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l 
SUMMARY 

The present work is focused on analysis of gravity flow of ground­

water and particularly on problems of steady seepage from ditches , where 

the flow may be assumed to be two -dimens ional. Calculation of the 

seepage from a channe l of arbitrary shape is a most diff icult task . 

However , t his problem is of great inte~est in the design of groundwater 

r echarge bas ins and unlined cana l s f or the conveyance of water, 

If one accepts as a starting poin~ Darcy 1 s generalized law, the 

mathematical formulation of this specific topic l eads to a mixed 

boundary value problem (with a free su:c-face ) of potent ial theory . 

Several cases have been previous ly sol·red by inverse methods or hodo­

gr aph methods , with the r est rictions inher ent to those procedures , 

namely, e i ther the channe l cros s section has a very simple geometrical 

shape or is not known a priori . In the present paper these well - known 

methods are used to f ind the seepage f ~o~ a rectangular channel , As a 

step towa rd t he solution of the more general problem, the writer here 

presents a f irst ~rder solution of a perturbation type for a channel 

of nearly r ectangul ar cross section . The method would be equally 

appl icable to the triangular or trapezoidal section, and in principle 

would apply for any ditch of nearly r ecti l i near sect i on , 
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1. IN'rRODUCTION 

1.1 Background . In 1856 Henri Darcy, a French engineer, first formu­

lated an analytical approach to predicting the flow of water through a 

porous medium i n connect ion with the design of the water supply system 

for the city of Dijon , Since then the ·theory has undergone extensive 

development by scientists and engineers. A summary ha3 been given in 

the recent monograph by Sche idegger (1961 ), and in the earlier text by 

Muskat (1937). A review of the import~nt contributions of the Russian 

school may be found in the book by Polubarinova-Kotchina (1952) or the 

paper by Polubarinova-Kotchina and. Falkover ( 1951 ). 
The interest in the present paper is focused on g~avity flow pro­

blems and particularly on problems of steady seepage from ditches , If 

one accepts as a start ing point Darcy ' s generalized ~aw, the mathematical 

formulation of this specific topic is a mixed boundary value problem 

(with a free surface ) of potential theory. Several cases have been 

previously so lved by inverse methods or hodograph methods , with the 

restrictions inherent to those procedures, namely, either the channel 

cross section has a very simple geome~rical shape or i s not known~ 

priori. In the present paper these well -known methods are used to find 

the seepage from a r ectangular channel. In addition, for the sake of 

completeness a free translation is appended of Verdernikov ' s solution of 

the corresponding problems for triangula r and. trapezoidal channels. 

Calculation of the seepage from a ditch of arbitrary shape is a 

mo~~ difficult task . However, this problem i s of great interest in the 

design of groundwater r echarge basins and unlined canals for the con­

veyance of water. As a step toward the solution of the more general 

problem, the writer here presents a first order solution of a perturbat ion 

type for a channel of nearly r ectangula~ cross section. The method would 

be equally applicable to the triangular or trapezoidal section, and in 

principle would apply for any ditch of nearly rectilinear section. 

1. 2 The porous medium. One may wonder what differenti9.tes seepage flow 

from that of the usual hydrodynamics or hydraulics . In fact many authors 

have tried to r educe the porous medium to a set of tubes and porous 
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medium flow to flow in pipes . However, the porous medium is not so much 

characterized by i ts innumerable voids of varying sizes and shapes as 

by the multiple interconnection of the pores. For that matter) it i s 

necessary to different i ate between "absol ute poros ity", that fract ion 

of the bulk volume not occupied by the solid framework, and "effective 

porosity", the interconnected fract ion, f or a rock may have considerable 

absolute porosity and yet have no conductivity to fluid for l ack of pore 

interconnection. The por os i t y i s thus an upper l i.mit of the w1:..ter­

hold:i.ng abilit y of the soil, which may or may not be used to i ts full 

capac ity. 

The moisture content of a so i l, apart from many othe r factors, 

will generally vary with the depth. Roughly speaking, three r egions 

exist: a r egion of constant mo i sture content which overlies a r egion 

of r apidl y changing degree of saturation beneath which there i E a 

saturated r egion, Wat er movement i n the firs t t.~ r egions , called the 

capillary zone , i s essentially different from that in the saturated 

r egi on. In the capillary zone , water displaces air , while in the 

saturated (or groundwater ) zone , water moves as a continuum, enclosed 

by rigid boundaries , under the act:i.on of gravity forc es . 

The pressure variati on in . the pores can be used as the l:asis of a 

quantitative differentiation between the two zo~es , the t r ue capillary 

zone being defined as that in which the pressure of the w8.t er i s l ess 

than atmospheric and the groundwater zone as that where the pressur e i s 

greater than at mospheric. The water-table, which i s ca lled a free sur­

fac e when showing a large curvature under the gravitational forces, is 

t hen defined a s the surface at which the fluid :?ressure i s equal to the 

ntmospher:i.c pressure. I t will always be overlain by a capillary l ayer . 

In the present wor k , however , the capillary effects will be i gnor ed and 

he a ssumption will be made that the flow takes place in a saturated 

J") rous medi um, whose free surfaces are sharpl y defined, 

l . 3 Darcy ' s l aw. The first experiments on flo~ in a porous neiium wer e 

C::> nduc t.ed by Darcy between 1852-1855 and the r esults publi she i in 1856. 
" ' : l! r eport was primari ly concerned with the water services of t he city 

:, :· Di j on. 
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In these te sts , Darcy used sand from the Saone ri'1er . The soil to 

be tested was placed in a vertical tube of diameter 35 cm, with a height 

varying fro m 58 to 171 cm. The sand was ~oured i nto the tube which had 

been previous ly filled with water to r emove the a ir from the pores. The 

pressure during the test was measured with sensitive manometers at the 

upper and lower end of the tube. The pressure oscillated somewhat and 

computations were carried on the basis of their means. The r ange of 

piezometric slope was 1. 50 to 18. 78 and the :riorosi ty of the soil was 

38 percent. The tests l ed their author to come to tte conc lus ion, known 

a s Darcy ' s law, which may be stated as follows : "For a sand of a given 

type, it is possible to assume that the filtrat i ng discharge i s propor ­

t ional to the pressure and inver sely proportional to the l ength of sand 

layer . " This l aw i s expr essed in the f ormul a: 

Q = kAH/ L (1.1 ) 

where Q i s the discharge of water , L the column l ength , H the head 

loss between the two ends of the column , A the filter cross section, k 

a coeffici ent which i s a func t i on (according to Darcy ) only of the type 

of soil. In a simpl er form, Darcy ' s l aw may be written as Q = kAJ, 

where J is the appropriate piezometric slope or hydraulic gradient. 

As was mentioned before , Darcy investi gated only sands . Later i nvesti ­

gations have shown that the filtrat i on coefficient k depends on the 

fluid as well as the medi um. In spite of shor tcoming3 of this sor t , 

the value of his work was very great : i n it a solut i on to the first 

investigated problem of filtration was given, 

If (1.1 ) i s now written i n the form 

v = Q/A = kJ (1.2) 

the r at i o Q/A r epresents the quant i t y of water filt rating per second 

through a unit surface , or the so -ca lled filtration ve l ocity. This 

velocity yields a variable directly obtainable in exper iments. 
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2 .. MATHEMATICAL FORMULATION 

2.1 Basi s of the t heory of filtration. I n orcer to analyze the flow 

of groundwater i t i s customary to assume that Dar.:::y ' s l aw i s valid at 

any point of the flow field. Along with the continuity equat i on , thi s 

will l ead to a pa r t ial differential equat i on, the complexity o: which 

depends on what further assumpti ons are made al ,out t he fluid and the 

porous medium. Her e it will be as sumed that the fluid i s inconpres s ible 

and that the porous medium i s homogeneous, i sotropic, and i nconpress ible. 

Moreover, the flow is t aken to be steady and two-dimensional. 

Let m be the poros ity for a homogeneous porous medium and l et ➔ 

V 

be the filtrat ion velocity, i.e ., the di scharge per unit of time which 

filt r ates through a unit surfa ce normal to the ve oc ity direct i on. The 

ratio v/m gives t he average velocity u. (It i s t he true veloc i t y i n 

the sense that i t i s the ve l oc ity in the por es , the average velo~ i ty in 

the sense that thi s ve l ocity is not unifo r m in the pores. ) 

Assuming that both the water and the soil a r e i ncompresE ible we 

obtain the continuity equation 

v · v = o ➔ or v' • u (2 . 1 ) 

Darcy' s law may now be written in t he form 

➔ v = k grad h ( 2 . 2 ) 

Here h is the head defined in terms of the elevat i on y (pJsitive 

downwa rds ), the pressure p , and the spec i fic wei ght y, by the 

r elationship 

h = y - Ph . 

Hence for a seepage flow with a constant filtrat i on coefficie:it k, the 

potential ¢ i s equivalent to kh , i . e., 

v = grad kh =grad¢ (2.3 ) 
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I f this result i s combined with the cont inuity equation (2.1 ) the r esult 

i s 

cl¢ 2/¢ 
-+--= 0 
0x

2 dY2 

Therefore the potentia l satisfies Lapla ce ' s equation . 

(2. 4 ) 

2.2 The hodograph. Without loss of generality we can set k = 1. In 

the case of a soil whose filt r at ion coefficient is different from unity, 

it wJll be sufficient to multiply both velocit i es and discha rges by k. 

With this understanding Darcy ' s law become s 

_.. I _.. 
j + 9 (p l) + v = 0 

where J is the unit vector in the vertical direction. 

0 

V y 

--+,..~---------- y 
p 

0' 

Figure 2 .1 

(2.5 ) 

X 

The geometry of this sum can be described with a c losed triangle 

OPO', which we called the filtrat ion triar.gle as constructed in Figure 

2. 1. To each poi nt of the f low will correspond some point ·of the f il­

tration triangle. For a continuous shift i n the physical pl ane along 

any path, the point P describes some cont i nuous curve in t he plane 
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l 
j 

V J V 
X y 

(except at poirrts where the velocity becones infinite ). A great 

number of points p corresponding to interior points of the flow gener-

ate a connected domain which is called the hodograph plane. 

In two-dimens i onal flow it i s convenient to introduce complex 

variables , Thus the compl ex potential W i s defined in terms of the 

potential ¢ and the stream function ~ by W =¢+it and the 

physical plane .z is given by 'z = x + iy , The :problem i ::: then to find 

W as a func tion of z. We first note that 

dW 

d;z dX 
(¢ + i~ ) = - + i- = V 

X dX dX 
iv 

y ( 2.4 ) 

from the Cauchy-Riemann equations , or v + i v = dW/dz. The hodograph 
X y 

plane appears a s a reflected mapping of the plane of the derivative 

dW/dz about the v axis . Consequently, corresponding curves will be 
X 

circulated in opposite directions. 

2,3 Boundary conditions . If the flow, except for the free surface , i s 

bounded with straight lines , along which one among the quantities ¢ , 

~, or p is constant , then the boundaries cf the hodograph plane will 

be gi ven by means of simple geometric construction as follows , 

1 . Free surface : If on the free surface there i s neither evapora ­

tion nor absorption of water, then in steady flow the velocity direction 

is that of the tangent n Further, it may be asswned that on the free 

surface the pressure p = constant, It follows that 9 (p/-r ) has a 

direction normal to the free surface . Consequently v and 9 (p/y ) 

form at their vertex P of the filtration triangle a right angle , as 

shown in Figure 2 . 2 . The geometric locµs of sue~ points P ~ill be a 

circle of diamter 00' . 

2 , Lines ¢= constant : Such boundaries separate the soil from 

the waters of a stationary re servoir , From the condition ¢=constant 

it results that the vector v is perpendicular to the boundary , It 

can vary quantitat ively but not in direct i on , In the hodograph plane 

we shall have consequently a straight line , going through the origin 

and perpendicular to the bounda ry , 
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0 

0' 

V 
y 

\ 
\ 

Figure 2.2 

/ 
/ 

V 
X 

3. Lines w = constant : These will be boundaries a long which the 

· stream slips . Along such boundari es the ve locity can vary in magnitude 

but not in direction, In the hodograph plane we get obviously a straight 

line going through O and pa r a llel to the stream bJunda ry . 

4. Lines p = constant : On such boundaries seepage occurs into 

the atmo spher e . The vector v(p/y) ~s normal to the boundary . In the 

hodograph plane we get a straight line ) going through 0 1 and perpen ­

dicular t o the boundary. 

01 

V 
y 

Figure 2 . 3 

/ 
./ 
p 

V 
X 

Seepage fac e 
direction 

Henc e the boundaries of the hodograph are known if the bounda ries 

in the phys ical plane corresponding t o t he sec0ndJ t hi rd ) and fourth 

condition are known . Such wi l l be the case for seepage from a channel 
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with r ectilinear sides and bottom. It i s then only necessary t::, use the 

we ll-known methods of confor mal mapping to rel.ate the plane of complex 

potential W to the hodogr aph plane . Finally, the flow in tte physical 

plane may be constructed by use of 

z = j _v_d __ w_i v- (2.5 ) 

x y 

A detailed example is given in the next section , 
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3, SEEPAGE FROM A RECTANGULAR CHANNEL 

The problem of seepa ge from a r ectangula r chan:ie l will be analyzed 

as an example to show the methods which can in prin:::iple be us ed on any 

channe l having r ectilinear boundaries . It is assumed that the pervious 

layer extends infinitely f a r downward as indicated in Figure 3.1. 

3.1 The hodograph pl ane method. As seen previ ously, according to 

Darcy ' s l aw : 

v = k grad h =grad¢ (3 ,1) 

¢ = kh = k ( y - p /r ( 3. 2 ) 

On the free surface , since p = O, ¢ - ky = 0. Diff erentiating with 

re spect to t he .a rc s of the free surface 

- k - = 0 or 
c)s c)s 

Le. 
2 2 

V + V 
X y 

kv = 0 
y 

- k 
dS 

c)y 
• - = 0 

dS 

Us ing a r educed vel ocity v = (actual velocity)/k, the equation 

becomes : 

2 2 
V + V 

X y 
V = 0, 

y 

(3 , 3) 

the equation of a circle. The diameter of this circle i s unity, as 

indicated in Figure 3, 1. An inversior_ of pole f and modulus unity 

will transform all the boundaries into r ectilinear ·ooundaries as shown . 
. 2 

The plane v/JvJ can be mapped onto the upper hc. lf-plane 5 

with the help of the Schwarz-Chri stoffel transformat i on . Consequently, 

at least in principle , we can express v/JvJ
2 

as a function of 5, say 
2 

v/JvJ = f(o ) . The complex potential plape w = ¢ + i \jr has a l so a 
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I hodograph 
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\ 
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1 
'V 
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C Q/2 1 2 ,~ ➔ 
a t 

b 
' 

1 
Potential plane 
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i b Tj 

{ 
a s~plane 

' 
µ 
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I Figure 3.1 I 
I 

' 
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polygonal contour as shown in Figure 3.1. It can be mapped upon the 

5-plane so that one obtains a relat ion of t he form W = g (5 ). Elimina-

tion of 5 yields v/lvl
2 = F(W). However , our interest lies in the 

knowledge of ¢ = ¢ (x,y ) , i.e., of W = W( z ). We saw previously that 

dW/dz = v - iv so that 
X y 

dz 1 
= ---- = 

dW V - iv 
X y 

Consequently 

z = j (v/lvl
2

dW = j F(W)dW (3.4 ) 

With the use of reduced velocities thi s exp~ession ~s modified i nto 

the form 

whichever i s most us~ful . 

l 1 F(W)dW 
k 

= :_ 1 f (t)~• (t )dt , 
k 

3.2 Conformal mappings, We shall take advantage of the symmetry of the 

problem. Aside from the usual auxiliary a-plane we Ehall use another 

auxiliary pl ane , the ~--plane; the relat ion between these two planes i s 

given by the formula 

(3.5) 

Consequently, µ =-if;., Corresponding points in the several planes have 

the following values : 

point a: X = Q/2k v /lv l2 = 0 t = -1 s = 0 
X 

y = CX) v /lvl2 = 1 r = 0 Tj = 1 
y 
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j 
i 

l 
I 
l 
I , 

I 
l 
' I 
J 

I 
l 

l 
I 

1 
' 

I 
l 

poirit b : {x=B ¢ = 0 

y = 0 'V = -Q/2 

point c: r = B 
¢ = 0 

2 
=~ v/J v J =- 0 t = t. ~ 

y = H 'V = Qdc r = C Tl = 0 

point d: ¢ = 2 r = 0 
0 v /J v J = 0 t = 0 ~ = 0 

X 

2 
y = H 'V = 0 v /J YJ = 1/v r = 0 Tl = 0 y d 

Mapping of the plane v/JvJ
2 

into the 5 -plane can be carri ed out eas ily, 

us ing the Schwarz-Christoffel transformation . Thus 

5 

v/J vl
2 

= A 1 (t + 1 r
1

/
2 

(t - A) -
1

/
2 

dt + B 

5 dt 
= AI + B -v t2 + (1 - A)t - A 

5 dt 

=Al + B 
A + -1 ✓(t + 

1 ; ') 1/ (" ; l J2 _ 1 2 

Substituting the variable w defined by : 

5 dw 

v/lvl
2 

= A j V ,,,2 
- 1 

+ B = A arc cosh w 1

5 

+ E 

5 

[

t + (1 - A) /2 ] 
= A arc cosh 

(1 + A)/2 
+ B 

The constants A and B must be determined by the boundary conditions . 

Sfoce v/JvJ
2 = O for 5 = A, it f ollows t hat B == 0. Also, f or 

5 = -1, we have v/Jv J
2 

= i and so A = i / arc co sh ( -1 ) = 1/rf.•, Finally 
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A 

2 1 2s
2 

+ 1 - ~ 
v/j v j = - arc cos~ (3.6 ) 

1( I\ + 1 

Similarly, we carry through the mappi ng of the W-plane as follows : 

5 

W(5 ) = A 1 dt 
----- + B = 2A arc tan ~ + B 

(t + 1) \ft 

Boundary conditions at c and d yield 

W (A) = 2A arc tan yi: + B = - icrQ/ 2 
C 

Wd(o ) = 2A arc tan (o ) + B = o 

Hence B = 0 and A = - icrQ/ 4 arc t an ~ . At point b we find that 

Wb(l) = 2A a r c tan (oo ) = - iQ/ 2 so A= - i Q/ 2n . CoJsequently 

w(s) = i Q arc 
1( 

tans (3. 7) 

and 

Qdc 2 
tan ,J-; ( 3.8 ) er = 2 - = - arc 

Q 1( 

The constants k and /\ are n::>t i ndependent . Thus at poi nt d 

we have 

1 1 I\ i - I\ cosh - -i k = - arc 
1 + I\ 

= - arc cos 
l - I\ 1( 1( 

i i 
sin 1 - I\ = 2 - - arc 

1 + I\ 1( 

1 1 1 
sin 1 - I\ = - arc 

vd 2 1( 1 + I\ (3.9 ) 
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From Formula ( 3.4 ) the 'phys ical plane i s given by 

z == 

i Q s j arc cosh 
,r~ I\ + 1 

( 3 . 10 ) 

3, 3 Evaluation of the discharge. The bottom and sides of the ditch 

correspond to the r eal axis of the s -plane and F:::irmula ( 3.10 ) can be 

r ewritten 

z - z == 
C d 

"Q s 
-

1 

2 j arc co sh 
,r k 0 

2 
2t + 1 - " 

/\ + 1 

2 ~ iQ 
j ar~ 

2t + 1 _ " 
B == cosh -2 

1 + /\ ,r k 
0 

( 3 . 11 ) 

ds 

1 + r.2 

( 3. 12 ) 

Her e /\ i s a pa rameter depending on the dimensions of the channel. It 

is also related to the velocit y a t d by the equation 

1/vd == 1/ 2 - (1/,r ) arc sin [(1 - A)/(1 + A) ] 

Once the parameter A has been chosen all tte phys ica l quantities can 

be determined. 

From (3.10 ) we also have 

. Q CX) 

zb - z0 = - iH = - :"i,_ 1\[;_ arc cosh 

2 
2t + 1 - " 

1 + /\ 
( 3.13 ) 

1 
,2 

+ :, 

From ( 3.12 ) and ( 3.13 ) we determine Q and the r atio B/H. Explicitly : 

Q ~ 2 
ds 

1 
2t + 1 _" 

B == 
,r~ 

arc co s 
2 

0 
1 + I\ 1 + s 
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1 

1 -
l 
J 

00 2 
Q J · 2t + 1 - /\ ds 

H = - 2 arc cosh 
1f k ·\{; 1 + /\ 1 + ~ 2 

We introduce the following notation : 

-VA 
I (A) = J arc cos 

0 

00 

[,: = r;oge I* (A) 

I* (A) - 2. 3026 J·*(A) 

2 
2t + 1 - " 

1 + /\ 

1 - I\ 
( s2 + 

1 2 
+ -V(s2 - A)l l ds 

+ 1)(t,2 
+ s2 

( 3.14 ) 

Then the previous results may be summ.E,,rized in terms of the parameter 

Q - (Q/1r .) arc tan -{-;. de - ( 3.15 ) 

1/vd = 1/2 - (1/1f) arc sin [ (1 - A)/ (1 + A) ] 

Numerical ca lculations have been carried out using Simpson 's rule for 

four values of "' covering a r easonable r ange of rstios H/B. The 

result s are presented in Table 3 , 1 . 
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TABLE 3,1 

I\ 1 4- 9 36 
I (A) 1.00 2.21 2.70 3.56 

J* (A) 1.00 0.60 o.43 0.22 

Qdc/~c 1.00 2.4 4 9 

Q/kB 9.86 4.46 3.65 2.78 

Q/kVi-ii 4.60 4.01 4.08 5.20 

H/ B 2.30 0.62 o.4o 0.143 

The dimensionless coeffic i ent Q/k~ is a measure cf how the 

seepage varies for a given excavation area, Le., for a given va lue of 

2BH. It is plotted as a function of H/ B in Figure 3.2. Note that 

the optimum hydraulic cross section coincides approxi.mately with the 

minimum water-loss cross section. 

3.4 Velocity distribution on the canal perime~er. The points of the 

wetted perimeter of the canal correspond to the real positive ~xis of 

the ~-plane . Consequently on the canal perimeter : 

2 
v/l v l 

1 
= - arc 

1( 

2~2 + ::._ - /\ 
cosh 

1 + /\ 

On the bottom de of the waterway 

0 < s < "'{i:. Then 

v/ lv l2 = . I 2 lY V = 
y y 

i i 
= - arc cos 

V 1l 

V 
a 

2 
2s + 1 - /\ 

1 + /\ 

- =.-----------2----
k 2s + 1 - A 

arc cos 1 + /\ 

- 16 

(3.16) 

i/v and. moreover 

(3.17 ) 



i ~ 

J 
I 

j 

l 

j 

10 

Q 

k (2BR )1/ 2 

8 

6 

4 

2 

HLB 

,5 1 1.5 2 . 
I 

0 0, 5 1 1.5 2 

Figure 3.2 

On t he side be of the waterway v/l vl2 = vx/lvl2 = 1/v and 

~ > A, Ther efore 

1 2 .3026 
- = --- loglO 
V 1{ 

~ 

2. 5 

2,5 

[Equat ion (3.18 ) i s continued on the following page.] 
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V 
a -=-------------------------

k 

(3. 18 ) 

We shall evaluat e the velocities on the :;;ier:Lmeter at locations such 

that between two success i ve points a discharge Q/ 2n flows , where 2n 

is an integer . The values of s corresponding to such points are 

derived from Formula ( 3.7 ) . Explic it ly : 

p 9:_ = S arc tans 
2n rt' 

s = tan pre 
p 2n ( 3. 19 ) 

The coordinates of the waterway peri :neter are given by the Formula 

( 3.10 ) . On the bottom 

sp 2 
A 1 B J arc 

2~ + 1 -
X = cos 

s2 
ds p 

l(A) 1 + A 1 + 0 

y = H 

On the side be 

X = B 

H 

J*(A) ( 

2 l 
1 s . + 

For example in the case )\ = 1, we have on the bottom: 

V 
a 

rt' 

-= --~--
k arc cos s2 

- 18 -

2 ds 
cos s ---=-

1 + s2 

( 3 . 20 ) 

(3.21) 



l . 

• 

and on the s :i,de : 

V 1( 

a 
- = 

Result s are i ndicated i n Table 3.2 . 

. TABLE 3.2 

p p,r/20 sp v /k 
a 

x/B y/H 

0 0 0 2.000 0 1 
1 90 0.158 2.032 0. 245 1 
2 18° 0. 325 2.14-4 o. 483 1 

3 27° 0.510 2. 4::..o 0.702 1 
4 36° 0.727 3.098 0. 887 1 

5 45° 1 CX) 1 1 
6 54° 1.376 2. 508 1 0.949 

7 63° 1.962 1.553 1 0.837 
8 72° 3.078 1.068 1 0.669 

9 81° 6.314 0.718 1 o.425 
10 90° CX) 0 1 0 

On Figure 3. 3 is indi cated the ve l ocity di stribut i on . Between 

each t wo successive arrows f l ows t he same dis char ge Q/20 . 
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H 
B 

kL__ 

Figure 3. 3 

3. 5 Free surface det ermination . The coordi nates of the free surface 
are obtained from For mula (3. 7) f or the i mag:.nary values of t of 
modulus gr eater than one , that i s , for ~ = i T} wit h T} > 1. Then 

iQ T} 2 
I\ i dT} J arc cosh 

-211 + 1 -
z - -

krr2 2 
1 + /\ 1 - 11 

T} 2 
I\ dlj Q J arc cash 

-211 + 1 -
= - krr2 2 1 + /\ 11 - 1 

For the case corresponding to A= 1, 

z = 
Q 

- krr2 / 2 
arc cosh (-11 ) --- + C 

11 2 - 1 

- 20 -

+ C 

+ C 



d11 
(arc cosh 11

2 
+ i~ ) -=--- + C 

112 - 1 

Boundary conditions are t hat for 11 = cxi , z - B and consequent ly 

_ _:!_/ 2 d11 
z (arc cosh 11 + i1f ) + B - 2 2 k,-r 11 - 1 co 

or 

2.3026Q 
co 

J loglO ( 112 + ✓ ( 112 - 1 )( 112 + 1)) 
d11 

X = 2 . 2 + B 
krr 11 - 1 11 

2 . 3026Q 11 + 1 
y = loglO 

2krr2 
11 - 1 

or 

co 

/ . 6 J ( 2 - , /( n 2 - 1) ( n 2 + 1 ) ) ~ 2 d: x B = 1 + 2. 302 log10 11 + V •• •• 
11 

y/B rr 1 ~ + l 
= 2 oglO 11 - 1 

Results are gathered in Table 3.3. 

- 2_ -

(3. 22 ) 

(3.23 ) 

(3.24 ) 

- ~-----------------~----- ~----~ ---~~---------~ 



TABLE 3. 3 

y/H Tj x/ B V /v y X 

0. 25 5. 515 2. 094 0.765 
0.50 2. 850 2. 706 1. 129 

0.75 2.000 3. 144 1. 522 
1.00 1.600 3. 475 1.972 
1. 50 1.250 3,950 3. 096 
2.00 1.113 4.265 4,63 

3,00 1.025 4. 781 9,90 

5. 00 1.001 4,930 50 . 
00 1.000 4,930 00 

From For mul a (3.6 ) we deri ve 

(v + i v ) / Jv J
2 

= (1/~ )(a rc cosh ri
2 

+ i ~) 
X y 

and thus 

A plot of t he free surfac e i s made to scale on Figure 3. 3. All numer i ­

cal integr ations of defi nite integrals have been carri ed out by use of 

Simpson ' s f or mula . 
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4. THE GREEN-NEUMANN FUNCTION METHOD 

The previous problem is basically a problem of potent i al theoryo 

The solution depends on the boundary values and on tje boundary confi g ­

uration. For a given configuration one may wonder whether the solution 

of a particular bow1dary value problem does entitle ·..1s to solve all the 

boundary value problems , according tc, the we:)._1-known methods of poten ­

tial theory. In thi s section we will extend the theory of Green ' s 

functions to i nclude the mixed boundary va lue probl en ~t hand. 

4.1 Green's function , Let us consider a two-dimens i onal domain D 

a s indicated in Figure 4 . 1 . Let ¢(P) and w(P) be t wo harmonic 

func tions i n this domaino From GreeL's theorem we know that : 

0 = 1 ( ¢ ( Q) dW ( Q L - ~r ( Q) d,0 ( Q) l dcr 
c)n c)n 

C 

(4.1 ) 

¢ (P) = 1 ~ (q) 
C 

(
~ l og ~ ) - ~ l og l d¢ (Q) J do-
2rt r 2rr r c)n 

(4.2 ) 

C 

Figure 4 . 1 

Combination of (lr. 1. ) and (4.2 ) yields : 
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¢( P) 0 J [¢(Q) ~ ~. (log ½ + j, ) - l~(Q) + ~,r log ½) "l:~Q)] def (4-3 ) 

The function is called a Green ' s func-

tion of the domain D. Such a function i s however not yet defined, for 

i t depends upon an arbitrary r egular harmonic function. The Green ' s 

f unction will be completely deter mined if we prescribe its boundary 

values. The usua l Green ' s function is the one which takes tje value 

zero on the boundary, i.e. , G ( Q, P ) = 0 on C. Thi.s condit ion determines 

complete ly 1jr (P ), for it is a harmonic r egul ar function of val ue on C: 

w( Q) = - (1/2rc ) log (1/rQP) 

Assuming that such a function can be found , t hen Formula (4.3 ) r educe s 

to 

¢(P) =,[ ¢(Q) cY}~~,P) d~ (4.4) 
C 

I f the Green ' s function of the domai.n D i s known , then any r egular 

harmonic function in D of given boundary va l ~e ¢(Q) will t e obtained 

from Formula (4.4) . 
Most problems however are not that simp:e. In the case of the 

r ectangular channel already we are fac ed with a mixed boundary problem . 

On par ts of the boundary the value of the potential i s given, on the 

other its normal deri vative . A method for treating such mixed boundary 

value problems is that of combining t he method for conjugate -fu...'1ction 

transformations with that of mixed Green ' s funct ions , which are defined 

so that they vani sh ove r par ts of the boundary wher e the velocity poten­

tial i s specified and their normal derivatives vanish over those parts 

where the normal derivative i s specif ied . The dete r minat ion of such a 

f unction i s not easy and to quote Muskat (1937), "Even the simple case 

in which the potential i s specifi ed over the right ha lf of the X axis 

and the normal derivative over the l eft half, does not s eem to be so l vable 

by the methods given in the standa rd t extbooks " . 

- 24 -
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Green ' s theorem in its gener a l fo ::-m can be written a s 

¢( P) =,[ ¢ (Q) clG-~~,P ) - G(~,P) d~~Q ) i~ 

C 

Suppo se the boundary C i s divided in~o two parts c1 and c2 such 

that G(Q,P ) = 0 on c
1 

and clG- (Q,P ) /c3n = 0 on c2 • Then we have 

¢ (P ) =,[ ¢ (Q) c)G-~~,P ) G(Q P) c3¢ (Q) 
) dn d~ (4.5) 

Cl 

wher e G(Q,P ) is the Gr een -Neumann or mi xed Green ' s func t i on . 

4 . 2 Green-Neumann functi.on for the r ectangular channel. The geometry 

of the domain and the boundary values for the potential and the Green ­

Neumann function a r e indicated be l ow i n the (:-plane in Figure 4.2. 

b 11 

~ = - Q/ 2 or c3¢/ c3n = 0 

lI a 

,. 
0 or 'o¢ /c3n = 0 w = 

G = ¢ = 0 C F = ¢ = 0 t 

d ~ ~I b 

~ 
Figure 4 . 2 

We shall obtain the Gr een-Neumann function by a methc-d of images , as 

shown in Figure 4 . 3. The superposit i or, of the four scurce potentials i s 

a harmonic func t i on s ingula r at P, which is zero OL O t and who se 

nor mal derivative i s zero on O 11· 
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(-~ , -TJ ) 0 0 0 

Figure 4.3 

The potential due to a source of strength unity i s 

that we have 

(1/4rr )log r
2 

2 2 2 2 
1 [ ( ~ - ~o ) + (TJ - TJo ) ][ (~ + ~o ) + (TJ - TJo) J 

G(R, P ) = - log ----~2c-------2 ______ 2 ______ 2_ 
4rr [ ( t - t0 ) + (TJ + TJ0 ) ][(t + ~0 ) + ( q - TJ0 ) ] 

so 

(4.6 ) 

In theory then, any mixed boundary potential problem in the s-plane 

can be solved . Once the potential is known, the complex pote~tial i s 

known also from the Cauchy-Riemann conditions,, and we can c ::Jmplete the 

solution of the problem by use of confo r mal mapfing . 

4.3 
¢ (P) 

Singularities and the boundary value projlem. The harmonic funct ion 

given by Formula (4 . 5 ) i s r egular over the whole domain D. In 

many problems the potential will not be r egular everywhere but will pre 

sent irregularities at a f ew points. The potential n is t he~ the sum 

of a singular pa rt and a r egul a r harmonic func tion ¢ which satisfies 

different boundary condit ions from n a~d can be obtained fro~ (4.5 ) . 

Suppose that at S there i s a source of str ength unity . Then if 

rSP is the di stance from S to the point P, we have that n(P ) = 

1/( 2rr) log rSP + ¢ (P). On the boundary c1 the function ¢ (P ) has the 

- 26 -



' 
1 . 

value q(Q) =: (1/ 2n ) log r 8Q = ¢(Q) , where Q designates a point 

of the boundary. On the other part of the boundary c2, the function 

¢(P) has the value 

c¾t(Q) 1 1 2)¢ (Q) 
c)n - 2n r SQ = c)n 

The solution i s then given by 

-1 G(Q,P) 

c2 

(4 .7) 

We now proceed to work Ol:lt the ex:pl:.cit r esult for the rectangular 

channel . In the s-plane of Figure 4 ,2, the potential shows a singularity 

at point a , namely, a sink . Direct application of (L, 17) yields 

00 

n( t0 , 11:) 
1 [ 2 2] 1 J = - ~ log so + (110 - 1) - 2n 

00 

1 1 G dl) 
+ -2n 

-Vc ri - 1 )2 0 

The mixed Green's function G is given by 

2 
( 11 1 [ so + 

G = - - log 
41t' 

2 
[ so + ( 11 

1 
= - - log 

2,r 

-·-~·- ~--·-----r----·-------~-- -- - ·. 
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0 

(4.6 ) . 

- rio/J2 
2 2 

+ 110 ) ] 

2 
- r 

0 
2 

- r 
0 

log ( s2 + 1 ) ~ ds 

On the 11 axis 

---------....------- - --------:--~·---



.l 

2 2 2 
Similarly, evaluate ~/011 on the s axis: where ro = so + 110 • we 

oG 
: ~o ( (i 

1 1 
-= 2 2 + 

( s + so )2 
2 ori so ) + 110 + 110 

Then 

1 2 2 
n ( so, 110) = - log [so + ( 110 - 1) J 

4rc 

I 

l1o Joolog (t2 + 1 ) ( 12 
1 

) d\ - 2rc2 2 + 2 2 
0 ( s - so ) + 110 ( s + so) + 110 

00 2 2 
dr1 1 1 log 

11 - 21111 - r 
0 0 (4.8 ) 

- 4i 2 2 
11 + 211110 - r -v( 11 - 1)2 0 0 

Evaluation of these definite integrals would yield the searched for 

solution. However, here the method of images yields an immediate 

solution. The function: 

shows a singularity at a is harmonic everywhere e l se in the s-plane 

and satisfies the boundary conditions, Conse~uently 

The Cauchy-Riemann conditions yield 

-=-= 

- 28 -
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) . 

d'V 11 + 1 
+ - ::: + 2A 

c)~ 

I ntegration of these equatio_s yields the stream function 

1jr = 2A (a rc tan 1J ~ 1 
- arc tan 11 ; 1 ) + B 

The constants A and B are deter mined by the conditions that for 

s = O, 1jr = - Q/ 2 when 11 > 1 and 1jr = 0 when 11 < 1. 

Q - 2 = 2A [arc tan (+ oo ) - arc tan (+ oo )] + B B = - % 

0 = 2A [arc tan ( - oo ) - arc tan (+ oo )] - ~ = - 2Arr - % 
Q 

A = - 41! 

Substitution i n the preceding equation shows that A= -Q/ 4rr and 

B = - Q/ 2. Then fina lly 

W = - ~n (arc tan~; 
1 

- arc tan~ ; 
1

) 

The complex potent ial W = ¢ + i \jr i s given by: 

W ( s) = - ~n ( log 1/s 2 
+ ( ~ - 1 ) 

2 
+ i arc tan ~ ; 

1 l 
+ ~n ( l og ,JS 2 

+ ( ~ + 1 
2 

+ i arc tan ~ ; 
1 

)- i§ 

or 
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l 

J 

w(s) = s._ log 
21( 

s - i 

s + i 

This result is only apparently different from Formula (3.7 ) for 

dW( s ) 

ds 

= 
i Q 1 

1 + s2 

and consequent+y W(s) = - ( iQ/ 1f ) arc tan S· 

Q 2i 

2:n: 1 + s2 

(4.9) 

The simplicity of the domain geometry allowed us to bypass the 

r ather tedious integrat i on of the Green ' s function method with the help 

of the method of images. However , a minor change of the boundary slope 

would invalidate this procedure . It i s then that the Green ' s function 

method will prove very useful as we shall see in a later secti on . 
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5. SEEPAGE FROM CHANNELS OF ARBITRARY SHAPE 

The solution of Lapl ace's equation with mixed gec,metry of the 

boundary departs from the elementary fJrms o There is little hope to 

solve the problem completely or in simple terms , but the case when the 

boundary depa rts from an elementary :orm by an inficitesimal amount may 

be a first step to the solution, If it is possible to find a complex 

function which will map the perturbed boundary onto its original shape , 

the problem i s then solved, at l east in principle , if the potential 

function i s lmown for the elementary geometry boundary problem, Of the 

three methods used in previous chapters , which are cot r eally unrelated, 

the method of images seems hopeless even for a minor change . The methods 

of conformal mapping and of the Green ' s function are , however, still 

usable and can best be used concurrent ly. 

5.1 Domain variation of the Green ' s function . Consider a domain D 

bounded by a smooth curve C and suppJse that the C-reen ' s function 

G(z, s ) of this domain is known. We wil~ now investigate how G( z,s ) 

varies with slight variations of the b:::iundary curve C. We shall star 

all the quantities which r efer to the new domain D*. We shall assume 

that the smooth boundary curve C* lies inside C. Thus , if ov i s 

the normal distance from C to C*, we oay write Ev= Ev (s ) where 

E > 0 is a smallness parameter and v (s ) > 0 i s a smooth function of 

the distance s along the curve Co The problem i s now to find the 

Green ' s function G* ( z, s) for the new domain in terms of G( z,s) up to 
2 

an error of the order E o 

Before going any further we shall write down several versions of 

Green I s formula . First , by means of the Green I s flmction we may express 

every function h ( z ) which is regular harmonic in D i n terms of its 

boundary values on C a s follows: 

h (z ) = J [ clG (t,z )/dvt] h (t ) dst 

C 

(5,1 ) 

where v i s the inner normal. Second , consider two harmonic f unctjons 
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u ( z, 0 and v ( z, T)), both of whi.ch are regular i n a domain R except 

maybe at z = s and z = Tl · Then in a subdoma.in D bounded by C 

which does not include any singula r point, we have 

0 = j [u (t,s) 2lv (t ,ri ) / 2lv - v (t ,T} ) 2lu (t ,s)/2lv] dst 

C 

(5.2a ) 

and i n a subdomain D bounded by C which includes one of the singular 

points , say z = s, we have 

c)v (z ,ri ) ] 

dV z 

ds 
z 

(5,2b ) 

Furthermore , in a subdomain D bounded by C which includes ooth 

singular points , we have 

l 1 [ 2lu ( z , U 
= - v (z ,ri ) 

2rc c clv z 
- u (z, s) 

2lv ( z , TJ ) ] 

clv 
z 

ds 
z 

(5. 2c ) 

The factor (1/ 2rc ) comes from the logarithmic s i ngularity . Fina lly, 

we write Green ' s identity in the form 

j j u div (gr a d v ) dx dy = j u Cov/2lv ) ds - j j grad u • grad v dA 

R S R 
(5. 2d ) 

Cons ider now the differ ence in the Green/s functions [o~(z;s ) 

G(z, s )] . It is a r egular harmonic function in the smaller domain D* 

s i nc e the singularities canc e l each other. I t can be shown that 

= -1 clG (t , z ) 
G* ( z, U - G( z, U 

C dVt 

- 32 -
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1 

The proof of t his r esult , which is known as Hadamard ' s formul a , i s given 

in the monograph by Bergman and S~hiffe r (1953 ). The formula can be 

extended to the case in which v (s ) i s still twice continuously di ffe r­

entiable but i s no l onger r estricted i n sign , However, the limitation 

of (5,3 ) to the case of smoo~h boundaries i s a serious one and r estricts 

the useful ness of Hadamard's f ormul a considerably . To allevi ate t hi s 

difficulty we shall use a di ~ferent approach, the method of i nterior 

variation. But first we shall have to discuss i n more detail the V 
pq 

variation , The followi.ng i s a digest of articles on t he subj ect by 

Schiffer (1943 - 1958 ) , 

Consider the complex transforma~ion (with p > 0 ) 

2·13 2 
e P 

z* = z + - --- o < /3 ~ 2rr (5,4) 

It t ransforms the circ l e jz - z
0

j == p into a segment. 

as shown in Figure 5,1 J Mor e specific~lly, the circle 

transforms into z* = z
0 

+ 2p cos ( /3 - ex) e t/3., 

i n the z*-plane, 
. a 

z = ltD + pe l 

z-plane z*-plane 
Figure 5,1 

The transformati on i s univa lent for the exterior of jz - z
0

j = p. For 

p sufficientl y small this r epresentat i on is univalent on all curves 

and transforms them in one - to-one manner i nto neighb0ring curves C* n 
which enclose a new domain D* of t he z-pl ane (note that 

interior point of D). 

- 33 -
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The transformat i on (5.4 ) is a particular case of a larger class we 

shall now define: 

z* = z + pq ( z ) (5.5 ) 

where q ( z ) is a uniform function regular everywhere excep~ at a finite 

number of poles z . . 
l 

q ( z ) = 

Thus 

a. 
--

1
-+b. + c. (z - z .) + ••. 

l. l l z - z. 
l 

The function z + pq ( z ) will be r egular in R except at z = oo and 

at the points z . . Around each point z . 
l l 

we describe a circle K. 
l. 

with radius r, so small that no branch point and no zK lies in the 

interior K. of K .. If now m i s the maximum absolute value of 
l l 

q ( z ) , we have 

jz - z. I = r/2 
l 

i = O, 1 . .• m 

I f is such t hat IP I r 
than z* ( z ) i s exactly IJ:-val·.1ed over p 2m 

m 

the domain R -L 
i =O 

m 

transforms R -I 
i =O 

domain bounded by 

p times at most. 

K. . In other words , the representation z-X- ( z ) 
l 

~ 
K. contained in the Riemann surface R in-:,o a 

l. 

(m + 1) simpl e curves K*. and covering the 
l 

z* plane 

If we add to t his domain i n the interiors K* of the 
i 

curves K*i, we get a c losed Riemann surface. R* pq with p sheets. 

Hence, R* pq 
i s the Riemann surface obtained from R by mea:i.s of the 

variation V 
pq 

and this variation preserves the number of sieets and 

the genus of the Riemann surface . 

Let D be a domain on R. If no pole z . of q ( z ) i s situated 
l 

on the boundary of D and i f r i s so small that no point of this 

- 34 -

------------~~--~-- ----~--:----~-------- ----------



i-
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1 
l 
1 
j 

1 , 

] 

1 . 
l 
I 

boundary i s situated i n any K., then V determ:i.nes in an unambiguous 
l pq 

way a variation of the domain D, say 

on a closed Riemann surface R with 

transformed by means of a vari at ion 

D* 

p 

V 
pq 

Riemann surface R* of the same type. 

0 Therefore , a domain D pq 
sheets and with genus g i s 

into a domai n D* on a 

5 .2 Interi or variat i on of the Green ' s function. Cons i der the domain 

D on a Riemann surface R pf the above type , which i s bounded by 

analytic curves and a transformat i on of -:-he type (5 . 5) with appropriate 

smallness for p . Then t he Green ' s func t ion G* ( z,s) is defi ned for 

z and s in D*. Consider the func t ion 

6 ( z,s) = G*( z*,s* ) - G( z, s) 

with the points z and s in the domain where 

i = 0 , 1, 2 , . . . , m, V~reover, suppose all the points z. 
l. 

are 

situated in D. Then 6 ( z,s) i s harmonic i n and i s a 

uniform function of 

and there G* (~*,s* ) 

z , f or V transforms thi s domain into 
pq 

:i.s defined and harmonic , 

Use of Green ' s formula (5 ,2b ) yields 

6 (z, s) 

Her e P i s the boundary of 

clG(t,z ) 

-dV t 

D - \K. L ]_ 

cl .0. Ct, n ] 
- G(t,z ) ---- dst 

dV t 

, that is, C + l Ki 

C, G(t , z ) = 0 and 6(t,t ) - 0 so t ~at 

1 · dG (t , z ) cl 6 (t , z ) 

But on 

6 ( z, s" ) - · L [ 6 (t , S) - G(t , z ) ]dst = s. 
2:rc cl '1 c,n l 

l Ki 
t 
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On K. 
1 

let t = z . + r e 
1 

i0 Then after some tll3.nipulation s. 
1 

takes the 

form: 

s
1 

= ::_ /"[G* ( t 
a . p ·e dG (t,z ) 

+ \e + p A ( r e
1 

), s*) 
21! 0 r e dr 

dG* ( a . p ·e 
- G(t,z ) - t + 

1
i0 + p A (e

1 
r ) , 

or r e 

for t * = t + pq (t ) = t + p 
t - z 

i 

a. ·e 
--

1
- + p A. (re

1 
) 

1 

an analytic function of its argument. 

t*) ] rde 

wher e 
·e 

A. (re
1 

) 
1 

Let p (z,s ) and p* (z, s ) be the analytic completion of the 

corresponding Green ' s funct i ons and p '( z,s) -:.he derivat i ve with 

respect t o the first argument. 

p ( z*,s* ) = p ( z, s* ) + [ aip 
z - z. 

1 

G( z*, s* ) = G(z,s* ) + Re [ aip 
z - z1 

Taylor's develop~ent yields : 

+ p A. ( z - z .) ] i:' ( z, s-*) + O( p
2

) 
1 1 

+ P A 
i 

iw 

Replac ing into S. yi elds and' use of Green's fonnula (5,2a ) yields : 
1 

1 12
1! r (a. p Si= - e lie p ' * 

21! 
0 

re ) 
oG(t , z ) o ( a p )] 

(t , s* ) or - G(t,z ) or Re r:ie p ' * (t , s* ) rd0 

and since 

harmonic i n K. we find that 
1 
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} . 

1 
2,r 

dG (t , z ) 

1 ( a . p ) s. == Re . ~~e p 1 * ( zi,s* ) d0 
1 21! or 

0 

1 
21! ( :~:e P' *(zi,S*)) d0 1 2 

+ ~ G(t ,z) Re + O(p) 
- 21{ 

0 

Now G(t,z ) can be developed in a series of powers of i8 re 

[

00 ] 
~ l N N "NB 

G ( t, z ) == G ( z . , z ) + Re \ - p ( ) ( z . , z ) r e 1 

l 0 NI l 
N==l . 

if r is sufficiently small . Hence, we have 

v-1 ivT] d r e T 

00 

+ Rr [2, 
1 

Let pa. p* I ( z. J s* ) == Ae iµ 
l 1 

p 1 ( z. , z ) == Be ier 
l 

and r emembering the 

orlthogonality of trigonometric functions : 

-ie 
e 

1 2,r 

== -J 2AB cos (µ ..: e) cos (er + e) de + o(p
2

) 
21( 0 

AB 211: . 

== - j [ cos (a· + µ ) + cos (µ - er - 2e )] de + :)(1/ ) 
2:Jf 0 
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I 

I 

t 

1 
l 
l 

I 

= AB cos (~ + µ + O( p
2

) = Re [pa . p* 1 
( z. , s-¥: )p ' ( z . , z ) ] 

l l l 

Explicitl y: 

m 

G·•(z*,S* ) = G(z,s) + l Re (oa1p*' (z1,S* )p '( z1 ,z )) + o(/ ) 

i =O 

but 

G* ( z*,s* ) = G* [z + pq ( z ) ,s + p~( s )] 

(.508 ) 

and since p* '(u,v ) = p '(u , v ) + O( p ) we finally obt ain the formula : 

G* (z, s) = G( z, 0 

+ Re a . l) I ( Z . J O P I ( Z • J Z ) - q ( Z )p I ( Z J O - q ( s)p I ( SJ Z )] 
l .- l l 

2 
+ O(p) 

We note that G* (z, s) is expressed i.n terms of the ori ginal 

(5, 7) 

Green 1 s function and i ts derivative for the variable argument or evalu­

ated at the fixed interior points z . Therefore , the method i s called 

the "method of i nterior variation " . The new Green 1 s function i s obtained 

without any quadrature along the bour_d.ary by mear_s of the va l ues of the 

original Green 1 s function a t some fi xed interior points. It i s i nter ­

esting to note the differentiation of the terms i n the modifica t ion 

fac tor : a magni tude fac tor and a shape factor. In many applications 

Formula (5. 6 ) will be most useful since we are concerned with the value 

Qf t he Green ' s f unct i on on the bounda ry . 

As an example , consider the following s i mple case . Let 

z* = z + E/( z - z
0

). Then we find that 

= RelE (p ' (z0 , z )p' (z0 , s) 

- 38 -

- p ' 
P ' < z, 0 

- p ' 
2 

0 (€ ) 

-------~- ---·----------------



. J 

l 
' 

I . 

5,3 Variation of the Green-Neumann fu~ction. We begin with the deriva­

tion of Hadamard's analogous formula . Suppose that the boundary C is 

divided into t wo parts such that G( z,O is zero on c
1 

and 

cG (zJ s)/cln == 0 on c2 . Cons ider agab the difference 6 (zJ O == G-X-( z, s) 

- G( z, s ) . Green ' s identity then yi~~ds 

6 (zJ O == j 6 (t ) 0 
Ci+ C2 

clG*(t,z ) cl 6 (t , 0 
- G* (t ) z ) 

But on Ci, 6 (t, 0 == - G(t, 0 and G* (t , z ) == 0 whil e on c2, 

clG* (t,z )/clvt == 0 and cl 6 (t , s ) /cl vt == 0. Hence , we find that 

clG* (t , z ) 
G* ( z, s ) - G(z,s ) == 1 - G(t , s) dst 

C* cln 
1 

t o the second order in E, and since G(t , s) == 0 on Cl 

= 1 - clG (t , z ) 
G* (z, s ) - G( z, s) G(t , s) dst 

Cl + Ci clvt 

which by (5.2d ) gives 

G* ( z , 0 - G( z, s) = -J 
Cl 

2,G (t , z ) 

clG( t , z ) 

clG (t , O 

clG (t, 0 
--- Ev (s ) dst 

clVt 

(5,9 ) 

We now undertake to apply this r esult to the rectangular channel. 

In the s-plane the Green-Neumann is so defined that Jn the ~~axis 

G = 0 and 
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-=--= 

dTj dVt [ 

1 

- 2TJo 2 2 + 
( s - so) + TJo 

1 

2 
( s + so) + 

a 

C 

Figure 5.2 

= - 1 oo4 ~~0 [ ----1-2_ 2 + ___ 1_2--2] X 

o ( t - ~O) + llo ( t + ~o) + TJo 

1 1 ] 

Tj
2 

Ev (t )dt 
2 2 + 2 

- s) + ri (t + E) + 

(5.10 

The problem i.s r educed. to the integration of the integral of type 

00 

1 
riri0 v(t ) 

· 2 2 2 2 dt 
[ ( t - ~o ) + TJo J [ ( t - ~ ) + TJ J 0 

00 

= ,[ 

0 

v (t ) c..r 

To determine the potential i n the s*-plane we only need the value 

of G* ( s,s
0

) on the original boundary C, i f we linearize the problem . 

Thi s value is given by the formula: 

I. l 2 2 + 

L ( ~ - ~o ) + rio 

(5. 11) 
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1 . 

l imH 4E11o 

11 ➔ 0 

= - 4E11Q v(s ) n ( 
( s -

1 1 

The Green-Neumann func t ion for the new domain , eva luated on the 

~-axis boundary of the old domain, is (provided ~O / 0) : 

G~( ~l O' ~o111o ) - 4:n:E v ( £) (c, -110 110 ~/ ) = 2 2 + ::> 
so ) + 110 (s + so )- + 

((, -,> + 

1 
= - 4:n: 5 ) s ) 110 2 + 2 ) (5, 12 ) 

(t 2 
110 + so) + 110 

and similarly, if 11 / O, 

(5.13) 

We next consider the V variation for the Green-Neumann function. 
pq 

Formula (5.5 ) can be rewritten in a slight ly different notat i on 

S* = S + E @( 0 (5.14 ) 

For t he particular problem of the rectengul ar channe l , t his transforma­

tion must conserve the 11 -axis for 11 > 0. Let 

s* + i11* = s + i 11 + E[A(s,11 ) + iB ( ;, ~)] 

The condition i s A(0,11 ) = 0 f or 11 > 0 . A harmonic function A( s,11) 

whi ch i s odd i n s will satisfy this conii tion, say 
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] 

j 

j 

00 

A ( ; , TJ ) = J B ( m) e -wri sin ru; dm 

0 

From the Cauchy-Riemann condi tfons ?JA/o's = ?JB/?Jri and ?JA/dTJ = 

- dB/ ?Jt. Hence we have 

mB ((l) ) cos ruse -illrj 
?JB 
-= 

?J; 

or 

This leads to 

00 

J ) -(l,'Tj ) G( O = B(m e (sin a:n - i co s ms a.m 
0 

00 

= i J c (m) e i m(; di}) 

0 
00 

= i J c (m) 
jms 

e · dm 

0 

where C(w) is a real function. The transformation 

00 

S * = S + E i 1 C ( m) e i ms dm 

0 

(5.15 ) 

would sati sfy the requi red conditions. Conservation of the origin 

would r equire 00 1 C(m) dm = 0 . 

0 
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1 . 

5, 4 I nterior variation of the Green -Neumann funct ion . Here f.J ( s) 

should be meromorphic and have a pol e , say at s = ~ with coordinates 

( ~p'~p ) . Such a funct i on can be eas ily constructed a~d the transforma­

tion explic i t l y written by use of an .:.mage at ( - sp,~p) . The r esult is 

(5. 16 ) 

We now proceed with the derivation of the basic formulas. I n a process 

s i milar to that followed for the usual Green ' s funct i on, we shall start 

f rom the function : 6 ( z, s ) = G* ( z*,s* ) - G( z, s) with z and s i n 

D-)K. and suppose all the z . a r e s i tuated i n D. Then a s before 
!-..J ]. ). 

suppo se that G( z, s) = 0 on Cl and clG (z, 0 2lvt = 0 on c2. Use of 

Green ' s Fprmul a (5,2b ) yields ·: 

1 1 [ clG ( t ' z ) cl 6 ( t ' 0 
6 ( z,s ) = - 6 (t,(: ) -- - G(t , z ) 

2~ p dVt d Vt 

Here P is the boundary of 

Then on c1 G(t , z ) = 0 and 6(t , z ) = O; while on c2, clG (t , z ) / 2lvt = o, 
cG* (t , z ) / 2lvt = 0 and ~ (t,z )/2lvt = 0 . Hence 

1 ( [ clG (t,z ) 
= - J~ 6 (t, s) 

2~ ' \ K dVt 
LI i. 

and ultimately, i f ter ms of order 
2 

E are negl ected 

m 

+ l Re E p ' ( sp . , 0 p ' ( sp , s0 ) 

i =O i i 

· (5 .17 ) 

or 
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L 

l 

m 

G-X-( s,so ) = G( s,so) + l Re E [ p '( spi'o p ' (spi'so ) - p ' (s,so) 0(0 
i =O 

(5 .18 ) 

Conservation of the origin of coordinates in the trans f ormat ion (5.15 ) 

will be satisfied under the condition 

m 00 

2 I T}pi 
+ ,[ C(m) dm = 0 (5 .19 ) 2 2 

~pi + 11 • i =O pl 0 

Since 
m 00 

I T)pi 
>O j c (w) dm < 0 2 2 

i =O ~pi + T)pi 0 

However, we probably would like sometimes a modification of the boundary 

without the alternat i ng term, still conserving the origin. According to 

Formula (5,19 ) i t seems imposs ible , This is i llusory for we have r e­

stricted t oo much the class of admiss ible funct i ons G(s) , Let 

{t 1 1 n 1 1 
s* = s + + -I + 

s - spi s + r . ( s - spj) s + s . Pl j =O PJ 

00 

dm] + i ,[ C(m) i ms 
(5.20 ) e 

0 

Conservation of the origin i s then expressed cs 

n 
T)pi -2; 

_'_J 

i=O j=O 

T)pj 
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I 

. l 

} 

1 

l . 

Any sum of two points on a circle passing th.rough the origin with center 

on the ri-axis will satisfy the condition (5 a2l ) . The s implest 

transformation will be 

1 

s + I p 

1 
(5.22 ) 

where s and s are related by the formula 
p q 

2 2 
1l / r = 1l /r . For p p q q 

simplicity ' s sake we can even choose ; = s • Then i f R i s the 
p q 

r adius of the circle we have 

which corresponds to a well knovm geometrical property for a right 

triangle . 

5. 5 Shape of the modified boundary. We ha ve 

[c, -
1 1 

s* = s + € + 
sP ) + i(ri ·- T) ) (s + sP ) + i.(T) - T) ) p p 

1 1 -~J (t - s · ) + i. (11 - T) ) ( s + sq) + i(11 q q 

• [ (s 
- sp ) - 1.(11 - T} ) ( s + s ) - i(T) - T) ) 

s* = s + 
p p p 

- s )2 + (11 -
2 + 2 2 

( s 17P) - Ct + sp) + C 11 - 11 ) p p 

Cs s ) - 1(11 11q ) Cs + s ) - i.C11 ~<] q q 

Cs -
-2 --2- -

( s + 
2 

t q ) + (11 11q ) s ) + (11 - 17 ) q q 
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l 

This transformation l eaves the 11 -axis. unalter ed , but the s-axis (11 == o) 

i s modified . Then 

( s s ) + i11 p q 

When separated i nto real and imaginary parts ~hi s becomes 

(s + s ) ] 
2 2 (s + s ) + 11 p q 

(5.23 ) 

2 2 + (s - s ) + 11 p p 

As a numerical exampl e l et s == 1 and 11 == 1/2. p q 
Consequently 

s - 1 s + 1 4(s - 1) 4(< -/) ] 
s* == s +E [ 2 + 2 2 (s - 1) + 4 (s + 1) + 4 4( s - 1) + 1 4( s + 1 ) + 1 

[ 1 
1 1 

+ :)2 + i] l) * == 2E + 
(s - 1)

2 + 4 (s 2 2 4( s + 1) + 4 L~(s +l ) +l 

- 46 -

'-~--.~--~--- ------ ~--------



e r r:&tdd _..._ .... _.,~"""-....,""" ..... __ .._ ......... ,,....,._. __ - _..,....._..,.-.~..,_,-.-~~-----~-.--~~ ~ __,.. ,---4,..,.,_ s ·~---· ~ ---~~ ~ -~-- •- -' ......,_. -

TABLE 5.1 

s 0.25 0. 50 0.75 1. 00 1.25 1.50 1.75 2.00 2. 50 3.00 4.oo 

s*-s 0.2940 0. 5223 o.4556 -0 . 2204 -0.9141 
€ 

-1.0233 -0.8728 -0. 6933 -0.4247 -0.2668 -0.1188 

-
.1E -0.0466 -0.2047 -o.4850 -0. 4906 -0.4906 -0. 2056 -0.0340 0 .0499 0.1015 0.1008 0.0745 
2€ 

.,t:-
~ E = 0. 2 

I 

s 0.25 0. 50 0.75 1.00 1.25 1.50 1.75 2.00 2. 50 3.00 4.00 

;* 0. 31 0.60 0. 84 0.96 1.07 1.30 1.58 1. 86 2.42 2. 95 3. 98 

TJ* -0.02 -O. o8 -0.20 -0.27 -0.20 -0 .08 -0 .01 0 . 02 0.04 · 0.04 0 .03 



i 
j" 

Numerical values may now be tabulated a s i n Tab_e 5.1. A !: uperposition 

of functions 11* , allowing a fai r number of parameters , enables one pq 
to fi t any curve 11* ( ~), at least approximately as 

11 ·* ( ~) = I 
p,q 

11* ( t ) pq 

6 . SEEPAGE FROM A NEARLY RECTA._~GULA.R CHANNEL 

In Section 4 we had derived the Green- :Jeumann function f or the 

s-plane, but ultimat ely sol ved the potential problem by a method of 

:i ma,'.'~cs , P. simpler meV10d for suet sinpl 2 bo;md1::.r y c::ap-.:: c:.:1c. boL~ndc.ry 

condit ions . I n the l ast section we studied the Green-NeumE..nn functj_on 

fo r the s-domain . Such a study led us to discover the mapp i cg function 

which conserves the origin and t he imaginary ax~s and modifies the r eal 

axis in an arbitrary f ashion . The Green-Neumann function method would 

be the only availabl e method i f , tog~ther with the modific a tion of the 

boundary curve , the boundary conditions were modified, too . This is 

not the case and the problem can be solved by conformal marping trans ­

formations , now tha t the perturbation mappj_ng is known . 

6.1 Perturbation mappings and assumptions. First of all, we assume 

that the symmetry of the problem i s conserved, i . e . , ad i s a streamline 

and r emains finite as indicated i n Figure 6. 1. The new boundary 

curve is t angent to de at point d. Second; we assume that the veloc ity 

at b remains zero . The new boundary curve i s therefore t angent to 

be at b. Third, we assume that points b and b* and also d and 

d* coincide . 

Us ing the r esult of Equation (3 .7 ) we have the r el at ions b etween 

the potential. W* and ~* 

W* ( s* ) = - iQ:: arc tan s* 
1( 

(6.1) 
00 

W* = s* + i J C(w) 
iw~-K-

e dw (6.2 ) 

0 

I ntroduce the following de f initions for f
1 

and f
2

: 
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1 • 
J 

H 

b, b -* 

a,a* 

C 

d 

d* 

a* a 

y 

1 

b 
'V ) 1r* 

d ¢,¢* 
o-Q a 

2 o-)(-Q* 
C -2-

----- - C 

B ~ -Q/2 b 
z-plane 

b* -Q* 2 
a 

W- , W*-planes 

c* 

~ r,r* t,t* 

-----1:0r----l 0 - 0 >--. 

5 - , 5*-planes 

Hodo graph b, b* a, a* d c c* 

C , c -X b.b*· 
---~>-

v v* 
X X 

Iv 12:-lv-~-j2 
Inver se hod.ograph 

Ti J TJ* 

a a* s-plane 

b,b* lI "* 

·,[; 
~,~* 
~ 

d,d* C c* b , b* 

d 

ao--------------a-¥.· 

V v-¥.· 
___x_ _y~_ 
Iv-I 2' Iv* I 2 

Y* 

a * z*-plane 

I\ a -

\jP 
-v V 

1 
d , d* C c* X-¥.· 

-~ 
C c* 

Figure 6,1 



I -

J 

I 

00 

j c(ru) cos rus* dru = f (s* ) 
1 

0 

00 

J C(w) sin rus* dru 

0 

00 J C ( ru ) e i rus * dw 

0 

= f cs*) 2 
(6.3 ) 

Conservation of the origin in the perturbation mapping is e:iq:ressed 

through the condition 

00 

J C(m) dru = 0 

0 

or f (o ) = o 
1 

(6. 4) 

After perturbation the point c* must remain on the real axis . Now 

-rv = ffe + i Ef (VM) 

Consequently the condition for c·* to remain on the real axis is 

(6.6 ) 

Similarly we find : 

'\jP = 1 + Ef ( i ) (6.7) 

As sho~m i n Figure 6 , 1 the next transformation i s Z*
2 

= 5 ' * · From 

Equation (3.6 ) we find the relation between the v*/l v* l
2

-plane and the 

Z·*-plane to be 
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' . I 
! I _. 1 2 2 

v*/l v* I = - arc co sh ---
1( p + V 

Rel ation (6.5 ) can be rewritten 

p: VJ (6.8 ) 

Let A* = A+ Ea(C(m) =A+ Ea ( f ) where a i s a scalar functional 

of t he d.om,ain boundary, i.e ., of C(m) or f ( s* ) . Hence 

(6. 9 ) 

Similarly 

p = 1 + 2E f ( i ) (6010 ) 

The discharge Q* will be modified according to 

Q* = Q(l + t3 E) (6. 11 ) 

where t3 = t3 ( f ) and simi larly to (3.10 ) we have the physical plane 

1 s* 1 

= - J -arc 
k 1C 

cosh --
2

- ~*2 
+ 

p + V L 
p : v + 2i ES* f ( S* ) ]x 

( 

i Q* d{:* ) 

- -;;- 1 + s*2 

Let us develop the arc cosh term i n a series of powers of E and 

drop highe r order terms. Since there is no ambiguity we shall now 

write s instead. of s*• The end resqlt is : 
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-l 
j 

. ' 

I 

J , 

.Q s 2 
ds 2s + 1 - A 

z* ( U = z (s)--l El f3 arc cosh 
k:i 1 + A l ,+ ~;2 

-i: € t 2i s f ( s) ds 

[ ( t2 - A)( s2 + i)J1/2 i + s2 krc ' 

iQ / 
1 [ a: + 2f ( i ) - 2-{i.: f 2 ( -yi-- )] •~

2
ds 

+ -E 
[ ( s2 _ A)( ~2 + l ) ]l/2 r,2 krc

2 
1 + A 1 + 

iQ ft [2/\ r ( i ) + 2 ..p: r 2 (~ ) - 0:(1 - /\)/2 J ds 

- krc2 E' [ ( s2 - A) (s2 + 1 ) ]1/2 1 + S2 

(6 . 12 ) 

6 , 2 Hadamard ' s normal variation. I n writing Had.amard ' s f ornula two 

cases must be dist ingui shed, First ) on the channel bottom de we 

have O :=: s :=: v-::; and on de 

= - i E 5(s ) + r eal terms 

Equating the imaginary pa rts we obtain 

[Formula (6.13) i s cont inued on the following page. ] 
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1 
I 
i 
1 

I . 

2Q f 1 en s 
5 ' (U =-

s2 )C t2 + i)J172 k:l [ (" - 1 + s2 

kn2 -v(" - s
2

H s
2 

+ 1 ) (1 + t2 ) • {) I ( u 
fl ( U = -

2Q s 
(6.13) 

Second, on the channe l side be, we have s >-fi:. 

z-l<-( n - z ( u = z* (s) - z* (s ) + ( t - t) z'(s ) 0 0 0 

= - E 5 ( s) + i maginary terms 

Equating the r eal part s we obtain 

2Q /S S f 1 ( s) ds 
E o(U = -2 ~ 2 2 

kn ' ( s ·· ") ( S + 1 ) 1 + s 

= - • (6.14) 
2Q 

6.3 Boundary conditions . In addition to the above r esults , we must 

take proper account of the boundary conditions. First , conservat i on 

of the origin implies that 

Second, since the poin~ 
2 

t o the order E : 

f 1 (o ) = 0 or that 

limit 5 ' U, ) = O 
s 

s -+ 0 

c* i k on the r eal axis of 
i 

5 1 
( ~ ) :; 0 -+ or -+ 5 1 (n) = 0 
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j 

Third, s i nce the new boundary c urve i s tangent to de at po i nt d , 

we must have 

:d5 ( t ) 
d; 

d Re z* ( s ) = O 
d; 

Henc e , 5 1 ( ; )/z '( s ) = 0 f o r s = 0 , Then 

l i mit 

; -+ 0 

So finally 

2Q f 1 ( s ) s 1 

krr
2 [ (A - s2 )( s 2 + 1 ) ]172 1 + 

- iQ cash - a rc 
krr

2 
2;

2 
+ 1 - A 1 

"'/\ + 1 1 + 

l imit s f ( ; ) - 0 
1 s -+ 0 

s2 

Since f
1

(o ) = 0 t h i s i s alwa y s true , 

; 2 
= 0 

Fourth , t he new bounda ry c urve i s tangent tc be at b , a nd so 

limit [ d5 (S) d I m z* ( ; ) ] 0 = d; d; 
s -+ 00 

[ (1 

s f
1
(s) / arc cash 2 

A]" o 
2s + 1 -

limit 2 2 2 1 ) ]172 (1 + ;2 ) s -+ 00 
+ s ) [ ( s - A)( ; + 1 + A 

limit 

or 

for s = 00, 

Fifth , the po i nts d and d* co i nc ide. This l eads to tie condit i on 

that 
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l 

i . 

5(0) = 0 

Sixth, the points b and b* coincide , But 

This integral makes sense if, a s f,--,. ro, the r atio f
1
(;)/;3 goes 

to zero at least as fast as 1/f, . This implies that f
1

( ; ) = 0(; 2 ) 

for f, -► oo and for f, -+ ~ 

So , 

when 

The fifth condition can be written 

Summa ry: 
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l 
l 

1 . ·t 5 '( ~ ) 0 
lffil S -· or 

~ ➔ 0 

QI (°\fi) = 0 or (6.15 ) 

for 

6. 4 Evaluation of the discharge. In this section we will derive the 

formulas necessary f or calculating the di scharge. Referring to Figure 

6. 2, we see that at the point d , z*0 (o) = O + i R and z0 (o ) = iH. 

Also at point s c -¥-· and c we find z\ * ( \}}- ) = B - hE + i (H - VE ) 

and z c ( -~) ::: B + iH0 . 

B 

b 

y 

Figure 6.2 

From (6.12 ) there r esult s : 
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1 

J 

l 

i 5Q ~ 2s 2 + 1 - A 
z*(~) - z* (O) = z(~) - z(O ) - -. -2- f i arc cos 

krr ' 1 + A 
0 

QE [~ 1 (a+ 2f (i ) ~ 2~ f2(~)] 

+ krr2 'o 1 + A [ (A - s2 )( s2 + 1))1/2 2 
1 + s 

QE ~ 1 

- krr2 1 1 + 
0 

(2Af (i ) + 2~ r2("V\) - a~ 1 ; A)] 

[(A - s2)Cs2 + i)J1/2 

Let us introduce the notations : 

[z* (~) - z0(o)] - [z (--v0- ) - z(O)] == - (:i + iv) E 

~ 
I (A) == j arc cos 

0 

2 2s + 1 - A 

l + A 

Then separation into r eal and imaginary parts results in 

2QE 
+ ~ 

k1! 

( (f ( i ) - ,{i: f 2 ("\(i,)] 1 ds 

l+A o-[(_A __ - s=2)_(_s2_+_1_)_J1-7~2 

QE iv:;:: ds 
- 2f(i) - n 

k1!2 o (1 + s2)[(A - s2)(s2 + i)J1/c 

(Formula (6.16 ) is continued on the following page .] 
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J 

1 

· 1 
l 
-~ 

2Q 
V= -

k,r2 

Q 5 /\ 

2 
2kn: 

2 
1 + s 

(6. 16) 

The l ast equation checks the result we found befJre, Equation (6.16 ) 

yields a r elation between 5 Q and 5Ao The coefficients f (i) and 

f 2 ( ~ ) and the f~nction f 2 ( s ) have to t e eva luated i n ter ms of 

f 1 (s ) which i s known . . 

Now r 2 ( ~) i s the Hilbert trans form of r
1

(s ), that i s , 

and consequent l y 

i. e . 

Then 

and since f ( i ) 

1 + co 

J f ( i ) = 
2n: 

-co 

1 
f ( U = -

1 
f( i ) =-

2n:i 

1 
f( i ) =-

2n:i 

co 

J 
- co 

- co 

fl (t ) 
- --dt 

t - ~ 

f 1 (t ) + if2 (t ) 
------ dt 

t - ~ 

J+ oo fl (t ) if2 (t ) + 

t - i 
- co 

dt 

+ co 
[f1(t ) ~ i f 2 (t ) ] (t 

,[ 
t

2 
+ 1 

-co 

i s r eal, we have 

f 1 (t ) + tf2 (t ) 

t
2 

+ 1 
dt 
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+ i ) 

(6.17 ) 

(6.18 ) 

(6.19 ) 

dt 



L. 
1 +oof .( t ) 1 

= - J l dt + -
2n: t 2 + 1 2n: -oo 

(( / ) (- ~ 1-+«> fl (x ) dx) 
' t +l :rc x-t -oo -oo 

Interverting the order of integr at i on leads to 

f (i ) 
1 J+oo f 1 (t ) 1 +oo 

= - 2 dt + 2~2 ,[ fl(x) 
2re t + 1 " - oo - oo 

*+oo 

( 

t dt L (t2 + 1)( 

We now proceed. to evaluate the i ntegral g (x ), wher e 

g (x ) = 

*oo 

,[ 
- oo 

*oo ( t - x ) dt 

,[ 2 
- oo (t +l)(x- t ) 

2 
X 

re +--2 
;L+x - oo 

X re X 1 

t dt 

2 = g (x) 
(t + l)(x - t) 

+oo dt 
+ X ,[ 2 

- oo (t + l )( x - ;_:, ) 

X 

+--2 
l +x 

_+oo tdt X 

J -2- + --2 
. t +l l+x 
- oo 

u 

*+oo 

r 
-oo 

dt 

X -

2 [ 
n: + -2- + ~ 

x +l l+x 

2 X 
(1 + t ) - --2 log 

2 l+x ] 

+oo 

Ix - t I - oo 

Therefore 

f ( i ) 

f ( i ) 

1 

re 

2 
1 + X 

1 
+oo 

== -
/oo fl (t) 

? dt +- J 2n: · t- + 1 2n 
- oo - oo 

= I-!= fl (t \ dt ·-

n: - oo 1 + t 
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] 

j 

l 

We need a second equat i on in oQ and ot to sol ve t he problem 

entirely . It i s provi ded by consi deri ng t he s i tuat i on at points b and 

c . Thus , z-\ (oo ) = B and zb (oo ) = B while z-'l.·c -x-(-V)\) = B - hE 

+ i (H - vE ) and z ("\(i:.) = B + i H. Consequen~ly 

E(h + iv ) = 
i 5Q 

- k1r2 

2QE 
+ -

kl'r2 

i QE 
+­

kl'r2 

iQE 
+-

kl'r2 

C 

00 2 

1· arc 
2t + 1 - A ds 

co sh 
£2 v;: 1 + A 1 + 

00 

~ 
00 

t 

s f ( £) 

[ ( t
2 

- A)( s
2 

+ 1 ) ]:i:]'2 

a+ 2f ( i ) - 2 '1j~r2 (fi-- ) 

[ ( E2 - A)( E2 + 1)]1/2 

ds 

1 + £2 

(2)\f (i) + 2"\[i._ f 2 (~ ) -a: (-~ ) ] 

[ ( ~2 _ A)( s2 + l ) ]l/2 

Taking only the i magi nary part s of t hi.s complex equality, we find that 

oQ 
EV = 2 I * (A) 

k1f 

00 

QE. 1 

k1f2 ¼ 1 + A 

QE 
00 

1 

2QE 
+­

k1f2 

a+ 2f ( i ) - 2-{A r2
(~) 

[ ( E2 - A)(s 2 + 1 ) ]1/2 

s
2
ds 

1 + s 
2 

2 
1 + s 

ds 

- k1f2 ¼ 1 + A 

[ 2M ( i ) + 2--yi. r2(01'.) - a(
1 

; " ) ] 

[ (E 2 - A)(E 2 + 1)]1/2 1 + £2 

(Formula (6.21 ) i s continued on the f ollcwing page .] 
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I 
l 

I 

2QE f ( i) - yi: f 2 (-.{i,. ) [ d( 

1 + 'A ~ (s 2 - 'A )( s2 + 1) 
(6. 21 ) 

Q.5 A OO ds Q.5 A OO ds 

+ k,2 ¼ [ (£2 _ A){ £2 + l ) ]l/2 - 2k,2~ (l + £2)[ ( £2 _ A)( S2+1 )]1/2 

Let 

\/A ds j ex:, ds 

1- -------,- = H('A ) ------,---..,.,.. = ffl(•('A ) 
o (1+s2 )[('A-s2)(s2+1)J1/2 "\[i. (~2+1 )[ (s2-'A) (s2+1 )J1/2 

~ s r Cs) ds 

.[ [ {A-£2)(£~+1)]1/2 1 + £2 ~ F2 (A) 

ds 
--2 = F2('A ) 
1 + s 

( 

1 100 

f 1 (t ) ) 
- - -- dt 

1t' t - s 
00 
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l 

( 

1 J:x) fl (t ) l 
_ - -- dt d~ 

re t - ~ 
-oo 

With these notations the previous equations can be written as 

5Q 2QE 2QE [f(i ) - -y7; f 2 (~ ) ] 
-hE = - I(A ) + - F (A) + -- ------- E(A) 

krc
2 

krc
2 2 krc

2 1 + A 

(6.22 ) 

VE = ---

k1r2 
2QE 2QE [f ( i ) -\jA f 2 ("~)] 

+ - F·* (A) + -- ------- E*(A) 
krc

2 2 
krc

2 1 + A 

QE Q5A Q5A 
- 2f (i ) - H* (A) + - E* (A) - H* (;>,) (6.23 ) 

krc2 krc2 - 2krc2 

In other words, we have two equations for the two unknowns 5Q and f,A . 

In Appendix A a numerical example is given to illustrate the method. 
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APPENDIX A. NUMERICAL EXAMPLE 

We consider perturbations for the ditch correspor.d.ing to )\ = 4 
and s e lect an arbitrary func tion o ( s ). The formulas for the velocity 

distribution on the perimeter are: 

V a 
-::= 

k 

V a 
- = 

k 

V 
a 
-= 
k 

1' - arc 

a rc cos 

1( 

cos ( 1. 5 - '
2
) 2.5 

0 < s < 1.2249 

1( 

('2 - 1. 5) 
2.5 

1. 2249 < s < 2 
I 

[ 

2 4 2 
s - 1 . 5 + [ s - 3s 

2 . 5 
2 < s 

(A.1 ) 

¾ 1 
-= ---
B 2 .208 [ 

Sb 
0 . 24674 b - j arc 

0 

co s 
(

1.5 - s 
2

) ds ] 

2 .5 1 + ~
2 0 < s < 1. 2249 

B 2. 208 [ Jsb ls 2 
+ 1. 5 ) 

1 .30808 + arc cos \ 
2

_
5 

1.2249 

1.2249< s< 2 

1 1. 5+ 
- = 1 - - - - s > 2 
H 0 .597 

In the Table A.l are given the coordinates of the po ints on the 

perimet er, and the velocity at these points , such that between any t,,,o 

successive points flows a di scharge Q/ 40. The case A= 4 i s 

characterized. by the di schar ge r atio H/B formula s : 
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J 

] 

1 

-~ABLE A,l , Case H/W = 0 . 31 

p sP x/B. y/ H 

0 0 0 1.419 0 1 . 000 

1 4. 5° 0 . 079 1. 421 0 .079 1.000 

2 9 , 0 0.158 1 .427 0. 157 1.000 

3 13, 5 0 . 240 1.437 0 . 235 1. 000 

4 18 . 0 0 . 325 1.453 0 .313 1.000 

5 22 , 5 o . 414 1.474 0 .389 1 . 000 

6 27 .0 0 . 510 1.503 o .464 1.000 

7 31. 5 0. 613 1 .542 0 .537 1. 000 

8 36 , 0 0 . 727 1. 595 0 .609 1 .000 

9 40 . 5 0 .854 1. 667 0 . 678 1 .000 

10 lt5 . 0 1 . 000 1 . 773 0 . 743 1 . 000 

11 49.5 1 . 171 1.937 0 .803 1.000 

12 54.o 1.376 · 2 . 22lt 0 .857 1 . 000 

13 58 . 5 1.632 2 .891 0 . 909 1 .000 

14 63. 0 1.962 9 . 009 0 .959 1.00 

15 67.5 2.414 2, 743 1 . 000 0 . 964 

16 72 . 0 3 . 078 1. 719 1. 000 0 .879 

17 76, 5 4.165 1. 240 1 . 000 0 . 755 

18 81.0 6 . 314 0. 918 1 . 000 0. 589 

19 85 .5 12 .706 o .64-7 1 .000 0 . 351 

20 90 . 0 co 0 1 . 000 0 

H/ B == 0 . 62 (A, 3) 

A vel ocity di stribut i on diagr am i s i ndicated on Figure A, l . Between 

two success i ve ai·rows flows a di scharge Q/40 . 
2 Let us plot ~k 5 ( s )2Q, 5 '( s ) , and f 1 ( s ) a s shown i n Fi gure A.2. 

- 64 -



I 

l . 

B 

H 

Figure A. l 
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5 ( s) 

2 
S 2Q/k-rr 
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0 
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1 

· 1 2 3 
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Figure A.2 
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1 
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We approxi mat e f 1 ( ~) by a poiynomi el times a dampi ng exp~nent i a l 

for s > 0 (A.4) 

The functi on ~
2

( s ) i s defined by the f ormula 

Her e f
1

(s) i s an even f unction and i s defined f or all values of s 

by the fo r mul a 

(A. 5) 

The Hil bert t ransform i s t hen easi ly obtai ned, knowi ng t hat : 

and 

H [ sgn s e -I < I] = _ ~ [ e I < I ,:i ( _ I S I ) + e - I < I Ei ( I S I ~ 

by r epeat ed use of the formula : 

co 

H [sf(s)] = sH [f(s)] + _½] f(s)a.£• 
-co 

Ultimately: 

r2(s)/120 = (S/• ) (s2 
+ 2) [ell. I Ei ( - l<I) + e- 1<1 Ei (1<1)] + 4</• 

+ (3s 2j.) sgn' [el<I Ei (- l< I) - e- 1,1 Ei (Isl)] (A. 6) 

which become s f or s > 0: 
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f 2(1; )/120 = ( t 3 + 2( )[ e< Ei(-< ) + e-< Ei (S)] 

+ 3(
2 

[ •' Ei (-<)- e-< Ei(t )] + 4S 

In .the Table A. 2 we compare the values of 5 ( s ) as arbitrarily 

selected with the values calculated from the chosen approximate 

f 1 ( t ) and o* (s ) . 

TABLE A.2 

~ br2o/2Q 
2 

kl1: o*/2Q 

0 0.00 0.00 

0.20 0.25 

0. 50 1. 50 1.58 

0.70 2,43 

1. 00 3.00 2.91 

1. 20 2. 76 

1.50 2.00 2. 22 

1.70 1.86 

2.00 1. 50 ; 4. oo 1.53 ; 3.73 

2. 50 3.17 

3.00 2.50 2. 37 

4. 00 1.00 1. 17 

5.00 0 .50 0.56 

6.00 0.29 

16. 00 < 0 .002 

(A.7 ) 

Numerical integrat ions yield for the definite integrals E, E*, H and 

H*, the following values : 

oo d; 
E*(4) = 1 2 2 1/2 = 0 .755 

2 [ ( s -4 )( s +l ) ] 
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2 dg 
H( r ) = J · 2 2 2 l 2 = 0. 528 

0 (1 + E )[(4 - E )(E + 1)] / 

H* ( 4 ) 

and i.t was calculated earlier that 

2 

I (4 ) = J arc co s 

0 
(

x
2 

- 1.5 ) dx 
---2 = 2 . 208 

2.5 1 + X 

00 

[ 

2 
1. 5 + [ x 

4 
- 3x 

2 
- 4 J1 / 2 

] dx 
I* (4 ) = 2. 3026 J

2 

log
10 

x - ---
2 

=: 1. 375 
2, 5 1 + X 

Two more definite i ntegrals must be calculated by m:.merical :i,ntegration : 

Hence 

2 

(~/i20 )F2(4 ) = J h (S) [s2 (s 2 + 2 ) ( eS Ei ( -S ) + e -S Ei (S)) 

0 
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2· 

(</120 )F2(4) = J h (S) ( s
2 

( / + 2) ( e<Ei (- S) + e-S Ei (S)) 

0 

+ 3s3 ( e• Ei (- s) - e_, Ei (() l ] d( + 4 E( 4) - H( 4 ) 

00 

( ,/120)F; (4) = I h* (s ) (.2<s
2 

+ 2)( e ' Ei (- s) + e_, Ei ( ; )) 

2 

+ 3t2/e ' Ei ( ·· S) - e -S Ei (S) ] d( + 4 E*(4 ) - H*(4) 

A word needs to be said about the convergence of the i ntegral 

I 2 2 0 1/ 2 
F2(4 ) , For large values of s, h* (s ) ~ 1 1 + s [( s -4 )( s~+l)] 

is a symptot i cally equivalent to s-4. The integral will be convergent 

provided 

00 

,[ es Ei ( = s)+ e -s Ei( s ) + ( 3/s)[ e s Ei.( -· s) - e- s Ei ( s) ] ds 

2 

is convergent. Tte a symptot i c expansions of Ei ( - s) a nd Ei (s) a r e : 

Ei(- s ) = 

Ei(s) 

1 1 2 
=-- + - +- + s s2 ;3 

and the integr a l f or l a r ge va l ues of s i s equi val ent to: 
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l 
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Numerica l integrat ion then yields ( rc/120 )F2 (4 ) = - 0 .01 and 

( re/120 )F~ (4 ) = - 0.55, It i s easy to evaluate the constant f 2 (2 ) . 

Thus , we find ( rc/120 )f 2 (2 ) = - 0 . 96 . The constant f ( i) i s ca lculated 

numerically since 

2 
f ( i ) = - G(4) 

re 

ref ( i) 

240 
:::: 0. 21 

The two equat ions for oQ and oA become 

2.21 oQ/Q + 0 , 75 oA = - 310E 1 .38 oQ/ Q + 0 . 69 o\ = 22E 

or 

oQ/Q = - 461E oA = 950E (A, 8 ) 

Thi s is an interesting result but valid only for ve~y small Y~lues of 

E, Qualitatively, it shows very well that the dimensionless parameter 

q = Q/k-{A., where A is the cross -sect i onal area , increases with the 

perturbation and oA ) 0 . Since 

2Qdc bottom discharge 2 
er = --= = - arc tanij2 

Q total discha rge re 

arc tan 1 

~c 
side discharge ~ = = J 

Qdc bottom discharge arc tan (~ ) 

~c 
,r d'r-. 

0 ~= 
Q 

de 
2 (1 + A

2
)(arc tan V/ 

More water flows from the bottom than from the side as compared to the 

original cas e , 

Formulas (A, 9 ) are valid for relatively very small values of E 
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1. 

1 

1 

because a boundary condition f 1 (~ ) = 0 wa s approximated ·as.; 

f 
1 

("\[~ ) = 0, which i s a good approximation only for 5 )\ < < )\ . 

Taylor ' s development of f J ( )\* ) yields 

5A 5)\
2 

fl(~) = fl (V) + .h fl (--yi-.) + - f';_ (V) + •.. 
2 -VA 4A 

A better approxi mat ion is then obtained, replacing the condition 

f
1

(°"\[M ) = 0 by f 1 (V) = 0 and f1t\(i..) = 0. We select for f
1

(;) 

the function 

I ndeed, f
1

( ~) satisfies the condition f1(2 = O. In the Table A.3 

we compare the values of 5 ( ~) as arbitrarily 3el ected with the values 

calculated from the chosen approximate f 1 (s), 5 * ( ; ) . 

TABLE A.3 

s k1/5/2s 
2 

k.rc 5 */ 2Q 

0 0.00 0 ,00 

0. 20 0 . 0082 

0 .50 1.50 o .84 

0.70 2.13 

1.00 3.00 3.14 

1.20 2.84 

1. 50 2.00 2.17 

1.70 1.97 

2.00 1.50; 4.00 1.93 ; 3.63 

2.50 3.50 

3J•. 00 2. 50 2. 80 

4.oo 1.00 0. 80 

5.00 0.50 0. 20 

6.00 0 .06 

11. 00 < 0 . 001 
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' 

The Hilbert transform i s then easily obtained . Calling 

we obta in 

2 
+ (6s: + 8 ) U (a ) D(a ) 

A(a ) A(a ) ] 
2l: -- + 12I: --2 

a a 

(A.10 ) 

where the summat i ons are to be taken f or a discrete set of values a s 

indicated in Table A.4. 

TABLE A.4 

a 4,05 4,00 3.85 3.80 3.65 3,60 

A(a ) 1 - 0.9512 - 5 4, 756 ~9 - 9.512 

a 3. 45 3.40 3. 25 3.20 3.05 3,00 

A(a ) - 10 9.512 5 4, 756 - 1 0.9512 
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APPENDIX B. SEEPAGE FROM TRIANGULAR AND TRAPEZOIDAL CHANNELS 

This appendix is a free translation of the ma j or part of a paper 
in Russian by B. B. Vedernikov (1936 ). Substant~al l y the s~me theory 
was also published in German by Vedernikov (1937). 

B.l Introduction . Problems of seepage of water through soils have 
much importanc e in hydrology and hydraulic engineering . Questi:::>ns of 
seepage from cana l s , especially seepage with f:::>rmation of a free surface 
appeared first with the study of water filtration for irrigation . There 
is available a method of analysis appli cable t:::> the solutioc of such 
problems . This method may be used in cases of filtration witt a free 
surface, when in the domain of the complex potential the boLnaaries of 
the problem consist only of straight lines , on which either tte real or 
imaginary part of the complex potential i s constant . In the physical 
plane the boundary must also consist only of straight lines except, of 
course, for the free surface . I ntroducing now the vector of r educed 
velocity, we have the possibility of further necessary tranffor~ations 
because in the doma in l/v 1 (where v ' = Vx - i vy, the complex conjugate 
of the velocity vector ) the boundaries will be r ect ilinear because of 
the properties of the j_nvers ion transfor mat ion . Thus , by mapping the 
domain 1/v ' upon the half plane s through the Schwarz-Ctristoffe l 
formula and mapping again this half plane upon the domain of the complex 
potential, through the same formula, we get the relations of the form 

W = ¢ + iw = i(X +iY ) kf = f2(s) 

l/v 1 = f (W) 

Further , we can obtain the r elation between the complex potential and 
the physical domain in the formula 

(B.1) 

In such a form, which i s modified from Kirchhoff's method, prc•blems of 
filtration can be so l ved without distortion of the boundary ccnditions 
on the free surface. 

On the basis of the above method we give in the present vork the 
solution of seepage from triangular and trapezoidal canals with linear 
slopes and without influx. It i s further assumed that there i s an 
extremely deep water table or , in other words, the filtraticn does down 
to infinity . The y-axis is directed downwards and consequently the 
angl es of the velocity directions with the x-axis will be read clockwise . 

B.2. Filtration from triangular canals . In tie domain z t he profile 
of the waterway i s represented by a triangl e with an angle c f tje slopes 
with the horizontal, of value a (m = ctn a ). The depth of water i n 
the waterway is H and the width of the water surface B as indicated 
in Figure B.l. The profile of the free surface is not known ·beforehand . 
The velocity directions on t he slopes on the right and left arc, respectively, 
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a rc tan ( v /v) = rr/2 a y X 

arc tan (v /v) = rr/2 + a y X 

On the free surface the pressure is constant, which leads to the 
condition: 

2 
+ [v - (1/2 ) / = (1/2/ V 

X y 

o r 
lvl 2 

2 2 
= V + V ::::: V • 

X y y 

F'ar from the bottom of the canal ( i.e. , for y = oo ) the filtration 
velocity has the uniform direction arc tan ( vy/'.rx ) = rr/2 and the 
reduced value jvj = 1. At points b and d 

V = + co s a . sin a 
X 

2 
V = cos a y 

or 
v /j vj

2 
= (v + :i.v )/v =- + tan a+ i 

X y. y -

In the domain of the complex velocit:r vector, to the reduced Yelocity 
on the right bank corresponds to line be, mak:i.ng an angle ( r-./2 - a ), 
and on the l eft side de making an angl e (~/2 + ex) with the 
hori zontal axis . To the point c of the cont:::mr corresponds the whole 
infinity of the domain v between the lines be and de, bt:t to the 
whole line ae at infinity corresponds the point (a , e ) i n the 
hodograph plane. 

To the free surface corresponds the arc of circumference bacd. 
In the inverse veloc ity domain , to the channel profile corres:ponds the 
triangle cbd with vertex at c, correspond:i.ng to the bottcm of the 
canal. In the domain z, to the boundary of the problem, ccrresponds 
the semi- i nfinite stri p abda. Let us a ss i gn the following correspon­
dence of points in the several domains: 

l. 
B O· X = +- y = - 2 J 

2. X ::::: 0 y = H· J 

3. 0 
X = ,:!: 2k y = 00 . 

J 

f 

s 
X 

X == 
Q 

,:!: 2k ' 
f 

= + - 1, T) = 

= 0 y = O· J 

X = +~ 
- 2kf 

y == 0 

0 

V 

lvl2 

y = 00 . 
J 

s ::::: + 00 T) = 0 
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t 
j 

l 
l ,. Let Q be the discharge per unit l eng-:.h of canal. Thus to the bottom, 

corresponds t he point ~ = o . The sides are distributed on the axi s s 
from s = 1 to s = 0 and from s = -1 to s = 0 and the free surface 
s = 00 tQ t = 1 and fro m s = - 00 to s = -1. 

Let us map on the half-plane s -:.he semi -infinite strip Z. 
Schwarz-Christoffel formula yields : 

X + q_ arc sin s (B. 2 ) 

For s = 1 we obtain Q/2kf = 1( q_/ 2 or q_ = Q/,rkf . Finally : 

z = (Q/ ,rkf ) a ::-c s in s (B.3 ) 

or 
w = - i (Q/1r ) arc sin s (B.4) 

Let us map on the upper half plane s the triangle cbd of the i nverse 
vel ocity doma i n. Then application of Schwarz-Christoffel theorem yields : 

s 
v/ lv l2 =DJ s2a/1f- l ( s2 - 1)(,r/2-a )/ ,r-l ds + C 

0 

For s = 0 we have v/ lvi
2 = 0 and hence C = 0 . The preceding 

eq_uat ion then becomes , after some r e~uct ion, 

V 1vr =: D( sfo a + i co s 

(B. 5) 

(B.6 ) 

The constant 
for s = 1. 

D i s determined from the condit i on on the free surface 
Let u s denote: 

l ds 

I = J-sl---2a_/...,,_1r-(l---s2-. )-l/...,,_2_+a_/~',r 
0 

(B. 7) 

This defini te i ntegral can be eas ily expressed in terms of Beta 
function B and Gamma function ro As i s well -known , these functions 
are r e l ated by 

1 J xm (l-xn )p dx = (1/n ) B [(m + 1)/n, p + l] 

0 
(Formula (B.8 ) i s continued on tte f oilowi ng page . ] 
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,I 

1 r [ (m + 1 )/n] r [P + 1] 

n r [ (m + 1) /n + p + 1] 
(B.8 ) 

where (m + 1 ) > 0 , n>O and (p + 1 ) > 0. We then obtain 

I= (1/ 2 ) B[a:/n:, (1/ 2 - an: ) ] 

1 r[a:/n: J r [1 / 2 - a:/rr] IT[l/ 2 - a/n:] n[a/n:J 
= - = 

2 r[ l/2 ] cx( l - 2et/ n: ) !-{rt 
(B.9 ) 

F'rom this formula one can see i mmediately that I (et/n: ) = I (l / 2 - a /n:), 
1 .e. , I t akes the same value for t wo values of et/n: r elated by the 
condition 

For instance, for et/n: = 1/8 and 
oarne value . This character of I 
of the formula of discharge. For 

et/rr. = 3/ 8, the integr a l I has the 
w·11 be nec essary for the derivation 
s = 1 Equat i on (B.6 ) takes the form 

v/l v l
2 

= tan Ct+ i = - D ( sin Ct+ i co s et ) I 

'J'hcrefore: 

D = - 1/1 cos Ct 

'11lms i n a f inal form: 

V 1 
- - - - (tan Ct+ 
lv l2 - I 

(B.11 ) 

(B.12 ) 

Tlli s formu l a can be r ewritten, in conformity with relation (B.4 ), in 
the form: 

V (tan Ct+ i) 

I 

in: W dW 

Q { sin1- 2a/• (inll 20:/n: c· w/ Q CO E l 1t: 

(B.13 ) 

Let us · switch to the established r elation between the coc,rdinates 
of the domain z and the values of the complex potential or the coordi­
nates of the half-plane s, since the r elat ion between the latter and 
the values of the complex potential i s knovm and is dete r mir_ed by 
r e l ation (B,4 ) . By Formula (B,1 ) we get : 

( tan Ct+i )( -iQ ) 

/ -Sl---2et-/~rr-( l-~-~2-)-::..~/2_+a_/~rr 
0 
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1 

l 

Note that for t = 0 z = i H and consequently that C = iH. The integral 
of Formula (B.14) can be integrated by parts . We get then for the 
coordinates of the cross-section 

For the coordinate of the free surface , i .·e. , for 

B 1 
Z= -+---

2 I co s a 

{; > 1 we get 

iQ 
+ - arc cosh s 

:r(kf 

(B.15 ) 

(B.16 ) 

B,3, Discharge formula for a triangular waterway . Let us turn now to 
the determination of the di scharge of filtration from a triangular 
cana l . We define : 

1 

J a rc sin 

0 

ds s -~--~-~ = f ( 
Sl-2a/rr ( l-s3 )1/2+a/rr 

for s = 1 Formula (B.15 ) takes the for~ 

Further we also have: 

~ - .JL (1 - 2f (a / rr/rrI] 
2 - 2kf 

H = (Q/2kf ) tan a [ l - 2f (a/rr ) /rrI] 

a: 
(B.17 ) 

(B.18 ) 

(B.19 ) 

Solving jointly relations (B.18 ) and (B, 19 ), we get the formula for the 
discharge per unit l ength of canal : 

Q = k 
f 

We defi ne A such that 

[
B + 2 

tan ex ( 1 -
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A == _2 [ -1 _------.1- - 1 ] 
tan a f (~) / ~I 

(B. 21 ) 

and then we obtain: 

(B.22 ) 

where A i s a funct i on of the angle of the slope of the channel side 
with the hori zontal , or i n other words , of the rat i o of the width of 
the water surface to the water depth. From r elation (B.17 ) we see that : 

f(a/~) == ~1/2 - f (l/2 - a/~) (B.23 ) 

Using this and knowing that tan a== l/tan (~/2-a) we can eas i ly 
express the coeffic ient A for the canal witt a~gl e of s lopes of value 
( rr/ 2 - a ) through the coefficient A for a canal of slope angle of 
value a. We obtain on the bas is of Formula (B.10 ) 

A(rr./2 - a ) == 4/A (a ) (B.24 ) 

Therefrom we can eas ily evaluate the value of A for a == rr. / 4 ( for a 
canal with slopes of unity ), namely, A( rr./4 ) == 2 . We compute the value 
of A for canals wi th slope angles a/rr. == 1/6, a/~== 1/8 , and a/rr. == 
1/20, the latter being the l ower limit of practical s i gnificance . At 
t he same time , knowing the value of A for those angles, we can compute 
from Formula (B. 24 ) the values of A for the angles a/rr. == 1/3, a/rr. == 
3/8 and a/rr. == 9/20 . For this it i s necessary to compute the func t i on 
f(a/ rr. ) . We calculate using the formula of Gauss. For this i t i s first 
of all necessary that the integra l express i ng f (a /rr.) in such a form 
that the i ntegrand does not become i nfinite . For a/rr. == 1/6 we have 

1 

f(l/6) == J (arc sin (:) d(: /r, 2/ 3 (1 _ r,2)2/3 

0 

We make a change of variables such that s == (1 + x3)-l/2, Then 

3 1 

f ( l/6 ) == - J arc 
2 0 

sin ( ~ 1 / 2 ) d; 1 / 2 + ~ 
(l+x ) (l+x ) 2 

1 

r arc 
J 
0 

To get rid of the infinite limit in t he seco~d of these i ntegrals we 
employ the change of variables x == z - 2 and we obtain : 
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j -· Treat i ng s i mil arly the cases a/rr. = 1/ 3 and a/rr. - l/2'J , we ultimately 
obtain 

l 
f (g ) = 

1 
f (20 ) 

4 [{arc 

l 

sin (-
1 
tQ:72) + {a r c 

(l+x ) -0 

= [ 1 
10 [arc sin 

( (1+x~J112 ) 
l 

+ J arc 

0 

cos ( :o-;I72 ) 
(l+z ) 

cos 1 ) dz ] 
( l +z8?J2 (l +z8 )1/2 

dx 

(l+x20 )1/ 2 

These forms are suitable for t he eva~uation of those integrals by the 
fo rmul a of Gauss, Such computat ion of f (a/rc ) for a / re= 1/4 gi ves 
the r esult f (l / 4 ) = 2.9123666 . The exact value of f ( l / 4 ) by Formula 
(B. 23 ) i s 

f (l/4 ) = ( 1C/ 4 )I or 

Us i ng tables of J ahnke and Emde we obt ain f ( l / 4 ) = 2.912 . . .. For 
practi cal pur poses , it i s quite suffi c i ect to have for A the fi rst 
three signi ficant figures. The values of n ( x ) for the determination 
of jd/2, which are necessary for the computat i on of A, are found in 
the t abl es of J ahnke and Emde, where J (x ) i s given wi th four digits. 
The r esul ts of the computattcns are collected i n Tatle B.l . 

'l'ABLE B. l 

a/1C a ctn a f( a / 5 ) A 

1/20 90 6 . 31375 1. 887 1 . 579 

1/ 8 22° 30 1 2. 4111 21 2 . 092 1 . 735 

1/ 6 30° 1.73205 2 . 276 1 .821 

1/4 45° 1 . 00000 . 2 . 912 2 . 000 

1/ 3 600 0.57735 2 . 197 

3/ 8 67° 30 I o.41421 2.306 

9/20 81° 0 . 15838 2. 533 

With the aid of those data a plot can be mad.e of the coeffic ient 
A a s a function of the slope angle . In the r egion a/1C = 1/20 to 
a/rr. = 1/ 4 the function A can be expressed approximately by the formula 
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A = 2.123 (a/~)+ 1.47 (B. 25 ) 

For the commonly encountered slopes iri = 1. 0, m = 1. 5 and m = 2. 0 we 
get A= 2,000, A = 1. 864 and A = 1 .781 . 

B. 4. Diagram of filtration from a triangular -,1aterway. We can now give 
a picture of the veloc i ty dist ribution on the Netted peri meter of a 
t r i angular canal and the configuration of the free surface . As an 
example we analyze a canal with slopes m = 1 . 0 and depth H = 1 . 0 
meter . I n t hat case on the side slopes the horizontal and vertical 
components of the ve l oc i ty are equal and the val1;._e of the reduced fil­
tration ve l oc i ty on the peri meter can be derived from the re l ation 

1 1 
= - ---v v lv l2 y 

(B. 26 ) 

The value of v /l v i
2 

i s determined for m = 1 and a = 45° from 
Formula (B.12 ) fn the r elation 

V V 1 S ds 
(l+i) _ x_ - - - = - (1 + i) 1----------.,---.....-

jv i 2 - 'i-vl2 I O (1 s2 )3/4 sl / 2 
(B. 27 ) 

We set s
2 

= 1/(l+x
4

) a nd we obtain 

00 

2 1 41~ v/lvl = [2 (1+i )/I] dx/(l+x ) 

X 

For x > 1 (s < 1/y2-) we carry through the change of variabl e x = 1/ z 
and get 

z 

v/lvl
2 

= [2 (1+i)/rJj dz/(l+z
4

)
1

/
2 

0 

For x < 1 (s > 1/{2) we get 

v/lvl 2 
a [(l+i)/I]~- 2 [dx/( l+x

4
)
1

/
2
] 

(B. 28 ) 

(B.29) 

The value of the integr a l s in (B. 28 ) and (B. 29 ) can be fo.md by 
decomposition i n series : 

X dx 1 x5 1.3 x9 

J (l + x4)1/2 
= X - -+- ... + R 

2 5 2.4 9 
n 

0 

(B. 30 ) 
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Here the residua l term R can be estimated by the formula : 
n 

1. 3, 5 (2n+l ) 
4n+l 

X 

IR I < (B,31 ) n 2 . 4 . 6 2n 4n+l 

where n is the rank number of terms , starting with 2, and further 
fixing the value jR I < 0.00005 we arrive at the value of both 

n i ntegrals . 

Substituting in Formula (B, 15 ) the value s from Formula (B. 3 ) we 
obtain for n = 1 the following expression for the waterway coordinates : 

X-; - _Q_ : ( a s) (B,32 ) X = i' 
jv I J ,rkf 

y = H -
B 

(B,33 ) X = 2 - X 

Here s 
f (a / 11: , s ) = Lf(arc sin~ ) ds / s

1
/
2 

(1 _ s
2

)3/
4 

0 

For s < 1/'12 

f( a / 11: ,s) = 

we get 

z 

2 J arc 
l cos 

4 )1/ 2 
0 

(1 + z 

1 

= 2 a J arc cos --1----,--.....,..-
( 1 + 8 4)1/ 2 

0 

dz 

dz 
(B. 34 ) 

He r e , for convenience of application of the formula of Gauss , the upper 
limit of the i ntegral i s made unity, whereupon 

a 4 = s2/ (1 - s2 ) 

where s i s t he upper limit of the i ntegral f (,r/a ),s), 

s ~ 1/ 2, f (a / 11: ,s) =½ ; I - (arc cos s) I 

For 

provided 
f(a/rc, 0. 

1 

+ 2 a f a r e cos 

0 

1 dz 

( l+a4z4)1/2 

(B,35 ) 

a
4 

= (1 - s
2

)/s
2 

where s i s the upper l imit of the i ntegral 
Setting i nter vals between the val ue of X equal to Q/ 20 re kf 
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V 

we find the value s corresponding t o thi s va lue of X, a nd afte r this 
the value of the ve l ocity v and t he coordinates x and y . From this 
same va lue we derive the coordinates of the points of the ws t erwa y 
perimeter, between which s eeps 1 / 20 of the di scha r ge and the value of 
the velocity at those po ints . On the free surfac e f or m = 1 . 0 , fro~ 
r elation (B.5 ) we have : 

V V 1 / ds 
X 

lv l2 = 
-+ i = 1 -

t ( t2 _ 1 )3/4 
+ i 

V I cos a y 1 

(B. 36 ) 

Making the substitution s2 = 1/( 1 - x
4 )1/2 

we obtain 

2 X dx V 

J lv l2 = 
i + 1 - . 

4 = i + 1 
I cos a 0 1 - X 

2 
(x 1 x5 1 . 3 x9 

) + - - + 2 .4 9 + . .. +R 
I 

2 5 n cos a 
(B,37 ) 

The residual term of the series can be written in the f orm 

R < x 4n+l /( L~n+l ) (1-x 4 )1/2 
n (B.38 ) 

For values of x close to unity the s eries conve r ges
4

extremel~ slowly . 
Consequently, we introduce the change of variables x = 1 - z and we 
get 

X 
dx 

z 
z dz 

( ~2 J r 2 = I cos a - 2 = I cos a - 2 
( l _ x4 )1 / 2 ~ (_ - z4 )3/4 

0 0 

3 z
6 

3 7 
10 

z R ) (B,39 ) +1+ b+ 4 8 10 
+ ... + 

n 

wher e the r esidual term of the ser ies can be determined by the formula 

4n+2 3/ 4 
R < z /( 4n+2 (1-z ) 

n 

Let us set R < 0 . 0005 . 
n 

(B.40 ) 

The coordinates of the free surface are Qet ermined by For mula (B.16 ) 
with the relations : 

y = (Q/nkf ) arc cosh s 

V Q s ds J arc 
X cosh s X = y - -

-.~ ({:2 1 ) 3/4 V n kf I cos a 
y l 

- 84 -

• 



I 
L 

I ,_ 
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I 

There we introduce the same subst i tut ion as for the calculation of 
~/l vl 2 and we obtain 

Q 2a 1 
( 1 ) dz 

V J arc 
X cosh (B.41 ) X = y - -

[l-a4z4 )1/2 [l-a4z4)1/2 
Vy ,r kf I cos a 0 

where 
4 = ( (:2 1 ) /1:2 provided s is the upper li~it of the integral. a 

Fo£ the given problem we take H = 1 .0 meter . 1hen B = 2 . 0 meters 
and the discharge of filtration per unit l ength of canal is Q = kf (B+2H ) 
= 4 kf . For the calculation of f (a / ,r,(:) and of the integral (B,ql ) 
by the formuia of Gauss as before, we use five values of (:. The 
results of calculat ion of the coordinates of the points of the canal 
perimeter, between which 1/20 of the discharge seeps , of the filtration 
velocities of those points and the coordinates of the free surface are 
illustrated in Table B. 2. 

TABLE B. 2 

Waterway Parameter s 

xi--f/Q a = arc sin s V X y 

0 0 00 0 1 . 000 

0. 05 90 3 . 302 0 . 029 0.971 

0 . 10 18° 2 . 323 0 . 081 0 . 919 

0 . 15 27° 1.881 0 . 149 0 . 351 

0 . 20 36° 1.608 0 . 231 0 . 769 

0 . 25 45° 1. 414 0 . 325 0. 675 

0 . 30 54° 1 . 262 o.431 0 . 569 

0 . 35 63° 1 . 333 0. 549 o . 451 

o . 4o 72°· 1.017 0 . 681 0 . 319 

o.45 81° 0 . 900 0.829 0 . 171 

0 . 50 90° 0 . 707 1 . 000 0 . 000 

(Table B, 2 is continued on the following page .) 
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TABIB B.2 (Contfoue::1.) 

Free Surface Coordinates 

y V /v X y 
X y 

o.o . 1. 000 1 . 000 0.0 

o.4 0. 575 1.286 o.4 

o.8 o . 410 1 .481 0.8 

1.2 0 .293 1. 62::.. 1. 2 

1.6 0 .271 1 . 722 1.6 

The filtration picture and the veloc i ty distribution oc the wetted 
perimeter i s presented in Figur e B.l, where the points between which 
1/20 of the discharge seeps are i ndicated with lines . 

B. 5 Filtration from a trapezo ida l canal. I n the case of filtrat ion 
from a t r apezoidal canal the boundaries of the probl em, in addi tion to 
the sides and the free surface , will inc lude also ~he botto~ of the 
canal of width b on which arc tan (vy/ vx ) = n/2. 

In the domain z, t he filtration pattern is mapped as in the case 
of a triangular canal upon a semi-infin i te str ip as shown i n Figure B.2 . 
In the domain of the r educed ve l ocity vector t he f i ltration pattern i s 
mapped onto a pattern anal ogous t o that of the t riangular cana l, but 
with an interior cut on line c d e, i.e., on t he vertica l axi s corre s ­
ponding to the bottom of the canal. I n the domain of inverse velocity 
the figur e will have the form of a triangle a~cefg with also an 
interior cut on line c de . We de signate the di scharge through the 
bottom Qb and the velocity on the axis on the bottom vd . We map 
upon the semi-plane s the contour of the problem in the domain 1/ v ', 
and in the domain Z. Let us set t he following corresponding poi nts : 

1. 0 H· X y O· V i 
~ 0 X = y = = = - - = ; = T) = J J 

lv l2 vd 

2. B 
X + Q . V tan i; ~ 1 X = + -· = - 2k J --= + 0: + = + - 2J 

Iv 12 -f 

y = 0 y = 0 T) = 0 

3. + ___g__ X = 
___g_, V i ; ~ 0 X = + --= = + CXl T) = - 2k J 2kf 

J 
lv l2 f 

y = CXl y = CXl 
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Figure B.2 
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The relation between Z and s will have the same fo :::-m as before 
(B.3 ) 

X + iY = (Q/11:kf ) arc sin s 
or s = sin ( iW11:/Q ) . The r elation between the vector of the domain 
1/ v' and the vector of the upper ha lf-plane ~ we get by use of the 
Schwa rz-Christ offel formula in the form: 

For k < s < 1 we have 

¾ = - D (sin a+ i cos 
!vi · 

We designate k 

J 
0 

1 

J 
k 

After the substitutions k
2 

i n I
2 

we get 

1 

.J 
0 

dt 

~ 
a) j 

, ( , 
k ,J,, 

du 

(l _ t )1/2+a/11: tl-a/11: 

l -a/11: 
(u ) 

(B.42 ) 

(B.44 ) 

(B.45 ) 

The latter integral can be easily expressed through Gamma functions . 
We arrive to 
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L. 

n(1/2 - a/1£ ) rr (a/1£ ) 
I = 2 

k1 (a/1f ) (1/2 - a/,r)'fr 
(B.46) 

I2 .= I/k1 (B.47 ) 

where I i s defined in Formula (B.9) . Hence I possesses the same 
characteri stic as I, expressed in Formula (B.101. We now deter mine 
the constant D. For s = 1 we have : 

v/jvj
2 = t an a i = - D( sin a+ i cos a) r2 

and hence 

D = - 1/12 cos a = kl/I cos a. 

The velocity vd on the axis of the bottom of the canal by (B.42) i s 
equal to : 

(B. 48 ) 

The r elation between the coordinates of the plane z and of the complex 
potential plane or of the s plane [the r elat i on between those l ast two 
planes is known and is determined by Formu~a (B.4)] can be derived with 
the help of (B.1) in the f orm : 

-i 
z = (~i )Q 

+ -
1 ~ arc sin s+ iH 
vd 1fkf 

For the coordinates of the bottom (o < s < k ) we obtain : 

s 
+ J arc 

0 

s in 
,-;i 2 1 / ] + iH (k~ - S ) -a 1f 

For the coordinates of the s ides (k < s < 1 ) we have : 
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i 
1 

b 
z = - + iH 2 

+ (1 - i t an a ) ~- _JL [arc 
12 n:kf 

sin 

- { ! re sin S • (1 - ,2/f2:~J. ((2 - k2 )1-a/rr ] 

and for the coordinates of the f r ee surface ( s > 1 ): 

B 1 
Z=-+----

2 

+ arc cosh ( ( I 2 cos 

+ i _JL arc cosh S• 
n:kf 

(B,51 ) 

(B,52 ) 

B.6 Formula of discharge for a trapezoidal canal. Let us introduce 
the followin g notat i on: 

k 

J arc s in s 
tds = f 1(a/n:}k ) (B.53 ) 

s2 )1/2+a/1C 2 s2 )1-a/1c 
0 

(1 - (k .. 

1 
sds j arc s f 0 (a/n:,k ) (B,54 ) si.n 

s2 )1/2+a/11: ( S2 - k2 )1- (1/1{ 
= 

(1 - L 

k 

The width of the waterway on the bottom w:'...11 be deter mi :1ed by the 
relation 

2 
b = ---- (B.55 ) 

The waterway width on the surface and the dept!i. will be given ··:ty 

Q [ H = - tsn a 1 
2kf' 

The dischar ge f ormula has the form 

90 -
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_ f 2 (a/n:,k )] 

re I /2 
2' ( B0 57 ) 

(B. 58 ) 
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'1 ,. 

,, 

where f 2 (a/'rc, k ) - co~ a f 1 (a / 1C , k ) 
A=- - - ---- ----- - - - --

1C 12/ 2 - f 2(a /1C, k ) 

2 

tan a 
(B, 59 ) 

Let us t urn now t o t he cal culatio::1. of the va lue cf A. For thi s 
purpose we ca l cul ate the values of f 1 (a /1C , k ) and f,. (a/1C, k ) by t he 
fo r mul a of Gauss. We figure out the r,ecessary i ntegr~ls f or values of 
a correspondi ng to a = JC/4, a = 1C/ 6, and a= 1C/8. For those angles 
f 1 (a / 1C , k ) and f 2 (a /1C, k ) can be determined by way of substi t ut i ons . 
ana l ogous to t hose f or the calcul at i on of f (r7/1Ci / in Sect i on B. 3. For 
a/1C = 1/ 4 we have for s = [ l - k1

2/ (1 - k2z 1) ] 
2 wher e 

(0 < s < k ): 

2k l kl dz 
f 1 (a / 1C, k ) = -J arc cos 

V1 - k2z4 V 2 4 kl 0 1 - k z 

and for S = [l - kl2 (1 + x4 ) ]1/ 2 and X = 1/z wher e (k < s < 1 ) : 

2 [ l k l dx 
f 2 (a / 1C,k ) = ~- ,[ arc cos w kl 0 yi-:7+ X 

1 k
1

z 2 dz ] + J arc cos r ,/ 1 + 
4 

0 z 

For a/ re = 1/ 6 we obtain f or s - [l - k1
2

/ (1 _ k2z6 ) J1/2 wher e 
(0 < s < k ) : 

3 1./k 1 kl dz 
f 1 (a / 1C, k ) = -- J arc cos ; 

V 1 - k2z6 \/1 
2 6 kl 0 - k z 

and f or s = [l kl 2x2/(1 + x3 ) ]1/ 2 with X = l/z
2 where (k< s <l ) : 

3 
1 3/2 dx J arc 

k
1

x 
f 2 (a/rc , k ) =- cos 

2kl V 1 + x3 V 1+ x3 0 

3 
1 

kl dz J a rc + - cos 
V 1 

6 ·✓ 1 + 
b 

kl 0 
+ z z 

For a/JC = 1/ 8 we have for 
(0 < s < k ) : 

2 2 8 1/2 
s = [ l - k1 / ( l - k z ) ] · wher e 

- 91 -



I I 

I . dz 

x = 1/z, where (k < t < 1): 

dx 

V 1 + x8 

Results of the calculations are i llustrated in Table B. 3. 

TABLE B.3 

k2 bkf/Q ~ / Q Bkf /Q Hkf/Q A B/H 

a = 45° m = 1.¢ 

0 0 0 0 .5000 0 .2500 2 . 0000 2 . 000 

0 . 2500 0.1668 0 . 3333 0 .5449 0.1891 2.407 2 .882 

0. 5000 0.3035 0 . 5000 0.5947 0.1:+56 2.785 4.084 

0.7500 o . 4788 0.6667 0. 6760 0.09860 3.286 6.856 

0 .8750 0. 6093 0.7699 O. 74:;,6 0. 06817 3.732 10.94 

0 . 9375 0.7061 0 .8392 0 .8021 0.04801 4 . 123 16 .71 

1.000 1. 0000 1. 0000 l. OOCO 0 co co 

a = 30° m = 1.732 

0 0 0 0 .6555 0 .1892 1 .821 3. 464 

0 , 2500 0.2036 0.3333 o . 6840 0 .1387 2 . 279 4 . 932 

0. 5000 0. 3526 0. 5000 0.7203 0.1062 2.634 6. 785 

0.7500 0. 5299 0. 6667 0.7769 0.07129 3.130 10.90 

0. 875 0. 6533 0.7699 0. 8245 0.04841 3.552 16 . 69 

1.000 1. 0000 1 .0000 1 .0000 0 co co 

(Table B. 3 i s continued on the following page. ) 
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' TABLE B.3 (Continued ) 

k2 bkf/Q ~/Q Bkf/Q Hkf/Q A B/ H 

a = 22030 I 0 = 2 . 414 

6 0 0 0.7357 0 . 15240 1 . 735 4.828 

0.250 0.2289 0 .3333 0.7572 0,10940 2 .220 6.921 

0 .500 0 . 3840 0 . 5000 0.7856 0.08316 2 . 579 9. 41~6 

0.750 0.5592 0 . 6667 0 .8292 0 . 05592 3.054 14. 83 

0 . 875 0.6782 0 .7699 0.8652 0.03872 3. 482 22. 34. 

1 . 000 1.0000 1.0000 l.OOCO 0 00 00 

In this table are given the values of b, B, H in port i ons of Qjkf' 
i.e., of the width of the flow strip filtrating under -"- he bottom, 
and corresponding to the values of the modules k and the quantities 
A and B/ H, directly of interest to us . 

The portion Qb/Q of the discharge filtrating through the bottom 
of the cana l i s determined according to relation (B.~ ): 

~/Q = ( 2/~) arc sink . 

and consequently the portion seeping through the side is 

1 - ~/Q = 1 - (2/~ ) arc sink 

B,7 Filtration pattern from a trapezoidal channel . We give now the 
picture of the velocity distribution on the wetted perimeter and the 
configuration of the free surface. We figure i t out in detail for a 
canal of one-on-one slopes . Let us take the va l ue arc sink= 52°30 1

• 

With this we get, as we shall see later, the cross sec-:.ion of a canal 
sufficiently typical fo r the average irrigation canal , and the ratio 
(width of bottom)/(depth ) will be b/H ~ 3. 16 . 

The values of the filtration velocities on the ~o-:,tom (2k < s < k ) 
of the canal are determined by the relation : jvJ = -,r = i !vi /v 
where with use of (B. 42 ) Y 

V i 

N2 = 1
2 

cos a 
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wher e R can be put i n the form : 
n 

4-n+l 
z 

R < k2n ~--
n 4n+l 

(B. 60) 

1 

J1 -k2z 
4 

(B.61 ) 

The va lue of the coordinates of t he bottom i.n (Bo50 ) and (B,3 ) can be 
derived from t he r e lation: 

Here 

V 1 
x = X-Y- + ----

lvl2 
12 cos a: 

y = H 

s 

Q 

nk 
f 

sds 

(B. 62) 

(B.63) 

= ,[ arc 

0 

s in S -(l ___ s_2_)_3/~~4-(k_2 _ _ s_2_)3-/~4 

\jk 1 
= 2 - a fa re cos 

kl 0 

d z 
--,....-_-_-_-:_-_-_-_-_- --;========= Y 1 - k 

2
a 

4 
z 

11 -V 1 - k 
2 

a 
4 

z 
4 

(B,64) 

provided a
4 = (k2 - s2)/k2

(1 - s2) wher e s is t he upper limit of the 
i ntegr a l f

1
(a/n,k, s). On the s ide we have : 

Substi t ut i ng 

substitut i on 

I") 

sc. = 1 

s2 = 1 

v= \j2 v = \j2. v 
X y 

(B.65 ) 
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l 
I 
J 

: 

and for J 1 -

X V. . 2 J X 

lvl2 
= 

I 
0 

k 
2/2 1 < s < 

V 
X 

lvl2 = i 

dx 

~ 
1 

z 
2 ] ---;:=dz===== 

The sequence of calculation of 

I O 'i 1 +Jz4x 
integrals 

0 

explained in Section B.4. 

(B.66 ) 

(B.67 ) 

The coordinates of the side points using (B.51 ) and (B,3 ) are 
determined by the relation: 

Here 

.. b ' H Z i= - + l + 2 

for k < (; < (1 - k
2

/
2

)1/
2 

s 
f 2 (a/1C,k, 0 = J arc sin 

k 

___.....--------

(B.68 ) 

dx 
(B.69 ) 

where (; is the up?er limit of the 

dx 

(B.70 ) 
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l 

.. 
provided a

4 
= (1 - s

2
)/(s

2 
- k

2
), where s is ~he upper l im~t of 

the integral f 2 (a/rr,k, s) for s > l/1 - k1
2 
/2. 

On the free surface us ing (B.42 ) we have 

V 
X 

- = 
V 

y I cos a 

dx 

-y1 4 
X 

(B. 71 ) 

where 
4 2 2 2 

x = Cs - 1)/Cs - k. ) . The method of cal,~ulation of 

J (1 - x
4r1

/
2
dx is shown in (B.4 ) . 

0 

The coordinates of the free surf ace we derive using (B,52 ) and 
(B.3 ) from the relat i ons: 

V 
B X 

X=-+y-+ 2 
V y 

B V 
X 

= - + y - + 2 

provided 
i ntegral. 

V y 

The values 

dx 

I 

I 

y =- (Q/,rkf ) arc cash s 

kl Q s J arc cash s 
s d s 

Cs2 - 1 )3/li Cs2 _ k2 ; 3/li cos a ,rkf 1 

2 Q 
1 k.9.2x2 dx J arc sinh -a 

,rkf - ✓ l 4 4 ✓ 4 4 cos a 
0 - a X 1 - a X 

(B.72 ) 

i s the upper limit of the 

l k 2 2 
fl (a/rc,k, s), f 2 (a/,r,k, s ) , and 1 arc sinh --;=:a=x===- x 

10 ✓ l 4 4 - a X 

were computed us ing the formula :)f Gauss for fi-ve 
4 l~ 

- a X 

ordinates. On the waterway perimeter we set intervals between values of 
X = Q/18rckf. We derive the coordinates of perimeter points between which 
1/8 of the discharge seeps and the values of the filtration velocity 
of those points. In addition a f ew complementa ry ?Oints are given . 
Results of the calculation are i ndicated in ~able B.4 . 
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I ~ TABLE B.4 

I . 
Xkf/ Q a = arc sin s V xkf/Q ykf/Q 

Bottom of Canal 

0 0 1.350 0 0.1226 

1/18 10° 1.359 0.0413 0.1226 

2/18 20° 1.391 0. 0820 0.1226 

3/18 30° 1.459 0.1213 0.1226 

4/18 4o0 1.612 0.1578 0.1226 

5/18 50° 2.886 0.1883 0.1226 

52° 30' 00 0.1934 0.1226 

} 
Side Slope of Canal 

52° 30' 0.1934 0.1226 j 00 
l 

1 55° 2.099 0.1971 0.1189 
6/18 60° 1. 640 0.2073 0.1087 

i 
64° 30' 11" .8 1.414 0.0968 t ., 0.2191 

7/18 70° 1.224 0.2375 0.0784 

8/18 80° 0.998 0.2711 0.0448 

1/2 90° 0.707 0.3159 0 

Free Surface 

Ykf/Q. V /v 
X y xkf/Q ykf/Q 

0 1.000 0.3159 0 

0.1 0.705 0.3799 0.1 

0.2 0.295 o.4172 0.2 

0.3 0,199 o.4412 0.3 
o.4 0.139 o, 4558 o. 4 

0.5 0.099 o.4636 0.5 

.. 
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-I 

The waterway width at the bottom i s b = 2b/ 2 = 0 . 3867 Q/kf , and 
the depth i s H = 0.1226 Q/kf , The width on the surface i s B = 
0,6319 Q/ kf , Consequently, B/H = 5,158, b/R = 3.158, and A= 3.005. 
All the f i gures i n the table a r e given in rat ios of Q/kf, Setting the 
same value of Q/kf we get the absolute dimensions of tfie wa~erway. 
Converse ly, fixing one of the quantities b , B, or H we derive the 
two others and the di scharge Q, Let us take for example b = 5 . 0 meters , 
then H = 1 . 58 meter s , B = 8. 16 meters , and tr_e seepage discharge per 
unit l ength of canal i s 

The filtration pattern is indicated on Figure B. 2 . Arrows :'..ndicate 
t he points between which 1/ 18 of the dischar 6e seeps. 
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