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ABSTRACT

PHOSPHORUS LIGAND-COUPLING REACTIONS FOR THE FUNCTIONALIZATION OF

PYRIDINE AND OTHER AZINES

Pyridines and related azines are ubiquitous in pharmaceuticals, agrochemicals, and
materials. The discovery and development of new purpose-built molecules is contingent on our
ability to modify these motifs. Described herein are the development of methods that selectively
functionalize pyridine and diazine scaffolds through phosphorus ligand-coupling. Novel
phosphine reagents were designed and leveraged to construct C—C, C—O, and C—N bonds on azines
from their C—H precursors.

Chapter one introduces the history of phosphorus ligand-coupling and defines the reactivity
explored throughout this thesis. Both seminal and contemporary examples of phosphorus ligand-
coupling reactions are also discussed to provide context for this work. Chapter two focuses on a
method to incorporate fluoroalkyl groups onto azines and pharmaceuticals using phosphorus
ligand-coupling. This method offers a complementary alternative to widely used radical addition
approaches which often produce regiomeric product mixtures on azines.

Chapter three presents the investigation of a phosphorus-mediated alkenylation reaction on
pyridines and quinolines. Examination of the reaction of pyridylphosphines with alkyne acceptors
uncovered divergent reaction pathways from alkenylphosphonium salts. Mechanistic studies
provide an explanation for the origin of selectivity obtained in these reactions. Lastly, chapter four
expands upon one of these reaction pathways and describes the development of a method for the

direct conversion of pyridines into pyridones and aminopyridines.
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CHAPTER ONE

PHOSPHORUS LIGAND-COUPLING AND ITS SYNTHETIC UTILITY

1.1 Introduction to Phosphorus Ligand-Coupling

Organophosphorus chemistry has a rich history in organic synthesis, and a wide array of
reactions and their mechanisms have been explored for over more than a century. The significance
of phosphorus compounds is reflected in their deployment as fertilizers, pesticides, flame
retardants, ancillary ligands to metals, and medicines, as well as their crucial roles in biological
systems."”” Furthermore, organophosphorus compounds serve as necessary components or
intermediates in general organic synthesis. Named reactions including the Wittig, Staudinger,
Appel, Mitsunobu, and many others are routinely used for the preparation of purpose-built
molecules. These methods highlight the ability of organophosphorus compounds to engage in a
wide array of mechanistically distinct pathways. Among these, ligand-coupling remains a
relatively unexploited mechanism for phosphorus-mediated reaction development.

The term “ligand-coupling” was first coined by Oae in 1986 to describe a distinct mode of
reactivity for hypervalent sulfur and phosphorus species, though this reactivity was discovered
prior and studied in various contexts for decades.®® As described by Oae, there are three possible
ways for hypervalent species to collapse to form stable products: self-decomposition, ligand
exchange, and ligand-coupling (Figure 1.1). The Wittig reaction constitutes an example of self-
decomposition. The hypervalent oxaphosphetane intermediate 1 collapses via the mechanism

shown in Figure 1.1a to form triphenylphosphine oxide and an olefin. An example of ligand



exchange is phosphate hydrolysis, which proceeds with substitution at phosphorus via

phosphorane (PY) intermediate 2 (Figure 1.1b).
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Figure 1.1 Phosphorane decomposition pathways.

Ligand-coupling, on the other hand, is a process in which two ligands, with a pair of
electrons, are extruded from a central atom which returns to a more stable valency (Figure 1.1c).
This definition, however, does not fully describe the classes of experimentally determined ligand-
coupling reactions and their precise mechanisms; a more comprehensive categorization of ligand-
coupling processes was consequently established by Finet (Figure 1.2).!° Type A ligand-coupling
reactions (denoted LC) involve ligands appended to the heteroatom by c-bonds and contain two
subclasses. Coupling between two of the same ligands or two ligands of similar polarity has been
proposed to occur via a relatively synchronous process and is considered a homocoupling (denoted

LCn). Though limited studies have been conducted, the decomposition of tetraphenyltellurium



species has been proposed to occur through a symmetry-allowed concerted ligand coupling process
(Figure 1.2a).'!

When the two pairing ligands are of sufficiently different polarity, the coupling is closer to
an internal nucleophilic substitution, which is typically asynchronous and involves a polar
transition state. The example provided (Figure 1.2b) is one of the reactions discovered in Oae’s
studies of ligand-coupling from sulfoxide derivatives.'? This subclass, denoted LCx, encompasses
each of the phosphorus-mediated reactions discussed in the chapters of this dissertation that follow.
Type B ligand-coupling reactions occur between one c-bonded ligand and one allylic atom.
Denoted LC’ (by analogy to Sn2 and Sn2’ reactions), Type B reactions contain two subclasses
(LCN’ and LCg’) determined by the philicity of the 6-bonded ligand for the allylic atom. These
transformations are comparatively less common than Type A and are relevant to ligand-couplings
from organolead, organobismuth, and organothallium compounds, as illustrated by the bismuth-
mediated ortho-arylation of carbonyl compounds discovered by Barton (LCn’), and the reaction

of lead tetraacetate with phenols discovered by Wessely (LCg’) (Figure 1.2¢, d).!>!4
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Figure 1.2 Ligand-coupling subclasses and representative examples.

1.2 Seminal Examples of Ligand Migration and Coupling from PV Intermediates
1.2.1 Ligand Migration Examples

LCn reactions operate by a characteristic mechanism from the phosphorane intermediate:
first, an apical ligand undergoes 1,2-migration onto an equatorial acceptor, and second, elimination
of a P species occurs to form the new product. In some cases, migration from the phosphorane
takes place, but elimination of a P™ byproduct is disfavored or impossible. The most studied
example of this reactivity is the Allen-Millar-Trippett rearrangement.!>~!8 In the late 1960s Allen

and Millar, and in related work, Trippett, reported that certain cyclic phosphonium salts



decompose by hydrolysis to ring-expanded products. After alkylation of 9-phosphafluorene 4 with
methylene iodide and addition of water to phosphonium 5§, the apical phenyl ligand in trigonal
bipyramidal phosphorane 6 undergoes a 1,2-migration onto the equatorial iodomethyl group with
loss of hydrogen iodide (Figure 1.3). While this pathway is not a complete ligand coupling process
as no elimination occurs, it highlights one of the conditions that must be met for LCn reactions to
take place. The apical ligand can only migrate onto an equatorial ligand which acts as an

electrophilic acceptor, such as the alkyl iodide in 6.

) J/
—_— + —_— Ph,: — o)
P R - P— Il
b ol CHyt O (le -l 7

4 5 — 6 - 7

Figure 1.3 The Allen-Millar-Trippett rearrangement.

Richards and Tebby later found that a similar ring expansion occurred from phosphoranes
generated by addition of phosphine 4 to methyl propiolate 8 under aqueous conditions.!® Here,
migration of the apical carbon group onto the equatorial acrylate substituent followed by
protonation of the resulting enolate yields the dihydrophosphinine oxide (Figure 1.4a). Chapter 3
of this dissertation contains additional discussions of this type of system and the possible reaction
pathways from vinylphosphoranes like 5. The next extension of this ring expansion approach was
reported by Mathey, who found that acylphosphonium salts (12) generated from phospholes (11)
and acyl chlorides were hydrolyzed to the corresponding 2-hydroxy-1,2-dihydrophosphinines (14,

Figure 1.4b).>°
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Figure 1.4 Additional acceptors for phosphorane ring-expansion.

Mathey also discovered that when the phosphole contained a P-tert-butyl substituent (15),
ring expansion failed, and an alternative pathway in which the acyl group migrated onto the
phosphole olefin was preferred (16, Figure 1.5a).! Smith found that related acylphosphoniums
from 2,3-dihydrophospholes (18) disfavored ring expansion, instead preferring a ligand exchange
pathway (19) to form 2,3-dihydrophosphole oxides (20) and the corresponding aldehydes (21,
Figure 1.5b).>> These results from Mathey and Smith underscore the ability of the same or very
similar phosphoranes to decompose through multiple distinct pathways; consequently, obtaining

selectivity for the desired pathway poses a challenge to reaction development.



a. Mathey (1972)
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Figure 1.5 Alternative decomposition pathways from cyclic phosphorane intermediates.

1.2.2 Ligand-Coupling Examples

Studies on the pyrolysis of pentaphenylphosphorane by Wittig established early examples

of phosphorus ligand-coupling reactions.?* Heating PhsP to 130 °C forms triphenylphosphine and

biphenyl in 22%, along with benzene and other byproducts (Figure 1.6a). Related studies of

spirocyclic phosphoranes gave similar aryl-aryl coupling products (Figure 1.6b).>*

a. Wittig (1953)
Ph
Ph,, | 130 °C
o~ P—Ph — Ph—Ph PhsP
Ph
Bh 22% 22%
b. Wittig (1964)

Ph,, i 100 °C
g -

Figure 1.6 Early examples of PV contractive coupling.

o

Alkoxy and aryloxyphosphoranes are prepared by heating PhsP (22) with the

corresponding alcohol (Figure 1.7). Decomposition of these reagents under thermal conditions



yields a mixture of products depending on the nature of the oxygen substituent. Phenoxy groups
yield mainly the corresponding phenol (26) and triphenylphosphine (25) via protonation of the
phenoxy ligand; a minor amount of diphenyl ether (24), presumably from an LCn pathway was
observed (Figure 1.7a). Alkoxy groups favor the ligand-coupling pathway to yield mostly alkyl
phenyl ether (24, R = Me), triphenylphosphine, and a minor amount of the corresponding alcohol

(26).% Similar results were obtained from alkoxy methyltriphenylphosphoranes (Figure 1.7b).?

a. Razuvaev and Osanova (1972)

h OR

P
22 23
Ph,, | ROH Ph,, | 200 °C 24 25 26 27
Ph(FIJ—Ph — Ph,T—Ph ———> PhOR Ph? ROH  PhH
Ph Ph R = Ph 15% 82%  84%  nd.

R =Me 72% 97% 20% 4%

b. Schmidbaur (1973)
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MeOH Ph, | 140 °C
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I\I/Ie 87% 67%

Figure 1.7. Examples of C-O bond formation from PV species.

While the decomposition of stable phosphoranes served as early examples of ligand-
coupling, the approach is inherently limited by the conditions needed to achieve coupling and by
the number of phosphoranes which are stable enough for isolation. More often, it is common to
generate a phosphorane in situ as part of a multistage process from accessible starting materials.
Early examples of this strategy were still not synthetically useful but previewed the types of useful
bond constructions which could be achieved through ligand-coupling.

An early approach to bipyridine synthesis via PV coupling was reported by Mann in 1948.%
Lithium-halogen exchange on 2-bromopyridine followed by addition to phosphorus trichloride
forms a tripyridylphosphine. Alkylation of this phosphine and both pyridine nitrogen atoms by

methyl iodide in methanol forms a bis-methylated bipyridininium (Figure 1.8a). Formation of an



alkoxyphosphorane via attack of methanol on the methyl phosphonium salt likely results in the
ligand-coupled product. Later examples from Newkome, as well as Uchida and Oae, demonstrated
that bipyridine synthesis could be achieved from multiple different phosphorus precursors (PCls,
PhPCl>, OPCI3) and lithiated pyridines through similar phosphorane intermediates, but none were

suitable for the practical synthesis of unsymmetrical bipyridines (Figure 1.8b-d).?3°

a. Mann (1948)

| X 1. n-BuLi, Et,0 | N Mel
—_— —_—
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c. Uchida and Oae (1989)
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Figure 1.8 Examples of pyridine-pyridine coupling from phosphorane intermediates.
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Figure 1.9 Aryl-aryl coupling via phosphorus ligand-coupling.

Aryl-aryl coupling from P intermediates is typically not a favored pathway but has been

observed in instances where a sufficient electronic bias is present. Allen reported that para-

substitution of an aryl ligand by an electron-withdrawing group allows the ring to act as a sufficient

electron sink for coupling to proceed from tetraarylphosphonium salts (28, Figure 1.9

) 31,32

However, a limited set of withdrawing groups were tested (benzimidazole, benzoxazole,

benzothiazole, benzoyl and cyano) and yields of the coupled products were low (< 30%). The

remainder of the reaction mass balance was made up by phosphine oxide 30 and benzene.

Phosphonium salts containing ortho-substituted aryl ligands gave only phosphine oxide and

benzene through ligand exchange.

+
_ PPhs
Br __
Me Li
32
31
"
_ PPhs
Br Me
\:\ —_—
Li
35

31

Figure 1.10 Vinyl-aryl coupling via a phosphorus LCn process.
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Addition of vinyllithium to tetraphenylphosphonium salts, in contrast to aryllithium or
arylmagnesium reagents, forms a PV intermediate which is not stable and readily decomposes to

).33 Furthermore, when starting from either cis- or trans-

the styrene coupling product (Figure 1.10
2-propenyllithium (32 or 35), complete retention of stereochemistry was observed in both styrene
products (34 and 37). This indicates that migration of the apical vinyl group onto the equatorial
phenyl ligand (33 and 36) is the operative coupling pathway, as the reverse scenario, in which the
phenyl ligand migrates onto the vinyl group, would destroy the initial stereochemistry and likely

provide a mixture of both isomers.

1.3 Contemporary Examples of Phosphorus Ligand-Coupling

R
| ot o~
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Figure 1.11 Pyridyl ether synthesis via heterocyclic phosphonium salts.



1.3.1 Heteroaryl Ether Synthesis

In 2016, coworkers in the McNally group first reported the preparation and application of
heterocyclic phosphonium salts toward pyridyl ether synthesis.>* Treating pyridyl phosphonium
salts with sodium alkoxides in THF at O °C gave the desired ether in good yields on a scope of
complex pyridines, pharmaceutical compounds, and other classes of heterocycles (Figure 1.11).
Formation of the C—O coupled product is proposed to occur through a ligand-coupling process.
Attack of the alkoxide at phosphorus results in an alkoxyphosphorane which is suited for an LCn
pathway which would produce the heteroaryl ether and triphenylphosphine. To determine if this
pathway was operative, attempts to observe a phosphorane intermediate (40) were made via in situ
variable temperature (VT) *'P NMR. In the reaction between the phosphonium salt of 2-
phenylpyridine and sodium hexan-1-olate in THF at —30 °C, a new phosphorus shift was observed

at —70.64 ppm, which falls in the expected range for alkoxyphosphoranes.>’

OMe
OMe L Ph OMe
— i \Ph V4 pPw=Ph
N @ P/ f-FI,‘\ Ph —_— 7 i | T N
| N Ph | P
Ph \} PPhj N
41 43 44
AG*t =23 kcal mol™ A G =-21 kcal/mol"

Figure 1.12 Proposed ligand-coupling mechanism for C—O bond formation.

Additional support in favor of an asynchronous ligand coupling pathway was provided
through a computational study from the Paton group (Figure 1.12). Starting from phosphorane 41,
migration of the apical alkoxy group onto the equatorial pyridine is proposed to occur via a 3-
center-4-electron bond between the phosphorus atom, pyridine ipso carbon, and the oxygen of the
bridging alkoxy ligand, with an energy barrier of 22.9 kcal mol ™. The resulting Meisenheimer-like

intermediate 43 collapses to form the rearomatized ether product and triphenylphosphine. The

12



selectivity for alkoxy ligand migration over other possible ligand-couplings is noteworthy; the
computed barrier for the unobserved phenyl migration from phosphorane 42 is 7.4 kcal mol™
higher in energy. During the migration event, a build-up of negative charge occurs on the migrating
atom; the ability of the alkoxy group to stabilize this negative charge build-up over the less
electronegative phenyl is likely responsible for this energy difference.
1.3.2 Unsymmetrical Bipyridine Synthesis

Inspired by the seminal works in bipyridine synthesis described previously, coworkers in
the McNally group developed a practical strategy for ligand-coupling between two azines (Figure
1.13). A phosphine with a fragmentable group (50) was designed that, upon phosphonium salt
formation, could be cleaved via a base-mediated E1cB elimination to yield a heteroaryl phosphine
(46).>° This new heteroaryl phosphine could then be subjected to the salt formation conditions on
another azine (47), allowing for the preparation of a range of bis-heterobiaryl phosphonium salts
(48). The strategy allowed for the preparation of heteroaryl phosphines on a range of substrates in
good to excellent yields. Treatment of the bis-heteroaryl phosphoniums with two equivalents of
HCl in ethanol at 80 °C provided the bipyridine products (49), and the conditions were applied on
a set of simple and complex phosphonium salts to afford valuable products that would otherwise

be difficult to access.

13
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Figure 1.13 Bis-heterobiaryl synthesis via phosphorous ligand-coupling.

Based on the hypothesis that methanol attacks the phosphorus center and forms a P
species, the Paton group investigated the conformers available to the bisheterobiaryl phosphorane.
The most favored conformer was phosphorane 51 (Figure 1.14). 6-Withdrawing groups such as
alkoxy and heteroaryl groups preferentially occupy the apical positions, while the phenyl rings and
the remaining pyridine hold the three equatorial positions. The computed structure contains
stronger, shorter bonds to equatorial ligands and weaker, longer bonds to those in the apical

positions, indicating a dramatic trans-effect. The resulting weaker, more polar P—Cpy) bond is

14



favored to perform a nucleophilic 1,2-migration onto the equatorial pyridine, which acts as the
electrophilic acceptor (52, Figure 1.14). Successive N-protonation of the heterocycles decreases
the activation barrier to this process significantly from 30 to 20 kcal mol! upon the first
protonation, followed by a further decrease to 14 kcal mol™! upon the second protonation. After
migration of the P-Cpy) bond to the ipso carbon of the acceptor, Meisenheimer-type intermediate
53 is formed. Intermediate 53 rapidly rearomatizes to form the desired heterobiaryl 54, generating

methyl diphenylphosphinite as a byproduct.
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= \ > |
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Ph,, 1 Y/ =—\+ > Ph,, +
e PG =P {,\ _N
| . | )
OMe ~ 54
H
53
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Figure 1.14. Mechanism of bis-heterobiaryl formation via phosphorus ligand-coupling.

Once again, selective coupling is achieved in this reaction. Phosphorane stereoisomers can
interconvert through Berry pseudorotation, and the energy barrier to this process is typically quite
low.?”*8 Coupling between the methoxy ligand and pyridine from phosphorane 51 is possible (58,
Figure 1.15); however, calculations indicate that the barrier to C—O bond formation via alkoxy
group migration is 4 kcal mol!' higher in energy, giving exclusive selectivity for bipyridine
formation experimentally. The barrier to phenyl migration is even higher in energy (57). The
difference in ability of the pyridinium ligand to stabilize anionic charge build-up compared to the

alkoxy or phenyl ligands during migration accounts for the selectivity obtained. The successful
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development and mechanistic understanding of this overall strategy inspired the work discussed

in Chapter 2 of this dissertation.
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Figure 1.15 Comparison of computed barriers to ligand-coupling processes from bis-azine
phosphoranes.

1.3.3. Acylfluorination of Alkynes

Tobisu and coworkers recently reported a phosphine-catalyzed acylfluorination of
alkynes.* Treating an acid fluoride (59) and ynoate (60) with 20 mol% of tricyclohexylphosphine
in toluene at 80 °C results in the formation of product 61 in 76% yield as a mixture of E and Z
isomers. The authors invoke the ligand-coupling pathway proposed in Figure 1.16. After Michael
addition to the alkyne acceptor 62, the resulting anion is acylated by acyl fluoride 64. Attack at
phosphorus by the fluoride leaving group forms phosphorane 65, which can undergo an LCn by
migration of the apical fluoride onto the equatorial olefin acceptor. The computed barrier to this
process is quite low at only 6.9 kcal mol™!. Finally, elimination of the phosphine catalyst forms the
desired product and completes the cycle. The authors found that the product E isomer was favored
in the initial stages of the reaction, but that the phosphine catalyst caused the product to isomerize
closer to a 1:1 ratio of E:Z as the reaction continued to progress. While this scope of this
transformation is somewhat limited and the 1,1-diacyl-2-fluoroalkene products are not highly
sought after, this reaction represents the first example of a ligand-coupling process which is

catalytic in phosphorus and underscores the utility of phosphorus-mediated coupling.
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Figure 1.16 Carbofluorination via phosphorus catalysis.

1.4 Conclusion

Phosphorus ligand-coupling is a distinct reaction manifold that has practical synthetic
utility but has been underdeveloped in comparison to other phosphorus-mediated chemistry. The
work detailed in this chapter shows that important bond constructions including C—C, C-O, and
C-F are possible through applications of this approach. Contemporary efforts to exploit
phosphorus ligand-coupling in new reaction development are slowly increasing, as shown by the
work in our lab as well as the Tobisu lab. The challenges to develop transformations via this
strategy include accessing the desired phosphonium and phosphorane under relatively mild
conditions, as well as determining systems which are suited toward both the migration and

elimination steps of coupling.
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CHAPTER TWO

SELECTIVE C-H FLUOROALKYLATION OF AZINES THROUGH PHOSPHORUS
LIGAND-COUPLING

2.1 Introduction to Fluoroalkylation
2.1.1 Importance of Fluoroalkyl Groups in Bioactive Compounds

The chemoselective incorporation of fluoroalkyl substituents is a powerful strategy in the
design of pharmaceuticals, as these groups can have a profound influence on the metrics associated
with a drug’s pharmacokinetic and pharmacodynamic profiles.!? Drug and agrochemical
candidates increasingly contain trifluoromethyl (CF3) and difluoromethyl (CF2H) groups; strategic
installation of these moieties can increase hydrophobic binding contacts, improve cell membrane
permeability, and limit metabolic susceptibility.>* In comparison to the widely applied
incorporation of trifluoromethyl groups, the installation of difluoromethyl substituents has only
recently begun to receive significant attention. In addition to the previous benefits, CF2H groups
also have specific roles as lipophilic hydrogen bond donors, acting as bioisosteres of hydroxyl,
thiol, and amine derivatives.””
2.1.2 Importance of Pyridine Functionalization in Pharmaceutical Discovery

A recent report by Njardarson found that of all small-molecule therapeutics (MW <900
Daltons), nearly 59 % include a nitrogen-containing heterocycle (N-heterocycle) in their
structure.'® Pyridines are the second most prominent N-heterocycle, and quinolines, pyrimidines,

and other diazines are also well represented. These motifs are found in a range of pharmaceuticals,

including Nexium (esomeprazole), Arcoxia (etoricoxib), and Gleevec (imatinib) (Figure 2.1). Due
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to the prevalence of azines in drugs, developing methods to selectively functionalize these

molecules is of high importance.
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Figure 2.1 Electron-deficient azines in drugs and agrochemicals.

The popularity of the electron-deficient azines in small-molecule therapeutics is largely
due to the physical and chemical properties that these motifs can introduce to a drug scaffold upon
their incorporation.!' A drug that is too hydrophobic will only accumulate at a low concentration
in the bloodstream, which necessitates higher dosing. The presence of an induced dipole in the
azine ring results in a polar aromatic system which is often more soluble in aqueous media. Azine
incorporation thus enables a medicinal chemist to modulate the bioavailability or uptake of a drug
in the circulatory system.!>!* Drugs that pass through the liver are oxidatively metabolized by
cytochrome P-450 (CYP450) enzymes. CYP450 enzymes target weak C-H bonds and form

metabolic products which are easier to excrete from the body.!* Azines are generally less
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susceptible to this process in comparison to electron-rich arenes, and can be installed in a drug
scaffold to tune its metabolic stability.!%!>16

Beyond pharmacokinetic advantages, azines can influence the performance of a drug
through conformational effects. Due to the rigid structure that their sp? character imposes into a
scaffold, azines are introduced to avoid unwanted conformers that might be present in acyclic
systems. Incorporating an azine into a drug reduces its overall free-rotation, and thus the entropic
cost of binding is lowered. Incorporating functional groups on the azine ring can also specifically
complement binding sites of the therapeutic target.!” Additionally, the Lewis basic nitrogen of
azines is an excellent hydrogen bond acceptor that can assist in binding to the target, resulting in
11,18

a more effective interaction.

2.2 Chemical Methods for the Fluoroalkylation of Pyridine and Related Heterocycles
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Figure 2.1 Fluoroalkyl-containing azines in pharmaceuticals and agrochemicals.

The effect of fluoroalkyl groups in structure-activity relationship (SAR) studies on azines
has resulted in numerous candidates and marketed compounds (Figure 2.2). While incremental
advances in pyridine functionalization of have been made in recent years, challenges remain, and
specific methods to directly convert C—H bonds to C—-CF.X (X = F or H) on pyridine fail to meet
the demand necessary for drug discovery. The electron-deficient nature and Lewis-basicity of the
ring make relatively simple reactions on pyridine more difficult in comparison to other arenes.

Synthesis of fluoroalkyl pyridines from acyclic precurors can provide simple building blocks, but

25



functionalization of existing pyridines is preferable in drug discovery. Indirect approaches require
either synthesis from acyclic precursors, or preinstallation of reactive functional groups (halide,
aldehyde, etc.) on the azine ring prior to the desired reaction. While this strategy may be possible
on simple building-block compounds, it becomes increasingly more difficult on complex
fragments and drug molecules. For instance, the classical electrophilic bromination of pyridine is
an extremely harsh process, and requires refluxing pyridine in sulfuric acid in the presence of
bromine.!” Direct functionalization from the azine C—H bond is a much more appealing strategy,
though regioselectivity for existing strategies is still a major challenge, leading to mixtures of
regioisomers that can be difficult to separate.
2.2.1 Indirect Incorporation of Fluoroalkyl Groups on Pyridine

Several methods have been established to introduce fluoroalkyl groups onto pyridine rings
via an indirect pathway from azines with preinstalled functional handles. Difluoromethylated
pyridines have been prepared through the deoxofluorination of heteroaryl aldehydes with sulfur
tetrafluoride, N,N-diethylaminosulfur trifluoride (DAST), and other related reagents (Figure
2.3a).2%22 Treatment of (hetero)aryl carboxylic acids with SF4 results in the trifluoromethylated
product. A recent report from Mykhailiuk and coworkers demonstrated the application of this
strategy on a variety of azine building blocks.?® However, the toxicity of HF and SF4, reagents that
require special care and technical training, is a considerable downside and limits the practicality

of this approach.?*
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Figure 2.3. Strategies for indirect fluoroalkylation on pyridine.

A variety of di- and trifluoromethylation reactions on heteroarenes have been reported that
utilize metal complexes (Figure 2.3b).>>?° Olah and co-workers developed a copper-mediated
difluoromethylation of (hetero)aryl iodides with tributyl(difluoromethyl)stannane.?’” Some other
notable examples include wusing stoichiometric CuCF; reagents for nucleophilic
trifluoromethylation of heteroaryl halides as demonstrated by the Grushin lab and the palladium-
and nickel-catalyzed difluoromethylation of heteroaryl halides reported by the Shen and Zhang
groups.?$3% Two reports recently published by the MacMillan group established the current state
of the art for di-and trifluoromethylation of heteroaryl bromides using metallaphotoredox catalysis
(Figure 2.3¢).’!*> Both methods use mild conditions and were demonstrated on a variety of
heteroaryl bromides.

2.2.2 Direct Incorporation of Fluoroalkyl Groups on Pyridine
Compared to indirect methods, direct methods for incorporation of fluoroalkyl groups on

pyridine are rare. The current state of the art for direct C—H fluoroalkylation of pyridines in
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complex drug-like scaffolds is Minisci-type radical addition (Figure 2.4a). While this approach
has enabled medicinal chemists to access new chemical space with various heteroarene inputs,
there exists a need for complementary approaches with distinct chemo- and regioselectivity. The
Baran group published conditions for the electrophilic addition of CF3 radical to pyridines and
other heterocycles in 2011 (Figure 2.4b).*> In the same year, MacMillan and co-workers
developed a radical trifluoromethylation of (hetero)arenes via photoredox catalysis (Figure
2.4¢).** In both cases, the regioselectivity of the reaction is a problem, and typically multiple
product isomers are formed that can be a challenge to separate or identify (Figure 2.4d, e). Similar
other works have been published by other groups that employ alternative trifluoromethyl radical
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Figure 2.4 Radical addition for C—H fluoroalkylation of pyridines.

A 2016 report by Kanai and co-workers details a 4-selective process for perfluoroalkylation
and perfluoroarylation through activation of azines with a strong Lewis acid. More recently, the
group disclosed a 2-selective perfluoroalkylation of quinolines through a similar strategy (Figure

2.5).373% However, the multistage protocol does not tolerate certain substitution patterns on

28



pyridine and requires an oxidation step after installation of the perfluoroalkyl or perfluoroaryl
group. Limited evidence of the reaction’s capacity to function on drug candidates reinforces the

need for complementary strategies.
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Figure 2.5 Kanai’s strategy for azine fluoroalkylation.

Only a handful of reactions have been reported for the direct difluoromethylation of
pyridines and other azines.***? Most notable among these are the reports by the Baran and Nielsen
groups which operate by generating a nucleophilic CF>H radical which typically adds to the
pyridine 2-position. While these methods allow access to highly desirable products, they also
suffer from poor regiocontrol, and formation of 4-difluoromethylated pyridines is disfavored.

2.3 Phosphonium Salts as a General Functional Handle on Azines

Methods for selective functionalization at the 4-position on pyridine and other azines from
C-H precursors are not just rare for organofluorine incorporation; a brief survey of the literature
reveals that compared to the number of methods that install 2- and 3-position substitutents, few
have been published for 4-selective installation.***® The McNally group has focused on
contributing to this area of the literature to provide medicinal chemists with methods that allow

access to valuable 4-functionalized azine products. To ensure uptake in the medicinal chemistry
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community, the reactions must be of high utility; they should be selective, operationally simple,

and applicable on a broad scope of compounds.
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Figure 2.6 Installation of phosphonium salts on pyridine.

It was anticipated that installation of a reactive functional group from the pyridine 4-
position C—H bond would enable further functionalization via a suite of reaction conditions.
Coworkers in the McNally group succeeded in establishing this precedent; inspired by an initial
report from Anders, it was found that phosphonium salts could be installed with precise

regiocontrol on pyridines and other azines.**™?

Sequential addition of triflic anhydride,
triphenylphosphine, and an organic base (NEt3 or DBU) at —78 °C forms the phosphonium salt by
the mechanism proposed in Figure 2.6. In addition, it was found that not only could regiocontrol
be achieved, but also switchable site-selectivity in systems containing multiple azines.>® This
methodology translated well to modification of complex drug fragments and actual drug

molecules, enabling late-stage functionalization. After achieving a high level of control over

installation, group efforts turned to discover applications of the phosphonium salts (Figure 2.7).
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Figure 2.7 Application of heterocyclic phosphonium salts.

Heteroatom nucleophiles were tested and found to be quite effective at displacing the
phosphonium handle, enabling construction of C-O, C-S, and C—N bonds at the 4-position on a
broad range of substrates (Figure 2.8a).”*>% The phosphonium can also serve as a pseudohalide
to facilitate C—C bond formation via metal-catalyzed cross coupling reactions (Figure 2.8b).>"-
Products of these reactions would be a challenge to make through conventional methods, notably
because of difficulties in accessing the corresponding pyridyl halide precursor. To improve access
to halopyridines an SNAr strategy was developed that employs a designed phosphine with electron-
deficient ligands. Chlorination, bromination, and iodination are achieved on both simple and
complex phosphonium salts by heating to 80 °C with the lithium halide in dioxane (Figure 2.8¢c).>
Single electron reduction of pyridyl phosphonium salts enables cross coupling with radical

precursors (Figure 2.8d).%062
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Figure 2.8 Examples of pyridine functionalization via phosphonium salts.

2.4 Design of a Phosphorous Ligand-Coupling Approach to Fluoroalkylation

X
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Phosphine Phosphonium Heteroarene

Figure 2.9 Design plan for pyridine fluoroalkylation via phosphorus ligand-coupling

We hypothesized that synthesizing fluoroalkylphosphonium salts on pyridine and
triggering an LCn process with oxygen nucleophiles would form the desired fluoroalkylated
pyridine (Figure 2.9). While Csp?>~Csp? bond formation via ligand-coupling had been previously
achieved using this strategy, Csp>~Csp® coupling is virtually unknown. Uchida reported in 1989
that treatment of tris(2-pyridyl)phosphine oxides with benzyl Grignard reagents gave low yields
of the 2-benzylpyridine amongst other ligand-coupled products.> However, both the lack of
control over coupling selectivity and the limited accessibility of the starting materials make this

approach impractical for pyridine alkylation. We reasoned that selective coupling was achievable
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based on the mechanistic understanding developed for bipyridine synthesis described in Section
1.3.2.%
2.4.1 Initial Results

To determine if our hypothesized coupling reaction was feasible, phosphine 6 was
synthesized using a known literature procedure.%® Treatment of phenyl diphenylphosphinite 5 in
diethyl ether with cesium fluoride and TMSCEF;3 at room temperature gave 70% of the diphenyl
trifluoromethylphosphine 6 (Figure 2.10). This phosphine was then applied in a modified version
of our standard phosphonium formation protocol on 2-phenylpyridine (7). To a mixture of the
phosphine and 2-phenylpyridine was added triflic anhydride at —78 °C and the mixture stirred for
1 hour. After addition of DBU at —78 °C, warming to room temperature, and an aqueous workup,
none of the expected phosphonium salt (8) was observed. Instead, 6% of the ligand-coupled 2-
phenyl-4-(trifluoromethyl)pyridine product 9 was observed by 'H and '°F NMR. Presumably the
trifluoromethyl phosphine was not nucleophilic enough for productive phosphonium formation,

and the small amount of phosphonium salt that formed was unstable to the aqueous workup

conditions.

phyp” CFs

Cl)Ph TMSCF; C|:F3 X Tf,0; DBU TOTf
~P< P | P - > AN | X
Ph Ph CsF, Et,0, rt Ph” Ph N Ph CH,Cl,, -78° C to rt | P

sequential addition N/ Ph N Ph
5 6,70% 7
8, n.d. 9,6%

Figure 2.10 Initial attempt at fluoroalkylphosphonium salt synthesis. n.d. = not detected.
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2.4.2 Optimization of Phosphonium Formation

Having validated our hypothesis, we then focused on optimizing phosphonium formation.
To prepare the necessary phosphines for optimization, we employed several synthetic strategies
(Figure 2.11). Diarylphosphine oxides 10 were prepared by addition of aryl Grignard reagents to
diethyl phosphite. The first method employed for the synthesis trifluoromethyl phosphines 13-15
required reduction to the diarylphosphine 11 and careful exclusion of oxygen. Treatment of this
phosphine with a modified Umemoto reagent 12 in DMF provided the desired product in good
yields.® The difluoromethyl phosphines were initially prepared by reaction of the diarylphosphine
oxides with TMSCF:Br.%” Formation of difluoromethylcarbene and addition to the diaryl oxide

provided the difluoromethylphosphine oxides 16 for reduction to the desired phosphines 17-19.

Initial approach to CF; phosphines

9 “oTf
P DIBAL H CF3
7NYHY Y
R IR THF rt DMF t
= X r
10 13-15
R = OMe, NMe,, N-Pyrrolidinyl
Initial approach to CF,H phosphines
CF H
I _CF,H 2
X NF | K2COs3, TMSCF2Br HSICl, TIOH
R -R > -
. ) CH,Cly, H,0, 0 °C Toluene, 80 °C |
10 17 19
R =H, Me, OMe

Figure 2.11 Initial strategies for fluoroalkylphosphine synthesis.

Though the initial synthetic routes to phosphines 13-19 were effective, we sought to
address certain drawbacks. Diarylphosphine intermediate 11 is air sensitive, and isolation must be
carried out in a nitrogen-filled glovebox. TMSCF:Br, used to prepare 17-19, is a relatively

expensive difluoromethylation reagent. Fortunately, during our investigation of the

34



fluoroalkylation transformation, a method was published by Prakash which allows access to both
trifluoromethyl and difluoromethyl phosphines from the diaryl oxide.®® More importantly, the
method uses inexpensive TMSCFz as both a CF; and CF;H source, and no air sensitive
intermediates need to be isolated during the synthetic sequence. The standard conditions for
trifluoromethylphosphine synthesis proved unsuitable for the substrates of interest to us, yielding
difluoromethylphosphine oxide as the main undesired byproduct. A brief optimization sequence
led us to the conditions shown in Figure 2.12 which provide the desired products in good to
excellent yields. The standard conditions for difluoromethylphosphine oxide synthesis reported by

Prakash were sufficient and no additional optimization was necessary.

Improved approach to CF; phosphines

1) KHMDS, 18-Crown-6

(0] CF3
IIDI THF, 0°C, 30 min IID
R—'\ HYNZ> i > Ny X =z i
| _— A | 2) TMSCF; | _ A |
rt, 10 min

Improved approach to CF,H phosphines

CFH
) LiH, LiCl, DMF QA _CFH 2
rt 30 min N - HSiCl, TFOH .
amscrs R S/ XR Tolene, 80°c
rt, 30 min

Figure 2.12 Improved synthesis of fluoroalkylphosphines.
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Table 2.1 Initial optimization of fluoroalkylphosphonium formation on 2-phenylpyridine.

X T T1,0; DBU, CH,Cl Arzs/-Csz
| P 20; » CRCl . \OTf
N/ Ph /©/ \©\ -78 °C to RT, 1 hour |
R R sequential addition N/ -
7 13-19 X=F, 20
X=H, 21
Phosphine R X Salt yield (%)
13 H F n.d.
14 OMe F 54
15 NMe, F 81
16 N-pyrrolidinyl F 85
17 H H 65
18 Me H 85
19 OMe H 90

We tested a range of phosphines with para-substituted aryl ligands to determine the impact
of electron-donating groups on phosphonium formation (Table 2.1). Para-alkylamino substituents
proved optimal on 2-phenylpyridine; in a preliminary scope of substrates explored, the p-
pyrrolidinyl (16) gave higher yields. A parallel study of difluoromethylphosphines 17-19 gave a
similar trend, and due to the less electron-withdrawing nature of the CF;H ligand, optimal yields
were obtained with methoxy-substituted phosphine 19 (Table 2.1). An investigation into the
temperature for triflic anhydride addition affirmed that our previously established phosphonium-

forming reaction parameters (=78 °C for Tf20 addition, DBU as the optimal organic base, etc.),

were compatible with phosphines 16 and 19 (Table 2.2).
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Table 2.2 Continued optimization of phosphonium formation.

AN T Tf,0; DBU, CH,Cl ArZ;/-CFZX
| P 2 L \OTf
NZ eh /©/ \©\ X °C to RT, 30 min |
R R sequential addition N/ Ph
7 13-19 X=F, 20
X=H, 21
Phosphine R temp (°C) base Salt yield (%)
16 N-pyrrolidinyl =30 DBU 76
16 N-pyrrolidinyl -50 DBU 81
16 N-pyrrolidinyl -78 DBU 85
18 Me -78 NEt; 79
18 Me -78 TBD 51
18 Me —-78 MTBD 82
18 Me -78 TMG 70
18 Me -78 DBU 84
19 OMe -50 DBU 68
19 OMe -78 DBU 90

Efforts then turned to optimizing the ligand-coupling stage of the reaction. Our initial
observation that coupling occurred after a simple aqueous wash of the reaction mixture indicated
that these phosphonium salts were particularly prone to ligand-coupling. We rationalized that a
one-pot coupling process was feasible, and that adding acid (to protonate the pyridine and enhance
electrophilicity of the phosphonium) and water to the crude phosphonium reaction and stirring at
room temperature would yield the desired product. Tables 2.3 and 2.4 show the optimization of
ligand-coupling for both trifluoromethylation and difluoromethylation. In both cases, addition of
water, methanol/ethanol, and acid (1-1.5 equiv. of HCl or TfOH) to the crude phosphonium

reaction mixture were sufficient to provide the coupled product in high yield and in 12-24 hours.
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Table 2.3 Optimization of ligand-coupling for trifluoromethylation.
CFs 1. T£,0, CH,Cl,, 78 °C CFs
P 2.DBU, - 78 °C to rt
| PN
NZ eh 3. TfOH, nucleophile, _
G\l NQ solvent, temp N Ph
7 16 9

nucleophile temp(°C) solvent time X yield (%)

MeOH 40 MeOH >48 h -
H,0 RT MeOH 12 h 84
H,O RT THF 12h 79
H,O RT EtOH 12h 80
H,O RT iPrOH 12 h 75
NaHCO;3 RT THF 24 h 73
NaHCO; RT THF/H,O 30 min 78

Table 2.4 Optimization of ligand-coupling for difluoromethylation.

N ¢FaH 1. TH,0, CH,Cly, 78 °C CF2H
| /©/F’\©\ 2.DBU,-78°Ctort . N
NZ eh 3. HCI, nucleophile, _
MeO OMe solvent, temp N Ph
7 19 22
nucleophile temp(°C) solvent time X yield (%)
MeOH 40 MeOH >48 h -
H>0 RT MeOH >48 h -
H,O 40 MeOH 36 h 79
H,O 40 EtOH 24 h 81
H,O 40 THF 24 h 79
H,0 40 iPrOH 24 h 80
TBAF 40 THF 14 h 75
Ko,CO3 RT H,O/THF 15 min 64
NaHCO3 RT H,O/THF 15 min 43

Using the optimized conditions, we directly obtained fluoroalkyl pyridine derivatives from
their C—H precursors without isolation of the intermediate phosphonium salts. Our previous study
of bipyridine synthesis found that the rate determining step in ligand coupling was addition of the

nucleophile to the phosphonium salt, requiring temperatures of 80 °C to achieve coupling
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overnight. The withdrawing effect of the fluoroalkyl groups presumably makes this addition more
facile, enabling coupling at room temperature (—CF3) or 40 °C (—~CF;H), reflecting the relative
electrophilicities of phosphoniums 20 and 21.
2.4.3 Fluoroalkylation Scope: Simple Examples

The scope of the trifluoromethylation protocol was then investigated on a range of building
block azines (Figure 2.13a). In general, the coupling proceeds in 12 hours between room
temperature and 40 °C on the substrates tested. The couplings on 23 and 24 provide the
monotrifluoromethylated product with exclusive selectivity directly from the C—H precursors. 2-
amino substituted pyridines 25 and 33 are less efficient in the coupling and provide low yields of
product. 3-aryloxypyridine 26 formed in high yield, and the reaction also tolerates amide
functionality, providing 27 in moderate yield despite the proclivity for amides to react with T£,0.%
A series of 2,5-disubstituted pyridines gave good yields of coupled product, and underscore the
reaction’s tolerance for imides, esters, alkynes and halogens (29-32). Standard conditions lead to
hydrolysis of ester 30, but alternative coupling conditions discovered during optimization
(NaHCOs3, H20 in THF) avoid the undesired side reaction. We propose nucleophilic addition of
bicarbonate to the phosphonium acts as the trigger for ligand-coupling in this instance without

requiring protonation of the pyridine, as this pathway to phosphorane formation was previously
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exploited by our group in a pyridine deuteration protocol.® A set of 2,3-disubstituted pyridines

were successfully trifluoromethylated (34 and 35) as well as 3,5-disubstituted example 36.

CF,
H 16 or 19; Tf,0; DBU, CH,Cl,, CF,X 1 (IZFzH
-78 °C to RT, sequential addition P. P.
A then AN
R TFOH (1.5 equiv.), H,0 (10 equiv.) R (X=ForH)
> RT-40 °C, MeOH N> N N MeO oM
N N 16 e 3
or HCI (1 equiv.), 40 °C 19
9:1 EtOH:H,0
Trifluoromethylation
a CF,
CF, | X cF, CFy CFy CF; O /©/ CFy
o
A = N X X X N X OMe
I N I I I H I
N/ X | Z N/ N N/ F N/ N/
| N ™ =
N~ o] Ph
23, 74% 24, 63% 25, 16% 26, 82% 27, 35% 28, 80%
o)
CF, CF, CF, CF, CF, CF,
N CO,Me Ph Me F
| X F | A 2 | A | A | X | X
P o P2 — ~ P2 ~
Me” N Me” N MeO,C~ N cl N (\N N N~ “Bn
N
29, 87% 30, 84% 31,93% 32,73% Et0,8” 33, 16% 34, 58%
CF, CF, CF; CF, CF,4 CF, CF,
Me Br cN N CN Ph-4-OMe
A | A | X =z | X O~~~ | X N7 I
Ph
P P A & N Pz N\ | _N k\
N = N Me NT N N N N N
—
35, 59% 36,51% 37,51% 38,41% 39, 85% 40, 37% 41,78%
Difluoromethylation
b cFH CFH CFH CFH CFH CFH
cl n-Bu
P Pz Pz Pz o Pz
N7 Br N7 Co,Et N N \> N
o
42, 78% 43,67% 44, 82% 46, 68% 47,55%
CF,H CF,H CF,H _ Ph CF,H CF,H = CF,H
s
CcN Boc Z4 = Me
® (J % ® 7] > JI\)\T
e
Pz Pz Pz X Pz E N/
N N N N N7 “Me
48, 56% 49, 62% 50, 78% 51, 50% 52, 76% 53, 70%
CFH CF,H CF,H CFyX CFH CF,H
O,N cl o]
OO0 oo 0D <0 O
~ S A
N/ N/ N/ Br N N N/ s/n Pr
57, X =F, 88%
54,77% 55, 54% 56, 70% 58 X = H, 81% 59, 19% 60, 32%

Figure 2.13. Building blocks tested for trifluoromethylation and difluoromethylation.

Fused heterocycles are also tolerated, including naphthyridines (37 and 38) and a furopyridine
(39). Preliminary results for the coupling on diazines are promising, as both 40 and 41 give the

desired product in moderate yields.
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Current limitations for trifluoromethylation include substrates for which phosphonium
formation is unsuitable, such as 2,6-disubstituted pyridines and 2-CF3 pyridines, where activation
of the pyridine nitrogen by triflic anhydride is disfavored. Additionally, functional groups which
are not compatible with Tf;0, including alcohols and N-alkyl amides, also fail to deliver the
desired phosphonium. Despite giving good yields of the phosphonium, substrates with donating
groups at the 3-position of the pyridine ring, such as amines and alkoxy groups, provide yields
below 10% in the ligand coupling stage of the process.

Figure 2.13b shows that a similar set of building block azines to those explored for
trifluoromethylation are amenable for ligand-coupling with CF2H. A notable example is bipyridine
45 which was successively difluoromethylated from substrate 24. 2-Halopyridines such as 42 gave
a peculiar result upon attempted coupling under acidic conditions; the phosphonium persisted in
the reaction mixture even upon heating to 80 °C, presumably because the withdrawing 2-
substituent prevents sufficient activation of the pyridine nitrogen to achieve the necessary
phosphonium electrophilicity for the addition of water. Coupling under basic conditions alleviates
this issue and provides the desired product in high yield. The reaction operates on acid-sensitive
functional groups including fert-butoxycarbonyl protected 49 and ester 43. Acetal 46 was
hydrolyzed under standard conditions, but replacement of water with TBAF in THF delivered the
difluoromethylated product with the protecting group intact. In this case coupling may proceed by
either a fluorophosphorane intermediate or from residual amounts of water in the reaction
mixture.”>’%"! As was the case for trifluoromethylation, 2,3- and 2,5-disubstituted examples (51-
53) are amenable, in addition to quinolines, a furopyridine, and a pyrimidine (54-59).

The limits for difluoromethylation comprise those described previously for

trifluoromethylation and some which are specific to CF2H installation. Pyridines with halogen or
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ester substituents at the 3-position and pyridines with substituents at both the 3- and 5-positions
gave yields of less than 10%; protiodephosphination is the dominant reaction pathway in these
cases and returns the pyridine starting material. This ligand exchange pathway seems to be favored
over migration of the difluoromethyl group when certain electronic or steric constraints are
imposed on the pyridine ring. Phosphonium formation occurs at the 2-position of pyridines when
the 4-position is blocked but applying the difluoromethylation conditions results in
protiodephosphination as the sole reaction pathway. This was also observed for
trifluoromethylation although a notable exception is that ligand-coupling of the CF; group is viable
at the 2-position of quinolines.
2.4.4 Fluoroalkylation Scope: Complex Azines, Pharmaceuticals, and Agrochemicals

We then focused on demonstrating that this approach to fluoroalkylation was applicable to
fragments representing drug-like intermediates and lead compounds (Figure 2.14a). These
substrates are structurally diverse and serve as representations of what practicing medicinal and
agricultural chemists routinely encounter and seek to functionalize. They are particularly
challenging to modify, as they generally lack pre-installed functional handles or biases towards
selective reaction outcomes for radical-based fluoroalkylation chemistry. Notable examples
include quinoline 64, where trifluoromethylation occurs at the 2-position, and esters 70 and 71,
where solvolysis is avoided with the use of our modified TBAF conditions to deliver both
fluoroalkylated products in good yield. Furthermore, polyazines are well-suited toward our
method; site-selective fluoroalkylation in 65-68 results from selective N-Tf activation of the 3-
subsituted pyridines over the tethered 2-substituted pyridines during the phosphonium formation

stage.53
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Figure 2.14 Direct fluoroalkylation of complex azine-containing molecules.

The introduction of new functionality on advanced drug and agrochemical candidates later
in their synthesis, referred to as late-stage functionalization, is an ideal strategy to identify
compounds with superior properties. This approach can save time and money by circumventing

the need to design synthetic routes to new derivatives. Our fluoroalkylation strategy was used to
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transform 11 different pharmaceuticals and two agrochemicals into their fluoroalkyl derivatives
(Figure 2.14b). Once again, we obtained products as single regioisomers, demonstrating a scope

and regioselectivity profile that is different from Minisci-type fluoroalkylation processes.

a I
1 b SN
! z
I
| 7 N
1 / N=
standard switch ! 100
conditions conditions ! .
| standard switch
+ | conditions N conditions
!
: EtO,C
= |
I
NS
N CF, ' SN SN
I
2z CF.
MeO Cl ' 3 F\C =
I
o 1 / \ / \
98 N
I / N=— / N=
31% (13:1 r.r. in crude) | 101 102
I
I
| N N
! [ ]
\ Et0,C EtO,C
: 71% (15:1 r.r. in crude) 73% (> 20:1 r.r. in crude)

Figure 2.15 Application of site-selective switching strategy to trifluoromethylation of
polyazines.

An advantage of radical addition approaches to fluoroalkylation is that on polyazines,
multiple regioisomers form, and these can all be tested as viable drug analogues. To emphasize
the ability of our trifluoromethylation approach to access multiple regioisomers with site-
selectivity in polyazine systems, we applied our previously reported protocol for switching the
selectivity of C—P bond formation on an MK-1064 precursor (Figure 2.15a) and a loratadine
derivative (Figure 2.15b). Using our standard conditions, trifluoromethylation occurs with
selectivity for the kinetically preferred 3-subtituted pyridine during reaction with Tf20 (98 and
101). Applying the base-switch protocol, using NEt3 as well as 2 equiv. of Tf20 and 16 allowed
us to prepare the regioisomeric products with excellent control of 4-position selectivity and site-

selectivity (99 and 102). The switch in selectivity occurs due to an inability of NEt;3 to rearomatize
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3-carbon-bearing N-Tf adducts, while

phosphonium without issue.

the 2-subsituted equivalent is rearomatized to the
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Figure 2.16 Comparison of regioselectivities for phosphorous mediated fluoroalkylation to
radical-based approaches.

To provide evidence of distinct regioselectivity, direct comparisons were made between
Baran’s and MacMillan’s approaches to our ligand-coupling approach on a set of substrates that
are compatible with all three methods (Figure 2.16). MacMillan’s approach provided complex
mixtures of regioisomers as shown in substrates 103-105. Notably, the 4-position regioisomer was
often the minor isomer (103 and 105) or could not be obtained due to addition of the
trifluoromethyl radical to both the pyridine tehtered arene ring (105). Baran’s strategy also
disfavored 4-position addition, often providing 2- or 3-substituted products instead (106 and 107).
The 4-position isomer formed on 108, but in low yield, and separation of the multiple isomers that

formed was challenging.
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2.4.5 Additional Polyfluorinated Coupling Partners

Based on the hypothesis that other polyfluorinated coupling partners should perform favorably
during ligand-coupling, we designed and synthesized phosphines 109 and 110 (Figure 2.17). 4-
(perfluoroethyl)-2-phenylpyridine 111 was prepared in excellent yield, validating this hypothesis.
Similarly, perfluoroaryl phosphine delivered the coupled product 112 in 85% yield. Future efforts

to develop these processes are ongoing in our laboratory.

H Ar,PCF,X; Tf,0; DBU, CH,Cl,, CmFn
-78 °C to rt, sequential addition
I X then > I X
R TfOH (1.5 eq.), H,0 (10 eq.), R
N 7 MeOH, rt .z
N N
CeFs
CF,CF |
I 2CF3 B
’ /©/ \©\
MeO 109 OMe 110
CF,CF; CeFs
® ®
= 7
N Ph N Ph
111, 74% 112, 85%

Figure 2.17 Preliminary results for other polyfluorinated coupling partners.

2.5 Mechanism
2.5.1. Computational Probe of the Reaction Mechanism

The Paton lab performed computational analysis of the trifluoromethylation reaction
mechanism to help rationalize the reaction outcome (Figure 1.18). Their study indicates that upon
formation of phosphorane 113 from the phosphonium, the C—P bond to the apical trifluoromethyl
group weakens due to the trans-effect, which is indicated by a pronounced bond lengthening from

19t02.1A. Simultaneously, accumulation of negative charge on the CF3 ligand (-0.16 to —0.43
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e) occurs, preempting migration as electron density from the C—P c-bond is donated into the *
molecular orbital of the equatorial pyridinium ring. In the ligand-coupling transition state, the
trifluoromethyl group stretches to 2.8 A and accumulates up to —0.50 e of charge in the 3-center,
4-electron bond between the phosphorus atom and ipso pyridine carbon (114). The barrier to this
process is 19 kcal mol™!, which is achievable at room temperature. For difluoromethylation the
barrier to ligand migration is also 19 kcal mol™! (115). The resulting intermediate 116 rearomatizes
to provide trifluoromethylated pyridine and hydroxydiphenylphosphine, which rapidly

tautomerizes to diphenylphosphine oxide.

£
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q(CF3) =-0.43 e \ /_ ! ~O~9
X 283A ! 252A [\ 226 A F £ X
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AGY =19 AGH =19 Migration product

a(CF3) =-0.50e el mol” kcal mol™!

Figure 2.18 Computational study of the fluoroalkylation mechanism.
2.5.2 Rationalization of Ligand-Coupling Selectivity

Previous ligand-coupling reactions in the lab delivered excellent selectivity for the desired
coupling over undesired pathways. For fluoroalkylation, the energy barriers for other potentially
competitive mechanistic pathways were determined and are presented in Figure 2.19. Phenyl
migration (118) is substantially less favorable compared to CF3 migration (AG* = 32 kcal mol ™).
We hypothesize that migration of fluoroalkyl groups is preferred due to the superior ability of these

ligands to stabilize anionic charge build-up in the transition state.
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Figure 2.19 Comparison of CF3 migration to other pathways from the phosphorane intermediate.

Ejection of apical ligands through ligand exchange processes were also considered, and
these pathways were sometimes observed experimentally. Based on the computed barrier of 40
kcal mol!, protiodephosphination to form pyridine from 119 is non-competitive. We expect that
withdrawing groups at the 3-position and sterically bulky substituents at the 3- and 5-positions
lower this barrier considerably, as this outcome has been observed experimentally for
difluoromethylation as part of the limitations discussed in Section 2.4.3. Protonation of the CF;
group to deliver the pyridylphosphine oxide was also observed on some substrates (120). The
computed barrier to this process (27 kcal mol™?) is still much higher than the barrier to
fluoroalkylation but may become viable in cases where the pyridine is a poor acceptor.
2.6 Conclusion

A new strategy for C—H pyridine fluoroalkylation based on phosphorus Csp>~Csp? ligand-
coupling was developed. New phosphines were designed which are used to prepare
pyridylphosphonium salts, and adding an acidic aqueous solution forms the fluoroalkylpyridine
products in a one-pot process. A computational investigation indicates that fluoroalkyl groups are
suited toward facile LCx reactions due to their capacity to stabilize negative charge buildup at the
apical positions of phosphorane intermediates. This method offers a complementary approach to

Minisci-type fluoroalkylation reactions and was applied not only on simple building block
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pyridines, but also on advanced intermediates and toward the late-stage functionalization of several

drugs and agrochemicals.
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CHAPTER THREE

INVESTIGATION OF MIGRATION SELECTIVITY FROM PV SPECIES FOR THE

ALKENYLATION OF PYRIDINES

3.1 Importance of Alkenylpyridines

Alkenylpyridines serve as important pharmaceutical cores, such as in triprolidine,

vorapaxar, and axitinib, as well as strategic intermediates in the synthesis of natural products and

drug molecules (Figure 3.1)."* Additionally, simple vinylpyridines serve as monomers for

polymer synthesis and can function as reagents for cysteine-selective bioconjugation and covalent

inhibition.>® Accordingly, the expedient synthesis of alkenyl pyridines from simple starting

materials is of high priority to synthetic chemists.

0
N Axitinib

Renal Cell N
Triprolidine Carcinoma

Antihistamine

Vorapaxar

Myocardial
Infarction

Figure 3.1 Alkenylpyridine pharmaceuticals.

3.2 Synthesis of Alkenylpyridines

3.2.1 Metal-Catalyzed Approaches to Alkenylation

The Heck reaction remains the premier strategy for the coupling of olefins with aryl

halides.” ' However, as described in Chapter 2, pyridine halogenation is sometimes a bottleneck

to the application of indirect functionalization strategies. Additionally, the pyridine nitrogen atom

can ligate to the palladium catalyst, resulting in deleterious effects on the desired reactivity.
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Nonetheless, advancements have been made which allow for the application of C—H activation
approaches to coupling on pyridine. For pyridine, these methods rely on two strategies: The first
requires the preparation of pyridine N-oxides and exploits the oxygen as a directing group to
achieve 2-selective alkenylation. Chang and coworkers successfully executed this strategy as part
of a Fujiwara-Moritani reaction on pyridine, which consists of C—H activation followed by an
oxidative Heck coupling with an olefin (Figure 3.2a).!! Nakao and Hiyama reported an alternative
Nickel-catalyzed method which circumvents the need for oxidative coupling conditions by
coupling with alkynes (Figure 3.2b).'> While effective, the need for a strong oxidant to prepare
pyridine N-oxides is a significant drawback to the functional group tolerance of these and related

approaches, which were only demonstrated on very simple building blocks.

a. Chang (2008)

X Pd(OAc), (10 mol%) 7N
Ph AR 2 > Ph—
Kﬁ/ Ag,COs3 (1.5 equiv.) Kﬁ/ = R
| 1 R = EWG, Ph, t-Bu 1,4-dioxane, 100 °C 3 1
o) o)
4.0 equiv.

b. Nakao and Hiyama (2007)

\ \ .
R'or /\R3 Ni(cod), (10 mol%) s R' = Me, CO,Me
Lo _ D
N R2 5

| PCyps (10 mol%) N Z “R? R% R®=n-Pr,

- 4 | ° - i-Pr, Me, t-Bu
0 1.5 equiv. toluene, 35 °C 6 0 R2

Figure 3.2 Selective alkenylation of pyridine N-oxides. Cod, cyclooctadiene; Cyp, cyclopropyl.

The second strategy relies on activation of the pyridine nitrogen by Lewis acids to bias the
pyridine ring for C—H activation. Nakao and Hiyama improved on their previous nickel-catalyzed
approach using diorganozincs or trimethylaluminum to facilitate mono- or bis-alkenylation,
respectively, at the 2-position of pyridine (Figure 3.3).'* The authors propose that activation of

the pyridine nitrogen by the Lewis acid acidifies the 2-position C—H and provides a sufficient bias
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for activation at that position over the 3- or 4-positions. The Yap group discovered that 4-selective
alkenylation could be achieved using a AlMes-amino-NHC lewis acid (13, Figure 3.3).!* The
application of this bulky Lewis acid appears to disfavor activation at the 2-position, and metal-
insertion occurs at the electronically activated 4-position C-H bond, with minor amounts of 3-
position activation in some cases. A recent modification of this approach uses a cobalt catalyst and
methylaluminium bis(4-substituted-2,6-di-tert-butyl-phen-oxide) (MAD) to achieve the desired
coupling.'®> While these strategies are an improvement over the previous N-oxide approaches, there
is still room for improvement. Oftentimes while the reaction provides a majority of the desired
isomer, other isomers are still generated. Furthermore, the use of bulky Lewis acids precludes
substrates that are too sterically hindered or electronically deactivated at the pyridine nitrogen,

including most 2-substituted pyridines.

a. Nakao and Hiyama (2007)

N AN Ni(cod), (3 mol%) X R' = Ph, OMe, NMe,,
R P(i-Pr)3 (12 mol%) R'° CF3, B(Pin), CO,Me
K+/ 2 = 3 > K p
N 7 R*——-mR > N Z% 2 R3 i
| ZnMe; (6 mol%), R%, R? = Ph, n-Pr, /-
~ZnMe, 8 PhMe, 50-100 °C 9 R? Pr, Me, t-Bu, SiMes
3.0 equiv.
b. Yap (2010)
Pr———
R 0,
N Ni(cod), (10 mol%)
E Ligand (20 mol%) U Pr \( j
+ 2 Me
T AlMe; (20 mol%), E MezAI-——N
_A|L3 10 PhMe 80 °C L 13 +Bu
R = Me, Ph, OMe

Figure 3.3 Selective alkenylation of pyridines via Lewis acid activation.
Yu and co-workers found that 1,10-phenanthroline provides a bias toward 3-selective C—

H activation on pyridine under oxidative Fujiwara-Moritani-type conditions with palladium

)16

catalysis (Figure 3.4)."> While the reaction gives a majority of 3-substituted product, 2- and 4-
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position isomers form in most of the examples studied. Additionally, 16 equivalents of the pyridine

starting material are required, reducing the practicality of the method.

Yu (2011)
Pd(OACc), (10 mol%) R = Me, CO,Et,
X 1,10-phenanthroline (13 mol%) X CF3, OMe, CI, F
) - = o
KN/ Ag,CO3 (0.25 equiv.), air KN/ = R?2 R2 = CO,Et,
DMF, 140 °C C(O)NMe,, Ph
14, 16 equiv. 15 16

Figure 3.4 3-selective alkenylation of pyridines.
3.2.2 Radical Approach to Alkenylation

Radical-based processes offer a complementary alternative to metal catalysis for the
functionalization of pyridines. In 2019, the Chu lab reported a photoredox-catalyzed method for
the coupling of cyanopyridines with olefins.!” Treating a mixture of pyridine and styrene with
sodium methanesulfinate, DBU, and Iridium (Ir) photocatalyst under blue LEDs provides the a-
vinylpyridine products in good yield with complete selectivity over addition to the styrene [-
position. The authors propose the mechanism shown in Figure 3.5 where after reduction of the
cyanopyridine, Ir photocatalyst 22 undergoes reductive quenching by sodium methanesulfinate.
The resulting sulfonyl radical adds to styrene, and the newly formed persistent benzylic radial 26
couples with pyridine radical anion 20. Elimination of cyanide rearomatizes the pyridine ring, and
El elimination of sulfinate from 27 provides the vinylpyridine. The scope for this transformation
is relatively broad and provides a strategy to quickly access Triprolidine in a one-pot process.
However, the need for cyanopyridine starting materials can limit applications of this strategy late

in a synthetic sequence.
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Chu (2019)

Ir(ppy)s (5 mol%)

\ MeSO,Na (30 mol%)
R1 ' DBU, MeCN/EtOH, 40 °C
90 W Blue LED"
17, 2.0 equiv. 19 N
. CN Proposed Mechanism
17 _ 20
NS =
SET
III
2 Ir'V 22 Ar
Blue LED g\ ) N
\ Me” O _
28
il +Base N
z Ar SO,M
0 2ne
NG N
Me” Yo | 27
=
N
& %
. _CN
26 72
AT “_-SOM -
25 AN AN

Figure 3.5 Photoredox approach to pyridine alkenylation.

3.3. Previous Studies of PV Reactivity in Alkenylphosphonium Salts

A potential alternative to metal- or radical-based approaches to pyridine alkenylation is
phosphorous ligand-coupling. Ligand-coupling from alkenylphosphonium salts is a very
undeveloped research area with only a few previous studies. Aryl-vinyl coupling from all carbon-
substituted PV species was discussed in Section 1.2.2 and constitutes the only example of
alkenylation mediated by phosphorus ligand-coupling.'® However, early reports of the alkaline
hydrolysis of alkenylphosphonium salts offer insight into the decomposition of oxyphosphoranes

containing both an aryl and alkenyl ligand.
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In 1967 Allen and Tebby discovered that the reaction of triphenylphosphine and
phenylacetylene in aqueous ethylene glycol at reflux produces phosphine oxide 32, through the
proposed migration pathway shown in Figure 3.6a.'° The installation of para-withdrawing groups
on the aryl acetylene favored coupling in shorter reaction times, while para-donating groups such
as a methoxy substitutent extended the reaction time to 5 days and only produced ~25% product
(33). Later reports explored the scope of the migrating arene onto the phenyl-substituted vinyl
ligand and found that substitutents that moderately stabilize the corresponding aryl anion (37, 38)
were better suited toward coupling.?’ However, arenes capable of even greater anion stabilization

(39, 40) were prone toward protonation via the ligand exchange pathway B shown in Figure 3.6b.

a. Tebby and Allen (1967)

30 31
PPh, —_ 0
=Ar I R=H, 32,50%, 8 h
_ Ph,P

(CH,OH), ) — R = p-OMe, 33, 25%, 5 d
III

i =z
1 —R
200 °C P—\\ | R = p-NO,, 34, 50%,1 h
| O TN
29 OR Ht
b. Allen (1979)
B 7] B ] o) 0
R D % R D % Ph ||DI Ph FI’I =
|
pZ N 2 Ph N
+
Ph ! ) N, H
,,1 Ph, 1 X X
PN\ °r PN\ — | Ryt R--
Ph™"] }Ph Ph™ " N—pp L L
OH Ht OH
- - - - R = p-OMe, 37 R = m-CF3, 39
Path A Path B R = m-Cl, 38 R = 0-Cl, 40

Figure 3.6 Studies of the hydrolysis of alkenylphosphonium salts derived from aryl acetylenes.

This aryl migration reaction translated to other alkyne acceptors, including ynoates,
ynones, and sulfides, and encompasses the ring expansion reaction discussed earlier in Section
1.2.1. In contrast to the reactions with phenylacetylene, aryl migration onto ester-substituted
alkenes was often quantitative and proceeded under more mild conditions (Figure 3.7).%!

Furthermore, arenes which previously had undergone ligand exchange (39, 40) in the reactions
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with phenylacetylene produced the migration product in these new systems instead (43),
highlighting the influence of the alkene acceptor on the outcome of phosphorane decomposition.
Additional studies of the substituent on the ynoate (R?) found that methyl substitution still provided
the migration product, though in substantially lower yield (10%), while phenyl substitution

resulted in protonation of the vinyl group (44) and formation of the triarylphosphine oxide (45).

Allen (1979)
B - o 2 43 H O 44
2 S Pth! X A
PPh, R2%< R P 42 2 R? oFt
N 41 OEt ") L OEt .0
- 1 —_—
R1_: H,0, THF, reflux Ph'll'j R2 R1—: N PPh,
Z Ph*™” \ OEt _ R i
\
29 OH ~>y* 0 R"=H, 0-Cl, m-CFj F
- - R? = H, Me R' = H, R? =Ph

Figure 3.7 Studies of the hydrolysis of alkenylphosphonium salts derived from ynoates.
Interestingly, in the above studies, phosphines incorporating some heteroarenes (2-thienyl,
2-furyl, 1-methyl-pyrrol-2-yl) were investigated for their capacity to migrate, but
pyridylphosphines were unexplored. In 2011, the Trofimov group reported that the reaction of
triphenyl phosphine 29 and aryl ynone acceptors 49-52 in water at room temperature gave
exclusive protonation of the alkene ligand (Figure 3.8a).2> Following this report, the group showed
that tris-2-pyridylphosphine 53 undergoes a similar process, though with a change in selectivity
for protonation of the pyridine, resulting in alkenyl phosphine oxides 56-60 with excellent

stereoselectivity.?

Notably, this represents the only study of the alkaline hydrolysis of
alkenylphosphonium salts containing a pyridine ligand. No cases of vinyl migration onto the

pyridine were observed in the investigation of this reaction (Figure 3.8b).
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a. Troflimov (2011)
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PPh, Ph;/<_
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b. Troflimov (2014)
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O:;’Ph3 Q% \N_/ %
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H X
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| 46
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X 0
55 T
N gt 2-pyr),P
Ny (2-pyr)2 YV'“EWG
i\-jph - Ph
T_&EWG EWG = C(O)Ar, E:Z 1:0
OH EWG = CN, 56, £:Z 0:1

Figure 3.8 Examples of ligand-exchange from alkenylphosphonium salts.

3.4. Design of a Phosphorus Ligand-Coupling Approach to Pyridine Alkenylation

3.4.1 Synthesis of Pyridylphosphines

Following the successful development of a strategy for pyridine-pyridine coupling at

phosphorus, we were interested in exploring other cross coupling reactions of pyridylphosphines.

These reagents are bench stable and can be prepared through two approaches which were

developed for bipyridine synthesis. The first approach is a modification of our phosphonium

formation that uses fragmentable phosphine 62.* After formation of the phosphonium, excess

DBU facilitates elimination of methyl acrylate through an E1cB mechanism (Figure 3.9). This

strategy provides 4-pyridylphosphines in good yields and with excellent 4-position selectivity

directly from the pyridine C—H bond.
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CO,Me B ]
H COMe CO,Me
DBU :
H 62 > H + J/ PPh,
PPh; H. *PPh, -DBUsHTf PhoP — DBU* HOTf
N ‘, _ —_— _ > AN
R Tf,0; 62; DBU, G~ ot X OTf \ R
KN/ CH,Cly, 78 °C E <l | A~ kN/
sequential addition N 63 N/ 64 = ~CO,Me
61 (I 65
Tf

Figure 3.9 Pyridylphosphine synthesis using fragmentable phosphine 62.

However, there are certain limitations to the phosphonium formation reaction. 2,6-
disubstituted pyridines, as well as pyridines containing functionality that can react with Tf20
(alcohols, primary and secondary amines, N-alkyl amides) are often unable to form the
phosphonium salt. Additionally, because the phosphonium forming reaction is inherently selective
for the 4-position, the synthesis of 2-pyridylphosphines requires a substituent blocking that site. A
second approach to phosphine synthesis alleviates many of these issues and expands the scope of
available pyridylphosphines (Figure 3.10).% Heating chloroazines with diphenylphosphine and
one equivalent of triflic acid produces the desired phosphine in good yield and allows for

phosphine synthesis at both the 2- and 4-positions based on the chloroazine starting material.

Cl HPPh, CI:? PPh, PPhy
| AN HCI (1 eq.), NaOTf . @ —HCI i AN
R_'K = PhCI,130°C 3 R L~
N ’ ’}‘ N
66 o 87 68

Figure 3.10 SyAr approach to pyridylphosphine synthesis.
3.4.2. Initial Reaction Development

Inspired by previous studies in the hydrolysis of alkenylphosphonium salts we began to
investigate the reactivity of pyridylphosphines with alkyne acceptors under reaction conditions
that were developed for bipyridine coupling. Treating 2-pyridylphosphine 69 with ethyl propiolate

in acidic ethanol at 80 °C produced a mixture of aryl migration products in low yield (Figure
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3.11). Previous studies in ligand coupling indicated that the 2-pyridyl ligand is less adept at
migration compared to its 4-position counterpart. When 4-pyridylphosphine 74 was subjected to
the same conditions, exclusive pyridine migration was observed, and in substantially higher yield
(76). The aryl migration product undergoes dephosphinylation under basic conditions to provide

the alkylpyridine product.

a X
co | ZNH " h I I
Et -
| X 2 HCI (1 equiv.) | _ PPh, PPh,
= Ph,, | ) 2 > N
EtOH, 80 °C ‘ R
N PPh, | | N OFt
| < CO,Et CO,Et
69 70, 1 equiv. OH Ht o 72, 29% 73, 17%
b i
PPh, Ph,P CO,Et
COEt TfOH (1 equiv.) COEt KOEt (1 equiv.)
AN — —_— NS
| | | EtOH, 80 °C N EtOH, 60 °C |
~ =
N Ph N Ph
N Ph
74 75, 1 equiv. 76, 80% 77,91%

Figure 3.11 Initial studies of pyridine migration from vinylphosphonium salts.

While the aryl-migration pathway has some synthetic utility, we continued to focus on
discovering a system capable of ligand-coupling. Examination of several different alkyne
acceptors revealed that the acceptor identity has a large impact on the reaction outcome (Figure
3.12). Ester 79a, sulfone 79b, and ketone 79c¢, all produced the migration product in varying yield,
with ligand exchange as the main side-pathway (Figure 3.12b). Dephosphinylation of sulfone 79b
followed by elimination of sulfinate provides 4-vinyl-2-phenylpyridine 83 in 39% under
unoptimized conditions (Figure 3.12¢). Substitution of ynoate with methyl and phenyl groups (80a
and 80b) resulted in phosphonium formation but no further reaction, presumably due to lack of
phosphorane formation on these intermediates (Figure 3.12d). A similar result was obtained with

ynamide 80c¢ and 4-(phenylethynyl)pyridine 80d. Aldehyde 84 produced an intriguing result as no
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migration or alkenylation were observed, but instead 4-hydroxy-2-phenylpyridine formed in 33%
yield (Figure 3.12, e). Similar results were obtained with trifluoromethyl ynone 85; further

discussion of these results is the subject of Chapter 4 of this dissertation.
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N N N thP Me Ph2P Ph2P Ph2P Ph
. ~oTf
= = 7 X \ \ \ X
N Ph N Ph N Pho || | | |
: / / / /
! Ph
79a, 70% 79b, 50% 79¢, 24%
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| XN 8 / 2 > N 91, 40%
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Figure 3.12 Exploration of alkyne acceptor scope.

Finally, a system was discovered that provided the desired 4-alkenylpyridine product with

complete selectivity. The reaction of pyridylphosphine 75 with 3-phenylpropiolonitrile 90 in acidic
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aqueous ethanol produced product 91 in 40% yield with ~20:1 selectivity for the Z isomer (Figure
3.12, f). Notably, none of the pyridine migration product is obtained, and to our knowledge, this

is the first example of pyridine alkenylation through phosphorus ligand-coupling.

Table 3.1 Optimization of alkenylation on 2-phenylpyridine.

PPh, Ph Z “CN
CN H,0, TfOH
75 20,
A y > Ny o
EtOH, Temp, 24 h
— Ph 90 P P
N~ “Ph NZ ph

Entry Concentration (M) H,0 Equiv. TfOH Equiv. Temp °C 75 Equiv. 90 Equiv. 91 yield (%)

1 0.125 10 1.0 80 1.0 1.0 n.d.
2 0.25 10 1.0 80 1.0 1.0 31
3 0.4 10 1.0 80 1.0 1.0 42
4 1 10 1.0 80 1.0 1.0 42
5 0.4 0 1.0 80 1.0 1.0 n.d
6 0.4 50 1.0 80 1.0 1.0 45

0.4 100 1.0 80 1.0 1.0 45

0.4 10 0 80 1.0 1.0 n.d

0.4 10 0.5 80 1.0 1.0 n.d
10 0.4 10 1.0 80 1.0 1.0 43
1" 0.4 10 1.5 80 1.0 1.0 43
12 0.4 10 1.0 RT 1.0 1.0 4
13 0.4 10 1.0 40 1.0 1.0 19
14 0.4 10 1.0 60 1.0 1.0 30
15 0.4 10 1.0 80 1.5 1.0 51
16 0.4 10 1.0 80 2.0 1.0 50
17 0.4 10 1.0 80 1.0 1.5 75
18 0.4 10 1.0 80 1.0 2.0 71

Efforts then turned to optimizing the transformation on 2-phenylpyridine (Table 3.1).
Concentration had a considerable influence on the reaction outcome; at lower concentrations
(0.125 M), the reaction only produced phosphonium salt (entries 1-4). Increasing the amount of
water in the reaction did not appear to influence the yield, though running the reaction without
water produces none of the desired product, indicating that phosphorane formation likely occurs

by attack of water on the phosphonium (entries 5-7). An acid equivalents screen revealed that at
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least one equivalent was necessary to produce the desired product (entries 8-11). Temperature
studies confirmed that our initial temperature of 80 °C was optimal (entries 12-14). Increasing the
equivalents of phosphine relative to alkyne provided a modest increase in yield to 50% (entries 15
and 16). The largest yield increase was observed when altering the equivalents of cyanoalkyne.
Adding an additional half-equivalent to the reaction produced the desired product in 75% yield
with further equivalence increases producing similar yields (entries 17 and 18). We hypothesize
that the reaction byproduct, diphenylphosphine oxide, is able add to the cyanoalkyne starting
material, diminishing the amount available to react with pyridylphosphine.

3.5 Alkenylation Scope Studies
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Figure 3.13 Pyridine scope for alkenylation reaction.

We then turned our attention to exploring the pyridyl phosphine and cyanoalkyne scopes

of the ligand-coupling process (Figure 3.13). Notably, in all cases, none of the pyridine migration
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product (93) was observed during the investigation. Pyridine-derived product 93a was produced
in good yield and with excellent diastereoselectivity. 2-heteroaryl pyridines 93c and 93d are
alkenylated with good selectivity for the Z isomer in moderate yields. The reaction tolerates free
hydroxyl substitutents, shown in example 93b, as well as ester 93f. As series of fused systems such
as 93k and quinolines 93m-930 demonstrate the capacity of the reaction to function on
heterocycles other than pyridine. 2,3-disubsituted pyridine 931 is the only example in this series
which produces a 1:1 ratio of alkene isomers; we hypothesize isomerization of the
alkenylphosphonium prior to ligand-coupling is faster on this substrate due to the sterically
demanding cyclopentane ring. Notably, 3-substituted pyridines, such as 93h and 93i, function in
the reaction but provide substantially lower yields of the desired product. Other 3-substitutents
tested (Cl, Br, COzEt, OMe) produced the unfunctionalized pyridine through undesired
protiodephosphination. Finally, to highlight the reaction’s utility for the modification of drug-like

fragments, we functionalized 93p and 93q.

(e}
R Ph IIDI R
PPhy ZCN 2 CN
N 75 P CN Hz0 (10 eq.), TOH (1 eq.)
| = > A A
_ R EtOH (0.4 M), 80 °C, 24 h
— — ~
N Ph 94 R =Bn N Ph N Ph
95, R = n-heptyl
96, R = Bn, 20%, E:Z 8:1 97, R=Bn, 17%

98, R = n-heptyl, 20%, E:Z 10:1 99, R = n-heptyl, 20%
Figure 3.14 Examination of alkyl-substituted cyanoalkynes for phosphorus ligand-coupling.
Next the scope of cyanoalkynes was investigated. Investigation of the alkyne substituent
revealed that with benzyl and alkyl substitution (94 and 95), the reaction produced a mixture of
both pyridine-migration and vinylation products (Figure 3.14). Aryl substituents, however,
produced the alkene-substituted product exclusively (Figure 3.15). The reaction tolerates ortho

fluoro (101a) and methyl groups (101b), though with lower diastereoselectivity. Both electron
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withdrawing groups (101c, 101g, 101h) and donating groups (101e, 101f, 101i, 101j) are tolerated,

with strongly withdrawing groups providing single isomers of the alkenyl product. Importantly,

alkene-substituted 1011 functions in the reaction albeit in lower yield; none of the undesired aryl

migration product was observed.
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Figure 3.15 Cyanoalkyne scope for pyridine alkenylation.

3.6 Mechanism
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3.6.1 Computational Probe of Aryl Migration Pathway

To rationalize the product selectivity obtained in the alkenylation reaction, a computational
probe of the mechanism was initiated in collaboration with the Paton group. First, an effort was
made to rationalize the selectivity for aryl migration in the reaction with ynoates (Figure 3.16).
Attack of phosphonium 102 by water results in phosphorane isomer 103, which can isomerize
through Berry pseudorotation to isomer 104 in the equilibrium shown. Notably, 104 is nearly 6
kcal mol! higher in energy than isomer 103, which is the most likely isomer to lead to the aryl
migration product. Examination of the relative transition state energies (Geer) for the migration
pathways from these two phosphoranes reveals that pyridine migration onto the alkene acceptor is
favored by nearly 8 kcal mol™!, giving a clear indication that alkene migration to form 105 is not
feasible in this system. Based on our experimental results, the resulting enolate 106 appears to
favor the protonation pathway to form 108 over E1cB elimination of hydroxydiphenylphosphine
to form 107. Energy barriers to these processes could not be determined using DFT.
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Figure 3.16 Reaction pathways for ynoate-derived phosphonium 102. Relevant Gy values are
provided for both intermediates (next to structures) and transition states (on reaction arrows) and
are reported in kcal mol ™.



3.6.2 Computational Probe of Alkene Migration Pathway

The alkene migration reaction was then investigated to determine if any deviation existed
in the transition state energies for the previously described reaction pathways. We hypothesized
that the mechanism for this process proceeded by alkene migration with retention of olefin
stereochemistry, and indeed, the calculations reported in Figure 3.17 support this hypothesis.
While the phosphorane 110 is slightly higher in energy than its isomer 109, the transition state
energy for apical alkene migration is roughly 4 kcal mol™! lower than for aryl migration and thus
this pathway should be favored. Additionally, the energies for other feasible reaction pathways
were explored. Hydroxyl migration onto either the alkene or pyridine ring (115 or 116) were
determined to be close in energy to pyridine migration, but still not favorable pathways in

comparison to alkene migration.
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Figure 3.17 Computed energies for reaction pathways from phosphonium 108. Relevant Giel
values are provided for both intermediates (next to structures) and transition states (on reaction
arrows) and are reported in kcal mol .

We next sought to determine the underlying reasons for the differences in transition state
energies for ligand-coupling from both 102 and 108. To establish the influence of the alkene
substituent on the two competing pathways, the relative transition state energies of both processes
were determined for H, Me, Ph, and tert-butyl substituted 115 and 116 (Table 3.2). The reaction
outcome appears to be influenced heavily by the alkene substituent. More sterically demanding
substituents appear to enhance elongation of the C—P bond during alkene migration, which should
make that process more favorable. However, electronic stabilization of the anion formed during
migration is also contributing factor in determining selectivity. ter-Butyl substituted 120 (entry 3)
is predicted to cause substantial C—P bond elongation in the transition state for alkene migration,

but pyridine migration is still favored energetically, presumably due to a lack of anion stabilization.
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Notably the energy for pyridine migration is relatively high compared to entries 1 and 2; though
energy values were not determined, hydroxyl migration onto either the pyridine or alkene ligands
(see Figure 3.17, 115 and 116) may start to compete in this system. Phenyl substituted 120 (entry
4) also experiences substantial C—P bond elongation in the transition state but is better at stabilizing
anionic charge buildup through delocalization, and thus the barrier to alkene migration is lowered
enough to favor that pathway. Unsubstituted substituted 120 (entry 1) and methyl substituted 120
(entry 2) are predicted to yield pyridine migration selectively due to both a lack of steric bulk and
anionic charge stabilization.

Table 3.2 Examination of alkene substituent on transition state energies for ligand-coupling.

H -
N_ CI
+

?HR N R R
PhoP | _~ | A en =z
+ CN P :
e i ") —_—— @:,, |w — —_— B
> Ak S
~
Z O/ | \5 OH o
N OH ¢
121 119 120 122

Gye for 119 G, for 120 C-P bond distance

Entry R (kcal mol™") (kcal mol™") in 120 (A)
1 H 12.3 16.6 1.94
2 Me 15.9 17.7 1.95
3 t-Bu 18.8 20.1 1.98
4 Ph 18.3 14.2 2.00

Finally, efforts turned toward rationalizing the outcome observed in Figure 3.14. Methyl
substituted 123 served as a proxy for the phosphonium generated from alkyl-substituted
cyanoalkyne 95 described earlier, which gave a mixture of both migration and alkenylation
products. Using a molecular dynamics simulation, yields of 127 and 129 shown in Figure 3.18
were determined. The simulation predicts that products result from intermediate 128 which agrees

with our model but is surprising given that from intermediate 106 in Figure 3.16, none of the

77

CN



alkene-coupled product forms. Further investigation of the influence of withdrawing groups over

these outcomes is ongoing.

H _
CN | ':-‘\ cl CN CN
Mew)_ 2 0.0 kel Me\) 2.9 keal Me =
cl H,0 ! : 16.8 kcal
©||||P+ N —2> ‘., , Me "o — N
/P ~— /p NH
X N
\OH o |
Z+ OH OH cl Z
123 | 124 125 126, 0%
13.1 kcal
“cl
o) | N CN
Il Me
Ph,P. N Z Me
{\ Me I
X | t b=} A
o}
= N 7
@/ " N
o)
127, 35% 128 “Me 129, 65%

Figure 3.18 Predicted outcomes of the molecular dynamics simulation for coupling from
phosphorane 124. Relevant Gy values are provided for both intermediates (next to structures)
and transition states (on reaction arrows) and are reported in kcal mol .

3.6.3 Rationalization of Alkene Product Geometry

We hypothesized that the alkene geometry for alkenylation was determined during addition
of the phosphine to the alkyne acceptor and set out to provide evidence for this hypothesis. Under
the reaction conditions with water excluded, the alkenylphosphonium forms, but does not
decompose via a phosphorane (Table 3.3). Early in the reaction, the sole phosphonium isomer is
the Z isomer based on the alkene coupling to phosphorus (40 Hz), which should lead to Z product
based on our proposed mechanism. As the reaction progresses over 24 hours, isomerization to the
E isomer occurs, and a 4:1 Z:E ratio is obtained. After 48 hours, the ratio becomes 1:1, where it
appears to reach an equilibrium point. This suggests that the Z isomer is the kinetic product, and

that both isomers are thermodynamically similar. Because the ligand-coupling reaction is typically
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complete in 24 hours, it is likely that the minor amounts of E isomer observed in the reaction are
a result of this thermodynamic phosphonium isomerization.

Table 3.3 Time study of alkenylphosphonium salt isomerization.

_ Ph -0t Ph
T
PPh, N om, N +)\/CN
TfOH (1 equiv.) PhyP Ph,P
\ / > CN
_ Ph EtOH, 80 °C, time AN AN
N Ph | |
7 =
75 90 N Ph N Ph
130 131
130:131 130:131
Time %1 %2 %3 (HNMR)  (3'p NMR)
30 min 76 24 0 n/a n/a
1 hour 64 40 1.4 29:1 33:1
2 hours 31 64 2 32:1 33:1
5 hours 19 75 2 38:1 33:1
7 hours 14 82 2 41:1 29:1
12 hours 8 84 6 15:1 14:1
24 hours 6 77 18 5:1 4:1
48 hours 6 52 42 1.2:1 1:1
72 hours 6 52 42 1.2:1 1:1

3.7 Conclusion

In summary, a new pyridine alkenylation protocol was developed using phosphorus ligand-
coupling. The reaction functions on a range of pyridyl phosphines and aryl-cyanoalkynes to deliver
alkenylpyridines with high diastereoselectivity. Mechanistic studies indicate that both steric and
electronic factors arising from alkyne substitution are responsible for selective olefin migration
over pyridine migration from the phosphorane intermediate, and further studies are ongoing to

determine if additional factors can be exploited to expand the scope of this transformation.
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CHAPTER FOUR

A DISTINCT NUCLEOPHILE DELIVERY SYSTEM FOR PYRIDONE AND
AMINOPYRIDINE SYNTHESIS VIA PHOSPHORUS LIGAND- COUPLING

4.1 Introduction to Pyridone Synthesis

4.1.1 Pyridones in Bioactive Compounds

Me
HN 0o
N = “
N N~
'Tl o Me OH
OH 0

Me
Ciclopirox (-)-Cytisine Deferiprone
antifungal smoking cessation thalassaemia

OH

HN/ﬁ %
k/N N s N—N
0] _ \!
: H,, /
| or il A
F HNT X N/\n/ wCON oH |
H H Me
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Me 6] o) O

Ciprofloxacin

antibiotic Cefpiramide

antibiotic

Figure 4.1 Pyridone-containing natural products and pharmaceuticals.

Pyridones are prevalent subunits in natural products, pharmaceutical targets, and

agrochemicals.! Compounds containing this core scaffold have been found with biological

activity ranging from antimicrobial, anti-inflammatory, antitumor, neurotrophic to insecticidal

properties.* ! Such compounds include ciclopirox, (-)-cytisine, deferiprone, cefpiramide, and

ciprofloxacin, one of the many members of the 4-quinolone family of antibiotics (Figure 4.1).!>!3

When the nitrogen is unsubstituted in both 2- and 4-pyridones, tautomerization between the

hydroxypyridine and pyridone can occur (Figure 4.2a). Generally, the pyridone tautomer 2 is

preferred in both the solid state and in solution. In medicinal chemistry, this motif is common for
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its ability to serve as both a hydrogen bond donor and acceptor, as well as act as an isostere for
amides, pyridines, and other N- or O-containing heterocycles.! The synthesis of these motifs is
therefore of long-standing interest to the chemistry community. Generally, pyridones can be
prepared by three distinct strategies: ring synthesis from acyclic precursors, conversion of pyrones

to pyridones, and conversion of pyridyl halides to pyridones (Figure 4.2b-d).'*"°

o
N R N
R'=NH, /Y !
1 OR* R
: AT
O 1
o : Hal o
R'=NH : 1. PG—OH
2 > | | ' X > | |
| | X | 2. Deprotection
N 1 / N
° ooobo N

Figure 4.2 Properties and synthesis of pyridones.

4.2 Investigation of Pyridone Formation via Alkenylphosphonium Decomposition

The discovery of the reaction shown in Figure 3.12e during the examination of alkyne
acceptors for pyridine alkenylation was intriguing to us for two reasons. The first is that previous
attempts in our group to achieve pyridone synthesis via phosphorus ligand-coupling were
unsuccessful. During our previous study of pyridyl ether synthesis, in which pyridyl phosphonium
salts were treated with alkoxide nucleophiles to form the desired product, we found that addition
of hydroxide to the phosphonium did not result in the pyridone product. Instead, the reaction
exclusively produces the pyridine starting material, likely by the ligand-exchange pathway shown
in Figure 4.3a. Additionally, attempts to achieve ligand-coupling under acidic conditions were
also unsuccessful. When heating a set of phosphoniums with water in acidic n-butanol at reflux,

no reaction of the phosphonium was observed (Figure 4.3b). We hypothesize that the
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phosphonium is not sufficiently electrophilic enough for phosphorane formation to occur via attack

by water in these systems.

_ NaOH .J _t
““P\© Towcon ©":,':_© | j
O s :
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X2, =
o —@NH PPhs o
+ 2
el D 2 R,@/ )
n-BuOH ||

N

R H

7

R=H,Cl, CF3 R

Figure 4.3 Previous attempts at pyridone synthesis from phosphonium salts.

We were also intrigued by the result in Figure 3.12e in the context of the decomposition
of alkenylphosphonium salts. This reaction outcome had never previously been reported in these
systems, so we set out to determine the mechanism leading to the pyridone product. In the initial
reaction of phosphine 8 with trifluoromethyl ynone 13, we observed the formation of byproduct
phosphine 12 (R = Ph, X = CF;3, Figure 4.4). Trifluoromethyl ynones are well-known for reacting
readily with water to form hydrates, and we realized that hydrate formation likely played a role in
facilitating the hydroxylation pathway. We began to examine other acceptors to determine what
components of the acceptor were necessary to retain the pathway to hydroxylation. Removal of
the trifluoromethyl group to form ynal 14 lead to a diminished yield of the pyridone product, but
the only reaction byproduct was 2-phenylpyridine resulting from protonation. Removal of the

phenyl substituent (15) led to further a reduced yield, but again, hydroxylation was the only ligand-
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coupling pathway observed. Finally, testing acrolein (16) in the reaction still gave the

hydroxylation product despite the decreased electrophilicity of phosphonium 10.

R X
PPh, o H,0 (10 equiv.) +M 9
N TfOH (1 equiv.) PhyP N o R o
. —_— - _
| = X EtOH, 80 °C XN, OTf fj\ thp)\/u\x
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8 9 N~ Ph 11 12

\
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\
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Figure 4.4 Exploration of acceptors for hydroxylation.
4.3 Proposed Mechanism for Hydroxylation
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Figure 4.5 Proposed ligand-coupling mechanism for hydroxylation.

The studies outlined above led us to propose the mechanism shown in Figure 4.5. Upon
formation of phosphonium 17, we propose that the carbonyl undergoes attack by water and
cyclizes to form phosphorane 18. This pathway is similar to hydrate formation, and the

phosphonium can serve as a Lewis acid to activate the carbonyl oxygen. Phosphorane formation
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is typically the rate-limiting step in the coupling reactions that we have developed previously, and
this cyclization approach should assist in lowering the energy barrier to that process. Upon
formation of phosphorane 19, ligand-coupling of the apical alkoxy ligand onto the equatorial
pyridinium occurs to provide Meisenheimer-like 20, which can rapidly rearomatize and eject
phosphine. The resulting hemiacetal 21 then decomposes to provide the 4-pyridone product and
generates phosphine 12.
4.4 Design of a System for Pyridine to Pyridone Interconversion

We next set out to develop a more practical system for pyridone synthesis that met the
criteria in our proposed mechanism. Our goal was to design a phosphine that could be selectively
installed at the 4-position as the phosphonium salt, and then decomposed via ligand-coupling to
produce the 4-pyridone. We wanted a reaction which could be performed in one pot with no
isolation of the phosphonium intermediate, similar to the fluoroalkylation reaction developed
previously. To achieve this, we focused on developing a phosphine which was readily accessible
and bench stable, to ensure the method would be applicable in medicinal chemistry contexts. Based
on the proposed mechanism, we hypothesized that forcing a cis relationship between the carbonyl
and phosphonium and enabling the 5-membered cyclic transition state (17) would facilitate the

desired reactivity.

O/
H PPh, . o
Tf,0; DBU Ph,P EtOH
AN AN - —_—
| S) g oTf , ||
_ CH,Cl,, —78 °C to rt | X 40 °C, 24 h

: L N Ph
N Ph sequential addition P H
N Ph
22 23 - - 11, 98%
24, 75%

Figure 4.6 Pyridine to pyridone interconversion through phosphorus ligand-coupling.

88



Ultimately we found that phosphine 23 fit the criteria outlined in our proposed method
(Figure 4.6). This phosphine is commercially available but can also be synthesized in two steps
from commodity chemicals. The reaction of phosphine 23 with 2-phenylpyridine gave
phosphonium 23a in 75% yield. Furthermore, simply heating this phosphonium in EtOH at 40 °C
provided the pyridone product in nearly quantitative yield. Unfortunately, examination of the
pyridine scope for phosphonium preparation with aldehyde 23 found that it was sub-optimal on
many of the substrates that typically perform well in the salt-forming reaction (Figure 4.7). We
hypothesized that the aldehyde participated in deleterious side reactions and found that protecting

the aldehyde as acetal 26 alleviated these issues.

R2
H PPh, PPh, (l) PPh, OMe
Tf,0; DBU h
R? 2 Ph,P
R'5F D CH,Cly, 78 °C to rt “oTf OMe
> 2oz 8 O X
N sequential addition R1_'
L Z
25 23 or 26 N 23 26

N Ph N N N Me
23a, 75% 23b, 48% 23c, 9% 23d, 34%
26a, 75% 26b, 84% 26¢, 82% 26d, 63%

Figure 4.7 Initial phosphonium scope with aldehyde and acetal-containing phosphines.

Efforts then focused on optimizing the one-pot hydroxylation reaction with acetal
phosphine 26 and 2-phenylpyridine (Table 4.1). Triflic acid (TfOH), trifluoroacetic acid (TFA),
p-toluenesulfonic acid (TsOH) and methanesulfonic acid (MsOH) were all identified as viable
acids to facilitate in situ deprotection of the acetal at 80 °C (entries 1-6). Polar solvents such as

acetone, acetonitrile, and ethanol all delivered the coupled product in ~75% yield (entries 10 and
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11). Attempts to lower the reaction temperature found that at higher concentration, the reaction
still proceeded at a reasonable rate at 40 °C; later studies of the substrate scope found that 60 °C
was more general, so this temperature was chosen for the general procedure (entries 12-16).
Alternative conditions (LiBF4, H2O, MeCN, 60 °C) were also identified which allow for coupling
on substrates which are acid-sensitive or prone to ethanolysis (entry 17).

Table 4.1 Optimization of one-pot hydroxylation of pyridine.

H PPh, OMe Q
1. Tf,0; DBU; CH,Cl,, —78 °C to rt
N OMe |
2. Solvent, H,0 (10 equiv.)
N/ Ph Acid (1.0 equiv.), Temp, 24h H Ph
22 26 1

Entry Acid Solvent Temp °C  Concentration (M) 11 yield (%)

1 AcOH EtOH 80 0.1 n.d.
2 Citric EtOH 80 0.1 40
3 TFA EtOH 80 0.1 65
4 TfOH EtOH 80 0.1 75
5 MsOH EtOH 80 0.1 73
6 TsOH EtOH 80 0.1 74
7 TsOH THF 80 0.1 n.d
9 TsOH CH,Cl, 80 0.1 n.d
10 TsOH MeCN 80 0.1 75
1 TsOH Acetone 80 0.1 74
12 TsOH EtOH 40 0.1 29
13 TsOH EtOH 60 0.1 57
15 TsOH EtOH 40 0.4 73
16 TsOH EtOH 60 0.4 74
17 LiBF4 MeCN 60 0.4 74

4.5 Investigation of Scope for Pyridone Synthesis
4.5.1 Building Block Scope

An investigation of the scope for this transformation is currently ongoing, but so far the
functional group tolerance of the reaction is promising (Figure 4.8). 2- and 3-substituted alkyl and
aryl pyridines deliver pyridone products in high yield under the one-pot coupling procedure (27a-

27d). Withdrawing groups, which are sometimes problematic for ligand-coupling reactions
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developed previously, are well tolerated, including substrates 27e and 27f. Both 2-OMe and 3-
OMe pyridines (27g and 27h) are also viable in the reaction but require higher temperatures to
reach completion in 24 hours. Other heterocycles also function in the reaction; quinoline 27i, as
well as pyrimidine 27k and pyridazine 271 all gave good to high conversion. Notably, when the 4-
position is blocked on pyridine and phosphonium formation occurs at the 2-position, no
hydroxylation product is observed in the reaction. Instead, the ligand exchange pathway is favored
and pyridine starting material is observed. However, with 4-substituted quinolines, hydroxylation

proceeds at the 2-position in excellent yield (27j).

PPh, OMe 0
1. Tf,0; DBU; CH,Cly, —78 °C to rt
) N OMe )
R 2. EtOH, H,0 (10 equiv.) TsOH R |
L~ : o
N (1.0 equiv.), 60°C, 24h N
H
25 26 27
0 0 0 o) o 0
N Me N N X N N Br N
H H H | H H H
N~
27a, 85% 27b, 93% 27c, 70% 27d, 87% 27e, 63% 27f, 93%
(0] (0] (0] Me 0 o)
OMe Me
N OMe N N o N -
H H H H MeS™ N N
279, 51% 27h, 77% 27i, 80% 27j, 77% 27k, 36% 271, 54%

Figure 4.8 Preliminary building block scope for pyridine hydroxylation.

4.5.2 Fragment and Drug Scope
Preliminary studies of the drug-like fragment and pharmaceutical scope are also
encouraging (Figure 4.9). So far, 5 fragments and 10 drugs have performed well in the pyridone-

forming reaction (27m-27aa). The polarity of pyridones makes them difficult to isolate and carry
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through an entire drug candidate synthesis, so we envision this will be a practical method for

pyridone incorporation late in a synthetic strategy.
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Figure 4.9 Late-stage hydroxylation of complex fragments, pharmaceuticals, and agrochemicals.
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Additionally, the pyridone products can be converted to fluoropyridines in one step via
y Py P Py p
deoxofluorination — currently, there are no general methods for direct 4-position fluorination on
pyridine, so this approach will be valuable.?

4.5.3 Current Limitations

H PPh, OMe 0o
1. Tf,0; DBU; CH,Cl,, =78 °C to rt
) X OMe )
RT 2. EtOH, H,0 (10 equiv.) TsOH R—IK |
Lz (1.0 equiv.), 60°C, 24h
N N
H
25 26 27
0 o) 0 o)
H H
cl Br 0 N Me o) N
[ ] U] | I [ ]
L N L N
N N~ Ph N7 Me N N N N/ﬁ
H H H H
0
27ab, n.d. 27ac, n.d. 27ad, n.d. 27ae, n.d. 27af, n.d. 27ag, n.d.

Figure 4.10 Representative examples of substrate limitations for hydroxylation.

Limitations for phosphonium formation were described in Section 2.4.3 of Chapter 2.
Current limitations for the ligand-coupling step of hydroxylation are similar to those encountered
for the difluoromethylation and trifluoromethylation reactions (Figure 4.10). 3,5-disubstituted
pyridines (27ab) yield none of the desired product, instead preferring protonation of the pyridine
from the phosphorane intermediate. Certain diazines, such as pyrimidine 27ac, pyrazine 27ad and
their benzo-fused counterparts (27ae and 27af) favor this ligand exchange pathway as well.
Investigation of substituent effects on the competition between ligand-coupling and ligand
exchange is ongoing. Strongly electron-donating substituents such as in amine-substituted 27ag

are also not well-tolerated in the reaction.
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4.6 Mechanistic Studies

i 0
PPh, |
| N Tf,0; DBU . TsOH, EtOH ||
_ | PhyP —
Ph & - H

N CH,Cl,, —78 °C to rt 80 °C, 24 h
sequential addition X OTf
22 28 | 11, n.d.
N Ph

Ph

29, 75%, not isolated
Figure 4.11 Attempt to achieve hydroxylation with p-substituted phosphine 28.

To provide support for our proposed mechanism for phosphorane formation, we prepared
phosphine 28 with the aldehyde at the para position (Figure 4.11). If the aldehyde substituent in
phosphine 23 allowed for phosphorane formation on purely an electronics basis, phosphine 28
should also provide pyridone product under our reaction conditions. However, if our proposed
cyclization mechanism is operative, the aldehyde in 28 is unlikely to form a cyclic phosphorane,
and thus should not provide the hydroxylation product. Subjecting phosphonium 29 to the reaction
conditions gave none of pyridone 11, and the phosphonium persisted in the reaction, indicating
that no phosphorane formation occurred and supporting our proposed cyclization pathway.

Further support for the proposed mechanism of hydroxylation was provided through a
computational study in collaboration with the Paton lab. The barrier to the proposed migration of
the apical alkoxy ligand in 32 is 15.5 kcal mol! and is easily achievable under the reaction
conditions. Interestingly, the highest energy structure in the whole reaction pathway is the
transition state for the elimination step between intermediate 33 and hemiacetal 34. This is due to
the high energy (10.6 kcal mol™) of intermediate 33 in comparison to equivalent intermediates
observed for alkoxide coupling (21 kcal mol™"), fluoroalkylation (—10 kcal mol™") and bipyridine

(=17 kcal mol!) synthesis, presumably due to its spirocyclic nature. Nonetheless, all of the
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observed reaction energies are consistent with reactivity at room temperature, implying that

phosphorane formation, while substantially faster in this system, is still the reaction bottleneck.

(: OH, HO HO

(0]
Ph, | Ph, i —
C> +|P/\(|) - I —© — 24 Qo
|
— NH | 0.0 keal mol™
+

N+
30 N 31 32
H |

AG*=15. 5 kcal mol™”

o~ I ]
0 Ph2P /\
\J\O;;
| | PhaP N PhV" P L‘\

N
AGI 8.5 kcal mol™ H AG¢ 6.4 kcal mol™!

35
-15.9 kcal mol™! -3.6 kcal mol™ 10.6 kcal mol™

Figure 4.12 Proposed mechanism for hydroxylation and associated energy values.
4.7 Other transformations
4.7.1 Aminopyridine Synthesis

Based on our proposed mechanism involving formation of cyclic oxyphosphorane 32, we
hypothesized that a pyridine amination reaction could be feasible with minor modifications to the
reaction system (Figure 4.13). Condensation of ammonia with the benzaldehyde ligand on
phosphonium 24 provides imine 36, which can form cyclic phosphorane 37. Migration of the

apical amino ligand in 37 and elimination of phosphine should results in aminopyridine 38.

HO
0% HNZ
+ + [}]% NH2
PhyP NH,4X PhyP H,0 !
“OTf — TOTf . @NH —_— X
=
N

36 37

Figure 4.13 Proposed aminopyridine synthesis via phosphorus ligand-coupling.
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N Ph
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b OMe
PPh, OMe MeO 1. TsOH (1.0 equiv.) NH
Tf,O; DBU acetone, 60°C, 1h
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sequential addition | X 60°C, 24h N Ph
=
N 39, 89%
40, 75%

Figure 4.14 One-pot amination of pyridine via phosphorus ligand-coupling.

An initial screen for reactivity revealed that ammonium acetate in TFE provided the ligand-
coupled product from aldehyde-containing phosphonium 24 in 24 hours at 60 °C (Figure 4.14a).
Additional efforts determined that coupling could be achieved from acetal phosphonium 40 to
improve the phosphonium scope of the transformation (Figure 4.14b). A two-stage process
consisting of deprotection at a lower pH, followed by imine formation and ligand-coupling at a
higher pH, provided the aminated product in 89% yield. Notably, it was determined that acetone
helps to sequester methanol formed in the deprotection step, which we speculate can attack
aldehyde intermediate 24 and lead to undesired pyridone product. Initial studies for the scope of
this transformation are promising in a one-pot process (Figure 4.15). Additional efforts are

ongoing to explore this scope and achieve amination with primary amines.
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Figure 4.15 Preliminary scope for the one-pot amination of pyridines.

4.7.2. a-Pyridyl Amine Synthesis

We were also curious about the capacity of this distinct nucleophile delivery system to
enable C—C bond formation through phosphorus ligand-coupling. Previous efforts to facilitate C—
C coupling either required a significant electronic bias, as was the case for fluoroalkylation, or
addition of aryl organolithium compounds, which often posed challenges to achieving selective
coupling between the two desired ligands from an all-carbon phosphorane. Inspired by aza-allyl
anion chemistry developed to functionalize a-stabilized amines, we proposed the transformation
outlined in Figure 4.16.>! Deprotonation of imine-containing phosphonium 42 by a sufficient base
forms aza-allyl anion 43, which can cyclize to form phosphorane 44. We hypothesized that ring
expansion, as well as the deficient nature of the a-amino ligand might provide a reasonable bias
for selective ligand-coupling to pyridine over migration of one of the phenyl ligands and lead to

product 46. After hydrolysis of the resulting imine, a-pyridyl amine 47 would form.
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Figure 4.16 Proposed a-pyridyl amine synthesis via phosphorus ligand-coupling.

Synthesis of phosphonium 42 is possible by condensation from aldehyde 24, but to address
concerns about the phosphonium scope, an alternative approach was developed. Condensation of
benzylamines 48 and 49 with phosphine 23 is achieved in 30 minutes when the reaction is run at
2 M in methanol at reflux (Figure 4.17a). Notably, the product precipitates from the reaction and
can be collected by filtration in high yield and purity with no further purification necessary. This
new imine-containing phosphine was then tested in the phosphonium forming reaction on
substrates which were problematic for the aldehyde; in every case, substantial improvements in

yield were observed (Figure 4.17b).
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23 48, R=H 50, R =H, 83%
49, R = Me 51, R = Me, 86%
b. R2
H PPh, PPh, PPh,
2 Tf,0; DBU +
N R Ph,P N X
RS CH,Cly, 78 °C to t "ot ° NEn
2 pem X
N sequential addition R1_'
L~
25 23 or 50 N 23 50

Ph M B
B B B Y
~ ~ ~ ~
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50a, 85% 50b, 73% 50c, 77% 50d, 82%

Figure 4.17 Comparison of phosphonium scope for aldehyde phosphine 23 and imine phosphine
50.

Phosphoniums 52 and 53 were both isolated and subjected to conditions previously used
to form aza-allyl anions (Figure 4.18). LDA and KHMDS gave none of the desired product and
multiple decomposition products. However, potassium tert-butoxide gave 54 in 82% yield with
only phosphonium salt as the remaining byproduct. Additionally, synthesis of a-quaternary imine
55 was achieved in 55%. These unoptimized conditions are a promising starting point for further

investigation of the scope for this transformation.
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Figure 4.18 Initial results for a-pyridyl amine synthesis via phosphorus ligand-coupling.
4.8 Conclusion

A distinct nucleophile delivery strategy was discovered and developed to achieve C-O, C—
N, and C—C bond-formation through phosphorous ligand-coupling. These strategies enable the
synthesis of pharmaceutically-relevant pyridine compounds from C—H precursors in good yields
on a range of substrates, including approved drug compounds. Computational studies and
mechanistic studies support the formation of a cyclic phosphorane intermediate which undergoes
ring expansion to provide selectivity during the ligand-coupling step. Studies are ongoing to

develop the scopes of these transformations.
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APPENDIX ONE

PHOSPHORUS LIGAND-COUPLING AND ITS SYNTHETIC UTILITY: EXPERIMENTAL

A1.1 General Methods and Materials

Proton nuclear magnetic resonance ('H NMR) spectra were recorded at ambient
temperature on a Varian 400 MR spectrometer (400 MHz), an Agilent Inova 400 (400 MHz)
spectrometer, an Agilent Inova 500 (500 MHz) spectrometer, or a Bruker AV-111 400 (400 MHz)
spectrometer. Chemical shifts (8) are reported in ppm and quoted to the nearest 0.1 ppm relative
to the residual protons in CDCl3 (7.26 ppm), CD3OD (3.31 ppm) or (CD3)2SO (2.05 ppm) and
coupling constants (J) are quoted in Hertz (Hz). Data are reported as follows: Chemical shift
(multiplicity, coupling constants, number of protons). Coupling constants were quoted to the
nearest 0.1 Hz and multiplicity reported according to the following convention: s = singlet, d =
doublet, t = triplet, q = quartet, qn = quintet, sext = sextet, sp = septet, m = multiplet, br = broad.
Where coincident coupling constants have been observed, the apparent (app) multiplicity of the
proton resonance has been reported. Carbon nuclear magnetic resonance ('*C NMR) spectra were
recorded at ambient temperature on a Varian 400 MR spectrometer (100 MHz), an Agilent Inova
400 (100 MHz) spectrometer, an Agilent Inova 500 spectrometer (125 MHz) or a Bruker AV-111
400 (100 MHz) spectrometer. Chemical shift (6) was measured in ppm and quoted to the nearest
0.01 ppm relative to the residual solvent peaks in CDCl3 (77.16 ppm), (CD3)2SO (39.51 ppm),
CD3s0D (49.00 ppm) or CD3CN (1.32 ppm).

Low-resolution mass spectra (LRMS) were measured on an Agilent 6310 Quadrupole Mass

Spectrometer. High-resolution mass spectra (HRMS) were measured on an Agilent 6224 TOF
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LC/MS (“OTOF”) interfaced to an Agilent 1200 HPLC with multi-mode (combined ESI and
APCI) and Direct Analysis in Real Time (DART) sources. (IR) spectra were recorded on a Nicolet
IS-50 FT-IR spectrometer as either solids or neat films, either through direct application or
deposited in CHCI3, with absorptions reported in wavenumbers (cm-1 ). Analytical thin layer
chromatography (TLC) was performed using pre-coated Silicycle glass backed silica gel plates
(Silicagel 60 F254). Flash column chromatography was undertaken on Silicycle silica gel
Siliaflash P60 40-63 um (230-400 mesh) under a positive pressure of air unless otherwise stated.
Visualization was achieved using ultraviolet light (254 nm) and chemical staining with ceric
ammonium molybdate or basic potassium permanganate solutions as appropriate. Melting points
(mp) were recorded using a Biichi B-450 melting point apparatus and are reported uncorrected.
Tetrahydrofuran (THF), toluene, hexane, diethyl ether and dichloromethane were dried and
distilled using standard methods.! Methanol, 1,2-dichloroethane (DCE), 1,4-dioxane, ethyl acetate,
chloroform, and acetone were purchased anhydrous from Sigma Aldrich chemical company. All
reagents were purchased at the highest commercial quality and used without further purification.
Reactions were carried out under an atmosphere of nitrogen unless otherwise stated. All reactions
were monitored by TLC, "H NMR spectra taken from reaction samples, and liquid chromatography
mass spectrometry (LCMS) using an Agilent 6310 Quadrupole Mass Spectrometer for MS
analysis. TH2O (99%) was purchased from Oakwood Chemical and used without further
purification but was routinely stored in a —20 °C fridge. DBU was distilled before use. 200 proof
ethanol was purchased from PHARMCO-AAPER and used without further purification. HCI (4.0
M in dioxanes) and trifluoromethanesulfonic acid (98%) were purchased from Sigma Aldrich
chemical company and used without further purification but were routinely stored in a —20 °C

fridge.
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A1.2 Preparation of Heterocyclic Precursors
5-(Methoxymethyl)-2-(phenylethynyl)pyridine

A OMe
P
4 N

Ph

A 100 mL flask equipped with a magnetic stirring bar was charged with PdCl2(PPh3)> (140 mg,
0.20 mmol) and Cul (76 mg, 0.40 mmol) dissolved in diisopropylamine (20 mL) and N,N-
dimethylformamide (15 mL). The resultant solution was stirred under nitrogen at room
temperature for 10 minutes before adding 2-bromo-5-(methoxymethyl)pyridine (2.02 g, 10.00
mmol) in diisopropylamine (10 mL) and phenylacetylene (1.22 g, 12.00 mmol). Then, stirring was
continued at room temperature for an additional hour. After this time, the reaction mixture was
diluted with EtOAc and washed with a saturated NH4Cl solution and with brine. The organic layer
was separated, dried over NaxSOq, filtered, and concentrated under reduced pressure. The residue
was purified by flash chromatography (silica gel: 33% EtOAc in hexanes) to provide the title
compound as a light brown oil (2.12 g, 9.50 mmol, 95% yield). 'H NMR (400 MHz, CDCls) &:
8.58 (d, J =2.2 Hz, 1H), 7.69 (dd, J = 2.2, 8.0 Hz, 1H), 7.62-7.59 (m, 2H), 7.53 (d, J = 8.0 Hz,
1H), 7.40-7.33 (m, 3H), 4.50 (s, 2H), 3.43 (s, 3H); >*C NMR (100 MHz, CDCl5) &: 149.33, 142.74,
135.60, 133.05, 132.12, 129.06, 128.47, 126.93, 122.32, 89.38, 88.58, 71.87, 58.52; IR vmax/cm!
(film): 3055, 2986, 2926, 2892, 2817, 2220, 1725, 1590, 1559, 1491, 1470, 1442, 1394, 1356,
1314, 1279, 1191, 1153, 1098, 1024, 966, 914, 863, 839, 755, 689; m/z HRMS (DART): [M+H]*

calculated for C1sH14NO* = 224.1070, found 224.1079.
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3-Phenyl-5-((pyridin-2-yloxy)methyl)isoxazole

(3-Phenylisoxazol-5-yl)methanol (1.75 g, 10.00 mmol) was added portion wise under N> to a
suspension of NaH (60%) (480 mg, 12.00 mmol) in anhydrous DMF (25 mL). After stirring at rt
for 30 min, 2-fluoropyridine (1.03 mL, 12.00 mmol) was added dropwise and the mixture was
stirred at room temperature overnight. The reaction mixture was quenched with cold H,O and
extracted with EtOAc (3 x 50 mL). The organic extracts were washed with H2O (3 x 100 mL),
dried over anhydrous Na>SOys, filtered and concentrated in vacuo. The crude material was purified
by flash chromatography (silica gel: 17% EtOAc in hexanes) to provide the title compound as a
yellow oil (2.26 g, 8.90 mmol, 89% yield). 'H NMR (400 MHz, CDCI3) &: 8.18 (dd, J = 1.6, 5.1
Hz, 1H), 7.82-7.79 (m, 2H), 7.64-7.60 (m, 1H), 7.48-7.43 (m, 3H), 6.95-6.92 (m, 1H), 6.84 (d, J
= 8.4 Hz, 1H), 6.64 (s, 1H), 5.54 (s, 2H); 1*C NMR (100 MHz, CDCl;) §: 169.15, 162.61, 162.55,
146.85, 139.14, 130.14, 129.12, 129.03, 126.99, 117.80, 111.38, 101.67, 58.30; IR vmax/cm™
(film): 3128, 3059, 2961, 1611, 1600, 1573, 1469, 1433, 1422, 1403, 1365, 1309, 1284, 1263,
1249, 1221, 1167, 1140, 1044, 1014, 993, 946, 910, 826, 772,759, 738, 731, 689, 678; m/z HRMS

(DART): [M+H]* calculated for C;sH13N202* = 253.0972, found 253.0971.
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Methyl 6-chloro-4-((pyridin-3-ylmethyl)amino)nicotinate

Cl
2N
|
XN
| H
_ CO,Me
N

An oven dried 50 mL flask was charged with pyridin-3-ylmethanamine (611 uL, 6.00 mmol),
methyl 4,6-dichloronicotinate (1.03 g, 5.00 mmol), N,N-diisopropylethylamine (2.09 mL, 12.00
mmol) and EtOH (10 mL). The mixture was stirred at reflux for overnight. After cooling to room
temperature, the mixture was poured into water (50 mL) and extracted with EtOAc (3 x 50 mL).
The combined organic layer was dried over anhydrous Na>SQy, filtered and concentrated in vacuo.
The crude material was purified by flash chromatography (silica gel: EtOAc) to provide the title
compound as a white solid (1.19 g, 3.55 mmol, 71% yield). 'H NMR (400 MHz, CDCls) &: 8.72
(s, 1H), 8.62—8.57 (m, 3H), 7.66—7.63 (m, 1H), 7.32 (ddd, J = 0.9, 4.8, 7.2 Hz, 1H), 6.53 (s, 1H),
4.47 (d, J = 5.0 Hz, 2H), 3.90 (s, 3H); *C NMR (100 MHz, CDCls) §: 168.06, 156.21, 155.84,
153.22, 149.46, 148.86, 134.99, 132.45, 124.04, 107.33, 105.14, 52.20, 44.24; IR vmax/cm’! (film):
3320, 3070, 3036, 2961, 1687, 1592, 1576, 1565, 1501, 1484, 1465, 1442, 1428, 1408, 1363, 1324,
1297, 1280, 1223, 1191, 1113, 1065, 1026, 928, 842, 791, 712, 607; m/z HRMS (DART): [M+H]*

calculated for C3H3CIN3O»* = 278.0691, found 278.0704.
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2-Methyl-6-(1-(4-(pyridin-3-yl)phenyl)ethoxy)quinoline
Me

(0]

\

NS
Me
To a mixture of 1-(4-(pyridin-3-yl)phenyl)ethan-1-ol (598 mg, 3.00 mmol), Etz:N (544 uL, 3.30
mmol) and CH>Cl> (6.6 mL) was added MsCl (256 puL, 3.30 mmol) in one portion at —10 °C for
30 minutes under nitrogen. After the reaction completed, the mixture was poured into cold water
(10 mL) and extracted with CH2Cl> (3 x 20 mL). The combined organic layer was dried over
anhydrous Na;SOg, filtered and concentrated in vacuo to give the product 1-(4-(pyridin-3-

yl)phenyl)ethyl methanesulfonate, which was used without further purification.

2-methylquinolin-6-ol (477 mg, 3.00 mmol) was added portion wise under N> to a suspension of
NaH (60%) (144 mg, 3.60 mmol) in anhydrous DMF (4.5 mL). After stirring at room temperature
for 30 min, 1-(4-(pyridin-3-yl)phenyl)ethyl methanesulfonate (prepared accordingly) in anhydrous
DMF (4.5 mL) was added dropwise and the mixture was stirred at rt overnight. The reaction
mixture was quenched with cold H>O and extracted with EtOAc (3 x 50 mL). The organic extracts
were washed with H2O (3 x 100 mL), dried over anhydrous Na>SOys, filtered and concentrated in
vacuo. The crude material was purified by flash chromatography (silica gel: EtOAc) to provide the
title compound as a colorless oil (130 mg, 0.38 mmol, 13% yield over two steps). '"H NMR (400
MHz, CDCls) 6: 8.83 (dd, J =0.8, 2.4 Hz, 1H), 8.58 (dd, J = 1.6, 4.8 Hz, 1H), 7.90 (d, J =9.2 Hz,

1H), 7.86-7.81 (m, 2H), 7.58-7.52 (m, 4H), 7.40 (dd, J = 2.8, 9.2 Hz, 1H), 7.34 (ddd, J = 0.9, 4.8,
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8.0 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 2.8 Hz, 1H), 5.50 (q, J = 6.4 Hz, 1H), 2.67 (s,
3H), 1.74 (d, J = 6.4 Hz, 3H); *C NMR (100 MHz, CDCI3) §: 156.54, 155.37, 148.59, 148.33,
143.78, 142.94, 137.22, 136.25, 135.25, 134.32, 130.08, 127.60, 127.25, 126.40, 123.64, 122.71,
122.23, 108.58, 76.05, 25.06, 24.53; IR vmax/cm™! (film): 3029, 2976, 2925, 1621, 1599, 1497,
1476, 1429, 1395, 1376, 1342, 1304, 1266, 1223, 1167, 1112, 1071, 1023, 1000, 967, 940, 897,
832, 802, 710; m/z HRMS (DART): [M+H]" calculated for C23H21N2O" = 341.1648, found

341.1662.

3-(3-Methoxyphenyl)-5-methyl-2-(pyridin-3-yloxy)pyridine

OMe

|
N/ X Me

To a mixture of (3-methoxyphenyl)boronic acid (547 mg, 3.60 mmol), 3-bromo-5-methyl-2-
(pyridin-3-yloxy)pyridine (795 mg, 3.00 mmol), Pd(PPh3)4 (173 mg, 0.15 mmol) and Na,COs (636
mg, 6.00 mmol) was added a degassed mixture of THF (14.4 mL) and H>O (3.6 mL). The mixture
was stirred at 70 °C for 24 hours under nitrogen. After cooling to room temperature, the mixture
was poured into water (30 mL) and extracted with EtOAc (3 x 30 mL). The combined organic
layer was dried over anhydrous Na>SOs, filtered and concentrated in vacuo. The crude material
was purified by flash chromatography (silica gel: 67% EtOAc in hexanes to 75% EtOAc in
hexanes) to provide the title compound as a colorless oil (778 mg, 2.64 mmol, 88% yield). 'H
NMR (400 MHz, CDCls) 6: 8.46 (d, J = 2.6 Hz, 1H), 8.40 (dd, J = 1.4, 4.7 Hz, 1H), 7.94 (dd, J =

0.7,2.4 Hz, 1H), 7.61 (dd, J=0.7, 2.4 Hz, 1H), 7.47-7.44 (m, 1H), 7.43 (dd, J = 2.8, 9.2 Hz, 1H),
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7.37 (ddd, J=0.9, 4.8, 8.0 Hz, 1H), 7.20 (d, J/ = 8.4 Hz, 1H), 6.99 (d, /= 2.8 Hz, 1H), 5.53 (q, J =
6.4 Hz, 1H), 2.69 (s, 3H), 1.76 (d, J = 6.4 Hz, 3H); '3C NMR (100 MHz, CDCls) &: 159.61, 157.67,
151.37, 146.00, 145.14, 143.27, 140.98, 137.32, 129.51, 129.33, 128.28, 125.36, 123.94, 121.61,
115.09, 113.37,55.37, 17.57. IR vmax/cm’! (film): 3029, 2976, 2925, 1621, 1599, 1497, 1476, 1429,
1395, 1376, 1342, 1304, 1266, 1223, 1167, 1112, 1071, 1023, 1000, 967, 940, 897, 832, 802, 710;

m/z HRMS (DART): [M+H]" calculated for C1sH17N202" = 293.3414, found 293.3428.

3-benzyl-5-(4-(2-(5-ethylpyridin-2-yl)ethoxy)benzyl)thiazolidine-2,4-dione

)
Et
| = N—Bn
= S
N o) %
@]

To a mixture of 5-(4-(2-(5-ethylpyridin-2-yl)ethoxy)benzyl)thiazolidine-2,4-dione (535 mg, 1.5
mmol) in DMF (15 mL) was added NaH (60% dispersion in oil) (66 mg, 1.65 mmol) at 0 °C. The
reaction was warmed to room temperature over 15 minutes, then benzyl bromide (196 pL, 1.65
mmol) was added. The reaction was stirred at room temperature for 25 hours and then
concentrated in vacuo. The crude material was purified by flash chromatography (silica gel:
hexanes to 25% EtOAc in hexanes) to provide the title compound as a light-yellow solid (625 mg,
1.40 mmol, 93% yield). m.p. 94-97 °C; '"H NMR (400 MHz, CDCls) &: 8.42 (d, J= 2.2 Hz, 1H),
7.48 (dd, J =79, 2.3 Hz, 1H), 7.32 —7.23 (m, 5SH), 7.21 (d, J = 7.9 Hz, 1H), 7.05 (d, J = 8.6 Hz,
2H), 6.77 (d, J = 8.5 Hz, 2H), 4.79 —4.59 (m, 2H), 4.43 (dd, J = 8.7, 4.0 Hz, 1H), 4.31 (t, J = 6.6
Hz, 2H), 3.38 (dd, J = 14.1, 4.0 Hz, 1H), 3.24 (t, J/ = 6.6 Hz, 2H), 3.09 (dd, J = 14.1, 8.7 Hz, 1H),
2.64 (q,J =7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H); *C NMR (100 MHz, CDCl5) &: 173.78, 171.03,

158.32, 155.73, 149.02, 137.24, 136.01, 135.09, 130.49, 128.72, 128.16, 127.45, 123.47, 115.98,
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114.83, 67.32, 51.73, 45.22, 37.64, 37.62, 25.82, 15.44. IR vmax/cm’" (film): 3033, 2966, 2931,
2874, 2360, 2342, 1749, 1680, 1611, 1512, 1490, 1430, 1382, 1330, 1247, 1179, 1146, 1029, 908,

730, 700. m/z HRMS (DART): [M+H]" calculated for C26H27N203S"=447.1737, found 447.1748.

5-methyl-N-(2-methylbut-3-yn-2-yl)-2-nitroaniline

H NO,
Me N
/<Me
H
Me

To a mixture of 2-fluoro-4-methyl-1-nitrobenzene (776 mg, S mmol) and K>COs3 (1.38 g, 10 mmol)
in DMF was added 2-methylbut-3-yn-2-amine (2.63 mL, 25 mmol), and the reaction was heated
to 60 °C for 72 hours. After cooling to room temperature, the reaction was poured into water (50
mL) and extracted with EtOAc (3 x 50 mL). The combined organic layer was washed with brine,
dried over anhydrous MgSOys, filtered and concentrated in vacuo. The crude material was purified
by flash chromatography (silica gel: 5% CH:Cl: in hexanes) to provide the title compound as a
yellow solid (562 mg, 2.57 mmol, 51% yield). m.p. 104-106 °C; '"H NMR (400 MHz, CDCl;) §:
8.33 —-8.20 (m, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.34 (dd, /= 1.8, 0.9 Hz, 1H), 6.51 (dd, J=8.8, 1.7
Hz, 1H), 2.47 (s, 1H), 2.37 (s, 3H), 1.73 (s, 6H); >*C NMR (101 MHz, CDCl5) §: 147.01, 143.60,
131.22,127.03, 117.81, 116.26, 86.22, 71.92, 47.61, 30.51, 22.42. IR vmax/cm (film): 3331, 3288,
2994, 2979, 2938, 2360, 2342, 1619, 1582, 1486, 1414, 1334, 1276, 1237, 1209, 1177, 1076, 988,
940, 753, 679, 647. m/z HRMS (DART): [M+H]* calculated for C12Hi5N202" = 219.1128, found

219.1119.
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N-(4-(2-chloropyridin-3-yl)-2-methylbut-3-yn-2-yl)-5-methyl-2-nitroaniline

H NO,
Me N
4 Me
| AN
= Me
N Cl

To a mixture of 3-bromo-2-chloropyridine (620 mg, 3.22 mmol), Cul (37 mg, 0.19 mmol),
PdCl>(PPh3)2 (68 mg, 0.097 mmol) and Et;N (6.5 mL) was added 5-methyl-N-(2-methylbut-3-yn-
2-yl)-2-nitroaniline (704 mg, 3.22 mmol). The reaction was heated to 100 °C for 24 hours. After
cooling to room temperature, EtOAc (20 mL) and water (20 mL) was added, the organic layer was
separated, dried over anhydrous MgSQOu, filtered and concentrated in vacuo. The crude material
was purified by flash chromatography (silica gel: 20% EtOAc in hexanes) to provide the title
compound as a yellow oil (692 mg, 2.10 mmol, 65% yield). '"H NMR (400 MHz, CDCI5) §: 8.36
(s, 1H), 8.30 (dd, J =4.9, 1.8 Hz, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.72 (dd, J = 7.7, 2.0 Hz, 1H),
7.49 —7.43 (m, 1H), 7.19 (dd, J = 7.6, 4.8 Hz, 1H), 6.51 (dd, J = 8.7, 1.7 Hz, 1H), 2.36 (s, 3H),
1.83 (s, 6H); °C NMR (101 MHz, CDCls) &: 152.48, 148.57, 147.11, 143.42, 141.51, 131.20,
126.92, 121.97, 119.95, 117.93, 116.31, 99.29, 78.80, 48.28, 30.32, 22.39. IR vmax/cm™ (film):
3352,2984, 2938, 2360, 2342, 2253, 1618, 1578, 1491, 1394, 1335, 1270, 1236, 1215, 1188, 1079,
908, 754, 730. m/z HRMS (DART): [M+H]" calculated for C17H7CIN3O>* = 330.1004, found

330.1011.
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5-methyl-N-(2-methyl-4-(2-phenylpyridin-3-yl)but-3-yn-2-yl)-2-nitroaniline

H NO,
Me N

4 Me
AN

|/ Me
N

To a mixture of N-(4-(2-chloropyridin-3-yl)-2-methylbut-3-yn-2-yl)-5-methyl-2-nitroaniline (241
mg, 0.73 mmol), phenylboronic acid (98 mg, 0.80 mmol), Pd(PPh3)s (85 mg, 0.073 mmol) and
Na,COs (164 mg, 1.55 mmol) was added toluene (6 mL) and EtOH (6 mL). The reaction was
heated to 110 °C for 24 hours. After cooling to room temperature, the reaction was filtered through
celite, EtOAc (20 mL) and water (20 mL) was added, the organic layer was separated, dried over
anhydrous MgSOQsy, filtered and concentrated in vacuo. The crude material was purified by flash
chromatography (silica gel: 10% CH>Cl in hexanes) to provide the title compound as a yellow oil
(252 mg, 0.678 mmol, 93% yield). '"H NMR (400 MHz, CDCls) &: 8.63 (d, 1H), 8.32 (s, 1H), 8.06
(d, J=8.8 Hz, 1H), 7.88 (dd, J = 6.7, 2.9 Hz, 2H), 7.78 (dd, J = 7.8, 1.8 Hz, 1H), 7.39 — 7.29 (m,
3H), 7.21 (dd, J = 7.8, 4.8 Hz, 1H), 7.15 (s, 1H), 6.52 — 6.39 (m, 1H), 2.13 (s, 3H), 1.73 (s, 6H);
3C NMR (101 MHz, CDCls) 8: 159.97, 148.89, 146.99, 143.57, 140.99, 139.26, 131.05, 129.21,
129.08, 127.89, 126.93, 121.46, 117.73, 117.32, 116.14, 96.73, 81.84, 48.30, 30.18, 22.29. IR
vmax/em’ (film): 3351, 3058, 2980, 2932, 2360, 2342, 1618, 1578, 1490, 1422, 1334, 1265, 1237,
1186, 1077, 743. m/z HRMS (DART): [M+H]* calculated for C23H22N302* = 372.1707, found

372.1719.
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5-(4-(benzyloxy)-3-fluorophenyl)pyrimidine

Ao

]

A
To a mixture of 5-bromopyrimidine (795 mg, 5.0 mmol), (4-(benzyloxy)-3-fluorophenyl)boronic
acid (1.85 g, 7.5 mmol), Pd/C (10 % w/w) (160 mg, 0.15 mmol) and K>CO3 (691 mg, 5.0 mmol)
was added EtOH (30 mL) and H>O (10 mL). The reaction was heated to 80 °C for 18 hours. After
cooling to room temperature, the reaction was filtered through celite, EtOAc (50 mL) and water
(50 mL) was added and extracted with EtOAc (3 x 50 mL). The combined organic layer was dried
over anhydrous MgSOy, filtered and concentrated in vacuo. The crude material was purified by
flash chromatography (silica gel: 30% EtOAc in hexanes) to provide the title compound as a white
solid (1.135 g, 4.05 mmol, 81 % yield). m.p. 103-105 °C; '"H NMR (400 MHz, CDCl5) &: 9.18 (s,
1H), 8.89 (s, 2H), 7.49 — 7.44 (m, 2H), 7.41 (ddd, J = 8.0, 6.9, 1.1 Hz, 2H), 7.38 — 7.34 (m, 1H),
7.33(d, J=2.2 Hz, 1H), 7.29 — 7.24 (m, 2H), 7.13 (t, J = 8.4 Hz, 1H), 5.22 (s, 2H); >*C NMR (101
MHz, CDCI3) o: 157.54, 154.64, 152.18, 147.67 (d, J = 10.7 Hz), 136.17, 133.12 (d, / = 1.9 Hz),
128.87, 128.47, 127.70 (d, J = 6.8 Hz), 127.55, 122.99 (d, J = 3.6 Hz), 116.45 (d, J = 2.4 Hz),
114.99 (d, J = 19.6 Hz), 71.52; '°F NMR (377 MHz, CDCl3) &: -131.81 (dd, J = 11.8, 8.4 Hz). IR
vmax/em’ (film): 3050, 3035, 2941, 2883, 2578, 2360, 2341, 1618, 1585, 1559, 1522, 1417, 1403,
1389, 1302, 1275, 1257, 1203, 1146, 1052, 1012, 1001, 898, 873, 855, 791, 749, 722, 699, 635,

625. m/z HRMS (DART): [M+H]* calculated for C7H14FN2O* = 281.1085, found 281.1105.
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5-((5-bromopyridin-2-yl)methyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine

[—

S 7 Y% Br
Py

N

An oven-dried 200 mL round bottom flask was charged with 5-bromopicolinaldehyde (2.68 g,
14.4 mmol), 4,5,6,7-tetrahydrothieno[3,2-c]pyridine (2.20 g, 15.8 mmol), and sodium
triacetoxyhydroborate (6.1 g, 28.8 mmol). The flask was subjected to three cycles of
vacuum/nitrogen backfill. DCM (72 mL) was added to the reaction flask along with glacial AcOH
(1.65 mL). After 19 hours at room temperature, the reaction was quenched with a saturated aqueous
solution of NH4Cl (30 mL), diluted with CH2Cl,, and the organic layer was separated. The aqueous
layer was basified with a saturated aqueous solution of NaHCO3 and extracted with CH2Cl2 (2 x
20 mL). The combined organic extracts were dried (MgSOs), filtered and concentrated in vacuo.
The crude material was purified by flash chromatography (silica gel: 40 % EtOAc in hexanes) to
provide the title compound as a white solid (4.17 g, 13.5 mmol, 94 % yield). mp 88-89 °C; 'H
NMR (400 MHz, CDCls) &: 8.62 (d, J = 2.2 Hz, 1H), 7.79 (dd, J = 8.3, 2.4 Hz, 1H), 743 (d, J =
8.3 Hz, 1H), 7.07 (d, J = 5.1 Hz, 1H), 6.69 (d, J = 5.1 Hz, 1H), 3.83 (s, 2H), 3.62 (s, 2H), 2.95 —
2.88 (m, 2H), 2.88 —2.83 (m, 2H); *C NMR (100 MHz, CDCls) : 157.67, 150.33, 139.28, 133.71,
133.42, 125.30, 124.54, 122.88, 119.22, 63.16, 53.31, 50.98, 25.57. IR vma/cm’ (film): 2962,
2901, 2826, 2771, 2360, 2342, 1573, 1468, 1446, 1376, 1365, 1320, 1171, 1108, 1086, 1001, 982,

843, 703, 652. m/z HRMS (DART): [M+H]" calculated for Ci13H14BrN2S* = 309.0056, found

309.0041.
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5-(6-((6,7-dihydrothieno[3,2-c]pyridin-S(4H)-yl)methyl)pyridin-3-yl)furan-2-carbaldehyde

0
A\
= 0
g \
Y P
Py
N

An oven dried 200 mL pressure tube was charged with 5-((5-bromopyridin-2-yl)methyl)-4,5,6,7-
tetrahydrothieno[3,2-c]pyridine (4.02 g, 13.0 mmol), (5-formylfuran-2-yl)boronic acid (1.65 g,
11.8 mmol), K2CO3 (4.89 g, 35.4 mmol), PA(OAc)2 (132 mg, 0.59 mmol), triphenylphosphine (619
mg, 2.36 mmol) and subjected to three cycles of vacuum/nitrogen backfill. H2O (43 mL) and
dimethoxyethane (41 mL) were charged to the tube. The mixture was heated at 85 °C for 18 hours
then diluted with CH>Clo. The organic layer was separated, and the aqueous layer was extracted
2x with CH2Cl,. The combined organic layers were dried (MgS0Os), filtered, and concentrated in
vacuo. The crude material was purified by flash chromatography (silica gel: 2 % MeOH in
CH>CD) to provide the title compound as a slightly impure white solid. Further purification was
achieved by dissolving the compound in CH>Cl> and adding an excess of 1M HCI. The aqueous
phase was extracted with CH,Cly, separated, and treated with sat. aq. NaHCOs. The aqueous phase
was then extracted with CH2Cl> and the combined organic layers were washed with brine then
dried (MgSOs) and concentrated in vacuo to afford the title compound as pure white solid (1.45 g,
4.5 mmol, 38 % yield). "HNMR (400 MHz, CDCls) 8: 9.68 (s, 1H), 8.99 (d, J = 2.1 Hz, 1H), 8.10
(dd, J =8.2,2.3 Hz, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.34 (d, J = 3.7 Hz, 1H), 7.08 (d, J = 5.1 Hz,
1H), 6.92 (d, J = 3.7 Hz, 1H), 6.70 (d, J = 5.1 Hz, 1H), 3.94 (s, 2H), 3.68 (s, 2H), 3.00 — 2.83 (m,
4H); >C NMR (100 MHz, CDCls) &: 177.43, 160.18, 156.71, 152.67, 146.18, 133.69, 133.42,

133.03, 125.31, 123.96, 123.28, 122.91, 108.62, 63.55, 53.36, 51.04, 25.55. IR vma/cm™ (film):
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3109, 2913, 2813, 2360, 2342, 1690, 1600, 1584, 1519, 1467, 1403, 1376, 1357, 1340, 1259, 1019,
965, 797, 768, 754, 700, 637. m/z HRMS (DART): [M+H]* calculated for CigH17N202S™ =

325.1005, found 325.1014.

5-(6-((6,7-dihydrothieno[3,2-c]pyridin-S(4H)-yl)methyl)pyridin-3-yl)furan-2-carbaldehyde

Me
N
~

An oven-dried 100 mL round bottom flask was charged with 5-(6-((6,7-dihydrothieno[3,2-
c]pyridin-5(4H)-yl)methyl)pyridin-3-yl)furan-2-carbaldehyde (0.973 g, 3.00 mmol), cis-2,6,-
dimethylmorpholine (0.406 mL, 3.30 mmol), and sodium triacetoxyhydroborate (1.27 g, 6.00
mmol). The flask was subjected to three cycles of vacuum/nitrogen backfill. DCM (15 mL) was
added to the reaction flask along with glacial AcOH (0.343 mL). After 3 hours stirring at room
temperature, the reaction was quenched with a saturated aqueous solution of NH4Cl (10 mL),
diluted with CH>Cly, and the organic layer was separated. The aqueous layer was basified with a
saturated aqueous solution of NaHCOs3 and extracted with CH>Cl> (2 x 10 mL). The combined
organic extracts were dried (MgSQs), filtered and concentrated in vacuo. The crude material was
purified by flash chromatography (silica gel, gradient elution: 90 % EtOAc in hexanes to 5 %
MeOH in CH>Cl,) to provide the title compound as an amber oil (1.17 g, 2.8 mmol, 92 % yield).
"H NMR (400 MHz, CDCl5) &: 8.85 (d, J = 1.9 Hz, 1H), 7.91 (dd, J = 8.1, 2.3 Hz, 1H), 7.52 (d, J
= 8.1 Hz, 1H), 7.07 (d, J = 5.1 Hz, 1H), 6.68 (dd, J = 10.6, 4.2 Hz, 2H), 6.33 (d, / = 3.3 Hz, 1H),

3.89 (s, 2H), 3.71 (ddq, J = 12.5, 6.3, 3.1, 1.7 Hz, 2H), 3.63 (d, J = 17.5 Hz, 4H), 2.99 — 2.83 (m,
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4H), 2.78 (d, J = 10.5 Hz, 2H), 1.86 (t, J = 10.8 Hz, 2H), 1.15 (d, J = 6.3 Hz, 6H); '*C NMR (100
MHz, CDCls) 6: 157.28, 152.06, 150.82, 144.70, 133.73, 133.34, 131.39, 125.48, 125.21, 122.94,
122.66,111.19, 106.81, 71.63, 63.52, 58.94, 54.81, 53.20, 50.85, 25.47, 19.15. IR vmax/cm’* (film):
2970,2929, 2811, 2771, 2360, 2342, 1591, 1566, 1477, 1453, 1397, 1374, 1300, 1197, 1141, 1082,
1065, 1018, 981, 837, 788, 733, 700. m/z HRMS (DART): [M+H]" calculated for C24H30N302S™

=424.2053, found 424.2062.

A1.3 Preparation of Phosphines

Di-p-tolylphosphine oxide

TU=0

An oven-dried 200 mL round bottom flask was charged with 4-bromotoluene (11.4 g, 66.6 mmol)
and 70 mL THF. The resulting solution was added dropwise to a separate oven-dried 200 mL
round bottom flask containing magnesium turnings (1.70 g, 70 mmol) at 0 °C. Upon completion
of the addition, the flask was allowed to warm to room temperature. After stirring for 2 hours at
room temperature the mixture was cooled with an ice bath and a solution of diethyl phosphite (2.6
mL, 20 mmol) in 7.0 mL THF was added. The mixture was allowed to warm to room temperature
and stirred for two hours. Subsequently 60 mL 0.1 N HCI was added drop wise over a period of 5
minutes at 0 °C, followed by addition of 60 mL methyl tert-butyl ether (MTBE) and stirring for
further 5 minutes. The upper organic phase was decanted from the formed gel. 60 mL. CH>Cl, was
added to the remaining gel and the mixture agitated well for additional 5 minutes. The resultant
mixture was then filtered through a frit equipped with Celite. After washing the Celite with CH>Cl>

(2 x 60 mL) the organic phases were combined, dried over Na>SO4 and the solvent was removed
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in vacuo. The crude product was purified by flash chromatography (silica gel: 90 % EtOAc in
Hexanes) to give the product di-p-tolylphosphine oxide as a white solid (4.35 g, 18.9 mmol, 94 %
yield). 'H NMR (400 MHz, CDCls) &: 8.63 (d, ] = 480 Hz, 1H), 7.57 (dd, J = 13.5, 7.9 Hz, 4H),
7.29 (dd, J = 8.0, 2.7 Hz, 4H), 2.41 (s, 6H); 1*C NMR (100 MHz, CDCl5) &: 143.04 (d, J = 3.2 Hz),
130.70 (d, J = 11.9 Hz), 129.56 (d, J = 13.4 Hz), 128.32 (d, ] = 104.0 Hz), 21.64 (d, J = 1.6 Hz);
3P NMR (162 MHz, CDCI3) §: 21.53. The spectroscopic data is in agreement with the previous

reported synthesis.?

Bis(4-methoxyphenyl)phosphine oxide

(0]
Il
P
MeO OMe

An oven-dried 200 mL round bottom flask was charged with 4-bromoanisole (8.3 mL, 66.6 mmol)
and 70 mL THF. The resulting solution was added dropwise to a separate oven-dried 200 mL
round bottom flask containing magnesium turnings (1.70 g, 70 mmol) at 0 °C. Upon completion
of the addition, the flask was allowed to warm to room temperature. After stirring for 2 hours at
room temperature the mixture was cooled with an ice bath and a solution of diethyl phosphite (2.6
mL, 20 mmol) in 7.0 mL. THF was added. The mixture was allowed to warm to room temperature
and stirred for two hours. Subsequently 60 mL 0.1 N HCI was added drop wise over a period of 5
minutes at 0 °C, followed by addition of 60 mL methyl tert-butyl ether (MTBE) and stirring for
further 5 minutes. The upper organic phase was decanted from the formed gel. 60 mL. CH>Cl, was
added to the remaining gel and the mixture agitated well for additional 5 minutes. The resultant
mixture was then filtered through a frit equipped with Celite. After washing the Celite with CH>Cl>

(2 x 60 mL) the organic phases were combined, dried over Na>SO4 and the solvent was removed
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in vacuo. The crude product was purified by flash chromatography (silica gel: 1 % MeOH in
EtOAc) to give the product bis(4-methoxyphenyl)phosphine oxide as a white solid (4.72 g, 18.0
mmol, 90 % yield). 'H NMR (400 MHz, CDCls) &: 8.03 (d, J = 476 Hz, 1H), 7.61 (dd, J = 13.2,
8.6 Hz, 4H), 6.99 (dd, ] = 8.7, 2.3 Hz, 4H), 3.85 (s, 6H); 13C NMR (100 MHz, CDCl;) §: 162.88
(d,J=2.8 Hz), 132.63 (d, J = 12.9 Hz), 123.01 (d, J = 107.9 Hz), 114.43 (d, J = 13.9 Hz), 55.36;
3P NMR (162 MHz, CDCI3) §: 20.56. The spectroscopic data is in agreement with the previous

reported synthesis.?

Bis(4-(dimethylamino)phenyl)phosphine oxide

)
[l

P.
ISR
Me,N NMe,

An oven-dried 100 mL round bottom flask was charged with 4-bromo-N,N-dimethylaniline (4.00
g, 20.00 mmol) and 20 mL THF. The resulting solution was added dropwise to a separate oven-
dried 100 mL round bottom flask containing magnesium turnings (504 mg, 21.00 mmol) at 0 °C.
After stirring for four hours at room temperature, the mixture was cooled with an ice bath and a
solution of diethyl phosphite (773 pL, 6.00 mmol) in 2 mL. THF was added. The mixture was
allowed to warm to room temperature and stirred for two hours. Subsequently 16 mL 0.1 N HCl
was added drop wise over a period of 5 minutes at 0 °C, followed by addition of 16 mL methyl
tert-butyl ether (MTBE) and stirring for further 5 minutes. The upper organic phase was decanted
from the formed gel. 20 mL CH>Cl, were added to the remaining gel and the mixture agitated well
for additional 5 minutes. The resultant mixture was then filtered through a frit equipped with
Celite. After washing the Celite with CH>Cl» (2 x 30 mL) the organic phases were combined, dried

over NaxSO4 and the solvent was removed in vacuo. The crude product was purified by flash
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chromatography (silica gel: EtOAc to 2% MeOH in EtOAc) to give the product bis(4-
(dimethylamino)phenyl)phosphine oxide as a white solid (1.38 g, 16 .00mmol, 80% yield). 'H
NMR (400 MHz, CDCl) 6: 7.97 (d, J = 468 Hz, 1H), 7.50 (dd, J =13.0, 8.8 Hz, 4H), 6.71 (dd, J
= 8.9, 2.2 Hz, 4H), 3.01 (s, 12H); '*C NMR (100 MHz, CDCls) §: 152.64 (d, J = 2.4 Hz), 132.21
(d,J=12.6 Hz), 117.18 (d, J = 111.9 Hz), 111.41 (d, J = 13.4 Hz), 39.96; *'P NMR (162 MHz,

CDCls) 8: 22.11. The spectroscopic data is in agreement with previous reported synthesis.>

Bis(4-(pyrrolidin-1-yl)phenyl)phosphine oxide

@Q QD

An oven-dried 500 mL round bottom flask was charged with 1-(4-bromophenyl)pyrrolidine (31.0

=0

I U

g, 137 mmol) and 140 mL THF. The resulting solution was added dropwise to a separate oven-
dried 500 mL round bottom flask containing magnesium turnings (3.51 g, 144 mmol) at 0 °C.
Upon completion of the addition, the flask was allowed to warm to room temperature. After
stirring for 2 hours at room temperature the mixture was cooled with an ice bath and a solution of
diethyl phosphite (5.31 mL, 41.2 mmol) in 14.0 mL THF was added. The mixture was allowed to
warm to room temperature and stirred for two hours. Subsequently 140 mL 0.1 N HCI was added
drop wise over a period of 5 minutes at 0 °C, followed by addition of 140 mL methyl tert-butyl
ether (MTBE) and stirring for further 5 minutes. The upper organic phase was decanted from the
formed gel. 140 mL CH>Cl> was added to the remaining gel and the mixture agitated well for
additional 5 minutes. The resultant mixture was then filtered through a frit equipped with Celite.

After washing the Celite with CH>Cl» (2 x 100 mL) the organic phases were combined, dried over
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Na;SO4 and the solvent was removed in vacuo. The crude product was purified by flash
chromatography (silica gel: 3 % MeOH in CH>Cl) to give the product bis(4-(pyrrolidin-1-
yl)phenyl)phosphine oxide as a white solid (11.9 g, 34.8 mmol, 84 % yield). mp 176-178 °C; 'H
NMR (400 MHz, CDCl3) 6: 7.95 (d, J = 468.6 Hz, 1H), 7.48 (dd, J = 13.0, 8.7 Hz, 4H), 6.56 (dd,
J =8.8,2.3 Hz, 4H), 3.40 — 3.20 (m, 8H), 2.11 — 1.92 (m, 8H); 3*C NMR (101 MHz, CDCI;) &:
150.27 (d, J=2.3 Hz), 132.50 (d, /= 12.9 Hz), 116.72 (d, /= 112.6 Hz), 111.45 (d, J = 13.6 Hz),
47.57,25.56;3'P NMR (162 MHz, CDCl3) &: 22.61. IR vmax/cm’ (film): 2953, 2850, 2270, 1594,
1542, 1482, 1459, 1385, 1283, 1175, 1125, 1003, 961, 927, 802, 708. m/z HRMS (DART): [M+H]*

calculated for CooH26N2OP* = 341.1777, found 341.1769.

(Difluoromethyl)di-p-tolylphosphine oxide

Prepared according to a previous report.> An oven-dried 300 mL round bottom flask was charged
with di-p-tolylphosphine oxide (3.45 g, 15 mmol) and K>COs (10.4 g, 75 mmol) and subjected to
three cycles of vacuum/nitrogen backfill. CH>Cl, (30 mL) and H>O (90 mL) were added and the
mixture was stirred until all solids dissolved. The flask was cooled to 0 °C and a solution of
bromodifluoromethyl)trimethylsilane (6.92 mL, 45 mmol) in CH>Cl, (15 mL) was added. After
being stirred at O °C for 16 h, the reaction was quenched by adding water (150 mL), followed by
extraction with EtOAc (2 x 100 mL). The organic layers were combined and dried over anhydrous

MgSOy4 and filtered. After removal of the solvents in vacuo, the crude material was purified by
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flash chromatography (silica gel: 50 % EtOAc in petroleum ether) to provide the title compound
as a white solid (2.92 g, 10.4 mmol, 69 % yield). mp 127-128 °C; '"H NMR (400 MHz, CDCl) o:
7.75 (dd, J = 11.6, 8.0 Hz, 4H), 7.35 (dd, J = 7.9, 2.5 Hz, 4H), 6.29 (td, J = 49.2, 22.0 Hz, 1H),
2.44 (s, 6H); >*C NMR (100 MHz, CDCI3) &: 144.20 (d, J = 2.9 Hz), 132.20 (d, J = 10.0 Hz),
129.80 (d, J = 12.7 Hz), 123.45 (d, J = 104.8 Hz), 115.51 (td, J = 266.1, 104.6 Hz), 21.85 (d, J =
1.1 Hz); F NMR (376 MHz, CDCls) §: -132.25 (dd, J = 69.5, 49.2 Hz); *'P NMR (162 MHz,
CDCl3) 8: 23.08 (t, J = 69.4 Hz). IR vmax/cm’! (film): 3041, 2967, 2360, 2342, 1602, 1384, 1347,
1220, 1200, 1194, 1121, 1080, 1040, 805, 664, 641, 629. m/z HRMS (DART): [M+H]" calculated

for Ci5H16F20P* = 281.0901, found 281.0913.

(Difluoromethyl)bis(4-methoxyphenyl)phosphine oxide

O

Il
MeO P
<:> SCF,H

MeO

Prepared according to a modified version of a previous report.* An oven-dried round 100 mL round
bottom flask was charged with bis(4-methoxyphenyl)phosphine oxide (13.1 g, 50 mmol) and
brought into a nitrogen-filled glovebox. LiH (0.48 g, 60 mmol) and LiCl (8.5 g, 200 mmol) were
added and the flask was brought out of the glovebox and equipped with a nitrogen line. After
cooling to 0 °C, the flask was charged with DMF while stirring and allowed to warm to room
temperature. After 30 minutes, trifluoromethyltrimethylsilane (30 mL, 200 mmol) was added
dropwise at 0 °C, and the reaction mixture was allowed to warm to room temperature. After 20

minutes, the solution was cooled to 0 °C and a 1M solution of aqueous K>CO3 was added slowly,
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and the reaction was allowed to warm to room temperature. After 2 hours, the solution was treated
with 60 mL of 1M HCI and extracted (3x) with EtOAc. The combined organic layers were dried
over anhydrous MgSQy, filtered, and concentrated in vacuo. The crude material was purified by
flash chromatography (silica gel: 25 % EtOAc in CH>Cl,) to provide the title compound as white
solid (12.3 g, 39.5 mmol, 79 % yield). mp 87-89 °C; '"H NMR (400 MHz, CDCls) §: 7.79 (dd, J =
11.1, 8.7 Hz, 4H), 7.04 (dd, J = 8.8, 2.2 Hz, 4H), 6.27 (td, J = 49.3, 21.9 Hz, 1H), 3.87 (s, 6H); 1°C
NMR (100 MHz, CDCls) 6: 163.62 (d, J =2.9 Hz), 134.15 (d, /= 10.9 Hz), 117.74 (d, J = 109.4
Hz), 115.58 (td, J = 265.7, 105.7 Hz), 114.67 (d, J = 13.2 Hz); '’F NMR (376 MHz, CDCl3) §: -
132.26 (dd, J = 69.4, 49.3 Hz); *'P NMR (162 MHz, CDCl5) §: 22.84 (t, J = 69.4 Hz). IR vmax/cm’
U (film): 3012, 2964, 2845, 2360, 2342, 1594, 1567, 1499, 1458, 1411, 1318, 1294, 1256, 1199,
1185, 1123, 1107, 1081, 1024, 828, 815, 800, 670, 640, 575. m/z HRMS (DART): [M+H]*

calculated for C1sH6F203P* = 313.0800, found 313.0812.

4,4'-Phosphanediylbis(N,N-dimethylaniline)

Me,N : : NMe,

A 100 mL flask was equipped with a gas inlet, a bubbler and an addition funnel. The addition

H
P

funnel was charged with a solution of the bis(4-(dimethylamino)phenyl)phosphine oxide (577 mg,
2.00 mmol) in 4 mL THF. This solution was added over a period of 15 minutes to a 1M solution
of DIBAL-H in hexane (6 mL, 6.00 mmol) and stirred for overnight at room temperature (caution:
gas evolution). Subsequently 7 mL freshly degassed MTBE was added via the addition funnel over
ten minutes. After cooling the solution to 0 °C, 4 mL 2N aq. NaOH (freshly degassed) was added

via the addition funnel over 15 minutes (caution: vigorous gas evolution), followed by 2 mL sat.
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aqg. NaCl over 5 minutes. The solution was stirred for additional 5 minutes and warmed to room
temperature. Stirring was subsequently stopped, and the layers allowed to separate. The organic
layer was then transferred via cannula to a second 250 mL flask charged with Na>SO4 (4.00 g).
After stirring for 10 minutes the mixture was filtered under N> atmosphere and the solvent removed
in vacuo yielding 4,4'-phosphanediylbis(N,N-dimethylaniline) as a white solid (495 mg, 1.82
mmol, 91% yield) (caution: the phosphine is air sensitive and stored in glovebox). 'H NMR (400
MHz, CDCls) 6: 7.35 (t,J =7.8 Hz, 4H), 6.67 (d, J=7.1 Hz, 4H), 5.16 (d, J=218.8 Hz, 1H), 2.94
(s, 12H). *'P NMR (162 MHz, CDCls) §: -46.13. The spectroscopic data is in agreement with

previous reported synthesis.>

Diphenyl(trifluoromethyl)phosphane

Prepared according to a previous report.” An oven dried 100 mL round bottom flask was charged
with  CsF,  diethyl ether, and  phenoxydiphenylphosphane  under  nitrogen.
Trifluoromethyltrimethylsilane was added and the reaction was stirred for 16 hours at room
temperature, then the solvent was removed in vacuo. The crude product was purified by flash
chromatography (silica gel: 2 % EtOAc in hexanes) to yield the title compound as a pale-yellow
oil. '"H NMR (400 MHz, CDCls) &: 7.47 (t, ] = 8.2 Hz, 4H), 7.40 — 7.27 (m, 6H); *C NMR (100
MHz, CDCl3) &: 134.09 (d, J = 21.0 Hz), 130.52, 129.54 (dq, J = 9.9, 3.2 Hz), 128.90 (d, ] = 7.9
Hz); *'P NMR (162 MHz, CDCls) 8: 2.54 (q, J = 73.3 Hz); 'F NMR (376 MHz, CDCl;) §: -55.16
(d, J = 73.4 Hz). The spectroscopic data is in agreement with previous reported synthesis.’

Bis(4-methoxyphenyl)(trifluoromethyl)phosphane
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Prepared according to a modified version of a previous report.* An oven-dried 300 mL round
bottom flask was charged with bis(4-methoxyphenyl)phosphine oxide (5.24 g, 20.0 mmol) and 18-
crown-6 (6.34 g, 24.0 mmol) and then subjected to 3 cycles of vacuum/nitrogen backfill. THF
(400 mL) was added and the reaction was cooled to 0 °C. KH (2.65 g, 24.0 mmol, 36% dispersion
in paraffin) was added in one portion, and the reaction was stirred at room temperature for 30
minutes. Trimethyl(trifluoromethyl)silane (12.0 mL, 80.0 mmol) was added dropwise, and the
reaction was stirred at room temperature for 10 minutes. The reaction was quenched with water
(100 mL) and extracted with EtOAc (3 x 100 mL). The combined organic layer was dried over
anhydrous MgSOy, filtered and concentrated in vacuo. The crude material was purified by flash
chromatography (silica gel: 20 % CH2Cl; in hexanes) to provide the title compound as a pale
yellow oil (1.34 g, 4.2 mmol, 21 % yield). '"H NMR (400 MHz, CDCls) &: 7.59 — 7.49 (m, 4H),
7.00 —6.92 (m, 4H), 3.84 (s, 6H); *C NMR (100 MHz, CDCl3) §: 161.54, 135.74 (d, ] = 22.1 Hz),
120.36 (dq, J = 6.7, 3.3 Hz), 114.57 (d, J = 9.1 Hz), 55.24; *'P NMR (162 MHz, CDCls) §: -0.54
(q,J =73.3 Hz); ’"FNMR (377 MHz, CDCl5) : -56.23 (d, ] = 72.8 Hz). The spectroscopic data is

in agreement with previous reported synthesis.®
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4,4'-((Trifluoromethyl)phosphanediyl)bis(N,N-dimethylaniline)

To a stirred solution of 4,4'-phosphanediylbis(N,N-dimethylaniline) (495 mg, 1.82 mmol) and
pyridine (147 pL, 1.82 mmol) in 7.5 mL of DMF was added 2,8-difluoro-S-(trifluoromethyl)
dibenzothiophenium triflate (760 mg, 1.73 mmol) under N> atmosphere. The mixture was stirred
at rt for overnight. After the reaction was completed, the mixture was poured into water (20 mL)
and extracted with EtOAc (3 x 50 mL). The combined organic layer was dried over anhydrous
NaSOq4, filtered and concentrated in vacuo. The crude material was purified by flash
chromatography  (silica  gel: 5% EtOAc in  Hexanes) to give 44'-
((trifluoromethyl)phosphanediyl)bis(V,N-dimethylaniline) as a white powder (366 mg, 1.07 mmol,
62% yield). mp 79-82 °C; '"H NMR (400 MHz, CDCI3) &: 7.49 (t, J = 8.5 Hz, 4H), 6.72 (dd, J =
1.2, 9.0 Hz, 4H), 2.99 (s, 12H); *C NMR (100 MHz, CDCl3) &: 151.68, 135.54 (d, J = 22.3 Hz),
131.65 (dq, J=33.0,319.9 Hz), 114.89, 112.21 (d, J = 8.8 Hz), 40.11; '’FNMR (376 MHz, CDCl5)
§: -56.54 (d, J = 71.4 Hz); *'P NMR (162 MHz, CDCl3) &: -1.02 (q, J = 71.3 Hz); IR vmad/cm’!
(film): 3087, 2895, 2820, 1593, 1544, 1513, 1481, 1443, 1365, 1230, 1199, 1176, 1144, 1100,
1078, 999, 946, 800; m/z HRMS (DART): [M+H]" calculated for C17H21FsNoP* = 341.1389, found

341.1360.
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1,1'-(((Trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine

@0 Q“Q

Prepared according to a modified version of a previous report.* An oven-dried 300 mL round
bottom flask was charged with bis(4-(pyrrolidin-1-yl)phenyl)phosphine oxide (6.81 g, 20.0 mmol)
and 18-crown-6 (6.34 g, 24.0 mmol) and then subjected to 3 cycles of vacuum/nitrogen backfill.
THF (136 mL) was added and the reaction was cooled to 0 °C. KHMDS (1.0 M in THF) (24 mL,
24.0 mmol) was added dropwise, and the reaction was stirred at room temperature for 30 minutes.
Trimethyl(trifluoromethyl)silane (11.82 mL, 80.0 mmol) was added dropwise, and the reaction
was stirred at room temperature for 10 minutes. The reaction was quenched with water (100 mL)
and extracted with EtOAc (3 x 100 mL). The combined organic layer was dried over anhydrous
MgSOs, filtered and concentrated in vacuo. The crude material was purified by flash
chromatography (silica gel: 20 % CH2Cl; in hexanes) to provide the title compound as a peach
solid (5.08 g, 12.9 mmol, 65 % yield). m.p. 163-165 °C; 'H NMR (400 MHz, CDCls) &: 7.48 (t, J
= 8.4 Hz, 4H), 6.58 (d, J = 8.3 Hz, 4H), 3.38 — 3.22 (m, 8H), 2.07 — 1.94 (m, 8H); '*C NMR (101
MHz, CDCls) &: 149.13, 135.66 (d, J = 22.5 Hz), 113.82 — 113.51 (m), 47.56, 25.62; 3'P NMR
(162 MHz, CDCl3) &: -0.42 (q, J = 71.3 Hz); ’F NMR (376 MHz, CDCls) &: -56.83 (d, J = 71.4
Hz). IR vmax/cm’! (film): 2974, 2847, 1594, 1543, 1511, 1484, 1460, 1381, 1277, 1148, 1100, 1084,
1000, 962, 803, 716, 698. m/z HRMS (DART): [M+H]" calculated for C21HasF3NoP* = 393.1702,

found 393.1702.

129



1,1'-(((Perfluoroethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine

@Q QD

Prepared according to a modified version of a previous report.* An oven-dried 300 mL round
bottom flask was charged with bis(4-(pyrrolidin-1-yl)phenyl)phosphine oxide (681 mg, 2.0 mmol)
and 18-crown-6 (634 mg, 2.4 mmol) and then subjected to 3 cycles of vacuum/nitrogen backfill.
THF (13.6 mL) was added and the reaction was cooled to 0 °C. KHMDS (1.0 M in THF) (2.4 mL,
2.4 mmol) was added dropwise, and the reaction was stirred at room temperature for 30 minutes.
Trimethyl(perfluoroethyl)silane (1.41 mL, 8.0 mmol) was added dropwise, and the reaction was
stirred at room temperature for 10 minutes. The reaction was quenched with water (20 mL) and
extracted with EtOAc (3 x 50 mL). The combined organic layer was dried over anhydrous MgSOs,
filtered and concentrated in vacuo. The crude material was purified by flash chromatography
(silica gel: 20 % CH2Clz in hexanes) to provide the title compound as a yellow solid (93 mg, 0.210
mmol, 11 % yield). m.p. 149-150 °C; '"H NMR (400 MHz, CDCls) &: 7.59 (t, J = 8.6 Hz, 4H), 6.70
—6.50 (m, 4H), 3.43 —3.22 (m, 8H), 2.09 — 1.96 (m, 8H); *C NMR (101 MHz, CDCls) &: 149.23,
136.51 (d, J=24.3 Hz), 122.37-119.90 (m), 119.32 - 118.33 (m), 112.60 (q, / =4.0 Hz), 111.77
(d, J = 9.8 Hz), 47.48, 25.59;*'P NMR (162 MHz, CDCl5) §: -4.89 (td, J = 56.5, 17.1 Hz); '°F
NMR (377 MHz, CDCl5) 6: -80.51 (dt, J=17.2, 3.4 Hz), -113.74 (dq, J = 56.5, 3.4 Hz). IR 0max/cm”
! (film): 2847, 1593, 1543, 1510, 1484, 1384, 1323, 1279, 1248, 1229, 1187, 1098, 1077, 947, 809,
742, 714, 699. m/z HRMS (DART): [M+H]" calculated for Ca2HasFsNoP* = 443.1670, found

443.1689.
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(Difluoromethyl)diphenylphosphane

An oven-dried 300 mL round bottom flask was charged with LiBF4 (1.12 g, 12.0 mmol), LiH (95
mg, 12.0 mmol), DMF (50 mL) and then subjected to 3 cycles of vacuum/nitrogen backfill. The
reaction was cooled to 0 °C, then diphenylphosphane (1.74 mL, 10.0 mmol) was added and the
reaction was stirred for 5 minutes. Trimethyl(trifluoromethyl)silane (7.4 mL, 50.0 mmol) was
added, and the reaction was stirred at room temperature for 24 hours. TBAF (1 M in THF) (40 mL,
40 mmol) was added, and the reaction was stirred at room temperature for 10 minutes. The
reaction was quenched with water (100 mL) and extracted with EtOAc (2 x 100 mL). The
combined organic layer was washed with water (3 x 200 mL) and brine (200 mL), dried over
anhydrous MgSOQs, filtered and concentrated in vacuo. The crude material was purified by flash
chromatography (silica gel: 100 % hexanes) to provide the title compound as a colorless oil (1.075
g, 4.55 mmol, 46 % yield). '"H NMR (400 MHz, CDCls) &: 7.63 — 7.52 (m, 4H), 7.51 — 7.39 (m,
6H), 6.55 (td, J = 51.7, 14.0 Hz, 1H); 3*C NMR (101 MHz, CDCls) § 133.92 (d, J = 18.9 Hz),
131.41 (dt, J = 10.3, 5.8 Hz), 130.05, 128.95 (d, J = 7.1 Hz), 122.35 (td, J = 264.7, 12.6 Hz);*'P
NMR (162 MHz, CDCls) §: -10.09 (t, J = 117.4 Hz); "’F NMR (376 MHz, CDCl3) §: -117.40 (dd,
J=117.5,51.7 Hz). IR vma/cm™ (film): 3075, 3056, 2933, 2360, 2342, 1483, 1435, 1307, 1288,
1064, 1022, 734, 692. m/z HRMS (DART): [M+H]* calculated for Ci3Hi2F2P* = 237.0639, found

237.0638.
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(Difluoromethyl)di-p-tolylphosphine

Me
\©\P/CF2H

Me

An oven-dried 300 mL round bottom flask was charged with (difluoromethyl)di-p-tolylphosphine
oxide (2.80 g, 10 mmol) and subjected to 3 cycles of vacuum/nitrogen backfill. Toluene (120 mL)
was added and the flask was cooled to 0 °C. Trichlorosilane (4.04 mL, 40 mmol) and TfOH (0.132
mL, 1.5 mmol) were added and the reaction was immediately warmed to 70 °C. After 22 h, the
reaction was quenched with saturated aqueous sodium carbonate (500 mL) at O °C while stirring
vigorously. The mixture was allowed to warm to room temperature and filtered through a pad of
celite, rinsing liberally with EtOAc. The organic layer was separated and dried with anhydrous
MgSO4, filtered, and concentrated in vacuo. The crude material was purified by flash
chromatography (silica gel: 10 % EtOAc in hexanes) to provide the title compound as a colorless
oil (2.28 g, 8.6 mmol, 86 % yield). 'H NMR (400 MHz, CDCls) §: 7.44 (t, J = 7.8 Hz, 4H), 7.28
—7.21 (m, 4H), 6.49 (td, J = 51.9, 13.9 Hz, 1H), 2.40 (s, 6H); '*C NMR (100 MHz, CDCls) &:
140.20, 133.90 (d, J = 19.2 Hz), 129.75 (d, J = 7.4 Hz), 128.00 (dt, J = 8.9, 5.8 Hz), 122.56 (td, J
= 264.6, 12.7 Hz), 21.48; "’F NMR (376 MHz, CDCls) §: -117.62 (dd, J = 117.5, 51.9 Hz); *'P
NMR (162 MHz, CDCl3) §: -11.58 (t, J = 117.5 Hz). IR vmax/cm™ (film): 3073, 3019, 2922, 2866,
2361, 2342, 1599, 1498, 1448, 1398, 1307, 1287, 1188, 1094, 1065, 1019, 804, 627. m/z HRMS

(DART): [M+H]" calculated for CisHisF2P* = 265.0952, found 265.0968.
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(Difluoromethyl)bis(4-methoxyphenyl)phosphine

MeO
\©\P/CF2H

OMe

An oven-dried 2 L round bottom flask was charged with (difluoromethyl)bis(4-
methoxyphenyl)phosphine oxide (20.6 g, 66 mmol) and subjected to 3 cycles of vacuum/nitrogen
backfill. Toluene (800 mL) was added and the flask was cooled to O °C. Trichlorosilane (26.7 mL,
264 mmol) and TfOH (0.874 mL, 9.9 mmol) were added and the reaction was immediately warmed
to 70 °C. After 22 h, the reaction was quenched with saturated aqueous sodium carbonate (1 L) at
0 °C while stirring vigorously. The mixture was allowed to warm to room temperature and filtered
through a pad of celite, rinsing liberally with EtOAc. The organic layer was separated and dried
with anhydrous MgSO4, filtered, and concentrated in vacuo. The crude material was purified by
flash chromatography (silica gel: 7.5 % EtOAc in hexanes) to provide the title compound as a
white solid (13.8 g, 46.5 mmol, 70 % yield). mp 34-35 °C; 'H NMR (400 MHz, CDCl;) &: 7.46
(tt, J = 7.5, 2.3 Hz, 4H), 7.01 — 6.85 (m, 4H), 6.45 (td, J = 51.9, 14.9 Hz, 1H), 3.83 (s, 6H). 1°C
NMR (100 MHz, CDCls) 6: 161.21, 135.48 (d, J = 20.6 Hz), 122.59 (td, J = 264.8, 13.5 Hz),
122.17 (q, J = 6.0 Hz), 114.65 (d, J = 8.1 Hz), 55.32; ’F NMR (376 MHz, CDCl;) &: -118.06 (dd,
J=116.0, 51.9 Hz); *'P NMR (162 MHz, CDCl;) &: -12.74 (t, J = 116.0 Hz). IR vmax/cm™ (film):
3012,2969, 2947, 2932, 2840, 2361, 2342, 1590, 1568, 1497, 1281, 1249, 1217, 1186, 1108, 1095,
1066, 1024, 842, 827, 812, 798. m/z HRMS (DART): [M+H]" calculated for C;sHisF20.P* =

297.0850, found 297.0878.
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A1.4 Trifluoromethylation of Heterocycles

General Procedure A

H CF3
Phosphine, Tf,O; DBU; HOTf
TN > > TN
R_K _ CH,Cl,, -78 °C to rt MeOH/H,0, 0 °C to rt R_K P
N sequential addition N

An oven dried 8 mL vial (< 0.30 mmol scale) or a round bottom flask (> 0.30 mmol scale) equipped
with a stir bar was charged with the heterocycle (1.0 equiv) and 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (1.1 equiv) and placed under a
nitrogen atmosphere (vacuum/nitrogen backfill, 3 cycles). CH2Clz (0.1 M) was added, the reaction
vessel cooled to —78 °C and Tf20 (1.0 equiv) was added dropwise over 5 minutes. The reaction
was stirred for 1 hour before DBU (1.0 equiv) was added dropwise via syringe, the cooling bath
was removed and the reaction warmed to room temperature while stirring (approximately 15-30
minutes). Then, the reaction mixture was cooled to 0 °C, HOTT (1.5 equiv), MeOH (0.2 M) and
H:0 (10 equiv) were added sequentially. The mixture was warmed to room temperature and stirred
for 12 hours. The reaction was quenched with a saturated aqueous solution of NaHCO3 and
extracted with CH2Cl» (3x). The combined organic extracts were washed with a saturated aqueous
solution of brine, dried (Na2SOy), filtered and concentrated in vacuo. The residue was purified by
flash column chromatography under the stated conditions to provide the trifluoromethylated

heterocycle.
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General Procedure B

H CF3
Phosphine, Tf,O; DBU,; NaHCO,
TN > > | X
R_K _ CH,Cl,, -78 °C to rt THF/H,0, rt R_K P
N sequential addition N

An oven dried 8 mL vial (< 0.30 mmol scale) or a round bottom flask (> 0.30 mmol scale) equipped
with a stir bar was charged with the heterocycle (1.0 equiv) and 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (1.1 equiv) and placed under a
nitrogen atmosphere (vacuum/nitrogen backfill, 3 cycles). CH2Clz (0.1 M) was added, the reaction
vessel cooled to —78 °C and Tf20 (1.0 equiv) was added dropwise over 5 minutes. The reaction
was stirred for 1 hour before DBU (1.0 equiv) was added dropwise via syringe, the cooling bath
was removed and the reaction warmed to room temperature while stirring (approximately 15-30
minutes). Then, the mixture was stirred for additional 30 minutes after NaHCO3 (3 equiv), THF
(0.2 M) and H20 (10 equiv) were added sequentially. The reaction was quenched with H>.O and
extracted with CH2Cl» (3x). The combined organic extracts were washed with a saturated aqueous
solution of brine, dried (Na2SOs), filtered and concentrated in vacuo. The residue was purified by
flash column chromatography under the stated conditions to provide the trifluoromethylated

heterocycle.

General Procedure C

H CF3
Phosphine, Tf,O; DBU; HCI, TBAF
X > - X
R— CH,Cl,, 78 °C to rt rt R—
L = 2> Loz
N sequential addition N

An oven dried 8 mL vial (< 0.30 mmol scale) or a round bottom flask (> 0.30 mmol scale) equipped

with a stir bar was charged with the heterocycle (1.0 equiv) and 1,1'-
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(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (1.1 equiv) and placed under a
nitrogen atmosphere (vacuum/nitrogen backfill, 3 cycles). CH2Cl» (0.1 M) was added, the reaction
vessel cooled to —78 °C and Tf20 (1.0 equiv) was added dropwise over 5 minutes. The reaction
was stirred for 1 hour before DBU (1.0 equiv) was added dropwise via syringe, the cooling bath
was removed and the reaction warmed to room temperature while stirring (approximately 15-30
minutes). Then, the reaction mixture was cooled to 0 °C, HOTf (1.5 equiv) and TBAF (1M in
THF, 1 equiv) were added sequentially. The mixture was warmed to room temperature and stirred
for 12 hours. The reaction was quenched with a saturated aqueous solution of NaHCO3 and
extracted with CH2Cl; (3x). The combined organic extracts were washed with a saturated aqueous
solution of brine, dried (Na2SQOy), filtered and concentrated in vacuo. The residue was purified by
flash column chromatography under the stated conditions to provide the trifluoromethylated

heterocycle.

4-(Trifluoromethyl)-2,2'-bipyridine

CF,

N X

N| _—
Prepared according to general procedure A using 2,2'-bipyridine (78 mg, 0.50 mmol), 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55 mmol), T,0
(84 uL, 0.50 mmol), DBU (75 pL, 0.50 mmol), CH>Cl> (§ mL), HOTf (111 pL, 1.25 mmol), MeOH
(2.5 mL) and H>O (90 uL, 5.00 mmol) at 40 °C for 24 hours. The crude material was purified by
flash chromatography (silica gel: 17% EtOAc in hexanes to 33% EtOAc in hexanes) to provide

the title compound as a white solid (83 mg, 0.37 mmol, 74% yield). '"H NMR (400 MHz, CDCls)
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0: 8.83 (d, /=5.0 Hz, 1H), 8.71-8.68 (m, 2H), 8.44 (td, /= 1.2, 7.9 Hz, 1H), 7.84 (dt, /= 1.8, 7.7
Hz, 1H), 7.51 (dd, J = 1.7, 5.1 Hz, 1H), 7.35 (ddd, J = 1.2, 4.8, 7.6 Hz, 1H); *C NMR (100 MHz,
CDClIs) 6: 157.69, 154.81, 150.16, 149.47, 139.39 (q, J = 33.9 Hz), 137.19, 124.60, 123.11 (q, J =
271.6 Hz), 121.40, 119.17 (q, J = 3.5 Hz), 116.98 (q, J = 3.7 Hz); ’F NMR (376 MHz, CDCl3) &:

-64.78. The spectroscopic data is in agreement with previous reported synthesis.’

4'-(Trifluoromethyl)-2,3'-bipyridine

CF, =~

N

B
s
N

Prepared according to general procedure A using 2,3'-bipyridine (78 mg, 0.50 mmol), 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55 mmol), Tf,0
(84 uL, 0.50 mmol), DBU (75 pL, 0.50 mmol), CH>Cl> (§ mL), HOTf (111 pL, 1.25 mmol), MeOH
(2.5 mL) and H20 (90 pL, 5.00 mmol) at rt for 24 hours. The crude material was purified by flash
chromatography (silica gel: 17% EtOAc in hexanes to 33% EtOAc in hexanes) to provide the title
compound as a light-yellow oil (83 mg, 0.37 mmol, 74% yield). '"H NMR (400 MHz, CDCl;) §:
8.83-8.81 (m, 2H), 8.72 (td, J = 1.4, 4.8 Hz, 1H), 7.79 (dt, J = 1.8, 7.8 Hz, 1H), 7.63 (d, /= 5.2
Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.38-7.34 (m, 1H); '3C NMR (100 MHz, CDCls) §: 154.52,
152.45, 150.27, 149.74, 136.45, 135.81 (q, J = 32.3 Hz), 134.18 (q, /= 0.9 Hz), 124.34 (q, /= 2.2
Hz), 123.27, 122.88 (q, J = 273.2 Hz), 119.73 (q, J = 4.8 Hz); '°F NMR (376 MHz, CDCl3) &: -

59.29. The spectroscopic data is in agreement with previous reported synthesis.®
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4-(4-(Trifluoromethyl)pyridin-2-yl)morpholine

CFs

AN

| ~
N N/\l
Lo

Prepared according to general procedure A (except that the reaction was done in a pressure tube),
using 4-(pyridin-2-yl)morpholine (82 mg, 0.50 mmol), THLO (84 pL, 0.50 mmol), 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55 mmol), DBU
(75 pL, 0.50 mmol), CH>Cl> (5 mL), HOTf (68 puL, 0.77 mmol), MeOH (2.5 mL), and H>O (90
uL, 5.00 mmol) at 60 °C for 12 hours. The crude material was purified by flash chromatography
(silica gel: 10% EtOAc in hexanes) to provide the title compound as a colorless oil (19 mg, 0.08
mmol, 16% yield). 'H NMR (400 MHz, CDCls) &: 8.32 (d, J = 5.1 Hz, 1H), 6.82 (d, J = 5.2 Hz,
1H), 6.79 (s, 1H), 3.85 — 3.81 (m , 4H), 3.59 — 3.55 (m, 4H); '*C NMR (100 MHz, CDCls) &:
159.73, 149.37, 139.94 (q, J = 32.9 Hz), 123.30 (q, J = 273.0 Hz), 108.87 (q, J = 3.3 Hz), 102.51
(q, J = 4.4 Hz), 66.75, 45.43; '"F NMR (376 MHz, CDCI3) §: -65.16, IR vma/cm™ (film): 2925,
1610, 1320, 1040, 957, 761, 667, 531. m/z HRMS (DART): [M+H]" calculated for C1oH12F3N.O*

=233.0902, found 233.0898.

3-(4-Fluorophenoxy)-4-(trifluoromethyl)pyridine

Prepared according to general procedure A using 3-(4-fluorophenoxy)pyridine (95 mg, 0.50

mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55
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mmol), TH,0 (84 uL, 0.50 mmol), DBU (75 uL, 0.50 mmol), CH>Cl, (5 mL), HOTf (67 uL, 0.75
mmol), MeOH (2.5 mL) and H>O (90 uL, 5.00 mmol) at 40 °C for 12 hours. The crude material
was purified by flash chromatography (silica gel: 17% EtOAc in hexanes) to provide the title
compound as a light-yellow oil (106 mg, 0.41 mmol, 82% yield). '"H NMR (400 MHz, CDCl;) &:
8.49 (d, J=5.0 Hz, 1H), 8.29 (s, 1H), 7.55 (d, J = 4.9 Hz, 1H), 7.13-7.02 (m, 4H); 3*C NMR (100
MHz, CDCI3) o: 159.80 (d, J =242.7 Hz), 151.56 (d, J = 2.7 Hz), 151.23, 144.49, 141.39, 127.97
(q, J=32.8 Hz), 122.21 (q, J = 272.1 Hz), 121.02 (d, J = 8.4 Hz), 120.44 (q, J = 3.1 Hz), 117.00
(d, J =23.5 Hz); 'FNMR (376 MHz, CDCl3) §: -63.66, -117.55; IR vmax/cm™ (film): 3047, 1599,
1572, 1501, 1489, 1411, 1322, 1290, 1257, 1218, 1181, 1138, 1090, 1069, 1057, 1011, 881, 832,
823, 769, 732, 649, 617; m/z HRMS (DART): [M+H]" calculated for C1oHsF4aNO™ = 258.0537,

found 258.0551.

4-(Trifluoromethyl)-N-(4-(trifluoromethyl)phenyl)nicotinamide

CF,
CF; O /@/
XX N

| H
/
N

Prepared according to general procedure A (except that after Tf,0O added, the reaction mixture was
stirred for 1 hour at —50 °C) using N-(4-(trifluoromethyl)phenyl)nicotinamide (133 mg, 0.50
mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55
mmol), Tf>0 (84 pL, 0.50 mmol), DBU (75 uL, 0.50 mmol), CH2Cl, (20 mL), HOTf (67 uL, 0.75
mmol), MeOH (2.5 mL) and H>O (90 uL, 5.00 mmol) at 40 °C for 72 hours. The crude material
was purified by flash chromatography (silica gel: 33% EtOAc in hexanes) to provide the title

compound as a light-yellow solid (58 mg, 0.18 mmol, 35% yield). mp 167-171 °C; 'H NMR (400
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MHz, CDCl3) &: 8.93 (br s, 2H), 7.88 (s, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.66-7.64 (m, 3H); 1°C
NMR (100 MHz, de-Acetone) 8: 164.61, 153.24, 150.29, 143.05, 135.40 (q, J = 33.3 Hz), 130.86,
127.11-127.07 (m), 126.40 (q, J = 32.3 Hz), 125.35 (q, J = 269.1 Hz), 123.64 (q, J = 272.4 Hz),
121.08-120.92 (m), 120.72-120.53 (m); °F NMR (376 MHz, CDCls) &: -61.24, -62.31; IR
vmadem’ (film): 3255, 1649, 1605, 1548, 1413, 1404, 1317, 1289, 1272, 1190, 1141, 1065, 1048,
1019, 898, 841, 703, 658; m/z HRMS (DART): [M+H]* calculated for C1sHoFsN,O* = 335.0614,

found 335.0621.

5-(Methoxymethyl)-2-(phenylethynyl)-4-(trifluoromethyl)pyridine
CF,

X OMe

=
& N
Ph

Prepared according to general procedure A using 5-(methoxymethyl)-2-(phenylethynyl)pyridine
(112 mg, 0.50 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine
(216 mg, 0.55 mmol), Tf>0 (84 uL, 0.50 mmol), DBU (75 pL, 0.50 mmol), CH>Cl> (5 mL), HOTf
(67 uL, 0.75 mmol), MeOH (2.5 mL) and H2>O (90 uL, 5.00 mmol) at 40 °C for 20 hours. The
crude material was purified by flash chromatography (silica gel: 9% EtOAc in hexanes to 17%
EtOAc in hexanes) to provide the title compound as an off-white solid (117 mg, 0.40 mmol, 80%
yield). mp 65-68 °C; 'H NMR (400 MHz, CDCl3) 8: 8.91 (s, 1H), 7.72 (s, 1H), 7.62-7.60 (m, 2H),
7.42-7.35 (m, 3H), 4.67 (s, 2H), 3.48 (s, 3H); '*C NMR (100 MHz, CDCl3) §: 151.37, 143.72,
135.75 (q, J =32.7 Hz), 132.24, 129.95 (q, J = 1.6 Hz), 129.51, 128.56, 122.81 (q, J = 273.5 Hz),

122.62 (q, J = 5.2 Hz), 121.75, 91.04, 87.71, 68.69 (q, J = 2.5 Hz), 58.98; '°F NMR (376 MHz,

CDCl3) §: -62.62; IR vmax/cm™ (film): 3064, 2984, 2920, 2888, 2825, 2226, 1600, 1496, 1471,
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1458, 1445, 1392, 1299, 1283, 1270, 1204, 1185, 1165, 1136, 1117, 1054, 971, 932, 922, 905,
894, 760, 690, 678; m/z HRMS (DART): [M+H]" calculated for Ci6H13FsNO* = 292.0944, found

292.0973.

4-Fluoro-2-(6-methyl-4-(trifluoromethyl)pyridin-3-yl)isoindoline-1,3-dione

F

Me N
Prepared according to general procedure A (except that after Tf20 added, the reaction mixture was
stirred for 1 hour at —50 °C) using 4-fluoro-2-(6-methylpyridin-3-yl)isoindoline-1,3-dione (128
mg, 0.50 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg,
0.55 mmol), T£,0 (84 pL, 0.50 mmol), DBU (75 pL, 0.50 mmol), CH>Cl» (5 mL), HOTf (67 pL,
0.75 mmol), MeOH (2.5 mL) and H>O (90 pL, 5.00 mmol) at rt for 43 hours. The crude material
was purified by flash chromatography (silica gel: 33% EtOAc in hexanes to 50% EtOAc in
hexanes) to provide the title compound as an off-white solid (141 mg, 0.44 mmol, 87% yield). mp
163-166 °C; '"H NMR (400 MHz, CDCls) &: 8.52 (s, 1H), 7.86-7.78 (m, 2H), 7.58 (s, 1H), 7.49
(dt, J = 1.1, 8.4 Hz, 1H), 2.73 (s, 3H); '*C NMR (100 MHz, CDCl5) §: 165.76 (d, J = 2.9 Hz),
163.45 (d, J = 1.5 Hz), 162.17, 158.05 (d, J = 265.7 Hz), 151.58, 137.51 (d, J/ = 7.7 Hz), 137.21
(q,J=32.4Hz), 133.84 (d, J=1.3 Hz), 123.19 (d, J = 19.4 Hz), 122.21 (q, J =2.0 Hz), 121.86 (q,
J =273.0 Hz), 120.64 (q, J = 4.2 Hz), 120.46 (d, J = 3.8 Hz), 117.74 (d, J = 12.4 Hz), 24.58; °F
NMR (376 MHz, CDCI3) §: -63.14, -110.89; IR vmax/cm’™ (film): 3501, 3083, 1784, 1724, 1664,

1610, 1495, 1479, 1442, 1391, 1294, 1267, 1251, 1216, 1197, 1169, 1135, 1099, 1062, 1040, 968,
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915, 892, 869, 822,794,781, 743,704, 670, 635, 607, 557, m/z HRMS (DART): [M+H]* calculated

for C1sHoF4N>02" = 325.0595, found 325.0621.

Methyl 6-methyl-4-(trifluoromethyl)nicotinate

Me N
Prepared according to general procedure B using methyl 6-methylnicotinate (76 mg, 0.50 mmol),
1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55 mmol),
T£0 (84 pL, 0.50 mmol), DBU (75 pL, 0.50 mmol), CH2Cl> (5 mL), NaHCOs3 (126 mg, 1.50
mmol), THF (2.5 mL) and H20 (90 pL, 5.00 mmol) at rt for 30 minutes. The crude material was
purified by flash chromatography (silica gel: 33% EtOAc in hexanes) to provide the title
compound as a light-yellow solid (92 mg, 0.42 mmol, 84% yield). mp 31-33 °C; 'H NMR (400
MHz, CDCl3) 8: 9.00 (s, 1H), 7.49 (s, 1H), 3.96 (s, 3H), 2.69 (s, 3H); '3*C NMR (100 MHz, CDCl5)
d: 165.19, 163.59, 151.53, 137.10 (q, J = 34.0 Hz), 122.30 (q, J = 1.7 Hz), 122.26 (q, J = 272.8
Hz), 119.96 (q, J = 5.1 Hz), 53.09, 24.90; ’F NMR (376 MHz, CDCl3) &: -61.98; IR max/cm’!
(film): 3453, 3078, 2964, 2858, 1733, 1694, 1602, 1569, 1442, 1384, 1367, 1257, 1232, 1214,
1147, 1125, 1050, 956, 890, 817, 790, 732, 671; m/z HRMS (DART): [M+H]* calculated for

CoHoF3NO>" = 220.0580, found 220.0587.

Methyl 5-cyclopropyl-4-(trifluoromethyl)picolinate

CF3

X

=
N~ Sco,Me
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Prepared according to general procedure A using methyl 5-cyclopropylpicolinate (89 mg, 0.50
mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55
mmol), TH,0 (84 uL, 0.50 mmol), DBU (75 uL, 0.50 mmol), CH>Cl, (5§ mL), HOTf (67 uL, 0.75
mmol), MeOH (2.5 mL) and H>O (90 pL, 5.00 mmol) at rt for 48 hours. The crude material was
purified by flash chromatography (silica gel: 17% EtOAc in hexanes to 33% EtOAc in hexanes)
to provide the title compound as a white solid (115 mg, 0.47 mmol, 93% yield). mp 76-78 °C; 'H
NMR (400 MHz, CDCls) 6: 8.44 (s, 1H), 8.29 (s, 1H), 4.02 (s, 3H), 2.25-2.19 (m, 1H), 1.25-1.20
(m, 2H), 1.00-0.96 (m, 2H); '3C NMR (100 MHz, CDCls) §: 164.73, 148.52, 146.02, 140.71,
138.10 (q, J = 31.9 Hz), 123.05 (q, J = 273.3 Hz), 120.78 (q, J = 5.1 Hz), 53.11, 10.87, 9.67; '°F
NMR (376 MHz, CDCls) §: -62.60; IR vmax/cm™ (film): 3424, 3029, 2963, 1718, 1680, 1601, 1558,
1491, 1456, 1442, 1323, 1310, 1258, 1154, 1124, 1069, 1042, 1017, 986, 923, 909, 879, 863, 806,
788, 754, 746, 669, 629; m/z HRMS (DART): [M+H]" calculated for C11H11F3NO>" = 246.0736,

found 246.0752.

2-Chloro-5-phenyl-4-(trifluoromethyl)pyridine

Cl N
Prepared according to general procedure A using 2-chloro-5-phenylpyridine (95 mg, 0.50 mmol),
1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55 mmol),
T£,0 (84 pL, 0.50 mmol), DBU (75 pL, 0.50 mmol), CH2>Cl> (5 mL), HOTf (67 uL, 0.75 mmol),
THF (2.5 mL) and H>O (90 pL, 5.00 mmol) at 80 °C for 72 hours. The crude material was purified
by flash chromatography (silica gel: 33% CH2Cl: in hexanes) to provide the title compound as a

colorless oil (92 mg, 0.37 mmol, 73% yield). 'H NMR (400 MHz, CDCl;) &: 8.43 (s, 1H), 7.67 (s,
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1H), 7.48-7.43 (m, 3H), 7.34-7.31 (m, 2H); *C NMR (100 MHz, CDCls) §: 152.64, 151.36,
138.59 (q, J = 32.1 Hz), 134.67 (q, J = 1.8 Hz), 134.55, 129.26 (q, J = 1.5 Hz), 128.94, 128.44,
122.19 (q, J = 273.7 Hz), 120.67 (q, J = 5.2 Hz); '°F NMR (376 MHz, CDCls) §: -59.70; IR
vmadem’! (film): 3061, 1586, 1463, 1445, 1303, 1284, 1253, 1215, 1122, 1076, 1035, 885, 840,
775, 757, 699, 684, 665; m/z HRMS (DART): [M+H]* calculated for C12HsCIF3N* = 258.0292,

found 258.0297.

1-(Ethylsulfonyl)-4-(5-methyl-4-(trifluoromethyl)pyridin-2-yl)piperazine

CF,
Me
| X
=
N N/\I
N
I\/ ~S0,Et

Prepared according to general procedure A using 1-(ethylsulfonyl)-4-(5-methylpyridin-2-
ylDpiperazine (135 mg, 0.50 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (216 mg, 0.55 mmol), Tf20 (84 pL, 0.50 mmol), DBU (75 pL, 0.50
mmol), CH>Cl, (5§ mL), HOTf (67 pL, 0.75 mmol), MeOH (2.5 mL) and H>O (90 pL, 5.00 mmol)
at 40 °C for 48 hours. The crude material was purified by flash chromatography (silica gel: 33%
EtOAc in hexanes) to provide the title compound as an off-white solid (28 mg, 0.08 mmol, 16%
yield). mp 103-106 °C; '"H NMR (400 MHz, CDCls) &: 8.11 (s, 1H), 6.83 (s, 1H), 3.65-3.63 (m,
4H), 3.41-3.38 (m, 4H), 2.98 (q, / = 7.4 Hz, 2H), 2.30 (q, / = 1.8 Hz, 3H), 1.38 (t, / = 7.4 Hz, 3H);
13C NMR (100 MHz, CDCls) 8: 157.79, 150.94, 138.26 (q, J = 30.7 Hz), 123.55 (q, J = 273.0 Hz),
119.74 (q, J = 1.6 Hz), 103.46 (d, J = 5.5 Hz), 45.63, 45.54, 44.10, 15.18 (q, J = 1.5 Hz), 7.88; °F
NMR (376 MHz, CDCl3) &: -64.34; IR vmax/cm’™ (film): 2980, 2926, 2870, 1726, 1612, 1499, 1433,

1386, 1354, 1342, 1326, 1303, 1276, 1244, 1219, 1193, 1138, 1117, 1067, 1048, 1005, 957, 937,
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868, 847, 837, 779, 753, 715, 678; m/z HRMS (DART): [M+H]" calculated for C13H19F3N30,S*

= 338.1145, found 338.1149.

2-Benzyl-3-fluoro-4-(trifluoromethyl)pyridine

Prepared according to general procedure B, using 2-benzyl-3-fluoropyridine (94 mg, 0.50 mmol),
Tf20 (84 uL, 0.50 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine
(216 mg, 0.55 mmol), DBU (75 pL, 0.50 mmol), CH2Cl> (5 mL), NaHCOs3 (126 mg, 1.50 mmol),
H>0 (90 pL, 5.00 mmol), THF (2.5 mL) at rt for 30 minutes. The crude material was purified by
flash chromatography (silica gel: 50% EtOAc in hexanes) to provide the title compound as a
colorless oil (75 mg, 0.29 mmol, 58% yield). '"H NMR (400 MHz, CDCl) 6: 8.51 (d, J =4.9 Hz,
1H), 7.39 — 7.21 (m, 6H), 4.27 (d, J = 3.1 Hz, 2H); '*C NMR (100 MHz, CDCls) 8: 153.77 (dq, J
=267.0,2.3 Hz), 151.46 (d, J = 15.0 Hz), 145.54 (d, J =7.2 Hz), 137.51, 129.12, 128.81, 126.94,
125.64 (qd, J = 34.0, 11.1 Hz), 121.62 (q, J = 273.6 Hz), 119.0 (qd, J = 4.0, 1.2 Hz), 38.08; "°F
NMR (376 MHz, CDCls) §: -62.72 (J = 12.5 Hz, 3F), -127.75 — (-127.61) (m, 1F), IR vmax/cm’
(film): 3032, 2932, 1430, 1226, 1149, 907, 728. m/z HRMS (DART): [M+H]" calculated for

Ci3Hi1oFsN* = 256.0749, found 256.0772.
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3-Methyl-2-(thiophen-3-yl)-4-(trifluoromethyl)pyridine

CF4
Me
X
N
N s

Prepared according to general procedure A, using 3-methyl-2-(thiophen-3-yl)pyridine (88 mg,
0.50 mmol), TR0 (&4 pL, 0.50 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (216 mg, 0.55 mmol), DBU (75 pL, 0.50 mmol), CH2Clz (5 mL), HOTf
(68 uL, 0.77 mmol), H2O (90 pL, 5.00 mmol), MeOH (2.5 mL) at rt for 20 hours. The crude
material was purified by flash chromatography (silica gel: 10% EtOAc in hexanes) to provide the
title compound as a colorless oil (72 mg, 0.29 mmol, 59% yield). '"H NMR (400 MHz, CDCI3) §:
8.64 (d, J=5.0Hz, 1H), 7.55 (dd, J = 3.0, 1.3 Hz, 1H), 7.46 (d, J = 5.0 Hz, 1H), 7.43 (dd, J = 5.0,
3.0 Hz, 1H), 7.36 (dd, J = 5.0, 1.3 Hz, 1H), 2.53 (d, J = 1.6 Hz, 3H); 3*C NMR (100 MHz, CDCl5)
0:156.79, 147.37, 140.62, 137.76 (q, J = 30.8 Hz), 128.84 (m), 128.78, 125.87, 125.61, 123.50 (q,
J =275.1 Hz), 118.23 (q, J = 5.3 Hz), 16.24 (q, J = 1.9 Hz); ’F NMR (376 MHz, CDCl3) §: -
63.10, IR oma/cm’ (film): 2928, 2359, 1425, 1317, 1129, 1057, 907, 732, 530. m/z HRMS

(DART): [M+H]* calculated for C;1HoF3NS* = 244.0408, found 244.0404.

5-Bromo-4-(trifluoromethyl)nicotinonitrile

CF;

Br CN
X

=
N

Prepared according to general procedure A (except that after Tf20 added, the reaction mixture was

stirred for 1 hour at —30 °C) using S5-bromonicotinonitrile (92 mg, 0.50 mmol), 1,1'-
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(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55 mmol), T£,0
(84 pL, 0.50 mmol), DBU (75 pL, 0.50 mmol), CH>Clz (5 mL), HOTf (67 puL, 0.75 mmol), MeOH
(2.5 mL) and H20 (90 pL, 5.00 mmol) at rt for 12 hours. The crude material was purified by flash
chromatography (silica gel: 80% CH2Cl; in hexanes) to provide the title compound as a white solid
(65 mg, 0.26 mmol, 51% yield). mp 40-43 °C; 'H NMR (400 MHz, CDCl5) &: 9.11 (s, 1H), 8.97
(s, 1H); 3C NMR (100 MHz, CDCls) &: 158.07, 153.44, 138.75 (q, J = 32.9 Hz), 122.71 (q, J =
275.9 Hz), 119.11, 113.23, 108.54 (q, J = 1.3 Hz); ’F NMR (376 MHz, CDCls) &: -60.76; IR
omax/em’! (film): 3070, 2923, 2240, 1547, 1535, 1407, 1277, 1233, 1208, 1196, 1171, 1148, 1057,
916, 850, 757, 687, 609; m/z HRMS (DART): [M+H]" calculated for C;H3BrF3N>™ = 250.9426,

found 250.9429.

2-Methyl-5-(trifluoromethyl)-1,8-naphthyridine

CF,
=z X
X | =

Prepared according to general procedure A (except that after Tf20 added, the reaction mixture was
stirred for 1 hour at —50 °C) using 2-methyl-1,8-naphthyridine (72 mg, 0.50 mmol), 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55 mmol), T,0
(84 uL, 0.50 mmol), DBU (75 pL, 0.50 mmol), CH>Cl> (§ mL), HOTf (111 pL, 1.25 mmol), MeOH
(2.5 mL) and H20 (90 pL, 5.00 mmol) at rt for 12 hours. The crude material was purified by flash
chromatography (silica gel: 33% EtOAc, 2% Et3N in hexanes) to provide the title compound as a
brown solid (55 mg, 0.26 mmol, 51% yield). '"H NMR (400 MHz, CDCl3) §: 9.21 (d, J = 4.4 Hz,
1H), 8.39 (qd, J = 1.9, 8.7 Hz, 1H), 7.72 (d, J = 4.4 Hz, 1H), 7.51 (d, J = 8.7 Hz, 1H), 2.85 (s,

3H); *C NMR (100 MHz, CDCl3) &: 164.21, 156.26, 152.75, 135.34 (q, J = 32.2 Hz), 133.18 (q,
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J=2.2Hz),124.43,123.01 (q, J=272.8 Hz), 118.13 (q, /=5.0 Hz), 116.13 (q, J = 0.5 Hz), 25.67,
YF NMR (376 MHz, CDCls) §: -60.81. The spectroscopic data is in agreement with previous

reported synthesis.®

4-(Trifluoromethyl)-1,5-naphthyridine

CF3
N
2 | X
=
X N

Prepared according to general procedure A (except that after Tf20 added, the reaction mixture was
stirred for 1 hour at —50 ©°C) using 1,5-naphthyridine (65 mg, 0.50 mmol), 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55 mmol), Tf,0
(84 uL, 0.50 mmol), DBU (75 pL, 0.50 mmol), CH2Cl2 (§ mL), HOTf (111 pL, 1.25 mmol), MeOH
(2.5 mL) and H20 (90 pL, 5.00 mmol) at 40 °C for 16 hours. The crude material was purified by
flash chromatography (silica gel: 33% EtOAc in hexanes) to provide the title compound as a white
solid (41 mg, 0.21 mmol, 41% yield). "H NMR (400 MHz, CDCl3) §: 9.15-9.13 (m, 2H), 8.51 (dd,
J=1.8,8.6 Hz, 1H), 7.93 (d, J = 4.3 Hz, 1H), 7.77 (dd, J = 4.2, 8.6 Hz, 1H); '*C NMR (100 MHz,
CDCl) 6: 152.22, 150.77, 144.75, 139.46, 137.86, 135.58 (q, J = 31.2 Hz), 125.32, 122.97 (q, J =
273.1 Hz), 121.29 (q, J = 5.0 Hz); "°F NMR (376 MHz, CDCls) §: -61.68. The spectroscopic data

is in agreement with previous reported synthesis.®
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2-Phenyl-7-(trifluoromethyl)furo[3,2-b]pyridine

CF,
0
| P Wi

N
Prepared according to general procedure A using 2-phenylfuro[3,2-b]pyridine (98 mg, 0.50 mmol),
1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55 mmol),
T£20 (84 pL, 0.50 mmol), DBU (75 pL, 0.50 mmol), CH2Clz (5 mL), HOTf (67 puL, 0.75 mmol),
MeOH (2.5 mL) and H>O (90 pL, 5.00 mmol) at rt for 12 hours. The crude material was purified
by flash chromatography (silica gel: 17% EtOAc in hexanes to 33% EtOAc in hexanes) to provide
the title compound as a light yellow solid (112 mg, 0.43 mmol, 85% yield). '"H NMR (400 MHz,
CDClIs) 6: 8.66 (d, J = 5.0 Hz, 1H), 7.95-7.92 (m, 2H), 7.53-7.43 (m, 3H), 7.38 (d, J = 5.0 Hz,
1H), 7.29 (s, 1H); >*C NMR (100 MHz, CDCls) §: 161.36, 151.27, 146.32, 142.78, 130.28, 129.06,
128.84, 125.64, 122.28 (q, J = 271.4 Hz), 120.71 (q, J = 35.6 Hz), 114.36, 102.21; ’F NMR (376

MHz, CDCI3) §: -62.06. The spectroscopic data is in agreement with previous reported synthesis.®

4-(Trifluoromethyl)pyridazine-3-carbonitrile

Prepared according to general procedure A (except that after Tf20O added, the reaction mixture was
stirred for 1 hour at —50 °C) using pyridazine-3-carbonitrile (53 mg, 0.50 mmol), 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55 mmol), T>,0
(84 pL, 0.50 mmol), DBU (75 uL, 0.50 mmol), CH2Cl> (5 mL), HOTf (67 pL, 0.75 mmol), THF

(2.5 mL) and H20 (90 pL, 5.00 mmol) at rt for 12 hours. The crude material was purified by flash
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chromatography (silica gel: 33% EtOAc in hexanes) to provide the title compound as a light-
yellow oil (32 mg, 0.19 mmol, 37% yield). '"H NMR (400 MHz, CDCI;3) &: 9.64 (d, J = 5.4 Hz,
1H), 7.93 (d, J = 5.6 Hz, 1H); *C NMR (100 MHz, CDCls) &: 152.62, 135.72 (q, J = 0.9 Hz),
132.56 (q, J = 36.2 Hz), 122.85 (q, J = 4.1 Hz), 120.65 (q, J = 273.6 Hz), 112.47; 'F NMR (376
MHz, CDCI3) &: -64.21; IR vmax/cm™ (film): 3078, 1555, 1435, 1344, 1307, 1194, 1149, 1108,
1072, 1028, 867, 834, 783, 750, 663; m/z LRMS (ESI + APCI): [M+H]" calculated for CsH3F3N3*

=174.0, found 174.0.

5-(4-Methoxyphenyl)-4-(trifluoromethyl)pyrimidine

MeO

Prepared according to general procedure A (except that after Tf20 added, the reaction mixture was
stirred for 1 hour at —50 °C) using 5-(4-methoxyphenyl)pyrimidine (93 mg, 0.50 mmol), 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55 mmol), Tf>20
(84 pL, 0.50 mmol), DBU (75 pL, 0.50 mmol), CH2Cl> (5 mL), HOTf (67 puL, 0.75 mmol), MeOH
(2.5 mL) and H20 (90 pL, 5.00 mmol) at rt for 30 hours. The crude material was purified by flash
chromatography (silica gel: 17% EtOAc in hexanes to 33% EtOAc in hexanes) to provide the title
compound as an off-white solid (100 mg, 0.39 mmol, 78% yield). mp 66-70 °C; 'H NMR (400
MHz, CDCl3) 6: 9.31 (s, 1H), 8.84 (s, 1H), 7.29-7.26 (m, 2H), 7.02—6.98 (m, 2H), 3.86 (s, 3H);
13C NMR (100 MHz, CDCls) &: 160.97, 160.48, 156.98, 151.96 (q, J = 33.9 Hz), 133.64, 130.29
(q,J =1.6 Hz), 125.31, 121.05 (q, J = 275.2 Hz), 114.23, 55.42; ’F NMR (376 MHz, CDCl3) &: -

63.60; IR vmax/cm™ (film): 3021, 2966, 2934, 2839, 1612, 1572, 1548, 1515, 1459, 1450, 1440,
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1416, 1398, 1326, 1308, 1294, 1251, 1231, 1180, 1166, 1132, 1110, 1085, 1032, 1018, 997, 930,
833, 819, 800, 786, 730, 658; m/z HRMS (DART): [M+H]* calculated for Ci12HioF3N2O™ =

255.0740, found 255.0739.

7-Bromo-4-(trifluoromethyl)quinoline

CF;
AN
N |
—
_ Br N CF4
Br N
16.8 1

Prepared according to general procedure A using 7-bromoquinoline (104 mg, 0.50 mmol), 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (216 mg, 0.55 mmol), Tf,0
(84 pL, 0.50 mmol), DBU (75 pL, 0.50 mmol), CH>Clz (5 mL), HOTf (67 pL, 0.75 mmol), THF
(2.5 mL) and H20 (90 pL, 5.00 mmol) at 40 °C for 24 hours. The crude material was purified by
flash chromatography (silica gel: 33% EtOAc in hexanes to 50% EtOAc in hexanes) to provide
the mixture of compounds as a light-brown solid (122 mg, 0.44 mmol, 88% yield). Major, 'H NMR
(400 MHz, CDCl3) 8: 9.03 (d, J = 4.4 Hz, 1H), 8.40 (s, 1H), 7.99 (d, J=9.0 Hz, 1H), 7.76 (d, J =
8.5 Hz, 1H), 7.70 (d, J = 4.1 Hz, 1H); Major, 3*C NMR (100 MHz, CDCls) §: 150.75, 149.68,
134.60 (d, J =32.0 Hz), 132.87, 132.01, 125.44 (q, J = 2.3 Hz), 124.74, 123.27 (q, J = 273.0 Hz),
121.71, 118.31 (d, J = 5.2 Hz); Major, '’F NMR (376 MHz, CDCl3) &: -61.44; IR vmax/cm! (film):
3055, 3023, 2923, 1606, 1499, 1443, 1347, 1323, 1287, 1271, 1252, 1187, 1145, 1113, 1092, 1062,
977, 886, 856, 824, 775, 739, 653, 623, 610; m/z HRMS (DART): [M+H]" calculated for

CioHeBrFsN* = 275.9630, found 275.9616.
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3-(((1-Benzhydrylazetidin-3-yl)methoxy)methyl)-4-(trifluoromethyl)pyridine

Prepared according to general procedure A (except that after Tf20 added, the reaction mixture was
stirred for 1 hour at =50 °C) using 3-(((1-benzhydrylazetidin-3-yl)methoxy)methyl)pyridine (86
mg, 0.25 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (108 mg,
0.28 mmol), T£,0 (42 pL, 0.25 mmol), DBU (38 pL, 0.25 mmol), CH>Cl; (2.5 mL), HOTf (56 pL,
0.63 mmol), MeOH (1.25 mL) and H>O (45 pL, 2.50 mmol) at rt for 12 hours. The crude material
was purified by flash chromatography (silica gel: 33% EtOAc, 2% Et3N in hexanes) to provide the
title compound as an off-white solid (77 mg, 0.19 mmol, 75% yield). mp 56-58 °C; 'H NMR (400
MHz, CDCl3) &: 8.90 (s, 1H), 8.70 (d, J = 5.1 Hz, 1H), 7.48 (d, J = 5.1 Hz, 1H), 7.40-7.37 (m,
4H), 7.27-7.23 (m, 4H), 7.18-7.13 (m, 2H), 4.69 (s, 2H), 4.33 (s, 1H), 3.69 (d, J = 6.5 Hz, 2H),
3.29 (t,J =7.5 Hz, 2H), 2.93 (t, J = 7.5 Hz, 2H), 2.81-2.71 (m, 1H); '3C NMR (100 MHz, CDCl5)
0: 151.16, 149.83, 142.32, 135.37 (q, J = 32.5 Hz), 131.02 (q, / = 1.7 Hz), 128.50, 127.60, 127.13,
123.12 (q, J =273.2 Hz), 119.23 (q, J = 5.1 Hz), 78.13, 73.70, 67.31 (q, J = 2.2 Hz), 56.43, 29.82;
F NMR (376 MHz, CDCI3) 8: -62.39; IR vmax/cm™ (film): 3031, 2942, 2911, 2853, 1731, 1724,
1596, 1489, 1451, 1404, 1368, 1348, 1318, 1301, 1235, 1205, 1181, 1151, 1129, 1067, 1036, 976,
840, 821, 808, 780, 747, 707, 659, 638, 614; m/z HRMS (DART): [M+H]* calculated for

C24H24F3N2O" = 413.1835, found 413.1864.
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3-Phenyl-5-(((4-(trifluoromethyl)pyridin-2-yl)oxy)methyl)isoxazole

CF;
X
= O\
N o \ N
/)
Ph

Prepared according to general procedure A using 3-phenyl-5-((pyridin-2-yloxy)methyl)isoxazole
(63 mg, 0.25 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (108
mg, 0.28 mmol), Tf20 (42 pL, 0.25 mmol), DBU (38 pL, 0.25 mmol), CH2Cl> (2.5 mL), HOTf
(56 puL, 0.63 mmol), MeOH (1.25 mL) and H>O (90 pL, 5.00 mmol) at 80 °C for 72 hours. The
crude material was purified by flash chromatography (silica gel: CH2Cl2) to provide the title
compound as an off-white solid (56 mg, 0.18 mmol, 70% yield). mp 56-59 °C; 'H NMR (400
MHz, CDCls) 8: 8.34 (d, J= 5.4 Hz, 1H), 7.83-7.79 (m, 2H), 7.49-7.43 (m, 3H), 7.16 (dd, J = 1.0,
5.4 Hz, 1H), 7.08 (s, 1H), 6.65 (s, 1H), 5.58 (s, 2H); '*C NMR (100 MHz, CDCl;) &: 168.32,
162.96, 162.64, 148.31, 141.49 (q, J = 33.8 Hz), 130.23, 129.05, 128.94, 126.96, 122.64 (q, J =
271.6 Hz), 113.42 (q, J = 3.2 Hz), 108.07 (q, J = 4.0 Hz), 101.90, 58.81; '°F NMR (376 MHz,
CDCl3) &: -64.96; IR vmax/cm™ (film): 3120, 3053, 2920, 2850, 1622, 1569, 1490, 1473, 1426,
1407, 1337, 1289, 1271, 1231, 1170, 1160, 1131, 1081, 1037, 1002, 985, 951, 908, 884, 838, 826,
786,766, 689, 667; m/z HRMS (DART): [M+H]* calculated for C16H12F3N202" = 321.0845, found

321.0862.
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2-Methyl-6-(1-(4-(4-(trifluoromethyl)pyridin-3-yl)phenyl)ethoxy)quinoline

Me
CF,4 0
X
=
N
NN

Me
Prepared according to general procedure A  using 2-methyl-6-(1-(4-(pyridin-3-
yl)phenyl)ethoxy)quinoline (85 mg, 0.25 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (108 mg, 0.28 mmol), Tf20 (42 pL, 0.25 mmol), DBU (38 pL, 0.25
mmol), CH2Cl, (2.5 mL), HOTf (56 uL, 0.63 mmol), MeOH (1.25 mL) and H>O (45 pL, 2.50
mmol) at rt for 12 hours. The crude material was purified by flash chromatography (silica gel: 33%
EtOAc, 2% Et:N in hexanes to 33% EtOAc, 5% Et:N in hexanes) to provide the title compound
as a colorless oil (45 mg, 0.11 mmol, 44% yield). '"H NMR (400 MHz, CDCls) §: 8.75 (d, J = 5.2
Hz, 1H), 8.63 (s, 1H), 7.91 (d, J/ =9.2 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.59 (d, J = 5.2 Hz, 1H),
7.50 (d, J = 8.1 Hz, 2H), 7.40 (dd, J = 2.8, 9.2 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.18 (d, /= 8.5
Hz, 1H), 6.97 (d, J = 2.8 Hz, 1H), 5.50 (q, J = 6.4 Hz, 1H), 2.67 (s, 3H), 1.74 (d, J = 6.4 Hz, 3H);
3C NMR (100 MHz, CDCl3) §: 156.64, 155.35, 152.70, 149.48, 143.95, 143.37, 13591 (q, J =
31.6 Hz), 135.18, 135.05, 130.18, 129.67 (q, /= 1.7 Hz), 127.30, 125.52, 122.94 (q, / =273.3 Hz),
122.71, 122.29, 119.55 (q, J = 4.8 Hz), 108.69, 76.13, 25.14, 24.33; '°F NMR (376 MHz, CDCl;)
§:-59.25; IR vmax/cm™ (film): 3031, 2979, 2929, 1622, 1601, 1563, 1497, 1478, 1443, 1398, 1376,
1342, 1320, 1304, 1255, 1224, 1179, 1134, 1064, 1001, 968, 940, 908, 831, 730, 659, 615; m/z

HRMS (DART): [M+H]* calculated for C24H20F3N2O* = 409.1522, found 409.1541.
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4-(2-Bromo-5-fluorophenoxy)-7-chloro-2-(trifluoromethyl)quinoline
Brm
o F
| X
=

cl N~ CF,

Prepared according to general procedure A (except that after Tf20 added, the reaction mixture was
stirred for 1 hour at —50 °C) using 4-(2-bromo-5-fluorophenoxy)-7-chloroquinoline (88 mg, 0.25
mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (108 mg, 0.28
mmol), TH0 (42 uL, 0.25 mmol), DBU (38 uL, 0.25 mmol), CH>Cl> (2.5 mL), HOTf (33 uL, 0.38
mmol), THF (1.25 mL) and H>O (45 pL, 2.50 mmol) at rt for 22 hours. The crude material was
purified by flash chromatography (silica gel: 5% EtOAc in hexanes) to provide the title compound
as a white solid (90 mg, 0.22 mmol, 86% yield). mp 150-153 °C; 'H NMR (400 MHz, CDCIs) §:
8.38 (d, /=8.9 Hz, 1H), 8.24 (d, J =2.0 Hz, 1H), 7.75-7.67 (m, 2H), 7.08-7.03 (m, 2H), 6.70 (s,
1H); '3C NMR (100 MHz, CDCls) &: 162.60 (d, J = 249.8 Hz), 161.89, 151.01 (d, J = 10.5 Hz),
150.11 (q, J = 34.8 Hz), 149.40, 138.05, 135.33 (d, / = 9.0 Hz), 129.58, 128.97, 123.40, 121.09
(q,J=273.9Hz), 119.74, 115.73 (d, J = 22.2 Hz), 111.36 (d, /= 24.8 Hz), 110.83 (d, /= 4.2 Hz),
99.91 (q, J = 2.2 Hz); '’F NMR (376 MHz, CDCl5) §: -67.87, -109.55; IR vmax/cm’ (film): 3101,
3081, 1614, 1588, 1569, 1478, 1438, 1424, 1412, 1372, 1285, 1244, 1197, 1158, 1147, 1128, 1118,
1102, 1073, 1038, 963, 950, 925, 914, 880, 865, 842, 829, 815, 739, 621, 600; m/z HRMS (DART):

[M+H]* calculated for C1sHsBrCIFsNO* = 419.9408, found 419.9420.
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3-(3-Methoxyphenyl)-5-methyl-2-((4-(trifluoromethyl)pyridin-3-yl)oxy)pyridine

OMe
CF4
(0]
AN = |
— N
N X Me

Prepared according to general procedure A using 3-(3-methoxyphenyl)-5-methyl-2-(pyridin-3-
yloxy)pyridine (73 mg, 0.25 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (108 mg, 0.28 mmol), Tf20 (42 pL, 0.25 mmol), DBU (38 pL, 0.25
mmol), CH2Cl; (2.5 mL), HOTf (56 uL, 0.63 mmol), MeOH (1.25 mL) and H>O (45 pL, 2.50
mmol) at 40 °C for 24 hours. The crude material was purified by flash chromatography (silica gel:
33% EtOAc, 2% Et;N in hexanes) to provide the title compound as a colorless oil (66 mg, 0.18
mmol, 73% yield). 'H NMR (400 MHz, CDCls) &: 8.55-8.53 (m, 2H), 7.90 (dd, J = 0.8, 2.4 Hz,
1H), 7.63 (dd, J = 0.8, 2.4 Hz, 1H), 7.56 (d, J = 5.0 Hz, 1H), 7.39-7.35 (m, 1H), 7.22-7.20 (m,
2H), 6.94 (ddd, J = 1.4, 2.2, 8.2 Hz, 1H), 3.85 (s, 3H), 2.35 (s, 3H); >*C NMR (100 MHz, CDCl5)
0: 159.62,157.51, 147.69, 146.57, 145.82, 145.53, 141.19, 136.95, 129.83 (q, / =32.6 Hz), 129.73,
129.51, 125.05, 122.28 (q, J = 272.2 Hz), 121.66, 120.26 (q, J = 4.5 Hz), 114.69, 114.09, 55.31,
17.54; F NMR (376 MHz, CDCl3) §: -63.10; IR vmax/cm™ (film): 2938, 2836, 1571, 1490, 1456,
1440, 1407, 1322, 1288, 1231, 1184, 1137, 1068, 1056, 1040, 937, 869, 836, 820, 784, 743, 698,
649, 615; m/z HRMS (DART): [M+H]* calculated for CioHisF3N202* = 361.1158, found

361.1173.
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Methyl 6-chloro-4-(((4-(trifluoromethyl)pyridin-3-yl)methyl)amino)nicotinate

Cl
CF,4 = |N
X N X

| H

= CO,Me
N

Prepared according to general procedure A wusing methyl 6-chloro-4-((pyridin-3-
ylmethyl)amino)nicotinate (70 mg, 0.25 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (108 mg, 0.28 mmol), Tf20 (42 pL, 0.25 mmol), DBU (38 uL, 0.25
mmol), CH>Cl, (2.5 mL), HOTf (56 pL, 0.63 mmol), MeOH (1.25 mL) and H>O (45 pL, 2.50
mmol) at rt for 12 hours. The crude material was purified by flash chromatography (silica gel: 33%
EtOAc in hexanes to 33% EtOAc, 2% Et;N in hexanes) to provide the title compound as a white
solid (77 mg, 0.22 mmol, 89% yield). mp 115118 °C; '"H NMR (400 MHz, CDCI;) &: 8.78-8.73
(m, 3H), 8.66 (t, J = 5.9 Hz, 1H), 7.59 (d, J = 5.1 Hz, 1H), 6.47 (s, 1H), 4.67 (d, J = 5.9 Hz, 2H),
3.90 (s, 3H); C NMR (100 MHz, CDCl3) &: 167.89, 156.25, 155.61, 153.19, 150.53, 150.44,
135.99 (q, J =32.5 Hz), 129.21, 123.05 (q, J/ = 273.2 Hz), 119.81 (q, J = 5.0 Hz), 107.44, 104.89,
52.18, 41.25 (q, J = 2.6 Hz); "’F NMR (376 MHz, CDCl3) §: -62.47; IR vmax/cm™ (film): 3310,
3009, 2955, 2846, 1710, 1586, 1559, 1500, 1448, 1436, 1419, 1393, 1358, 1309, 1275, 1261, 1244,
1215, 1182, 1152, 1109, 1062, 977, 960, 934, 888, 838, 786, 776, 750, 717, 661, 613; m/z HRMS

(DART): [M+H]" calculated for C14H12CIF3N302" = 346.0565, found 346.0570.
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2-(3-Fluoro-5-(4-(trifluoromethyl)pyridin-3-yl)phenyl)-5-(trifluoromethyl)pyridine

Prepared according to general procedure A using 2-(3-fluoro-5-(pyridin-3-yl)phenyl)-5-
(trifluoromethyl)pyridine (80 mg, 0.25 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (108 mg, 0.28 mmol), Tf20 (42 pL, 0.25 mmol), DBU (38 uL, 0.25
mmol), CH>Cl, (2.5 mL), HOTf (56 uL, 0.63 mmol), MeOH (1.25 mL) and H>O (45 pL, 2.50
mmol) at rt for 12 hours. The crude material was purified by flash chromatography (silica gel: 33%
EtOAc in hexanes) to provide the title compound as a white solid (84 mg, 0.22 mmol, 87% yield).
mp 87-90 °C; 'H NMR (400 MHz, CDCls) &: 8.96-8.95 (m, 1H), 8.86 (d, J = 5.2 Hz, 1H), 8.73
(s, 1H), 8.02 (dd, J = 2.4, 4.4 Hz, 1H), 7.91-7.83 (m, 3H), 7.67 (d, J/ = 5.1 Hz, 1H), 7.19 (dt, J =
8.5, 2.0 Hz, 1H); '*C NMR (100 MHz, CDCls) &: 164.14, 161.67, 158.56 (m), 152.36, 150.31,
146.93 (q, J = 4.0 Hz), 140.25 (d, J = 8.1 Hz), 138.39 (d, J = 8.3 Hz), 136.05 (q, J = 32.0 Hz),
134.37 (q, J = 3.5 Hz), 133.83, 125.88 (q, J = 33.2 Hz), 124.01 (d, J = 1.5 Hz), 119.68 (q, J = 4.6
Hz), 118.02 (dd, J =22.9, 1.6 Hz), 114.59 (d, J = 23.1 Hz), 77.16 (t, J = 32.3 Hz); 'F NMR (376
MHz, CDCl3) 8: -59.27, -62.37, -111.82; IR vmax/cm’! (film): 3046, 2924, 2360, 1599, 1573, 1492,
1430, 1399, 1384, 1330, 1316, 1279, 1239, 1183, 1170, 1153, 1135, 1113, 1081, 1067, 1042, 1014,
938, 922, 882, 840, 769, 697, 658, 633, 616; m/z HRMS (DART): [M+H]" calculated for

CisHioF7N2*" = 387.0727, found 387.0748.

158



(R)-1-(3,5-Bis(trifluoromethyl)phenyl)ethyl 5-methyl-4-(trifluoromethyl)picolinate

CF; CF;

N CF,
(0] Me

Prepared according to general procedure A using (R)-1-(3,5-bis(trifluoromethyl)phenyl)ethyl 5-
methylpicolinate (76 mg, 0.20 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (86 mg, 0.22 mmol), Tf20 (34 pL, 0.20 mmol), DBU (30 pL, 0.20
mmol), CH>Cl, (2 mL), HOTf (18 pL, 0.20 mmol), TBAF (0.2 mL, 0.20 mmol, 1M in THF) at rt
for 24 hours. The crude material was purified by flash chromatography (silica gel: 50% DCM in
hexanes to 80% DCM in hexanes) to provide the title compound as a white solid (76 mg, 0.17
mmol, 85% yield). mp 55-57 °C; '"H NMR (400 MHz, CDCls) &: 8.75 (s, 1H), 8.28 (s, 1H), 7.93
(s, 2H), 7.83 (s, 1H), 6.28 (q, J = 6.7 Hz, 1H), 2.57 (s, 3H), 1.80 (d, J = 6.7 Hz, 3H); 1*C NMR
(100 MHz, CDCl3) 8: 163.59, 153.46, 146.63, 143.76, 137.73 (q, J = 32.2 Hz), 135.51 (q, J = 1.7
Hz), 132.23 (q, J = 33.2 Hz), 126.72 (q, J = 3.8 Hz), 123.28 (q, / =271.0 Hz), 122.87 (q, J = 273.1
Hz), 122.42-122.23 (m), 121.18 (q, J = 5.1 Hz), 72.93, 22.05, 16.51 (q, J = 1.9 Hz); ’F NMR
(376 MHz, CDCl3) &: -62.90, -64.10; IR vmax/cm’! (film): 1746, 1382, 1370, 1361, 1321, 1303,
1283, 1268, 1243, 1200, 1163, 1114, 1103, 1067, 1059, 1005, 915, 900, 857, 841, 816, 787, 744,
728, 707, 683, 677; LRMS (ESI + APCI): [M+H]* calculated for C1sHi3FoNO," = 446.1, found

446.2.
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Ethyl 4-((4-chlorophenyl)(4-(trifluoromethyl)pyridin-2-yl)methoxy)piperidine-1-

carboxylate
CF;
N %% | Cl
N/ X
O\ /\I
SNco,et

Prepared according to general procedure A (except that after Tf20 added, the reaction mixture was
stirred for 1 hour at —50 °C) using ethyl 4-((4-chlorophenyl)(pyridin-2-yl)methoxy)piperidine-1-
carboxylate 94 mg, 0.25 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (108 mg, 0.28 mmol), Tf20 (42 pL, 0.25 mmol), DBU (38 uL, 0.25
mmol), CH>Cl> (2.5 mL), HOTf (33 puL, 0.38 mmol), MeOH (1.25 mL) and H>O (45 pL, 2.50
mmol) at rt for 12 hours. The crude material was purified by flash chromatography (silica gel: 33%
EtOACc in hexanes) to provide the title compound as a colorless oil (85 mg, 0.19 mmol, 77% yield).
"H NMR (400 MHz, CDCls) §: 8.67 (d, J = 5.1 Hz, 1H), 7.77 (s, 1H), 7.39-7.35 (m, 3H), 7.32—
7.28 (m, 2H), 5.67 (s, 1H), 4.12 (q, J/ = 7.1 Hz, 2H), 3.80-3.76 (m, 2H), 3.66-3.60 (m, 1H), 3.22—
3.15 (m, 2H), 1.87-1.81 (m, 2H), 1.71-1.62 (m, 2H), 1.24 (t,J = 7.1 Hz, 3H); >*C NMR (100 MHz,
CDCl3) 6: 163.79, 155.59, 150.05, 139.35, 139.34 (q, J =33.8 Hz ), 133.94, 128.90, 128.31, 122.87
(q,J=271.7Hz), 118.21 (q, J = 3.6 Hz), 116.08 (q, J = 3.7 Hz), 80.60, 73.08, 61.40, 41.18, 41.09,
31.39,30.89, 14.76; ’F NMR (376 MHz, CDCl5) : -64.73; IR vmax/cm’! (film): 2931, 1692, 1488,
1473, 1432, 1407, 1383, 1331, 1273, 1227, 1204, 1167, 1135, 1083, 1029, 1014, 964, 921, 832,
767, 723, 665; m/z HRMS (DART): [M+H]" calculated for C21H23CIF3N2O3* = 443.1344, found

443.1347.
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(S)-3-(1-Methylpyrrolidin-2-yl)-4-(trifluoromethyl)pyridine

e
X N

| —~ Me
N

Prepared according to general procedure A using (S)-3-(1-methylpyrrolidin-2-yl)pyridine (33 mg,
0.20 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (86 mg, 0.22
mmol), Tf20 (34 pL, 0.20 mmol), DBU (30 pL, 0.20 mmol), CH2Clz (2 mL), HOTf (44 pL, 0.50
mmol), MeOH (1 mL) and H2O (36 pL, 2.00 mmol) at rt for 12 hours. The crude material was
purified by flash chromatography (silica gel: EtOAc) to provide the title compound as a light-
yellow oil (30 mg, 0.13 mmol, 65% yield). 'H NMR (400 MHz, CDCls) &: 9.18 (s, 1H), 8.64 (s,
1H), 7.43 (d,J=5.1 Hz, 1H), 3.53 (t, / =7.9 Hz, 1H), 3.27 (t, /= 7.9 Hz, 1H), 2.38-2.24 (m, 2H),
2.18 (m, 3H), 2.05-1.93 (m, 1H), 1.88-1.78 (m, 1H), 1.71-1.62 (m, 1H); *C NMR (100 MHz,
CDClI3) o: 151.88, 148.71, 137.15, 136.03 (q, J = 31.5 Hz), 123.34 (q, J = 273.2 Hz), 118.57,
64.85, 56.88, 40.39, 35.91, 23.04; '°F NMR (376 MHz, CDCl3) &: -60.50; IR vmax/cm™ (film):
2944, 2779, 1454, 1409, 1315, 1290, 1235, 1170, 1128, 1062, 1043, 900, 835, 659, 614; m/z

HRMS (DART): [M+H]* calculated for C;;H4F3N2* = 231.1104, found 231.1106.
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((4-(Trifluoromethyl)pyridin-2-yl)methylene)bis(4,1-phenylene) diacetate

OAc

Prepared according to general procedure B using (pyridin-2-ylmethylene)bis(4,1-phenylene)
diacetate (72 mg, 0.20 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (86 mg, 0.22 mmol), Tf20 (34 pL, 0.20 mmol), DBU (30 pL, 0.20
mmol), CH>Cl, (2 mL), NaHCOs3 (50 mg, 0.60 mmol), THF (1 mL) and H>O (36 uL, 2.00 mmol)
at rt for 50 minutes. The crude material was purified by flash chromatography (silica gel: 33%
EtOAc in hexanes) to provide the title compound as a white solid (78 mg, 0.18 mmol, 90% yield).
mp 131-133 °C; 'H NMR (400 MHz, CDCls) : 8.78 (d, J = 5.0 Hz, 1H), 7.39-7.37 (m, 2H), 7.19
(d, J = 8.6 Hz, 4H), 7.05 (d, J = 8.6 Hz, 4H), 5.71 (s, 1H), 2.81 (s, 6H); *C NMR (100 MHz,
CDClI3) 6: 169.49, 164.31, 150.80, 149.68, 139.25, 139.06 (q, J = 33.7 Hz), 130.32, 122.86 (q, J =
271.7 Hz), 121.80, 119.31 (q, J = 3.6 Hz), 117.48 (q, J = 3.5 Hz), 58.14, 21.23; '’F NMR (376
MHz, CDCl3) §: -64.65; IR vmax/cm™ (film): 3053, 2926, 1749, 1607, 1570, 1503, 1479, 1403,
1367, 1330, 1269, 1216, 1201, 1162, 1140, 1107, 1087, 1046, 1015, 958, 919, 879, 862, 848, 838,
800, 777, 750, 697, 677, 657, 644, 630, 593; HRMS (DART): [M+H]" calculated for

C23Hi19F3NO4" = 430.1261, found 430.1271.
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(E)-2-(3-(Pyrrolidin-1-yl)-1-(p-tolyl)prop-1-en-1-yl)-4-(trifluoromethyl)pyridine

Me
(E)-2-(3-(pyrrolidin-1-yl)-1-(p-tolyl)prop-1-en-1-yl)pyridine (56 mg, 0.20 mmol) was dissolved
in Et20 (1 mL) and cooled to 0 °C. Trifluoromethanesulfonic acid (18 pL, 0.20 mmol) was added
dropwise, the ice bath was removed, and the solution was stirred for 10 minutes at room
temperature. The solution was concentrated in vacuo and the resulting acid salt was subjected to
general procedure A (except that after Tf20 added, the reaction mixture was stirred for 1 hour at —
50 °C) using 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (86 mg, 0.22
mmol), Tf,0 (34 pL, 0.20 mmol), DBU (60 uL, 0.40 mmol), CH>Cl> (2 mL), HOTf (44 uL, 0.50
mmol), MeOH (1 mL) and H>O (36 pL, 2.00 mmol) at rt for 12 hours. The crude material was
purified by flash chromatography (silica gel: 2% Et3N in EtOAc) to provide the title compound as
a light-yellow solid (43 mg, 0.12 mmol, 62% yield). mp 39-41 °C; 'H NMR (400 MHz, CDCl5)
0:8.73 (d, J=5.0Hz, 1H), 7.31 (dd, J = 1.6, 5.1 Hz, 1H), 7.24-7.22 (m, 3H), 7.08 (d, / = 8.0 Hz,
2H), 7.03 (t, J = 6.8 Hz, 1H), 3.23 (d, J = 6.9 Hz, 2H), 2.56-2.51 (m, 4H), 2.40 (s, 3H), 1.79-1.74
(m, 4H); 3C NMR (100 MHz, CDCl3) §: 160.26, 150.18, 141.11, 138.65 (q, J = 33.4 Hz), 137.55,
134.64, 132.76, 129.76, 129.48, 123.01 (q, J = 271.5 Hz), 117.40 (q, J = 3.7 Hz), 117.25 (q, J =
3.4 Hz), 54.84, 54.29, 23.64, 21.42; ’F NMR (376 MHz, CDCI3) §: -64.83; IR vmax/cm™ (film):

3386, 3024, 2969, 2877, 2790, 1630, 1605, 1568, 1512, 1460, 1434, 1397, 1327, 1233, 1168, 1139,
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1083, 957, 932, 902, 878, 839, 816, 782, 750, 729, 711, 690, 659, 641; HRMS (DART): [M+H]*

calculated for CooH2oF3N>* = 347.1730, found 347.1735.

Ethyl 4-(8-chloro-4-(trifluoromethyl)-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-
11-ylidene)piperidine-1-carboxylate
CF3

Cl /\

I N

|

CO,Et
Prepared according to general procedure A using ethyl 4-(8-chloro-5,6-dihydro-11H-
benzo[5,6]cyclohepta[ 1,2-b]pyridin-11-ylidene)piperidine-1-carboxylate (77 mg, 0.20 mmol),
1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (86 mg, 0.22 mmol), Tf,0
(34 puL, 0.20 mmol), DBU (30 pL, 0.20 mmol), CH>Cl> (2 mL), HOTf (27 pL, 0.30 mmol), MeOH
(1 mL) and H>O (36 pL, 2.00 mmol) at rt for 16 hours. The crude material was purified by flash
chromatography (silica gel: 33% EtOAc in hexanes to 50% EtOAc in hexanes) to provide the title
compound as a colorless oil (75 mg, 0.17 mmol, 83% yield). '"H NMR (400 MHz, CDCIs) §: 8.55
(d, J=5.2 Hz, 1H), 7.41 (d, J=5.2 Hz, 1H), 7.11-7.09 (m, 3H), 4.14 (q, J = 7.0 Hz, 2H), 3.82—
3.75 (m, 2H), 3.44-3.36 (m, 2H), 3.29-3.13 (m, 3H), 2.97-2.88 (m, 1H), 2.51-2.33 (m, 3H), 2.14—
2.08 (m, 1H), 1.24 (t, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) §: 162.47, 155.57, 147.72,
138.37, 137.83, 136.35 (q, / = 31.4 Hz), 134.63, 133.64, 133.47, 131.89, 131.31, 130.32, 126.23,
123.33 (q, J/ =273.5 Hz), 118.59 (q, J = 5.2 Hz), 61.52, 44.89, 44.64, 31.92, 30.86, 30.62, 26.18,

14.77; F NMR (376 MHz, CDCl3) §: -61.88; IR vmax/cm™ (film): 2980, 2909, 1692, 1590, 1476,
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1430, 1406, 1326, 1300, 1278, 1222, 1155, 1119, 1092, 1061, 1028, 999, 981, 907, 844, 813, 766,
729, 690, 682; HRMS (DART): [M+H]" calculated for Co3H23CIF3N202" = 451.1395, found

451.1412.

5,7-Dichloro-4-(4-fluorophenoxy)-2-(trifluoromethyl)quinoline

iog
Cl o

N

| =

cl N~ CF,

Prepared according to general procedure A (except that after Tf20 added, the reaction mixture was
stirred for 1 hour at—50 °C) using 5,7-dichloro-4-(4-fluorophenoxy)quinoline (62 mg, 0.20 mmol),
1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (86 mg, 0.22 mmol), Tf,0
(34 puL, 0.20 mmol), DBU (30 pL, 0.20 mmol), CH>Cl> (2 mL), HOTf (27 pL, 0.30 mmol), THF
(1 mL) and H>O (36 pL, 2.00 mmol) at rt for 22 hours. The crude material was purified by flash
chromatography (silica gel: 5% EtOAc in hexanes) to provide the title compound as a white solid
(68 mg, 0.18 mmol, 90% yield). mp 82-85 °C; 'H NMR (400 MHz, CDCls) &: 8.12 (s, 1H), 7.70
(s, 1H), 7.26-7.15 (m, 4H), 6.86 (s, 1H); *C NMR (100 MHz, CDCls) §: 164.61, 160.67 (d, J =
244.6 Hz), 150.88, 150.39 (q, J = 35.0 Hz), 149.15 (d, J = 2.8 Hz), 136.63, 131.53, 130.68, 128.55,
122.61 (d, J = 8.5 Hz), 120.85 (q, J = 274.0 Hz), 118.50, 117.68 (q, J = 23.4 Hz), 102.15 (q, J =
2.4 Hz); F NMR (376 MHz, CDCl3) &: -68.35, -115.41; IR vmax/cm’! (film): 3103, 1750, 1599,
1586, 1565, 1503, 1431, 1386, 1366, 1330, 1316, 1266, 1241, 1214, 1186, 1139, 1123, 1099, 1070,
1014, 964, 926, 855, 835, 770, 738, 724, 694, 611, HRMS (DART): [M+H]" calculated for

Ci6HsCLFsNO™ = 375.9914, found 375.9930.
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3-Benzyl-5-(4-(2-(5-ethyl-4-(trifluoromethyl)pyridin-2-yl)ethoxy)benzyl)thiazolidine-2,4-

dione
0
BnN—/(
o S
CF,
Et
] §
=
N

Prepared according to general procedure B using 3-benzyl-5-(4-(2-(5-ethylpyridin-2-
yl)ethoxy)benzyl)thiazolidine-2,4-dione (89 mg, 0.20 mmol), 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (86 mg, 0.22 mmol), Tf>O (34
uL, 0.20 mmol), DBU (30 uL, 0.20 mmol), CH2Cl, (2 mL), NaHCO3 (50 mg, 0.60 mmol), THF
(1 mL) and H20 (36 pL, 2.00 mmol) at rt for 30 minutes. The crude material was purified by flash
chromatography (silica gel: 33% EtOAc in hexanes) to provide the title compound as a white solid
(50 mg, 0.10 mmol, 49% yield). mp 111-114 °C; 'H NMR (400 MHz, CDCls) &: 8.57 (s, 1H),
7.45 (s, 1H), 7.25 (s, SH), 7.04 (d, J = 8.6 Hz, 2H), 6.75 (d, J = 8.6 Hz, 2H), 4.72-4.64 (m, 2H),
442 (dd, J =4.0, 8.8 Hz, 1H), 4.32 (t, J = 6.4 Hz, 2H), 3.38 (dd, J = 4.0, 14.2 Hz, 1H), 3.28 (t, J
= 6.4 Hz, 2H), 3.38 (dd, J = 8.8, 14.2 Hz, 1H), 2.81 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H);
13C NMR (100 MHz, CDCls) &: 173.79, 171.02, 158.17, 157.13, 152.07, 136.14 (q, J = 31.0 Hz),
135.12, 134.66 (q, J = 1.6 Hz), 130.55, 128.73, 128.17, 127.70, 123.52 (q, J = 273.1 Hz), 119.50
(q,J = 5.2 Hz), 114.83, 66.82, 51.70, 45.24, 37.68, 37.62, 23.14 (q, J = 1.8 Hz), 15.76; ’F NMR
(376 MHz, CDCl3) 8: -62.14; IR vmax/cm™ (film): 3032, 2921, 1740, 1679, 1610, 1582, 1514, 1493,

1467, 1456, 1436, 1380, 1335, 1324, 1308, 1296, 1279, 1265, 1247, 1198, 1180, 1146, 1122, 1080,
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1069, 1054, 1029, 964, 899, 879, 824, 810, 790, 745, 722, 696, 678, 668, 626, 601; HRMS

(DART): [M+H]" calculated for C27H26F3N203S* = 515.1611, found 515.1646.

(1R 4R ,5R)-2-((R)-(Benzyloxy)(2-(trifluoromethyl)quinolin-4-yl)methyl)-5-

vinylquinuclidine

“’/0Bn

NN
CF,
Prepared according to general procedure A (except that after Tf20 added, the reaction mixture was
stirred for 1 hour at —50 °C) using (1R,4R,5R)-2-((R)-(benzyloxy)(quinolin-4-yl)methyl)-5-
vinylquinuclidine (77 mg, 0.20 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (86 mg, 0.22 mmol), Tf20 (34 pL, 0.20 mmol), DBU (30 pL, 0.20
mmol), CH>Cl> (2 mL), HOTf (44 pL, 0.50 mmol), MeOH (1 mL) and H>O (36 pL, 2.00 mmol)
at 40 °C for 20 hours. The crude material was purified by flash chromatography (silica gel: 2%
Et:N in EtOAc) to provide the title compound as a colorless oil (48 mg, 0.11 mmol, 53% yield).
"H NMR (400 MHz, CDCls) &: 8.29 (d, J = 8.1 Hz, 1H), 8.22 (d, J = 8.6 Hz, 1H), 7.86-7.81 (m,
2H), 7.72-7.68 (m, 1H), 7.37-7.27 (m, 5H), 5.79-5.70 (m, 1H), 5.33 (s, 1H), 4.98-4.90 (m, 2H),
442 (dd, J=1.1, 13.1 Hz, 2H), 3.38-3.31 (m, 1H), 3.18-3.03 (m, 2H), 2.71-2.57 (m, 2H), 2.29—
2.24 (m, 1H), 1.84-1.65 (s, 4H), 1.55-1.48 (m, 1H); '3C NMR (100 MHz, CDCls) &: 149.87,
147.86 (q, J = 34.2 Hz), 147.77, 141.88, 137.41, 131.33, 130.54, 128.79, 128.66, 128.15, 128.14,
127.35,123.41, 121.78 (q, J =273.8 Hz), 119.89, 114.51, 81.06, 72.00, 61.14, 57.09, 43.19, 40.03,

27.93,27.79, 22.85; '"FNMR (376 MHz, CDCl3) &: -67.43; IR vmax/cm™ (film): 3066, 2934, 2864,
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1636, 1596, 1569, 1511, 1467, 1454, 1423, 1363, 1320, 1251, 1212, 1180, 1132, 1095, 1046, 1027,
990, 905, 807, 761, 732, 698, 669; HRMS (DART): [M+H]" calculated for C27H2sF3N20™ =

453.2148, found 453.2177.

5-Chloro-6'-methyl-3-(4-(methylsulfonyl)phenyl)-4'-(trifluoromethyl)-2,3'-bipyridine

o\\s//o
Me”
| N Cl
N| X N/
Me Z CF,

Prepared according to general procedure A (except that after Tf20 added, the reaction mixture was
stirred for 1 hour at —50 °C) using 5-chloro-6'-methyl-3-(4-(methylsulfonyl)phenyl)-2,3'-
bipyridine (72 mg, 0.20 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (86 mg, 0.22 mmol), Tf20 (34 pL, 0.20 mmol), DBU (30 uL, 0.20
mmol), CH>Cl, (2 mL), HOTf (44 pL, 0.50 mmol), MeOH (1 mL) and H>O (36 pL, 2.00 mmol)
at rt for 60 hours. The crude material was purified by flash chromatography (silica gel: 20% EtOAc
in CH2Clz to 33% EtOAc in CH2Cl) to provide the title compound as a colorless oil (68 mg, 0.16
mmol, 80% yield). '"H NMR (400 MHz, CDCl;) &: 8.70 (d, J = 1.9 Hz, 1H), 8.25 (s, 1H), 7.83 (d,
J=28.1Hz,2H),7.79 (d, J=2.4 Hz, 1H), 7.42 (s, 1H), 7.31 (d, J = 8.0 Hz, 2H), 3.02 (s, 3H), 2.61
(s, 3H); 13C NMR (100 MHz, CDCl5) §: 160.09, 151.81, 150.96, 148.02, 142.68, 140.36, 137.47,
136.81 (q, J/ =32.0 Hz), 136.59, 132.15, 130.33, 129.04, 127.82, 122.77 (q, J = 273.5 Hz), 120.04
(q, J = 3.5 Hz), 44.48, 24.48; '’F NMR (376 MHz, CDCl3) §: -60.13; IR vmax/cm™ (film): 3054,

2926, 1601, 1573, 1538, 1493, 1431, 1386, 1367, 1310, 1268, 1218, 1140, 1089, 1033, 1012, 956,
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906, 888, 836, 790, 771, 728, 674, 661, 646, 593; HRMS (DART): [M+H]* calculated for

Ci9H15CIF3N20,S* = 427.0489, found 427.0503.

2-((1-(4-Phenoxyphenoxy)propan-2-yl)oxy)-4-(trifluoromethyl)pyridine
CF3

X Me

J L,
N ’ \©\
OPh

Prepared according to general procedure A wusing 2-((1-(4-phenoxyphenoxy)propan-2-
yDoxy)pyridine (64 mg, 0.20 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (86 mg, 0.22 mmol), Tf20 (34 pL, 0.20 mmol), DBU (30 pL, 0.20
mmol), CH>Cl, (2 mL), HOTf (27 puL, 0.30 mmol), MeOH (1 mL) and H>O (36 uL, 2.00 mmol)
at 60 °C for 68 hours. The crude material was purified by flash chromatography (silica gel: 33%
CH:Cl: in hexanes to 50% CH>Cl in hexanes) to provide the title compound as a colorless oil (55
mg, 0.14 mmol, 71% yield). "H NMR (400 MHz, CDCl3) §: 8.31 (d, J = 5.3 Hz, 1H), 7.33-7.28
(m, 2H), 7.08-7.03 (m, 2H), 7.00-6.90 (m, 7H), 5.67-5.62 (m, 1H), 4.20 (dd, J = 5.6, 10.0 Hz,
1H), 4.09 (dd, J = 4.6, 10.0 Hz, 1H), 1.50 (d, J = 6.4 Hz, 3H); '>*C NMR (100 MHz, CDCls) &:
163.78, 158.57, 155.18, 150.60, 148.33, 141.17 (q, J = 33.6 Hz), 129.76, 122.80 (q, / = 271.6 Hz),
122.64, 120.90, 117.81, 115.90, 112.42 (q, J = 3.2 Hz), 108.46 (q, J = 4.0 Hz), 71.01, 70.54, 16.93;
F NMR (376 MHz, CDCl3) 8: -65.01; IR vmax/cm™ (film): 3041, 2934, 1615, 1589, 1569, 1503,
1488, 1416, 1335, 1306, 1217, 1171, 1135, 1073, 1045, 989, 966, 872, 826, 767, 748, 690, 668;

HRMS (DART): [M+H]* calculated for C21Hi9FsNO3s* = 390.1312, found 390.1338.
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3-(4-Chlorophenyl)-N,N-dimethyl-3-(4-(trifluoromethyl)pyridin-2-yl)propan-1-amine

CF,
X Me X Me
| ! | y X Me
= N = N |
N Me N | "Me — N
HOTf H N “Me
_— _ —_—
OTf
Cl Cl
Cl

3-(4-chlorophenyl)-N,N-dimethyl-3-(pyridin-2-yl)propan-1-amine (55 mg, 0.20 mmol) was
dissolved in Et20 (1 mL) and cooled to 0 °C. Trifluoromethanesulfonic acid (18 pL, 0.20 mmol)
was added dropwise, the ice bath was removed, and the solution was stirred for 10 minutes at room
temperature. The solution was concentrated in vacuo and the resulting acid salt was subjected to
general procedure A (except that after Tf20 added, the reaction mixture was stirred for 1 hour at —
50 °C) using 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (86 mg, 0.22
mmol), Tf,0 (34 pL, 0.20 mmol), DBU (60 uL, 0.40 mmol), CH>Cl> (2 mL), HOTf (44 pL, 0.50
mmol), MeOH (1 mL) and H>O (36 pL, 2.00 mmol) at rt for 12 hours. The crude material was
purified by flash chromatography (silica gel: 5% Et;:N in EtOAc) to provide the title compound as
a light-yellow oil (52 mg, 0.15 mmol, 76% yield). "H NMR (400 MHz, CDCl;) &: 8.75 (d, J = 5.2
Hz, 1H), 7.37-7.26 (m, 6H), 4.25-4.22 (m, 1H), 2.48-2.36 (m, 1H), 2.26-2.15 (m, 9H); 1*C NMR
(100 MHz, CDCl3) 6: 164.86, 150.54, 141.35, 138.80 (q, J = 33.7 Hz), 132.73, 129.57, 128.91,
122.93 (q,J=271.6 Hz), 118.64 (q, J=3.7Hz), 117.22 (q, J = 3.5 Hz), 57.45, 50.57, 45.52, 33.05;
F NMR (376 MHz, CDCI3) 8: -64.75; IR vmax/cm™ (film): 2943, 2858, 2817, 2767, 1609, 1570,
1490, 1460, 1403, 1328, 1264, 1238, 1167, 1135, 1088, 1043, 1014, 895, 842, 828, 744, 721, 667,

HRMS (DART): [M+H]* calculated for C;7H9CIF3N>" = 343.1183, found 343.1187.
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N-(4-Methyl-3-((4-(4-(trifluoromethyl)pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)-4-((4-

methylpiperazin-1-yl)methyl)benzamide

NZ | CF,4 Nl | CF;
)\\ )\\

HN N | AN HN N | N
Me = Me =

N N

Tf
HN >N
_Me _Me
0 (\N o (\N
N\) N\)

13 1

An oven dried 8 mL vial with a stir bar was charged with N-(4-methyl-3-((4-(pyridin-3-
yl)pyrimidin-2-yl)amino)phenyl)-4-((4-methylpiperazin-1-yl)methyl)benzamide (74 mg, 0.15
mmol) and placed under a nitrogen atmosphere. CH2Cl. (3.8 mL) was added, the reaction vessel
cooled to —78 °C and Tf,0 (26 pL, 0.15 mmol) was added dropwise over 5 minutes. The reaction
was stirred for 2 hours before 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (65 mg, 0.17 mmol) was added in one portion. The reaction was
subjected to three rapid cycles of vacuum/nitrogen backfill and was stirred further for 1 hour at —
50 °C. The DBU (23 pL, 0.15 mmol) was added dropwise via syringe at the same temperature and
stirred for another 2 hours. Then HOTf (47 pL, 0.53 mmol), MeOH (0.75 mL) and H>O (27 uL,
1.50 mmol) were added sequentially at —50 °C, the cooling bath was removed and the reaction was
allowed to warm to room temperature and stirred for 5 additional hours. The reaction was quenched
with a saturated aqueous solution of NaHCOs3 and extracted with CH2Cl, (3x). The combined
organic extracts were washed with a saturated aqueous solution of brine, dried (Na2SOs), filtered
and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel:

30% toluene, 3% MeOH and 2% Et;:N in CH2Cl») to provide the mixture of compounds as a yellow
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oil (36 mg, 0.06 mmol, 42% yield). Major, '"H NMR (400 MHz, CDCl3) §: 8.87-8.86(m, 2H), 8.52
(d, J=5.0 Hz, 1H), 8.25 (s, 1H), 7.89 (s, 1H), 7.80 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 5.2 Hz, 1H),
7.50 (dd, J=2.2,8.1 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.18 (d, /= 8.2 Hz, 1H), 7.10 (s, 1H), 6.87
(d, J=5.0 Hz, 1H), 3.55 (s, 2H), 2.47 (br s, 8H), 2.30-2.29 (m, 6H); Major, *C NMR (100 MHz,
CDCls) 6: 165.61, 163.29, 160.37, 158.67, 151.87, 151.21, 142.60, 137.38, 136.70, 135.71 (d, J =
32.6 Hz), 133.97, 132.11 (q, J =2.0 Hz), 130.99, 129.37, 127.13, 124.94, 122.77 (q, J = 273.2 Hz),
119.95 (d, J=4.9 Hz), 116.18, 113.74, 112.58, 62.61, 55.18, 53.18, 46.08, 17.64; Major, ’"F NMR
(376 MHz, CDCl5) 8: -59.03; IR vmax/cm™! (film): 3246, 2937, 2801, 1656, 1572, 1505, 1449, 1402,
1316, 1185, 1136, 1066, 1009, 908, 815, 727, 660, 613; m/z LRMS (ESI + APCI): [M+H]*

calculated for C3oH31FsN;O" = 562.3, found 562.3.

(35,95,10R,135,145)-10,13-Dimethyl-17-(4-(trifluoromethyl)pyridin-3-yl)-

2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate

AcO
Prepared according to general procedure A using (35,95,10R,135,145)-10,13-dimethyl-17-
(pyridin-3-y1)-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro- 1 H-cyclopenta[a]phenanthren-3-yl
acetate (78 mg, 0.20 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (86 mg, 0.22 mmol), Tf20 (34 pL, 0.20 mmol), DBU (30 pL, 0.20
mmol), CH>Cl, (2 mL), HOTf (18 pL, 0.20 mmol), TBAF (0.2 mL, 0.20 mmol, 1M in THF) at rt

for 24 hours. The crude material was purified by flash chromatography (silica gel: 20% EtOAc in

172



hexanes) to provide the title compound as a white solid (51 mg, 0.11 mmol, 55% yield). mp 145—
148 °C; 'H NMR (400 MHz, CDCl;) &: 8.64-8.61 (m, 2H), 7.53 (d, J = 5.0 Hz, 1H), 5.81 (s, 1H),
5.41(d,J=5.1 Hz, 1H), 4.64-4.56 (m, 1H), 2.37-2.69 (m, 3H), 2.14-2.01 (m, 5H), 1.88—-1.44 (m,
10H), 1.18-1.04 (m, 8H); *C NMR (100 MHz, CDCI3) §: 170.64, 151.30, 148.59, 147.95, 140.13,
136.59 (q, J = 30.5 Hz), 133.13 (q, J = 2.5 Hz), 131.89, 123.01 (q, J = 273.2 Hz), 122.40, 119.97
(q, J=4.9 Hz), 73.97, 57.06, 50.36, 49.67, 38.24, 37.02, 36.93, 34.56, 32.57, 31.65, 30.83, 27.84,
21.53,20.77,19.34, 17.10; ’F NMR (376 MHz, CDCl3) §: -58.61; IR vmax/cm™! (film): 3060, 2941,
2912, 2853, 2836, 1731, 1724, 1597, 1429, 1402, 1368, 1317, 1291, 1236, 1181, 1152, 1135, 1061,
1036, 963, 876, 839, 821, 808, 739, 653; HRMS (DART): [M+H]" calculated for C27H33F:NO>*

=460.2458, found 460.2446.

2-Chloro-N-(4-chloro-3-(4-(trifluoromethyl)pyridin-2-yl)phenyl)-4-
(methylsulfonyl)benzamide

CF3

o\\S//o
AN “Me
H
= N
N
(0] Cl
Cl

Prepared according to general procedure A (except that after Tf20O added, the reaction mixture was
stirred for 1 hour at —-50 °C) using 2-chloro-N-(4-chloro-3-(pyridin-2-yl)phenyl)-4-
(methylsulfonyl)benzamide (84 mg, 0.20 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (86 mg, 0.22 mmol), Tf20 (34 pL, 0.20 mmol), DBU (30 pL, 0.20
mmol), CH>Cl (2 mL), HOTf (27 uL, 0.30 mmol), MeOH (1 mL) and H>O (36 pL, 2.00 mmol)
at rt for 12 hours. The crude material was purified by flash chromatography (silica gel: 20% EtOAc

in CH2Cl to 25% EtOAc in CH2Cl») to provide the title compound as a white solid (75 mg, 0.15
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mmol, 76% yield). mp 147-149 °C; 'H NMR (400 MHz, CDCls) &: 8.90 (s, 1H), 8.82 (d, J = 5.2
Hz, 1H), 7.92-7.90 (m, 2H), 7.83 (t, J = 1.1 Hz, 1H), 7.76 (dd, J = 2.7, 8.7 Hz, 1H), 7.70 (d, J =
1.1 Hz, 2H), 7.52 (dd, J = 0.9, 5.1 Hz, 1H), 7.48 (d, J = 8.7 Hz, 1H), 3.03 (s, 3H); 1*C NMR (100
MHz, CDCl3) 8: 163.68, 157.54, 150.49, 142.63, 140.62, 138.61 (q, J = 34.1 Hz), 138.24, 136.83,
132.51, 131.09, 130.50, 128.97, 127.90, 125.86, 123.04, 122.77 (q, J = 271.8 Hz), 122.16, 120.84
(q,J = 3.8 Hz), 118.46 (q, J = 3.4 Hz), 44.48; '°F NMR (376 MHz, CDCl3) &: -64.70; IR pmar/cm”
! (film): 3299, 3066, 3025, 2926, 1675, 1605, 1584, 1534, 1485, 1462, 1430, 1371, 1335, 1301,
1280, 1246, 1211, 1167, 1150, 1137, 1098, 1084, 1049, 1032, 965, 883, 851, 817, 795, 757, 725,
667, 642, 591, 559; HRMS (DART): [M+H]* calculated for C20H4CLF3N203S* = 489.0049,

found 489.0062.

2-Butoxyethyl 4-(trifluoromethyl)nicotinate

CF; O

| AN o O Me

N
Prepared according to general procedure B (except that after Tf20 added, the reaction mixture was
stirred for 1 hour at —30 °C) using 2-butoxyethyl nicotinate (45 mg, 0.20 mmol), 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (86 mg, 0.22 mmol), Tf>O (34
uL, 0.20 mmol), DBU (30 pL, 0.20 mmol), CH>Cl> (2 mL), NaHCO3 (50 mg, 0.60 mmol), THF
(1 mL) and H>O (36 pL, 2.00 mmol) at rt for 50 minutes. The crude material was purified by flash
chromatography (silica gel: 20% EtOAc in hexanes) to provide the title compound as a light-
yellow oil (45 mg, 0.16 mmol, 77% yield). '"H NMR (400 MHz, CDCls) &: 9.10 (s, 1H), 8.90 (d, J

=5.2Hz, 1H), 7.63 (d, J =5.2 Hz, 1H), 4.50 (t, J/ = 4.8 Hz, 2H), 3.73 (t, / = 4.8 Hz, 2H), 3.48 (t,

J = 6.6 Hz, 2H), 1.59-1.52 (m, 2H), 1.40-1.30 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H); '*C NMR (100
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MHz, CDCls) 6: 164.60, 153.31, 151.72, 136.79 (q, J = 34.2 Hz), 125.39 (q, / = 1.9 Hz), 122.17
(q,J =272.9 Hz), 120.22 (q, J = 5.0 Hz), 71.31, 68.20, 65.61, 31.74, 19.30, 13.94; '°F NMR (376
MHz, CDCI3) &: -61.73; IR vmax/cm™ (film): 2959, 2934, 2870, 1739, 1593, 1458, 1405, 1383,
1306, 1265, 1232, 1145, 1067, 1050, 844, 790, 660, 612; m/z HRMS (DART): [M+H]" calculated

for C13H17FsNO3™ = 292.1155, found 292.1161.

4-(Trifluoromethyl)-6,7,8,9-tetrahydro-SH-cyclohepta[b]pyridine

Prepared according to trifluoromethylation general procedure A using 6,7,8,9-tetrahydro-5H-
cyclohepta[b]pyridine (30 mg, 0.20 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (86 mg, 0.22 mmol), Tf20 (34 pL, 0.20 mmol), DBU (30 pL, 0.20
mmol), CH>Cl, (2 mL), HOTf (27 pL, 0.30 mmol), MeOH (1 mL) and H>O (36 pL, 2.00 mmol)
at rt for 24 hours. The crude material was purified by flash chromatography (silica gel: DCM) to
provide the title compound as a colorless oil (8.6 mg, 0.04 mmol, 20% yield). '"H NMR (400 MHz,
CDCl3) 6: 8.42 (d, J = 5.3 Hz, 1H), 7.31 (d, J = 5.2 Hz, 1H), 3.17-3.14 (m, 2H), 2.96-2.93 (m,
2H), 1.89-1.85 (m, 2H), 1.73-1.65 (m, 4H); 3*C NMR (100 MHz, CDCls) §: 166.18, 146.61,
136.10, 135.67 (q, J = 30.3 Hz), 123.67 (q, J = 273.2 Hz), 117.39 (q, J = 4.2 Hz), 39.13, 32.01,
29.18 (q, J = 2.2 Hz), 26.94, 26.18; '°F NMR (376 MHz, CDCl3) &: -61.08; IR vmax/cm™ (film):
2929, 2856, 1411, 1315, 1159, 1133, 1110, 907, 841, 832, 730, 709; LRMS (ESI + APCI): [M+H]*

calculated for C11H3FsN* = 216.1, found 216.1.
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4-(Perfluoroethyl)-2-phenylpyridine

F| CF3

\

Prepared according to general procedure A using 2-phenylpyridine (29 pL, 0.2 mmol), 1,1'-
(((perfluoroethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (97 mg, 0.22 mmol), T£,0 (34
pL, 0.2 mmol), DBU (30 pL, 0.2 mmol), CH2Cl> (2 mL), TfOH (18 pL, 0.2 mmol), MeOH (1 mL)
and H2O (36 pL, 2 mmol) at rt for 22 hours. The crude material was purified by flash
chromatography (silica gel: 3 % EtOAc in hexanes) to provide the title compound as a colorless
oil (40 mg, 0.148 mmol, 74 % yield). '"H NMR (400 MHz, CDCl;) §: 8.88 (d, J = 5.1 Hz, 1H), 8.09
—7.99 (m, 2H), 7.92 (s, 1H), 7.57 — 7.45 (m, 3H), 7.44 (dd, J = 5.1, 1.5 Hz, 1H); '*C NMR (101
MHz, CDCI3) o: 158.88, 150.65, 138.17, 137.94 — 137.70 (m), 130.03, 129.13, 127.23, 120.31 (t,
J =379 Hz), 118.87 (t, J = 5.8 Hz), 117.37 (t, J = 6.1 Hz), 115.44 — 114.57 (m), 112.58 (q, J =
38.7Hz), 110.63 —109.86 (m); ’FNMR (376 MHz, CDCl3) § -84.47, -117.05. IR vmax/cm! (film):
2957, 2923, 2853, 2360, 1558, 11471, 1457, 1214, 760, 667. m/z HRMS (DART): [M+H]*

calculated for C13HoFsN* = 274.0650, found 274.0662.
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A1.5 Difluoromethylation of Heterocycles

General Procedure A

H CF,H
Phosphine, Tf,O; DBU; HCI
TN > » TN
R_K P CH,Cl,, -78 °C to rt EtOH/H,0, 40 °C R_K P
N sequential addition N

An oven dried 8 mL vial or 25 mL round bottom flask was charged with the heterocycle (1.0 equiv)
and phosphine (1.1 equiv) and placed under a nitrogen atmosphere (vacuum/nitrogen backfill, 3
cycles). CH2Cl; (0.1 M) was added, the reaction vessel cooled to —78 °C and T,0 (1.0 equiv) was
added dropwise over 5 minutes. The reaction was stirred for 30 minutes before DBU (1.0 equiv)
was added dropwise (note — addition should be performed with vigorous stirring to ensure the
DBU is readily homogenized; at —78 °C it tends to freeze and stick to the stir bar, preventing
stirring). After the addition was complete, the reaction was warmed to 0 °C in an ice bath over 5
minutes. A 10 % H2O in EtOH (v/v) solution was added to the reaction, bringing the final
concentration to 0.05 M, and HCl in dioxane was added (1.0 equiv). The reaction was heated to
40 °C and allowed to run for 24 h, then quenched with a saturated aqueous solution of NaHCO3
and the aqueous layer was extracted with CH>Cl, (3x). The combined organic extracts were
washed with a saturated aqueous solution of brine, dried (MgS0Os4), filtered, and concentrated in
vacuo.  The residue was purified by flash column chromatography to provide the

difluoromethylated heteroarene.
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General Procedure B

H CF,H
Phosphine, Tf,O; DBU; K,CO4
TN > » TN
R_K P CH,Cl,, -78 °C to rt THF/H,0, 0 °C R_K P
N sequential addition N

An oven dried 8 mL vial or 25 mL round bottom flask was charged with the heterocycle (1.0 equiv)
and phosphine (1.1 equiv) and placed under a nitrogen atmosphere (vacuum/nitrogen backfill, 3
cycles). CH2Cl; (0.1 M) was added, the reaction vessel cooled to —78 °C and Tf,0 (1.0 equiv) was
added dropwise over 5 minutes. The reaction was stirred for 30 minutes before DBU (1.0 equiv)
was added dropwise (note — addition should be performed with vigorous stirring to ensure the
DBU is readily homogenized; at —78 °C it tends to freeze and stick to the stir bar, preventing
stirring). After the addition was complete, the reaction was warmed to 0 °C in an ice bath over 5
minutes. The solvent was removed under vacuum, and THF and H»O (1:1, 0.1 M) were added to
the residue. The solution was vigorously stirred and solid K>CO3 (1.5 eq.) was added in one
portion. After 1 h, the reaction mixture was extracted with CH>Cl> (3x). The combined organic
extracts were washed with a saturated aqueous solution of brine, dried (MgSQs), filtered, and
concentrated in vacuo. The residue was purified by flash column chromatography to provide the

difluoromethylated heteroarene.
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General Procedure C

H CF,H
Phosphine, Tf,O; DBU; HCI, TBAF
AN - > AN
R—T CH,Cl,, -78 °C to rt 40 °C R—
L 22 L~
N sequential addition N

An oven dried 8 mL vial or 25 mL round bottom flask was charged with the heterocycle (1.0 equiv)
and phosphine (1.1 equiv) and placed under a nitrogen atmosphere (vacuum/nitrogen backfill, 3
cycles). CH2Cl; (0.1 M) was added, the reaction vessel cooled to —78 °C and Tf,0 (1.0 equiv) was
added dropwise over 5 minutes. The reaction was stirred for 30 minutes before DBU (1.0 equiv)
was added dropwise (note — addition should be performed with vigorous stirring to ensure the
DBU is readily homogenized; at —78 °C it tends to freeze and stick to the stir bar, preventing
stirring). After the addition was complete, the reaction was warmed to 0 °C in an ice bath over 5
minutes. HCI in dioxane was added (1.0 equiv), followed by TBAF (1.0 equiv.), and the reaction
was heated to 40 °C for 24 h, then quenched with a saturated aqueous solution of NaHCOs3 and the
aqueous layer was extracted with CH>Cl, (3x). The combined organic extracts were washed with
a saturated aqueous solution of brine, dried (MgSQs), filtered, and concentrated in vacuo. The
residue was purified by flash column chromatography to provide the difluoromethylated

heteroarene.

4-(Difluoromethyl)-2-phenylpyridine

Prepared according to general procedure A using 2-phenylpyridine (71.5 pL, 0.5 mmol),

(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>20 (84 pL, 0.5 mmol),
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DBU (75 uL, 0.5 mmol), CH2Cl; (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol), EtOH (4.5
mL) and H2O (0.5 mL) at 40 °C for 24 hours. The crude material was purified by flash
chromatography (silica gel: 60 % CH2Cl: in hexanes) to provide the title compound as a colorless
oil (83 mg, 0.40 mmol, 80 % yield). '"H NMR (400 MHz, CDCls) &: 8.81 (d, J = 5.3 Hz, 1H), 8.09
—7.91 (m, 2H), 7.84 (s, 1H), 7.60 — 7.39 (m, 3H), 7.39 — 7.31 (m, 1H), 6.69 (t, J/ = 55.8 Hz, 1H);
3C NMR (100 MHz, CDCls) &: 158.43, 150.38, 142.97 (t, J = 23.3 Hz), 138.48, 129.57, 128.90,
127.00, 118.20 (t, J = 5.7 Hz), 116.62 (t, J = 6.0 Hz), 113.14 (t, J = 240.9 Hz); ’F NMR (376
MHz, CDCl3) 8: -115.56 (d, J = 55.8 Hz). IR vmax/cm™ (film): 3054, 2360, 1609, 1583, 1564, 1476,
1409, 1380, 1302, 1198, 1114, 1038, 837, 774, 692, 635, 548. m/z HRMS (DART): [M+H]*

calculated for C2HoF2N* = 206.0776, found 206.0792.

2-Bromo-4-(difluoromethyl)pyridine

Prepared according to general procedure B using 2-bromopyridine (48.6 puL, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>20 (84 pL, 0.5 mmol),
DBU (75 pL, 0.5 mmol), CH2Cl; (5 mL), K2CO3 (69 mg, 0.5 mmol), THF (2.5 mL) and H>O (2.5
mL) at rt for 16 hours. The crude material was purified by flash chromatography (silica gel: 75 %
CHCl in hexanes) to provide the title compound as a colorless oil (68 mg, 0.33 mmol, 65 % iso.
yield, 78 % "H NMR yield). Note that the product evaporates during solvent evaporation. '"H NMR
(400 MHz, CDCl3) 6: 8.51 (d, J = 5.1 Hz, 1H), 7.62 (s, 1H), 7.38 (d, J = 5.1 Hz, 1H), 6.60 (t, J =
55.4 Hz, 1H); '3C NMR (100 MHz, CDCls) §: 151.09, 144.83 (t, J = 23.7 Hz), 142.91, 124.87 (t,

J =62 Hz), 119.17 (t, J = 5.6 Hz), 112.01 (t, J = 242.2 Hz); "9F NMR (376 MHz, CDCl3) §: -
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116.15 (d, J = 55.4 Hz). IR vma/cm™ (film): 3067, 2979, 1598, 1557, 1464, 1397, 1363, 1286,
1218, 1125, 1078, 1043, 830, 739, 708, 671. m/z LRMS (ESI + APCI): [M]* calculated for

CsHaBrFoN = 208.0, found 208.0.

Ethyl 4-(difluoromethyl)picolinate

CF,H

| X

NT CO,Et
Prepared according to general procedure A using ethyl picolinate (67.5 pL, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>0 (84 puL, 0.5 mmol),
DBU (75 uL, 0.5 mmol), CH2Cl> (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol), EtOH (4.5
mL) and H2O (0.5 mL) at 40 °C for 24 hours. The crude material was purified by flash
chromatography (silica gel: 30 % EtOAc in hexanes) to provide the title compound as a colorless
oil (67 mg, 0.33 mmol, 67 % yield). "H NMR (400 MHz, CDCI3) §: 8.88 (d, J = 4.6 Hz, 1H), 8.23
(s, 1H), 7.59 (d, J = 4.0 Hz, 1H), 6.69 (t, J = 55.4 Hz, 1H), 449 (q, J = 7.1 Hz, 2H), 1.44 (t, J =
7.1 Hz, 3H); *C NMR (100 MHz, CDCls) &: 164.53, 150.74, 149.37, 143.62 (t, J = 23.9 Hz),
123.02 (t,J =5.7 Hz), 121.63 (t, J = 6.0 Hz), 112.56 (t, J = 241.6 Hz), 62.47, 14.40; "’F NMR (376
MHz, CDCl3) &: -115.95 (d, J = 55.5 Hz). IR vma/cm™ (film): 2985, 2940, 2360, 1720, 1609,
1471, 1367, 1300, 1275, 1206, 1131, 1040, 1022, 913, 863, 783, 668. m/z HRMS (DART): [M+H]*

calculated for CoH1oFaNO2* = 202.0674, found 202.0689.
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2-(4-Chlorobenzyl)-4-(difluoromethyl)pyridine (37)

CF,H

Cl
X

| -
Prepared according to general procedure A using 2-(4-chlorobenzyl)pyridine (74 pL, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>20 (84 uL, 0.5 mmol),
DBU (75 uL, 0.5 mmol), CH2Cl; (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol), EtOH (4.5
mL) and H2O (0.5 mL) at 40 °C for 24 hours. The crude material was purified by flash
chromatography (silica gel: 5 % EtOAc in CH2Cl,) to provide the title compound as a colorless oil
(104 mg, 0.41 mmol, 82 % yield). 'H NMR (400 MHz, CDCI3) &: 8.68 (d, J = 5.1 Hz, 1H), 7.34
—7.24 (m, 3H), 7.24 — 7.13 (m, 3H), 6.58 (t, J = 55.7 Hz, 1H), 4.18 (s, 2H).; >*C NMR (100 MHz,
CDCls) o: 161.68, 150.37, 142.98 (t, J = 23.3 Hz), 137.35, 132.71, 130.57, 128.99, 119.29 (t, J =
5.9 Hz), 117.83 (t, J = 5.7 Hz), 113.06 (t, J = 240.9 Hz), 44.07; °F NMR (376 MHz, CDCl;) §: -
115.63 (d, J = 55.7 Hz). IR vma/em™ (film): 3028, 2928, 2360, 2341, 2222, 1611, 1570, 1491,
1407, 1365, 1174, 1089, 1043, 1016, 907, 848, 797, 729, 686. m/z HRMS (DART): [M+H]*

calculated for C3H;1CIFoN* = 254.0543, found 254.0563.

4-(Difluoromethyl)-4'-(trifluoromethyl)-2,2'-bipyridine

CF,H
AN
= CF
N = | 3
NN

Prepared according to general procedure A using 4-(trifluoromethyl)-2,2'-bipyridine (112 mg, 0.5
mmol), (difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf,0 (84 uL, 0.5

mmol), DBU (75 uL, 0.5 mmol), CH>Cl> (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol), EtOH
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(4.5 mL) and H>O (0.5 mL) at 60 °C for 72 hours. The crude material was purified by flash
chromatography (silica gel: 3 % EtOAc in CH2Cl») to provide the title compound as a white solid
(83 mg, 0.30 mmol, 60 % yield). mp 74-75 °C; 'H NMR (400 MHz, CDCl5) &: 8.85 (dd, J = 14.3,
4.2 Hz, 2H), 8.72 (s, 1H), 8.60 (s, 1H), 7.53 (dd, J = 24.8, 4.5 Hz, 2H), 6.73 (t, J = 55.6 Hz, 1H);
3C NMR (100 MHz, CDCIs) &: 156.70, 155.82, 150.29 (d, J = 11.7 Hz), 143.62 (t, J = 23.6 Hz),
139.69 (q, J = 34.2 Hz), 124.39, 121.67, 121.18 — 120.39 (m), 119.82, 117.97 (t, J = 6.3 Hz),
117.25 (d, J = 3.7 Hz), 113.15 (t, J = 241.1 Hz); ’F NMR (376 MHz, CDCl5) §: -64.85, -115.58
(d,J=55.7Hz). IR vma/cm™ (film): 3080, 2925, 2360, 2342, 1603, 1568, 1465, 1392, 1367, 1332,
1287, 1263, 1164, 1129, 1080, 1068, 1038, 908, 849, 667. m/z HRMS (DART): [M+H]" calculated

for C12HsFsN2™ = 275.0602, found 275.0608.

4-(Difluoromethyl)-2-(1,3-dioxolan-2-yl)pyridine
CF,H
X

Z 0)
N

O
Prepared according to general procedure C using 2-(1,3-dioxolan-2-yl)pyridine (76 mg, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf,0 (84 pL, 0.5 mmol),
DBU (75 uL, 0.5 mmol), CH>Cl> (5 mL), and TBAF (1 M in THF, 500 pL, 0.5 mmol), at 60 °C
for 24 hours. The crude material was purified by flash chromatography (silica gel: 10 % EtOAc
in CHxCly) to provide the title compound as a colorless oil (68 mg, 0.34 mmol, 68 % yield). 'H
NMR (400 MHz, CDCI3) 6: 8.74 (d, J = 5.0 Hz, 1H), 7.66 (s, 1H), 7.40 (d, J = 4.8 Hz, 1H), 6.64
(t, J = 55.7 Hz, 1H), 5.89 (s, 1H), 4.23 — 4.04 (m, 3H); 3*C NMR (100 MHz, CDCI3) §: 158.44,

150.22, 143.18 (t, J = 23.5 Hz), 120.26 (t, /= 5.7 Hz), 117.23 (t, J = 6.0 Hz), 112.97 (t, J = 241.2
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Hz), 103.30, 65.80; ’F NMR (376 MHz, CDCl3) &: -115.73 (d, J = 55.7 Hz). IR vmax/cm™ (film):
2962, 2893, 2360, 2341, 2252, 1614, 1383, 1173, 1119, 1080, 1041, 982, 907, 855, 728, 647. m/z

HRMS (DART): [M+H]" calculated for CoHioF2NO>" = 202.0674, found 202.0687.

3-Butyl-4-(difluoromethyl)pyridine

Prepared according to general procedure A using 3-butylpyridine (74 pL, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>0 (84 uL, 0.5 mmol),
DBU (75 uL, 0.5 mmol), CH2Cl> (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol), EtOH (4.5
mL) and H2O (0.5 mL) at 40 °C for 24 hours. The crude material was purified by flash
chromatography (silica gel: 15 % EtOAc in CH2Cl,) to provide the title compound as a colorless
oil (56 mg, 0.28 mmol, 55 % yield). "H NMR (400 MHz, CDCI3) &: 8.72 — 8.37 (m, 2H), 7.41 (d,
J=5.0Hz, 1H), 6.77 (t, J = 54.8 Hz, 1H), 2.80 — 2.63 (m, 2H), 1.60 (tt, J=7.9, 6.4 Hz, 2H), 1.41
(dq, J =14.6, 7.3 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H); '*C NMR (100 MHz, CDCl5) &: 151.68, 148.01,
139.36 (t, J = 22.0 Hz), 135.36, 119.37 (t, J = 6.6 Hz), 112.20 (t, J = 239.6 Hz), 33.45, 29.32,
22.55,13.77; "F NMR (377 MHz, CDCl3) &: -114.97 (d, J = 55.0 Hz). IR vmax/cm™ (film): 2960,
2934, 2874, 1466, 1411, 1379, 1347, 1237, 1166, 1089, 1035, 833, 730. m/z LRMS (ESI-APCI):

[M]* calculated for CioHi3F2N = 186.1, found 186.2.
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4-(Difluoromethyl)nicotinonitrile

CF,H

N
SN C

=
N

Prepared according to general procedure A using 3-cyanopyridine (52 mg, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>20 (84 uL, 0.5 mmol),
DBU (75 uL, 0.5 mmol), CH2Cl; (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol), EtOH (4.5
mL) and H2O (0.5 mL) at 40 °C for 24 hours. The crude material was purified by flash
chromatography (silica gel: 2 % EtOAc in CH>Cl) to provide the title compound as a white solid
(13 mg, 0.08 mmol, 17 % iso. yield, 40 % "H NMR yield). Note that the product evaporates during
solvent evaporation. 'H NMR (400 MHz, CDCls) &: 9.02 (s, 1H), 8.98 (d, J = 4.8 Hz, 1H), 7.68
(d, J = 5.1 Hz, 1H), 6.89 (t, J = 54.0 Hz, 1H); >*C NMR (100 MHz, CDCls) &: 158.72, 147.33,
139.88 (t, J = 21.5 Hz), 129.96, 117.17 (t, J = 7.1 Hz), 112.61 (t, J = 239.6 Hz), 33.05, 24.90,
22.52,22.32; "FNMR (376 MHz, CDCl3) &: -116.21 (d, J = 54.0 Hz). IR vma/cm™ (film): 3037,
2924,2236, 1593, 1407, 1381, 1235, 1191, 1164, 1090, 1042, 836, 790, 734, 660. m/z LRMS (ESI-

APCI): [M]* calculated for C7H4F2N2 = 154.0, found 154.0.

Tert-butyl ((4-(difluoromethyl)pyridin-3-yl)methyl)(methyl)carbamate

CF,H
Boc
X N~
| Me
~
N

Prepared according to general procedure A using tert-butyl methyl(pyridin-3-ylmethyl)carbamate
(111 mg, 0.5 mmol), (difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol),

T£20 (84 pL, 0.5 mmol), DBU (75 pL, 0.5 mmol), CH2Clz (5 mL), HCI (4 M in dioxane, 125 pL,
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0.5 mmol), EtOH (4.5 mL) and H>O (0.5 mL) at 40 °C for 24 hours. The crude material was
purified by flash chromatography (silica gel: 55 % EtOAc in hexanes) to provide the title
compound as a colorless oil (85 mg, 0.31 mmol, 62 % yield). '"H NMR (400 MHz, CDCls) o: 8.68
(d, J =5.0 Hz, 1H), 8.57 (s, 1H), 7.48 (d, J = 5.0 Hz, 1H), 6.91 (br t, J = 54.1 Hz, 1H), 4.58 (s,
2H), 2.82 (s, 3H), 1.45 (s, 9H); *C NMR (100 MHz, CDCls) §: 158.06 — 154.49 (m), 152.70 —
150.30 (m), 149.93, 141.44 — 138.84 (m), 130.85, 119.89, 112.22 (t, J = 239.2 Hz), 80.67, 51.80 —
44.51 (m), 34.13, 29.82, 28.43; ’F NMR (376 MHz, CDCls) §: -115.47 (d, J = 53.3 Hz). IR
omax/em’! (film): 2978, 2933, 2360, 2341, 1686, 1480, 1414, 1391, 1367, 1240, 1147, 1084, 1038,
980,911, 730, 663. m/z HRMS (DART): [M+H]" calculated for C13H19F2 N2O>" =273.1409, found

273.1417.

4-(Difluoromethyl)-3-(phenylethynyl)pyridine
CF,H Ph
| P

Prepared according to general procedure A using 3-(phenylethynyl)pyridine (90 mg, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>20 (84 pL, 0.5 mmol),
DBU (75 uL, 0.5 mmol), CH>Cl> (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol), EtOH (4.5
mL) and H>O (0.5 mL) at 40 °C for 48 hours. The crude material was purified by flash
chromatography (silica gel: 20 % EtOAc in hexanes) to provide the title compound as a yellow
solid (89 mg, 0.39 mmol, 78 % yield). mp 44-45 °C; '"H NMR (400 MHz, CDCl5) §: 8.85 (s, 1H),
8.68 (d, J=5.1 Hz, 1H), 7.59 — 7.52 (m, 3H), 7.40 (qd, J = 4.7, 1.6 Hz, 3H), 7.00 (t, J = 54.7 Hz,
1H); *C NMR (100 MHz, CDCls) &: 153.21, 149.37, 142.40 (t, J = 23.2 Hz), 131.90, 129.57,

128.70, 121.90, 119.01 (t, J = 5.1 Hz), 118.44 (t, J = 5.7 Hz), 111.98 (t, J = 239.8 Hz), 98.26,
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81.91; F NMR (376 MHz, CDCI3) &: -117.10 (d, J = 54.7 Hz). IR vma/cm™ (film): 3068, 3021,
3001, 2926, 2854, 2360, 2341, 2221, 1598, 1496, 1442, 1365, 1233, 1211, 1168, 1143, 1076, 1031,
869, 848, 825, 749, 720, 686, 664. m/z HRMS (DART): [M+H]" calculated for Ci4sHioFoN* =

230.0776, found 230.0787.

4-(Difluoromethyl)-5,6,7,8-tetrahydroquinoline
CF,H

X

| -
Prepared according to general procedure A using 5,6,7,8-tetrahydroquinoline (64.7 pL, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>20 (84 uL, 0.5 mmol),
DBU (75 uL, 0.5 mmol), CH2Clz (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol) (125 pL, 0.5
mmol), EtOH (4.5 mL) and H20 (0.5 mL) at 40 °C for 24 hours. The crude material was purified
by flash chromatography (silica gel: 40 % EtOAc in hexanes) to provide the title compound as a
colorless oil (46 mg, 0.25 mmol, 50 % yield). 'H NMR (400 MHz, CDCl3) &: 8.48 (d, J = 5.0 Hz,
1H), 7.24 (d, J = 5.0 Hz, 1H), 6.71 (t, J = 54.7 Hz, 1H), 2.99 (t, J/ = 6.2 Hz, 2H), 2.84 (t, J = 6.1
Hz, 2H), 1.98 — 1.77 (m, 4H); '*C NMR (100 MHz, CDCl;) §: 158.56, 147.18, 139.72 (t, J = 21.5
Hz), 129.80, 117.01 (t, J = 7.1 Hz), 112.46 (t, J = 239.6 Hz), 32.89, 24.74, 22.36, 22.17; "F NMR
(376 MHz, CDCl5) 8: -117.77 (d, J = 54.7 Hz). IR vmax/cm™ (film): 2941, 2864, 2360, 2341, 2213,
1574, 1438, 1412, 1374, 1263, 1249, 1232, 1112, 1036, 908, 872, 843, 728, 644. m/z HRMS

(DART): [M+H]" calculated for CioH12FoaN* = 184.0932, found 184.0941.
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4-(Difluoromethyl)-2-methyl-3-(thiophen-3-yl)pyridine

CF2H —
S
NS
| X
=
N Me

Prepared according to general procedure A using 2-methyl-3-(thiophen-3-yl)pyridine (87.6 mg,
0.5 mmol), (difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf20 (84 pL,
0.5 mmol), DBU (75 pL, 0.5 mmol), CH2Cl, (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol),
EtOH (4.5 mL) and H20 (0.5 mL) at 60 °C for 72 hours. The crude material was purified by flash
chromatography (silica gel: 25 % EtOAc in hexanes) to provide the title compound as a colorless
oil (86 mg, 0.38 mmol, 76 % yield). 'H NMR (400 MHz, CDCls) &: 8.63 (d, J = 5.1 Hz, 1H), 7.56
—7.37 (m, 2H), 7.22 (dd, J = 2.9, 1.1 Hz, 1H), 7.01 (dd, J = 4.9, 1.1 Hz, 1H), 6.29 (t, J = 54.7 Hz,
1H), 2.39 (s, 3H); *C NMR (100 MHz, CDCl5) &: 158.60, 148.98, 140.76 (t, J = 22.8 Hz), 134.91,
130.22 (t, J = 6.3 Hz), 128.80, 126.73, 125.17, 116.69 (t, J = 5.1 Hz), 111.98 (t, J = 238.4 Hz),
23.52; ’F NMR (376 MHz, CDCl3) &: -106.33 — -117.12 (m). IR vma/cm™ (film): 3107, 2997,
2220, 1576, 1423, 1394, 1355, 1268, 1242, 1105, 1038, 908, 860, 845, 785, 729, 705, 658. m/z
HRMS (DART): [M+H]* calculated for C;1HioFaNS* = 226.0497, found 226.0518.
4-(Difluoromethyl)-2-fluoro-5-methylpyridine

CF,H

Prepared according to general procedure B using 2-fluoro-5-methylpyridine (52 pL, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>0 (84 uL, 0.5 mmol),
DBU (75 pL, 0.5 mmol), CH>Cl (5 mL), K2COs (69 mg, 0.5 mmol), THF (2.5 mL) and H>0O (2.5

mL) at rt for 2 hours. The crude material was purified by flash chromatography (silica gel: 80 %
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CH>Cl; in hexanes) to provide the title compound as a colorless oil (44 mg, 0.27 mmol, 27 % iso.
yield, 70 % "H NMR yield) Note that the product evaporates during solvent evaporation. 'H NMR
(400 MHz, CDCl3) o: 8.09 (s, 1H), 7.05 (d, J =2.4 Hz, 1H), 6.69 (t, J = 54.4 Hz, 1H), 2.36 (s, 3H);
13C NMR (100 MHz, CDCl3) 8: 162.69 (d, J = 238.1 Hz), 149.46 (d, J = 14.2 Hz), 145.18 (td, J =
22.2,7.2 Hz), 128.49 (q, J =4.6 Hz), 111.85 (td, J = 240.9, 2.9 Hz), 106.06 (dt, J = 40.1, 7.7 Hz),
14.85; "F NMR (376 MHz, CDCl3) §: -70.09, -118.49 (d, J = 54.4 Hz). IR vmax/cm™ (film): 2973,
2360, 2342, 1612, 1582, 1490, 1456, 1387, 1348, 1269, 1156, 1049, 967, 881, 820, 735, 691. m/z

HRMS (DART): [M+H]* calculated for CyH7FsN* = 162.0525, found 162.0535.

4-(Difluoromethyl)quinoline

Prepared according to general procedure A using quinoline (59.2 pL, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>20 (84 pL, 0.5 mmol),
DBU (75 uL, 0.5 mmol), CH2Cl> (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol), EtOH (4.5
mL) and H2O (0.5 mL) at 40 °C for 24 hours. The crude material was purified by flash
chromatography (silica gel: 5 % EtOAc in CH2Clz) to provide the title compound as colorless
crystals (69 mg, 0.39 mmol, 77 % yield). mp 53-55 °C; 'H NMR (400 MHz, CDCl3) : 9.01 (d, J
=4.3 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.12 — 8.01 (m, 2H), 7.78 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H),
7.64 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.57 (d, J = 4.3 Hz, 1H), 7.15 (t, J = 54.5 Hz, 1H). >*C NMR
(100 MHz, CDCl3) 6: 150.11, 148.75, 137.88 (t, J = 21.8 Hz), 130.55, 130.03, 127.92, 124.25 (t,
J=2.5Hz), 123.40, 118.05 (t, J = 7.7 Hz), 113.41 (t, J = 240.4 Hz); "’F NMR (376 MHz, CDCI;)

8:-115.10 (d, J = 54.5 Hz). IR vmax/cm™ (film): 3059, 2983, 2923, 2851, 2360, 2342, 1602, 1515,
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1501, 1466, 1407, 1359, 1310, 1245, 1171, 1147, 1115, 1074, 1031, 1022, 999, 986, 865, 851,
767, 816,777,752, 665, 625. m/z HRMS (DART): [M+H]" calculated for Ci1oHsFoN* = 180.0619,

found 180.0632.

4-(Difluoromethyl)-6-nitroquinoline

Prepared according to general procedure A wusing 6-nitroquinoline (87 mg, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>0 (84 puL, 0.5 mmol),
DBU (75 uL, 0.5 mmol), CH2Cl> (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol), EtOH (4.5
mL) and H20 (0.5 mL) at 40 °C for 24 hours. The crude material was purified by flash
chromatography (silica gel: 4 % EtOAc in CH>Cl) to provide the title compound as a white solid
(61 mg, 0.27 mmol, 54 % yield). mp 124-126 °C; 'H NMR (400 MHz, CDCls) 8: 9.20 (d, J = 4.4
Hz, 1H), 9.05 (s, 1H), 8.55 (dd, J =9.2, 2.4 Hz, 1H), 8.35 (d, /=9.2 Hz, 1H), 7.74 (d, / = 4.3 Hz,
1H), 7.20 (t, J = 54.1 Hz, 1H); '3C NMR (100 MHz, CDCls) &: 153.58, 150.63, 146.30, 139.97 (t,
J=225Hz),132.49, 123.61, 123.21 (t, J = 2.5 Hz), 120.71 (t, J = 1.9 Hz), 120.06 (t, J = 7.6 Hz),
112.95 (t, J = 241.5 Hz); "°F NMR (376 MHz, CDCls) §: -114.34 (d, J = 54.1 Hz). IR 0mad/cm’
(film): 3118, 3084, 3059, 3027, 2923, 2840, 2359, 2342, 1620, 1609, 1574, 1421, 1392, 1344,
1300, 1264, 1235, 1221, 1145, 1120, 1100, 1046, 1009, 910, 894, 867, 805, 742, 736, 657. m/z

HRMS (DART): [M+H]* calculated for C;oH7F2N202* = 225.047, found 225.0478.
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6-Chloro-4-(difluoromethyl)quinoline

Cl

Prepared according to general procedure A using 6-chloroquinoline (82 mg, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>0 (84 puL, 0.5 mmol),
DBU (75 uL, 0.5 mmol), CH2Cl; (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol), EtOH (4.5
mL) and HO (0.5 mL) at 40 °C for 24 hours. The crude material was purified by flash
chromatography (silica gel: 5 % EtOAc in CH2Cl,) to provide the title compound as pale yellow
crystals (75 mg, 0.35 mmol, 70 % yield). mp 65-66 °C; '"H NMR (400 MHz, CDCI3) &: 8.99 (d, J
=4.3 Hz, 1H), 8.12 (d, / = 9.0 Hz, 1H), 8.06 (d, J = 1.7 Hz, 1H), 7.72 (dd, J = 9.0, 2.2 Hz, 1H),
7.58 (d,J=4.3 Hz, 1H), 7.07 (t, J = 54.4 Hz, 1H); 3*C NMR (100 MHz, CDCls) &: 150.27, 147.17,
137.20 (t, J = 22.1 Hz), 134.09, 132.09, 131.11, 124.81 (t, J = 2.8 Hz), 122.66, 119.00 (t, J = 7.7
Hz), 113.25 (t, J = 240.8 Hz); "FNMR (376 MHz, CDCl3) &: -114.91 (d, J = 54.3 Hz). IR vmax/cm’
! (film): 2925, 2360, 2342, 1602, 1498, 1453, 1386, 1346, 1301, 1240, 1119, 1068, 1036, 851, 790.

m/z HRMS (DART): [M+H]" calculated for C1oH7CIFoN* = 214.023, found 214.0233.

7-Bromo-4-(difluoromethyl)quinoline

Br N

Prepared according to general procedure A using 8-bromoquinoline (104 mg, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>0 (84 uL, 0.5 mmol),

DBU (75 uL, 0.5 mmol), CH>Cl> (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol), EtOH (4.5
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mL) and H,O (0.5 mL) at 40 °C for 24 hours. The crude material was purified by flash
chromatography (silica gel: 3 % EtOAc in CH2Cl,) to provide the title compound as colorless
crystals (104 mg, 0.40 mmol, 81 % yield). mp 77-79 °C; '"H NMR (400 MHz, CDCl3) 6: 8.99 (d,
J=43Hz, 1H), 8.36 (d, J = 2.0 Hz, 1H), 7.94 (dt, J = 9.0, 1.3 Hz, 1H), 7.72 (dd, J = 9.0, 2.0 Hz,
1H), 7.57 (d, J = 4.3 Hz, 1H), 7.09 (t, J = 54.4 Hz, 1H); *C NMR (100 MHz, CDCl3) §: 151.13,
149.39, 138.11 (t, J = 22.0 Hz), 132.83, 131.44, 124.88, 124.33, 122.84 (t, J = 2.9 Hz), 118.46 (t,
J=17.7Hz), 113.29 (t, J = 240.9 Hz); "°F NMR (376 MHz, CDCl3) §: -114.66 (d, J = 54.4 Hz). IR
vma/em’! (film): 3068, 3040, 2975, 2923, 2852, 2360, 2333, 1600, 1494, 1442, 1362, 1305, 1238,
1166, 1120, 1080, 1066, 1041, 1001, 899, 858, 821, 778, 769, 672. m/z HRMS (DART): [M+H]*

calculated for C1oH7BrFoN* = 257.9724, found 257.9745.

7-(Difluoromethyl)-2-phenylfuro[3,2-b]pyridine

CF,H
0 | X
Ph
\ =

Prepared according to general procedure A using 2-phenylfuro[3,2-b]pyridine (195 mg, 1.0 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (326 mg, 1.1 mmol), Tf20 (168 pL, 1.0 mmol),
DBU (150 pL, 1.0 mmol), CH>Cl, (10 mL), HCI (4 M in dioxane, 125 uL, 0.5 mmol), EtOH (9
mL) and H2O (1.0 mL) at 40 °C for 24 hours. The crude material was purified by flash
chromatography (silica gel: 5 % EtOAc in CH>Cl») to provide the title compound as a pale yellow
solid (46 mg, 0.19 mmol, 19 % yield). mp 93-94 °C; '"H NMR (400 MHz, CDCls) §: 8.64 (d, J =
4.4 Hz, 1H), 7.96 —7.85 (m, 2H), 7.56 — 7.39 (m, 3H), 7.35 (d, J = 4.9 Hz, 1H), 7.27 (s, 1H), 7.15
(t,J=54.7 Hz, 1H); 3C NMR (100 MHz, CDCl3) §: 160.92, 150.48, 146.60, 144.71 — 143.57 (m),

130.21, 129.21, 129.15, 125.66, 124.47 (t, J = 24.9 Hz), 115.32 - 114.04 (m), 110.90 (t, J = 240.0
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Hz), 102.49; F NMR (376 MHz, CDCl3) §: -116.04 (d, J = 54.7 Hz). IR vmax/cm’™ (film): 3117,
3068, 3037, 2979, 2924, 2853, 2360, 2341, 1577, 1494, 1448, 1398, 1375, 1362, 1282, 1267, 1257,
1215, 1114, 1080, 1034, 1015, 992, 917, 840, 800, 771, 756, 698, 686, 659. m/z HRMS (DART):

[M+H]" calculated for C14H10FaNO* = 246.0725, found 246.0748.

4-(Difluoromethyl)-2-(propylthio)pyrimidine

CF,H
)
N/)\S”Pr

Prepared according to general procedure A using 2-(propylthio)pyrimidine (77 mg, 0.5 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (163 mg, 0.55 mmol), Tf>20 (84 uL, 0.5 mmol),
DBU (75 uL, 0.5 mmol), CH2Cl> (5 mL), HCI (4 M in dioxane, 125 pL, 0.5 mmol), EtOH (4.5
mL) and H2O (0.5 mL) at 40 °C for 24 hours. The crude material was purified by flash
chromatography (silica gel: 10 % EtOAc in hexanes) to provide the title compound as a colorless
oil (32 mg, 0.16 mmol, 32 % yield). '"H NMR (400 MHz, CDCI3) §: 8.67 (d, J = 5.0 Hz, 1H), 7.22
(d, J=5.0Hz, 1H), 6.44 (t, J = 54.8 Hz, 1H), 3.23 —3.05 (m, 2H), 1.77 (h, J = 7.3 Hz, 2H), 1.05
(t,J=7.4 Hz, 3H). '3C NMR (100 MHz, CDCl3) &: 173.68, 160.52 (t, J = 26.9 Hz), 159.00, 112.59
(t, J = 242.3 Hz) 111.64 (t, J = 2.9 Hz), 33.09, 22.55, 13.58; '’F NMR (376 MHz, CDCl;) §: -
119.57 (d, J = 54.8 Hz). IR vma/cm™ (film): 2966, 2933, 2874, 2360, 2342, 1560, 1458, 1436,

1363, 1325, 1262, 1202, 1182, 1110, 1052, 835,751, 735. m/z HRMS (DART): [M+H]" calculated

for CgH11F2N2S* = 205.0606, found 205.0624.
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2-(3-(4-(Difluoromethyl)pyridin-3-yl)-5-fluorophenyl)-5-(trifluoromethyl)pyridine

Prepared according to general procedure A using 2-(3-fluoro-5-(pyridin-3-yl)phenyl)-5-
(trifluoromethyl)pyridine (80 mg, 0.25 mmol), (difluoromethyl)bis(4-methoxyphenyl)phosphane
(82 mg, 0.275 mmol), Tf>0 (42 pL, 0.25 mmol), DBU (37 uL, 0.25 mmol), CH2>Cl, (2.5 mL), HCI
(4 M in dioxane, 63 pL, 0.25 mmol), EtOH (2.25 mL) and H>O (0.25 mL) at 40 °C for 23 hours.
The crude material was purified by flash chromatography (silica gel: 20 % EtOAc in toluene) to
provide the title compound as a white solid (57 mg, 0.155 mmol, 62 % yield). m.p. 120-123 °C;
'"H NMR (400 MHz, CDCl3) §: 9.02 — 8.92 (m, 1H), 8.83 (d, J = 5.1 Hz, 1H), 8.72 (s, 1H), 8.04
(dd, J = 8.4, 2.3 Hz, 1H), 7.94 — 7.83 (m, 3H), 7.69 (d, J = 5.1 Hz, 1H), 7.22 (dt, J = 8.5, 2.0 Hz,
1H), 6.58 (t, J = 54.2 Hz, 1H); >*C NMR (101 MHz, CDCls) &: 164.53, 162.05, 159.25 — 157.72
(m), 151.00, 150.37, 147.02 (d, J = 4.0 Hz), 140.89 (d, J = 8.1 Hz), 139.35 (t, J = 23.1 Hz), 137.73
(d, J=8.1 Hz), 134.67 — 134.33 (m), 126.05 (q, J = 33.2 Hz), 124.98, 124.29, 120.28, 119.53 (t, J
= 5.3 Hz), 118.20 (d, J = 22.6 Hz), 114.77 (d, J = 23.0 Hz), 111.65 (t, J = 239.0 Hz); '°’F NMR
(377 MHz, CDCl;) §: -62.38, -110.80 (t, /= 9.1 Hz), -111.59 (d, J = 54.1 Hz). IR vmax/cm™* (film):
3080, 3036, 2923, 1600, 1571, 1492, 1432, 1046, 1329, 1237, 1164, 1177, 1138, 1076, 1020, 920,
886, 842, 771, 697, 670, 553, 532. m/z HRMS (DART): [M+H]"* calculated for CigHi1FsN2" =

369.0821, found 369.0846.
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N-(4-(4-(Difluoromethyl)-2-phenylpyridin-3-yl)-2-methylbut-3-yn-2-yl)-5-methyl-2-

nitroaniline
NO,
Me H
CF,H
Me
| AN
= Me
N

Prepared according to general procedure A using 5-methyl-N-(2-methyl-4-(2-phenylpyridin-3-
yl)but-3-yn-2-yl)-2-nitroaniline (70 mg, 0.25 mmol), (difluoromethyl)bis(4-
methoxyphenyl)phosphane (82 mg, 0.275 mmol), Tf20 (42 pL, 0.25 mmol), DBU (37 pL, 0.25
mmol), CH>Cl, (2.5 mL), HCI (4 M in dioxane, 63 pL, 0.25 mmol), EtOH (2.25 mL) and H>O
(0.25 mL) at 40 °C for 48 hours. The crude material was purified by flash chromatography (silica
gel: 5 % EtOAc in hexanes) to provide the title compound as a yellow oil (64 mg, 0.152 mmol, 61
% yield). '"H NMR (400 MHz, CDCls) &: 8.75 (d, J = 5.0 Hz, 1H), 8.31 (s, 1H), 8.07 (d, J = 8.7
Hz, 1H), 7.83 (dd, J = 7.6, 2.0 Hz, 2H), 7.50 (d, J = 4.9 Hz, 1H), 7.43 — 7.31 (m, 3H), 7.08 (d, J =
1.6 Hz, 1H), 6.91 (t, J = 54.8 Hz, 1H), 6.49 (dd, J = 8.7, 1.7 Hz, 1H), 2.19 (s, 3H), 1.73 (s, 6H);
13C NMR (101 MHz, CDCls) §: 161.31, 149.15, 147.37, 144.16 (t, J = 22.9 Hz), 143.34, 138.57,
131.18, 129.47, 129.34, 127.99, 127.04, 118.01, 117.33 (t, /= 5.4 Hz), 115.71, 115.19(d, J = 5.8
Hz), 112.20 (t, J = 240.0 Hz), 103.06, 48.35, 29.99, 22.14; ’F NMR (376 MHz, CDCl3) §: -116.97
(d, J=54.8 Hz). IR vmax/cm™! (film): 3352, 2983, 2932, 2360, 2342, 1617, 1578, 1491, 1405, 1335,
1237, 1187, 1128, 1073, 1048, 908, 843, 751, 732, 697. m/z HRMS (DART): [M+H]" calculated

for C24H22F2N302" = 422.1675, found 422.1682.
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(R)-1-(3,5-Bis(trifluoromethyl)phenyl)ethyl 4-(difluoromethyl)-5-methylpicolinate

CF,H CF,

N CF4
O Me

Prepared according to general procedure A using (R)-1-(3,5-bis(trifluoromethyl)phenyl)ethyl 5-
methylpicolinate (94 mg, 0.25 mmol), (difluoromethyl)bis(4-methoxyphenyl)phosphane (82 mg,
0.275 mmol), Tf,0 (42 uL, 0.25 mmol), DBU (37 pL, 0.25 mmol), CH>Cl> (2.5 mL), HCI (4 M in
dioxane, 63 puL, 0.25 mmol), EtOH (2.25 mL) and H>O (0.25 mL) at 60 °C for 48 hours. The crude
material was purified by flash chromatography (silica gel: 1 % EtOAc in CH2Cl,) to provide the
title compound as a colorless oil (57 mg, 0.133 mmol, 53 % yield). 'H NMR (400 MHz, CDCls)
d: 8.68 (t, J =0.9 Hz, 1H), 8.20 (s, 1H), 7.92 (d, J = 1.7 Hz, 2H), 7.82 (t, J = 1.7 Hz, 1H), 6.76 (t,
J =544 Hz, 1H), 6.27 (q, J = 6.7 Hz, 1H), 2.49 (d, J = 1.6 Hz, 3H), 1.78 (d, J = 6.7 Hz, 3H); 13C
NMR (101 MHz, CDCI3) o: 163.78, 152.49, 146.39, 143.75, 140.99 (t, J = 22.4 Hz), 135.33 (t, J
= 4.3 Hz), 132.05 (q, J = 33.4 Hz), 126.58 (q, J = 3.6 Hz), 123.15 (q, J = 272.8 Hz), 122.38 —
122.00 (m), 121.30 (t, J = 7.1 Hz), 112.20 (t, J = 240.9 Hz), 72.59, 21.97, 15.81; "’F NMR (377
MHz, CDCls) 8: -62.90, -117.64 (d, J = 54.7 Hz). IR vmax/cm™ (film): 2989, 2360, 2342, 1726,
1456, 1384, 1278, 1247, 1222, 1174, 1134, 1054, 907, 845, 755, 730, 705, 682, 669. m/z HRMS

(DART): [M+H]" calculated for CisH14FsNO2* = 428.0891, found 428.0907.
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Ethyl 4-((4-chlorophenyl)(4-(difluoromethyl)pyridin-2-yl)methoxy)piperidine-1-
carboxylate

CF,H
Cl

O\G
N OEt
\n/

0]

Prepared according to general procedure A using ethyl 4-((4-chlorophenyl)(pyridin-2-
yl)methoxy)piperidine-1-carboxylate (94 mg, 0.25 mmol), (difluoromethyl)bis(4-
methoxyphenyl)phosphane (82 mg, 0.275 mmol), Tf20 (42 pL, 0.25 mmol), DBU (37 uL, 0.25
mmol), CH>Cl, (2.5 mL), HCI (4 M in dioxane, 63 pL, 0.25 mmol), EtOH (2.25 mL) and H>O
(0.25 mL) at 40 °C for 45 hours. The crude material was purified by flash chromatography (silica
gel: 30 % EtOAc in toluene) to provide the title compound as a colorless oil (69 mg, 0.162 mmol,
65 % yield). '"H NMR (400 MHz, CDCl3) é: 8.58 (d, J = 5.1 Hz, 1H), 7.62 (s, 1H), 7.33 (d, J = 8.5
Hz, 2H), 7.28 —7.21 (m, 3H), 6.58 (t, J =55.7 Hz, 1H), 5.62 (s, 1H), 4.07 (q, J=7.1 Hz, 2H), 3.82
—3.66 (m, 2H), 3.59 (tt, J = 7.7, 3.7 Hz, 1H), 3.21 — 3.08 (m, 2H), 1.89 — 1.72 (m, 2H), 1.61 (td, J
=8.4,4.1 Hz, 2H), 1.20 (t, /= 7.1 Hz, 3H); >*C NMR (101 MHz, CDCls) §: 163.25, 155.60, 149.79,
143.28 (t, J = 23.4 Hz), 139.63, 133.79, 128.83, 128.28, 118.80 (t, J = 5.7 Hz), 116.77 (t, J = 6.1
Hz), 113.05 (t, J = 241.1 Hz), 80.75, 72.96, 61.40, 41.15 (d, J = 7.4 Hz), 31.16 (d, J = 34.4 Hz),
14.79; 'YF NMR (377 MHz, CDCl3) &: -115.57 (dd, J = 55.8, 10.1 Hz). IR vmax/cm™! (film): 2982,
2931,2870, 1687, 1609, 1571, 1489, 1474, 1433, 1383, 1274, 1229, 1164, 1113, 1077, 1032, 1015,
828, 751, 666, 548, 531. m/z HRMS (DART): [M+H]" calculated for C1H24CIF2N203" =

425.1438, found 425.1463.
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5-(4-(Benzyloxy)-3-fluorophenyl)-4-(difluoromethyl)pyrimidine

F
( l 0
CF,H

Prepared according to general procedure A using 5-(4-(benzyloxy)-3-fluorophenyl)pyrimidine (70
mg, 0.25 mmol), (difluoromethyl)bis(4-methoxyphenyl)phosphane (82 mg, 0.275 mmol), Tf20
(42 pL, 0.25 mmol), DBU (37 uL, 0.25 mmol), CH>Cl (2.5 mL), HCI (4 M in dioxane, 63 pL,
0.25 mmol), EtOH (2.25 mL) and H>O (0.25 mL) at 40 °C for 17 hours. The crude material was
purified by flash chromatography (silica gel: 30 % EtOAc in hexanes) to provide the title
compound as a white solid (32 mg, 0.096 mmol, 39 % yield). m.p. 73-75 °C; 'H NMR (400 MHz,
CDCls) 6 9.33 (s, 1H), 8.81 (s, 1H), 7.51 = 7.33 (m, 5H), 7.22 — 7.04 (m, 3H), 6.58 (t, / = 53.6 Hz,
1H), 5.22 (s, 2H); >C NMR (101 MHz, CDCI3) §: 159.46, 157.84, 155.64 (t, J = 23.5 Hz), 153.97,
151.50, 147.90 (d, J = 10.5 Hz), 136.08, 132.83 (d, J = 2.2 Hz), 128.90, 128.52, 127.57, 125.96 —
125.44 (m), 117.53 (dt, J = 19.7, 1.8 Hz), 115.78 (d, J/ = 2.5 Hz), 111.90 (t, J = 242.5 Hz), 71.48;
FNMR (376 MHz, CDCl3) &: -114.77 (d, J = 53.8 Hz), -131.97 (dd, J = 11.4, 8.1 Hz). IR vmax/cm”
! (film): 3038, 2923, 2851, 1618, 1573, 1555, 1520, 1511, 1455, 1435, 1384, 1371, 1348, 1300,
1272, 1211, 1134, 1093, 1059, 1009, 993, 926, 906, 883, 817, 756, 746, 698, 668, 637, 630, 558.

m/z HRMS (DART): [M+H]" calculated for C1sH14F3N.O" = 331.1053, found 331.1058.
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(2R,6S)-4-((5-(4-(Difluoromethyl)-6-((6,7-dihydrothieno[3,2-c]pyridin-5(4H)-
yl)methyl)pyridin-3-yl)furan-2-yl)methyl)-2,6-dimethylmorpholine

Me

Prepared according to general procedure A except the reaction was allowed to warm to —50 °C
after DBU addition and stirred for 5 minutes, then HCl was added and the reaction heated to 60
°C using (2R,6S)-4-((5-(6-((6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)methyl)pyridin-3-yl)furan-
2-yl)methyl)-2,6-dimethylmorpholine (106 mg, 0.25 mmol), (difluoromethyl)bis(4-
methoxyphenyl)phosphane (81.5 mg, 0.28 mmol), Tf20 (42 pL, 0.25 mmol), DBU (38 pL, 0.25
mmol), CH>Cl> (2.5 mL), HCI (4 M in dioxane, 190 pL, 0.75 mmol), EtOH (2.25 mL) and H>O
(0.25 mL) at 60 °C for 72 hours. The crude material was purified by flash chromatography (silica
gel: 1 % MeOH in CH>Cl,) to provide the title compound as a pale yellow oil (60 mg, 0.13 mmol,
52 % yield). '"H NMR (400 MHz, CDCI3) 8: 8.91 (s, 1H), 7.82 (s, 1H), 7.08 (d, J = 5.1 Hz, 1H),
7.02 (t, J = 54.6 Hz, 1H), 6.70 (dd, J = 11.2, 4.2 Hz, 2H), 6.38 (d, J = 3.3 Hz, 1H), 3.94 (s, 2H),
3.77 - 3.66 (m, 4H), 3.62 (s, 2H), 2.99 — 2.85 (m, 4H), 2.77 (d, J = 10.5 Hz, 2H), 1.86 (t, J = 10.7
Hz, 2H), 1.16 (d, J = 6.3 Hz, 6H); '3*C NMR (100 MHz, CDCl5) §: 158.92, 153.65, 148.50, 148.20,
137.64 (t, J = 22.8 Hz), 133.74, 133.48, 125.36, 123.32 (t, / = 5.8 Hz), 122.85, 118.84 (t, / = 6.8
Hz), 111.82 (t, J/ = 239.0 Hz), 111.53, 111.45 — 111.16 (m), 71.80, 63.44, 59.06, 54.84, 53.38,
50.98, 25.54, 19.27; "Y'FNMR (376 MHz, CDCls) §: -115.13 (d, J = 54.6 Hz). IR vma/cm™ (film):

2971, 2931, 2871, 2813, 2360, 2342, 1474, 1454, 1376, 1355, 1321, 1162, 1142, 1080, 1044, 1023,
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906, 837, 795, 730, 702. m/z HRMS (DART): [M+H]* calculated for C25sH30F2N302S* = 474.2021,

found 474.2025.

((4-(Difluoromethyl)pyridin-2-yl)methylene)bis(4,1-phenylene) diacetate

CF,H

OAc

Prepared according to general procedure C using (pyridin-2-ylmethylene)bis(4,1-phenylene)
diacetate (90 mg, 0.25 mmol), (difluoromethyl)bis(4-methoxyphenyl)phosphane (82 mg, 0.275
mmol), TH,0 (42 uL, 0.25 mmol), DBU (37 uL, 0.25 mmol), CH2Cl, (2.5 mL), HCI (4 M in
dioxane, 63 pL, 0.25 mmol), and TBAF (1 M in THF, 250 pL, 0.25 mmol) at 40 °C for 24 hours.
The crude material was purified by flash chromatography (silica gel: 20 % EtOAc in toluene) to
provide the title compound as a yellow oil (86 mg, 0.208 mmol, 83 % yield). '"H NMR (400 MHz,
CDCl) o: 8.72 (d, J = 5.0 Hz, 1H), 7.29 (dd, J = 4.9, 1.4 Hz, 1H), 7.23 (s, 1H), 7.21 — 7.15 (m,
4H), 7.08 — 7.00 (m, 4H), 6.58 (t, J = 55.7 Hz, 1H), 5.70 (s, 1H), 2.28 (s, 6H); >*C NMR (101 MHz,
CDCl3) 6 169.52, 163.85, 150.53, 149.60, 142.97 (t, J = 23.3 Hz), 139.53, 130.36, 121.74, 120.04
(t,J=6.1Hz), 117.99 (t, J = 5.7 Hz), 113.04 (t, J = 241.0 Hz), 58.20, 21.26; "’F NMR (376 MHz,
CDCl3) 8: -115.50 (d, J = 55.9 Hz). IR vmax/cm™ (film): 3023, 1754, 1608, 1571, 1504, 1412, 1369,
1165, 1044, 1018, 909, 847, 751, 730, 665, 650, 549, 531. m/z HRMS (DART): [M+H]" calculated

for C23H20F2NO4™ = 412.1355, found 412.1367.
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(E)-4-(Difluoromethyl)-2-(3-(pyrrolidin-1-yl)-1-(p-tolyl)prop-1-en-1-yl)pyridine

CF,H
P 9
N
N/ =
Me

Prepared according to general procedure A (except (E)-2-(3-(pyrrolidin-1-yl)-1-(p-tolyl)prop-1-
en-1-yl)pyridine was protonated using TfOH (22 pL, 0.25 mmol) before the salt reaction) using
(E)-2-(3-(pyrrolidin-1-yl)-1-(p-tolyl)prop-1-en-1-yl)pyridine (70 mg, 0.25 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (82 mg, 0.275 mmol), Tf>O (42 pL, 0.25 mmol),
DBU (75 uL, 0.5 mmol), CH2Cl> (2.5 mL), HCI (4 M in dioxane, 63 pL, 0.25 mmol), EtOH (2.25
mL) and H>O (0.25 mL) at 40 °C for 25 hours. The crude material was purified by flash
chromatography (silica gel: 5 % MeOH in CH>Cl,) to provide the title compound as a brown oil
(66 mg, 0.200 mmol, 80 % yield). "H NMR (400 MHz, CDCls) &: 8.73 (d, J = 4.9 Hz, 1H), 7.33
(dd,J=4.9, 1.4 Hz, 1H), 7.28 (d, J = 7.8 Hz, 2H), 7.11 — 7.00 (m, 4H), 6.52 (t, J = 55.6 Hz, 1H),
3.79 (d, J = 7.3 Hz, 2H), 3.25 (s, 4H), 2.43 (s, 3H), 2.15 — 2.01 (m, 4H); '*C NMR (101 MHz,
CDCl3) 8: 159.67, 150.02, 142.50 (t, J=23.2 Hz), 141.90, 137.50, 134.80, 131.15, 129.76, 129.46,
118.33 (t,J=6.2 Hz), 117.93 (t, J = 5.6 Hz), 113.23 (t, J = 240.7 Hz), 54.63, 54.11, 23.63, 21.43;
YF NMR (377 MHz, CDCl3) &: -115.28 (d, J = 55.9 Hz). IR vmax/cm™ (film): 2966, 2927, 2878,
2796, 1605, 1568, 1513, 1462, 1413, 1379, 1216, 1157, 1110, 1046, 908, 823, 731, 666, 549, 531.

m/z HRMS (DART): [M+H]" calculated for CooH23F2N>"™ = 329.1824, found 329.1832.
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Ethyl 4-(8-chloro-4-(difluoromethyl)-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-

11-ylidene)piperidine-1-carboxylate

Cl ~

Prepared according to general procedure A using ethyl 4-(8-chloro-5,6-dihydro-11H-
benzo[5,6]cyclohepta[ 1,2-b]pyridin-11-ylidene)piperidine-1-carboxylate (96 mg, 0.25 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (82 mg, 0.275 mmol), Tf>O (42 pL, 0.25 mmol),
DBU (37 uL, 0.25 mmol), CH>Cl, (2.5 mL), HCI (4 M in dioxane, 63 uL, 0.25 mmol), EtOH (2.25
mL) and H>O (0.25 mL) at 40 °C for 20 hours. The crude material was purified by flash
chromatography (silica gel: 50 % EtOAc in toluene) to provide the title compound as a yellow oil
(93 mg, 0.216 mmol, 86 % yield). 'H NMR (400 MHz, CDCl5) &: 8.53 (d, J = 5.0 Hz, 1H), 7.32
(d, J=5.1 Hz, 1H), 7.12 (d, J = 2.5 Hz, 3H), 6.76 (t, J = 54.7 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H),
3.80 (d, J = 12.5 Hz, 2H), 3.49 — 3.30 (m, 2H), 3.26 — 3.11 (m, 2H), 3.10 — 2.99 (m, 1H), 2.94 —
2.83 (m, 1H), 2.53 — 2.32 (m, 3H), 2.27 — 2.10 (m, 1H), 1.25 (t, J = 7.1 Hz, 3H); 13C NMR (101
MHz, CDCI3) & 160.34, 155.48, 147.54, 139.97 (t, J = 21.8 Hz), 138.65, 137.80, 135.81, 133.75,
133.25, 131.24, 131.11 (t, J =4.0 Hz), 129.69, 126.24, 118.79 (t, J =7.2 Hz), 112.71 (t, J = 240.4
Hz), 61.40,44.71 (d, J = 15.6 Hz), 31.59, 30.66 (d, J = 7.2 Hz), 26.31, 14.69; '°F NMR (377 MHz,
CDCl3) 8: -112.76 —-118.16 (m). IR vmax/cm™ (film): 2981, 2911, 2870, 1734, 1591, 1478, 1434,
1386, 1374, 1227, 1119, 1043, 909, 757, 733, 561. m/z HRMS (DART): [M+H]" calculated for

C23H24CIF2N2O2 " = 433.1489, found 433.1515.
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3-Benzyl-5-(4-(2-(4-(difluoromethyl)-5-ethylpyridin-2-yl)ethoxy)benzyl)thiazolidine-2,4-

dione
CF,H o)
Et
= N—Bn
= S
N 0 «
@]

Prepared according to general procedure A using 3-benzyl-5-(4-(2-(5-ethylpyridin-2-
ylethoxy)benzyl)thiazolidine-2,4-dione (112 mg, 0.25 mmol), (difluoromethyl)bis(4-
methoxyphenyl)phosphane (82 mg, 0.275 mmol), T£20 (42 pL, 0.25 mmol), DBU (37 pL, 0.25
mmol), CH>Clz (2.5 mL), HCI (4 M in dioxane, 63 pL, 0.25 mmol), EtOH (2.25 mL) and H>O
(0.25 mL) at 40 °C for 48 hours. The crude material was purified by flash chromatography (silica
gel: 15 % EtOAc in toluene) to provide the title compound as a colorless oil (31 mg, 0.061 mmol,
25 % yield). '"H NMR (400 MHz, CDCI3) &: 8.50 (s, 1H), 7.40 (s, 1H), 7.26 (d, J = 1.2 Hz, 6H),
7.05 (d, J =8.6 Hz, 2H), 6.91 — 6.61 (m, 3H), 4.78 —4.60 (m, 2H), 4.42 (dd, J = 8.8, 3.9 Hz, 1H),
4.32 (t, J = 6.5 Hz, 2H), 3.38 (dd, J = 14.2, 3.9 Hz, 1H), 3.27 (t, / = 6.5 Hz, 2H), 3.08 (dd, J =
14.2, 8.7 Hz, 1H), 2.75 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 7.6 Hz, 4H); '*C NMR (101 MHz, CDCl3)
0:173.82,171.05, 158.26, 157.12,150.97, 139.71 (t, J =21.8 Hz), 135.12, 134.58, 130.53, 128.76,
128.20, 127.63, 119.55 (t, J = 6.8 Hz), 114.87, 112.58 (d, J = 238.9 Hz), 67.01, 51.75, 45.27,
37.81, 37.68, 22.65, 15.74; "’F NMR (377 MHz, CDCl3) &: -115.09 (d, J = 54.8 Hz). IR 0mar/cm’
(film): 3017, 2971, 2935, 2878, 1749, 1679, 1610, 1512, 1382, 1330, 1302, 1244, 1216, 1179,
1147, 1036, 908, 699, 667, 561, 530. m/z HRMS (DART): [M+H]* calculated for C27H27F2N203S*

=497.1705, found 497.1720.
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4-(Difluoromethyl)-2-((1-(4-phenoxyphenoxy)propan-2-yl)oxy)pyridine
CFoH

N Me

= )\/O
N i \©\
OPh

Prepared according to general procedure B using 2-((1-(4-phenoxyphenoxy)propan-2-
ylhoxy)pyridine (80 mg, 0.25 mmol), (difluoromethyl)bis(4-methoxyphenyl)phosphane (82 mg,
0.275 mmol), Tf>20 (42 pL, 0.25 mmol), DBU (75 pL, 0.5 mmol), CH>Cl (2.5 mL), KoCOs (35
mg, 0.25 mmol), THF (0.625 mL) and H>O (0.625 mL) at rt for 30 minutes. The crude material
was purified by flash chromatography (silica gel: 100 % toluene) to provide the title compound as
a colorless oil (18 mg, 0.048 mmol, 19 % yield). '"H NMR (400 MHz, CDCls) : 8.25 (d, J = 5.2
Hz, 1H), 7.29 (dd, J = 8.6, 7.3 Hz, 2H), 7.08 — 7.01 (m, 1H), 7.01 — 6.88 (m, 7H), 6.87 (s, 1H),
6.56 (t, J = 55.8 Hz, 1H), 5.67 — 5.56 (m, 1H), 4.13 (ddd, J =42.4,9.9, 5.1 Hz, 2H), 1.48 (d, J =
6.4 Hz, 3H); °C NMR (101 MHz, CDCl3) §: 163.74, 158.59, 155.25, 150.54, 147.97, 145.21,
129.76, 122.62, 120.91, 117.79, 115.92, 115.54 — 110.51 (m), 108.68, 71.09, 70.20, 17.01; °F
NMR (377 MHz, CDCl5) §: -115.62 (d, J = 55.8 Hz). IR vmax/cm™ (film): 2985, 1617, 1590, 1569,
1504, 1489, 1422, 1380, 1317, 1221, 1078, 1047, 909, 759, 734, 582, 560. m/z HRMS (DART):

[M+H]* calculated for C21H20F2NO3* = 372.1406, found 372.1420.
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3-(4-Chlorophenyl)-3-(4-(difluoromethyl)pyridin-2-yl)-N,N-dimethylpropan-1-amine

CFyH
AN |\I/|e
= N.
N Me
Cl

Prepared according to general procedure A (except 3-(4-chlorophenyl)-N,N-dimethyl-3-(pyridin-
2-yl)propan-1-amine was protonated using TfOH (22 pL, 0.25 mmol) before the salt reaction)
using 3-(4-chlorophenyl)-N,N-dimethyl-3-(pyridin-2-yl)propan-1-amine (69 mg, 0.25 mmol),
(difluoromethyl)bis(4-methoxyphenyl)phosphane (82 mg, 0.275 mmol), Tf>0 (42 pL, 0.25 mmol),
DBU (75 pL, 0.5 mmol), CH>Cl (2.5 mL), HCI (4 M in dioxane, 63 uL, 0.25 mmol), EtOH (2.25
mL) and H>O (0.25 mL) at 40 °C for 20 hours. The crude material was purified by flash
chromatography (neutral silica gel: 2 % MeOH in CH2Clz) to provide the title compound as a
brown oil (53 mg, 0.163 mmol, 65 % yield). '"H NMR (400 MHz, CDCls) §: 8.67 (d, J = 5.0 Hz,
1H), 7.25 (d, J = 8.5 Hz, TH), 6.54 (t, / = 55.7 Hz, 1H), 4.24 (t, J = 6.6 Hz, 1H), 2.68 (s, 3H), 2.57
(s, 6H), 2.47 — 2.37 (m, 1H); *C NMR (101 MHz, CDCl3) & 162.69, 150.25, 143.10 (t, J = 23.3
Hz), 140.45, 133.21, 129.42, 129.20, 119.80 (t, J = 6.0 Hz), 118.27 (t, / = 5.7 Hz), 112.92 (t, J =
241.1 Hz), 56.89, 50.04, 43.90, 30.44.; ’F NMR (377 MHz, CDCI3) &: -115.59 (dd, J = 55.6, 3.7
Hz). IR vma/em™ (film): 2953, 1681, 1611, 1570, 1420, 1410, 1383, 1090, 1039, 1015, 832. m/z

HRMS (DART): [M+H]* calculated for C;7H20CIF2N2" = 325.1278, found 325.1297.
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2-Chloro-N-(4-chloro-3-(4-(difluoromethyl)pyridin-2-yl)phenyl)-4-

(methylsulfonyl)benzamide

CF,H
\\S//
N ~Me
H

~ N

N
(0] Cl
Cl

Prepared according to general procedure A using 2-chloro-N-(4-chloro-3-(pyridin-2-yl)phenyl)-4-
(methylsulfonyl)benzamide (105 mg, 0.25 mmol), (difluoromethyl)bis(4-
methoxyphenyl)phosphane (82 mg, 0.275 mmol), Tf20 (42 pL, 0.25 mmol), DBU (37 pL, 0.25
mmol), CH>Cl, (2.5 mL), HCI (4 M in dioxane, 63 pL, 0.25 mmol), EtOH (2.25 mL) and H>O
(0.25 mL) at 40 °C for 25 hours. The crude material was purified by flash chromatography (silica
gel: 60 % EtOAc in toluene) to provide the title compound as a yellow solid (71 mg, 0.151 mmol,
60 % yield). m.p. 124-127 °C; 'H NMR (400 MHz, CDCl3) §: 9.21 (s, 1H), 8.63 (d, J = 5.1 Hz,
1H), 7.90 (dd, J = 8.7, 2.6 Hz, 1H), 7.83 (d, J = 1.7 Hz, 1H), 7.80 (s, 1H), 7.78 (d, /= 2.7 Hz, 1H),
7.68 (dd, J = 8.0, 1.7 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 8.7 Hz, 1H), 7.40 — 7.32 (m,
1H), 6.71 (t, J = 55.7 Hz, 1H), 3.02 (s, 3H); *C NMR (101 MHz, CDCls) § 164.02, 157.28, 150.30,
143.54 — 142.75 (m), 140.92, 138.63, 137.31, 132.71, 131.54, 130.70, 129.33, 128.03, 126.22,
123.25, 122.40, 121.92 (t, J = 6.1 Hz), 119.50 (t, J = 5.7 Hz), 113.15 (t, J = 241.4 Hz), 44.75; "°F
NMR (376 MHz, CDCls) §: -116.15 (d, J = 55.8 Hz). IR vmax/cm™! (film): 3015, 2932, 1678, 1609,
1546, 1488, 1469, 1367, 1310, 1155, 1095, 1033, 959, 892, 875, 749, 676, 607, 550. m/z HRMS

(DART): [M+H]" calculated for C20HsCLbFoN* =471.0143, found 471.0138.
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Methyl 5''-chloro-4-(trifluoromethyl)-[2,2':5',3"'-terpyridine]-3'-carboxylate

An oven dried 8 mL vial equipped with a stir bar was charged with methyl 5"-chloro-[2,2":5',3"-
terpyridine]-3'-carboxylate (65 mg, 0.20 mmol), 1,1'-(((trifluoromethyl) phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (157 mg, 0.40 mmol), and placed under a nitrogen atmosphere. CH2Cl,
(2 mL) was added, the reaction vessel was cooled to —50 °C and Tf,0O (67 pL, 0.40 mmol) was
added dropwise. After stirring for 1 hour, the reaction was cooled to —78 °C and Et;3N (56 uL, 0.40
mmol) was added dropwise via syringe. The cooling bath was removed, and the reaction was
allowed to warm 0 °C while stirring (approximately 20-30 minutes). At 0 °C, TfOH (27 uL mg,
0.31 mmol), H>O (36 uL, 2.00 mmol), MeOH (1 mL) were added and the reaction was stirred at
room temperature for 40 hours. The mixture was quenched with a saturated aqueous solution of
NaHCO3; and the aqueous layer was extracted with CH>Cl,. The combined organic extracts were
dried (MgSOs), filtered and concentrated in vacuo. The crude material was purified by flash
chromatography (silica gel: 25% EtOAc in hexanes) to provide the title compound as a yellow
solid (53 mg, 0.13 mmol, 67% yield). mp 185 — 189 °C. '"H NMR (400 MHz, CDCl;) &: 8.98 (d, J
=2.2 Hz, 1H), 8.82 —8.79 (m, 2H), 8.68 (d, J = 2.2 Hz, 1H), 8.51 (s, 1H), 8.16 (d, /= 2.3 Hz, 1H),
7.96 (app t, J = 2.1 Hz, 1H), 7.57 (dd, J = 5.0, 1.0 Hz, 1H), 3.86 (s, 3H); '3*C NMR (100 MHz,
CDCl3) 8: 168.76, 156.77, 153.68, 149.56, 149.01, 148.54, 145.95, 139.54 (q, J = 34.1 Hz), 135.60,
134.26, 133.32, 132.83, 132.14, 129.20, 122.91 (q, J = 273.5 Hz), 119.64 (q, J = 3.6 Hz), 118.90

(q, J = 3.8 Hz), 52.86; '’F NMR (376 MHz, CDCl3) &: -64.76, IR vmax/cm’! (film): 3021, 2925,
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1733, 1336, 1262, 1142, 891, 667. m/z HRMS (DART): [M+H]" calculated for C1gH12CIF3N302*

=394.0570, found 394.0559.

Methyl 5''-chloro-4''-(trifluoromethyl)-[2,2':5',3"'-terpyridine]-3'-carboxylate

Prepared according to trifluoromethylation general procedure A using methyl 5"-chloro-[2,2":5',3"-
terpyridine]-3'-carboxylate (65 mg, 0.20 mmol), TH£O (34 pL, 0.20 mmol), 1,1'-
(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (84 mg, 0.22 mmol), DBU (30
uL, 0.20 mmol), CH>Cl> (2 mL), then TfOH (27 uL mg, 0.31 mmol), H>O (36 uL, 2.00 mmol),
MeOH (1 mL) were added at O °C and the reaction was stirred at room temperature for 24 hours.
The crude material was purified by flash chromatography (silica gel: 35% EtOAc in hexanes) to
provide the title compound as an amorphous solid (25 mg, 0.06 mmol, 31% yield). "H NMR (400
MHz, CDCl5) &: 8.86 (s, 1H), 8.69 — 8.63 (m, 2H), 8.51 (s, 1H), 8.23 (d, J = 7.9 Hz, 1H), 7.93 —
7.85 (m, 2H), 7.36 (ddd, J = 7.6, 5.0, 0.9 Hz, 1H), 3.83 (s, 3H); *C NMR (100 MHz, CDCl5) &:
168.43, 155.51, 155.36, 152.17, 150.71, 149.47 (d, J = 2.0 Hz), 148.68, 137.17, 136.95 (d, /= 1.5
Hz), 133.92 (q, /=30.8 Hz), 132.49 (q,J=2.0 Hz), 131.42, 130.40 (q, / = 1.4 Hz), 128.16, 124.25,
123.02, 122.10 (q, J = 276.2 Hz), 52.79; °F NMR (376 MHz, CDCls) §: -55.55, IR 0max/cm’!
(film): 2950, 2359, 1728, 1284, 1144, 1034, 750, 667. m/z HRMS (DART): [M+H]* calculated for

CisH12CIF3N302" = 394.0570, found 394.0590.
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Ethyl 4-(8-(4-(trifluoromethyl)pyridin-2-yl)-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-

b]pyridin-11-ylidene)piperidine-1-carboxylate

/
Et0,C

An oven dried 8 mL vial with a stir bar was charged with ethyl 4-(8-(pyridin-2-yl)-5,6-dihydro-
11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-carboxylate (85 mg, 0.20
mmol) and placed under a nitrogen atmosphere. CH2Cl, (3.8 mL) was added, the reaction vessel
cooled to —78 °C and Tf,0 (68 pL, 0.40 mmol) was added dropwise over 5 minutes. The reaction
was stirred for 30 minutes before 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-
phenylene))dipyrrolidine (157 mg, 0.40 mmol) was added in one portion. The reaction was
subjected to three rapid cycles of vacuum/nitrogen backfill and was stirred for a further 30 minutes
at —78 °C. Then Et3N (56 pL, 0.40 mmol) was added dropwise via syringe, the cooling bath was
removed and the reaction was allowed to warm to room temperature while stirring (approximately
15 minutes). Then, the reaction mixture was cooled to 0 °C, HOTf (45 pL, 0.5 mmol), MeOH (1
mL) and H,O (36 pL, 2.00 mmol) were added sequentially. The mixture was warmed to room
temperature and stirred for 12 hours. The reaction was quenched with a saturated aqueous solution
of NaHCOj3 and extracted with CH2Cl» (3x). The combined organic extracts were washed with a
saturated aqueous solution of brine, dried (Na2SOs), filtered and concentrated in vacuo. The crude

material was purified by flash chromatography (silica gel: 33% EtOAc, 10% Et3N in hexanes) to
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provide the title compound as a light-yellow oil (72 mg, 0.15 mmol, 73% yield). '"H NMR (400
MHz, CDCI) &: 8.83 (d, J=5.1 Hz, 1H), 8.41 (dd, J = 1.7, 4.8 Hz, 1H), 7.88 (s, 2H), 7.79 (dd, J
= 2.0, 8.0 Hz, 1H), 7.45 (dd, J = 1.7, 7.7 Hz, 1H), 7.42 (dd, J = 0.7, 5.0 Hz, 1H), 7.33 (d, / = 8.0
Hz, 1H), 7.10 (dd, J = 4.8, 7.7 Hz, 1H), 4.13 (q, J = 7.1 Hz, 2H), 3.83 (br s, 2H), 3.55-3.47 (m,
1H), 3.44-3.36 (m, 1H), 3.19-3.12 (m, 2H), 2.99-2.87 (m, 2H), 2.55-2.48 (m, 1H), 2.42-2.32 (m,
3H), 1.24 (t, J = 7.1 Hz, 3H); 3C NMR (100 MHz, CDCls) §: 158.55, 157.13, 155.61, 150.71,
146.79, 141.19, 139.20 (q, J = 33.7 Hz), 138.69, 137.66, 137.59, 137.23, 134.90, 133.70, 130.05,
127.83, 124.80, 123.02 (q, J = 271.6 Hz), 122.35, 117.56 (q, J = 3.6 Hz), 115.98 (q, J/ = 3.7 Hz),
61.40, 44.95, 44.93, 32.04, 31.83, 30.95, 30.67, 14.78; ’F NMR (376 MHz, CDCls) &: -64.84; IR
vmax/em’ (film): 2911, 1690, 1608, 1570, 1471, 1423, 1384, 1333, 1277, 1227, 1168, 1134, 1113,
1088, 1059, 1026, 996, 889, 835, 790, 766, 726, 666; HRMS (DART): [M+H]" calculated for

C28H27F3N302" = 494.2050, found 494.2084.

Ethyl 4-(8-(pyridin-2-yl)-4-(trifluoromethyl)-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-

b]pyridin-11-ylidene)piperidine-1-carboxylate

Prepared according to trifluoromethylation general procedure A using ethyl 4-(8-(pyridin-2-yl)-
5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-carboxylate (85

mg, 0.20 mmol), 1,1'-(((trifluoromethyl)phosphanediyl)bis(4,1-phenylene))dipyrrolidine (79 mg,
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0.20 mmol), Tf>0 (34 uL, 0.20 mmol), DBU (30 pL, 0.20 mmol), CH>Cl» (2 mL), HOTTf (45 pL,
0.50 mmol), MeOH (1 mL) and H>O (36 puL, 2.00 mmol) at rt for 12 hours. The crude material
was purified by flash chromatography (silica gel: 33% EtOAc, 10% Et:N in hexanes) to provide
the title compound as a colorless oil (70 mg, 0.14 mmol, 71% yield). "H NMR (400 MHz, CDCl3)
0: 8.65 (d, J=4.6 Hz, 1H), 8.56 (d, J = 5.1 Hz, 1H), 7.78 (s, 1H), 7.74-7.65 (m, 3H), 7.40 (d, J =
5.2 Hz, 1H), 7.29 (d, J=8.0 Hz, 1H), 7.21-7.18 (m, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.83-3.80 (m,
2H), 3.56-3.42 (m, 2H), 3.30-3.16 (m, 3H), 3.11-3.02 (m, 1H), 2.55-2.52 (m, 2H), 2.44-2.37 (m,
1H), 2.18-2.12 (m, 1H), 1.25 (t, J = 7.1 Hz, 3H); >*C NMR (100 MHz, CDCls) : 162.61, 156.86,
155.57, 149.76, 147.56, 138.84, 137.48, 137.00, 136.92, 136.83, 136.27 (q, J = 31.1 Hz), 134.42,
131.62, 131.04, 128.98, 124.45, 123.37 (q, J = 273.2 Hz), 122.28, 120.47, 118.46 (q, J = 5.1 Hz),
61.45, 44.95, 44.70, 32.15, 30.88, 30.69, 26.45, 14.76; ’F NMR (376 MHz, CDCls) &: -61.86; IR
omax/em’ (film): 2911, 2868, 1708, 1585, 1484, 1463, 1431, 1407, 1328, 1302, 1279, 1215, 1149,
1122, 1065, 1028, 1000, 985, 893, 857, 781, 759, 736, 687, HRMS (DART): [M+H]" calculated

for CogH27F3N302" = 494.2050, found 494.2080.
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A1.7 Experimental Spectra
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APPENDIX TWO

INVESTIGATION OF MIGRATION SELECTIVITY FROM PV SPECIES FOR THE
ALKENYLATION OF PYRIDINES: EXPERIMENTAL

A2.1 General Methods and Materials

Proton nuclear magnetic resonance ('H NMR) spectra were recorded at ambient
temperature on a Varian 400 MR spectrometer (400 MHz), an Agilent Inova 400 (400 MHz)
spectrometer, an Agilent Inova 500 (500 MHz) spectrometer, or a Bruker AV-111 400 (400 MHz)
spectrometer. Chemical shifts (8) are reported in ppm and quoted to the nearest 0.1 ppm relative
to the residual protons in CDCl3 (7.26 ppm), CD3OD (3.31 ppm) or (CD3)2SO (2.05 ppm) and
coupling constants (J) are quoted in Hertz (Hz). Data are reported as follows: Chemical shift
(multiplicity, coupling constants, number of protons). Coupling constants were quoted to the
nearest 0.1 Hz and multiplicity reported according to the following convention: s = singlet, d =
doublet, t = triplet, q = quartet, qn = quintet, sext = sextet, sp = septet, m = multiplet, br = broad.
Where coincident coupling constants have been observed, the apparent (app) multiplicity of the
proton resonance has been reported. Carbon nuclear magnetic resonance (!*C NMR) spectra were
recorded at ambient temperature on a Varian 400 MR spectrometer (100 MHz), an Agilent Inova
400 (100 MHz) spectrometer, an Agilent Inova 500 spectrometer (125 MHz) or a Bruker AV-111
400 (100 MHz) spectrometer. Chemical shift (6) was measured in ppm and quoted to the nearest
0.01 ppm relative to the residual solvent peaks in CDCl3 (77.16 ppm), (CD3)2SO (39.51 ppm),
CD3s0D (49.00 ppm) or CD3CN (1.32 ppm).

Low-resolution mass spectra (LRMS) were measured on an Agilent 6310 Quadrupole Mass

Spectrometer. High-resolution mass spectra (HRMS) were measured on an Agilent 6224 TOF
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LC/MS (“OTOF”) interfaced to an Agilent 1200 HPLC with multi-mode (combined ESI and
APCI) and Direct Analysis in Real Time (DART) sources. (IR) spectra were recorded on a Nicolet
IS-50 FT-IR spectrometer as either solids or neat films, either through direct application or
deposited in CHCI3, with absorptions reported in wavenumbers (cm-1 ). Analytical thin layer
chromatography (TLC) was performed using pre-coated Silicycle glass backed silica gel plates
(Silicagel 60 F254). Flash column chromatography was undertaken on Silicycle silica gel
Siliaflash P60 40-63 um (230-400 mesh) under a positive pressure of air unless otherwise stated.
Visualization was achieved using ultraviolet light (254 nm) and chemical staining with ceric
ammonium molybdate or basic potassium permanganate solutions as appropriate. Melting points
(mp) were recorded using a Biichi B-450 melting point apparatus and are reported uncorrected.
Tetrahydrofuran (THF), toluene, hexane, diethyl ether and dichloromethane were dried and
distilled using standard methods.! Methanol, 1,2-dichloroethane (DCE), 1,4-dioxane, ethyl acetate,
chloroform, and acetone were purchased anhydrous from Sigma Aldrich chemical company. All
reagents were purchased at the highest commercial quality and used without further purification.
Reactions were carried out under an atmosphere of nitrogen unless otherwise stated. All reactions
were monitored by TLC, "H NMR spectra taken from reaction samples, and liquid chromatography
mass spectrometry (LCMS) using an Agilent 6310 Quadrupole Mass Spectrometer for MS
analysis. TH2O (99%) was purchased from Oakwood Chemical and used without further
purification but was routinely stored in a —20 °C fridge. DBU was distilled before use. 200 proof
ethanol was purchased from PHARMCO-AAPER and used without further purification. HCI (4.0
M in dioxanes) and trifluoromethanesulfonic acid (98%) were purchased from Sigma Aldrich
chemical company and used without further purification but were routinely stored in a —20 °C

fridge.
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A2.2 Preparation of Heterocyclic Precursors

2-fluoro-5-(pyridin-2-yl)benzaldehyde

An oven dried 100 mL pressure tube was charged with 2-bromopyridine (477 pL, 5.00 mmol), (4-
fluoro-3-formylphenyl)boronic acid (1.01 g, 6.00 mmol), K»CO3 (2.07 g, 15.00 mmol), PA(OAc)
(56 mg, 0.25 mmol), triphenylphosphine (262 mg, 1.00 mmol) and subjected to three cycles of
vacuum/nitrogen backfill. Degassed H>O (20 mL) and dimethoxyethane (20 mL) were charged to
the tube. The mixture was heated at 85 °C for 18 hours then diluted with CH>Cl. The organic layer
was separated, and the aqueous layer was extracted 2x with CH>Cl,. The combined organic layers
were dried (MgSOas), filtered, and concentrated in vacuo. The crude material was purified by flash
chromatography (silica gel: 20% EtOAc in hexanes) to provide the title compound as a white solid
(933 mg, 4.65 mmol, 93% yield). mp 65-67 °C; '"H NMR (400 MHz, CDCl3) &: 10.37 (s, 1H), 8.64
(d,J=4.8 Hz, 1H), 8.39 (dd, J = 6.6, 2.6 Hz, 1H), 8.30 (ddd, J = 8.5, 5.1, 2.5 Hz, 1H), 7.77 — 7.64
(m, 2H), 7.25 — 7.15 (m, 2H). 3*C NMR (100 MHz, CDCl3) : 187.13 (d, ] = 6.1 Hz), 165.18 (d, J
=260.9 Hz), 155.13, 149.91, 137.18, 136.31 (d, J = 3.5 Hz), 135.01 (d,J =9.4 Hz), 127.10 (d, J =
2.3 Hz), 124.23 (d, J = 8.6 Hz), 122.83, 120.43, 117.17 (d, J = 21.0 Hz). "’F NMR (376 MHz,
CDCl3) &: -122.02. IR vmax/cm’ (film): 3054, 2861, 2769, 1685, 1607, 1587, 1568, 1500, 1465,
1439, 1395, 1309, 1262, 1208, 1184, 1153, 1114, 1058, 1036, 992, 908, 848, 809, 796, 780, 746,

716. m/z LRMS (ESI + APCI): [M+H]" calculated for C12HoFNO™* = 202.1, found 202.1.
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5-(2-fluoro-5-(pyridin-2-yl)benzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine

S
An oven-dried 200 mL round bottom flask was charged with 2-fluoro-5-(pyridin-2-
yl)benzaldehyde (0.80 g, 4.00 mmol), 4,5,6,7-tetrahydrothieno[3,2-c]pyridine (0.613 g, 4.40
mmol), and sodium triacetoxyhydroborate (1.70 g, 8.00 mmol). The flask was subjected to three
cycles of vacuum/nitrogen backfill. DCM (20 mL) was added to the reaction flask along with
glacial AcOH (0.46 mL). After 22 hours at room temperature, the reaction was quenched with a
saturated aqueous solution of NH4Cl (30 mL), diluted with CH2Clz, and the organic layer was
separated. The aqueous layer was basified with a saturated aqueous solution of NaHCO3 and
extracted with CH2Cl2 (2 x 20 mL). The combined organic extracts were dried (MgSOs4), filtered
and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel:
30% EtOAc in hexanes) to provide the title compound as a pale-yellow oil (1.05 g, 3.24 mmol,
81% yield). '"H NMR (400 MHz, CDCI3) &: 8.67 (dt, J = 4.8, 1.5 Hz, 1H), 8.09 (dd, J = 7.1, 2.4
Hz, 1H), 7.92 (ddd, J = 8.7, 5.0, 2.4 Hz, 1H), 7.79 — 7.63 (m, 2H), 7.22 (ddd, J = 6.7, 4.8, 1.6 Hz,
1H), 7.16 (dd, J =9.5, 8.6 Hz, 1H), 7.06 (d, J =5.1 Hz, 1H), 6.71 (d, J = 5.1 Hz, 1H), 3.86 (s, 2H),
3.65 (s, 2H), 2.89 (s, 4H). '*C NMR (100 MHz, CDCl3) §: 162.26 (d, J = 248.9 Hz), 156.63, 149.77,
136.90, 135.66 (d, J = 3.5 Hz), 133.92, 133.48, 130.25 (d, J = 4.8 Hz), 127.73 (d, J = 8.7 Hz),

125.42 (d, J = 14.8 Hz), 125.39, 122.76, 122.16, 120.52, 115.85 (d, J = 22.8 Hz), 54.71 (d,J = 1.7
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Hz), 53.03, 50.64, 25.63. '’FNMR (376 MHz, CDCl3) 8: -117.79. IR vmax/cm™ (film): 2920, 2775,
1587, 1566, 1501, 1464, 1433, 1403, 1356, 1304, 1263, 1228, 1169, 1153, 1113, 1098, 1079, 1053,
1015, 991, 957, 895, 832, 779, 774, 701, 666. m/z LRMS (ESI + APCI): [M+H]" calculated for

Ci9Hi1sFN»S* = 325.1, found 325.2.

A2.3 Preparation of Cyanoalkynes
General Procedure A

H CN
=7 1. n-BuLi, THF, 78 °C Z
NS

R 2. TsCN, THF, —78 °C to rt R
| . 18 , , — or |
= =

An oven dried round bottom flask equipped with a stir bar was charged with the alkyne (1.0 equiv)
and placed under a nitrogen atmosphere. THF (0.15 M) was added, the reaction vessel was cooled
to —78 °C and n-BuLi (1.1 equiv) was added dropwise over 5 minutes. The reaction was stirred for
30 minutes before a solution of tosyl cyanide (1.2 equiv) in THF (0.3 M) was added dropwise, and
the resulting mixture was allowed to stir for 30 minutes at —78 °C. The cooling bath was removed,
and the reaction was allowed to warm to room temperature while stirring for approximately 2
hours. The reaction was treated with a saturated solution of aqueous ammonium chloride and
extracted with EtcO (3x). The combined organic extracts were dried (MgSOQa), filtered, and
concentrated in vacuo. The residue was purified by flash column chromatography under the stated

conditions to provide the cyanoalkyne product.
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3-(2-Fluorophenyl)propiolonitrile

x
F CN

Prepared according to general procedure A, using 1-ethynyl-2-fluorobenzene (567 uL, 5.00
mmol), THF (30 mL), n-BuLi (1.6 M in hexanes, 3.40 mL, 5.50 mmol), TsCN (1.10 g, 6.00 mmol),
THF (20 mL). The crude material was purified by flash chromatography (silica gel: 5% Et20O in
hexanes) to provide the title compound as a white solid (406 mg, 3.65 mmol, 73% yield). 'H NMR
(400 MHz, CDCl3) §: 7.64 — 7.47 (m, 2H), 7.24 — 7.12 (m, 2H). 3C NMR (100 MHz, CDCl3) §:
164.75 (d, J = 257.6 Hz), 135.08, 134.13 (d, J = 8.3 Hz), 124.74 (d, J = 3.7 Hz), 116.32 (d, J =
19.9 Hz), 106.79 (d, J = 15.0 Hz), 105.27, 67.59 (d, J = 3.3 Hz). ’F NMR (376 MHz, CDCl5) §: -

106.04

3-(3-Bromophenyl)propiolonitrile

Br %
CN

An oven dried pressure tube equipped with a stir bar was charged with 1-bromo-3-ethynylbenzene
(362 pL, 3.00 mmol) and placed under a nitrogen atmosphere. THF (30 mL) was added, followed
by copper (II) perchlorate hexahydrate (4.45 g, 12.0 mmol), 1-methylimidazole (240 pL, 3.00
mmol), sodium cyanide (1.18 g, 24.0 mmol), and diisopropylethyl-amine (1.05 mL, 6.00 mmol)
sequentially. The vessel was sealed and heated to 40 °C for 24 h. After cooling to rt, the reaction
was diluted with Et2O and washed with 30% aqueous ammonia solution followed by saturated

brine (2x). The organic layer was dried (MgSOa), filtered, and concentrated in vacuo. The crude
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material was purified by flash chromatography (silica gel: 10% Et20 in hexanes) to provide the
title compound as a white solid (177 mg, 0.87 mmol, 29% yield). '"H NMR (400 MHz, CDCl5) o:
7.76 (t, J = 1.8 Hz, 1H), 7.67 (ddd, J = 8.1, 2.0, 1.1 Hz, 1H), 7.55 (dt, J=7.8, 1.2 Hz, 1H), 7.30 (t,
J=7.9 Hz, 1H). 3*C NMR (100 MHz, CDCls) §: 136.06, 135.29, 132.12, 130.45, 122.74, 119.62,

105.21, 81.10, 64.15.

3-(o-Tolyl)propiolonitrile

x
Me CN

Prepared according to general procedure A, using 1-ethynyl-2-methylbenzene 630 uL, 5.00
mmol), THF (30 mL), n-BuLi (1.6 M in hexanes, 3.40 mL, 5.5 mmol), TsCN (1.10 g, 6.00 mmol),
THF (20 mL). The crude material was purified by flash chromatography (silica gel: 1% Et20O in
hexanes) to provide the title compound as a colorless oil (278 mg, 1.95 mmol, 39% yield). 'H
NMR (400 MHz, CDCl3) &: 7.57 (dd, J =7.8, 1.4 Hz, 1H), 7.41 (td, J = 7.6, 1.4 Hz, 1H), 7.31 —
7.15 (m, 2H), 2.48 (s, 3H). '*C NMR (100 MHz, CDCls) 8: 143.53, 134.14, 131.92, 130.20, 126.21,

117.53, 105.68, 82.44, 66.51, 20.61.

3-(4-Methoxyphenyl)propiolonitrile
MeO
A
CN

Prepared according to general procedure A, using 1-ethynyl-4-methoxybenzene (660 mg, 5.00

mmol), THF (30 mL), n-BuLi (1.6 M in hexanes, 3.40 mL, 5.5 mmol), TsCN (1.10 g, 6.00 mmol),
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THF (20 mL). The crude material was purified by flash chromatography (silica gel: 10% Et20 in
hexanes) to provide the title compound as a white solid (406 mg, 2.60 mmol, 52% yield). 'H NMR
(400 MHz, CDCl3) §: 7.61 —7.50 (m, 2H), 6.96 — 6.84 (m, 2H), 3.86 (s, 3H). >*C NMR (100 MHz,

CDClIs) o: 162.45, 135.49, 114.71, 109.06, 105.92, 83.83, 62.45, 55.58.

3-(4-Aminophenyl)propiolonitrile

PhsP=N—NC H,N
Boc” 1. AgOT¥, H,0, DMF, 80 °C

ZT

2. TFA, CH,Cly, rt AN
X CN

An oven dried pressure tube equipped with a stir bar was charged with tert-butyl (4-
(ethynyl)phenyl)carbamate (652 mg, 3.00 mmol), N-isocyanoiminotriphenylphosphorane (1.80 g,
6.00 mmol), AgOTf (771 mg, 3.00 mmol), and placed under a nitrogen atmosphere. DMF (15
mL) and H>O (550 pL, 30 mmol) were added and the reaction was heated to 80 °C. After 22 h,
the reaction mixture was treated with water, the organic layer separated, and the aqueous layer
extracted with ethyl acetate (3x). The combined organic extracts were washed with water, dried
(MgSO0s), filtered, and concentrated in vacuo. The crude material was purified by flash
chromatography (silica gel: 10% EtOAc, 0.25% NEts in hexanes) to provide tert-butyl (4-
(cyanoethynyl)phenyl)carbamate as a white solid (330 mg, 1.35 mmol, 45% yield). 'H NMR (400
MHz, CDCl3) &: 7.61 — 7.48 (m, 2H), 7.48 — 7.34 (m, 2H), 6.65 (s, 1H), 1.52 (s, 9H). 3*C NMR

(100 MHz, CDCl3) 6: 152.10, 141.97, 134.86, 118.12, 111.11, 105.92, 83.61, 81.75, 62.81, 28.36.

An oven-dried round bottom flask equipped with a stir bar was charged with tert-butyl (4-

(cyanoethynyl)phenyl)carbamate (242 mg, 1.00 mmol) and placed under a nitrogen atmosphere.
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DCM (5 mL) was added followed by TFA (1.5 mL) and the reaction was stirred at room
temperature. After 3 h, the solvent was removed in vacuo and the resulting residue was dissolved
in EtOAc and quenched with sat. aq. NaCOs solution. The organic layer was separated, and the
aqueous layer was extracted with EtOAc (3x). The combined organic extracts were dried
(MgSO0s), filtered, and concentrated in vacuo to provide the pure title compound as a white solid
(78 mg, 0.55 mmol, 55% yield). 'H NMR (400 MHz, CDCl3) &: 7.46 — 7.35 (m, 2H), 6.66 — 6.53
(m, 2H), 4.12 (s, 2H). '*C NMR (100 MHz, CDCls) &: 149.79, 135.45, 113.78, 106.31, 105.62,

85.21, 62.05.

4-(Cyanoethynyl)benzonitrile
NC
X
CN
An oven dried pressure tube equipped with a stir bar was charged with 4-ethynylbenzonitrile (381
mg, 3.00 mmol) and placed under a nitrogen atmosphere. THF (30 mL) was added, followed by
copper (II) perchlorate hexahydrate (4.45 g, 12.0 mmol), sodium cyanide (1.18 g, 24.0 mmol), and
diisopropylethyl-amine (1.05 mL, 6.00 mmol) sequentially. The vessel was sealed and heated to
40 °C for 22 h. After cooling to rt, the reaction was diluted with EtoO and washed with 30%
aqueous ammonia solution followed by saturated brine (2x). The organic layer was dried (MgSOa),
filtered, and concentrated in vacuo. The crude material was purified by flash chromatography
(silica gel: 20% Et20 in hexanes) to provide the title compound as a tan solid (198 mg, 1.29 mmol,
43% yield). '"H NMR (400 MHz, CDCls) §: 7.72 (s, 4H). '*C NMR (100 MHz, CDCl3) : 133.94,

132.46, 122.21, 117.39, 115.38, 104.77, 80.24, 66.16.
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3-(4-(Trifluoromethyl)phenyl)propiolonitrile
FiC
X
CN
Prepared according to general procedure A, using 1-ethynyl-4-(trifluoromethyl)benzene (816 pL,
5.00 mmol), THF (30 mL), n-BuLi (1.6 M in hexanes, 3.40 mL, 5.5 mmol), TsCN (1.10 g, 6.00
mmol), THF (20 mL). The crude material was purified by flash chromatography (silica gel: 2.5%
Et20 in hexanes) to provide the title compound as a white solid (634 mg, 3.25 mmol, 65% yield).
'"H NMR (400 MHz, CDCl3) &: 7.79 — 7.64 (m, 4H). '3C NMR (100 MHz, CDCl3) &: 133.96,
133.51 (q, J =33.2 Hz), 125.95 (q, J = 4.0 Hz), 123.38 (q, J/ = 272.8 Hz), 121.47 (d, J = 1.8 Hz),

105.06, 80.99, 64.88. '°F NMR (376 MHz, CDCl;) §: -63.42.

3-(4-(tert-Butyl)phenyl)propiolonitrile

By

A
CN

Prepared according to general procedure A, using 1-(tert-butyl)-4-ethynylbenzene (541 pL, 3.00
mmol), THF (20 mL), n-BuLi (1.6 M in hexanes, 2.06 mL, 3.3 mmol), TsCN (652 mg, 3.6 mmol),
THF (12 mL). The crude material was purified by flash chromatography (silica gel: 1% Et20 in
hexanes) to provide the title compound as a white solid (316 mg, 2.00 mmol, 67% yield). 'H NMR
(400 MHz, CDCl3) §: 7.58 —7.50 (m, 2H), 7.47 —7.38 (m, 2H), 1.32 (s, 9H). >*C NMR (100 MHz,

CDClIs) 6: 155.94, 133.49, 126.08, 114.48, 105.79, 83.61, 62.81, 35.35, 31.06.
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3-(3,5-Dimethoxyphenyl)propiolonitrile

OMe

MeO %
CN

Prepared according to general procedure A, using 1-ethynyl-3,5-dimethoxybenzene (487 mg, 3.00
mmol), THF (20 mL), n-BuLi (1.6 M in hexanes, 2.06 mL, 3.3 mmol), TsCN (652 mg, 3.6 mmol),
THF (12 mL). The crude material was purified by flash chromatography (silica gel: 5% Et;0 in
hexanes) to provide the title compound as a white solid (377 mg, 2.00 mmol, 67% yield). '"H NMR
(400 MHz, CDCl3) §: 6.73 (d, J = 2.4 Hz, 2H), 6.61 (t, J = 2.3 Hz, 1H), 3.80 (s, 6H). *C NMR

(100 MHz, CDCls) &: 160.87, 118.70, 111.17, 105.52, 105.43, 83.10, 62.51, 55.69.

3-(4,4-Dimethylthiochroman-6-yl)propiolonitrile

S

X
Me Me CN

Prepared according to general procedure A, using 6-ethynyl-4,4-dimethylthiochromane (607 mg,
3.00 mmol), THF (20 mL), n-BuLi (1.6 M in hexanes, 2.06 mL, 3.3 mmol), TsCN (652 mg, 3.6
mmol), THF (12 mL). The crude material was purified by flash chromatography (silica gel: 4%
Et20 in hexanes) to provide the title compound as a white solid (521 mg, 2.28 mmol, 76% yield).
"H NMR (400 MHz, CDCI3) &: 7.57 (d, J = 1.9 Hz, 1H), 7.23 (dd, J = 8.2, 1.8 Hz, 1H), 7.09 (d, J
=8.3 Hz, 1H), 3.10 - 3.01 (m, 2H), 1.98 — 1.87 (m, 2H), 1.32 (s, 6H). 3*C NMR (100 MHz, CDCl5)
o: 142.71, 138.97, 131.43, 130.37, 126.98, 112.22, 105.90, 84.13, 62.84, 36.55, 33.03, 29.72,

23.39.
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3-(Thiophen-3-yl)propiolonitrile

N

A
CN
Prepared according to general procedure A, using 3-ethynylthiophene (296 pL, 3.00 mmol), THF
(20 mL), n-BuLi (1.6 M in hexanes, 2.06 mL, 3.3 mmol), TsCN (652 mg, 3.6 mmol), THF (12
mL). The crude material was purified by flash chromatography (silica gel: 4% Et>O in hexanes) to
provide the title compound as a white solid (289 mg, 2.16 mmol, 72% yield). 'H NMR (400 MHz,
CDCl3) o: 7.87 (dd, J = 3.0, 1.2 Hz, 1H), 7.37 (dd, J = 5.1, 3.0 Hz, 1H), 7.25 (dd, /= 5.1, 1.2 Hz,

1H). '*C NMR (100 MHz, CDCI3) &: 136.21, 130.19, 126.86, 116.81, 105.65, 78.54, 63.22.

3-(Cyclohex-1-en-1-yl)propiolonitrile

x
CN

Prepared according to general procedure A, using 1-ethynylcyclohex-1-ene (588 pL, 5.00 mmol),
THF (30 mL), n-BuLi (1.6 M in hexanes, 3.40 mL, 5.5 mmol), TsCN (1.10 g, 6.00 mmol), THF
(20 mL). The crude material was purified by flash chromatography (silica gel: 4% Et>O in hexanes)
to provide the title compound as a yellow oil (506 mg, 3.85 mmol, 77% yield). 'H NMR (400 MHz,
CDCl3) 8: 6.61 (tt, J = 3.9, 1.6 Hz, 1H), 2.30 — 2.02 (m, 4H), 1.77 — 1.57 (m, 4H). '3C NMR (100

MHz, CDCls) 6: 146.07, 117.19, 105.82, 85.07, 60.98, 27.50, 26.21, 21.66, 20.87.
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A2.4 Preparation of Heteroaryl Phosphines

General Procedure B

H COs,Me PPh
Phop” 2 2
I X Tf,0; 1; DBU I X
R_I o R—l
l\N/ CH20|2, —78°Ctort l\N/

An oven dried 100 mL round bottom flask equipped with a stir bar was charged with the
heterocycle (1.0 equiv) and placed under a nitrogen atmosphere. CH>Cl, (0.1 M) was added, the
reaction vessel was cooled to —78 °C and Tf0 (1.0 equiv) was added dropwise over 5 minutes.
The reaction was stirred for 30 minutes before the mixture was warmed to —50 °C and methyl 3-
(diphenylphosphaneyl)propanoate (1.1 equiv) was added dropwise as a solution (2.0 M in CH2Cly).
The reaction was subjected to three rapid cycles of vacuum/nitrogen backfill and was stirred for a
further 30 minutes at —50 °C. The reaction was cooled to —78 °C and DBU (3.0 equiv) was added
dropwise via syringe, the cooling bath was removed, and the reaction was allowed to warm to
room temperature while stirring for approximately 2 hours. The reaction was diluted with H,O and
then extracted with CH>Cl (3x). The combined organic extracts were dried (MgSOQs), filtered and
concentrated in vacuo. The residue was purified by flash column chromatography under the stated

conditions to provide the heteroaryl phosphine product.

General Procedure C

cl PPh,
HPPh,, TfOH
| \ Y o | \
R_'l\ PhCl R_'l\
~ —
N N

An 8 mL vial equipped with a stir bar was charged with the heterocycle (1.0 equiv). The vial was

subjected to three rapid cycles of vacuum/nitrogen backfill, chlorobenzene (2.0 M) was added,
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followed by diphenylphosphine (1.2 equiv), and trifluoromethanesulfonic acid (1.0 equiv). The
reaction was heated to 130 °C and allowed to stir for the stated time. The reaction was quenched
with a saturated aqueous solution of NaxCO3 and the aqueous layer was extracted with CH2Cl,
(3x). The combined organic extracts were washed with a saturated aqueous solution of brine, dried
(MgS0s), filtered, and concentrated in vacuo. The residue was purified by flash column

chromatography under the stated conditions to provide the heteroaryl phosphine product.

General Procedure D

o] PPh,
HPPh,
= | A - 4 | A
R— R—
P TFE P

A 15 mL pressure tube equipped with a stir bar was charged with the heterocycle (1.0 equiv). The
vial was subjected to three rapid cycles of vacuum/nitrogen backfill, and TFE (0.4 M) was added,
followed by diphenylphosphine (1.2 equiv). The reaction was heated to 80 °C and allowed to stir
for the stated time. The reaction was quenched with a saturated aqueous solution of NaxCO3 and
the aqueous layer was extracted with CH2Cl> (3x). The combined organic extracts were washed
with a saturated aqueous solution of brine, dried (MgSQs), filtered, and concentrated in vacuo.
The residue was purified by flash column chromatography under the stated conditions to provide

the heteroaryl phosphine product.
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4-(Diphenylphosphaneyl)pyridine
PPh,

=z

\N
Prepared according to general procedure C except that no TfOH was added, using 4-chloropyridine
hydrochloride, (302 mg, 2.00 mmol), diphenylphosphane (0.42 mL, 2.40 mmol), and
chlorobenzene (1.0 mL) at 130 °C for 24 hours. The crude material was purified by flash
chromatography (silica gel: 15% EtOAc in hexanes) to provide the title compound as a white solid
(510 mg, 1.94 mmol, 97% yield). mp 105-106 °C; 'H NMR (400 MHz, CDCls) §: 8.57 — 8.45 (m,
2H), 7.46 — 7.30 (m, 10H), 7.10 (ddd, J = 6.3, 4.4, 1.6 Hz, 2H); '>*C NMR (100 MHz, CDCl5) §:
149.39 (d, J = 4.3 Hz), 149.00 (d, J = 17.8 Hz), 134.98 (d, J = 10.0 Hz), 134.28 (d, J = 20.4 Hz),
129.62, 128.92 (d, J = 7.6 Hz), 127.29 (d, J = 15.2 Hz); *'P NMR (162 MHz, CDCl3) §: -7.01. IR
omax/em’ (film): 3029, 1576, 1535, 1475, 1434, 1400, 1322, 1307, 1224, 1180, 1159, 1091, 1069,

1024, 1000, 989, 975, 921, 853, 813, 749, 743, 735, 692. m/z LRMS (ESI + APCI): [M+H]*

calculated for C17HsNP* = 264.1, found 264.1.

4-(Diphenylphosphaneyl)-2-(thiophen-3-yl)pyridine

PPh,

Prepared according to general procedure B, using 2-(thiophen-3-yl)pyridine (484 mg, 3.00 mmol),
trifluoromethanesulfonic anhydride (500 ul, 3.00 mmol), methyl-3-

(diphenylphosphaneyl)propanoate (900 mg, 3.30 mmol), DBU (1.35 mL, 9.00 mmol), and CH>Cl>
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(30 mL). The crude material was purified by flash chromatography (silica gel: 3.5% Et20O in
toluene) to provide the title compound as a white solid (712 mg, 2.07 mmol, 69% yield). mp 103-
105 °C; '"H NMR (400 MHz, CDCl3) &: 8.52 (ddd, J = 5.0, 2.5, 0.9 Hz, 1H), 7.81 (dd, J = 3.1, 1.3
Hz, 1H), 7.52 (dd, J=5.1, 1.3 Hz, 1H), 7.46 (dt, J = 7.3, 1.2 Hz, 1H), 7.44 —7.31 (m, 11H), 6.97
(ddd, J = 6.3, 5.0, 1.4 Hz, 1H). *C NMR (100 MHz, CDCls) &: 153.03 (d, J = 5.3 Hz), 149.76 (d,
J =17.1 Hz), 149.19 (d, J = 4.3 Hz), 141.92, 135.05 (d, J = 10.1 Hz), 134.31 (d, J = 20.3 Hz),
129.69, 128.98 (d, J = 7.5 Hz), 126.37 (d, J = 16.9 Hz), 125.40 (d, J = 13.6 Hz), 124.17, 123.99;
3P NMR (162 MHz, CDCl3) &: -6.62. IR vmax/cm™ (film): 3115, 3065, 2919, 1576, 1531, 1519,
1475, 1430, 1419, 1378, 1353, 1326, 1305, 1281, 1267, 1190, 1180, 1158, 1114, 1104, 1089, 1068,
1049, 1026, 998, 987, 919, 908, 890, 869, 843, 830, 793, 745, 694, 670. m/z LRMS (ESI + APCI):

[M+H]* calculated for C21H7NPS* = 346.1, found 346.1.

4-(Diphenylphosphaneyl)-2,2'-bipyridine

Prepared according to general procedure B, using 2,2'-bipyridine (470 mg, 3.00 mmol),
trifluoromethanesulfonic anhydride (500 ul, 3.00 mmol), methyl-3-
(diphenylphosphaneyl)propanoate (900 mg, 3.30 mmol), DBU (1.35 mL, 9.00 mmol), and CH>Cl>
(30 mL). The crude material was purified by flash chromatography (silica gel: 10% Et;0O in
toluene) to provide the title compound as an amber oil (833 mg, 2.46 mmol, 82% yield). 'H NMR
(400 MHz, CDCl3) &: 8.62 (ddd, J = 4.8, 1.9, 0.9 Hz, 1H), 8.59 (ddd, J = 4.9, 2.2, 0.9 Hz, 1H),

8.40 (dt, J=8.0, 1.2 Hz, 1H), 8.36 (dt, /= 8.0, 1.1 Hz, 1H), 7.79 (td, J = 7.7, 1.8 Hz, 1H), 7.46 —
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7.34 (m, 9H), 7.30 — 7.22 (m, 1H), 7.22 — 7.15 (m, 1H), 7.05 (td, J = 5.3, 1.6 Hz, 1H); '*C NMR
(100 MHz, CDCls) 6: 155.96, 155.57 (d, J = 5.9 Hz), 149.99 (d, J = 17.9 Hz), 149.25, 148.84 (d,
J=3.3Hz), 136.84, 135.16 (d, J=10.3 Hz), 134.24 (d, J=20.4 Hz), 132.49 (d, J = 2.8 Hz), 132.10
(d, /=99 Hz), 129.47, 128.85 (d, J = 7.4 Hz), 127.02 (d, J = 10.9 Hz), 125.12 (d, J = 21.5 Hz),
123.73,121.31; 3'P NMR (162 MHz, CDCl3) §: -6.32. IR vmax/cm™ (film): 3050, 1576, 1562, 1532,
1477, 1452, 1434, 1375, 1308, 1278, 1243, 1199, 1118, 1091, 1069, 1026, 1044, 994, 916, 842,
791, 742, 693, 660. m/z LRMS (ESI + APCI): [M+H]" calculated for C22H1sN2P+ = 341.1, found

341.2.

4-(Diphenylphosphaneyl)-2-isopropylpyridine

PPh,

X

N/ iPr
Prepared according to general procedure B, using 2-isopropylpyridine (251 pL, 3.00 mmol),
trifluoromethanesulfonic anhydride (500 uL, 3.00 mmol), methyl-3-
(diphenylphosphaneyl)propanoate (900 mg, 3.30 mmol), DBU (1.35 mL, 9.00 mmol), and CH2Clz
(30 mL). The crude material was purified by flash chromatography (silica gel: 5% Et20 in toluene)
to provide the title compound as a white solid (304 mg, 1.00 mmol, 33% yield). mp 80-81 °C; 'H
NMR (400 MHz, CDCIs) &: 8.44 (ddd, J =5.1, 2.5, 0.9 Hz, 1H), 7.43 —7.30 (m, 10H), 7.05 (dt, J
=7.6, 1.2 Hz, 1H), 6.88 (ddd, J = 6.4, 5.0, 1.5 Hz, 1H), 2.99 (hept, J = 6.9 Hz, 1H), 1.24 (d, J =
6.9 Hz, 6H); *C NMR (100 MHz, CDCls) &: 166.82 (d, J = 5.1 Hz), 149.02 (d, J = 16.8 Hz),
148.69 (d, J=4.0 Hz), 135.34 (d, /= 10.1 Hz), 134.23 (d, J/ = 20.4 Hz), 129.51, 128.86 (d, /=7.4

Hz), 124.83, 124.67 (d, J = 3.8 Hz), 124.56, 36.33, 22.59. *'P NMR (162 MHz, CDCl;) &: -6.59.

IR vmax/em™ (film): 3059, 2971, 2927, 2868, 1576, 1533, 1469, 1480, 1456, 1432, 1389, 1374,
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1310, 1287, 1225, 1200, 1151, 1124, 1093, 1056, 1031, 999, 989, 979, 927, 892, 839, 746, 726,

717, 695. m/z LRMS (ESI + APCI): [M+H]" calculated for C20H21NP* = 306.1, found 306.2.

Ethyl 4-(diphenylphosphaneyl)picolinate
PPh,

X

N CO,Et
Prepared according to general procedure B, using ethyl picolinate (405 pL, 3.00 mmol),
trifluoromethanesulfonic anhydride (500 ul, 3.00 mmol), methyl-3-
(diphenylphosphaneyl)propanoate (900 mg, 3.30 mmol), DBU (1.35 mL, 9.00 mmol), and CH>Cl,
(30 mL). The crude material was purified by flash chromatography (silica gel: 15% Et20 in
toluene) to provide the title compound as a colorless oil (462 mg, 1.38 mmol, 46% yield). '"H NMR
(400 MHz, CDCl3) &: 8.66 (ddd, J = 4.9, 2.1, 0.8 Hz, 1H), 8.02 (ddd, J = 6.7, 1.6, 0.8 Hz, 1H),
7.48 —7.31 (m, 10H), 7.31 — 7.22 (m, 2H), 4.45 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H); 1°C
NMR (100 MHz, CDCl3) &: 165.21, 151.55 (d, J = 20.0 Hz), 149.28 (d, J = 3.6 Hz), 147.68 (d, J
=4.7 Hz), 134.35 (d, J =20.7 Hz), 134.34 (d, / = 9.4 Hz), 130.13 (d, /= 12.7 Hz), 129.94, 129.12
(d, J = 8.0 Hz), 128.61 (d, J = 18.2 Hz), 62.15, 14.39; 3'P NMR (162 MHz, CDCI3) §: -6.53. IR
vmax/em’ (film): 3051, 2980, 1716, 1572, 1536, 1479, 1461, 1435, 1400, 1384, 1364, 1294, 1270,
1227, 1140, 1094, 1020, 991, 914, 857, 782, 743, 694. m/z LRMS (ESI + APCI): [M+H]*

calculated for Co0Hi9NO»P* = 336.1, found 336.1.
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2-(4-Chlorobenzyl)-4-(diphenylphosphaneyl)pyridine

PPh,

N Cl

N/
Prepared according to general procedure C, using 2-(4-chlorobenzyl)pyridine (522 pL, 3.00
mmol), trifluoromethanesulfonic  anhydride (500 pL, 3.00 mmol), methyl-3-
(diphenylphosphaneyl)propanoate (900 mg, 3.30 mmol), DBU (1.35 mL, 9.00 mmol), and CH2Cl>
(30 mL). The crude material was purified by flash chromatography (silica gel: 7% Et20 in toluene)
to provide the title compound as a colorless oil (909 mg, 2.34 mmol, 78% yield). 'H NMR (400
MHz, CDCls) o: 8.44 (dt, J=4.5,2.0 Hz, 1H), 7.46 —7.27 (m, 10H), 7.22 (d, /= 8.3 Hz, 2H), 7.10
(d, J=8.2Hz, 2H), 6.92 (d, J = 6.4 Hz, 2H), 4.04 (s, 2H); '3*C NMR (100 MHz, CDCl5) §: 159.96
(d, J=4.7Hz), 14993 (d, J = 17.8 Hz), 148.98 (d, J = 4.0 Hz), 137.79, 134.99 (d, J = 9.8 Hz),
134.24 (d, J = 20.3 Hz), 132.34, 130.48, 129.65, 128.92 (d, J = 7.6 Hz), 128.77, 126.77 (d, J =
16.7 Hz), 124.99 (d, J = 13.8 Hz), 43.90; *'P NMR (162 MHz, CDCl3) 8: -6.59. IR vmax/cm™" (film):
3051, 1575, 1533, 1489, 1433, 1407, 1382, 1308, 1179, 1089, 1070, 1026, 1015, 999, 919, 846,

824, 798, 742, 694, 662. m/z LRMS (ESI + APCI): [M+H]" calculated for C24H20CINP* = 388.1,

found 388.1.

4-(Diphenylphosphaneyl)-3-methylpyridine

PPh,

\Me

Z
N
Prepared according to general procedure B, using 3-methylpyridine (292 pL, 3.00 mmol),

trifluoromethanesulfonic anhydride (500 ul, 3.00 mmol), methyl-3-
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(diphenylphosphaneyl)propanoate (900 mg, 3.30 mmol), DBU (1.35 mL, 9.00 mmol), and CH>Cl»
(30 mL). The crude material was purified by flash chromatography (silica gel: 20% Et;0 in
toluene) to provide the title compound as a pale-yellow oil (692 mg, 2.49 mmol, 83% yield). 'H
NMR (400 MHz, CDCl3) o: 8.30 (d, J = 5.2 Hz, 1H), 8.22 (d, J = 5.0 Hz, 1H), 7.36 — 7.24 (m,
6H), 7.24 — 7.14 (m, 4H), 6.55 (t, J = 4.6 Hz, 1H), 2.19 (s, 3H); '°C NMR (100 MHz, CDCl5) §
150.15 (d, J = 3.3 Hz), 147.36 (d, J = 18.5 Hz), 147.30, 136.70 (d, J = 21.4 Hz), 134.33 (d, J =
20.3 Hz), 134.12 (d, J = 8.7 Hz), 129.55, 128.99 (d, J = 7.6 Hz), 126.15, 18.20 (d, J = 17.1 Hz);
3P NMR (162 MHz, CDCl3) §: -14.60. IR vmax/cm™ (film): 3051, 1572, 1532, 1475, 1433, 1398,
1377, 1294, 1240, 1189, 1157, 1092, 1060, 1026, 999, 917, 828, 743, 722, 694. m/z LRMS (ESI +

APCI): [M+H]* calculated for C1sH7NP* = 278.1, found 278.2.

4-(Diphenylphosphaneyl)-3-phenylpyridine

PPh,

\Ph

N/
Prepared according to general procedure B, using 3-phenylpyridine (1.43 mL, 10.0 mmol),
trifluoromethanesulfonic anhydride (1.68 mL, 10.0 mmol), methyl-3-
(diphenylphosphaneyl)propanoate (2.90 g, 11.0 mmol), DBU (4.50 mL, 30.0 mmol), and CH2Clz
(100 mL). The crude material was purified by flash chromatography (silica gel: 30% EtOAc in
hexanes) to provide the title compound as a white solid (2.63 g, 7.75 mmol, 78% yield). mp 84-86
°C; '"H NMR (400 MHz, CDCls) &: 8.47 (ddd, J = 8.1, 5.0, 0.8 Hz, 2H), 7.41 —7.09 (m, 16H), 6.89
(ddd, J = 5.1, 3.6, 0.8 Hz, 1H); '3C NMR (100 MHz, CDCI;3) &: 149.87 (d, J = 2.9 Hz), 148.25,
147.50 (d, J = 21.2 Hz), 142.40 (d, J = 23.0 Hz), 138.01 (d, J = 4.6 Hz), 135.23 (d, J = 10.5 Hz),

134.35 (d, J = 20.6 Hz), 129.76 (d, J = 3.5 Hz), 129.30, 128.74 (d, J = 7.4 Hz), 128.02, 127.90,
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127.02. ; 3'P NMR (162 MHz, CDCl3) §: -13.64. IR vmax/cm’ (film): 3039, 1575, 1480, 1457,
1442, 1434, 1394, 1301, 1270, 1177, 1088, 1071, 1027, 1006, 996, 977, 923, 909, 855, 831, 766,
749, 742, 692, 680. m/z LRMS (ESI + APCI): [M+H]" calculated for C23H9oNP* = 340.1, found

340.2.

7-(Diphenylphosphaneyl)thieno[3,2-b]pyridine

PPh,

A S
L

N

Prepared according to general procedure C using 7-chlorothieno[3,2-b]pyridine, (339 mg, 2.00
mmol), diphenylphosphane (0.42 mL, 2.40 mmol), trifluoromethanesulfonic acid (177 pL, 2.00
mmol), and chlorobenzene (1.0 mL) at 130 °C for 3 hours. The crude material was purified by
flash chromatography (silica gel: 35% EtOAc in hexanes) to provide the title compound as a pale-
yellow solid (615 mg, 1.93 mmol, 96% yield). mp 138-139 °C; 'H NMR (400 MHz, CDCl;) &:
8.59(dd,J=4.7,1.4 Hz, 1H), 7.67 (d, J =5.5 Hz, 1H), 7.56 (dd, J = 5.6, 3.2 Hz, 1H), 7.46 — 7.32
(m, 10H), 6.80 (t, J = 4.7 Hz, 1H); >*C NMR (101 MHz, CDCl5) &: 155.63 (d, J = 3.7 Hz), 147.11,
142.84 (d, J = 18.4 Hz), 137.32 (d, J = 23.4 Hz), 134.42 (d, J = 20.4 Hz), 133.29 (d, / = 8.7 Hz),
131.08 (d, J = 3.1 Hz), 129.86, 128.99 (d, /= 7.7 Hz), 124.98 (d, J/ = 2.1 Hz), 121.62 (d, J = 1.8
Hz); *'P NMR (162 MHz, CDCI3) &: -10.95. IR vmax/cm™ (film): 3107, 1539, 1529, 1499, 1474,
1447, 1432, 1356, 1329, 1271, 1231, 1178, 1113, 1084, 1069, 1038, 1025, 998, 959, 928, 894,
857, 837, 808, 786, 747, 713, 696, 675. m/z LRMS (ESI + APCI): [M+H]* calculated for

Ci9H1sNPS™ = 320.1, found 320.1.
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4-(Diphenylphosphaneyl)-6,7-dihydro-SH-cyclopenta[b]pyridine

PPh,

X

N/
Prepared according to general procedure B, using 6,7-dihydro-5SH-cyclopenta[b]pyridine (351 pL,
3.00 mmol), trifluoromethanesulfonic anhydride (500 pL, 3.00 mmol), methyl-3-
(diphenylphosphaneyl)propanoate (900 mg, 3.30 mmol), DBU (1.35 mL, 9.00 mmol), and CH2Cl>
(30 mL). The crude material was purified by flash chromatography (silica gel: 20% Et20 in
toluene) to provide the title compound as a white solid (710 mg, 2.34 mmol, 78% yield). mp 75-
77 °C; '"H NMR (400 MHz, CDCl3) §: 8.22 (dd, J = 5.1, 1.3 Hz, 1H), 7.46 — 7.27 (m, 10H), 6.54
—6.43 (m, 1H), 3.02 (t, J = 7.7 Hz, 2H), 2.69 (t, J = 7.5 Hz, 2H), 2.04 (p, J = 7.7 Hz, 2H); 13C
NMR (100 MHz, CDCl3) o: 164.67 (d, J = 4.3 Hz), 147.53, 144.11 (d, J = 17.5 Hz), 140.58 (d, J
=22.1 Hz), 134.36, 134.22 — 134.10 (m), 129.45, 128.86 (d, J = 7.5 Hz), 123.23,34.16 (d, /= 1.7
Hz), 30.69 (d, J = 8.8 Hz), 22.73; *'P NMR (162 MHz, CDCl3) §: -14.28. IR vmax/cm™ (film): 3046,
2949, 1567, 1545, 1475, 1460, 1432, 1381, 1308, 1201, 1178, 1091, 1069, 1027, 1000, 958, 909,

846, 827,794,750, 740, 694. m/z LRMS (ESI + APCI): [M+H]" calculated for C2o0H1oNP* =304.1,

found 304.2.

4-(Diphenylphosphaneyl)-2-methylquinoline
PPh,

X
7
N Me
Prepared according to general procedure D using 4-chloro-2-methylquinoline (403 pL, 2.00

mmol), diphenylphosphane (0.42 mL, 2.40 mmol), and TFE (5.0 mL) at 80 °C for 3 hours. The
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crude material was purified by flash chromatography (silica gel: 20% EtOAc in hexanes) to
provide the title compound as a white solid (642 mg, 1.96 mmol, 98% yield). mp 164-165 °C; 'H
NMR (400 MHz, CDCl3) ¢: 8.17 (ddd, J = 8.4, 3.5, 1.4 Hz, 1H), 8.05 (d, J = 8.5 Hz, 1H), 7.65
(ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.45 — 7.28 (m, 11H), 6.70 (d, J = 4.5 Hz, 1H), 2.60 (s, 3H); 1*C
NMR (100 MHz, CDCl3) &: 158.26, 147.39 (d, J = 3.5 Hz), 146.53 (d, J = 20.5 Hz), 134.65, 134.46
(d, J=20.4 Hz), 129.53, 129.34 (d, /= 1.9 Hz), 128.94 (d, J = 7.6 Hz), 128.22 (d, J = 19.2 Hz),
126.23, 126.06, 125.89 (d, J = 1.9 Hz), 125.84, 25.54; *'P NMR (162 MHz, CDCl3) &: -14.76. IR
omax/em’ (film): 1574, 1555, 1492, 1480, 1434, 1395, 1327, 1307, 1295, 1208, 1183, 1159, 1123,
1093, 1070, 1026, 999, 920, 883, 867, 851, 823, 787, 763, 755, 745, 737, 695. m/z LRMS (ESI +

APCI): [M+H]* calculated for C2oH19oNP* = 328.1, found 328.2.

6-Bromo-4-(diphenylphosphaneyl)quinoline

PPh,

Br N

N/
Prepared according to general procedure B, using 6-bromoquinoline (406 pL, 3.00 mmol),
trifluoromethanesulfonic anhydride (500 uL, 3.00 mmol), methyl-3-
(diphenylphosphaneyl)propanoate (900 mg, 3.30 mmol), DBU (1.35 mL, 9.00 mmol), and CH2Cl»
(30 mL). The crude material was purified by flash chromatography (silica gel: 10% Et20 in
toluene) to provide the title compound as a pale brown solid (363 mg, 0.93 mmol, 31% yield). mp
160-161 °C; '"H NMR (400 MHz, CDCl3) &: 8.76 (d, J = 4.4 Hz, 1H), 8.44 (dd, J = 3.8, 2.2 Hz,
1H), 7.99 (d, J=8.9 Hz, 1H), 7.75 (dd, J = 9.0, 2.2 Hz, 1H), 7.46 —7.27 (m, 10H), 6.87 (t, J = 4.2

Hz, 1H); '*C NMR (100 MHz, CDCls) &: 150.04, 146.34 (d, J = 3.2 Hz), 146.13 (d, J = 22.2 Hz),

134.39 (d, J=20.3 Hz), 133.99 (d, /= 8.5 Hz), 133.14, 131.91 (d, /= 1.9 Hz), 131.37 (d, J = 20.1
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Hz), 129.78, 129.10 (d, J = 7.5 Hz), 128.38 (d, J = 23.6 Hz), 126.25, 121.10 (d, J = 1.7 Hz); *'P
NMR (162 MHz, CDCI3) 3: -16.01. IR vmax/cm™ (film): 1596, 1558, 1479, 1432, 1412, 1337, 1281,
1214, 1184, 1155, 1135, 1095, 1068, 1055, 1029, 1000, 979, 917, 862, 852, 843, 818, 768, 752,
743, 695, 669. m/z LRMS (ESI + APCI): [M+H]" calculated for C21HisBrNP* = 393.0, found

393.1.

7-Chloro-4-(diphenylphosphaneyl)quinoline

PPh,

X

Cl N/

Prepared according to general procedure D using 7-chloroquinoline (396 mg, 2.00 mmol),
diphenylphosphane (0.42 mL, 2.40 mmol), and TFE (5.0 mL) at 80 °C for 15 hours. The crude
material was purified by flash chromatography (silica gel: 15% EtOAc in hexanes) to provide the
title compound as a white solid (443 mg, 1.28 mmol, 64% yield). mp 154-155 °C; '"H NMR (400
MHz, CDCls) 6: 8.75 (dd, J=4.4, 1.2 Hz, 1H), 8.15 (dd, J =9.0, 3.5 Hz, 1H), 8.12 (d, / = 2.2 Hz,
1H), 7.47 —7.33 (m, 7H), 7.30 (ddt, J = 8.1, 6.5, 1.6 Hz, 4H), 6.81 (t, J = 4.3 Hz, 1H); '*C NMR
(100 MHz, CDCl3) &: 150.75, 148.17 (d, J = 3.0 Hz), 147.24 (d, J = 22.0 Hz), 13543 (d, /=14
Hz), 134.48 (d, J=20.4 Hz), 134.08 (d, J = 8.4 Hz), 129.80, 129.12, 129.10 (d, /= 7.7 Hz), 128.43
(d, J =19.3 Hz), 127.77 (d, J = 2.0 Hz), 127.57 (d, J = 22.2 Hz), 125.50; *'P NMR (162 MHz,
CDCl3) 6: -14.98. IR vmax/cm’™ (film): 1598, 1556, 1478, 1431, 1404, 1364, 1337, 1287, 1200,

1184, 1156, 1144, 1095, 1074, 1026, 1000, 979, 892, 878, 863, 851, 818, 769, 749, 742, 694. m/z

LRMS (ESI + APCI): [M+H]" calculated for C21H1sCINP* = 348.1, found 348.1.
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5-(5-(4-(Diphenylphosphaneyl)pyridin-2-yl)-2-fluorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-
c]pyridine

PPh,

pd

a

S
Prepared according to general procedure B, using 5-(2-fluoro-5-(pyridin-2-yl)benzyl)-4,5,6,7-
tetrahydrothieno[3,2-c]pyridine (1.02 g, 3.15 mmol), trifluoromethanesulfonic anhydride (529 pL,
3.15 mmol), methyl-3-(diphenylphosphaneyl)propanoate (953 mg, 3.50 mmol), DBU (1.42 mL,
9.50 mmol), and CH2Cl> (32 mL). The crude material was purified by flash chromatography
(silica gel: 20% EtOAc in hexanes) to provide the title compound as an orange amorphous solid
(954 mg, 1.89 mmol, 60% yield). 'H NMR (400 MHz, CDCI3) &: 8.88 (dd, J = 5.0, 2.4 Hz, 1H),
8.29 (dd,J=7.1,2.5 Hz, 1H), 8.11 (ddd, J = 8.2, 5.0, 2.4 Hz, 1H), 7.87 (d, J = 7.5 Hz, 1H), 7.69
(d,J=3.3 Hz, 10H), 7.47 —7.28 (m, 3H), 7.01 (d, /= 5.1 Hz, 1H), 4.13 (s, 2H), 3.93 (s, 2H), 3.16
(s, 4H); 3C NMR (100 MHz, CDCls) &: 163.48, 161.00, 156.06 (d, J = 5.1 Hz), 149.83 (d, J =
17.6 Hz), 149.23 (d, J = 4.1 Hz), 135.34 (d, J/ = 3.3 Hz), 135.02 (d, J/ = 10.1 Hz), 134.28 (d, J =
20.4 Hz), 133.88, 133.41, 130.27 (d, J = 5.0 Hz), 129.66, 128.95 (d, J/ = 7.4 Hz), 127.71 (d, J =
8.7Hz), 125.58 (d, J = 13.5 Hz), 125.34, 124.11 (d, J = 18.2 Hz), 122.69, 115.79 (d, J = 22.8 Hz),
54.63 (d, J = 1.7 Hz), 52.94, 50.55, 25.60.; *'P NMR (162 MHz, CDCl5) &: -6.46; '°F NMR (376
MHz, CDCl3) 8: -117.48. IR vma/cm™ (film): 3052, 2919, 2816, 1594, 1573, 1530, 1499, 1461,
1433, 1407, 1375, 1362, 1320, 1246, 1169, 1096, 1049, 1015, 999, 982, 899, 822, 792, 742, 694,

667. m/z LRMS (ESI + APCI): [M+H]* calculated for C31H27FN2PS™ = 509.2, found 509.3.
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Ethyl 4-((4-chlorophenyl)(4-(diphenylphosphaneyl)pyridin-2-yl)methoxy)piperidine-1-
carboxylate

PPh,
cl

O\C‘
N
SCO,Et

Prepared according to general procedure B, using ethyl 4-((4-chlorophenyl)(pyridin-2-
yl)methoxy)piperidine-1-carboxylate (1.12 g, 3.00 mmol), trifluoromethanesulfonic anhydride
(500 pL, 3.00 mmol), methyl-3-(diphenylphosphaneyl)propanoate (900 mg, 3.30 mmol), DBU
(1.35 mL, 9.00 mmol), and CH2Cl, (30 mL). The crude material was purified by flash
chromatography (silica gel: 40% EtOAc in hexanes) to provide the title compound as a colorless
amorphous solid (929 mg, 1.66 mmol, 55% yield). 'H NMR (400 MHz, CDCls) §: 8.42 (dd, J =
5.0, 2.5 Hz, 1H), 7.47 —7.33 (m, 11H), 7.33 —7.24 (m, 4H), 7.00 (ddd, J = 6.3, 4.9, 1.5 Hz, 1H),
5.56 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.70 — 3.48 (m, 3H), 3.32 — 3.10 (m, 2H), 1.85 — 1.70 (m,
1H), 1.70 — 1.42 (m, 3H), 1.28 (t, J = 7.1 Hz, 3H); 3*C NMR (100 MHz, CDCl5) §: 161.24 (d, J =
4.1 Hz), 155.56, 150.41 (d, J = 18.0 Hz), 148.56 (d, / = 4.3 Hz), 140.01, 134.97 (dd, /= 10.1, 3.4
Hz), 134.26 (dd, J = 20.5, 11.4 Hz), 133.50, 129.70 (d, J/ = 2.8 Hz), 128.91 (d, / = 7.6 Hz), 128.48
(d, J =319 Hz), 12594 (d, J = 14.9 Hz), 124.01 (d, J = 15.7 Hz), 80.93, 72.40, 61.33, 40.87,
30.97, 30.84, 14.82.; *'P NMR (162 MHz, CDCI3) §: -6.20. IR vmax/cm™ (film): 2929, 1691, 1588,
1571, 1488, 1469, 1432, 1382, 1355, 1334, 1273, 1226, 1171, 1132, 1083, 1029, 1014, 993, 964,
939, 872, 843, 805, 765, 749, 724. m/z LRMS (ESI + APCI): [M+H]" calculated for

C3H33CIN20O3P* = 559.2, found 559.3.
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A2.5 Alkenylation of Pyridines and Quinolines

General Procedure E

PPh, =2
CN H,O (10 eq.), TFOH (1 eq.) Z~ “CN
N X / -
R_K _ R? EtOH (0.4 M), 80 °C, 24 h N
N R_K _
N

(Z)-3-Phenyl-3-(2-phenylpyridin-4-yl)acrylonitrile

Ph

4

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid (27
pL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 24 hours. The
crude material was purified by flash chromatography (silica gel: 15% EtOAc in hexanes) to
provide the title compound as a colorless oil (70 mg, 0.25 mmol, 83% yield, Z/E = >20:1). 'H
NMR (400 MHz, CDCl3) ¢: 8.82 (d, J = 5.1 Hz, 1H), 8.00 (d, J = 7.1 Hz, 2H), 7.77 (s, 1H), 7.55
—17.37 (m, 6H), 7.32 (d, J = 7.5 Hz, 2H), 7.30 — 7.23 (m, 1H), 5.92 (s, 1H); *C NMR (100 MHz,
CDCl3) 6: 160.73, 158.43,150.31, 145.64, 138.83, 137.30, 131.15, 129.55, 129.15, 128.97, 128.32,
127.29, 122.18, 120.82, 117.11, 96.98. IR vma/cm™! (film): 3054, 2215, 1593, 1541, 1493, 1473,
1446, 1398, 1351, 1265, 1223, 1153, 1109, 1074, 1028, 1000, 989, 893, 848, 776, 762, 733, 693.

m/z LRMS (ESI + APCI): [M+H]" calculated for C20H;5sN2* = 283.1, found 283.1.
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(Z)-3-Phenyl-3-(pyridin-4-yl)acrylonitrile

Ph
= CN

—

NS
N

Prepared according to general procedure E using 4-(diphenylphosphaneyl)pyridine (79 mg, 0.30
mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid (27 pL, 0.30
mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 24 hours. The crude
material was purified by flash chromatography (silica gel: 30% EtOAc in hexanes) to provide the
title compound as a green solid (36 mg, 0.17 mmol, 58% yield, Z/E = >20:1). mp 134-135 °C; 'H
NMR (400 MHz, CDCl3) ¢6: 8.76 (d, J = 5.5 Hz, 2H), 7.51 — 7.44 (m, 1H), 7.44 — 7.38 (m, 2H),
7.38 —7.31 (m, 2H), 7.30 — 7.23 (m, 2H), 5.89 (s, 1H); '*C NMR (100 MHz, CDCls) &: 160.41,
150.48, 144.77, 137.25, 131.12, 129.11, 128.26, 123.79, 116.96, 97.00. IR vmax/cm™ (film): 3014,
2924, 2211, 1601, 1586, 1573, 1544, 1491, 1448, 1413, 1360, 1325, 1262, 1216, 1162, 1082, 1069,
1032, 992, 923, 855, 870, 825, 765, 735, 689, 654. m/z LRMS (ESI + APCI): [M+H]" calculated

for C14H11N2* = 207.1, found 207.2.
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(Z)-3-(2-(4-Hydroxyphenyl)pyridin-4-yl)-3-phenylacrylonitrile

Ph
ZZ e\

X

Z
N

OH

Prepared according to general procedure E using 4-(4-(diphenylphosphaneyl)pyridin-2-yl)phenol
(107 mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid
(27 uL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 24 hours.
The crude material was purified by flash chromatography (silica gel: 50% EtOAc in hexanes) to
provide the title compound as a pale-yellow solid (73 mg, 0.24 mmol, 81% yield). mp 205-206
°C; '"H NMR (400 MHz, (CD3)2S0) & 9.81 (s, 1H), 8.73 (dd, J = 4.9, 0.8 Hz, 1H), 8.02 — 7.92 (m,
2H), 7.83 (t, J = 1.2 Hz, 1H), 7.55 — 7.36 (m, 5H), 7.20 (dd, J = 5.0, 1.5 Hz, 1H), 6.93 — 6.80 (m,
2H), 6.58 (s, 1H); '*C NMR (100 MHz, (CD3):SO) & 159.58, 158.92, 156.80, 149.88, 145.77,
136.34, 130.86, 128.98, 128.95, 128.19, 128.00, 121.00, 118.69, 117.63, 115.60, 97.62. IR
vmax/em’ (film): 2922, 2853, 2573, 2211, 1743, 1606, 1582, 1444, 1379, 1316, 1282, 1225, 1174,
1109, 1002, 903, 872, 828, 813, 755, 692. m/z LRMS (ESI + APCI): [M+H]" calculated for

C20H15N20* =299.1, found 299.2.
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(Z)-3-Phenyl-3-(2-(thiophen-3-yl)pyridin-4-yl)acrylonitrile

Ph

~~ “CN
|\
~
N \\
S

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-(thiophen-3-
yDpyridine (104 mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol),
trifluoromethanesulfonic acid (27 pL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL,
0.4 M) at 80 °C for 22 hours. The crude material was purified by flash chromatography (silica gel:
25% EtOAc in hexanes) to provide the title compound as a yellow amorphous solid (76 mg, 0.26
mmol, 88% yield, Z/E = 15:1). "H NMR (400 MHz, CDCl5) &: 8.75 (d, J = 5.1 Hz, 1H), 7.98 (d, J
= 1.4 Hz, 1H), 7.72 — 7.63 (m, 2H), 7.54 — 7.46 (m, 1H), 7.42 (m, 3H), 7.36 — 7.28 (m, 2H), 7.21
(dd, J = 5.1, 1.7 Hz, 1H), 5.91 (s, 1H); '*C NMR (100 MHz, CDCls) &: 160.58, 154.33, 150.31,
145.54, 141.63, 137.21, 131.13, 129.13, 128.27, 126.66, 126.33, 124.52, 121.81, 120.30, 117.03,
96.91. IR vma/cm™ (film): 3049, 2926, 2217, 1600, 1587, 1572, 1532, 1491, 1477, 1443, 1426,
1379, 1349, 1287, 1251, 1193, 1156, 1080, 1059, 999, 919, 900, 869, 884, 833, 796, 772, 758,

746, 698, 683. m/z LRMS (ESI + APCI): [M+H]* calculated for CisH13N2S* = 289.1, found 289.1.
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(Z2)-3-([2,2'-Bipyridin]-4-yl)-3-phenylacrylonitrile

Ph
ZZ N

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2,2'-bipyridine (102
mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid (54
pL, 0.60 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 100 °C for 48 hours.
The crude material was purified by flash chromatography (silica gel: 65% EtOAc in hexanes) to
provide the title compound as a green amorphous solid (41 mg, 0.14 mmol, 48% yield, Z/E = 15:1).
"H NMR (400 MHz, CDCI3) &: 8.81 (d, J = 5.0 Hz, 1H), 8.64 (d, J = 4.5 Hz, 1H), 8.45 (d, J = 8.1
Hz, 1H), 8.42 (s, 1H), 7.83 (td, J="7.8, 1.8 Hz, 1H), 7.46 (m, 1H), 7.43 —7.35 (m, 3H), 7.35 - 7.27
(m, 3H), 5.92 (s, 1H); '3C NMR (101 MHz, CDCl;) §: 160.85, 157.02, 155.53, 149.90, 149.35,
145.97, 137.23, 137.16, 131.08, 129.12, 128.26, 124.23, 123.69, 121.53, 121.15, 117.00, 96.95.
IR vmax/em’™ (film): 3056, 2216, 1583, 1542, 1493, 1459, 1447, 1392, 1352, 1265, 1150, 1092,
1070, 1044, 1031, 991, 897, 852, 792, 762, 733, 695, 664. m/z LRMS (ESI + APCI): [M+H]*

calculated for C19H4aN3* = 284.1, found 284.2.
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Ethyl (Z)-4-(2-cyano-1-phenylvinyl)picolinate

Ph
=~ “CN

X

NT CO,Et
Prepared according to general procedure E using ethyl 4-(diphenylphosphaneyl)picolinate (101
mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid (27
uL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 48 hours. The
crude material was purified by flash chromatography (silica gel: 45% EtOAc in hexanes) to
provide the title compound as a yellow amorphous solid (51 mg, 0.18 mmol, 61% yield, Z/E =
15:1). '"H NMR (400 MHz, CDCl3) &: 8.91 (d, J = 4.9 Hz, 1H), 8.11 (s, 1H), 7.57 (dd, J = 5.0, 1.8
Hz, 1H), 7.53 — 7.46 (m, 1H), 7.42 (dd, J = 8.5, 6.7 Hz, 2H), 7.30 — 7.19 (m, 2H), 5.95 (s, 1H),
4.50 (q, J =7.1 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H); '*C NMR (100 MHz, CDCl5) §: 164.80, 159.60,
150.63, 149.18, 146.21, 136.76, 131.37, 129.28, 128.16, 126.77, 125.16, 116.63, 97.66, 62.41,
14.43. IR vmax/cm™ (film): 3039, 2991, 2916, 2213, 1734, 1589, 1575, 1545, 1446, 1386, 1364,
1299, 1244, 1176, 1125, 1099, 1022, 992, 925, 864, 839, 778, 763, 690, 656. m/z LRMS (ESI +

APCI): [M+H]" calculated for C17H15N202* =279.1, found 279.1.
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(Z)-3-(2-(4-Chlorobenzyl)pyridin-4-yl)-3-phenylacrylonitrile

Ph
Z “CN

N Cl

=
N

Prepared according  to general  procedure E  using 2-(4-chlorobenzyl)-4-
(diphenylphosphaneyl)pyridine (116 mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45
mmol), trifluoromethanesulfonic acid (27 pL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH
(0.75 mL, 0.4 M) at 80 °C for 22 hours. The crude material was purified by flash chromatography
(silica gel: 30% EtOAc in hexanes) to provide the title compound as a brown solid (77 mg, 0.23
mmol, 78% yield, Z/E = 20:1). mp 109-110 °C; 'H NMR (400 MHz, CDCl3) §: 8.68 (d, J = 5.1
Hz, 1H), 7.57 — 7.44 (m, 1H), 7.45 — 7.34 (m, 2H), 7.33 - 7.18 (m, 7H), 7.15 (dd, J = 5.1, 1.7 Hz,
1H), 5.86 (s, 1H), 4.20 (s, 2H); '*C NMR (100 MHz, CDCls) &: 161.33, 160.42, 150.18, 145.46,
137.46, 137.17, 132.51, 131.10, 130.58, 129.07, 128.88, 128.22, 123.11, 121.58, 116.99, 96.93,
44.00. IR vmax/cm™ (film): 3036, 2926, 2212, 1589, 1572, 1542, 1490, 1490, 1445, 1430, 1401,
1343, 1253, 1193, 1144, 1088, 1014, 996, 908, 869, 858, 833, 802, 762, 718, 689. m/z LRMS (ESI

+ APCI): [M+H]" calculated for C21Hi6CIN2* = 331.1, found 331.2.
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(Z)-3-(3-Methylpyridin-4-yl)-3-phenylacrylonitrile

Ph
Z “CN

S Me

N/
Prepared according to general procedure E using 4-(diphenylphosphaneyl)-3-methylpyridine (83
mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid (27
pL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 24 hours. The
crude material was purified by flash chromatography (silica gel: 25% EtOAc in hexanes) to
provide the title compound as an orange amorphous solid (18 mg, 0.08 mmol, 28% yield). 'H
NMR (400 MHz, CDCl3) 8: 8.60 (s, 2H), 7.52 — 7.32 (m, 3H), 7.29 — 7.14 (m, 3H), 6.05 (s, 1H),
2.12 (s, 3H); '3C NMR (100 MHz, CDCI3) &: 160.01, 151.80, 147.83, 144.76, 135.73, 131.32,
129.37, 127.07, 123.44, 116.62, 97.13, 16.57. IR vma/cm™ (film): 3050, 2922, 2852, 2215, 1586,
1548, 1493, 1444, 1404, 1380, 1347, 1300, 1252, 1191, 1154, 1080, 1057, 1030, 999, 929, 835,
816, 765, 718, 693, 653. m/z LRMS (ESI + APCI): [M+H]" calculated for CisHi3N>" = 221.1,

found 221.2.
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(Z)-3-Phenyl-3-(3-phenylpyridin-4-yl)acrylonitrile

Ph
= “CN

N Ph

N/
Prepared according to general procedure E using 4-(diphenylphosphaneyl)-3-phenylpyridine (102
mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid (27
uL, 0.30 mmol), H>O (54 uL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 48 hours. The
crude material was purified by flash chromatography (silica gel: 25% EtOAc in hexanes) to
provide the title compound as a yellow amorphous solid (18 mg, 0.06 mmol, 21 % yield). '"H NMR
(400 MHz, CDCl3) & 8.88 — 8.65 (m, 2H), 7.43 — 7.31 (m, 2H), 7.31 — 7.15 (m, 7H), 7.15 — 7.06
(m, 2H), 5.87 (s, 1H); °C NMR (101 MHz, CDCl3) § 160.41, 151.22, 148.84, 143.76, 136.87,
136.62, 136.48, 130.82, 129.07, 128.86, 128.35, 128.13, 127.34, 124.12, 116.89, 97.92. IR
omax/em’ (film): 3008, 2215, 1587, 1494, 1475, 1446, 1402, 1352, 1253, 1209, 1185, 1076, 1033,
1008, 973, 922, 871, 845, 773, 763, 751, 705, 692, 663, 653. m/z LRMS (ESI + APCI): [M+H]*

calculated for CooHsN>" = 283.1, found 283.2.
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(Z2)-3-(2,6-Dimethylpyridin-4-yl)-3-phenylacrylonitrile

Z~ “CN

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2,6-dimethylpyridine
(87 mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid
(27 pL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 24 hours.
The crude material was purified by flash chromatography (silica gel: 30% EtOAc in hexanes) to
provide the title compound as a white solid (57 mg, 0.24 mmol, 81 % yield). mp 105-106 °C; 'H
NMR (400 MHz, CDCls) o: 7.55 — 7.34 (m, 3H), 7.26 (d, J = 7.1 Hz, 2H), 6.97 (s, 2H), 5.83 (s,
1H), 2.58 (s, 6H); 1*C NMR (100 MHz, CDCI3) &: 161.06, 158.67, 145.45, 137.47, 130.95, 129.01,
128.20, 120.22, 117.09, 96.43, 24.69. IR vmax/cm™ (film): 3059, 2924, 2213, 1606, 1590, 1556,
1492, 1445, 1402, 1385, 1373, 1246, 1220, 1187, 1141, 1080, 1030, 1001, 976, 929, 882, 832,
764, 740, 696, 674, 654. m/z LRMS (ESI + APCI): [M+H]* calculated for CisHisN>t = 235.1,

found 235.1.
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(Z2)-3-(2-Isopropylpyridin-4-yl)-3-phenylacrylonitrile

Ph
= “CN

X

= Me
N

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-isopropylpyridine
(92 mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid
(27 uL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 24 hours.
The crude material was purified by flash chromatography (silica gel: 15% EtOAc in hexanes) to
provide the title compound as a white solid (68 mg, 0.27 mmol, 91 % yield). mp 95-96 °C; 'H
NMR (400 MHz, CDCls) 6: 8.65 (dd, J = 5.0, 0.8 Hz, 1H), 7.51 — 7.44 (m, 1H), 7.44 — 7.37 (m,
2H), 7.31 —7.22 (m, 4H), 7.11 (dd, J = 5.1, 1.7 Hz, 1H), 5.86 (s, 1H), 3.14 (hept, J = 6.9 Hz, 1H),
1.34 (d, J = 6.9 Hz, 6H); '*C NMR (100 MHz, CDCls) §: 168.28, 161.01, 149.67, 145.08, 137.45,
131.01, 129.05, 128.28, 121.14, 120.94, 117.14, 96.68, 36.54, 22.57. IR vma/cm™ (film): 3038,
2967,2922, 2868, 2208, 1599, 1587, 1570, 1547, 1480, 1444, 1402, 1377, 1356, 1326, 1295, 1265,
1207, 1150, 1121, 1102, 1079, 1058, 1029, 999, 978, 924, 905, 884, 849, 819, 770, 701, 655. m/z

LRMS (ESI + APCI): [M+H]* calculated for Ci7H17N2* = 249.1, found 249.2.
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(Z)-3-Phenyl-3-(thieno[3,2-b]pyridin-7-yl)acrylonitrile

Ph
Z~ “CN

\S
| Ly

N

Prepared according to general procedure E using 7-(diphenylphosphaneyl)thieno[3,2-b]pyridine
(96 mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid
(54 pL, 0.60 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 100 °C for 24 hours.
The crude material was purified by flash chromatography (silica gel: 30% EtOAc in hexanes) to
provide the title compound as a green solid (44 mg, 0.17 mmol, 57% yield, Z/E = >20:1). mp 102-
104 °C; 'H NMR (400 MHz, CDCls) §: 8.86 (d, J =4.8 Hz, 1H), 7.71 (d, ] = 5.5 Hz, 1H), 7.62 (d,
J=5.6 Hz, 1H), 7.52 — 7.44 (m, 1H), 7.45 — 7.35 (m, 3H), 7.35 — 7.28 (m, 2H), 6.06 (s, 1H). 'H
NMR (400 MHz, CDCl3) ¢ 8.86 (d, J=4.8 Hz, 1H), 7.71 (d, /= 5.5 Hz, 1H), 7.62 (d, J = 5.6 Hz,
1H), 7.52 — 7.44 (m, 1H), 7.45 — 7.35 (m, 3H), 7.35 — 7.28 (m, 2H), 6.06 (s, 1H); *C NMR (100
MHz, CDCI3) 6: 159.05, 157.35, 147.87, 139.69, 135.45, 131.70, 131.50, 129.32, 127.97, 125.32,
118.97, 116.46, 98.28. IR vmax/cm™! (film): 3090, 3011, 2215, 1728, 1601, 1559, 1545, 1493, 1457,
1447, 1376, 1352, 1267, 1238, 1161, 1126, 1090, 1037, 956, 917, 893, 872, 838, 816, 791, 774,

763, 716, 687. m/z LRMS (ESI + APCI): [M+H]* calculated for CisH11N2S* =263.1, found 263.1.

405



(Z)-3-(6,7-Dihydro-5H-cyclopenta[b]pyridin-4-yl)-3-phenylacrylonitrile

Ph
Z “CN

X

N/
Prepared according to general procedure E using 4-(diphenylphosphaneyl)-6,7-dihydro-5H-
cyclopenta[b]pyridine (91 mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol),
trifluoromethanesulfonic acid (27 puL, 0.30 mmol), H>O (54 uL, 3.00 mmol), and EtOH (0.75 mL,
0.4 M) at 80 °C for 24 hours. The crude material was purified by flash chromatography (silica gel:
40% EtOAc in hexanes) to provide the title compound as a brown oil (45 mg, 0.18 mmol, 61%
yield, Z/E = 1:1). '"H NMR (400 MHz, CDCI3) 8: 8.49 (d, J = 5.1 Hz, 1H), 7.54 — 7.42 (m, 4H),
7.26 (s, 1H), 7.06 (d, J = 5.1 Hz, 1H), 5.95 (s, 1H), 3.11 (t, J/ = 7.8 Hz, 2H), 2.63 (t, / = 7.4 Hz,
2H), 2.08 (p, J = 7.4 Hz, 2H); >*C NMR (100 MHz, CDCl;) §: 167.10, 160.11, 148.11, 141.33,
136.25, 135.61, 131.11, 129.23, 129.01, 120.96, 116.93, 96.86, 34.47, 29.93, 22.83. IR dmax/cm™!
(film): 3055, 2954, 2215, 1720, 1582, 1555, 1494, 1437, 1388, 1356, 1312, 1254, 1199, 1119,
1078, 1029, 999, 911, 825, 763, 723, 695. m/z LRMS (ESI + APCI): [M+H]" calculated for

C17H1sN2t =247.1, found 247.2.

406



(Z)-3-(2-Methylquinolin-4-yl)-3-phenylacrylonitrile

Ph
Z “CN

X

=
N Me

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-methylquinoline (98
mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid (54
pL, 0.60 mmol), H,O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 100 °C for 24 hours.
The crude material was purified by flash chromatography (silica gel: 20% EtOAc in hexanes) to
provide the title compound as a pale-yellow solid (77 mg, 0.29 mmol, 95% yield). mp 187-188
°C; 'H NMR (400 MHz, CDCls) : 8.11 (d, J = 8.5 Hz, 1H), 7.69 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H),
7.49 (dd, J =8.3, 1.2 Hz, 1H), 7.46 — 7.40 (m, 1H), 7.40 — 7.32 (m, 3H), 7.33 — 7.27 (m, 3H), 6.21
(s, 1H), 2.83 (s, 3H); *C NMR (100 MHz, CDCI3) &: 159.41, 158.79, 148.34, 143.26, 136.51,
131.12, 129.94, 129.39, 129.17, 127.06, 126.54, 124.84, 124.03, 122.26, 116.53, 98.00, 25.43. IR
oma/em’! (film): 3057, 2213, 1602, 1584, 1571, 1560, 1507, 1493, 1445, 1409, 1382, 1356, 1331,
1251, 1218, 1185, 1151, 1126, 1076, 1030, 999, 954, 901, 866, 847, 835, 816, 790, 752, 716, 686,

657. m/z LRMS (ESI + APCI): [M+H]" calculated for Ci9H;sN>* = 271.1, found 271.2.
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(Z)-3-(6-Bromoquinolin-4-yl)-3-phenylacrylonitrile

Ph
Z~ “CN

Br SN

=
N

Prepared according to general procedure E using 6-bromo-4-(diphenylphosphaneyl)quinoline (118
mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid (54
pL, 0.60 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 100 °C for 24 hours.
The crude material was purified by flash chromatography (silica gel: 25% EtOAc in hexanes) to
provide the title compound as a yellow amorphous solid (69 mg, 0.21 mmol, 68% yield, Z/E =
15:1). '"H NMR (400 MHz, CDCl3) §: 8.66 (d, J = 4.4 Hz, 1H), 7.68 (d, J = 9.0 Hz, 1H), 7.41 (dd,
J=9.0,2.3 Hz, 1H), 7.31 (d, J = 2.3 Hz, 1H), 7.10 — 7.02 (m, 2H), 7.02 — 6.94 (m, 2H), 6.91 —
6.84 (m, 2H), 5.86 (s, 1H); 3*C NMR (100 MHz, CDCl5) 8: 158.46, 150.52, 147.37, 142.44, 136.03,
133.74, 132.09, 131.57, 129.46, 127.24, 127.14, 122.28, 121.95, 116.39, 98.71. IR vmax/cm
(film): 3020, 2214, 1601, 1583, 1561, 1490, 1447, 1417, 1370, 1337, 1263, 1213, 1197, 1160,
1139, 1083, 1061, 999, 968, 921, 885, 877, 861, 847, 830, 781, 757, 691, 681. m/z LRMS (ESI +

APCI): [M+H]" calculated for C1sH12BrN>"™ = 335.0, found 335.1.
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(Z)-3-(7-Chloroquinolin-4-yl)-3-phenylacrylonitrile

Ph
Z~ “CN

X

=
Cl N

Prepared according to general procedure E using 7-chloro-4-(diphenylphosphaneyl)quinoline (104
mg, 0.30 mmol), 3-phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid (54
pL, 0.60 mmol), H,O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 100 °C for 24 hours.
The crude material was purified by flash chromatography (silica gel: 20% EtOAc in hexanes) to
provide the title compound as a white solid (62 mg, 0.21 mmol, 71% yield, Z/E = 15:1). mp 134-
136 °C; '"H NMR (400 MHz, CDCls) &: 9.07 (d, J = 4.4 Hz, 1H), 8.21 (d, J = 2.4 Hz, 1H), 7.50 (d,
J = 8.9 Hz, 1H), 7.48 — 7.40 (m, 3H), 7.40 — 7.34 (m, 2H), 7.30 — 7.23 (m, 2H), 6.25 (s, 1H); 13C
NMR (100 MHz, CDCl3) &: 158.75, 151.30, 149.19, 143.34, 136.31, 136.11, 131.50, 129.43,
129.32, 128.70, 127.15, 126.50, 124.26, 121.78, 116.42, 98.59. IR vmax/cm’ (film): 3044, 2212,
1591, 1574, 1562, 1491, 1416, 1379, 1388, 1260, 1208, 1189, 1154, 1088, 1033, 1000, 962, 949,
913, 886, 879, 852, 831, 797, 763, 730, 696, 662. m/z LRMS (ESI + APCI): [M+H]" calculated

for C1gH12CIN2™ = 291.1, found 291.1.
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(Z)-3-(2-Fluorophenyl)-3-(2-phenylpyridin-4-yl)acrylonitrile

Z~ “CN

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 0.30 mmol), 3-(2-fluorophenyl)propiolonitrile (65 mg, 0.45 mmol), trifluoromethanesulfonic
acid (27 pL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 24
hours. The crude material was purified by flash chromatography (silica gel: 15% EtOAc in
hexanes) to provide the title compound as a colorless oil (82 mg, 0.27 mmol, 91% yield, Z/E =
4:1). '"H NMR (400 MHz, CDCls) : 8.80 (dd, J = 5.0, 0.8 Hz, 1H), 8.02 — 7.96 (m, 2H), 7.78 (dd,
J=1.7,09 Hz, 1H), 7.52 - 7.39 (m, 5H), 7.28 — 7.23 (m, 1H), 7.21 — 7.16 (m, 2H), 6.01 (s, 1H);
3C NMR (100 MHz, CDCl3) §: 160.36 (d, J = 253.2 Hz), 158.54, 155.20, 150.38, 145.53, 138.85,
132.59 (d, J = 8.7 Hz), 131.31 (d, J = 2.2 Hz), 129.55, 128.98, 127.32, 124.83 (d, J = 3.6 Hz),
121.41, 120.08, 116.89 (d, J = 21.8 Hz), 116.63, 101.08 (d, J = 6.9 Hz); '°F NMR (376 MHz,
CDCl3) &: -111.20. IR vmax/em™ (film): 3048, 2217, 1594, 1579, 1542, 1487, 1473, 1446, 1401,
1351, 1266, 1249, 1213, 1158, 1104, 1073, 1028, 989, 948, 892, 847, 825, 801, 774, 760, 735,

694, 657. m/z LRMS (ESI + APCI): [M+H]" calculated for C2oH14FN>" = 301.1, found 301.2.
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(Z2)-3-(2-Phenylpyridin-4-yl)-3-(o-tolyl)acrylonitrile

Z~ “CN
Me

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 0.30 mmol), 3-(o-tolyl)propiolonitrile (64 mg, 0.45 mmol), trifluoromethanesulfonic acid (27
pL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 100 °C for 48 hours.
The crude material was purified by flash chromatography (silica gel: 12% EtOAc in hexanes) to
provide the title compound as a white solid (57 mg, 0.20 mmol, 65 % yield, Z/E = 1:1). mp 111-
112 °C; '"H NMR (400 MHz, CDCls) 6: 8.76 (d, J = 5.1 Hz, 1H), 8.02 — 7.94 (m, 2H), 7.86 (s, 1H),
7.53 —7.42 (m, 3H), 7.38 (td, J = 7.4, 1.8 Hz, 1H), 7.30 (t, J = 6.9 Hz, 1H), 7.24 (dt, J =5.3,2.4
Hz, 3H), 5.69 (s, 1H), 2.04 (s, 3H); '>*C NMR (100 MHz, CDCl3) §: 161.37, 158.45, 150.40, 145.18,
138.78, 138.05, 135.96, 131.13, 130.02, 129.56, 129.41, 128.86, 127.15, 126.35, 120.90, 119.42,
116.75,99.87, 77.24, 20.41. IR vmax/cm! (film): 3064, 2922, 2852, 2219, 1610, 1593, 1580, 1541,
1485, 1475, 1445, 1400, 1295, 1228, 1185, 1157, 1108, 1030, 987, 926, 899, 853, 827, 785, 774,
756, 734, 693, 679, 657. m/z LRMS (ESI + APCI): [M+H]* calculated for Co1H7N>" = 297.1,

found 297.2.
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(Z)-3-(3-Bromophenyl)-3-(2-phenylpyridin-4-yl)acrylonitrile

Br Z~ “CN

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 0.30 mmol), 3-(3-bromophenyl)propiolonitrile (93 mg, 0.45 mmol), trifluoromethanesulfonic
acid (27 pL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 24
hours. The crude material was purified by flash chromatography (silica gel: 20% EtOAc in
hexanes) to provide the title compound as a white amorphous solid (97 mg, 0.27 mmol, 90 % yield,
Z/E = 11:1). '"H NMR (400 MHz, CDCls) &: 8.84 (d, J = 5.0 Hz, 1H), 8.02 (d, J = 7.0 Hz, 2H),
7.77 (s, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.54 — 7.44 (m, 4H), 7.35 - 7.27 (m, 1H), 7.27 — 7.18 (m,
2H), 5.91 (s, 1H); *C NMR (100 MHz, CDCI3) §: 159.21, 158.58, 150.49, 144.87, 139.35, 138.69,
134.01, 131.07, 130.62, 129.64, 128.99, 127.27, 127.01, 123.34, 121.92, 120.52, 116.62, 98.29.
IR vmax/em™ (film): 3033, 3005, 2212, 1605, 1587, 1556, 1545, 1471, 1445, 1405, 1390, 1352,
1317, 1249, 1230, 1175, 1151, 1107, 1096, 1073, 1023, 991, 964, 937, 925, 886, 845, 830, 786,
777,743, 732, 698, 671. m/z LRMS (ESI + APCI): [M+H]* calculated for C0H14BrN2>* = 361.0,

found 361.1.
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(Z)-3-(4-Methoxyphenyl)-3-(2-phenylpyridin-4-yl)acrylonitrile
MeO

Z~ “CN

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 030 mmol), 3-(4-methoxyphenyl)propiolonitrile (71 mg, 0.45 mmol),
trifluoromethanesulfonic acid (27 puL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL,
0.4 M) at 80 °C for 24 hours. The crude material was purified by flash chromatography (silica gel:
20% EtOAc in hexanes) to provide the title compound as a colorless amorphous solid (50 mg, 0.16
mmol, 54% yield, Z/E = 15:1). 'H NMR (400 MHz, CDCls) §: 8.74 (d, J = 5.0 Hz, 1H), 7.99 —
7.90 (m, 2H), 7.67 (s, 1H), 7.44 —7.35 (m, 3H), 7.25 - 7.11 (m, 3H), 6.89 — 6.78 (m, 2H), 5.75 (s,
1H), 3.77 (s, 3H); '*C NMR (100 MHz, CDCl3) §: 162.09, 160.19, 158.36, 150.31, 145.96, 138.93,
129.92, 129.51, 128.96, 127.28, 122.26, 120.86, 117.55, 114.55, 94.54, 55.62. IR vmax/cm’! (film):
3051,2213, 1599, 1541, 1511, 1462, 1444, 1422, 1398, 1357, 1299, 1250, 1180, 1152, 1118, 1074,
1028, 894, 843, 818, 775, 733, 695. m/z LRMS (ESI + APCI): [M+H]" calculated for C21H7N2O*

=313.1, found 313.2.
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(Z)-3-(4-Aminophenyl)-3-(2-phenylpyridin-4-yl)acrylonitrile
HoN

2 “CN

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 0.30 mmol), 3-(4-aminophenyl)propiolonitrile (64 mg, 0.45 mmol), trifluoromethanesulfonic
acid (27 pL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 100 °C for 48
hours. The crude material was purified by flash chromatography (silica gel: 40% EtOAc in
hexanes) to provide the title compound as an orange amorphous solid (44 mg, 0.15 mmol, 50%
yield, Z/E = 1.3:1). 'TH NMR (400 MHz, CDCls) §: 8.81 (d, J = 6.0 Hz, 1H), 8.04 —7.98 (m, 2H),
7.74 (s, 1H), 7.48 (td, J = 7.1, 1.8 Hz, 3H), 7.38 — 7.30 (m, 1H), 7.15 —7.08 (m, 2H), 6.67 — 6.59
(m, 2H), 5.77 (s, 1H); '3C NMR (100 MHz, CDCl;3) §: 160.41, 158.20, 150.16, 146.34, 138.98,
129.88, 129.43, 128.93, 127.27, 126.51, 122.40, 120.99, 118.05, 114.72, 92.22. IR vmax/cm’
(film): 3370, 3217, 3046, 2207, 1623, 1595, 1540, 1516, 1473, 1444, 1397, 1357, 1307, 1259,
1230, 1179, 1154, 1074, 1027, 990, 894, 833, 811, 775, 732, 695, 658. m/z LRMS (ESI + APCI):

[M+H]* calculated for Co0HisN3* = 298.1, found 298.2.
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(Z2)-4-(2-Cyano-1-(2-phenylpyridin-4-yl)vinyl)benzonitrile

NC

~~ “CN

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 0.30 mmol), 4-(cyanoethynyl)benzonitrile (69 mg, 0.45 mmol), trifluoromethanesulfonic acid
(27 pL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 24 hours.
The crude material was purified by flash chromatography (silica gel: 30% EtOAc in hexanes) to
provide the title compound as a white amorphous solid (79 mg, 0.26 mmol, 86% yield). '"H NMR
(400 MHz, CDCl3) 6: 8.84 (d, J =5.0 Hz, 1H), 7.99 (dd, J = 8.1, 1.8 Hz, 2H), 7.77 — 7.63 (m, 3H),
7.52 —7.34 (m, 5H), 7.21 (dd, J = 5.0, 1.9 Hz, 1H), 5.97 (s, 1H); '*C NMR (100 MHz, CDCls) &:
158.76, 158.68, 150.65, 144.34, 141.45, 138.52, 132.87, 129.77, 129.03, 128.93, 127.23, 121.75,
120.38, 117.89, 116.27, 114.68, 99.84. IR vmax/cm™ (film): 3042, 2230, 2216, 1595, 1539, 1503,
1477, 1445, 1399, 1344, 1273, 1225, 1180, 1151, 1115, 1074, 1020, 990, 909, 898, 856, 840, 824,
778, 760, 746, 736, 722, 698. m/z LRMS (ESI + APCI): [M+H]" calculated for C21H14N3* = 308.1,

found 308.2.
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(Z)-3-(4-(tert-Butyl)phenyl)-3-(2-phenylpyridin-4-yl)acrylonitrile

Bu

Z~ “CN

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 0.30 mmol), 3-(4-(tert-butyl)phenyl)propiolonitrile (82 mg, 045 mmol),
trifluoromethanesulfonic acid (27 puL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL,
0.4 M) at 80 °C for 24 hours. The crude material was purified by flash chromatography (silica gel:
10% EtOAc in hexanes) to provide the title compound as a white solid (55 mg, 0.16 mmol, 54%
yield). mp 124-126 °C; 'H NMR (400 MHz, CDCl3) §: 8.74 (d, J = 5.1 Hz, 1H), 7.93 (d, /= 7.0
Hz, 2H), 7.69 (s, 1H), 7.44 — 7.30 (m, 5H), 7.22 — 7.12 (m, 3H), 5.82 (s, 1H), 1.26 (s, 9H); 1°C
NMR (100 MHz, CDCl3) §: 160.60, 158.38, 154.90, 150.30, 145.81, 138.95, 134.29, 129.51,
128.97, 128.08, 127.32, 126.15, 122.25, 120.82, 117.36, 95.95, 35.07, 31.24. IR vmax/cm’’ (film):
2964,2922, 2853, 2211, 1600, 1587, 1542, 1508, 1475, 1443, 1409, 1389, 1363, 1269, 1203, 1159,
1127, 1110, 1073, 1024, 1014, 972, 921, 886, 853, 820, 776, 743, 713, 697, 674. m/z LRMS (ESI

+ APCI): [M+H]* calculated for C24H23N>" = 339.2, found 339.2.
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3-(4-(Trifluoromethyl)phenyl)propiolonitrile
FaC

Z “CN

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 0.30 mmol), 3-(4-(trifluoromethyl)phenyl)propiolonitrile (88 mg, 0.45 mmol),
trifluoromethanesulfonic acid (27 puL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL,
0.4 M) at 80 °C for 24 hours. The crude material was purified by flash chromatography (silica gel:
15% EtOAc in hexanes) to provide the title compound as a colorless amorphous solid (87 mg, 0.25
mmol, 83% yield). '"H NMR (400 MHz, CDCI;3) &: 8.84 (dd, J = 5.1, 0.9 Hz, 1H), 8.05 — 7.93 (m,
2H), 7.76 (dd, J = 1.8, 1.0 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.54 — 7.39 (m, 5H), 7.24 (dd, J =
5.1, 1.7 Hz, 1H), 5.97 (s, 1H); '*C NMR (100 MHz, CDCls) &: 159.25, 158.73, 150.60, 144.77,
140.78 (d, J = 1.8 Hz), 138.66, 132.85 (q, J = 33.1 Hz), 129.72, 129.04, 128.76, 127.28, 126.19
(q,J=4.0Hz), 123.68 (q, J = 272.7 Hz), 121.90, 120.52, 116.51,99.11. IR vmax/cm™" (film): 3053,
2219, 1594, 1542, 1474, 1446, 1412, 1323, 1265, 1170, 1128, 1069, 1016, 895, 855, 826, 777,

733, 697. m/z LRMS (ESI + APCI): [M+H]"* calculated for C21H14F3N>" = 351.1, found 351.2.
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(Z2)-3-(3,5-Dimethoxyphenyl)-3-(2-phenylpyridin-4-yl)acrylonitrile

OMe

MeO Z CN

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 0.30 mmol), 3-(3,5-dimethoxyphenyl)propiolonitrile (84 mg, 0.45 mmol),
trifluoromethanesulfonic acid (27 puL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL,
0.4 M) at 100 °C for 24 hours. The crude material was purified by flash chromatography (silica
gel: 20% EtOAc in hexanes) to provide the title compound as a yellow amorphous solid (86 mg,
0.25 mmol, 84% yield, Z/E = 7:1). '"H NMR (400 MHz, CDCls) &: 8.81 (d, J = 5.0 Hz, 1H), 8.08
—7.98 (m, 2H), 7.78 (s, 1H), 7.53 — 7.43 (m, 3H), 7.26 (dd, J = 5.0, 2.0 Hz, 1H), 6.56 (t, J = 2.3
Hz, 1H), 6.42 (d, J = 2.3 Hz, 2H), 5.90 (s, 1H), 3.77 (s, 6H); '*C NMR (100 MHz, CDCls) &:
161.16, 160.68, 158.33, 150.25, 145.41, 139.30, 138.83, 129.52, 128.95, 127.26, 122.10, 120.70,
117.01, 106.75, 102.54, 97.38, 55.65. IR vmax/cm’ (film): 2937, 2839, 2214, 1583, 1541, 1454,
1424, 1399, 1353, 1319, 1298, 1266, 1204, 1156, 1064, 1030, 989, 927, 894, 837, 776, 759, 736,

719, 694. m/z LRMS (ESI + APCI): [M+H]" calculated for C22H19N20>" = 343.1, found 343.2.
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(Z2)-3-(4,4-Dimethylthiochroman-6-yl)-3-(2-phenylpyridin-4-yl)acrylonitrile

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 0.30 mmol), 3-(4,4-dimethylthiochroman-6-yl)propiolonitrile (102 mg, 0.45 mmol),
trifluoromethanesulfonic acid (27 puL, 0.30 mmol), H>O (54 uL, 3.00 mmol), and EtOH (0.75 mL,
0.4 M) at 100 °C for 24 hours. The crude material was purified by flash chromatography (silica
gel: 15% EtOAc in hexanes) to provide the title compound as a yellow amorphous solid (91 mg,
0.24 mmol, 79% yield, Z/E = 10:1). '"H NMR (400 MHz, CDCI3) &: 8.82 (d, J = 5.0 Hz, 1H), 8.02
(d, J=8.1 Hz, 2H), 7.78 (s, 1H), 7.56 — 7.44 (m, 3H), 7.37 — 7.24 (m, 2H), 7.11 (d, J = 8.3 Hz,
1H), 6.97 (d, J = 8.3, 2.9 Hz, 1H), 5.86 (s, 1H), 3.20 — 3.01 (m, 2H), 2.08 — 1.90 (m, 2H), 1.28 (s,
6H); °*C NMR (100 MHz, CDCls) &: 160.45, 158.30, 150.23, 145.70, 142.63, 138.85, 137.20,
132.71, 129.50, 128.94, 127.23, 127.12, 126.15, 125.70, 122.25, 120.84, 117.50, 94.89, 37.04,
33.19, 30.02, 23.28. IR vmax/cm™ (film): 3050, 2960, 2210, 1593, 1579, 1541, 1472, 1445, 1389,
1364, 1347, 1307, 1248, 1180, 1154, 1117, 1055, 988, 892, 848, 810, 775, 721, 694. m/z LRMS

(ESI + APCI): [M+H]* calculated for C2sH23N2>S* = 383.2, found 383.2.
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(Z)-3-(2-Phenylpyridin-4-yl)-3-(thiophen-3-yl)acrylonitrile

—~——
S
_—
Z “CN

X

—
N Ph

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 0.30 mmol), 3-(thiophen-3-yl)propiolonitrile (60 mg, 0.45 mmol), trifluoromethanesulfonic
acid (27 pL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 24
hours. The crude material was purified by flash chromatography (silica gel: 15% EtOAc in
hexanes) to provide the title compound as a colorless amorphous solid (67 mg, 0.23 mmol, 77%
yield, Z/E = X:X). 'H NMR (400 MHz, CDCI3) &: 8.83 (dd, J = 5.0, 1.0 Hz, 1H), 8.05 — 7.99 (m,
2H),7.78 (dd, J=1.7, 1.0 Hz, 1H), 7.53 — 7.40 (m, 4H), 7.30 (dd, /= 5.0, 1.7 Hz, 1H), 7.26 — 7.20
(m, 2H), 5.90 (s, 1H); '3C NMR (100 MHz, CDCl3) §: 158.39, 154.54, 150.35, 145.54, 138.87,
138.81, 129.56, 128.97, 128.92, 127.89, 127.25, 125.59, 121.78, 120.35, 117.11, 95.33. IR
oma/em’! (film): 3050, 2213, 1586, 1541, 1474, 1445, 1418, 1385, 1332, 1265, 1147, 1073, 1029,
088, 893, 849, 824, 787, 778, 733, 719, 693. m/z LRMS (ESI + APCI): [M+H]" calculated for

Ci1gH13N2S* = 289.1, found 289.1.
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(Z)-3-(Cyclohex-1-en-1-yl)-3-(2-phenylpyridin-4-yl)acrylonitrile

Z~~ “CN

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 030 mmol), 3-(cyclohex-l-en-1-yl)propiolonitrile (59 mg, 0.45 mmol),
trifluoromethanesulfonic acid (27 pL, 0.30 mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL,
0.4 M) at 100 °C for 48 hours. The crude material was purified by flash chromatography (silica
gel: 10% EtOAc in hexanes) to provide the title compound as a white solid (17 mg, 0.06 mmol,
20% yield, Z/E = 17:1). mp 115-116 °C; '"H NMR (400 MHz, CDCls) §: 8.76 (d, J = 5.0 Hz, 1H),
8.05—-7.97 (m, 2H), 7.59 (d, J = 1.2 Hz, 1H), 7.54 — 7.38 (m, 3H), 7.12 (dd, J = 5.0, 1.6 Hz, 1H),
5.84 (t,J=4.3 Hz, 1H), 5.48 (s, 1H), 2.27 (ddt, J = 6.3, 4.2, 1.9 Hz, 2H), 2.17 (h, J = 4.0 Hz, 2H),
1.85—1.74 (m, 2H), 1.67 — 1.56 (m, 2H); '3C NMR (100 MHz, CDCls) 8: 161.57, 157.97, 149.95,
146.01, 139.73, 139.03, 135.39, 129.42, 128.93, 127.26, 122.25, 120.76, 117.59, 93.49, 26.69,
25.39, 22.36, 21.52. IR vmax/cm™ (film): 3047, 2922, 2210, 1680, 1615, 1599, 1570, 1538, 1474,
1444, 1423, 1403, 1383, 1331, 1274, 1247, 1223, 1138, 1080, 1028, 990, 930, 914, 852, 842, 813,
797,715, 743,727,710, 695. m/z LRMS (ESI + APCI): [M+H]* calculated for C2oH19N2" =287.2,

found 287.2.
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(Z2)-3-(2-(3-((6,7-Dihydrothieno[3,2-c]pyridin-5(4H)-yl)methyl)-4-fluorophenyl)pyridin-4-

yl)-3-phenylacrylonitrile

Ph
~ “CN

z

(]

S
Prepared according to general procedure E using 5-(5-(4-(diphenylphosphaneyl)pyridin-2-yl)-2-
fluorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine (153 mg, 0.30 mmol), 3-
phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid (27 pL, 0.30 mmol), H>O
(54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 48 hours. The crude material was
purified by flash chromatography (silica gel: 30% EtOAc in hexanes) to provide the title
compound as a green amorphous solid (54 mg, 0.12 mmol, 40% yield). 'H NMR (400 MHz,
CDClI3) 6 8.71 (d, J = 5.0 Hz, 1H), 8.03 (d, J/ = 4.4 Hz, 1H), 7.85 (tt, J = 5.0, 2.5 Hz, 1H), 7.65 (s,
1H), 7.36 (dt, J =28.3, 7.4 Hz, 3H), 7.27 —7.12 (m, 3H), 7.08 (t, /= 9.0 Hz, 1H), 6.97 (d, /= 5.1
Hz, 1H), 6.62 (d, J = 5.1 Hz, 1H), 5.83 (s, 1H), 3.78 (s, 2H), 3.58 (s, 2H), 2.81 (s, 4H); '*C NMR
(100 MHz, CDCls) 6: 163.74, 161.25, 160.67, 157.40, 150.33, 145.70, 137.21, 135.06 (d, J=3.3
Hz),133.43,131.17,130.55 (d, J=4.7 Hz), 129.17, 128.30, 128.11 (d, J = 8.7 Hz), 125.38, 122.80,
122.10, 120.48, 117.08, 116.10, 115.87, 97.00, 54.55, 52.96, 50.55, 25.51; '’F NMR (376 MHz,
CDCl3) &: -116.98. IR vmax/cm™ (film): 3057, 2920, 2214, 1595, 1541, 1501, 1469, 1446, 1409,
1432, 1382, 1356, 1248, 1226, 1169, 1112, 1098, 1079, 1051, 1015, 982, 903, 826, 784, 761, 726,

694, 667. m/z LRMS (ESI + APCI): [M+H]" calculated for C2sH23FN3S* = 452.2, found 452.3.
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Ethyl (Z)-4-((4-chlorophenyl)(4-(2-cyano-1-phenylvinyl)pyridin-2-yl)methoxy)piperidine-1-

carboxylate

Ph
Z~ “CN

Cl

O\G
N
~CO,Et

Prepared according to general procedure E using ethyl 4-((4-chlorophenyl)(4-
(diphenylphosphaneyl)pyridin-2-yl)methoxy)piperidine-1-carboxylate (168 mg, 0.30 mmol), 3-
phenylpropiolonitrile (57 mg, 0.45 mmol), trifluoromethanesulfonic acid (27 pL, 0.30 mmol), H2O
(54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 24 hours. The crude material was
purified by flash chromatography (silica gel: 50% EtOAc in hexanes) to provide the title
compound as an amber amorphous solid (100 mg, 0.20 mmol, 52% "H NMR yield with 14% of an
unknown impurity). IR vma/cm™ (film): 3057, 2922, 2214, 1688, 1594, 1542, 1501, 1469, 1446,
1432, 1408, 1382, 1356, 1227, 1170, 1113, 1079, 1051, 1014, 1000, 904, 827, 783, 761, 726, 694.

m/z LRMS (ESI + APCI): [M+H]" calculated for C20H29oCIN3O3* = 502.2, found 502.2.
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(Z)-3-(2-phenylpyridin-4-yl)dec-2-enenitrile

Me
Z “CN

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (170
mg, 0.50 mmol), dec-2-ynenitrile (112 mg, 0.75 mmol), trifluoromethanesulfonic acid (44 uL, 0.50
mmol), H>2O (90 uL, 5.00 mmol), and EtOH (1.25 mL, 0.4 M) at 100 °C for 48 hours. The crude
material was purified by flash chromatography (silica gel: 1% MeOH in CH>Cl) to provide the
title compound as a colorless oil (31 mg, 0.10 mmol, 20% yield, Z/E = 10:1). '"H NMR (400 MHz,
CDCl) o: 8.78 (d, J = 5.1 Hz, 1H), 8.01 (d, J = 7.3 Hz, 2H), 7.75 (s, 1H), 7.48 (dt, J = 14.5, 6.9
Hz, 3H), 7.24 (d, J = 3.1 Hz, 1H), 5.51 (s, 1H), 2.60 (t, J = 7.5 Hz, 2H), 1.43 (p, J = 7.2 Hz, 2H),
1.37 — 1.16 (m, 8H), 0.86 (t, J = 6.9 Hz, 3H); 1*C NMR (100 MHz, CDCl3) &: 163.74, 158.39,
150.28, 146.05, 138.90, 129.40, 128.87, 127.18, 119.95, 118.80, 116.63, 97.46, 37.59, 31.62,
28.92, 28.87, 27.45, 22.56, 14.03. IR vmax/cm™ (film): 2926, 2855, 2218, 1594, 1580, 1540, 1467,
1445, 1401, 1271, 1228, 1180, 1114, 1074, 1027, 989, 892, 845, 775, 740, 722, 694. m/z LRMS

(ESI + APCI): [M+H]* calculated for C21H25N>* = 305.2, found 305.3.
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3-(diphenylphosphoryl)-3-(2-phenylpyridin-4-yl)decanenitrile

Il
PPh,
CN

Me

\

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (170
mg, 0.50 mmol), dec-2-ynenitrile (112 mg, 0.75 mmol), trifluoromethanesulfonic acid (44 pL, 0.50
mmol), H>O (90 uL, 5.00 mmol), and EtOH (1.25 mL, 0.4 M) at 100 °C for 48 hours. The crude
material was purified by flash chromatography (silica gel: 1% MeOH in CH>Cl) to provide the
title compound as a colorless oil (48 mg, 0.10 mmol, 20% yield). IR vmax/cm™! (film): 3055, 2928,
2856, 1593, 1545, 1467, 1438, 1395, 1265, 1184, 1109, 1074, 1027, 997, 908, 847,775, 731, 694.

m/z LRMS (ESI + APCI): [M+H]" calculated for C33H3sN2OP* = 507.3, found 507.4.

Ethyl 3-(diphenylphosphoryl)-3-(2-phenylpyridin-4-yl)propanoate

Ph,P
CO,Et

\

Prepared according to general procedure E using 4-(diphenylphosphaneyl)-2-phenylpyridine (102
mg, 0.30 mmol), ethyl propiolate (46 puL, 0.45 mmol), trifluoromethanesulfonic acid (27 pL, 0.30

mmol), H>O (54 pL, 3.00 mmol), and EtOH (0.75 mL, 0.4 M) at 80 °C for 24 hours. The crude
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material was purified by flash chromatography (silica gel: 2% MeOH in CH2Cl,) to provide the
title compound as a pale-yellow solid (77 mg, 0.17 mmol, 56% yield). mp 130-132 °C; '"H NMR
(400 MHz, CDCls) &: 8.48 (d, J =5.1 Hz, 1H), 8.05 - 7.91 (m, 2H), 7.83 (d, J = 6.8 Hz, 2H), 7.67
—7.48 (m, 6H), 7.48 —7.33 (m, 4H), 7.29 (td, J = 9.3, 8.5, 3.9 Hz, 2H), 7.15 (d, J = 4.9 Hz, 1H),
4.13 (ddd, J =11.3,7.9, 3.4 Hz, 1H), 3.93 (q,J = 7.1 Hz, 2H), 3.15 (ddd, J = 17.1, 11.2, 6.0 Hz,
1H), 2.92 (ddd, J = 16.8, 9.3, 3.4 Hz, 1H), 1.04 (t, J = 7.1 Hz, 3H); *C NMR (100 MHz, CDCI3)
0: 170.99 (d, J =16.5 Hz), 157.42 (d, ] = 1.7 Hz), 149.56, 145.56 (d, J = 5.0 Hz), 139.11, 132.51
(d, J =2.8 Hz), 132.10 (d, J = 2.8 Hz), 131.46 (d, J = 8.6 Hz), 131.25, 131.08 (d, J = 8.8 Hz),
131.06, 130.17 (d, J = 14.9 Hz), 129.20 (d, J = 11.6 Hz), 129.12, 128.75, 128.55 (d, J = 11.9 Hz),
127.09, 123.22 (d, ] =5.0 Hz), 121.88 (d, J = 5.1 Hz), 61.21, 43.04 (d, J = 65.6 Hz), 34.32, 14.06.
IR vma/em™ (film): 2983, 1726, 1594, 1554, 1474, 1437, 1407, 1371, 1346, 1319, 1297, 1221,
1198, 1184, 1172, 1143, 1119, 1101, 1073, 1050, 1031, 1016, 907, 896, 850, 838, 793, 775, 762,
742,725,709, 693. m/z LRMS (ESI + APCI): [M+H]* calculated for C2sH27NO3P* = 456.2, found

456.2.
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A2.6 Experimental Spectra
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APPENDIX THREE

A DISTINCT NUCLEOPHILE DELIVERY SYSTEM FOR PYRIDONE AND
AMINOPYRIDINE SYNTHESIS VIA PHOSPHORUS LIGAND- COUPLING:
EXPERIMENTAL

A3.1 General Methods and Materials

Proton nuclear magnetic resonance ('H NMR) spectra were recorded at ambient
temperature on a Varian 400 MR spectrometer (400 MHz), an Agilent Inova 400 (400 MHz)
spectrometer, an Agilent Inova 500 (500 MHz) spectrometer, or a Bruker AV-111 400 (400 MHz)
spectrometer. Chemical shifts (8) are reported in ppm and quoted to the nearest 0.1 ppm relative
to the residual protons in CDCl3 (7.26 ppm), CD3OD (3.31 ppm) or (CD3)2SO (2.05 ppm) and
coupling constants (J) are quoted in Hertz (Hz). Data are reported as follows: Chemical shift
(multiplicity, coupling constants, number of protons). Coupling constants were quoted to the
nearest 0.1 Hz and multiplicity reported according to the following convention: s = singlet, d =
doublet, t = triplet, q = quartet, qn = quintet, sext = sextet, sp = septet, m = multiplet, br = broad.
Where coincident coupling constants have been observed, the apparent (app) multiplicity of the
proton resonance has been reported. Carbon nuclear magnetic resonance (!*C NMR) spectra were
recorded at ambient temperature on a Varian 400 MR spectrometer (100 MHz), an Agilent Inova
400 (100 MHz) spectrometer, an Agilent Inova 500 spectrometer (125 MHz) or a Bruker AV-111
400 (100 MHz) spectrometer. Chemical shift (6) was measured in ppm and quoted to the nearest
0.01 ppm relative to the residual solvent peaks in CDCl3 (77.16 ppm), (CD3)2SO (39.51 ppm),
CD3s0D (49.00 ppm) or CD3CN (1.32 ppm).

Low-resolution mass spectra (LRMS) were measured on an Agilent 6310 Quadrupole Mass

Spectrometer. High-resolution mass spectra (HRMS) were measured on an Agilent 6224 TOF
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LC/MS (“OTOF”) interfaced to an Agilent 1200 HPLC with multi-mode (combined ESI and
APCI) and Direct Analysis in Real Time (DART) sources. (IR) spectra were recorded on a Nicolet
IS-50 FT-IR spectrometer as either solids or neat films, either through direct application or
deposited in CHCI3, with absorptions reported in wavenumbers (cm-1 ). Analytical thin layer
chromatography (TLC) was performed using pre-coated Silicycle glass backed silica gel plates
(Silicagel 60 F254). Flash column chromatography was undertaken on Silicycle silica gel
Siliaflash P60 40-63 um (230-400 mesh) under a positive pressure of air unless otherwise stated.
Visualization was achieved using ultraviolet light (254 nm) and chemical staining with ceric
ammonium molybdate or basic potassium permanganate solutions as appropriate. Melting points
(mp) were recorded using a Biichi B-450 melting point apparatus and are reported uncorrected.
Tetrahydrofuran (THF), toluene, hexane, diethyl ether and dichloromethane were dried and
distilled using standard methods.! Methanol, 1,2-dichloroethane (DCE), 1,4-dioxane, ethyl acetate,
chloroform, and acetone were purchased anhydrous from Sigma Aldrich chemical company. All
reagents were purchased at the highest commercial quality and used without further purification.
Reactions were carried out under an atmosphere of nitrogen unless otherwise stated. All reactions
were monitored by TLC, "H NMR spectra taken from reaction samples, and liquid chromatography
mass spectrometry (LCMS) using an Agilent 6310 Quadrupole Mass Spectrometer for MS
analysis. TH2O (99%) was purchased from Oakwood Chemical and used without further
purification but was routinely stored in a —20 °C fridge. DBU was distilled before use. 200 proof
ethanol was purchased from PHARMCO-AAPER and used without further purification. HCI (4.0
M in dioxanes) and trifluoromethanesulfonic acid (98%) were purchased from Sigma Aldrich
chemical company and used without further purification but were routinely stored in a —20 °C

fridge.
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A3.2 Hydroxylation of Heterocycles

General Procedure A

H PPh, OMe o]
Tf,0; DBU TsOH, H,0
TN OMe > == .
RT CH,Clp, 78 °C to rt EtOH, 60 °C, 24 h R |
N sequential addition H

An oven dried 8 mL vial equipped with a stir bar was charged with the heterocycle (1.0
equiv) and (2-(dimethoxymethyl)phenyl)diphenylphosphane (1.1 equiv) and placed under a
nitrogen atmosphere (vacuum/nitrogen backfill, 3 cycles). CH2Clz (0.1 M) was added, the reaction
vessel cooled to —78 °C and Tf20 (1.0 equiv) was added dropwise over 5 minutes. The reaction
was stirred for 30 minutes before DBU (1.0 equiv) was added dropwise via syringe, the cooling
bath was removed, and the reaction was warmed to room temperature while stirring
(approximately 5 minutes). Then, the reaction mixture was concentrated in vacuo and EtOH (0.4
M), TsOH (1.0 equiv), and H20O (10 equiv) were added sequentially. The mixture was heated to 60
°C and stirred for 24 hours. To the crude reaction was added triphenylmethane (1.0 equiv) as an
internal standard, and a 0.1 mL aliquot of the reaction was diluted to 0.7 mL with CDCl3 for 'H
NMR analysis.

A3.2 Amination of Heterocycles

H NH
PPh, OMe 1. TsOH (1.0 equiv.) 2
Tf,0; DBU acetone, 60°C, 1h
1 N OMe == —> 1 AN
R CH,Cl,, -78 °Ctort 2. NH,OAc (1.1 equiv.) R
 z . y 60 °C, 24h Lz
N sequential addition N

An oven dried 8 mL vial equipped with a stir bar was charged with the heterocycle (1.0
equiv) and (2-(dimethoxymethyl)phenyl)diphenylphosphane (1.1 equiv) and placed under a
nitrogen atmosphere (vacuum/nitrogen backfill, 3 cycles). CH2Cl» (0.1 M) was added, the reaction

vessel cooled to —78 °C and Tf20 (1.0 equiv) was added dropwise over 5 minutes. The reaction
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was stirred for 30 minutes before DBU (1.0 equiv) was added dropwise via syringe, the cooling
bath was removed, and the reaction was warmed to room temperature while stirring
(approximately 5 minutes). Then, the reaction mixture was concentrated in vacuo and acetone (0.4
M) and TsOH (1.0 equiv) were added sequentially. The mixture was heated to 60 °C and stirred
for 1 hour, then NH4OAc (1 equiv) was added followed by heating at 60 °C for 24 h. To the crude
reaction was added triphenylmethane (1.0 equiv) as an internal standard, and a 0.1 mL aliquot of

the reaction was diluted to 0.7 mL with CDCI; for 'H NMR analysis.
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