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ABSTRACT

The objective of this study was to determine the distribution
of the tree drag force within various model forest canopies subjected
to various ambient wind conditions. Ultimately this information may be
related to diffusion within the forest canopy.

The influence on individual tree drag due to neighboring trees
was investigated by arranging the trees in various configurations of
columns and rows, the columns being parallel to the arbient wind and
the rows being perpendicular. Two tree spacings for the columns and
rows were investigated. Furthermore, a large forest canopy field was
investigated that covered an area of twenty-one square meters. For this
arrangement it was determined that the tree drag fielc can be classi-
fied into two zones - an initial zone and a steady decay zone.

In order to study the influence of the boundary layer development
on tree drag, the various arrangements of trees were tested under a thin
boundary layer condition and under a thick boundary layer condition.

In the course of this study a strain gage force dynamometer was
developed that can reliably measure a drag force as small as 0.1 gram

on a model tree.
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1. INTRODUCTION

This laboratory study is one part of a program to study diffusion
and flow characteristics in canopy fields under laboratory conditions bdy
the staff in the Fluid Mechanics Program at Colorado State University.
The canopy fields considered to date have been those composed of closely
spaced plastic strips representing a vegetative field, small cylindrical
pegs and small plastic model trees representing a forest. Within the
program of study it is intended to relate diffusion characteristics to
the drag forces on the elements in the canopy field.

This study investigated the drag forces on the individual elements
in a model tree forest. The purpose of this report is to present the
methods used and the laboratory information obtained. Subsequent reports
will present theoretical developments.

It was not intended to perform a completely exhaustive study of
how tree drag varies with the change of certain canopy parameters.
Rather, it was intended to obtain at least preliminary knowledge of the
influence of the number and spacing of trees and tree submergence in the
boundary layer on tree drag. Therefore, the following experiments were
performed on both tree spacings of 0.127 m and 0.254 m:

1. Various arrangements of trees in columns and rows were used,

ranging from one tree to several.

2. Ambient wind velocities ranged from 0.61 mps to 13.70 mps.

3. The Army Meteorological Wind Tunnel was used for the case

where the boundary layer thickness was about three times the



height of the tree, and this was defined as the thick
boundary layer condition.

4. The Colorado State University Wind Tunnel was used for the
thin boundary layer condition, for which the boundary layer
thickness was about 3/4 the height of the trse at the first
tree position.

This study was made feasible through the development of a strain
gage force dynamometer. This transducer measures accurately the total
drag force on an artificial tree regardless of where thes resultant of
the drag force is applied.

All the experimental work was carried out in the Fluid Dynamics
and Diffusion Laboratory, Colorado State University, Fort Collins,

Colorado.



2. EXPERIMENTAL EQUIPMENT

2.1 The Model Forest Canopy and Individual Tree Elements

Each artificial tree in the model forest was made of plastic and is
ordinarily used for decoration. The dimensions of the trees were about
16 cm in height and 10.8 cm in the largest horizontal direction. Of
course, some variation existed from tree to tree. The tree trunk was
0.47 cm in diameter and the distance from the floor to the lower branches
was about 3.5 cm (see Figure 2.1). -

A 0.0127m x 0.915 m x 2.440 m plywood plate was used for the
foundation of the trees. Holes were drilled in the plate 0.127 m apart
in both the longitudinal and lateral directions. The tree trunks were
taped to pegs which fitted snugly into the holes. Hence, for the 0.127 m
tree spacing, the trees were placed according to the holes on the plate
and the 0.254 m tree spacing case was obtained by placing trees in
every second hole.

The arrangements of the model tree forest canopies varied quite
widely. The trees were arranged in one and three columns parallel to
the flows, with from one to several trees in each column. In this report
the term 'row'" refers to the alignment perpendicular to the flow. A
sketch of the tree arrangements is placed on each of the figures in
Chapter 3. Drag force readings were taken on the following columns:

1. Column A only - trees placed along the centerline of the

wind tunnel in the longitudinal direction only.
2. Readings taken on column A with columns B and C in place -

columns B and C placed on both sides of column A.



3. Readings taken on column B - columns A and C were still in

place.

2.2 The Strain Gage Force Dynamometer

The dynamometer was made of brass and was set on a metal plate as
shown in Figure 2.2. This transducer measures accurately the total drag
force on an artificial tree regardless of where the resultant of the
drag force is applied. The mathematical proof follows.

Figure 2.3 shows a constant resultant force applied at a position,
%2 , on a stiff rod which is inserted into the vertical receptical of the
transducer. The force pushes the rod through a horizontal displacement,
e . L 1is a constant, from level A to the bearings at level B .
Consider & as a variable, from level B to the resultant position of
the force. Two shearing forces, V1 and V2 , and two restoring moments,

M1 and M2 , are exerted on legl and leg 2 respectively. T1A is the

tension in leg 1 and T the compression in leg 2. W 1is the total

2A
weight of the instrument, considered as a concentrated load at the
center.

Consider the free body diagram 1 shown in Figure 2.4:

LF =0 (1)
then
F = P1 + P2 (2)
and
Tt F =0 3
y (3)
hence
W = T2B - TiB (4)



Taking moments about hinge 1 gives:

z M1 =0 (5)
then
_Fo . W
T=x"*2 ()
thus
_FL W
Tg=%x "2 (7)

Now consider the free body diagram 2 shown in Figure 2.5:

e, = e, =e (8)

from
- Q

LMy, =0 (9)

M1 = PlL - TlB e (10)
and

LM, =0 (11)

M, = P,L + Tpe . (12)
The total moment is

M1 + M2 = L (P1 + P2) + e (T2B - TlB) (13)
or

M1 + M2 = LF + eW (14)
but ,

L > e and F > W , therefore LF >> eW
thus,

M, + M, = LF (15)

From Equation (15), the conclusion can be drawn that the total
moment depends only on the constant resultant force F and the constant

distance L .



The above results were verified experimentally for F ranging
from 1 gram to 50 grams and for £ ranging from 5 cm to 14 cm.
Figure 2.6 is the calibration curve which was obtained by applying the
various loads at one position on the stiff rod. The response did not
change when the load was shifted to another position on the rod.

Figure 2.7 shows the bridge arrangement of the strain gages and
Figure 2.8 shows the dynamometer placed in the model forest.

Instruments used for the study are shown in Figure 2.9. The
eight-volt D.C. power supply for the strain gages is shown on the far
left and next to it is the circuit which adds M1 and M2 electronically.
The D.C. Micro Volt-Ammeter, model 425 A type by Hewlett-Packard, is at
the far right of Figure 2.9. The strain gages used for this force
dynamometer were made by Micro-Measurements Co., type EA-09-125BB-120,
which has resistance 120 * 0.15% ohms and gage factor tolerance * 0.5.

2.3 The Army Meteorological Wind Tunnel and the Colorado State University
Wind Tunnel

The Army Meteorological Wind Tunnel was constructed by Colorado
State University for the U.S. Army under Contract DA-36-039-SC-80371.
The tunnel features a test section of 27 m length and a nominal cross-
sectional area of 1.8 m by 1.8 m with a movable ceiling which can be
adjusted for establishing negative and positive longitudinal pressure
gradients or a zero pressure gradient. A large contraction ratio of
9:1 in conjunction with a set of four damping screens yields an ambient
turbulence level of about 0.1%.

The tunnel can be used for either closed or open loop operation.

Test-section air velocities range from about 0 to 37 mps and the ambient



temperature of the air can be varied from 0°C to 85°C at medium speeds.
The humidity of the ambient air can be controlled.

The tunnel has a 12.2 m section of the test-section which can be
heated or cooled to permit temperature differences between the cold
plate and hot air of 65°C and the hot plate and cold air of more than
105°C.

A carriage system is available which permits remote placement
of probes. Instrumentation associated with the facility consists of a
complete system for sensing, analyzing and recording turbulence sta-
tistics and mean value of velocity, temperature and concentration of
the tracer (mean values only).

The Colorado State University Wind Tunnel has a test section of
9 m length and a nominal cross-sectional area of 1.8 m by 1.8 m. This
tunnel compliments the longer tunnel in that it allows the pursuit of
less complex programs in an economical manner. The performance
characteristics of the two tunnels are summarized in Table 2.1.

Drawings of the wind tunnels are presented in Figures 2.10 and 2.11.



3. RESULTS AND DISCUSSIONS

The model tree forest canopies were subjected to a thin boundary
layer condition and to a thick boundary layer condition. Ambient wind
velocities of 0.61, 1.52, 3.05, 6.10, 9.15 and 13.70 mps were applied
for both conditions of the boundary layer. The flow conditions were
thermally neutral, i.e., neither air nor wind-tunnel floor were heated
or cooled. Tree spacings of 0.254 m and 0.127 m were studied.

In general, the tree drag force was larger for the thin boundary
layer than for the thick boundary layer. The tree drag force was also
larger for the 0.254 m tree spacing case than for the 0.127 m tree
spacing case.

A three-dimensional flow condition existed for the tree arrange-
ments adopted for this study. The first row of trees created an
arrangement of jets and wakes, which persisted for some distance down-
stream. A wake was formed behind the body of each tree and a jet was
formed between the trunks and below the branchy portions of the trees.
These jets and wakes showed some degree of influence on the mean value
of tree drag force.

The local tree drag vs the longitudinal distance of a tree from
the origin are presented in Figures 3.1 to 3.6 for the thin boundary
layer condition and in Figures 3.12 to 3.17 for the thick boundary layer
for the case of twenty rows of trees and various wind vzlocities. The
local tree drag for similar conditions but for various numbers of rows

is summarized in the tables. Figure 3.7 shows the boundary layer



development over one column of trees for the thin boundary layer condition
and Figure 3.11 shows the boundary layer development over the center
column of three columns of trees for the thick boundary layer conditicn.
Figures 3.8 to 3.10 summarize the results for the thin boundary layer
condition for a wind velocity of 13.7 mps. The origin was considered to
be one tree spacing upstream of the first tree so that the position of
the first tree could be plotted on logarithmic graph paper. The reader
should note three things, the drag forces of the first row of trees, the
reduction of the drag forces from the first row to the second row, and
the decay of the drag forces from the third row onwarc. All the labora-
tory information is tabulated in Tables 3.1 to 3.12.

Vertical mean velocity profiles were taken behind and between
trees, and within and above the canopy at various stations. The trans-
verse mean velocity profiles were also taken at two elevations within the

canopy in accord with the above various stations. These are not included

in this report.

3.1 Forest Canopy Subjected to a Thin Boundary Layer

The thin boundary layer case was studied in thz Colorado State
University Wind Tunnel which provided a boundary layer of about eleven
centimeters at the first tree position as shown in Figure 3.7. The
first tree was located at 1.45 m from the leading edge of the thermal
floor test plate on the wind tunnel floor as shown in Figure 2.11. At
the tenth tree position, the boundary layer had developed to 29 cm
under 6.10 mps ambient wind velocity. The boundary layer development

for 1.52 and 13.70 mps ambient wind velocities are also shown in Figure

3.7.
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3.1.1 One column of trees - Because of the larze number of

different test canopy conditions, only one example will be discussed -
that for the 13.70 mps ambient wind velocity, considering all the tree
rows for 0.127 m and 0.254 m tree spacings (see Figure 3.8).

For all conditions, the drag force on the first tree varied only
from 47 grams to 52 grams. The 0.127 m tree spacing had a 9 gram
average tree drag force and the 0.254 m tree spacing had a 16 gram
average tree drag force. Hence, the average tree drag force for 0.254 m
tree spacing was 1.77 times larger than that of 0.127 m tree spacing.
The average tree drag forces were calculated without including the
forces on the first tree.

For both tree spacing cases, the tree drag force dropped sharply
after the first tree. The lowest tree drag occurred at either the second
or third tree. Then the drag force varied rather mildly, or even re-
mained constant, on downstream. The lowest tree drag force was at the
third tree for the 0.127 m tree spacing and was at the second tree for

the 0.254 m tree spacing.

The laboratory data for all the various ambient wind velocites are
reproduced in Tables 3.1 and 3.2. Figures 3.1 and 3.4 show the case of
twenty rows of trees for all the various ambient wind velocities and. -
Figure 3.8 summarizes the information for all row conditions for an

ambient wind velocity of 13.7 mps.

3.1.2 Three columns of trees - As in Article 3.1.1 only one

example of the results will be discussed. The example will be the test
data for 13.70 mps ambient wind velocity and all the row arrangements

(see Figures 3.9 and 3.10).



11

Once again, the drag force on the first row of trees varied from
47 grams to 52 grams for all row situations. The average tree drag was
calculated in the same manner as for the one column of trees case. The
0.127 m tree spacing had a 6.3 gram average tree drag force on column A
and a 7.8 gram average drag force on column B. The 0.254 m tree spacing
had an average drag force of about twice as large as or the corresponding
column in the 0.127 m tree spacing case. They were 13.8 grams and 15.2
grams for column A and column B respectively. Column B consistently had
more drag force than column A.

For the 0.254 m tree spacing, the drag force dropped sharply from
the first tree to the second tree of column A and column B. The drag
force increased at the third row of trees, then decreased slowly farther
downstream. For the 0.127 m tree spacing, the drag force dropped
sharply to the third row of trees, then increased somewhat for the trees
on column B, but dropped slowly and continuously downstream for the
trees on column A.

The laboratory data for all the various ambient wind velocities
are reproduced in Tables 3.3 to 3.6. Figures 3.2, 3.3, 3.5 and 3.6
show the case of twenty rows of trees for all the various ambient wind
velocities and Figures 3.9 and 3.10 summarize the information for all

row conditions for an ambient wind velocity of 13.7 mps.

3.2 Forest Canopy Subjected to a Thick Boundary Layer

The model forest subjected to a thick boundary layer was studied
in the Army Meteorological Wind Tunnel. The boundary layer thickness
at the first tree position was 57 cm thick, which was about three and a

half times the height of the trees. The first tree was located at
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0.725 m from the leading edge of the thermal floor test plate as shown
in Figure 3.11.

The drag force for the thick boundary layer condition was found
to be about 14% to 38% lower than that of the thin boundary layer con-

dition for the same ambient wind.

3.2.1 One column of trees - Once again, the condition demonstrated

is for 13.70 mps ambient wind velocity and for all row arrangements.
Both the 0.127 m and 0.254 m tree spacings will be discussed (see
Figure 3.18).

The drag force on the first row of trees for any number of rows
was within the range of 32 grams to 37 grams.

The average drag force, not including the forces on the first
tree, for the 0.127 m tree spacing was 7 grams and for the 0.254 m tree,
spacing was 12 grams. Thus, average drag force for ths 0.254 m tree
spacing was 1.71 times larger than for the 0.127 m tres spacing, which
is the same ratio as that for the thin boundary layer condition.

For the 0.127 m tree spacing, the drag force dropped sharply
after the first tree, then increased slightly to the third tree and
then kept almost constant to the twentieth row of trees. For the 0.254 m
tree spacing, the drag force dropped sharply after the first tree and
then stayed almost constant downstream.

Laboratory data for all the various ambient wind velocities are
shown in Tables 3.7 and 3.8. Figures 3.12 and 3.15 show the case of
twenty rows of trees for the various ambient wind velocities and Figure
3.18 summarizes the information for all row conditions for an ambient

wind velocity of 13.7 mps.
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3.2.2 Three columns of trees - The example will be the test data

for 13.70 mps ambient velocity and for all the row arrangements (see
Figures 3.19 and 3.20).

The drag force on the first row of trees varied from 31 grams <o
38 grams for all cases.

For the 0.127 m tree spacing, the average drag force was 3.9
grams for trees on column A, and 6.36 grams for trees on column B. The
average drag force for the 0.254 m tree spacing was 2.66 times larger
than on the 0.127 m tree spacing for readings taken or. column A. How-
ever, this ratio was equal to 2.04 for readings taken on column B. For
the same tree spacing and comparing between the readings taken on columns
A and B, the drag force was about 1.63 times larger on column B than on
column A for the 0.127 m tree spacing, and was about 1.25 times larger on
column B than on column A for the 0.254 m tree spacing.

The drag force dropped mildly after the second row of trees for
the 0.254 m tree spacing. For the 0.127 m tree spacing the drag force
had another drop at the fifth row for readings taken on column A, however,
such a phenomenon did not exist on column B.

The laboratory data for all the various ambient wind velocities
are reproduced in Tables 3.9 to 3.12. Figures 3.13, 3.14, 3.16 and 3.17
show the case of twenty rows of trees for various ambient wind velocities
and Figures 3.19 and 3.20 summarize the information for all row conditions
for an ambient wind velocity of 13.7 mps.

3.2.3 The model forest canopy field - The model forest canopy

field covered a 1.83 m x 12.2 m wind tunnel floor area which was covered
by 1.27 cm thick plywood. Holes of 0.475 cm diameter were drilled into

the plywood at a 0.127 m spacing for both longitudinal and lateral
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directions. Artificial trees were positioned on the plywood which
extended from the leading edge of the thermal floor test plate of the
Army Meteorological Wind Tunnel to 12.2 m downstream. Figure 3.21 shows
the tree arrangement on the floor of the wind tunnel.

This study was conducted in order to clarify the drag force
variation along the longitudinal distance with approximately a two-
dimensional flow condition. With the rows of trees extending farther
downstream than in previous tests, it was anticipated that the end trend
of drag force variation would appear. The following significant informa-
tion was determined. Two zones of the tree drag phenomena were found
as shown in Figure 3.22. These are termed the initial zone and the
steady decay zone. The initial zone extended from the first row of
trees to the fourth row of trees. In this zone, the drag force de-
creased steeply from the first row of trees to the second row of trees,
then tended to be constant to the fifth row. The steady decay zone
started from the fifth row of trees and extended to the end of the canopy
field. The steady decay zone is fairly linear on the log-log plot.
Figure 3.23 shows the data of the local drag force vs longitudinal dis-
tance in dimensionless form for the 6.10, 9.15, and 12.70 mps ambient
wind velocities. Figure 3.24 shows a three-dimensional plot of the tree
drag force vs longitudinal distance, in dimensionless form, for the
9.15 mps ambient wind velocity.

3.2.4 The influence of tree spacing on the drag force for two

trees in line and four trees in line - Figure 3.25 shows the influence of

tree spacing on the tree drag force on the downstream tree for two trees
placed parallel to the flow direction in a thick bouncary layer. Nine

tree spacings were tested under three ambient wind velocities. Zero
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tree spacing means that the measurement was on the first tree alone
with the second tree not present.

The figure indicates that the lowest drag force occurred at
0.127 m tree spacing, then it became larger as the trees were separated.
The influence of the wake from the first tree on the drag force on the
second tree was negligible at about 60 tree heights (or 100 crown
diameters) downstream from the first tree for all three ambient
velocities.

Figure 3.26 shows the influence of tree spacing on the tree drag
force on the first tree for equally spaced four trees in a line parallel
to the ambient flow. Drag force measurements were taken on the first
tree only. Five tree spacings were tested under three ambient wind
velocities. Zero tree spacing means that the measurement was on the
first tree alone with the rest of the trees absent. The figure shows
that there was very little difference for the tree drag force for all
spacings.

3.3 Drag Coefficients of a Single Tree Under Various Ambient Wind
Velocities

A single plastic model tree was placed in the free stream region
of a wind tunnel air flow. Drag force measurements were made with the
strain gage force dynamometer, which was set on a thin flat plate thirty
inches above the wind tunnel floor. The boundary laysr build-up on the
plate was only one-fourth of the tree trunk height at the tree position.
The boundary layer thickness was thus, well below the lowest branch of
the tree. A uniform wind velocity was thus assured to reach all parts

of the tree crown.
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Tests were also carried out for the same plastic tree in a thick
boundary layer. The ratio of boundary layer thickness to tree height
was about three times. The wind velocity profiles were recorded at the
tree position with the tree absent. Thus, these two experiments were
used to find the drag coefficient of the same model trze in a uniform
velocity flow and in a velocity gradient flow.

The drag coefficient CD and Reynolds number Re are defined as

C = it (3.3.1)

D LAp uZ
and

Re = \/:ii:Vﬁ; (3.3.2)
where

Cp = drag coefficient

fD = total drag force on the single tree

A = estimated gross silhouette area of the tree crown

p = mass density of the fluid acting at the tree crown

v = kinematic viscosity of the fluid

u = velocity acting at the crown, which varies with distance
from the wind tunnel floor for the thick boundary layer
condition, but is constant for the uniform velocity.

The mean square velocity was taken with respect to the vertical distance

above the wind tunnel floor and was calculated from:

ul =

% JI u? dA (3.3.3)
A

Figure 3.27 shows that the drag coefficient CE is

about 0.74 for the tree in free stream and Reynolds number range

7.4 » 103 < Re < 8. 10% , and for the tree well submerged in the
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boundary layer the Reynolds number ranging 1.27 - 10" < Re < 7.31 - 104,
It is interesting to note that a finite cylinder with L/d equal to 5
has Cj = 0.72 for 4 + 103 < Re < 2 + 10°, with the finite cylinder
subject to uniform velocity perpendicular to the axis.

For the single tree submerged in a thick boundary layer as des-
cribed in this report, it was found that the ambient velocity at the
height of the geometric center of the crown was nearly equal to \/EE ;

A table of wind velocities at the geometric center of the tree crown

and of V u?  from Equation (3.3.3) is furnished below.

Wind Velocity Outside Velocity at the Geometric Center

the Boundary Layer (mps) of the Tree Crown (mps) \/:;&mps)
3.05 2.74 2.70
6.10 5.12 5.09
9.15 7.75 7.71
13.70 11.65 11.52

18.30 15,72 15.51
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4. CONCLUSIONS

A three-dimensional turbulent boundary layer was formed over the

one-column and three-column model tree forests. The irregularity of the

shape and density of the trees added some variation in the trend of the

tree drag forces. After consideration of the drag forces on the indivi-

dual trees under various configurations of the canopies, the following

conclusions can be drawn:

)

Generally, a model tree spacing of 0.254 m spacing gave a
larger drag force per tree than the 0.127 m spacing.

The thinner the boundary layer, the larger the drag force.
Generally, the drag force per tree was not greatly affected
by the number of rows of trees. The drag force on a particu-
lar tree depended mostly on the position of that tree from
the first row.

For three columns of trees, the drag force on the center
column was smaller than on the side columns.

The drag force on one column of trees only was larger than
that on the center column of three columns cf trees. However
the drag force on the outside column of the three column
arrangement, in general, was only slightly smaller than on
the one column only arrangement,

The drag coefficient for a single tree, as based on Equation
(3.3.1) is constant within the Reynolds number range in which

this work was performed. Therefore, it can be concluded that
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the drag phenomenon was that of form drag, not viscous
shear drag.

The study of the 0.254 m tree spacing model forest canopy, which
covered a wind-tunnel floor area of 1.83 m x 12.2 m, provided approxi-
mately a two-dimensional flow condition. Two zones, namely an initial
zone and a steady decay zone, for the individual tree drag force, were
found. Each of the zones possess unique characteristics on how the
drag forces vary. The initial zone shows a sharp drop in tree drag
force from the first row of trees to the second row and then maintains
constant tree drag force downstream. The steady decay zone has a tree
drag decreasing trend which shows a linear line on a log-log plot. A
more dense tree arrangement which furnishes a better two-dimensional
flow condition may give a better understanding of the behavior of the

tree drag in these two zones.
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6.1 List of Symbols
6.2 List of Tables - Tables
6.3 List of Figures - Figures
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6.1 List of Symbols

Symbo1l

fD Local drag force of a tree, kilograms on Figures,
grams in Tables

f The drag force on a tree which is presented at the
first row of that column

X Longitudinal distance along the wind tunnel floor,
meters

y Vertical distance above the wind tunnel floor,
meters

L The tree spacing, meters

U Ambient wind velocity, meters per second.
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6.2 List of Tables
Table Page
2+1 PERFORMANCE CHARACTERISTICS OF THE ARMY METEOROLOGICAL
WIND TUNNEL AND THE COLORADO STATE UNIVERSITY WIND TUNNEL - - 24
Note: The drag forces of the first row of trees, the reduction of the

drag forces from the first row to the second row, and the decay
of the drag forces from the third row onward are tabulated in
Table 3.1 to 3.12 for each case of the one-column and three-
column tree arrangements.

THIN BOUNDARY LAYER

3.1 0.127 m TREE SPACING, Col. A. only . . . . . . ... .. 25
3.2 0.254 m TREE SPACING, Col. A. only « + ¢ « & « s« « o o o ¢ =+ o
3.3 0.127 m TREE SPACING, Three Columns, Readings taken on Col. A. 24
3.4 0.127 m TREE SPACING, Three Columns, Readings taken on Col. B. 2¢
3.5 0.254 m TREE SPACING, Three Columns, Readings taken on Col. A. 24
3.6 0.254 m TREE SPACING, Three Columns, Readings taken on Col. B. 2¢

THICK BOUNDARY LAYER

3.7 0.127 m TREE SPACING, Col. Aonly . ., . .. .. 27
3.8 0.254 m TREE SPACING, Col. A. only + « « « « « + o o L . . .. 27
3.9 0.127 m TREE SPACING, Three columns, Readings taken on Col. A. 28

3.10 0.127 m TREE SPACING, Three columns, Readings taken on Col. B. 28
3.11 0.254 m TREE SPACING, Three columns, Readings taken on Col. A. 28

5,12 0.254 m TREE SPACING, Three columns, Readings taken on Col. B. 28



TABLE 2.1 PERFORMANCE CHARACTERISTICS OF THE ARMY METEOROLOGICAL
AND THE COLORADO STATE UNIVERSITY WIND TUNNELS
Army Meteorological Colorado State University
Characteristic Wind Tunnel Wind Tunnel
1. Dimensions
Test-section length 27 m 9.2 m
Test-section area 3.4 m2 3.4 m?2
Contraction ratio 9.1 9.1
Length of temperature
controlled boundary 12 m 3.1m
2. Wind-tunnel drive
Total power 200 kw 75 hp
Type of drive 4-blade propeller 16-blade axial fan
Speed control: coarse Ward-Leonard DC control single-speed induction
motor
Speed control: fine pitch control pitch control
3. Temperatures
Ambient air temperature 5°C to 95° C not controlled
Temp. of controlled boundary 50 C to 205°C ambient to 95° C
4. Velocities
Mean velocities approx. 0 mps to 37 mps approx. 1 mps to
27 mps
Boundary layers up to 50 cm up to 20 cm
Turbulence level low (about 0.1 percent) low (about 0.5 percent)
5. Pressures adjustable gradients not controlled
6. Humidity controlled from approx. 20% to 80% not controlled

relative humidity under average
ambient conditions.
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For all the following tables:
I: Drag force of the first tree of that column, gram.
II: The reduction ratio of the tree drag between first and second tree.

II: The maximum and minimum of the local tree dragfrom third tree onward, gram.

TABLE 3.1 THIN BOUNDARY LAYER, 0.127m TREE SPACING,

i

Col. A. only.
Row 1 2 3 5 10 20
Me‘:erc I it 1 1 i m 1 11 11 I 11 1 I 11 11 I I 11
.61 18 - = .18 1.80 - .18 2,57 .05 .18 1,50 .05~ .07 .18 1.80 .03 ~ .05 .18 1.80 .05~ .05
1.52 .65 - = .60 171 - .35 1.75 .22 .50 2,78 L1~ .19 .66 2.64 L10~ L 10 .65 3.61 .11~ .18
3.05  3.30 - = 3.12  3.67 - 2,15  4.30 .69 2,50  5.30 .30~ .47  2.46  3.28 .39 ~ .44 2,60 5.20 .35~ .30
6.10  9.70 - - 9.70  4.85 - 9.70  9.70  2.00 10.20  6.18 1,40~ 2,00  9.60  3.43  1.65 ~ 1.85  7.50 2,60 1.02~ 1.70
9.15  24.50 - - 22.70 4.55 - 22.50 3.60  3.80 24.40  5.74 3,30~ 4.50 23.50  3.91 3,60 ~ 9.20 23.50  5.353 3.30 ~ 4.40
13.70 52,00 - - 50.50 4,81 - 49,00 3.22 9.50 50.30 5.03 7.80~10.00 52,00 4.33 8.60 ~ 10.90 47.00 4.95 7.30~ 4,00
TABLE 3.2 THIN BOUNDARY LAYER, 0.254m TREE SPACING,
Col. A. only.
Row 1 2 3 5 10 20
Meter. 1 11 i il 11 I il 11 1 I 11 I I 111 I it 11
.61 S - = .10 2,00 - .10 2.00 .07 .10 2.00 .05~ .06 .10 4.00 L0290~ ,040 .18  1.06 .07~ .08
1.52 1.20 - - 1.00 10.00 - .70 7.00 .10 .66 1.32 IR 1 Yo i | .85 3.8b .2 ~ . 3u .66 1.88 21 28
3.05  4.10 - 5 3.40  4.25 - 2.60  3.25 .82 3.20  3.90 .90~ .98  3.50  3.50 L98 ~ 1,45 2,60  2.82 .83~ .40
6.10  11.60 - - 12.50  3.91 - 11,40  3.80  4.00 11.00  2.29  4.20~ 4.50 11.00  2.50  4.10 ~ 5.30 10.20 3,11 3.20 ~ 3,50
9.15  25.00 - - 27.40  4.15 - 26.20  4.22  9.00 23.80 2.80  8.40~ 8.40 24.70  3.08  7.60 ~10.00 24.30 3,47 7.00 ~ 8,20
13.70 50,70 - : 50.30  2.58 - 50.30  2.96 22,50 51.50  3.22 16,80~17.00 50.70  3.57 16,00 ~20.00 52,00 3,42 15.50~19.00




TABLE 3.3 THIN BOUNDARY LAYER, 0.127m TREE SPACING,
Three Columns - Readings taken on Col. A,
Row 1 2 3 5 10 20
Me‘,:g I 1 1 I i 1 I 11 11 I 1l hast I i m I I o1
.61 .10 - - .10 2.00 - .10 2.00 .05 .18 1.80 .05~ .07 .10 2,00 .03~ .03 .10 4.00 .025~.025
1.52 . 66 - - .51 2.83 - .18 1.20 .15 .82 1.34 .10 ~ .15 .65 2,50 L11~ 18 .50 5.00 09~ 10
3.05 2,178 - - 2.62 3.12 - 1.81 2,41 .59 2.71 2.42 .28 ~ .50 2,45 2.88 .33~ .50 2.65 4.42 .20~ .72
6.10  10.50 - - 8.80 2.44 - 8.60 2.92 2,30 10.00 2.66 1,20 ~ 1. 45 9,00 3.05 .98 ~ 1,12 8.70 3.78 .78~ 2.65
9.15 25.10 - - 22.70 2.98 - 21.40 3.51 5.50  23.60 3.47 2.75~3,60 21.70 3.34 3.00 ~ 4.50 22.50 4,10 1.71~5.10
13.70  52.00 - - 50.30 2.96 - 47.90 3.15 12.50 48.70 3.53 6.20 ~9.80 47,00 3.31 8.00 ~ 11.00 45,50 4,13 4.30~10.20
TABLE 3.4 THIN BOUNDARY LAYER, 0.127m TREE SPACING,
Three Columns - Readings taken on Col. B.
Row 1 2 3 5 10 20
Me‘;g - 1 14 jiss 1 14 1 1 11 111 I I 11 I 11 111 I 11 111
.61 .18 - - .18 1.80 - .18 3.61 .05 .18 1.50 .04~ .05 .18 1.80 .03 ~ .03 .18 6.00 .025~ .03
1,52 .59 - - .51 1.46 - .26 1.44 .16 .68 3.78 .15~ (22 .75 4.16 15 22 . 50 4.16 .05~ .10
3.05 2,78 - - 2.30 3.07 - 2,30 2.53 .66 2,14 3.96 .44~ .58 2.45 5,83 42~ .46 2,65 5.30 .33~ ,56
6.10 10. 50 - - 9.50 2,52 - 9. 60U 2.93 2.95 9. 40 4.39 1,82~ 2,30 9. 50 5.25 1.51 ~ 1,80 8.70 4,35 1.02- 2,50
9.15 25.10 - - 22,70 2,99 - 22.00 3.05 5.70  22.00 4. 80 3.45~ 5.00 23,50 4,95 3.25~ 4,60 22,50 4.75 2,75~ 5.20
13.70 52.00 - - 50.30 2.96 - 49. 60 3.22 12,60 48.70 5.60 7.00~12.00 48.70 5.41 8.00 ~ 10.50 45.50 4.13 6.00~10.80
TABLE 3.5 THIN BOUNDARY LAYER, 0.254m TREE SPACING,
Three Columns, Readings taken on Col. A.
Row 1 2 3 5 10 20
M”““'s'éc I I 11 1 1 jiil I 11 1 I 11 juit I 1 Jitg I 1I 1
.61 .10 - - .10 3.33 - .10 1.43 .08 .10 3.33 .035~ ,039 .10 3.33 .03~ .05 .18 6.00 .05~ .06
1.52 .66 - - +51 5.10 - .54 2,46 .26 .58 3.22 .20~ .22 .66 3.50 .24~ .28 .47 4,70 ST= 19
3.05 2.62 - - 2.30 3.07 - 2. 46 2,93 1.00 2.46 3.72 .66~ .66 2,78 4.36 .72~ .83 3.25 5.00 .44~ 94
6.10 9.80 - - 10.00 2.78 - 9.80 2,72 4.00 9.80 3.15 3.10~ 3.10 9.50 4.25 2,70~ 3.50 10.00 3.23 2.30~ 3.20
9.15  20.40 - - 24,40 3.13 - 23,60 3.07 9.00 23,60 3.57 6.60~ 7.00 21.70 3.82 5.90 ~ 7.30 23.50 3.62  5.00~ 7.80
13.70 50.30 - - 50.30 2.68 - 50.30 2.82 24,00 50.30 3.26 15.50~17.00 50.30 3.87 15.50 ~ 19.00 52.00 3.35 11.50~18.20
TABLE 3.6 THIN BOUNDARY LAYER, 0.254m TREE SPACING,
Three Columns - Readings taken on Col. B.
Row 1 2 3 5 10 20
Meter
sec )6 11 I I 13 I 1 1| 11 I 11 1 I 11 148 I I 11
.61 .10 - - .10 3.33 - .10 2.00 .07 .08 1.60 .046 ~ 053 .10 2,00 L03) =~ .05 .10 2.00 .07~ 07
1.52 .66 - - .48 1.85 - .57 2.85 .29 .66 2.64 .26~ .29 .35 3.30 10~ 125 .41 4.70 .16~ .25
3.05 2.78 - - 2.30 2.13 - 2,62 3.12 1.08 2.46 3.28 .96~ .10 2.45 3.47 .50 ~ 1,15 2.62 3.97 .66~ 1,00
6. 10 9,20 - - 9.60 2.26 - 10.02 2.91 4, 90 9.70 2,81 3.65~ 4,40 9.00 3.16 1.50 ~ 4,50 9.25 2.58 2,48~ 3.70
9.15 25,10 - - 22,00 2.62 - 22,70 3.07 10.00 22,00 3.06 9.00~ 9.00 21,00 3.50 5.25 ~ 10.00 22,00 3.14 6,00~ 9,30
13.79 60.30 - 50.30 2.58 50.30 3.06 23.00 50..30 3.27 20,007~20,30 50,40 333 12,90 ~ 21,50 8200 2.92 13.00~22.00
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TABLE 3.7 THICK BOUNDARY LAYER, 0.127m TREE SPACING,

LZ

Col. A. only.
Row 1 2 3 5 10 20
Meler. 1 o m 1 o m 1 1 m I I i 1 i 1 I 1 m
.61 .06 - - L7 340 - .12 240 .05 .10 200 .05~ .05 .10 2.00 .04 ~ .06 .18  1.20  .041~ .082
152 .50 - . .55 9.20 - .50 2,94 .15 .42 2,47 .17~ .22 .42  4.20 .10 ~ .17 .77  2.20 .10~ .18
3.0  1.81 - . 1.50  6.00 - 2,00 5.72 .41 1.5 5.02 .36~ .50 1.81  6.03 .26 ~ .40  2.60  3.38 .30~ .48
6.10 7.50 - - 7.00 6.06 - 7.20 7.20 1.15 5.70 6.70 1.01 ~2,00 6. 60 6.21 .92 ~ 1,55 6.00 2.40 1.18 ~ 1.45
9.15 18.00 - - 16.20 6.17 - 15.20 7.16 3.80 14.70 8.05 2.43 ~3.60 15.20 6.60 2,40 ~ 4.00 14,20 3.22 3.00~ 3.70
13.70  35.70 - - 3570 6.26 - 3570  9.13  7.00 31.20 7.10  5.00 ~8.00 32.50  6.50  4.20 ~ 8.40 32.50  3.35 5.80 ~ 8,00
TABLE 3.8 THICK BOUNDARY LAYER, 0.254m TREE SPACING,
Col. A. only.
Row 1 2 3 5 10 20
Meter— "1 nom i o0 m 1 o 1 1 i m I I 1 1 1 m
.61 .18 - - .20 1.33 - .18 150 .07 .20 1.82  .042~ .05 .12 2,40 .04~ .045 .12 1.09 .04~ .08
152 .35 - = .51 1.45 - .35 194 .15 .68 1.79 .12~ .15 .35  2.3¢ .13~ .15 .43 1,95 .16~ .18
3.06  1.18 - 5 151 178 - 1.51  2.60 .55 1.32 231 .61~ .61 1.34 2.63 .54~ .64 1.68 2,47 .58~ .72
6.10  6.10 - i 6.40  2.25 - 6.70  2.86  2.45  6.20  2.65 1.95~2.00 5.80  2.67 2.00 ~ 2.40  6.70  2.68 2.20~ 2.60
9.15 14.40 - - 1520 236 - 15,10 2.48  5.70 14.40  2.53  4.70 ~4.70 14.80  2.74  4.80 ~ 5.20 15.10 2.70 4.50~ 5.70
13.70  35.00 - - 3500 232 - 3670 2.43 15,00 33.40 2.33 10.8 ~11.8  33.40  2.74 11.70 ~ 12.50 35.00  2.44 10.80~12.50




TABLE 3.9 THICK BOUNDARY LAYER,
- Readings taken on Col. A.

Three Columns

0,127m TREE SPACING,

Row 1 2 3 5 10 20
Metes}ec 11 111 I hi juid I jis 1 I i HI I I III I jis jiis
.61 .05 - - .12 2.40 - » T 3.40 .05 .15 3.00 .05 ~ .05 .12 2, 40 .05 ~ .06 .10 2.00 .04 ~ ,046
1.52 .43 - - .46 4.60 - .57 3.35 .10 .50 1.92 . 104~ (17 .50 4.16 13 ~ 13 .35 1. 59 .062~ .14
3.05 2.00 - - 1.67 4.80 - 2.00 4,72 .30 1.65 2.84 .44 ~ .46 1.65 4.12 .25 ~ .35 1.51 2.56 .18 ~ .43
6. 10 7.10 - - 6.50 3.89 - 7.00 4.50 1.05 6.20 3.10 1.42 ~1.47 6.50 4,81 .80 ~ 1.35 6.00 2.40 .54 ~1.45
9.15 17.00 - - 15.50 4.13 - 15.20 4.65 2,95 15.00 3.41 3.60 ~3.60 14.50 4.92 2.00 ~ 2.50 13.50 2.81 1.20 ~3.30
13.70 35.170 - - 34.00 4.14 - 35.70 5.66 7.00 32,50 3.74 7.50 ~17.50 32.50 5.80 4,00 ~ 6,70 31.70 2.86 2,99 ~7.00
TABLE 3.10 THICK BOUNDARY LAYER, 0.127m TREE SPACING,
Three Columns - Readings takem on Col. B.
Row 1 2z 3 5 10 20
Met
e I n m 1 o m I 1 1 I 1 1 1 1 I I 1 1
61 .05 - - .12 1.71 = .10 2.00 .05 .10 2.00 .05~ .05 .10 2.00 06 ~ .064 .10 2,50 032~ .037
1.52 35 - - .42 1.68 - .58 2.63 «12 .45 1.80 WEZ 0T +50 1.67 16 ~ .20 .34 4.85 07 ~ .08
3.05 1.65 - - 1.67 2.89 - 1.50 2,31 .45 1.50 3.00 35~ .55 1.56 2.21 .34 ~ .42 1.25 2,98 27 ~ .42
6.10 7.00 - - 5.60 2.84 - 5.50 2.59 1.80 5.60 3.39 1.25 ~ 1.65 5. 60 2.14 1.25 ~ 1.50 5.80 2.90 94 ~ 1,94
9.15 15.50 - = 13.20 3.11 - 14.00 2. 80 4.00 13.70 2.88 3.00 ~3.90 13.60 2.72 2,90 ~ 3.40 14.20 3.30 2.16 ~ 4.10
13.70  35.70 “ = 35.70 3.80 - 35.70 4.46  10.00 31.20 3.46 7.50 ~ 8.00 32,50 3.16 6.20 ~ 7.20 32,50 3.38  5.00 ~9.80
TABLE 3.11 THICK BOUNDARY LAYER, 0.254m TREE SPACING,
Three Columns - Readings taken on Col. A,
Row 1 2 3 5 10 20
Meter_.
Meter. | It 111 1 I I 1 11 Jisi 1 i} it 1 I 11 1 i i
.61 .07 - - .20 1.33 - .18 1.63 .07 .20 1.82 .04~ .05 aid 1.57 .044~ .05 .12 2. 40 .04~ 06
1.52 .51 - - .60 6.66 B .51 1.59 .15 .58 1.52 ~12~ 17 .35 1.29 .21 ~ .28 .35 2.33 A1~ 116
3.05 2.84 - - 1.84 3.60 - 1.51 2.13 .42 1.84 3.23 .47~ .56 1.26 1.25 .56 ~ .92 1.51 1.96 .36~ .60
6.10 8.90 - - 6.70 2,68 - 6. 40 2.56 2.15 6.20 2,74 2.00~ 2.20 4,50 1.44 2.10 ~ 2,50 6.40 2,26 1.50~ 2,40
9.15 18. 40 - - 15,10 2,25 - 15.10 2.65 6. 00 15.60 2,52 5.10~ 5.40 15,10 2.48 4.80 ~ 5.40 15.10 2.69 3.20~ 5,10
13,70 38.40 - - 33.40 2.21 - 33.40 2.49 15.00 35.00 2.32 10.80 ~12.00  36.70 2.31 11.30 ~ 13.50 35.00 2.21 8.00 ~12.80
TABLE 3.12 THICK BOUNDARY LAYER, 0.254m TREE SPACING,
Three Columns - Readings taken on Col. B.
Row 1 2 3 10 20
Meterp
%(: I 11 I I )i I I I 1 I jig In 1 iy i I I In
.61 .18 - - .20 .33 - .20 1.67 .07 .20 1.66 .04~ 056 .15 2.14 .038 ~ 070 «15 3.00 .049~ 551
1.52 .68 - - .60 1.87 - .35 1.40 .15 .58 1.52 J12~ 17 .47 1.34 .16 ~ .30 .43 2.89 .14~ .18
3.05 2.84 - - 3,67 4.31 - 1.68 1.98 .76 2.00 1.98 .90~ .90 1.68 1.9% .58 ~ 1,00 2.10 3.56 .57~ .75
6.10 9.20 - - 9. 10 2.87 - 7. 60 2.28 3.70 7. 40 2,02 3.20~ 3.20 6.70 2.36 2.48 ~ 3.10 7.60 3.25 2,15~ 3.00
9.15  18.40 5 = 18. 40 2.42 - 15.10 1.96 7.70  18.40 2.27 7.40~ 7.40 17,60 3.26 5.18 ~ 6.40 17.60 3.52 4.60~ 7.00
13.70  40.00 - - 40. 00 2.25 - 38.40 2.29 16.90 38.40 2.08 16.20~17.00  38.40 3.05 12,50 ~ 15.20 38.40 3.65 13.00~16.50

8¢
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See figure 2.3 for the
position of the strain gages

Figure 2.7 Schematic diagram of the electric bridge arrangement for
the strain gages on the strain-gage force dynamometer
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Figure 2.8 The dynamometer arrangement in the model forest
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Figure 2.9 Instruments
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