%, 40-60%, 60-100%) by species. Only plants that had grown during 

the sampling year were included. I took canopy cover estimates of Bromus tectorum, 

an introduced winter annual grass species, at the end of its growing season in early 

June. The canopy cover data for each species in each field type is included as 

Appendix A. 

Statistical Analyses 

I analyzed plant community composition by using the average canopy cover 

of each species in each field. I subsequent! y grouped species according to life form 

(grass, forb, cactus, and sub shrub) in order to represent important reproductive and 

structural traits that can influence recovery and ecosystem function in the shortgrass 

steppe (Vinton and Burke 1995). I grouped grasses and forbs according to their 

lifespan (annual and perennial), and perennial grasses were further grouped according 

to whether or not they were seeded (seeded and colonizing). For separate analyses, I 

grouped species according to photosynthetic pathway (C3, C4, and CAM) and also 

according to whether or not they were native to northeastern Colorado (native and 

introduced). I calculated species density by taking the average number of species in a 

1.4 m2 quadrat in each field. I performed repeated measures analysis of variance on 

the canopy cover of plant functional types and species density with field type as the 

main effect and year as the repeated measure modeled with autoregressive correlation 

structure (Proc Mixed, SAS 9.2, SAS Institute Inc. 2002-2008, Cary, NC, USA). 

Canopy cover data were arcsine square root transformed to meet assumptions of 

normality and homogeneity of variance. I used a Tukey multiple comparison 

adjustment when comparing field types separately for each year and years separately 

16 



for each field type (Proc Glimmix, SAS, June 2006 release). I assumed a linear 

response of canopy cover of functional types across time since CRP enrollment and 

performed linear regression on all fields in the chronosequence (Proc Reg, SAS 9 .2). 

A nonlinear model provided a better fit for annual grasses. Regressions were 

performed using canopy cover from individual years, not age classes, to collectively 

account for successional change and interannual variability in all CRP fields in the 

chronosequence. I report the coefficient of determination (r2
) to explain the amount 

of variability in canopy cover of functional types explained by time since CRP 

enrollment, but the p-value was not accurate because the regression was performed on 

untransformed data. I performed additional regressions between different functional 

types, as well as species density and annual precipitation in order to assess how the 

biotic and abiotic environments influenced recovery dynamics. 

Results 

Both inter- and intra-annual variability in precipitation was high during the 

study. Annual precipitation ranged from 301 mm in 2006 to 409 mm in 2007 (Table 

1). Early growing season precipitation ranged from 54 mm in 2006 to 202 in 2005. 

Similarly, late growing season precipitation was 53 mm in 2005 and 224 in 2007. 

Early growing season precipitation in 2005 was 42% above the long-term mean and 

late growing season precipitation was 57% below the mean. 2006 and 2007 showed 

the opposite trends, with early growing season precipitation 62% and 42% below the 

mean and late growing season precipitation 16% and 81% above the mean, 

respectively. 
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Canopy cover of species and functional types were affected by time since 

CRP enrollment and seed mix. Annual and perennial forb canopy cover was high in 

the early CRP fields and decreased as time since CRP enrollment increased 

(collectively 0.86% per year, Fig. 2). Both these functional types had high 

interannual variability. Perennial forb canopy cover was on average six times lower 

than annual forb canopy cover in CRP fields during the study. Forb canopy cover in 

late CRP fields seeded with native perennial grasses was not significantly different 

from late CRP fields seeded with introduced perennial grasses or undisturbed 

short grass steppe for the first two years of the study, but was significantly higher in 

late fields seeded with Agropyron intermedium in 2007. 

Annual grass canopy cover increased and reached a peak of 3 9% 7 years after 

CRP enrollment before declining to almost no canopy cover within 18 years after 

CRP enrollment (Fig. 3). This increase was almost entirely due to the introduced 

winter annual, Bromus tectorum, which had high spatial and temporal variability in 

canopy cover. Other annual grasses had high canopy cover in early CRP fields and 

were nearly absent in mid CRP fields. All annual grass canopy cover in late CRP 

fields seeded with native perennial grasses was< 1% in all sampling years and was 

not significantly different from either of the late CRP fields seeded with introduced 

perennial grasses or undisturbed shortgrass steppe. 

Seeded perennial grass canopy cover increased 1.3% per year along the 

chronosequence (Fig. 4). Seeded perennial grass canopy cover approached 30% in 

late CRP fields seeded with native perennial grasses, which was not significantly 

different from either of the late CRP fields seeded with introduced perennial grasses 
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for all sampling years. However, seeded perennial grass canopy cover in CRP fields 

was significantly lower than perennial grass canopy cover in undisturbed shortgrass 

steppe for all sampling years. Colonizing perennial grass canopy cover increased 

0.50% per year along the chronosequence, but was near zero for the first 4 years of 

CRP enrollment (Fig. 5). Late CRP fields seeded with introduced perennial grasses 

were not significantly different from late CRP fields seeded with native perennial 

grasses in colonizing perennial grass canopy cover for all sampling years, but 

increased in canopy cover during the study. Interannual variability was low for 

seeded and colonizing perennial grasses relative to forbs and annual grasses. Dwarf 

shrubs and cacti were absent in CRP fields, except in late fields seeded with native 

perennial grasses, where they occurred with< 1% canopy cover (not shown). 

In 2005, there was significantly higher relative canopy cover of C3 species 

and lower relative canopy cover ofC4 species in all CRP fields, except late CRP 

fields seeded with native perennial grasses, compared to undisturbed shortgrass 

steppe (Fig. 6). Along the chronosequence, C3 canopy cover was significantly higher 

in mid CRP fields than late CRP fields. All CRP fields showed a trend of decreasing 

C3 and increasing C4 relative canopy cover in the three years of the study (only mid 

CRP fields seeded with native perennial grasses and late CRP fields seeded with 

Agropyron intermedium were significant), while undisturbed shortgrass steppe 

remained a C4 dominated plant community. C3 dominance diminished even in CRP 

fields seeded with introduced C3 species over the three-year study period. By 2007, 

the relative canopy cover ofC3 species was only higher in mid CRP fields and late 

CRP fields seeded with Bromus inermis relative to undisturbed shortgrass steppe. 
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Plants with a CAM photosynthetic pathway were only present in undisturbed 

shortgrass steppe and late CRP fields seeded with native perennial grasses. 

Many CRP fields were composed of significantly more introduced species 

than undisturbed shortgrass steppe (Fig. 7). Mid CRP fields had the highest canopy 

cover of introduced species along the chronosequence, which were not significantly 

different from late CRP fields seeded with introduced perennial grasses in all years of 

the study. However, there was an increase of native species canopy cover in late CRP 

fields seeded with introduced perennial grasses. Late CRP fields seeded with native 

perennial grasses had > 90% relative canopy cover of native species, and were not 

significant! y different than undisturbed short grass steppe. 

Species density (number of species I 0.25m2
) decreased along the 

chronosequence in all years of the study. Late CRP fields seeded with introduced 

perennial grasses had significantly lower species density than late CRP fields seeded 

with native perennial grasses in 2005, but were not lower in 2006 and only late fields 

seeded with Bromus inermis were lower in 2007. Species density in undisturbed 

shortgrass steppe was not significantly different from CRP fields seeded with native 

perennial grasses, except in 2005 when it was significantly higher. There was 

interannual variability in species density within field types. Undisturbed shortgrass 

steppe and CRP fields seeded with native perennial grasses had low species in 2006 

relative to the other two sampling years (statistically significant in undisturbed 

shortgrass steppe and mid CRP fields). There was significantly higher species 

density in late CRP fields seeded with Agropyron intermedium in 2007 compared to 

the other two sampling years. 
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Discussion 

Time since CRP enrollment affected plant community composition. Early 

CRP fields underwent succession and the plant community was likely influenced by 

the seed bank and seed dispersal. Seed mix determined which perennial grasses 

dominated the plant community within 18 years, but variable establishment allowed 

for dominance by plants with different life forms, photosynthetic pathways, and 

origins. Species density declined in CRP fields as seeded perennial grass cover 

increased and was lowest in late CRP fields seeded with introduced perennial grasses. 

Relative differences in canopy cover between species and functional types in these 

fields were modified by shifts in the amount and seasonality of precipitation. Low 

mean annual precipitation and the spread of colonizing perennial grasses are likely to 

affect plant community composition beyond 20 years in CRP fields. 

The dominance by forbs and annual grasses in early and mid CRP fields 

followed my model of plant community dynamics. The success of these functional 

types may be attributed to their prolific seed production, rapid dispersal mechanisms, 

and high abundance in shortgrass steppe seedbanks (Coffin and Lauenroth 1989). 

Forbs generally declined as time since CRP enrollment increased and were inversely 

correlated to perennial grass canopy cover across all CRP fields in the first two years 

of the study (r = 0.77, P = 0.0002). This suggests that the increased dominance of 

perennial grasses inhibited forb canopy cover, which has been indirectly shown 

through perennial grass removal and disturbance studies in the shortgrass steppe 

(Coffin 1988, Hardwicke 2006, Munson and Lauenroth, in press). However, forb 

canopy cover had high interannual variability, even in late CRP fields that had 
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relatively high perennial grass cover. Precipitation can be a strong driver of forb 

canopy cover and abundance in semiarid grasslands. In CRP fields, above average 

late growing season (July-September) precipitation in 2007 likely caused the increase 

in canopy cover of primarily late-growing annual forbs through an increase in soil 

moisture. Native and introduced members of Chenopodiaceae (Sa/sola iberica, 

Kochia scoparia, and Chenopodium spp.) were largely responsible for this increase. 

These species have been shown to increase in disturbed shortgrass steppe (Milchunas 

and Lauenroth 1995), including abandoned cropland (Costello 1944). High annual 

precipitation may allow forb species to overcome the competitive suppression of 

grasses, since there was no longer a significant inverse relationship between the two 

functional types in 2007. 

Annual grasses were present within 2 years after CRP enrollment, but there 

was low canopy cover(< 0.4%) of Bromus tectorum. Annual grass species continued 

to colonize early CRP fields and most species reached a peak within 4 years. 

However, B. tectorum continued to increase with 11% canopy cover after 4 years and 

39% in 7 year CRP fields. This suggests that the presence of B. tectorum causes 

higher annual grass canopy cover and a prolonged annual grass dominance in CRP 

fields compared to what was predicted in the model. Although undisturbed shortgrass 

steppe has a low invasion of B. tectorum (Bradford and Lauenroth 2006), CRP fields 

are susceptible until perennial grasses dominate the plant community. Invasion of 

this introduced annual grass showed high spatial variability, as indicated by a range of 

< 1% to 30% canopy cover in CRP fields 4 years after enrollment. This variability 

was unlikely due to management practices since early CRP fields were operated and 

22 



seeded by the same landowner and there was no weed control in any of the CRP 

fields. Fields may have differed in the nearest propagule source or propagule 

pressure from neighboring fields. Spatial variability among fields was still high 7 

years after CRP enrollment, but all of these fields had > 25% B. tecto rum canopy 

cover. Above average early growing season precipitation in March and April may 

have contributed to a significantly higher B. tecto rum canopy cover in mid CRP fields 

in 2005, relative to the subsequent 2 years. The low canopy cover of annual grasses 

( < 1%) in all late CRP fields suggests that perennial grasses may have competitively 

excluded them. Low B. tectorum canopy cover even occurred in late CRP fields 

seeded with introduced grasses, which potentially had more open niche space for 

invasion (Crawley 1987) with half as much total vegetation canopy cover and lower 

species richness. 

Consistent with the model, seeded perennial grasses successfully germinated 

and reached a canopy cover of 10% within four years ofCRP enrollment (three years 

after seeding). Although there was low variability among early CRP fields in seeded 

perennial grass canopy cover, this may be attributed to similar seeding conditions by 

the same operator and is not necessarily reflective of similar perennial grass 

establishment on all early CRP fields, which can have high spatial and temporal 

variability (McCoy et al. 2001, Bakker et al. 2003). An increase in seeded perennial 

grass canopy cover of approximately 1% per year is slow relative to a 10-15% per 

year increase reported for cultivated land converted to grasslands in more mesic 

regions (Baer et al. 2002, Camill et al. 2004). Although seeded perennial grasses 

composed a majority of the canopy cover after 18 years, it was under half the 
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perennial grass cover found in undisturbed shortgrass steppe and was variable among 

fields. This indicates a lack of full perennial grass recovery from CRP seeding 

practices. Canopy cover of seeded introduced perennial grasses was similar to native 

perennial grasses after 18 years, suggesting that introduced grasses can endure some 

drought conditions (Sheaffer et al. 1992). However, there is evidence that these 

grasses may not always persist over the long-term. 

Recovery of the dominant perennial shortgrass, B. gracilis, is of particular 

importance because it composes 75-90% of production at most undisturbed sites 

(Coffin and Lauenroth 1988), and is therefore a major control on structure and 

function in the shortgrass steppe (Hyder et al. 1975, Burke et al. 1995). There is 

typically slow recovery of B. gracilis on abandoned cropland (Klipple and Costello 

1960), but seed availability (Coffin and Lauenroth 1989) and competition from 

perennial plants (Aguilera and Lauenroth 1993) are not limitations in CRP fields. 

Furthermore, soil moisture and temperature requirements for B. gracilis germination 

(Lauenroth et al. 1994) may be more common in CRP fields, which have less plant 

cover, than in undisturbed shortgrass steppe. These factors likely contributed to the 

establishment and growth of2% B. gracilis canopy cover in early CRP fields and 8% 

canopy cover in late CRP fields over the course of the study. Despite an increase, late 

CRP fields had only a quarter of the B. gracilis canopy cover compared to 

undisturbed shortgrass steppe and there was high variability in canopy cover among 

fields. Canopy cover of B. gracilis can still be lower in fields 50 years after the 

cessation of cropping relative to undisturbed shortgrass steppe (Coffin et al. 1996). 

Furthermore, B. gracilis canopy cover was < 1% on 7, 8, and 9 year old CRP fields. 
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This reinforces the idea that shortgrass recovery can be extremely slow and variable 

(Hyder et al. 1971, Coffin et al. 1996), even when they are seeded. Low canopy 

cover on mid CRP fields may have been due to field preparation and seeding methods 

(personal communication with landowner). Low water availability is a less likely 

explanation, since there was above average precipitation the year these fields were 

seeded. 

My model of plant community dynamics predicted that colonizing perennial 

grasses would establish after seeded perennial grasses because they were not in the 

soil seed bank and have high interannual variability in establishment (Costello 1944). 

The rate of increase of colonizing perennial grass cover is important because it 

indicates the recovery potential of abandoned fields in the absence of CRP 

management practices. Colonizing perennial grasses were not present in the first 4 

years after CRP enrollment and increased at a slower rate than seeded perennial 

grasses. Sporobolus cryptandrus and Aristida purpurea, both prolific seed producers, 

accounted for nearly all the colonizing perennial grass in CRP fields. These short­

lived grasses are subdominants in the short grass steppe and typically become more 

common following disturbance (Costello 1944, Milchunas et al. 1990, Munson and 

Lauenroth, in press). Colonizing perennial grasses increased by over 300% in late 

CRP fields during the course of the study and are likely to continue to propagate in 

fields in which adult plants have become established. They equally colonized fields 

seeded with introduced and native perennial grasses, indicating that introduced 

perennial grasses did not exclude the colonization and spread of native perennial 

grasses. There is evidence that colonizing perennial grasses replace seeded perennial 
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grasses, which fits model predictions. A late CRP field seeded with Bromus inermis 

and a late CRP field seeded with Agropyron intermedium completely turned over 

from dominance by the respective introduced grass to dominance by colonizing 

perennial grasses over the study period. However, no shortgrasses colonized these 

fields, and shrubs and cacti were only present in CRP fields after 18 years of CRP 

enrollment, which supports model predictions that these functional types are slow to 

recover (Coffin et al. 1996). 

Plant community composition in CRP fields included a high proportion of C3 

species, which represented an important physiological and phenological difference 

from the undisturbed shortgrass steppe. This difference in composition is important 

because it has the potential to influence ecosystem processes (Tilman et al. 1997, 

Epstein et al. 1999). Along the chronosequence, early CRP fields were composed of 

many C3 forbs and the annual C3 grass, Bromus tectorum, which transitioned to 

seeded C4 perennial grasses if a native seed mix was used. After 18 years, CRP 

fields seeded with native perennial grasses were not significantly different from 

undisturbed shortgrass steppe in the proportion of C4 species. However, CRP fields 

were dominated by C3 species after 18 years if they were seeded with Bromus 

inermis and Agropyron intermedium, which are both C3 perennial grasses. 

Plant community dynamics may also be sensitive to changes in environmental 

conditions, which can cause a shift in the proportion of C3 and C4 species 

(MacGillvary et al. 1995, White et al. 2000, Morgan et al. 2004). Model simulations 

indicate that a change in the seasonal pattern of precipitation can alter the 

composition of C3 and C4 plants at a decadal time scale in the northernmost region of 
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the shortgrass steppe (Epstein et al. 1999). My study reveals that there can be 

fluctuations in composition in CRP fields at a much shorter time scale. Within 3 

years, all CRP fields shifted towards a higher proportion of C4 species despite little 

interannual variability in the dominance of C4 species in undisturbed short grass 

steppe. While the establishment of seeded C4 perennial grasses contributed to this 

response in the chronosequence, colonizing C4 perennial grasses and late-growing C4 

forbs increased in all CRP fields. Growth of these functional types was facilitated by 

a shift to high late growing season precipitation in 2006 and 2007. Low early 

growing season precipitation, in the same years, may have reduced growth and 

competition from early-growing C3 species. Some fields seeded with introduced C3 

perennial grasses had a doubling of C4 species canopy cover, which indicates that C3 

dominated plant communities may not be able to persist for the long-term in this 

regton. 

The near absence of introduced species on undisturbed short grass steppe 

suggests that they require disturbance to establish (Milchunas and Lauenroth 1995). 

Introduced species were present on all early CRP fields, but the rate at which they 

spread in the first four years after CRP enrollment was highly variable (from a 1% 

decrease to 17% increase). This was more likely dependent on propagule pressure 

rather than on site conditions, which were the same in early CRP fields. Seven years 

after CRP enrollment, introduced species were high(> 35% canopy cover) in all 

fields, largely due to the presence of Bromus tecto rum. High B. tectorum canopy 

cover in mid CRP fields may have contributed to low relative canopy cover of native 

species due to depletion of resources (Melgoza et al. 1990, Lowe et al. 2003, Booth 
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2003). This is supported by a significant negative correlation between native seeded 

perennial grass canopy cover and B. tecto rum canopy cover (r = 0. 76, P = 0.02) in all 

mid CRP fields across all years of the study. Despite the potential for competition 

with B. tecto rum, native perennial grasses successfully germinated with low canopy 

cover of B. tecto rum in early CRP fields. There was high canopy cover of native 

species(> 90%) in late CRP fields seeded with native perennial grasses, which 

indicates that introduced species were competitively suppressed in the long-term. 

Even fields dominated by the seeded introduced perennial grasses were composed of 

half native species by the end of the study. This was because adjacent undisturbed 

shortgrass steppe provided a native seed source for CRP fields (Coffin et al. 1996). 

Natural succession on abandoned cropland can result in a gradual accretion of 

species (Tilman 1990), but seeding perennial grasses following abandonment in the 

Great Plains has resulted in no change (Camill et al. 2004) or a decrease (Burger et al. 

1990, Millenbah et al. 1996, McCoy et al. 2001) in species richness through time, 

presumably due to the increased dominance of seeded perennial grasses. Early stages 

of plant community development in CRP fields included a high coexistence of 

different plant functional types, which resulted in high species density. Plant 

community composition at this stage was determined by the seedbank and stochastic 

dispersal events of native and introduced species from nearby fields. Composition 

became more deterministic, as seeded perennial grasses established and dominated 

CRP fields within 18 years. Perennial grasses may have competitively suppressed 

other functional types, which resulted in low species density in late CRP fields. A 

lack of recruitment can be common once grasses establish in restorations (Brown and 
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Bugg 2001, Zeiter et al. 2006, Foster et al. 2007), especially forb species that 

compose most of the species richness. Low propagule availability of certain species 

of native forbs in CRP fields seems likely given that 63% of the native annual and 

perennial forbs that occurred in undisturbed shortgrass steppe were not present in the 

oldest CRP fields seeded with native perennial grasses. Many of these forbs were 

extremely rare or had slow dispersal mechanisms. Furthermore, germination and 

establishment of species from seed may be less likely in fields that had high canopy 

cover of existing vegetation due to competition and limiting environmental conditions 

(Aguilera and Lauenroth 1993, Lauenroth et al. 1994, Singh et al. 1996). 

Species density was lower in fields seeded with introduced perennial grasses 

than fields seeded with native perennial grasses in 2005. Introduced species can 

displace native species and reduce species richness (Wilson 1988, D'Antonio and 

Vitousek 1992). Christian and Wilson (1999) found that fields in the northern mixed 

prairie seeded seeded with Agropyron cristatum, an introduced perennial grass 

contained fewer native species, resulting in lower species richness and diversity than 

fields that had undergone succession to native perennial grasses. Reduction of A. 

cristatum increased native grass establishment and the richness and canopy cover of 

other native species, in part due to increased moisture and nitrogen availability 

(Bakker et al. 2003). Similar mechanisms may limit native species canopy cover in 

the short grass steppe. The rhizomatous growth of introduced perennial grasses in this 

study may exploit horizontal soil resource space more uniformly than caespitose 

grasses (Derner and Briske 2001 ), thereby reducing the below ground resource space 

for other functional types. 
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Interannual changes in species density in CRP fields seeded with native 

perennial grasses and undisturbed shortgrass steppe were correlated to annual 

precipitation (r 0.43, P = 0.009). This is expected in a region where plant growth is 

constrained by water availability (Noy-Meir 1973). Annual forb species, which can 

respond rapidly to changes in water availability (Milchunas et al. 1990), were largely 

responsible for interannual variability in species density. Late CRP fields seeded 

with introduced perennial grasses had low species density, except in 2007, when 

species density increased in fields seeded with Agropyron intermedium. Most of the 

species responsible for high species density in these fields were native. Therefore, it 

is possible for native species to recolonize fields where introduced species dominated 

(Seabloom et al. 2003), especially in years when annual precipitation is above the 

mean. 

Within a regional patchwork of land uses, CRP fields are an important 

transition between annual cropping systems and native shortgrass steppe. They are 

connected to each other and other land uses by dispersal vectors (Watt 194 7) and 

bring new species and provide habitat for rare species across the landscape. Variation 

in these plant communities is driven by time since CRP enrollment, seed mix, and 

environmental variability. Understanding the patterns and drivers of plant 

community composition at a regional scale contributes to the knowledge of the effects 

of land use change in the short grass steppe. 
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Year 2005 2006 2007 38-year Average 

Annual Precipitation (Jan-Dec) 370 301 409 

Early Growing Season Precipitation (Apr-Jun) 202 54 82 

Late Growing Season Precipitation (Jul-Sep) 53 144 224 

Table 1. Annual and seasonal precipitation (mm) from 2005-2007. 
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Figure 1. Model of plant community dynamics on CRP fields (modified from Coffin 
et al. 1996), which shows the trajectory of plant functional types ( forbs, annual 
grasses, seeded perennial grasses, and colonizing perennial grasses) through time 
since CRP enrollment. 
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Figure 2. Mean percent canopy cover(± SE) of forbs in shortgrass steppe (SGS), and 
in relation to time since CRP enrollment in the chronosequence of CRP fields seeded 
with native perennial grasses (Native- Early, Mid, and Late), and CRP fields seeded 
with introduced grasses: Bromus inermis (BRIN - Late) and Agropyron intermedium 
(AGIN- Late), from 2005-2007. Chronosequence linear regression: y = -0.86x + 22, 
r2 = 0.29. 
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Figure 3. Mean percent canopy cover{± SE) of annual grasses in shortgrass steppe 
{SGS), and in relation to time since CRP enrollment in the chronosequence of CRP 
fields seeded with native perennial grasses {Native- Early, Mid, and Late), and CRP 
fields seeded with introduced grasses: Bromus inermis {BRIN- Late) and Agropyron 
intermedium (AGIN- Late), from 2005-2007. Chronosequence nonlinear regression: 
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y = 33e 2·3 , ?= 0.54. 
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Figure 4. Mean percent canopy cover(± SE) of perennial grasses in shortgrass steppe 
(SGS), and seeded perennial grasses in relation to time since CRP enrollment in the 
chronosequence ofCRP fields seeded with native perennial grasses (Native- Early, 
Mid, and Late), and CRP fields seeded with introduced grasses: Bromus inermis 
(BRIN- Late) and Agropyron intermedium (AGIN- Late), from 2005-2007. 
Chronosequence linear regression: y = 1.3x- 0.39, r = 0.55. 
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Figure 5. Mean percent canopy cover(± SE) of perennial grasses in shortgrass steppe 
(SGS), colonizing perennial grasses in relation to time since CRP enrollment in the 
chronosequence ofCRP fields seeded with native perennial grasses (Native- Early, 
Mid, and Late), and CRP fields seeded with introduced grasses: Bromus inermis 
(BRIN- Late) and Agropyron intermedium (AGIN- Late), from 2005-2007. 
Chronosequence linear regression: y = 0.50x- 1.3, r2 = 0.46. 
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Figure 6. Percent relative canopy cover of plants with C3, C4, and CAM 
photosynthetic pathways in the shortgrass steppe (SGS) and in relation to time since 
CRP enrollment in the chronosequence of CRP fields seeded with native perennial 
grasses (Native- Early, Mid, and Late), and CRP fields seeded with introduced 
grasses: Bromus inermis (BRIN- Late) and Agropyron intermedium (AGIN- Late), 
from 2005-2007. Different capital letters designate significant differences (Tukey 
adjusted P < 0.05) in C3 and C4 composition among field types within the same 
sampling year and an asterix (*)designates significant differences (P < 0.05) between 
plants with C3 and C4 composition within the same field type in a sampling year. 

42 



:....; 80 
Cl.f 

6 
u 
>.. 
~ g 60 

= u 
~ ;;;.. 40 .""" 

"""" = -el) 

~ 
~ ¢ 20 

Field Type 
SGS 

2G06 2007 2005 2006 200 7 

BRIN 

Late 

2()05 

Time Since CRP Enrollment (Years) 
·---·,----"-~·,..,..·-'--'~-. ., Year sampled 

AGIM 

?005 2()06 2007 

Figure 7. Percent relative canopy cover of native and introduced plants in the 
shortgrass steppe (SGS) and in relation to time since CRP enrollment in the 
chronosequence of CRP fields seeded with native perennial grasses (Native- Early, 
Mid, and Late), and CRP fields seeded with introduced grasses: Bromus inermis 
(BRIN- Late) and Agropyron intermedium (AGIN- Late), from 2005-2007. 
Different capital letters designate significant differences (Tukey adjusted P < 0.05) in 
native and introduced composition among field types within the same sampling year 
and an asterix (*) designates significant differences (P < 0.05) between plants with 
native and introduced composition within the same field type in a sampling year. 
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Figure 8. Species density(# of species/0.25m2) in the shortgrass steppe (SGS) and in 
relation to time since CRP enrollment in the chronosequence of CRP fields seeded 
with native perennial grasses (Native- Early, Mid, and Late), and CRP fields seeded 
with introduced grasses: Bromus inermis (BRIN- Late) and Agropyron intermedium 
(AGIN- Late), from 2005-2007. Different capital letters designate significant 
differences (Tukey adjusted P < 0.05) in species density among field types within the 
same sampling year. An asterisk (*) designates a significant (Tukey adjusted P < 
0.05) interannual difference in species density from the other two sampling years 
within the same field type. 
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Appendix A. Relative percent canopy cover of species composition in CRP fields 
and shortgrass steppe in 2005, 2006, and 2007. 

Time Since CRP 
Enrollment 
(Years) Year Sampled IField Type Species 0/o Relative Canopy Cover 

2 2005 ~ative-Early Helianthus petiolaris 34.63 
2 2005 !Native-Early Triticum aestivum 12.56 
2 2005 ~ative-Early Salsola iberica 10.57 
2 2005 ~ative-Early Lygodesmiajuncea 8.33 
2 2005 !Native-Early Polygonum aviculare 8.23 
2 2005 Native-Early Munroa squarrosa 5.85 
2 2005 Native-Early ~pomopsis laxiflora 3.70 
2 2005 Native-Early Oenothera albicaulis 2.62 
2 2005 Native-Early IPanicum capillare 2.52 
2 2005 Native-Early Chenopodium leptophyllum 2.01 
2 2005 Native-Early lf!;uphorbia serpyllifolia 1.88 
2 2005 Native-Early Descurania pinnata 1.81 
2 2005 Native-Early Tragopogon dubius 0.99 
2 2005 Native-Early Bromus tectorum 0.83 
2 2005 !Native-Early Conyza canadensis 0.82 
2 2005 ~ative-Early Agropyron smithii 0.66 
2 2005 ~ative-Early Lepidium denstflorum 0.48 
2 2005 IN ative-Early Lactuca serriola 0.43 
2 2005 ~ative-Early Cenchrus longispinus 0.25 
2 2005 Native-Early Kochia scoparia 0.19 
2 2005 Native-Early ll;ragrostis cilianensis 0.14 
2 2005 Native-Early 'Mirabilis linearis 0.11 
2 2005 Native-Early 'Medicago sativa 0.09 
2 2005 Native-Early i{Jalea purpurea 0.09 
2 2005 Native-Early 'Machaeranthera tanacetifolia 0.08 
2 2005 Native-Early Convolvulus arvensis 0.06 
2 2005 Native-Early Gutierrezia sarothrae 0.03 
2 2005 Native-Early Chenopodium album 0.02 
2 2005 Native-Early Portulaca oleracea 0.02 
2 2005 ~ative-Early Sphaeralcea coccinea 0.02 

3 2006 !Native-Early Helianthus petiolaris 16.86 
3 2006 !Native-Early ~ygodesmiajuncea 13.91 
3 2006 Native-Early lflromus tectorum 12.98 
3 2006 Native-Early 'palsola iberica 12.63 
3 2006 Native-Early Conyza canadensis 7.89 
3 2006 Native-Early Munroa squarrosa 7.48 
3 2006 Native-Early Agropyron smithii 6.31 
3 2006 !Native-Early Bouteloua curtipendula 3.00 
3 2006 IN ati ve-Early Triticum aestivum 2.48 
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3 2006 Native-Early lfolygonum aviculare 2.05 

3 2006 Native-Early ~outeloua gracilis 1.98 

3 2006 Native-Early Portulaca oleracea 1.94 

3 2006 Native-Early Descurania pinnata 1.69 

3 2006 Native-Early Tragopogon dubius 1.61 

3 2006 Native-Early 'Euphorbia serpyllifolia 1.25 

3 2006 Native-Early lpomopsislaxij?ora 1.15 

3 2006 ~ative-Early Chenopodium leptophyllum 0.84 

3 2006 ~ative-Ear1y Panicum capillare 0.74 

3 2006 ~ative-Early Lepidium densij?orum 0.55 

3 2006 ~ative-Early Oenothera albicaulis 0.41 

3 2006 ~ative-Early Cenchrus longispinus 0.33 

3 2006 ~ative-Early Chrysopsis villosa 0.33 

3 2006 ~ative-Early Cirsium arvense 0.33 

3 2006 Native-Early Eragrostis cilianensis 0.24 

3 2006 Native-Early lpalea purpurea 0.21 

3 2006 Native-Early 'Medicago sativa 0.21 

3 2006 Native-Early Convolvulus arvensis 0.13 

3 2006 Native-Early 1/(ochia scoparia 0.11 

3 2006 Native-Early Chenopodium album 0.09 

3 2006 Native-Early ~actuca serriola 0.09 

3 2006 Native-Early 'Machaeranthera tanacetifolia 0.09 

3 2006 Native-Early Unknown forb 0.03 

3 2006 Native-Early f'lristida purpurea 0.02 

3 2006 Native-Early Plantago patagonica 0.02 

3 2006 Native-Early Unknown forb 0.02 

4 2007 ~ative-Early Bromus tectorum 22.40 

4 2007 ~ative-Early Sa/sola iberica 19.79 

4 2007 ~ative-Early Helianthus petiolaris 8.59 
4 2007 ~ative-Early Agropyron smithii 8.22 

4 2007 ~ative-Early Bouteloua curtipendula 7.21 
4 2007 ~ative-Early Euphorbia serpyllifolia 6.28 

4 2007 Native-Early Portulaca oleracea 5.14 
4 2007 Native-Early Eragrostis cilianensis 4.97 
4 2007 ~ative-Early ~outeloua gracilis 4.58 
4 2007 Native-Early ~ygodesmiajuncea 2.54 
4 2007 Native-Early 'Munroa squarrosa 2.1C 

4 2007 Native-Early Chenopodium leptophyllum 1.94 
4 2007 Native-Early lfanicum capillare 1.47 

4 2007 Native-Early Oenothera albicaulis 0.94 
4 2007 Native-Early Stipa viridula 0.89 
4 2007 Native-Early Polygonum aviculare 0.66 
4 2007 Native-Early Ratibida columnzfera 0.29 
4 2007 ~ative-Early Descurania pinnata 0.27 
4 2007 Native-Early Unknown forb 0.27 
4 2007 Native-Early Ambrosia psilostachya 0.22 
4 2007 ~ative-Early Tragopogon dubius 0.22 
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4 2007 ~ative-Early Kochia scoparia 0.18 

4 2007 ~ative-Early Convolvulus arvensis 0.13 

4 2007 ~ative-Early Chenopodium incanum 0.12 
4 2007 Native-Early Cenchrus longispinus 0.1C 

4 2007 ~ative-Early Medicago sativa 0.08 
4 2007 Native-Early Vpomopsis laxiflora 0.08 
4 2007 Native-Early ILepidium densiflorum 0.07 
4 2007 Native-Early Wmaranthus retrojlexus 0.05 
4 2007 Native-Early Chrysopsis villosa 0.05 
4 2007 Native-Early 'Erigeron jlagellaris 0.05 
4 2007 Native-Early Sphaeralcea coccinea 0.05 
4 2007 Native-Early Oxytropis lambertii 0.03 
4 2007 Native-Early Aristida purpurea 0.01 
4 2007 ~ative-Early Plantago patagonica 0.01 

7 2005 ~ative-Mid Bromus tectorum 64.62 

7 2005 ~ative-Mid Tragopogon dubius 7.63 
7 2005 Native-Mid ,4gropyron smithii 5.73 
7 2005 Native-Mid Bouteloua curtipendula 4.85 

7 2005 Native-Mid ISitanion hystrix 2.59 
7 2005 Native-Mid if;tipa viridula 2.41 

7 2005 Native-Mid ISalsola iberica 2.04 

7 2005 Native-Mid itvfedicago sativa 1.83 
7 2005 Native-Mid Conyza canadensis 1.81 

7 2005 Native-Mid Chrysopsis villosa 1.15 
7 2005 ~ative-Mid Euphorbia serpyllifolia 1.09 
7 2005 !Native-Mid Aristida purpurea 0.75 
7 2005 !Native-Mid Bouteloua gracilis 0.68 

7 2005 ~ative-Mid Eragrostis cilianensis 0.67 
7 2005 ~ative-Mid Panicum virgatum 0.59 
7 2005 !Native-Mid Convolvulus arvensis 0.42 
7 2005 !Native-Mid Lactuca serriola 0.30 
7 2005 Native-Mid !Kochia scoparia 0.24 
7 2005 Native-Mid [Descurania pinnata 0.19 
7 2005 Native-Mid l$phaeralcea coccinea 0.15 
7 2005 Native-Mid fortulaca oleracea 0.08 
7 2005 Native-Mid iUnknown forb 0.05 
7 2005 Native-Mid 'v4mbrosia psilostachya 0.04 

7 2005 Native-Mid Taraxacum offininale 0.04 
7 2005 Native-Mid Helianthus petiolaris 0.02 
7 2005 !Native-Mid Chenopodium leptophyllum 0.01 
7 2005 ~ative-Mid Machaeranthera tanacetifolia 0.01 
7 2005 Native-Mid Oenothera albicaulis 0.01 

8 2006 Native-Mid Bromus tectorum 51.01 
8 2006 Native-Mid [Agropyron smithii 9.77 
8 2006 Native-Mid IBouteloua curtipendula 8.25 
8 2006 Native-Mid ISitanion hystrix 7.51 
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8 2006 Native-Mid IStipa viridula 5.36 
8 2006 Native-Mid Chrysopsis villosa 3.87 
8 2006 Native-Mid Tragopogon dubius 3.26 
8 2006 Native-Mid l;4ristida purpurea 2.82 
8 2006 Native-Mid ~a/sola iberica 2.65 
8 2006 Native-Mid IBouteloua gracilis 1.52 
8 2006 Native-Mid Medicago sativa 1.13 
8 2006 ~ative-Mid Portulaca oleracea 0.69 
8 2006 !Native-Mid Euphorbia serpyllifolia 0.63 
8 2006 !Native-Mid Sporobolus cryptandrus 0.49 
8 2006 ~ative-Mid Cenchrus longispinus 0.24 
8 200(] ~ative-Mid Cirsium arvense 0.24 
8 200(] Native-Mid ~hastrnm nutans 0.24 
8 200(] !Native-Mid aeralcea coccinea 0.21 
8 2006 Native-Mid lpescurania pinnata 0.07 
8 2006 Native-Mid !Ambrosia psilostachya 0.01 
8 2006 Native-Mid Oenothera albicaulis 0.01 
8 2006 Native-Mid !Unknown forb 0.01 

9 2007 Native-Mid Bromus tectorum 36.00 
9 2007 Native-Mid ~sola iberica 27.22 
9 2007 !Native-Mid ropyron smithii 5.41 
9 2007 ~ative-Mid Stipa viridula 4.54 
9 2007 ~ative-Mid Portulaca oleracea 4.44 
9 2007 !Native-Mid Euphorbia serpyllifolia 4.16 
9 2007 !Native-Mid Aristida purpurea 2.71 
9 2007 !Native-Mid Eragrostis cilianensis 2.68 
9 2007 !Native-Mid Bouteloua curtipendula 2.38 
9 2007 Native-Mid Chrysopsis villosa 1.76 
9 2007 Native-Mid Convolvulus arvensis 1.55 
9 2007 Native-Mid Chenopodium album 1.45 
9 2007 Native-Mid i.Medicago sativa 1.39 
9 2007 Native-Mid Tragopogon dubius 0.84 
9 2007 Native-Mid ~itanion hystrix 0.78 
9 2007 Native-Mid Oenothera albicaulis 0.70 
9 2007 Native-Mid Bouteloua gracilis 0.52 
9 2007 ~ative-Mid Kochia scoparia 0.28 
9 2007 !Native-Mid Sporobolus cryptandrus 0.27 
9 2007 ~ative-Mid Amaranthus retrojlexus 0.25 
9 2007 ~ative-Mid Bromus inermis 0.24 
9 2007 Native-Mid Chenopodium leptophyllum 0.13 
9 2007 Native-Mid IPanicum capillare 0.12 
9 2007 Native-Mid iSphaeralcea coccinea 0.05 
9 2007 Native-Mid ~epidium densiflorum 0.04 
9 2007 Native-Mid Chenopodium incanum 0.04 
9 2007 Native-Mid lpescurania pinnata 0.04 
9 2007 Native-Mid lrimbrosia psilostachya 0.01 
9 2007 Native-Mid Crytantha crassisepala 0.01 
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9 2007 Native-Mid lf!elianthus petiolaris 0.01 
9 2007 Native-Mid ~appula redowskii 0.01 

18 2005 Native-Late 'v4-gropyron smithii 35.98 
18 2005 Native-Late 'Souteloua curtipendula 27.76 
18 2005 Native-Late '/3outeloua gracilis 17.75 
18 2005 ~ative-Late Sporobolus cryptandrus 5.57 
18 2005 ~ative-Late Aristida purpurea 4.32 
18 2005 ~ative-Late Sa/sola iberica 1.04 
18 2005 ~ative-Late Chrysopsis villosa 0.89 
18 2005 ~ative-Late Gutierrezia sarothrae 0.76 
18 2005 ~ative-Late Kochia scoparia 0.66 
18 2005 ~ative-Late Sphaeralcea coccinea 0.66 
18 2005 Native-Late ~chizachyrium scoparium 0.60 
18 2005 Native-Late !f>lantago patagonica 0.58 
18 2005 Native-Late Oenothera albicaulis 0.54 
18 2005 Native-Late Vulpia octoflora 0.53 
18 2005 Native-Late Vtrtemisia frigida 0.46 
18 2005 Native-Late Descurania pinnata 0.34 
18 2005 Native-Late Lepidium densiflorum 0.29 
18 2005 Native-Late Machaeranthera tanacetifolia 0.25 
18 2005 ~ative-Late Euphorbia serpyll(folia 0.19 
18 2005 ~ative-Late Portulaca oleracea 0.19 
18 2005 ~ative-Late Chenopodium leptophyllum 0.17 
18 2005 ~ative-Late Schedonnardis paniculatus 0.15 
18 2005 Native-Late 'vigropyron cristatum 0.08 
18 2005 Native-Late Conyza canadensis 0.07 
18 2005 Native-Late ~ygodesmia juncea 0.07 
18 2005 Native-Late 'Medicago sativa 0.06 
18 2005 Native-Late Convolvulus arvensis 0.02 
18 2005 Native-Late 'Sromus tectorum 0.01 
18 2005 Native-Late 'Echinocereus viridiflorus 0.01 

19 2006 ~ative-Late Bouteloua curtipendula 27.96 
19 2006 ~ative-Late Agropyron smithii 26.54 
19 2006 ~ative-Late Bouteloua gracilis 15.58 
19 2006 ~ative-Late Sporobolus cryptandrus 12.21 
19 2006 ~ative-Late Aristida purpurea 5.76 
19 2006 ~ative-Late Portulaca oleracea 5.33 
19 2006 Native-Late Agropyron cristatum 1.48 
19 2006 Native-Late Chrysopsis villosa 1.41 
19 2006 Native-Late Oenothera albicaulis 0.70 
19 2006 Native-Late '/3romus inermis 0.69 
19 2006 Native-Late lf;phaeralcea coccinea 0.53 
19 2006 Native-Late Sa/sola iberica 0.36 
19 2006 ~ative-Late Kochia scoparia 0.24 
19 2006 ~ative-Late Plantago patagonica 0.23 
19 2006 ~ative-Late Lepidium densiflorum 0.21 
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19 2006 Native-Late Vulpia octoflora 0.21 
19 2006 Native-Late lf;uphorbia serpyllifolia 0.20 
19 2006 Native-Late ltlrtemisia frigida 0.13 
19 2006 Native-Late Chenopodium leptophyllum 0.06 
19 2006 Native-Late Descurania pinnata 0.06 
19 2006 Native-Late Gutierrezia sarothrae 0.06 
19 2006 rNative-Late Bromus tectorum 0.01 
19 2006 ~ative-Late Machaeranthera tanacetifolia 0.01 

20 2007 ~ative-Late Bouteloua curtipendula 23.14 
20 2007 rNative-Late Bouteloua gracilis 16.80 
20 2007 rNative-Late Sporobolus cryptandrus 15.48 
20 2007 ~ative-Late Agropyron smithii 12.37 
20 2007 Native-Late Vlristida purpurea 9.34 
20 2007 Native-Late ~alsola iberica 5.42 
20 2007 Native-Late lfortulaca oleracea 4.04 
20 2007 Native-Late i.Xochia scoparia 3.34 
20 2007 Native-Late Chenopodium leptophyllum 3.21 
20 2007 Native-Late Chrysopsis villosa 1.16 
20 2007 Native-Late Schedonnardis paniculatus 0.78 
20 2007 Native-Late Plantago patagonica 0.71 
20 2007 rNative-Late Sphaeralcea coccinea 0.58 
20 2007 rNative-Late Lepidium densiflorum 0.48 
20 2007 ~ative-Late Euphorbia serpyllifolia 0.46 
20 2007 rNative-Late Gutierrezia sarothrae 0.43 
20 2007 rNative-Late Artemisia frigida 0.37 
20 2007 rN ative-Late Convolvulus arvensis 0.35 
20 2007 rNative-Late Opuntia polyacantha 0.35 
20 2007 Native-Late il'vfedicago sativa 0.34 
20 2007 Native-Late Chenopodium incanum 0.28 
20 2007 Native-Late IL ygodesmia juncea 0.23 
20 2007 Native-Late Vlgropyron cristatum 0.10 
20 2007 Native-Late !Munroa squarrosa 0.07 
20 2007 Native-Late Oenothera albicaulis 0.07 
20 2007 Native-Late Talinum parv~florum 0.06 
20 2007 Native-Late Ambrosia psilostachya 0.01 
20 2007 Native-Late Descurania pinnata 0.01 
20 2007 rN ati ve-Late Eragrostis cilianensis 0.01 
20 2007 ~ative-Late lpomopsis laxiflora 0.01 

18 2005 IBRIN-Late Bromus inermis 80.76 
18 2005 BRIN-Late Chrysopsis villosa 7.07 
18 2005 BRIN-Late Vlristida purpurea 5.56 
18 2005 BRIN-Late ~porobolus cryptandrus 1.74 
18 2005 BRIN-Late ~alsola iberica 1.44 
18 2005 BRIN-Late Vl~ropyron intermedium 1.39 
18 2005 BRIN-Late Cirsium arvense 0.93 
18 2005 BRIN-Late Convolvulus arvensis 0.32 
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18 2005 BRIN-Late ~phaeralcea coccinea 0.23 
18 2005 BRIN-Late ~ ygodesmia juncea 0.19 
18 2005 BRIN-Late [Erigeron flagellaris 0.14 
18 2005 BRIN-Late l;l.gropyron smithii 0.14 
18 2005 BRIN-Late 'Medicago sativa 0.05 
18 2005 BRIN-Late 'Kochia scoparia 0.02 
18 2005 BRIN-Late Plantago patagonica 0.02 

19 2006 IBRIN-Late Bromus inermis 63.70 
19 2006 IBRIN-Late Sporobolus cryptandrus 14.68 
19 2006 IBRIN-Late Aristida purpurea 11.35 
19 2006 IBRIN-Late Chrysopsis villosa 5.53 
19 2006 BRIN-Late lfortulaca oleracea 2.78 
19 2006 BRIN-Late Convolvulus arvensis 1.04 
19 2006 BRIN-Late ~also/a iberica 0.43 
19 2006 BRIN-Late ipphaeralcea coccinea 0.23 
19 2006 BRIN-Late ~ ygodesmia juncea 0.10 
19 2006 BRIN-Late lf;uphorbia serpyllifolia 0.07 
19 2006 BRIN-Late "Munroa squarrosa 0.05 
19 2006 IBRIN-Late Agropyron intermedium 0.02 
19 2006 IBRIN-Late Medicago sativa 0.02 

20 2007 IBRIN-Late Bromus inermis 58.81 
20 2007 IBRIN-Late Sporobolus cryptandrus 17.80 
20 2007 IBRIN-Late Aristida purpurea 11.60 
20 2007 IBRIN-Late Chrysopsis villosa 4.10 
20 2007 BRIN-Late lfortulaca oleracea 3.85 
20 2007 BRIN-Late lf;uphorbia serpyllifolia 1.52 
20 2007 BRIN-Late ipalsola iberica 1.14 
20 2007 BRIN-Late Convolvulus arvensis 0.81 
20 2007 BRIN-Late Cenchrus longispinus 0.11 
20 2007 BRIN-Late '/v!unroa squarrosa 0.11 
20 2007 IBRIN-Late Oenothera albicaulis 0.11 
20 2007 IBRIN-Late Plantago patagonica 0.04 
20 2007 IBRIN-Late Polygonum aviculare 0.02 

18 2005 V\GIN-Late Agropyron intermedium 72.87 
18 2005 ~GIN-Late Aristida purpurea 15.46 
18 2005 AGIN-Late Chrysopsis villosa 5.17 
18 2005 AGIN-Late lpporobolus cryptandrus 1.21 
18 2005 AGIN-Late Tragopogon dubius 1.02 
18 2005 AGIN-Late Cirsium arvense 0.98 
18 2005 V\GIN-Late Bromus inermis 0.62 
18 2005 ~GIN-Late Sphaeralcea coccinea 0.52 
18 2005 V\GIN-Late Sa/sola iberica 0.50 
18 2005 ~GIN-Late Lepidium densiflorum 0.45 
18 2005 ~GIN-Late Lactuca serriola 0.33 
18 2005 k\GIN-Late Kochia scoparia 0.29 
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18 2005 AGIN-Late !Plantago patagonica 0.21 
18 2005 AGIN-Late Conyza canadensis 0.17 
18 2005 AGIN-Late i{Jromus tectorum 0.14 
18 2005 AGIN-Late lf/elianthus petiolaris 0.02 
18 2005 AGIN-Late Unknown forb 0.02 

19 2006 ~GIN-Late Agropyron intermedium 78.61 
19 2006 iAGIN-Late Aristida purpurea 11.73 
19 2006 ~GIN-Late Sporobolus cryptandrus 3.54 
19 2006 iAGIN-Late Portulaca oleracea 3.25 
19 2006 iAGIN-Late Bromus inermis 1.16 
19 2006 ~GIN-Late Chrysopsis villosa 0.68 
19 2006 ~GIN-Late TraKopogon dubius 0.64 
19 2006 iAGIN-Late Plantago patagonica 0.20 
19 2006 ~GIN-Late Sphaeralcea coccinea 0.12 
19 2006 ~GIN-Late Sa/sola iberica 0.06 
19 2006 ~GIN-Late Euphorbia serpyllifolia 0.01 
19 2006 A.GIN-Late it(ochia scoparia 0.01 

20 2007 AGIN-Late !Agropyron intermedium 28.85 
20 2007 AGIN-Late ISalsola iberica 16.80 
20 2007 AGIN-Late lfortulaca oleracea 15.49 
20 2007 AGIN-Late IAristida purpurea 14.42 
20 2007 AGIN-Late lpporobolus cryptandrus 11.13 
20 2007 AGIN-Late Chenopodium album 4.23 
20 2007 AGIN-Late ~uphorbia serpyllifolia 3.00 
20 2007 AGIN-Late iKochia scoparia 1.93 
20 2007 AGIN-Late Convolvulus arvensis 0.80 
20 2007 AGIN-Late Chrysopsis villosa 0.61 
20 2007 AGIN-Late Plantago patagonica 0.55 
20 2007 ~GIN-Late Amaranthus retrojlexus 0.51 
20 2007 iAGIN-Late Tragopogon dubius 0.51 
20 2007 ~GIN-Late Lepidium densiflorum 0.45 
20 2007 ~GIN-Late Sphaeralcea coccinea 0.28 
20 2007 lAG IN-Late Bromus tectorum 0.27 
20 2007 AGIN-Late Bromus inermis 0.06 
20 2007 AGIN-Late Descurania pinnata 0.06 
20 2007 AGIN-Late Lygodesmiajuncea 0.06 

2005 SGS i{Jouteloua gracilis 49.35 
2005 SGS lfjuchloe dactyloides 23.45 
2005 SGS Carex eleocharis 6.51 
2005 SGS Vulpia octojlora 5.64 
2005 SGS Aristida purpurea 2.28 
2005 SGS Sphaeralcea coccinea 2.09 
2005 SGS Thelesperma filifolium 1.63 
2005 SGS Stipa comata 1.22 
2005 SGS Opuntia polyacantha 1.17 
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2005 SGS Gutierrezia sarothrae 1.09 
2005 SGS Agropyron smithii 0.99 
2005 SGS Eriogonum effusum 0.93 
2005 SGS Astragulus missouriensis 0.73 
2005 SGS Sporobolus cryptandrus 0.71 
2005 SGS Crytantha crassisepala 0.56 
2005 SGS Sitanion hystrix 0.36 
2005 SGS Artemisia frigida 0.19 
2005 SGS flantago patagonica 0.17 
2005 SGS Oenothera albicaulis 0.14 
2005 SGS 'Mirabilis linearis 0.11 
2005 SGS 'Machaeranthera tanacetifolia 0.10 
2005 SGS lfsoralea tenu~flora 0.10 
2005 SGS ~epidium densiflorum 0.09 
2005 SGS Chenopodium leptophyllum 0.09 
2005 SGS Echinocereus viridiflorus 0.09 
2005 SGS Lygodesmia juncea 0.09 
2005 SGS Muhlenbergia torreyi 0.04 
2005 SGS Triticum aestivum 0.04 
2005 SGS Chrysopsis villosa 0.01 
2005 SGS Tva xanthifolia 0.01 
2005 SGS Penstemon angustifolius 0.01 
2005 SGS Picradeniopsis oppositifolia 0.01 
2005 SGS !Unknown forb 0.01 

2006 SGS 'flouteloua gracilis 57.47 
2006 SGS Vluchloe dactyloides 16.22 
2006 SGS Carex eleocharis 10.98 
2006 SGS Opuntia polyacantha 2.90 
2006 SGS 'sporobolus cryptandrus 2.17 
2006 SGS Vulpia octojlora 2.03 
2006 SGS Sphaeralcea coccinea 1.98 
2006 SGS Aristida purpurea 1.70 
2006 SGS Gutierrezia sarothrae 1.11 
2006 SGS Eriogonum effusum 0.78 
2006 SGS Agropyron smithii 0.75 
2006 SGS Sitanion hystrix 0.61 
2006 SGS 'vtrtemisia frigida 0.31 
2006 SGS ~tipa comata 0.24 
2006 SGS ~ygodesmiajuncea 0.18 
2006 SGS Chrysothamnus nauseosus 0.13 
2006 SGS lf;chinocereus virid~florus 0.12 
2006 SGS lfsoralea tenuiflora 0.09 
2006 SGS Oxytropis lambertii 0.06 
2006 SGS Euphorbia serpyllifolia 0.04 
2006 SGS Muhlenbergia torreyi 0.04 
2006 SGS Unknown forb 0.04 
2006 SGS Unknown forb 0.03 
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2006 SGS Thelesperma jilifolium 0.01 
2006 SGS Chrysopsis villosa 0.01 

2007 SGS Bouteloua gracilis 53.86 
2007 SGS Buchloe dactyloides 16.77 
2007 SGS Carex eleocharis 9.82 
2007 SGS 1/)phaeralcea coccinea 2.99 
2007 SGS lf;porobolus cryptandrus 2.89 
2007 SGS Opuntia polyacantha 2.52 
2007 SGS Vulpia octoflora 1.89 
2007 SGS Vtristida purpurea 1.67 
2007 SGS Oxytropis lambertii 1.35 
2007 SGS Thelesperma filifolium 1.08 
2007 SGS Eriogonum effusum 0.90 
2007 SGS Artemisia frigida 0.62 
2007 SGS Echinocereus viridiflorus 0.49 
2007 SGS Agropyron smithii 0.39 
2007 SGS Gutierrezia sarothrae 0.36 
2007 SGS Mirabilis linearis 0.35 
2007 SGS Sitanion hystrix 0.34 
2007 SGS i$uphorbia serpyllifolia 0.29 
2007 SGS Crytantha crassisepala 0.25 
2007 SGS 1/)tipa comata 0.19 
2007 SGS Chrysopsis villosa 0.12 
2007 SGS l?icradeniopsis oppositifolia 0.10 
2007 SGS lftantago patagonica 0.10 
2007 SGS i?soralea tenuiflora 0.10 
2007 SGS Lepidium densiflorum 0.09 
2007 SGS Chenopodium leptophyllum 0.08 
2007 SGS Machaeranthera tanacetifolia 0.08 
2007 SGS Lappula redowskii 0.08 
2007 SGS Gaura coccinea 0.04 
2007 SGS Lygodesmia juncea 0.04 
2007 SGS Portulaca oleracea 0.04 
2007 SGS Astragulus mollissimus 0.03 
2007 SGS ~va xanthifolia 0.03 
2007 SGS Vtllium geyeri 0.01 
2007 SGS Chenopodium incanum 0.01 
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Chapter 3. Vegetation Structure and Net Primary Production on Conservation 
Reserve Program Lands in Northeastern Colorado 

Introduction 

Physical and biotic factors constrain vegetation structure and its influence on 

ecosystem function (Grime 1977). Disturbance can push these factors outside the 

range of natural variability (Pickett and White 1985) and facilitate species with a 

growth form and allocation strategy that are adapted to the altered physical and biotic 

environment (Grime 1979, Bazzaz 1983, Tilman 1988, Smith and Huston 1989). 

Following disturbance, this environment is dynamic and influences vegetation 

structure by selecting species with suitable traits out of a species pool (Woodward 

and Diament 1991, Keddy 1992) during the course of succession and affects the 

growth of these species at shorter time scales (Sims and Singh 1978a). 

Understanding how vegetation structure changes is important because it can affect 

ecosystem properties, including net primary production (NPP; Lieth and Whittaker 

1975, Lauenroth and Sala 1992, Yahdjian and Sala 2006). Recognizing disturbance 

characteristics (Sousa 1984) and factors that influence vegetation structure and NPP 

following disturbance is critical for understanding the recovery of ecosystem function 

(Chapin et al. 2000, Lavorel and Gamier 2002). 

Dryland (non-irrigated) wheat cropping is a large scale disturbance in the 

shortgrass steppe (Lauenroth and Milchunas 1992) that encompassed 1 million 

hectares of harvested land in Colorado in 2007 (USDA National Agricultural 

Statistics Service 2008). This land use destroys above and belowground components 

of a diverse plant community and replaces them with an annually harvested crop. It 

also alters the physical and chemical characteristics of the soil (Burke et al. 1989), 
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which influences vegetation recovery. Abandonment of cultivated fields initiates the 

process of succession as vegetation structure and associated ecosystem properties 

recover from the impacts of tillage and crop production practices. Land management 

practices can influence the recovery process. The USDA Conservation Reserve 

Program (CRP) has converted cultivated land to perennial vegetation and currently 

includes an area equivalent to the 2007 wheat harvest in Colorado (USDA Farm 

Service Agency 2008). CRP land in this region is seeded with a variety of seed mixes 

that contain perennial grasses to meet management objectives, including reduction in 

soil erosion and improvement of water quality (Skold 1989). 

Time since CRP enrollment and seed mix are important factors that constrain 

the species pool, thereby influencing plant community composition (Chapter 2). 

Early CRP fields (2-4 years after enrollment) are composed of a species rich forb and 

annual grass community, likely determined by the environment, seedbank, and 

stochastic dispersal events from nearby fields (Egler 1954, Coffin and Lauenroth 

1989, Coffin et al. 1996). An increase of perennial grass canopy cover is relatively 

slow and variable during this period, but within 18 years perennial grasses in the seed 

mix dominate the plant community with low species richness. Many of these 

perennial grasses are introduced species and varieties not native to the northern 

shortgrass steppe. 

Vegetation structure is indirectly influenced by time since CRP enrollment 

and seed mix through plant community composition. As annual grasses and forbs 

colonize and grow in early CRP fields, plant basal cover, density, and height are 

likely to increase. Perennial grass replacement of this early seral stage may increase 
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plant basal cover and height, but reduce plant density. Vegetation structure at the 

seeded perennial grass stage is likely to be dependent on the species that established 

from the CRP seed mix. The native seed mix contains mostly mid-height (20-30 em) 

caespitose grasses, whereas the introduced seed mix has tall-growing (50+ em) 

rhizomatous grasses. The differences in vegetation structure of introduced seeded 

species have the potential to alter ecosystem properties (Vitousek 1990, Christian and 

Wilson 1999, Seabloom et al. 2003) relative to native seeded species and undisturbed 

shortgrass steppe. 

Plant community composition and associated vegetation structure are 

indicative of the potential for plant growth and the allocation of net primary 

production. Annuals, which have the potential to occur at high density in early CRP 

fields, can grow rapidly and respond quickly to environmental change (Lauenroth et 

al. 1978). This can result in relatively high aboveground net primary production, low 

investment in belowground net primary production due to an ephemeral root system, 

and high interannual variability in total net primary production due to a rapid growth 

response when environmental conditions are favorable. The perennial grasses that 

establish in CRP fields may allocate production differently than perennial grasses in 

undisturbed short grass steppe. Bouteloua gracilis, the dominant perennial bunchgrass 

in the shortgrass steppe, has a relatively low aboveground to belowground production 

ratio (Milchunas and Lauenroth 2001), which makes it resistant to grazing and 

drought. In contrast, CRP fields are seeded with many perennial grass species and 

varieties that are native to regions with greater water availability, where light is a 

more limiting factor in plant growth (Lauenroth and Coffin 1992). This may cause an 
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increase in allocation to aboveground photosynthetic tissue and less allocation 

below ground. Furthermore, many CRP planted species (Agropyron spp.) are known 

to have high aboveground production and low root: shoot ratios (Redente et al. 1989). 

Potential differences in vegetation structure, such as height and basal cover, between 

fields seeded with native and introduced seed mixes may lead to differences in NPP at 

the individual plant and field scale. 

Resource availability can constrain vegetation structure and net primary 

production (NPP) directly or indirectly through its effect on plant community 

composition. Low mean annual precipitation in the shortgrass steppe (Lauenroth and 

Sala 1992) can limit the species in the plant community and their respective structures 

and contribution to NPP in the long-term (MacMahon 1980). The vegetation 

structure and allocation strategy of plants that persist in CRP fields can provide 

further insight on what vegetation characteristics are adaptive to this region. At a 

shorter time scale, high variability in annual precipitation in this region (Lauenroth 

and Sala 1992) can result in fluctuations in vegetation structure and NPP determined 

by the growth responses of species in the field. Understanding how vegetation 

structure and NPP change with interannual variability in the timing and amount of 

precipitation may explain the plasticity of plant growth in this region. 

My objective is to determine the vegetation structure and net primary 

production in CRP fields relative to undisturbed shortgrass steppe, and the influence 

physical and biotic factors have in explaining variability in these vegetation 

characteristics. Specifically, I addressed the following questions: 
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1) How does time since CRP enrollment and seed mix affect vegetation structure and 

NPP through its influence on species composition in CRP plant communities? 

2) What is the interannual variability of vegetation structure and NPP and is it 

affected by annual precipitation? 

3) How does vegetation structure and NPP in CRP fields compare to undisturbed 

shortgrass steppe? 

Methods 

Study sites 

I conducted this study at undisturbed shortgrass steppe sites within the Central 

Plains Experimental Range (CPER, Shortgrass Steppe Long Term Ecological 

Research site) located 60 km northeast of Fort Collins, Colorado (40° 49' N, 107° 47' 

W), and Conservation Reserve Program (CRP) sites located within 13 km to the south 

and 3 km to the west of the CPER. The climate is semiarid with a long-term mean 

annual precipitation (1969-2007) of332 mm (a= 99 mm), 80% of which falls 

between April and September, and a mean annual temperature of9.6°C (a= 1.1 °C). 

Undisturbed shortgrass steppe is codominated by the C4 perennial grasses Bouteloua 

gracilis* and Buchloe dactyloides (Chapter 2). Other important functional types 

included C3 graminoids, forbs, dwarf shrubs, and prickly pear cactus. My shortgrass 

steppe sites had been long-term moderately summer grazed, but I excluded them from 

grazing during the study. 

*plant nomenclature follows Great Plains Flora Association 1986 
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I partitioned CRP sites into those seeded with perennial grasses that occur in 

northern Colorado (native) and those seeded with perennial grasses that do not occur 

in northern Colorado (introduced). The native seed mix contained Agropyron smithii 

(- 30% weight of all seed), Bouteloua gracilis(- 20%), Bouteloua curtipendula (--

20% ), other perennial grasses (- 20%) and Dale a purpurea (-- 10% ). The introduced 

seed mix contained either Agropyron intermedium (100%) or Bromus inermis 

(100%), which are both perennial grasses from Europe and Asia. To address time 

since CRP enrollment, I established a chronosequence (Stevens and Walker 1970), 

which consisted of three field age classes: early, mid, and late. All fields in the 

chronosequence were seeded with a native seed mix to minimize differences in the 

potential vegetation. I sampled each field for 3 years to account for environmental 

variability. Early fields represented 2-4 years after CRP enrollment, mid fields 

represented 7-9 years after CRP enrollment, and late fields represented 18-20 years 

after CRP enrollment. To address differences in seed mix, I controlled for field age 

and compared late CRP fields seeded with native perennial grasses to late CRP fields 

seeded with introduced perennial grasses over the course of the three year study. 

All fields were in a non-irrigated wheat-fallow rotation prior to CRP 

enrollment. The year of CRP enrollment, fields were seeded with a sterile sorghum 

cover crop to protect the seedbed and discourage annual weed growth (NRCS 1991). 

A year later, fields were double-disked and drill seeded with perennial grasses (- 0.5 

g m-2 seed) to a 1.3 em depth and 20 em spacing between rows. Surface soil (0-5 em) 

textures were loamy sand, sandy loam, and sandy clay loam. All sites had a similar 

topographic relief(< 3% slope). I replicated each of the six field types three times for 
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a total of eighteen fields sampled ( 6 field types x 3 field replicates = 18 fields 

sampled). 

Sampling Methods 

I measured maximum plant height by species, plant density, and plant basal 

cover in 40 ~ m2 circular quadrats (spaced 20m apart) in each field in late 

August/early September 2005, 2006, and 2007. Average maximum plant height of all 

species was used to represent the composite height of all plants in the quadrat. For 

clonal species, an individual plant was defined as a group of tillers connected by a 

crown (Coffin and Lauenroth 1988, Fair et al. 1999). 

I estimated aboveground net primary production (ANPP) by species (except 

cactus species) in 8 of the quadrats (spaced 40 m apart) by clipping aboveground 

biomass at the soil surface, sorting out dead biomass from previous growing seasons, 

and weighing after drying at 55°C for 48 hours. Standing and detached dead biomass 

were collected, dried, and weighed in each of the 8 quadrats as an estimate of litter 

biomass. Because of the early senescence of Bromus tectorum, an introduced winter 

annual grass, I estimated height, density, basal cover, and ANPP in early June and 

incorporated these into the field estimates. 

To determine belowground biomass, I removed eight soil cores (5 em in 

diameter and 30 em in depth) in early May directly under the dominant perennial 

grass and eight cores were removed from an adjacent plant interspace (1 0 em away 

from nearest plant) in each field. This sampling stratification was done to encompass 

spatial variation in root biomass (Hook et al. 1994). Sampling was not stratified in 

early CRP fields because there were no perennial grasses. I subdivided the cores into 
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0-5, 5-10, 10-20, and 20-30 em increments and oven dried them at 55°C to prevent 

decomposition. 

I filled the holes remaining from the biomass cores with root free soil, forming 

a root ingrowth core to determine belowground net primary production (BNPP; 

Jordan and Escalante 1980). Root free soil consisted of soil collected from the same 

field in which the ingrowth cores were installed. I dry sieved the soil through a wire 

screen with 1mm openings to remove roots and organic debris. I compacted the root 

free soil in the ingrowth cores with a dowel to recreate the original bulk density of the 

soil, but could only recreate 80% of the original bulk density. The following late 

September/early October, I recored the ingrowth cores using a cylinder with slightly 

smaller dimensions than the first (4.5 em in diameter and 25 em in depth) to minimize 

sampling outside the ingrowth area. 

I separated roots from the biomass and ingrowth cores from soil using a 

hydropneumatic root elutriator (Smucker et al. 1982). Root elutriation consisted of a 

combination of washing with water pressure (0.3 MPa) and agitating with air pressure 

(0.3 MPa) in three 5 minute cycles (agitation only, agitation and washing, and 

washing only), followed by root collection in 1mm mesh screen sieves. Despite my 

effort to remove debris from root free soil, there was still noticeable debris in the 

washed samples. I accounted for this in two ways: 1) I hand picked coarse roots (> 3 

mm) from all collection years out of the samples and weighed them separately. 2) I 

washed root free soil samples from 2007 in the hydropneumatic root elutriator to 

estimate background organic debris that could not be removed by sieving. The 

background weights of these samples were subtracted from the weights of debris and 
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fine roots in the ingrowth cores to determine fine root weight alone. I ashed all root 

and debris material in an Isotemp Muffle Furnace (Model 550-126; Fisher Scientific, 

Pittsburgh, PA, USA) at 550°C to determine ash-free dry weight. I weighted 

belowground biomass and BNPP measurements taken between and under plants 

according to the proportional cover of each micro site to determine estimates at the 

field scale (Vinton and Burke 1995). I multiplied the average value under perennial 

grasses in each field by the proportional vegetation basal cover, and multiplied the 

average value for between perennial grasses in each field by the proportional basal 

cover of bare ground in each field, and summed the two values. I report all 

belowground estimates at the field scale. 

Statistical Analyses 

I performed repeated measures analysis of variance on vegetation 

characteristics (structure and NPP) with field type as the main effect and year as the 

repeated measure modeled in an autoregressive correlation structure (Proc Mixed, 

SAS 9.2, SAS Institute Inc. 2002-2008, Cary, NC, USA). I used a Tukey multiple 

comparison adjustment when comparing field types separately for each year and 

years separately for each field type (Proc Glimmix, SAS, June 2006 release). When 

there was a significant year effect, regression was performed (Proc Reg, SAS 9 .2) to 

evaluate the effect of annual precipitation on the vegetation characteristic. Since 

there were only three years of precipitation data, they were used to explain patterns 

which occurred across field types rather than make conclusive statements. 

Belowground biomass was only measured in 2005. Therefore, analysis of variance 

was performed with field type and depth as main effects. I performed regressions on 
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plant basal cover, height, and density across time since CRP enrollment of all fields in 

the chronosequence (Proc Reg, SAS 9.2). Regressions were performed using 

vegetation structure from individual years, not age classes, to collectively account for 

successional change and interannual variability in all CRP fields in the 

chronosequence. I performed separate regressions to assess the relationships between 

vegetation characteristics. 

Results 

Both inter- and intra-annual variability in precipitation was high during the 

study. Annual precipitation ranged from 301 mm in 2006 to 409 mm in 2007 (Table 

1 ). Early growing season precipitation ranged from 54 mm in 2006 to 202 in 2005. 

Similarly, late growing season precipitation was 53 mm in 2005 and 224 in 2007. 

Early growing season precipitation in 2005 was 42% above the long-term mean and 

late growing season precipitation was 57% below the mean. 2006 and 2007 showed 

the opposite trends, with early growing season precipitation 62% and 42% below the 

mean and late growing season precipitation 16% and 81% above the mean, 

respectively. 

Plant basal cover increased by 0.89% per year along the chronosequence and 

was at least twice as high in late CRP fields seeded with native perennial grasses than 

early and mid CRP fields for all years of the study (Fig. 1). Late CRP fields seeded 

with native grasses had significantly higher basal cover than late CRP fields seeded 

with introduced grasses for all years of the study except in 2006, when there was no 

difference between late fields seeded with native perennial grasses and Agropyron 

intermedium. Undisturbed shortgrass steppe had 1.7-5.3 times more plant basal cover 
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than all CRP fields for all years of the study. There was low interannual variability in 

basal cover. 

The average plant height in the CRP chronosequence increased moderately by 

0.20 em per year as time since CRP enrollment increased (Fig.2). The average plant 

heights in late CRP fields seeded with Bromus inermis and Agropyron intermedium 

were 8.7 and 13 em higher, respectively, than late CRP fields seeded with a native 

seed mix in 2005. Seeded perennial grasses had the largest influence on these 

differences, and when considered alone were 11 and 26 em higher in late Bromus 

inermis and Agropyron intermedium fields, respectively, than late CRP fields seeded 

with a native seed mix. Average plant height in undisturbed shortgrass steppe was 

significantly lower in all years than all late CRP fields except late CRP fields seeded 

with Bromus inermis in 2007. Annual precipitation explained over half of the 

interannual variance in average plant height for fields seeded with native perennial 

grasses and undisturbed shortgrass steppe (r2 = 0.60, P < 0.0001), while early 

growing season precipitation best explained the interannual variance in average plant 

height in fields seeded with introduced perennial grasses (r = 0.71, P < 0.0001). 

In contrast to plant basal cover, plant density decreased by 1.5 

individuals/year (Fig. 3). Plant density was not significantly different between late 

CRP fields seeded with native and introduced perennial grasses. However, perennial 

grass density was lower in late CRP fields seeded with Agropyron intermedium 

compared to the other 18 year CRP fields (t = 9.1, P = 0.01). Plant density in 

undisturbed shortgrass steppe was not significantly different from any late CRP fields 

in any years except in 2007, when it was higher than late CRP fields seeded with 
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Bromus inermis. Interannual variability in plant density was high, especially in early 

and mid CRP fields. Annual precipitation explained half the variability in these fields 

(r2 = 0.49, P = 0.001). 

Aboveground net primary production (ANPP) increased from early to mid 

CRP fields, where it reached its peak in 2005 and 2007 (127 g m-2 and 176 g m-2
, 

respectively; Fig. 4), and then decreased in late CRP fields. ANPP was not 

significantly different between late CRP fields seeded with native and introduced 

perennial grasses, except in 2007 when late CRP fields seeded with Bromus inermis 

had lower ANPP then late CRP fields seeded with native perennial grasses. Mid and 

late CRP fields had twice as much ANPP as undisturbed shortgrass steppe in 2005. 

Annual precipitation alone accounted for nearly half of the variance in ANPP in all 

CRP fields and undisturbed shortgrass steppe (r2 = 0.48, P < 0.0001 ). Annual 

precipitation was a better predictor of ANPP in CRP fields seeded with native 

perennial grasses (r2 
= 0.69, P < 0.0001) than introduced perennial grasses (r2 

= 0.28, 

P = 0.03), whereas early growing season precipitation was a better predictor of ANPP 

in CRP fields seeded with introduced perennial grasses (r2 
= 0.71, P < 0.0001) than 

native perennial grasses (r2 = 0.09, P = 0.2) 

Litter biomass followed patterns of ANPP (Fig. 5), increasing between early 

and mid CRP fields and lower amounts in late CRP fields seeded with Bromus 

inermis compared to other late CRP fields. However, litter biomass positively 

correlated to ANPP from the previous year in late CRP fields (r = 0.74, P = 0.0004), 

where perennial grasses composed a majority of the biomass. There was no lag in 
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early and mid fields where forbs and annuals dominated the plant community. 

Undisturbed shortgrass steppe had lower litter biomass than all CRP fields. 

Below ground biomass in the top 5 em of soil was 75 g m-2 in early CRP fields 

seeded with native perennial grasses and was significantly higher in mid and late CRP 

fields seeded with native perennial grasses (Fig. 6). Most of this increase was under 

perennial grasses, where biomass was 3.9 times higher in mid CRP fields and 4.6 

times higher in late CRP fields relative to between perennial grasses (data not shown). 

Belowground biomass was lower in late CRP fields seeded with introduced perennial 

grasses than native perennial grasses, but these differences were not significant. 

Undisturbed shortgrass steppe had 2.0-3.6 times as much belowground biomass in the 

top 5 em as CRP fields. There were no significant differences among CRP fields and 

between CRP fields and the shortgrass steppe in belowground biomass at depths 

below 5 em. However, late fields seeded with introduced grasses had a more even 

depth distribution of roots than those seeded with native grasses and undisturbed 

shortgrass steppe. Below ground biomass at 5-10 em was not significantly different 

than 0-5 em in late CRP fields seeded with introduced perennial grasses. 

Furthermore, 60% of total belowground biomass was below 5 em in these fields 

compared to 50% in late fields seeded with native grasses and 30% in undisturbed 

shortgrass steppe. 

Below ground net primary production (BNPP) increased along the 

chronosequence in 2005, both when coarse roots were considered alone (2.4 g m-2 yf 

1
) or together with fine roots and debris (3.4 g m-2 yr-1

; Fig. 7). In 2006, there was no 

significant change in BNPP along the chronosequence with either estimate, and in 
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2007 there was a decrease in BNPP when all fractions were considered. When 

background debris was accounted for in the 2007 BNPP estimates, there was no 

significant change in fine roots along the chronosequence, and an increase in coarse 

roots between mid and late CRP fields. In 2005 and 2007, there was significantly 

lower coarse root production in late CRP fields seeded with Agropyron intermedium 

compared to other late CRP fields. Undisturbed shortgrass steppe had high BNPP 

(208-235 g m-2
) relative to all CRP fields when estimates included all belowground 

material, except early CRP fields in 2007. Once background debris was accounted 

for in 2007 estimates, fine and coarse root production was collectively higher in 

undisturbed shortgrass steppe than CRP fields (not significant). Coarse root 

production was significantly higher in undisturbed shortgrass steppe compared to 

early and mid CRP fields in 2005, but there were no significant differences between 

undisturbed short grass steppe and all CRP fields in 2006 and 2007. 

BNPP was significantly (1.3-2.8 times) higher under than between perennial 

grasses for all mid and late CRP fields seeded with native perennial grasses and 

undisturbed short grass steppe in all years (data not shown). These differences were 

only apparent in 2005 for late CRP fields seeded with introduced perennial grasses. 

The only significant interannual change in BNPP was an increase in early CRP fields. 

Annual precipitation was a poor predictor of BNPP in all CRP fields and undisturbed 

shortgrass steppe (data not shown), but explained some variability in coarse root 

production (r2 = 0.14, P = 0.006). 
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Discussion 

Time since CRP enrollment and seed mix explained differences in plant basal 

cover, density, and height. An increase in basal cover as time since CRP enrollment 

increased can be explained by the replacement of annual species with perennial 

grasses in CRP fields. This recovery of plant basal cover is important for soil organic 

matter input (Hook et al. 1991, Burke et al. 1995), forage production (O'Connor et al. 

2001), and hydrologic and erosional processes (Gutierrez and Hernandez 1996). An 

increase of0.89% basal cover per year is low compared with conversion from 

cultivated field to grassland in more mesic regions (Baer et al. 2002), but typical of 

the slow recovery of vegetation recovering from disturbance in the short grass steppe 

(Munson and Lauenroth, in press). Plant basal cover in late CRP fields seeded with 

native perennial grasses was half the basal cover of undisturbed short grass steppe, 

which suggests that full recovery of plant basal cover is not possible in twenty years 

under current CRP management practices. Plant basal cover was even lower in late 

CRP fields seeded with introduced rhizomatous perennial grasses, which can affect 

pools of carbon and nitrogen in soils (Derner and Briske 2001 ). Since basal cover 

was slow to change in CRP fields, it was not surprising that it was unresponsive to 

interannual changes in precipitation. Lane and others (1998) found that basal cover 

was not related to annual precipitation across a gradient from shortgrass steppe to 

tallgrass prairie. Plant basal cover is more likely to be limited by long-term mean 

annual precipitation at a site (Milchunas et al. 1989). Late CRP fields could have 

relatively low basal cover because there is a tradeoff with their other structural 

characteristics in a system limited by water availability (Chapin et al. 1993). 
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One indication of a structural characteristic tradeoff is that plant basal cover 

was inversely related to average plant height in late CRP fields and undisturbed 

shortgrass steppe during all years of the study (r = 0.69, P < 0.0001). This 

demonstrates that tall-growing plant communities did not have sufficient resources to 

also produce high basal cover. An increase in average plant height along the 

chronosequence is consistent with other recovering grasslands (Kahmen and Poschlod 

2004) and can be attributed to the influence of perennial grasses. Although many 

annuals grew above 30 em, most were relatively short in comparison to perennial 

grass height. Dominance of tall-growing perennial grasses in the two introduced seed 

mixes was a strong factor in explaining average plant height. Average plant height 

was low in undisturbed shortgrass steppe largely due to the dominance by short­

growing perennial grasses. Low annual precipitation in 2006 likely caused a decrease 

in average plant height for all CRP fields and resulted in no height differences 

between late CRP fields seeded with introduced perennial grasses and native 

perennial grasses. Two consecutive dry early growing seasons reduced average plant 

height in late CRP fields seeded with introduced perennial grasses by half. 

High plant density in early CRP fields can be attributed to the presence of 

annual species, which have high seed production, rapid dispersal, and high abundance 

in shortgrass steppe seedbanks (Coffin and Lauenroth 1989). As time since CRP 

enrollment increased, perennial grasses limited the abundance of annual species, 

which caused a decline in overall plant density. Intense competition by perennial 

grass roots for limited soil water (Aguilera and Lauenroth 1993) most likely drove 

this decline in the abundance of annual species. This effect of water limitation on 
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annual species abundance was supported because differences in plant density among 

CRP fields only occurred in years when annual precipitation was above the mean. 

Wet years provided annuals with enough soil moisture to overcome the effects of 

competition with perennial vegetation. Low perennial grass density in late fields 

seeded with Agropyron intermedium may indicate another structural tradeoff when 

tall-growing perennial grasses grow in a water limited environment. 

Although late CRP fields had low plant density, the average plant contributed 

2-3 times as much to aboveground net primary production (ANPP) as early CRP 

fields, where plant density was high. This resulted in an increase in ANPP between 

early and late CRP fields in 2005 and no significant differences in 2006 and 2007. 

The peak in aboveground net primary production (ANPP) in mid CRP fields can be 

attributed to Bromus tectorum, which contributed 40% of ANPP to field level 

estimates in every year of the study. This exotic annual grass requires disturbance to 

establish in the shortgrass steppe (Bradford and Lauenroth 2006). Low initial seed 

availability or germination likely limited its contribution to ANPP in early CRP fields 

and competitive displacement by perennial grasses in late CRP fields. 

Vegetation structure can constrain aboveground net primary production 

(Lauenroth and Sala 1992). An increase in perennial grass basal cover and density 

across the CRP chronosequence caused an increase in the relative contribution to 

ANPP of this functional type. As perennial grasses became the dominant life form in 

late CRP fields, differences in basal cover and height between CRP fields seeded with 

native and introduced grasses in 2005 did not lead to significant differences between 

these field types in ANPP. However, there were differences in the production of 
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individual perennial grass units. When all late CRP fields were considered together, 

the amount of ANPP contributed per individual grass unit decreased as density 

increased according to a thinning law (Enquist et al. 1998) in 2005. In other words, 

an individual perennial grass unit was more productive when it occurred at low 

density. For example, Agropyron intermedium occurred at 1/3 the density of native 

perennial grasses in 2005, yet it produced up to 4 times as much per individual plant. 

This density-dependent effect was not apparent in 2006 and 2007 when early growing 

season precipitation reduced ANPP in fields seeded with Agropyron intermedium and 

Bromus inermis. 

Annual precipitation has been shown to be related to ANPP in native 

shortgrass steppe (Lauenroth and Sala 1992) and cultivated fields (Lauenroth 2000). 

My results suggest that this relationship is supported in a transition between these two 

land cover types. CRP fields had more variability in ANPP because they had the 

potential to support twice as much ANPP as undisturbed shortgrass steppe in years 

with above mean annual precipitation. In 2006, when annual precipitation was below 

the mean, there was no difference in ANPP between the shortgrass steppe and CRP 

fields and among CRP field types. This is consistent with the convergence of ANPP 

per unit precipitation in dry years across plant communities that have different 

vegetation structure (Huxman et al. 2004). Mid CRP fields had the strongest 

response of ANPP to precipitation due to the presence of the annual grass, Bromus 

tectorum, which is sensitive to changes in water availability (Bradford and Lauenroth 

2006). It was surprising that the ANPP of early CRP fields dominated by annual 

species did not respond more strongly to interannual variability in precipitation than 
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late CRP fields dominated by perennial grasses, given that they respond more 

strongly to water additions in the shortgrass steppe (Lauenroth et al. 1978). Although 

annual precipitation influenced ANPP of CRP fields seeded with native C4 perennial 

grasses, early growing season precipitation was a better predictor of ANPP in fields 

with seeded with introduced C3 perennial grasses. This relationship is similar to the 

northern mixed-grass prairie (Derner and Hart 2007, Derner et al. 2008) where there 

are more C3, early-growing perennial grasses represented in the plant community. 

High ANPP in CRP fields contributed to high aboveground litter compared to 

undisturbed shortgrass steppe. It is possible that tall vegetation structure in CRP 

fields may reduce wind speed at the soil surface, thereby reducing litter loss from the 

field (Burke et al. 1999). Large quantities of aboveground litter may have 

implications for decomposition and nutrient availability in CRP fields (Vinton and 

Burke 1995, Paschke et al. 2000). High ANPP and litter might also have caused a 

significant reduction in the amount of photosynthetically active radiation reaching the 

soil in late CRP fields relative to undisturbed shortgrass steppe (unpublished data). 

This reduction may inhibit seed germination and feedback into plant community 

composition (Milchunas and Lauenroth 1995). Patterns of litter biomass in CRP 

fields were closely related to ANPP. However, the lag between ANPP and litter 

biomass varied with CRP field type. In late CRP fields, dry years resulted in less 

ANPP and less litter the following year; whereas in early and mid CRP fields, dry 

years resulted in less ANPP and litter biomass in the same year. The lag time of litter 

biomass in late CRP fields can be attributed to the slower turnover of perennial 

compared to annual plant parts (Vinton and Burke 1995). 
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In contrast to high ANPP and aboveground litter biomass, belowground 

biomass in CRP fields was significantly lower than undisturbed shortgrass steppe. 

This was not a result of lower belowground biomass under native perennial grasses in 

CRP fields, but rather more plant interspace and less root biomass in the plant 

interspace in CRP fields relative to undisturbed shortgrass steppe. This suggests that 

perennial grasses in CRP fields have not had the time to develop the extensive root 

structure of undisturbed short grass steppe (Sims and Singh 1978b) and root growth 

may be limited by low vegetation basal cover. The implications for relatively low 

belowground biomass may be susceptibility to grazing or drought over the long-term, 

conditions to which undisturbed shorgrass steppe is well adapted (Milchunas et al. 

1988). Early CRP fields lacked perennial grasses when biomass samples were taken, 

and therefore had low belowground biomass relative to mid and late CRP fields. 

Although there were no significant differences in belowground biomass between late 

CRP fields seeded with native and introduced perennial grasses at the field scale, 

there was significantly lower biomass under introduced perennial grasses at the plant 

scale. This is likely because these grasses have rhizomes, which spread root growth 

horizontally away from the center of the aboveground plant. Low below ground 

biomass under introduced perennial grass shoots may limit carbon and nitrogen 

accumulation in soils (Derner and Briske 2001) and small-scale nutrient heterogeneity 

(Hook et al. 1991). 

Below ground net primary production (BNPP) was likely overestimated when 

all fractions were included together and underestimated with only coarse roots. The 

high end of my estimate for BNPP in undisturbed shortgrass steppe (208-235 g m"2
) is 
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comparable to the carbon tracer estimate found by Milchunas and Lauenroth (1992) 

(202-262 g m-2
). However, when background debris was accounted for in 2007, my 

estimate in undisturbed short grass steppe was 1 07 g m -2• This estimate may have 

been low because I only sampled root production between May and September, and 

root growth may have occurred before or after this time. Furthermore, I sampled the 

center of the ingrowth core, missing the outer perimeter where root growth into the 

core may have been higher. 

As with belowground biomass, BNPP increased along the chronosequence in 

2005. This was due to the contribution ofBNPP from perennial grasses in late CRP 

fields, which allocate more resources belowground than annual species (Zanger! and 

Bazzaz 1983, Jackson and Roy 1986, Ploschuk et al. 2005). The influence of 

perennial grasses on BNPP was most evident in early CRP fields, where their 

establishment contributed to an increase of BNPP in early CRP fields during the 

three-year study. Annual species likely contributed little to this increase in BNPP 

because they declined in abundance over the same time period. There were no 

differences in BNPP among CRP fields in 2006, when annual precipitation was below 

the mean. This was also the pattern in ANPP, collectively providing strong evidence 

that low water availability masks the affects of vegetation structure on total net 

primary production (Huxman et al. 2004). Only in wet years can vegetation structure 

limit the capacity of plants to increase total net primary production (Y ahdjian and 

Sala 2006). 

High ANPP to BNPP ratios in CRP fields relative to undisturbed shortgrass 

steppe is typical of fields after the cessation of cropping (Paschke et al. 2000), and 
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indicates the potential for high transpiration water losses relative to a limited capacity 

to take up water. Large reductions in the ANPP:BNPP ratio in all CRP fields in the 

driest year of this study suggests that high aboveground tissue cannot be supported in 

the long-term (Burke et al. 1998). The best example of this occurred in CRP fields 

seeded with Agropyron intermedium. These fields had lower coarse root production 

than other late CRP fields in the three years of the study and consequently had the 

largest reduction in ANPP in dry years. Late CRP fields seeded with Agropyron 

intermedium and Bromus intermis had lower fine-scale spatial heterogeneity in BNPP 

than native perennial grasses, which supports the patterns in belowground biomass. 

Interannual variability in precipitation did not explain patterns in BNPP (all 

fractions), which had low interannual variance during the study, except in early CRP 

fields. BNPP may be slower to change in response to precipitation than ANPP (Gill 

and Jackson 2000, Milchunas and Lauenroth 2001). However, my estimates ofBNPP 

included some non-root material. When coarse roots were isolated from the samples, 

production increased with annual precipitation, which is consistent with interannual 

changes at the shortgrass steppe study site (Milchunas and Lauenroth 2001). A better 

assessment of what constitutes an estimate ofbelowground net primary production is 

necessary, especially in belowground dominated grassland ecosystems. 
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Year 2005 2006 2007 38-year Average 

Annual Precipitation (Jan-Dec) 370 301 409 332 

Early Growing Season Precipitation (Apr-Jun) 202 54 82 143 

Late Growing Season Precipitation (Jul-Sep) 53 144 224 124 

Table 1. Annual and seasonal precipitation (mm) from 2005-2007. 

83 



Field Type 

60 ~S~G~S~~------------~N~a~t~iv~e ____________ ~B~Rl~N~A~G~IN~ 
Early Mid Late Late Late 

50 

a. 40 
~ 
~ 
Q 

u 
-; 30 
riJ 
~ = 
~ = 20 

10 

2 3 4 7 8 9 181920181920181920 
2005 2006 2007 2005 2006 2007 2005 2006 2007 2005 2006 2007 2005 2006 2007 2005 2006 2007 

Time Since CRP Enrollment (Years) 
Year sampled 

Figure 1. Average plant basal cover(± SE) in undisturbed shortgrass steppe (SGS), 
early, mid and late CRP fields seeded with a native seed mix, and late CRP fields 
seeded with Bromus inermis (BRIN) and Agropyron intermedium (A GIN) in 2005, 
2006, and 2007. Chronosequence linear regression: y = 0.89x + 6.6, r2 = 0.85. 
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Figure 2. Average plant height(± SE) in undisturbed shortgrass steppe (SGS), early, 
mid and late CRP fields seeded with a native seed mix, and late CRP fields seeded 
with Bromus inermis (BRIN) and Agropyron intermedium (AGIN) in 2005, 2006, and 
2007. Chronosequence linear regression: y = 0 .20x + 11, r2 = 0.19. 
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Figure 3. Average plant density(± SE) in undisturbed shortgrass steppe (SGS), early, 
mid and late CRP fields seeded with a native seed mix, and late CRP fields seeded 
with Bromus inermis (BRIN) and Agropyron intermedium (AGIN) in 2005, 2006, and 
2007. Chronosequence linear regression: y= -1.5x +53, r2 = 0.31. 
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Figure 4. Aboveground net primary production (ANPP g m-2; ± SE) in undisturbed 
shortgrass steppe (SGS), early, mid, and late CRP fields seeded with a native seed 
mix, and late CRP fields seeded with Bromus inermis (BRIN) and Agropyron 
intermedium (AGIN) in 2005, 2006, and 2007. Different upper case letters designate 
significant differences (Tukey adjusted P < 0.05) in ANPP among field types within 
the same sampling year, and different lower case letters designate significant 
differences (Tukey adjusted P < 0.05) in ANPP among years within the same field 
type. 
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Figure 5. Litter (g m·2; ± SE) in undisturbed shortgrass steppe (SGS), early, mid, and 
late CRP fields seeded with a native seed mix, and late CRP fields seeded with 
Bromus inermis (BRIN) and Agropyron intermedium (AGIN) in 2005, 2006, and 
2007. Different upper case letters designate significant differences (Tukey adjusted P 
< 0.05) in litter among field types within the same sampling year, and different lower 
case letters designate significant differences (Tukey adjusted P < 0.05) in litter among 
years within the same field type. 
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Figure 6. Belowground biomass (g m"2; ± SE) at 0-5, 5-10, 10-20, and 20-30 em 
depth in undisturbed shortgrass steppe (SGS), early, mid, and late CRP fields seeded 
with a native seed mix, and late CRP fields seeded with Bromus inermis (BRIN) and 
Agropyron intermedium (AGIN) in 2005. Different upper case letters designate 
significant differences (Tuk:ey adjusted P < 0.05) in belowground biomass at 0-5 em 
depth among field types. There were no significant differences in belowground 
biomass at all other depth increments among field types. Different lower case letters 
designate significant differences (Tuk:ey adjusted P < 0.05) in belowground biomass 
among depth increments within the same field type. 
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Figure 7. Below ground net primary production (BNPP g m-2
; ± SE) in undisturbed 

shortgrass steppe (SGS), early, mid, and late CRP fields seeded with a native seed 
mix, and late CRP fields seeded with Bromus inermis (BRIN) and Agropyron 
intermedium (AGIN) in 2005 (top panel), 2006 (middle panel) and 2007 (bottom 
panel). BNPP is partitioned into coarse roots, fine roots, and debris. Different upper 
case letters designate significant differences (Tukey adjusted P < 0.05) in total BNPP 
among field types. Different lower case letters designate significant differences 
(Tukey adjusted P < 0.05) in coarse roots, fine roots, and debris among field types. 
There were no significant differences in BNPP among years within the same field 
type except in early CRP fields. 
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Chapter 4: Soil Carbon and Nitrogen Changes on Conservation Reserve 
Program Lands in Northeastern Colorado 

Introduction 

Human-induced land use change can rapidly alter the carbon (C) cycle in 

ecosystems (Vitousek et al. 1997). Since soil organic carbon (SOC) is the largest 

terrestrial pool of organic C (Schimel 1995) and has a long residence time (Oades 

1988), it is important to understand how the size and dynamics of this reservoir may 

be altered (Paul 1984). Of increasing concern is how the potential of ecosystems to 

remove and store anthropogenic sources of carbon from the atmosphere may be 

modified (Lal2004, IPCC 2007). Since carbon uptake and storage is tightly linked to 

the nitrogen (N) cycle (Vitousek and Howarth 1991, Diaz et al. 1993 ), it is equally 

important to understand how N pools and fluxes may be affected by land use change. 

Much effort has been made to elucidate global controls regulating inputs and outputs 

of SOC using meta-analysis (Post et al. 1982, Post and Kwon 2000) and modeling 

(Parton et al. 1987) approaches, while less effort has been made to link SOC to 

exchanges with the vegetation and atmosphere using an empirical approach. 

Characterization of SOC in the context of its gains and losses can lead to a 

mechanistic understanding of its dynamics (Odum 1960) and improve our ability to 

predict how ecosystems respond to land use change. 

Conversion of natural to cultivated ecosystems is a well-studied land use 

change that has historically transferred between 54-70 Gt (Gt = 1012 kg) of C from the 

soil to the atmosphere (Cole et al. 1997, Amundson 2001). This has resulted in 

reductions of SOC by up to 60% (Guo and Gifford 2002) through reduced plant 

inputs into SOC and increased outputs, including erosion and decomposition 
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(Anderson and Coleman 1985). Cessation of cropping and establishment of perennial 

vegetation can promote the recovery of SOC pools (Conant et al. 2001), but rates of 

accumulation depend on the productivity of the recovering vegetation, soil physical 

and biotic factors, and the potential for losses (Post and K won 2000). In the 

short grass steppe, a semiarid grassland of the Great Plains, high allocation of net 

primary production to roots, high turnover of plant biomass, and slow decomposition 

rates create potential for SOC storage (Burke et al. 2008). Recovery of the short grass 

steppe plant community following cropping disturbance is slow and variable (Coffin 

et al. 1996), and successional plant communities in formerly cultivated fields may 

differ in the quantity and quality of plant inputs to SOC. Outputs from SOC, 

including soil respiration may also vary in recovering fields due to changes in the 

plant and microbial community, soil resources and physical characteristics. 

The conversion from cultivated fields to perennial vegetation has been 

assisted by seeding practices of the Conservation Reserve Program (CRP; Skold 

1989). CRP is an extensive land use nationwide and currently includes nearly 1 

million hectares of former shortgrass steppe in Colorado (USDA Farm Service 

Agency 2008). CRP contracts are for 1 0 years, but many fields have been reenrolled 

in the program and have been out of production for two decades. This has created an 

opportunity to determine SOC recovery at a longer time scale than most CRP studies 

(Robles and Burke 1997, Reeder et al. 1998, Baer et al. 2000), while accounting for 

seed mix and potential plant community composition, which is lacking in long-term 

studies (Burke et al. 1995, Breuer et al. 2006, Kucharik et al. 2006). 
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Time since CRP enrollment and seed mix are important factors for plant 

community composition (Chapter 2) and associated plant characteristics (Chapter 3). 

Early CRP fields (2-4 years after CRP enrollment) are composed of a species rich 

forb and annual grass community. Low basal cover and high annual turnover of these 

species may limit their effect on SOC recovery. Perennial grasses, which dominate 

the CRP plant community within 18 years, are more likely to increase SOC due to 

increased basal cover, high below ground net primary production, and long life-span. 

However differences in recovery rate, allocation, and tissue quality between native 

and introduced perennial grasses may influence the recovery of SOC (Christian and 

Wilson 1999, Ogle et al. 2004). 

The objective of my study was to determine how effective CRP fields are in 

storing carbon and nitrogen. To evaluate this, I addressed the following questions: 

1) How does time since CRP enrollment and seed mix influence SOC and soil 

nitrogen? 

2) How does time since CRP enrollment and seed mix influence plant inputs 

and respiration outputs that control C storage? 

3) What is the relationship between SOC and nitrogen availability in CRP 

fields? 

Methods 

Study sites 

My study was conducted at undisturbed shortgrass steppe sites within the 

Central Plains Experimental Range (CPER, Shortgrass Steppe Long Term Ecological 

Research site) located 60 km northeast of Fort Collins, Colorado (40° 49' N, 107° 47' 
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W), and Conservation Reserve Program (CRP) sites located within 13 km to the south 

and 3 km to the west of the CPER. Mean annual precipitation at the CPER is 332 

mm ( cr = 99 mm), 80% of which falls between April and September, and mean annual 

temperature is 9.6°C (a= 1.1 °C). Undisturbed shortgrass steppe is co-dominated by 

the C4 perennial grasses Bouteloua gracilis* and Buchloe dactyloides, with other 

important functional types including c3 graminoids, forbs, dwarf shrubs, and prickly 

pear cactus (Lauenroth 2008). My shortgrass steppe sites had been long-term 

moderately summer grazed, but I excluded them from grazing during the study. 

I divided CRP sites into those seeded with native and introduced perennial 

grasses. The native seed mix contained Agropyron smithii ("' 30% weight of all 

seed), Bouteloua gracilis ("' 20% ), Bouteloua curtipendula ("' 20% ), other perennial 

grasses("' 20%) and Dalea purpurea ("' 10%). The introduced seed mix contained 

either Agropyron intermedium (100%) or Bromus inermis (100%), which are both 

perennial grasses from Europe and Asia. To address time since CRP enrollment, I 

established a chronosequence (Stevens and Walker 1970), which consisted of three 

field ages: early (2 years after CRP enrollment), mid (7 years), and late (18 years). I 

only included fields seeded with a native seed mix in the chronosequence to minimize 

differences in the potential vegetation. To address differences in seed mix, I 

controlled for field age and compared late CRP fields seeded with native perennial 

grasses to late CRP fields seeded with introduced perennial grasses .. 

All fields were in a non-irrigated wheat-fallow rotation prior to CRP 

enrollment. The year of CRP enrollment, fields were seeded with a sterile sorghum 

*plant names follow Great Plains Flora Association 1986 
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cover crop to protect the seedbed and discourage annual weed growth (NRCS 1991 ). 

A year later, fields were double-disked and drill seeded with perennial grasses ("' 0.5 

g m -2 seed) to a 1.3 em depth and 20 em spacing between rows. Soils at the sites 

were classified as Altvan and Ascalon fine sandy loams (mixed, mesic Aridic 

Argiustoll), with a minor component ofRenohill Shingle Complex (smectitic, mesic 

Ustic Haplargid). These soils were deep and well drained (NRCS 2008). All sites 

had a similar topographic relief ( < 3% slope). I replicated each of the six field types 

three times for a total of eighteen fields sampled ( 6 field types x 3 field replicates = 

18 fields sampled). 

Sampling methods 

I estimated aboveground net primary production (ANPP) in each field in late 

August 2005. Aboveground biomass was clipped at the soil surface in 8 )4 m2 

quadrats, which were evenly spaced 40 m apart. Dead biomass from previous 

growing seasons was sorted out of the samples, and the remaining sample was 

weighed after oven drying at 55°C for 48 hours. ANPP estimates of Bromus 

tectorum, an introduced winter annual grass species, were made at the end of its 

growing season in early June and incorporated into field estimates. I estimated 

belowground net primary production (BNPP) in each field by constructing a root 

ingrowth core (Jordan and Escalante 1980). To do this, I removed eight soil cores (5 

em in diameter and 30 em in depth) adjacent to the ANPP plots in early May directly 

under the dominant perennial grass and eight cores from the nearest plant interspaces 

(1 0 em away from nearest plant). This microsite sampling stratification encompassed 

spatial variation in root production (Hook et al. 1994). Sampling was not stratified in 
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early CRP fields because there were no perennial grasses. I separated soils from a 0-5 

em depth from the cores and oven dried them 48 hours to use for soil analyses. The 

holes from the cores were filled with root free soil, which I collected from each field 

and dry sieved through wire screen ( 1 mm aperture) to remove roots and organic 

debris. The ingrowth cores were left in the ground until the following October. At 

this time, I recored the ingrowth cores using a cylinder with slightly smaller 

dimensions than the first (4.5 em in diameter and 25 em in depth) to minimize 

sampling outside the ingrowth area. I separated roots from ingrowth cores using a 

hydropneumatic root elutriator (Smucker et al. 1982). 

Both ANPP and BNPP were expressed in g C m-2 and g N m-2 by determining 

the amount of carbon and nitrogen in NPP estimates. This was done using 

aboveground plant tissue from a subset of 3 ANPP quadrats (N = 3) and a composite 

of root tissue from 8 ingrowth cores (N = 1) under perennial grasses in each field. I 

ground all samples in a Wiley mill and then analyzed them for carbon and nitrogen 

concentration in a LECO CHN-2000 Combustion Analyzer (Leco Corp., St. Joseph, 

MI, USA). Remaining ANPP and BNPP samples were ashed in an Isotemp Muffle 

Furnace (Model 550-126; Fisher Scientific, Pittsburgh, P A, USA) at 550°C to 

determine the amount of carbon and nitrogen on an ash-free basis. 

I calculated soil bulk density from the oven-dried soil weights of samples 

collected at a 0-5 em depth. Soil C and N was estimated at the same depth because 

surface soils have the highest concentration of roots and recent soil organic matter 

inputs (Burke et al. 2008). I sieved soil samples to remove plant material > 2 mm in 

diameter and used 30 g subsamples to determine soil texture by the hydrometer 
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method (Day 1965). Soils were then composited in random pairs from the same field 

and microsite (either between or under perennial grass; N = 4) and analyzed for total 

C and total N, as well as C and N in the particulate organic matter (POM) fractions 

(Cambardella and Elliott 1992). To determine POM fractions, I dispersed 30 g 

sub samples of soil on a shaker using sodium hexametaphosphate and passed them 

through two sieves with apertures of 500- and 53 !J-m. Coarse POM was retained on 

the 500 !J-m sieve and fine POM was retained on the 53 !J-m sieve. Residue and sand 

in these fractions were oven dried at 55°C and ground on a ball mill. Although 

carbonates can contribute to soil carbon, there is low inorganic carbon in the surface 

of soils in the shortgrass steppe region (Reeder et al. 2004) and my soil samples did 

not react visibly to drops ofHCl. Soil carbon was therefore considered organic 

carbon (SOC). I analyzed total, coarse and fine POM fractions for C and Non a 

LECO CHN-1000 analyzer (LECO Corporation, St. Joseph, MI, USA). 

I used ion exchange resin bags to estimate in situ inorganic soil nitrogen 

(Binkley and Matson 1983) adjacent to the NPP plots. Estimates were made from 

2005-2007 to account for environmental variability. I installed the bags 5 em below 

the soil surface at each micro site (between and under perennial grasses) in May and 

collected the bags in September. Inorganic nitrogen (nitrate and ammonium) was 

extracted from the bags using a KCl solution and their concentrations were 

colorimetrically determined with an Alpkem Flow Solution Autoanalyzer (Alpkem 

Corporation, Clackamas, OR, USA). There were some interannual differences of 

when in May the resin bags were installed and when in September they were 
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collected. To account for this variability, I standardized measurements by converting 

to a daily rate of inorganic nitrogen adsorption (Jlg N bag-1 daf1 
). 

To characterize carbon losses, I determined the soil respiration rates of early 

and late CRP fields in the chronosequence and undisturbed shortgrass steppe using a 

LI-6400 soil C02 flux chamber (chamber volume: 991 cm3
; LI-COR, Inc., Lincoln, 

NE, USA). I replicated each field type three times. I used the average C02 flux rate 

during 5 sampling periods between June 11, 2007 and July 25, 2007 between the 

times of08:00 and 13:00. Volumetric water content during the sampling periods was 

below 3% and soil temperature in the top 5 em of the soil was 23- 30°C. Since water 

limits respiration in the shortgrass steppe (Munson et al., in review), these dry 

conditions likely produced minimum (baseline) respiration rates. To determine soil 

respiration rates when soil water was not limiting, I took measurements during the 

last sampling period before and after a 1 0 mm simulated precipitation event, which 

increased soil water content by 300% or more relative to pre-event conditions 

(Munson, in review). Precipitation of this event size occurs at the shortgrass steppe 

during a normal growing season (Sala and Lauenroth 1982), and soil respiration that 

results from an event this size was determined not to be limited by soil moisture 

(Munson et al., in review). I used the maximum respiration rate recorded during a 24 

hour period after the event. All respiration measurements were taken in the plant 

interspace (to minimize the influence of aboveground plant respiration and soil 

resource heterogeneity) from 4 chamber locations within a 1.5 m2 plot. 

To determine if nitrogen constrains NPP and soil respiration in early and late 

CRP fields in the chronosequence and undisturbed shortgrass steppe, I applied 8 g N 
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m-2 in the form of ammonium nitrate (NH4N03) granules to a 1.5 m2 plot located 3 m 

from the water addition plot in May 2007. I used adjacent unfertilized 1.5 m2 plots as 

a control. I added this quantity ofN to the plot based on previous findings indicating 

an increase in plant and microbial activity (Lowe 2002). I replicated each field type 

three times. Two weeks after fertilization, I took soil respiration readings using the 

methods described above in fertilized and adjacent control plots. I made ANPP 

measurements in fertilized and control plots in late August 2007 (Bromus tectorum 

estimates taken in early June) using the methods described above. 

Statistical Analyses 

I conducted both micro site (between/under perennial grasses) and field-scale 

analyses of plant and soil characteristics. I calculated field-scale characteristics by 

weighting each microsite measurement according to the proportional cover of each 

microsite (Vinton and Burke 1995). I multiplied the average value for a plant or soil 

characteristic under perennial grasses in each field by the proportional vegetation 

basal cover, and multiplied the average value for between perennial grasses in each 

field by the proportional basal cover of bare ground in each field, and summed the 

two values. Field scale characteristics for early CRP fields seeded with native 

perennial grasses were calculated using only between perennial grass measurements 

because no perennial grasses had established in the field. 

For microsite analyses, I performed analysis of variance (ANOV A) on plant 

and soil characteristics with field type and microsite as the main effects (Proc GLM, 

SAS 9.2, SAS Institute Inc. 2002-2007, Cary, NC, USA). I used a Tukey multiple 

comparison adjustment when comparing among field types for each microsite. For 
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field-scale analyses, field type was used as the main effect. For nitrogen additions, 

nitrogen treatment was an additional main effect. I performed repeated measures 

ANOV A on inorganic nitrogen since it was measured in multiple years, with year as 

the repeated measure modeled in an autoregressive correlation structure (Proc Mixed, 

SAS 9 .2). Regression was performed to explain relationships between vegetation and 

soil characteristics and the relationships among different soil characteristics (Proc 

Reg, SAS 9.2). 

Results 

Carbon in aboveground net primary production (ANPP-C) in CRP fields 

ranged from 32.7-55.1 g C m-2 (Table 1). Mid and late CRP fields had significantly 

higher ANPP-C than early CRP fields. ANPP-C was not significantly different 

between late CRP fields seeded with native and introduced perennial grasses, but 

there was nearly twice as much ANPP-C in mid and late CRP fields as undisturbed 

shortgrass steppe. Nitrogen in ANPP (ANPP-N) in CRP fields ranged from 0.8-1.3 g 

N m-2 (Table 1 ). There was significantly more ANPP-N in mid compared to early 

CRP fields, but no other significant differences among CRP fields or between CRP 

fields and undisturbed shortgrass steppe. 

Carbon in belowground net primary production (BNPP-C) between perennial 

grasses was also higher in mid and late CRP fields relative to early CRP fields along 

the chronosequence (not significant; Fig. 1 ). There were no significant differences in 

BNPP-C between perennial grasses in late CRP fields seeded with native compared to 

introduced perennial grasses. Undisturbed shortgrass steppe had the highest BNPP-C 

between perennial grasses. BNPP-C under perennial grasses in CRP fields ranged 
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from 57-110 g C m-2 and was not significantly different between mid and late CRP 

fields seeded with native perennial grasses. However, BNPP-C under perennial 

grasses was significantly lower in late CRP fields seeded with introduced perennial 

grasses than mid CRP fields seeded with native perennial grasses and undisturbed 

shortgrass steppe. There were significant differences in BNPP-C between and under 

perennial grasses in mid and late CRP fields seeded with native perennial grasses and 

undisturbed shortgrass steppe, but not CRP fields seed with introduced perennial 

grasses. At the field scale, BNPP-C significantly increased by 31 g C m-2 between 

early and late CRP fields seeded with native perennial grasses {Table 1 ). BNPP-C in 

late CRP fields seeded with native perennial grasses was 10 g C m-2 higher compared 

to introduced perennial grasses, but this difference was not significant. There was 

significantly higher BNPP-C in undisturbed shortgrass steppe relative to all CRP 

fields. 

There were no significant differences in nitrogen in BNPP (BNPP-N) both 

between and under perennial grasses among CRP fields, but there was significantly 

higher BNPP-N at both microsites in undisturbed shortgrass steppe compared to all 

CRP fields (Fig. 2). BNPP-N under perennial grasses in CRP fields ranged from 0.9-

1.3 g N m-2 compared to 2.9 g N m-2 in undisturbed shortgrass steppe. BNPP-N was 

significant! y higher under than between perennial grasses in mid and late CRP fields 

seeded with native perennial grasses and undisturbed shortgrass steppe. At the field 

scale, there was a moderate increase in BNPP-N of0.4 g N m-2 between early and late 

CRP fields seeded with native perennial grasses (not significant; Table 1). BNPP-N 

in undisturbed shortgrass steppe was nearly three times greater than any CRP field. 
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Soil bulk density was significantly higher in early CRP fields seeded with 

native perennial grasses than all other CRP fields and undisturbed shortgrass steppe 

{Table 2). Bulk density was significantly higher between perennial grasses than 

under perennial grasses in all CRP fields and undisturbed shortgrass steppe. There 

were no significant differences in soil texture among CRP fields or between CRP 

fields and undisturbed shortgrass steppe {Table 2). There was a trend for decreasing 

sand content and increasing silt and clay content along the chronosequence (not 

significant). 

Total soil organic carbon (SOC) and soil nitrogen (SN) were highly correlated 

(r = 0.96, P < 0.0001) and differences among field types in each of the two pools 

were related. Total SOC losses (Fig. 3a) due to cropping practices were between 30-

50% ( 45% at the field scale; Table 1) and total SN losses (Fig. 4a) were 30-45% 

(39% at the field scale; Table 1 ), depending on which microsite in the undisturbed 

shortgrass steppe they were compared. There was no change in total SOC or SN 

between perennial grasses along the chronosequence, but total SOC increased under 

perennial grasses between mid and late CRP fields by 200 g C m-2 and total SN 

increased 14 g N m-2
. There were no significant differences in total SOC or SN 

between late CRP fields seeded with native and introduced perennial grasses at either 

microsite. However, there was a trend of more total SOC under native compared to 

introduced perennial grasses. Undisturbed short grass steppe had significantly higher 

total SOC and SN under perennial grasses than all CRP fields except late fields 

seeded with native perennial grasses. There were significant microsite differences in 

total SOC and SN between and under perennial grasses in undisturbed shortgrass 

103 



steppe and late CRP fields seeded with native perennial grasses. There were also 

significant microsite differences in total SOC in late fields seeded with Agropyron 

intermedium. At the field scale, total SOC and SN increased by 30 g C m-2 and 4 g N 

m-2 between early and late CRP fields in the chronosequence (not significant; Table 

1 ). There was higher total SOC and SN in CRP fields seeded with native compared 

to introduced perennial grasses, but these differences were not significant. Total SOC 

and SN were significantly higher in undisturbed shortgrass steppe compared to all 

CRP fields. 

SOC in the fine and coarse fractions had patterns similar to total SOC across 

field types, except there were no microsite differences in late CRP fields seeded with 

Agropyron intermedium (Fig. 3b ). SN in the coarse fraction had patterns similar to 

total SN (Fig. 4b ). SN in the fine fraction differed from total SN because it was 

significantly higher between plants in undisturbed shortgrass steppe than early CRP 

fields, was significantly lower in early compared to late CRP fields, and was 

significantly higher in late CRP fields seeded with native perennial grasses than 

introduced perennial grasses. Clay content explained some of the variability in total 

SOC (r2 = 0.27, P = 0.002) and total SN (r2 = 0.28, P = 0.004). SOC and SN 

associated with clay (total- POM fractions) comprised 60-90% of the total. 

Inorganic N significantly increased between plants along the chronosequence 

in 2005, but not in subsequent years (Fig. 5). There were no significant differences in 

inorganic Nat this microsite between late CRP fields seeded with native and 

introduced perennial grasses in all years. Undisturbed shortgrass steppe had 

significantly higher inorganic N between perennial grasses than all CRP fields in all 
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years except late fields seeded with native perennial grasses in 2005 and 2007. There 

were no significant differences in inorganic N under perennial grasses between mid 

and late CRP fields in the chronosequence and between native and introduced 

perennial grasses in late CRP fields. Undisturbed shortgrass steppe had significantly 

higher inorganic N under perennial grasses than all CRP fields in 2006 and 2007 

except late fields seeded with Agropyron intermedium. Inorganic N was generally 

higher under compared to between perennial grasses in most CRP fields and 

undisturbed shortgrass steppe, but only significantly in mid CRP fields seeded with 

native perennial grasses and late fields seeded with Agryopyron intermedium. At the 

field scale, inorganic N increased by as much as six times between early and late CRP 

fields, but these differences were not significant due to high within field variability 

{Table 1). There were no significant differences between late CRP fields seeded with 

native and introduced perennial grasses. Undisturbed shortgrass steppe had higher 

inorganic N than most CRP fields in all years except for late CRP fields in 2005. 

Baseline soil respiration rates were--- 0.03 g C m-2 h-1 in mid and late CRP 

fields in the chronosequence and undisturbed shortgrass steppe (Fig. 6). Soil 

respiration increased in all fields with 10 mm precipitation addition, and maximum 

rates were nearly twice as high in early CRP fields (0.39 g C m-2 h-1
) compared to late 

CRP fields (0.21 g C m-2 h-1
) and undisturbed shortgrass steppe (0.22 g C m-2 h-1

). 

Soil respiration in control plots for the nitrogen addition experiment was 

similar to baseline measurements (Fig. 7). Nitrogen addition significantly increased 

soil respiration rate in early CRP fields and undisturbed shortgrass steppe, but not in 

late CRP fields. Early CRP fields that were fertilized had significantly higher 
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respiration rates than late CRP fields that were fertilized. There were no significant 

differences in ANPP-C among CRP fields and undisturbed shortgrass steppe in 

control plots (Fig. 8). Nitrogen addition only affected ANPP-C in early CRP fields, 

where it was significantly higher than late CRP fields and undisturbed shortgrass 

steppe. 

Discussion 

An increase ofNPP-C in mid and late CRP fields compared to early CRP 

fields demonstrates higher carbon input to SOC with increasing field age. This 

increase in NPP-C corresponded to an increase in perennial grasses (Chapter 3), 

which allocate more production below- than aboveground (Sims and Singh 1978). 

Therefore, belowground NPP-C (BNPP-C) under perennial grasses contributed the 

most to carbon input (Hook et al. 1991 ). No significant change in BNPP-C between 

mid and late CRP fields indicates that increased longevity of perennial grasses did not 

result in increased carbon input. However, an increase in basal cover of vegetation 

along the chronosequence (from 9.4% in early to 22.3% in late CRP fields) increased 

the proportion of the field with high BNPP-C. This resulted in an increase ofBNPP­

C at the field scale at a rate of 1.7 g C m-2 i 1
• 

Carbon in aboveground NPP (ANPP-C) was twice as high in late CRP fields 

compared to undisturbed shortgrass steppe. High ANPP-C in CRP fields leads to 

high aboveground litter (Chapter 3), which may have a slow decomposition rate 

(Bontti et al., in press) and a gradual transition into SOC (Melillo et al. 1989) relative 

to belowground litter. High ANPP-C in CRP fields was compensated by low BNPP­

C. BNPP-C was 15-30o/o lower (not significantly lower) in mid and late fields under 
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native perennial grasses and more than 50% lower in fields under introduced 

perennial grasses relative to under perennial grasses in undisturbed shortgrass steppe. 

Low belowground C input, especially in CRP fields seeded with introduced perennial 

grasses, limits SOC recovery potential. Lower below ground carbon input from 

introduced compared to native perennial grasses is consistent with other studies 

(Christian and Wilson 1999, Ogle et al. 2004). 

Nitrogen is tightly coupled with carbon in plant tissue (Asner et al. 1997), and 

similarly to ANPP-C, ANPP-N increased between early and mid CRP fields. The 

differences in BNPP-C among CRP fields did not exist in BNPP-N, largely due to the 

high C:N ratio in below ground tissue of native perennial grasses. Low below ground 

tissue quality can slow decomposition rate (Wedin and Tilman 1990, Janssen 1996), 

but may lead to larger amounts of soil organic carbon storage (Murphy et al. 2002). 

BNPP-N under perennial grasses coupled with increasing vegetation basal cover 

contributed to a trend of increasing BNPP-N at the field scale along the 

chronosequence of 0.02 g N m-2 i 1
. BNPP-N was much higher between and under 

perennial grasses in undisturbed shortgrass steppe relative to all CRP fields due to 

high BNPP and high percent nitrogen content in BNPP of perennial grasses in 

undisturbed shortgrass steppe. 

There were differences in BNPP-C and BNPP-N at the microsite scale in CRP 

fields with caespitose, but not rhizomatous grasses. This small scale heterogeneity 

exists because the roots of most caespitose grasses, including Bouteloua gracilis, are 

found directly under or within 5 em from edge of the plant (Coffin and Lauenroth 
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1991 ). In contrast, rhizomes can spread a greater horizontal distance from the edge of 

the plant. 

I cannot be certain that all CRP fields had the same amount of total SOC and 

SN at the time of enrollment. Differences in cropping practices, duration of cropping, 

and other site conditions may have contributed to variability in initial SOC and SN in 

CRP fields. However, I am certain that all fields were influenced by long-term 

wheat-fallow cropping and had a similar amount of SOC and SN between perennial 

grasses, which increases the likelihood that CRP fields had similar initial amounts of 

SOC and SN. Total SOC and SN decreases due to cropping practices were within the 

variability of past estimates for this region of 20-50o/o (Haas et al. 1957, Tiessen et al. 

1982, Schimel et al. 1985, Aguilar et al. 1988, Burke et al. 1989). Since SOC and SN 

estimates were made at the soil surface (0-5 em), some of the decreases could be 

attributed to vertical redistribution of C and N in the soil profile during tillage 

practices, which is different than mechanisms leading to losses from the soil (Reeder 

et al. 1998). 

Total SOC was positively correlated to BNPP-C across CRP field types and 

undisturbed shortgrass steppe (r = 0.71, P < 0.0001), a relationship consistent with 

previous findings (Gillet al. 1999). Since a majority of the BNPP-C was under 

perennial grasses, this microsite is where SOC storage occurred. Assuming similar 

initial SOC and SN in CRP fields, no significant carbon accrual occurred prior to 

perennial grass establishment, when BNPP-C was low. This supports the idea that 

SOC in CRP fields, like other grasslands is controlled by perennial grass root 

dynamics (Anderson and Coleman 1985, Dormaar 1992). A rate of increase of 22 g 
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C m-2 f 1 under perennial grasses between mid and late CRP fields is much higher 

than previously documented for this region (Burke et al. 1995) and suggests that 

substantial recovery is possible at the plant scale. However, these changes in SOC 

after perennial grass establishment were lower at the field scale (7.8 g C m-2 f 1
) and 

even lower across the entire chronosequence (1.6 g C m-2 f 1
). This rate of increase is 

lower than rates of 40-60 g C m-2 f 1 in more mesic grasslands (Lal et al. 1999, 

McLaughlan et al. 2006, Matamala et al. 2008). Carbon storage was low in CRP 

fields compared to undisturbed shortgrass steppe at the field scale. Even after 18 

years of recovery, late CRP fields seeded with native perennial grasses had 40% less 

total SOC than undisturbed shortgrass steppe. A major limitation to recovery is low 

vegetation basal cover in CRP fields relative to undisturbed shortgrass steppe, which 

limits the spatial extent of root growth. Lower BNPP-C in CRP fields under 

introduced compared to native perennial grasses lead to more than 100 g C m-2 

difference in SOC (not significant). With a longer recovery time, this difference in 

SOC may become more pronounced. 

The strong correlation between total SOC and SN supports the close linkage 

between the carbon and nitrogen cycles in the soil. Similar to carbon cycling, total 

SN was positively correlated to BNPP-N across CRP field types and undisturbed 

shortgrass steppe (r = 0.84, P < 0.0001). Since the nitrogen cycle is relatively closed 

between the soil and vegetation (Rosswa111976), it is more difficult to determine the 

mechanism by which total SN increased at the field scale along the CRP 

chronosequence at a rate of0.2 g N m-2 f 1
. Potential mechanisms include increased 

input through nitrogen fixation, redistribution of the soil profile, or atmospheric 
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deposition (Knops and Tilman 2000). Symbiotic nitrogen fixation was likely low in 

CRP fields due to < 1% canopy cover of legumes in CRP fields and undisturbed 

shortgrass steppe (Chapter 2), and most redistribution of the soil profile occurs during 

tillage and is minimal during CRP enrollment.. Atmospheric deposition estimates in 

the shortgrass steppe region are~ 0.5 g N m-2 i 1 (NADP 2007), which is higher than 

the rate of total SN increase in CRP fields. This increases the likelihood that changes 

in SN were influenced by outputs through leaching and volatization. SN may have 

increased along the chronosequence because it progressively became tied up in plant 

biomass and soil organic matter, reducing its potential to be lost from the system 

(Conant et al. 2005). 

Differences in total SOC and SN at the microsite scale in undisturbed 

shortgrass steppe and late CRP fields seeded with native perennial grasses are 

consistent with heterogeneity of BNPP in these field types. Below ground litter, 

which accumulates from BNPP, contributes to high total SOC and SN under 

perennial grasses (Hook et al. 1991 ). Aboveground litter, physical erosion and 

deposition from between to under perennial grasses also contribute to this pattern 

(Burke et al. 1998). The microsite differences in total SOC that existed in CRP fields 

seeded with Agropyron intermedium, a rhizomatous perennial grass is contradictory 

to previous findings (Derner and Briske 2001 ). High basal area of Agropyron 

intermedium ramets and noticeable accumulation of aboveground litter (personal 

observations) under clones may have contributed to this heterogeneity. 

Carbon and nitrogen in the coarse POM fraction represent pools with an 

intermediate turnover (Cambardella and Elliott 1992), but more recent plant inputs 
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than fine POM (Kelly et al. 1996). This fraction had patterns across field types 

similar to total SOC and SN, suggesting that much of the recovery in carbon and 

nitrogen storage could be associated with a pool with relatively short turnover time ( < 

20 years; Kelly et al. 1996, Gill et al. 1999). A significantly lower C:N ratio in fine 

relative to coarse POM across field types (t = 31.55, P < 0.0001) supports the idea 

that this fraction represents a later stage of decomposition, which is chemically and 

physically more resistant and has a slower turnover time than coarse POM (Kelly et 

al. 1996). There was little recovery of carbon and nitrogen in fine POM in mid 

relative to early CRP fields. This supports earlier work by Robles and Burke (1998) 

in CRP fields of comparable age at a site near this study and their conclusion that the 

turnover time of the fine POM pool is longer than the short time perennial grasses 

have been established in fields. However, late CRP fields seeded with native 

perennial grasses had double the carbon and nitrogen in the fine POM fraction 

compared to mid CRP fields. There were also significant microsite differences in 

these fields, which collectively indicate native perennial grasses have contributed to 

the formation of a more recalcitrant form of organic matter. This recovery was faster 

than expected given the long turnover time of this pool(> 20 years; Kelly et al. 1996, 

Gillet al. 1999). However, some recovery may be possible ifC and N inputs from 

plants become quickly stabilized in soils (McLaughlan et al. 2006). Alternatively, the 

formation of fine POM could be faster than expected because native perennial grasses 

had relatively low root tissue quality (high C:N ratio) and may have had more lignin, 

which contributed to the formation of recalcitrant SOM (Paustian et al. 1992). This 

increase of fine POM occurred at the soil surface, where accumulation is most likely 
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to occur (Gillet al. 1999). Recovery of recalcitrant soil organic carbon is important 

because it contributes more to the long-term storage of carbon than active pools, 

which quickly turnover C back into the atmosphere (Hungate et al. 1997). 

Soil physical characteristics had an important influence on the abundance of 

SOC and SN. A large percentage of total SOC and SN was associated with clay in 

CRP fields due to the physical and chemical stability provided by mineral organic 

binding (Tisdall and Oades 1982). Differences in clay content among fields and 

along the chronosequence explained some of the variability of SOC and SN. Bulk 

density was also associated with SOC and SN. Early CRP fields had higher than 

expected total SOC and SN because there was a greater mass of surface soil at these 

compacted sites (Murty et al. 2002). This resulted in a 2% decrease of total SOC and 

SN on an area basis (g m-2
) at the field scale between early and mid CRP fields. 

However, after accounting for differences in bulk density, there was an 18% increase 

in total SOC and 29% increase in total SN on a mass basis (g ki1
) between these 

fields. The reduction in bulk density that occurred between mid and late CRP fields 

was likely due to increased soil aggregate formation associated with the presence of 

roots (Elliott 1986). 

Inorganic N is a relatively small proportion of total SN (Post et al. 1985), 

which is biologically available and determined by the mineralization of soil organic 

N. The increase of in situ inorganic N along the chronosequence, especially under 

perennial grasses was related to an increase in total SN. Although I did not measure 

soil organic N directly, the largest pool of total SN was organic. A positive 

correlation between inorganic Nand total SN in all years (r = 0.46, P < 0.0001) 
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supports the linkage between organic and inorganic N. An increase in inorganic N 

along the chronosequence is consistent with other studies (Burke et al. 1995, Reeder 

et al. 1998) and demonstrates improved nutrient availability through conversion to 

perennial grassland. In contrast, inorganic N decreased as field age increased in 

mesic grassland chronosequences (Baer et al. 2002, Camill et al. 2004). Since resin 

bags compete for inorganic N with plants and microbes, the discrepancy is likely due 

to high rates of nitrogen immobilization and plant uptake at the mesic site (Barrett 

and Burke 2002). The quantity and quality of plant litter also regulates N 

mineralization (Wedin and Tilman 1990), with high quantity and quality of litter 

inputs causing high mineralization rates. BNPP-N was positively correlated (r = 0.56, 

P < 0.0001), while the C:N ratio ofbelowground plant tissue was negatively 

correlated (r = 0.42, P < 0.0001) to inorganic nitrogen across all years. Since the 

quantity and quality ofbelowground plant inputs was highest in undisturbed 

shortgrass steppe relative to all CRP fields, this is where there was the highest 

nitrogen mineralization. Inorganic N was also positively correlated to the amount of 

precipitation that occurred while the resin bag was in the soil each year (r = 0.33, P = 

0.001). Water availability likely affected inorganic nitrogen through its control ofN 

mineralization rate and its influence on ion transport to the resin bags (Binkley 1984). 

Carbon is closely linked to nitrogen in organic pools, but becomes decoupled 

as it is respired as C02• Respiration losses are important because they influence the 

size and turnover of SOC in recovering CRP fields (Raich and Schlesinger 1992). 

Baseline soil respiration measurements revealed that early and late CRP fields were 

not significantly different from each other or undisturbed shortgrass steppe in 
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potential carbon losses. This implies that the high respiration rates associated with 

tillage practices may have decreased in CRP fields. However, maximum respiration 

rates that occurred with water addition were almost twice as high in early CRP fields 

compared to undisturbed shortgrass steppe. Possible explanations for higher 

maximum respiration rates in these fields include a lack of soil aggregate recovery 

(Elliott 1986), which leaves labile SOC exposed, or high quantity and quality of 

aboveground litter from annual plants that dominate this field (Chapter 2). These 

maximum respiration rates are not likely to be sustained over the long-term, but 

represent the potential for short-term carbon loss during periods when water 

availability does not limit respiration. This potential could mean that low C inputs in 

early CRP fields may be rapidly lost through respiration, which may help explain low 

SOC accrual between early and mid CRP fields. It also suggests that early CRP fields 

may serve as a source, rather than a sink, for atmospheric carbon. 

Nitrogen cycling affects carbon storage (Van Cleve and Powers 1995). One 

example of this is that human-induced N fertilization may lead to increased C storage 

(Schlesinger and Andrews 2000). N availability influences C storage through its 

influence on NPP. Although the internal recycling of N may meet the requirements 

for NPP in CRP fields, N availability can be low and limit NPP (Vitousek and 

Howarth 1991). This was the case in early CRP fields, where inorganic N was low 

and additional N doubled ANPP-C. Fast growing annual species in these fields 

rapidly utilized the nitrogen to increase photosynthesis, and consequently production, 

which can lead to higher C input into SOC. Slower growing perennial grasses had 

high nutrient use efficiency (Vitousek 1982) and did not respond to increased 
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inorganic N over the growing season. Nitrogen availability can also affect carbon 

storage through its effect on C efflux. Nitrogen fertilization increased the soil 

respiration rate of early CRP fields and undisturbed shortgrass steppe, which reduces 

SOC storage. Additional nitrogen likely had effects on microbial metabolism and 

decomposition, but the effects ofN fertilization on soil C turnover are complex (Neff 

et al. 2002) and depend on substrate chemistry (Knorr et al. 2005, Hobbie 2008). 

Additional N may have increased decomposition of labile SOC during the study and 

increased carbon in microbial biomass, which turns over rapidly, but may eventually 

increase SOC with slower turnover times (Barrett and Burke 2002), which leads to 

slow decomposition rate (Berg and Matzner 1997). Longer-term effects may also 

include feedbacks between high plant litter quality and accelerated decomposition 

(Vinton and Burke 1995, Bontti et al., in press). High respiration rate in early CRP 

fields due to nitrogen addition may counter-balance any of the effects that lead to 

increased SOC storage. 

The capacity of soil to offset anthropogenic sources of carbon (Lal2004) is 

largely determined by land use. The net balance ofNPP inputs and respiration 

outputs determines SOC storage in CRP fields. These fluxes and SOC were 

influenced by time since CRP enrollment and seed mix. No significant carbon 

accrual occurred prior to perennial grass establishment, when NPP-C was low and 

potential respiration losses were high. The increased dominance of perennial grasses 

in CRP fields led to an increase in NPP-C along the chronosequence, which increased 

total SOC by as much as 22 g C m-2 f 1 and may have contributed to the formation of 

recalcitrant SOC after 18 years. However, the carbon storage resulting from this 
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increase in total SOC was not statistically significant at the field scale due to low 

vegetation basal cover in CRP fields and was only 4% of the total SOC in undisturbed 

shortgrass steppe. Low BNPP-C under introduced compared to native perennial 

grasses led to relatively low SOC and less small scale (microsite) heterogeneity. 

Nitrogen (N) was linked to BNPP-C and SOC and recycled between vegetation and 

soil. N availability could largely be explained by increases in soil organic nitrogen, 

but was also related to belowground tissue quality and precipitation. Increases in N 

availability may have effects on carbon storage, especially in early CRP fields. 
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Field Type 
SGS Native - Early Native- Mid Native - Late BRIN -Late AGIN -Late 

ANPP-C 26.8 (4.2t 32.7 (2.9t 55.1 (0.9)b 49.1 (4.3)b 43.1 (4.3)b 51.8 (4.2)b 

ANPP-N 0.8 (0.2)ab 0.8 (0.1t 1.3 (0.3)b 1.2 (0.3)b 0.8 (0.2)ab 0.9 (0.1)ab 

BNPP-C 101.8 (12.0t 22.1 (3.2)b 49.5 (7.7)bc 52.6 (8.9}" 39.3 (4.6)bc 36.8 (4.2)bc 

BNPP-N 2.3 (0.3t 0.4 (0.1)b 0.6 (0.2)b 0.8 (0.2)b 0.7 (O.O)b 0.5 (O.l)b 

soc 677.5 (106.0t 374.5 (24.3)b 333.9 (25.4)b 404.0 (39.0)b 360.6 (20.4)b 375.8 (20.4)b 

SN 67.5 (8.6t 41.5 (5.8)b 40.6 (4.5)b 45.5 (4.6)b 44.1 (2.1)b 43.0 (3.3)b 

N- 2005 21.3 (2.1t 2.3 (0.7)b 7.2 (2.5)b 14.9 (5.0)ab 8.5 (3.7)ab 13.5 (0.9)ab 

N- 2006 35.2 (9.9t 9.3 (2.2)b 12.9 (1.8)b 12.7 (1.2)b 14.3 (3.2)b 16.5 (0.4)b 

N- 2007 43.6 (6.6t 7.1 (0.7)b 12.4 (0.7)b 20.9 (6.7)b 14.1 (7.0)b 17.4 (2.3)b 

Table 1. Field scale estimates of carbon and nitrogen in above- (ANPP-C, ANPP-N) 
and belowground net primary production (BNPP-C, BNPP-N), total soil organic 
carbon (SOC), total soil nitrogen (SN), and inorganic nitrogen (N) in 2005, 2006, and 
2007. Field scale estimates were made by weighting micro site estimates according to 
the proportion basal cover of each microsite within each field. Different letters within 
the same row indicate significant differences (Tukey adjusted P < 0.05) among field 
types. 

Field Type 
SGS Native- Early Native- Mid Native- Late BRIN- Late AGIN- Late 

Bulk Density Between 1.09 (0.03)* 1.57 (0.01) 1.21 (0.04)* 1.17 (0.03)* 1.18 (0.04)* 1.12 (0.08)* 
Under 1.00 (0.01) 1.10 (0.02) 1.09 (0.02) 1.06 (0.03) 1.04 (0.06) 

Texture %Sand 61.8 (8.9) 76.0 (1.8) 70.8 (3.5) 62.1 (7.4) 63.4 (3.0) 68.5 (1.9) 
%Clay 20.4 (4.6) 11.8 (0.5) 15.2 (0.7) 19.4 (7.7) 17.7 (2.5) 19.0 (2.1) 
%Silt 17.8 (5.1) 12.2 (2.2) 14.0 (2.8) 18.5 (0.3) 18.9 (4.2) 12.6 (0.5) 

Table 2. Soil bulk density (g cm-3
) between and under perennial grasses and soil 

texture(%)(± standard error) in undisturbed shortgrass steppe (SGS), early, mid, and 
late CRP fields seeded with a native seed mix, and late CRP fields seeded with 
Bromus inermis (BRIN) and Agropyron intermedium (AGIN). Bold indicates that 
native-early fields had a significantly (Tukey adjusted P < 0.05) higher bulk density 
from all other field types and an asterisk(*) indicates significant difference (P < 0.05) 
between and under perennial grasses within a field type. 
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Late Late 

Field Type 

Figure 1. Carbon in belowground net primary production carbon (BNPP; ± SE) 
between and under perennial grasses in undisturbed shortgrass steppe (SGS), early, 
mid, and late CRP fields seeded with a native seed mix, and late CRP fields seeded 
with Bromus inermis (BRIN) and Agropyron intermedium (AGIN). Different upper 
case letters designate significant differences (Tukey adjusted P < 0.05) in BNPP 
among field types and different asterices (*) designate significant (P < 0.05) 
differences in BNPP between and under perennial grasses. 
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Figure 2. Nitrogen in belowground net primary production (BNPP; ± SE) between 
and under perennial grasses in undisturbed shortgrass steppe (SGS), early, mid, and 
late CRP fields seeded with a native seed mix, and late CRP fields seeded with 
Bromus inermis (BRIN) and Agropyron intermedium (AGIN). Different upper case 
letters designate significant differences (Tukey adjusted P < 0.05) in BNPP among 
field types and different asterices (*)designate significant differences (P < 0.05) in 
BNPP between and under perennial grasses. 

127 



1000 

800 

600 

,-..... 

~ 400 a 
u 
~ 200 

= = ,.Q 
~ 

(a) 

~ o...t......,-
u 
CJ ...... = ~ 
~ 
~ 300 
0 -...... 
~ 250 

200 

(b) 

SGS 

- Total -Between 
- Total- Under 

Native- Native- Native- BRIN- AGIN-
Early Mid Late Late Late 

c:::::J Coarse .. Between 
r:z:z:J Coarse- Under 
- Fine- Between 
- Fine- Under 

SGS Native- Native- Native.. BRIN- AGIN-
Early Mid Late Late Late 

Field Type 

128 



Figure 3. Total (a), coarse and fine (b) soil organic carbon (g C m-2
; ± SE) between 

and under perennial grasses in undisturbed shortgrass steppe (SGS), early, mid, and 
late CRP fields seeded with a native seed mix, and late CRP fields seeded with 
Bromus inermis (BRIN) and Agropyron intermedium (AGIN). 
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Figure 4. Total (a), coarse and fine (b) soil nitrogen (g N m-2
; ± SE) between and 

under perennial grasses in undisturbed shortgrass steppe (SGS), early, mid, and late 
CRP fields seeded with a native seed mix, and late CRP fields seeded with Bromus 
inermis (BRIN) and Agropyron intermedium (AGIN). 
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Figure 5. Inorganic nitrogen (nitrate and ammonium; ± SE) between and under 
perennial grasses in undisturbed shortgrass steppe (SGS), early, mid, and late CRP 
fields seeded with a native seed mix, and late CRP fields seeded with Bromus inermis 
(BRIN) and Agropyron intermedium (AGIN) in 2005 (a), 2006 (b), and 2007 (c). 
Different upper case letters designate significant differences (Tukey adjusted P < 
0.05) in inorganic nitrogen among field types and an asterisk(*) designates a 
significant difference (P < 0.05) in inorganic nitrogen between and under perennial 
grasses within a field type. 
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Figure 6. Baseline and maximum soil respiration rate (g C m-2 h-1; ± SE) in 
undisturbed shortgrass steppe (SGS), early, and late CRP fields seeded with a native 
seed mix. Different upper case letters designate significant differences (Tukey 
adjusted P < 0.05) in baseline or maximum respiration rate among field types. 
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Figure 7. Soil respiration rate (g C rn-2 h-1; ± SE) in control and nitrogen addition 
plots in undisturbed shortgrass steppe (SGS), early, and late CRP fields seeded with a 
native seed mix. Different upper case letters designate significant differences (Tukey 
adjusted P < 0.05) in respiration rate among field types. An asterisk(*) designates a 
significant difference (P < 0.05) in soil respiration rate between control and nitrogen 
addition plots within a field type. 
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Field Type 

Figure 8. ANPP (g C m-2; ± SE) in control and nitrogen addition plots in undisturbed 
shortgrass steppe (SGS), early, and late CRP fields seeded with a native seed mix. 
Different upper case letters designate significant differences (Tukey adjusted P < 
0.05) in respiration rate among field types within a treatment type. An asterisk (*) 
designates a significant difference (P < 0.05) in ANPP between control and nitrogen 
addition plots within a field type .. 
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Chapter 5: Summary and Conclusions 

CRP is an extensive land use (USDA Farm Service Agency 2008) that 

represents an important transition between wheat-fallow cropping and undisturbed 

shortgrass steppe in Colorado. CRP seeding practices promote the establishment of 

perennial grasses (Skold 1989), which provides an opportunity to study the state and 

rate of recovery of both plant community and ecosystem properties disrupted by 

cropping practices. The results from my dissertation demonstrate how time since 

CRP enrollment, seed mix, and environmental variability affect the following 

variables in CRP fields relative to the shortgrass steppe: 

1. Plant community composition 

2. Vegetation structure and net primary production 

3. Soil carbon and nitrogen 

Time since CRP enrollment explained much of the variability in plant 

community composition. CRP fields underwent succession as time since CRP 

enrollment increased. Early CRP fields had an annual forb and grass community, 

which was likely influenced by the seedbank and propagule pressure from nearby 

fields (Egler 1954). Seed mix determined which perennial grasses dominated the 

plant community within 18 years of CRP enrollment, but the growth of perennial 

grasses was slow (1% increase in canopy cover per year) compared to land converted 

to grasslands in more mesic regions (1 0-15%; Baer et al. 2002, Camill et al. 2004). 

This gradual recovery allowed for a dynamic plant community composed of species 

with different life forms, photosynthetic pathways, and origins. The amount and 

seasonality of precipitation affected the relative differences in canopy cover between 
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species and functional types. Interactions among species and functional types further 

contributed to changes in plant community composition during succession (Connell 

and Slatyer 1977). High canopy cover of Bromus tectorum, an introduced annual 

grass, in mid CRP fields may have inhibited perennial grass growth. Species density 

declined along the chronosequence, largely driven by a loss of annual forbs, as seeded 

perennial grass cover increased. Species density was lowest in late CRP fields seeded 

with introduced perennial grasses. Native perennial grasses that were not in the seed 

mix colonized CRP fields; even those seeded with introduced perennial grasses, and 

are likely to influence future community dynamics (Coffin et al. 1996). 

Vegetation structure was indirectly influenced by time since CRP enrollment 

and seed mix through plant community composition. The replacement of annual 

species with perennial grasses in CRP fields as time since CRP enrollment increased 

caused an increase in plant basal cover and height, and decrease in plant density. 

Since water availability was low, there were tradeoffs in vegetation structural 

characteristics. For example, tall growing introduced perennial grasses had low plant 

basal cover. Vegetation structure can constrain aboveground net primary production 

(Lauenroth and Sala 1992), but this was only apparent in CRP fields when water was 

not limiting. All late CRP fields had the potential to support twice as much ANPP as 

undisturbed shortgrass steppe in years above mean annual precipitation. In these wet 

years, there was a density-dependent effect on ANPP, such that each perennial grass 

unit in late CRP fields was more productive when it occurred at low density. 

Contrary to the effects introduced species may have on ANPP (Smith and Knapp 

1999, Christian and Wilson 1999), there were no differences in ANPP at the field 
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scale between fields seeded with native and introduced perennial grasses. Patterns of 

litter biomass in CRP fields were closely related to ANPP. In contrast to high ANPP 

and aboveground litter biomass, below ground biomass and below ground NPP in CRP 

fields was significantly lower than undisturbed shortgrass steppe, which has 

implications for long-term survival in a water limited region (Burke et al. 1998). 

NPP inputs, respiration outputs, and soil physical characteristics determined 

SOC storage and were influenced by time since CRP enrollment and seed mix. No 

soil carbon storage occurred early in the CRP chronosequence, when NPP-C was low 

and potential respiration losses were high. This suggests that early CRP fields may 

serve as a carbon source to the atmosphere until perennial grass establishment. 

Perennial grasses in mid to late CRP fields increase carbon input, especially through 

belowground NPP-C under native perennial grasses. This supports the idea that SOC 

in CRP fields, like other grasslands is controlled by perennial grass root dynamics 

(Anderson and Coleman 1985, Dormaar 1992). SOC under perennial grasses 

increased by 22 g C m-2 f 1 from mid to late CRP fields and may have included the 

formation of recalcitrant SOC. However, carbon storage resulting from this increase 

was low compared to undisturbed shortgrass steppe at the field scale. Even after 18 

years of recovery, late CRP fields seeded with native perennial grasses had 40% less 

total SOC than undisturbed short grass steppe. A large percentage of total SOC was 

associated with clay in CRP fields due to the physical and chemical stability provided 

by mineral organic binding (Tisdall and Oades 1982). Low BNPP-C under 

introduced perennial grasses led to relatively low SOC and less small scale 

(microsite) heterogeneity than native perennial grasses. Nitrogen (N) was closely 
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linked to BNPP-C and SOC and recycled between vegetation and soil. N availability 

could largely be explained by increases in soil organic nitrogen, but was also related 

to below ground tissue quality and precipitation. Increases in N availability may have 

effects on carbon storage, especially in early CRP fields. 

The research findings of this dissertation contribute to an understanding of the 

ecological changes that occur with shifts in land use and recovery from large scale 

disturbance. CRP land use facilitates a plant community dominated by perennial 

grasses and contributes to the recovery of ecosystem properties. Time since CRP 

enrollment, seed mix, and environmental variability affected plant community 

composition, vegetation structure and net primary production, and soil carbon and 

nitrogen. Within two decades of enrollment, CRP fields had a slow increase of 

seeded perennial grass cover, which allowed other functional types to dominate. 

Fields seeded with native perennial grasses were compositionally more similar to 

undisturbed shortgrass steppe than fields seeded with introduced perennial grasses. 

High above- to below ground net primary production and low vegetation basal cover 

in all CRP fields likely limited soil carbon and nitrogen recovery at the field scale. 

Low and variable water availability in this semiarid region influenced a slow, 

variable, and discontinuous trajectory of plant community and ecosystem recovery. 
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