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ABSTRACT 
 
 
 

DESIGN AND SIMULATION OF THE COLORADO STATE UNIVERSITY 
 

LINEAR ACCELERATOR SYSTEM 
 
 
 

The University of Twente in the Netherlands recently donated a linear accelerator and free-

electron laser system to Colorado State University. A detailed model and simulation of the 

system must be constructed in order to assist the re-commissioning process at CSU.  An initial 

design of the beam-transport system must also be developed. This thesis begins with the basic 

theory needed to understand the context of the simulations and then works through the 

accelerator, starting from the point where the beam is generated and continuing through the 

whole system to the beam dump. Individual components are simulated, their parameters are 

characterized, and optimal initial settings are found. These individual simulations are then 

combined into a complete start-to-end simulation of the machine. The start-to-end simulation is 

then used to demonstrate the expected performance of the machine with the optimal settings. 

This provides a system design that will be used in the initial buildup of the accelerator, as well as 

a simulation tool that can be used for future studies (for example, testing of novel components) 

or for examining the impact of proposed design changes. 
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1. Introduction 

During the fall of 2011, the University of Twente (Netherlands) generously donated a particle 

accelerator system to Colorado State University. This includes an 11-cell, coupled-cavity linear 

accelerator operating at 1.3 GHz, beam-line components and diagnostics, steering and corrector 

magnets, an undulator magnet, and a number of other peripheral components needed for the 

system to operate. Together this these components will initially be used as a THz free-electron 

laser or FEL.  

 

There are a number of essential items that are required to make an operational FEL. A FEL 

generates radiation through the interaction of a high-energy electron beam, a co-propagating 

electro-magnetic field, and a spatially oscillatory magnetic field. To generate the required 

magnetic field, an undulator (sometimes referred to as a wiggler) magnet is used. An undulator is 

a series of dipole magnets that produce a sinusoidal magnetic field along the beam axis. The 

transversely accelerated electrons then emit EM radiation at a fixed wavelength (this is the 

primary source of the co-propagating EM field). The wavelength of emission of radiation is 

related to the period of the undulator magnets, the normalized magnetic field strength, and the 

beam energy. The electron beam must be of high quality for the FEL to work, and therefore care 

must be taken in its creation. The high-energy electron beam is created, accelerated, and adjusted 

by the accelerator and beam-line.  Changes to the accelerator and beam-line parameters can be 

made in order to optimize the performance of the FEL.  

 

The first step in the process is the creation of electron bunches in the electron gun at the 

beginning of the accelerator system.  The bunches are generated through the use of the 
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photoelectric effect, which in this case is initiated by a laser pulse striking a cathode.  High-

power microwaves at a frequency of 1.3 GHz then accelerate these bunches to a kinetic energy 

of 6 MeV. After acceleration, the beam is manipulated and steered through the use of magnetic 

fields. This section, referred to as the beam-line, is used to match the beam parameters into the 

undulator. After exiting the undulator, the beam traverses an additional beam-line that is used to 

perform any further manipulation prior to being analyzed in the spectrometer and sent to the 

beam dump. A very basic schematic of this process is provided in Figure 1. 

 

Figure 1: System level layout of the accelerator system with key components highlighted. 

	
  
The coloring convention used in Figure 1 is the same convention that is used throughout this 

thesis. Orange denotes the injector system, green denotes the quadrupoles/beam transport system, 

blue denotes the undulator, and red denotes the spectrometer dipole. The two primary 

subsystems that are addressed in this thesis are the injector and the matching beam-lines. The 

first of these is the injector region given by Figure 2. 

 

Here the electron beam is generated by a laser pulse (highlighted by a green dashed line) incident 

on the cathode stalk. The photoelectric effect then generates electrons that are accelerated via the 

standing wave cavities to 6 MeV. The solenoid and bucking coil serve to focus the beam during 

the initial acceleration and compensates for un-wanted beam effects.  
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Figure 2: System-level diagram of injector components. Note the black arrows represent the 
beam and the green arrow represents the drive laser pulse. 

Previously it was stated that the linear accelerator is an 11-cell structure; however, there are only 

5.5 that are effectively excited and used for acceleration. The excited cells are the large cavities 

and the non-excited cells are the small gaps between the large cells. The purpose of these is 

discussed in Chapter 2. After the beam is accelerated, it is manipulated through the use of 

quadrupole lenses arranged as in Figure 3.  

	
  

Figure 3: Beam-line consisting of five equally spaced quadrupoles 

 

Here a simple beam-line layout is given, consisting of five equally spaced quadrupoles. 

Quadrupole fields are used to focus the beam and match the beam parameters to the undulator. 

These fields act on the beam similar to how an optical lens acts on visible light; however, 

changing the field strength can vary the focusing or defocusing properties of the quadrupole lens. 

Furthermore, a single quadrupole magnet is somewhat different than an optical lens in that 

although it focuses in one plane, say the horizontal, it defocuses in the orthogonal plane, say the 

Solenoid(

Solenoid(

Bucking(
Coil(

Bucking(
Coil(

RF(in(

Cathode(Stalk(
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vertical. This represents, however, only a minor additional complication to the overall beam 

transport design. The details of this process are discussed in Chapter 2. The down-stream beam-

line is of a similar configuration to Figure 3 but with only two quadrupoles.  

 

This thesis begins by discussing important RF cavity parameters and how these cavities are used 

to accelerate electron beams. Following this, the important beam parameters are discussed. Then 

the beam dynamics during the injector are discussed, followed by a discussion on beam transport 

and focusing. Following the theoretical treatment, the linear accelerator system is modeled 

without the introduction of an electron beam, and the models as well as initial measurements of 

the rf-cavity system are reviewed in detail.  

 

Following the analysis of the accelerating structure without the electron beam, full beam 

simulations are performed on the injector system. These simulations examine how the simulation 

parameters impact the accuracy of important beam calculations and how the system parameters 

change the beam dynamics inside the injector. The results and resulting simulated beam are then 

used to simulate the beam-line and match the beam parameters into the undulator. The matching 

under various operating conditions is also investigated to explore the robustness of the design. 

The post wiggler beam-line is also simulated to show how the beam evolves in this section of the 

accelerator. Following this, a full start-to-end simulation of the system is performed and the 

beam dynamics are analyzed. This then provides a system design that will be used in the initial 

buildup of the accelerator, as well as a simulation tool that can be used for future studies (for 

example, testing of novel components) or examining the impact of proposed design changes.  
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2. Linear Accelerator Design Theory 

This chapter provides an overview of the necessary theory to explain how the accelerator system 

operates. To truly understand the nuances and complexities of the system, a detailed study of 

accelerators would be necessary; therefore, references are provided where necessary to indicate 

when the discussion is being cut short.  

 

First, the basics of accelerating cavities without the introduction of a beam are discussed. This 

includes the important figures of merit and how a collective of cavities interact. This is followed 

by a discussion of how particles are accelerated. Next, the important beam properties are defined,  

followed by an analysis of the beam interactions with the RF acceleration fields, the beam self 

fields, and the external applied magnetic fields in the solenoid. It	
   is	
  useful	
  to	
  follow	
  the	
  work	
  

presented	
   by	
   Kim	
   [1]	
   when	
   discussing	
   RF	
   and	
   space	
   charge	
   effects	
   on	
   emittance.	
   This	
  

chapter	
  will	
  reference	
  this	
  paper	
  frequently	
  as	
  it	
  is	
  the	
  primary	
  reference	
  for	
  study	
  of	
  these	
  

effects.	
  Finally, the various beam steering and focusing elements and how they change the beam 

parameters are discussed.  

 

2.1 Particle acceleration and radio frequency accelerating structures 

Particles can be accelerated using either electric or magnetic fields through the Lorentz force. In 

order to increase the kinetic energy of a particle, however, only electric fields can be used. The 

CSU accelerator utilizes standing-wave RF cavities for acceleration. In this section, the simplest 

standing wave RF cavity is discussed, followed by an introduction to the use of multi-cell 

structures, and, finally, a description of how the beam gains energy in an RF field is given.  
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2.1.1 A simple RF accelerator: the pill-box cavity 

A pillbox cavity is an axially symmetric resonator commonly used for RF accelerators. Solving 

Maxwell’s equations for the fields in a pillbox cavity gives an infinite number of modes that can 

be excited. The lowest order mode, TM010, is often used for acceleration due to its relative 

simplicity. Out of the six possible field components, only two are present in this mode, and they 

are given by Equation 1a and 1b.  

(1a) 𝐸! = 𝐸!  𝐽! 𝑘!𝑟 cos𝜔𝑡 

(1b)   𝐵! =
!!
!
𝐽! 𝑘!𝑟 cos𝜔𝑡 

Here 𝐸! is the peak electric field, 𝑘!   is the radial wave number, r is the radial distance from the 

cavity axis, and 𝜔 is the angular RF frequency. In this mode, the electric field only depends on 

the radial position and time. Because the electron beams are generated on-axis and have a small 

radius relative to the cavity, the small argument approximation for the Bessel function can be 

used, and thus the radial variation can be neglected. In a real accelerator there are additional 

components that introduce perturbations on those fields (e.g. beam-pipes, coupling slots, vacuum 

ports etc.), making these equations only an approximation, albeit a good one in most cases.   

 

In order to accelerate the beam quickly, the peak field usually needs to be on the order of 10-

20MV/m or greater. In the CSU accelerator, the peak field is about 26MV/m. In order to 

generate these fields, a great deal of power must be coupled into the cavity. Because there are 

power losses to the cavity walls, additional power is needed to sustain these fields. The quality 

factor 𝑄, defined by the ratio of the stored energy to the dissipated energy in the cavity, is used 

to describe these losses. For a pillbox cavity without any additional complexities, the fields given 

by Equations 1a and 1b can be used to derive the result in Equation 2.  
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(2) 

𝑄 =   
2.405  𝜇!𝑐

2𝜌! 1+ 𝑅
𝐿

 

In this expression, 2.405 is the first zero of the zeroth-order Bessel function, 𝜇!  is the 

permeability of free space, 𝜌! is the RF surface resistivity of the cavity, R is the cavity radius, 

and L is the cavity length. Equation 2 can provide estimates for the cavity Q of nominal 

dimension. Once the geometry is designed, simulation codes or measurements are required to 

obtain an accurate cavity Q. Another important cavity factor is the quantity of energy that can be 

delivered to the beam. Because the beam takes a finite amount of time to transit the cavity, the 

time varying component as well as the spatial varying component of the fields must be accounted 

for. The transit time factor is used to take this into account and is defined by Equation 3.  

(3)   

𝑇 =
𝐸 0, 𝑧 cos(𝜔𝑡 𝑧 )

!
!
!!!

𝑑𝑧

𝐸 0, 𝑧
!
!
!!!

𝑑𝑧
 

This expression holds true for an arbitrary spatially varying field in an arbitrary cavity driven at a 

given frequency. For a pillbox cavity in which the change in particle velocity across the gap is 

neglected, this expression can be simplified giving the result in Equation 4, where v is the 

particle velocity.  

(4)      

𝑇 =
sin 𝜔𝐿

2𝑣   
𝜔𝐿
2𝑣
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The transit time factor, coupled with the geometry factors give rise to another important cavity 

parameter known as the shunt impedance. The shunt impedance is defined by the ratio of the 

squared energy gain per unit charge to the power delivered to the cavity. This describes in 

general how efficient the cavity is at delivering power to the beam. Equation 5 defines the shunt 

impedance for a pillbox cavity.   

(5)                

𝑅! =
𝑍!
𝜋𝜌!

𝐿
𝑅

𝑇!

1+ 𝑅
𝐿 𝐽!!(2.405)

 

Here the previously defined variables are the same, Z0 is the impedance of free space, J1 is the 

first-order Bessel function, and T is the transit time factor. These parameters are discussed in the 

context of the CSU accelerator in Chapter 3. For additional information and details on cavity 

design and cavity parameters, one can refer to a number of accelerator physics textbooks [1], [3], 

[4]. 

 

2.1.2 Coupled cavity linear accelerators 

As mentioned previously, the CSU accelerator is an 11-cell coupled cavity structure. These 

structures can be analyzed using circuit models. To illustrate how a coupled-cavity structure 

operates, a 3-cell system is discussed. For a 3-cell system, the circuit model used is shown in 

Figure 3.  
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Figure 4: 3-cell coupled oscillator circuit. k is the coupling constant, L0 is the cell inductance and 
C0 is the cell capacitance. 

Solving the circuit for the various loop currents yields a system of equations that describes how 

the circuit evolves. The result of this is illustrated by Equations 6a, 6b, and 6c.   

(6a)            

𝑥! 1−
𝜔!!

𝛺! +   𝑥!𝑘 = 0 

(6b)      

𝑥! 1−
𝜔!!

𝛺! + 𝑥! + 𝑥!
𝑘
2 = 0 

(6c)           

𝑥! 1−
𝜔!!

𝛺! +   𝑥!𝑘 = 0 

Here xn is the normalized current given by 𝑥! = 𝑖! 2𝐿!, k is the coupling constant, 𝜔! is the 

resonant frequency of the uncoupled individual circuit components, i.e.  , and 𝛺 is 

the steady state oscillation frequency. In this circuit, the middle cell has twice the inductance as 

the outer two cells. To ensure the three cells have the same characteristic resonant frequency, the 

two outer cells have twice the capacitance as the inner cell. By writing Equations 6a, 6b, and 6c 

in a matrix form the eigenstates of the circuit can be solved.  These eigenstates represent the 

individual modes that have steady-state oscillations. Equations 7, 8, and 9 show the normalized 

ω0 =1 L0C0
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current and steady-state oscillation frequency for the three modes. In these equations 𝑋 =

𝑥!
𝑥!
𝑥!

  and is the normalized current vector. The first mode, referred to as the zero-mode, has zero 

phase shift between the cells.  

(7)      

𝛺! =
𝜔!
1+ 𝑘

      𝑋 =
1
1
1

 

The second mode has a 90-degree phase shift between the individual cells and is referred to as 

the pi/2 mode. The pi/2 mode is special in that the steady state frequency of the system is simply 

the resonant frequency. This is given explicitly in Equation 8. 

(8)       

𝛺! = 𝜔!        𝑋 =
1
0
−1

 

The normalized current vector shows a clear 90-degree phase shift between cells. The final mode 

in the 3-cell system is the pi mode. Its normalized current and resonant frequency are given in 

Equation 9.  

(9)                

𝛺! =
𝜔!
1− 𝑘

      𝑋 = −
1
1
1

 

Here there is a clear 180-degree phase shift between the individual cells. Comparing equations 7, 

8, and 9, reveals that there is something different about the pi/2 mode. Through the use of 

perturbation techniques, it can be shown that the pi/2 mode is a good mode to operate in because 

the power dissipation and cavity resonant frequency are much less sensitive to differences 

between the individual cell geometries. Detailed analysis of this is provided in [4]. The CSU 
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accelerator exploits the pi/2 mode in an interesting way; the coupling cells are very small 

compared to the accelerating cells. This allows for the longitudinal field profile to look nearly 

continuous from the perspective of the beam instead of traversing zero-field regions. 

Additionally, through the impact of the transit time factor, a higher effective shunt impedance is 

achieved, thus improving the overall efficiency of the energy transfer to the beam. Expressed 

alternatively, and owing to the fact that the coupling cavities are much shorter than the 

accelerating cavities, the overall fields in the structure appear as a pi-mode, but retain the 

favorable features of the pi/2 mode. 

2.1.3 RF particle acceleration 

The pi-like fields of the cavity can be exploited to do some initial calculations. These fields can 

be approximated as a sinusoidal time varying component with a cosine envelope function that 

takes into account the spatial variation of the fields along the cavity, Equation 10.  

(10)           𝐸! = 𝐸! cos(𝑘𝑧) sin 𝜔𝑡 +   𝜙!  

Here, 𝑘 = 2𝜋/𝜆, and 𝜙! is the injection phase of the particle relative to the RF waveform. A 

detailed analysis of the how Equation 10 is used to describe the RF acceleration is given by Kim 

[2]. This analysis includes the derivation of concise analytical formulations that are useful in the 

initial accelerator design. For the purposes of showing how particles accelerate, Equation 10 is 

substituted into the Lorentz-force equation and solved numerically to produce the particle 

acceleration as a function of position in the cavity. This result is shown in Figure 5 for a given 

set of input parameters.	
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Figure 5: Relativistic energy gamma vs. position of a particle injected at 70 degrees relative to 
the RF fields, and an on-axis peak accelerating field of 20 MV/m. 

This shows that as the particle transits the cavity, the variation in the fields lead to a ripple in the 

energy gain as a function of position. For a different injection phase, this ripple is exacerbated. 

The particle’s phase is a quantity that takes into account the time varying field, the spatially 

varying field, and the relative injection phase of the particle. Equation 11 gives this definition. 

 (11)       𝜙 = 𝜔𝑡 +   𝜙! − 𝑘𝑧 

Using Equation 11 and Equation 10, a number of interesting relationships can be derived that 

relate the particle phase to the particle energy. Kim [1] shows this analysis extensively.  One 

very important fact, one that will be used later when discussing longitudinal bunch dynamics, is 

the asymptotic phase limit of the particle, given by Equation 12.   

(12)       

𝜙! =
1

2𝛼 sin𝜙!
+ 𝜙! 

Here 𝜙! is the asymptotic value of 𝜙, i.e. the value that 𝜙 reaches upon completion of the 

acceleration cycle, and 𝛼 is the normalized field strength given by 𝛼 = 𝑞𝐸!/2𝑚𝑐!𝑘, where 𝑞 is 
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the fundamental unit of charge, 𝐸! is the peak electric field, 𝑚 is the electron mass, 𝑐  is the speed 

of light in vacuum, and 𝑘 is the wave number of the fields. 

  

2.2 Electron beam properties 

Up to this point, only fields and single-particle motion have been considered. Later in this 

chapter, the discussion is expanded to collective effects in a particle beam. Before doing so, the 

parameters that are used to describe a particle beam are introduced. This will begin by discussing 

beam quality in the most general sense and be followed by an introduction to important 

parameters used to describe the 2-D phase space.  

2.2.1 Beam phase space and emittance  

For conservative systems, those that can be completely described by physical coordinates, 

canonical momentum, and time, Hamiltonian mechanics is used to explain their evolution. The 

term commonly used to describe the beam quality is called emittance. While there are many 

other measures of beam quality depending on the application, for the purposes of this thesis 

emittance is the primary concern. In the most general sense emittance is the volume that the 

electron beam occupies in 6-D phase space. The canonical momentum and position coordinates 

given for a Hamiltonian system define this 6-D space. Furthermore, it can be shown that this 

quantity is conserved in these systems [6].  

	
  
It is very advantageous for accelerator design and operation to decouple the directions of motion 

as much as possible. This makes the calculations and beam manipulations simpler. At the CSU 

accelerator, a simple coordinate system where x and y are the transverse coordinates with phase 

or time as a longitudinal coordinate is adopted. In all cases, these coordinates are relative to the 
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electron bunch centroid. This gives phase spaces in the transverse planes, which are the x-x’ 

plane and the y-y’ plane, where x’ and y’ are the divergence coordinates of a particle given by !"
!"

 

and !"
!"

 respectively, and effectively act in the role of the transverse momentum. Here z is the 

coordinate along the path of the bunch trajectory. The longitudinal phase space is composed of 

the phase and energy of the particles. Typically, energy and phase are treated as the deviation 

from a reference energy or phase that is the design energy or phase of the machine. The 

emittance in each plane can be described in terms of these variables. 

 

At this point it helps to make an assumption that has significant impact on how we view the 

emittance. While, strictly speaking, the 6-D phase space is conserved, it can be quite unruly to 

measure this experimentally in a precise manner. Moreover, it is the core of the beam 

distribution that we are typically most interested in. As such, we generally compute the emittance 

by looking at second-order, rms values of the beam distribution. This allows us to make some 

useful simplifications, at the expense of noting that these quantities held separately and even 

taken together are not generally conserved. Nevertheless, historically this has proven to be a very 

valuable trade, as one now has a very powerful way of representing the beam in an analytical and 

satisfying fashion. 

 

It is useful to look at the ellipse diagram shown in Figure 6. This shows how the emittance is 

computed and represented from an analytical perspective, as well as what beam properties 

emerge from the rms computed phase space.  
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Figure 6: Phase space ellipse diagram in the x-x' plane with important parameters highlighted 

	
  
Here the emittance is represented by 𝜖, and 𝛽 and 𝛼 can be viewed as the beam envelope 

function and the derivative of the beam envelope function, respectively. 𝛾 is a function of both 𝛼 

and 𝛽. These functions are referred to as the Twiss parameters, and they play heavily in particle 

beam design and transport. For an actual particle beam, there would be a collection of points in 

the phase space, one for each particle; however, when analyzing the bulk behavior, an ellipse 

serves very well to approximate the area in phase space occupied by these particles. That said, in 

a real beam there are often tails in the distribution (particles at very high phase space amplitudes) 

and higher order shapes, i.e. ones not readily characterized by RMS quantities, which exist in 

phase space. Such high amplitude particles or higher-order shapes are not easily manipulated and 

for the most part their existence does not affect the behavior of the beam RMS core distribution. 

When concerned with operating the FEL, the beam core distribution is the primary indicator, and 

the tails are ignored. This is where the introduction of a statistical definition of the beam 

parameters becomes important. 
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2.2.2 Statistical definition of emittance for 2-D phase space 

For an ensemble of particles, we choose the following definitions for the longitudinal and 

transverse emittances respectively [7].  

(13)          

𝜖! =
1
𝑛! 𝛥𝛾!!

!

𝛥𝜙!!  
!

− 𝛥𝛾!
!

!

𝛥𝜙!   
!

!

 

(14)             

𝜖! =
1
𝑛! 𝑥′!!

!

𝑥!!
!

− 𝑥′𝑥!
!

!

 

Here 𝛾 represents the particle relativistic energy, 𝜙 represents the particle phase, x represents the 

particle’s longitudinal position, and x’ represents the divergence in the transverse direction. 

These definitions will be used later in the context of explaining how various forces in the injector 

impact the emittance, and are used to compute the RMS Twiss parameters. The RMS emittances 

defined in equations 13 and 14 are used in conjunction with the RMS spot size in the beam phase 

space to define the RMS Twiss parameters.  

(15a)       𝑥!"# = 𝛽𝜖! 

(15b)                  𝑥!"# = 𝛼 !!
!

 

The RMS Twiss parameters are useful when studying the evolution of the core of the beam that 

will be important in later chapters.  
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2.3 Beam dynamics in the RF accelerator and emittance growth effects  

The beam has two primary interactions in the accelerator region, the effects of external fields and 

the effects of the beam self-fields known as space-charge. These two effects are treated 

independently beginning with the effects of external fields.  This section will follow closely the 

paper by Kim referenced earlier [ibid]. 

2.3.1 RF effects on emittance  

The RF fields have an effect on both longitudinal and the transverse dynamics inside the linear 

accelerator. Some hint to the longitudinal effects was given earlier, but the meaning of this effect 

will be discussed in a bit more detail. Additionally, an introduction to how the RF fields affect 

the transverse bunch dynamics is also covered.  

2.3.1.2 RF effects on longitudinal bunch dynamics 

Following Kim, recall equation 12, which defined the asymptotic limit of the bunch phase 

relative to the injection phase. Suppose a perturbation was given to the initial phase; there would 

be some corresponding perturbation to the asymptotic phase. For a beam of finite phase width, 

this shows how much the asymptotic phase changes as a function of injection phase, thus 

showing the bunch either compresses or expands in phase.  This gives rise to the so-called 

asymptotic bunch compression factor given by Equation 16.  

(16)       

𝑑𝜙!
𝑑𝜙!

=   1−
cos𝜙!

2αsin! 𝜙!
 

Note that here 𝛼 is referring to the normalized field strength defined earlier, not the 𝛼  referred to 

in Figure 6. The asymptotic bunch compression factor is maximized for small injection phases. 

For a long bunch, such as that used by the CSU accelerator (~20 ps), the minimum injection 
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phase is about 10 degrees. Thus the shortest bunches should occur close to this minimum 

injection phase.  

 

To analyze the effects of the RF field on the longitudinal emittance, a perturbation to the phase 

space area described in Equation 13 is introduced.  This requires the help of Equation 17, which 

defines the relativistic energy in terms of the particle phase.  

(17)          𝛾 = 1+ 𝛼[(𝑛 + 1/2)𝜋 sin𝜙 + cos𝜙]     

Introduction of a perturbation on the phase term and energy terms in Equation 16 gives rise to an 

expression, which can be approximated and substituted into the statistical definition for 

longitudinal emittance. Kim [ibid] details the mechanics of this process, but the result is an 

expression for the emittance as a function of the particle phase, as shown in Equation 18.  

 (18)             

𝜖!
!" =

1
𝑛𝑘 𝛾! − 1 𝛥𝜙! !

!

𝛥𝜙! !

!

 

Here 𝛾! represents the average energy at the exit of the cavity, 𝑘 is the wave number, and 𝛥𝜙 is 

the deviation in the particle phase from the average. For a Gaussian distribution, this can be 

characterized using the standard deviation notation, which yields a slightly simpler expression 

for Equation 18. 

(19)                 𝜖!
!" = 3 𝛾! − 1 𝑘!𝜎!! 

This gives a nice concise expression from which to estimate the effects on the longitudinal 

emittance caused by the acceleration process and the finite bunch length.  

2.3.1.2 RF effects on the transverse emittance 
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In order to analyze the effects of the RF field on the beam in the transverse coordinates, Kim 

makes some assumptions about the field profile. This enables some fairly straightforward 

analysis to be done on the emittance equation. First it is assumed that the longitudinal electric 

field varies only in z and t, i.e. it is invariant in the transverse direction. Recall the electric field 

in a pillbox cavity, which follows the zeroth-order Bessel function in the transverse direction. 

Near the center of the accelerator, where the beam propagates, the small argument approximation 

of the Bessel function can be used, making Kim’s approximation a valid one. Maxwell’s 

equations for the transverse fields then become  

(20a)           

𝐸! = −
𝑟
2
𝜕
𝜕𝑧𝐸! 

(20b)                            

𝐵! =   
𝑟
2𝑐!

𝜕
𝜕𝑡 𝐸! 

The transverse fields, which can impart a transverse force on the beam, are then only dependent 

on the longitudinal electric field. Recall that Equation 10 gives the longitudinal electric field for 

a pi-mode cavity. In this analysis, an envelope function E(z), is introduced, allowing for an 

additional spatial variation to Equation 10. Equation 21 expresses the new field.  

(21)           𝐸! = 𝐸 𝑧 cos 𝑘𝑧   sin(𝜔𝑡 + 𝜙!) 

By substituting Equation 21 into Equations 20a and 20b, and then into the Lorentz force 

equation, the transverse momentum imparted onto the beam due to the RF field can be 

calculated.  Here it is convenient to define the envelope function as a Heaviside function that has 

a value of Eo in the cavity and zero outside the cavity. This allows one to model the beam 

behavior during the transition between a spatially varying field and the zero field region of the 
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transport line beam-pipe. It turns out that by doing this the only component of the transverse 

Lorentz force that is nonzero and is due to these fields occurs at the exit of the cavity. This can 

be used in conjunction with the transverse emittance equation defined earlier (Equation 14) to 

determine the transverse emittance introduced by the beam transitioning from the cavity to the 

beam-pipe. Kim covers this analysis in detail through the introduction of perturbations in the 

phase from the average, and then subsequently simplifying. This yields the result in Equation 22, 

which is the expression for the growth of the transverse emittance due to RF effects, given in 

terms of the average phase and the phase deviation  

(22)  

𝜖!
!" =

𝛼𝑘  
𝑛! 𝑥!!  

!

𝛥𝜙!!
!

!

−
1
3 𝛥𝜙!!

!

cos 𝜙 +
1
4 𝛥𝜙!!

!

− 𝛥𝜙!!
!

!

sin 𝜙  

Here 𝜙  represents the average phase of the bunch. Equation 21 has a minimum when the final 

average phase of the beam is at 90 degrees, in which case it simplifies the expression greatly, 

giving the result in Equation 23.  

(23)               

𝜖!
!" =

𝛼𝑘  
2𝑛! 𝑥!!  

!

𝛥𝜙!!
!

− 𝛥𝜙!!
!

!

 

By introducing a small perturbation on the phase we can look at the emittance effects near, but 

not exactly at, the minimum. This is detailed, along with the analysis of a Gaussian distribution, 

in Kim [ibid]. The important part, which is evident from Equation 23, is that for some given 

phase distribution there will be a non-zero addition to the emittance as a result of the 
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discontinuity of the RF field at the exit of the cavity. Kim also shows that the minimum in the 

transverse emittance will occur when the following expression is satisfied.  

(24) 

𝜋
2 − 𝜙! sin𝜙! =

1
2𝛼 

Equation 24 cannot be solved analytically but it is readily solved numerically. This represents the 

solution as a function of injection phase. Substituting the field parameters for the CSU 

accelerator and solving Equation 24 yields the result shown in Figure 7.   

	
  

Figure 7: Solution to Equation 24 as a function of Injection Phase. Subtracting the left hand side 
of Equation 24 from the right hand side solves this, and the result is plotted as a function of the 
injection phase. The emittance is minimized when this value is zero, or minimum in this case.  

Here there is a clear minimum at about 40 degrees, thus indicating that the transverse emittance 

should be minimized for an injection phase of 40 degrees.  

2.3.2 Space charge effects on emittance  

Up to this point the discussion has only been concerned with the interaction of a particle beam 

and the external fields. Due to the nature of the electron beam being a collection of charged 
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particles occupying a small space, it is necessary to also consider how the internal or self-fields 

impact the beam quality. Kim’s paper goes through great detail in deriving analytical expressions 

to represent how both Gaussian and top-hat distributions impact the beam emittance. Here the 

simplest system to analyze is that of a DC beam with a radius of R and a uniform transverse 

charge density. The electromagnetic field seen by a test particle some distance from the axis of a 

DC beam, but within the charge distribution, is described by Equations 25a and 25b.  

(25a)                  

  𝐸! =
𝐼𝑟

2𝑣𝜋𝜖!𝑅!
 

(25b)                     

𝐵! =
𝜇!𝐼𝑟
2𝜋𝑅! 

Here I is the beam current, v is the beam velocity, R is the beam radius, and r is the distance from 

the beam center. By substituting these terms into the expression for the Lorentz force, the radial 

acceleration of the beam due to space charge forces can be expressed as: 

(26)                

𝑑𝑣!
𝑑𝑡 =

𝑞𝐼𝑟
2𝜋𝑚!𝜖!𝛾𝑣𝑅!

(1− 𝛽!)   

As the beam accelerates, 𝛽 approaches 1 and 𝛾 increases without bound. In the context of 

Equation 26, as the beam accelerates to high energy, the radial acceleration of the beam due to 

space charge will decrease. This fact allows for the neglecting of space charge forces in high-

energy beams. In the CSU accelerator these forces are not negligible and must be accounted for 

in the dynamics simulations. The results of Kim’s analysis of the space-charge forces for 

different beam distributions yields equations which indicate scaling laws for the space charge 
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forces and geometric factors that depend on the beam distribution. The most important result of 

this analysis is shown in Equation 27.  

(27)        

𝜖!,!!" =
𝜋
4
1
𝛼𝑘

1
sin𝜙!  

𝐼
𝐼!
  𝜇!,!  (𝐴) 

Here α, k and φ0 are as defined before. I is the peak current, Ia is 17,000A, and 𝜇!,!(𝐴) are the 

longitudinal and transverse space charge factors, calculated based on a chosen beam geometry. 

Equation 27 is a direct result of analyzing space charge forces in conjunction with the definitions 

for emittance (Equations 13 and 14), this is provided in detail by Kim. 

 

Compensation for RF-induced emittance is fairly straightforward.  Shorter bunches at a 

particular phase will minimize the impact of the RF fields on the emittance equation. However, 

space charge forces are a bit different. In beams such as heavy ion beams, having oppositely 

charged particles co-propagating with the beam leverages a technique called space-charge 

neutralization. This technique reduces the net space-charge field to minimize the impact of 

space-charge on emittance. With electron beams, however, it is much simpler to accelerate the 

beam quickly and leave the space-charge dominated regime. Solenoid fields are then used to 

compensate for the effect of the space-charge forces. The solenoid field provides a net radial 

focusing of the beam using both the longitudinal magnetic field and the radial magnetic fields in 

the fringe region. As the beam propagates through the fringe field region, the radially directed 

field imparts a transverse kick to the particles proportional to their distance from the axis. When 

the beam is in the primarily longitudinally directed field region, v× B  has an inwardly directed 

component due to the transverse velocity imparted to the particles. At the exit of the solenoid, the 

oppositely directed radial fringe fields remove the rotational-like motion, but since the particles 
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have moved inward the kick is not as large and so a net radial focusing of the beam is achieved.. 

This net focusing can be set to compensate for the outwardly directed space charge forces. 

Interestingly, it is the space-charge forces that compensate themselves, while the solenoid merely 

acts to place the beam distribution phase space into an orientation that allows this to happen. 

During this process the beam is accelerated out of the region where space charge is highly 

relevant. Carlsten [5] provides a more detailed analysis of this elegant method of space-charge 

compensation in electron guns.  

 

2.4 Beam transport and matching  

The beam transport system is used to focus the beam and match envelope functions, 𝛼(𝑧) and 

𝛽(𝑧),  to the undulator. In order to understand how this is accomplished, one must first look at 

how a nominal beam transport system would function. This begins with an explanation of the 

beam trajectory equations.  

 
For an electron beam there is a distribution of the particles in 6D phase space. As discussed 

earlier, this distribution includes particles with a nonzero angular divergence. It is therefore 

necessary to periodically focus the particles back towards the ideal trajectory. This is 

accomplished using either electric or magnetic fields; however, for relativistic particles the 

electric fields needed are simply beyond the technical limits, while the corresponding magnetic 

fields required are fairly straightforward to produce. Assuming a vertical field (y-direction) that 

is allowed to vary horizontally (x-direction), the field can be expanded as: 

(28)                           

𝐵! 𝑥 = 𝐵!! +
𝑑𝐵!
𝑑𝑥 𝑥 +   

1
2!
𝑑!𝐵!
𝑑𝑥! 𝑥

! +     
1
3!
𝑑!𝐵!
𝑑𝑥! 𝑥

! +⋯ 
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The constant term will bend the particle trajectories by some amount proportional to the B field 

and the energy. The linear term has a position dependent field, where particles further from the 

ideal trajectory see a larger field thus focusing or defocusing the beam, depending on sign.  The 

higher order terms are used to either correct for higher order issues in the beam, or are present 

due to field errors in the magnets. For the CSU accelerator design, only the first two terms in the 

expansion are used. Normalizing both sides of Equation 28 to the momentum and multiplying 

both sides by the fundamental unit of charge gives [1,2]: 

(29)             
𝑒
𝑝𝐵! 𝑥 =

1
𝑅 + 𝑘𝑥 

 
 
Table 1: Definition of first two magnetic field components in the multi-pole expansion 

 Definition Beam Effect 

Dipole Field 
1
𝑅 =

𝑒
𝑝𝐵!! Beam Steering of 

radius R 

Quadrupole Field 𝑘 =
𝑒
𝑝
𝑑𝐵!
𝑑𝑥  Beam 

Focusing/Defocusing 
 
 
A dipole is used at the end of the CSU accelerator beam-line to analyze the beam energy 

spectrum. This will be discussed in Chapter 6. Small dipoles are also used to ensure the beam is 

indeed centered on axis, but they are not intimate to the beam transport and matching to the 

undulator, and consequently their effects are not studied here. Quadrupoles, on the other hand, 

are much more important to the beam transport, as they can manipulate the envelope parameters 

of the beam for matching to the undulator. Taking the field equation for a quadrupole above and 

substituting into the Lorentz force equation gives the trajectory equation for a particle in the 

presence of the quadrupole field  

(30)        𝑥!! 𝑧 − 𝑘𝑥 𝑧 = 0 
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Here k is the quadrupole constant and x is the horizontal displacement as a function of position 

along the accelerator. This is a linear second order ODE that can be easily solved to give the 

equations of motion for the particle. These equations, given by 31a and 31b, define the phase 

space evolution of a particle through the quadrupole of strength k.  

(31a)          

𝑥 𝑧 = 𝑥! cosh 𝑘 𝑧 +
𝑥!!

𝑘
sinh 𝑘𝑧 

(31b)                        𝑥′(𝑧) = 𝑥! 𝑘 sinh 𝑘𝑧 + 𝑥!! cosh 𝑘𝑧 

These equations are true without loss of generality for any value k: i.e. for a negative k the 

hyperbolic sine and cosine functions become sine and cosine functions. For the three cases, 

𝑘 < 0, 𝑘 = 0, and 𝑘 > 0 the transport equations represent a focusing quadrupole, a drift space, 

and a defocusing quadrupole respectively. These equations can then be used to define a system 

of beam transport elements through the use of transfer matrices. Similar to light optics, the 

transfer matrices are defined for each beam-line component. In a system of quadrupoles with 

drift spaces in between this is fairly straightforward. Transport matrices are important to lattice 

design; however, up to this point these equations have only been discussed in the context of 

single particles. It is necessary to match the beam parameters given by the phase-space ellipse 

described in Section 2.2.2 to the undulator, and in order to explain how this can be done, 

Equations 31a and 31b must take a more general form.  First one must note that k is a function of 

longitudinal position k(z). Assuming a new trial solution that allows for an arbitrary envelope 

function and phase advance term, both of which are z-dependent, one can come up with the 

following expression: 

(32)          𝑥 𝑧 = 𝐴𝑢(𝑧) cos(𝛹 𝑧 + 𝜙) 
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Equation 30 can be re solved yielding the equations of motion, which describe the beam 

envelope in phase space as a function of position along the lattice in terms of the phase space 

coordinates [1].  

(33a)          𝑥 𝑧 = 𝜖 𝛽 𝑧 cos 𝛹 𝑧 + 𝜙  

(33b)   𝑥! 𝑧 = − !
! !

[𝛼 𝑧 cos 𝛹 𝑧 + 𝜙 + sin(𝛹 𝑧 + 𝜙)]   

Here 𝛽 𝑧  is the envelope function of the beam, 𝛼 𝑧 = −𝛽(𝑧)! 2, and 𝜖 is the emittance.  

These functions correspond to the phase ellipse parameters introduced in Section 2.2.2. This still 

gives equations in terms of single particles.  In order to study how the distribution evolves a 

further transformation is needed. These transformations are covered in detail in accelerator 

physics texts, but the important relationship that results from the analysis is: 

(34)    𝛾 𝑧 𝑥! 𝑧 +   2𝛼 𝑧 𝑥 𝑧 𝑥! 𝑧 +   𝛽 𝑧 𝑥!! 𝑧 = 𝜖 

This relates the Twiss parameters, the single particle equations of motion, and the emittance. 

Because the emittance is a conserved quantity, this equation can be used to derive propagation 

matrices for the twiss parameters in a lattice. The general transport matrix for a particle in 2-D 

phase space is given by: 

(35)             
𝑥!
𝑥!!

=
𝑚!! 𝑚!"
𝑚!" 𝑚!!

𝑥!
𝑥!!

 

For the quadrupole fields this can easily be written in terms of Equations 31a and 31b. Equation 

33 used in conjunction with equation 35 creates a transport matrix that propagates the Twiss 

parameters.  

(36)      
𝛽
𝛼
𝛾

=
𝑚!!
! −2𝑚!!𝑚!" 𝑚!"

!

−𝑚!!𝑚!" 𝑚!!𝑚!! +𝑚!"𝑚!" −𝑚!!𝑚!"
𝑚!"
! −2𝑚!!𝑚!" 𝑚!!

!

𝛽!
𝛼!
𝛾!
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Here the matrix elements are represented in terms of the general matrix elements in equation 34. 

This shows how the three Twiss parameters, which represent the beam envelope, are propagated 

through some arbitrary lattice. As 𝛾 is a function of both 𝛼 and 𝛽, a lattice with two quadrupoles 

can in theory produce any desired output Twiss parameters in a single plane. In reality, however, 

there are some practical limitations to this. A beam-line with four quadrupoles should be able to 

achieve the desired output parameters in both the x and y planes. We have chosen to use five 

quadrupoles to provide us with some additional flexibility in the matching.	
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3. Electromagnetic Modeling of the Colorado State University 
Linear Accelerator 
 

The first step in building a full system model of the CSU accelerator and beam-line is to 

characterize the essential linear accelerator components without the added complication of a 

particle beam. The process of modeling the accelerating structure and solenoid fields is necessary 

to produce accurate field maps used in the beam simulations. During this chapter the coupled 

cavity linac is modeled using a finite-element method code; the solenoid and bucking-coil 

assembly are similarly modeled. Initial measurements of the linear accelerator are made and 

compared to the model. In order to insure an accurate model the overall geometry must be 

understood including the complexities of the geometry, and whether these complexities can be 

simplified but still produce accurate field maps.  

 
 

3.1 The Colorado State University linear accelerator  
 
The University of Twente has generously donated the accelerator system currently being 

reassembled at Colorado State University. The linear accelerator is an 11-cell, coupled-cavity 

linac operating at 1.3 GHz in the pi/2 mode, with a focusing solenoid and bucking coil assembly 

used for beam focusing and emittance compensation control.  The structure was designed by Los 

Alamos National Laboratory (LANL) and optimized to produce high-quality beams. Electron 

bunches generated in the first half-cell are accelerated quickly to leave the space-charge 

dominated regime and reach a final energy of 6 MeV at the exit of the structure.  

 

The solenoid and bucking-coil assembly provide the necessary focusing to compensate for space-

charge effects in the first two cells where the beam is still transitioning to being moderately 
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relativistic. Figure 8 shows a cross section of the injector system with the critical components 

highlighted. 

 

 

Figure 8: Cross section view of the photo-injector system. Highlighted in red is the solenoid 
assembly and in green is the linear accelerator. 

 

The modeling of the photo-injector system is broken down into two major pieces, the RF linear 

accelerator and the focusing solenoid assembly. Development of these models is discussed in 

that order. 

 

3.2 Modeling of the RF linear accelerator 
 
Modeling of the linear accelerator (green part in Figure 8) utilizes the Los Alamos developed 

code SUPERFISH [8]. SUPERFISH is a commonly used cavity design tool that employs the 

finite-element method to solve Maxwell’s equations in the frequency domain and subsequently 

Solenoid and Bucking Coil Assembly 

5.5 Cell Linear Accelerator 



 31 

calculate resonant frequencies and field maps for a provided geometry. The code begins by 

generating a calculation mesh based on the geometry obtained from user entered coordinates and 

then, by minimizing an appropriate error function, determines the field geometry of the cavity 

resonance nearest to a user defined starting point. Depending on the type of problem, the user 

can specify either axial symmetry or a purely 2D problem.  

 

Many problems in accelerators utilize pure axial symmetry; however, advances in both modeling 

technology and in cavity design technology have begun to introduce asymmetric properties that 

produce higher quality devices. Consequently, these more modern structures cannot be fully 

modeled in SUPERFISH. An important step is to identify the components that are not fully axial 

symmetric and determine if a reasonably accurate structure model can be made by excluding 

these elements. 

 

The CSU Linear accelerator has a few of these asymmetries. One very important asymmetry is 

the coupling slots that allow power to be transferred along the structure. These slots electrically 

connect the accelerating cavities with the coupling cavities. Figure 9 is a schematic of these 

coupling slots. While there is symmetry of these slots about the axis, they do not possess full 

axial symmetry and thus cannot be modeled in SUPERFISH. It is important to note here that the 

coupling slots are rotated 90 degrees relative to the previous cell along the structure. This is done 

in order to help minimize the summing of a net quadrupolar field term along the length of the 

structure, while still allowing for good power flow between the cavities. Other cavity 

asymmetries are the vacuum ports and input/output couplers. Figure 10 shows a detailed view of 

the coupling ports and the vacuum ports.  
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Figure 9: Schematic of the coupling slots in the linear accelerator. A “CC” label between the 
disks denotes the location of a coupling cell and the location of the accelerating cells are denoted 
by an "AC" label. 

 

 

Figure 10: View of details not modeled during this characterization. Note that the other ports 
visible in the diagram represent vacuum pump-out ports. These are not necessary to model as 
they have minimal impact on the electromagnetic properties of the structure. 

Since SUPERFISH cannot model the coupling slots there will not be adequate power transfer 

between the simulated cavities if the structure is modeled as a whole unit. The coupling slots, 

and the coupling cells only really provide energy transfer, as such they are excluded from our 

initial model. This leaves a 5.5-cell structure that is divided into three cell types, each modeled 

independently. Once the individual models are complete, the field maps are combined to 

Coupling Slots 

Coupling Cell 



 33 

generate the field map for the full structure. This is what is used in the beam simulations. The 

three cell types that need modeling are presented in Figure 11. 

 

 

Figure 11: Detailed view of the three cavity cell types modeled during the LINAC system 
characterization 

When modeling each cell type a smooth boundary is used over which the internal fields are 

solved, i.e. we do not include the vacuum slots and the coupling cells/slots in the simulation.  

 

During the modeling process accuracy is important and the mesh interval is a primary 

determination of this accuracy. Initially the mesh size is set to a value just small enough to 

resolve the geometry. The mesh is then systematically reduced until the simulation result 

(frequency in this case) no longer changes. This process was done for the first half-cell to 

understand how the mesh interval impacts the simulation result. Figure 12 shows the resonant 

frequency of cell 1 as a function of the mesh interval. This shows a good convergence of the 

solution for a mesh interval around 0.01 cm. 

Half Cell (Cell Type 1) 

Cell Type 2 Cell Type 3 
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Figure 12: Resonant frequency as a function of the mesh interval showing relative stability. Note 
that above a mesh interval of 0.06 the mesh was too coarse for SUPERFISH to provide a 
satisfactory solution. 

 

High accuracy in the resonant frequency is, however, not critical because during the beam 

simulations, field maps provide spatial field profiles that are driven with a sinusoidal component 

in time by a user-defined frequency. In other words, the user tells the simulation code what 

frequency to use to drive these fields maps. However, it is important to understand how the mesh 

impacts the model accuracy and to be close (within 100khz or so) to the resonant frequency, the 

result of which was shown in figure 12.  

 

With an understanding of how these cells are modeled, what mesh size is needed for the desired 

level of accuracy, and what items are excluded, each cell is then modeled individually using 

SUPERFISH and it’s respective field map produced. Figure 13 shows the model and field map 

for the first cell type. The field map from the first half-cell is optimized to have a high flatness 

spatially. This helps to reduce nonlinearities that can occur from the interaction of the fields with 

the beam as it is created. 
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Figure 13: Cell type 1 geometry and field contour model with axial field map on the right. The 
simulation file used to produce this model is provided in Appendix A.1 

 
As the cavity is modeled separately from the whole geometry, the field goes to zero at the 

boundary. The peak field in this cell is high to accelerate the beam quickly out of the space 

charge dominated regime.  

 

The next cell modeled along the structure is the type 2 cell.  Figure 14 shows the field map and 

geometrical boundary for this cell type. 

 

Figure 14: Cell type 2 geometry and field contour model with axial field map on the right. The 
simulation file used to produce this model is provided in Appendix A.2 
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Similar to the first cell, the second cell is also optimized for high field flatness. This results in a 

less efficient energy transfer to the beam but the fields in this structure are higher as a result. 

 

The final type of cell modeled is slightly different than the previous two cells and is optimized to 

have an efficient net transfer of the field energy to the beam energy. The field map and geometry 

profile of this cell is shown in Figure 15 

 

Figure 15: Cell type 3 geometry and field contour model with axial field map shown on the right. 
The simulation file used to produce this model are given in Appendix A.3 

 
The field map has some bumps in the longitudinal profile that are caused by the “nose”; 

however, due to the beam being moderately relativistic at this point along the cavity, these 

spatial variations do not impact the bunch dynamics as harshly. It is more important in this 

section of the LINAC to maximize the energy transfer efficiency. By adding the nose cones the 

effective shunt impedance is higher and consequently the energy transfer has greater efficiency.  

 

The shunt impedance and quality factor data were computed using SUPERFISH. These values 

are presented in table 3.1. It should be noted that these do not represent the structure quality 

factor and the structure shunt impedance but are merely guides to verify that the linac basic 

characteristic are understood.  
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Table 2: Quality factor and shunt impedance data computed for the three cell types by 
SUPERFISH. Shunt impedance data are for individual cells 

Cell Type Quality Factor Shunt Impedance [M Ohms/m] 
Type 1 25738 86.0012 
Type 2 25745 86.0291 
Type 3 26369 96.383 

 

This shows that indeed the shunt impedance is higher for the cell type 3. Additionally, cell type 3 

has a higher quality factor thus further showing that it will maximize the ability to transfer 

energy from the rf power to the cavity fields.  

 

Combining the individual field maps and normalizing them to the appropriate peak fields 

obtained from the University of Twente produces the field map for the whole structure. A 

previous field map from Los Alamos National Lab [9] was compared to the field map generated 

by stitching the cells together and is shown in figure 16. Qualitatively this shows that the cavity 

field model generated is accurate for use in beam simulations to characterize the system. 
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Figure 16: Comparison of the axial field map modeled with SUPERFISH to the data from 
previous work [9] 

 

3.3 The solenoid and bucking coil assembly 
 
As discussed in the previous chapter, the solenoid is a critical piece of the puzzle because of its 

ability to control the space-charge effects, and focus the beam during initial acceleration. Using 

the drawings from the University of Twente a geometrical model of the assembly was created; 

this geometry is shown in Figure 17. 
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Figure 17: Solenoid assembly drawing highlighting the important ferrous material and the two 
coils 

SUPERFISH comes with another field solver called PANDIRA [8] that is used to model the 

solenoid and bucking coil assembly. PANDIRA is a 2D static field solver that computes 

magnetic fields or electric fields, depending on what is desired. Similar to SUPERFISH, 

PANDIRA is axially symmetric. The code models ferrous material through the use of a linear 

permeability model which by definition does not account for any magnetic hysteresis or 

saturation effects. Current distributions are used in the place of wires to model the two coils.  

 

The solenoid assembly is modeled in four different regions. These regions consist of the solenoid 

and bucking coil themselves, shown in figure 17, and their subsequent surrounding magnetic 

material. In order to prepare the solenoid and bucking coil model for use in the beam dynamics 

simulations it must first be tuned to have zero field on the cathode. This is essential to ensure that 

the particles do not have any additional azimuthal velocity (i.e. the fields are not adding to the 

any preexisting azimuthal velocity present from emission) from the radial and longitudinal 

magnetic fields. Additional components to the beam motion have an impact on how the beam 

propagates through the system and can have adverse effects on the beam dynamics. 

Focusing Solenoid Bucking Coil 

Ferrous Material 
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Since the solenoid and bucking coil are an assembly that fits onto the LINAC cavity we know 

physically where the zero field region should be. To make sure this region has a magnetic field 

of zero, the simulation is run with zero excitation in the solenoid but with some nonzero, known 

excitation, in the bucking coil. This produces some known field on the cathode per unit 

excitation in the bucking coil. This process is repeated with the solenoid turned on and the 

bucking coil turned off.  Scaling the results appropriately one can then ensure a zero field at the 

cathode over the desired range of correction solenoid strengths. Figure 18 shows the geometry 

and field map of the assembly and the on-axis axial (red) and radial (green) field profiles 

normalized to the radius. 

 

Figure 18: Numerical model of the Solenoid showing the axial field map. This model was 
produced using PANDIRA. The red line is the longitudinal magnetic field on axis and the green 
line is the radial magnetic field normalized to the radius or 𝑩𝒓/𝒓. The simulation files used to 
produce this model are given in Appendix B. 

This concludes the section on the electromagnetic models needed to begin beam simulations on 

the accelerator system. Before beginning the process of simulating the beam, however, some 

initial measurements of the LINAC were taken in order to partially verify the simulation results. 
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3.4 LINAC measurements and data analysis 
 
During the initial characterization process it is helpful to gain as much knowledge of the system 

as possible. As part of this process some initial checkout measurements were made of the 

structure. The accelerator is currently not exposed to air and it is necessary to keep it as clean as 

possible, therefore measurements were taken through the RF window thus minimizing the impact 

on the structure.  

 

The RF window is a ceramic device that is transparent to microwaves and separates the high 

vacuum from atmospheric pressure. On one side of the window is the high vacuum of the 

accelerating structure while on the other side is the, perhaps pressurized, rf waveguide. Sulfur 

hexafluoride gas at some modest pressure is typically used in the waveguides to help prevent 

electrical breakdown caused by the high powers propagating in the waveguide system.  

 

The network analyzer was attached to an L-band waveguide rf launcher that bolts onto the 

outside of the RF window allowing measurements to be taken with minimal impact. In this type 

of configuration only one type of measurement can be taken, the S11 reflection coefficient. The 

network analyzer is first calibrated, and is then attached to the L-Band RF launcher to generate 

the S11 spectrum for the device. For characterizing the mode structure it is expected there will be 

11 resonances in the S11 curve centered on the 1.3 GHz pi/2-mode resonance. Figure 19 shows 

these measurements. 
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Figure 19: S11 measurement of the RF cavity from 1.25GHz to 1.365GHz. Note that the broad 
resonance-like signal on the right hand side of the spectrum is an issue with the measurement and 
not a mode. 

As is expected, there are eleven resonances where the reflection coefficient dips below one. This 

corresponds to the eleven cells in the structure. The first and the last resonances are difficult to 

see on this plot; however, the detailed view in Figure 20 clearly shows these resonances. 

Additionally this detailed view provides important information about each resonances’ depth and 

width. This information is used to calculate the quality factor of each mode.  
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Figure 20: Detailed view of each mode. These data were used to determine the full width half 
max of the resonance necessary for quality factor calculation 

From the data presented in Figure 20 the precise mode location and it’s full width half max can 

be measured. The quality factor in terms of the S11 measurement is defined Equation 37: 

(37)           

𝑄 =
𝑓!"#
𝑓!"#$

 

Where Q, is the quality factor, 𝑓!"# is the resonant frequency of the mode, and  𝑓!"#$ is the full 

width half max of the S11 measurement for that mode. Executing this calculation on each of the 

modes gives their respective quality factors. This result is shown in Figure 21. Previous work 

published by Los Alamos National Lab on this system measured the cavity Q and a shunt 

impedance. CSU is not currently equipped to take a shunt impedance measurement for the 

cavity; however, the quality factor can be compared. This comparison is shown in table 3. 
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Figure 21: Resonant Frequency and quality factor as a function of the mode numbers. Mode 
numbers are in order of appearance on Figure 18. 

Table 3: Los Alamos Measurements vs CSU measurements 

 Los Alamos Measurement CSU Measurement 
Quality Factor 16144 17551 
Shunt Impedance 53 MOhm/m (Not Measured)  
 

The full width half max of the 1.3-GHz mode used to compute the quality factor also provides 

bounds for when the cavity is on or off resonance.  Additionally, the mode data can be used to 

determine the frequency range for maintaining less than a 5% variation in the fields. This 

corresponds to an 8kHz bandwidth. As power is dissipated into the cavity walls the cell geometry 

will expand causing a frequency shift. In order to maintain the resonance within the 8kHz band, a 

cooling system is used to regulate the cavity temperature. Through the use of a linear thermal 

model on the cell geometries shown in the previous section, the shift in resonance per degree 

Celsius was calculated to be 20.547 kHz/C. To achieve a field variation less than 5% the 

temperature of the cavity must be held to within plus or minus 0.19 degrees C of the temperature 

set point.  
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Having completed the electromagnetic model of the LINAC and having done some initial 

measurements, the accelerator system model is ready to add the effects of a beam and then move 

to the beam-line simulation process.  
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4. Characterization of the RF Linear Accelerator 

With a complete model of the primary accelerator components, the next step is to introduce an 

electron beam and study the interaction of the beam with the accelerator components. This 

chapter begins with a description of the simulation code used to model the injector, and a 

characterization of how the simulation parameters impact the results produced. This is followed 

by a study of how the adjustable parameters in the gun, in our case RF phase, RF field strength, 

solenoid strength, beam current, cathode spot size, and bunch length, impact the beam quality. 

And finally, the details of the initial settings for operation are provided.  

 

4.1 PARMELA beam dynamics calculations and sensitivity analysis 

Beam simulations for the injector are performed in PARMELA [10]. PARMELA is a Los Alamos 

developed single-pass linear accelerator design code. It operates by using field maps obtained 

from SUPERFISH and PANDIRA to calculate the trajectories for individual particles. PARMELA 

also has two space-charge routines that compute the interactions of the particle beam’s self fields 

on the distribution. The primary space-charge routine divides the bunch into charge disks based 

on binning the nearby particles, and by the user specified mesh intervals. Impulses are then 

applied to the beam trajectories that are taken into account in the dynamics calculation. The other 

algorithm is a full 3D PIC simulation, this is not used as it has long computation time, and the 

degree of accuracy is not necessary for initial system characterization.  

 

There are a few parameters that can be varied by the user in order to control the accuracy of the 

calculation. Typically, increasing the simulation accuracy translates to a longer simulation time; 

therefore, when running a large number of simulations it is important to be accurate within 
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acceptable levels while simultaneously not having excessive computation times. The user-

defined parameters that have the greatest impact on simulation accuracy are the integration step 

size, the number of particles in the simulation, and the longitudinal and transverse mesh size of 

the space-charge routine. The first two are in some ways not dependent on the latter two; 

however, the inclusion of space charge will impact the simulation. In order to assess what 

parameters will give a good level of accuracy for our machine, these values were varied and the 

emittance analyzed to determine the resolution needed.  

 

4.1.1 Sensitivity to number of particles (without space charge) 

The first parameter varied was the number of particles in the simulation. This parameter is 

important to understand because a real beam contains on the order of 10 billion particles thus 

requiring supercomputers to perform ”complete” simulations. Simulation of a beam with this 

many particles is impractical and for these studies unnecessary. To simplify the calculation the 

space-charge routine was tuned off, and the integration step was set to 0.1 degrees of RF phase.  

The number of particles was then scanned between 100 and 10,000 particles. Figure 22 shows 

the emittance as a function of the number of particles for the described conditions.  

 

While the plots do not show highly smooth curves there is a point, after about 1000 particles, 

where the emittance is relatively unchanged as the number of particles increases. The transverse 

emittance is much less well behaved than the longitudinal emittance, however both do reach 

relatively stable points. It is important to note here that only the x emittance is being shown. The 

code has axial symmetry, and the field maps are also axially symmetric; therefore, it is not 
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necessary to show the y emittance. For the duration of this chapter, only the x emittance is shown 

and is referred to as the transverse emittance. 

 

Figure 22: Transverse and Longitudinal emittance as a function of the number of particles plotted 
on a semi-log scale. 

	
  
To insure the simulation is well inside the good region for particle number the next series of 

simulations were run with 5000 particles.  

4.1.2 Sensitivity to integration step (without space charge) 

The integration step is a phase interval over which PARMELA computes the particle dynamics. 

The shorter the interval the more accurate the calculation; however, as with the number of 

particles the shorter the integration step the more calculations must be done and therefore the 

simulation time will increase. There is a point similar to the number of particles where the 

decrease in the integration step will not significantly increase the simulation accuracy. Figure 23 

shows the transverse and longitudinal emittance as a function of the integration step.  

 

Here it is clear that with integration step sizes of less than 0.1 degrees the calculation does not 

change significantly. The simulation time for this level of accuracy is a bit long and it may be 
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possible to compromise on the accuracy and increase the integration step size in order to 

discover trends rather than provide explicit answers. 

 

Figure 23: Transverse and longitudinal emittance as a function of the integration step. 
Convergence is clear after 0.1 degrees 

Once trends are identified higher resolution calculations can be done on specific parameters to 

obtain a better idea of the emittance values.  

4.1.3 Sensitivity to space charge routine parameters 

The relative amount of space-charge to include is determined by the beam current parameter in 

the space-charge routine. This is defined by the bunch charge multiplied by the RF frequency. In 

the case of the CSU accelerator a range of charges can be used for operation between 1 nC and 5 

nC. A modest amount of charge, 2.3 nC, was used to characterize the sensitivity of the space-

charge parameters. The space-charge routine divides the beam into longitudinal and transverse 

segments. Then, an impulse force is applied to the beam distribution that can be executed at user 

specified intervals with respect to the dynamics calculations; for the simulations in this thesis 

space-charge impulses are calculated at each integration step. The granularity of this calculation 

will have a significant impact on the emittance. In order to insure sufficient accuracy the 

emittance is studied as a function of the transverse and longitudinal mesh size of the space-
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charge computation. Figure 24 shows both the transverse and longitudinal emittance as a 

function of the longitudinal mesh number. This corresponds to the number of mesh elements 

used in the space charge calculation along the length of the beam. Increasing this number means 

increasing the resolution of the calculation.  

 

Figure 24: Transverse and longitudinal emittance as a function of the longitudinal mesh number. 

	
  
While varying the longitudinal mesh number the transverse mesh number was held at 50. It is 

clearly visible that the longitudinal mesh number effects the emittance in both planes. The 

stability in the longitudinal emittance calculation comes much faster than the transverse 

emittance; however, both become relatively stable after a mesh number of 200.  Note also that 

while the transverse emittance takes longer to stabilize, the magnitude of the transverse 

emittance variation is much smaller compared to the variation in the longitudinal emittance.  

 

Figure 25 shows the variation in the transverse and longitudinal emittance as a function of the 

transverse mesh number. For these simulations the longitudinal mesh number was held at 200. 

Here it is clearly visible that the emittance calculation becomes relatively stable after a transverse 

mesh number of about 50. 
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 Figure 25: Transverse and longitudinal emittance as a function of the transverse mesh number. 

There is still some variation in the emittance in both Figures 24 and 25 that looks like numerical 

noise; however, this is likely due to the space-charge routine not being a full 3D routine.  

4.1.4 Sensitivity to number of particles and phase step with space charge 

To address the sensitivity of particle number and integration step with the inclusion of space 

charge, the space charge mesh was set to 200 and 50 for the longitudinal and transverse mesh 

numbers respectively.  Then, as before, both the integration step and the number of particles 

were assessed for accuracy of the emittance calculation. Figure 26 shows the emittance as a 

function of the integration step for a 2.3 nC beam with 5000 particles.   

 

Figure 26: Transverse and longitudinal emittance as a function of the integration step. 
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Figure 27 shows the emittance as a function of the number of particles for a 2.3 nC beam with an 

integration step of 0.1 degrees. 	
  

	
  

Figure 27: Transverse and longitudinal emittance as a function of the number of particles 

Here it is clearly visible that the calculation stabilizes after about 1000 particles. As a summary 

to this section, simulation parameters that will produce numerically accurate numbers for the 

CSU accelerator were determined. The space charge intervals should be at least 200 and 50 for 

the longitudinal and transverse mesh intervals respectively, the integration step should be at or 

below 0.1 degrees, and the particle number should be at or above 1000 particles. With this 

knowledge the system parameters, RF phase, beam current, bunch length, cathode spot size, and 

solenoid strength, can be varied and their effects studied.  

 

4.2 Injector simulation studies  

Because the injector is already built, the user has no control over parameters such as the cavity 

field profiles or the magnetic focusing field profile. The parameters that can be varied however, 

are the RF phase, the RF field, the solenoid field, the bunch charge, the cathode spot size, and the 

bunch length. The RF phase is addressed first. This is followed by an analysis of the solenoid 
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field in tandem with the bunch charge, as these two are highly coupled. Finally the effect of 

variable cathode spot size, and bunch length are addressed.  

4.2.1 RF Phase effects  

During the theoretical discussions it was shown that by changing the phase of the beam relative 

to the RF waveform the beam could experience focusing in either the transverse direction or the 

longitudinal direction. To study how this manifests itself in the CSU accelerator the phase 

parameter is scanned while all other parameters are held constant. For these simulations the 

beam charge was set to 2.3 nC, the solenoid focusing field was 1.4 kGauss, the bunch length was 

set to 20 degrees (about 40 ps), and the cathode spot size was set to 0.2 cm. The injection phase 

was then scanned from zero to one hundred eighty degrees.  

 

For a bunch length of 20 degrees it is expected that significant losses will occur below 10 

degrees as some particles are injected when the field is negative and therefore cannot propagate. 

Additionally, for a short gap (𝜆/10), a single particle emitted later than 115 degrees does not 

gain sufficient energy to exit the cavity, and returns to the cathode due to the field changing sign 

[11].  The first cell of the CSU accelerator is not short, about 𝜆/4, and additionally the bunch 

length is relatively long at 20 degrees; therefore, we expect to see significant losses well below 

115 degrees relative to the RF. This is evident in the phase scan which showed that only in the 

range of 10-80 degrees did 100% of the beam make it out of the injector. Both the transverse and 

longitudinal emittance were studied as a function of injection phase. The variation in the 

transverse emittance as a function of the RF phase is shown in Figure 28.  
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Figure 28: Variation of the transverse emittance as a function of the RF injection phase 

	
  
In Chapter 2, 40 degrees was shown to satisfy the criteria for minimizing the transverse 

emittance. Here it is clearly visible that there is a broad minimum in the transverse emittance as a 

function of injection phase between 30 and 50 degrees, with the optimum value at about 35 

degrees.  

 

The variation in the longitudinal emittance was also considered. The discussion in Chapter 2 

showed that the longitudinal emittance would be minimum for a particular operating phase, 

around 10-15 degrees. Figure 29 shows the variation in the longitudinal emittance with RF 

injection phase. 

 

Figure 29: Variation in the longitudinal emittance as a function if the injection phase 
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Here it is clearly visible that the longitudinal emittance is a minimum at about 15 degrees RF 

phase.  The results of these two scans show that the modeled injector performance as a function 

of injection phase is consistent with expectations.  

4.2.2 Solenoid focusing and beam charge effects on emittance  

Space-charge effects in the beam can be compensated for in two primary ways. A solenoid field 

can be used to compensate for space-charge forces while an increase (or decrease) in the beam 

charge directly increases or decreases these forces. The bunch length also impacts the space 

charge forces but this will be addressed separately. To study the impact of the solenoid field and 

the beam charge, these two parameters are varied and the beam emittance analyzed. During these 

simulations the injection phase was set to 40 degrees, the bunch length was set to 20 degrees (40 

ps), and the cathode spot size was set to 0.2 cm. 

 

To adjust the beam current PARMELA’s space charge routine can simply be adjusted to include 

more or less charge. To adjust the solenoid field a scaling factor is used to either increase or 

decrease the fields. As discussed in Chapter 3, because the magnetic field model does not include 

any nonlinear permeability, a linear scale factor will not impact the shape of the field, only the 

magnitude. At a scale factor of 1 the peak magnetic field is 1420 Gauss. The beam current was 

varied in 0.4 nC increments from 0.8 nC to 3.2 nC, and the solenoid field was varied from 710 

Gauss to 1700 Gauss. The result of these scans are shown in Figure 30. A clear minimum in the 

transverse emittance as a function of the solenoid strength is visible. Additionally as the beam 

charge is increased, that minimum emittance shifts towards the right. This corresponds to an 

increase in the solenoid field.  This result is expected as an increase in the beam charge results in 

a larger space-charge force requiring a larger magnetic field to compensate. 



 56 

 

Figure 30: Transverse emittance as a function of the solenoid strength, from bottom to top shows 
the increase in beam current from 0.8 nC to 3.2 nC in 0.4 nC increments 

When operating the machine it is necessary to study how these two parameters are related and to 

know what field strengths to use for which beam currents. It is important also to understand the 

direct relationship between the beam charge and the emittance. Figure 31 shows the minimum 

transverse emittance as a function of beam charge.  

 

Figure 31: Minimum transverse emittance as a function of the bunch charge. 

	
  
This shows that as the bunch charge is increased the emittance will increase as well. This is 

expected and in general there is a fairly well defined scaling between emittance and bunch 
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charge. The solenoid field also has some effect on the longitudinal emittance, which is expected 

to be small. Figure 32 shows this relationship.  

 

Figure 32: Longitudinal emittance as a function of the solenoid strength. From bottom to top 
indicates an increase in beam current 

Here it can be seen that, in general, there is a fairly weak correlation between the solenoid field 

and the longitudinal emittance. Because the space-charge force compensated for by the solenoid 

is a transverse force, it is expected that the correlation between longitudinal emittance and the 

solenoid field is weak. On the left hand side of the plot there are currents that show a decrease in 

the emittance as the solenoid field increases. This effect is caused by insufficient focusing in the 

solenoid resulting in particles being ejected from the simulation region. Additionally, on the right 

end of the curve there is a dip in the longitudinal emittance as a function of the solenoid strength. 

This is most pronounced for the higher current cases however this dip exists for all cases. As the 

scope of this work is to provide an initial system characterization the cause of this phenomena 

was not investigated further.  
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4.2.3 Cathode spot size effects on emittance 

The cathode spot size is adjusted by changing the maximum radius of the input electron beam. 

Because the injector utilizes a photocathode drive, this adjustment is the same as increasing the 

laser pulse spot size. For a very small bunch it is expected that the space charge forces will 

increase which could have an adverse impact on the emittance. However, as the bunch increases 

in diameter the overall area in phase space increases, thus increasing the emittance. For a beam 

charge of 2.3nC, a solenoid strength of 1420 kGauss, an RF injection phase of 40 degrees, and a 

pulse length of 20 degrees, the bunch radius was scanned between 0.05 cm and 0.5 cm. The 

transverse emittance as a function of spot size is shown in Figure 33.  

	
  
Figure 33: Transverse emittance as a function of the cathode spot size 

Here there is a clear minimum in the transverse emittance at about 0.25 cm. As expected the 

emittance is large for a smaller spot size and again increases as the spot size is increased away 

from 0.25 cm. The feature on the left side of the plot is caused by space charge expelling 

particles out of the simulation. Figure 34 shows the variation in the longitudinal emittance as a 

function of the transverse spot size. Here as the spot size is increased the longitudinal emittance 

actually decreases. This is because increasing the transverse spot size decreases the space charge 

forces, which interact both longitudinally and transversally. 
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Figure 34: Longitudinal emittance as a function of cathode spot sizes 

Unlike the transverse emittance, increasing the transverse spot size does not increase the area in 

the longitudinal phase space, and there is no corresponding increase of the emittance in this 

plane.  

 
 

4.2.4 Bunch length effects on emittance 

The bunch length is adjusted by changing the duration of the laser pulse incident on the cathode. 

To study this effect in simulation, the bunch length can be set directly inside the PARMELA input 

file. For a beam charge of 2.3nC, a solenoid strength of 1420 Gauss, an RF injection phase of 40 

degrees, and a cathode spot size of 0.2 cm, the bunch length was scanned between 2 and 20 

degrees. It is expected that as the bunch length is shortened, the transverse emittance will 

increase because the space charge forces will be much greater. By shrinking the bunch length the 

longitudinal phase space is also shrinking, however the space-charge forces are increasing in the 

longitudinal direction as well. Similar to the spot size case for the transverse case we expect here 

that the longitudinal emittance will have a minimum at some nominal bunch length.. Figure 35 

shows the longitudinal emittance as a function of the bunch length. 
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Figure 35: Longitudinal emittance as a function of the bunch length 

Here the longitudinal emittance does decrease as the bunch length decreases, but does not reach a 

true global minimum. As the bunch length increases the phase space in this plane is increasing 

and therefore the emittance is similarly increasing. Analysis of the rate of change of emittance as 

a function of bunch charge shows that this rate is decreasing as the bunch length decreases, 

indicating a minimum does exist. The bunch length also affects the transverse emittance, shown 

by Figure 36.  

 

Figure 36: Transverse emittance as a function of the bunch length 

As with the longitudinal emittance the transverse emittance behaves as is expected. There is a 

steady decrease in the emittance as the bunch length is increased. The emittance reaches a 
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minimum value at around 14 degrees and then increases slightly up to 20 degrees. This minimum 

in the emittance is expected as the solenoid is set to compensate for a particular beam current. As 

the bunch length is increased the beam current for a particular bunch charge is decreased. 

Therefore some point after the optimum the solenoid is actually over focusing the bunch and 

over compensating for the space-charge effects.  

 

4.3 Injector point design  
 
With a good understanding of how variations in the injector parameters affect the beam output, 

an initial configuration is provided to use for simulations of the beam-line in Chapter 5. These 

settings are given in Table 4.  

Table 4: Beam parameters and injector parameters for a point design 

Bunch Charge 2.3nC 
RF Phase 40 Degrees 

Bunch Length 40 ps 
Solenoid Field 1420 Gauss 
Beam Energy 6.3 MeV 

 

Using PARMELA the injector was simulated with these parameters, which produces a beam with a 

normalized transverse emittance of 0.43 cm-mrad, and a longitudinal emittance of 147.4 degrees-

keV. At the exit of the injector the beam has a spot size of 2 mm. PARGRAF, the PARMELA 

plotting program, computes the RMS Twiss parameters, given in Table 5. These parameters 

describe the behavior in the core of the beam, which are used in Chapter 5 as the primary input to 

the beam-line matching. The PARMELA input file used for these simulations is provided in 

Appendix C. Having a complete well-understood model of the CSU injector, a beam-line can be 

used to match these parameters to the undulator. This process is covered in detail in Chapter 5.  
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Table 5: Twiss parameters at the exit of the injector for the point design provided 

𝛼! 2.7 
𝛽! 220.0 [cm/rad] 
𝛼! 2.7 
𝛽! 226.6 [cm/rad] 
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5. Beam-Line Matching for the Undulator 

The previous two chapters addressed modeling and simulation studies of the injector system. 

With that information the next step in developing a full machine model and initial system layout, 

is the beam transport and matching system for the undulator, which is developed in this chapter.  

To generate the initial layout the University of Twente provided a schematic system of the 

accelerator as it was when last operated. This gives a total length, seen by the beam, between the 

injector and the undulator of 153 cm. While this number may seem odd, it must account for the 

nonzero length of vacuum pipe between the start of the undulator vacuum pipe and the actual 

start of the undulator, 3cm. This total distance will lead to some seemingly strange drift lengths 

between quadrupoles. These numbers should therefore be used for feducialization and don’t 

represent suggested cut lengths of the vacuum tubes.  Keeping this total length constant, the 

initial beam-line design will have 5 evenly spaced quadrupoles used to match the beam into the 

undulator. This allows for a system that should be relatively flexible for varying beam 

parameters.  

 

The beam-line matching is done for the most part using two simulation tools, elegant [12] and 

TRACE-3D [13]  (TRACE). Elegant is a particle-tracking code developed by Argonne National 

Laboratory and is used primarily for high-energy, electron beam systems. Space-charge forces 

are negligible at high energy therefore elegant does not need to account for these interactions. 

The CSU system is operating at a relatively low energy and the space-charge forces, while not 

dominating the beam, are still very much present. TRACE, on the other hand, does include a 

space-charge calculation in the code. TRACE is a Los Alamos developed code used for matching 

low-energy beams where space charge is still highly relevant. It functions similarly to elegant 
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in the use of transport matrices but has a slightly different interface. Unlike PARMELA both 

TRACE and elegant have built in optimization packages that are used for beam-line matching. 

Optimization routines are necessary when tuning beam-line elements, as good analytical 

solutions are difficult to work with. A combination of these two codes allows for some 

comparison to show just how much space charge is impacting the beam-line set points. Then for 

the initial set point design, TRACE is used to simulate the beam with space charge and these 

results are simulated in PARMELA to verify. Further tweaking is then done through the use of 

custom optimization routines that work directly with PARMELA. Before discussing the details of 

the beam-line simulations, an overview of elegant and TRACE is given to provide the reader 

with some context for the simulations performed in this chapter.   

 

5.1 Overview of elegant and TRACE-3D   

Elegant and TRACE are both particle tracking codes which utilize transfer matrices to analyze 

the beam as it propagates through a given lattice. The beam is tracked using the full 6D phase-

space transfer matrices. The transport matrices are constructed based on the beam envelope 

equations described in Chapter 2. Both elegant and TRACE have built in optimization routines 

that are used for beam-line design and matching. With these routines the user can specify a 

number of constraints on the problem and define the starting point for the search space.  

 

The beam parameters are input to both systems as RMS Twiss parameters. These are generated 

by PARMELA from the simulations in Chapter 4. The distinction that we use RMS parameters is 

important as it describes the behavior of the beam core and neglects the effects that create beam 

tails and halos. In the context of machine operation it is not possible to always control the beam 
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halo nor is it easy to measure it; however, measurement of the RMS parameters is more 

straightforward. Therefore, we are only concerned with this aspect of the beam for the point 

design.  

 

For further discussion on elegant and TRACE consult their respective user manuals.  

	
  

5.2 Beam-line Matching to the Undulator 

In order to properly match the beam into the undulator the beam envelope must satisfy the proper 

conditions.  For an undulator with equal focusing in both planes a proper match means the beta 

function in both planes must satisfy the following [14]:  

(38)                   

𝛽 =   
𝜆!𝛾
𝐾𝜋  

. 

Here 𝜆!  is the undulator period, 𝛾 is the relativistic energy of the particle beam, K is the 

undulator normalized field parameter, and  𝛽 is in reference to the envelope equation discussed in 

Chapter 2. For the CSU machine 𝐾 = 1, 𝛾 ≈ 13 and 𝜆! = 0.025. Substituting these parameters 

into Equation 36 gives beta functions equal to 0.106 [m/rad] to properly match the beam. 

Implicit in a beam matched into the undulator is a zero phase-space tilt. For the purposes of this 

design, a satisfactory match is within 5% of the target value for the beta functions, and alpha 

functions as small as reasonably achievable. These parameters specify the target values and their 

tolerances for both TRACE	
   and elegant	
   to match by varying the upstream quadrupoles. The 

lattice used for the matching consists of five equally spaced quadrupoles with drift spaces in 

between. The drift spaces provide room for beam position monitors and correctors as well as 
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diagnostics. Additionally they provide space for the beam to evolve before making an adjustment 

with the quadrupoles. Table 6 shows the initial beam-line elements including quadrupole 

locations and their initial settings. The quadrupole starting points were chosen pseudo-randomly 

such that the beam should behave well when propagating down the beam-line. All distances are 

given in meters and field gradients are given in terms of the PARMELA standard, which has units 

of Gauss/cm. 

Table 6: Beam line elements and positions for the starting point to the elegant optimization 
lengths and positions are given in meters and the field gradient is given in gauss/cm.  

  Start Position Length dB/dx 
Drift 0 0.20917 

 Quadrupole 0.20917 0.055 -50 
Drift 0.26417 0.20917 

 Quadrupole 0.47334 0.055 50 
Drift 0.52834 0.20917 

 Quadrupole 0.73751 0.055 -50 
Drift 0.79251 0.20917 

 Quadrupole 1.00168 0.055 50 
Drift 1.05668 0.20917 

 Quadrupole 1.26585 0.055 30 
Drift 1.32085 0.20917 

  
The initial beam parameters were taken from the injector simulations in the previous chapter and 

the target parameters were defined above. These are the RMS twiss parameters used in the 

optimization. These parameters are given explicitly in Table 7.  

Table 7: RMS twiss parameter starting values and target values for the beam-line tuning in  

 Initial Parameter Target Value 
Alpha X 2.66 0 
Beta X 2.10 [m/rad] 0.1060 [m/rad] 

Alpha Y 2.62 0 
Beta Y 2.17 [m/rad] 0.1060 [m/rad] 
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With a set of initial beam and beam-line parameters the optimization to match the beam into the 

undulator can be performed. This is a multi-step process; first the beam-line is matched using 

elegant, then matched in TRACE-3D without space charge, and then in TRACE-3D with space 

charge. Following this, TRACE-3D is run iteratively with PARMELA to tweak the settings, and any 

further tweaking is done through custom optimization routines built to work directly with 

PARMELA.  The purpose of elegant and TRACE-3D without space charge is to check that the 

beam core is indeed behaving as desired when comparing with PARMELA. The first step of 

simulating in elegant is to match the beam to the undulator. This gives the quadrupole settings 

that can be translated to PARMELA, which does a full beam simulation. The beam parameters 

from elegant are then compared to PARMELA both with and without space charge. The results 

of these simulations are shown in Figure 37.  

 
Figure 37: Comparison of the Twiss parameters for elegant and PARMELA. Blue is elegant, 
green is PARMELA without space-charge, and red is PARMELA with space-charge. 



 68 

Here all four twiss parameters are compared for the three different simulations. It is clear that the 

elegant simulation and the PARMELA simulation without space-charge match very well. This 

shows that when space charge is off the centroid of the beam is behaving as expected. When 

space charge is turned on, however, the result is much different. The shape is generally the same; 

but, the match in the X direction is degraded significantly and is no longer being properly 

focused. Additionally the alpha functions are no longer properly matched. This shows that, as 

expected, space-charge plays a significant role in the beam-line matching. In order to account for 

these effects TRACE can be used to match the beam with space-charge. First TRACE is used to 

simulate the beam without space charge. This provides a starting point for the TRACE 

optimization with space charge. These results are shown in Figure 38. 

 
 
Figure 38: Comparison of the Twiss parameters for TRACE and PARMELA. Blue is TRACE without 
space charge, Green is PARMELA without space-charge and Red is PARMELA with space-charge. 
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Here as before the simulations with space charge off match very well. Additionally, as before, 

once space charge is turned on the match degrades and is no longer at the desired values. A 

comparison of the Twiss parameters, shown in Table 8, for each of the cases in Figure 38 shows 

how poor the match is once space charge is introduced.  

Table 8: Comparison of Twiss parameters with TRACE and PARELA to the target values. 
PARMELA is simulated both with and without space-charge using the beam-line settings provided 
from the TRACE optimization. 

 TRACE w/o 
space-charge 

PARMELA w/o 
space-charge 

PARMELA w/ 
space-charge 

Target 

Alpha X -2.48e-06 -4.9e-2 0.37 0 
Beta X 0.106 [m/rad] 0.120 [m/rad] 1.5272 [m/rad] 0.106 [m/rad] 
Alpha Y 8.84e-06 3.6e-3 2.29 0 
Beta Y 0.106 [m/rad] 0.104 [m/rad] 0.634 [m/rad] 0.106 [m/rad] 

 

In order to correct these errors, the TRACE optimization is run with space-charge on to adjust the 

beam parameters for the undulator. The settings produced are then implemented in PARMELA to 

verify the result. The results of these simulations are shown in Figure 39.  Here a visual 

inspection of the plots shows that PARMELA and TRACE are in reasonable agreement. In order to 

verify that the match is satisfactory, Table 9 compares the twiss parameters from both TRACE 

and PARMELA , to the target values.  

Table 9: Twiss parameters at the entrance to the undulator from TRACE and PARMELA 

 TRACE Result PARMELA Result Target Value 
Alpha X 8.4e-06 

 
0.56 

 
0 

Beta X 0.106 [m/rad] 0.215 [m/rad] 
[m/rad] 
[m/rad] 

0.106 [m/rad] 
Alpha Y 1.2e-05 0.38 

 
0 

Beta Y 0.106 [m/rad] 0.144 [m/rad] 
[m/rad] 

 

0.106 [m/rad] 
While the beam parameters in PARMELA are much closer to the target value compared to the 

elegant simulations and the TRACE simulations without space charge, there is still quite a bit 

of error between the desired match point and the simulation results. This is likely due to 

insufficient space charge current in the TRACE simulations. A visual inspection of figures 37 and 
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38 show that when space charge is on vs. off the magnitude of the beta and alpha functions is 

smaller and larger respectively while maintaining the same shape. This same result is visible in 

Figure 39 when comparing TRACE and PARMELA.  

 
Figure 39: Comparison of the Twiss parameters for TRACE and PARMELA. Blue is TRACE with 
space charge turned on, green is PARMELA with space-charge on. 

 

To verify this, the space charge current in TRACE was systematically increased, and the beam-

line was re-matched. The settings from TRACE were then simulated in PARMELA to verify.  This 

process showed that indeed TRACE was not adequately accounting for all the space charge in 

PARMELA. In order to produce a better match, TRACE was run iteratively with PARMELA while 

slowly increasing the space charge until the Twiss parameters were closer to the target. After a 

few iterations, the beam was much better matched and the results are presented in Table 10.  
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Table 10: Beam parameters from PARMELA simulation with beam-line settings from iteration of 
TRACE and PARMELA 

 TRACE Result PARMELA result Target Value 
Alpha X 5.0e-5 -0.133 

 
0 

Beta X 0.106 [m/rad] 0.118 [m/rad] 
[m/rad] 
[m/rad] 

0.106 [m/rad] 
Alpha Y -4.8e-6 -0.308 

 
0 

Beta Y 0.106 [m/rad] 0.100 [m/rad] 
[m/rad] 

 

0.106 [m/rad] 
 

This solution brings the PARMELA match much closer than was shown in Table 9. The beta 

functions, however, still have an 11% error from the desired value. In order to further tweak the 

beam-line an optimization routine was programed to work directly with PARMELA input and 

output. These custom developed scripts utilize the gradient descent method, chosen for its ease of 

implementation, to adjust the quadrupole strengths and further reduce the error in the beta 

functions. After a few iterations the optimization routine was able to successfully tweak the 

beam-line to be matched within 2% for the beta functions, the results of which is shown Table 

11.  

Table 11: Final beam parameters from custom PARMELA optimization routine 

 Final Parameter Target Value 
Alpha X -0.6676 0 
Beta X 0.1066[m/rad] 

[m/rad] 
[m/rad] 

0.106 [m/rad] 
Alpha Y -0.0443 

 
0 

Beta Y 0.1078 [m/rad] 
[m/rad] 

 

0.106 [m/rad] 
 

As an aside it is important to note how minor the changes are to tweak from Table 10 to Table 

11. For a real system the beam must be matched as well as possible and depending on the 

resolution of the source used to power the magnets, these changes may be below practical limits. 

Table 12 shows a comparison of the two different beam-line settings. For a high degree of 

accuracy in the match, a high degree of accuracy in the quadrupole settings is required.  
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Table 12: Comparison of beam-line settings produced from TRACE iterations to full simulation 
optimization 

  Table 10 Settings Table 11 Settings 
Quad 1 -299.097 -299.190 
Quad 2 201.094 201.009 
Quad 3 -225.389 -225.986 
Quad 4 124.396 124.889 
Quad 5 32.062 32.485 

 

In order to verify the match is satisfactory the output of the undulator is checked. If the beam is 

well matched into the undulator, then the beam parameters at the exit of the undulator should be 

very close to the parameters at the entrance. The undulator is simulated in PARMELA and the 

initial vs. final twiss parameters are shown in Table 13. 

Table 13: Pre and Post wiggler twiss parameters 

 Pre Wiggler Post Wiggler 
Alpha X -0.6676 0.377 

 Beta X 0.1066[m/rad] 
[m/rad] 
[m/rad] 

0.112 [m/rad] 
 

0.102975 
[m/rad] 

Alpha Y -0.0443 
 

-0.248 
 Beta Y 0.1078 [m/rad] 

[m/rad] 
 

0.147 [m/rad] 
  

This shows that the beam is relatively well matched to the wiggler. Note that if the input beam 

had smaller alpha functions the output beam would be better matched to the input beam. This is 

because the alpha function represents a change in the beta function, therefore the beta function 

may be matched at the entrance to the wiggler but it is still changing. In order to fine-tune these 

parameters a higher resolutions series of full optimizations in PARMELA with tighter tolerances 

on the parameters would be necessary. The beam-line description, which resulted from the 

matching with the quadrupole strengths specified, is given in Table 14.  
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Table 14: Beam-line set points and locations for the matched system. Note that the zero point of 
the beam line is the exit of the injector. 

  Start Position Length dB/dx 
Drift 0 0.20917 

 Quadrupole 0.20917 0.055 -299.190 
Drift 0.26417 0.20917 

 Quadrupole 0.47334 0.055 201.009 
Drift 0.52834 0.20917 

 Quadrupole 0.73751 0.055 -225.986 
Drift 0.79251 0.20917 

 Quadrupole 1.00168 0.055 124.889 
Drift 1.05668 0.20917 

 Quadrupole 1.26585 0.055 32.485 
Drift 1.32085 0.20917 

  

This section has focused on how to match the beam-parameters prescribed by the previous 

chapter to the undulator using TRACE, elegant, and custom built direct PARMELA 

optimization scripts. Additionally this section has shown that the TRACE code with space charge 

produces a very close result to the PARMELA simulations but for a high quality match a custom 

optimization routine which works directly with PARMELA must be employed. This shows that for 

a particular input specified in Chapter 4, the beam-line design can adequately match the envelope 

parameters to the undulator. It is important to also consider how robust the beam-line is to 

variations in the input beam parameters. In order to investigate this the input beam parameters 

are varied and the result of the beam-line match studied.  

	
  

5.3 Matching sensitivity to input beam parameters 

The previous section showed that TRACE produces a satisfactory match that is within 11% when 

replicated with PARMELA. It is implicit that results from TRACE would need to be tweaked further 
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but the TRACE results do represent, from a broad standpoint, how robust the system is to changes 

in the input beam parameters.  

 

To assess this, the input beam parameters were varied for 8 different sets of parameters and the 

match using TRACE was performed. For every case TRACE was able to match the beam exactly. 

As shown in the previous section, even if TRACE gives a near perfect match, due to the use of 

analytic approximations for the beam envelope the real parameters will be slightly off. However, 

this should get to within 10% of the desired value. The parameters from TRACE can then be used 

in a full simulation optimization, as with the previous section, to tweak the beam-line settings 

such that the desired match will be achieved.  

The cases studied were broken into four subcategories, large beta with small alpha where the 

transverse planes are matched, large beta and small/modest alpha where the beta functions are 

matched but the alpha functions are mismatched, large/modest beta functions with small/modest 

mismatch, and large/modest alpha and beta functions with large/small mismatch in both planes. 

The results of these simulations are presented in Tables 15-18. 

 
Table 15: Results from TRACE match for a large beta and a small matched alpha. 

 Initial  Final Initial Final 
Alpha X 0 -3.7E-05 1 4.4e-5 
Beta X 5 0.1060 5 0.1060 
Alpha Y 0 -3.9E-06 1 -2.7e-6 
Beta Y 5 0.1060 5 0.10601 

 

Table 16: Results from TRACE match for a large beta and a small/modest mismatched alpha. 

 Initial  Final Initial Final 
Alpha X -1 1.7e-5 -3 -1.4e-5 
Beta X 5 0.1060 5 0.1060 
Alpha Y 1 -9.2e-6 3 1.4e-6 
Beta Y 5 0.1060 5 0.1060 
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Table 17: Results from TRACE match for a large/modest mismatched beta and a small matched 
alpha. 

 Initial  Final Initial Final 
Alpha X 1 -2.8e-6 1 1.4e-6 
Beta X 5 0.1060 5 0.1060 
Alpha Y 1 -9.6e-6 1 1.9e-5 
Beta Y 4 0.1060 2 0.1060 

 

Table 18: Results from TRACE match for a large/modest mismatch in beta and alpha 

 Initial  Final Initial Final 
Alpha X 1 -1.1e-5 1 4.4e-6 
Beta X 5 0.1060 5 0.1060 
Alpha Y -1 -2.1e-5 -3 -3.8e-7 
Beta Y 4 0.1060 2 0.1060 

These results show that the beam-line is robust to changes in the beam parameters and can match 

various beams to the undulator in addition to correcting for significant mismatch in the 

transverse beam parameters. While any settings produced from these simulations would require 

additional tweaking in either simulation or in startup, for a given set of input beam parameters 

the design presented here can adequately manipulate the beam to the desired parameters for FEL 

operation.  

 

During this chapter the beam-line was designed and simulated using elegant and TRACE-3D. 

With the use of these two codes, and PARMELA as a check, the final beam-line matching section 

was shown and provided for the initial system setup. With this design, and a simulation of the 

undulator, the downstream beam line can be tuned and then used in a full start-to-end simulation 

of the CSU accelerator system.  
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6. Spectrometer Diagnostic Optimization  
 

After the wiggler, it is necessary to analyze the energy spectrum of the beam. This is done 

through the use of a spectrometer dipole. In Chapter 2 it was noted that the bend radius of a 

particle traveling through a constant magnetic field is proportional to the energy of the particle.  

For a particle beam with some spread in the energy the various energies will have different path 

lengths through the dipole and thus create a correlation between the spread in the bend plane and 

the spread in energy, called dispersion.  For a particular spectrometer, the dispersion in the beam 

due to the energy spread is the bend angle multiplied by the length of drift following the magnet. 

The CSU spectrometer has a bend angle of 90 degrees (pi/2 radians) and a drift of 0.5 m. This 

yields an expected dispersion of 0.78-m. It is desirable to resolve down to three significant 

figures in the energy spectrum. For a dispersion of 0.78-m, the smallest feature resolved by the 

camera would need to be 0.78mm. Modern cameras should be able to identify features this small; 

however, the beam spot size due to emittance must be smaller than this limit in order to not 

affect the measurement.  Recall that the beam spot size is determined by the emittance and the 

beta function, therefore in order to satisfy this spot size condition, the beta function must be less 

then 0.195 m/rad.  

 
The bending magnet is in the vertical (y) plane and therefore dispersion will only occur in this 

plane, thus the resolution of the spectrometer depends solely on the vertical beta function. The 

horizontal (x) beta function, however, must still be monitored to prevent the beam from scraping 

the beam-pipe. The alpha functions which describe the change in the beta function, are less 

important in this case as once the energy spectrum is recorded, the beam is dumped. This gives 
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one parameter to be optimized and one parameter to be controlled, which require a minimum of 

two quadrupoles. This will be used as a starting point design, given by Table 19.  

Table 19: Starting Points for the Post Undulator Lattice. Note the positions are given in meters 
relative to the exit of the undulator and the quadrupole field strengths are given in gauss/cm. 
Note the length of the bend is the total path length seen by the reference trajectory, 
corresponding to the bend radius multiplied by the bend angle.  

 
Start Position Length dB/dX 

drift 0 0.145 
 quad 0.145 0.055 113 

drift 0.2 0.050 
 quad 0.25 0.055 -113 

drift 0.305 0.145  
bend 0.45 0.471  
drift 0.921 0.500 

  

Both elegant and TRACE were used to determine the quadrupole set points. First elegant was 

used to optimize the beam-line without space charge, then the resulting quadrupole settings were 

simulated and tweaked with TRACE, to include the effects of space-charge. This two-step 

process is necessary because TRACE has a less flexible optimization routine that does not allow 

for the alpha functions to be ignored while optimizing the beta functions. Elegant on the other 

hand, has the ability to treat these separately. The result from elegant was verified in PARMELA 

without space charge. These results are shown in Figure 40.  

 

Here there is very good agreement in the non-bending plane (betax) and decent agreement in the 

bend plane (betay). In both cases the beta functions are small enough such that the beam will not 

scrape the beam-pipe. The final vertical beta function is 0.06, well within the limits for the 

desired resolution. The quadrupole parameters from the elegant optimization were then 

transferred into TRACE to make adjustments for the inclusion of space-charge. Figure 41 shows 
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the results from TRACE and the corresponding quadrupole settings simulated in PARMELA, both 

with space charge on.  

 

	
  
Figure 40: Transverse beta functions in post wiggler beam-line. Green is PARMELA without space 
charge, blue is elegant without space charge. Note the dipole is broken up into 10 segments to 
allow for higher resolution in these figures. 

	
  
Figure 41: Transverse beta functions in post wiggler beam-line. Green is PARMELA with space-
charge, blue is TRACE with space-charge. Note the dipole is broken up into 10 segments to allow 
for higher resolution in these figures. 

Here the two simulations do not agree nearly as well as Figure 40, but there is still a reasonable 

agreement between TRACE and PARMELA. Additionally the parameter of importance, the vertical 

beta function at the end of the beam-line, matches very well comparing TRACE to PARMELA. The 

corrected beta function after simulating the beam-line settings from TRACE in PARMELA is 0.077, 
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well within the desired value for the required resolution. Note that this result is for the post 

wiggler section simulated in absence of the rest of the machine, when simulated with the whole 

beam-line the RMS beam spot size was 0.9mm. Full machine optimization runs could tweak this 

down to within the threshold however for initial buildup this result is satisfactory. The dispersion 

function through the dipole is also computed to show the energy/position correlation expected on 

the screen, this is presented in Figure 42.  

	
  
Figure 42: Vertical (y) dispersion along the post wiggler beam-line. Blue is from the elegant 
simulation, green is from the final PARMELA simulation with space charge on 

Here there is very good agreement, as expected, in the two dispersion calculations. Additionally 

the dispersion at the screen is about 0.8 very close to the calculated value from before. Table 20 

gives the final beam-line settings for the post wiggler beam-line and spectrometer.   

 
Table 20: Post wiggler beam line settings. Note field gradients are given in terms of gauss/cm 

 
Start Position Length dB/dX 

drift 0 0.145 
 quad 0.145 0.055 871.908 

drift 0.2 0.050 
 quad 0.25 0.055 -412.676 

drift 0.305 0.145  
bend 0.45 0.471  
drift 0.921 0.500 
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7. Start to end beam simulations and startup layout 

During the last four chapters models and simulations of the individual accelerator components 

have been developed. Now it is possible to combine these into a complete start-to-end 

simulation. This covers the accelerator, beam-line, undulator, and spectrometer. The start-to-end 

simulation is done in PARMELA using the settings and locations from Chapter 5 and 6, combined 

with the settings from Chapter 4, and the models from Chapter 3. The initial beam properties 

correspond to 2.3-nC of charge, a 40-ps bunch length, and a 2 mm cathode spot size. The 

simulation results are presented in terms of the transverse envelope parameters, the transverse 

emittance, and the longitudinal emittance. Finally the beam-line locations are defined explicitly 

referenced to the beginning of the accelerator and the necessary set points are listed. Figure 43 

shows the transverse beta functions along the length of the accelerator.  

 
Figure 43: Transverse beta functions as a function of position along the accelerator. X beta 
function is in blue, Y beta function is in green. Accelerator components are highlighted in the 
following manner; orange (injector), green (quadrupoles), blue (undulator), and red 
(spectrometer). 
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As the beam propagates through the system, the envelope varies significantly. During the 

injector portion the transverse beta functions are equal due to symmetry, and are decreasing as 

the beam moves toward the beam-line. The parameters are then adjusted using the quadrupoles 

to match the beam for the undulator. During transport through the undulator the beam envelope 

is relatively unchanged as expected for this system. After the undulator the beam envelope is re-

focused for the spectrometer shown at the end of the beam-line. As in Chapter 6, the vertical beta 

function is at a minimum for the spectrometer screen and the beam dump.  The transverse alpha 

function, presented in Figure 44, provides additional information about the beam phase space. 

 
Figure 44: Transverse alpha functions as a function of position along the accelerator. X alpha 
function is in blue, Y alpha function is in green. Accelerator components are highlighted in the 
following manner; orange (injector), green (quadrupoles), blue (undulator), and red 
(spectrometer). 

In the injector both the transverse alpha functions are, as with the beta functions, equal to one 

another. The beam-line then adjusts the alpha functions such that they are matched into the 

undulator. Again, as with the beta functions, the input alpha functions to the undulator are very 
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close to those of the output. Down-stream of the undulator these parameters are adjusted for the 

spectrometer.  

 

Information about the beam quality is also necessary to study how the beam evolves along the 

accelerator. To address this, Figure 45 shows the emittance along the accelerator. 

 
Figure 45: Transverse emittance functions as a function of position along the accelerator. X 
emittance function is in blue, Y emittance function is in green. Accelerator components are 
highlighted in the following manner; orange (injector), green (quadrupoles), blue (undulator), 
and red (spectrometer). 

The beam quality varies along the system and gives an idea of what qualities to expect in the 

undulator. This is helpful when calculating FEL gain. Note that previously it was discussed that 

emittance is conserved and therefore should be unchanged. This is not in general true for the 

RMS quantities. It is expected that the emittance will peak in the injector and then again peak in 

the bend plane of the spectrometer. It should remain relatively constant elsewhere along the 

beam-line. This is supported by the results here. In addition to the transverse emittance, the 

longitudinal emittance must also be considered. While the CSU beam-line is not setup to perform 
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manipulations to the longitudinal phase space, it is good to verify that nothing unexpected is 

happening along the accelerator. Figure 46 shows the longitudinal emittance as the beam 

propagates through the system.   

 

Figure 46: Longitudinal emittance functions as a function of position along the accelerator. 
Accelerator components are highlighted in the following manner; orange (injector), green 
(quadrupoles), blue (undulator), and red (spectrometer). 

There should be little change to the longitudinal phase space except in the acceleration section 

(orange part of Figure 46), and in the dipole (red part of figure 46). This is more or less verified 

by the results shown. The longitudinal emittance changes the most in the injector; however, there 

is some not insignificant growth in the longitudinal emittance along the beam-line cause by the 

remaining, non-zero space charge forces. The set points and beam-line element locations used to 

create this model are given in Table 21. Additionally the PARMELA file used for this simulation is 

given in Appendix C. 
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Table 21: Beam-line locations and set points. Positions are referenced to the beginning of the 
accelerator in meters; quadrupole set points are given in gauss/cm. 

Element Start Length Setting 
Linear Accelerator 0 0.66577 N/A 
Drift 0.66577 0.20917 

 Quadrupole 0.87494 0.055 -299.190 
Drift 0.92994 0.20917 

 Quadrupole 1.13911 0.055 201.009 
Drift 1.19411 0.20917 

 Quadrupole 1.40327 0.055 -225.986 
Drift 1.45827 0.20917 

 Quadrupole 1.66744 0.055 124.889 
Drift 1.72244 0.20917 

 Quadrupole 1.93161 0.055 32.485 
Drift 1.98661 0.20917 

 Undulator 2.19577 1.25 
 Drift 3.44577 0.145 
 Quadrupole 3.59077 0.055 871.908 

Drift 3.64577 0.050 
 Quadrupole 3.79077 0.055 -412.676 

Drift 3.84577 0.145 
 Bend 3.99077 0.47124 
 Drift 4.46201 0.500  

 

This thesis has provided the details of an initial beam-line design that adequately manipulates the 

beam properties from the injector to the required beam properties for the undulator, and focuses 

the beam to achieve high resolution in the spectrometer. Beginning with the relevant background 

and subsequently examining each component of the accelerator independently provides a 

demonstration of how this design will operate. Electromagnetic models of the accelerator 

combined with detailed simulations of the injector show how the system will perform under a 

variety of operating conditions. The undulator-matching beam-line was then studied for 

robustness.  This revealed that a wide range of injector outputs could adequately be matched to 

the undulator. Finally, the down-stream beam-line was analyzed to show how the beam should 
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be focused such that the spectrometer can properly diagnose the beam energy spectrum. With the 

set points and positions provided here, the accelerator system can now be assembled for proper 

operation. 

 

There are several important additional steps that must be completed in the machine 

characterization and simulation process. The first of these is to introduce alignment errors and 

offsets such that the position of beam-position-monitors, corrector magnets, and other 

diagnostics can be determined.  Additionally a simulation of the RF cavity that captures the 

asymmetries not modeled in this thesis can be performed utilizing a 3-D accelerator code. These 

models would provide a more detailed description of the accelerator system and can be compared 

to the simulations presented here to assess how the additional simulation accuracy impacts the 

beam simulations.  

 

Any future experiment that will utilize the CSU accelerator and beam-line can first be simulated 

with the models presented in this thesis. Novel electron gun designs can provide an input beam 

distribution to the accelerator system, thus treating the 5.5 cell structure as a booster. This would 

provide details on how a different electron source would perform if tested in the CSU beam-line. 

Similarly, diagnostics can be tested using the beam parameters and distributions at a particular 

position along the beam line that would provide insight to how the diagnostic would perform 

once implemented in the accelerator. Furthermore, beam-line elements, such as chicanes, novel 

magnets, kickers etc., can be simulated using the models in this thesis to show how they might 

perform in the system. Control systems could also be developed with these simulations before 

implementation on the accelerator. Virtually any experiment that utilizes the beam-line as a 
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workbench would begin by using these simulations to study performance with the existing 

system. In conclusion, this thesis provides a detailed starting point for both the buildup process 

and for future experiments that intend to utilize the CSU machine.  
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Appendix A: SUPERFISH Cavity Input Files 
 

A.1 Cell-1 
University of Twente First Linac Cell  
This is a half cell 
&REG KPROB = 1, 
ICYLIN=1, 
FREQ = 1300, 
DX = .02 
xdri=1.0, 
ydri=2.0, 
conv=2.54, 
beta=0.8 
& 
$po x=0, y=0$ 
$po x=0, y=3.4269$ 
$po x=.748, y=3.4269$ 
$po nt=5, x=1.929, y=2.244, Radius=1.181$ 
$po x=1.929, y=1.6145$ 
$po nt=5, Radius=0.25, x=1.7925, y=1.392 $ 
$po nt=4, Radius=.394, x=1.517, y=1.017$ 
$po x=1.517, y=0.9915$ 
$po nt=4, Radius=.395, x=1.614, y=0.7325$ 
$po x= 1.654 ,y= 0.681 $ 
$po x= 1.693 ,y= 0.6375 $ 
$po x= 1.732 ,y= 0.5945 $ 
$po x= 1.772 ,y= 0.559 $ 
$po x= 1.811 ,y= 0.5275 $ 
$po x= 1.85 ,y= 0.504 $ 
$po x= 1.89 ,y= 0.488 $ 
$po x= 1.929, y=0.4765 $ 
$po x= 1.969, y=0.4725 $ 
$po x=2.27,y=.4725$ 
$po x=2.27,y=0$ 
$po x=0,y=0$ 
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A.2 Cell-2 
University of Twente Second Linac Cell 
&REG KPROB = 1, 
ICYLIN=1, 
FREQ = 1300, 
DX = .02 
xdri=2.27, 
ydri=2.244, 
conv=2.54& 
$po x=0,y=0$ 
$po x=0,y=0.4765$ 
$po x=0.341,y=0.4765$ 
$po x=0.38,y=0.488$ 
$po x=0.42,y=0.504$ 
$po x=0.459,y=0.5275$ 
$po x=0.498,y=0.559$ 
$po x=0.538,y=0.5945$ 
$po x=0.577,y=0.6375$ 
$po x=0.616,y=0.681$ 
$po x=0.656,y=0.7475$ 
$po nt=4, Radius=.395,x=0.753,y=.9915$ 
$po x=0.753, y=1.017$ 
$po nt=4, Radius=.395,x=0.4775,y=1.392$ 
$po nt=5,Radius=.25,x=0.341,y=1.6145$ 
$po x=0.341,y=2.244$ 
$po nt=5, Radius=1.181, x=1.522,y=3.4275$ 
$po x=2.27,y=3.4275$ 
$po x=3.018, y=3.4275$ 
$po nt=5, x=4.199, y=2.244, Radius=1.181$ 
$po x=4.199, y=1.6145$ 
$po nt=5, Radius=0.25, x=4.0625, y=1.392 $ 
$po nt=4, Radius=.394, x=3.787, y=1.017$ 
$po x=3.787, y=0.9915$ 
$po nt=4, Radius=.395, x=3.884, y=0.7325$ 
$po x= 3.924 ,y= 0.681 $ 
$po x= 3.963 ,y= 0.6375 $ 
$po x= 4.002 ,y= 0.5945 $ 
$po x= 4.042 ,y= 0.559 $ 
$po x= 4.081 ,y= 0.5275 $ 
$po x= 4.120 ,y= 0.504 $ 
$po x= 4.160 ,y= 0.488 $ 
$po x= 4.226, y=0.4765 $ 
$po x= 4.239, y=0.4725 $ 
$po x=4.54,y=0.4725$ 
$po x=4.54,y=0$ 
$po x=0,y=0 
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A.3 Cell-3  
 
University of Twente Third Linac Cell 
&REG KPROB = 1, 
ICYLIN=1, 
FREQ = 1300, 
DX = .02 
xdri=2.27, 
ydri=2.244, 
conv=2.54& 
$po x=0,y=0$ 
$po x=0 ,y= 0.551 $ 
$po x=0.821,y=0.551$ 
$po nt=4, x=.872,y=.602,Radius=.051$ 
$po nt=4, x=.715,y=.759,Radius=.157$ 
$po x=.5672,y=.82508$ 
$po nt=5, x=.341, y=1.1815, Radius=0.394$ 
$po x=.341,y=1.6145$ 
$po x=.341,y=2.244$ 
$po nt=5, x=1.522,y=3.430,Radius=1.181$ 
$po x= 3.018 ,y= 3.430 $ 
$po nt=5, x= 4.199 ,y= 2.244 ,Radius=1.181 $ 
$po x= 4.199 ,y= 1.6145 $ 
$po x= 4.199 ,y= 1.1815 $ 
$po nt=5, x= 3.9728 ,y= 0.82508 ,Radius=.394 $ 
$po x= 3.825 ,y= 0.759 $ 
$po nt=4, x= 3.668 ,y= 0.602 ,Radius=.157 $ 
$po nt=4, x= 3.719 ,y= 0.551 ,Radius=.051$ 
$po x= 4.54 ,y= 0.551 $ 
$po x= 4.54 ,y= 0 $ 
$po x=0,y=0$ 
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Appendix B: Solenoid Model 
 
University of Twente Solenoid Model 
 
&reg kprob=0,       ! Poisson or Pandira problem  
mode=-1,            ! Materials have fixed permeability 
icylin=1,           ! Cylindrical symmetry 
dx=.05,dy=.05,      ! Mesh size intervals 
nbslo=1,            ! Dirichlet boundary condition on lower edge 
nbsup=0,            ! Dirichlet boundary condition on upper edge 
nbslf=0,            ! Dirichlet boundary condition on left edge 
nbsrt=0,            ! Dirichlet boundary condition on right edge 
conv=2.54, 
 
ktop=10,ltop=50, 
xminf=0,xmaxf=2,yminf=0,ymaxf=20 
&  
 
&po x=0.0,y=0.0 & 
&po x=20.0,y=0.0 & 
&po x=20.0,y=30.0 & 
&po x=0.0,y=30.0 & 
&po x=0.0,y=0.0 & 
 
; Magnet Iron     
&reg mat = 3&     
&po y= 5 ,x= 1.1025 & 
&po y= 5 ,x= 7.5 & 
&po y= 5.78 ,x= 7.5 & 
&po y= 5.78 ,x= 5.51 & 
&po y= 9.405 ,x= 5.51 & 
&po y= 9.405 ,x= 3.4305 & 
&po y= 9.778 ,x= 3.4305 & 
&po y= 9.778 ,x= 2.4015 & 
&po y= 9.405 ,x= 2.4015 & 
&po y= 8.6 ,x= 3.385 & 
&po y= 8.6 ,x= 3.9825 & 
&po y= 5.78 ,x= 3.9825 & 
&po y= 5.78 ,x= 2.342 & 
&po y= 7.034 ,x= 2.342 & 
&po y= 8.6 ,x= 1.693 & 
&po y= 9.466 ,x= 1.4695 & 
&po y= 9.466 ,x= 1.1025 & 
&po y= 5 ,x= 1.1025 & 
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;Pipe     
&reg mat = 3&    
&po y= 6.988 ,x= 5.51 & 
&po y= 6.988 ,x= 8.37 & 
&po y= 14.937 ,x= 8.37 & 
&po y= 14.937 ,x= 5.51 & 
&po y= 13.8625 ,x= 5.51 & 
&po y= 13.8625 ,x= 7.765 & 
&po y= 8.0625 ,x= 7.765 & 
&po y= 8.0625 ,x= 5.51 & 
&po y= 6.988 ,x= 5.51 & 
    
;Coil1     
&reg mat = 1, cur = 10000&     
&po y= 5.78 ,x= 2.342 & 
&po y= 8.6 ,x= 2.342 & 
&po y= 8.6 ,x= 3.9825 & 
&po y= 5.78 ,x= 3.9825 & 
;&po y= 5.78 ,x= 2.342 & 
     
;Coil 2     
&reg mat = 1, cur = -30489&     
&po y= 8.0625 ,x= 5.51 & 
&po y= 13.8625 ,x= 5.51 & 
&po y= 13.8625 ,x= 7.765 & 
&po y= 8.0625 ,x= 7.765 & 
;&po y= 8.0625 ,x= 5.51 & 
 
&MT mtid = 3, 
mu = 1404& 
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Appendix C: PARMELA Input File 
run 1 1 1300. -0.001190 .000001 9 .511 938.3 1.022 
title 
 6MeV Injector for U-of-Twente 
 
drift 0 1.1 1 
cell 5.765 1.2 1 0. 26. 2 5 -1 
sbload 0 1.2 0 5 1 .14057e14 11.658 0.44801e13  .44444 
cell 11.53 1.2 1 180. 14.4 4 5 -1 0 0 0 
sbload 0 1.2 0 5 1 .14057e14 11.658 0.44801e13  .44444 
cell 11.53 1.4 1 0. 10.6 3 5 -1 0 0 0 
sbload 0 1.4 0 5 1 .14057e14 11.658 0.44801e13  .44444 
cell 11.53 1.4 1 180. 10.6 3 5 -1 0 0 0 
sbload 0 1.4 0 5 1 .14057e14 11.658 0.44801e13  .44444 
cell 11.53 1.4 1 0. 10.6 3 5 -1 0 0 0 
sbload 0 1.4 0 5 2 .14057e14 11.658 0.44801e13  .44444 
cell 11.53 1.4 1 180. 10.6 3 5 -1 0 0 0 
drift 3.1623 1.2 1 
 
cfield 2 
UOF20LHCell1_B.T7 
cfield 4 
UOF20LFCell1_B.T7 
cfield 3 
UOF20LFCell2_B.T7 
 
Poisson -24.7 -1.0 
UOF20S1.T7 
 
drift 20.91666667 1.2 1 
quad 5.5 1.2 1 -299.189723111 
 
drift 20.91666667 1.2 1 
quad 5.5 1.2 1 201.008868947 
 
drift 20.91666667 1.2 1 
quad 5.5 1.2 1 -225.98611794 
 
drift 20.91666667 1.2 1 
quad 5.5 1.2 1 124.889454052 
 
drift 20.91666667 1.2 1 
quad 5.5 1.2 1 32.4846842828 
 
drift 20.91666667 1.2 1 
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wiggler 125 0.8 1 50 10 4282.655 0.707106781 0 0 0 
 
drift 14.5 1.2 1  
quad 5.5 1.2 1 871.908 
drift 5.0 1.2 1 
quad 5.5 1.2 1 -412.676 
drift 14.5 1.2 1 
 
rotate 0 1.2 1 -90 
bend 4.71238898 1.2 1 6.32 9  
bend 4.71238898 1.2 1 6.32 9 
bend 4.71238898 1.2 1 6.32 9 
bend 4.71238898 1.2 1 6.32 9 
bend 4.71238898 1.2 1 6.32 9 
bend 4.71238898 1.2 1 6.32 9 
bend 4.71238898 1.2 1 6.32 9 
bend 4.71238898 1.2 1 6.32 9 
bend 4.71238898 1.2 1 6.32 9 
bend 4.71238898 1.2 1 6.32 9 
rotate 0 5 1 90 
drift 50 5 1 
zout 
 
charge -1 1 
input 9 5000 20. .200 160. 9.36 0 
output 5 
scheff 3 1. 1.5 50 200 0 0 5 
start 40 0.2 5000 1 50 
continue 0.2 100000 1 50 
end 
 
	
  


