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ABSTRACT 

 

 

 

CASE STUDY OF THE REAL WORLD INTEGRATION OF FUEL CELL PLUG-IN 

HYBRID ELECTRIC VEHICLES AND THEIR EFFECT ON HYDROGEN REFUELING 

LOCATIONS IN THE PUGET SOUND REGION 

 The personal vehicle transportation fleet relies heavily on non-renewable and pollutive 

sources of fuel, such as petroleum. However, with harsher restrictions from the Environmental 

Protection Agency’s (EPA) Corporate Average Fuel Economy (CAFE) and California Air 

Resource Board’s (CARB) Zero Emission Vehicle (ZEV) standards coupled with growing sales 

for alternative fueled vehicles, the automotive industry has begun to shift toward more renewable 

and clean sources of energy to power vehicles. The fuel cell plug-in hybrid electric vehicle 

(FCPHEV) architecture provides a unique and promising solution to decreasing the dependence 

of vehicles on petroleum and decreasing the amount of pollution emitted from tailpipes. 

 Until recently, the FCPHEV architecture had only been developed in concept cars and 

paper studies. However, recent studies have confirmed the capability of the FCPHEV concept in 

terms of its economics, environmental benefits, and real-world viability.  

 From this concept it becomes important to understand how daily commuters will benefit 

from driving a FCPHEV using real world driving data. Through the use of geographic 

information system (GIS) data of vehicle travel in the Puget Sound area from the National 

Renewable Energy Laboratory (NREL) a model of electrical and hydrogen energy consumption 

of a fleet of FCPHEVs can be constructed. This model can be modified to model the driving, 

charging and fueling habits of drivers using four different all-electric driving ranges, and using 

either a normal plug-in hybrid control strategy or a control strategy that focuses on highway fuel 
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cell operation. These comparisons are used to analyze the driving habits of daily commuters 

while using a FCPHEV, and the effect of the FCPHEV architecture on the location of hydrogen 

refueling. 

 The results of this thesis help to define FCPHEV energy management strategies and show 

that the FCPHEV architecture can concentrate the location of hydrogen refueling to predictable 

areas and aid in the development of the hydrogen refueling infrastructure. 
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1.0 INTRODUCTION 

 

 

 

 As of 2011, the transportation section of the United States was consuming 28% of the 

nation’s energy. Of this energy consumed, 93% came from petroleum while only 3% came from 

renewable sources as shown in Figure 1. This is in large part due to a light-duty personal 

transportation vehicle fleet that averaged 23.5MPG as of 2011 [1]. However, changes in the 

automotive industry are visible in the growing popularity and acceptance of alternative energy 

vehicles. From December 2010 to April 2014 198,030 plug-in electric vehicles (PEV) have been 

sold in the United States. Each year since 2011 has seen greater sales than the year before it, 

demonstrating the growing popularity of alternative fuel vehicles in the United States [4]. 

 

Figure 1 Energy sources used by the transportation sector in comparison to the energy consumed by other sectors of the 

United States. 

 With the combination of vehicle efficiency standards set by the Environmental Protection 

Agency’s (EPA) Corporate Average Fuel Economy (CAFE) and California Air Resource 
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Board’s (CARB) Zero Emission Vehicle (ZEV) protocols and the rising sales in PEV, the 

automotive industry has been developing new vehicle architectures to reduce both fuel 

consumption and emissions production to meet regulations and consumer demand [2][3][4]. The 

CAFE standard was developed in conjunction between the EPA and the Department of 

Transportation’s (DOT) National Highway Traffic Safety Administration (NHTSA). The overall 

goals of these policies are to reduce oil consumption while addressing the risks of global climate 

change. By model year (MY) 2021, the CAFE standard dictates that the average fuel economy 

(FE) of the automotive original equipment manufacturers’ (OEM) vehicle fleet must be 40.3-

41MPG. According to their studies, the fuel savings garnished from a more efficient vehicle fleet 

will outweigh higher initial vehicle costs with a country wide fuel savings between $326 billion 

to $451 billion [2]. Legislation to reduce criteria pollutants such as nitrous oxides (NOx), carbon 

monoxide (CO), and particulate matter (PM) has been led by CARB since its establishment in 

1967. The purpose of their ZEV standard is to severely decrease the amount of harmful 

chemicals that emit from vehicle tailpipes. The ZEV requirement established by CARB states 

that automotive OEMs are to have a minimum of 16% of their transportation fleet as ZEVs by 

2018 [3]. 

 In order to meet the regulations being created by groups such as the EPA and CARB, the 

automotive industry has begun to design vehicle architectures that utilize alternative sources of 

energy. A hybrid electric vehicle (HEV) utilizes a combination of fuel and electrical energy 

sources to power the car while driving, as shown via a block diagram in Figure 2. The fuel 

energy originates from an internal combustion engine (ICE), while the electric energy flows from 

an electrochemical battery pack. More recently the automotive industry has been producing 

vehicle architectures that can utilize the more efficient and lower cost electrical energy from the 
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electric grid. A plug-in hybrid electric vehicle (PHEV) uses both a fuel and electrical energy 

source much like the HEV architecture, outlined in Figure 2 [5]. 

 

Figure 2 Example block diagrams of the Plug-in Hybrid Electric Vehicle and the Charge Sustaining Hybrid Electric 

Vehicle. 

 However, the PHEV is able to draw energy from the electrical grid through an onboard 

charger to recharge the electrochemical battery pack. The ability to recharge the battery pack 

allows the PHEV to drive a limited distance using energy only from electrochemical stored 

energy. This driving mode is known as an all-electric mode or charge depleting (CD) mode. In 

this driving mode the battery’s state of charge (SOC) decreases over the driving distance as only 

electrical energy is used by the vehicle to power the wheels. The SOC of the battery is the 

remaining working capacity of the battery, which is commonly expressed as a percent of the 

maximum usable battery pack energy. Once the battery of the PHEV reaches a predetermined 
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SOC it will switch over to a charge sustaining (CS) driving mode for the rest of the drive. During 

CS mode, fuel energy maintains the SOC of the battery until the battery pack is recharged using 

electric energy from the grid. By utilizing first the electrical energy from the battery pack a 

PHEV is able to act as a ZEV for a set distance, thus decreasing the amount of fuel consumed 

and emissions produced on average by the vehicle over its lifetime [5]. In contrast, a 

conventional HEV operates only in the CS mode. Depending upon the architecture of the HEV, 

the fuel energy will either maintain the SOC of the battery or it will provide the bulk of the 

power to the wheels while utilizing energy form the battery pack and motor when more power is 

needed or to run more efficiently. In CS mode, the SOC of the battery is controlled such that it 

remains charge neutral during the driving time. The HEV architecture provides fuel savings and 

reduced emission compared to a conventional ICE vehicle, but doesn’t provide the same savings 

as a PHEV [5]. 

1.1 Present State of Hydrogen Powered Vehicles 

 An alternative fuel that has been proposed as a possible solution to reducing vehicle 

emissions and oil consumption is hydrogen gas (H2). The hydrogen fueled vehicle architectures 

being researched by government agencies, universities, and the automotive OEMs include 

conventional hydrogen ICEs, hydrogen fuel cell vehicles (FCV), and fuel cell plug-in hybrid 

electric vehicles (FCPHEV) [6]. Hydrogen has been used as an ICE fuel because of its wide 

flammability range, low ignition energy, and high flame speeds even at stoichiometric ratios [7]. 

Hydrogen ICEs tend to operate at lower in-cylinder temperatures, thus decreasing emission of 

temperature based pollutants such as NOx. However, hydrogen combustion engines have troubles 

with premature ignition due to its low ignition energy, thus decreasing the efficiency of the 

engine. Automotive OEMs have not seriously researched the hydrogen ICE vehicle architecture 

since the early 2000s, but instead have switched to natural gas combustion vehicles because they 



5 

provide similar fuel and emissions saving with a vastly superior fueling infrastructure [7]. In 

contrast to hydrogen combustion vehicles, FCVs emit zero operational pollutants because the 

fuel cells utilize a chemical reaction to generate electricity where the only exhaust from the 

process is water (H2O). There are numerous types of fuel cells that utilize different electrolytes to 

produce electrical energy. For example, Figure 3 shows a diagram of a proton exchange member 

(PEM) fuel cell. A PEM fuel cell uses a thin polymer sheet as the electrolyte between the anode 

and cathode, as shown in the fuel cell diagram. First pressurized hydrogen gas (H2) flows into the 

anode of the fuel cell where the electron (e
-
) is stripped from the atom, ionizing the hydrogen 

atom. Then the direct current (DC) provided by the separated electrons travels across a load back 

toward the cathode. Next either pressurized or ambient oxygen is fed into the cathode where it 

finally combines with the hydrogen ion and electron to form water as the exhaust. 

 

Figure 3 Diagram of an example proton exchange membrane fuel cell. 
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 Because water is the only emission produced by the fuel cell’s chemical process, FCVs 

are considered ZEVs because they don’t produce any criteria pollutants while driving. The zero 

emission capabilities of FCVs have pushed numerous automakers within the last decade to begin 

producing their own fuel cell powered vehicles. General Motors (GM) converted 119 Chevrolet 

Equinox to FCVs in 2007. These FCVs were only built as demonstration vehicles, but as a whole 

they have been driven nearly three million miles to date with an estimated fuel savings of 

$552,631 [8]. Starting in 2008, Honda allowed limited three year leases of their FCX Clarity 

FCV with only a handful of Claritys on the road at any given time. As with the Equinox, Honda 

only released the Clarity as demonstration vehicle with no plans for commercialization [9]. 

These early FCV demonstrations were limited in their exposure to the public as neither GM nor 

Honda intended to fully commercialize the vehicles. However, in the last year automakers such 

as Toyota, Honda, and Hyundai have begun to develop and demonstrate concept FCVs at auto 

shows across the United States. The difference between the Toyota FCV, Honda FCEV, and 

Hyundai Tucson FCEV and earlier fuel cell demonstration vehicles is that these vehicles are 

being designed with large scale production in mind. All three of these vehicles will be available 

starting in 2015 [10][11][12]. The demonstration of these vehicles indicates that the automotive 

industry is slowly adopting the FCV architecture to adhere to the regulatory standards and 

provide fuel cost savings to potential customers. 

 There are a few potential reasons for the shift toward fuel cell powered vehicles by the 

automotive industry. The United States Department of Energy’s (DOE) Fuel Cells Technologies 

Office (FCTO) has installed incentives to help FCVs become more competitive with 

conventional petroleum powered vehicles. The goal of some of the DOE’s targets is to decrease 

the production cost of FCVs by decreasing the production costs of the fuel cell system [6][16]. 
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The cost of fuel cell systems per kW in Figure 4 shows that the DOE has set a production cost 

target of 30$/kW by the year 2015. A study conducted by the National Renewable Energy 

Laboratory (NREL) in 2005 analyzed that the cost of producing the entire fuel cell system, which 

includes the fuel cell stacks and balance of plant components such as pumps or blowers, was 

67$/kW [15]. However, as shown in Figure 4, production costs published by fuel cells 

companies Directed Technology Inc. and Ballard Power Systems show varying results of cost 

reduction in comparison with the findings of the NREL study. The published data from these two 

companies show that production costs are trending lower each year. Directed Technology Inc. 

has reported a 93% decrease in costs from 2002-2011, while Ballard Power Systems reported a 

42% decrease in costs from 2002-2005 [13][14]. The reduction in costs of the fuel cell system is 

sensitive to larger production numbers, increases in energy density of the stacks, decreases in 

weight of the stacks, and prices of raw materials such as platinum [6][13][15][17]. 
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Figure 4 Fuel cell stack costs that have been demonstrated by government studies [15], published by fuel cell production 

companies [13][14], and the 2015 targets set by the DOE [16]. 

 The decreasing production costs of the fuel cell systems has allowed FCVs to become 

more competitive with conventional vehicles (CV) than they have at any other time in the last 

two decades. 

1.2 Present State of the Hydrogen Refueling Infrastructure 

 A major sticking point in the adoption of hydrogen powered vehicles into the personal 

transportation fleet has always been the lack of a sufficiently sized hydrogen refueling 

infrastructure [6][30]. The problem inherent with the growth of alternative fueling stations, such 

as hydrogen stations, is the cause of said growth. Research has tried to determine whether it is 

the initial integration of an alternative fuel infrastructure that increases the penetration of 

alternative fueled vehicles into the market, or whether it is alternative fueled vehicles that create 

the demand for increased implementation of alternative refueling infrastructure [18]. No matter 
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the arguments of this chicken or the egg debate, according to the United States DOE there are 

currently only 10 publicly available hydrogen refueling stations. All of these stations are located 

in either California or South Carolina [19]. 

 Along with developing new FCVs, some automakers are also working on developing and 

expanding hydrogen refueling infrastructures across the world. The automaker Daimler, in 

collaboration with six other companies, has plans to expand the hydrogen infrastructure of 

Germany from its present state of 17 stations to 100 stations by 2017 and to 400 stations by 

2023. The new infrastructure plan, termed the H2 Mobility Plan, is going to locate stations across 

the major cities of Germany, and add stations along the major highways no further than 56mi 

apart. It is estimated that the 400 stations to be built by 2023 will cost $474 million [20]. Toyota 

has begun research into combing hydrogen refueling into urban planning. Their experimental 

hydrogen refueling station in Toyota City, Japan is an example of the types of station Toyota 

wishes to release with the development of their own FCVs [21]. While some of the major 

automakers are presently researching and developing the hydrogen infrastructure necessary to 

sustain their production of FCVs, infrastructure research is being led by government labs and 

academia to determine the optimal hydrogen infrastructure to support substantial penetration of 

hydrogen powered vehicles into the personal transportation fleet while minimizing the costs of 

building the said infrastructure. 

 The cost of installing a sufficient hydrogen refueling infrastructure is a large stumbling 

block in the growth of hydrogen refueling station across the country. NREL conducted a study in 

2013 to estimate the cost of installing different sized hydrogen stations over the next 5 to 10 

years. The study analyzed hydrogen fueling stations of different capacities that they predicted 

would enter into the market at different points between the present and the year 2016, as shown 
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in Table 1. The model developed by NREL assumed that cost reductions would occur over the 

coming years due in large part to gained experience from increased hydrogen station installations 

and decreased production costs because of higher production levels. The capital cost results show 

that by increasing the capacity/size of the hydrogen station the cost of its construction and 

installation increases. However, when looking at the results based on the capital cost per station 

fueling capacity it can be seen that there are large reductions in cost starting with early 

commercial stations in 2014-2016. By the time hydrogen stations are installed with greater 

fueling capacities (600kg/d and 1500kg/d versus 160kg/d) there is a 69-80% reduction in capital 

costs per unit of station capacity. The NREL study determines that while current hydrogen 

refueling station costs are larger, there is a higher probability that these prices begin to trend 

downward in the near future [22]. As seen by the calculated daily average hydrogen fueling 

output and station utilization rate, the returns of a hydrogen station relies heavily upon locating 

the station in the area of greatest access to drivers. 

Table 1 Hydrogen station fueling capacity, utilization rate, average daily output, and capital costs estimated by the NREL 

hydrogen station study [22]. 

Station Type Present 

Day 

(2012) 

Early 

Commercial 

(2014-2016) 

Greater Volume 

Commercial (after 

2016) 

Large Commercial 

Station (after 2016) 

Hydrogen Fueling 

Capacity (kg/day) 

160 450 600 1500 

Station Utilization 

Rate (%) 

57 74 76 80 

Calculated Average 

Output (kg/day) 

91 333 456 1200 

Total Capital Cost Per 

Station ($Million) 

2.65 2.8 3.09 5.05 

Capital Cost per 

Capacity ($1000 per 

kg/d) 

16.57 6.22 5.15 3.37 

Percent Reduction 

from Present Day (%) 

N/A 62 69 80 

 



11 

 Academic research has analyzed the optimal ways to determine the placement of 

hydrogen refueling stations to accommodate as much of the population as possible. Whether on a 

national, state, or regional level, academic studies have used optimization methods such as 

dynamic programming (DP) or mixed integer linear programming (MILP) to optimize the 

placement of hydrogen stations [23][24]. A majority of the research into optimizing the hydrogen 

infrastructure incorporates analyzing the entire hydrogen supply chain (HSC) when optimizing 

station placement. The HSC analyses encompass the economic analysis of the hydrogen 

production facilities, feedstock, storage costs, distribution chains, and refilling stations [23][24]. 

These detailed HSC models are good at optimizing both the hydrogen demand and supply within 

the given system boundaries. However, according to Agnolluci et al. these models are unable to 

accurately represent the behavioral dynamics of the transportation market within the bounded 

system, and are unable to spatially represent the hydrogen infrastructure below the national level 

[23]. 

 In order to determine an ideal hydrogen infrastructure at a regional level, researchers 

have utilized spatial data sets [24]. Spatial data allows researchers to use the physical geometry 

of towns, cities, and states to construct hydrogen refueling locations. Known as the geographical 

information system (GIS) approach, the spatial approach allows researchers to use the area’s 

transportation network, population density, and other characteristics of the region to determine 

hydrogen station locations [24]. Melendez et al. of NREL used the GIS approach to determine 

the consumer demand for hydrogen in several cities and regions including Denver, Salt Lake 

City, Chicago, and other larger metropolitan areas. Regional consumer demand for hydrogen was 

based on weighting different influencing factors such as household income, air quality, commute 

distance, registered hybrid vehicles, and several other topics. These attributes were each 
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weighted and ranked based on the opinions of members of NREL with expertise in advanced 

technology vehicle deployment. Once the demand for hydrogen was calculated using the 

weighted factors listed above, hydrogen stations were placed using spatial data sets. The stations 

were strategically placed to be within 1mi of major retail shopping centers, within areas of 

greater estimated hydrogen demand, along major roads with high traffic, and near proposed 

interstate hydrogen stations such that the stations provided a wide coverage to the region’s 

population [25]. The proposed hydrogen locations for the cities analyzed by this study had 

roughly 90-99% of the region’s population within 10mi of a hydrogen station. However, while 

the study predicts the location of hydrogen stations that best fit the need of the population using 

socioeconomic and demographic metrics, the study does not incorporate vehicle driving or 

refueling behavior besides locating areas of high traffic [25]. The Institute of Transportation 

Studies (ITS) at the University of California Davis (UC Davis) conducted a similar study to 

determine the spatial demand for hydrogen in the state of Ohio. The study used US census data 

from the year 2000 to predict the hydrogen demand of the Ohio region in 2030. Using population 

growth, density, and income the study created various clusters of hydrogen demand similar to the 

regional demand calculated by the NREL study. The study used an estimated vehicle hydrogen 

use (0.6kg H2/day/vehicle) and fuel economy (65 miles/kg) to help determine the density of 

hydrogen demand [26]. Using the estimated hydrogen use, population statistics, and varying 

values of hydrogen vehicle market penetration, the study estimated geographically specific 

demand clusters (kg H2/day consumed) in Ohio and placed “hydrogen demand centers” to cover 

the higher density areas. The results of the ITS study indicated that at varying FCV market 

penetrations and demand center locations, anywhere between 47% and 74% of the hydrogen 

demand of Ohio could be covered [26]. Both the NREL and ITS studies are examples of 
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population and socioeconomic characteristics being used to determine the appropriate size of 

hydrogen refueling infrastructure. 

 In their analysis on the refueling behavior of California drivers, Kitamura et al. 

determined it was vehicle travel characteristics like refueling location, price, work related trip, 

and home related trip that determined the locations where drivers consistently refueled their 

vehicles. The analysis of their survey suggested that drivers were more accustomed to repeatable 

refuelings at gasoline stations along their daily commute between home and work. They 

determined that neither socioeconomic nor demographic characteristics had a large correlation 

with driver refueling behavior. Instead, vehicle usage provided the greatest insight into 

understanding the refueling behavior of everyday drivers [18]. Further academic research by the 

ITS supports the conclusions of Kitamura et al. By analyzing different specifications to help 

shape future alternative fueling infrastructures, the ITS determined that a consumer’s demand for 

refueling was based on distance traveled on various daily trips or commutes [28][29]. In fact, 

analysis of the gasoline refueling patterns of Sacramento, California showed that nearly 51% of 

all fuel pumped at gas stations were within 1km (0.62mi) of a highway. The ITS concluded that 

more refueling demand occurs between the house and freeway than any other trip route, and that 

initial alternative fueling stations could capture large portions of the driving population at the 

entrances of highways [29]. These studies provide an example of vehicle behavior/development 

driving the integration and placement of alternative fuel infrastructures. 

1.3 Review of FCPHEV Research and Architecture 

 FCPHEVs are one of the hydrogen fueled vehicle architectures being researched by 

government agencies, universities, and the automotive industry as a potential solution to meet the 

strict FE and emissions standards. In 2010, the Electric Power Research Institute (EPRI) 
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conducted a study to determine the practicality of implementing FCPHEVs in comparison to 

battery electric vehicles (BEV), FCVs, and conventional petroleum fueled PHEVs. FCPHEVs 

provide an advantageous combination of hydrogen fuel cells and energy from the electrical grid 

to power the vehicle. The power supplied by the fuel cells help eliminate any range limitations 

associated with just using a battery pack to power the vehicle, and as mentioned in the previous 

section the fuel cells produce zero emissions maintaining the FCPHEV as a ZEV [30]. An 

example block diagram of the FCPHEV architecture can be seen in Figure 5. The figure shows 

that the electrical energy of the fuel cells is sent to the battery pack to either maintain the SOC of 

the battery, or help extend the range of the vehicle while driving depending on the control 

strategy of the vehicle. Unlike a petroleum based PHEV, the fuel cell generator does not require 

an additional electric motor/generator unit to convert the fuel energy to electrical energy. This 

helps cut the cost and weight of the FCPHEV in comparison to the conventional petroleum 

fueled PHEV. 
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Figure 5 Example block diagram of a fuel cell plug-in hybrid electric vehicle. 

 There were two types of FCPHEVs analyzed in the EPRI study; a range extending 

FCPHEV, and a load following FCPHEV. The range extending FCPHEV utilizes the 

electrochemical battery pack and electric drivetrain for a specific driving distance, than turns on 

the fuel cells to maintain the SOC of the battery similar to the CS mode of conventional 

petroleum PHEVs. A load following FCPHEV allows the fuel cells to provide additional power 

in parallel with the battery pack to the electric motor depending upon the power required to drive 

the vehicle at any given time [30]. The comparison of these two FCPHEV architectures proves 

vital in determining an optimal architecture design that provides costs and emissions savings. A 

range extending FCPHEV with 55mi of all-electric range required only 20kW of fuel cell power, 

while a load following FCPHEV with 40mi of all-electric range required 60kW of fuel cell 
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power. However, the range extending FCPHEV required a battery pack with 22kWh of capacity, 

while the load following FCPHEV required only 16kWh of battery pack storage. According to 

the EPRI study, by 2011 it would cost about 0.06$/mi to fuel the range extending FCPHEV, 

while it would cost about 0.08$/mi to operate the load following FCPHEV (in 2010 dollars). By 

the year 2020 both FCPHEV architectures would cost roughly 0.03-0.04$/mi to operate (in 2010 

dollars). Both FCPHEV architectures provide similar greenhouse gas (GHG) emissions results. 

The range extending and load following FCPHEVs both produce roughly 250gCO2eq/mi when 

using the United States electricity sources mix [30].  The comparison of these two FCPHEV 

architectures to conventional BEV and PHEV architectures by EPRI produced some key results. 

A key aspect of the study determined that by using lower power fuel cells with higher capacity 

battery packs, the range extending FCPHEV could maintain acceptable power (110kW) and 

range (300mi) levels to be comparable to other vehicle architectures. This range extending 

FCPHEV architecture would also provide lower operating costs and produce lower CO2eq 

emissions similar to conventional PHEVs [30]. The study concluded the FCPHEVs could 

increase the acceptance of hydrogen and electricity as viable sources of energy for the personal 

transportation fleet. 

 The conclusion made by the EPRI study mirrors the results derived by the Colorado State 

University Vehicle Innovation Team (CSU VIT) in their design of a FCPHEV for the EcoCAR 2 

vehicle design competition. By designing the components of the FCPHEV based on an inverse 

design process using vehicle performance metrics such as 0-60MPH acceleration time, 3.5% 

gradeability power requirements, vehicle range, and GHG emissions the CSU VIT was able to 

determine that a combination of a small powered fuel cell and large capacity battery pack would 

maintain performance while providing emissions and fuel savings over a conventional vehicle of 
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similar size [31][32][33]. The prototype FCPHEV architecture designed and built by the CSU 

VIT, shown in Figure 6 and Figure 7, demonstrates that the concept of a FCPHEV architecture is 

not just a future endeavor. The electrical and hydrogen architectures shown in the two figures 

outline the commercially available components used by the CSU VIT to construct a FCPHEV. 

 

Figure 6 Electrical architecture of the FCPHEV built by Colorado State University. 
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Figure 7 Hydrogen architecture of the FCPHEV built by Colorado State University. 

 The demonstration of this vehicle by CSU provides proof that the engineering required to 

build a FCPHEV is attainable using present technology. Further investigation into its role in 

every day driving is necessary to prove the benefits of the vehicle architecture. 

1.4 Research Questions 

 Based on this understanding of the field, we can compose two primary questions of 

interest in understanding the relationship between the FCPHEV and the hydrogen infrastructure.  

First, we can seek to understand the effect that FCPHEV control strategy has on the number and 

types of fueling events, and on the quantities of either hydrogen or electricity used to power the 

FCPHEV. The following research questions were developed to help guide research into the 

fueling characteristics of the FCPHEV in real world applications. 
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1. How does the utilization of the electrical and hydrogen fueling pathways change with 

changes in the vehicle design of the FCPHEV?  

a. Do changes in the vehicle’s all-electric range change the energy economy and 

energy sources of the FCPHEV? 

b. Do changes in the vehicle’s energy management control strategy change the 

energy economy and energy sources of the FCPHEV? 

 To answer these questions this thesis will introduce methods used to calculate the utility 

of the hydrogen and electrical energy storage systems of the FCPHEV. These methods will be 

used to evaluate the real world fuel consumption across a large data set of vehicles and vehicle 

trips. The analysis will be conducted across multiple all-electric ranges, as well as being 

compared for two different energy management control strategies. 

 A second research question was composed to guide research into whether the FCPHEV 

can reduce the requirement for the hydrogen refueling infrastructure. 

2. What is the effect of the FCPHEV architecture on the location and quantity of required 

hydrogen refueling infrastructure? 

a. Does this requirement for hydrogen infrastructure change based on the all-electric 

range of the FCPHEV? 

b. Is there an energy management control strategy that centralizes the FCPHEV’s 

hydrogen refueling needs? 

 The results of the first research question will allow the analysis of the thesis to determine 

the exact locations that the FCPHEV will need to refuel the hydrogen storage tanks during the 

trips of each vehicle in the database used for this study. Calculations will be outlined that locate 

the exact longitude and latitude of each hydrogen refueling instance for each of the all-electric 
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ranges and control strategies used in this thesis. The geographical position the refueling 

infrastructure will then be compared to better understand the impact of varying all-electric ranges 

and control strategies.  
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2.0 METHODS 

 

 

 

 The following sections detail the methods used to answer the research questions posed by 

this thesis. The data set, programming scripts, and calculations used in this analysis will be 

reviewed as it pertains to understanding the energy consumption behavior of a FCPHEV fleet, 

and how the hydrogen refueling needs the vehicle fleet change with the incorporation of the 

FCPHEV architecture. 

2.1 FCPHEV Fleet Energy Consumption Analysis 

 The development of a FCPHEV prototype at CSU has developed our understanding of 

the real world integration challenges of such a vehicle [31][32]. Research conducted by CSU 

determined it is important to try and understand the proportion of hydrogen and battery energy 

used by the FCPHEV when integrated into a person’s daily commute. The following section 

details the data and processes used to determine the energy consumption behavior of the 

FCPHEV. 

2.1.1 Utility Factor 

 The concept of Utility Factor (UF) was created in order to quantify the actual fuel 

consumption or FE of a PHEV. This means that both the engine generator and battery energy 

consumption must be weighted appropriately, depending upon the way in which the PHEV is 

driven [34][35]. In general, UF is a ratio of miles driven in an all-electric mode over the total 

miles driven by the particular vehicle. The Society of Automotive Engineers (SAE) standard 

J2841 was created alongside the HEV testing method standards of SAE J1711 to define the 

metrics that would be used to calculate the UF of a PHEV. J2841 uses the mileage-based fleet 

transportation survey data from the National Household Transportation Survey (NHTS). The 

NHTS is a federally funded survey constructed to determine the household makeup, personal 
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demographics, vehicle characteristics, daily travel distances, and long term travel distances over 

a four week study. In the 2001 NHTS, roughly 69,817 households participated in the survey. The 

UF analysis of SAE J2841 is used with the following assumptions: 

1. A constant all-electric range is used for the vehicles of the NHTS no matter a particular 

vehicle’s driving behavior. 

2. Each vehicle begins each day with a fully charged battery pack. 

3. Charging of the battery pack occurs at the end of each day, at home. 

 The UF calculated by the J2841 standard is based on a daily driving distance of the 

vehicles that participated in the NHTS survey [36]. The daily distance UF of a PHEV can be 

calculated using a given travel day ( ), the daily distance of the vehicle (    ), and the all-

electric range of the PHEV (   ). The daily distance UF is calculated using the ratio of the all-

electric range over the daily distance (        ) for instances when the daily driving distance is 

less than the all-electric range of the PHEV (        ). The UF is 1.0 when the daily driving 

distance is greater than the CD range (        ). For a vehicle driven over a given amount of 

travel days (N), Equation 1 is used. 

Equation 1 Daily distance Utility Factor calculations as defined by the SAE standard J2841. 

                
∑              

 
   

∑      
   

 

The daily distance UF equation reports the fraction of daily distances in the NHTS that are 

driven using only electrical energy from the battery pack. An example of daily distance UFs 

calculated for vehicles with different yearly mileage accumulations can be seen in Figure 8. For 

example, a PHEV with a 40mi all-electric CD range would have a UF of ~0.65 for vehicles with 
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small annual mileage accumulation, a UF of ~0.73 for vehicles with large annual mileage 

accumulations, and a UF of ~0.7 for all vehicles no matter the annual driving distance. 

 

Figure 8 Example of a daily driving distance Utility Factor curve. 

 The daily distance UF is the current standard used by the automotive OEMs to report the 

number of all-electric miles and combined FE PHEVs can achieve on a full charge. 

2.1.2 FCPHEV Utility Factor 

 Instead of calculating the daily distance UF of the FCPHEV from sample trips, this 

analysis calculates a UF based on the distance driven in either all-electric or CS mode by a 

vehicle over an entire year using an experimentally gathered set of driving data from NREL. The 

analysis will look at the total distance driven, all-electric distance driven, and fuel cell fueled CS 

distance driven by a given vehicle over year of driving. From these driving distances the amount 

of hydrogen fuel consumed and the refuelings required over the course of the year will also be 

calculated. Two control strategies were used for the analysis of the FCPHEV architecture. The 

first control strategy, which will be known as the ‘PHEV-X control strategy’, uses all of the 



24 

available battery energy for driving before it turns on the fuel cells for CS operation. This is the 

prototypical control strategy used by commercially available PHEVs [5]. The second control 

strategy, which will be referred to as the ‘H2 Highway control strategy’, uses battery energy to 

power the vehicle in urban driving environments while using the hydrogen fuel cells to charge 

sustain during highway driving. For the H2 Highway control strategy, if the vehicle runs out of 

electrical battery energy during city driving the fuel cells will turn on for CS operation the rest of 

the trip. As with the daily distance UF calculations for SAE J2841, there are assumptions that 

were made when calculating the UF and energy use of the FCPHEV: 

1. The FCPHEV begins each day of travel with 100% SOC corresponding to the assumption 

that the vehicle has a home recharging station, and it is used for overnight charging. 

2. Charging of the HV battery pack only occurs at the household of the vehicle at the end of 

each day. Workplace and midday home charging was not considered in this thesis. 

3. The CS hydrogen FE (mi/kg) used by the PHEV-X and H2 Highway Control Strategies 

are constant for each vehicle no matter the driving behavior of the vehicle. No 

consideration is made for the speed dependency, slope dependency, or temperature 

dependency of fuel cell operation or hydrogen consumption 

4. The all-electric range of the FCPHEV is constant and doesn’t vary based on the driving 

behavior of each vehicle. No consideration is made for the speed dependency, slope 

dependency, or temperature dependency of battery operation or energy efficiency. 

5. The FCPHEV uses all of the gas stored in the hydrogen tanks before refueling with 

hydrogen. 

 Each control strategy was implemented in the model with all-electric ranges of 10mi, 

20mi, 30mi, and 40mi. The CS hydrogen fuel consumption for each of the EV ranges was taken 
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from a light-duty vehicle fuel consumption study conducted by ANL’s Energy Systems Division. 

In this study ANL simulated the hydrogen fuel consumption of four PHEV EV ranges at 

different vehicle classes/weights. The analysis of this thesis uses the hydrogen fuel consumption 

for a 2010 medium sized vehicle (966kg glider weight), shown in Table 2 [38]. The urban CS FE 

was taken from FCPHEV simulations on the urban dynamometer drive schedule (UDDS), and 

the CS FE was taken from FCPHEV simulations on the highway fuel economy driving schedule 

(HWFET). The size of the hydrogen storage of the FCPHEV was based on the tanks used by the 

CSU FCPHEV prototype (Figure 7). A full hydrogen storage tank for this analysis holds 4.95kg 

(TANK_CAP) of hydrogen gas. 

Table 2 Hydrogen fuel economies for a medium sized (996kg) FCPHEV with different all-electric ranges [38]. 

All-Electric Range 

[mi (km)] 

UDDS CS FE 

 [mi (km)/kg] 

HWFET CS FE  

[mi (km)/kg] 

Combined CS FE 

[mi (km)/kg] 

10 (16) 54.35 (87.47) 58.82 (94.66) 55.69 (89.62) 

20 (32) 53.62 (86.29) 56.82 (91.44) 55.01 (88.53) 

30 (48) 52.91 (85.15) 55.55 (89.40) 53.98 (86.87) 

40 (64) 52.36 (84.26) 54.88 (88.32) 53.28 (85.75) 

 

 While the UF calculations outlined by SAE J2841 utilize the NHTS data set, the 

FCPHEV UF calculations require a data set that provides geographical positioning data which 

allows for the analysis of vehicle travel behavior. NREL maintains a large database of detailed 

transportation survey data from numerous cities and projects across the United States. The data 

sets provided by the Transportation Secure Data Center (TSDC) provides similar vehicle trip 

characteristics as the NHTS data set, but in addition it provides the geographical location data of 

the vehicle for all of the recorded trips through the use of global positioning systems (GPS) 
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recording [37]. From the TSDC the Puget Sound Regional Council (PSRC) Traffic Choices 

Study from 2004 to 2006 was chosen as the data set to be used for the analysis in this thesis.  

 

Figure 9 General map of the Puget Sound, Washington area. 

 The PSRC data set provides a good combination of urban and highway vehicle travel for 

the participating surveyors within the Puget Sound area shown in Figure 9. The purpose of the 

PSRC survey was to monitor the use of toll roads by daily commuters in and out of the cities 

within the Puget Sound region. The number of households, vehicles, and trips surveyed for the 

PSRC database can be seen in Table 3. The PSRC data set encompasses trips of varying distance 

(1-250mi) and destinations (work, home, store, etc.). The GPS recorded location data at intervals 

of 0.1-0.2mi throughout the vehicle’s trip. The vehicles of the PSRC database were studied for 

different time periods. This means that some vehicles have less than a year of trip data, while 

some vehicles have more than a year of trip data. Because this thesis is analyzing the real world 
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utility of the FCPHEV over a fleet of vehicles, the results of each vehicle need was normalized to 

a year of driving when calculating UF and energy consumption results. 

Table 3 Details of the scope of vehicles and trips studied in the PSRC travel survey. 

PSRC Database Details 

Houses 254 

Vehicles 377 

Total Trips 689,000 

 

 The PSRC data set is accessed through the Structural Query Language (SQL), which is a 

programming language used to manage and query large sets of data. There are five SQL 

schemas, or top level organized groups, within the PSRC data set that outline different 

specifications of the travel study, but for this analysis the ‘normal’ schema was primarily used 

for vehicle trip data and the ‘census’ schema was used for the GPS location of the Washington’s 

major highways. Within the ‘normal’ schema there are six data tables labeled ‘trips’, ‘tours’, 

‘points’, ‘census’, ‘households’, and ‘vehicles’. For this analysis the data contained within the 

‘trips’ and ‘points’ data tables were used to calculate the UF and energy use of the FCPHEV 

fleet. Of the data held within these two tables, the variables listed in Table 4 were extracted. Of 

the six variables three correspond to the identification of trips (trip_id), households (hhid), and 

vehicles (vehicle_id) while the other three variables correspond to the number of miles driven on 

city and county roads (road_mi), the number of miles driven on state and interstate highways 

(highway_mi), and the date of each of the vehicle’s trip (trip_start_date). 
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Table 4 Variable names, units, and descriptions of the variables used from the PSRC data set. 

PSRC Variable Units Description 

hhid N/A Individual household ID for 

each house of the PSRC travel 

survey 

trip_id N/A Individual trip ID for each of 

the trips driven by a an 

individual vehicle of the 

PSRC travel survey 

vehicle_id N/A Individual ID for each of the 

vehicle’s associated with a 

specific household 

road_mi mi The distance of each trip 

associated with travel along a 

county or country road 

highway_mi mi The distance of each trip 

associated with travel along a 

state or interstate highway 

trip_start_date YYYY/MM/DD HH:MM:SS The starting date associated 

with a specific trip ID, vehicle 

ID, and household ID 

 

 In order to determine the distance traveled by each vehicle on each trip and on each day, 

the data needed to be filtered based on the household, vehicle, and trip IDs. The scripts used for 

these filters and calculations were written in the Python programming language. Python is an 

open-source high-level programming language that provides a good platform for object-oriented 

and functional programming. For this analysis, custom Python scripts were written. Figure 10 

shows a block diagram of the Python code created to use SQL queries to filter the required data 

from the PSRC database. The diagram shows that each of the household IDs (hhid) were used to 

collect the trip IDs (trip_id) associated with the particular household.  
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Figure 10 Block diagram of the looped script that is used to calculate the alternative UF of the FCPHEV when using the 

PHEV-X control strategy. 

 These trips were only passed back and stored in the Python script if they had an average 

trip driving speed less than 80MPH, as it was determined that some trips existed where the data 

was not collected properly and were indicated by unlikely high average trip vehicle speeds and 

distances. Each of the trip IDs filtered from the PSRC database were sent back as a new SQL 

queries to retrieve the miles traveled on urban and highway roads as well as the date of the trip. 

In order to determine if a specific GPS point within a vehicle’s trip was driven on a highway or 

urban road, the SQL function ‘ST_DWithin’ was used to determine if the vehicle GPS travel 

point was within less than a tenth of a mile of the geographical position of the highway or 

roadway as shown in Figure 8. This function was used for each GPS point within each trip of the 

data set. 
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Figure 11 Example of the ST_DWithin function used to determine the road of travel of the vehicle. 

 To validate the accuracy of the GPS location script, sample trips were plotted in 

geographical mapping software and the GPS points located on urban and highway roads were 

physically counted and compared to the results of the Python script. The classification of miles 

traveled in urban and highway areas was important in comparing the effect of the two different 

vehicle control strategies used in this analysis. This set of data was then passed through the rest 

of the Python script to calculate the variables required to analyze the UF and energy 

consumption of the FCPHEV, shown in Table 5. The user-created variables in Table 5 were 

calculated for all 377 vehicles in the data set, but only the variables based on results from the 

entire survey were saved to a ‘.csv’ file at the end of one household ID processing loop. 
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Table 5 Variables used to calculate the alternative UF for FCPHEV in the Python Script. 

Python Script Variable Units Description 

VEH_COUNT N/A List of the number of vehicles 

within each household 

TRIP_DATE YYYY/MM/DD 
Date of the given trip 

UNIQ_DAYS YYYY/MM/DD 
Filtered list of each day a trip 

was taken by a vehicle of the 

household 

DAY_TRIP_MILES mi 
Total number of miles driven 

on all of the trips of a given 

day 

TOT_EV_MILES mi Total miles driven using only 

energy from the battery pack 

TOT_H2_MILES mi All miles driven CS with the 

fuel cells 

TOT_H2_FUEL_USED kg 
Total amount of hydrogen 

consumed by the fuel cell 

system 

TOT_VEH_MILES mi 
Total miles driven by the 

vehicle over the course of the 

study 

DAYS_STUDIED N/A 
Number of days the vehicle 

was studied for the PSRC 

survey 

 

 The variables listed in Table 5 were calculated for the PHEV-X control strategy and H2 

Highway control strategy, and for all four all-electric driving ranges. With the travel survey data 

collected from the PSRC database and the fuel cell hydrogen fuel consumption results from the 

ANL study, the behavior of the two FCPHEV control strategies and four all-electric ranges were 

analyzed and compared based on the following calculations and variables: 

 Yearly all-electric miles traveled per year per vehicle (
            

            
  

        

    
) 

 Hydrogen CS miles driven per vehicle per year (
            

            
  

        

    
) 
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 FCPHEV fleet UF (
            

             
) 

 Hydrogen fuel consumed per vehicle per year (
                

            
 

       

    
),  

 Number of refills needed per vehicle per year (
                

        
 

 

            
 

       

    
). 

 Total number of hydrogen refueling for the PSRC vehicle fleet using a particular control 

strategy and all-electric range. 

2.2 Hydrogen Filling Station GIS Analysis 

 The present hydrogen refueling infrastructure is very small in comparison to the large 

petroleum refueling infrastructure already in place [28][29]. Previous studies have simulated the 

future placement of hydrogen refueling stations based on socioeconomic and demographic 

metrics, indicating that the implementation of a hydrogen refueling infrastructure will increase 

the demand for hydrogen powered vehicles [25][26]. In this thesis driver behavior from the 

PSRC database will be used to determine the areas of refueling need which can be used to 

implement a hydrogen refueling infrastructure. Some studies have hypothesized that FCPHEVs 

can concentrate the areas where drivers will need to refuel their storage tanks and allow for the 

concentration of hydrogen infrastructure development in areas of known hydrogen refueling 

needs. Hydrogen refueling refers to each instance a vehicle uses all of the hydrogen gas stored on 

board and would need to refill the tanks before continuing the trip. The following section details 

the analysis used to locate every hydrogen refueling required by all 377 vehicles of the PSRC 

fleet. 

 To test this theory and answer research question 2, this thesis will construct a simulation 

that can enable the modeling of each hydrogen refueling event for the PSRC vehicle fleet. The 
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Python script used to collect vehicle data from the PSRC database in the previous section was 

incorporated into the Python script used to locate the points on each vehicle’s daily commute 

where they will need to refuel their hydrogen storage tanks. The hydrogen refueling analysis 

used the same hydrogen fuel consumption, all-electric range, and hydrogen storage capacity 

specifications used in the previous section. In addition to the variables used in Table 5, new 

variables used and produced as results by the refueling Python script can be seen in Table 6. 

Table 6 Variables used by the hydrogen refueling location Python script. 

Python Refueling Location 

Variable 
Units Description 

EV_MILES mi 
Accumulated all-electric 

miles driven by the vehicle 

over the course of the study 

H2_MILES mi 

Accumulated hydrogen 

supported CS miles driven 

by the vehicle over the 

course of the study 

H2_FUEL kg 
Accumulated hydrogen 

consumed by the vehicle 

over the course of the study 

H2_REFIL_TRIP_ID N/A Trip ID associated with a 

trip that requires refueling 

REFIL_TRIP_DIST mi 

Total distance traveled on 

the a trip of the vehicle that 

requires a hydrogen 

refueling 

REFIL_TRIP_H2_FUEL kg 

Total amount of hydrogen 

gas consumed by the 

FCPHEV on the refueling 

trip 

REFIL_H2_MILE_CONS kg/mi Hydrogen fuel consumption 

on the refueling trip 

REFIL_H2_FUEL_TO_EMPTY kg Amount of hydrogen until 

the storage tank is empty 

REFIL_MILES_TO_REFIL mi 

Amount of miles into the 

refueling trip until the 

hydrogen storage tanks are 

empty 
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 In order to determine the exact trip and mile into the trip that a vehicle will need to refuel 

the all-electric (EV_MILES), hydrogen supported CS (H2_MILES), and total distance traveled 

by the vehicle were summed sequentially over the course of the travel study. Once the EV and 

hydrogen supported distances were calculated for each vehicle trip and day of travel, the amount 

of hydrogen fuel (H2_FUEL) used each trip and day was accumulated over the length of the 

study. From the total hydrogen used by a particular vehicle over the study period, the number of 

refuelings was calculated. This number was used to find the instances where the hydrogen used 

on a specific trip (H2_REFIL_TRIP_ID) reached/exceeded a multiple (based on the number of 

total refuelings) of the hydrogen tank capacity. With trip IDs for all of the instances where the 

vehicle will need to refuel, the approximate GPS location within the trip was calculated.  

 First, the total distance traveled on a given refueling trip was determined using Equation 

2. Next the amount of hydrogen consumed by the fuel cells over the course of the trip was 

calculated using Equation 3. From the distance of the trip and the amount of hydrogen 

consumed, the hydrogen fuel consumption per unit distance was calculated using Equation 4. To 

determine the location of the trip’s hydrogen refueling, the amount of hydrogen remaining in the 

tanks at the beginning of the trip was determined. Equation 5 uses the capacity of the FCPHEV’s 

hydrogen tanks, multiplied by the number of refills up to the current refill, and subtracts the 

amount of hydrogen used thus far. From the remaining hydrogen within the tanks and the 

estimated hydrogen consumption of the trip, the distance through the trip that the FCPHEV will 

need to refuel the hydrogen tanks was calculated in Equation 6. 

Equation 2 Calculating the total miles on the trip with a hydrogen refueling event. 

                               [ ]                [   ] 
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Equation 3 Calculation of the amount of hydrogen fuel consumed on the trip with a refueling event. 

                           [ ]         [   ] 

Equation 4 Estimate of the amount of hydrogen fuel being consumed per mile on the trip with a refueling event. 

                       
                  

               
 

Equation 5 Calculating the amount of hydrogen gas within the storage tank at the beginning of the trip. 

                                                 [   ] 

Equation 6 Calculating the distance into the trip where a hydrogen refueling event will occur. 

                           
                           

                     
 

 Equation 2 through Equation 6 were calculated for each trip ID associated with a 

hydrogen refueling for all 377 vehicles of the PSRC data set. A graphical representation of the 

refueling location process can be seen in Table 11. 
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Figure 12 Representation of the process used to determine the location of hydrogen refueling. 

 These equations were used for each of the vehicles in the PSRC data set. The refueling 

location Python script, shown in Figure 13, uses SQL queries to the PSRC database along with 

the trip calculations developed in section 2.1.2 FCPHEV Utility Factor to determine the latitude 

and longitude coordinates of each vehicle’s hydrogen refueling. The results of the Python script 

refueling locations was validated by physically calculating the amount of hydrogen used by a 

few sample vehicles using an Excel spread sheet. The urban and highway distance traveled and 

trip ID were placed in the spread sheet to calculate the consumption of hydrogen over a single 

trip, then for each day of the vehicle’s travel, and over the course of the study. Each time the 

hydrogen used by the sample vehicle exceeded a multiple of the hydrogen tank capacity, the 

associated trip ID was recorded. All the hydrogen refueling trip IDs calculated by the Excel 

spread sheet were compared to the trip ID results of the Python script for each of the sample 

vehicles. 
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Figure 13 Block diagram of the Python script used to determine the refueling locations for each vehicle of the PSRC 

database. 

 The list of hydrogen refueling location results was exported to a .csv file to be plotted. 

The Quantum Geographic Information Systems (QGIS) software was used to plot the exact 

hydrogen refueling location for each vehicle of the PSRC data set. QGIS is a geographic 

mapping software that uses multiple map projection layers for road, city, and other user specified 

objects. The QGIS software was used to map the major highway networks within the state of 

Washington as a base layer for the refueling location coordinates. Figure 14 shows an example 

map of the major highway network of Washington, with specific latitude and longitude locations 

of hydrogen refuelings in green. In accordance with the rules of the TSDC, to secure the safety 

of the location of the participants of the PSRC travel survey, the locations of the households 

within the data set will not be shown on any of the QGIS produced maps in this thesis. 
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Figure 14 Example QGIS map of the state of Washington. 

 For a metric of comparison between the control strategies and vehicle designs, this 

analysis will determine the number of hydrogen refueling events that occur on the highway in 

comparison to the total number of refuelings for the particular control strategy and all-electric 

range. This analysis will provide a better understanding of the utility provided by either the 

PHEV-X or H2 Highway control strategy in helping concentrate the construction of the 

hydrogen refueling infrastructure. To determine if a refueling location is located on a highway, 

the QGIS function ‘Buffer’ was used to create the same buffer around the highways that was 

used for the trip road/highway distance analysis earlier. Points that lie within the buffer, as 

shown in Figure 15, are counted using the ‘Spatial Query’ function of QGIS to determine if the 

latitude/longitude point of the refueling location intersects with the buffer zone of the highway 

system. The ‘Spatial Query’ function sums the number of points located within the highway 

buffer region in comparison to the total number of hydrogen refuelings for the entire PSRC 

vehicle fleet. 
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Figure 15 Example of road buffer zone created to determine the density of refueling events on the highway. 
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3.0 RESULTS AND DISCUSSION 

 

 

 

 The following section presents the simulations results that answer the research questions 

posed in this thesis. For the discussion in the following sections the FCPHEV will be categorized 

by the all-electric range and control strategy as follows: 

 FCPHEV-X: This nomenclature will be used to describe the FCPHEV that uses the 

conventional PHEV-X energy management control strategy. The ‘X’ will be replaced 

with the all-electric range of the vehicle in question. 

 FCPHEVH2-X: This nomenclature will be used to identify the FCPHEVs that utilize the 

H2 Highway control strategy. Just as before, the ‘X’ will be replaced with the all-electric 

range of the vehicle being discussed. 

3.1 FCPHEV Fleet Energy Consumption Analysis 

 The developed Python code was used to analyze the driving habits of the FCPHEV using 

both the PHEV-X and H2 Highway control strategies. Each control strategy was also used for the 

four different all-electric vehicle ranges discussed in Table 2. The results given in this section 

will be organized based on all-electric range and control strategy. The vehicle fleet results for all-

electric distance, hydrogen supported CS distance, hydrogen gas consumed, and number of 

refueling were normalized to a year of driving to better compare the two control strategies and 

judge variation of vehicle usage from driver to driver within the data set. 

 Table 7 shows the all-electric and hydrogen supported CS distance driven by the vehicles 

of the PSRC database using the PHEV-X control strategy. The table shows that as the all-electric 

range of the FCPHEV increases, on average the distance driven using only the battery pack 

increases while the distance driven using the fuel cells decreases. This result mirrors previous UF 
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analysis of PHEVs, which show that larger battery packs with larger all-electric ranges will 

allow drivers to drive more trips using just the battery [34][35]. The normalized fleet results 

show that each vehicle of the fleet drives at least some distance using the fuel cells, but there are 

some vehicles when driving the FCPHEV-40 that never use more than one refueling of the stored 

hydrogen. 

Table 7 All-electric and hydrogen CS miles results for the PHEV-X control strategy. 

All-Electric 

Range [mi 

(km)] 

Max EV 

Travel [mi 

(km)/year] 

Min EV 

Travel [mi 

(km)/year] 

Avg EV 

Travel [mi 

(km)/year] 

Max H2 

Travel [mi 

(km)/year] 

Min H2 

Travel [mi 

(km)/year] 

Avg H2 

Travel [mi 

(km)/year] 

10 (16) 3637  

(5854) 

543  

(875) 

2878  

(4632) 

18505 

(29781) 

286  

(460) 

6538 

(10522) 

20 (32) 7138 

(11489) 

667  

(1074) 

5102  

(8211) 

15354 

(24710) 

57  

(92) 

4547  

(7318) 

30 (48) 10425 

(16778) 

730 

(1175) 

6666 

(10728) 

12701 

(20440) 

11  

(18) 

3104  

(4995) 

40 (64) 13754 

(22133) 

740  

(1192) 

7696 

(12385) 

10653 

(17144) 

2  

(3) 

2114 

(3402) 

 

 The vehicle fleet results in Table 7 show a large distribution between the maximum and 

minimum for the all-electric and hydrogen supported CS distance traveled. The FCPHEV-40 has 

a distribution of 13014mi/year for all-electric travel, while the FCPHEV-10 fleet result has a 

distribution of 3093mi/year. As might be expected, the distance traveled using hydrogen showed 

a higher distribution for the FCPHEV-10 (18220mi/year) than the FCPHEV-40 (10651mi/year). 

 Because the PSRC data set encompasses such a variety of trip distances, and driver types, 

the results of the yearly hydrogen consumption of the FCPHEV fleet must take into 

consideration the stochastic nature of its distribution. Figure 16 provides a visualization of the 

distributions of all-electric and CS miles for each of the all-electric ranges and for each driver in 

the PSRC data set. Regardless of the large diversity of driving styles and distances within the 

PSRC vehicle fleet, the averages of the all-electric miles shows a 63% decrease in all-electric 
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travel as the range of the battery pack decreases from 40mi to 10mi. Subsequently, the average 

hydrogen supported CS travel results in Figure 17 shows a 68% decrease in the number of miles 

driven using the fuel cells from FCPHEV-10 to FCPHEV-40. 

 

Figure 16 Box plots of the all-electric miles driven by the PSRC vehicles for both control strategies and all four all-electric 

ranges. 

Mirroring the results presented for the PHEV-X control strategy, Table 8 shows the all-electric 

and CS miles driven by the PSRC vehicle fleet using the H2 Highway control strategy. Similar to 

the PHEV-X control strategy, the FCPHEV drives more miles all-electric on average as the all-

electric range increases. The H2 Highway control strategy FCPHEVs have higher minimum CS 

miles traveled than the PHEV-X control strategy FCPHEVs due to the control strategy 

differences. 
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Table 8 All-electric and hydrogen supported CS miles results for the H2 Highway control strategy. 

All-Electric 

Range [mi 

(km)] 

Max EV 

Travel [mi 

(km)/year] 

Min EV 

Travel [mi 

(km)/year] 

Avg EV 

Travel [mi 

(km)/year] 

Max H2 

Travel [mi 

(km)/year] 

Min H2 

Travel [mi 

(km)/year] 

Avg H2 

Travel [mi 

(km)/year] 

10 (16) 3618  

(5823) 

460  

(740) 

2794  

(4496) 

24410 

(39284) 

211  

(340) 

7133 

(11479) 

20 (32) 6991 

(11251) 

499  

(803) 

4648  

(7480) 

22051 

(35488) 

144  

(232) 

5278  

(8494) 

30 (48) 10195 

(16407) 

505  

(813) 

5688  

(9154) 

20209 

(32523) 

84  

(135) 

4240  

(6829) 

40 (64) 12912 

(20780) 

505  

(813) 

6244 

(10049) 

18893 

(30405) 

69  

(111) 

3683  

(5927) 

 

 The fleet results of the H2 Highway control strategy show the same types of distribution 

as the PHEV-X control strategy results. The difference between the maximum and minimum all-

electric travel for the FCPHEVH2-40 was 12407mi/year, while the difference between the 

maximum and minimum for the FCPHEVH2-40 was only 3157mi/year. The distribution of CS 

travel results for the FCPHEVH2-40 was 15210mi/year, while the distribution of results for the 

FCPHEVH2-10 was 17277mi/year. For both control strategies the distribution of all-electric 

travel is similar, meaning the vehicles of Puget Sound are using the battery pack similarly no 

matter the energy management strategy. However, the distribution of CS hydrogen miles differs 

based on the principle that the H2 Highway control strategy FCPHEVs driving the most 

hydrogen based miles are driving a majority of those miles on the highway. On average the 

FCPHEVH2-10 drives 53% less all-electric miles per year than the FCPHEV-40, while the 

FCPHEVH2-40 drives 48% less hydrogen CS miles per year than the FCPHEVH2-10. 
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Figure 17 Box plots of the CS miles driven by the vehicles of the PSRC database for both control strategies and for each 

of the four all-electric miles. 

 The plots in Figure 16 and Figure 17 shows a clear difference in the average number of 

all-electric and CS miles driven by the FCPHEV using either control strategy. To further explore 

this difference a UF analysis will be used. The UF analysis outlined in SAE J2841 uses the 

fraction of daily travels that could be driven only using the HV battery pack. For this FCPHEV 

analysis, the ratio of average all-electric miles driven to the average total miles driven by the 

PSRC vehicles over one year was calculated. Figure 18 shows the UF for all four all-electric 

ranges and each control strategy. As shown by the earlier results, the larger the range of the 

battery pack the larger the percentage of miles the driver will use only the battery pack to drive 

the vehicle. The FCPHEV-40 has a UF of 84.49% while the FCPHEVH2-40 has a UF of 62.9%. 
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Figure 18 Ratio of miles drive all-electric to the total miles driven for each control strategy. 

 With 40mi of all-electric range, FCPHEV drivers in the Puget Sound area were driving 

over 20% more of their travel using only the battery pack when using the conventional PHEV-X 

control strategy. The gap between the UFs of the two control strategies begins to shrink as the 

size of the FCPHEV’s battery becomes smaller. With an all-electric range of 10mi, the 

FCPHEV-10 has a UF of 39.71% while the FCPHEVH2-10 has a UF of 28.14%. While the UF 

curves in Figure 18 show that the PHEV-X control strategy will inevitably provide more fuel 

savings benefits over the H2 Highway control strategy, it is interesting to point out that both 

control strategies have UF curves that follow the general outline of the daily distance UF curves 

calculated by SAE J2841 (Figure 8). While these results might not be surprising with a 

conventional PHEV-X control strategy, it is interesting that even though the H2 Highway control 

strategy is mandating that the fuel cells turn on as soon as the vehicle is driving along a highway 
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the PSRC vehicle fleet is still using the battery pack to drive the vehicle with similar trends to the 

conventional PHEV-X control strategy. 

 The amount of hydrogen consumed and the number of refueling required by the 

FCPHEV using the PHEV-X control strategy over the course of the study are outlined in Table 

9. For all four all-electric ranges there was at least one vehicle in the fleet that did not use more 

than the capacity of one tank fill up (4.95kg). As a whole, the vehicle fleet used less hydrogen 

fuel on average as the all-electric range increased, thus limiting the number of times the 

FCPHEV needed to refuel over the course of the study. 

Table 9 Hydrogen fuel consumed over the study period by the FCPHEV using the PHEV-X control strategy. 

All-Electric 

Range [mi 

(km)] 

Max H2 Fuel 

Consumed 

(kg) 

Min H2 Fuel 

Consumed 

(kg) 

Avg H2 Fuel 

Consumed 

(kg) 

Max H2 

Fuelings 

(#) 

Min H2 

Fuelings 

(#) 

Avg H2 

Fuelings 

(#) 

10 (16) 457 4 132 92 0 26 

20 (32) 396 1 92 79 0 18 

30 (48) 340 0 63 68 0 12 

40 (64) 297 0 44 59 0 8 

 

 The amount of hydrogen gas consumed by the PSRC vehicle fleet using the H2 Highway 

control strategy can be seen in Table 10. The FCPHEV uses more hydrogen on average across all 

four of the all-electric ranges due to the fuel cells being turned on during highway travel. 

However, even with the PSRC vehicle fleet using more hydrogen, there are still some cars within 

the study that still travel a majority of their miles using only the battery pack of the FCPHEV, 

helping reinforce the UF results seen in Figure 18. As the battery range decreases toward 10mi, 

the two control strategies on average consume the same amount of hydrogen with the FCPHEV-

10 using 131.94kg and the FCPHEVH2-10 using 132.36kg over the course of the study. 
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Table 10 Hydrogen fuel consumed over the study period by the FCPHEV using the H2 Highway control strategy. 

All-Electric 

Range [mi 

(km)] 

Max H2 Fuel 

Consumed 

(kg) 

Min H2 Fuel 

Consumed 

(kg) 

Avg H2 Fuel 

Consumed 

(kg) 

Max H2 

Fuelings 

(#) 

Min H2 

Fuelings 

(#) 

Avg H2 

Fuelings 

(#) 

10 (16) 450 4 132 90 0 26 

20 (32) 416 3 99 83 0 20 

30 (48) 387 2 81 78 0 16 

40 (64) 365 1 70 73 0 14 

 

 If the number of refuelings is normalized to a year of driving, as was done for the all-

electric and CS travel, it can be seen in Table 11 that on average the FCPHEVH2s have to refuel 

their vehicles more when the electric range is 30mi or 40mi. However, at the lower all-electric 

ranges (10mi and 20mi) the average number of hydrogen refuelings begins to converge for the 

two control strategies. 

Table 11 Number of hydrogen tank refuelings over a year period for both FCPHEV control strategies. 

All-Electric Range [mi 

(km)] 

Max H2 Fuelings 

(#/year) 

Min H2 Fuelings 

(#/year) 

Avg H2 Fuelings 

(#/year) 

PHEV-X Control Strategy 

10 (16) 87 0 25 

20 (32) 75 0 17 

30 (48) 65 0 11 

40 (64) 56 0 7 

H2 Highway Control Strategy 

10 (16) 86 0 25 

20 (32) 79 0 18 

30 (48) 74 0 15 

40 (64) 69 0 13 

 

 While the results in Table 11 shows that there is a small difference in the number of 

average yearly hydrogen refuelings for both control strategies, these numbers only represent the 

average expected of each vehicle within the PSRC data set. Table 12 shows the total number of 

hydrogen refuelings required by the entire PSRC vehicle fleet over the course of the study. Per 
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vehicle the two control strategies show similar refueling numbers, but when looking at the entire 

fleet it can be seen that the FCPHEVH2 fleet refuels nearly twice as much for all the electric 

ranges for the 40mi, 30mi, and 20mi FCPHEVs. However, for the 10mi FCPHEVs the H2 

Highway control strategy has the PSRC vehicle fleet refueling two and a half more times than 

their PHEV-X control strategy counter parts. Included in Table 12 is the number of refuelings for 

a conventional FCV, which has zero miles of all-electric ranges, and behaves much like a 

conventional vehicle. The refuelings results show that regardless the size of the battery pack, and 

for both control strategies, a FCPHEV allows the driver to substantially decrease the number of 

times they need to refuel the storage tank of their vehicle. 

Table 12 Total number of refuelings for the entire PSRC vehicle fleet for each all-electric range and control strategy. 

All-Electric Range [mi 

(km)] 

Total H2 Refuelings 

(#) 

Highway Refuelings 

(#) 

Highway/Total Refuelings 

(%) 

PHEV-X Control Strategy 

10 (16) 7953 4377 55.04% 

20 (32) 5717 3380 59.12% 

30 (48) 3921 2439 62.20% 

40 (64) 2693 1741 64.65% 

H2 Highway Control Strategy 

10 (16) 19825 7972 40.21% 

20 (32) 11663 5467 46.87% 

30 (48) 7744 4304 55.58% 

40 (64) 5953 3682 61.85% 

Fuel Cell Vehicle 

0 39395 13695 34.76% 

 

3.1.1 FCPHEV Fleet Energy Consumption Analysis Summary 

 Research question 1 asked how the utilization of the electrical and hydrogen fueling 

pathways change with changes in the vehicle design of the FCPHEV. By answering the 

following two sub questions of research question 1, this analysis provided a better understanding 

of the energy consumption characteristics of a FCPHEV fleet: 
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 Do changes in the vehicle’s all-electric range change the energy economy and energy 

sources of the FCPHEV? 

o The results of this section showed that for both the PHEV-X and H2 Highway 

control strategies, the FCPHEV utilized electrical and hydrogen energy differently 

as the all-electric driving range changed. On average the FCPHEV-40 traveled 

7696mi/year in all-electric mode and 2114mi/year in CS mode, while on average 

the FCPHEV-10 traveled 2878mi/year in all-electric mode and 6538mi/year in CS 

mode. On the other hand, on average the FCPHEVH2-40 traveled 6244mi/year in 

all-electric mode and 3683mi/year in CS mode, while on average the 

FCPHEVH2-10 traveled 2794mi/year in all-electric mode and 7133mi/year in CS 

mode. Across both control strategies, the FCPHEVs with larger all-electric ranges 

provided more benefit to the consumer by driving the majority of the yearly travel 

all-electric (Figure 18) and reducing the number of times drivers will need to refill 

the hydrogen tanks (Table 11). 

 Do changes in the vehicle’s energy management control strategy change the energy 

economy and energy sources of the FCPHEV? 

o The FCPHEV UF analysis showed that a FCPHEV with a longer all-electric range 

provided the most utility for driver for both control strategies, but the comparison 

across control strategies showed a difference in benefits when using the PHEV-X 

control strategy over the H2 Highway control strategy. The FCPHEV-40 had a 

UF of 84.49% while the FCPHVEH2-40 had a UF of 62.9%, congruently the 

FCPHEV-10 had a UF of 39.71% while the FCPHEVH2-10 had a UF of 28.14%. 

These UF results show that the PHEV-X control strategy allowed drivers of the 
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PSRC vehicle fleet to travel on more of their trips using just energy from the 

battery pack than the same vehicles using the H2 Highway control strategy. In 

fact, the FCPHEVH2-40 vehicle fleet required 3260 more hydrogen refuelings 

than the FCPHEV-40, showing that the PHEV-X control strategy provides more 

fuel savings than the H2 Highway control strategy. These comparisons proved 

that a FCPHEV using a conventional PHEV-X control strategy provides more 

utilization of battery energy and more fuel cost savings than a FCPHEV using the 

H2 Highway control strategy. 

3.2 Hydrogen Filling Station GIS Analysis 

 Next the effect of FCPHEVs on the location of hydrogen refuelings is analyzed. The total 

refueling results for both control strategies in Table 12 shows a large difference in the total 

number of refuelings between the two control strategies. From this difference this analysis will 

now look at the locations of these refuelings, and how their concentration may affect the location 

of the hydrogen refueling infrastructure. 

 Using the methods outlined in 2.2 Hydrogen Filling Station GIS Analysis, every refueling 

location was determined for all of the vehicles within the PSRC fleet for each of control 

strategies and all four battery ranges. The refueling locations of each control strategy will be 

compared across the four all-electric ranges, but first the refueling locations of a FCV will be 

looked at. With zero all-electric range, the FCV represents the worst case refueling scenario. It 

will behave much like a conventional petroleum ICE vehicle, and will represent how the drivers 

of Puget Sound utilized the roadways without the assistance of a battery pack with some all-

electric range. The refueling locations of the FCV are located along the major highways, but they 

are also dispersed in urban and suburban areas across the state of Washington and the Puget 
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Sound area as shown in Figure 19. Because the FCV fleet required more refuelings than either 

the PHEV-X or the H2 Highway control strategies (Table 12), the density and number of 

hydrogen refuelings is greater in the FCV fleet than it is in the PHEV fleets. 

 

Figure 19 Statewide refueling locations for the FCV, using the FE numbers from the FCPHEV-10. 

 The refueling locations plotted on top of a map of the major highways in the state of 

Washington for the PHEV-X control strategy are mapped in Figure 20, and the refueling 

locations for the H2 Highway control strategy are mapped in Figure 21. From this statewide view 

of the hydrogen refueling locations for both control strategies, and all four all-electric ranges, 

there are a few observations that should be noted: 

 All eight refueling location maps show that a large number of the hydrogen refueling 

events occur around the metropolitan regions of the Puget Sound area. From this map it 
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seems as if the density of urban center refueling locations increase as the all-electric 

range decreases for both control strategies. This point will be further investigated later in 

this section. 

 Long trips in and out of the Puget Sound area occur along Washington’s major highways 

regardless of the all-electric range or control strategy of the FCPHEV. The only visual 

difference in refueling locations between the control strategies and all-electric ranges is 

the density of hydrogen refuelings located along these major highways. 
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Figure 20 Statewide view of the hydrogen refueling events for all four all-electric ranges for the PHEV-X control strategy. 
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Figure 21 Statewide view of the refueling events for all four all-electric ranges for the H2 Highway control strategy. 
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 The qualitative mapping of the refueling locations for both control strategies in Figure 20 

and Figure 21 showed that besides the vehicles that are taking long distance trips on the major 

highways, the majority of refueling events take place around the more densely populated areas of 

Puget Sound. It can be determined from the trip data that the majority of vehicles within the 

studied PSRC fleet commuted to the city frequently for work or other activities. Therefore, the 

next mappings will look more closely at the concentration of hydrogen refuelings around the 

cities and highway in the Puget Sound area. When zoomed in on the Puget Sound area, as shown 

in Figure 22, the variation in refueling locations becomes more evident. The map of the 

FCPHEV-40 and FCPHEVH2-40 vehicle fleet refueling shows a variation of highway and urban 

refueling locations. Layered on top of each other, it can be seen that both control strategies have 

large concentrations of refuelings along the toll roads and highways that run through the Puget 

Sound area, but the FCPHEVH2-40 vehicle fleet requires more refuelings thus the density of 

their refuelings is larger on these roadways than the FCPHEV-40 fleet. The map also shows 

more refueling events located in urban areas than seen on the statewide maps. While both control 

strategies generate urban refueling events, the map shows that the H2 Highway control strategy 

generates a larger and more dispersed cluster of refueling locations in the Puget Sound urban 

areas. 
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Figure 22 Map of the refueling locations for both control strategies with 40mi all-electric range. 

 As the all-electric range of the FCPHEV decreases toward 10mi, the density of refueling 

locations around the Puget Sound area begins to increase. As shown in Figure 23, the refueling 

locations for the FCPHEV-10 and FCPHEVH2-10 fleets are more densely located around the 

major toll ways and urban areas than the refueling locations of the FCPHEV-40 and 

FCPHEVH2-40 fleets in Figure 22. In comparing the refueling locations of the FCPHEV-10 and 

FCPHEVH2-10, the map shows that the FCPHEVH2-10 has a wider cluster of refueling events 

in the urban areas of Puget Sound than the FCPHEV-10. With two and half times more 

refuelings for the entire fleet, the FCPHEVH2-10 seems to not be concentrating these refuelings 

on the highway systems but instead expanding them throughout the Puget Sound area. 
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Figure 23 Map of the refueling locations for both control strategies with 10mi all-electric range. 

 In order to better compare the concentration of hydrogen refueling for both control 

strategies the number of refuelings on the highway were calculated using the buffer method 

described in 2.2 Hydrogen Filling Station GIS Analysis. From this method, Figure 24 shows the 

percentage of hydrogen refueling locations that occurred within the highway system in 

comparison to the total number of refuelings for the entire FCPHEV fleet. The results show that 

with 40mi of all-electric range the PHEV-X and the H2 Highway control strategies concentrate 

61-65% of their refueling locations to Washington’s highway system. However, as the all-

electric range of the FCPHEV decreases the inclusion of hydrogen refuelings in the highway 

system decreases quite differently between the two control strategies. For the H2 Highway 

control strategy the number of refuelings that are located on highways decreases from 61.85% 

for the FCPHEVH2-40 all the way to 40.21% for the FCPHEVH2-10. For the same stretch the 
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FCPHEV-40 has 64.65% of the hydrogen refuelings located on the highway, while the 

FCPHEV-10 has 55.04% of the fleet’s refuelings on the highway. The difference of 30mi of all-

electric range only decreases the number of refuelings on the highway by 9.61% for the PHEV-X 

control strategy, while the same decrease in all-electric range created a decrease in highway 

refuelings by 21.64% for the H2 Highway control strategy. 

 

Figure 24 Percentage of hydrogen refuelings on the highway. 

 From the overall refueling results, it should be noted the vehicles of the PSRC had 

34.76% of their refuelings occur on the highway while driving the FCV. Because the FCV 

behaves much like a conventional ICE vehicle (no electric range) this percentage is indicative of 

the normal driving behavior of the commuters in the Puget Sound area, which means that a 

majority of their driving occurs in urban and suburban areas. 
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Figure 25 Sample trip representing the driving behavior of the Puget Sound area. 

 By studying an example trip that has 2/3 urban driving and 1/3 highway driving, the 

probability of a FCPHEV needing to refuel on either the highway or an urban/suburban road can 

be estimated. A trip with 6mi on urban roads, then 6mi on the highway, and then 6mi on urban 

roads would be an example of such a hypothetical 2/3 urban driving trip, shown in Figure 25. In 

this instance, the probability of a FCPHEV-10 needing to refuel on the highway would be 1.5:1, 

and the probability of a FCPHEVH2-10 needing to refuel on the highway would be 2:1. This 

example trip supports the results of the simulations above determined that vehicles using the 

PHEV-X control strategy have a better chance of running out of hydrogen on the highway than 

the same vehicles using the H2 Highway control strategy. 

3.2.1 Hydrogen Filling Station GIS Analysis Summary 

 The purpose of research question 2 was to determine if the FCPHEV had any effect on 

the location and quantity of hydrogen refuelings of a vehicle fleet. The research question was 

answered by answering to sub questions that posed the effect of the vehicle architecture and 

control strategy on the location and quantity of hydrogen refuelings: 

 Does this requirement for hydrogen infrastructure change based on the all-electric range 

of the FCPHEV? 
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o The results of the hydrogen refueling analysis shows that hydrogen refuelings are 

concentrated to the highway more for FCPHEV fleets with large all-electric 

ranges, no matter the energy management control strategy. The FCPHEV-40 fleet 

had 64.65% of their hydrogen refuelings on the highway, while the FCPHEV-10 

fleet had 55.04% of their hydrogen refuelings on the highway. In similar fashion, 

the FCPHEVH2-40 fleet had 61.85% of its hydrogen refuelings on the highway, 

while the FCPHEVH2-10 fleet had 40.21% of its hydrogen refuelings on the 

highway. In all FCPHEV simulation cases, the hydrogen refuelings were 

concentrated more on the highways than the number of refuelings for a 

conventional FCV. 

 Is there an energy management control strategy that centralizes the FCPHEV’s hydrogen 

refueling needs? 

o The percentage of highway hydrogen refuelings for both control strategies 

showed that the H2 Highway control strategy did not concentrate the number of 

hydrogen refuelings to the highway as much as the PHEV-X control strategy did. 

For 40mi of all-electric range, both control strategies had nearly 65% of their 

refuelings on the highway, but for 10mi of all electric range the FCPHEV-10 was 

above 50% in highway refuelings while the FCPHEVH2-10 was closer to 40%. 

To better understand why the PHEV-X control strategy was refueling more often 

on the highway, the probability of running out of hydrogen on the highway was 

calculated for both control strategies. On a sample day of driving for a vehicle in 

the PSRC fleet the PHEV-X control strategy had a probability of 1:1 of running 
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out of hydrogen on the highway, while the H2 Highway control strategy had a 

probability of 2.25:1 of running out of hydrogen on the highway. 
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4.0 CONCLUSIONS 

 

 

 

 This thesis analyzed the real world operation of the FCPHEV architecture using location 

specific vehicle trip data in the Puget Sound area from NREL’s TSDC. A simulated FCPHEV 

fleet was studied using two energy management control strategies (PHEV-X and H2 Highway) 

and four all-electric driving ranges (10mi, 20mi, 30mi, and 40mi). The analysis was conducted to 

determine the driving behavior and energy utilization of the FCPHEV fleet, as well as the effect 

of the FCPHEV architecture on the location and density of hydrogen refueling needs. 

 The yearly results for the FCPHEV showed a larger usage of the battery pack by the 

PHEV-X control strategy for all-electric ranges of 20mi, 30mi, and 40mi than the H2 Highway 

control strategy vehicles. The behavior of the two FCPHEV control strategies began to converge 

when both vehicle fleets had an all-electric range of 10mi. However, the UF analysis of the two 

control strategies showed that that conventional PHEV-X control strategy drove a higher 

percentage of all-electric miles over an entire year than the H2 Highway control strategy. Even at 

the lowest all-electric range (10mi) the PHEV-X control strategy vehicle fleet drove 11.57% 

more all-electric miles. A FCPHEV-40 provides nearly 22% more all-electric miles than the 

FCPHEVH2-40 while also needing to refill the hydrogen storage tanks only half as many times 

as the FCPHEVH2-40. The FCPHEVs using the PHEV-X control strategy also provided huge 

refueling savings when compared to the number of refuelings of a conventional FCV. The 

FCPHEV-10 requires only 20.19% of the refuelings the FCV requires, and the FCPHEV-40 

needs only 6.84% of the total refuelings that the FCV needed over the survey period. 

 The hydrogen refueling locations found for both the PHEV-X and H2 Highway control 

strategies showed that a large portion of the refuelings occurred on the highways of Washington. 



63 

As the electric range of the FCPHEV decreased, and the number of refuelings subsequently 

increased, the location of the hydrogen refuelings became more dispersed into the urban areas of 

Puget Sound. By looking at the percentage of hydrogen refuelings located on the highway in 

comparison to the total number of refuelings required by the PSRC fleet, the results showed that 

no matter the all-electric range the PHEV-X control strategy had more refuelings on the highway 

than the H2 Highway control strategy. In comparison to the percentage of FCV refuelings on the 

highway, the FCPHEV-40 runs out of fuel on the highway 29.89% more than the FCV. 

Therefore, a control strategy that tries to centralize fuel cell utilization to the highway system 

doesn’t provide added benefit when locating hydrogen refueling stations. In fact the FCPHEV-40 

provides higher concentrations of highway refuelings over both the H2 Highway control strategy 

and a conventional FCV. 

 The integration of the FCPHEV architecture into the daily commute of the vehicles of the 

Puget Sound travel survey shows that it can handle the majority of driver’s trips with the all-

electric range of the battery pack. Even with a conventional PHEV-X control strategy, the higher 

concentration of highway refueling needs would allow for the building of a hydrogen 

infrastructure to be more centered on the highway system even within the more densely 

populated areas of Puget Sound. This result demonstrates that this technology can facilitate the 

integration of the hydrogen highway refueling infrastructure, and that it is not necessary to wait 

for the infrastructure to be built in order to begin production of hydrogen based vehicles. While 

the results of this thesis are sensitive to the regional characteristics of the Puget Sound area, the 

analysis of the integration of the FCPHEV architecture into daily commutes in other major 

metropolitan areas could demonstrate that the FCPHEV provide similar driving and 

infrastructure benefits.  
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6.0 APPENDIX 

 

 

 

6.1 Fleet Energy Consumption Python Script 
""" HouseHold_PSRC_Database_Query_v3.py 

Author: Jake Bucher 

Latest Revision: 4/11/14 

""" 

import time 

import psycopg2 

import numpy as np 

import csv 

TIME_START = time.time() 

## COLLECTING HOUSEHOLD IDS TO PASS THROUGH DAY TRIP MILE CALCULATOR 

HH_MULT_ID = [ 

    "00048", 

     ] 

TOTAL_RESULTS = [[0 for col in range(14)] for row in range(len(HH_MULT_ID)+1)] 

TOTAL_RESULTS[0] = [ 

    'Household ID', 

    'Veh1: All Electric Travel (mi)', 

    'Veh1: H2 Supported Travel (mi)', 

    'Veh1: H2 Fuel Consumed (kg)', 

    'Veh1: FC Starts (#)', 

    'Veh2: All Electric Travel (mi)', 

    'Veh2: H2 Supported Travel (mi)', 

    'Veh2: H2 Fuel Consumed (kg)', 

    'Veh2: FC Starts (#)', 

    'Veh3: All Electric Travel (mi)', 

    'Veh3: H2 Supported Travel (mi)', 

    'Veh3: H2 Fuel Consumed (kg)', 

    'Veh3: FC Starts (#)', 

    'Number of Days Studied (#)' 

    ] 
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for h in range(0,len(HH_MULT_ID)): 

                 

        ## CLEARING ALL IMPORTANT ARRAYS 

#        del TRIP_ID[:] 

#        del VEH_ID[:] 

#        del TRIP_DATE[:] 

#        del UNIQ_DAYS[:] 

#        del DAY_TRIP_MILES[:] 

#        del EV_MILES[:] 

#        del H2_MILES[:] 

#        del H2_FUEL_USED[:] 

#        del FC_STARTS[:] 

        ## DATABASE CONNECTION 

        # Database connection information 

        db = ""             #Puget Sound database 

        us = ""       #NREL issued database username 

        pw = ""       #NREL issued database password 

        ho = ""        #Host address of tsdc database 

        pt = ""            #Host port of tsdc database 

        # Connection to database 

        conn = psycopg2.connect(host = ho, port = pt, database = db, user = us, password = pw) 

        cur  = conn.cursor() 

        ## HOUSEHOLD ID DATABASE QUERY 

        # Declaring array to store the Trip IDs from Household ID query 

        TRIP_ID = [[0 for col in range(1)] for row in range(3500)] #Matrix size made large to accomodate the number of trips for each household 

        # Declaring Household ID for SQL database query 

        HH_ID = HH_MULT_ID[h] 

        HH_QUERY = """ 

        TRUNCATE TABLE House_ID_1; 

        DROP TABLE House_ID_1; 

        CREATE TABLE House_ID_1 

        (Trip_ID varchar(50) 

        ); 

        INSERT INTO House_ID_1( 
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        Trip_ID 

        ) 

        SELECT trips.trip_id 

        FROM normal.trips 

        WHERE trips.hhid = %s AND trips.average_trip_speed_nrel < 80 

        ORDER BY trips.trip_id; 

        SELECT * 

        FROM House_ID_1 

        """ 

        # Passing query to PSRC database 

        cur.execute(HH_QUERY,(HH_ID,)) 

        (temp) = cur.fetchall() 

        TRIP_ID = temp #Automatically adjust TRIP_ID array size to match array size from database output 

        length = len(TRIP_ID) #length of TRIP_ID array 

        # Declaring matrix for database query outputs 

        TRIP_MILES = [[0 for col in range(6)] for row in range(length+1)] #Matrix size dependant on number of Trip IDs to be passed, and the six 

outputs of the SQL function 

        # Adding column names/identifiers to RESULTS matrix 

        TRIP_MILES[0] = ("Trip ID", 

                         "Vehicle ID", 

                         "Total Travel (mi)", 

                         "Road Travel(mi)", 

                         "Highway Travel(mi)", 

                         "Trip Date (YYYY/MM/DD HH:MM:SS)") 

        ## DECLARING DATABASE QUERY 

        QUERY = """ 

        DROP FUNCTION Road_Calc(varchar); 

        CREATE OR REPLACE FUNCTION Road_Calc (New_Trip_ID varchar (40)) 

        RETURNS SETOF RECORD AS  

        $$ 

        DECLARE 

        TRIP_ID varchar(40); 

        VEH_ID varchar(15); 

        Total_mi double precision; 
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        Road_mi double precision; 

        Highway_mi double precision; 

        --Day_Week integer; 

        Trip_Start_Date varchar(20); 

        --Trip_End_Date varchar(20); 

        --Trip_To_Home boolean; 

        --Trip_From_Home boolean; 

        --Trip_To_Work boolean; 

        --Trip_From_Work boolean; 

        SQL_RESULTS RECORD; 

        BEGIN 

        TRIP_ID := New_Trip_ID; 

        VEH_ID := (SELECT trips.vehicle_id FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

        Total_mi := (SELECT trips.bktp_mt_total FROM normal.trips WHERE trips.trip_ID = New_Trip_ID); 

        Road_mi := (SELECT SUM(points.calc_miles_duration) FROM normal.points, census.roads_2010 WHERE points.trip_id = New_Trip_ID 

AND ST_DWithin(roads_2010.geom,points.geom,38) AND roads_2010.rttyp = 'M'); 

        Highway_mi := (SELECT SUM(points.calc_miles_duration) FROM normal.points, census.roads_2010 WHERE points.trip_id = 
New_Trip_ID AND ST_DWithin(roads_2010.geom,points.geom,38) AND roads_2010.rttyp = 'I'); 

        --Day_Week := (SELECT trips.day_of_week FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

        Trip_Start_Date := (SELECT trips.bktp_start_date FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

        --Trip_End_Date := (SELECT trips.bktp_end_date FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

        --Trip_To_Home := (SELECT trips.to_home FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

        --Trip_From_Home := (SELECT trips.from_home FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

        --Trip_To_Work := (SELECT trips.to_work FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

        --Trip_From_Work := (SELECT trips.from_work FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

        SELECT  TRIP_ID, 

                VEH_ID, 

                Total_mi, 

                Road_mi, 

                Highway_mi, 

                --Day_Week, 

                Trip_Start_Date 

                --Trip_End_Date, 

                --Trip_To_Home, 

                --Trip_From_Home, 
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                --Trip_To_Work, 

                --Trip_From_Work 

                INTO SQL_RESULTS 

                ORDER BY VEH_ID; 

                 

        RETURN NEXT SQL_RESULTS; 

        END; 

        $$ 

        LANGUAGE 'plpgsql' VOLATILE; 

        SELECT * 

        FROM Road_Calc(%s) 

        AS (TRIP_ID varchar(40), 

            VEH_ID varchar(15), 

            Total_mi double precision, 

            Road_mi double precision, 

            Highway_mi double precision, 

            --Day_Week integer, 

            Trip_Start_Date varchar(20)); 

            --Trip_End_Date varchar(20), 

            --Trip_To_Home boolean, 

            --Trip_From_Home boolean, 

            --Trip_To_Work boolean, 

            --Trip_From_Work boolean); 

        """ 

        ## PASSING QUERY TO PSRC DATABASE 

        for i in range(1,length+1): 

            cur.execute(QUERY,(TRIP_ID[i-1],)) 

            (temp,) = cur.fetchall() 

            TRIP_MILES[i] = temp 

        ## CLOSING CONNECTION TO DATABASE 

        cur.close()     #Closing cursor 

        conn.close()    #Closing connection 

        ## DETERMINING NUMBER OF VEHICLES WITHIN THE HOUSEHOLD ID 

        VEH_COUNT = [[0 for col in range(1)] for row in range(length)] 
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        VEH = [[0 for col in range(1)] for row in range(length)] 

        VEH = [row[1] for row in TRIP_MILES] # Selecting vehicle ID column from 'TRIP_MILES' matrix 

        VEH = sorted(VEH) # Sorting the vehicles numerically 

        for i in range(1,length+1): 

            if VEH[i][0] == VEH[i-1][0]: 

                VEH_COUNT[i-1][0] = 0 

            else: 

                VEH_COUNT[i-1][0] = 1 

        VEH_COUNT = reduce(lambda x, y: x+y, VEH_COUNT) 

        NUM_VEHICLES = sum(VEH_COUNT) + 1 # Number of vehicles per household. +1 added for the initial vehicle in the count 

        VEH_ID = [[0 for col in range(1)] for row in range(NUM_VEHICLES)] 

        for i in range(1,NUM_VEHICLES+1): 

            I = str(i) 

            VEH_ID[i-1][0] = HH_ID + '_0' + I 

                         

        ## CONVERTING TRIP DATA MATRIX TO NUMPY ARRAY AND REMOVING 'NONE' INDECIES 

        TRIP_MILES = np.array([TRIP_MILES]) 

        TRIP_MILES = np.where(TRIP_MILES == np.array(None),0,TRIP_MILES) 

        ## CONVERTING TRIP DATA MATRIX BACK TO PYTHON LIST 

        TRIP_MILES = np.squeeze(np.asarray(TRIP_MILES)) 

        ## COLLECTING DAY OF TRAVEL FOR EACH TRIP 

        TRIP_DATE = [row[5] for row in TRIP_MILES] 

        TRIP_DATE = [i.split(' ',1)[0] for i in TRIP_DATE] 

        UNIQ_DAYS = [[0 for col in range(1)] for row in range(len(TRIP_DATE))]  #Creating array for all of the days of travel for the household 

                                  

        for i in range(1,len(TRIP_DATE)): 

            if TRIP_DATE[i-1] == TRIP_DATE[i]: 

                UNIQ_DAYS[i] = 0 

            elif TRIP_DATE[i-1] != TRIP_DATE[i]: 

                UNIQ_DAYS[i] = TRIP_DATE[i] 

        del UNIQ_DAYS[0] 

        UNIQ_DAYS = filter(lambda a: a != 0, UNIQ_DAYS) 

        ## CALCULATING TOTAL MILES PER DAY FOR EACH VEHICLE 
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        DAY_TRIP_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(len(UNIQ_DAYS))]  #Creating array for the total miles 

traveled each day by each vehicle of the household 

        for i in range(0,NUM_VEHICLES): 

            for j in range(0,len(UNIQ_DAYS)): 

                for k in range(1,length+1): 

                    if TRIP_MILES[k][1] == VEH_ID[i][0] and TRIP_DATE[k] == UNIQ_DAYS[j]: 

                        DAY_TRIP_MILES[j][i] = DAY_TRIP_MILES[j][i] + TRIP_MILES[k][3] + TRIP_MILES[k][4] 

                    else: 

                        DAY_TRIP_MILES[j][i] = DAY_TRIP_MILES[j][i] + 0 

                                 

        ## UTILITY FACTOR CALCULATIONS FOR FCPHEV  

        # 10mi all electric range 

        #EV_RANGE = 10       # (mi) All electric range 

        #FE = 55.696         # (mi/kg) Fuel Economy 

        # 20mi all electric range 

        #EV_RANGE = 20       # (mi) All electric range 

        #FE = 55.011         # (mi/kg) Fuel Economy 

        # 30mi all electric range 

        #EV_RANGE = 30      # (mi) All electric range 

        #FE = 53.985        # (mi/kg) Fuel Economy 

        # 40mi all electric range 

        EV_RANGE = 40      # (mi) All electric range 

        FE = 53.288        # (mi/kg) Fuel Economy 

         

        # Declaring arrays for calculations 

        EV_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(len(DAY_TRIP_MILES))]       # (mi) 

        H2_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(len(DAY_TRIP_MILES))]       # (mi) 

        H2_FUEL_USED = [[0 for col in range(NUM_VEHICLES)] for row in range(len(DAY_TRIP_MILES))]   # (kg) 

        FC_STARTS = [[0 for col in range(NUM_VEHICLES)] for row in range(len(DAY_TRIP_MILES))]      # (num) 

        TOT_EV_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(1)] 

        TOT_H2_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(1)] 

        TOT_VEH_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(1)] 

        PER_EV_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(1)] 

        TOT_H2_FUEL_USED = [[0 for col in range(NUM_VEHICLES)] for row in range(1)] 
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        TOT_FC_STARTS = [[0 for col in range(NUM_VEHICLES)] for row in range(1)] 

        # Calculating all EV miles, H2 miles, H2 gas consumed, and number of FC starts for each trip of each vehicle of the household 

        for j in range(0,NUM_VEHICLES): 

            for i in range(0,len(DAY_TRIP_MILES)): 

                if DAY_TRIP_MILES[i][j] <= EV_RANGE: 

                    EV_MILES[i][j] = DAY_TRIP_MILES[i][j] 

                    H2_MILES[i][j] = 0 

                    H2_FUEL_USED[i][j] = 0 

                    FC_STARTS[i][j] = 0 

                elif DAY_TRIP_MILES[i][j] > EV_RANGE: 

                    EV_MILES[i][j] = EV_RANGE 

                    H2_MILES[i][j] = DAY_TRIP_MILES[i][j] - EV_RANGE 

                    H2_FUEL_USED[i][j] = H2_MILES[i][j]/FE 

                    FC_STARTS[i][j] = 1 

                else: 

                    EV_MILES[i-1][j] = 0 

                    H2_MILES[i-1][j] = 0 

                    H2_FUEL_USED[i-1][j] = 0 

                    FC_STARTS[i-1][j] = 0 

        # Calculating total EV miles, H2 miles, H2 used, and FC starts for each vehicle of household 

        for i in range(0,NUM_VEHICLES): 

            TOT_EV_MILES[0][i] = sum([row[i] for row in EV_MILES]) 

            TOT_H2_MILES[0][i] = sum([row[i] for row in H2_MILES]) 

            TOT_H2_FUEL_USED[0][i] = sum([row[i] for row in H2_FUEL_USED]) 

            TOT_FC_STARTS[0][i] = sum([row[i] for row in FC_STARTS]) 

            TOT_VEH_MILES[0][i] = TOT_EV_MILES[0][i] + TOT_H2_MILES[0][i] 

            if TOT_VEH_MILES[0][i] > 0: 

                PER_EV_MILES[0][i] = TOT_EV_MILES[0][i]/TOT_VEH_MILES[0][i] 

            else: 

                PER_EV_MILES[0][i] = 0 

          

        ## OUTPUT DATA TO TEXT FILE 

         

        TOTAL_RESULTS[h+1][0] = HH_ID 
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        TOTAL_RESULTS[h+1][13] = len(UNIQ_DAYS) 

         

        if NUM_VEHICLES == 1: 

            TOTAL_RESULTS[h+1][1] = TOT_EV_MILES[0][0] 

            TOTAL_RESULTS[h+1][2] = TOT_H2_MILES[0][0] 

            TOTAL_RESULTS[h+1][3] = TOT_H2_FUEL_USED[0][0] 

            TOTAL_RESULTS[h+1][4] = TOT_FC_STARTS[0][0] 

        elif NUM_VEHICLES == 2: 

            TOTAL_RESULTS[h+1][1] = TOT_EV_MILES[0][0] 

            TOTAL_RESULTS[h+1][2] = TOT_H2_MILES[0][0] 

            TOTAL_RESULTS[h+1][3] = TOT_H2_FUEL_USED[0][0] 

            TOTAL_RESULTS[h+1][4] = TOT_FC_STARTS[0][0] 

            TOTAL_RESULTS[h+1][5] = TOT_EV_MILES[0][1] 

            TOTAL_RESULTS[h+1][6] = TOT_H2_MILES[0][1] 

            TOTAL_RESULTS[h+1][7] = TOT_H2_FUEL_USED[0][1] 

            TOTAL_RESULTS[h+1][8] = TOT_FC_STARTS[0][1] 

        elif NUM_VEHICLES == 3: 

            TOTAL_RESULTS[h+1][1] = TOT_EV_MILES[0][0] 

            TOTAL_RESULTS[h+1][2] = TOT_H2_MILES[0][0] 

            TOTAL_RESULTS[h+1][3] = TOT_H2_FUEL_USED[0][0] 

            TOTAL_RESULTS[h+1][4] = TOT_FC_STARTS[0][0] 

            TOTAL_RESULTS[h+1][5] = TOT_EV_MILES[0][1] 

            TOTAL_RESULTS[h+1][6] = TOT_H2_MILES[0][1] 

            TOTAL_RESULTS[h+1][7] = TOT_H2_FUEL_USED[0][1] 

            TOTAL_RESULTS[h+1][8] = TOT_FC_STARTS[0][1] 

            TOTAL_RESULTS[h+1][9] = TOT_FC_STARTS[0][2] 

            TOTAL_RESULTS[h+1][10] = TOT_EV_MILES[0][2] 

            TOTAL_RESULTS[h+1][11] = TOT_H2_MILES[0][2] 

            TOTAL_RESULTS[h+1][12] = TOT_H2_FUEL_USED[0][2] 

        with open('Output.csv', 'wb') as csvfile: 

            a = csv.writer(csvfile, delimiter = ',') 

            a.writerows(TOTAL_RESULTS) 

                       

TIME_END = time.time() 
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print "Script Execution Time:" 

print TIME_END-TIME_START 

6.2 Hydrogen Filling Station GIS Analysis Python Script 
"""GIS_LAT_LONG_REFUELING_LOCATION_CH_CONT_STRAT_v1.py 

Assuming vehicle using City/Highway Control Strategy 

Author: Jake Bucher 

Latest Revision: 5/1/14 

""" 

import time 

import psycopg2 

import numpy as np 

import csv 

import math 

TIME_START = time.time() 

## HOUSEHOLD ID 

HH_MULT_ID = [ 

    "00048", 

    ] 

FINAL_RESULTS = [[0 for col in range(2)] for row in range(1)] #Declaring list to store the results of each household query 

FINAL_RESULTS[0] = [ 

    'Veh1: Latitude', 

    'Veh1: Longitude', 

    'Veh2: Latitude', 

    'Veh2: Longitude', 

    ] 

for h in range(0,len(HH_MULT_ID)): 

    ## DATABASE CONNECTION 

    # Database connection information 

    db = ""             #Puget Sound database 

    us = ""       #NREL issued database username 

    pw = ""       #NREL issued database password 

    ho = ""        #Host address of tsdc database 

    pt = ""            #Host port of tsdc database 

        # Connection to database 
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    conn = psycopg2.connect(host = ho, port = pt, database = db, user = us, password = pw) 

    cur  = conn.cursor() 

    ## HOUSEHOLD ID DATABASE QUERY 

    # Declaring array to store the Trip IDs from Household ID query 

    TRIP_ID = [[0 for col in range(1)] for row in range(3500)] #Matrix size made large to accomodate the number of trips for each household 

    # Declaring Household ID for SQL database query 

    HH_ID = HH_MULT_ID[h] 

    HH_QUERY = """ 

    TRUNCATE TABLE House_ID_1; 

    DROP TABLE House_ID_1; 

    CREATE TABLE House_ID_1 

    (Trip_ID varchar(50) 

    ); 

    INSERT INTO House_ID_1( 

    Trip_ID 

    ) 

    SELECT trips.trip_id 

    FROM normal.trips 

    WHERE trips.hhid = %s AND trips.average_trip_speed_nrel < 80 

    ORDER BY trips.trip_id; 

    SELECT * 

    FROM House_ID_1 

    """ 

    # Passing query to PSRC database 

    cur.execute(HH_QUERY,(HH_ID,)) 

    (temp) = cur.fetchall() 

    TRIP_ID = temp #Automatically adjust TRIP_ID array size to match array size from database output 

    length = len(TRIP_ID) #length of TRIP_ID array 

     

    # Declaring matrix for database query outputs 

    TRIP_MILES = [[0 for col in range(6)] for row in range(length+1)] #Matrix size dependant on number of Trip IDs to be passed, and the six 
outputs of the SQL function 

    # Adding column names/identifiers to RESULTS matrix 

    TRIP_MILES[0] = ("Trip ID", 
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                     "Vehicle ID", 

                     "Total Travel (mi)", 

                     "Road Travel(mi)", 

                     "Highway Travel(mi)", 

                     "Trip Date (YYYY/MM/DD HH:MM:SS)") 

    ## DECLARING DATABASE QUERY 

    QUERY = """ 

    DROP FUNCTION Road_Calc(varchar); 

    CREATE OR REPLACE FUNCTION Road_Calc (New_Trip_ID varchar (40)) 

    RETURNS SETOF RECORD AS  

    $$ 

    DECLARE 

    TRIP_ID varchar(40); 

    VEH_ID varchar(15); 

    Total_mi double precision; 

    Road_mi double precision; 

    Highway_mi double precision; 

    --Day_Week integer; 

    Trip_Start_Date varchar(20); 

    --Trip_End_Date varchar(20); 

    --Trip_To_Home boolean; 

    --Trip_From_Home boolean; 

    --Trip_To_Work boolean; 

    --Trip_From_Work boolean; 

    SQL_RESULTS RECORD; 

    BEGIN 

    TRIP_ID := New_Trip_ID; 

    VEH_ID := (SELECT trips.vehicle_id FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

    Total_mi := (SELECT trips.bktp_mt_total FROM normal.trips WHERE trips.trip_ID = New_Trip_ID); 

    Road_mi := (SELECT SUM(points.calc_miles_duration) FROM normal.points, census.roads_2010 WHERE points.trip_id = New_Trip_ID 
AND ST_DWithin(roads_2010.geom,points.geom,38) AND roads_2010.rttyp = 'M'); 

    Highway_mi := (SELECT SUM(points.calc_miles_duration) FROM normal.points, census.roads_2010 WHERE points.trip_id = 

New_Trip_ID AND ST_DWithin(roads_2010.geom,points.geom,38) AND roads_2010.rttyp = 'I'); 

    --Day_Week := (SELECT trips.day_of_week FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

    Trip_Start_Date := (SELECT trips.bktp_start_date FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 
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    --Trip_End_Date := (SELECT trips.bktp_end_date FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

    --Trip_To_Home := (SELECT trips.to_home FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

    --Trip_From_Home := (SELECT trips.from_home FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

    --Trip_To_Work := (SELECT trips.to_work FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

    --Trip_From_Work := (SELECT trips.from_work FROM normal.trips WHERE trips.trip_id = New_Trip_ID); 

    SELECT  TRIP_ID, 

            VEH_ID, 

            Total_mi, 

            Road_mi, 

            Highway_mi, 

            --Day_Week, 

            Trip_Start_Date 

            --Trip_End_Date, 

            --Trip_To_Home, 

            --Trip_From_Home, 

            --Trip_To_Work, 

            --Trip_From_Work 

            INTO SQL_RESULTS 

            ORDER BY VEH_ID; 

    RETURN NEXT SQL_RESULTS; 

    END; 

    $$ 

    LANGUAGE 'plpgsql' VOLATILE; 

    SELECT * 

    FROM Road_Calc(%s) 

    AS (TRIP_ID varchar(40), 

        VEH_ID varchar(15), 

        Total_mi double precision, 

        Road_mi double precision, 

        Highway_mi double precision, 

        --Day_Week integer, 

        Trip_Start_Date varchar(20)); 

        --Trip_End_Date varchar(20), 

        --Trip_To_Home boolean, 



82 

        --Trip_From_Home boolean, 

        --Trip_To_Work boolean, 

        --Trip_From_Work boolean); 

    """ 

    ## PASSING QUERY TO PSRC DATABASE 

    for i in range(1,length+1): 

        cur.execute(QUERY,(TRIP_ID[i-1],)) 

        (temp,) = cur.fetchall() 

        TRIP_MILES[i] = temp 

    ## DETERMINING NUMBER OF VEHICLES WITHIN THE HOUSEHOLD ID 

    VEH_COUNT = [[0 for col in range(1)] for row in range(length)] 

    VEH = [[0 for col in range(1)] for row in range(length)] 

    VEH = [row[1] for row in TRIP_MILES] # Selecting vehicle ID column from 'TRIP_MILES' matrix 

    VEH = sorted(VEH) # Sorting the vehicles numerically 

    for i in range(1,length+1): 

        if VEH[i][0] == VEH[i-1][0]: 

            VEH_COUNT[i-1][0] = 0 

        else: 

            VEH_COUNT[i-1][0] = 1 

    VEH_COUNT = reduce(lambda x, y: x+y, VEH_COUNT) 

    NUM_VEHICLES = sum(VEH_COUNT) + 1 # Number of vehicles per household. +1 added for the initial vehicle in the count 

    VEH_ID = [[0 for col in range(1)] for row in range(NUM_VEHICLES)] 

    for i in range(1,NUM_VEHICLES+1): 

        I = str(i) 

        VEH_ID[i-1][0] = HH_ID + '_0' + I 

                     

    ## CONVERTING TRIP DATA MATRIX TO NUMPY ARRAY AND REMOVING 'NONE' INDECIES 

    TRIP_MILES = np.array([TRIP_MILES]) 

    TRIP_MILES = np.where(TRIP_MILES == np.array(None),0,TRIP_MILES) 

    ## CONVERTING TRIP DATA MATRIX BACK TO PYTHON LIST 

    TRIP_MILES = np.squeeze(np.asarray(TRIP_MILES)) 

    ## COLLECTING DAY OF TRAVEL FOR EACH TRIP 

    TRIP_DATE = [row[5] for row in TRIP_MILES] 

    TRIP_DATE = [i.split(' ',1)[0] for i in TRIP_DATE] 
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    UNIQ_DAYS = [[0 for col in range(1)] for row in range(len(TRIP_DATE))]  #Creating array for all of the days of travel for the household 

    for i in range(1,len(TRIP_DATE)): 

        if TRIP_DATE[i-1] == TRIP_DATE[i]: 

            UNIQ_DAYS[i] = 0 

        elif TRIP_DATE[i-1] != TRIP_DATE[i]: 

            UNIQ_DAYS[i] = TRIP_DATE[i] 

    del UNIQ_DAYS[0] 

    UNIQ_DAYS = filter(lambda a: a != 0, UNIQ_DAYS) 

    ## DECLARING LISTS FOR CALCULATIONS 

    VEH_TRIP_CITY_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(length+1)] 

    VEH_TRIP_HWY_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(length+1)] 

    VEH_TRIP_TOT_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(length+1)] 

    TOTAL_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(length+1)] 

    EV_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(length+1)] 

    H2_MILES = [[0 for col in range(NUM_VEHICLES)] for row in range(length+1)] 

    H2_FUEL = [[0 for col in range(NUM_VEHICLES)] for row in range(length+1)] 

    ## UTILITY FACTOR CALCULATIONS FOR FCPHEV W/ 40mi ALL ELECTRIC RANGE & 65mi/kg FUEL ECONOMY 

    # 10mi all electric range 

    EV_RANGE = 0         # (mi) All electric range 

    CITY_FE = 54.35       # (mi/kg) UDDS Fuel Economy 

    HWY_FE = 58.82        # (mi/kg) HWFET Fuel Economy 

    # 20mi all electric range 

    #EV_RANGE = 20         # (mi) All electric range 

    #CITY_FE = 53.62       # (mi/kg) UDDS Fuel Economy 

    #HWY_FE = 56.82        # (mi/kg) HWFET Fuel Economy 

    # 30mi all electric range 

    #EV_RANGE = 30         # (mi) All electric range 

    #CITY_FE = 52.91       # (mi/kg) UDDS Fuel Economy 

    #HWY_FE = 55.55        # (mi/kg) HWFET Fuel Economy 

    # 40mi all electric range 

    #EV_RANGE = 40         # (mi) All electric range 

    #CITY_FE = 52.36       # (mi/kg) UDDS Fuel Economy 

    #HWY_FE = 54.88        # (mi/kg) HWFET Fuel Economy 

    TANK_CAP = 1.65*3 # (kg) capacity of CSU's H2eV hydrogen storage tanks at full 5000psi 
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    for i in range(0,NUM_VEHICLES): 

        for j in range(0,len(UNIQ_DAYS)): 

            for k in range(1,length+1): 

                if TRIP_MILES[k][1] == VEH_ID[i][0]: #Filtering for each vehicle of the household 

                    VEH_TRIP_CITY_MILES[k][i] = TRIP_MILES[k][3] #City miles on trip 

                    VEH_TRIP_HWY_MILES[k][i]  = TRIP_MILES[k][4] #Highway miles of trip 

                    VEH_TRIP_TOT_MILES[k][i]  = TRIP_MILES[k][3] + TRIP_MILES[k][4] #Total miles on trip 

                else: 

                    VEH_TRIP_CITY_MILES[k][i] = 0 

                    VEH_TRIP_HWY_MILES[k][i]  = 0 

                    VEH_TRIP_TOT_MILES[k][i]  = 0 

                if TRIP_DATE[k] == TRIP_DATE[k-1]: #Determining if the current trip is on the same day as the previous trip 

                    TOTAL_MILES[k][i] = TOTAL_MILES[k-1][i] + VEH_TRIP_TOT_MILES[k][i] #Summing the total amount of miles driven on 

each unique travel day 

                    EV_MILES[k][i]    = EV_MILES[k-1][i] + VEH_TRIP_CITY_MILES[k][i] #Summing the total amount of EV miles driven on each 
unique travel day 

                    if EV_MILES[k][i] < EV_RANGE: 

                        H2_MILES[k][i] = VEH_TRIP_HWY_MILES[k][i] #Amount of miles driven with fuel cells 

                        H2_FUEL[k][i]  = VEH_TRIP_HWY_MILES[k][i]/HWY_FE + H2_FUEL[k-1][i]#Amount of hydrogen consumed while driving 

on highway 

                    else: 

                        if VEH_TRIP_TOT_MILES[k][i] > 0: 

                            H2_MILES[k][i] = VEH_TRIP_CITY_MILES[k][i] - (EV_RANGE - EV_MILES[k-1][i]) + VEH_TRIP_HWY_MILES[k][i] 

#Amount of miles driven with fuel cells after battery depleted 

                            H2_FUEL[k][i]  = (VEH_TRIP_CITY_MILES[k][i] - (EV_RANGE - EV_MILES[k-1][i]))/CITY_FE + 
VEH_TRIP_HWY_MILES[k][i]/HWY_FE + H2_FUEL[k-1][i] #Amount of hydrogen consumed on city streets and highway 

                        else: 

                            H2_MILES[k][i] = 0 

                            H2_FUEL[k][i]  = 0 + H2_FUEL[k-1][i] 

                else: 

                    TOTAL_MILES[k][i] = VEH_TRIP_TOT_MILES[k][i] #Summing the first travel of the new unique travel day 

                    EV_MILES[k][i]    = VEH_TRIP_CITY_MILES[k][i] #Summing the first city travel of the new travel day 

                    if EV_MILES[k][i] < EV_RANGE: 

                        H2_MILES[k][i] = VEH_TRIP_HWY_MILES[k][i] #Amount of miles driven with fuel cells 

                        H2_FUEL[k][i]  = VEH_TRIP_HWY_MILES[k][i]/HWY_FE + H2_FUEL[k-1][i] #Amount of hydrogen consumed while driving 

on the highway 

                    else: 
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                        if VEH_TRIP_TOT_MILES[k][i] > 0: 

                            H2_MILES[k][i] = VEH_TRIP_CITY_MILES[k][i] - (EV_RANGE - EV_MILES[k-1][i]) + VEH_TRIP_HWY_MILES[k][i] 

#Amount of miles driven with fuel cells after battery depleted 

                            H2_FUEL[k][i]  = (VEH_TRIP_CITY_MILES[k][i] - (EV_RANGE - EV_MILES[k-1][i]))/CITY_FE + 
VEH_TRIP_HWY_MILES[k][i]/HWY_FE + H2_FUEL[k-1][i] #Amount of hydrogen consumed on city streets and highway 

                        else: 

                            H2_MILES[k][i] = 0 

                            H2_FUEL[k][i]  = 0 + H2_FUEL[k-1][i] 

    ## DETERMINING THE TRIP ID ASSOCIATED WITH H2 REFUELING 

    H2_REFIL_TRIP_ID = [[0 for col in range(NUM_VEHICLES)] for row in range(int(math.ceil(max(H2_FUEL[-1])/TANK_CAP))-1)] 

#Initializing list for recording the trip ids associated with H2 refills 

    DEBUG = [[0 for col in range(NUM_VEHICLES)] for row in range(int(math.ceil(max(H2_FUEL[-1])/TANK_CAP))-1)]     

    for i in range(0,NUM_VEHICLES):                 

        for m in range(1,int(math.ceil(max(H2_FUEL[-1])/TANK_CAP))): 

            for k in range(1,length+1): 

                if H2_FUEL[k][i] > m*TANK_CAP: #Determining if the accumulated H2 fuel consumption at the current trip is greater than the 

capacity of the tanks 

                    H2_REFIL_TRIP_ID[m-1][i] = TRIP_MILES[k][0] #Storing trip id of refill 

                    DEBUG[m-1][i] = k 

                    m = m + 1 

    ## DETERMINING THE DISTANCE ON THE TRIP AT WHICH THE FCPHEV WOULD NEED TO REFILL 

    REFIL_TRIP_DIST = [[0 for col in range(NUM_VEHICLES)] for row in range(len(H2_REFIL_TRIP_ID))] #Initializing list for calculating 
total miles driven on trip up to H2 refill locaiton 

    REFIL_TRIP_H2_FUEL = [[0 for col in range(NUM_VEHICLES)] for row in range(len(H2_REFIL_TRIP_ID))] #Initializing list for 

calculating the total amount of H2 fuel consumed during refill trip 

    REFIL_TRIP_H2_MI_CONS = [[0 for col in range(NUM_VEHICLES)] for row in range(len(H2_REFIL_TRIP_ID))] #Initializing list for 
calculting the amount of H2 consumed per mi 

    REFIL_TRIP_H2_FUEL_TO_EMPTY = [[0 for col in range(NUM_VEHICLES)] for row in range(len(H2_REFIL_TRIP_ID))] #Initializing 

list for calculating the amount of H2 before refill at beginning of trip 

    REFIL_TRIP_MILES_TO_REFIL = [[0 for col in range(NUM_VEHICLES)] for row in range(len(H2_REFIL_TRIP_ID))] #Initializing list 

for calculating miles from beginning of trip to point of refill 

    for i in range(0,NUM_VEHICLES): 

        for m in range(1,int(math.ceil(max(H2_FUEL[-1])/TANK_CAP))): 

            for k in range(1,length+1): 

                if H2_REFIL_TRIP_ID[m-1][i] == TRIP_MILES[k][0]: #Finding the data for the trip id associated with a H2 refill 

                    if TRIP_DATE[k] == TRIP_DATE[k-1]:                     

                        REFIL_TRIP_DIST[m-1][i] = TOTAL_MILES[k][i] - TOTAL_MILES[k-1][i] #mi, total miles of trip 

                        REFIL_TRIP_H2_FUEL[m-1][i] = H2_FUEL[k][i] - H2_FUEL[k-1][i] #kg, total H2 fuel used on trip 
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                        REFIL_TRIP_H2_MI_CONS[m-1][i] = REFIL_TRIP_H2_FUEL[m-1][i]/REFIL_TRIP_DIST[m-1][i] #kg/mi, calculating H2 

consumption on trip per miles 

                        REFIL_TRIP_H2_FUEL_TO_EMPTY[m-1][i] = m*TANK_CAP - H2_FUEL[k-1][i] #kg, calculating amoutn of H2 fuel left in 
tank at beginning of trip 

                        REFIL_TRIP_MILES_TO_REFIL[m-1][i] = REFIL_TRIP_H2_FUEL_TO_EMPTY[m-1][i]/REFIL_TRIP_H2_MI_CONS[m-

1][i] #mi, distance into trip at which refilling required 

                    else: 

                        REFIL_TRIP_DIST[m-1][i] = TOTAL_MILES[k][i] #mi, total miles of trip 

                        REFIL_TRIP_H2_FUEL[m-1][i] = H2_FUEL[k][i] - H2_FUEL[k-1][i] #kg, total H2 fuel used on trip 

                        REFIL_TRIP_H2_MI_CONS[m-1][i] = REFIL_TRIP_H2_FUEL[m-1][i]/REFIL_TRIP_DIST[m-1][i] #kg/mi, calculating H2 

consumption on trip per miles 

                        REFIL_TRIP_H2_FUEL_TO_EMPTY[m-1][i] = m*TANK_CAP - H2_FUEL[k-1][i] #kg, calculating amoutn of H2 fuel left in 

tank at beginning of trip 

                        REFIL_TRIP_MILES_TO_REFIL[m-1][i] = REFIL_TRIP_H2_FUEL_TO_EMPTY[m-1][i]/REFIL_TRIP_H2_MI_CONS[m-

1][i] #mi, distance into trip at which refilling required 

    ## DETERMINING QGIS GEOMETRICAL COORDINATE OF THE REFUELING LOCATIONS 

    TEMP_TRANS = [[0 for col in range(4)] for row in range(500)] #Declaring temporary list to store SQL query results 

    LAT_LONG = [[0 for col in range(NUM_VEHICLES*2)] for row in range(len(H2_REFIL_TRIP_ID))] #Declaring list to store the latitude 

and longitutde points of the vehicle refills 

        REFIL_QUERY = """ 

    TRUNCATE TABLE REFILGEOM; 

    DROP TABLE REFILGEOM; 

        CREATE TABLE REFILGEOM 

    (Point_GEOM varchar(50), 

    Point_MILE float, 

    Point_LAT float, 

    Point_LONG float 

    );     

    INSERT INTO REFILGEOM 

    (Point_GEOM, 

    Point_MILE, 

    Point_LAT, 

    Point_LONG 

    ) 

        SELECT 

    points.geom, 

    points.calc_miles_duration, 
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    points.latitude, 

    points.longitude 

        FROM 

    normal.points 

        WHERE 

    points.trip_id = %s 

        ORDER BY 

    points.local_ts; 

        SELECT * 

    FROM REFILGEOM 

    """ 

    for i in range(0,NUM_VEHICLES): 

        for j in range(0,len(H2_REFIL_TRIP_ID)): 

            REFIL_TRIP_ID = H2_REFIL_TRIP_ID[j][i] #Selecting trip ID from generatled list of refill trips 

            if REFIL_TRIP_ID == 0: 

                j = j+1 

            else: 

                cur.execute(REFIL_QUERY,(REFIL_TRIP_ID,)) #Passing SQL query to database 

                (temp) = cur.fetchall() #Collecting SQL query results 

                TEMP_TRANS = temp 

                    MI_CNT = [[0 for col in range(1)] for row in range(len(TEMP_TRANS))] #Declaring list to count the total miles of trip up to time 

of refil 

                    for k in range(0,len(TEMP_TRANS)): 

                    MI_CNT[k][0] = MI_CNT[k-1][0] + TEMP_TRANS[k][1] 

                    if MI_CNT[k][0] < REFIL_TRIP_MILES_TO_REFIL[j][i] + 0.15 and MI_CNT[k][0] > REFIL_TRIP_MILES_TO_REFIL[j][i] - 
0.15: 

                        LAT_LONG[j][i*2] = TEMP_TRANS[k][2] 

                        LAT_LONG[j][(i*2)+1] = TEMP_TRANS[k][3] 

                        k = len(TEMP_TRANS) 

                    else: 

                        k = k+1 

    for i in range(0,len(LAT_LONG)): 

        FINAL_RESULTS.append(LAT_LONG[i]) 

        ## OUTPUT CHOSEN RESULTS TO .csv FILE 

    with open('Output.csv', 'wb') as csvfile: 
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                a = csv.writer(csvfile, delimiter = ',') 

                a.writerows(FINAL_RESULTS) 

## CLOSING CONNECTION TO DATABASE 

cur.close()     #Closing cursor 

conn.close()    #Closing connection 

TIME_END = time.time() 

print "Script Execution Time:" 

print TIME_END-TIME_START                         
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LIST OF ABBREVIATIONS 

 

 

 

CAFE – Corporate Average Fuel Economy CARB – California Air Resource Board 

ZEV – Zero Emission Vehicle EPA – Environmental Protection Agency 

DOT – Department of Transportation NHTSA – National Household Transportation 

Survey Administration 

MY – Model Year FE – Fuel Economy 

OEM – Original Equipment Manufacturer MPG – Miles Per Gallon 

HEV – Hybrid Electric Vehicle ICE – Internal Combustion Engine 

PHEV – Plug-in Hybrid Electric Vehicle CD – Charge Depleting 

FCV – Fuel Cell Vehicle FCPHEV – Fuel Cell Plug-in Hybrid Electric 

Vehicle 

DC – Direct Current DOE – Department of Energy 

FCTO – Fuel Cell Technologies Office NREL – National Renewable Energy 

Laboratory 

CV – Conventional Vehicle EPRI – Electric Power Research Institute 

BEV – Battery Electric Vehicle DP – Dynamic Programming 

MILP – Mixed Integer Linear Programming HSC – Hydrogen Supply Chain 

GIS – Geographical Information System ITS – Institute of Transportation Studies 

AVTC – Advanced Vehicle Technology 

Competition 

GM – General Motors 

PEV - Plug-in Electric Vehicle GHG – Greenhouse Gas 

CSU VIT – Colorado State University Vehicle 

Innovation Team 

HV – High Voltage 

SAE – Society of Automotive Engineers QGIS - Quantum Geographic Information 

Systems 

SQL - Structural Query Language ANL – Argonne National Laboratory 

PSRC - Puget Sound Regional Council GPS - Global Positioning Systems 

DAQ – Data Acquisition UF - Utility Factor 
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NHTS - National Household Transportation 

Survey 

TSDC - Transportation Secure Data Center 

PEM - Proton Exchange Membrane UDDS - Urban Dynamometer Drive Schedule 

HWFET - Highway Fuel Economy Driving 

Schedule 
 

 


