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ABSTRACT OF THESIS 
SPATIAL PATTERNS FROM EOF/PC ANALYSIS OF SOIL MOISTURE AND 

THEIR DEPENDENCE ON SOIL, LAND-USE, AND TOPOGRAPHIC PROPERTIES 

Soil moisture is a highly variable parameter in both space and time, and accurate 

measurements are needed in hydrology and many other disciplines. While remote 

sensing techniques can measure near-surface soil moisture, such measurements are 

available at spatial resolutions that are too coarse for most applications. Thus, 

downscaling methods are needed. If regional characteristics that are readily available at a 

finer resolution are closely related to soil moisture patterns, then those characteristics 

could be used to downscale observations of soil moisture from remote sensing. We 

hypothesize that the variability in soil moisture patterns can be described by a relatively 

small number of spatial structures that are related to soil texture, land-use, and 

topographic characteristics. To test this hypothesis, an empirical orthogonal function and 

principal component (EOF/PC) analysis has been conducted using soil moisture data 

from the Southern Great Plains field campaign of 1997. This dataset contains 16 days of 

remotely sensed data on a 0.64 km2 grid over nearly 10,000 kni2. From the EOF/PC 

analysis of spatial soil moisture anomalies, we identify one spatial structure (EOF) that 

explains 61 % of the total variance, and find that three such structures explain 87% of the 

variance. To identify the regional characteristics that are most influential in determining 

soil moisture patterns, each of these EOFs has been compared to regional characteristics 

using a correlation analysis. The primary EOF is most highly correlated with the percent 

sand in the soil. Similar analyses were conducted for wet, average, and dry days, and the 

role of percent sand is greatest for wet days. As the soil becomes more dry, percent clay 

becomes more important than percent sand. We have also considered temporal soil 
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moisture anomalies, which identify locations with more or less dynamic soil moisture. 

The spatial patterns for the temporal anomalies are more complex than those for the 

spatial anomalies. One EOF is only able to explain 50% of the total variance. Percent 

sand is also related to the primary EOF for the temporal anomalies, but percent clay 

becomes unimportant. Topographic characteristics are usually not important over the 

range of scales we consider, although elevation may play a role in identifying locations 

with more dynamic soil moisture. 
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1 Introduction 
Soil moisture is an important variable in hydrology and many related disciplines. 

In hydrology, soil moisture is a key variable determining runoff production from 

precipitation events as well as evapotranspiration and groundwater recharge rates 

between events . Soil moisture is also an important variable in perpetuating droughts and 

wet periods through precipitation recycling [6]. As a result of these roles in hydrology, 

soil moisture affects flood warning systems, land management practices, inigation 

requirements , etc. 

Despite its practical importance, limi ted soil moisture observations are available. 

A primary reason for the lack of data is the variability of soil moisture by geographical 

location, time, and depth in the soil. Rainfall events distribute soil moisture in a highly 

variable pattern throughout a watershed. Soil moisture is further redistributed during 

inter-st01m periods through evaporation, transpiration, lateral flows, and groundwater 

recharge. Ground based soil moisture measurement techniques include the use of 

impedance probes for manual measurements and time domain reflectometers (TDRs) for 

continuous measurements at variable depths. Manual soil moisture measurements allow 

for ample spatial coverage over a field, but they are not practical for capturing the 

variability of soil moisture throughout a soil profile through time. Soil moisture 

measurements taken by a stationary TDR probes provide an accurate picture of the soil 

moisture dynamics in the soil column, but they do not provide information about the 

spatial variability throughout the watershed. Airborne and satellite remotely sensed soil 

moisture data provides an average near-surface soil moisture value over a 0.64 km2 to 

2500 km2 footprint. Although this remotely sensed data provides ample spatial coverage, 

the infom,ation is too coarse for most practical applications. 



In order to overcome the disconnection between available soil moisture 

observations and the needs of practical applications, numerous downscaling or 

interpolation methods have been developed. These methods range from strictly 

mathematical approaches to methods based on statistical relationships between soil 

moisture and regional characteristics to physically-based modeling of soil moisture. 

Mitasova and Mitas [13] present the spline with tension method of interpolation that 

could be applied to soil moisture. This method is strictly mathematical, but has been 

applied successfully to terrain modeling and analysis [12]. Kim and Barros proposed a 

fractal interpolation method based on contraction mapping [9], which is based on the 

observed scaling invariance of soil moisture. This method generates unique fractal 

surfaces and includes spatially and temporally varying scaling functions. Pellenq et al. 

[15] developed a method for downscaling remotely sensed soil moisture data for use in 

hydrologic modeling. Their model employs a simple soil vegetation atmosphere transfer 

model coupled with "topmodel" and was able to simulate both near-surface and deep soil 

moisture. Wilson et al. [20] developed a downscaling method by examining the changing 

influence of topographic and regional characteristics on soil moisture through cycles of 

wetting and drying. Prior knowledge of soil moisture in the area allowed the 

relationships between soil moisture and regional characteristics to be established. These 

relationships were then exploited to develop a physically-based method for downscaling. 

Development of reliable downscaling and interpolation methods requires a sound 

understanding of the variables that control soil moisture patterns. Because many 

topographic and regional characteristics are available at a relatively fine scale, an 

understanding of the dependence of soil moisture on these characteristics could be 
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exploited to develop a method for downscaling. Western et al. [19] investigated the 

relationship between soil moisture and topographic characteristics. Their research 

indicated that soil moisture on wet days exhibits a high degree of organization and is best 

predicted using the natural log of specific upslope area. Conversely, soil moisture on dry 

days exhibits little spatial organization and is best predicted using the potential solar 

radiation index. Kim and Barros [8] examined the relationship between soil moisture and 

regional soil and land-use characteristics. Their results indicated that soil moisture is 

most strongly connected to soil texture attributes (i.e. percent sand and percent clay). 

One way to further analyze the spatial patterns of soil moisture and their 

connection to regional characteristics is by using Empirical Orthogonal Function and 

Principal Component (EOF/PC) analysis. EOF/PC analysis is a statistical method that 

can identify a relatively small number of spatial and temporal patterns that explain a large 

amount of the variance in a dataset. These patterns then can be correlated with regional 

characteristics to identify whether these characteristics have a strong influence on the 

most important tendencies of the soil moisture patterns. Soil moisture data has been 

examined using EOF/PC analysis at certain scales in the past. EOF/PC analysis was used 

by Yoo and Kim [22] to analyze patterns in soil moisture at the field scale (over an area 

of 0.64 km2). Their research used gravimetric soil moisture data from two areas in the 

Southern Great Plains field campaign of 1997 (SGP97). By analyzing one month of daily 

soil moisture readings, they were able to distill patterns (or EOFs) that explain a large 

amount of the variance. The primary EOF for each field explained over 60% of the 

variability in that field . These patterns were correlated to elevation, slope, permeability, 

porosity, and Soil Conservation Service (SCS) curve number. They determined that the 
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two most important EOFs were most highly correlated with elevation at one field site. At 

the other field site, the most important EOF was most highly correlated with slope and 

the second most important EOF was most highly correlated with elevation and SCS curve 

number. By examining the PC time series from their data it was also demonstrated a 

shifting importance of the underlying patterns through cycles of wetting and drying. At 

the basin scale (~144 km2) , Verhoest et al. [18] applied EOF/PC analysis to a wintertime 

sequence of eight raw remotely-sensed synthetic aperture radar images. Through this 

method, they were able to distinguish soil moisture information from other backscatter 

information and noise in the satellite images. Kim and Barros [8] used EOF/PC analysis 

to investigate soil moisture patterns using remotely sensed soil moisture data from SGP97 

across ~ 10,000 km2. They combined one day of soil moisture data with vegetation water 

content (VWC), elevation, and percent sand and used EOF/PC analysis to determine the 

pattern that explains the largest amount of variance between these fields. No matter 

which day of soil moisture data was selected, the most important EOF was most closely 

represented by percent sand. However, the second most important pattern was most 

similar to soil moisture on wet days and most like VWC on dry days. Wittrock and 

Ripley [21) utilized EOF analysis to examine a 34 year dataset of annual soil moisture 

measurements in the Canadian prairie. Their data included 23 locations that stretched 

across the agriculture region of Manitoba. They determined that the most important 

EOF, which represented 34% of the variance in the dataset, was a response to remote 

boundary forcing, while the second and third EOFs were responses to regional and local 

forcing. Liu [10) utilized a coupled version of EOF/PC analysis to analyze monthly to 

seasonal soil moisture and precipitation variability throughout east Asia. The two fields 
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were generated using the National Center for Atmospheric Research (NCAR) regional 

climate model. Liu's analysis demonstrated the importance of spatial patterns of soil 

moisture on precipitation prediction. 

In this research, we explore the possibility of using EOF/PC analysis to reduce 

the complex patterns of soil moisture to a relatively small number of spatial structures 

that capture a large amount of the variability in the dataset. These spatial structures will 

be compared to other known regional characteristics to determine if these characteristics 

are useful predictors of the soil moisture patterns. In the future, the relationship between 

the EOF patterns and regional characteristics could be exploited for downscaling of 

remotely-sensed soil moisture data. The relationships between regional characteristics 

and soil moisture will be evaluated across a range of spatial scales and for both wet and 

dry conditions. Furthermore, this research will determine if information from the 

regional characteristics can be distilled into a relatively small number of spatial structures 

that can be used to forecast or interpolate soil moisture. The following section (Section 

2) describes the dataset that we use in this analysis (the SGP97 data), and Section 3 

describes the EOF/PC methodology in more detail. Section 4 describes our results at the 

fine spatial resolution when all days of data are considered. Section 5 discusses how the 

results change as the spatial scale of observation changes, and Section 6 discusses how 

the results change between wet and dry days. Section 7 examines the distillation of 

regional characteristics, and Section 8 summarizes our main conclusions. 
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2 SG P97 Dataset 

The Southern Great Plains 1997 (SGP97) field campaign was a collaboration 

between National Aeronautics and Space Administration (NASA), United States 

Department of Agriculture (USDA), other governmental agencies, and several 

universities. It had the goal of characterizing soil moisture dynamics across a range of 

scales. From June 18 to July 17, 1997, satellite, airborne, and ground-based 

measurements were collected for a variety of atmospheric, hydrologic, and surface 

variables. The SGP97 region stretches from nearly the northern border of Oklahoma to 

its southern border and includes the Little Washita experimental watershed [1]. The 

region is dominated by silt loam soils and is primarily agricultural lands or grasslands. 

Our analysis uses data from the airborne electronically scanned thinned array radar 

(ESTAR), which indirectly measures moisture over a soil depth of 0-5 cm [7]. EST AR 

measurements were taken throughout the one month period along seven flight paths. 

Problems with instrumentation and weather limited the results to 16 days of soil moisture 

typically covering an area of about 10,000 km2. In this analysis, we only consider the 

sub-region that has data available on all 16 days (9,463 km2). The data are available at a 

800 m grid resolution and were verified through an investigation of sub-pixel variability 

[5]. During SGP97, rain events occurred between the observations on June 25 and 26, 

June 29 and 30, and July 10 and 11. The first two rainfall events were centered on the 

northern half of the region; the third included the entire region but was concentrated in 

the south [7]. Figure 1 shows the volumetric soil moisture data (total volume of moisture 

divided by total volume of soil) . Before the first rain event (i.e. June 18 - 25), the soil is 
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relatively wet in the northern and central portions of the mapping region and dry in the 

south. The first storm causes the northern portion to become even wetter (June 25 - 26), 

but this same region subsequently dries between the first and second storms (June 27 -

29). During the second storm (June 29 - 30), the soil becomes wet again in the north, 

and after the second storm (July 1 - 3) there is drying throughout the entire region. The 

third storm (July 10 - 11) causes wetter values throughout the region. Finally, after the 

third storm (July 12 - 16), there is drying in the north with persistent wetness in the 

southwest. 

6/18 6/1 9 6/20 6/25 6/26 6/27 6/29 6/30 

7/01 7/02 7/03 7/11 7/12 7/13 7/14 7/16 

,. .. 

10 20 30 40 50 

Figure 1: Soil moisture data for the SGP97 study area as collected. 

In this analysis , we will examme soil moisture m both spatial and temporal 

anomaly forms. To calculate the spatial anomalies, the mean soil moisture for each day 

is subtracted from the local soil moisture values. Thus , the spatial anomalies describe the 
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deviation of the local soil moisture from the regional mean (Figure 2). To calculate the 

temporal anomalies, the temporal mean soil moisture for each grid cell is subtracted from 

the soil moisture value for each day (Figure 3). Temporal anomalies do not identify wet 

or dry locations. Instead, they identify points that are wet or dry relative to their long-

term tendency. Patterns observed in the spatial anomaly data are the same as those 

observed in the original dataset, but the temporal anomaly data shows very different 

patterns. Whereas the spatial anomaly data are characterized by patterns of above 

average soil moisture in the north and central regions before the third rain event (July 10-

11), the temporal anomaly data initially shows above average soil moisture across the 

entire region with uniform drying between events, after the third rain event it shows 

persistent wetness in the central and southern areas. 

6/18 6/19 6/20 6/25 6/26 6/27 6/29 

Rain 

7/01 7/02 7/03 7/11 7/1 2 7/13 7/14 

I I 
-0.2 -0.1 0 0.1 0.2 0.3 

Figure 2: Soil moisture data for the SGP97 region in spatial anomaly form. 
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Figure 3: Soil moisture data for the SGP97 region in temporal anomaly form. 

Numerous regional characteristics have been observed for the SGP97 site 

including: percent sand, percent clay, bulk density, vegetation water content (VWC), and 

surface roughness (Figure 4). These characteristics were used in the procedure to 

estimate soil moisture from the EST AR measurements [7]. Percent sand and percent clay 

were estimated from soil texture categories from the conterminous United States multi-

layer soil characteristics dataset (CONUS-SOil.,) [11]. Bulk density is the mass of soi l 

and water per cubic centimeter of soil. Sample measurements were taken throughout the 

SGP97 region, these samples were used to estimate bulk density for each land cover 

category. VWC represents the mass of water stored in the vegetation per square meter of 

land area. It was estimated by classifying the vegetation in each grid cell and using the 

ormalized Difference Vegetation Index (NDVI) to describe the density or "greenness" 
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of the vegetation [7]. The surface roughness describes the variance of the surface 

elevation relative to the wavelength of the radar used [3]. For SGP97, the surface 

elevation variance was estimated from land-use information (e.g. bare agricultural areas, 

fields with corn , urban areas , etc.) [7] . 

Bulk Surface % Sand % Clay vwc Density Roughness 
:·_:lif~} 

0.2 0.6 0.1 0.3 0.5 -1 0 -1 0 0.05 0.15 

Figure 4: Soil and land cover characteristics of the SGP97 study area. 

In addition, we have calculated numerous topographic properties from a Digital 

Elevation Model (DEM) available from Pennsylvania State University at a 100 m grid 

resolution. This DEM was translated to UTM zone 14 and trimmed to match the soil 

moisture data for the SGP97 site. From the elevation data, we calculated: slope, 

drainage angle, contributing area, wetness index, and curvature (Figure 5). Slope is 

defined as the steepest downward slope between the grid point being considered and the 

eight surrounding grid points. Drainage angle is the direction of the steepest downward 

slope measured in radians in a counterclockwise direction from east. Contributing area is 

computed as the number of grid cells that would contribute flow to the grid cell being 

considered in a rain event. In many cases, the area that contributes flow to a point 

extends well beyond the limits of the SGP97 site. While we extended our topographic 
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analysis well beyond the boundaries of the SGP97 site in an attempt to quantify these 

areas , some contributing areas could not be determined. Such points are excluded from 

this analysis and can be seen in Figure 5 as three streams running west to east across the 

mapping region. Wetness index is defined as the natural log of contributing area per unit 

contour, which is also called the specific contributing area, divided by the slope [2]. In 

our analysis, we calculated the specific contributing area by simply dividing the 

contributing area by the linear size of the grid cell. Curvature is calculated as the rate of 

change of slope in the x direction plus the rate of change of slope in they direction. 

Elevation 

300 40() 500 

Log of 
Contrib. 
Area 

8 10 12 14 16 

Slope 

0 02 

Wetness 
Index 

0 08 -5000 15000 

Drainage 
Angle 

Curvature 

4 6 -002 0 002 

Figure 5: Topographic characteristics of the SGP97 study area. 

3 EOF/PC Methodology 

Consider a dataset that describes a spatial pattern including n locations, and each 

location is observed m times. This data is fully described by an m x n matrix. The matrix 

can alternatively be thought of as n points in m dimensional space, where we have a 

dimension or coordinate axis associated with each time. For example, consider the 

simple case with observations at many locations but only two times (Figure 6). Each 
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point in Figure 6a represents the observation at a single location. The x-coordinate 

indicates the value at one time, and the y-coordinate indicates the value at the second 

time. Instead of using the values at the two times as our coordinate axes, we could 

alternatively define two new axes that describe the data more efficiently. For example, 

the first axis might fall along the main trend of the data. This particular axis would 

explain the maximum variance possible. If we constrain the second axis to be orthogonal 

to the first, the second axis would be identified as shown in the figure. If we had more 

than two dimensions to our problem, we would select each axis in the direction that 

explains the most remaining variance. Notice that the selection of the new axes amounts 

to a particular rotation of the data as shown in Figure 6b. 

The procedure we have described is a simple example of EOF/PC analysis. The 

coordinate transformations are called the PCs. In general, a PC has a value for each 

observation time that indicates how well aligned the transformed axis is with the 

variability at that time. Thus, PCs are usually time series. PCs are linear functions of the 

observations and orthogonal to each other. Each PC has a corresponding EOF that 

represents the projection of the original data onto the PC. Thus, EOFs are usually spatial 

patterns. 
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Figure 6: A conceptualization of the EOF/PC coordinate transformation. 

(b) 
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In practice, to find the coordinate transformations, the covariance matrix R of the 

m x n data matrix X must first be found . R (m x m) is calculated: 

where the superscript T denotes the transpose of the matrix. The data in the X matrix 

must be in anomaly form (i.e. have zero mean) in order for Equation (1) to produce the 

covariance. Either spatial or temporal anomaly form can be used, depending on the 

variance that is of interest. 

One can use eigenanalysis of the covariance matrix to obtain the PCs and EOFs. 

Eigenanalysis is based on the fact that for most any square symmetrical matrix R: 

RE=LE 

where E (m x m) is a matrix whose columns contain the orthogonal PCs and L (m x m) is 

a diagonal matrix containing the associated eigenvalues. The EOFs can be found by 

projecting the PC matrix E onto the anomaly data matrix X: 

(1) 

(2) 

(3) 



where the EOFs are the rows of the Z (m x n) matrix. An individual observation vector 

(i .e. all the values measured at a given time) Xin can be reconstructed from the PCs and 

EOFs using: 

m 

X in = L, EijZ jn. 
j= I 

The variance explained by the EOF/PC pair 1s equal to its corresponding 

eigenvalue divided by the sum of all the eigenvalues. EOF/PC pairs are usually ranked 

according to the amount of variance that they explain. The primary EOF/PC pair 

explains the largest amount of variance, the second EOF/PC pair explains the second 

most, and so on. A test for the significance of each EOF/PC pair based on the number of 

independent observations at each location was established by North et al. [14]. In this 

method, en-or bars are established for the variance explained by each EOF/PC pair. An 

EOF/PC pair is considered to be significant when there is no overlap of its error bars with 

those of the previous EOF/PC pair. En-or bars extend a distance 11.li above and below the 

variance explained (li) which can be found from: 

11.l; = 0.5!;(2/ m.)05 

where m. is the number of independent observations. 

In the previous discussion of EOF/PC analysis, we have considered a dataset that 

includes observations of the same variable through time (m repetitions at n locations). It 

should be noted that EOF/PC analysis can also be conducted with a data matrix 

containing observations of m different variables at the same n locations. In such case, the 

spatial mean and standard deviation should be removed from each characteristic so that 

they can be analyzed together. This alternative analysis finds patterns that efficiently 
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explain the variability of all of the included variables. We will use this alternative 

approach in Section 7 when we attempt to efficiently describe the patterns of the regional 

characteristics. 

4 Results at the Fine Spatial Resolution 

4.1 Spatial Anomalies 

Analysis of the spatial anomaly soil moisture data yields a series of sixteen 

EOF/PC pairs. The spatial structures of the first five EOFs are displayed in Figure 7. 

The primary EOF shows a pattern with above average values in the northern and central 

portions of the study area. The southern portion of this EOF has primarily low values. 

Recalling the discussion of the daily soil moisture patterns in Section 2, EOFl resembles 

the soil moisture patterns that occur through July 3. The second EOF shows a very 

different pattern that is characterized by low values throughout the study region with one 

cluster of high values in the southwestern comer. This pattern is consistent with the soil 

moisture observed after the third rainfall event (July 10-11). The third EOF is highly 

variable throughout the region. This EOF highlights the above average soil moisture 

values that were observed in the central portion of the region on nearly all days. 
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-0.2 0 0. 2 OA 0.6 ~ 8 

Figure 7: Significant EOFs of spatial anomaly soil moisture data. 

The eigenvalues associated with the EOF/PC pairs indicate that a large amount of 

the total variability in this dataset can be explained through relatively few spatial patterns 

(Figure 8). Because there are 16 days of observation, there are a total of 16 EOF/PC 

pairs that together explain 100% of the variability. However, EOFl alone explains 61 % 

of the total variance, and together the first three EOFs explain 87% of the variance. 

Using the significance criteria from North et al. [14] and assuming that each day of 

observation is independent, the first five EOFs are considered significant and explain 

93 % of the total variance (Figure 8). If the dai ly soil moisture patterns have significant 

interdependence, the number of significant EOFs would be reduced. These results 

indicate that the seemi ngly complex patterns of soi l moisture in the SGP97 field 

campaign can largely be explai ned by a very smal l number of underlyi ng spatial 
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structures. Specifically, the fact that 61 % of the total variability has been captured in 

EOFl indicates that a single spatial structure, which is invariant in time, can explain 

much of the overall soil moisture pattern. Although the relative importance of EOFl on 

daily patterns of soil moisture waxes and wanes during cycles of wetting and drying (as 

discussed later in this section), the spatial pattern of EOFl is consistent for all days of 

data. Yoo and Kim [22] also found that a single spatial structure, EOFl, could explain 60 

- 65 % of the variability in their 25 day dataset (depending on the field being analyzed). 

However, their subsequent spatial structures (EOF2, EOF3, EOF4, ect.) each explained 

less than 10% of the total variability. 

0.7 

0.6 
-0 
Ql 
C 
"iii $ 05 

Ql u 
C 
-~ 0.4 ;;; 
> 
0 
§ 0.3 
t 
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o L_----1.. __ -1....._:=:~~====='==~....._ __ _.__ _ __,c...___J 
0 2 4 6 8 10 12 14 16 

EOF 

Figure 8: The portion of the total variance of the spatial anomalies of soil moisture that 
is explained by each EOF along with error bars to judge the significance of the EOFs. 

Multiplying the PCs by the amount of the total variance they explain gives the 

weighted PCs, which indicate the relative importance of each EOF in describing the 
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variance in each day's soil moisture pattern (Figure 9). The weighted PCs show clear 

cycles of wetting and drying, which can be related to the occurrence of precipitation 

events. During the first several days, when the above average soil moisture values are 

concentrated in the northern and central portions of the region, EOF 1 is dominant. As 

the soil dries before the first rain event, the first three EOFs become almost equally 

important in predicting soil moisture. After the first and second rain events, EOFl 

becomes dominant again , and shows a decrease in its relative importance on predicting 

soil moisture as each period of drying progresses. After the third rain event (July 10-11), 

when the above average soil moisture values are in the southwestern comer of the data, 

EOF2 becomes the most important pattern in determining soil moisture while the 

importance of EOFl and EOF3 nears zero. Yoo and Kim [22] also considered the 

weighted PCs of their soi l moisture data. Their results showed small shifts in the relative 

importance of the EOFs during cycles of wetting and drying. However, their results did 

not show any shifts in the dominant EOF, as observed for EOF2 after the third rain event 

in this analysis. The consistency of the PCs with periods of wetting and drying is 

important because it suggests that the EOF/PC rotation of the data captures some 

physically-based tendencies in the underlying data. 
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Figure 9: Variation of the weighted PCs through time. These PCs are associated with the 
EOFs in Figure 7. 

In many previous EOF/PC analyses, the first EOF is dominated by one positive 

anomaly over the entire domain, and the second EOF has positive and negative anomalies 

occurring in north-south or east-west pairs . Richman [16] suggests that such EOFs are 

largely products of the domain shape. The EOFs derived from the SGP97 soil moisture 

data do not conform to these common patterns. The first EOF is dominated by a positive 

anomaly in the northern and central regions rather than a single positive anomaly 

throughout. The second EOF has a positive anomaly in the south and a negative anomaly 

in the north , which is more consistent with typical EOFs. We evaluated the possible 

effects of the domain shape by dividing the study area into northern and southern halves. 

These halves were then analyzed individually by recalculating the spatial anomalies and 

repeating the EOF/PC analysis. The resulting EOFs for the sub-regions are very similar 
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to those found when analyzing the whole domain (Figure 10). The variability explained 

by each EOF does change. For the northern region, EOFl explains 73% of the variance, 

EOF2 explains 10%, and EOF3 explains 6%. For the southern region , EOFl explains 

54% of the variance, EOF2 explains 26% and EOF3 explains 6%. These changes are 

expected because the first two rain events were concentrated in the northern region, and 

EOFl is most associated with the soil moisture patterns produced by that event. Overall, 

however, this simple analysis shows that the domain shape has little effect on the spatial 

patterns identified by the EOF/PC analysis in this case. 

Figure 10: Comparison of EOFs generated from full dataset, and EOFs generated from 
data divided into northern and southern sections. 

One of the main benefits of the EOF/PC analysis is that we have now identified a 

small number of orthogonal spatial patterns (e.g. EOFl, EOF2, and EOF3) that together 

explain a large portion of the total variability of soil moisture. We now examine how 
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closely these underlying patterns resemble regional characteristics that might influence 

the soil moisture. For this analysis, we calculate the correlation coefficient r between the 

EOFs and the available regional characteristics. The correlation coefficient can be 

calculated: 

tt(~j-A)(Bu-B) 
i= l j=l r=-;:::============= ( t. t,(J\ -A)')( t. t,(B;; -B )' J 

where A and B are two generic matrices and A and Ii are their associated means. 

The results of the correlation analysis between the first five EOFs and the 

available regional and topographic characteristics are shown in Table 1. We recognize 

that some of the characteristics being correlated (percent sand, percent clay, vegetation 

water content, surface roughness and bulk density) were used to derive soil moisture from 

the EST AR measurements. However, because this analysis is considering the patterns of 

variability, not soil moisture directly, the correlation will not be a direct result of the 

algorithm used to find soil moisture. While none of the correlations are very high , EOFl 

has a relatively high correlation with percent sand, and moderate correlations with 

percent clay and slope. This indicates that some of the variability of the EOFl pattern is 

related to soil type and slope. This is an intuitive result because percent sand and clay 

when coupled with slope determine how quickly a soil will drain after a rain event. Very 

sandy areas drain quickly and therefore tend to be drier than other locations. Conversely, 

very clayey areas tend to hold water and be wetter than other locations. This result is also 

consistent with the plot of the weighted PCs in Figure 9, which shows that the influence 

of EOFl waned as the soil dried. The second EOF, which has a cluster of above average 
21 
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soil moisture values in the southwestern comer, is most correlated with elevation, and 

moderately correlated with percent clay and vegetation water content. It is difficult to 

determine a physical process that would produce higher soil moisture values at higher 

elevations. Recall that EOF2 is most like the pattern of soil moisture after the third rain 

event (July 10-11 ,) which was concentrated in the south. We believe that the correlation 

of EOF2 with elevation is non-physical and occurs simply because the rainfall happened 

to occur in an area of high elevation. For the subsequent EOFs, the correlations drop off 

quickly, but percent sand, percent clay, vegetation water content, and elevation usually 

remain the most influential characteristics. 

A rank correlation analysis was also performed between the EOFs of soil moisture 

and the regional characteristics. The rank correlation analysis sorts the values in two 

selected datasets from their highest to lowest values and examines whether a relationship 

is present between the two rankings assigned to the data for each location in the region. 

This approach does not rely on the Gaussian assumption that underlies the simple 

correlation analysis. The results of the rank correlation analysis showed little difference 

from the results of the simple correlation analysis. 
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Table 1: Correlations between regional and topographic characteristics and the EOFs of 
h . l 1 ·1 . d t e spatla anoma y soi moisture ata. 

EOFl EOF2 EOF3 EOF4 EOF5 
% Sand -0.42 0.02 -0.09 -0.23 0.09 
%Clay 0.22 0.20 -0.01 0.10 -0.17 

Vegetation Water Content -0.07 0.24 -0.12 -0.02 0.07 
Bulk Density -0.15 0.12 0.05 -0.04 0.10 

Surface Roughness 0.12 0.04 -0.06 0.01 0.01 
Elevation -0.14 0.47 0.21 -0.11 0.14 

Contributing Area 0.04 -0.01 -0.02 -0.05 -0.02 
Slope -0.21 0.12 -0.03 -0.11 0.01 

Wetness Index 0.11 -0.06 0.01 -0.01 0.02 
Drainage Angle -0.02 0.04 -0.07 -0.11 0.07 

Curvature 0.00 -0.01 0.00 0.00 -0.01 

4.2 Temporal Anomalies 

The EOF/PC analysis was also performed on soil moisture data in temporal 

anomaly form . The analysis of temporal anomaly data tends to highlight areas with 

dynamic soil moisture. For example, a location that is always wet relative to other 

locations has no temporal anomaly. But a location that transitions from wet to dry (very 

dynamic) will have significant temporal anomalies. 

The analysis of temporal anomaly data produced very different results than those 

for the spatial anomalies. As many as five EOFs may be significant, and together these 

five EOF/PC pairs explain 98% of the total variance (Figure 11). The primary EOF, 

which explains 50% of the total temporal variability, highlights the soil moisture pattern 

observed between July 12 and 16. This EOF has above average values in the 

southwestern comer of the region, and below average values in the northern portion of 

the region. This pattern is similar to, but more exaggerated than EOF2 of the spatial 

anomaly data. The second temporal anomaly EOF, which explains 28 % of the variance, 

has an above average anomaly over most of the mapping region , but the anomaly is most 
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pronounced in the northern portion. This pattern is most consistent with the first and 

second rainfall events and their subsequent drying patterns. The third EOF explains 9% 

of the total variance and is dominated by a strong above average signal over the entire 

study area. The differences between the spatial and temporal anomaly EOFs 

demonstrates that the most important patterns in determining temporal variability are 

different from the most important patterns in determining the spatial variability. Also, 

the variance is distributed differently among the temporal anomaly EOFs than the spatial 

anomaly EOFs. Specifically, the first spatial anomaly EOF can explain 63% of the total 

variance while the first temporal anomaly can explain only 50%. This result suggests 

that a more complicated pattern underlies the temporal anomalies than the spatial 

anomalies. 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 

Figure 11: Significant EOFs generated from temporal anomaly data. 
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To determine how the patterns of temporal variability are related to physical 

characteristics and processes, the temporal anomaly EOFs were correlated with the 

regional characteristics (Table 2). EOFl is most highly correlated with elevation and 

percent sand, but this EOF shows relatively high correlations with several other 

characteristics. Notice that percent clay has very little correlation with EOFl for the 

temporal anomalies (it is correlated with EOFl for the spatial anomalies). Locations with 

values near zero in the temporal anomaly EOFs tend to be locations with little variability 

during the 16 day dataset. In contrast, locations with high or low values in these EOFs 

usually correspond to high variability sites. Thus, the high correlation between EOFl 

and percent sand suggests that sandy locations tend to have more dynamic soil moisture. 

These points may be more dynamic because sandy soils can quickly drain water received 

from precipitation events. In contrast, clayey sites are not correlated with more dynamic 

locations because clay tends to retain water during the period of observation. Locations 

with steeper slopes and higher elevations also tend to be more dynamic. Steeper slopes 

may promote drainage and produce higher temporal variability, and higher elevation 

points may be more disconnected from stable sources of moisture such as rivers or 

regional aquifers and thus be more dynamic. Alternatively, higher elevation points may 

be more dynamic simply because the third precipitation event occurred over a region of 

higher elevations. 
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Table 2: Correlation of temporal anomaly EOFs with regional and topographic 
characteristics. 

EOFl EOF2 EOF3 EOF4 EOF5 
% Sand 0.39 -0.23 -0.02 0.06 -0.09 
% Clay -0.06 0.01 -0.09 -0.18 0.13 

Vegetation Water Content 0.25 -0.15 -0.15 -0.02 -0.04 
Bulk Density 0.21 -0.17 0.04 0.02 -0.08 

Surface Roughness -0.06 0.08 -0.07 -0.03 -0.01 
Elevation 0.44 -0.35 0.12 -0.21 -0.15 

Contributing Area -0.01 0.05 -0.01 -0.04 0.01 
Slope 0.25 -0.19 -0.02 -0.06 -0.05 

Wetness Index -0.11 0.12 0.01 0.00 -0.02 
Drainage Angle 0.07 0.01 -0.06 -0.04 -0.10 

Curvature 0.00 0.00 0.00 0.00 0.01 

5 Results At Different Spatial Resolutions 

Inherent to the question of what regional and topographic characteristics influence 

soil moisture variability is the question: "at what scales are the different characteristics 

important?" It is possible that the observed patterns of soi] moisture, and the subsequent 

EOF patterns, are imbedding information from different regional characteristics at 

different scales. Research has shown that the relationship of mean soil moisture to the 

variability of the sample depends on the scale being observed [4] . AdditionaJly, the 

variance and spatial correlation of soil moisture have been shown to follow a power law 

decay function, which is an indication of scaling processes [17]. To investigate the 

influence of regional and topographic characteristics on patterns of soil moisture at 

different scales, the EOF/PC and correlation analyses were repeated at different spatial 

resolutions with the SGP97 data. The soil moisture data were aggregated by identifying 

new grid cell sizes and averaging the available data within the boundaries of each cell. 

This aggregation technique allows us to observe soil moisture from a finest resolution of 

0.64 km2 (the original data) to a final grid cell size of 256 km2. The largest cell size 
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averages data from 400 pixels (20 by 20) to determine the new soil moisture value. Our 

aggregation scheme is similar to Kim and Barros [8] because we include some 

rectangular grid cells to gain more levels of aggregation. After completing the 

aggregation procedure, the EOF/PC analysis was repeated for each level of aggregation. 

The regional characteristics, percent sand, percent clay, VWC, bulk density, surface 

roughness and elevation were aggregated in the same way. It is important to note that the 

signs determined for the EOFs and PCs in the eigenanalysis are arbitrary (i.e. the positive 

direction for an axis can be defined in either direction). Thus , the signs of the EOFs and 

PCs have the potential to flip at different scales. Therefore, our analysis in this section 

considers only the absolute values of the correlations in order to simplify comparisons 

among different scales. 

5.1 Spatial Anomalies 

The results of the correlation analysis for the spatial anomaly EOFs and the 

regional characteristics across scales are shown in Figure 12. The correlation of EOFl 

and percent sand increases with increasing scale. This tendency indicates that the 

occurrence of a large scale dry area is more dependent on a large area with above average 

sand content than a small scale dry area is dependent on a small area with above average 

sand content. A location may be dry relative to its neighbors for any number of reasons 

including a steep slope that promotes lateral drainage, that fact that precipitation did not 

occur at that location, or the evapotranspiration processes is especially efficient due to 

certain land cover conditions. However, the results of this analysis indicate that large dry 

regions tend to require large sandy regions. While the correlation of land-cover 

dependent characteristics with EOFl does increase with scale (VWC and surface 
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roughness patterns overtake percent clay), they remain secondary to soil properties 

(percent sand and bulk density). For EOF2, the correlation with elevation and VWC drop 

slightly at large scales , while the correlations of percent clay and bulk density become 

larger. Surface roughness and percent sand remain essentially uncorrelated with EOF2 at 

all scales. 

The correlation analysis of EOFl across a range of scales also provides some 

insight into the role of lateral fluxes. It is possible that the correlations observed for slope 

and percent sand occur because they promote lateral fluxes of water from one location to 

an adjoining location in the dataset. Given the large spatial extent of SGP97, lateral 

fluxes would be confined to relatively short distances withjn the region so the 

dependence of EOFl on percent sand would be expected to drop off at increasing scales. 

However, this is not the case. Thus, the dependence on percent sand is probably not 

associated with the movement of water between adjacent pixels in our dataset. 

The contrast of pattern correlations found by Yoo and Kim [22) , and those 

presented in this paper, further solidifies the proposition that different regional 

characteristics are influencing soil moisture at different scales. The correlation of EOFs 

from the Little Washita SGP97 data indicated that topographic characteristics were the 

primary source of variability within their 0.64 krn2 region. For the first field they 

considered, EOFl and EOF2 were most highly correlated with elevation (0.47 and 0.44 

respectively). For the second field they considered, EOFl was most correlated with slope 

while EOF2 was most co1Telated with elevation (0.59 and 0.762 respectively). 
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Figure 12: Correlation of spatial anomaly EOFs and regional characteristics across a 
range of scales. 
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5.2 Temporal anomalies 

To determine what features control large scale dynamic areas, the correlation 

analysis across scales was also completed for the temporal anomaly data. As shown in 

Figure 13, temporal anomaly EOFl shows a relative increase in the importance of bulk 

density and percent sand at large scales. At the largest scales, they are more important 

than elevation . Surface roughness is uncorrelated at small and medium scales, but has an 

increasing effect at large scales. Temporal EOF2 also shows an increase in the relative 

roles of bulk density, percent sand and surface roughness. Temporal EOF3 however 

shows the most dramatic increase in the role of surface roughness at large scales, while 

VWC remains important. 

The shifting of the regional characteristic most correlated with EOFl is an 

important result. This indicates that the EOF explaining the largest amount of the 

variance is most dependent on different characteristics at different scales. At small 

scales, high local elevations are relatively good indicators of locations with dynamic soil 

moisture, perhaps because these locations are associated with ridge tops . However, 

regional average elevation values are not as reliable as regional soil characteristics such 

as percent sand in determining locations with dynamic soil moisture. 

A test for the significance of the correlations was done across the range of scales 

considered. All of the results we have highlighted are significant. At the fine scale, all 

correlations above 0.02 are significantly different from 0 with a 95% confidence limit. 

At the largest scale, all correlations above 0.24 are significantly different from O with a 

95% confidence limit. 
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Figure 13: Correlation of temporal EOFs with regional characteristics across a range of 
scales. 
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6 Results for Wet, Average, and Dry Periods 

It is also possible that different processes are important in the vadose zone water 

balance depending on the overall level of moisture. This could lead to different physical 

characteristics controlling the soil moisture patterns for wet and dry days. In order to 

assess this possibility, the soil moisture data were divided into wet, average, and dry 

days. To classify the data, the soil moisture measurements from all 16 days were 

combined, and the mean and standard deviation of the combined dataset were calculated 

(18.5% and 10%, respectively). The mean for each day was then compared with the 

mean of the entire dataset to determine whether the day was wet, average, or dry. If the 

daily mean is one-quarter standard deviation above or below the overall mean, then the 

day is labeled wet or dry, respectively. The remaining days are considered average 

(Figure 14). 
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Figure 14: Daily mean soil moisture and the days classified as wet, average and dry. 
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The spatial anomaly EOF/PC analysis was repeated for the data in each of these 

categories, and the primary EOF for each category is shown in Figure 15. All three 

primary EOFs are reminiscent of the primary EOF for the entire dataset because they 

have a positive anomaly in the northern and central regions. However, as one considers 

drier conditions, the area of above average wetness in the southwestern comer becomes 

more pronounced. Correlation analysis of these primary EOFs at the fi ne scale produces 

interesting results, which are shown in Table 3. Most important is the role of percent 

sand and percent clay between wet, average, and dry days . Percent sand is most 

correlated with EOFl on wet days , and the correlation drops as the sample becomes drier. 

This behavior occurs because percent sand is related to the ability of a soil to drain 

quickly. Thus, it is most important shortly after a rain event. Conversely, percent clay is 

the most correlated with EOFl on dry days, and the correlation drops as the sample 

becomes wetter. Percent clay is an indication of soil moisture holding capacity, and will 

therefore identify areas of above average soi l moisture long after a rain event. 
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Figure 15: EOFs for soil moisture data divided along temporal scales. 

Table 3: C01Telation of the primary EOF of wet, average and dry days with regional and 
h" h topograp 1c c aractenst1cs. 

L Wet Average I_ __ _Q_ry 
I % Sand -0.44 -0.43 -0.32 I 
I 
I 

% Clay 0.22 0.27 0.34 I 
I Vegetation Water Content -0.10 -0.08 0.04 
I Bulk Density -0.i8 -0.10 0.03 
I 
I Surface Roughness 0.11 0.15 0.19 I 

Elevation -0.23 -0.19 -0.11 
Contributing Area 0.03 0.05 0.06 

Slope -0.22 -0.25 -0.17 
Wetness Index -0.19 -0.21 -0.14 

Drainage Angle -0.03 0.01 0.06 
i Curvature -0.01 0.00 -0.01 

The correlations between the topographic features and the primary EOFs also 

exhibit some interesting tendencies. Elevation is the most important topographic 

characteristic in wet periods, and slope is the most important in average periods. The fact 
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that elevation becomes less important as the soil dries confirms our interpretation that 

elevation is important simply because it rained in a region with high elevations (Section 

4.1 ). Surface roughness shows an increase in correlation as the sample becomes drier. 

one of the topographjc characteristics are correlated above 20% with the dry period. 

This is consistent with the idea that topography is more important in determjning soil 

moisture during wet periods than during dry periods [8]. 

The EOF/PC analysis of wet, average, and dry days was repeated across spatial 

scales (Figure 16). For wet and average periods, percent sand remains the most important 

variable at all scales. For the dry periods, percent sand and surface roughness become 

more important than percent clay at large scales. For all three divisions of data, the 

relative role of e levation becomes rel tively less important at larges ale . 
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Figure 16: Correlation of EOFs divided into wet, average and dry with regional 
characteristics across spatial scales. 
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7 EOF Analysis of Regional Characteristics 

The EOF/PC analyses in the previous sections have shown that the observed soil 

moisture patterns can be efficiently approximated by a smalJ number of EOFs. 

Furthermore, these EOFs have varying degrees of correlation with regional 

characteristics such as percent sand and elevation . In this section, we examine whether 

the spatial patterns of the regional characteristics themselves can be approximated by a 

small number of orthogonal spatial structures and whether these spatial structures have 

any relation with soil moisture patterns. This approach is useful because regional 

characteristics are often correlated with each other. By identifying EOFs from the 

regional characteristics, we determine spatial patterns for the regional characteristics that 

are independent of each other. Analyzing these patterns may help clarify the 

relationships between soil moisture and regional characteristics identified above. 

The EOF/PC analysis in this section was conducted as follows. The regional and 

topographic characteristics most related to spatial and temporal soil moisture were used 

as the dataset for the EOF/PC analysis . The included characteristics were selected based 

on the variance the characteristics explained in the spatial and temporal anomaly analyses 

above. The mean and standard deviation were removed from each characteristic and the 

EOF/PC analysis was used to distill patterns of regional variability. The EOFs produced 

by this type of analysis remain spatial structures similar to the previous sections, but the 

PCs now indicate the dependence of the patterns on the regional characteristics. The 

variability explained by each EOF is now meaningless, so the EOFs must be sorted 

according to the variables they most represent. 
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7.1 Spatial Anomalies 

By looking at the correlation between the spatial anomaly EOFs and regional 

characteristics in Section 4.1, it was determined that percent sand, percent clay, bulk 

density, surface roughness and slope were the most important characteristics. These six 

spatial patterns were used as the dataset for the EOF/PC analysis . Figure 17 shows the 

EOFs generated from this analysis, and Table 4 shows the dependence of each EOF on 

the regional characteristics. As shown in this table, the EOF/PC pairs are combinations 

of all the characteristics to different degrees . For example, the first EOF/PC pair has 

been named Elevation because of its strong connection to this characteristic. However, it 

is also related to the patterns of percent sand, percent clay and slope. 

Elevation Soil & Bulk 

-10 -8 -6 -4 -2 

Slope Land 
Cover ----1"'1 [ 

0 2 4 6 8 10 

Soil Type 

Figure 17: EOFs generated from anci llary data most related to spatial anomaly soi l 
moisture patterns. 
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Table 4: PC coefficients showing how much each EOF depends on the regional 
characteristics. 

Elevat Soil and Bulk Slope Land Soil Topo. Density Cover ion PC PC PC PC PC Type PC 

% Sand 0.39 0.61 0.12 -0.06 0.03 0.67 
% Clay -0.31 -0.58 -0.14 -0.11 -0.05 0.73 

Bulk Density 0.15 0.13 -0.81 -0.26 -0.48 -0.06 
Surface Roughness 0.03 0.01 -0.37 -0.38 0.85 -0.04 

Elevation 0.81 -0.48 -0.08 0.32 0.09 0.00 
Slope 0.26 -0.20 0.41 -0.82 -0.20 -0.11 

These EOFs have been correlated to the EOFs of the spatial anomalies of soil 

moisture as well as the daily soil moisture patterns. The results of these analyses are 

shown in Tables 5 and 6, respectively. Table 5 shows that spatial anomaly EOFl , which 

explains 61 % of the variance, is most related to the "Elevation" EOF, which depends on 

elevation, percent sand, and percent clay. It also shows moderate correlations with the 

other EOFs that depend on soil type, topography, and land cover. Spatial anomaly EOF2 

has a very similar tendency except that it is less correlated with the land cover EOF. As 

shown in Table 6, the soil moisture patterns before the third rain event are most strongly 

correlated with the elevation EOF. Soil moisture patterns after the third rain event are 

most strongly correlated with the soil type and topography EOF. In the previous sections 

EOFl of spatial anomaly data was most related to percent sand across scales, and the role 

of topography was minimal. The primary EOF of soil moisture data shows moderate 

correlations to the patterns that combine topography and soil type. However, none of 

these combined patterns (ancillary EOFs) shows an improved correlation compared to the 

results in Section 4.1. 
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Table 5: Correlat10n of ancillary EOFs with the EOFs of spatial anomaly soil mmsture. 

Soil 
1 s s Elevation Type & 

Topo. 

EOFl 
EOF2 
EOF3 

-0.32 
0.34 
0.1 2 

-0.23 
-0.32 
-0.14 

Bulk 
Density 

-0.04 
-0.13 
-0.07 

Slope 

0.18 
0.00 
0.11 

Land 
Cover 

0.21 
-0.05 
-0.04 

Soil 
Type 

-0.24 
0.19 
-0.12 

Table 6: Correlation of ancillary EOFs for spatial anomaly data with dail y soil moisture 
tt oa ems. 

Soil Type Bulk Land 
Elevation Slope Cover & Soil Type 

e 
F & Topog. Densi ty Use 

6/18 -0.39 -0.27 -0.15 0.09 0.14 -0.04 
6/19 -0.31 -0.30 -0.17 0.12 0.13 -0.02 
6/20 -0.27 -0.28 -0.17 0.13 0.13 -0.04 
6/25 -0.12 -0.29 -0.20 0 .. 12 0.05 0.04 
6/26 -0.52 -0.12 -0.12 0.08 0.20 -0.13 
6/27 -0.49 -0.11 -0.10 0.12 0.21 -0.20 
6/29 -0.24 -0.21 -0.11 0.19 0.17 -0.23 
6/30 -0.43 -0.16 -0.11 0.12 0.20 -0.15 
7/01 -0.45 -0.14 -0.10 0.11 0.20 -0.15 
7/02 -0.45 -0.15 -0.14 0.10 0.19 -0.10 
7/03 -0.42 -0.12 -0.10 0.10 0.19 -0.11 
7/11 0.00 -0.36 -0.15 0.09 0.03 0.07 
7/12 -0.21 -0.26 -0.25 0.03 0.13 0.07 
7/13 -0.12 -0. 24 -0.20 -0.01 0.07 0.11 
7/14 -0.12 -0.21 -0.19 -0.03 0.06 0.12 
7/16 0.13 -0.26 -0.22 -0.03 0.20 0.13 

7.2 Temporal Anomalies 

The correlations presented in Section 4.2 showed that the most important regional 

and topographic characteristic for determination of temporal anomalies in soil moisture 

were percent sand, vegetation water content, bulk density, elevation slope, and wetness 

index. So these characteristics were used in the EOF/PC analysis. Figure 18 shows the 
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EOFs derived from the regional characteristics and Table 7 shows the dependence of the 

EOFs on the regional characteristics. 

Elevation Wetness 
Index 

-6 -4 

vwc 

-2 0 

Bulk 
Density 

2 4 

% Sand Slope 

6 

Figure 18: EOFs generated from ancillary data most related to temporal variability. 

These EOFs have been correlated to the temporal anomaly EOFs and daily soil 

moisture patterns. The results of these analyses are shown in Tables 8 and 9, 

respectively. As shown in Table 8, the temporal anomaly EOFl, which explains 50% of 

the variance, is most highly correlated with the Elevation EOF, which combines the 

spatial patterns of elevation, slope, wetness index, and percent sand. In fact , the 

correlation with the Elevation EOF is larger than the correlation observed for any one 

variable alone (see Section 4.2). This suggests that the use of the EOF/PC method to 

distill patterns of regional variability might be useful for identifying dynamic areas of soil 

moisture. Table 9 shows that the Elevation EOF is moderately to highly correlated with 

soi l moisture data before the third rain event. The ancillary Percent Sand EOF is 
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moderately correlated with all daily soil moisture values. This distillation of ancillary 

data in connection to temporal anomaly EOFs has shown that the use of EOF/PC analysis 

to identify patterns of regional variability can identify a more efficient pattern for the 

description of temporal soil moisture variability. 

Table 7: Dependence of ancillary EOFs for temporal anomalies on regional 
characteristics. 

Elevation Wetness vwc Bulk % Sand Index Density PC PC PC PC PC 

% Sand 0.32 0.16 0.56 0.13 -0.74 
vwc 0.24 0.00 0.68 0.21 0.65 

Bulk Density 0.12 0.33 0.17 -0.92 0.09 
Elevation 0.75 0.44 -0.44 0.18 0.11 

Slope 0.39 -0.55 0.00 -0.11 0.04 
Wetness Index -0.34 0.61 0.09 0.22 0.10 

Slope 
PC 

0.01 
-0.13 
0.04 
-0.04 
0.73 
0.67 

T bl 8 C 1 . a e . orre at10n o tempora anoma y S Wit s o reg10na c aractenstlcs. . f l EOF . h EOF f 1 h 

Elevation Wetness vwc Bulk % Sand Slope . 
F 

Index Density 
0 

EOFl 0.51 0.12 0.17 -0.08 -0.05 0.12 
EOF2 -0.39 -0.07 -0.07 0.09 0.02 -0.06 
EOF3 0.02 0.08 -0.15 -0.04 -0.08 0.00 
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Table 9: Correlation of the ancillary EOFs generate for temporal anomalies with daily 
soil moisture. 

Elevation Wetness vwc Bulk % Sand Slope F Index Density e 
6/18 -0.34 0.01 -0.19 -0.01 0.27 -0.11 
6/19 -0.28 0.06 -0.22 -0.01 0.27 -0.10 
6/20 -0.25 0.09 -0.19 0.00 0.26 -0.10 
6/25 -0.11 0.15 -0.20 0.04 0.21 -0.07 
6/26 -0.48 -0.04 -0.09 0.00 0.25 -0.13 
6/27 -0.47 -0.03 -0.12 0.03 0.23 -0.14 
6/29 -0.23 0.07 -0.18 0.05 0.29 -0.15 
6/30 -0.41 0.01 -0.14 0.04 0.25 -0.10 
7/01 -0.43 -0.01 -0.12 0.04 0.23 -0.11 
7/02 -0.42 0.02 -0.11 0.02 0.24 -0.11 
7/03 -0.40 0.00 -0.09 0.03 0.21 -0.11 
7/11 0.05 0.11 -0.17 0.00 0.30 -0.07 
7/12 -0.14 0.12 -0.04 -0.05 0.34 -0.07 
7/13 -0.05 0.08 -0.01 -0.05 0.29 -0.05 
7/14 -0.05 0.07 -0.03 -0.06 0.29 -0.04 

I 7/16 8.18 0.16 0.00 -0.07 0.28 0.00 

8 Conclusions 

We have utilized EOF/PC analysis to determine spatial patterns that efficiently 

explain the variance in the SGP97 soil moisture dataset, and we have utilized correlation 

analyses to determine whether these patterns are related to regional characteristics. From 

this analysis, we can draw three main onclusions . 

First, a seemingly complex dataset of soil moisture can be well approximated by a 

very small number of underlying spatial structures. For the spatial anomaly data, one 

EOF explains 61 % of the variance ma sixteen day dataset, suggesting that a large amount 

of the variability in space is fixed in time. The role of this EOF is modulated by its 

associated PC, but the spatial pattern remains unchanging in time. The PC time serie 

shows clear cycles of wetting and drying. The spatial patterns of temporal variability are 
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slightly more complex. However, a single EOF can still explain 50% of the total 

variability. The ability to capture such -a large amount of variability in just one pattern 

could be useful for downscaling large-scale remotely-sensed data. 

Second, this analysis has identified soil texture as the most important factor in 

determining these EOF patterns. When analyzing the spatial anomalies, percent sand and 

percent clay were the most important factors in determining the primary EOF pattern. 

Percent sand tends to identify dry locations whereas percent clay tends to identify wet 

locations. As one considers soil moisture patterns at larger spatial scales, percent sand 

becomes even more important in determining areas with low soil moisture, although 

land-cover characteristics become increasing correlated with the primary EOF. Percent 

sand also plays a more significant role on wet days, whereas percent clay become more 

important on dry days. For the temporal anomalies, percent sand is still the most 

important characteristic in determining the primary EOF, but percent clay becomes 

unimportant. This result suggests that percent clay is useful in identifying sites that are 

wet relative to other locations, but it is not useful in determining locations that are wet 

relative to their 16 day average. 

Third, topography was shown to be an unimportant characteristic in determination 

of soil moisture across the range of scales considered. Although elevation was 

moderately correlated with EOF2 for the spatial anomalies, we believe this correlation 

occurs simply because it rained in an area with high elevations. High elevations also are 

associated with locations with more dynamic soil moisture. While this result may also be 

coincidental as well , higher elevations may be more dynamic because they have poorer 

connections with stable water sources such as regional aquifers and rivers. Other 
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topographic characteristics such as slope, wetness index, and curvature were often 

relatively unimportant in explaining the soil moisture patterns. These characteristics are 

expected to have an influence on the variability of soil moisture through lateral flows, 

which are not easily observed at a 0.64 km2 resolution. 

Overall , this research has demonstrated the usefulness of the EOF/PC method for 

identifying patterns of physically-based variability in soil moisture. 
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