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ABSTRACT 

The objective of this study was to determine the di s tribution 

of the tree drag force within various model forest canopies subj ected 

to various ambient wind conditions. Ultimately this information may be 

related to diffusion within the forest canopy. 

The influence on individual tree drag due to neighboring trees 

was investigated by arranging the trees in various configurations of 

columns and rows, the columns being parallel to the arrnient wind and 

the rows being perpendicular. Two tree spacings for the columns and 

rows were investigated. Furthermore, a large forest canopy field was 

inves tigated that covered an area of twenty-one square meters. For t hi s 

arrangement it was determined that the tree drag fielc can be classi

fied into two zones - an initial zone and a steady decay zone. 

In order to study the influence of the boundary layer development 

on tree drag, the various arrangements of trees were tested under a thin 

boundary layer condition and under a thick boundary layer condition. 

In the course of this study a strain gage force dynamometer was 

developed that can reliably measure a drag force as small as 0.1 gram 

on a model tree. 
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1. INTRODUCTION 

This laboratory study is one part of a program to study diffusi~n 

and flow characteristics in canopy fields under laboratory conditions oy 

the staff in the Fluid Mechanics Program at Colorado State University. 

The canopy fields considered to date have been those composed of close ly 

spaced plastic strips representing a vegetative field, small cylindrica l 

pegs and small plastic model trees representing a forest. Within the 

program of study it is intended to relate diffusion characteristics to 

the drag forces on the elements in the canopy field. 

This study investigated the drag forces on the ~ndividual elements 

in a model tree forest. The purpose of this report is to present the 

methods used and the laboratory information obtained. Subsequent reports 

will present theoretical developments. 

It was not intended to perform a completely exhaustive study of 

how tree drag varies with the change of certain canopy parameters. 

Rather, it was intended to obtain at least preliminary knowledge of the 

influence of the number and spacing of trees and tree submergence in the 

boundary layer on tree drag. Therefore, the following experiments were 

performed on both tree spacings of 0.127 m and 0.254 m: 

1. Various arrangements of trees in columns and rows were used, 

ranging from one tree to several. 

2. Ambient wind velocities ranged from 0.61 mps to 13.70 mps. 

3. The Army Meteorological Wind Tunnel was use:i for the case 

where the boundary layer thickness was about three times th e 
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height of the tree, and this was defined as the thick 

boundary layer condition. 

4. The Colorado State University Wind Tunnel was used for the 

thin boundary layer condition, for which the boundary layer 

thickness was about 3/4 the height of the tree at the first 

tree position. 

This study was made feasible through the develop~ent of a strain 

gage force dynamometer. This transducer measures accurately the total 

drag force on an artificial tree regardless of where the resultant of 

the drag force is applied. 

All the experimental work was carried out in the Fluid Dynamics 

and Diffusion Laboratory, Colorado State University, Fort Collins, 

Colorado. 
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2. EXPEIU MENTAL EQUI PMENT 

2.1 The Model Forest Canopy and Individual Tree Elements 

Each artificial tree in t he model forest was made of plastic anj i s 

ordinarily used for decoration. The dimensions of the trees were about 

16 cm in height and 10.8 cm in the largest horizontal direction. Of 

course, some variation existed from tree to tree. The tree trunk was 

0.47 cm in diameter and the distance from the floor to the lower branches 

was about 3. 5 cm (see Figure 2. 1). · 

A 0.0127m x 0.915 m x 2.440 m plywood plate was used for the 

foundation of the trees. Holes were drilled in the pl~te 0.127 m apart 

in both the longitudinal and lateral directions. The tree trunks were 

taped to pegs which fitted snugly into the holes. Hence, for the 0.127 m 

tree spacing, the trees were placed according to the holes on the plate 

and the 0.254 m tree spacing case was obtained by placing trees in 

every second hole. 

The arrangements of the model tree forest canopies varied quite 

widely. The trees were arranged in one and three columns parallel to 

the flows, with from one to several trees in each col~mn. In this report 

the term "row" refers to the alignment perpendicular to the flow. A 

sketch of the tree arrangements is placed on each of the figures in 

Chapter 3. Drag force rea<lings were taken on the fol l owing columns: 

1. Column A only - trees placed along the centerline of the 

wind tunnel in the longitudinal direction only. 

2. Readings taken on column A with columns Band C i n place -

columns Band C placed on both sides of column A. 
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3. Readings taken on column B - colwnns A and C were still in 

place. 

2.2 The Strain Gage Force Dynamometer 

The dynamometer was made of brass and was set on a metal plate as 

shown in Figure 2.2. This transducer measures accurately the total drag 

force on an artificial tree regardless of where the resultant of the 

drag force is applied. The mathematical proof follows. 

Figure 2.3 shows a constant resultant force applied at a position, 

t, on a stiff rod which is inserted into the vertical receptical of the 

transducer. The force pushes the rod through a horizontal displacement, 

e . L is a constant, from level A to the bearings at level B. 

Consider t as a variable, from level B to the resultant position of 

the force. Two shearing forces, v1 and v2 , and two restoring moments, 

M1 and M2 , are exerted on legl and leg 2 respectively. T1A is the 

tension in leg 1 and T2A the compression in leg 2. W is the total 

weight of the instrument, considered as a concentrated load at the 

center. 

Consider the free body diagram 1 shown in Figure 2.4: 

E F = 0 
X 

(1) 

then 

F = pl+ p2 (2) 

and 

E F = 0 
y 

(3) 

hence 

w = T2B - TiB (4) 
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Taking moments about hinge 1 gives: 

(5) 

then 

(6) 

thus 

Now consider the free body diagram 2 shown in Figure 2.5: 

from 

(9) 

(10) 

and 

~ MA2 = 0 (j_l) 

(12) 

The total moment is 

( 13) 

or 

(14) 

but, 

L >> e and F > W, therefore LF >> eW 

thus, 

(15) 

From Equation (15), the conclusion can be drawn that the total 

moment depends only on the constant resultant force F and the constant 

distance L . 
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The above results were verified experimentally for F ranging 

from 1 gram to 50 grams and for t ranging from 5 cm to 14 cm . 

Figure 2.6 is the calibration curve which was obtained by applying the 

various loads at one position on the stiff rod. The response did not 

change when the load was shifted to another position on the rod. 

Figure 2.7 shows the bridge arrangement of the strain gages and 

Figure 2.8 shows the dynamometer placed in the model forest. 

Instruments used for the study are shown in Figure 2.9. The 

eight-volt D.C. power supply for the strain gages is shown on the far 

left and next to it is the circuit which adds M1 and M2 electronically. 

The D.C. Micro Volt-Ammeter, model 425 A type by Hewlett-Packard, is at 

the far right of Figure 2.9. The strain gages used for this force 

dynamometer were made by Micro-Measurements Co., type EA-09-1258B-120, 

which has resistance 120 ± 0.15% ohms and gage factor tolerance± 0.5. 

2.3 The Army Meteorological Wind Tunnel and the Colorado State University 
Wind Tunnel 

The Army Meteorological Wind Tunnel was constructed by Colorado 

State University for the U.S. Army under Contract DA-36-039-SC-80371. 

The tunnel features a test section of 27 m length and a nominal cross

sectional area of 1.8 m by 1.8 m with a movable ceiling which can be 

adjusted for establishing negative and positive longitudinal pressure 

gradients or a zero pressure gradient. A large contraction ratio of 

9:1 in conjunction with a set of four damping screens yi elds an ambient 

turbulence level of about 0.1%. 

The tunnel can be used for either closed or open loop operation. 

Test-section air velocities range from about O to 37 mps and the ambien t 
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temperature of the air can be varied from o0 c to 85°c at medium speeds. 

The humidity of the ambient air can be controlled. 

The tunnel has a 12.2 m section of the test-section which can be 

heated or cooled to permit temperature differences between the cold 

plate and hot air of 65°c and the hot plate and cold air of more tha~ 

10S°C. 

A carriage system is available which permits remote placement 

of probes. Instrumentation associated with the facility consists of a 

complete system for sensing, analyzing and recording turbulence sta

tistics and mean value of velocity , temperature and concentration of 

the tracer (mean values only). 

The Colorado State University Wind Tunnel has a test section of 

9 m length and a nominal cross-sectional area of 1.8 ~ by 1.8 m. Th:s 

tunnel compliments the longer tunnel in that it allows the pursuit of 

less complex programs in an economical manner. The performance 

characteristics of the two tunnels are summarized in Table 2.1. 

Drawings of the wind tunnels are presented in Figures 2.10 and 2.11. 
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3. RESULTS AND DISCUSSIONS 

The model tree forest canopies were subjected to a thin boundary 

layer condition and to a thick boundary layer condition. Ambient wind 

velocities of 0.61, 1.52, 3.05, 6.10, 9.15 and 13.70 mps were applied 

for both conditions of the boundary layer. The flow conditions were 

thermally neutral, i.e., neither air nor wind-tunnel fl)or were heated 

or cooled. Tree spacings of 0.254 m and 0.127 m were studied. 

In general, the tree drag force was larger for tie thin boundary 

layer han for the thick boundary layer. The tree drag force was also 

larger for the 0.254 m tree spacing case than for the 0.127 m tree 

spacing case. 

A three-dimensional flow condition existed for the tree arrange~ 

ments adopted for this study. The first row of trees created an 

arrangement of jets and wakes, which persisted for some distance down

stream. A wake was formed behind the body of each tree and a jet was 

formed between the trunks and below the branchy portions of the trees. 

These jets and wakes showed some degree of influence on the mean value 

of tree drag force. 

The local tree drag vs the longitudinal distance of a tree from 

the origin are presented in Figures 3.1 to 3.6 for the thin boundary 

layer condition and in Figures 3.12 to 3.17 for the thick boundary layer 

for the case of twenty rows of trees and various wind v~locities. The 

local tree drag for similar conditions but for various ~umbers of rows 

is summarized in the tables. Figure 3.7 shows the boundary layer 
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development over one column of trees for the thin boundary layer condition 

and Figure 3.11 shows the boundary layer development over the center 

column of three columns of trees for the thick boundary layer condition. 

Figures 3.8 to 3.10 summarize the results for the thin boundary layer 

condition for a wind velocity of 13.7 mps. The origin was considered to 

be one tree spacing upstream of the first tree so that the position of 

the first tree could be plotted on logarithmic graph paper. The reader 

should note three things, the drag forces of the first row of trees, the 

reduction of the drag forces from the first row to the second row, and 

the decay of the drag forces from the third row onwarc. All the labora

tory information is tabulated i n Tables 3.1 to 3.12. 

Vertical mean velocity profiles were taken behind and between 

trees, and within and above the canopy at various stations. The trans

verse mean veloc ity profiles were also taken at two e -evations within the 

canopy in accord with the ab ove various stations . These are not included 

in this report. 

3.1 Forest Canopy Subjec t ed to a Thin Boundary Layer 

The thin boundary layer case was studied in th~ Colorado State 

University Wind Tunnel which provided a boundary l ayer of about eleven 

centimeters at the first tree pos ition as shown in Figure 3 .7. The 

first tree was located at 1.45 m from the leading edge of the thermal 

floor t est p l at e on the wind tunnel floor as shown in Figure 2.11. At 

the t en th tree position, the boundary layer had developed to 29 cm 

under 6.10 mps ambi ent wind velocity. The boundary layer development 

for 1.52 and 13. 70 mps ambient wind velocities are also shown in Figure 

3.7. 
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3.1.1 One column of trees - Because of the l ar 6e number of 

different test canopy conditions, only one example will be discussed -

that for the 13.70 mps ambient wind velocity, consideri~g all the tree 

rows for 0.127 m and 0.254 m tree spacings (see Figure 3.8). 

For all conditions, the drag force on the first tree varied only 

from 47 grams to 52 grams. The 0.127 m tree spacing hal a 9 gram 

average tree drag force and the 0.254 m tree spacing had a 16 gram 

average tree drag force. Hence, the average tree drag force for 0.254 m 

tree spacing was 1.77 times l arger than that of 0.127 m tree spacing. 

The average tree drag forces were calculated without including the 

forces on the first tree. 

For both tree spacing cases, the tree drag force dropped sharply 

after the first tree. The lowest tree drag occurred at either the second 

or third tree. Then the drag force varied rather mildly, or even re

mained constant, on downstream. The lowest tree drag force was at the 

third t ree for the 0.127 m tree spacing and was at the second tree for 

the 0.254 m tree spacing. 

The laboratory data for all the various ambient wind velocites are 

reproduced in Tables 3 .1 and 3.2 . Figures 3.1 and 3.4 show the case of 

twenty rows of trees for all the various ambient wind velocities and 

Figure 3.8 summarizes the information for all row conditions for an 

ambient wind velocity of 13.7 mps. 

3.1.2 Three columns of trees - As in Article 3.1.1 only one 

example of the results will be discussed. The example will be the test 

data for 13.70 mps ambient wind velocity and all the row arrangements 

(see Figures 3.9 and 3.10). 
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Once again, the drag force on the first row of trees varied from 

47 grams to 52 gr ams for all row situations. The average tree drag was 

calculated in the same manner as for the one column of trees case . The 

0.127 m tree spacing had a 6.3 gram average tree drag force on column A 

and a 7.8 gram average drag force on column B. The 0.254 m tree spacing 

had an average drag force of about twice as large as o~ the corresponding 

column in the 0.127 m tree spacing cas e. They were 13.8 grams and 15.2 

grams for column A and column B respectively. Column B consistently had 

more drag force than column A. 

For the 0. 254 m tree spacing, the drag force dropped sharply from 

the first tree to the second tree of column A and column B. The drag 

force increased at the third row of trees, then decreased slowly farther 

downstream. For the 0.127 m tree spacing, the drag force dropped 

sharply to the third row of trees, then increased somewhat for the trees 

on column B, but dropped slowly and continuously downstream for the 

trees on column A. 

The laboratory data for all the various ambient wind velocities 

are reproduced in Tables 3.3 to 3.6. Figures 3.2, 3.3, 3.5 and 3.6 

show the case of twenty rows of trees for a ll the various ambient wind 

velocities and Figures 3.9 and 3.10 summari ze the information for all 

row conditions for an ambient wind velocity of 13.7 mps. 

3.2 Forest Canopy Subjected to a Thick Boundary Layer 

The model forest subjected to a thick boundary layer was s tudi ed 

in the Army Meteorological Wind Tunnel. The boundary layer thickness 

at the first tree position was 57 cm thick, which was about three and a 

half times the height of the trees. The first tree was located at 
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0.725 m from the leading edge of the thermal floor test plate as shown 

in Figure 3.11. 

The drag force for the thick boundary layer condition was found 

to be about 14% to 38% lower than that of the thin boundary layer con

dition for the same ambient wind. 

3.2.1 One column of trees - Once again, the condition demonstrated 

is for 13.70 mps ambient wind velocity and for all row arrangements. 

Both the 0.127 m and 0.254 m tree spacings will be discussed (see 

Figure 3.18). 

The drag force on the first row of trees for any number of rows 

was within the range of 32 grams to 37 grams. 

The average drag force, not including the forces on the first 

tree, for the 0.127 m tree spacing was 7 grams and for the 0.254 m tree, 

spacing was 12 grams. Thus, average drag force for th~ 0.254 m tree 

spacing was 1.71 times larger than for the 0.127 m tree spacing, which 

is the same ratio as that for the thin boundary layer ~ondition. 

For the 0.1 27 m tree spacing, the drag force drJpped sharply 

after the first tree, then increased slightly to the third tree and 

then kept almost constant to the twentieth row of trees. For the 0.254 m 

tree spacing, the drag force dropped sharply after the first tree and 

then stayed almost constant downstream. 

Laboratory data for all the various ambient wini velocities are 

shown in Tables 3.7 and 3.8. Figures 3.12 and 3.15 shJw the case of 

twenty rows of trees for the various ambient wind velocities and Figure 

3.18 summarizes the information for all row conditions for an ambient 

wind velocity of 13.7 mps. 
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3 .2 . 2 Three columns of trees - The example will be the test data 

for 13.70 mps ambi ent velocity and for all the row arrangements (see 

Figures 3.19 and 3.20). 

The drag force on the first row of trees varied from 31 grams :o 

38 grams for all cases. 

For the 0.127 m tree spacing , the average drag force was 3.9 

grams for trees on column A, and 6.36 grams for trees on colwnn B. The 

average drag force for the 0 .254 m tree spacing was 2.66 times larger 

than on the 0.127 m tree spacing for readings taken oL colwnn A. How

ever, this ratio was equal to 2, 04 for re adings taken on column B. For 

the same tree spacing and comparing between the readings taken on colwnns 

A and B, the drag force was about 1.63 times larger on column B than on 

column A for the 0.127 m tree spacing, and was about 1.25 times larger on 

column B than on colwnn A for the 0.254 m tree spacing. 

The drag force dropped mildly after the second row of trees for 

the 0.254 m tree spacing. For the 0.127 m tree spacing the drag force 

had another drop at the fifth row for readings taken on column A, however, 

such a phenomenon did not exist on colwnn B. 

The laboratory data for all the various ambient wind velocities 

are reproduced in Tables 3. 9 to 3.12. Figures 3.13, 3.14, 3.16 and 3.17 

show the case of twenty rows of trees for various ambient wind velocities 

and Figures 3.19 and 3.20 swnmarize the information for all row conditions 

for an ambient wind velocity of 13.7 mps. 

3.2.3 The model forest canopy field - The model forest canopy 

field covered a 1.83 m x 12.2 m wind tunnel floor area which was covered 

by 1. 27 cm thick plywood. Ho les of 0.475 cm diamete~ were drilled into 

the plywood at a 0.127 m spaci ng for both longitudina l and lateral 
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directions. Artificial trees were positioned on the plywood which 

extended from the leading edge of the thermal floor test plate of the 

Army Meteorological Wind Tunnel to 12.2 m downstream. Figure 3.21 shows 

the tree arrangement on the floor of the wind tunnel. 

This study was conducted in order to clarify the drag force 

variation along the longitudinal distance with approximately a two

dimensional flow condition. With the rows of trees extending farther 

downstream than in previous tests, it was anticipated that the end trend 

of drag force variation would appear. The following significant informa

tion was determined. Two zones of the tree drag phenomena were found 

as shown in Figure 3.22. These are termed the initial zone and the 

steady decay zone. The initial zone extended from the first row of 

trees to the fourth row of trees. In this zone, the drag force de

creased steeply from the first row of trees to the second row of trees, 

then tended to be constant to the fifth row. The steady decay zone 

started from the fifth row of trees and extended to the end of the canopy 

field. The steady decay zone is fairly linear on the log-log plot. 

Figure 3.23 shows the data of the local drag force vs longitudinal dis

tance in dimensionless form for the 6.10, 9.15, and 13.70 mps ambient 

wind velocities. Figure 3.24 shows a three-dimensional plot of the tree 

drag force vs longitudinal distance, in dimensionless form, for the 

9.15 mps ambient wind velocity. 

3.2.4 The influence of tree spacing on the drag force for two 

trees in line and four trees in line - Figure 3.25 shows the influence of 

tree spacing on the tree drag force on the downstream tree for two trees 

placed parallel to the flow direction in a thick bouncary layer. Nine 

tree spacings were tested under three ambient wind velocities. Zero 
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tree spacing means that the measurement was on the first tree alone 

with the second tree not present. 

The figure indicates that the lowest drag force occurred at 

0.127 m tree spaci ng, then it became larger as the trees were separated. 

The influence of the wake from the first tree on the drag force on the 

second tree was negligible at about 60 tree heights (or 100 crown 

diameters) downstream from the first tree for all three ambient 

velocities. 

Figure 3.26 shows the influence of tree spacing on the tree drag 

force on the first tree for equally spaced four trees in a line parallel 

to the ambient flow. Drag force measurements were taken on the first 

tree only. Five tree spacings were tested under three ambient wind 

velocities. Zero tree spacing means that the measurement was on the 

firs t tree alone with the rest of the trees absent. The figure shows 

that there was very little difference for the tree drag force for all 

spacings. 

3.3 Drag Coefficients of a Single Tree Under Various Ambient Wind 
Velocities 

A single plastic model tree was placed in the free stream region 

of a wind tunnel air flow. Drag force measurements were made with the 

strain gage force dynamometer, which was set on a thin flat plate thirty 

inches above the wind tunnel floor. The boundary lay~r build-up on the 

plate was only one-fourth of the tree trunk height at the tree position. 

The boundary layer thickness was thus, well below the lowest branch of 

the tree. A uniform wind velocity was thus assured to reach all parts 

of the tree crown. 
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Tests were also carried out for the same plastic t ree in a thick 

boundary layer. The ratio of boundary l ayer thickness to tree height 

was about three times. The wind velocity profiles were recorded at t he 

tree position with the tree absent. Thus, these two experiments were 

used t o find the drag coefficient of the same model tree in a uniform 

velocity flow and in a velocity gradient flow. 

and 

where 

The drag coefficient CD and Reynolds number Re are defined as 

CD 
fD = 

½ A p ~ 
(3.3.1) 

Re =~-vi. 
V 

(3 .3 .2) 

CD = drag coefficient 

fD = total drag force on the single tree 

A = estimated gross silhouette area of the tree crown 

p = mass density of the fluid acting at the tree crown 

V = kinematic viscosity of the fluid 

u = velocity acting at the crown, which varies with distance 

from the wind tunnel floor for the thick boundary layer 

condition, but is constant for the uniform velocity. 

The mean square velocity was taken with respect to the vertical distance 

above the wind tunnel floor and was calcula·ed from: 

~ = .!_ ff u 2 dA 
A A 

Figure 3.27 shows that the drag coefficient CC is 

about 0.74 for the tree in free stream and Reynolds number range 

7.4 • 10 3 <Re< 8 • 104 , and for the tree well submerged in the 

(3.3.3) 
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boundary layer the Reynolds number ranging 1. 27 • 10 4 < Re < 7 .3 1 • 104 . 

It is interesting to note that a finit e cylinder with L/d equal to 5 

has c0 = 0.72 for 4 • 10 3 ..::_Re..::_ 2 • 10 5 , with the finite cylinder 

subject to uniform velocity perpendicular to the axis. 

For the single tree submerged in a thick boundary layer as des

cribed in this report, it was found that the ambient velocity at the 

height of the geometric center of the crown was nearly equal to~ 

A table of wind velocities at the geometric center of the tree crown 

and of~ from Equation (3.3.3) is furnished below. 

Wind Velocity Outside Velocity at the Geometric Center 
Wcmps) the Boundary Layer (mps) of the Tree Crown (mps) 

3.05 2.74 2.70 

6.10 5.12 5.09 

9.15 7.75 7. 71 

13 .70 11.65 11. 52 

18.30 15. 72 15.51 
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4 . CONCLUSIONS 

A three- dimensional tur bul ent boundary l ayer was fo rmed over the 

one-column and three-column model tree forests. The ir~egulari t y of the 

shape and density of the trees added some variation in ~he trend of the 

tree drag forces. After consideration of the drag forces on the indivi 

dual trees under various configurations of the canopies, the following 

conclusions can be drawn: 

1. Generally, a model tree spacing of 0.254 m S?acing gave a 

larger drag force per tree than the 0.127 m spacing. 

2. The thinner the boundary layer, the larger the drag force . 

3. Generally, the drag force per tree was not greatly affect ed 

by the number of rows of trees. The drag force on a particu

lar tree depended mostly on the position of that tree from 

the first row. 

4 . For three columns of trees, the drag force on t he center 

column was smaller than on the side columns. 

5. The drag force on one column of trees only ~as larger than 

that on the center column of three columns c,f trees. However 

the drag force on the outside column of the three column 

arrangement, in general, was only slightly smaller than on 

the one column only arrangement. 

6. The drag coefficient for a single tree, as based on Equation 

(3.3.1) is constant within the Reynolds number rang e in wh ich 

this work was performed. Therefo r e, i t can be concluded that 
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the drag phenomenon was that of form drag, not viscous 

shear drag. 

The study of the 0.254 m tree spacing model forest canopy, which 

covered a wind-tunnel floor area of 1.83 m x 12.2 m, provided approxi

mately a two-dimensional flow condition. Two zones, namely an initial 

zone and a steady decay zone, for the individual tree drag force, were 

found. Each of the zones possess unique characteris:ics on how the 

drag forces vary. The initial zone shows a sharp drop in tree drag 

force from the first row of trees to the second row and then maintains 

constant tree drag force downstream. The steady decay zone has a tree 

drag decreasing trend which shows a linear line on a 2og-log plot. A 

more dense tree arrangement which furnishes a better two-dimensional 

flow condition may give a better understanding of the behavior of the 

tree drag in these two zones. 
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6.1 List of Symbols 

Symbol 

fD 

f 

X 

y 

Local drag force of a tree, kilograms on Figures, 
grams in Tables 

The drag force on a tree which is presented at the 
first row of that column 

Longitudinal distance along the wind tunnel floor, 
meters 

Vertical distance above the wind tunnel floor, 
meters 

L The tree spacing, meters 

U Ambient wind velocity, meters per second. a 



6.2 

Table 

2.1 

Note: 

3.1 

3.2 

23 

List of Tables 

PERFORMANCE CHARACTERISTICS OF THE A~~y METEOROLOGICAL 
WIND TUNNEL AND THE COLORADO STATE UNIVERSITY WIND TUNNEL 

The drag forces of the first row of trees, the reduction of the 
drag forces from the first row to the second row, and the decay 
of the drag forces from the third row onward are tabulated in 
Table 3.1 to 3.12 for each case of the one-col1.1.i~n and three
column tree arrangements. 

THIN BOUNDARY LAYER 

0.127 m TREE SPACING, Col. A. only 

0. 254 m TREE SPACING, Col. A. only · • • • • • • • • • 

24 

25 

3.3 0.127 m TREE SPACING, Three Columns, Readings taken on Col. A. 26 

3.4 0.127 m TREE SPACING, Three Columns, Readings taken on Col . B. 26 

3.5 0.254 m TREE SPACING, Three Columns, Readings taken on Col. A. 26 

3.6 0.254 m TREE SPACING , Three Columns, Readings taken on Col. B. 26 

3.7 

3.8 

THICK BOUNDARY LAYER 

0.127 rn TREE SPACING, Col. A only 

0.254 m TREE SPACING, Col. A. only 

27 

27 

3.9 0.127 m TREE SPACING, Three columns, Readings taken on Col. A. 28 

3.10 0.127 m TREE SPACING, Three columns, Readings taken on Col. B. 28 

3.11 0.254 m TREE SPACING, Three columns, Rcadjngs taken on Col. A. 28 

3.12 0.254 m TREE SPACING, Three columns, Readings taken on Col. B. 28 



TABLE 2. 1 PERFORMANCE CHARACTERISTICS OF THE ARMY METEOROLOGICAL 
AND THE COLORADO STATE UNIVERSITY WIND TUNNELS 

Characteristic 

1. Dimensions 
Test-section length 
Test-section area 
Contraction ratio 
Length of temperature 

controlled boundary 

2. Wind-tunnel drive 
Total power 
Type of drive 
Speed control: coarse 

Speed control: fine 

3 . T emperatures 
.f\.mbient n.ir temperature 
Temp. of controlled boundary 

4 . Velocities 
Mean velocities 

Boundary layers 
Turbulence level 

5. Pressures 

6. Humidity 

Army Meteorological 
Wind Tunnel 

27 m 
3 . 4 m 2 

8. 1 

12 m 

200 kw 
4-blade propeller 
Ward-Leonard DC control 

pitch control 

5° C to 95° C 
s0 cto 205°c 

approx. 0 mps to 3 7 mps 

up to 50 cm 
low (about 0. 1 percent) 

adjustable gradients 

controlled from approx. 20% to 80% 
relative humidity under average 
ambient conditions. 

Colorado State University 
Wind Tunnel 

9. 2 m 
3. 4 m2 
9. 1 

3. 1 m 

75 hp 
16-bln.de n.xin.l fan 
single -speed induction 

motor 
pitch control 

not controlled 
ambient to 95° C 

approx. 1 mps to 
27 mps 

up to 20 cm 
low (about O. 5 percent) 

not controlled 

not controlled 



Fo r all the fo llowing table s: 

I : Drag fo rce o f the firs t t ree o f that column, gram. 

II : Th e re du ction ratio o f the tree drag be tw een firs t and s econd tree. 

III : The maxim um a nd minimum o f the local tree drag fro m third t ree onward. gram . 

TABLE 3 . I T HI N BOUNDARY LAYE R, 0 . 127m T REE SPACING , 

Col. A . only . 

Row 2 3 5 10 20 

:vJ e ter 
II lII II Ill II lII II lII II lII II lII · sec 

. 6 1 . 18 . 18 I. 80 • 18 2 . 57 . 0 5 . 18 I . 50 • 05~ . 07 . 18 I. 80 . 03 . 05 . 18 I. 80 . 05 ~ . 0 5 
I . 52 . 65 . 60 I . 71 . 35 I. 75 .22 . 50 2 . 78 . 11 ~ . 19 • 66 2.64 . 10 • 10 . 65 3 . 6 1 . I I ~ . 18 
3 . 05 3 . 30 3 . 12 3. 67 2 . 15 4 . 30 . 69 2. 50 5. 30 . 30~ . 47 2 . 46 3 . 28 . 39 . 44 2 . 60 5. 20 . 35 ~ . 50 N 
6 . 10 9 . 70 9 . 70 4 . 85 9 . 70 9 . 70 2.00 10 . 20 6 . 18 I. 40 ~ 2. 00 9 . 60 3 . 43 I . 65 I. 85 7. 50 2. 60 1.02 ~ I. i U (Jl 

u. 15 24 . 50 22. 70 4 . 55 22 . 50 3 . 60 3 .80 2 4. 40 5 . 74 3. 30~ 4 . 50 23 . 50 3 . 9 1 3 . 60 9 . 20 23 . 50 5. 53 3 . 30 ~ -!. -1 0 
I'.! . 70 52 . 00 50 . 50 4.81 49.00 3 . 22 9. 50 50 . 30 5. 0 3 7 . 80~ 10 . 00 52 . 00 4. 33 8 . 60 10 . 90 -17 . 00 -L ~5 7. 30 ~ <1 . l)l) 

TABLE 3 . 2 T HIN BOUNDARY LA YER , 0 . 25 4m TREE SPACING , 

Col. A . only. 

How 2 3 5 10 20 

Me te r II [I[ 
sec II Ill II III II III II III II lII 

. 6 1 . 10 . 10 2.00 . 10 2.00 . 0 7 . 10 2 . 00 . 05~ . 06 . 10 4 . 00 . 02 9 ~ . 0-10 . 18 !. 06 . l)i..., . 08 

I. 52 I. 20 1. 00 10. 00 . 70 7.00 . 10 . 66 1. 32 . ~b ~ . ~-, . 8b J . 8b . ,~ . . lu . 66 I. 88 . !.1 ~ . .!O 
:s. 05 4. IO 3.40 4.25 2. 60 3 . 25 . 82 3.20 3 . 90 . 90 ~ . 98 3 . 50 3 . 50 . 98 1.-1 5 2.60 2 . 82 . 8 :l ~ . !l t) 

fi . lU 11. 60 12. 50 3 . 9 1 11 . 40 3 . 80 4 . 00 1 1. 00 2 . 29 4. 20 ~ 4 . 50 11. 00 2. 50 4 . 10 5 . 30 10. 20 3 . 11 3 . 21) ~ 3 . 50 
!l . 15 25 . 00 27.40 4. 15 26 . 20 4 . 22 9. 00 23 . 80 2.80 8 . 40~ 8. 40 24 . 70 3 . 08 7. 60 ~ 10 . 00 24 . :rn :i. -17 7. 00 ~ 8 , 20 

1:l . 70 !JO . 70 50. 30 2.58 50 . 30 2.96 22 . 50 5 1. 50 3 . 22 16. 80~ 17.00 50 . 70 3 . 57 16 . 00 ~ 20 . 00 52 . 00 .l. -1 2 15 . 50 ~1 !! . 00 



TABLE 3 . 3 THIN BOUN DARY LAYER, 0.127m TREE SPA CING, 

Three Columns . Readings taken on Col. A . 

Row 2 3 5 10 20 

Metey 
-Sec II III II 111 II III II III II III II III 

. 6 1 .1 0 .IO 2.00 .IO 2.00 .05 . 18 I. 80 . 05 ~ .07 . I O 2.00 . 03 ~ . 03 . 10 4. 00 . 025 ~ . 025 

1. 52 . 66 . 5 1 2 . 83 . 18 1. 20 . 15 . 82 1. 34 .10 ~ .1 5 . 65 2 . 50 .11 ~ . 18 . 50 5.00 . 09 ~ . 10 

3 .05 2. 78 2 . 62 3 . 12 1.81 2. 41 . 59 2. 71 2 . 42 . 28 ~ . 50 2 . 45 2 . 88 . 33 ~ . 50 2 . 65 4. 42 . 20 ~ . 72 

6. 10 10. 50 8.80 2. 44 8. 60 2.92 2. 30 10.00 2. 66 1. 20 ~ 1.4 5 9 . 00 3 . 05 • 98 ~ I. 12 8. 70 3 . 78 • 78 ~ 2. 65 

9 . 15 25 . 10 22. 70 2.98 21. 40 3 . 5 1 5 . 50 23.60 3 . 47 2. 75 ~ 3 . 60 21. 70 3 . 34 3.00 ~ 4. 50 22 . 50 4. 10 I. 71 ~ 5 . I O 

13 . 70 52 . 00 50 . 30 2. 96 47. 90 3. 15 12. 50 48. 70 3 . 53 6 . 20 ~ 9 . 80 47 . 00 3. 3 1 8 . 00 ~ 11 .00 45. 50 4. 13 4. 30~10 . 20 

TABLE 3. -1 TH IN BOUNDARY LAYER, 0. 127m TREE SPACI:-IG, 

Three Columns Headings ta ken on Col. B. 

Row 2 3 5 10 20 

iVleter II III -sec 
II III II Ill II III II III II III 

. 61 . 18 . 18 I. 80 . 18 3 . 6 1 . 05 . 18 I . 50 . 04~ .05 . 18 I. 80 . 03 ~ . 03 . 18 6.00 . 025~ . 03 
1. 52 . 59 . 5 1 I. 46 . 26 1.4-1 . lo . 68 3 . 78 .15~ . 22 • 75 -1 . 16 . 15 ~ .2 2 . 50 -1 . 16 . Qj'"" . 10 
3 .05 2 . 78 2.30 3 . 07 2. 30 2. 53 . 66 2. 14 3 . 96 . H~ . 58 2 . 45 5 . 83 . 42 ~ • -1 6 2.65 5 . 30 . 33 ~ . 56 
6 . 10 10. 50 9 . 50 i.:,i !:f . 6U 2. 93 2. 95 9. -1 0 -1. 39 I. 82~ 2. 30 9 . 50 &. 2G L J l ., 1. 80 0. 70 -1. 35 1. 02 -., ~- 50 
9. 15 25 . 10 22 . 70 2. 99 22. 00 3 . 05 5 . 70 22. 00 -1. 80 3 . 45~ 5. 00 23 . 50 4. 95 3 . 25 ~ 4. 60 22 . 50 -1 . 75 2 . 75~ 5 . 20 

11 . 70 52.00 50. 30 2. 96 49.60 3 . 22 12. 60 48.70 5. 60 7. 00~12.00 48. 70 5 . 41 8.00 ~ IO . 50 4 5 . 50 -1. 13 6 . OC>-10. 80 N 
0\ 

TABLE 3 . 5 THIN BOUN DARY LAYER, 0 . 254m TREE SPACING, 

Three Columns, Readi ngs taken on Col. A. 

Bow 2 3 5 10 20 

Mete, · II Ill II Ill II III II III II Ill II III sec 

• Gl • 10 . 10 3 . 33 .10 I. 43 . 08 .1 0 3. 33 . 035 ~ . 039 .10 3 . 33 .03 ~ . 05 . 18 6 .00 . 05~ . 06 
1. 52 . 66 . 5 1 5.10 . 54 2 . 46 . 26 . 58 3.22 • 20~ • 22 • 66 3.50 • 24 ~ • 28 • 47 4. 70 . 11~ . 19 
:l. 05 2. 62 2.30 3.07 2. 46 2. 93 1.00 2. 46 3. 72 • 66~ . 66 2 . 78 4 •. 36 • 72 ~ .83 3 . 25 5 . 00 . -14~ . 9 -1 
6. 10 9 . 80 10.00 2 . 78 9.80 2. 72 4. 00 9. 80 3 . 15 3 . 10~ 3 . 10 9 . 50 4 . 25 2 . 70 ~ 3 . 50 10.00 3 . 23 2. 30 ~ 3 . 20 
!.J . 15 20 . 40 24. 40 3.13 23 . 60 3. 07 9.00 23 .60 3 . 57 6. 60~ 7. 00 21.10 3 . 82 5. 90 ~ 7. 30 23 . 50 3.62" 5 . 00~ 7 . 80 

l'l. 70 50 ~30 50 . 30 2. 68 50.30 2. 82 24 . 00 50. 30 3.26 15. 50~ 17. 00 50. 30 3 . 87 15. 50 ~ 19 . 00 52 . 00 3 . 35 11. 50~18 . 20 

TABLE 3.6 THIN BOUNDARY LA YER, 0. 254m TREE SPACING, 

Three Columns . Reading& take n on Col. B. 

How 2 3 5 10 20 
Meter 

II l(J 11 Ill 11 III II III II m II Ill Sl'C 

. li l . IO . IO 3. 33 . 10 2 .00 .07 . 08 I. 60 . 0 4 6 ~. 053 . 10 2. 00 . 03 .05 . 10 2.00 . 07~ . 07 
1. 52 . G6 . 48 1.85 • 57 2.85 . 29 . 66 2. 64 . 26~ . 29 . 35 3 . 30 .IO . 25 .47 4 . 70 . I G~ . 25 
:! . 0 5 2 . 78 2 . 30 2.13 2. 62 3. r2 1. 08 2.46 3 .. 28 . 96~ • I O 2. 45 3 . 47 . 50 1. 15 2. 62 :i. !J7 . 66~ l. /)!} 
G. 11) !J . 20 9. 60 2.26 10. 02 2. 9 1 4. 90 9 •. 70 2. 81 3 •. 65~ 4 .. 40 9. 00 3 .. 16 I. 50 4. 50 9 . 25 2 . 58 2. 48~ :i . 70 
ft . 15 25 . JO 22.00 2 . 62 22 •. "lO 3. 07 10.00 2"2.00 3 . 06 9.oo~ 9 . 00 21.00 3. 50 5 . 25 ro . oo 22 . 00 :! . 14 6. oo~ i, _:{o 

lJ . ?') 60. :!O 60.:fO 3.58 50.30 J-. 06 33 •. 00 50 •. 30 3. 27 20. 00~20. 30 50.40 -i . 11 J?.. 40 ~ ?.1 Sil s> 00 :.L02 i:1.00---22.110 



TABLE 3.1 THICK BOUNDARY LA YER, 0.127m TREE. SPACING, 

Col. A. only. 

Row 2 3 5 10 20 

Me~~tc II III ll Ill ll Ill II III ll III II III 

, 61 .06 . 17 3 . 40 . 12 2.40 .0:,. .10 2.00 .05 ~ .05 .10 2 . 00 .04 . 06 . 18 I. 20 .041 ~ . 082 
I. 52 . 50 • 55 9.20 .50 2.94 . 15 .42 2. 47 .17 ~ . 22 .42 4.20 .10 . 17 • 77 2.20 .10 ~ . 18 
3 .05 1.81 I. 50 6.00 2. 00 5. 72 . 41 1.56 5, 02 .36 ~ . 50 1.81 6.03 .26 • 40 2. 60 3. 38 . 30 ~ .18 
6.10 7. 50 7.00 6.06 7.20 7.20 1. 15 5. 70 6. 70 1.01 ~2.00 6 . 60 6 . 21 . 92 1. 55 6 .00 2 . 40 1.18 ~ 1.45 
9. 15 18.00 16.20 6. 17 15.20 7.16 3 . 80 14. 70 8.05 2.43 ~ 3 .6<l 15 . 20 6. 60 2. 40 4.00 14. 20 3.22 3.00 ~ 3. 70 

13 . 70 35 . 70 35.70 6.26 35. 70 9.U 7.00 31.20 7.10 5.00 ~ 8 . 00 32 . 50 6. 50 4. 20 8 . 40 3 2.50 3.35 5. 80 ~ 8. 00 

N 
--..J 

TABLE 3.S:. THICK BOOND,IJRY LAYER, o. 254m TREE SPACING, 

Col. A. only. 

Row 2 3 5 10 20 

Me~fu II Ill II Ill II III II Ill ll III II m 

. 61 .1 8 . 20 1.33 • 18 1. so .07 . :w, 1.82 .04:Z,... .05 . 12 2.40 .04 ~ . 045 . 12 1. 09 .04~ . 08 
1. 52 . 35 . 51 1. 45 .35 1_94 .15 • 68 1. 79 .12 ~ .15 . 35 2.34 . 13 ~ . 15 . 43 1.95 .16 ~ . 18 
3 .05 1. 18 1. 51 1.78 1. 51 2. 60 • 55 1. 32 2.3! • 61 ~ • 61 1.34 2.63 .54 ~ . 64 1. 68 2 . 47 . 58~ • 72 
6.10 6. 10 6. 40 2. 25 6.70 2.86 2. 45 6.20 2.65 1. 95 ~ a. oo 5 .. 80 2. 67 2.00 ~ 2. 40 6. 70 2. 68 2 . 20~ 2. 60 
9 . 15 14. 40 15. 10 2. 36 15.10 2.48 5.70 14.40 2.53 4. 70 ~ 4. 70 14.80 2.74 4.80 ~ s. 20 15. 10 2. 70 4. 50~ 5. 70 

13. 70 35 . 00 35.00 2. 32 36. 7(), 2.43 15.00 33.40 2.33 10.8 ~11.8 33.40 2. 74 11. 70 ~ 12. 50 35.00 2 . 44 10.80~12.50 



TABLE 3.9 T HICK BOUNDARY LAYER, 0 , 127m TREE. SPACING, 

Three Columns - Readings taken o n Col. A. 

Row 2 3 5 IO 20 

Met~c II III II Ill II Ill II llI II Ill II Ill 

. 61 . 05 .12 2 .. 40 .17 3. 40 .05 .15 3 .. 00 .05 ~ .05 • 12 2.40 .OS .06 • 10 2. 00 .04 ~ .046 

1. 52 . 43 . 46 4 . 60 . 57 3.35 .IO .50 I. 92 . 104~ . 17 .50 4 . 16 . 13 • 13 .35 I. 59 . 062~ . 14 

3.05 2. 00 1. 67 4. 80 2.00 4.12 . 30 l. 6f> 2. 84· • 44 ~ .46 l. 65 4.12 . 25 .35 1. 51 2.56 . 18 ~ . 43 

6.10 7 . 10 6 •. 50 3.89 7.00 4. 50 i. 05 6. 20 3. 10 1. 42 ~ 1. 47 6 . 50 4. 81 . 80 1.35 6.00 2.40 . 54 ~ I. 45 

9 . 15 17. 00 15.50 4. 13 15. 20 4.65 2. 95 15. 00 3_41 3.60~3.60 14.50 4_92 2.00 2. 50 13 .50 2. 81 1. 20 ~ 3.30 

13. 70 35. 70 34. 00 4.14 3f>. 70 5.66 7.00 3Z. 50 3.74 7.50 ~ · 7 . 50 32. 50 5.80 4.00 6 . 10 31. 70 2.86 2. 99 ~ 7.00 

TABLE 3. JO THICK BOUNDARY LAYER, 0. 127m TREE SPACING, 

Three Columns - Readings taken on Col. B . 

Row 2 3 5 10 20 

:vie~ II lll II Ill II Ill 11 Ill 11 lII II lll 

. 61 . 05 . 12 1. 71 .10 2.00 • 05 . 10 2.00 .05 ~ .05 . 10 2.00 .06 .064 . 10 2. 50 . 032~ . 037 

I. 52 . 35 . 42 I. 68 . 58 2.63 . 12 .45 I. 80 .12 ~ • }7 .50 1. 67 . 16 • 20 . 34 -!.85 .07 ~ . 08 

3. 05 I. 65 1. 67 2.89 I. 50 2.31 .45 }. 50 3.00 . 35 ~ . 55 I. 56 2.21 . 34 ~ . 42 1. 25 2. 98 . 27 ..... . -!2 
6. 10 7. 00 5. 60 2. 84 5.50 2.59 1. 80 s. 60 3.39 1.25 ~ 1.65 5 . 60 2. 14 I . 25 1. 50 5. 80 2. 90 . 9➔ ..... 1. e-1 
9. 15 15. 50 13 . 20 3.11 14. 00 2.80 4. 00 13. 70 2.88 3 . 00 ~ 3 . 90 13. 60 2 . 72 2. 90 3. 40 14. 20 3.30 2. 16 ~ -! . 10 

13. 70 35. 70 35. 70 3 . 80 35.70 4.46 10.00 31. 20 3 .. 46 7 . 50 ~ 8. 00 32. 50 3 . 16 6. 20 7. 20 32 . 50 3.38 5.00 ~ 9 . 80 

N 
00 

TABLE 3. 11 THICK BOUNDARY LAYER, O. 254m TREE SPACING, 

Three Columns - Readings taken on Col. A. 

Row 2 3 5 10 20 

Me~~ II III II Ill II lII II lII II lII [I Ill 

. 0 1 .07 . 20 1. 33 . 18 l. 63 . 07 . 20 I. 82 .04 ~ .05 . II I. 57 .044 ~ .05 . 12 2. -!O .0-! ~ .06 
I. 52 . 51 . 60 6 .. 66 .51 I. 59 . 15' . 58 I. 52 .12 ~ . 17 . 35 I. 29 .21 ~ • 28 .35 2. 33 . II~ . 16 
1 . 05 2.84 1.84 3 . 60 I. 51 2. 13 • 42 I. 84 3_23 • 47 ~ • 56 I. 26 1 .. 25 • 56 ~ • 92 L5l I. 96 • 36 ~ . 60 
6 . 10 8. 90 6. 70 2.68 6. 40 2.56 2. 15 6. 20 2 . 14 2 . 00~ 2 . 20 4.50 1. 44 2.10 ~ 2. 50 6.40 2. 26 I. 50 ~ 2 . -10 

9 . 15 18. 40 15.10 2.25 15. 10 2. 6f> 6,00 15.60 2. 52 5. 10 ~ 5.40 IS.IO 2.48 4.80 ~ 5.40 15. JO 2 . 69 3. 20 ~ 5. 10 
1:i. 70 38.40 33.40 2. 21 33.40 2. 49 15.00 35.00 2. 32 10. 80 ~12. 00 36. 70 2,31 11.30 ~ 13. 50 35. 00 2.21 8 . 00 ~12.80 

TABLE 3. 12 THICK BOUNDARY LAYER. 0.254m TREE SPACING. 

Thrtt Columns - Readings. taken on Col .. B'. 

How 2 3 5 10 20 

M~ II lil II III u Ill H Ill II lII II m 
. 61 .18 .20 1. 33 .20 I. 67 .07 .20 1.6& .04~ . 056 .15 2.14 -=~ .070 . I!> 3.00 . 049~ .%1 

1. 52 . 68 . 61) I.87 .35 I . 40 • ?5 .58 l.52 .12 ~ . ]1 .47 1.34 . 16 ~ •. 30 .43 2.89 _14~ . 18 
3.05 2.84 3.6'1. 4.31 1. 68 1.98 •. 76, 2.00 1.93 .90- .90 J.&8 J.91 .58 ~ 1.00 2. 10 3'. 56 . 57~ .75 
6. 10 9. 20 9 , }0 2.8'1' T.&o Z .. 28 3'.W 'l, 40 2.02' 3. 20- 3'.20 6,. 70 2. 36 2.48 ~ 3.10 7.&0 3.25 2. 15~ 3.00 
9 . 15 18.40 18. <IO 2 .42 15.10 I.96 7 . .0 18, .. 40 2..27 'i.40~ 7.40 n.&o 3.26 5.18 - &. 40 ll.60 3.5,2 4. 60~ 'l.00 

13. 70 40. 00 40.00 2·.2r, J"S..40 2.29 16. 90 38.40 2.0& Js .. ro~n.oo 38.40 3.0f> 12.50 ~ I5. 20 J:lt,. 40 3'. 05 13. oo~ 16 •. 50 
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6.3 List of Figures 
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40 
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Figure 2.1 The averaged dimensions of a 
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Figure 2.3 The force diagram of the dynarnometer 
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Figure 2.6 Calibration curve for the strain-gage force dynamometer 
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See figure 2.3 for the 
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Figure 2.8 The dynamometer arrangement in the model forest 

Figure 2.9 Instruments 
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Figure 3.18 Column A only 

A Comparison of Local Drag Force vs Longitudinal Distance for 
0.127 m and 0.254 m Tr ee Spacings, Thick Boundary Layer, for all 
Row Arrangements, 13.70 mps Velocity Only 
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Figure 3.19 Three colwnns; readings taken on Colwnn A 

A Comparison of Local Drag Force vs Longitudinal Distance for 
0.127 m and 0.254 m Tree Spacings, Thick Boundary Layer, for all 
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Figure 3.21 The arrangement of artificial trees in the model 
forest, 0.254 m tree spacing 
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Figure 3.22 fd / f vs x/L in the model forest canopy field, 0.254 m 

tree spacing, thick boundary layer 
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Figure 3.23 f 0/f vs x/L in the steady decay zone of the model 

forest canopy field, 0.254 m tree spacing, thick 
boundary layer 
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Top view of the tree arrangement in Army I 
Meteorological Wind Tunnel 

Sym U0(m/sec) 

6 6 .10 
0 9 .15 
D 13.70 

I I 
I I -

T T -

E' 
E1 ,;t I 
~ I I.() I 
-:I C\l I o, 0 ' 

1 I . 
y 7 
I I 
I I 
I 

I I 

I I 
I I A - -

T T 
I I 
I I 
I I 
I I 
I I 

0.1 0 .2 0 .3 0.4 0.5 
Tree spacing, meters 

Figure 3.26 The effect of tree spacing on tne drag force of th e first 
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