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ABSTRACT 
 
 
 

BREEDING HARD WINTER WHEAT (Triticum aestivum L.) FOR HIGH GRAIN YIELD 

AND HIGH GRAIN PROTEIN CONCENTRATION  

 
 

High grain yield (GY) is the primary selection target in commercial hard winter wheat (Triticum 

aestivum L.) breeding programs, with milling and bread-making quality as important secondary 

selection targets.  Grain protein concentration (GPRO) is strongly correlated with important 

dough rheology and bread-making characteristics.  Simultaneous improvement is difficult given 

the strong negative relationship of GY and GPRO in cereal crops.  Nitrogen use efficiency 

(NUE), defined as the amount of grain produced per unit of N supply, promotes high GY through 

the component traits N uptake (NUpE) and N utilization (NUtE) efficiencies.  Grain protein 

accumulation relies on N uptake from the soil and remobilization from plant tissue reserves.  One 

study was conducted to characterize variation for NUE among a set of 20 breeding lines and 

varieties adapted to the west central Great Plains of the United States.  Path analysis was applied 

to characterize the NUE component structure during the 2010-2011 growing season and then for 

two newly released varieties in the 2011-2012 growing season.  Nitrogen use efficiency ranged 

from 39.9 kg kg-1 for 'RonL' to 46.7 kg kg-1 for 'Byrd'.  By path analysis, we determined that 

variation in NUE depended on NUpE under N sufficiency and on NUtE under limiting N.  

Additionally, strategies for simultaneous improvement of GY and GPRO were explored.  

Analysis of standardized residuals of the linear regression of GPRO on GY, or ‘grain protein 

deviation’, identified one cultivar (‘Brawl CL Plus’) that had 6.7 g kg-1 higher GPRO than the 

average for all 20 genotypes.    In a second study, selection strategies based on protein-yield 
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selection indices for a set of 775 breeding lines and varieties representing the Colorado State 

University hard winter wheat breeding program were evaluated based on field data obtained 

during the 2012-2015 growing seasons. Selection based on high values for a particular index 

delivered a characteristic emphasis on GY or GPRO.   Correlation analysis between index values 

and GY or GPRO showed that each simultaneous selection strategy focused to differing extents 

on the primary traits.  Genomic selection applied to index values in univariate models provided 

forward prediction accuracy ranging between r = .21 to .44 for the 2013 validation set, but 

approached zero for the 2014 validation set. Index values were also calculated from genomic 

estimated breeding values obtained in bivariate genomic selection models.  Prediction accuracy 

for individual trait values was not substantially improved in the bivariate model.  Protein-yield 

indices calculated from bivariate genomic estimated breeding values showed similar 

relationships to GY and GPRO as for the genomic estimated breeding values for indices 

calculated in the univariate models.  A set of selection strategies generate sufficient predictive 

ability in phenotypic or genomic selection to be effective tools for simultaneous selection for GY 

and GPRO.   
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CHAPTER 1 

 
 
 

LITERATURE REVIEW 
 
 
 

Introduction 

 
 
 

Human global population is projected to reach 9.8 billion people by the year 2050, with 

most growth occurring in Asia and Africa (UNDESA, 2017).  The global population is projected 

to be wealthier and thus demand more calories from animal products.  With a basis of the 2010 

agronomic practices and crop yields, that demand will create a food supply gap equivalent to 

56% more crop calories, will require 593 million ha of additional agricultural land area, and will 

emit 11 Gt more greenhouse gases (Searchinger et al., 2019).  Given these projections, the 

equivalent food demand of the 2050 human population will be that of 12.5 billion at current 

consumption levels (Baenziger et al., 2017).  The three major cereal crops, rice (Oryza sativa), 

wheat (Triticum aestivum L.) and maize (Zea mays L.), provide 44.8% of the calories required 

for global populations (FAO, 2019).   

The grand challenge for food security in the 20th century was the ‘War on Hunger’ which 

was fought with considerable success by developing and distributing improved cereal grain 

varieties to food insecure nations and by promoting modern agronomic practices to double or 

triple global food production during the ‘Green Revolution’ (Wharton, 1969). Concomitantly, 

there was a reduction of hunger from levels estimated at 50% of the global population in 1968 

(Tillman, 1968) to 29% during 1979-1981 and to 18% during 1995-1997 (Donmez et al., 2001; 

FAO, 2004; Pingali, 2012). This achievement came through improved agronomic practices such 
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as nitrogen (N) fertilizer application and the distribution of new cereal grain varieties bred for N 

responsiveness for yield coupled with reduced height to prevent lodging (Donmez et al., 2001; 

Reitz & Salmon, 1968).  High N input production systems push productivity of varieties with 

high yield potential (Graybosch et al., 2014; Lollato & Edwards, 2015), but this comes with risk 

of environmental degradation through N escape (Cameron et al., 2013).  New priorities for the 

21st century push food quality for human nutrition as a key part of food security (Baenziger et al., 

2017).   

Climate change mitigation efforts within the agricultural sector are needed as we strive to 

meet the caloric needs of a growing population.  Nitrous oxide (NO2) is a potent greenhouse gas 

with 8% of all US emissions attributed to fertilized agricultural fields (Millar et al., 2014).  The 

future production goals for the wheat crop must be achieved without increasing emissions of 

greenhouse gases in the cropping system. While increased atmospheric carbon dioxide (CO2) 

levels have been observed to increase cereal grain yield potential through increased 

photosynthetic rates and carbon translocation to the grain (Tester & Langridge, 2010), climate 

change also brings production risk through more frequent climate extremes which disrupt crop 

productivity (Liu et al., 2016; Reynolds et al., 2016).  Global climate change is already changing 

production patterns of the top 10 food crops, with some regions showing marked declines, while 

others have increased productivity (Ray et al., 2019).   

The grand challenge plant breeders face today is to develop new crop varieties which 

meet the 2050 production and food quality requirements, while targeting future production 

environments.  Predictions of future production environments include factors such as current 

climate change mitigation efforts and continuing trends towards loss of arable crop land 

(Davidson et al., 2015; Reynolds et al., 2016; Tester & Langridge, 2010).  Globally, wheat is 
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second only to rice for its contribution to daily calories (16% in the developing world and 26% in 

developed nations) and demand is projected to increase from 760 million tonnes in 2020 to 900 

million tonnes in 2050 (Dixon et al., 2009).  Wheat is a global trade commodity, with 150 

million tonnes traded on an annual basis (Shewry & Hey, 2015).  U.S. growers contributed 7.7% 

on average to global wheat production and 16.9% of the export market from 2010-2019 (USDA-

ERS, 2019). 

Nitrogen Use Efficiency 
 
 
 

The ‘Green Revolution’ cereal grain production system coupled increased N fertilizer use 

with wide distribution of N responsive, lodging resistant short-statured varieties to meet food, 

feed, and fuel needs of the modern era.  Nitrogen is an essential macronutrient for crop 

production, with a cost and revenue balance that encourages some producers in the developed 

world to apply it in excess, to insure against lost opportunities for optimal yields. On the other 

hand, in developing countries, or in other low-input production environments, N fertilizer may be 

the highest grower input cost, which may discourage optimal N fertilization for producing a 

quality crop (Tester & Langridge, 2010).  Nitrogen losses from agroecosystems occur through N 

volatilization from the soil, biological denitrification, release of greenhouse gas forms of N 

oxides, nitrate leaching into water, and ammonia loss from plant leaves through photorespiration 

(Omara et al., 2019).  Such losses reduce profitability and carry societal costs due to 

environmental degradation.  Nitrogen use efficiency (NUE) is calculated as a ratio of either N 

harvested in the grain (GNY) or grain yield (GY) per unit of N supply (Ns) (Van Sanford & 

MacKown, 1986).  Calculated values may account for soil residual N and other environmental 

inputs.  When calculated as fertilizer recovery efficiency (GNY/Ns; (Hawkesford & Griffiths, 
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2019), where GNY is adjusted for environmental N sources and the Ns is applied N fertilizer, 

global NUE during cereal grain production was estimated to be 33% (Raun & Johnson, 1999).  

Production system changes which may improve NUE include optimizing crop rotations within an 

agro-environment, placement and timing of fertilizer application, choice of N fertilizer form, 

tillage methods, optimized timing and amount of irrigation, adoption of precision fertilizer 

application methods to account for within field N variability, and planting cultivars with superior 

NUE (Raun & Johnson, 1999).   

Life cycle assessment in a wheat-to-bread supply chain was applied to assess the 

environmental impact of producing a loaf of bread in the U.K. during 2014 (Goucher et al., 

2017).  Surprisingly, 65% of the global warming potential of the loaf of bread was attributed to 

production of the wheat crop, with fertilizer accounting for 47% of the process load.  In this 

highly productive environment, the NUE, reported as the ratio of harvested N to applied N, was 

estimated to be 71%.  Commonly, the economic benefit to the grower of applying excess 

fertilizer to insure against lost yield potential is not offset by external pressures which might 

reduce application overages.  The authors propose to incentivize responsible fertilizer use by 

integrating decisions across all stakeholders, including the consumers.  An example of this sort 

of integrated policy was partially successful in resolving nitrate groundwater contamination from 

maize production in the Platte River Valley of Nebraska (Davidson et al., 2015; Ferguson, 2015).  

In this region, similar to most high production regions, rate of N fertilizer application increased 

linearly from 1955 to 1975.  At the time that groundwater contamination was recognized in the 

early 1980s, nitrate levels were 30 to 40 mg NO3-N L-1.  Mitigation policies were put in place 

and levels dropped to 10 mg NO3-N L-1 by 2015, marking a large step forward towards reduction 

of N losses within this highly productive region.  As an outcome of the integrated management 
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policy, Nebraska maize growers subsequently doubled grain yields with no significant increase 

in amount of applied N fertilizer through the adoption of grower education and incentive 

programs, improved N management practices and better hybrid varieties.  Similarly, crop yield 

improvements with stable or decreasing N fertilizer levels were reported in a number of 

European countries after environmental policy changes were initiated in the 1980s (Lassaletta et 

al., 2014). 

Recent re-analysis puts global NUE across all crops at 47% (Lassaletta et al., 2014), and 

35% for cereal grain production (GNY/Ns) (Omara et al., 2019).  In addition to an overall 

analysis, results on a country-by-country basis demonstrated trend categories for the 124 nations 

in the Lassaletta et al. (2014) study.  Several sub-Saharan nations projected to have the greatest 

population gains in the next half-century show NUE trends indicative of N mining, where a low 

input cropping system results in low yields and depletion of soil fertility.  In these N-limited 

systems, NUE approaches 100% as an effect of low N fertilization rates (Lassaletta et al., 2014).  

A group of highly productive regions, including the U.S. and Brazil, showed steady increases in 

N fertilizer use and yields until the 1980’s, followed by a different trend line with increased 

yields per unit of N input and either stable or higher NUE.  In the U.S., the trend change 

occurred at the time that fertilizer inputs were reduced and other agronomic changes continued to 

support yield improvements.  Another set of highly productive regions, including China and 

India, show a steady rate of increased N input and yield response to N, followed by a flattening 

of the response, representing decreasing NUE.  Here, the decreasing marginal yield benefit of 

additional units of N reflects excess fertilizer application.   

A single solution to the NUE puzzle will not apply across the diversity of global agro-

ecosystems.  A method to find an optimum between conflicting factors, such as agricultural 
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productivity and environmental health, is to define the ‘trade-off frontier’.  Building consensus to 

correct agricultural N imbalances may start by parameterizing a N yield response curve.  Outside 

of the frontier bounds, excess N causes environmental degradation or, within bounds, inadequate 

N fails to optimize crop production.  The "sweet spot" of sustainable policy and practice may 

emerge within agroproduction systems through this methodology (Mueller et al., 2014). 

 
Genetics of Nitrogen Use Efficiency in Wheat 

 
 

 
Nitrogen use efficiency in wheat is conditioned by physiological processes which integrate 

N absorption, translocation, assimilation, and remobilization processes with photosynthesis, carbon 

(C) assimilation and remobilization during wheat plant growth and development (Figure 1.1).  It is 

measured as the ratio of GY produced per Ns, with further consideration of component traits 

(Hawkesford & Griffiths, 2019; Moll et al., 1982).  Definitions for NUE-related traits are listed in 

Table 1.1.  During the vegetative phase of growth, N uptake by the roots and translocation to the 

growing shoots and roots is followed by assimilation via nitrate reduction and conversion into 

amino acids.  During the vegetative phase, amino acids are incorporated into proteins to build the 

plant architecture and photosynthetic complexes.  These processes determine the N uptake 

efficiency (NUpE), defined as efficiency of the accumulation of N in the shoot biomass per unit of 

Ns.  During the reproductive phase, photosynthetic and N uptake processes continue, while grain-

filling requires remobilization of assimilates to the developing seeds and senescence of vegetative 

tissues.  These processes determine the N utilization efficiency (NUtE) for GY production, 

measured as GY per unit of N accumulated in the shoot biomass.  As ratios, the component traits 

have a product relationship with the resultant trait: NUE = NUpE * NUtE. 



 
 

7 

The relative genetic contributions of NUE component traits vary by crop species, genotype, 

agronomic management and other environmental conditions (Barraclough et al., 2010; Wang et al., 

2011).  In general, two methods are applied to characterize the relative importance of component 

trait contributions to variation for NUE.  The degree of association is estimated by correlation and 

the degree of relationship by linear regression (Barraclough et al., 2010; de Oliveira Silva et al., 

2020; Gaju et al., 2011; Guttieri et al., 2017; Kubota et al., 2018; Wang et al., 2011).  An extension 

of correlation analysis was developed by Moll et al. (1982) and applies the product relationship of 

the component traits and their covariances to derive fractional contributions to variation for NUE  

(Le Gouis et al., 2000; Ortiz-Monasterio R. et al., 1997; Van Sanford & MacKown, 1986).   

Variation for NUE may be determined by variation in NUpE (An et al., 2006; Brasier et al., 

2020; Dhugga & Waines, 1989; Sadras & Lawson, 2013; Wang et al., 2011), or predominantly by 

variation in NUtE (Barraclough et al., 2010; Muurinen et al., 2006).  Breeding progress for NUE 

within individual breeding programs reflects the history of selection pressure on the component 

traits.  In a study of productivity trends for variety releases from 1958 to 2007, the rate of increase in 

N taken up by the crop (0.40 kg N ha-1 yr-1) paralleled GY trends (18 kg ha-1 yr-1), suggesting that 

breeding for GY applied indirect selection for N uptake (Sadras & Lawson, 2013).  Similarly, for 

irrigated spring wheat grown in California and Australia, cultivars differed in NUpE at non-limiting 

N levels while genetic variation for NUpE explained most of the variance for NUE (Dhugga & 

Waines, 1989; Sadras & Lawson, 2013).  Nitrogen utilization efficiency has a product relationship 

with component traits harvest index (HI) and biomass production efficiency (kg total dry weight 

(TDW) kg-1 N).  In Finland, an environment with a breeding history of selection under high N, the 

genetic variance for NUtE, through its component trait HI, determined variation in NUE within an 

historic set of spring wheat cultivars (Muurinen et al., 2006). Moll et al. (1982) suggested that at 
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moderate N rates, selection for NUE would apply selection pressure for both NUpE and NUtE.  

Consistent with this proposal, a set of Mexican spring wheat genotypes that were selected under 

moderate N application rates had both increased GY under limiting Ns and greater responsiveness 

to N fertilizer application.  The researchers reported both increased NUpE and NUtE during the 

breeding history (Ortiz-Monasterio R. et al., 1997).  These studies illustrate that it is important to 

assess the physiological basis of NUE as it relates to agronomic conditions and the genetic diversity 

of a breeding population in advance of establishing a breeding strategy. 

The extensive literature on component trait contributions in wheat encompasses a diversity 

of agroproduction systems, but typically restricts the study to a small set of genotypes relevant to a 

particular region or breeding program.  Longitudinal studies explored genetic gain for NUE in 

Europe and the Great Plains of the US.  A panel of 225 elite European winter wheat cultivars (1985-

2010 release years) was grown in a multi-environment trial (MET) under optimal and limiting Ns, 

with mean GY 7.4 Mg ha-1 (Cormier et al., 2013).  They found genetic gain for GY was not 

significantly different at limiting N levels (LN) or with optimal N levels  (HN) and was estimated to 

be 0.45% yr-1, or 33.2 kg ha-1 yr-1.  For NUE, they observed genetic gain of 0.37% yr-1 at LN and 

0.30% yr-1 at HN.  Both NUpE and NUtE were correlated with NUE, but they did not detect 

significant year effect for NUpE, possibly due to limitations of the measurement methodologies.  A 

significant year effect was detected for NUtE (0.20% yr-1), demonstrating breeding progress for this 

component trait.  In a similar study of a panel of 299 landraces, breeding lines, and cultivars (release 

dates 1874-2014), but grown in the lower yielding environment (mean GY 4.7 Mg ha-1) of the Great 

Plains of the United States. Genotype-by-year interactions were significant due to typically variant 

weather patterns between growing seasons, so data were analyzed by year (Gutierri et al, 2017).  

Separately estimated for 2012 and 2013, genetic gain during 1960-2014 for GY was 0.331 and 
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0.761% yr-1, for NUpE was 0.076 and 0.165% yr-1, and for NUtE was 0.115 and 0.367% yr-1.   

Nitrogen is remobilized from the canopy to the grain for assimilation into structural and 

storage proteins.  Selection for N responsiveness for GY can have the unintended effect of selection 

for reduced GPRO (Acreche & Slafer, 2009; Simmonds, 1995).  There are several theories proposed 

for this phenomenon.  Since GPRO can be considered to be the ratio of C to N in the grain, differing 

dynamics of remobilization result in the ‘N dilution effect’ (Desai & Bhatia, 1978).  A global meta-

analysis of previously published NUtE data was performed on 524 observations from 54 

publications, representing all major wheat growing regions (de Oliveira Silva et al., 2020).  Data 

were centered to remove environmental effects to focus on main effects of N variables.  The 

summary statistics showed normal distributions for all variables, with a wide range of values:  11 

Mg ha-1 GY, 250 kg ha-1 shoot biomass N (BMN), 57 kg GY kg-1 NUtE, and 85 g kg-1 grain protein 

concentration (GPRO).  There is a linear and negative relationship for BMN and NUtE, with 

substantial variation for NUtE at a given BMN level.  These relationships predict: 1) as GY 

improves through NUtE, GPRO will decline, and 2) variation at each BMN level may enable 

selection for varieties which deviate from the negative relationship of GPRO with GY.  These 

results differ from those reported by Cormier (2013) where, even as GY increased due to improved 

NUtE, GPRO did not decrease over the span of surveyed years due to increased NHI. 

Through spike trimming experiments, a linear negative relationship between density of 

seeds and GN was demonstrated for a given N uptake level (Acreche & Slafer, 2009).  The authors 

hypothesized that N accumulation in the grain is source limited, while carbohydrate accumulation is 

driven by sink strength.  Sink strength refers to the yield capacity, through yield components such as 

spikes per area and seeds per spike.  It has been under selection by breeding for GY and would 

result in N dilution when a finite amount of BMN is available for remobilization to ever-increasing 



 
 

10 

numbers of seeds.  The end-point of N dilution is the minimum level of GPRO needed to produce 

viable grains and the constraints of the protein requirements of the wheat market class (Gaju et al., 

2011).  Selection for greater NHI among genotypes with high NUE is a potential strategy to 

counteract N dilution. 

Grain yield drives profits for bread wheat production due to commodity pricing basis, 

with protein premiums sometimes part of the equation.  Grain protein concentration is associated 

with bread-making quality traits in wheat.  It has long been reported that for cereal grain crops, GY 

and GPRO hold a strong negative association when compared across genotypes in a population 

(Simmonds, 1995).  Proposed mechanisms to account for the negative correlation are the ‘N 

dilution effect’ (Acreche & Slafer, 2009), the C cost for N assimilation and translocation 

(Munier‐Jolain & Salon, 2005), or the ‘self-destruct’ hypothesis where C fixation and N 

assimilation and translocation processes are in physiological opposition (Barraclough et al., 

2010; Sinclair & de Wit, 1975).   

Exceptional genotypes have been reported that have higher GPRO than expected at a given 

GY level (Bogard et al., 2010; Ehdaie & Waines, 2001; Fortunato et al., 2019; Guttieri et al., 2015; 

Marinciu & Saulescu, 2009; Monaghan et al., 2001; Oury & Godin, 2007; Rapp et al., 2018; 

Thorwarth et al., 2018; Cristobal Uauy et al., 2006).  Genotypes with high grain protein deviation 

(GPD) achieve GPRO that exceeds the predicted value for a given level of GY (Monaghan et al., 

2001).  Processes linked to this trait include anthesis date (Bogard et al., 2011), N partitioning (Gaju 

et al., 2014; Papakosta & Gagianas, 1991), N assimilation dynamics (Fortunato et al., 2019), 

plasticity of biomass production under N-limitation (Rahimi Eichi et al., 2019), total biomass N 

accumulation (de Oliveira Silva et al., 2020; Desai & Bhatia, 1978), reproductive N sink strength 

(Dhugga & Waines, 1989), post-anthesis N uptake (Bogard et al., 2010) and rates of canopy 
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senescence or plant N losses (Noulas et al., 2013).  Grain protein deviation has been proposed as 

an effective breeding strategy to select genotypes with adequate GPRO for end-use quality, 

independently of GY (Monaghan et al., 2001).   

Just as HI is a measure of remobilization efficiency of photosynthate to the grain, NHI is a 

measure of the proportion of BMN that is remobilized to the grain.  These traits are strongly 

associated, but are under differential control by genetic and environmental factors (Desai & Bhatia, 

1978).  The component traits of NHI have a product relationship:  HIGN (g GN kg-1 TDW)* BPE (kg 

TDW g-1 BMN) = NHI (%).  The chloroplast-localized photosynthetic enzyme, Rubisco (ribulose 

1,5 biphosphate carboxylase oxygenase), accounts for about 50% of total plant protein and more 

than 25% of total plant N, and thus is central for N management in the plant (Hirel et al., 2007).  

Retaining N in photosynthetically active tissues promotes N utilization efficiency for GY through 

continued carbon assimilation and translocation to the grain (Barraclough et al., 2010).  The ‘self-

destruction’ hypothesis predicts that under N-limiting conditions, increased remobilization of N 

from proteins in vegetative tissues leads to declining photosynthesis, increased rate of senescence, 

and a shortened grain-filling period (Sinclair & de Wit, 1975).  Accordingly, Barraclough et al. 

(2010) emphasize that to both increase GY and maintain GPRO, NHI must increase, while 

maintaining a functional photosynthetic system. These authors suggest that accumulation and 

subsequent transfer of non-photosynthetic sources of N might explain the observed variation among 

genotypes for NHI.  However, in a subsequent study of N pools in a set of elite genotypes, N was 

remobilized efficiently from all plant tissues, suggesting that all remobilized N was in fact 

metabolic and not structural  (Barraclough et al., 2014).  Genetic variation in timing and rate of 

senescence has been reported, as reviewed in Cormier et al. (2016).  They propose that a 

‘supply/demand framework for N dynamics’ underlies the variation under N-limiting conditions.  
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Nitrogen sink demand within a grain is met by stored N pools in the stems and rachis through N 

remobilization after anthesis, but under N insufficiency, the leaf N pool is remobilized, with 

associated accelerated senescence.  Modification of the timing of senescence relative to 

remobilization processes could enhance GN while maintaining GY.  

Nitrogen remobilization from BMN accounts for 60-95% of GN (Papakosta & Gagianas, 

1991; Van Sanford & MacKown, 1986).  Post-anthesis N uptake (PANU) contributes to GNY 

(Bogard et al., 2010), although this is not significant under conditions of low soil moisture (Kubota 

et al., 2018).  Relationships of GPRO with the physiological traits, N remobilization efficiency 

(NRE) and PANU, differ among genotypes and N supply levels and have been proposed as 

selection targets for maintaining GPRO under enhanced GY (Bahrani et al., 2013; Gaju et al., 2014; 

Monaghan et al., 2001).  In some agronomic environments, PANU contributes to NUtE for GY 

(Gaju et al., 2011) and to increased GPRO (Bogard et al., 2010; Monaghan et al., 2001).  In those 

environments, PANU would be sufficient to support N translocation for GN while maintaining 

BMN for continued photosynthesis (Sinclair & de Wit, 1975).  Loss of N through volatilization of 

ammonia from the canopy occurs, is reported as a negative value for PANU, and is impacted by 

genotype and environment (Vikas Belamkar et al., 2018).  Optimizing PANU is an important 

breeding objective in environments with low frequency occurrences of drought conditions during 

the grain filling period. 

Recent decades have seen an unfolding of the research imperative to identify candidate 

genes controlling NUE in order to gain knowledge of its inheritance and genetic architecture and to 

identify genes that may be targeted for breeding (Hirel et al., 2007).  Through consideration of the 

physiological processes which determine plant growth and development (Figure 1.1), candidate 

genes were proposed and evaluated for their contribution to variation in NUE (for review, Bharati & 
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Mandal, 2020).  Candidate genes which are found to have significant positive effects may be 

introduced by breeding into elite germplasm, or may be utilized in marker-trait association analysis 

to further elucidate gene networks contributing to NUE (Nigro et al., 2019).   

An example of successful implementation of this approach is found in rice.  Knock-out 

mutants of an Arabidopsis (Arabidopsis thaliana L.) transcription factor known as a NIN-like 

protein (AtNLP7) cause a N-starved phenotype and impaired nitrate signaling, while overexpression 

stimulates C and N assimilation and total biomass accumulation (Wu et al., 2020).  NIN-like 

proteins regulate nitrate-inducible gene expression (Konishi & Yanagisawa, 2014; Mu & Luo, 

2019; Wang et al., 2018).  Gene orthologs were identified in rice, including the NIN-like protein 

(OsNLP4).  It was found to be a global regulator of N-responsive genes in rice.  When 

overexpressed, it effects a 47% increase in NUE under moderate Ns.  Additionally, when OsNLP4 

is overexpressed in Arabidopsis, it rescues the function of a knock-out null mutation of AtNLP7.  

This gene has a major effect on NUE and is a promising candidate to validate for use in breeding 

rice.  To deploy this and other major NUE-related genes for breeding wheat, wheat orthologs have 

been identified for a number of candidate genes (Bajgain et al., 2018; Balyan et al., 2016; Good & 

Beatty, 2011; Nadolska-Orczyk et al., 2017; Wang et al., 2018).   

In rice, a difference in NUE between japonica and indica rice was associated with single 

nucleotide polymorphisms (SNP) in the nitrate-transporter gene, NRT1.1B (OsNPF6.5) and the 

gene functional was confirmed by transgenic studies of near isogenic indica lines (Hu et al., 2015).  

Sequence similarity with Arabidopsis and other cereal N transporter genes identified wheat 

homoeologs located on the A,B, and D genomes (Bajgain et al., 2018).  A subset of homoeologs 

showed differential expression in seedling roots and shoots. Further work to understand related 
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allelic variation and its contribution to efficient N uptake and N transport will support breeding 

efforts to optimize NUE.   

Nitrogen use efficiency and increased N accumulation in the grain has been linked to a 

number of N metabolism pathway genes.  Two durum wheat (Triticum turgidum L. ssp. durum) 

cultivars that differed in the level of N accumulation in the grain showed differing patterns of nitrate 

reductase activity.  The cultivar that accumulated higher grain N showed N-inducible nitrate 

reductase activity in the roots and leaves, decreased ammonium ion concentration in the roots, and 

increased nitrate concentration in leaves (Fortunato et al., 2019).  Improved NUE has been 

demonstrated in wheat through transgenic introduction of an ABRE-binding factor (TabZIP60).  

This ABF-like leucine zipper transcription factor mediates N uptake and GY via interaction with the 

binding site in the promoter of NADH-GOGAT (J. Yang et al., 2019).  Root-specific gene 

expression led to cloning of an N-inducible NAC transcription factor, TaNAC2-5A (He et al., 2015).  

It binds to the promoters for N transporters and glutamine synthetase and its overexpression 

increased N uptake, GN, NHI, and GY under field conditions. The trimeric Nuclear Factor Y (NF-

Y) binds to the CCAAT box, a universal element of the eukaryotic promoter.  Its expression is up-

regulated under N limitation via down-regulation of miR169 in Arabidopsis.  Increased N uptake, 

root biomass, and GY under field conditions was observed in wheat overexpressing TaNFYA-B1 

(Qu et al., 2015).   

Transgenic wheat containing the maize transcription factor ZmDof1 provides an example of 

mixed outcomes for transgenic NUE genes (Peña et al., 2017).  Transgenes were either 

constitutively expressed by a ubiquinone promoter, or were under tissue-specific light regulation in 

leaf mesophyll cells and leaf sheaths by the rbcS1 promoter. Constitutive overexpression down-

regulated photosynthesis resulting in decreased plant height, biomass and GY.  Tissue-specific 
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overexpression promoted increased biomass and GY, with no significant reduction in GPRO.  Good 

et al. (2007) reported on a significant role for alanine transferase in promoting NUE in wheat.  

When expression was controlled by a root-specific inducible promotor, alanine unexpectedly 

accumulated in the shoot, measurable as increased BMN.  This dramatic result contrasts with 

numerous other studies of NUE candidate genes that contributed no observable phenotype via 

overexpression.  The authors suggest that design of a successful transgenic approach to improved 

NUE will require detailed knowledge of end-products, potential feed-back regulation by metabolic 

products, and correct tissue specificity and timing of gene expression. 

Breeding For Nitrogen Use Efficiency 

 
 

Genetic progress for NUE under N limiting conditions generally occurs through indirect 

selection under N sufficiency within the main breeding nurseries. Genetic correlation under high 

and low N conditions supports success of indirect selection for NUE.  Heritability in low N 

conditions may be reduced relative to N sufficient conditions through low genetic variance and high 

environmental variance for GY (Cormier et al., 2016).  Genetic variation exists within elite breeding 

populations for NUE and its component traits, NUpE and NUtE (as reviewed in Balyan et al., 2016; 

Cormier et al., 2016; Guttieri et al., 2017).  Selection for GY or NUE under contrasting Ns may 

capture variation in efficiencies of N utilization and uptake, separately, thus enabling breeding 

crosses to combine superior alleles for both component traits (Dhugga & Waines, 1989; Ortiz-

Monasterio R. et al., 1997; Wang et al., 2011).  A compromise between the resource demand of 

screening a breeding nursery at two or more Ns levels for most accurate ranking of NUE 

components and the masking of genetic variation for N uptake at optimal Ns may be to use 

moderate Ns in selection nurseries (Cormier et al., 2016).   
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Breeding progress has been investigated through comparative studies of cultivars released 

over time within a target region for GY (Battenfield et al., 2013; Maeoka et al., 2020; Rife et al., 

2019; Sadras & Lawson, 2013) and for NUE (Cormier et al., 2013; Guarda et al., 2004; Kubota et 

al., 2018; Muurinen et al., 2006; Ortiz-Monasterio R. et al., 1997).  The rate of progress is measured 

in comparison to the included variety with the earliest release date (selected reports are summarized 

in Table 1.2).  Rates show either linear or curvilinear relationships with date of cultivar release. A 

period of rapid change through the 1980s during the adoption of N-responsive, semi-dwarf varieties 

was followed by a shift to decreased gains in recent years in several regions.   Despite the range of 

estimated gains of only 0.4 to 1.1% during the modern era, substantial variation for GY exists 

among a collection of elite entries in the Southern Regional Performance Nursery (SRPN) 

(Battenfield et al., 2016; Rife et al., 2019).  The reported gains are less than the required 2% gain 

per year to meet 2050 projected food demands (Tester & Langridge, 2010).  Understanding and 

optimizing the underlying genetic contributions to NUE will to provide breeders effective strategies 

for accelerating genetic gain to meet this imperative. 

Nitrogen use efficiency is a quantitative trait with polygenic inheritance (Hirel et al., 2007).  

Quantitative genetics methods and candidate gene approaches are employed to detect chromosomal 

regions which contribute to variation for complex traits (Bernardo, 2010).  Quantitative trait loci 

(QTL) mapping is a linkage-based statistical method applied to bi-parental populations to identify 

bi-allelic loci that are significantly associated with phenotypic values.  Similarly, candidate gene 

analysis applies co-segregation analysis to identify statistical associations of sequence variants in 

genes known to have functions related to the trait of interest.  Genome-wide association studies are 

in wide use for exploring the genetic architecture underlying quantitative traits and for fine-mapping 

of QTL.  Genome-wide association studies (GWAS) assay all haplotypes present in a population for 
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significant association with trait values, providing both effects estimation and QTL discovery 

(Hamblin et al., 2011).  These methods contribute to understanding the genetic architecture of a 

quantitative trait through estimation of numbers of loci controlling traits and the relative 

contributions of the QTL.  Fine mapping of QTL is possible when GWAS is applied in the context 

of an extensive history of recombination events captured by diverse germplasm collections 

(Bernardo, 2016).  These types of studies identify markers linked to QTL that may deployed for 

breeding through trait introgression and marker-assisted selection.   

A caveat for to consider prior to deployment in breeding is that effects of a QTL may be 

specific to a population or environment.  Validation studies in relevant germplasm are essential 

prior to effective deployment in a breeding program.  Additionally, the ability to detect QTL 

depends on a number of variables, including:  the frequency distribution of alleles at causal loci, 

magnitude of the effect at each locus, population size and relatedness structure, quality of 

phenotyping data, and, by extension, trait heritability (Bernardo, 2008; Rafalski, 2010).  An 

example of the impact of these factors on QTL detection power was illustrated in a maize bi-

parental population for detecting plant height and GY QTL (Bernardo, 2010).  Mapping populations 

from maize inbreds Mo17 and B73, with differing numbers of recombinant inbred lines were 

developed by two research groups and were tested in differing environments.  The numbers and 

effects distributions of QTL were similar between the studies, but the map locations and the relative 

contributions to trait variances differed.  One QTL was mapped at the same location in both studies.  

When a population was subdivided from 400 members to 100 members, the number of QTL 

detected was reduced, with counts depending on the random subset.  As such, there was an upward 

biasing of estimated effects attributed to the detected QTL in the subsetted populations.  An 

additional limitation of QTL applications in breeding is due to the polygenic nature of these traits.   

To obtain the desired phenotypic effect under an additive effect model, a number of QTL would 



 
 

18 

need to be combined within each selection candidate line.  Stacking more than a few genes requires 

prohibitively large populations to obtain the desired recombinant.   

Quantitative trait loci for nitrogen use efficiency 

QTL mapping has been applied to identify chromosomal locations linked to genes that 

underlie NUE-related traits (An et al., 2006; Balyan et al., 2016; Cormier et al., 2014; Guttieri et al., 

2017).  In a GWAS applied to a panel of 214 European winter wheat elite varieties (release dates 

1985-2010) under two N levels, 15 SNP associated with NUE were detected, with average effect of 

8.7% , consistent with the expected polygenic nature of the trait (Cormier et al., 2014).  Under an 

additive model for gene action, predicted values for each variety were calculated by summing 

effects for each QTL and then were regressed against adjusted means.  Together, the predicted 

effects explained 55.7% of the genetic variation.  More recently released varieties contained a 

higher percentage of favorable alleles, reflecting a breeding history with selection pressure for 

increased GY through improved NUtE and NHI (Cormier et al., 2013).  The 2014 study included a 

co-localization network analysis that linked 28 traits based on the percentage of QTL in common 

between traits.  This analysis reveals expected patterns of pleiotropic effects resulting from selection 

on QTL that co-localize among networked traits.  Of interest was the lack of co-localized QTL for 

NUpE, likely due to its low genetic variance in this panel where the selection target was GY.   

A panel of 299 winter wheat cultivars and breeding lines from Great Plains breeding 

programs was used for an association analysis for QTL contributing to NUE-related traits (Guttieri 

et al., 2017).  Two stable QTL were found on chromosomes 4B and 2D that map near chromosome 

locations of a cytosolic glutamine synthetase (GS1) gene and plastic glutamine synthetase 2 (GS2) 

genes.  In a candidate gene study of GS2 variants among Chinese winter wheats, particular gene 

variants were significantly associated with improved N uptake and GY (Li et al., 2011).  Eleven 
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studies reviewed in Balyan et al. (2016) reported between 11 and 380 significant QTL were detected 

in each study for NUE and its component traits, explaining as much as 39% of variation for NUE.  

Association analysis with enzyme activity of NUE candidate genes was undertaken which identified 

significant QTL for GS1 (Fontaine et al., 2009; Habash et al., 2007), GS2, glutamate synthase 

(GOGAT), glutamate dehydrogenase (GDH) (Bordes et al., 2013), and NADH-GOGAT (Nigro et 

al., 2019).  These studies have provided helpful insights into the metabolic pathways which may 

respond to selective pressure for NUE components, but they also confirm its highly polygenic 

nature and the need for gene pyramiding (Cormier et al., 2016). 

QTL mapping in a Chinese bi-parental population under a range of N levels identified five 

QTL for total above-ground N (TN) that controlled 14-21.9% of variation for TN and were stable 

across N treatments (An et al., 2006).  Plant and seedling biomass related traits showed positive 

correlation with TN.  Several QTL detected for TN co-localized with plant biomass related QTLs.  

Traits positively associated with the five stable QTL included tillering, root dry weight, kernel 

number, shoot dry weight and seedling vigor, supporting the hypothesis that vigorous early shoot 

and root growth are associated with higher N uptake.   

Quantitative trait loci for grain protein deviation 

Although both traits respond to N fertilizer application, GPRO is commonly negatively 

correlated with GY (Nuttall et al., 2017; Simmonds, 1995).  Breeding could contribute to 

improved GPD by increasing the favorable allele frequencies for marker alleles and QTL that 

condition high GPRO independently of GY.  A number of association and candidate gene studies 

have identified potentially useful variants and QTL.  Through association mapping, a QTL on 

chromosome 6B was detected in a wild emmer accession [Triticum turgidum ssp. dicoccoides 

(Körn)] which contributes up to 66% of variation for GPRO independently of GY (Joppa & 
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Cantrell, 1990).  The underlying gene (GPC-B1) is a NAC transcription factor (NAM-B1) with 

pleiotropic effects on GPRO, as well as on zinc and iron concentration in the grain.  Its action is 

mediated through accelerated canopy senescence and increased rate of nutrient remobilization from 

leaves to grain (Avni et al., 2014; C. Uauy et al., 2006).  Homoeologs of the gene identified in 

Argentinean, European and Australian wheats are also associated with variation in GPRO (Cormier 

et al., 2015; Tabbita et al., 2013; R. Yang et al., 2019).  Marker-assisted gene pyramiding efforts are 

underway for Australian wheats (R. Yang et al., 2019).   

In a population of recombinant inbred lines developed from a cross between modern 

Chinese winter wheat varieties, four QTL on chromosomes 2B, 4A, 7A, and 5B were identified that 

explained 23% of variation in GPRO, independently of GY (Wang et al., 2012).  An association 

analysis of a multi-parent interconnected population of French breeding lines identified QTL on 

chromosomes 3A and 5D that controlled GPRO independently of GY (Bogard et al., 2013).  In a 

GWAS on panel of winter wheat from the U.S. Great Plains, five SNP marker alleles were 

identified that were associated with GPD (Guttieri et al., 2017). The minor allele frequencies for the 

SNPs on chromosome 2B and 2D were the favorable alleles, while for the SNPs on 1D and 4B (2 

loci) the minor alleles had adverse effects. A panel of 1,604 European wheat hybrids was uitilized 

for GWAS to identify the genetic architecture underlying GPD (Thorworth et al., 2018).  They 

observed antagonistic gene action for most of the pleiotropic QTL, confirming a genetic basis for 

the difficulty of simultaneous improvement. 

Nitrogen metabolism-related gene sequences identified in wheat and other organisms were 

used for in silico queries of the wheat genome to identify, map, and develop allele-specific 

molecular markers for wheat homoeologs and orthologs of N metabolism candidate genes (Nigro et 

al., 2019).  It has been proposed that GY and GPRO may be under independent control by their 



 
 

21 

gene action.  In a diverse set of seven subspecies of tetraploid wheat (Triticum turgidum L.) grown 

in southern Italy, candidate gene association analysis revealed eight N metabolism candidate genes 

that explained 34.2% of variance for GPD and that three QTL on chromosome 5B and one on 4A 

were significantly associated with GPD (Nigro et al., 2019).  Increasing the frequency of positive 

alleles for these QTL in hard winter wheat breeding populations may lead to selection for higher 

GPD.  Validation of the significant associations is particularly important, given that GPD may be 

more difficult to detect or may result in a higher rate of false positives as a consequence of its 

mathematical derivation (Nigro et al., 2019; Wang et al., 2012). 

Genomic selection for nitrogen use efficiency 

A method to apply genome-wide markers for breeding value prediction without requiring 

significant marker-trait associations was developed for predicting breeding values of bulls 

(Meuwissen et al., 2001).  Genomic selection (GS) combines phenotypic data and polymorphic 

marker genotypes from a training population to build a predictive model for performance of 

untested, but genotyped, individuals (Bernardo, 2016).  Under the infinitesimal model, 

predictions are based on summation of genome-wide marker effects, thus capturing not only 

major QTL, but also unknown and minor effect QTL (Bernardo, 2014).  The method aims to 

improve the mean performance of a population, without requiring gene discovery or knowledge 

of trait mechanisms.  Its base assumption is that with marker density adequate to capture all 

linkage disequilibrium intervals, all marker effects can be estimated and their sum will be the 

additive genetic value for an individual.  Genome-wide enrichment of favorable alleles among 

selection candidates would then be achieved through directional selection of the best individuals 

during inbreeding based on predicted genotypic values, with no requirement to identify 

significant associations with the underlying genes (Jannink et al., 2010).  When these individuals 
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are cycled back into the breeding population as crossing parents, the frequencies of favorable 

alleles are enriched.   

The first publication of the GS applied in plants was a simulation study of maize testcross 

performance (Bernardo & Yu, 2007).  This work generated enthusiasm in the plant breeding 

community by demonstrating substantial improvements in response to selection.  The first 

application within a wheat breeding program was for recurrent selection of quantitative stem rust 

resistance and the correlated trait pseudo-black chaff (Rutkoski et al., 2011; Rutkoski et al., 

2014).  Consistent with simulated schemes, realized genetic gain per unit time did not differ 

significantly between GS and phenotypic selection.  Without increasing cycle time, while 

maintaining the same rate of genetic improvement, GS would reduce costs by enabling early 

generation selection prior to phenotyping.  Optimization of GS is monitored by measuring 

prediction accuracy and cycle time relative to a benchmark method (Heffner et al., 2009; Larkin 

et al., 2019; Norman et al., 2018).  Prediction accuracy, defined as the correlation between 

genomic estimated breeding values (GEBV) and phenotypic values, is impacted by factors that 

are characteristic of the breeding population and the targeted traits.  As reviewed in Larkin et al. 

(2019), simulations and empirical studies have evaluated impacts of training population design 

and size, marker density, population structure, relatedness of training and validation sets, trait 

heritability, and choice of statistical model.  For traits with one to three major QTL, with each 

contributing 10% or more to genetic variance, genomic prediction accuracy is improved when 

they are included as fixed effects (Arruda et al., 2016; Bernardo, 2014; Sarinelli et al., 2019).  

For complex traits, such as Fusarium head blight resistance, the selection differential obtained 
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with genomic selection is higher than for marker-assisted selection (simulation models included 

one to five QTL) under the same selection intensity (Arruda et al., 2016).   

For the first time in wheat, a very large panel of lines provided an opportunity to explore 

the experimental space beyond which more data do not contribute to higher prediction accuracy 

(Norman et al., 2018).  In this study, 10,375 lines in an association panel were genotyped with 

18,101 markers.  These data were applied via cross-validation analysis to examine impacts of the 

design factors on prediction accuracy for four traits with differing genetic architectures.  

Prediction accuracy follows a curvilinear relationship with training set size for all traits, with the 

curve flattening above 2,000 individuals.  This response is independent of the genetic complexity 

of the predicted trait.  Accuracy is improved with higher levels of relatedness between the 

training and validation sets and with increased diversity in the training set.  There is an 

interaction between marker density, training set diversity, and relatedness wherein response to 

increased marker density is greatest when predicting from a diverse training set to a less related 

validation set.  This work and similar studies provide breeders with parameters for designing an 

effective genomic selection program (V. Belamkar et al., 2018; Dawson et al., 2013; He et al., 

2016; Michel et al., 2017). 

Plant breeders usually target improvement of multiple traits to increase the economic 

value of plants.  Phenotypic multi-trait selection strategies have included tandem selection, 

independent culling, and index selection (Bernardo, 2010).  While GS typically has targeted 

single traits, multi-trait GS includes correlated traits and can produce higher prediction 

accuracies for those traits with unbalanced data or low heritability (Schulthess et al., 2016).  

Additionally, a selection index may be treated as a single trait in a univariate GS model to obtain 

multi-trait improvement (Schulthess et al., 2016).  Application of genome wide molecular 



 
 

24 

markers for simultaneous improvement of GY and GPRO has been reported for durum wheat 

(Rapp et al., 2018) and bread wheat (Michel et al., 2016; Michel et al., 2019c).   

 
Research Objectives 

 
 
 

The objectives of this work are to detect component trait contributions to NUE, observe 

variation for NUE-related traits, and to develop phenotypic and genomic selection methods for 

simultaneous improvement of GY and GPRO within the winter wheat breeding population at 

Colorado State University. 
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Table 1.1.  List and definitions for N use efficiency-related traits in wheat (Triticum aestivum L.) 

Abbreviation Trait Description Unit Calculation or method 

BMN Shoot biomass N 
concentration 

N concentration on a dry weight basis in the stem 
and leaves 

g kg-1 AACCI Method 46-30.01 

BMY Biomass yield Total dry weight of leaves, stems, and chaff per unit 
area 

Mg ha-1  

BMNY Biomass N yield N accumulated in the above ground biomass per unit 
area 

kg ha-1 BMNY=0.001*BMN*BMY 

GN Grain N concentration N concentration on a dry weight basis in the grain g kg-1 AACCI Method 46-30.01 
GNY Grain N yield N accumulated in the harvested grain per unit area kg ha-1 GNY=0.001*GN*GY 
GPRO Grain protein 

concentration 
Proportionate dry weight basis for protein in the 
grain 

g kg-1 GN * 5.7† 

GPD Grain protein deviation Residuals of the linear regression of GPRO on GY g kg-1 Linear regression 
GY Grain yield Grain weight adjusted to a defined moisture basis 

(eg 12%) per unit area 
Mg ha-1 [Grain dry weight * (1-0.12)-1] * 

harvested area-1 

HI Harvest index Proportion of total biomass harvested as grain Mg Mg-1 GY * TDW-1 

NHI N harvest index Proportion of BMN translocated to the grain g g-1 GN * BMN-1 

NRE N remobilization 
efficiency 

Proportion of the BMNY that is not recovered in the 
grain 

kg ha-1 (BMNY – GNY) * BMNY-1 

Ns N supply Measurable N available to the crop per unit area kg ha-1 Example:  residual N + applied 
N 

NUE N use efficiency Grain production per unit of N supply kg kg-1 GY * Ns
-1 

NUpE N uptake efficiency Efficiency of accumulation of BMNY per unit of Ns  g kg-1 BMNY * Ns
-1 

NUtE N utilization efficiency Efficiency of GY production per unit of BMN per 
unit area (BMNY) 

kg kg-1 GY * BMNY-1 

PANU Post-anthesis N uptake N translocated to the grain after flowering on a dry 
weight basis in the grain 

g kg-1 GN - BMN at anthesis 

TDW Total dry weight Total above ground plant dry weight per unit area Mg ha-1 GY + BMY 
TN Total above ground N N accumulated in all above ground plant parts per 

unit area 
g ha-1  (GN + BMN) * harvested area-1 

† Sosulski and Imafidon, 1990  
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Table 1.2.  Breeding progress for grain productivity in wheat (Triticum aestivum L.), selected study summaries. 

Target 
environment 

Moisture source, 
type 

N level for 
selection 

Release dates Trait † Genetic gain per 
year 

Contributing 
trait(s) 

Citation 

Canada Rainfed, diverse optimal 1910-2009 NUE 0.34% N utilization Kubota, Iqbal et al., 
2018 

Mexico Irrigated moderate 1950-1985 NUE 1.0% N uptake & N 
utilization 

Ortiz-Monasterio, 
Sayre et al., 1997; 

Finland Rainfed, replete moderate 1901-2000 NUE 0.05 kg kg-1 N ha-1 N uptake Muurinen, Slafer et 
al., 2006; 

France Rainfed, replete diverse 1969-2010 NUE 0.33% N utilization Cormier, Faure et 
al., 2013;  

Northern Italy Rainfed, diverse optimal 1900-1994 AE 0.11 kg kg-1 N ha-1 N utilization Guarda, Padovan et 
al., 2004 

US Southern 
Great Plains 

Rainfed or 
irrigated, diverse 

optimal 1971-2008 GY 0.40% not specified Battenfield, Klatt, et 
al., 2013 

US Southern 
Great Plains 

Rainfed, diverse optimal 1992-2014 GY 1.1% not specified Rife, Graybosch, et 
al, 2020 

Kansas Rainfed, diverse optimal 1920-2016 GY 17/62/8 kg ha-1 (by 
time period) 

N utilization Maeoka, Sadras, et 
al, 2020 

Australia Rainfed, diverse moderate 1958-2007 GY 18 kg ha-1 N uptake Sadras and Lawson, 
2013;  

† NUE, N use efficiency, AE, agronomic efficiency, GY, grain yield 
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Figure 1.1. Physiological processes which determine plant growth and development. NUEGY, N use 

efficiency for grain yield production; NUEGN, N use efficiency for grain N yield; NUpE, N uptake 

efficiency; NUtE, N utilization efficiency; NHI, N harvest index; PANU, post-anthesis N uptake. 
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CHAPTER 2 
 
 

GENOTYPIC DIFFERENCES FOR NITROGEN USE EFFICIENCY AND GRAIN PROTEIN 

DEVIATION IN HARD WINTER WHEAT11 

 
 
 

Summary 
 
 
 

Breeding superior bread wheat (Triticum aestivum L.) genotypes requires sufficient 

genetic variation to obtain high grain yield and adequate protein concentration.  This study was 

conducted to determine variation for nitrogen (N) use efficiency (NUE) and grain protein 

deviation among 20 hard winter wheat genotypes in one season and for two recently released 

cultivars (‘Snowmass’ and ‘Byrd’) in a second season, under five N application rates (0, 28, 56, 

84, 112 kg ha-1). Among these genotypes, the proportionate contributions of component traits to 

total variance for NUE ranged widely:  N uptake efficiency (57-89 kg kg-1) and N utilization 

efficiency (11-43 kg kg-1).  Across all genotypes, N utilization efficiency contributed the most to 

variance for NUE under moderate to high N supply while N uptake efficiency contributed more 

under N-limiting conditions.  Increased NUE promotes high grain yields, but may result in 

decreased grain N concentration through the commonly observed negative correlation of these 

traits.  Analysis of residuals from regression of grain protein concentration on grain yield, or 

‘grain protein deviation’, identified one cultivar (‘Brawl CL Plus’) that had 6.7 g kg-1 higher 

grain protein concentration than the average for all 20 genotypes.  These results for a 

                                                           
1 A version of this chapter was published in Agronomy Journal 108:2201–2213 (2016) 

doi:10.2134/agronj2016.02.0070. 
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representative sample of a breeding population suggest that sufficient variation is available to 

improve NUE and grain protein deviation through breeding.  

Introduction 
 
 
 

Nitrogen use efficiency for cereal grain yield is estimated to average 33% worldwide due 

to limitations imposed by fertilizer N losses from the crop and soil system (Raun & Johnson, 

1999) and to inefficiencies of N uptake and utilization by the crop (Hawkesford, 2014).  These 

limitations constrain cereal grain production and pose risks for N escape and consequent 

environmental damage.  Nitrogen use efficiency in cereals is defined as the amount of grain yield 

produced per unit of N supply (Moll et al., 1982).  The major physiological processes 

contributing to NUE are:  1) N uptake from the soil and its assimilation into plant parts and, 2) 

utilization of the assimilated N for grain production (Moll et al., 1982).  Bread wheat quality 

requires adequate grain protein concentration, but high-yielding wheat genotypes commonly 

have low grain protein concentration.   

Breeding to improve NUE will improve both component traits (Moll et al., 1982).  

Efficient N uptake requires root systems that effectively explore the soil, transport N into root 

cells, and translocate N into the shoot for assimilation into plant parts (Hawkesford, 2011).  

Utilization of assimilated N for grain production is most efficient when photosynthesis and the 

rate of starch production are unhampered and occur at a high rate.  These conditions are met 

when the environment provides sufficient N and moisture throughout the growing season and 

when the rate of canopy senescence allows continued nutrient remobilization during grain filling 

(Hawkesford, 2011). 



42 
 

The relative contributions of NUE component traits vary by crop species, genotype, 

agronomic management and other environmental conditions, as reviewed in Wang et al. (2011). 

In Finland, the genetic variance for N utilization efficiency was the sole contributor to variation 

in NUE within a set of spring wheat cultivars released over the past century when selection was 

done under high N (Muurinen et al., 2006). In contrast, for irrigated spring wheat grown in 

California and Australia, genetic variation for N uptake efficiency explained most of the variance 

for NUE (Dhugga & Waines, 1989; Sadras & Lawson, 2013).  Moll et al. (1982) suggested that 

at moderate N rates, selection should improve NUE by selection for both N uptake efficiency and 

N utilization efficiency.  A set of Mexican spring wheat genotypes that were selected under 

moderate N application rates had both increased yield at low N supply and responsiveness to N 

fertilizer application.  The researchers reported both increased N uptake and utilization 

efficiencies (Ortiz-Monasterio R. et al., 1997).  Clearly, it is important to assess the physiological 

basis of NUE as it relates to agronomic conditions and the genetic diversity of a breeding 

population in advance of establishing a breeding strategy. 

Two general methods are applied to characterize the relative importance of component 

trait contributions to NUE.  The degree of association is estimated by correlation and the degree 

of relationship by linear regression (Acreche & Slafer, 2009; Barraclough et al., 2010; Dhugga & 

Waines, 1989; Gaju et al., 2011; Muurinen et al., 2006; Wang et al., 2011). In cases where the 

relationship is established, path analysis can then quantify the net contribution of each 

component trait to variation for the resultant trait (Bogard et al., 2013; Dhugga & Waines, 1989; 

Le Gouis et al., 2000; Moll et al., 1982; Ortiz-Monasterio R. et al., 1997).  Path analysis 

quantifies component trait contributions through standardized regression coefficients, relating 

them both directly and indirectly through the other components (Moll et al., 1982).   
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  Selection for N responsiveness has had the unintended effect of selection for reduced 

grain protein concentration (Acreche & Slafer, 2009). This phenomenon is the ‘N dilution effect’ 

that describes an allometric relationship between crop biomass and biomass N concentration 

(Justes et al., 1994).   Nitrogen is remobilized from the canopy to the grain for assimilation into 

structural and storage proteins.  The N harvest index is defined as the fraction of the N in the 

canopy that is harvested in the grain.  The ‘self-destruction’ hypothesis predicts that under N-

limiting conditions, increased translocation of N from proteins in vegetative plant parts leads to 

declining photosynthesis, increased rate of senescence, and a shortened grain-filling period 

(Sinclair & de Wit, 1975).  Accordingly, Barraclough et al. (2010) emphasize that to both 

increase grain yield and maintain grain protein concentration, N harvest index must increase, 

while maintaining a functional photosynthetic system.  The authors suggest that accumulation 

and subsequent transfer of non-photosynthetic sources of N might explain the observed variation 

among genotypes for N harvest index.  However, in a subsequent study of N pools in a set of 

elite genotypes, N was remobilized efficiently from all plant tissues, suggesting that all 

remobilized N was in fact metabolic and not structural (Barraclough et al., 2014). 

Retaining N in the canopy in photosynthetically active tissues promotes N utilization 

efficiency for grain yield through continued C assimilation and translocation to the grain, but N 

remobilization to the grain may be constrained (Barraclough et al., 2010).  In some agronomic 

environments, N absorbed after anthesis contributes to NUE for grain yield or grain protein 

concentration (Van Sanford & MacKown, 1986).  Relationships of grain protein concentration 

with the physiological traits, N remobilization efficiency and post-anthesis N uptake, differ 

among genotypes and N supply (Bahrani et al., 2013; Monaghan et al., 2001; Gaju et al., 2014).  

The N harvest index is the proportion of the N in the crop canopy harvested with the grain.  High 
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values result from efficient N remobilization from the canopy and translocation to the grain 

(Desai & Bhatia, 1978).  

𝑁𝑁 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 =
𝑔𝑔𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 𝑁𝑁 𝑦𝑦𝑖𝑖𝑎𝑎𝑦𝑦𝑖𝑖𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑦𝑦 𝑁𝑁 𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎 =

𝑢𝑢𝑡𝑡𝑎𝑎𝑎𝑎 𝑎𝑎𝑖𝑖𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 𝑁𝑁 𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑦𝑦 𝑁𝑁 𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎 ∗  
𝑔𝑔𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 𝑁𝑁 𝑦𝑦𝑖𝑖𝑎𝑎𝑦𝑦𝑖𝑖𝑢𝑢𝑡𝑡𝑎𝑎𝑎𝑎 𝑎𝑎𝑖𝑖𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 𝑁𝑁 𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎 

 

Variation in N harvest index is impacted by the combined variation in N remobilization and post-

anthesis N uptake, the main contributors to grain N yield (Moll et al., 1982).   

Exceptional genotypes that deviate from the negative relationship between grain yield 

and grain protein concentration have been reported (Bogard et al., 2010; Ehdaie & Waines, 2001; 

Marinciu & Saulescu, 2009; Monaghan et al., 2001; Oury & Godin, 2007; Cristobal Uauy et al., 

2006).  This deviation is known as ‘grain protein deviation’, and genotypes with high grain 

protein deviation achieve grain N concentration that exceeds the predicted value for a given level 

of grain yield (Monaghan et al., 2001).  Genes have been identified that may underlie differences 

for this trait.  A quantitative trait locus (QTL) that contributes to grain N concentration 

independently of grain yield (Joppa & Cantrell, 1990) was identified in a wild emmer accession 

(Triticum turgidum ssp. dicoccoides [Körn]). The underlying gene (Gpc-B1) is a NAC 

transcription factor with pleiotropic effects on grain N concentration through accelerated 

senescence and increased rate of nutrient remobilization from leaves to grain (Uauy et al., 

2006b). Additionally, important contributions by post-anthesis N uptake have been reported 

(Bogard et al., 2010).  In a study of a population of recombinant inbred lines developed from a 

cross between modern Chinese winter wheat varieties, two QTL were identified that condition 

high grain protein concentration independently of grain yield (Wang et al., 2012).  A QTL 

analysis of a multi-parent interconnected population of French breeding lines identified QTL on 

chromosomes 3A and 5D that controlled grain N concentration independently of grain yield 
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(Bogard et al., 2013).  These examples of genetic variants that produce high values for grain 

protein deviation encourage evaluation of diversity among breeding lines.   

No prior assessments have been reported for variation in NUE among adapted US hard 

winter wheat germplasm in the west-central Great Plains.  The objectives of this study were (i) to 

determine genetic variability for NUE among a set of 20 U.S. hard winter wheat genotypes, 

(ii) to identify physiological traits associated with high N use efficient genotypes, and (iii) to 

characterize genetic variation for grain protein deviation.  We hypothesize that sufficient 

variation exists in this breeding population to identify new genotypes with both high grain yield 

and sufficient grain protein concentration to meet market standards for bread wheat.  

Materials and Methods 
 
 
 

Plant material 

Twenty hard winter wheat genotypes were assembled that included six hard white winter 

and fourteen hard red winter wheat genotypes (Table 2.1).  Genotypes were chosen based on 

factors that included:  current and past popular Colorado cultivars, advanced lines from the 

Colorado State University (CSU) wheat breeding program, parents from molecular marker 

mapping populations (El-Feki et al., 2015), and several cultivars from neighboring-state breeding 

programs.  Two genotypes were chosen to include in a second year of the trial, based on their 

importance to Colorado growers.  The hard red winter wheat cultivar, ‘Byrd’ (Haley et al., 

2012a) was released in 2011, having superior grain yield and good milling and baking quality.  

Hard white winter wheat cultivar, ‘Snowmass’ (Haley et al., 2011) was released in 2009, having 

exceptional milling and baking quality with good grain yield. 
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Growing conditions 

Research was conducted during two field seasons at the USDA-ARS Central Great Plains 

Research Station (40°15′ N, 103°15′ W, 1383 m elevation above sea level), near Akron, CO.  

The location has a semiarid climate with 418 mm average annual precipitation.  Cumulative 

values for precipitation and growing degree days (GDD) were determined for each growing 

season, and were compared to the 103 year averages (1910-2012, Figure 2.1).  Climatic variables 

were tracked by ‘day of year’ (DOY) to simplify analysis for winter wheat growing seasons that 

extended across two calendar years.  The first day of January is DOY = 1.  In Fig. 1, earlier dates 

in a growing season are in the negative DOY range, while later dates are in the positive range.  

Growing degree days were calculated as GDD = [(TMAX + TMIN)/2] – TMIN.  TMAX and TMIN are 

daily maximum and minimum temperatures at 2 m above the soil surface.  We used a floor of 

0 °C and a ceiling of 25 °C for TMIN and TMAX (McMaster & Wilhelm, 1997).   

Individual experimental units (plots) were direct seeded with a double disc no-till drill 

into proso millet (Panicum miliaceum  L.) stubble in both growing seasons.  Phosphorus as 

ammonium polyphosphate ([NH4PO3]n) and N as ammonium was applied as a starter with the 

seed as a 10-34-0 liquid formulation at an application rate of 7.3 kg ha-1 of inorganic P and 4.9 

kg ha-1 ammoniacal N.  At or just before the booting stage [Feekes stages 9-10, Large (1954)], 

1.2 m alleys were sprayed with glyphosate.  Weed management was conducted according to the 

standard agronomic practice for wheat production.  No disease or insect controls were necessary. 
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Experimental design 

2010-2011 Growing Season  

The field was managed prior to this experiment in a wheat-proso millet-summer fallow 

rotation, with no-till management for the season prior to planting.  The soil type is Rago silt loam 

(fine montmorillonitic mesic Pachic Argiustolls [Soil Survey Staff, 1999]).  As sampled 

immediately before planting, soil residual N averaged 57.2 kg NO3-N ha-1 in the 60 cm soil 

profile.  The planting date was 6 October 2010 at a seeding rate of 222 seeds m-2.  Individual 

experimental units (plots) were direct seeded with a double disc no-till drill into proso millet 

stubble both years (2010 and 2011). The trial was conducted as a factorial design with a split plot 

randomization in three replicates (rep).  Plot size was 9.8 m long x 1.52 m wide in six rows on 

0.23 m spacing, with a harvested area of 13 m2.  Nitrogen rate (N rate) was the main plot, with 

sub-plots of 20 genotypes randomized in five incomplete blocks of four genotypes within each N 

rate by rep combination.  Nitrogen fertilizer (urea 46-0-0) was surface broadcast at rates of 0, 28, 

56, 84, and 112 kg N ha-1 before planting.  Due to equipment failure, the 10-34-0 NPK starter 

fertilizer was not applied in the first replication. 

2011-2012 Growing Season  

The field had been planted to proso millet and then fallowed in the prior two growing 

seasons.  The soil type is a Weld silt loam (Fine, smectitic, mesic Aridic Argiustolls).  As 

sampled immediately before planting, soil residual N averaged 43.7 kg NO3-N ha-1 in the 60 cm 

soil profile.  The planting date was 3 October 2011 at a seeding rate of 173 seeds m-2.  The trial 

was conducted with a split plot randomization with four reps.  Plot size was 4.88 m long and 

1.52 m wide in six rows on 0.23 m spacing, with a harvested area of 5.6 m2.  Nitrogen rate was 
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the main plot, with sub-plots of two genotypes (Snowmass and Byrd) completely randomized 

within each N rate.  Nitrogen fertilizer (urea 46-0-0) was surface broadcast at rates of 0, 28, 56, 

84, 112, and 140 kg N ha-1 shortly after planting. 

Data sampling 

For both growing seasons, residual soil N in the form of NO3-N was measured at planting 

and after harvest (Table 2.2).  Sampling dates for the first season were 14 Sept 2010 and 11 Aug 

2011 and for the second season were 28 Sept 2011 and 5 July 2012.  Two soil cores per plot 

were combined, with depth increments of 0-15 cm, 15-30 cm, and 30-60 cm. Before sowing, the 

odd numbered plots were sampled in the first season and all plots were sampled in the second 

season.  All plots were sampled after harvest in both seasons.  Soil inorganic N was determined 

colorimetrically by cadmium reduction of KCl-extracted soil samples (Keeney & Nelson, 1982) 

in a Quickchem FIA 8000 series autoanalyzer (Lachat Instruments, Loveland, Colorado).  

Anthesis date was recorded when 50% of the heads in a plot had begun to extrude 

anthers.  Heading date was scored for each plot as the DOY on which 50% of the heads were 

fully emerged above the flag leaf.  Physiological maturity was scored when 50% of the 

peduncles in a plot were golden in color (Hanft and Wych, 1982).   

Total aboveground biomass samples were cut at the soil surface on dates near to the trial 

averages for anthesis date (TDWa).  These samples were used to determine biomass dry weight 

and N concentration.  Sampling at anthesis was done over a three-day period from 6-8 June 

2011.  Unpatterned variability in plant stands both across the field and within each plot resulted 

from dry conditions at sowing and other field effects.  To best sample across the range of plant 

density within a plot, an entire outside row was cut.  For the 2011-2012 trial, 1 m samples were 
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cut on 23 May 2012 from an internal row within each plot, leaving at least 15 cm adjacent to the 

alleyways.  The entire sample from each plot was shredded in a chipper shredder and then 

thoroughly mixed by hand before sub-sampling (150-250 g).  The sub-samples were oven dried 

(60 °C) to constant weight.  At crop physiological maturity, 1 m samples were cut from the 

middle rows within each plot in both seasons (12 July 2011 and 6 June 2012).  Stems and leaves 

were separated from the grain and chaff to record straw and grain biomass dry weight.  The chaff 

was discarded and total aboveground biomass at maturity (TDWm) was approximated by the 

summed dry weights of grain and straw.  Grain weight and grain moisture concentration were 

recorded for each plot by the on-combine weighing system during mechanical harvesting.   

Nitrogen concentration (NC) on a dry weight basis of vegetative parts at anthesis and 

maturity and of the grain was determined by pyrolysis of finely ground samples and thermo-

conductivity detection of N (AACCI Method 46-30.01) on a TruSpec Micro CHNS analyzer 

(LECO Corp. St Joseph, MI).   

Treatments and statistical analysis 

The 2010-2011 trial was conducted as a factorial design with a split plot randomization in 

three replicates (rep).  Nitrogen at rates of 0, 28,56,84,and 112 kg N ha-1 (N rate) was the main 

plot, with subplots of 20 genotypes randomized in five incomplete blocks of four genotypes 

within each N rate by rep combination. 

The 2011-2012 trial was conducted with a split plot randomization in four reps. Nitrogen 

rate was the main plot, at rates of 0, 28, 56, 84, 112, and 140 kg N ha-1, with subplots of two 

genotypes (Snowmass and Byrd) completely randomized within each N rate. 
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The Box-Cox procedure was applied to evaluate whether data transformation was needed 

so that residuals of the regression model approximated the normal distribution (Box & Cox, 

1964). In all cases where transformation was needed, taking the natural logarithm of the data was 

effective for obtaining a normal distribution.  To obtain adjusted means for all traits, the 

LSMEANS statement was applied to calculate least squares means in the MIXED procedure of 

the SAS statistical software (SAS Institute Inc, 2010).  Satterthwaite-type denominator degrees 

of freedom were calculated by selecting the Kenward-Rogers option in PROC MIXED.  Year, N 

rate, genotype and their interactions were considered as fixed effects.  Random effects included 

reps, their interaction with N rate, and, in the first growing season, incomplete blocks nested 

within rep x N rate.  Spatial covariance structures were included in the REPEATED statement to 

account for patterns of field variability for some of the traits (Littell et al., 2006). Tested 

structures included row-column, power, anisotropic power, and Matérn (SAS Institute Inc, 

2010).  Stepwise model selection was guided by the Akaike Information Criterion (AIC, Akaike 

1981).  Adjusted values were examined graphically and evaluated against observed field 

variation to support choice of the best model for each trait. 

To account for a pattern of reduced plant stand observed in three ranges of the 2010-2011 

trial, a categorical covariate for range within the arrangement of plots was included when its 

fixed effect was significant in the analysis of variance.  The three southernmost ranges had many 

gaps in the plant stands and were assigned a value of ‘1’ and the remaining two ranges were 

assigned a value of ‘2’.  The categorical covariate was assigned a value of ‘3’ for those main 

plots with N rate level of 112 kg ha-1 since the pattern of response to reduced stand differed for 

this N rate. The categorical covariate was included in the models for grain yield, N yield of the 
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aboveground biomass at anthesis, post-anthesis N uptake, N uptake efficiency, N utilization 

efficiency, and N harvest index. 

Analysis of variance within the MIXED procedure determined significance (p < .05) of 

fixed effects for genotype, applied N rate, and their interactions for the 2010-2011 trial.  A 

combined analysis of variance was performed for the genotypes Byrd and Snowmass over both 

years, with year as a fixed effect.  Among significant fixed effects, adjusted means were 

separated by the least significant difference test (LSD, α = .05).  Group means were compared in 

the TTEST procedure of the SAS statistical software (SAS Institute Inc, 2010).   

Between pairs of traits, Pearson Product Moment (r, for linear relationships) and 

Spearman Rank Order (rs, for comparing rankings of traits with non-linear associations) 

correlation coefficients were determined in JMP® Pro 11.0.0 (SAS Institute Inc., 2013).   

Calculations 

Yield (Y) was calculated per unit area for grain, aboveground biomass at anthesis and maturity, 

and straw.  Grain yield was calculated for each plot from grain weight adjusted to a 12% 

moisture basis.  Harvest index was calculated as units of grain yield per unit of total 

aboveground biomass at maturity.  Grain protein concentration was calculated by multiplying 

grain N concentration by 5.7 (Sosulski & Imafidon, 1990). 

Nitrogen supply (Ns) was defined as the sum of the applied N and the trial average for 

soil residual nitrate (NO3-N) in the top 60 cm of the soil profile.  Nitrogen removal for each plant 

tissue type was calculated as the total N yield (NY): 

𝑁𝑁𝑁𝑁 = 0.01 ∗ 𝑁𝑁𝑁𝑁 ∗ 𝑁𝑁 
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where NC is the N concentration and Y is the yield per unit area.  The total N uptake in the crop 

was estimated by the NY of the total aboveground biomass at anthesis (Achreche & Slafer, 

2009).  Total N accumulated at maturity was calculated as the sum of NY of the straw and grain.  

Nitrogen remobilized to the grain was estimated as the difference between the NY in the total 

aboveground biomass at anthesis and NY of the straw.  Post-anthesis N uptake was estimated as 

the difference between the NY total aboveground biomass at maturity and NY in the total 

aboveground biomass at anthesis (Cox et al., 1985; Monaghan et al., 2001).  The fraction of the 

N in the plant that is harvested in the grain, or nitrogen harvest index (NHI), was calculated as 

the ratio of grain NY and NY of the total aboveground biomass at anthesis.   

Nitrogen use efficiency was calculated as the ratio of units of grain yield per unit of N 

supply.  Nitrogen uptake efficiency was calculated as NY of the total aboveground biomass at 

anthesis divided by N supply.  Nitrogen utilization efficiency was calculated as units of grain 

yield produced per unit NY for the total aboveground biomass at anthesis.   

On a dry weight basis in common units among traits, NUE is the product of N uptake 

efficiency and N utilization efficiency: 

𝑁𝑁 𝑢𝑢𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑎𝑎𝑖𝑖𝑒𝑒𝑦𝑦 = 𝑁𝑁 𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎 𝑎𝑎𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑎𝑎𝑖𝑖𝑒𝑒𝑦𝑦 ∗  𝑁𝑁 𝑢𝑢𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖𝑢𝑢𝑎𝑎𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖 𝑎𝑎𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑎𝑎𝑖𝑖𝑒𝑒𝑦𝑦 

 𝑔𝑔𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑎𝑎𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑔𝑔𝑎𝑎𝑖𝑖 𝑎𝑎𝑢𝑢𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦 =
𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖  𝑁𝑁𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑔𝑔𝑎𝑎𝑖𝑖 𝑎𝑎𝑢𝑢𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦 ∗  

𝑔𝑔𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑎𝑎𝑦𝑦𝑖𝑖𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖  𝑁𝑁 

Path analysis of the physiological basis for NUE was done according the method of Moll (1982), 

where the product relationships of component traits to the resultant trait are linearized by taking 

the logarithms of each factor.  The log of the resultant trait (Yk) for experimental unit k is then 

the sum of the logs of the component traits (Xik).  When these are expressed as deviations from 
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the mean, the sum over all k treatments of the cross-products of the deviations for the ith 

component trait (xik) and Yk (yk) equals the sum over all k sums of squares for Yk:   

Σk yk2 = Σk (Σi yk xik) 

With rearrangement of terms, the sum of the cross products of each term divided by the sums of 

squares for Yk gives the relative contributions of each component trait, and includes indirect 

effects through covariance with the other component trait:   

1 =  
∑ 𝑦𝑦𝑘𝑘𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘∑ 𝑦𝑦𝑘𝑘2𝑘𝑘 +  

∑ 𝑦𝑦𝑘𝑘𝑖𝑖𝑖𝑖′𝑘𝑘𝑘𝑘∑ 𝑦𝑦𝑘𝑘2𝑘𝑘  𝑒𝑒𝑡𝑡𝑎𝑎 𝑖𝑖 ≠ 𝑖𝑖′ 
 

Grain yield adjusted means (xi) were regressed on grain protein concentration adjusted 

means  (yi) for all genotypes (i) with the function lm in the base R package (R Core Team, 2012).  

The linear regression model that represented typical genotypes was determined by stepwise 

exclusion of genotypes with standardized residuals (zi) that exceeded a threshold of 2.5% of the 

standard normal distribution (|zi| > 1.96).  For each regression model, the standardized residual 

for each genotype was calculated as:  

𝑢𝑢𝑖𝑖 =  
𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢𝑎𝑎𝑦𝑦𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖 𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖 𝑡𝑡𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢𝑎𝑎𝑦𝑦𝑎𝑎 × ��1 −  

𝑢𝑢𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖 𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖 � 

 

Genotypes that exceeded the 2.5% threshold were removed and then the regression equation was 

re-calculated.  The Pearson’s correlation was determined for grain yield and grain protein 

concentration for the retained genotypes at each step.  The final regression model was chosen 

when no standardized residual exceeded the threshold.  The final regression equation was applied 

to all of the data to calculate the predicted values for grain protein concentration.  According to 
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methods developed by Oury and Godin (2007), grain protein deviation (GPD) was determined by 

first calculating residuals for genotype i as the difference between the adjusted mean and the 

calculated predicted value.  The standardized residuals were then calculated for each genotype, 

as described above.  Genotypes with grain protein deviation that exceed the 5% threshold of the 

standard normal distribution (|GPD|>1.64) are considered to have high values (Oury & Godin, 

2007).   

RESULTS AND DISCUSSION 
 
 
 

Climatic conditions and phenology 

Climate conditions for each growing season are compared to the 103 year averages for 

cumulative precipitation and temperatures in Figure 2.1.  Cumulative precipitation during the 

2010-2011 growing season was below the 103 year average until 19 May 2011 (DOY 139, 

Figure 2.1a).  After that, significant rain events occurred, resulting in above average cumulative 

precipitation for the growing season.  A record-breaking drought occurred in 2011-2012 (Figure 

2.1a), producing the driest and warmest conditions measured in 107 years of weather data 

collection at the USDA-ARS Central Great Plains Research Station.  Cumulative temperatures 

were higher throughout both seasons than the 103-year average (Figure 2.1b).  In 2011-2012, the 

140 kg ha-1 N level was included in the design of the trial in case of a growing season with above 

average precipitation.  Not unexpectedly, given the 2012 drought conditions, no N response was 

observed for the 140 kg ha-1 N rate, so it was excluded from the analysis (data not shown). 

Adjusted means for phenological traits are presented in Tables 2.3 and 2.4 for plant 

height, heading date, physiological maturity, and grain-filling period. The average heading date 

was 30 May 2011 (DOY 150) and the average physiological maturity date was 4 July 2011 
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(DOY 185).  In the second growing season, average heading date was two weeks earlier (16 May 

2012, DOY 137) and average physiological maturity was reached nearly 3 weeks earlier (14 June 

2012, DOY 166). The mean plant height was 74.5 cm in 2010-2011 and 71.7 cm in 2011-2012.  

The shortfall in normal precipitation for May 2012, combined with warmer than normal 

temperatures, stunted plant growth and accelerated the development of the crop.   

Grain yield and grain protein concentration 

For all traits, the significance of correlation coefficients and fixed effects in the analyses 

of variance were determined at the .05 probability level.  For the 20 genotypes in the 2012-2011 

trial, main effects for genotype were significant for grain yield and grain protein concentration, 

while main effects for N rate were significant only for grain protein concentration (Table 2.5).  

The trial average for grain yield was 4.5 Mg ha-1 and for grain protein concentration was 112 g 

kg-1. Grain yield ranged from 4.9 Mg ha-1 for Byrd (109.6% of trial mean ) to 4.1 Mg ha-1 for 

‘Arlin’ (Sears et al., 1997) (90.9% of trial mean).  The unexpected result that grain yield was not 

responsive to N rate in 2010-2011 may have resulted from the early season drought conditions.  

Similarly, under the agronomic conditions of a long-term study in China, optimal N rate 

averaged 135 kg ha-1 in normal precipitation years and decreased to 45 kg ha-1 in dry years (Guo 

et al., 2012) 

For the 20 genotypes in 2010-2011, grain protein concentration had a significant 

interaction term for genotype with N rate (Table 2.5).  In a dryland field study in Colorado, grain 

protein concentration below 110 g kg-1 was proposed as a post-harvest indicator for N limitations 

on grain yield production of hard winter wheat (Goos et al., 1982).  To understand the significant 

interaction, we applied this threshold to define ‘low’ and ‘high’ N conditions.  Nitrogen rate was 

categorized as low (0 and 28 kg ha-1) or high (84 and 112 kg ha-1) and then adjusted means were 
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calculated for each genotype at the two N sufficiency levels.  Trait values for 56 kg ha-1 level 

were not included in the analysis since they were not consistently categorized as high or low.  In 

Figure 2.2, grain protein concentration for each genotype was plotted at high N rates (84 and 112 

kg ha-1) vs. the grain protein concentration at low N rates (0 and 28 kg ha-1).  Less N responsive 

genotypes would be closest to the bisecting line.  Grain protein concentrations for all genotypes 

fell above the bisect line, illustrating that all genotypes were responsive to applied N.  At low N, 

Prairie Red (Quick et al., 2001), a lower yielding genotype, was the only genotype with grain 

protein concentration exceeding 110 g kg-1, while at high N, all genotypes were responsive to 

applied N, exceeding 110 g kg-1.  To further evaluate the nature of the significant interaction 

between genotype and N rate, the slopes of the N response for each genotype were compared 

with the N response of the genotype, Byrd.  The genotype Arlin had a significantly lower slope 

(p < .05), that explained the significant genotype by N rate interaction.  Relative to Byrd, Arlin 

accumulated 8.9 g kg-1 less protein per unit of increase in N supply and was the only genotype 

that differed significantly from Byrd.  Given the limited nature of the interaction, we focused on 

the significant main effects of genotype and N rate (p < .05, Tables 2.6 and 2.7).   

Despite early season drought conditions and ample residual soil N, N fertilization was 

required to obtain 110 g kg-1 grain protein concentration, a typical level required for bread wheat 

on the U.S. commodity markets.  In 2010-2011, the grain protein concentration values, averaged 

across N rates, ranged from 118.5 g kg-1 for Prairie Red to 105.6 g kg-1 for Byrd.  These values 

are 5.8% above and 5.7% below the mean (112 g kg-1).  Averaged across genotypes, values at 

each N rate increased from 95.5 g kg-1 to 124.3 g kg-1 (Table 2.6), with a linear increase over the 

range of N rates (Protein = 109.7 + 0.24×N rate, R2=0.98).  Below the 56 kg ha-1 N rate, the 

average grain protein concentration would have resulted in discounted pricing for this crop. 
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For Snowmass and Byrd, the combined analysis of variance over two growing seasons 

showed a significant effect for year on grain yield and grain protein concentration.  The 

interaction terms of year × N rate × genotype and N rate × genotype were significant for grain 

yield.  The significant interaction was largely due to low grain yield for Byrd at the 84 kg ha-1 N 

rate in 2011, where two of the three plots for Byrd had substantial plant stand gaps. Therefore, 

the significant interaction was not explored further and the trials were analyzed separately by 

year.   

The analysis of variance for each year revealed significant fixed effects for genotype in 

both years for grain yield and for N rate in 2011-2012.  For grain protein concentration, fixed 

effects for genotype were significant in 2010-2011 and for N rate in both years.  Across all N 

rates in 2010-2011, the average grain yield for Snowmass and Byrd was 4.8 Mg ha-1, while in 

2011-2012, the average was reduced by 40% to 2.9 Mg ha-1.  In 2010-2011 and 2011-2012, grain 

yield for Byrd (5.1 and 3.1 Mg ha-1) was higher than for Snowmass (4.6 and 2.7 Mg ha-1).  In 

2010-2011 across treatments, grain protein concentration averaged 139.9 g kg-1.  Grain protein 

concentration increased linearly from the 0 N rate (88.6 and 127.3 g kg-1) to the 112 kg ha-1 N 

rate (120.9 and 150.5 g kg-1) in each season.  In each season, Snowmass had higher grain protein 

concentration than Byrd, although the difference was significant only in 2010-2011  (111.1 and 

102.3 g kg-1).   

Nitrogen uptake 

A practical measure of maximal N uptake is the NY of the total aboveground biomass at 

anthesis ( TDWaNY, Acreche & Slafer, 2009).  The analysis of variance was performed for the 

2010-2011 trial for post-anthesis N uptake and NY of the total aboveground biomass at anthesis 

(Table 2.5).  The interaction term for genotype with N rate was not significant for either trait.   
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Main effects for genotype were significant for both traits, while for N rate were significant for 

NY of the total aboveground biomass at anthesis (Tables 2.5 and 2.6).  The 2010-2011 trial 

average for NY in the total aboveground biomass at anthesis was 99.3 kg ha-1.  Over the range of 

N rates in 2011, NY in the total aboveground biomass at anthesis showed a linear increase 

(TDWaNY = 81.34 + 0.32×N rate, R2=0.91).  This exceeded the soil residual N by an average of 

21.5 kg ha-1 across the 0 N rate plots, and provides an estimate of the rate of soil N 

mineralization.  Averaged across all N rates, the NY in the total aboveground biomass at anthesis 

ranged from 110.6 kg ha-1 for Byrd to 87.8 kg ha-1 for CO940610, a breeding line that was not 

released due to inferior baking quality characteristics (Chao et al., 2007; El-Feki et al., 2015).  

These values ranged from 11.4% above to 11.6% below the 2011 mean.  In the combined 

analysis for Snowmass and Byrd in two growing seasons, N rate had significant effects on NY in 

the total aboveground biomass at anthesis with a linear increase (TDWaNY = 81.14 + 0.28×N 

rate, R2=0.98) and significant differences between genotypes (Byrd 103.2 kg  ha-1 and Snowmass 

90.8 kg ha-1).  Grain yield and grain protein concentration were significantly and positively 

correlated with NY in the total aboveground biomass at anthesis.  The N in the canopy is integral 

to a functional photosynthetic system for C assimilation and is the source for N remobilized to 

the grain (Kichey et al., 2007; Aranjuelo et al., 2012). 

Post-anthesis N uptake has been observed to contribute to grain N concentration in 

France (Bogard et al., 2010; Kichey et al., 2007).  However, in Mediterranean conditions in Iran, 

high temperatures and high evapotranspiration rates contributed to post-anthesis N losses 

(Bahrani et al., 2013).  In this study, the analysis of variance showed no significant differences 

for post-anthesis N uptake between N rates, but there were differences among genotypes.  We 

observed losses averaging over all treatments of 5.92 kg N ha-1 (6% of TDWa NY) in 2010-2011 



59 
 

during the post-anthesis period (Table 2.5).  Negative values were observed for all genotypes 

except CO0940610.  In 2011-2012, N losses were -10.3 kg N ha-1 for Byrd and -5.5 kg N ha-1 for 

Snowmass, 11.1% and 6.5% of NY in the total aboveground biomass at anthesis.  Grain yield, 

grain protein concentration, NUE, and N harvest index were not correlated with post-anthesis N 

uptake.  Nitrogen losses from crops are known to occur through gaseous release of NH3 during 

plant growth (Raun & Johnsom, 1999).  In a French study, negative values for post-anthesis N 

uptake were observed in some environments, but when genotypes were evaluated across 27 

environments in France, post-anthesis N uptake averaged 23 kg ha-1 (Bogard et al., 2010).  Our 

observations may be unique to the local environment, and may not reflect the genetic potential of 

these genotypes if grown in an environment with greater soil moisture.   

Efficiency of biomass production and N recovery  

Efficiency of biomass production and N recovery were investigated to identify 

physiological traits that contribute to NUE and grain N concentration.  Correlation coefficients 

describe the associations among the traits (Table 2.7).   

For 2010-2011, the analysis of variance revealed significant differences for the main 

effects of genotype and N rate for N use, uptake, and utilization efficiencies, but only the main 

effect of genotype for N harvest index and harvest index (Tables 2.5 and 2.6).  The interaction 

term for genotype × N rate was not significant.  For Snowmass and Byrd, the combined analysis 

of variance over two growing seasons showed a significant effect for year on NUE and N 

utilization efficiency, but not N uptake efficiency.  There were no other significant effects for N 

utilization efficiency.  In 2010-2011, the main effects for genotype and N rate were significant 

for NUE and N uptake efficiency.  In 2011-2012, both main effects were significant for NUE and 

only genotype for N uptake efficiency. 
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Nitrogen use efficiency 

For the 20 genotypes, NUE ranged from 39.9 kg kg-1 for 'RonL' (PI 648020) to 46.7 kg 

kg-1 for Byrd (Table 2.5).  Averaged across genotypes, as the N rate increased, NUE decreased, 

ranging from 74.7 kg kg-1 with no applied N to 29.4 kg kg-1 with 112 kg ha-1 applied N (Table 

2.6).  The NUE component traits, N uptake and N utilization efficiencies, also significantly 

decreased as N rate increased (Table 2.6).  This agrees with earlier studies and lends support to 

hypothesized decreasing C sink strength to the ear with N supply limitation (Ehdaie & Waines, 

2001; Aranjuelo et al., 2012).  In the combined analysis over two seasons for two genotypes, N 

utilization efficiency only differed by year across treatments (2010-2011:  47.8 and 42.5 kg kg-1, 

2011-2012: 34.1 and 28.9 kg kg-1).  Averaged over N rates, NUE decreased with increased N rate 

(2010-2011:  72.6 and 32.2 kg kg-1, 2011-2012: 69.8 and 18.0 kg kg-1).  In the combined analysis 

for two genotypes in two seasons, N utilization efficiency only differed by year across treatments 

(2010-2011:  45.8 kg kg-1, 2011-2012: 33.5 kg kg-1).  In 2010-2011, N uptake efficiency differed 

by genotype (1.1 and 0.90 kg kg-1) and N rate (ranging for increasing N rate from 1.4 to 0.7 kg 

kg-1), and just genotype in 2011-2012 (1.0 and 0.9 kg kg-1).  In multi-environment yield trials, 

Byrd has shown superior drought stress tolerance for grain yield, with a 10% yield advantage 

over the 3-yr average in the 2012 to 2014 CSU dryland variety performance trials (Haley et al., 

2012a).  The superior NUE and N uptake efficiency for Byrd may be important characteristics 

for stable and superior yields in a dryland environment. 

Nitrogen uptake efficiency was more strongly correlated with NUE (r = .89) than N 

utilization efficiency (r = .47, Table 2.7).  Byrd, with the highest grain yield, was most efficient 

for N uptake, but ranked 16th for N utilization efficiency, while Arlin had the lowest grain yield 

and ranked 19th for N uptake efficiency and fourth for N utilization efficiency.  These results 
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suggest that with more efficient N uptake, N utilization is not limiting for grain yield.  Efficient 

N uptake was not always sufficient to drive yield.  'Goodstreak' (Baenziger et al., 2004) ranked 

second for N uptake efficiency, last for N utilization efficiency and 19th for grain yield.  

Goodstreak is the only standard-height genotype evaluated, and was ranked third for total above 

ground biomass at anthesis, behind Byrd and ‘Denali’ (Haley et al., 2012b).  Harvest index is a 

measure of conversion of canopy biomass to harvested grain.  Byrd was ranked first for harvest 

index, while Goodstreak was ranked last.  Despite its high N uptake efficiency, low values for 

harvest index and N utilization efficiency are associated with relatively low grain yield in 

Goodstreak. 

Among the 20 genotypes, the contribution of variation in component traits to variation in 

the resultant trait (NUE) was determined through path analysis as the sum of cross products of 

each component trait and the resultant trait (Moll et al., 1982).  Averaged across all treatments, 

contributions to variation were 52% from N uptake efficiency and 48% from N utilization 

efficiency.  Averaged across genotypes, as N rate increased, the contribution of N utilization 

efficiency to variation for NUE decreased from 57% at 0 kg ha-1 N rate to 39% at 56 kg ha-1 N 

rate, remaining stable across the higher N rates, averaging 43% for the 56, 84, and 112 kg ha-1 N 

rates (Figure 2.3a).  When there is limiting N, N utilization efficiency contributes more to 

variation in NUE.  This observation suggests that the limiter or driver for grain yield production 

under limiting N is N utilization efficiency, while under conditions of sufficient or excess N, it is 

N uptake efficiency.  As observed by Moll (1982), since the component trait that contributes 

most to NUE differs by the level of N supply, the N level of the selection environment may favor 

genotypes with superior values of one or the other component trait. 
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Performing the path analysis, while averaging across N rates, reveals genotypic variation 

in the component trait contributions (Figure 2.3b).  The top five ranking genotypes for NUE 

were Byrd, Denali, ‘Winterhawk’  (PI 652927), ‘Above’ (Haley et al., 2003) and ‘Hatcher’ 

(Haley et al., 2005) (Table 2.5).  They showed a wide range of component trait proportions:  N 

uptake efficiency (57-73%, mean 66%) and N utilization efficiency (26-42%, mean 34%).  The 

contributions of the component traits for the five least N efficient genotypes, Snowmass, Prairie 

Red, Goodstreak, Arlin, and RonL also ranged widely:  N uptake efficiency (72-89%, mean 

79%) and N utilization efficiency (12-28%, mean 21%) (Figure 2.3b).  Group mean values for 

component trait contributions of the five top (65.5% N utilization efficiency) and five bottom 

(79.4% N utilization efficiency) ranked N use efficient genotypes were significantly different.  

On average, N utilization efficiency contributed relatively more to variance for the genotypes 

with the highest NUE, as though these genotypes were under more N limiting conditions. On the 

basis of this observation, it may be surmised that highly efficient genotypes could have 

experienced N limiting conditions at an N supply that was N sufficient for genotypes with the 

lowest NUE.  In contrast to an earlier report of winter wheat grown in high-moisture conditions 

in southern England which reported independence of the traits (Barraclough et al., 2010), here N 

utilization and uptake efficiencies were negatively correlated at individual N rates (Table 2.7, 0 

to 112 kg ha-1 [r: -.68, -.84, -.71, -.58, -.55]).  Detecting positive-effect genes for both N uptake 

and N utilization may require selection under carefully managed N levels over multiple locations 

and years. 

Nitrogen harvest index 

For N harvest index, the main effect for genotype, but not N rate, was significant over a 

narrow range of values (Table 2.5).  Nitrogen harvest index averaged 0.91 kg kg-1, ranging from 



63 
 

0.82 kg kg-1 for Byrd to 1.01 kg kg-1 for CO940610.  Nitrogen harvest index is positively 

correlated with grain protein concentration and negatively correlated with NUE, NY in the total 

aboveground biomass at anthesis, and N remobilization, consistent with other studies (Bahrani et 

al., 2013; Moll et al., 1982). Degradation of the photosynthetic systems during canopy 

senescence provides the main source of N for remobilization to the grain (Moll et al., 1982).  As 

such, the processes that promote NUE for grain yield oppose those that increase N harvest index 

and grain protein concentration.  

Grain protein deviation 

Genotypes were ranked for the standardized residuals of the regression of grain yield on 

grain protein concentration, or ‘grain protein deviation’ (Figure 2.4).  When estimated from 

multi-environment trial data, grain protein deviation identifies genotypes with grain protein 

concentration values that reliably deviate from the expected negative relationship with grain 

yield (Bogard et al., 2010; Guttieri et al., 2015).  To obtain the trimmed linear model relating 

grain yield and grain protein concentration, genotypes with standardized residuals that exceeded 

the trimming threshold (|z|=1.96) were removed.  The genotypes left out of the trimmed model 

were Arlin and ‘Brawl CL Plus’ (Haley et al., 2012c).  The Pearson’s correlation for grain yield 

(xi ) and grain protein concentration (yi ) increased from 0.65 with all data to 0.76 with the 

trimmed data set.  Another round of trimming (|z|=1.96) removed Snowmass from the regression, 

increasing the correlation to 0.80.  Additional rounds of trimming did not substantially change 

the position of the regression line, so the second set of trimmed data was used to calculate grain 

protein deviation for all genotypes.  The regression equation (yi = 174.1-13.9xi) was applied to 

predict grain protein concentration (yi) for each genotype (i).  Grain protein deviation, as 

standardized residuals, was calculated for each genotype from these predicted values.   
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Grain protein deviation is strongly correlated with the residuals calculated from the final 

model (r=0.99).  By applying coefficients of that association, it is found that the 5% threshold 

value (|z|=1.64) is a deviation from the mean grain protein concentration of 4.56 g kg-1.  Arlin 

(z=-1.81, -5.02 g kg-1) and Brawl CL Plus (z=2.43, 6.73 g kg-1) showed the minimum and 

maximum observed grain protein deviation values and were the only genotypes with low and 

high values that exceed the 95% threshold (Figure 2.4).  Hard winter wheat pricing on the 

Kansas City Board of Trade (KCBT) is calculated based on grain protein concentration of 110 g 

kg-1, with this pricing structure reflected in grain pricing at the elevators.  Above or below that 

concentration, premiums may be granted, or discounts charged, with the scale specific to market 

conditions in each season.  Selection for high values for grain protein deviation simultaneously 

identifies desirable bread wheat genotypes with high values for grain yield and grain protein 

concentration. 

For winter wheat grown in high-moisture conditions in France, post-anthesis N uptake 

averaged 23 kg ha-1 across environments and years among 27 genotypes  and was the main 

determinant of grain protein deviation (Bogard et al., 2010).  Genomic regions associated with 

grain protein deviation were subsequently identified in related germplasm (Bogard et al., 2013).  

In the present study, post-anthesis N uptake was observed as N loss after anthesis for all but three 

genotypes and was not significantly correlated with grain protein deviation, nor with N harvest 

index (Tables 2.5 and 2.7).  The average post-anthesis N uptake in the second year of the study 

was also negative (-7.9 g kg-1).  Other studies showed that grain protein deviation was associated 

with N accumulation before anthesis and N remobilization efficiency during senescence 

(Monaghan et al., 2001; Slafer et al., 1990), though this was not observed in this study. The 
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physiological traits associated with grain protein deviation under the agronomic conditions of 

this study may differ from those reported in the earlier studies. 

Conclusions 
 
 
 

Optimized wheat grain production requires N use efficient cultivars that are grown under 

careful N fertilizer management.  We identified variation for NUE and its component traits 

among 20 hard winter wheat genotypes that were grown under dryland agronomic conditions in 

the west-central Great Plains of the United States.  Nitrogen use efficiency ranged from 39.9 kg 

kg-1 for RonL to 46.7 kg kg-1 for Byrd.  Averaged across genotypes, as the N rate increased, 

NUE decreased.  By path analysis, we determined that under N sufficiency, variation in N uptake 

efficiency contributed more than N utilization efficiency to variation in NUE.  With limiting N, 

N utilization efficiency contributed more to variation in NUE.  Selection under sufficient N may 

distinguish genotypes with improved N uptake efficiency and selection under limiting N may 

distinguish genotypes with improved N utilization efficiency.  Among elite adapted lines, yield 

limiting N supply will occur at moderate N application rates. 

Grain protein concentration is an important contributor to milling and baking quality.   

Nitrogen fertilization was required to obtain 110 g kg-1 grain protein concentration, despite ample 

residual soil N and early season drought conditions in 2010-2011.  A high yielding genotype, 

Brawl CL Plus, delivered grain protein deviation of 6.7 g kg-1, a value that would be sufficient to 

produce adequate grain protein concentration and to protect growers from protein discounts on 

the commodity market.  Post-anthesis N uptake was observed as N loss and was not associated 

with grain protein deviation. 
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Table 2.1.  Hard winter wheat genotypes planted at Akron, CO in the 2010-2011 and 2011-2012 growing seasons. 

Genotype† Type‡ Origin§ Release Date PI number¶ Pedigree 

Above HRW CSU 2001 631449 TAM 110*4/FS2 

Ankor HRW CSU 2002 632275 Akron/Halt//4*Akron 

Arlin HWW KSU 1992 564246 HRW/HRS bulk selection 

Bill Brown HRW CSU 2007 653260 Yumar/Arlin 

Bond CL HRW CSU 2004 639924 Yumar//TXGH12588-120*4/FS2 

Brawl CL Plus HRW CSU 2011 664255 Teal 11A/Above//CO99314 

Byrd HRW CSU 2011 664257 TAM 112/CO970547-7 

CO940610 HWW CSU unreleased GSTR 10702 KS87H22/MWO9 

Danby HWW KSU 2005 648010 TREGO/JGR 8W 

Denali HRW CSU 2011 664256 CO980829/TAM 111 

Hatcher HRW CSU 2004 638512 Yuma/PI 372129//TAM-200/3/4*Yuma/4/KS91H184/Vista 

Goodstreak HRW UNL 2002 632434 SD3055/KS88H164//NE89646 (=COLT*2/PATRIZANKA) 

Jagger HRW KSU 1994 593688 KS82W418/Stephens 

Platte HWW Syngenta 1995 596297 N84-1104/Abilene 

Prairie Red HRW CSU 1998 605390 CO850034/PI372129//5*TAM 107 

Ripper HRW CSU 2006 644222 CO940606/TAM107R-2 

RonL HWW KSU 2006 648020 Trego/CO960293 

Snowmass HWW CSU 2009 658597 KS96HW94//Trego/CO960293 

TAM 112 HRW TXAM 2005 643143 U1254-7-9-2-1/TXGH10440 

Winterhawk HRW WestBred 2007 652927 474S10-1/X87807-26//HBK0736-3 
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† Twenty genotypes were planted in the first season; two genotypes, Byrd and Snowmass, were planted in both seasons. 
‡ Types of winter wheat cultivars:  hard red (HRW), hard white (HWW).  
§ Origin of the cultivar:  Colorado State University, Fort Collins, CO (CSU); Kansas State University, Manhattan, KS  (KSU); University of 
Nebraska, Lincoln, NE (UNL); Texas AgriLife (Texas A&M System) Research and Extension Center (TXAM); Syngenta, Junction City, KS 
(Syngenta); WestBred, a Unit of Monsanto Company, St. Louis, MO (WestBred). 
¶ Plant Introduction numbers.  Source: Germplasm Resources Information Network. 2015. USDA, ARS, National Genetic Resources Program, 
National Germplasm Resources Laboratory, Beltsville, Maryland. (http://www.ars-grin.gov/) 
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Table 2.2.  Soil residual nitrate (NO3-N) in the upper 60 cm of the soil profile at Akron, CO in the 2010-

2011 and 2011-2012 growing seasons.  Sampling was done before planting and after harvest. 

Growing 

season 

No. 

genotypes 

Fertilizer N                  

kg  ha-1† 

Sample Date NO3-N   

kg ha-1‡ 

2010-2011 § 20 0, 28, 56, 84, 112 Sowing 14 Sept 2010 57.2 

Harvest 11 Aug 2011 36.7 

2011-2012 ¶ 2 0, 28, 56, 84, 112, 140 Sowing 28 Sept 2011 43.7 

Harvest 5 July 2012 19.3 

† Nitrogen applied before planting in the form of urea (46-0-0) 

‡ Total nitrogen concentration in the form of nitrate in the upper 60 cm of the soil profile 

§ Organic matter averaged 1%; Phosphorus averaged 19.3 kg ha-1 

¶ Organic matter averaged 1.5%; Phosphorus averaged 22.4 kg ha-1 
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Table 2.3.  Adjusted means and the analysis of variance for twenty genotypes grown at Akron, CO in the 2010-2011 growing season and for two 

genotypes grown in the 2011-2012 growing season for plant height and heading date. Genotypes are arranged in order of decreasing nitrogen use 

efficiency.  

 Plant Height (cm) Heading Date (DOY)† 

Genotype‡ 
G 

mean 0 28 56 84 112 
G 

mean 0 28 56 84 112 

N mean 74.5 74.4 71.4 78.6 76.3 71.8 149.7 149.4 149.6 149.5 150.5 149.5 

Byrd 74.9 74.8 71.6 79.8 73 75.2 148.1 147.8 147.7 147.8 149.5 147.8 
Denali 74.3 72.3 72.6 76.4 81.1 69.1 153.9 154.7 152.4 154.2 155 153.3 
Winterhawk 72.1 73.2 66.4 76.5 76 68.4 150.8 151 150.6 150.3 151.1 150.9 
Above 76.1 78.2 71.6 78.9 76.4 75.4 148.2 147.6 148.3 147.9 149.2 148 
Hatcher 73.7 74.5 67.1 80.6 80.4 66 150.8 150.8 150.2 150.8 151.5 150.9 
Ripper 74.7 73.8 76 79.2 73.8 70.6 148.6 147.7 148.9 148.1 149.5 148.7 
CO940610 73.9 71 80.3 74.5 77.6 66.4 148.8 148.3 148.6 148.8 149.6 148.8 
Ankor 72.9 76.7 65.4 79.2 76.9 66.5 151.2 150.8 151.1 150.4 152.4 151.5 
Brawl CL Plus 75.6 75.7 76.2 77.4 73.3 75.5 147.8 147.9 148.5 147.5 148.3 146.9 
Jagger 75 78.7 69.4 79.4 72.1 75.2 148.6 148.8 148.3 148 148.9 149 
Danby 79.2 76.4 68.9 91.3 84.3 75.2 151.9 151.6 151.6 151.6 152.7 151.9 
Platte 72.9 69.8 73.2 74.5 68.9 78.1 152.5 151.8 152.7 152.7 153.2 152.4 
Bond CL 73.4 71 70.8 80.1 77.9 67.2 148.5 148 148.6 148 149.6 148.3 
Bill Brown 75.4 72.1 70.3 83 75.7 75.9 149.7 149.9 150 148.9 150 149.6 
TAM 112 72.1 73.7 68.4 72.5 75.5 70.6 148.4 147.7 148.3 147.8 150.1 147.9 
Snowmass 73.9 74.5 71 79.9 80.9 63.3 150.1 149.9 150.3 150.3 151 149.2 
Prairie Red 75.9 77.2 72.3 73.7 72.8 83.5 147.5 147.1 147.2 147 149 147 
Goodstreak 76.9 81.8 73.8 80.8 80.4 67.7 151.5 150.6 151.6 151 152.2 152.1 
Arlin 74.2 74.7 71.6 74.5 75.2 75 147 146.9 147 147 147.1 146.8 
RonL 73.1 68.7 72 79.4 74.2 71.1 150.4 150.1 149.9 152.5 150.6 149.1 

lsdG ns§      
 

lsdG 0.26§ 

 

        

lsdN ns      
 

lsdN ns          

lsdGxN ns      
 

lsdGxN ns          

2011 N mean 74.4 74.7 71.3 79.8 77.0 69.3 149.1 148.8 148.8 149.0 150.2 148.5 
Byrd 74.9 74.8 71.6 79.8 73.0 75.2 148.1 147.7 147.7 147.7 149.3 148.0 
Snowmass 73.9 74.5 71.0 79.9 80.9 63.3 150.1 150.0 150.0 150.3 151.0 149.0 
2012 N mean 71.7 72.1 70.8 71.4 72.2 71.8 137.0 137.0 136.8 137.0 137.1 137.3 
Byrd 70.7 70.2 68.9 71.8 72.1 70.8 136.5 136.5 136.3 136.5 136.8 136.5 
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 Plant Height (cm) Heading Date (DOY)† 

Genotype‡ 
G 

mean 0 28 56 84 112 
G 

mean 0 28 56 84 112 
Snowmass 72.6 74.0 72.7 71.1 72.4 72.7 137.6 137.5 137.3 137.5 137.5 138.0 

year¶  2011 2012       year¶ 2011 2012       
lsdG  ns ns      lsdG 0.30 0.21     

 

lsdN  ns ns      lsdN ns ns     
 

lsdGxN  2.2 1.7      lsdGxN ns ns     
 

†Day of year, from 1 January (DOY). 

‡Within columns, when genotype is a significant effect, mean comparison is done according to lsd (α =0.05). 
§Bold font for the lsd values indicate significance at .05 probability level, respectively;  ns is not significant.  

¶Year was significant at P < .05. 
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Table 2.4.  Adjusted means and the analysis of variance for twenty genotypes grown at Akron, CO in the 2010-2011 growing season and for two 

genotypes grown in the 2011-2012 growing season for physiological maturity and grain filling period. Genotypes are arranged in order of 

decreasing nitrogen use efficiency.  

 Physiological Maturity (DOY)† Grain Filling Period (days)‡ 

Genotype‡ 
G 

mean 0 28 56 84 112 
G 

mean 0 28 56 84 112 

N mean 184.9 184.0 184.5 185.4 185.2 185.7 35.5 35.0 35.4 35.4 35.3 36.7 

Byrd 186.3 185.2 186.7 187 185.7 186.8 38.5 38.4 39.3 39 36.3 39.7 
Denali 186.4 186.2 185.9 187.4 185.6 186.7 32.9 32 34.7 33 31.3 33.6 
Winterhawk 187.2 187.3 185.8 187.8 186.9 188 36.5 36.3 35.3 36.6 36.3 37.7 
Above 183.4 182.5 182.8 184.1 183.8 183.6 35.6 35.3 35 36 35.7 36 
Hatcher 186.8 186.2 183.5 187.5 187.4 189.3 36.3 36 33.7 36 37 38.7 
Ripper 183.6 182.6 182.9 183.5 184.3 184.8 35.5 35.3 35 35.4 35.3 36.3 
CO940610 186 184.7 185.7 186.3 186.4 186.9 37.8 37 38.3 37 37.7 39 
Ankor 184.1 182.5 184.3 184.3 184.4 184.9 33.3 32.3 33.7 34 32.6 34 
Brawl CL Plus 184.5 181.9 185.8 184.7 185.7 184.4 36.7 34.3 37.3 36.3 37.6 38 
Jagger 183.1 181.9 183.6 182.8 183.7 183.8 34.9 33.7 35.7 34 35.7 35.7 
Danby 185.7 185.9 185 187.1 184.2 186.4 34.2 34.7 34 35 32 35.3 
Platte 185 182.9 184.5 184.6 186 186.9 32.5 30.8 32.7 31.7 32.6 34.6 
Bond CL 185.2 183.6 184.4 185.9 185.5 186.5 36.9 36 36 37.7 36 39 
Bill Brown 186.7 186.2 186 187.8 186.3 187.1 37.1 36.7 36.3 38 36.7 38 
TAM 112 184.3 182.5 184.4 184 184.8 185.8 36.3 35.3 36.7 35.7 35 38.7 
Snowmass 185 185.4 184 185.5 185.5 184.8 35.3 36.4 34.3 34.7 35 36 
Prairie Red 182.9 180.5 183 183.8 184.6 182.7 35.7 34 36 36.3 36.3 36 
Goodstreak 186.3 186.5 185.6 186.7 186.4 186.2 35.1 36.3 34.3 35.3 35 34.7 
Arlin 182.6 181.5 182.1 181.9 183.7 183.9 35.8 35 35.3 34 37 37.7 
RonL 184 183.2 183.3 184.8 184 184.8 33.8 33.7 33.7 32.3 33.7 35.7 

lsdG 0.4¶ 

 

        0.4 

 

        

lsdN ns¶          ns          

lsdGxN ns          ns          

2011 N mean 186.0 186.2 185.7 185.8 185.8 186.3 36.9 37.3 36.8 36.8 35.7 37.8 
Byrd 186.6 186.0 187.0 186.7 185.7 187.7 38.5 38.3 39.3 39.0 36.3 39.7 
Snowmass 185.3 186.3 184.3 185.0 186.0 185.0 35.3 36.3 34.3 34.7 35.0 36.0 
2012 N mean 165.6 165.0 165.0 165.8 166.5 165.8 28.6 28.0 28.3 28.8 29.4 28.5 
Byrd 165.2 164.8 164.5 165.3 166.3 165.3 28.7 28.3 28.3 28.8 29.5 28.8 
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 Physiological Maturity (DOY)† Grain Filling Period (days)‡ 

Genotype‡ 
G 

mean 0 28 56 84 112 
G 

mean 0 28 56 84 112 
Snowmass 166.0 165.3 165.5 166.3 166.8 166.3 28.5 27.8 28.3 28.8 29.3 28.3 

year# 2011 2012       year# 2011 2012        
lsdG 0.4 0.3     

 
lsdG 0.3 ns        

lsdN ns ns     
 

lsdN ns ns        

lsdGxN ns ns     
 

lsdGxN ns ns        

† Day of year, from 1 January (DOY). 

‡ Within columns, when genotype is a significant effect, mean comparison is done according to lsd (α =0.05). 
§ Grain filling period was calculated from plot level data as the difference between physiological maturity and heading date. 

¶ Bold font for the lsd values indicate significance at .05 probability level, respectively; ns is not significant 

#Year was significant at P < .05. 
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Table 2.5.  Adjusted means, summary statistics and the analysis of variance for twenty genotypes grown at Akron, CO in the 2010-2011 growing 
season for biomass and nitrogen yield and efficiencies. Genotypes are arranged in order of decreasing nitrogen use efficiency. 
 

 Nitrogen Yield¶ Biomass Production and N Recovery Efficiencies# 

Genotype† Grain 
Yield 

GPRO
‡ 

TDWaY
§ 

Shoot Grain Straw NRE
M 

PANU NUE†† NUpE†† NUtE†† NHI HI 

 Mg 
ha-1 

g kg-1 kg ha-1 kg ha-1 kg kg-1  

Byrd 4.9 105.6 7363 110.6 92.0 2.12 102.1 -12.18 3.84 46.7 0.02 1.02 3.82 45.7 0.82 0.45 

Denali 4.7 107.0 7140 106.5 89.4 0.99 102.4 -14.42 3.81 45.3 -0.03 0.97 3.82 45.8 0.86 0.41 

Winterhawk 4.8 109.7 6683 100.9 94.0 1.61 93.8 -2.56 3.81 45.3 -0.08 0.93 3.86 47.4 0.91 0.43 

Above 4.6 110.6 6522 93.8 90.7 0.97 90.7 0.42 3.79 44.4 -0.15 0.86 3.93 51.1 0.98 0.45 

Hatcher 4.6 107.3 6659 108.9 88.4 1.78 101.0 -13.43 3.79 44.4 0.00 1.00 3.78 44.0 0.83 0.44 

Ripper 4.6 113.1 6613 102.6 93.0 1.42 95.1 -3.77 3.78 44.0 -0.08 0.92 3.85 46.9 0.93 0.45 

CO940610 4.5 112.5 5946 87.8 90.1 0.98 84.7 3.56 3.77 43.5 -0.21 0.81 3.96 52.6 1.01 0.44 

Ankor 4.5 111.1 6715 101.3 89.1 1.74 98.4 -12.14 3.77 43.4 -0.07 0.93 3.82 45.7 0.88 0.43 

Brawl CL 
Plus 4.5 118.4 6633 100.0 94.7 1.36 94.4 -1.08 3.77 43.2 -0.11 0.90 3.84 46.5 0.98 0.42 

Jagger 4.4 117.1 6712 100.6 93.9 1.11 97.2 -3.33 3.76 43.2 -0.09 0.91 3.84 46.3 0.94 0.43 

Danby 4.6 110.2 6460 94.3 89.8 1.22 90.6 -1.82 3.76 43.1 -0.15 0.86 3.91 49.8 0.96 0.42 

Platte 4.5 113.1 6325 97.1 91.0 1.41 93.4 -3.57 3.76 43.1 -0.11 0.89 3.86 47.3 0.94 0.43 

Bond CL 4.6 107.8 6426 102.0 87.6 1.76 94.8 -10.59 3.76 43.0 -0.07 0.93 3.81 45.2 0.85 0.43 

Bill Brown 4.4 109.6 6089 100.3 85.9 1.48 95.8 -11.20 3.75 42.7 -0.09 0.92 3.83 46.0 0.87 0.42 

TAM 112 4.5 112.4 6764 103.4 89.0 1.20 101.2 -11.41 3.75 42.4 -0.06 0.94 3.80 44.5 0.89 0.43 

Snowmass 4.3 110.7 6604 93.0 86.4 1.93 86.8 -2.26 3.72 41.3 -0.15 0.86 3.85 47.1 0.91 0.41 

Prairie Red 4.3 118.5 6463 94.9 91.0 1.30 90.1 -0.08 3.71 41.0 -0.14 0.87 3.84 46.5 0.97 0.43 

Goodstreak 4.2 116.5 7132 108.1 88.4 1.10 106.6 -18.24 3.70 40.5 -0.01 0.99 3.70 40.4 0.83 0.38 

Arlin 4.1 112.9 5797 89.0 83.5 1.39 81.5 1.72 3.69 40.1 -0.19 0.83 3.87 48.1 0.94 0.42 

RonL 4.2 115.1 5993 91.0 85.8 1.27 85.3 -2.03 3.69 39.9 -0.18 0.84 3.83 46.2 0.93 0.42 

mean 4.5 112.0 6552 99.3 89.7 1.41 94.3 -5.92 3.76 43.0 -0.10 0.91 3.84 46.6 0.91 0.43 

min 4.1 105.6 5797 87.8 83.5 0.97 81.5 -18.24 3.69 39.9 -0.21 0.81 3.70 40.4 0.82 0.38 

max 4.9 118.5 7363 110.6 94.7 2.12 106.6 3.56 3.84 46.7 0.02 1.02 3.96 52.6 1.01 0.45 
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 Nitrogen Yield¶ Biomass Production and N Recovery Efficiencies# 

Genotype† Grain 
Yield 

GPRO
‡ 

TDWaY
§ 

Shoot Grain Straw NRE
M 

PANU NUE†† NUpE†† NUtE†† NHI HI 

 Mg 
ha-1 

g kg-1 kg ha-1 kg ha-1 kg kg-1  

N rate ns *** ns * * ** ns ns ***  ***  **  ns ns 

Genotypes 
(G) *** *** *** *** *** *** *** *** ***  ***  *** 

 
*** *** 

N rate x G ns‡‡ * ns ns ns ns ns ns ns  ns  ns  ns ns 

lsdG# 0.07 1.2 177.1 3.0 1.4 0.19 3.43 3.46 0.02  0.03  0.03  0.03 0.01 

* Significant at .05 probability level. 
** Significant at .01 probability level. 
*** Significant at .001 probability level. 

† Within columns, when genotype is a significant effect, mean comparison is done according to LSD (α=0.05). 
‡ Grain protein concentration (GPRO). 
§ Yield of above ground green biomass collected at anthesis (TDWaY). 
¶ Nitrogen yield in the aboveground biomass at anthesis (Shoot), the harvested grain, the straw at maturity, remobilized N (NREM), and post-
anthesis N uptake in the grain and straw (PANU). 
# Trait values are N use efficiency (NUE), N uptake efficiency (NUpE), N utilization efficiency (NUtE), N harvest index (NHI), and harvest index 
(HI). 
†† To stabilize variance before analysis, trait values were transformed by taking the natural logarithm. Those values are in the first column with 
back-transformed values in the second column for each trait. 
‡‡  ns, not significant 
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Table 2.6.  Adjusted means within and across five nitrogen rates (0, 28, 56, 84, 112 kg ha-1) for grain 

protein concentration and N yields and recovery efficiencies at Akron, CO in the 2010-2011 growing 

season. 

Trait† Units combined 0 28 56 84 112 lsdN 

Grain 
Protein 

g kg-1 112.0 95.5 106.2 112.2 121.6 124.3 *** 

Shoot 
NY 

kg ha-1 99.3 78.7 95.9 98.8 103.2 120.0 * 

Straw 
NY 

kg ha-1 1.4 0.6 1.2 1.2 2.1 2.0 ** 

NUE‡ kg kg-1 43 74 55 39 31 29 *** 

NUpE‡ kg kg-1 0.9 1.3 1.1 0.9 0.7 0.7 *** 

NUtE‡ kg kg-1 47 54 48 47 43 41 ** 

*,**,*** Significant at .05, .01, .001 probability level, respectively, ns not significant. 

† Traits and use efficiencies are:  grain protein concentration, shoot biomass N yield, straw biomass N 

yield, N use efficiency (NUE), N uptake efficiency (NUpE), and N utilization efficiency (NUtE). 

‡ To obtain normally distributed values, trait values were transformed by the natural logarithm.  Back-

transformed values are presented, as well as significance of the least significant difference (lsd) between 

N rates. 
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Table 2.7.  Correlation coefficients for nitrogen related traits at Akron, CO for 20 hard winter wheat 

genotypes in the 2010-2011 growing season at five nitrogen rates. 

 Applied nitrogen (kg ha-1) 

Trait† 0 28 56 84 112 Combined 

 Correlation coefficient 

NUE vs.       

NUpE (r) 0.80*** 0.30** 0.73*** 0.86*** 0.57*** 0.89*** 

NUtE (rs) ns ns ns ns ns 0.47*** 

NHI (rs) ns ns -0.39** -0.41** ns -0.14** 

       

NUtE vs.       

NUpE (r) -0.68*** -0.84*** -0.71*** -0.58*** -0.55*** ns 

NHI (r) -0.16*** 0.11*** -0.36*** -0.48*** 0.05*** -0.17*** 

       

NHI vs.       

GN (r) ns ns 0.85** 0.85** ns 0.70* 

TDWaNY (r) -0.65*** -0.76*** -0.82*** -0.83*** -0.74*** -0.65*** 

NREM (r) -0.33* ns ns -0.28* -0.35* -0.26*** 

 

*,**,*** Significant at 0.05, 0.01, 0.001 probability level, respectively; ns not significant. 
† Pearson’s (r) and Spearman’s (rs) coefficients are listed, as indicated.  Trait name codes:  NUE, N use 

efficiency; NUpE, N uptake efficiency; NUtE, N utilization efficiency; NHI, N harvest index; GN , 

grain N concentration; TDWaNY, biomass N yield; NREM, N remobilization efficiency. 
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Figure 2.1.  (a) Cumulative precipitation (cumPPT) and (b) growing degree days (cumGDD) at Akron, 

CO during 2010-2011, 2011-2012 and the 103 year cumulative averages for 1910-2012 (103 year 

cumPPT and 103 year cumGDD).  Day of year (DOY) for average heading dates were 30 May 2011 

(DOY 150) and 16 May 2012 (DOY 137).  Average dates of physiological maturity were 4 July 2011 

(DOY 185) and 14 June 2012 (DOY 166).  The growing season begins with the planting date in the prior 

year (negative values for DOY) and extends into the harvest season in the following year (positive values 

for DOY). 



 

78 
 

 

Figure 2.2.  Interaction plot for grain protein concentration (GPRO, g kg-1) adjusted means for 20 hard 

winter wheat genotypes grown at low (0 and 28 kg ha-1) and high (84 and 112 kg ha-1) applied N rates at 

Akron, CO in the 2010-2011 growing season. The least significant difference (α=0.05) for grain protein 
concentration was 1.4 g kg-1.  The dashed line drawn diagonally across the plot bisects the high and low 

values, with the intercept constrained to zero; the solid line is the least squares regression line (high N 

GPRO=66.6 + 0.56 × low N GPRO).  Dash-dotted lines flank the 95% confidence interval.  The 

horizontal and vertical dotted lines indicate the mean grain protein concentration at the high and low N 

rates. 
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Figure 2.3.  Contributions of nitrogen uptake (NUpE, kg kg-1) and nitrogen utilization (NUtE, kg kg-1) 
efficiency to variation in nitrogen use efficiency (NUE, kg kg-1) in hard winter wheat (a) during the 2010-
2011 growing season in Akron, CO among all genotypes within nitrogen rates or across all plots and (b) 
for each of 20 genotypes. Genotypes are arranged from highest to lowest values for nitrogen use 
efficiency. 
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Figure 2.4.  Grain protein deviation of 20 hard winter wheat genotypes grown in Akron, CO during the 
2010-2011 growing season.  Scores are positions on the standard normal distribution (z).  The 95% 
threshold (|z|=1.64, 4.55 g kg-1) is indicated by dashed lines. 
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CHAPTER 3 
 
 
 

STRATEGIES FOR SIMULTANEOUS IMPROVEMENT OF GRAIN YIELD AND GRAIN 

PROTEIN CONCENTRATION IN HARD WINTER WHEAT 

 
 
 

Summary 
 
 
 

Simultaneous improvement of grain yield (GY) and grain protein concentration (GPRO) 

is a central challenge for hard winter wheat (Triticum aestivum L.) breeding.   The priority in this 

study was to counter the troublesome negative association between GY and GPRO by 

identifying an effective strategy for simultaneous selection.  Within a population of hard winter 

wheat breeding lines and varieties grown across the target environment for the Colorado State 

University hard winter wheat breeding program during the 2012 to 2015 growing seasons, 

significant genetic variation for GY and GPRO was observed and a high negative association 

between these traits was confirmed.  This motivated evaluation of selection strategies that may 

distinguish those lines that are high yielding and retain desirable GPRO levels. A set of protein-

yield selection indices combined GY and GPRO trait values, including grain protein yield 

(GPY), grain protein deviation (GPD), and several equally weighted indices that summed pairs 

of standardized single trait values. Correlation analysis showed that selection on index values 

focused to differing extents on GY or GPRO.  Genomic selection applied to index values (direct 

method) provided forward prediction accuracy ranging between r = .21 to .44 for the 2013 

validation set.  Index values were also calculated from univariate or bivariate genomic estimated 

breeding values (reverse method) and applied for selection.  Selection strategies were compared 
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by comparing means and distributions of GY and GPRO phenotypic values in the selected 

fractions.  Genomic selection strategies based on index values provided selection for improved 

GPRO without antagonistic selection on GY. 

Introduction 
 
 
 

Grain yield (GY) is the primary selection target in commercial hard wheat (Triticum 

aestivum L.) breeding programs, with milling and bread-making quality as important secondary 

selection targets.  High-input agricultural systems optimize productivity of high yielding wheat 

varieties (Graybosch et al., 2014; Lollato & Edwards, 2015), but this often comes at the cost of 

decreased grain protein concentration (GPRO) due to a negative genetic correlation with GY 

(Nuttall et al., 2017; Simmonds, 1995).  For hard wheat, flour primary constituents on a sample 

weight basis are carbohydrates in the form of starch (~ 70-75%), water (~ 14%), and proteins (~ 

10-12%), with glutens, the main storage proteins, composing 80-85% of the total grain protein 

(Goesaert et al., 2005).  Gluten proteins are the major determinants of bread-making quality 

through the visco-elastic structure that forms during dough mixing (Goesaert et al., 2005).  The 

positive correlation of GPRO with overall baking quality includes significant genetic correlation 

with individual dough rheological traits (Michel et al., 2018).  Bread-making quality is assessed 

using standardized methods for rheological measurements of dough strength, stability, and 

extensibility and by baking characteristic ratings such as water absorption, loaf volume, and 

crumb structure (Shelton et al., 2008).  With low throughput and high unit costs, these 

assessments are most commonly done in later breeding cycles for relatively few advanced 

breeding lines.  Grain protein concentration is an indirect selection criterion for end-use quality.  
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Relatively fast and inexpensive assessment methods are available that require seed amounts 

suitable for early generation testing of GPRO.  

Simultaneous selection for negatively correlated traits requires careful breeding strategies 

to ensure that desired standards are met for all selection targets, within the resource capacity of 

the program and the desired rate of genetic improvement (Bernardo, 2010).  Additional 

challenges for accurate assessment during early generation testing are capacity constraints as a 

function of  limited replication and environment sampling (Vikas Belamkar et al., 2018).  

Breeding strategies commonly implemented for selection of negatively correlated traits include 

independent culling, where selection is applied to each trait in each breeding cycle, and tandem 

selection, where individual traits are selected in sequential cycles, with order and number of 

cycles based on relative importance (Hazel & Lush, 1942).  Independent culling applied to 

negatively correlated traits slows simultaneous selection for both traits, since the highest scoring 

lines for one trait may be culled upon selection for the other trait.  Similarly, when tandem 

selection is applied to one trait in the initial cycles, the improvement of the second trait is 

consequently limited in subsequent cycles (Schulthess et al., 2016).  Alternatively, selection 

indices may enable efficient simultaneous selection for multiple targeted traits in each cycle, 

including those with negative correlations (Bernardo, 2010). Prior to selection, a single value is 

calculated for total or economic merit, with weighting factors determined through foreknowledge 

of relative heritability and economic or inherent values  (Hazel & Lush, 1942).  Genetic and 

environmental correlations require adjustments to the weights and the final index may balance 

favorable and unfavorable values across all traits (Hazel & Lush, 1942; Schulthess et al., 2016).  

Efficiency of genetic improvement is greater with index selection, but independent culling 



 

90 
 

presents a practical advantage when it is desirable to cull individuals based on traits expressed 

early in the life cycle, prior to availability of data on all traits (Hazel & Lush, 1942).  

Protein-yield selection indices have been applied in cereal grain breeding with the 

objective to overcome the negative genetic correlation of GY and GPRO to accomplish 

simultaneous selection.  Grain protein yield (GPY) is a measure of the total harvested seed N per 

unit area, calculated as the product of GY and GPRO. In cereal grain crops, maximal levels for 

GPY are typically achieved when GY is maximized, often at the cost of low GPRO (Simmonds, 

1995).  Grain protein yield is positively correlated with GY and, less strongly, with GPRO 

(Koekemoer et al., 1999; Simmonds, 1995) and may select lines that attain high GPY through 

high GY or high GPRO (Michel et al., 2019b). Applied to a diversity panel of triticale (× 

Triticosecale) lines, the correlation of GPY with GPRO was negative and the selected fraction 

trended to lines with lower GPRO and high GY, perhaps reflecting a breeding history that 

prioritized GY (Neuweiler et al., 2021).  The correlation of GPY with N uptake and 

remobilization makes it an interesting target for indirect selection for improved nitrogen use 

efficiency (NUE) (Cormier et al., 2013).   

Restricted selection indices hold one trait stable while providing selection pressure for the 

other trait (Kempthorne & Nordskog, 1959).  Grain protein deviation (GPD) is a commonly 

reported protein-yield composite trait that is expressed as the standardized residual of the 

regression of GPRO on GY (Oury & Godin, 2007).  It functions similarly to a restricted selection 

index by identifying genotypes that retain higher than expected GPRO across a range of GY, 

without penalizing GY (Guttieri et al., 2015; Iqbal et al., 2007; Monaghan et al., 2001; Oury & 

Godin, 2007; Rapp et al., 2018; Thorwarth et al., 2018).  Post-anthesis N uptake is positively 

correlated with GPD in some production environments, again providing an avenue for indirect 
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selection for a difficult-to-measure component of NUE (Bogard et al., 2010; Guttieri et al., 

2017).  In a study of durum wheat (Triticum turgidum L. ssp. durum), selection on GPD among 

breeding lines was observed to select more strongly for GPRO than for GY, resulting in selection 

for a high proportion of lines with high GPRO, but low GY, while selecting on GPY had the 

opposite effect (Rapp et al., 2018).  The effects of restricted selection indices were monitored 

through response to selection for GY, GPRO, and GPY (Michel et al., 2019a).  The indices 

incorporated index weights derived from phenotypic or genomic covariances in combination 

with observed values for GY, GPRO, or GPY to distinguish lines that deviated from linear 

regression of pairs of traits, thus being equivalent in structure to GPD.  When top-ranked lines 

from complementary indices were combined, Michel et al. (2019) observed only a marginal 

reduction in the trade-off between GY and GPRO for phenotypic selection, whereas genomics-

based methods promoted positive responses for GY, GPRO, and GPY.  The work was extended 

to restricted selection indices that included additional factors for dough rheological traits (Michel 

et al., 2019a).  Index selection that combined GY with dough rheological traits reduced the 

negative selection pressure on GY relative to an index that included GY and GPRO.  Similarly, 

application of a restricted selection index of GPRO and GPY combined with dough rheological 

parameters held GY stable while advancing end-use quality.   

In Rapp et al. (2018), selection on GPD among durum wheat lines strongly emphasized 

GPRO at the cost of GY. To overcome this undesirable outcome, they evaluated equally 

weighted protein-yield indices that combined standardized values for GY and GPRO or GPD and 

yield deviation.  These indices achieved the desired outcome of identifying genotypes that 

exceeded culling levels for both GY and GPRO (Rapp et al., 2018).  Phenotypic correlations of 

index values with both GY and GPRO were positive, with indices differing in the influence on 
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one trait or the other.  Following Rapp et al. (2018), application of equally weighted protein-

yield indices to a diversity panel and bi-parental populations in triticale identified lines with high 

GY and GPRO (Neuweiler et al., 2021).  A Hazel-Smith Index (Hazel, 1943; Smith, 1936) may 

be developed for  correlated traits by estimation of total merit through the phenotypic and 

genotypic covariances, with consideration of economic weights.  Such an index was compared to 

several restricted selection indices in two rye (Secale cereale) test cross populations (Schulthess 

et al., 2016).  The Hazel-Smith index and the restricted selection indices each strongly influenced 

culling levels for GY and GPRO, providing opportunity to tailor the selection strategy to the 

breeding program objectives. In an effort to develop early maturing varieties with high GY and 

acceptable GPRO in a hard spring wheat program, two Hazel-Smith indices included GY and 

GPRO, plus either maturity or anthesis date (Iqbal et al., 2007).  Except for anthesis date, the 

heritability of the indices was higher than for individual traits, indicating that genetic gain will be 

superior for index selection.  The index that included anthesis date provided positive selection 

pressure for GY and GPRO, while the index that included maturity delivered positive selection 

for GPRO and negative selection for GY.  In a simulation study to predict usefulness of cross 

combinations among a set of hard winter wheat breeding lines, parent selection for improving 

GY and quality traits was performed by the use of a Hazel-Smith index (Yao et al., 2018).  In 

response to index selection, progeny populations were observed that had positive correlations 

between traits that showed a negative correlation in the parent population.  Use of the selection 

index improved quality and GY and produced greater genetic variance in the progeny generation 

(Yao et al., 2018).   

Many genes of small effect underlie quantitative traits such as GY and GPRO.  

Successful breeding strategies for quantitative traits enrich positive effect alleles in a population.  
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Historically, the enrichment was effected through phenotypic selection, but the advent of 

genomic-scale DNA sequencing has enabled marker-based selection for all chromosome 

segments that contribute to trait variation (Meuwissen et al., 2001).  These methods use 

statistical modeling of genome-wide DNA marker effects to estimate breeding values for 

prediction of modeled phenotypes (Heffner et al., 2009).  Genomic selection will complement 

conventional breeding strategies through optimization of field phenotyping resources and 

through earlier recycling of lines as parents in the next breeding cycle (Vikas Belamkar et al., 

2018; Lado et al., 2018; Lozada et al., 2019).  Similarly, culling of lines based on genomic 

predictions may be applied prior to end-use quality assessments, thus focusing laboratory 

resources on lines with the best predicted quality (Hayes et al., 2017).  Enhanced genetic gain 

through improved assessment accuracy and reduced cycle times are additional potential benefits 

of genomic selection (Bassi et al., 2016).   

Breeding programs are moving towards an era where genomics assisted breeding will be 

routine as supportive technologies become economic and available (Poland, Endelman, et al., 

2012; Rasheed & Xia, 2019).  Supportive technologies include cost efficiencies for genotyping 

relative to phenotyping, accelerated computing power, powerful statistical modeling tools, and 

development of reference genome sequences.  Application of genomic selection in wheat 

breeding programs for agronomic, disease and insect resistance, productivity, and quality targets 

has been reported for both single trait models (Asoro et al., 2013; Vikas Belamkar et al., 2018; 

Charmet et al., 2020; Michel et al., 2018; Rutkoski et al., 2015) and multi-trait models (Hayes et 

al., 2017; Lozada & Carter, 2019; Michel et al., 2019a; Schulthess et al., 2016).  Application of 

genome-wide molecular markers for simultaneous improvement of GY and GPRO in breeding 
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populations has been reported for durum wheat (Rapp et al., 2018), hard winter wheat (Michel et 

al., 2016; Michel et al., 2019a, 2019b), and rye (Schulthess et al., 2016).   

Objectives of this study were to develop breeding strategies to enable simultaneous 

selection for improved GY and acceptable GPRO in the Colorado State University (CSU) winter 

wheat breeding program.  Using field data from multi-environment trials conducted over four 

field seasons, phenotypic and genetic variance, heritability and correlation among the traits GY, 

GPRO, GPY, and GPD were determined.  These data were used in selection strategies for 

simultaneous selection of GY and GPRO.  We observed the response to selection for GY and 

GPRO after applying phenotypic single-trait selection, independent culling, and several protein-

yield selection indices.  We extended the methods to single-trait and multi-trait genomic 

selection. 

Materials and methods 
 
 
 

Environments and genotypes 

Thirty-two environments (ENV) represented the CSU wheat breeding and genetics 

program target population of environments, including rainfed and irrigated nurseries during the 

2012 to 2015 growing seasons (Table 3.1). Data were also derived from agronomic studies 

including N fertilization trials with limiting or replete N application and a drought study with 

limited irrigation.  The combination of harvest year, location, and trial type produced 32 datasets 

(Table 3.2). These ENV sampled diverse agronomic conditions across the target environment for 

the CSU wheat breeding and genetics program.  Plot level GY and GPRO were collected for a 

population of 790 breeding lines and released varieties (Supplementary table 1).  The breeding 

lines were at several stages of development (Table 3.2):  elite lines in 3rd year of evaluation 
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(CSU Elite), lines in 2nd year of evaluation (Advanced Yield Nursery, AYN), doubled haploid 

lines in the AYN (DH), and diverse lines from earlier CSU cohorts (training panel, TP). Each 

genotype was assigned a breeding cycle cohort based on its initial entry year in the AYN, as 

follows:  the TP and lines in the 2012 CSU Elite trials into the ‘2012’ cohort, the lines in the 

2013 AYN into the ‘2013’ cohort, and those in the 2014 AYN and 2015 CSU Elite in the ‘2014’ 

cohort (Table 3.2). 

Experimental design 

Plots were planted in six rows with 23 cm spacing between rows and 30 cm spacing 

between adjacent plots. Experimental units (plots) for the N trials were 1.8 m long and 1.5 m 

wide, with 2.7 m2 harvested area.  All other trials were planted in the same row spacing, with 

plot length of 3.7 m and 5.5 m2 harvested area.  In the 2012 N trials, two replications of each 

entry were randomized in an augmented incomplete block, latinized row-column design (John & 

Williams, 1995) with varieties ‘Byrd’ (Haley et al., 2012a), and ‘Denali’ (Haley et al., 2012b) 

included as checks in about 8 percent of plots (4 percent for each variety).  In the 2013 N trials, 

the row-column randomization of entries augmented a partially-replicated alpha-lattice design 

(Williams et al., 2011) where all repeated Byrd checks (about 6% of the plots), replicated checks, 

and 29% of the entries were included in both replications.  Three released varieties (Byrd; ‘Brawl 

CL Plus’, (Haley et al., 2012c); ‘Antero’, (Haley et al., 2014) were included as replicated checks.  

The entries in the 2013 CSU Elite trials were randomized in two complete blocks arranged in a 

latinized row-column design (Williams, 1986).  A set of 85 genotypes included in the 2014 

cohort were initially tested in the 2014 AYN with 15 selected genotypes advanced for further 

testing in 2015.  Plots with both GY and GPRO data recorded in a single replicate at one to three 
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2014 locations and a single replicate at three 2015 CSU Elite trial locations were included in the 

analysis.  Trait values for the 85 genotypes were calculated as means across ENV.     

Phenotypes 

Grain weight and moisture concentration were recorded by an on-board measuring 

system (HarvestMaster, Logan UT) during combine harvest.  Grain weight was adjusted to 120 g 

kg-1 (12%) moisture concentration for calculation of grain yield on a per area basis (GY, Mg 

ha-1).  Grain N concentration as a percentage of grain dry weight was estimated by near infrared 

reflectance spectroscopy (NIR) using a Foss DS2500TM Feed and Forage analyzer (Foss North 

America, Eden Prairie, MN)).  A conversion factor of 5.7 was applied to calculate percent grain 

protein (Baker, 1979), followed by conversion to metric units for grain protein concentration 

(GPRO, g kg-1).  

At the plot level for all genotypes, GY and GPRO values were combined to calculate two 

protein-yield indices.  Grain protein deviation (g kg-1) values were calculated as the Studentized 

residuals of the linear regression of GPRO on GY by rank-based estimation in the Rfit package 

v.0.23.0 (Kloke & McKean, 2012) in R (R Core Team, 2016).  This robust regression method 

iteratively ranks residuals via a dispersion function, and then re-fits the model until the fit 

converges.  The method reduces the influence of extreme values on the estimation of GPD, 

analogous to the trimming algorithm applied in an earlier study (Oury & Godin, 2007).  Grain 

protein deviation enables selection for lines that have higher than expected GPRO at a given GY 

level, across the range of GY.  On a plot level basis, GPY (Mg ha-1) was calculated as the 

product of GY (Mg ha-1) and GPRO (g kg-1).   
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Best linear unbiased predictors (BLUPs) and variance components for each trait were 

estimated within each of the 20 ENV that contained the 2012 and 2013 cohorts with the 

following mixed model: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜇𝜇 + 𝑔𝑔𝑖𝑖 +  𝑎𝑎𝑖𝑖 +  𝑒𝑒𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 

Here, the notation yimn is the observed trait value for genotype(i) in row(m) and column(n),  µ is 

the intercept, gi is the random residual effect for genotype(i), rm and cn are row and column 

random effects that are independently and identically distributed (iid), with rm and cn ~ N(0,𝜎𝜎2), 

and εimn is the random error for genotype(i) in row(m) and column(n) with εimn ~ N(0,𝜎𝜎𝜀𝜀2).  

Variance components were estimated for each environment using the restricted maximum 

likelihood algorithm (REML). The average number of replications per entry within a location 

was calculated (rep) and then broad sense heritability (H) on an entry mean basis was calculated 

according to  Fehr (1987): 

𝐻𝐻 =  
𝜎𝜎𝑔𝑔2𝜎𝜎𝑔𝑔2 +  

𝜎𝜎𝑒𝑒2𝑎𝑎𝑎𝑎𝑢𝑢 

Under the assumption that the trial environments are a random sample from a population 

of target environments, a two-stage procedure was applied to estimate ‘true’ genotypic values. 

First, within each of the 20 ENV that contained the 2012 and 2013 cohorts, best linear unbiased 

estimates (BLUEs) were derived for each ENV by modeling genotype as a fixed effect 

(Supplementary table 2). A set of homogeneous and heterogeneous residual variance structures 

(Table 3.3) were used to fit the spatial field variation for each ENV (Butler et al., 2009), with 

model selection guided by convergence and the Akaike Information Criteria difference (ΔAIC) 

between models (Burnham, 2010).  Weighting factors for each ENV (𝑤𝑤𝑝𝑝) were calculated as the 
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ratio of the average error mean square across ENV (𝐸𝐸𝐸𝐸𝐸𝐸) and the error mean square within an 

ENV (𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝), multiplied by the number of reps within an ENV (𝑎𝑎𝑎𝑎𝑢𝑢𝑝𝑝).  In the case of partially 

replicated designs, the average number of reps across all entries was used. 

𝑤𝑤𝑝𝑝 =  𝑎𝑎𝑎𝑎𝑢𝑢𝑝𝑝 ∗  
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝 

In a second stage, the BLUEs and weights were subject to a combined analysis with genotypes 

and ENV as random effects to obtain best linear unbiased predictors (BLUPs) across ENV for 

each genotype: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 =  𝜇𝜇 + 𝑔𝑔𝑖𝑖 +  𝑎𝑎𝑖𝑖 +  𝑦𝑦𝑘𝑘 + 𝑤𝑤𝑝𝑝 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘 

In this weighted model, 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 is the ENV BLUE, µ is the intercept, gi is the random effect (BLUP) 

for genotype(i) with iid gi ~ N(0, 𝜎𝜎𝑔𝑔2), tj and lk are random effects for year and trial, with iid tj and 

lk ~ N(0,𝜎𝜎2), wp is the single ENV weighting factor covariate, and εijk is the random residual 

effect for genotype(i) in year(j) and trial(k) with iid εijk ~ N(0,𝜎𝜎𝜀𝜀2).  Phenotypic correlations 

among traits were computed from the BLUPs.  Mixed model analyses were performed using the 

package ASReml-R (Version 3, Butler et al., 2009) in the statistical software R (R Core Team, 

2016).       

Means comparisons for groups containing the top or bottom 20 ranked genotypes for 

GPD and GPY BLUPs were performed using the Student’s t-test.  Data visualizations, the 

Shapiro-Wilk test for Normality, and Levene’s test for equality of variances were performed in 

preparation for choosing methods for means comparisons between groups.  Equally weighted 

protein-yield selection indices were calculated according to the method of Rapp et al. (2018) by 

summing ‘z-scores’ for included traits.  First, GY, GPRO, GPY, and GPD phenotypes (xij), as 
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BLUPs for the 2012 and 2013 cohort and as entry means for the 2014 cohort, were standardized 

and centered using the base R function scale (R Core Team, 2016).  For individual i and trait j  

with trait mean 𝜇𝜇𝑖𝑖 and trait standard deviation stdvj, ‘z-scores’ (zij) were calculated as: 

𝑒𝑒𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 =  𝑖𝑖𝑖𝑖𝑖𝑖 – 𝜇𝜇𝑖𝑖 𝑢𝑢𝑖𝑖𝑖𝑖 =  
𝑒𝑒𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖  

Equally weighted selection indices, with weights equal to 1 or 3, were then constructed by 

summing scaled trait values in the following combinations:  GY + GPRO, 3*GY + GPRO, GY + 

GPD, GY + GPY, GPY + GPD, and GPY + GPRO.  The approximation of economic values and 

of phenotypic and genotypic correlations of included traits is contained within the index weights 

(Hazel and Lush, 1942).  Genotypes that ranked in the top 20% of index values were retained in 

the selected fraction.  The selection threshold was based on index values, while the breeding 

target was to identify genotypes with high GY and GPRO. To compare selection strategies, the 

selection response was determined from the selection differentials for standardized values for 

GY and GPRO.  These were calculated as the difference of means between the selected fraction 

and the population. 

Marker genotypes 

Genome-wide markers were generated according to the genotyping-by-sequencing 

method (GBS, Elshire et al., 2011), as modified for a two-enzyme system (Poland, Brown, et al., 

2012).  During GBS library preparation, DNA is treated with methylation sensitive restriction 

endonucleases (PstI and MspI) which preferentially target gene-rich lower copy regions. 

Genomic DNA was extracted from bulked leaf tissue from 10 seedlings per line at the single leaf 

stage in a 96-well format using King Fisher 96 magnetic bead extraction kits on the King Fisher 

Flex Purification System (ThermoFisher Scientific Inc., Waltham, MA, USA).  Multiplexing of 
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barcoded libraries was done at 96-plex or 192-plex, with a single blank well in each plate 

assigned at random for a sample tracking and cross-contamination control.  Sequencing was 

carried out in a single lane for each multiplex library on an Illumina HiSeq2000 instrument 

(Informatics Research Core Facility, University of Missouri, Columbia, MO).  Reference 

sequence-based single nucleotide polymorphism calls were made according to the TASSEL-

GBSv1 Pipeline (Glaubitz et al., 2014).  Single nucleotide polymorphism markers (SNPs) were 

anchored on the wheat reference genome, IWGSC RefSeq v1.0 (Alaux et al., 2018).   

The GBS method randomly samples the genome, resulting in a sparse genotype matrix 

with missing values for individual SNPs across a population.  Statistical models do not support 

missing values, necessitating marker imputation.  The multivariate normal expectation 

maximization (EM) algorithm (Poland, Endelman, et al., 2012) was applied for marker 

imputation, retaining all markers with fewer than 30% missing values and a minor allele 

frequency that exceeded 3%.  The assumption of multivariate normal distribution of marker 

genotypes is incorrect for biallelic markers, but the algorithm provides improved estimation of 

missing marker genotypes over simple mean estimation.  Marker imputation and estimation of 

the realized relationship matrix (G matrix) was performed with the function A.mat from the 

package rrBLUP (Endelman, 2011) within the statistical software R (R Core Team, 2016).  

Principal components analysis (PCA) of the G matrix was performed within the base R function 

eigen (R Core Team, 2016). 

Genomic mixed models 

Univariate (UV) or bivariate (BV) genomic best linear unbiased prediction (G-BLUP) 

models (VanRaden, 2008) fitted BLUPs to predict genomic estimated breeding values (GEBV) 

for GY, GPRO, and several protein-yield indices. Prediction modeling was performed using the 
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package ASReml-R (Version 4, Butler et al., 2017) in the statistical software R (R Core Team, 

2016).  Multi-trait models for correlated traits may improve model accuracy through information 

sharing in the genotypic and phenotypic covariance matrices (Jia & Jannink, 2012).  Bivariate 

models separately estimated GEBVs for pairs of traits, as follows:  GY and GPRO, GY and 

GPD, GY and GPY, and GPY and GPD.   

The G-BLUP model is analogous to the ‘animal model’ (Henderson, 1984), but with the 

pedigree relationship matrix (A matrix) replaced by the G matrix: 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒆𝒆 

The input 𝒚𝒚 is an 𝑖𝑖𝑖𝑖  𝑖𝑖 𝑞𝑞𝑖𝑖 matrix of BLUPs for genotype(i) and trait(j) obtained in the phenotypic 

mixed model analysis. The univariate model is a special case where 𝑞𝑞 = 1.  The design matrix 𝑿𝑿 

relates the fixed effects 𝑿𝑿 to observations (1𝑁𝑁𝑏𝑏𝑖𝑖). The design matrix 𝒁𝒁𝒊𝒊 relates random genetic 

effects to observations.  The vector 𝒁𝒁 contains additive genetic effects (GEBVs) for all traits for 

each entry, with genetic variance 𝜎𝜎𝑢𝑢2 ~ 𝑁𝑁(0,𝑮𝑮).  Residual errors 𝒆𝒆 follow a multivariate normal 

distribution ~ 𝐸𝐸𝑁𝑁(0, 𝑰𝑰𝒏𝒏𝜎𝜎𝑒𝑒2), where the diagonal is a vector of zeros and the residuals are 𝑖𝑖 𝑖𝑖 𝑖𝑖 

identity sub-matrices for each trait.  The count of phenotypic records is the summation of all 

observations for each individual for each trait (𝐸𝐸𝑁𝑁 =  ∑ 𝑖𝑖𝑖𝑖𝑞𝑞1 ).  The G matrix captures the 

correlation of random genetic effects among related entries through its off-diagonal elements 

(gij). Correlation and covariance structures which allow non-zero variance for the random genetic 

effects were evaluated, with model selection guided by the likelihood ratio test and model 

convergence status.  In the bivariate models, unstructured heterogeneous covariance structures 

fitted the genotypic and residual covariance matrices.  In the univariate models, a diagonal 

residual structure was fitted.   
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Variance components were estimated using the restricted maximum likelihood algorithm 

(REML) and were applied to calculate narrow sense heritability (ℎ2) for each trait as follows:   

ℎ2 =
𝜎𝜎𝑢𝑢2𝜎𝜎𝑢𝑢2 +  𝜎𝜎𝑒𝑒2 

Model performance was assessed within repeated 5-fold cross-validation of the training data and 

by forward prediction of a validation data set.  For cross-validation, the training data were 

randomly divided into five folds by applying the sample function in R (R Core Team, 2016).  

Phenotypes were masked in one fold and predicted by model parameterization using the other 

four folds.  Five repeats of cross-validation were performed, each with a new random sampling 

for cross-validation folds.  Model predictive ability within each cross-validation fold was 

calculated as the Pearson’s correlation between the BLUPs and the GEBVs.  Additionally, I 

calculated forward predictive ability in each fold for genotypes in a validation set.  Correlation 

coefficients were averaged across five folds and then averaged across five repeats of cross-

validation.   

During advancement in the breeding program, pedigrees typically advance across years 

with parents preceding progeny in the testing nurseries.  In 12 of the included 280 pedigrees, 

initial testing of a few of the sibling lines took place in a later growing season.  To maintain a 

greater degree of independence of testing and validation datasets (Runcie & Cheng, 2019), the 

earliest tested year for a pedigree was assigned as the testing cohort for each sibling line, 

regardless of its actual initial entry in the trials (designated in column GRP_2 in Supplementary 

table 1).  This was done to minimize biasing of model prediction accuracies through non-

independence of training and validation data (Runcie & Cheng, 2019).  To prepare a correlation 

matrix for visualizing relationships among GEBVs determined by different models,  Pearson’s 
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correlation coefficients were also calculated by the ‘hold’ method (Zhou et al., 2016) where the 

correlation was calculated after all the phenotypes had been predicted, rather than within each 

cross-validation fold ('Instant' method, Zhou et al., 2016).  All analyses were performed within 

the statistical software R (R Core Team, 2016).   

Selection strategies 

The priority in this study was to counter the troublesome negative association of GY and 

GPRO by identifying an effective strategy for simultaneous selection.  An optimal selection 

strategy would apply positive selection pressure for both GY and GPRO.  Accordingly, after 

applying a selection method to rank genotypes, the top 20% were retained and then the method 

was evaluated according to its impact on the selection response for GY and GPRO.  To compare 

selection strategies, the selection response was determined from the selection differentials for 

GY and GPRO.  Independent culling is a selection strategy where thresholds are applied to each 

trait in each selection cycle to achieve the overall desired selection intensity.  Independent 

culling was applied by first ranking genotypes for GY, retaining the top 40%, and then retaining 

the top 50% based on GPRO within the selected fraction to identify the top 20% overall.  Equally 

weighted protein-yield indices were calculated from BLUPs prior to genomic selection modeling 

(univariate selection indices) and were also calculated from GEBVs derived from bivariate 

models (bivariate selection indices).  In Schulthess et al. (2016), these methods were termed 

‘direct’ and ‘reversed’, respectively.  A selection threshold of the top 20%, based on percentile 

ranks of BLUPs or GEBVs, was applied for each single trait and protein-yield index.  The 

Kruskal-Wallis test and the Dunnett’s multiple comparison (p < .05) were applied to evaluate 

whether the distribution of standardized scores for GY and GPRO were the same among the 

selection cohorts for each single trait and protein-yield index.  Dunnett’s method contrasts to the 
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base population or to the selection cohorts obtained by independent culling were done to identify 

selection strategies that may enable simultaneous selection.  The subset of methods which 

showed significant differences were then all compared by applying the Tukey procedure.  

Significance was tested at an alpha probability level of .05 for all means comparisons. 

Results 

 

 

 

Environment Characterization  

Management practices in the context of seasonal weather conditions are strong 

determinants of GY and GPRO for the wheat crop produced in the Great Plains (Peairs & 

Armenta, 2010).  Among the test environments in this study, substantial phenotypic variation for 

all traits reflected both genotypic differences and climatic impacts on crop productivity across 

the typically variable Colorado conditions.  Detailed descriptive summaries of agronomic 

conditions are available in the annually published “Making Better Decisions” guides, accessed at 

the Colorado Variety Testing Program website (https://csucrops.agsci.colostate.edu/) or the 

Mountain Scholar repository (https://mountainscholar.org/handle/10217/100000).  The 2012 

wheat crop had a good start due to adequate soil moisture during stand establishment in the fall, 

but drought set in during the winter months with continuing drought conditions through harvest.  

Harvest was two to three weeks early across Eastern Colorado due to hot spring and summer 

conditions, resulting in reduced grain yield.  The 2012 environmental averages for GY ranged 

from 2.5 Mg ha-1 to 4.1 Mg ha-1 and average GPRO ranged from 100 to 151 g kg-1.  In 2013, 

yields were also limited, but by a different pattern of environmental stressors.  Overall, the 

conditions at planting were extremely dry, limiting crop establishment.  Conditions remained dry 

through the winter and spring, but a cool spring improved the crop outlook.  However, summer 
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drought again suppressed yields at the dryland sites, resulting in a range for average GY of 1.3 

Mg ha-1 to 6.2 Mg ha-1 and average GPRO from 113 to 172 g kg-1.  Abundant September rains 

over much of Eastern Colorado provided good soil moisture for the 2014 crop establishment.  

The winter was dry and windy, but cool spring conditions, with adequate summer rains, 

conditioned high yields in most locations, with average GY ranging from 3.3 Mg ha-1 to 7.9 Mg 

ha-1 and average GPRO ranged from 108 to 128 g kg-1.  Warm and moist conditions favored crop 

establishment in the fall of 2014.  Temperatures fluctuated widely during the winter and spring, 

promoting winterkill and freeze damage across the production area.  Conditions were wet during 

May and hot during June through to harvest of the 2015 crop.  Average grain yield across entries 

included in this study in the 2015 CSU Elite trial ranged from 4.0 Mg ha-1 to 6.5 Mg ha-1 and 

average GPRO ranged from 116 to 141 g kg-1 for the three locations.   

Box and whiskers plots display the distribution of trait values recorded during harvest 

years 2012 to 2015 for genotypes that initially entered the performance trials during the 2012 to 

2014 growing seasons (Figure 3.1).  Summary statistics for plot level phenotypic data for 

measured and calculated trait values for GY, GPRO, GPY and GPD are recorded in Tables 4 and 

5.  All trait distributions within each ENV approximated the normal distribution.  Within 

environments, the line of best fit for the ranked regression of GPRO on GY showed a negative 

slope in all but four ENV (Table 3.4). Across ENV (Figure 3.2), GY showed a negative 

correlation (r = -0.48, p < .05) with GPRO and a strong positive correlation with GPY (r = 0.93, 

p  < .05), but was not correlated with GPD.  The correlation coefficient for GPRO was positive 

with GPD (r = 0.34, p < .05) and negative with GPY (r = -0.16, p < .05), though with a lesser 

magnitude than for GPRO and GY. These data provided the platform to explore strategies for 

simultaneous selection for improved grain yield and acceptable grain protein concentration.   
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Mixed model analysis of phenotypic values 

A two-stage mixed model analysis was used to estimate trait values for each of 676 check 

varieties and breeding lines from the 2012 and 2013 trialing cohorts.  In the first stage, single 

ENV were analyzed in mixed models to obtain best linear unbiased estimates (BLUEs) for fixed 

effects of all included genotypes for GY, GPRO, GPY, and GPD (Supplementary table 2).  The 

best models in all ENV included separate residual terms, estimated as two-dimensional spatial 

variance structures (Butler et al., 2009) to account for field variation within the row-column 

design of each nursery (Table 3.6). The distribution of BLUEs within ENV reflects the high 

genotypic variation for all traits (Table 3.6).  Mean GY BLUEs ranged from 1.32 Mg ha-1 in the 

2013 Akron DH-AYN to 6.94 Mg ha-1 in the 2014 Fort Collins CSU Elite trial.  The variation for 

GY BLUEs within ENV illustrates the wide range of productivity environments included in this 

study (Figure 3.3).  Mean GPRO BLUEs ranged from 100.0 g kg-1 in the 2012 Fort Collins 

irrigated NL-TP trial to 152.1 g kg-1 in the 2012 Akron NH-TP trial.  Variance components, 

heritability estimates and weighting factors for each ENV are reported (Table 3.7).  Heritability 

ranged from 0.12 to 0.81 for GY, 0.10 to 0.92 for GPRO, 0.06 to 0.89 for GPY and 0.12 to 0.79 

for GPD.  In the second stage, BLUPs for each genotype were determined within a combined 

analysis across 20 environments (Supplementary table 3).  This analysis approximates peak 

performance for each genotype within the target environment, as represented by the sample of 

ENV included in this study (de la Vega et al., 2007).  A bivariate plot of GY and GPRO BLUPs 

illustrates the strong negative relationship between these traits (Figure 3.4), a characteristic 

known to include an underlying genetic component (Simmonds, 1995). The scatter of the data 

around the regression line and the low R-squared value display the substantial variation in GPD, 

across the range of GY values.  



 

107 
 

Simultaneous phenotypic selection strategies for GY and GPRO 

When independent culling is applied to traits with significant negative genetic 

correlation, selection may be mutually antagonistic, where the unit change in one trait will result 

in the opposite direction unit change for the other, scaled by the strength of the correlation 

(Bernardo, 2010).  Consequently, given their strong negative correlation, selection for the highest 

yielding lines as a first step during independent culling will eliminate the lines with the highest 

GPRO levels and vice versa (Schulthess et al., 2016).  The protein-yield index, GPD, 

distinguishes genotypes that have higher GPRO than expected at a given GY level and when 

calculated across diverse environments reliably classify genotypes as having positive or negative 

GPD (Oury & Godin, 2007).  Genotypes with the highest and lowest rankings for GPD BLUPs 

were consistently negative or positive across diverse ENV (Figure 3.5).  The variety Brawl CL 

Plus was ranked eleventh for positive GPD in this study among tested lines, consistent with the 

variety characteristics of acceptable GY and superior milling and baking quality (Haley et al., 

2012c).  Grain protein yield is a protein-yield index that considers productivity for GPRO as a 

function of GY.  The variety ‘Ripper’ (Haley et al., 2007) was ranked thirteenth for GPY among 

tested lines, consistent with release notes that identified key characteristics of superior GY, 

baking and milling qualities (Haley et al., 2007).  The protein-yield indices, GPD and GPY, 

showed opposite patterns for selection response for GY and GPRO (Figure 3.6).  Selection on 

high positive values for GPD showed a negative selection response for GY and a strong positive 

response for GPRO (Figure 3.6, panels a and b).  After selection based on GPD, the mean 

standardized score for the top 20 ranked lines for GY was slightly reduced (-0.161 Mg ha-1) 

while GPRO was increased (9.23 g kg-1).  In contrast, selection on GPY (Figure 3.6, panels d and 

e) identified genotypes with superior GY (0.374 Mg ha-1), while holding GPRO stable (0.58 g 

kg-1).  Grain protein deviation and GPY have complementary patterns of selection response for 
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GY and GPRO, but also show positive selection responses for each other (Figure 3.6, panels c 

and f).  To further enhance simultaneous selection for GY and GPRO, additional selection 

strategies were explored that combined traits in additional protein-yield selection indices. 

The objective of exploring protein-yield indices is to identify genotypes with superior 

values for both GY and GPRO through their correlated response to selection on the trait or index 

values.  Trait values for 661 genotypes from the 2012 and 2013 cohorts were standardized and 

centered to scale to standard deviation units to produce ‘z-scores’.  Equally weighted selection 

indices were calculated by summing pairs of scaled traits:  GY+GPRO, 3*GY+GPRO, 

GY+GPY, GY+GPD, GPY+GPD, and GPY+GPRO.  The top 20 % of genotypes based on 

rankings of z-scores for single traits or selection indices identified the selected fraction.  

Selection differentials were calculated as the difference of the mean z-scores of the selected 

fraction and the selection candidates. The selection strategies were compared through the 

correlated response of GY and GPRO. The correlated response for GY (z = -0.62) after selection 

on GPRO or for GPRO (z = -0.68) after selection on GY shows the expected antagonistic 

responses and strong negative correlations (Table 3.8).  Independent culling was applied by 

identifying the top ranked 20% for net merit by first culling the bottom 60% for GY, followed by 

culling the bottom 50% for GPRO among the retained lines. The mean standard scores for the 

selected fraction for GY (z = 0.78) and GPRO (z = 0.31) after independent culling showed a 

positive selection response for both, but the highest value lines for GY and GPRO were 

eliminated.  Selection on GPY held GPRO stable (z= 0.08) and provided positive selection for 

GY (z = 1.09).  On the other hand, GPD selected for increased GPRO (z = 1.34) and for 

decreased GY (z = -0.35).  Both GPD and GPY included the individual with the highest GPRO 

value (z = 4.36) and GPY also retained the individual with the highest GY value (z = 2.87).  Two 
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indices which summed GY with a second trait (GY + GPY and 3*GY + GPRO) showed positive 

selection for GY (z = 1.33 or 1.30), with negative selection on GPRO (z = -0.31 or -0.17).  

Combining GY with either GPD or GPRO created an index with positive selection response for 

both GY (z = 0.77 or 0.63) and GPRO (z = 0.65 or 0.84). Combining GPY with GPD or GPRO 

exerted strong selection pressure on GPRO (z = 0.95 or 1.06), with moderate selection pressure 

on GY (z = 0.40 or 0.30). Each of the equal weighted selection indices retained the individuals 

with the highest values for GY and GPRO.  In Table 3.8, the selection strategies are ordered by 

the relative response to selection for GY and GPRO.  At the extremes are selection on GY or 

GPRO alone, and in the middle are the indices that provide more uniform selection pressure for 

GY and GPRO.  Choice of which protein-yield index to apply during selection will depend on 

breeder objectives during the breeding cycle.  For example, it may be that early generation 

selection would emphasize simultaneous selection to retain diversity, with later cycles 

emphasizing selection for superior performance for GY and other traits essential to growers, 

millers, and bakers.   

Marker genotypes 

Marker genotypes were obtained for 775 breeding lines and released varieties, 

representing 280 unique pedigrees (Table 3.9).  Markers with a minor allele frequency that 

exceeded 3% and with fewer than 30% missing values were retained, totaling 53,649 SNPs. The 

resulting n x m matrix of imputed marker scores was used to calculate the n x n realized 

relationship matrix (G, Supplementary table 4).  The diagonal elements (gii) of the realized 

relationship matrix (G) approximate 1 +  𝐹𝐹𝑖𝑖 with the inbreeding coefficient 𝐹𝐹𝑖𝑖 approaching 1 for 

fully inbred lines (Endelman, 2011).  The diagonal elements of the G matrix (gii) showed a 

bimodal distribution with a secondary peak that approached zero and a main peak centered on 2 

(Figure 3.7).  The secondary peak suggests the presence of heterozygosity for some lines, while 
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the peak centered on 2 would represent inbred lines approaching homozygosity. In the bottom 

panels of Figure 3.7, the distribution are displayed in overlapping histograms shaded by selection 

cohort.  The genotypes with diagonal elements approaching zero are from the 2012 growing 

season, which primarily included breeding lines developed through modified bulk selection and 

inbreeding, mostly developed as F3-derived lines.  With this breeding history, these lines retain 

some level of residual heterozygosity.  The 2013 pedigrees and 75% of the 2014 pedigrees were 

doubled haploid breeding lines, as reflected in peaks for the diagonal elements of those groups 

approaching 2.  In the absence of genetic relationships between pairs of genotypes, the 

expectation for the off-diagonal elements of the G matrix (gij) is 
1(1+𝑓𝑓𝑖𝑖)𝑖𝑖  ≈ 0.  The observed 

distribution of the off-diagonal elements suggests the presence of shared ancestry, as expected, 

given the presence of sets of half-sib families among the 280 pedigrees (Supplementary table 5).   

Principal components analysis of the G matrix provides graphical display tools for the 

genetic covariance among genotypes. The first seven principal components (PC) explained 80% 

of the variance contained in the G matrix (Figure 3.8).  Together, the first two PCs explain 

42.4% of the variance.  A biplot of PC1 and PC2 with color-coding by year of entry in the 

trialing network shows some clustering of the genotypes within each selection cohort (Figure 

3.9).  Further examination of the content of the 2012 cluster centered in the biplot identified 

several pedigrees containing single crosses to parents from the Kansas State University breeding 

program.  The dispersed cluster in the upper right quadrant was composed of several double 

haploid families present in the 2014 validation set and in the upper left quadrant from the 2013 

validation set.  The scatter of conventionally derived lines did not display obvious patterns by 

year.  Released varieties from the Colorado State University breeding program and check 

varieties were present in all four quadrants of the PCA biplot. 
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To gain insight into the variance explained by that PC1 and PC2, the degree of linear 

relationship of the PCs with the trait BLUPs from the 2012 and 2013 selection cohorts was 

observed through correlation analysis (Figure 3.10).  Principal component 1 was positively 

correlated with GPRO (r = .7, p < .05) and GPD (r = .6, p < .05) and negatively correlated with 

GY (r = -.63, p < .05) and GPY (r = -.32, p < .05).  It represents variation that captures the 

negative association between GY and GPRO.  On the other hand, PC2 is significantly and 

positively correlated with GY (r = .42, p < .05), GPRO (r = .44, p < .05), GPY (r = .68, p < .05), 

and GPD (r = .57, p < .05).   

Squared cosines (cos2) show the importance of a PC for the position of a given genotype 

(Figure 3.11).  The top 15 cos2 vectors cluster into 3 sets of half- or full-sib pedigrees.  The 

underlying pedigree clusters contribute to target market characteristics, adaptation, and 

productivity.  The cluster with high PC1 values includes the variety Snowmass (Haley et al., 

2011) and its half-sib progeny and may share features that contribute to dough mixing strength.  

Snowmass is marketed within the Colorado Wheat Research Foundation (CWRF) Ardent Mills 

Ultragrain® Premium Program (Haley et al., 2017) and has superior dough strength due its 

allelic combination at the Glu-B1 and Glu-D1 high molecular weight glutenin genes (Cooper et 

al., 2016).  The opposing clusters along the PC2 axis represent half-sib families related to the 

varieties Denali and Byrd.  Each of these varieties was released due to the combination of 

superior yield, sufficient milling and baking quality, and stability across the target environment.  

Their opposing positions on the PC2 scale suggest that diverse allelic combinations 

accomplished the selection targets.  



 

112 
 

Prediction accuracy  

Univariate and bivariate models for measured traits and protein-yield indices were used 

to derive genomic estimated breeding values (GEBVs) through cross-validation and forward 

prediction.  Model training and validation sets included:  1) 405 lines that first entered evaluation 

trials in 2012 predicted the 2013 cohort (N=255), and 2) 660 lines evaluated in 2012 and 2013 

predicted the 2014 cohort (N=85).  For each model, five repeated cycles of cross-validation 

(k=5) produced GEBVs that were averaged within cycles, then across repeats.  For the univariate 

models, predictive ability in cross-validation was high, ranging from r = .67 to .79 (Table 3.10).  

Narrow sense heritability ranged from h2 = .20 to .39 for the univariate traits.  The highest h2 

was observed for the protein-yield index, GPY, when predicted within the 2012 or 2012+2013 

training set (r = .39 and .34), and the lowest for GPRO in the 2012 training set (r = .20), with 

marked improvement with the addition of the 2013 data (r = .31).  Forward predictive ability for 

GY and GPRO of the 2013 validation set was substantially higher (r = .29 and .45) than for 

predictions of the 2014 validation set (r = .16 and .19).  Genomic estimated breeding values for 

protein-yield selection index values were predicted in univariate models using index values 

calculated from phenotypes as the vector of observations ('direct' method, Schulthess et al., 

2016).  Predictive ability for the 2013 validation set ranged from r = .21 to .44, but predictive 

ability approached null or was negative for the 2014 validation set (r = .-.19 to .08).   

Correlated traits in multi-trait models are theorized to improve predictive ability, 

particularly when a low heritability trait is combined with a high heritability trait (Jia & Jannink, 

2012), as demonstrated for sensor-based traits applied in multi-trait models to improve wheat GY 

predictive ability (Crain et al., 2018).  Other studies in wheat have shown little or no improved 

prediction accuracy for multi-trait models that apply balanced data in the training set to predict 
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validation lines (Lado et al., 2018; Ward et al., 2019).  Multi-trait models showed superior 

predictive ability in scenarios where the validation set contained phenotypes for the second trait 

(Lado et al., 2018; Ward et al., 2019), or where balanced training data for a heritable correlated 

trait enabled imputation of missing target trait phenotypes (Schulthess et al., 2016).  We 

compared predictive ability obtained for a target trait in a bivariate model to that obtained in a 

univariate model by calculating their ratio (‘FP ratio’, Table 3.11).  For forward prediction of the 

2013 validation set, predictive ability in the bivariate models was improved over univariate 

model prediction for GY when the paired trait was GPY (1.024), but not GPRO (0.958) or GPD 

(0.961).  The predictive ability for GPY was improved when the paired trait was GY (1.021), but 

not GPD (0.975).  For prediction of 3*GY paired with GPRO in the bivariate model, predictive 

ability improved for 3*GY (1.028), but did not change from the univariate model for GPRO 

(1.000).  For forward prediction of the 2014 validation set, predictive ability for GY was slightly 

better in the bivariate model when the paired trait was GPD (1.006), as was GPY in the bivariate 

model with GY (1.013), while all other bivariate models showed no improvement.  For the 

bivariate model combining GY and GPY or GPD, genetic covariance was positive in sign for 

prediction of the 2013 validation set and negative for prediction of the 2014 validation set.  

Heritability and genetic covariance contribute to efficiency of multi-trait predictions with some 

simulated data sets (Jia & Jannink, 2012).  Here, the trait heritability estimates varied over a 

narrow range across all bivariate models (Table 3.11, h2 = .19 to .40).  Genetic covariance 

between traits included in the bivariate models ranged between -.37 to .41, except when 

modeling GY+ GPY in the 2012+2013 training set where we observed genetic covariance of .88.  

The GY+GPY bivariate model was superior to the univariate model (‘FP ratio’ = 1.024).  In the 

observed ranges of genetic covariance and trait heritability, in some, but not all cases, the 
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bivariate model provided superior predictive ability.  Another consideration for the efficiency of 

bivariate models is their output of a vector of GEBVs for all modeled traits. The obtained 

GEBVs can be applied for selection on individual traits, for selection by independent culling, or 

may be combined into selection indices.  In the context of equivalent or improved prediction 

ability, obtaining GEBVs for correlated traits in a multi-trait model is an opportunity to simplify 

computing and data management processes by running fewer prediction models, with the 

opportunity to improve prediction accuracy.   

Correlation analysis of predicted values 

In preparation for choosing simultaneous selection strategies applied to the GEBVs, the 

‘hold’ method (Zhou et al., 2016) was applied to calculation of Pearson’s correlations between 

BLUPs and GEBVs obtained in univariate and bivariate models. All of the univariate GEBVs are 

highly correlated with the related BLUPs.  Grain yield-related GEBVs (Figure 3.12) were all 

moderately and positively correlated with GY BLUPs (r = .56 to .66, p < .0001).  The GY 

GEBVs obtained in the bivariate models were very nearly the same as those obtained in the 

univariate model (r = .97 to 1, p < .0001). Grain protein concentration-related GEBVs, but not 

GPY (Figure 3.13) were all moderately and positively correlated with GPRO BLUPs (r =.69 

to.73, p < .0001).  The GPRO GEBVs obtained in the bivariate models were very nearly the 

same as those obtained in the univariate model (r = .95 to 1, p < .0001).  Grain protein yield 

GEBVs obtained in the univariate model (Figure 3.14) were highly correlated with GY GEBVs 

(r = .77, p < .0001) and weakly correlated with GPRO GEBVs (r = .07, p < .01).  Similarly, 

when GPY was predicted with bivariate models, it was moderately correlated with GY GEBVs 

(Figure 3.12, r = .56, p < .0001) and weakly correlated with GPRO GEBVs (Figure 3.13, r = .14, 

p < .0001).  Grain protein deviation GEBVs obtained in the univariate model (Figure 3.14) were 
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negatively correlated with GY GEBVs (r = -.33, p < .0001) and highly correlated with GPRO 

GEBVs (r = .97, p < .0001).   Similar results were obtained when GPD was predicted with 

bivariate models, it was highly correlated with GPRO GEBVs (Figure 3.13, r = .70, p < .0001) 

and negatively correlated with GY GEBVs (r = -.31 or r = -.28, p < .0001, data not displayed).  

The GEBVs for GY and GPRO are negatively correlated (Figure 3.14, r = -0.52, p < .0001), so 

selection on these alone would be mutually antagonistic.  Grain protein yield and GPD can be 

seen as restricted selection indices, where for GPY, strong selection pressure is applied for GY, 

while GPRO is held steady, and for GPD, selection pressure is strong for GPRO while GY is 

held steady (Michel et al., 2019a).  Our results support this assertion (Figure 3.14):  correlation 

of GPY with GY (r = 0.77, p < .0001) and GPRO (r = 0.07, p < .01) and of GPD with GY (r = -

0.33, p < .0001) and GPRO (r = 0.97, p < .0001) applied positive selection for one trait, while 

holding the other stable, or reducing the negative selection pressure.   

When applied in phenotypic selection, several equal weighted selection indices were 

found to retain the selection candidates with the highest values for GY and GPRO, but each 

differed for the relative response to selection for GY and GPRO (Table 3.8).  The index values 

were entered in univariate genomic prediction models to evaluate their performance for 

simultaneous prediction of GY and GPRO.  Correlation analysis of the GEBVs for the index 

values with univariate single trait GEBVs is presented in Figure 3.14.  The GEBVs for selection 

index GY+GPRO were positively correlated with all four single trait GEBVs (GY, r = .32; 

GPRO, r = .64; GPY, r = .77; GPD, r = .77, all  p < .0001).  The GEBVs for selection index 

GY+GPD were positively correlated with all four single trait GEBVs (GY, r = .45; GPRO, r = 

.52; GPY, r = .85; GPD, r = .69, all p < .0001).  The GEBVs for selection index GPY+GPD were 

positively correlated with all four single trait GEBVs (GY, r = .22; GPRO, r = .70; GPY, r = .76; 
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GPD, r = .83, all p < .0001).  The GEBVs for selection index 3*GY+GPRO were positively 

correlated with three single trait GEBVs (GY, r = .91; GPY, r = .93, all p < .0001; and GPD, r = 

.09, p < .01) and negatively correlated with GPRO (r = -.11, p < .001).  As was seen for 

phenotypic selection, this index performed as a restricted index, similarly to GPY, by being 

highly correlated with GY and holding GPRO relatively stable.   

Simultaneous genomic selection strategies for GY and GPRO 

The core interest in this study was to develop strategies for simultaneous selection for GY and 

GPRO.  To this end, the performance of the genomic predictions was further evaluated based on 

the indirect selection response for GY and GPRO in response to selection on predicted values.  

The distribution of GY and GPRO within the selected fraction were determined for each 

selection strategy. Standardized phenotypic values (z-scores) were calculated for GY and GPRO 

BLUPs in the validation set to convert the values to the same scale.  Summary statistics for the 

GY and GPRO z-scores are reported for the 2013 validation set and selected fractions (Table 

3.12) and the 2014 validation set and selected fractions (Table 3.13).  The Kruskal-Wallis test 

(Kruskal & Wallis, 1952) (𝛼𝛼 = .05) was applied to compare GY and GPRO z-score distributions 

in the selected fractions to the base distribution in the validation set.   The distribution of GY in 

the selected fractions did not differ from the validation set, while the distribution of GPRO 

differed from the validation set for at least one selection strategy.  Next, the Dunnett’s multiple 

comparison procedure (𝛼𝛼 < .05) (Dunnett, 1955) was applied to identify which selection 

strategies impacted GPRO by contrasting the mean GPRO for each selected fraction to the mean 

of the validation set.  For selections applied to the 2013 validation set (Table 3.12), three 

selection strategies showed a selection response for GPRO.  The univariate selection index 

GPY+GPD increased mean z-score for GPRO from -0.19 in the validation set to 0.60 in the 
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selected fraction (D = 0.79, 𝛼𝛼 = .001).  Bivariate GEBVs for GPY and GPD were summed to 

construct a vector of selection index values that were applied to obtain the 20% selected fraction. 

The mean z-score for GPRO increased from -0.19 in the validation set to 0.52 in the selected 

fraction (D = 0.71, 𝛼𝛼 = .001).  When bivariate GEBVs for GPY and GPD were used for 

independent culling to obtain the 20% selected fraction, the mean z-score for GPRO increased 

from -0.19 in the validation set to 0.34 in the selected fraction (D = 0.53, 𝛼𝛼 = .01).  For 

selections applied to the 2014 validation set (Table 3.13), the univariate selection index 

3*GY+GPRO reduced GPRO in the selected fraction (D = -0.86, 𝛼𝛼 = .05). Forward predictive 

ability of all indices (Table 3.10) and bivariate traits (Table 3.11) for the 2014 validation set was 

consistently low.  The low predictive ability for the 2014 validation set may stem from not 

adequately accounting for impacts of environmental factors on trait values.  The 2014 growing 

cycle was highly productive, with minimal drought, unlike the prior two cycles.  The 2015 

nurseries experienced winter conditions that resulted in winterkill and late spring freezes that 

limited yield productivity.  The magnitude of the negative relationship of GY and GPRO can be 

strongly influenced by environmental conditions (Haile et al., 2018; Iqbal et al., 2007; Michel et 

al., 2019b; Neuweiler et al., 2021; Rapp et al., 2018).  We observed three environments in the 

2014 and 2015 seasons with slopes that did not differ from zero (not significant, Table 3.4).  

These environments may have effected changed genotypic responses that impacted both GY and 

GPRO, but were not captured in prediction models from 2012 and 2013 season data for the 85 

lines in the 2014 validation set.     

To identify the best of the alternative selection strategies, means comparisons by the 

Tukey method were carried out among the subset of 2013 models that showed significant 

differences for GPRO in paired comparisons to the validation set (𝛼𝛼 < .05, Table 3.14).  Based 
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on results of the Dunnett’s test, the selection strategies compared in Tukey means comparisons 

included GPY, univariate and bivariate  selection indices GPY+GPD, and bivariate independent 

culling for GY & GPRO and GPY & GPD.  Relative to the base population, the difference of 

mean GPRO was significantly different for the univariate selection index GPY+GPD (Δz-score = 

0.79, p < .001), bivariate selection index GPY+GPD (Δz-score = 0.71, p < .001), and the 

bivariate independent culling GPY+GPD (Δz-score = 0.53, p < .01), but they did not differ 

among the three strategies (p < .05).  These results suggest that combining GPY and GPD into 

protein-yield indices enables selection for GPRO without antagonistic selection on GY.  The use 

of bivariate GEBVs simplifies the calculation of the selection indices by obtaining needed trait 

values within a single genomic selection model.  During the very short timeline between harvest 

and planting in a winter wheat breeding program, such resource efficiencies are desirable. 

Discussion 
 
 
 

Simultaneous improvement of GY and GPRO is a central challenge for wheat breeders if 

they are to meet the 21st century productivity imperatives while maintaining milling and baking 

quality standards. This is difficult to accomplish given the strong negative relationship of GY 

and GPRO in cereal grain crops (Simmonds, 1995).  Within a diverse population of breeding 

lines and varieties representative of the Colorado State University wheat breeding program, (1) 

index values were calculated based on several protein-yield indices, (2) correlations were 

evaluated between individual traits and selection indices, (3) the selection differential for GY and 

GPRO in response to index selection was determined, and (4) the selection strategies were 

extended to use in genomic predictions.   
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Phenotypic selection for simultaneous improvement of grain yield and protein concentration 

Best linear unbiased predictors for GY and GPRO phenotypes were calculated across 676 

lines grown in 20 ENV during the 2012 and 2013 growing seasons.  A strong negative 

relationship was observed between the traits (Figure 3.4) and genotypes were observed with 

GPRO values that fell outside the range expected for their measured GY.  Grain protein 

deviation represents the residuals of the regression of GPRO on GY (Oury & Godin, 2007).  

Genotypes were observed with high and low GPD that consistently expressed high or low values 

across ENV (Figure 3.5).  The level of diversity in the population enabled development and 

testing of simultaneous selection strategies for GY and GPRO. Phenotypic selection using the 

protein-yield indices, GPD and GPY, identified complementary sets of breeding lines (Figure 

3.6).  These indices were positively correlated with each other, but GPD was negatively 

correlated with GY and positively correlated with GPRO, while GPY had the opposite 

relationships (Figure 3.10).  In a study of a European hard winter wheat breeding population, 

(Michel et al., 2019b) the response to selection by several selection indices was evaluated for 

simultaneous selection for GY, GPRO, and GPY.  No index produced a pool of selected lines 

that included both high GPRO lines with acceptable GY and high GY lines with acceptable 

GPRO.  However, they could achieve this objective by splitting the selection decisions between 

two complementary indices, to obtain a combined selected fraction that included a broad range 

of the best performing lines for each trait.  Another solution to a similar observation in durum 

wheat was presented by Rapp et al. (2018) to develop equally weighted selection indices that 

combined GPD and grain yield deviation (GYD) or combined GY and GPRO to apply for 

simultaneous selection in two European wheat breeding populations.  Grain yield deviation is 

derived in the same way as GPD, but with the dependent and independent variables switched, 
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resulting in an index that selects high-yielding lines over the range of GPRO, similar to GPY.  

Both equally weighted indices showed simultaneous selection responses for GY and GPRO, but 

also retained lines in the selected fraction that did not meet minimum standards for GY or 

GPRO.  Each index characteristically focused more or less strongly on selection for GY or 

GPRO. Similarly, index selection within a triticale breeding population, resulted in considerable 

differences within sets of selected individuals, depending on which of several protein-yield 

indices were applied.   

The breeder’s best choice for a selection index will relate to the grain composition 

desired for the targeted market (Neuweiler et al., 2021; Rapp et al., 2018).  Colorado wheat 

growers profit most from varieties that deliver high GY under highly variable annual weather 

patterns, but obtain the best pricing for grain that meets minimum GPRO standards for milling 

and flour end-use markets.  Strategies to obtain simultaneous selection of GY and GPRO were 

evaluated, including independent culling and several equally weighted selection indices (Table 

3.8).  The selected fraction for independent culling neither contained the highest values for GY 

nor GPRO, but did provide selection pressure for improved GPRO over selection based on GY 

alone.  The apparent targeted grain composition for each selection index is approximated by its 

relative rank for the resultant selection differential (deltaS rank, Table 3.8) for GY or GPRO.  

For example, an index that nearly equally emphasized selection for GY and GPRO was the 

GY+GPD index that retained individuals with higher GY (deltaS = 0.77) equivalent to those 

retained by independent culling (deltaS = 0.78), but obtained a higher mean value for GPRO 

(deltaS = 0.65) compared to independent culling (deltaS = 0.31).  Depending on the desired 

emphasis of the applied index, the distribution of GY and GPRO values in the selected fraction 

will differ and can be targeted for the breeding program objectives. 
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Genomic selection for simultaneous improvement of grain yield and protein concentration 

A number of authors extended the work on phenotypic protein-yield selection indices to 

genomic selection (Haile et al., 2018; Michel et al., 2019a, 2019b; Rapp et al., 2018; Schulthess 

et al., 2016; Yao et al., 2018).  Predictive ability for the target trait or index, correlations of index 

values with BLUPs and GEBVs for all traits and index values, and response to selection for GY 

and GPRO provided comparisons among index selection by direct (GEBVs for selection indices) 

and reversed (selection indices calculated from GEBVs) methods (Schulthess et al., 2016).  

Univariate or multi-trait GEBVs may be input to calculate selection index values by the reversed 

method.  Multi-trait GS does not break undesirable negative trait correlations, but rather is useful 

for prediction of missing phenotypes and for improving prediction accuracy through genetic 

covariance (Jia & Jannink, 2012). Difficult or expensive to phenotype traits can be predicted in 

multi-trait GS in models that include partial phenotypes for highly correlated traits and may 

promote resource efficiency in a breeding program (Lado et al., 2018).  Multi-trait GS utilizes 

correlated traits to enhance prediction accuracy for the target trait, but results have been mixed 

for superiority of multi-trait GS models outside of simulation studies (as reviewed in: Schulthess 

et al., 2016).  These authors found marginal or no prediction accuracy improvement of multi-trait 

GS over single trait models for GY and GPRO in rye.  When training population size is limited, 

and includes unbalanced data for a low heritability trait supported by balanced data for a highly 

heritable trait, multi-trait GS prediction accuracy improved.  For unbalanced data, calculation of 

the selection index from multi-trait GEBVs provides a means to predict performance in advance 

of having complete phenotypic data (Schulthess et al., 2016).  In this study, univariate and 

bivariate models delivered equivalent predictive ability for forward prediction of GY and GPRO 

(FP ratio, Table 3.11).  Single trait GEBVs for GY, GPRO, GPY, and GPD were applied in 
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construction of selection indices and were used for independent culling.  In the context of 

equivalent predictive ability, use of bivariate GEBVs to construct equally weighted selection 

indices reduces the computing steps required for index calculation by output of a single vector 

containing all traits and provides the opportunity for imputation of missing trait values (Lado et 

al., 2018).   

Selection indices were calculated from BLUPs and then GEBVs for index values were 

obtained in univariate genomic selection models. Predicted index values included GPY, GPD 

and a set of indices calculated by summing paired traits (direct method, Table 3.10).  The relative 

strength of the correlation with GY and GPRO indicated the emphasis of each selection strategy 

(Figure 3.14).  The emphasis of the applied genomic selection index closely tracked that obtained 

with the same index applied to phenotypic selection (Table 3.8). Index values were also 

calculated from GEBVs obtained in univariate and bivariate models (reversed method, Table 

3.11).  The selection strategies were compared through analysis of the mean and distribution of 

the GY and GPRO among the lines retained in the selected fraction as compared to the 2013 and 

the 2014 validation sets (Tables 12 and 13).  As observed in earlier studies (Neuweiler et al., 

2021; Rapp et al., 2018; Schulthess et al., 2016), the distribution of GY and GPRO values in 

response to index selection extends beyond the desired selection thresholds for each trait, but 

each selection index enriches the selected fraction for high value lines, and delivers a 

characteristic emphasis on GY or GPRO.  In this study, three genomic selection strategies were 

effective in emphasizing selection for GPRO while maintaining selection pressure for GY (Table 

3.14):   independent culling for GEBVs for GPY and GPD predicted in a bivariate model; index 

selection based on GEBVs predicted in a bivariate model, then summed to produce index values; 
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and index selection based on GEBVs predicted in a univariate model from index values 

calculated from phenotypic BLUPs.   

Principal components analysis of the realized relationship matrix (G matrix) clustered 

allelic effects that captured the negative association between GY and GPRO in PC1 and captured 

effects that were positively correlated with both GY and GPRO in PC2 (Figures 10 and 11).  

These results are consistent with the underlying genetic architecture of the negative association 

between GY and GPRO.  Genome wide association mapping and QTL analysis revealed a 

complex genetic architecture for protein-yield selection indices and the related single traits that 

included QTL with antagonistic pleiotropy and QTL with joint positive association for GY and 

GPRO (Thorwarth et al., 2019).  With antagonistic pleiotropy, the authors recommend selection 

for the stronger allele at one locus, coupled with selection for a counteracting allele at a different 

locus.  Given its reasonably high genomic prediction accuracy, they proposed the use of GPD for 

enrichment of alleles with positive effects on GY and GPRO during recurrent selection cycles.  

Cross prediction through simulated variances under an additive model demonstrated that when 

negative GY and GPRO correlation exists in the parental population, it is possible to have 

positive correlations in some progeny populations (Yao et al., 2018).  The quantitative nature of 

the genetic architecture under-lying these traits and derived indices predicts limited utility of 

marker-assisted selection.   

Conclusions 
 
 
 

This work contributes to the evidence supporting use of protein-yield selection indices for 

simultaneous selection for GY and GPRO.  Among the set of protein-yield selection indices 

evaluated in this study, the emphasis of the selection response for GY or GPRO is diverse and 
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provides an opportunity to tailor the selection response to breeding program objectives. A set of 

protein-yield selection indices were identified that generate sufficient predictive ability in 

genomic selection to be effective tools for simultaneous selection of GY and GPRO. The 

accuracy of genomic prediction of protein-yield index values obtained for the 2013 validation set 

encourages expanding the work to optimize simultaneous selection throughout a breeding cycle. 

Genomic selection may be applied during different stages of the breeding cycle (Bassi et al., 

2016) and optimization may include selection on different indices at different stages. 
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Table 3.1.  Summary of Colorado State University wheat breeding trial locations and harvest years. 

Location 

Name 

Management Latitude 

(N) 

Longitude(W) Elevation 

(m) 

No. of 

trials 

No. of 

plots 

No. of 

entries 

Harvest 

Years 

Akron dryland 40.149 -103.136 1383 8 2197 676 2012- 2015 

Arapahoe dryland 38.840 -102.129 1213 1 150 75 2012 

Burlington dryland 39.187 -102.300 1295 4 150 75 2012, 2014, 

2015 

Dailey dryland 40.598 -102.686 1251 2 433 275 2013, 2014 

Fort Collins irrigated 40.650 -104.999 1557 9 2605 663 2012-2015 

Julesburg dryland 40.801 -102.365 1169 4 433 306 2012-2014 

Lamar dryland 37.761 -102.482 1265 1 150 75 2012 

Roggen dryland 40.070 -104.302 1493 1 148 75 2014 

Walsh dryland 37.431 -102.315 1212 2 149 75 2014 
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Table 3.2. Environment code definitions, modeling cohorts and numbers of entries for Colorado State 

University wheat breeding program trials included in this study.  An environment is represented by the 

combination of harvest year, location, and trial.  Selection cohort (GRP_2) designates the first year that 

sets of genotypes entered evaluation trials. 

Environment 

codea 

Harvest year Location name Trial nameb Cohort 

(GRP_2) 

Number of 

entries 

12AK-NH 2012 Akron TP-NH 2012 399 

12AK-NL 2012 Akron TP-NL 2012 399 

12FC-NH 2012 Fort Collins TP-NH 2012 399 

12FC-NL 2012 Fort Collins TP-NL 2012 399 

12AK 2012 Akron CSU Elite 2012 75 

12AR 2012 Arapahoe CSU Elite 2012 75 

12BU 2012 Burlington CSU Elite 2012 75 

12JL 2012 Julesburg CSU Elite 2012 75 

12LM 2012 Lamar CSU Elite 2012 75 

13AK-DH 2013 Akron AYN-DH 2013 228 

13DL-DH 2013 Dailey AYN-DH 2013 231 

13FC-DHNH 2013 Fort Collins AYN-DH NH 2013 234 

13FC-DHNL 2013 Fort Collins AYN-DH NL 2013 231 

13FC-DH 2013 Fort Collins AYN-DH 2013 231 

13JL-DH 2013 Julesburg AYN-DH 2013 234 

14AK 2014 Akron CSU Elite 2013 75 

14DL 2014 Dailey CSU Elite 2013 75 

14FC 2014 Fort Collins CSU Elite 2013 75 

14RG 2014 Roggen CSU Elite 2013 75 

14WA 2014 Walsh CSU Elite 2013 75 

14AK1 2014 Akron AYN 2014 17 

14AK-DH 2014 Akron AYN-DH 2014 33 

14BU1 2014 Burlington AYN1 2014 33 

14BU3 2014 Burlington AYN3 2014 15 

14FC-dry 2014 Fort Collins AYN-dry 2014 15 

14FC2 2014 Fort Collins AYN2 2014 7 

14JU 2014 Julesburg AYN 2014 17 

14JU1 2014 Julesburg AYN1 2014 32 

14WA1 2014 Walsh AYN 2014 17 

15AK 2015 Akron CSU Elite 2014 15 

15BU 2015 Burlington CSU Elite 2014 15 

15FC 2015 Fort Collins CSU Elite 2014 15 
a Environment name encoding:  doubled haploids (DH), limiting nitrogen fertilizer (NL), and sufficient 

nitrogen fertilizer (NH).  Colorado location codes:  Akron (AK), Arapahoe (AR), Burlington (BU), Dailey 

(DL), Fort Collins (FC), Julesburg (JL), Lamar (LM), Roggen (RG), Walsh (WA). 

bTrial name abbreviations:  Check varieties with breeding lines in 3rd year of evaluation (CSU Elite), 

check varieties with breeding lines in 2nd year of evaluation (Advanced Yield Nursery, AYN), check 

varieties and earlier cohorts of breeding lines (training panel, TP), doubled haploid populations (DH).   
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Table 3.3. Descriptions of spatial variance models tested for each environment (further details in: Table B.1, Butler et al., 2009). 

Model Variance model 

type 

Spatial variance model 

function name 

ASReml-R 

function 

Measurement 

error term 

(nugget) 

ASReml-R (Version 3) code 

model 1 correlation scaled identity structure iid no asreml(trait~ID, random = ~ ROW + COLUMN, na.method.Y = 

'include', na.method.X = 'include', data = x) 

model 2 correlation 1st order autoregressive 

(row1) 

ar1() no asreml(trait~ID, random = ~ ROW + COLUMN, rcov = ~ 

ar1(ROW1):COLUMN1, na.method.X = 'include', data = x) 

model 3 correlation 1st order autoregressive 

(col1) 

ar1() no asreml(trait~ID, random = ~ ROW + COLUMN, rcov = ~ 

ROW1:ar1(COLUMN1), na.method.X = 'include', data = x) 

model 4 correlation 1st order autoregressive 

(col1) 

ar1() yes asreml(trait~ID, random = ~ units + ROW + COLUMN, rcov = ~ 

ROW1:ar1(COLUMN1), na.method.X = 'include', data = x) 

model 5 correlation 1st order autoregressive 

(row1 & col1) 

ar1() no asreml(trait~ID, random = ~ ROW + COLUMN, rcov = ~ 

ar1(ROW1):ar1(COLUMN1), na.method.X = 'include', data = x) 

model 6 correlation 1st order autoregressive 

(row1 & col1) 

ar1() yes asreml(trait~ID, random = ~ units + ROW + COLUMN, rcov = ~ 

ar1(ROW1):ar1(COLUMN1), na.method.X = 'include', data= x) 

model 7 2-dimensional 

irregularly 

spaced power 

isotropic exponential iexp() yes asreml(trait~ID,random= ~ units + ROW + COLUMN, rcov= 

~iexp(COLUMN1,ROW1,init=0.9), 

data=x,control=asreml.control(maxiter=50)) 

model 8 2-dimensional 

irregularly 

spaced power 

anisotropic exponential aexp() yes asreml(trait~ID,random= ~ units + ROW + 

COLUMN,rcov=~aexp(COLUMN1,ROW1,init=c(summary(model

12)$varcomp[4,1],summary(model7)$varcomp[4,1])),  

data=x,control=asreml.control(maxiter=25)) 

model 9 2-dimensional 

irregularly 

spaced power 

isotropic euclidean ieuc() yes asreml(trait~ID,random= ~ ROW + COLUMN + 

units,rcov=~ieuc(COLUMN1,ROW1,init=0.9),data=x,control=asre

ml.control(maxiter=100)) 

model 10 2-dimensional 

irregularly 

spaced power 

Matérn mtrn() yes asreml(trait~ID,random= ~ ROW + COLUMN + 

units,rcov=~mtrn(COLUMN1,ROW1,phi=-

1/log(summary(model9)$varcomp[4,1])), 

data=x,control=asreml.control(maxiter=25)) 
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Figure 3.1.  Box-and-whiskers plots for the 2012 to 2015 growing seasons of plot level grain yield (GY), 

grain protein concentration (GPRO), grain protein yield (GPY), and grain protein deviation (GPD).  Data 

were recorded for 761 genotypes across 32 environments in Colorado, defined by harvest year, location, 

and type of trial.  
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Table 3.4.  Phenotypic summary statistics for plot level wheat grain yield (GY, Mg ha-1) and grain protein concentration (GPRO, g kg-1) in 32 

environments for 761 checks and genotypes that first entered performance nurseries in 2012 to 2014.  Intercept and slope for the ranked regression 

of GPRO on GY. 

Environment 

codea 

GY 

N 

GY 

mean 

GY 

sd 

GY 

min 

GY 

max 

GY 

quantile 

25 

GY 

quantile 

75 

GPRO 

mean 

GPRO 

sd 

GPRO 

min 

GPRO 

max 

GPRO 

quantile 

25 

GPRO 

quantile 

75 

Intercept Slope 

12AK 75 3.9 0.69 1.6 5.7 3.5 4.3 144 15.2 108 174 133 156 207.4 -16.2 

12AK-NH 399 2.5 0.52 1.4 4.4 2.2 2.9 152 7.8 128 177 146 157 170.6 -7.6 

12AK-NL 399 3.5 0.47 2.1 5.2 3.2 3.8 129 9.8 102 156 122 136 164.1 -10.1 

12AR 75 2.5 0.47 1.3 3.9 2.2 2.9 144 8.7 122 171 138 149 178.9 -13.9 

12BU 75 3.7 0.65 2.1 5.6 3.3 4.2 121 13.1 93 155 112 129 164.6 -12.0 

12FC-NH 399 4.1 0.55 2.3 5.9 3.8 4.5 105 8.5 86 140 99 111 109.4 -1.3 

12FC-NL 399 4.0 0.63 2.4 6.2 3.6 4.4 101 9.9 83 146 94 106 86.0 3.1 

12JL 75 3.9 0.32 3.0 4.8 3.7 4.1 109 6.8 92 126 105 114 134.2 -6.4 

12LM 75 2.8 0.55 1.0 4.3 2.5 3.2 118 12.4 94 147 109 126 156.0 -14.0 

13AK-DH 227 1.3 0.54 0.1 3.0 0.9 1.6 172 8.5 143 194 167 179 187.2 -11.7 

13DL-DH 230 4.8 0.55 3.3 6.4 4.4 5.2 128 7.0 98 146 123 133 135.5 -1.5 

13FC-DHNH 231 6.2 0.84 3.7 8.3 5.6 6.8 115 11.2 92 147 107 123 165.7 -8.3 

13FC-DHNL 230 6.0 0.92 3.8 8.4 5.3 6.6 113 12.2 85 146 104 122 134.4 -3.8 

13FC-DH 232 4.5 1.15 2.4 9.0 3.8 5.0 134 8.6 102 160 129 139 145.1 -2.5 

13JL-DH 234 2.3 0.31 1.5 3.3 2.1 2.5 142 5.1 130 163 139 145 147.7 -2.6 

14AK1 25 6.9 0.70 5.5 8.0 6.5 7.5 125 9.4 109 145 119 130 186.6 -8.7 

14AK-DH 35 7.4 0.75 5.9 8.7 7.0 7.9 122 7.5 109 139 115 127 163.2 -5.5 

14AK 75 6.2 0.71 4.3 8.3 5.9 6.7 128 8.4 107 150 122 134 179.4 -8.3 

14BU1 35 3.4 1.02 2.0 5.6 2.5 4.0 114 12.3 86 139 106 125 129.7 -5.4 

14BU3 23 3.3 0.63 1.7 4.6 3.1 3.8 113 11.0 96 134 104 119 147.0 -10.5 

14DL 75 4.8 0.91 2.7 7.2 4.1 5.3 108 9.6 83 129 100 115 107.0 0.0ns 

14FC-dry 23 6.2 0.43 5.5 7.0 5.9 6.6 119 8.0 105 136 114 126 134.6 -2.4ns 

14FC2 11 7.9 0.50 7.2 9.2 7.7 8.1 118 3.2 113 122 115 121 142.6 -3.0 

14FC 75 7.0 0.64 5.3 8.5 6.6 7.4 117 8.3 95 150 111 121 152.2 -5.2 

14JU 26 4.8 0.54 3.4 6.1 4.5 5.1 141 6.2 132 160 137 145 166.9 -5.5 

14JU1 34 5.5 0.61 3.5 6.5 5.3 5.8 136 9.5 113 156 130 143 189.3 -9.4 

14RG 75 5.4 0.65 3.9 7.7 4.9 5.8 109 7.4 90 130 105 114 132.6 -4.3 

14WA1 26 3.4 0.75 1.3 4.4 3.0 4.0 136 6.4 124 150 130 141 149.7 -4.0 

14WA 75 3.6 0.72 1.1 4.9 3.4 4.1 128 6.4 114 149 123 132 143.0 -4.4 

15AK 24 4.0 1.11 2.2 6.1 3.3 5.0 120 9.7 97 139 113 126 137.9 -3.6 
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Environment 

codea 

GY 

N 

GY 

mean 

GY 

sd 

GY 

min 

GY 

max 

GY 

quantile 

25 

GY 

quantile 

75 

GPRO 

mean 

GPRO 

sd 

GPRO 

min 

GPRO 

max 

GPRO 

quantile 

25 

GPRO 

quantile 

75 

Intercept Slope 

15BU 24 4.1 0.66 2.8 5.5 3.8 4.5 120 11.9 101 152 110 127 158.2 -9.1 

15FC 24 6.5 0.91 4.4 8.0 6.0 7.0 116 10.5 96 152 111 119 134.3 -2.9ns 

Overall 761 4.1 1.55 0.1 9.2 3.1 5.0 125 20.5 83 194 109 139 207.4 -16.2 
nsNot significant at the .05 probability level. 

a Trial name encoding:  doubled haploids (DH), limiting nitrogen fertilizer (NL), and sufficient nitrogen fertilizer (NH).  Colorado location codes:  

Akron (AK), Arapahoe (AR), Burlington (BU), Dailey (DL), Fort Collins (FC), Julesburg (JL), Lamar (LM), Roggen (RG), Walsh (WA). 
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Table3. 5.  Phenotypic summary statistics for plot level wheat grain protein yield (GPY, Mg ha-1) and grain protein deviation (GPD, g kg-1, as 

Studentized residuals of a ranked regression) for 32 environments for 761 checks and genotypes which first entered advanced testing in 2012 to 

2014.   

Environment 

codea 

GPY 

N 

GPY 

mean 

GPY 

sd 

GPY 

min 

GPY 

max 

GPY 

quantile 

25 

GPY 

quantile 

75 

GPD 

mean 

GPD sd GPD 

min 

GPD 

max 

GPD 

quantile 

25 

GPD 

quantile 

75 

12AK 75 0.554 0.072 0.283 0.710 0.520 0.592 -0.037 0.963 -2.850 2.065 -0.588 0.683 

12AK-NH 399 0.382 0.070 0.217 0.602 0.335 0.424 0.071 0.959 -2.851 3.212 -0.631 0.736 

12AK-NL 399 0.449 0.054 0.296 0.635 0.411 0.485 -0.010 0.973 -2.725 2.572 -0.714 0.672 

12AR 75 0.362 0.054 0.190 0.515 0.327 0.396 0.096 1.124 -3.338 3.610 -0.668 0.708 

12BU 75 0.449 0.061 0.270 0.648 0.410 0.489 0.167 1.037 -2.173 2.738 -0.585 0.861 

12FC-NH 399 0.431 0.066 0.244 0.687 0.384 0.476 0.169 0.976 -2.122 4.225 -0.513 0.808 

12FC-NL 399 0.408 0.084 0.235 0.825 0.346 0.453 0.242 1.135 -2.189 5.038 -0.576 0.892 

12JL 75 0.428 0.038 0.315 0.513 0.405 0.455 0.004 1.016 -2.738 2.730 -0.611 0.715 

12LM 75 0.325 0.053 0.142 0.429 0.293 0.366 0.094 0.915 -1.914 2.225 -0.580 0.776 

13AK-DH 227 0.218 0.084 0.016 0.496 0.161 0.281 -0.009 1.059 -2.913 2.733 -0.674 0.663 

13DL-DH 230 0.616 0.076 0.412 0.830 0.559 0.675 -0.040 0.977 -4.371 2.463 -0.711 0.634 

13FC-DHNH 231 0.706 0.076 0.478 0.923 0.652 0.755 0.071 0.914 -2.061 2.510 -0.622 0.730 

13FC-DHNL 230 0.672 0.106 0.441 0.974 0.582 0.756 0.104 0.896 -2.028 2.288 -0.594 0.834 

13FC-DH 232 0.604 0.139 0.367 1.001 0.505 0.682 0.059 0.985 -2.544 2.835 -0.710 0.673 

13JL-DH 234 0.325 0.043 0.203 0.452 0.295 0.354 0.071 1.049 -2.585 4.466 -0.627 0.716 

14AK1 25 0.864 0.069 0.714 1.031 0.813 0.905 -0.119 0.934 -1.643 1.567 -0.685 0.384 

14AK-DH 35 0.903 0.083 0.788 1.153 0.837 0.951 -0.070 1.033 -2.284 2.852 -0.728 0.633 

14AK 75 0.792 0.068 0.598 0.973 0.752 0.839 0.048 0.925 -2.565 2.240 -0.601 0.758 

14BU1 35 0.378 0.104 0.235 0.652 0.290 0.446 0.202 0.965 -2.066 2.310 -0.565 0.902 

14BU3 23 0.374 0.058 0.230 0.502 0.345 0.413 0.182 0.989 -1.548 2.350 -0.612 0.828 

14DL 75 0.513 0.106 0.264 0.835 0.442 0.589 0.063 0.931 -2.316 2.127 -0.675 0.773 

14FC-dry 23 0.740 0.067 0.632 0.884 0.692 0.784 -0.068 0.859 -1.596 1.667 -0.725 0.515 

14FC2 11 0.933 0.055 0.838 1.062 0.903 0.954 -0.419 1.250 -3.094 1.083 -0.936 0.593 

14FC 75 0.810 0.070 0.606 0.972 0.765 0.861 0.070 1.138 -3.702 3.967 -0.646 0.723 

14JU 26 0.678 0.070 0.544 0.890 0.641 0.711 0.115 0.711 -1.040 1.567 -0.490 0.710 

14JU1 34 0.744 0.067 0.549 0.862 0.709 0.793 -0.261 1.177 -3.743 2.203 -0.983 0.455 

14RG 75 0.588 0.067 0.423 0.854 0.545 0.631 -0.038 0.966 -2.351 2.504 -0.811 0.649 

14WA1 26 0.464 0.098 0.195 0.639 0.398 0.528 0.021 0.831 -1.506 2.069 -0.673 0.763 

14WA 75 0.459 0.087 0.161 0.602 0.423 0.520 0.108 0.992 -2.515 3.661 -0.540 0.757 

15AK 24 0.478 0.125 0.261 0.742 0.403 0.576 -0.290 0.844 -2.150 0.971 -0.973 0.305 
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Environment 

codea 

GPY 

N 

GPY 

mean 

GPY 

sd 

GPY 

min 

GPY 

max 

GPY 

quantile 

25 

GPY 

quantile 

75 

GPD 

mean 

GPD sd GPD 

min 

GPD 

max 

GPD 

quantile 

25 

GPD 

quantile 

75 

15BU 24 0.486 0.066 0.357 0.651 0.443 0.510 -0.117 1.117 -1.757 2.392 -0.971 0.476 

15FC 24 0.749 0.100 0.564 0.937 0.669 0.826 0.057 1.396 -2.780 4.788 -0.563 0.684 

Overall 761 0.497 0.176 0.016 1.15 0.374 0.598 0.068 1.000 -4.370 5.040 -0.640 0.725 
a Trial name encoding:  doubled haploids (DH), limiting nitrogen fertilizer (NL), and sufficient nitrogen fertilizer (NH).  Colorado location codes:  

Akron (AK), Arapahoe (AR), Burlington (BU), Dailey (DL), Fort Collins (FC), Julesburg (JL), Lamar (LM), Roggen (RG), Walsh (WA). 
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Figure 3.2.  Matrix of the Pearson's correlation coefficients between wheat grain yield (GY), grain protein 

concentration (GPRO), grain protein yield (GPY), and grain protein deviation (GPD) phenotypes 

collected from 761 breeding lines and varieties.  Plot level phenotypes were recorded across 32 

environments encompassing four harvest years (2012-2015). All correlations are significant (p < .05) 

except for that which relates GY to GPD, which is non-significant.  Intensity of color shading scales with 

the value of the correlation coefficient.  
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Table 3.6.  Number of reps and best spatial variance models, determined by ΔAIC method (Burnham & Anderson, 2003), for each of 20 trials 

included in the combined analysis over three growing seasons (2012-2014) in the Colorado State University winter wheat breeding program for 

676 breeding lines and varieties. Summary of the model output, including:  within environment adjusted means and standard error of the mean 

(sem) for grain yield, grain protein concentration, grain protein yield, and grain protein deviation.   

   Grain Yield 

Mg ha-1 

Grain Protein Concentration 

g kg-1 

Grain Protein Yield 

Mg ha-1 

Grain Protein Deviation 

g kg-1 

Trial codea Mean reps Modelb Mean sem Model Mean sem Model Mean sem Model Mean sem 

12AK 1.9 6 3.44 1.16 9 149.6 17.6 5 0.55 0.03 2 -0.044 0.076 

12AK-NH 2.2 8 2.52 0.45 9 152.1 2.9 9 0.38 0.08 7 0.082 0.042 

12AK-NL 2.2 8 3.45 0.19 7 129.3 4.3 6 0.44 0.02 7 -0.036 0.031 

12AR 1.9 5 2.54 0.21 1 144.2 3.8 5 0.36 0.03 1 0.096 0.114 

12BU 1.9 6 3.67 0.25 7 122.4 8.5 2 0.45 0.02 2 0.144 0.060 

12FC-NH 2.2 8 4.10 0.24 8 106.5 3.7 7 0.43 0.03 8 0.310 0.031 

12FC-NL 2.2 8 4.01 0.30 6 100.0 4.6 7 0.40 0.04 7 0.191 0.037 

12JL 1.9 5 3.91 0.13 9 110.8 4.5 9 0.44 0.18 7 0.227 0.076 

12LM 1.9 6 2.79 0.23 2 117.4 5.6 7 0.31 0.03 2 0.085 0.068 

13AK-DH 1.3 5 1.32 0.22 9 171.8 3.2 9 0.23 0.03 5 -0.031 0.068 

13DL-DH 1.3 9 4.75 0.27 7 128.8 16.2 9 0.61 0.04 1 0.056 0.056 

13FC-DHNH 1.3 8 6.18 0.29 3 114.8 3.5 3 0.70 0.03 3 0.037 0.053 

13FC-DHNL 1.3 7 6.38 0.82 3 112.9 4.1 6 0.70 0.08 3 0.086 0.046 

13FC-DH 1.3 6 4.93 1.40 2 134.2 2.6 2 0.61 0.04 5 0.062 0.060 

13JL-DH 1.3 5 2.28 0.09 2 142.2 1.3 1 0.33 0.01 7 0.104 0.066 

14AK 1.9 6 6.18 0.46 2 127.9 2.8 7 0.79 0.04 3 0.044 0.077 

14DL 1.9 6 5.32 0.55 5 107.6 3.5 7 0.57 0.06 5 0.062 0.081 

14FC 1.9 5 6.94 0.28 2 116.7 2.2 2 0.81 0.03 1 0.070 0.120 

14RG 1.9 5 5.41 0.33 9 108.3 19.4 5 0.59 0.04 9 -0.257 0.072 

14WA 1.9 6 3.61 0.27 1 127.8 2.5 2 0.46 0.03 1 0.110 0.100 
a Trial name encoding:  doubled haploids (DH), limiting nitrogen fertilizer (NL), and sufficient nitrogen fertilizer (NH).  Colorado location codes:  

Akron (AK), Arapahoe (AR), Burlington (BU), Dailey (DL), Fort Collins (FC), Julesburg (JL), Lamar (LM), Roggen (RG), Walsh (WA). 

bSpatial variance model definitions appear in Table 3. 
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Figure 3.3. Box and whiskers plots of adjusted entry means (BLUEs) for grain yield (Mg ha-1) at 20 

environments, ordered by environmental averages for 676 hard winter wheat breeding lines and varieties 

grown during the 2012-2014 seasons in Colorado.  Trial name encoding:  doubled haploids (DH), limiting 

nitrogen fertilizer (NL), and sufficient nitrogen fertilizer (NH).  Colorado location codes:  Akron (AK), 

Arapahoe (AR), Burlington (BU), Dailey (DL), Fort Collins (FC), Julesburg (JL), Lamar (LM), Roggen 

(RG), Walsh (WA). 
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Table 3.7. Variance components, heritability on an entry mean basis, and weighting factors obtained in mixed model analysis for wheat grain 

yield, grain protein concentration, grain protein yield and grain protein deviation for 676 hard winter wheat breeding lines and varieties grown in 

20 Colorado environments during the 2012 to 2014 growing seasons.  Model weighting factors (𝑤𝑤𝑝𝑝) for each environment to apply in a combined 

analysis across environments were calculated as the quotient of the average error mean square over all ENV and the error mean square within an 

ENV(p), multiplied by the average number of reps. 

 Grain Yield  

Mg ha-1 

Grain Protein Concentration 

g kg-1  

Grain Protein Yield 

102 x Mg ha-1 

Grain Protein Deviation 

102 x g kg-1 

Environment codea 𝜎𝜎𝑔𝑔2 𝜎𝜎𝑒𝑒2 ℎ2 𝑤𝑤𝑝𝑝 𝜎𝜎𝑔𝑔2 𝜎𝜎𝑒𝑒2 ℎ2 𝑤𝑤𝑝𝑝 𝜎𝜎𝑔𝑔2 𝜎𝜎𝑒𝑒2 ℎ2 𝑤𝑤𝑝𝑝 𝜎𝜎𝑔𝑔2 𝜎𝜎𝑒𝑒2 ℎ2 𝑤𝑤𝑝𝑝 

12AK 0.679 1.066 0.56 0.47 26.2 47.8 0.52 0.25 1.18 1.72 0.58 2.22 0.25 0.47 0.35 3.19 

12AK-NH 0.377 0.699 0.52 2.64 31.5 17.6 0.78 7.25 0.66 1.34 0.50 1.01 0.53 0.16 0.77 8.95 

12AK-NL 0.828 0.999 0.62 8.66 21.7 43.8 0.50 2.68 1.01 1.39 0.59 8.08 0.19 0.55 0.26 3.19 

12AR 0.578 1.138 0.50 5.61 45.9 26.1 0.78 4.78 0.40 1.70 0.32 3.97 0.70 0.53 0.57 2.84 

12BU 0.684 1.648 0.45 2.92 4.1 74.6 0.10 0.80 0.60 1.59 0.43 3.12 0.08 0.62 0.12 1.65 

12FC-NH 0.865 0.989 0.64 20.6 21.7 23.6 0.65 5.14 0.65 1.54 0.46 8.76 0.25 0.39 0.38 4.21 

12FC-NL 0.649 1.531 0.46 5.63 16.8 41.2 0.45 2.71 0.10 3.33 0.06 2.50 0.36 0.50 0.41 3.14 

12JL 0.400 0.292 0.73 22.8 11.4 20.6 0.53 3.98 0.40 0.44 0.64 0.27 0.18 0.67 0.21 2.69 

12LM 0.615 0.866 0.59 7.68 28.0 52.1 0.52 1.76 0.51 1.23 0.45 4.20 0.17 0.46 0.27 3.33 

13AK-DH 0.720 1.041 0.12 2.96 17.1 26.6 0.56 3.79 0.24 2.51 0.16 1.21 0.67 0.34 0.66 3.19 

13DL-DH 0.353 1.471 0.32 3.87 18.7 18.2 0.67 0.33 0.55 2.36 0.32 1.64 0.31 0.41 0.43 0.16 

13FC-DHNH 1.806 1.986 0.65 3.33 50.1 27.8 0.78 2.86 0.43 1.00 0.46 3.43 0.19 0.25 0.43 3.96 

13FC-DHNL 1.086 2.458 0.47 0.60 44.8 41.8 0.68 1.52 0.51 2.50 0.29 0.55 0.21 0.21 0.50 3.52 

13FC-DH 0.688 1.305 0.51 0.19 37.7 16.9 0.82 4.69 0.62 2.05 0.38 1.91 0.46 0.36 0.56 3.66 

13JL-DH 0.523 0.240 0.81 23.6 18.7 6.7 0.85 11.12 1.02 0.41 0.83 14.5 0.75 0.22 0.77 10.8 

14AK 0.715 0.892 0.62 2.17 19.2 13.7 0.74 7.01 0.72 1.21 0.54 3.93 0.31 0.24 0.56 5.79 

14DL 1.619 1.424 0.69 0.94 43.7 24.4 0.78 2.75 0.21 2.62 0.14 0.78 0.45 0.45 0.50 3.53 

14FC 1.502 1.499 0.67 4.47 56.7 9.6 0.92 12.07 1.45 2.00 0.59 3.86 0.93 0.25 0.79 6.36 

14RG 1.650 2.306 0.59 3.45 25.6 13.0 0.80 0.36 0.16 3.19 0.09 2.19 0.17 0.70 0.19 0.67 

14WA 0.552 1.028 0.52 5.80 21.0 9.2 0.82 13.82 0.83 1.36 0.55 4.54 0.59 0.23 0.72 6.47 
a Trial name encoding:  doubled haploids (DH), limiting nitrogen fertilizer (NL), and sufficient nitrogen fertilizer (NH).  Colorado location codes:  

Akron (AK), Arapahoe (AR), Burlington (BU), Dailey (DL), Fort Collins (FC), Julesburg (JL), Lamar (LM), Roggen (RG), Walsh (WA). 
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Figure 3.4.  Scatterplot and line of best fit relating best linear unbiased predictors for grain protein 

concentration (GPRO, g kg-1) to grain yield (GY, Mg ha-1) for 676 entries grown in 20 environments in 

Colorado during 2012, 2013, and 2014.  Positions of trait values on the standard Normal distributions are 

marked by concentric ovals and by a green dot for the mean value 𝑁𝑁[0,0].  Quantile boxplots, regression 

coefficients and significance of the fit display the significant inverse relationship between these traits.   
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Figure 3.5.  Box and whiskers plots of grain protein deviation BLUEs calculated within 20 environments 

during the 2012 to 2014 Colorado growing seasons.  Values for the twenty highest and lowest ranked 

genotypes among 676 hard winter wheat breeding lines and varieties from the Colorado State University 

breeding program are plotted in rank order of the mean. 

 



 

139 
 

 

Selection 

target 

Selection 

category 

Grain 

yield 

mean 

(Mg ha-1) 

Grain 

yield 

std dev 

Student’s 2-sample 

t(df) and 

significance 

Grain 

protein 

conc. 

mean 

(g kg-1) 

Grain 

protein 

conc. std 

dev 

Student’s 2-sample 

t(df) and 

significance 

GPD High -0.161 0.215 -3.50 (37.66)*** 9.23 2.58 25.01 (30.23)*** 

a,b,c Low 0.065 0.195  -7.38 1.48  

GPY High 0.374 0.113 23.68 (35.95)*** 0.58 2.95 0.60 (35.80)ns 

d,e,f Low -0.475 0.108  0.02 2.74  

p-value significance level:  0.05*, 0.01**, 0.001*** 

 

Figure 3.6.  Box and whiskers plots of BLUPs calculated across 20 environments during the 2012 to 2014 

Colorado growing seasons.  Best linear unbiased predictors (BLUP) for GY and GPRO and GPY or GPD 

for the top (pink fill) and bottom (blue fill) 20 genotypes ranked by GPD (a, b, c) or GPY (d, e, f).  Open 

circles display BLUPs for the selected genotypes.  Summary statistics and means comparison tests are 

tabulated below the plots.  Small p-values indicate group means that are not the same.
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Table 3.8.  Response to independent culling compared to index selection and to indirect selection for grain yield (GY) and grain protein 

concentration (GPRO) among 661 genotypes from the 2012 and 2013 cohorts.  A selection threshold for single traits or protein-yield selection 

indices identified the top 20 % of genotypes based on rankings of standardized and centered z-scores calculated from BLUPs.  Selection response 

is reported in standard deviation units (z-score).  Selection differentials (deltaS) are the difference between the mean z-scores of the selected 

fraction and that of the population for GY or GPRO.  Summary statistics for z-scores for GY and GPRO of the selected fraction are reported.  

Trait or Protein-

yield Index a 

r 

(GY)b 

r 

(GPRO

)c 

deltaS 

(GY)  

deltaS 

(GPRO)  

deltaS 

rank 

(GY) 

deltaS 

rank 

(GPRO) 

sd 

(GY) 

sd 

(GPRO) 

min 

(GY) 

min 

(GPRO) 

max 

(GY)d 

max 

(GPRO)e 

IC GY, then 

GPRO 

  0.78 0.31   0.44 0.52 0.22 -0.43 2.25 1.93 

GY  -0.42 1.39 -0.68 1 10 0.46 0.87 0.79 -2.80 2.87 1.67 

GY + GPY 0.95 -0.18 1.33 -0.31 2 9 0.54 1.04 0.01 -2.80 2.87 4.36 

3*GY + GPRO 0.94 -0.09 1.30 -0.17 3 8 0.57 1.06 -0.01 -2.40 2.87 4.36 

GPY 0.81 0.08 1.09 0.08 4 7 0.73 1.09 -1.17 -2.08 2.87 4.36 

GY + GPD 0.62 0.43 0.77 0.65 5 6 0.85 0.96 -1.45 -1.16 2.87 4.36 

GY + GPRO 0.54 0.54 0.63 0.84 6 5 0.94 0.94 -2.21 -1.13 2.87 4.36 

GPY + GPD 0.36 0.65 0.40 0.95 7 4 1.01 0.93 -2.88 -0.96 2.87 4.36 

GPY + GPRO 0.27 0.73 0.30 1.06 8 3 1.03 0.88 -2.88 -0.93 2.87 4.36 

GPD -0.23 0.95 -0.35 1.34 9 2 0.98 0.63 -3.50 0.32 2.15 4.36 

GPRO -0.42  -0.62 1.40 10 1 0.87 0.58 -3.50 0.84 1.48 4.36 
a IC, independent culling; GY, grain yield; GPRO, grain protein concentration; GPY, grain protein yield; GPD, grain protein deviation; ‘+’, summed standardized 

and centered trait values to calculate selection index values. 
b Pearson’s correlations (r, p < .05) between trait or index values with grain yield (GY) or c grain protein concentration (GPRO).    
d Among the selection candidates, the maximum z-score value for GY is 2.87 and for eGPRO is 4.36.   
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Table 3.9. Count of genotypes and pedigrees per harvest year.  Within group or overall mean inbreeding 

coefficient (𝐹𝐹𝑖𝑖) as estimated by the diagonal elements (𝑔𝑔ii) of the realized relationship matrix (G). The 

mean value of the diagonal elements approximate 1 + 𝐹𝐹𝑖𝑖 where the expectation for the inbreeding 

coefficient equals 1 for fully inbred lines.  The off-diagonal elements (gij) estimate twice the coefficient of 

coancestry, or the probability of marker alleles being identical by descent, with an expected value of zero 

for unrelated individuals, 0.25 for half-sibs, and 0.5 for full-sibs.   

Harvest year No. genotypes No. pedigrees 𝐹𝐹𝑖𝑖 𝑔𝑔𝑖𝑖𝑖𝑖 
All 775 280 0.55 0 

2012 427 218 0.29 0.27 

2013 244 27 0.85 0.56 

2014 104 35 0.93 0.62 
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Figure 3.7.  Distribution of values for the elements of the realized relationship matrix (G matrix) 

identified in genotyping-by-sequencing (GBS) genotypes for breeding lines and varieties (N = 775).  The 

off-diagonal elements (gij) estimate twice the coancestry, or the probability of marker alleles being 

identical by descent, with an expected value of zero for unrelated individuals.  The diagonal elements 

estimate the inbreeding coefficient, or the probability that alleles within an individual are identical by 

descent, with an expected value of 2 for fully inbred individuals. Upper plots display distributions for all 

genotypes and the lower plots display overlapping distributions, shaded to distinguish selection cohorts.   
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Figure 3.8.  Scree plot of the principal components with percentages of variance explained for the realized 

relationship matrix (G) derived from SNP genotypes for 775 winter wheat varieties and advanced 

breeding lines that were in the Colorado State University evaluation trials during the 2012-2014 growing 

seasons.   
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Figure 3.9. Principal components biplot of PC1 and PC2 estimated from the realized relationship matrix 

(G) derived from GBS genotypes for 775 winter wheat varieties and advanced breeding lines that were in 

the Colorado State University evaluation trials during the 2012-2014 growing seasons.  Initial year of 

testing an individual is represented by colored and filled shapes. 
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Figure 3.10.  Matrix of the Pearson's correlation coefficients between measured phenotypes (wheat grain 

yield, GY; grain protein concentration, GPRO; grain protein yield, GPY; grain protein deviation, GPD) 

and the first two principal components (PC) derived from the realized relationship matrix (G matrix).  

Trait values were best linear unbiased predictors (BLUPS) for 661 breeding lines and varieties from the 

2012 and 2013 selection cohorts. All correlations are significant (p < .05) except for that which relates 

PC1 to PC2, which is non-significant (NS).  Intensity of color shading scales with the value of the 

correlation coefficient. 
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Figure 3.11.  Principal components biplot of PC1 and PC2 estimated from the realized relationship matrix 

(G) for 775 winter wheat varieties and advanced breeding lines in the Colorado State University 

evaluation trials in the 2012-2014 growing seasons.  Vectors for the top 15 squared cosines (cos2) values 

show the importance of the vector for each observation and the relative contribution of the component to 

the distance from the center.  Each grouping of vectors share half- or full-sib pedigrees. 
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Table 3.10. Predictive ability in cross-validation (CV) and forward prediction (FP) in univariate genomic 

selection models for winter wheat varieties and advanced breeding lines in the Colorado State University 

evaluation trials in the 2012-2015 growing seasons. Selection cohorts were defined by initial year of entry 

in the trials and categorized model training and validation sets.  The 2012 training set included 405 

genotypes and the 2012 & 2013 training set included 660 genotypes.  The validation sets for 2013 and 

2014 contained 255 and 85 genotypes.  Narrow sense heritability (h2) was calculated from variance 

components estimated from mixed models.  Cross-validation (CV) and forward prediction (FP) ability 

and narrow sense heritability (h2) are reported as the average over 5 repeats of 5-fold cross-validation.   

Univariate Model TRAIN VAL CV 

rBLUP|GEBV 

sd 

(CV) 

ℎ2 𝑎𝑎𝑖𝑖 (ℎ2) FP 

rBLUP|GEBV 

sd (FP) 

Grain yield (GY) 
2012 2013 0.703 0.004 0.234 0.009 0.286 0.012 

2012&2013 2014 0.693 0.006 0.216 0.009 0.155 0.008 

Grain protein 

(GPRO) 

2012 2013 0.670 0.007 0.198 0.008 0.446 0.013 

2012&2013 2014 0.772 0.003 0.309 0.011 0.191 0.018 

Grain protein 

yield (GPY) 

2012 2013 0.788 0.008 0.388 0.013 0.235 0.019 

2012&2013 2014 0.772 0.005 0.342 0.008 -0.072 0.012 

Grain protein 

deviation (GPD) 

2012 2013 0.693 0.007 0.226 0.006 0.437 0.012 

2012&2013 2014 0.788 0.004 0.343 0.012 0.076 0.015 

Selection index 

GY + GPRO 

2012 2013 0.718 0.005 0.271 0.004 0.266 0.015 

2012&2013 2014 0.730 0.007 0.272 0.007 -0.188 0.020 

Selection index 

3*GY + GPRO 

2012 2013 0.716 0.003 0.258 0.005 0.210 0.022 

2012&2013 2014 0.689 0.007 0.212 0.009 0.001 0.015 

Selection index 

GY + GPD 

2012 2013 0.760 0.005 0.340 0.006 0.240 0.022 

2012&2013 2014 0.751 0.008 0.308 0.011 0.034 0.019 

Selection index 

GPY + GPD 

2012 2013 0.768 0.005 0.349 0.008 0.324 0.007 

2012&2013 2014 0.785 0.005 0.363 0.011 -0.047 0.016 
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Table 3.11. Predictive ability (r) in cross-validation and forward prediction in bivariate genomic selection models for winter wheat varieties and 

advanced breeding lines in the Colorado State University evaluation trials in the 2012-2015 growing seasons. Selection cohorts were defined by 

initial year of entry in the trials and categorized model training (TRAIN) and validation (VAL) sets.  The 2012 training set included 405 genotypes 

and the 2012&2013 training set included 660 genotypes.  The validation sets for 2013 and 2014 contained 255 and 85 genotypes.  Variance 

components for the training data were estimated from mixed models.  Cross-validation (CV) and forward prediction (FP) ability and narrow sense 

heritability (h2) are reported as the average over 5 repeats of 5-fold cross-validation for each modeled primary and secondary trait (TRAIT).  

Genetic and phenotypic covariance of modeled traits were estimated from unstructured covariance matrices. The change in prediction accuracy for 

bivariate models over univariate models for individual traits is reported as a ratio (‘FP ratio’ =  bivariate FP r/ univariate FP r).   

Bivariate model  

(1○ trait & 2○ trait) 

TRAIN VAL TRAIT CV 

rBLUP|GEB

V 

sd (CV) covG covP h2 FP 

rBLUP|GEB

V 

sd (FP) FP ratio  

Grain yield (GY) & 

grain protein 

concentration (GPRO) 

2012 2013 GY 0.702 0.011 -0.325 -0.453 0.242 0.274 0.007 0.958 

GPRO 0.664 0.006   0.199 0.442 0.018 0.991 

2012&201

3 

2014 GY 0.693 0.006 -0.390 -0.402 0.220 0.150 0.013 0.968 

GPRO 0.773 0.006   0.317 0.153 0.022 0.801 

Grain protein yield 

(GPY) & Grain protein 

deviation (GPD) 

2012 2013 GPY 0.789 0.006 0.414 0.208 0.397 0.229 0.023 0.974 

GPD 0.682 0.009   0.228 0.426 0.014 0.975 

2012&201

3 

2014 GPY 0.769 0.009 0.313 0.259 0.341 -0.082 0.014 na 

GPD 0.789 0.003   0.347 0.065 0.008 0.855 

Grain yield (GY) & 

grain protein deviation 

(GPD) 

2012 2013 GY 0.698 0.007 0.043 -0.275 0.244 0.276 0.018 0.965 

GPD 0.684 0.008   0.233 0.420 0.013 0.961 

2012&201

3 

2014 GY 0.695 0.006 -0.149 -0.213 0.219 0.156 0.012 1.006 

GPD 0.790 0.004   0.364 0.064 0.005 0.842 

Grain yield (GY) & 

grain protein yield 

(GPY) 

2012 2013 GY 0.690 0.007 0.876 0.800 0.247 0.293 0.010 1.024 

GPY 0.784 0.013   0.379 0.240 0.003 1.021 

2012&201

3 

2014 GY 0.701 0.011 -0.139 -0.222 0.231 0.151 0.009 0.974 

GPY 0.790 0.004   0.353 0.073 0.009 1.013 

3*Grain yield (3*GY) 

& grain protein 

concentration (GPRO) 

2012 2013 3*GY 0.699 0.008 -0.327 -0.449 0.238 0.294 0.012 1.028 

GPRO 0.662 0.006   0.192 0.446 0.015 1.000 

2012&201

3 

2014 3*GY 0.693 0.007 -0.365 -0.401 0.222 0.137 0.017 0.884 

GPRO 0.768 0.008   0.307 0.141 0.015 0.738 
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p-value significance levels:  0.01*, 0.001**, 0.0001*** 

Figure 3.12. Grain yield (GY) related correlation and scatterplot matrix and histograms for GY BLUPs, 

univariate genomic estimated breeding values (GEBV) for GY, and for primary trait GEBVs derived from 

bivariate models (BVgtrt1) for GY + GPRO, GPY + GPD, GY + GPD, GY + GPY and 3*GY + GPRO, 

listed as ‘primary.secondary’ traits on the histograms.  The reported data are from the primary traits.  Red 

circles on the scatterplots represent genotypes in the 2014 validation set and gray circles represent the 

2012+2013 training set. 
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p-value significance levels:  0.01*, 0.001**, 0.0001*** 

Figure 3.13. Grain protein concentration (GPRO) related correlation and scatterplot matrix and 

histograms for GPRO BLUPs, univariate genomic estimated breeding values (GEBV) for GPRO, and for 

secondary trait GEBVs derived from bivariate models (BVgtrt2) for GY + GPRO, GPY + GPD, GY + 

GPD, GY + GPY and 3*GY + GPRO, listed as ‘primary.secondary’ traits on the histograms.  The 

reported data are from the secondary traits.  Red circles on the scatterplots represent genotypes in the 

2014 validation set and gray circles represent the 2012+2013 training set. 
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p-value significance levels:  0.01*, 0.001**, 0.0001*** 

Figure 3.14. Correlation and scatterplot matrix and histograms for univariate genomic estimated breeding 

values (GEBV) for grain yield (GY), grain protein concentration (GPRO), grain protein yield (GPY), 

grain protein deviation (GPD) and for protein-yield selection indices (UVgSI), GY + GPRO, 3*GY + 

GPRO, GY + GPD, and GPY + GPD, listed as ‘trait1.trait2’ on the histograms.  Standardized BLUPs for 

each pair of traits were summed prior to running the prediction model.  Red circles on the scatterplots 

represent genotypes in the 2014 validation set and gray circles represent the 2012+2013 training set.  
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Table 3.12.  Summary statistics for standardized grain yield (zGY) and grain protein concentration (zGPRO) phenotypes for the 2013 validation 

set (VAL) and for the selected fraction after applying a selection strategy based on genomic estimated breeding values.  Dunnett’s multiple 

comparisons were done in contrast to the control group, the selection candidates (VAL). 

Selection Strategya zGY 

mean 
SD min max 

Dunnett 

contrast 

est. 

st.err t val 

zGPR

O 

mean 

SD min max 

Dunnett 

contrast 

est. 

st.err t val 

2013 VAL        -0.02 1.04 -3.01 2.67    -0.19 0.96 -2.54 3.87    

GY         0.20 1.00 -2.28 2.20 0.22 0.15 1.48 -0.63 0.76 -2.09 1.13 -0.44 0.14 -3.04 

GPRO        -0.51 1.05 -2.67 2.67 -0.49 0.15 -3.30* 0.55 1.00 -1.80 3.87 0.74 0.14 5.15*** 

GPY        0.23 0.88 -1.78 2.20 0.25 0.15 1.69 -0.23 0.90 -1.92 1.35 -0.04 0.14 -0.26 

GPD        -0.40 1.08 -2.67 2.42 -0.38 0.15 -2.57 0.59 1.00 -1.69 3.87 0.78 0.14 5.45*** 

UVIC GY + GPRO 0.15 0.96 -2.28 2.08 0.17 0.15 1.15 -0.18 0.85 -2.09 1.35 0.01 0.14 0.09 

UVIC GPY  +  GPD   0.17 0.98 1.79 2.53 0.19 0.15 1.27 0.17 0.83 -1.92 2.19 0.37 0.14 2.55 

UVSI_GY + GPRO    0.05 0.95 -1.79 2.42 0.07 0.15 0.47 0.21 1.09 -1.92 3.87 0.40 0.14 2.78 

UVSI_3GY + GPRO   0.17 0.88 -1.72 2.20 0.19 0.15 1.25 -0.38 0.90 -2.07 1.35 -0.18 0.14 -1.28 

UVSI_GY + GPD    0.07 0.96 -1.79 2.42 0.09 0.15 0.61 0.13 1.06 -1.69 3.87 0.32 0.14 2.23 

UVSI_GPY + GPD    -0.35 1.01 -2.67 2.42 -0.33 0.15 -2.20 0.60 1.00 -1.92 3.87 0.79 0.14 5.49*** 

BVIC GY  +  GPRO   0.07 0.97 -2.28 2.08 0.09 0.15 0.59 -0.12 0.88 -2.09 1.35 0.07 0.14 0.49 

BVIC GPY  +  GPD   0.11 1.01 -1.79 2.53 0.13 0.15 0.87 0.34 0.96 -1.92 3.87 0.53 0.14 3.67** 

BVSI GY  +  GPRO   0.07 0.94 -1.79 2.42 0.09 0.15 0.58 0.20 1.07 -1.92 3.87 0.40 0.14 2.75 

BVSI 3GY  +  

GPRO  
0.22 0.91 -1.54 2.20 0.24 0.15 1.62 -0.36 0.94 -2.07 1.35 -0.16 0.14 -1.14 

BVSI GY  +  GPD   0.05 0.96 -1.79 2.42 0.07 0.15 0.44 0.13 1.04 -1.69 3.87 0.33 0.14 2.27 

BVSI GPY  +  GPD   -0.27 1.01 -2.67 2.42 -0.25 0.15 -1.64 0.52 1.04 -1.92 3.87 0.71 0.14 4.96*** 

*Significance at the .05 probability level.  **Significance at the .01 probability level.  ***Significance at the .001 probability level.   

a GY, grain yield; GPRO, grain protein concentration; GPY, grain protein yield; GPD, grain protein deviation; UVIC, independent culling 

performed on univariate model predictors for trait 1 or trait 2, designated as trait 1 + trait 2; UVSI, selection index calculated by summing BLUPs 

(trait 1 + trait 2) prior to univariate modeling; BVIC, independent culling performed on bivariate model predictors for trait 1 or trait 2, designated 

as trait 1 + trait 2; BVSI, selection index calculated by summing bivariate model predictors (trait 1 + trait 2) after bivariate modeling. 
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Table 3.13.  Summary statistics for standardized grain yield (zGY) and grain protein concentration (zGPRO) genomic estimated breeding values 

for the 2014 validation set and the selected fraction after applying a selection strategy.  Dunnett’s multiple comparisons were done in contrast to 

the control group, the selection candidates (VAL).  The zGY means were not significantly different from the VAL, therefore contrasts were not 

warranted.  

Selection Strategya zGY 

mean 
SD min max 

zGPRO 

mean 
SD min max 

Dunnett 

contrast 

est. 

st.err t val 

2014 VAL        -0.16 0.89 -1.84 2.90 0.43 1.09 -1.64 3.12    

GY         0.20 1.23 -0.88 2.90 -0.29 0.92 -1.64 1.65 -0.72 0.26 -2.75 

GPRO        -0.13 0.47 -0.85 1.26 0.33 0.98 -1.35 2.84 -0.11 0.26 -0.41 

GPY        -0.01 1.10 -0.88 2.90 -0.39 0.87 -1.64 1.65 -0.82 0.26 -3.13 

GPD        -0.12 0.54 -0.71 1.62 0.17 0.76 -1.35 1.26 -0.26 0.26 -0.99 

UVIC GY + GPRO 0.01 1.14 -1.84 1.99 0.08 1.10 -1.64 2.36 -0.36 0.26 -1.37 

UVIC GPY + GPD -0.19 0.78 -1.15 1.72 0.18 1.13 -1.64 2.14 -0.25 0.26 -0.97 

UVSI_GY.GPRO    0.06 1.02 -0.91 1.99 -0.10 0.98 -1.64 1.65 -0.53 0.26 -2.03 

UVSI_3GY.GPRO   0.22 1.23 -0.88 2.90 -0.42 0.86 -1.64 1.65 -0.86 0.26 -3.28* 

UVSI_GY.GPD    0.08 1.04 -0.91 1.99 -0.16 0.99 -1.64 1.65 -0.60 0.26 -2.29 

UVSI_GPY.GPD    -0.02 0.92 -0.91 1.99 0.00 1.02 -1.64 1.65 -0.43 0.26 -1.65 

BVIC GY & GPRO   -0.03 1.16 -1.84 1.99 -0.06 1.14 -1.64 2.36 -0.49 0.26 -1.88 

BVIC GPY & GPD   -0.16 0.97 -1.84 1.88 0.21 1.14 -1.64 2.36 -0.23 0.26 -0.86 

BVSI GY & GPRO   0.07 1.02 -0.91 1.99 -0.04 0.96 -1.64 1.65 -0.47 0.26 -1.80 

BVSI 3GY & GPRO  0.22 1.22 -0.88 2.90 -0.33 0.94 -1.64 1.65 -0.76 0.26 -2.91 

BVSI GY & GPD   0.10 1.03 -0.91 1.99 -0.12 0.98 -1.64 1.65 -0.55 0.26 -2.11 

BVSI GPY & GPD   -0.02 0.92 -0.91 1.99 0.00 1.02 -1.64 1.65 -0.43 0.26 -1.65 

*Significance at the .05 probability level.  **Significance at the .01 probability level.  ***Significance at the .001 probability level.   

a GY, grain yield; GPRO, grain protein concentration; GPY, grain protein yield; GPD, grain protein deviation; UVIC, independent culling 

performed on univariate model predictors for trait 1 or trait 2, designated as trait 1 + trait 2; UVSI, selection index calculated by summing BLUPs 

(trait 1 + trait 2) prior to univariate modeling; BVIC, independent culling performed on bivariate model predictors for trait 1 or trait 2, designated 

as trait 1 + trait 2; BVSI, selection index calculated by summing bivariate model predictors (trait 1 + trait 2) after bivariate modeling.
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Table 3.14.  Tukey’s procedure for means comparisons between the 2013 validation set (VAL) and the 

selected fraction obtained after applying a selection strategy for standardized grain yield (zGY) and grain 

protein concentration (zGPRO) genomic estimated breeding values.   

Linear contrast hypothesisa zGY 

Estimate 

std.error t value zGPRO 

Estimate 

std.error t value 

GPY - VAL == 0 0.25 0.15 1.63 -0.04 0.15 -0.25 

GPY - BVIC GY & GPRO == 0 0.16 0.20 0.82 -0.11 0.19 -0.56 

GPY - BVIC GPY & GPD == 0 0.12 0.20 0.61 -0.56 0.19 -2.98* 

GPY - BVSI GPY + GPD == 0 0.50 0.20 2.50 -0.75 0.19 -3.95** 

UVSI_GPY + GPD - VAL == 0 -0.33 0.15 -2.13 0.79 0.15 5.37*** 

UVSI_GPY + GPD - GPY == 0 -0.58 0.20 -2.91* 0.83 0.19 4.35*** 

UVSI_GPY + GPD - BVIC GY 

& GPRO == 0 

-0.42 0.20 -2.09 0.72 0.19 3.79** 

UVSI_GPY + GPD - BVIC GPY 

& GPD == 0 

-0.46 0.20 -2.30 0.26 0.19 1.38 

UVSI_GPY + GPD - BVSI GPY 

+ GPD == 0 

-0.08 0.20 -0.42 0.08 0.19 0.40 

BVIC GY & GPRO - VAL == 0 0.09 0.15 0.58 0.07 0.15 0.48 

BVIC GPY & GPD - VAL == 0 0.13 0.15 0.84 0.53 0.15 3.59** 

BVSI GPY + GPD - VAL == 0 -0.25 0.15 -1.59 0.71 0.15 4.85*** 

BVIC GY & GPRO - BVIC GPY 

& GPD == 0 

-0.04 0.20 -0.20 -0.46 0.19 -2.41 

BVSI GPY + GPD - BVIC GY 

& GPRO == 0 

-0.34 0.20 -1.68 0.64 0.19 3.39** 

BVSI GPY + GPD - BVIC GPY 

& GPD == 0 

-0.38 0.20 -1.88 0.19 0.19 0.98 

*Significance at the .05 probability level.  **Significance at the .01 probability level.  ***Significance at 

the .001 probability level.  

 aGPY, grain protein yield; VAL, 2013 validation data; BV, bivariate model predictors; IC, independent 

culling with trait 1 & trait 2; GY, grain yield; GPRO, grain protein concentration; GPD, grain protein 

deviation; SI, selection index; ‘GY + GPRO’ or ‘GPY + GPD’, summed BV predictors;  UVSI_GPY + 

GP D, SI calculated with summed GPY and GPD values and then index values are entered in a univariate 

model.
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APPENDIX 
 
 
 

Supplementary table 1.  Plot level data for grain yield (GY) and grain protein concentration 

(GPRO) for breeding lines and commercial varieties grown in 32 evaluation trials during the 

2012, 2013, 2014 and 2015 growing seasons.  The year that individual genotypes were first 

entered in yield trials is indicated in the ‘GRP_2’ column.  Environment (ENV) is defined as the 

combination of year, location, and trial name (open "SupplementaryTable1_Latshaw"). 
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Supplementary table 2.  Genotypic values (best linear unbiased estimates), average number of 

reps, and weights by environment for 676 hard winter wheat breeding lines and varieties grown 

in 20 environments during the 2012-2014 seasons in Colorado (open 

"SupplementaryTable2_Latshaw"). 
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Supplementary table 3.  Genotypic values (best linear unbiased predictors) for 676 hard winter 

wheat breeding lines and varieties determined in a two-stage weighted combined analysis across 

20 environments during the 2012-2014 seasons in Colorado.  

Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

Above 0.121 0.169 0.031 0.077 

Ankor -0.127 -0.165 -0.009 -0.068 

Antero 0.324 -2.826 0.025 -0.060 

Armour -0.077 2.890 0.003 0.330 

Avalanche -0.148 2.874 -0.005 0.503 

Avery 0.364 -0.544 0.037 0.300 

BillBrown 0.054 -1.830 0.003 -0.236 

BondCL -0.167 -3.885 -0.026 -0.646 

BrawlCLPlus -0.021 9.059 0.026 1.144 

Byrd 0.295 -3.613 0.021 -0.168 

CO02W214 -0.616 11.554 -0.023 1.272 

CO02W237 -0.447 3.460 -0.031 0.158 

CO02W280 -0.378 1.125 -0.048 -0.037 

CO03064 -0.102 2.787 -0.010 0.305 

CO03064.2 -0.220 3.403 -0.012 0.265 

CO03443 -0.282 5.556 -0.022 0.656 

CO03W043 -0.292 0.537 -0.036 -0.060 

CO03W108 -0.178 1.041 -0.017 -0.061 

CO03W127 -0.121 -1.903 0.002 -0.144 

CO03W139 -0.142 -3.714 -0.005 -0.535 

CO03W146 -0.215 1.708 -0.012 0.193 

CO04025 -0.032 2.653 0.010 0.496 

CO04039 -0.074 6.144 -0.005 0.734 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO04092 -0.047 2.183 0.008 0.297 

CO04111 -0.191 2.640 -0.009 0.242 

CO04113 -0.389 6.064 -0.017 0.663 

CO04127 -0.306 3.814 -0.001 0.467 

CO04227 -0.135 -1.295 -0.033 -0.440 

CO04262 -0.204 -0.030 -0.022 -0.094 

CO04344 -0.341 -1.482 -0.046 -0.528 

CO04393 0.085 2.060 0.012 0.424 

CO04447 -0.157 5.347 0.004 0.597 

CO04448 -0.256 1.128 -0.024 -0.052 

CO04454W -0.105 0.825 -0.011 0.082 

CO04475 -0.108 1.821 -0.005 0.194 

CO04499 -0.011 -0.462 0.004 -0.140 

CO04544 0.171 -1.876 0.002 -0.022 

CO04549 -0.622 2.182 -0.058 0.191 

CO04551 -0.124 2.511 -0.019 0.436 

CO04553 -0.055 3.397 0.008 0.465 

CO04555 0.288 -2.304 0.019 -0.177 

CO04574 -0.024 0.342 -0.006 0.042 

CO04575 -0.160 -1.373 -0.025 -0.081 

CO04W010 -0.123 -0.723 -0.014 0.014 

CO04W014 -0.112 -1.463 0.005 -0.144 

CO04W028 -0.451 4.192 -0.050 0.158 

CO04W029 -0.250 3.845 -0.019 0.258 

CO04W038 -0.050 -5.358 -0.018 -0.787 

CO04W051 -0.565 1.780 -0.053 -0.156 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO04W061 0.239 0.852 0.008 0.095 

CO04W069 0.087 -2.607 0.003 -0.337 

CO04W075 0.502 -1.712 0.024 -0.105 

CO04W095 0.060 -0.999 0.003 -0.163 

CO04W097 0.045 1.974 0.013 0.099 

CO04W119 -0.101 -1.958 -0.033 -0.339 

CO04W128 -0.271 -0.862 -0.039 -0.185 

CO04W135 -0.331 -0.821 -0.025 -0.215 

CO04W138 -0.663 1.228 -0.057 -0.132 

CO04W164 -0.358 3.466 -0.028 0.176 

CO04W179 -0.123 4.017 -0.011 0.536 

CO04W188 0.070 -1.650 -0.007 -0.127 

CO04W205 -0.006 -4.565 -0.022 -0.739 

CO04W210 -0.115 -1.001 -0.026 -0.107 

CO04W216 -0.063 0.801 -0.005 -0.051 

CO04W281 -0.107 2.585 -0.009 0.366 

CO04W299 0.115 4.439 0.017 0.528 

CO04W320 -0.407 0.275 -0.032 -0.084 

CO04W320.1 -0.649 0.341 -0.061 -0.139 

CO04W320.4 -0.030 -1.894 -0.009 -0.250 

CO04W323 -0.371 -0.349 -0.043 -0.102 

CO04W323.1 -0.334 -1.456 -0.033 -0.327 

CO04W369 0.017 0.882 0.008 0.135 

CO04W421 -0.205 0.445 -0.028 0.158 

CO050133 -0.471 1.999 -0.030 0.186 

CO050141 -0.160 4.811 0.008 0.694 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO050165 -0.166 6.268 0.016 0.717 

CO050173 0.159 -0.913 0.015 -0.160 

CO050175 0.038 -0.611 0.001 -0.086 

CO050203 -0.042 -1.775 -0.008 -0.209 

CO050217 -0.265 4.157 -0.021 0.598 

CO050233 0.238 0.324 0.020 0.230 

CO050233.2 0.430 2.247 0.042 0.543 

CO050262 0.215 -6.492 0.006 -0.668 

CO050270 0.239 -7.157 0.010 -0.634 

CO050270.1 0.097 -4.890 0.004 -0.422 

CO050303 0.355 -0.695 0.032 0.009 

CO050337 0.375 -1.854 0.016 -0.139 

CO050337.2 0.295 -3.606 0.015 -0.348 

CO050343 0.162 -0.076 0.015 0.075 

CO050476 0.118 3.562 0.026 0.535 

CO050541 -0.186 2.902 -0.014 0.094 

CO05060 -0.089 1.311 0.000 0.153 

CO05066 0.008 1.860 -0.004 0.265 

CO05066.1 0.138 1.729 0.014 0.246 

CO05068 -0.142 -2.004 -0.013 -0.244 

CO05079 -0.010 1.118 0.007 0.301 

CO05088 -0.207 -3.473 -0.038 -0.552 

CO05090 0.069 0.974 0.002 0.006 

CO05W001 0.021 -2.572 -0.003 -0.349 

CO05W006 -0.311 1.462 -0.018 0.208 

CO05W020 0.110 1.447 0.014 0.212 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO05W022 -0.375 4.163 -0.021 0.420 

CO05W024 -0.005 2.090 -0.004 0.169 

CO05W045 0.243 3.362 0.025 0.583 

CO05W056 0.041 4.256 0.034 0.533 

CO05W059 -0.029 -0.785 -0.005 -0.044 

CO05W062 0.223 -3.352 0.016 -0.201 

CO05W064 0.023 1.573 0.010 0.228 

CO05W067 -0.216 -1.782 -0.008 -0.107 

CO05W101 -0.381 -2.749 -0.046 -0.583 

CO05W104 -0.153 -7.812 -0.029 -1.160 

CO05W111 -0.077 2.428 0.003 0.209 

CO05W112 0.052 -1.353 0.001 0.034 

CO05W115 -0.127 0.304 -0.010 0.020 

CO05W130 -0.016 2.498 0.015 0.281 

CO05W150 0.005 -0.092 0.014 -0.041 

CO05W153 -0.074 3.378 0.003 0.450 

CO05W156 -0.054 -1.137 -0.003 -0.161 

CO05W165 -0.387 4.379 -0.025 0.550 

CO05W171 -0.118 4.623 0.006 0.622 

CO05W176 -0.260 10.104 0.024 1.237 

CO05W180 -0.338 6.645 -0.010 0.664 

CO05W194 0.132 -2.297 0.010 -0.111 

CO05W250 -0.092 1.162 -0.011 0.159 

CO06024 -0.217 8.117 -0.014 0.923 

CO06041 -0.158 3.567 0.001 0.498 

CO06044 -0.154 5.805 -0.005 0.676 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO06049 -0.192 2.080 -0.011 0.256 

CO06059 -0.135 4.609 -0.008 0.565 

CO06065 0.055 -1.272 0.005 -0.147 

CO06072 0.006 -3.364 0.001 -0.384 

CO06093 -0.016 1.919 0.005 0.310 

CO06107 -0.027 1.759 0.008 0.343 

CO06129 0.099 2.494 0.016 0.394 

CO06138 -0.041 -2.863 -0.023 -0.493 

CO06277 -0.181 3.590 -0.012 0.362 

CO06424.F10 0.277 -3.496 0.015 -0.131 

CO06424.F2 0.579 -3.000 0.046 -0.171 

CO06530 0.236 -0.272 0.013 0.109 

CO06531 -0.080 -3.067 0.000 -0.415 

CO06533 0.343 -4.856 0.022 -0.543 

CO06534 0.279 -4.753 0.013 -0.412 

CO06535 0.046 -6.795 -0.015 -0.774 

CO06539 0.079 -0.129 0.014 0.332 

CO06540 0.168 -2.997 0.011 -0.245 

CO06542 0.022 -2.217 -0.002 -0.305 

CO06M240 0.156 -3.954 -0.004 -0.521 

CO06M242 -0.244 -4.669 -0.042 -0.729 

CO06M243 -0.054 -4.420 -0.037 -0.608 

CO06W002 -0.251 9.007 0.002 1.196 

CO06W058 -0.195 5.415 -0.001 0.639 

CO06W091 0.083 1.614 0.005 0.303 

CO06W096 -0.138 1.055 -0.013 0.082 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO06W153 -0.137 -1.626 -0.020 -0.330 

CO06W183 0.128 3.324 0.028 0.624 

CO06W216 -0.016 -1.799 -0.009 -0.171 

CO06W217 -0.063 0.650 0.000 0.115 

CO07008 -0.017 3.906 0.016 0.537 

CO07033 0.133 1.946 0.018 0.318 

CO07078 -0.173 1.983 -0.002 0.095 

CO07092 -0.110 7.927 0.005 1.048 

CO07202 0.260 -5.565 0.022 -0.419 

CO07203 0.146 -2.588 0.016 -0.236 

CO07205 0.041 -1.347 -0.003 -0.054 

CO07208 0.279 -4.871 0.019 -0.526 

CO07247 -0.045 2.311 0.008 0.236 

CO07253 -0.043 0.109 -0.012 0.092 

CO07274 0.034 2.043 0.007 0.258 

CO07279 0.176 6.508 0.033 1.086 

CO07279.F1 -0.093 4.449 0.012 0.600 

CO07282 -0.009 5.897 0.010 0.668 

CO07282.F1 0.114 -0.641 0.000 -0.064 

CO07288 -0.076 2.143 0.004 0.335 

CO07290 0.342 2.889 0.040 0.622 

CO07292 0.087 1.542 0.007 0.341 

CO07292.F3 0.185 -3.498 0.016 -0.428 

CO07293 -0.179 3.957 -0.006 0.503 

CO07M101 -0.051 -2.648 -0.006 -0.269 

CO07M102 0.104 -1.854 0.013 -0.314 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO07M131 -0.100 2.686 -0.002 0.203 

CO07MAS114 0.309 -0.138 0.025 -0.015 

CO07MAS120 0.146 -2.656 0.014 -0.350 

CO07MAS121 0.443 -5.802 0.023 -0.646 

CO07MAS151 0.370 -3.944 0.031 -0.390 

CO07MAS157 0.431 -2.936 0.045 -0.372 

CO07RWA15 -0.261 3.424 -0.006 0.431 

CO07RWA2 -0.038 1.752 0.001 0.157 

CO07W151 -0.202 3.277 -0.017 0.281 

CO07W245.F2 0.088 -4.233 0.000 -0.453 

CO07W246 0.197 -1.025 0.025 -0.083 

CO07W247 0.223 -8.119 -0.005 -0.917 

CO07W247.F1 0.373 -7.546 0.014 -0.897 

CO07W252 0.231 -1.691 0.023 -0.074 

CO07W252.F3 0.329 -2.351 0.034 -0.073 

CO07W252.F5 0.273 0.928 0.030 0.360 

CO07W322 0.187 4.524 0.031 0.650 

CO07W380 0.425 2.322 0.056 0.617 

CO07W452 0.010 1.504 0.002 0.176 

CO07W607 -0.026 -2.705 -0.002 -0.370 

CO07W614 0.115 -2.666 0.019 -0.366 

CO07W620 -0.366 2.850 -0.025 0.411 

CO07W679 0.085 -0.011 -0.005 0.147 

CO07W683 -0.103 2.839 0.001 0.405 

CO07W718 0.322 -3.540 0.013 -0.233 

CO07W722 0.514 -1.568 0.054 -0.008 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO07W722.F5 0.469 -3.267 0.043 -0.044 

CO08127 0.046 -1.433 0.003 -0.095 

CO08128 0.216 -3.820 0.011 -0.333 

CO08136 0.413 -4.441 0.024 -0.471 

CO08185 -0.197 1.138 -0.019 0.061 

CO08203 -0.134 -1.766 -0.015 -0.278 

CO08219 0.088 -0.567 0.018 -0.057 

CO08224 -0.090 -2.947 -0.012 -0.395 

CO08253 0.056 -0.439 -0.010 0.006 

CO08259 -0.289 -1.827 -0.025 -0.067 

CO08263 0.336 -4.108 0.008 -0.249 

CO08302 0.073 5.807 0.033 0.975 

CO08323 0.220 -2.262 0.010 -0.202 

CO08327 -0.214 0.578 -0.021 0.188 

CO08329 -0.035 0.204 -0.003 -0.018 

CO08340 -0.148 3.271 0.005 0.557 

CO08344 0.019 -3.095 -0.009 -0.359 

CO08346 -0.012 2.077 0.000 0.296 

CO08354 -0.036 -0.264 -0.011 0.092 

CO08395 0.035 2.642 0.008 0.308 

CO08412 -0.006 6.516 0.022 0.959 

CO08454 0.121 1.069 0.009 0.123 

CO08522 0.076 -3.423 -0.017 -0.481 

CO08523 0.141 -0.910 -0.002 0.052 

CO08530 -0.284 0.621 -0.030 0.113 

CO08M011 -0.002 -4.136 -0.023 -0.614 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO08M045 -0.018 -2.063 -0.017 -0.201 

CO08M045.F3 -0.129 1.380 -0.003 0.027 

CO08RWA050 -0.174 -0.077 -0.017 -0.082 

CO08RWA060 -0.193 -1.133 -0.023 -0.330 

CO08W079 0.066 -1.555 0.001 -0.107 

CO08W119 0.130 0.658 0.008 0.047 

CO08W211 -0.067 4.558 0.011 0.796 

CO08W218 0.337 -5.447 0.020 -0.451 

CO08W218.F2 0.106 -2.138 0.018 0.076 

CO08W232 -0.059 -2.176 -0.014 -0.413 

CO08W328 -0.092 2.910 -0.012 0.363 

CO08W328.F3 -0.102 4.353 -0.027 0.134 

CO08W328.F5 -0.093 0.483 -0.029 -0.229 

CO08W393 0.106 -7.830 -0.023 -1.316 

CO08W412 -0.118 -0.253 -0.025 0.056 

CO08W432 0.001 1.477 0.015 0.253 

CO08W454 0.078 1.669 0.005 0.383 

CO09005 0.019 4.285 0.008 0.480 

CO09007 0.088 7.499 0.027 0.938 

CO09040 -0.015 -1.979 -0.006 -0.292 

CO09050 -0.034 -2.274 -0.006 -0.373 

CO09059 -0.008 -2.006 -0.012 -0.260 

CO09060 0.199 -0.652 0.023 -0.045 

CO09075 0.118 0.683 0.007 0.085 

CO09077 0.007 -2.061 -0.003 -0.211 

CO09081 0.253 -1.518 0.021 -0.197 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO09112 0.129 1.496 0.001 0.335 

CO09148 -0.745 4.604 -0.041 0.480 

CO09149 -0.054 -1.948 -0.015 -0.181 

CO09153 0.382 -7.582 0.020 -0.469 

CO09157 -0.155 -2.353 -0.015 -0.271 

CO09159 0.224 1.388 0.024 0.172 

CO09183 -0.252 4.131 -0.007 0.472 

CO09185 0.023 -1.539 0.013 -0.108 

CO09193 0.028 0.558 0.000 0.183 

CO09226 0.151 -0.294 0.005 -0.104 

CO09227 0.010 -0.503 -0.012 -0.067 

CO09231 0.291 -4.435 0.002 -0.469 

CO09237 0.189 -5.141 0.011 -0.569 

CO09241 0.187 -2.944 0.007 -0.386 

CO09272 -0.223 -0.766 -0.038 -0.447 

CO09279 0.254 -2.910 0.003 -0.381 

CO09284 0.193 1.540 0.014 0.411 

CO09287 0.094 -0.304 0.002 0.078 

CO09292 0.088 4.410 0.018 0.677 

CO09296 -0.173 6.817 -0.003 0.843 

CO09300 0.155 -1.994 0.006 -0.053 

CO09301 0.196 -2.843 0.013 -0.164 

CO09306 0.200 -4.205 0.008 -0.236 

CO09309 0.448 -4.003 0.019 -0.480 

CO09316 -0.002 -1.535 -0.001 -0.192 

CO09317 0.171 0.947 0.016 -0.009 



 

176 
 

Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO09325 -0.153 7.119 0.007 0.932 

CO09348 -0.125 -0.182 -0.004 -0.083 

CO09369 -0.016 -2.946 -0.014 -0.245 

CO09370 -0.424 2.636 -0.023 0.269 

CO09371 -0.223 0.824 -0.015 0.025 

CO09382 0.017 -2.654 -0.010 -0.325 

CO09384 -0.439 9.901 -0.011 1.007 

CO09385 -0.254 8.508 -0.001 1.070 

CO09393 -0.414 1.114 -0.048 -0.139 

CO09394 -0.070 3.422 0.003 0.360 

CO09M0011 0.127 3.120 0.016 0.586 

CO09M0022 -0.243 -1.763 -0.026 -0.220 

CO09M0023 -0.237 2.416 -0.026 0.307 

CO09M008 0.177 0.425 0.029 0.222 

CO09W009 0.173 -3.342 0.014 -0.214 

CO09W011 -0.201 3.545 -0.021 0.434 

CO09W024 -0.273 1.295 -0.031 0.019 

CO09W027 -0.101 9.287 0.013 0.998 

CO09W028 -0.054 8.808 0.024 1.169 

CO09W031 -0.204 5.299 -0.013 0.612 

CO09W040 0.315 -8.784 0.011 -0.729 

CO09W040.F1 -0.023 -2.794 -0.009 -0.254 

CO09W052 -0.071 1.644 -0.007 0.139 

CO09W061 -0.101 -0.849 -0.028 -0.192 

CO09W091 -0.113 3.664 -0.009 0.314 

CO09W106 0.027 4.559 0.012 0.484 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO09W107 -0.527 -0.641 -0.052 -0.408 

CO09W109 0.182 -1.876 0.008 -0.296 

CO09W110 0.031 -0.950 -0.012 -0.264 

CO09W118 0.204 2.430 0.020 0.265 

CO09W123 -0.054 2.385 -0.006 0.233 

CO09W141 -0.388 4.638 -0.012 0.521 

CO09W143 -0.026 -0.061 -0.008 -0.150 

CO09W153 -0.117 0.543 -0.017 -0.064 

CO09W154 -0.200 2.829 -0.003 0.211 

CO09W165 -0.067 1.680 -0.004 0.155 

CO09W169 -0.005 0.447 0.016 -0.008 

CO09W172 0.134 -5.300 -0.007 -0.690 

CO09W180 -0.020 1.955 0.007 0.371 

CO09W181 -0.242 4.373 -0.007 0.537 

CO09W190 -0.020 6.212 0.010 0.747 

CO09W191 -0.083 2.938 0.000 0.291 

CO09W202 -0.072 2.030 0.007 0.152 

CO09W229 -0.488 -0.528 -0.045 -0.198 

CO09W246 -0.157 1.517 -0.017 -0.006 

CO09W248 -0.395 -0.615 -0.041 -0.223 

CO09W284 -0.032 2.454 0.024 0.280 

CO09W289 0.244 -2.052 0.023 -0.129 

CO09W291 0.230 -3.585 0.022 -0.398 

CO09W302 0.023 7.128 0.018 0.915 

CO09W304 -0.250 1.177 -0.023 0.061 

CO09W308 -0.220 4.405 -0.004 0.680 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO09W312 -0.268 5.502 -0.009 0.656 

CO09W322 -0.211 7.107 0.010 0.854 

CO09W323 -0.165 -1.542 -0.012 -0.344 

CO09W330 -0.074 -0.035 -0.013 -0.033 

CO09W332 -0.015 -1.327 -0.001 -0.178 

CO09W333 -0.068 -1.335 -0.021 -0.249 

CO09W334 -0.035 2.037 -0.017 0.151 

CO09W342 -0.024 4.249 0.011 0.496 

CO09W356 -0.196 2.255 -0.019 0.258 

CO09W370 -0.184 3.571 -0.012 0.510 

CO09W376 0.019 0.525 -0.016 0.042 

CO09W379 0.094 2.830 -0.001 0.280 

CO09W382 0.145 -0.386 0.009 0.032 

CO09W389 -0.025 -2.775 -0.013 -0.323 

CO09W391 0.206 0.801 0.019 0.187 

CO09W399 -0.203 2.058 -0.004 0.304 

CO09W412 -0.057 2.578 -0.013 0.231 

CO09W418 -0.183 1.240 -0.028 -0.073 

CO09W420 0.009 -1.217 -0.015 -0.279 

CO09W428 -0.484 5.629 -0.032 0.486 

CO09W434 -0.459 6.127 -0.030 0.633 

CO09W435 -0.430 2.013 -0.022 0.238 

CO09W448 -0.095 4.014 -0.001 0.561 

CO09W451 0.071 -2.251 -0.001 -0.442 

CO09W454 -0.140 -0.253 -0.014 -0.250 

CO09W472 -0.159 -1.679 -0.033 -0.437 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO09W476 -0.024 4.912 -0.013 0.855 

CO09W477 -0.304 -3.869 -0.043 -0.612 

CO09W478 -0.189 10.381 0.021 1.141 

CO09W479 0.131 1.291 0.011 0.277 

CO09W480 -0.204 0.640 -0.015 -0.018 

CO09W481 0.232 1.145 0.013 0.149 

CO09W483 -0.010 -2.680 0.007 -0.068 

CO09W487 -0.162 3.102 -0.009 0.324 

CO09W504 0.012 3.386 0.014 0.510 

CO09W542 -0.113 3.507 -0.009 0.297 

CO09W546 -0.034 3.023 -0.009 0.305 

CO09W549 0.038 -4.565 -0.007 -0.515 

CO09W562 -0.438 8.146 -0.022 0.977 

CO09W565 -0.478 6.949 -0.032 0.804 

CO09W574 -0.234 1.919 -0.010 0.251 

CO09W575 0.049 -3.087 -0.013 -0.247 

CO09W584 -0.537 -2.101 -0.068 -0.590 

CO09W590 -0.031 -1.193 -0.003 -0.225 

CO09W591 0.305 -0.824 0.039 -0.173 

CO09W595 -0.034 -2.083 0.005 -0.092 

CO09W597 -0.171 0.480 -0.007 0.017 

CO09W602 0.082 0.239 0.010 0.142 

CO09W605 0.205 -2.258 0.005 -0.192 

CO09W607 -0.108 4.710 -0.010 0.457 

CO09W608 -0.320 12.079 0.007 1.522 

CO09W617 -0.208 6.244 -0.004 0.684 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO10168 0.099 0.113 0.016 0.234 

CO10W107 -0.044 -2.098 -0.009 -0.224 

CO10W133 -0.205 -2.352 -0.013 -0.440 

CO10W171 -0.134 0.037 -0.002 -0.136 

CO10W172 -0.592 4.508 -0.057 -0.242 

CO10W181 0.017 1.040 -0.012 -0.063 

CO10W183 0.014 -0.895 -0.002 -0.198 

CO10W302 0.082 3.209 0.032 0.681 

CO10W314 0.098 1.684 0.023 0.478 

CO10W444 -0.295 1.094 -0.023 -0.215 

CO10W446 -0.363 0.379 -0.026 -0.048 

CO10W465 -0.087 -3.042 -0.010 -0.314 

CO11010 -0.348 8.970 -0.004 0.963 

CO11274 -0.171 4.763 0.009 0.644 

CO11296 -0.222 4.961 -0.006 0.660 

CO11353 -0.086 -2.364 -0.014 -0.170 

CO11442 -0.166 3.778 -0.002 0.442 

CO11604 -0.393 5.310 -0.019 0.431 

CO11D043 0.026 -4.516 -0.012 -0.578 

CO11D053 -0.067 -3.556 -0.022 -0.556 

CO11D069 -0.378 -4.347 -0.057 -0.923 

CO11D100 -0.032 -0.511 0.004 0.231 

CO11D1104 -0.147 -0.110 -0.015 0.118 

CO11D1105 0.299 1.811 0.038 0.494 

CO11D1106 0.111 6.075 0.035 0.991 

CO11D1108 0.010 4.767 0.015 0.630 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO11D1111 0.280 -3.171 0.037 0.009 

CO11D1118 0.059 5.332 0.022 0.930 

CO11D1119 -0.208 6.084 -0.008 0.686 

CO11D1121 0.043 1.540 0.006 0.252 

CO11D1122 0.167 2.483 0.024 0.157 

CO11D1125 0.122 2.396 0.025 0.386 

CO11D1127 0.234 0.425 0.031 0.170 

CO11D1132 0.098 -0.095 0.017 0.151 

CO11D1133 -0.028 0.283 0.004 0.038 

CO11D1134 -0.034 3.853 0.006 0.552 

CO11D1140 0.387 -3.368 0.037 -0.178 

CO11D1155 -0.137 -5.220 -0.025 -0.998 

CO11D1156 -0.055 -1.692 -0.008 -0.510 

CO11D1158 0.103 -4.693 -0.002 -0.287 

CO11D1159 0.319 2.185 0.044 0.566 

CO11D1162 0.117 -4.145 0.004 -0.320 

CO11D1165 0.179 -1.227 0.019 -0.048 

CO11D1168 0.058 1.724 0.004 0.118 

CO11D1174 0.299 -6.748 0.013 -0.695 

CO11D1182 -0.193 1.999 -0.022 0.056 

CO11D1184 -0.092 0.682 -0.009 0.173 

CO11D1186 -0.067 2.000 0.002 0.395 

CO11D1190 0.061 -6.534 -0.005 -0.886 

CO11D1193 0.054 0.076 0.006 0.061 

CO11D1197 0.137 -1.386 0.015 0.093 

CO11D1198 -0.168 -2.148 -0.021 -0.297 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO11D1206 -0.088 2.512 -0.003 0.348 

CO11D1207 0.092 1.260 0.018 0.301 

CO11D1208 0.077 1.907 0.018 0.265 

CO11D1210 -0.073 2.550 -0.010 0.329 

CO11D1213 0.112 -5.630 -0.008 -0.644 

CO11D1216 0.002 2.626 0.011 0.560 

CO11D1219 -0.012 1.383 -0.002 0.271 

CO11D1221 0.449 1.105 0.058 0.380 

CO11D1223 -0.018 2.898 0.000 0.358 

CO11D1225 0.066 4.022 0.017 0.902 

CO11D1229 -0.051 6.593 0.013 0.955 

CO11D1231 -0.392 1.837 -0.044 0.018 

CO11D1232 0.183 3.528 0.022 0.511 

CO11D1234 0.187 3.626 0.037 0.548 

CO11D1235 0.091 0.339 0.013 0.306 

CO11D1236 0.115 -8.424 -0.005 -0.908 

CO11D1240 0.351 -6.859 0.024 -0.472 

CO11D1242 0.098 0.166 0.020 -0.050 

CO11D1243 0.113 3.996 0.029 0.521 

CO11D1246 -0.211 -2.626 -0.033 -0.235 

CO11D1247 -0.092 -4.266 -0.023 -0.567 

CO11D1248 -0.539 -0.125 -0.058 -0.359 

CO11D125 0.054 0.496 0.027 0.416 

CO11D1252 0.083 -5.649 -0.007 -0.744 

CO11D1261 -0.141 -4.838 -0.032 -0.569 

CO11D1267 0.146 -3.190 0.014 -0.355 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO11D1268 -0.189 2.393 -0.022 0.112 

CO11D1270 0.127 -3.103 0.008 -0.368 

CO11D1271 -0.406 -3.379 -0.057 -0.699 

CO11D1272 -0.079 -0.673 -0.011 0.020 

CO11D1282 0.232 -5.146 0.010 -0.613 

CO11D1287 -0.020 1.739 -0.004 0.285 

CO11D1289W 0.016 -1.318 -0.005 -0.268 

CO11D1290W -0.198 -4.651 -0.027 -0.425 

CO11D1292 -0.169 2.822 -0.018 0.337 

CO11D1293 -0.041 -2.807 -0.001 -0.336 

CO11D1294 0.358 -0.346 0.041 0.148 

CO11D1296W 0.434 -1.575 0.053 -0.005 

CO11D1298 0.251 -8.318 0.004 -0.934 

CO11D1300W 0.469 -2.443 0.048 -0.235 

CO11D1302W -0.149 -0.153 -0.022 -0.068 

CO11D1305 0.084 -2.633 -0.004 -0.216 

CO11D1306W 0.432 -2.200 0.043 -0.166 

CO11D1309W 0.077 -4.841 -0.005 -0.847 

CO11D1311 -0.063 -4.380 -0.018 -0.720 

CO11D1312 0.326 -4.240 0.025 -0.444 

CO11D1315W -0.067 -0.171 -0.004 0.187 

CO11D1316W 0.408 -5.726 0.026 -0.580 

CO11D1317 -0.038 -0.091 -0.007 -0.019 

CO11D1322 -0.097 0.699 -0.018 0.211 

CO11D1325 -0.011 -2.190 -0.011 -0.299 

CO11D1332 -0.056 -3.923 -0.019 -0.502 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO11D1333 0.218 -0.167 0.028 0.275 

CO11D1334 0.025 1.276 0.007 0.451 

CO11D1335W -0.001 -0.257 -0.008 -0.173 

CO11D134 -0.267 0.669 -0.015 0.077 

CO11D1341 0.135 2.090 0.023 0.443 

CO11D1343 -0.152 -2.188 -0.030 -0.348 

CO11D1345 -0.021 -0.573 -0.010 0.007 

CO11D1351 0.009 -3.443 -0.013 -0.361 

CO11D1352 -0.116 -0.169 -0.014 0.064 

CO11D1353 0.208 -3.733 0.015 -0.334 

CO11D1355 -0.094 -3.748 -0.017 -0.447 

CO11D1356 -0.052 3.319 0.003 0.526 

CO11D1360 -0.084 -1.272 -0.019 -0.212 

CO11D1361 0.020 -0.425 -0.002 0.081 

CO11D1364 0.059 -4.407 -0.015 -0.490 

CO11D1367 -0.050 -3.673 -0.013 -0.398 

CO11D1371 -0.194 0.414 -0.024 -0.004 

CO11D1374 0.079 -8.359 -0.017 -1.142 

CO11D1376 0.075 0.691 0.008 0.314 

CO11D1377 0.048 -1.858 0.004 -0.176 

CO11D1380 -0.213 1.268 -0.022 0.194 

CO11D1382 0.007 -1.072 -0.013 -0.168 

CO11D1383 -0.360 -5.322 -0.058 -0.739 

CO11D1385 -0.106 -1.004 -0.019 -0.347 

CO11D1390 0.169 -8.778 0.002 -1.062 

CO11D1392 0.024 -6.166 -0.006 -0.870 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO11D1393 -0.186 -3.613 -0.022 -0.499 

CO11D1397 0.199 -7.034 -0.001 -0.688 

CO11D1401 0.119 -6.139 0.004 -0.924 

CO11D1406 0.066 -4.877 0.003 -0.189 

CO11D1407 0.132 -0.442 0.016 0.136 

CO11D1409 0.120 -2.014 0.006 -0.275 

CO11D1412 -0.021 -0.846 -0.006 -0.061 

CO11D1414 -0.175 -1.254 -0.027 -0.153 

CO11D1415W -0.085 -0.970 -0.010 -0.259 

CO11D1416 0.045 4.510 0.014 0.801 

CO11D1418 -0.083 2.748 -0.006 0.250 

CO11D1421W 0.116 -0.856 0.013 -0.045 

CO11D1422 0.071 -2.022 0.003 -0.119 

CO11D1424 -0.110 -1.804 -0.032 -0.174 

CO11D1428W -0.012 2.851 0.010 0.589 

CO11D1431 0.017 6.055 0.011 0.762 

CO11D1528 0.096 -4.857 0.004 -0.546 

CO11D1534 -0.190 -5.716 -0.037 -0.890 

CO11D1535 0.131 0.575 0.031 0.351 

CO11D1536 0.065 -4.234 -0.003 -0.350 

CO11D1539 0.212 -4.375 0.016 -0.329 

CO11D1542 0.226 -3.525 0.012 -0.297 

CO11D1543 -0.293 1.760 -0.034 0.027 

CO11D1545 -0.165 -2.780 -0.032 -0.608 

CO11D1546 0.131 -5.120 0.004 -0.592 

CO11D1547 -0.051 -5.573 -0.017 -0.505 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO11D1551 -0.202 4.893 -0.012 0.820 

CO11D1553W -0.144 5.987 0.007 1.020 

CO11D1555W 0.048 2.872 0.012 0.545 

CO11D1557W -0.137 5.675 0.001 0.820 

CO11D1559 -0.197 8.738 -0.007 1.249 

CO11D1561 -0.089 0.928 -0.011 0.021 

CO11D1564 -0.345 2.797 -0.053 0.182 

CO11D1570 -0.251 2.687 -0.024 0.482 

CO11D1577 -0.178 1.356 -0.010 0.210 

CO11D1579 -0.164 4.007 -0.008 0.393 

CO11D1581W -0.200 3.886 -0.014 0.427 

CO11D1582W -0.015 16.622 0.036 2.455 

CO11D1584 -0.477 12.015 -0.034 1.446 

CO11D1586W -0.059 6.557 0.008 0.941 

CO11D1588 -0.078 4.069 -0.001 0.637 

CO11D1592 -0.057 4.866 0.007 0.652 

CO11D1594 -0.292 4.059 -0.031 0.365 

CO11D1600W 0.051 0.793 0.010 0.200 

CO11D1603W -0.180 2.273 -0.021 0.135 

CO11D1606 -0.346 4.957 -0.036 0.637 

CO11D1609 0.087 -0.529 0.020 -0.031 

CO11D1613W 0.107 5.985 0.033 1.119 

CO11D1615 -0.316 9.575 -0.019 1.212 

CO11D1618 -0.110 3.621 -0.003 0.683 

CO11D1620 0.123 1.591 0.020 0.293 

CO11D1623 0.055 -0.027 0.006 0.057 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO11D1624 0.163 -0.434 0.024 0.350 

CO11D1627 0.159 1.434 0.032 0.624 

CO11D1629 0.204 0.461 0.038 0.339 

CO11D1631 0.290 4.367 0.059 0.836 

CO11D1633 -0.027 2.788 0.005 0.527 

CO11D1636 -0.131 2.279 -0.011 0.407 

CO11D1642 0.011 -0.078 0.010 0.456 

CO11D1644 -0.064 6.011 0.016 0.868 

CO11D1645 0.006 3.963 0.015 0.611 

CO11D1647 0.114 2.726 0.024 0.483 

CO11D1654 0.158 -2.198 0.009 -0.345 

CO11D1656 -0.315 4.604 -0.024 0.611 

CO11D1657 -0.074 1.977 0.001 0.370 

CO11D1659 -0.098 1.911 -0.006 0.489 

CO11D1665 -0.163 5.326 -0.002 0.831 

CO11D1666 -0.137 0.592 -0.004 0.414 

CO11D1672 0.089 -1.198 0.003 -0.261 

CO11D1677W 0.006 -6.494 -0.019 -0.889 

CO11D1680 -0.014 0.805 0.000 0.023 

CO11D1683 -0.029 -0.377 -0.003 0.030 

CO11D1685W 0.029 -2.823 0.003 -0.170 

CO11D1686 0.495 -7.214 0.035 -0.692 

CO11D1689W -0.045 -3.731 -0.025 -0.487 

CO11D1692 0.248 -2.874 0.016 -0.165 

CO11D1694 0.091 0.660 0.010 0.073 

CO11D1697 -0.238 -4.398 -0.041 -0.752 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO11D1698 -0.132 -2.182 -0.023 -0.413 

CO11D1704 0.042 -6.179 -0.017 -0.788 

CO11D1706 0.201 -2.527 0.018 -0.377 

CO11D1710 0.191 -0.988 0.026 -0.153 

CO11D1712 -0.296 -3.144 -0.041 -0.434 

CO11D1715 0.355 -5.594 0.020 -0.510 

CO11D1719 0.097 -4.816 0.006 -0.460 

CO11D1723 0.108 -2.856 0.005 -0.290 

CO11D1725 0.031 -0.661 0.007 0.105 

CO11D1728 0.013 -1.008 0.003 -0.037 

CO11D1731 -0.142 0.009 -0.006 0.098 

CO11D1733 -0.107 3.661 -0.007 0.739 

CO11D1734 0.322 -5.012 0.024 -0.514 

CO11D1739 0.210 -7.693 0.001 -0.893 

CO11D1740 -0.140 -5.520 -0.030 -0.716 

CO11D1742 0.324 -4.142 0.023 -0.571 

CO11D1743W 0.026 -1.115 0.002 -0.070 

CO11D1744 0.066 -5.098 -0.003 -0.415 

CO11D1746 -0.297 -1.978 -0.041 -0.283 

CO11D1748 0.255 -9.488 -0.003 -1.057 

CO11D1749 -0.172 -4.844 -0.038 -0.627 

CO11D1751 0.168 1.191 0.022 0.314 

CO11D1752 -0.272 1.176 -0.026 -0.166 

CO11D1754 -0.108 5.298 -0.003 0.883 

CO11D1758W -0.318 3.454 -0.035 0.298 

CO11D1759 -0.175 0.634 -0.019 0.042 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO11D1767 0.316 -4.633 0.020 -0.497 

CO11D1769 0.160 2.073 0.019 0.305 

CO11D1772 -0.011 4.821 0.012 0.446 

CO11D1783 0.040 2.583 0.009 0.460 

CO11D1785 0.078 -1.832 0.011 -0.035 

CO11D1787 -0.152 -1.654 -0.024 -0.296 

CO11D1788 -0.210 -7.959 -0.038 -1.136 

CO11D1789 -0.185 3.478 -0.019 0.406 

CO11D1790 0.064 -0.597 0.004 0.050 

CO11D1792 0.084 0.643 0.010 0.168 

CO11D1794 0.145 6.641 0.050 1.160 

CO11D1796 -0.204 1.166 -0.023 0.335 

CO11D1798 0.035 -2.880 -0.015 -0.554 

CO11D1799 0.072 -6.350 -0.014 -0.940 

CO11D1800W 0.113 -2.585 0.010 -0.370 

CO11D1802 -0.201 -5.466 -0.033 -0.729 

CO11D1804 -0.099 -0.828 -0.018 -0.292 

CO11D1805 -0.271 3.484 -0.023 0.486 

CO11D1808W 0.336 -0.851 0.031 0.057 

CO11D1809 0.216 2.172 0.028 0.294 

CO11D1810 0.106 -0.042 -0.002 0.192 

CO11D188 -0.179 5.128 0.010 0.714 

CO11D243 0.341 -6.406 0.020 -0.481 

CO11D323 0.315 -10.286 0.000 -1.047 

CO11D346 0.350 -6.193 0.014 -0.478 

CO11D378 0.202 -2.669 0.010 -0.228 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

CO11D421 0.332 -3.203 0.023 -0.141 

CO11D424 -0.303 0.294 -0.021 -0.242 

CO11D428 -0.236 -0.272 -0.018 -0.149 

CO11D444 -0.041 2.324 0.005 0.211 

CO11D461 0.014 -1.793 -0.003 -0.075 

CO11M045 0.020 -4.762 -0.015 -0.625 

CO11M106 -0.058 -0.672 -0.007 0.087 

CO11W381 0.006 -2.811 -0.009 -0.389 

CO11W393 -0.093 3.180 0.009 0.466 

Cowboy 0.511 -3.035 0.027 -0.232 

Danby -0.107 1.988 -0.005 0.257 

Denali 0.046 -2.829 -0.002 -0.256 

Hatcher 0.201 -0.994 0.014 -0.004 

Jagalene -0.265 3.556 -0.021 0.518 

Keota -0.123 6.750 0.023 0.849 

Langin 0.193 -1.702 0.021 0.029 

LCSMint 0.012 0.330 0.011 0.158 

Longhorn -0.338 4.150 -0.015 0.207 

NuDakota 0.067 2.873 0.020 0.494 

NuFrontier -0.150 1.046 -0.012 -0.009 

Ripper 0.219 5.120 0.042 0.774 

SettlerCL 0.001 0.393 0.022 0.113 

Snowmass -0.085 -0.689 -0.017 -0.175 

Sunshine 0.140 3.905 0.026 0.560 

TAM111 0.220 1.205 0.019 0.134 

TAM112 0.107 3.717 0.018 0.403 
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Trait GY BLUP GPRO BLUP GPY BLUP GPD BLUP 

Genotype Mg ha-1 g kg-1 Mg ha-1 g kg-1 

ThunderCL -0.109 -1.073 -0.012 -0.338 

WB.Grainfield -0.219 6.811 0.005 0.707 

Winterhawk -0.112 1.478 -0.001 0.029 
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Supplementary table 4.  Realized relationship matrix (G) (open 

"SupplementaryTable3_Latshaw"). 
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Supplementary table 5. Pedigrees included in the multi-environment trials 2012-2014.  

Pedigree 
Count 
of ID 

03A-KCB-8/Hatcher//Hatcher 3 

03WSR-197/Ankor//Danby 2 

03WSR-203/Yuma//Danby 1 

12SAWYT-22/Hatcher//Hatcher 1 

2002 Altus-034/Bond CL//TAM 111 2 

2414-11/5*CO00554 2 

474S10-1/X87807-26//HBK0736-3 1 

89-27/CO970547//2*CO970547-7/CO970547-7 1 

89-27/CO970547//3*CO970547-7 1 

94M370/6*Yuma 2 

96X0799-11W/Avalanche//CO970547-7 1 

96X0799-11W/Stanton//CO970547-7 1 

96X0856-01W/Trego//CO970547-7 1 

98HW423(JGR/93HW242)/96HW94 1 

98HW519(93HW91/93HW255)/96HW94 1 

98HW521(93HW91/93HW255)/98HW165(ARL/WGRC15) 1 

A97201S-B-34/Avalanche//CO99W329 2 

Abilene/Jagger 1 

Above//OK95616-14C/G980103W 1 

Above/Stanton 1 

Akron/Halt//4*Akron 1 

Ankor/96X0856-01W//KS01HW168-4 1 

Antero/CO050233-2 10 

Antero/HV9W07-482W//CO05W111 1 

Avalanche/CO980630 1 

Avalanche/CO99148 1 

Avalanche/CO99W075 1 

Avalanche/KS920946-B-15-1 1 

Avalanche/KS970392-1-1-2//CO01W172 4 

Avalanche/NuFrontier 2 

Avalanche/NW97S343 1 

Avalanche/TAM 112//OK Rising 1 

Avalanche/W97-189 1 

B1551-WH/KS94U326 1 

Baker's White/96X0799-15W//CO970547-7 2 

Bill Brown/Byrd 3 

Bill Brown/Garrison 1 
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Pedigree 
Count 
of ID 

Bill Brown/KS05HW14-3 2 

Bill Brown/NuDakota//Bill Brown 5 

Bill Brown/OK Rising 1 

Bill Brown/Thunder CL 1 

Brawl CL Plus/CO05W111 20 

Burchett/CO960293-2//Stanton 1 

Byrd/Antero 13 

Byrd/CO07W247//CO050337-2 1 

CIMMYT01-59/CO970547//3*CO970547-7 1 

CO00580/TAM 111 2 

CO00739/KS01HW152-6//OK Rising 1 

CO00739/RonL//OK02518W 1 

CO01385/Danby 2 

CO01385/G001172W 4 

CO01385/KS01HW163-4 1 

CO01W171/CO02W040 1 

CO01W171/CO02W283 1 

CO01W172/KS02HW90-5 1 

CO01W173/KS01HW152-6 1 

CO01W173-A3/CO02W021 1 

CO01W189-A1/KS03HW97-1 1 

CO01W191/CO02W010 2 

CO01W191/CO02W180 1 

CO01W191/HV9W02-110W 2 

CO01W191/KS03HW38-2 1 

CO01W191/TX00V1117 2 

CO02W040/KS01HW152-6 1 

CO02W183/CO01W191 1 

CO02W237/CO01W173-A3 1 

CO03W054/CO940610 4 

CO03W054/Hatcher//CO03W054 1 

CO03W054/OK05723W 2 

CO050173/Antero//Byrd 3 

CO050173/Cowboy 3 

CO050233-2/Byrd 13 

CO050233-2/CO050337-2 6 

CO050233-2/Cowboy 14 

CO050270/Byrd 6 

CO050270/Hatcher 1 
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Pedigree 
Count 
of ID 

CO050337-2/Antero 14 

CO050337-2/Byrd 26 

CO05W111/Antero 1 

CO06072/4*Byrd 4 

CO06072/4*CO050337-2 1 

CO07MAS114/CO050173 5 

CO07MAS114/CO050233-2 7 

CO07MAS114/CO05W111 1 

CO07MAS114/Cowboy 27 

CO07MAS114/Denali 32 

CO940606/TAM107R-2 1 

CO940610/CO960293//CO99W189 1 

CO950043//CO940610/KS99HW24 1 

CO950043/Above//CO970547 2 

CO950043/CO99141 1 

CO950043/TX90A9528 1 

CO950635/CO99W1126 5 

CO960691/CO970655 1 

CO970498/CO950043//CO970547 4 

CO970498/CO970940//CO980376 3 

CO970498/KS98HW220-5 3 

CO970498/Stanton 1 

CO970547/Prowers 99 2 

CO970547-7/KS01HW152-6 2 

CO980352/CO970235 1 

CO980376/CO99W254 2 

CO980630/CO99W076 4 

CO980829/CO950043 1 

CO980829/TAM 111 8 

CO980862/Lakin 1 

CO99314/CO00580 1 

CO99314/W96x1080-21//Jagalene 1 

CO99W076/TAM 111 1 

CO99W1126/CO980352 2 

CO99W1126/KS96HW10-3 6 

CO99W1126/KS99HW24 1 

CO99W165/CO99526 1 

CO99W165/G97252 1 

CO99W165/OK98G502W 1 



 

196 
 

Pedigree 
Count 
of ID 

CO99W183/G980091 1 

CO99W189/Lakin 2 

CO99W254/CO99148 3 

CO99W254/KS00HW114 4 

Cowboy/Antero 14 

Cowboy/Antero//Byrd 4 

Custer/Jagger 1 

Danby(TREGO/JGR 8W)/BC97ROM-41W 2 

Danby/CO02W010 2 

Danby/CO02W214 2 

Danby/CO970547-7 10 

Danby/Everest//CO03W054 1 

Danby/TX00V1117 6 

Denali/Antero 16 

Denali/Antero//Byrd 2 

Denali/Antero//Snowmass 6 

Denali/Byrd 17 

Denali/CO050233-2 11 

Denali/CO07W322//Byrd 1 

Denali/HV9W07-482W//Antero 5 

Denali/KS06HW46-3//Byrd 3 

G001172W/CO01212 1 

G970209W/CO970547 5 

G970209W/CO980829 1 

G97343/CO99W165 1 

G982231/G982159//KS920709W 1 

Hallam/CO99502 1 

Hatcher/HV9W02-267W//KS02HW35-5 1 

Hatcher/KS01HW152-6//OK Rising 1 

Hatcher/KS05HW120//CO03W054 1 

Hatcher/NuGrain//KS02HW35-5 1 

Hatcher/NW97S295 11 

Hatcher/OK02518W//Danby 3 

Hatcher/OK03716W//KS02HW35-5 2 

HV9W02-267W/Danby 6 

HV9W03-280W-2/CO04W323//CO06062 2 

Jagalene/KS01HW168-1 1 
JAGALENE/KS03HW122(LAKIN/TGO//96HW71)//03-
6149(TREGO/CO960293) 1 
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Pedigree 
Count 
of ID 

JAGALENE/KS03HW122(LAKIN/TGO//96HW71)//KS01HW152-1-
2(TREGO/BTY SIB) 1 

JAGALENE/KS03HW149-1(TREGO/CO960293)//03-6149(TREGO/CO960293) 1 

Jagalene/TAM 112 4 

Jagger/Romanian 1 

KS00HW115/CO99W078 1 

KS00HW151-4/CO00580 5 

KS00HW177/CO980719 1 

KS00HW183/CO99W188 1 

KS01-5539/CO99W165 1 

KS01HW152-1/TAM 111 6 

KS01HW152-6/CO99141 5 

KS01HW152-6/CO99314 5 

KS01HW152-6/G001011W 2 

KS01HW152-6/HV9W02-267W 4 

KS01HW152-6/NuFrontier 1 

KS01HW168-1/TAM 111//CO02W214 2 

KS01HW168-1/TAM 111//Platte 4 

KS01HW168-4/TX00V1117//CO02W214 3 

KS02HW112/TAM 111 1 

KS02HW30/TAM 111 1 

KS02HW30/W98-363$//CO99314 1 

KS02HW35-5/CO02W237 3 

KS02HW35-5/OK00611W 3 

KS02HW35-5/OK02518W 2 

KS02HW89/CO00739//CO01W172 1 

KS02HW89/TX00V1117//CO01W172 2 

KS02HW89-1(TREGO*2/JGR8W)/BC9503565-6 1 

KS02HW89-1(TREGO*2/JGR8W)/BC97ROM-41W 2 

KS02HW90/CO970547-7//CO02W040 3 

KS02HW90/TAM 112//CO01W172 3 

KS02HW90/TX00V1117//CO02W040 1 

KS02HW91/CO00554//Danby 4 

KS02HW91/Endurance//CO02W214 1 

KS02HW91/Ripper//Platte 2 

KS02HW91/TAM 112//CO02W214 1 

KS02HW91-6/CO01W172 2 

KS02HW91-6/G001011W 7 

KS03HW38-2/CO01W189-A1 4 
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Pedigree 
Count 
of ID 

KS04HW47-3/CO03W054 4 

KS04HW47-3-4/NuDakota//Hatcher 1 

KS05HW120/HV9W02-243W//CO03W054 2 

KS05HW121-1/Bill Brown//KS05HW14-3 1 

KS05HW121-2/Hatcher 1 

KS05HW15-2/CO03W054 1 

KS87H325/Rio Blanco 1 

KS96HW94//Trego/CO960293 1 

KS96HW94/CO980352 1 

KS98HW151-5/CO99W075 2 

KS98HW452/CO960293//Lakin 1 

KS99HW24/NuHorizon 2 

KS99HW36/Avalanche 2 

Lakin/CO950635 1 

Lakin/CO980352 2 

N95L164/3/MILLENNIUM SIB//TXGH125888-120*4/FS2 1 

NS2630-1/Thunderbird 1 

NuDakota/KS05HW122-5//Bill Brown 1 

NuFrontier/CO01385 2 

NuFrontier/Danby 1 

NuHills/Baker's White//CO99141-A5 1 

NuHills/CO980630 1 

NW97S343/Akron 3 

OK Rising/Bill Brown//Hatcher 2 

OK Rising/CO04W323//CO06072 1 

OK Rising/Danby 1 

OK02518W/Aspen 2 

OK02518W/CO01W189-A1 1 

OK02518W/KS05HW42 1 

OK03716W/HV9W97-2112W-1 1 

Overley/CO980829 4 

Pioneer bulk selection (HBK0927) 1 

Ripper/CO050173 3 

Ripper/SRS2-31//3*Ripper 7 

Ripper/Thunder CL//CO06062 1 

RT01-10/Ankor//Ankor 1 

Snowmass/Antero 9 

Snowmass/Byrd 1 

Snowmass/CO07MAS114//Snowmass 1 
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Pedigree 
Count 
of ID 

Snowmass/CO07W322//Snowmass 2 

Snowmass/CO08RWA060//Antero 1 

Snowmass/CO08RWA060//CO05W111 1 

Snowmass/CO08W454 9 

SRS2-31/4*Hatcher 4 

Stanton/CO950043 1 

TAM 110*4/FS2 1 

TAM 111/CO99526 2 

TAM 111/KS02HW89//CO01W171 3 

TAM 111/Trego//CO99W329 5 

TAM 112/Byrd 2 

TAM 112/CO970547-7 3 

TAM 112/OK02518W//HV9W02-243W 1 

TAM-107//TX78V3630/CTK78/3/TX87V1233 1 

Teal 11A/2*BondCL//Ripper 1 

Teal 11A/2*Protection//Hatcher 2 

Teal 11A/3*Bond CL 3 

Teal 11A/4*Bond CL 3 

Teal 11A/Above//Bond CL 2 

Teal 11A/Above//CO99314 7 

Teal 11A/Above//KS01HW163-4 2 

Teal 11A/Bond CL//CO980684-1 1 

Teal 11A/CO991350//Jagalene 1 

Teal 11A/CO991350//Stanton 1 

Teal 11A/KS01-5539//CO99W183 1 

Teal 11A/KS01-5539//TAM 111 1 

Teal 11A/Protection//CO99141 1 

Trego/CO99148 1 

TREGO/JGR 8W 1 

TX00V1117/CO01W189 3 

TX97V2838/NuHills//CO970547-7 1 

TX97V2838/NuHills//KS01HW168-4 3 

TX97V2839/CO99W182 2 

TX98VR8426/Lakin 1 

U1254-7-9-2-1/TXGH10440 1 

W96x1080-21/CO99W183//KS01HW168-4 1 

W98-363$/Ankor//CO99W254 3 

W98-363$/CO99W183 1 

W98-363$/CO99W277 1 
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Pedigree 
Count 
of ID 

W98-363$/TAM 111//CO970547-7 6 

W98-363$/Trego//KS01HW168-4 1 

WB411W/TAM 111//CO970547-7 3 

WB411W/TAM 111//KS01HW168-1 9 

Winterhawk/CO050233-2 2 

Winterhawk/Danby//CO03W054 2 

Yuma/Cutter//CO980376 1 

Yuma/Hatcher 1 

Yuma/PI 372129//TAM 200/3/4*Yuma/4/KS91H184/Vista 1 

Yumar//TXGH12588-120*4/FS2 1 

Yumar/Arlin 1 
 
 


