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SUMMARY

The present work is focused on analysis of gravity flow of ground-
water and particularly on problems of steady seepage from ditches, where
the flow may be assumed to be two-dimensional. Calculation of the
seepage from a channel of arbitrary shape is a most difficult task.
However, this problem is of great interest in the design of groundwater
recharge basins and unlined canals for the conveyance of water.

If one accepts as a starting point Darcy's generalized law, the
mathematical formulation of this specific topic leads to a mixed
boundary value problem (with a free surface) of potential theory.
Several cases have been previously solved by inverse methods or hodo-
graph methods, with the restrictions inherent to those procedures,
namely, either the channel cross section has a very simple geometrical
shape or is not known a priori. In the present paper these well-known
methods are used to find the seepage from a rectangular channel., As a
step toward the solution of the more general problem, the writer here
presents a first order solution of a perturbation type for a channel
of nearly rectangular cross section. The method would be equally
applicable to the triangular or trapezoidal section, and in principle

would apply for any ditch of nearly rectilinear section.
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1. INTRODUCTION

1.1 Background. In 1856 Henri Darcy,'a French engineer, first formu-
lated an analytical eapproach to predicting the flow of water through a
porous medium in connection with the design of the water supply system
for the city of Dijon. Since then the ‘theory has undergone extensive
development by scientists and engineers. A summary has been given in
the recent.monograph by Scheidegger (1961), and in the earlier text by
Muskat (1937). A review of the importent contributions of the Russian
school may be found in the book by Polubarinova-Kotchina (1952) or the
paper by Polubarinova-Kotchina and Falkover (1951).

The interest in the present paper is focused on gravity flow pro-
blems and particularly on problems of steady seepage from ditches. If
one accepts as & starting point Darcy's generalized _aw, the mathematical
formulation of this specific topic is a mixed boundary value problem
(with a free surface) of potential theory. Several cases have been
previously solved by inverse methods or hodograph methods, with the
restrictions inherent to those procedures, namely, either the channel
cross section has a very simple geometrical shape or is not known a
priori. In the present paper these well-known methods are used to find

the seepage from a rectangular channel. 1In addition, for the sake of

" completeness a free translation is appended of Verdernikov's solution of

the corresponding problems for triangular and trapezcidal channels.
Calculation of the seepage from a ditch of arbitrary shape is a
mos. difficult task. However, this problem is of great interest in the
design of groundwater recharge basins and unlined canals for the con-
veyance of water. As a step toward the sclution of the more general
problem, the writer here presents a first order solution of a perturbation
type for a channel of nearly rectangular cross section. The method would
be equally applicable to the triangular or trapezoidal section, and in

principle would apply for any ditch of nearly rectilinear section.

1.2 The porous medium. One may wonder what differentiates seepage flow

from that of the usual hydrodynamics cr hydraulics. In fact many authors

have tried to reduce the porous medium to a set of tubes and porous
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medium flow to flow in pipes. However, the porous medium is not so much

characterized by its innumerable voids of varying sizes and shapes as
by the multiple interconnection of the pores. For that matter, it is
necessary to differentiate between "absolute porosity", that fraction

of the bulk volume not occupied by the solid framework, and "effective

porosity", the interconnected fraction, for a rock may have considerable

absolute porosity and yet have no conductivity to fluid for lack of pore

interconnection. The porosity is thus an upper limit of the weter-
holding ability of the soil, which may or may not be used to its full
capacity.

The moisture content of a soil, apart from many other factors,
will generally vary with the depth. Roughly speaking, three regions
exist: a region of constant moisture content which overlies a region
of rapidly changing degree of saturation beneath which there ic a
saturated region. Water movement in the first two regions, called the
capillary zone, is essentially differeﬁt from that in the saturated
region. In the capillary zone, water displaces air, while in the
saturated (or groundwater) zone, water moves as a continuum, enclosed
by rigid boundaries, under the action of gravity forces.

The pressure variation in the pores can be used as the tasis of a
quantitative differentiation between the two zones, the true capillary
ione being defined as that in which the pressurs of the water is less
than atmospheric and the groundwater zone as that where the pressure is
greater than atmospheric. The water-table, which is called a free sur-
face when showing a large curvature under the gravitational forces, is
then defined as the surface at which the fluid »pressure is equal to the
atmospheric pressure. It will always be overlain by a capillary layer.
In the present work, however, the capillary effects will be ignored and
the assumption will be made that the flow takes place in a saturated

porous medium, whose free surfaces are sharply defined.

1.3 QEESXLE_EEE- The first experiments on flow in a porous medium were

conducted by Darcy between 1852-1855 and the results published in 1856.

report. was primarily concerned with the water services of the city
ot Dijon.
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In these tests, Darcy used sand from the Saone river. The soil to
be tested was placed in a vertical tube of diameter 35 cm, with a height
varying from 58 to 171 cm. The sand was poured into the tube which had
been previously filled with water to remove the air from the pores. The
pressure during the test was measured with sensitive manometers at the
upper and lower end of the tube. The pressure oscillated somewhat and
computations were carried on the basis of their means. The range of
piezometric slope was 1.50 to 18.78 and the porosity of the sbil was
38 percent. The tests led their author to come to tke conclusion, known
as Darcy's law, which may be stated as follows: "For a sand of a given
type, it is possible to assume that the filtrating discharge is propor-
tional to the pressure and inversely proportional to the length of sand

layer." This law is expressed in the formula:
Q = kAH/L, (1.1)

where Q 1is the discharge of water, L the column length, H the head
loss between the two ends of the column, A the filter cross section, k
a coefficient which is a function (according to Darcy) only of the type
of soil. In a simpler form, Darcy's law may be written as Q = kAJ,
where J 1is the appropriate piezometric slope or hydraulic gradient.
As was mentioned before, Darcy investigated only sands. Later investi-
gations have shown that the filtration coefficient k depends on the
fluid as well as the medium. In spite of shortcomings of this sort,
the value of his work was very great: in it a solution to the first
investigated problem of filtration was given.

If (1.1) is now written in the form
v = Q/A = kJ (1.2)

the ratio Q/A represents the quantity of water filtrating per second
through a unit surface, or the so-called filtration velocity. This

velocity yields a variable directly obtainable in experiments.




2.. MATHEMATICAL FORMULATION

2.1 Basis of the theory of filtration. In orcer to analyze the flow

of groundwater it is customary to assume that Darcy's law is valid at
any point of the flow field. Along with the ccntinuity equation, this
will lead to a partial differential equation, the complexity o which
depends on what further.assumptions are made atout the fluid and the
porous medium. Here it will be assumed that the fluid is inconpressible
and that the porous medium is homogeneous, isotropic, and inconpressible.
Moreover, the flow is taken to be steady and two-dimensional.

Let m be the porosity for a homogeneous porous medium and let v
be the filtration velocity, i.e., the discharge per unit of time which
filtrates through a unit surface normal to the velocity direction. The
ratio ?/m gives the average velocity u. (Tt is the true velocity in
the sense that it is the velocity in the pores, the average velocity in
the sense that this velocity is not uniform in the poreso)

Assuming that both the water and the soil are incomprescible we

obtain the continuity equation
V°VvV=0 or v:-1 (2.1)
Darcy's law may now be written in the form
vV =k grad h (2.2)
Here h 1is the head defined in terms of the elevation y (positive

downwards), the pressure p, and the specific weight vy, by the

relationship

h=y-p/ly.

Hence for a seepage flow with a constant filtration coefficient k, the

potential @ is equivalent to kh, i.e.,

V = grad kh = grad ¢ (2.3)

-




If this result is combined with the continuity equation (2.1) the result

is

X% 3¢
VY & ey (2.14)
Bxe By2

Therefore the potential satisfies Laplace's equation.

2.2 The hodograph. Without loss of generality we can set k = 1. In

the case of a soil whose filtration coefficient is different from unity,
it will be sufficient to multiply both velocities and discharges by k.

With this understanding Darcy's law becomss
2§ - :
J+v(p/y) +v=0 (2.5)

where 3 is the unit vector in the vertical direction.

y
0
== v
A Vi X
P
J v(p/7)
0|
Figure 2.1

The geometry of this sum can be described with a closed triangle
OPO', which we called the filtration triangle as constructed in Figure
2.1. To each point of the flow will correspond some point'of the fil-
tration triangle. For a continuous shift in the physical plane along

any path, the point P describes some continuous curve in the plane



Vo vy (except at points where the velocity becomes infinite). A great
number of points P corresponding to interior points of the flow gener-
ate a connected domain which is called the hodograph plane.

In two-dimensional flow it is convenient to introduce complex
variables. Thus the complex potential W is defined in terms of the
potential @ and the stream function ¥ by W =g + iy and the
physical plane zZ 1is given by % = x + iy. The problem ie then to find

W as a function of z. We first note that

aw d of oV
—_—=— (f +iY) = — + i—=v_ - iv (2.4)
dz  ox ox ox = J

from the Cauchy-Riemann equations, or Vo ivy = dW/dZ. The hodograph
plane appears as a reflected mapping of the plane of the derivative
dW/dz about the Vx axis. Consequently, corresponding curves will be

circulated in opposite directions.

2.3 Boundary conditions. If the flow, excepl for the free surface, is

bounded with straight lines, along which one among the quantities @,
¥, or p is constant, then the boundaries cf the hodograph plane will
be given by means of simple geometric construction as follows.

1. Free surface: If on the free surface there is neithesr evapora-

tion nor absorption of water, then in steady flow the velocity direction
is that of the tangent. Further, it may be assumed that on the free
surface the pressure p = constant. It follows that v(p/y) has a
direction normal to the free surface. Consequently ¥ and v(p/y)

form at their vertex P of the filtration triangle a right angle, as
shown in Figure 2.2. The geometric locus of such points P will be a
circle of diamter 00'. )

2. Lines @ = constant: Such boundaries separate the soil from

the waters of a stationary reservoir. From the condition @ = constant
it results that the vector ¥ is perpendicular to the boundary. It
can vary quantitatively but not in direction, In the hodograph plane
we shall have consequently a straight line, going through the origin

and perpendicular to the boundary.

w 6w
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Figure 2.2

3. Lines V = constant: These will be boundaries along which the

stream slips. Along such boundaries the velocity can vary in magnitude
but not in direction. In the hodograph plane we get obviously a straight
line going through O and parallel to the stream boundary.

4., Lines p = constant: On such boundaries seepage occurs into

‘ the atmosphere. The vector wvw(p/y) s normal to the boundary. 1In the
hodograph plane we get a straight line, going through O' and perpen-

dicular to the boundary.

v
y
v
X
I\ v -

7
3 \\ P
v(p/7)

o' \\ Seepage face

direction

Figure 2.3

Hence the boundaries of the hodograph are known if the boundaries
in the physical plane corresponding to the second, third, and fourth

condition are known. Such will be the case for seepage from a channel
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with rectilinear sides and bottom. It is then only necessary to use the
well-known methods of conformal mapping to relate the plane of complex

potential W to the hodograph plane. Finally, the flow in tke physical

plane may be constructed by use of

=] "L (2.5)

A detailed example is given in the next section,
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3. SEEPAGE FROM A RECTANGULAR CHANNEL

The problem of seepage from a rectangular channel will be analyzed

as an example to show the methods which can in prinziple be used on any

channel having rectilinear boundaries. It is assum=d that the pervious’

layer extends infinitely far downward as indicated in Figure 3.1.

3.1 The hodograph plane method. As seen previously, according to

Darcy's law:

k grad h = grad @ (3.1)

<¥
i

=
1!

xh = k(y - p/y (3.2)

On the free surface, since p =0, @§ - ky = 0. Differantiating with

respect to the arc s of the free surface

¥ ¥\? ¥
- -k — =0 or e -k — . —=0
Os Js ds os  Os
i.e
2 2
v, *+ vy - kvy =0 (3.3)

Using a reduced velocity v = (actual velocity)/k, the equation

becomes:

the equation of a circle. The diameter of this circle is unity, as

indicated in Figure 3.1. An inversior of pole f and modulus unity

will transform all the boundaries intc rectilinear opoundaries as shown.
The plane ?/Jv]g can be mapped onto the upper helf-plane

with the help of the Schwarz-Christoffel transformation. Conseqﬁently,

at least in principle, we can express v/|v|2 as g function of 9, say

v/lv]2 = f(5). The complex potential plane W = @ + iy has also a

-9 -
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polygonal contour as shown in Figure 3.1; It can be mapped upon the
§-plane so that one obtains a relation of the form W = g(§). Elimina-
tion of & yields v/|vl2 = F(W). However, our interest lies in the
knowledge of @ = @g(x,y), i.e., of W = W(z). We saw previously that
aw/dz = Ve = ivy so that

Consequently

z =L/ (v/]vl2dw =jF(w)dw (3.4)

With the use of reduced velocities this expression s modified into

the form

z = i f 72 aw = i jF(w)dw = if £(t)g' (t)at,

k

whichever is most useful.

3.2 Conformal mappings. We shall take advantage of the symmetry of the

problem. Aside from the usual auxiliary p-plane we chall use another
auxiliary plane, the {-plane; the relation between these two planes is

given by the formula

(3.5)

Consequently, p ='V§: Corresponding points in the several planes have

the following values:

o/ v /|v|? =
|2

!
(@]
ct

I

1
ja

vve

Il
(@]

point a: X

<
I
Il
}—l
=
1l
o

=
I
‘_l

© vy/lv

= 1 =




point b:

point c:

point d:

Y

= B =0

=0 ¥ = -q/2

= B g =0 v/|v|? = o k=3 £ =\/A
= H Vo= Q r=C n=0
=0 =0 vx/]vl2 =0 t=0 E=0
=H k=06 Vy/lvlgzl/vdr-—«o n=0

Mapping of the plane V/Ivl2 into the §-plane can be carrizd out easily,

using the Schwarz-Christoffel transformation. Thus

1l

2
v/ |v|

;
—

i

B
A\/. (t + 1)‘1/2 (t - x)”l/z dt + B

dt
5 5 + B
A+-1 1 - Al A+ 1L
2 \/(“2)/(2)'1

Subsﬁituting the variable w defined by:

v/|v|?

o) & s}
A\/- —————— + B = A arc cosh w + E
\
w - 1
o)
t+ (1 -2n)/2
A arc cosh + B
(L +2N)/2

The constants A and B must be determined by the boundary conditions.

. 2
Since v/|v|® =0 for § = A, it follows that B = 0. Also, for

& = -1, we have v/|v|2 =i and so A = ifarc cosh (-1) = 1/, Finally

- 12 =

e y— - o=



: C2tf 1o
v/|v|® = — arec cosn —m8 —— (3.6)
7 A+l

Similarly, we carry through the mapping of the W-plane as follows:

p dt
W) = A\/- ————— + B = 2A arc tan 5 + B

(t+1) Yt

Boundary conditions at ¢ and d yield

W.(A) = 2A arc tan \A + B = -10q/2
Wd(O) = 2A arc tan (0) + B=0
Hence B =0 and A= - ioQ/4 arc tan \/A . At point b we find that
Wb(l) = 2A arc tan (») = - iQ/2 so A = - iQ/2x. Coasequently
1
W(E) = - 22 arc tan ¢ ' (3-7)
and
Q 2
o=2- - _arc tan \[; (3.8)
Q i
The constants k and A are not independent. Thus at point 4
we have

B ) 1l -A _ b S J. A
ik = = arc cosh T > arc cos T
= 1 - i arc sin = A
T2 = 1+ A
1 1 1 1 -A
-‘7(; = § = —’? arc sin T+ N (3.9)
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From Formula (3.4) the ‘physical plane is given by

1q O 262 + 1 - at

7 = - — arc cosh —————— ¢ —_— (3,10)
ﬁak AN+ 1 1+ §2

3.3 Evaluation of the discharge. The bottom and sides of th=z ditch

correspond to the real axis of the {-plane and Formula (3.10) can be

rewritten

i 2t 11 - at
7z -z, =-—5— [ arc cosh (3.11)
9 n2k 0 AN+ 1 1+ §2
g VA 2t 41 - % at
Z -2, =B= - — »[ arc cosh
¢ % xgk 0 . 1+ A 1+ §2
(3.12)

Here A 1is a parameter depending on the dimensions of the channel. It

is also related to the velocity at d by the equation
l/vd =1/2 - (1/x) arc sin [(1 - A)/(1 + A))
Once the parameter A has been chosen all the physical quantities can

be determined.
From (3.10) we also have

iQ 2t 41 - at
7. -2 = - iH = - ———‘/» arc cosh 5 (3.13)

b ¢ xzk‘\/; 1+ A 1+

From (3.12) and (3.13) we determine § and the ratio B/H. Explicitly:

Q A 2t 1 - at
B=— k/ arc cos
nek 5 1+ A 1+ €

= T =




Q - 2§2+l-?\ at
H = —5—;/. arc cosh
ﬂk—\f; 1+ A 1+ €

.

2 1+ ¢

*E ST
We introduce the following notation:

V B2 4 1 = % at
1(n) =\/‘ arc cos 5

o 1+ A 1+ ¢

0

2 1-2A at
I*(A) = [ 1log ¢° + (88 + 1)(EF - )
Vi “la+i 2 1+ t°

(3.14)
I*¥(N\) = 2,3026 J*(A)

Then the previous results may be summarized in terms of the parameter

A
B/H = I(N\)/1%(N\)
Q = ©°k B/1(A)
Q. = (a/x) are tan V2 (3.15)
1/vd =1/2 - (1/x) arc sin [(1 - A)/(1 + N)]

Numerical calculations have been carried out using Simpson's rule for
four values of A, covering a reasonable range of retios H/B. The

results are presented in Table 3.1.

o 15

Q g 1 - A at
f log (;2 ¥ ¥ -\/(§2 £ 1)(% - N 5
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TABLE 3.1

A 1 L 9 36
I(N) 1.00 2.21 2.70 3.56
7% (\) 1.00 0.60 ~  0.43 0.22
Qdc/Q,bc 1.00 2.4 L 9
Q/kB 9.86 L, 46 3.65 2.78
Q/k \2BH L4.60 k.01 4.08 5.20
/B 2.30 0.62 0.40 0.143

The dimensionless coefficient Q/k\/ggﬁ is & measure cf how the
seepage varies for a given excavation area, i.es., for a given value of
2BH. It is plotted as a function of H/B in Figure 3.2. Note that
the optimum hydraulic cross section coincides approximately with the

minimum water-loss cross section.

3.4 Velocity distribution on the canal perimeser. The points of the

wetted perimeter of the canal correspond to the real positive axis of

the {-plane. Consequently on the canal perimeter:
2 5
v/|v|® = - arc cosh ——--- (3.16)
7 1 +A

On the bottom dec of the waterway v/lvlz = ivy/vv2 = i/v and moreover
0<t < \/%. Then )

i i 252 +1 - A
— = —arc cos ——————
v o x 1+ A
v T
L o<t <\ (3.17)
R arc cos Chtl =l
1+ A

- 16 -
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Q
k(2BH)l;2
8 L
6 |-

2 |
H/B -
1 1. 2 2.5
? [ I5 ! 1
0 0.5 1 15 2 2.5
Figure 3.2

On the side bc of the waterway v/Ivl2 = vx/lvl2 = 1/v and
£ > A. Therefore

1 2.3026 2 s 1 -2 5 5
5 e 2= /@ D@
v £14 AN+ 1 2

[Equation (3.18) is continued on the following page. ]

- 17 -
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2.3026 loglo [7Té;fi ( g2 + : ; A { Tvkgz + 1)(g2 - x))]

st
k

(3.18)

We shall evaluate the velocities on the perimeter at locations such
that between two successive points a discharge Q/2n flows, where 2n
is an integer. The values of ¢ corresponding to such points are

derived from Formula (3.7). Explicitly:

Ao

1C
arc tan ¢ £, = tan gg' p=0,1,...,n (3.19)

o)
L]

The coordinates of the waterway perimeter are given by the Formula

(3.10). On the bottom

4
B p 262 41 - A 1
X = — arc cos ¢ 5 4t (3.20)
P A 1+ A 1+ ¢
y =H
On the side be
x =B
= H
yp :
H P 1 s L= > = dg
- j log, , (g i +\/(e. +1)(e" - A) 5
J*(N) wJX A+ 1 2 LA ¥
(3.21)
For example in the case A = 1, we have on the bottom:
£
v i P dg
a 2
o B e X = Bk/> arc cos ¢ e
k arc cos ¢ b 0 1+ ¢




and on the side:

w Im<

3

H|1l k/‘P 1 ( . ( < 1)( = ‘) o
Y. = - og £+ WV/E - £+ 1)
p 16 1+ §2

3

Results are indicated in Table 3.2.

7T
2.3026 loglo'[ 52 + 'Wv&gg - 1)(g2 + 14

TABLE 3.2
P pr/20 gp va/k x/B y/H
0 0 0 2.000 0 1
1 9° 0.158 2.032 0.245 1
2 18° 0.325 2.1k} 0.483 1
3 < 0.510 2.420 0.702 1
L 36° 0.727 3.098 0.887 1
5 )'*50 1 P 1 1
6 54° 1.376 2.508 1 0.949
7 63° 1.962 1.553 1 0.837
8 72° 3.078 1.068 1 0.669
9 81° 6.31h 0.718 1 0.k425
10 90° w0 0 1 0

On Figure 3.3 is indicated the velocity distribution. Between

each two successive arrows flows the same discharge /20.

« 19 =
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Figure 3.3

3.5 Free surface determination. The coordinates of the free surface

are obtained from Formula (3.7) for the imaginary values of ¢ of

modulus greater than one, that is, for { =in with 1 > 1. Then

L 2n® 41 - idy
zZ = - —5 arc cosh 5 + C
Kt 1+ A 1 -7
Q B el F%  an
R arc cosh + C
k:t2 1+ ne-l

For the case corresponding to A = 1,

e [ o dn
Z = - ——5\/~ arc cosh (-n7) -5 ——+C
ki n -1
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Q 5 dn
= -~ j (arc cosh 1° + ix) 5 + C
ki n -1

Boundary conditions are that for n = «, z = B and consequently

Q dn

5B = (arc cosh 'q2 +in) —
kit n -1
©0

+ B (3.22)

or
2.3026Q &/P 5 s 5 an
X = ——p— log (n + "\/ 1 - 1)+ 1)) ~ + B
2.3026Q n+1
y=——% 8, —— (3.23)
Okat® 0 ..
or
2 - 2 4|
x/B =1+ 2.3026floglo( N o+ \/(T] _ l)(nQ £ 1) .
n -1
Ul ;
(3.24)
5t 1
y/B =3 le, 10T

Results are gathered in Table 3.3.




TABLE 3.3

y/H n x/B vy/vx
0.25 5.515 2.094 0.765
0.50 2.850 2.706 1.129
0.75 2.000 3.1hk 1.522
1.00 1.600 3.475 1.972
1.50 1.250 3.950 3.096
2.00 1.113 4,265 4.63
3.00 1.025 L, 781 9.90
5.00 1.001 4,930 50,
® 1.000 4.930 ®

From Formula (3.6) we derive

(vx + ivy)/|v|2 = (1/x)(arc cosh n2 + im)

and thus

vx/vy = (2.3026/x) loglo( n2 + ’V(ne - 1)(n2 +1)

A plot of the free surface is made to scale on Figure 3.3.

cal integrations of definite integrals have been carried out by use of

Simpson's formula.

- PP =

(3.25)
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4. THE GREEN-NEUMANN FUNCTION METHOD

The previous problem is basically a problem of potential theory.
The solution depends on the boundary values and on tae boundary config-
uration. For a given configuration cne may wonder waether the solution
of a particular boundary value problem does entitle us to solve all the
boundary value problems, according tc the well-known methods of poten-
tial theory. In this section we will extend the theory of Green's

functions to include the mixed boundary value problen at hand.

4,1 Green's function. Let us consider a two-dimensional domain D

as indicated in Figure 4.1. Let @(P) and V(P) be two harmonic

functions in this domain. From Greer's theorem we know that:

O
!

(m) (@) _ y(q) X ) . (4.1)

#(p)

]

J[ ﬂz( ) = (—~ log = )- %; log % agiQ)J do  (4.2)

C

Figure 4.1

Combination of (4.1) and (4.2) yields:

o OF =




pe) = [ [ﬁ(Q) 2 %;(log 4 w) - (w(Q) + 5= log %) §§§g1] ao (4.3)

The function G(R,P) = %?E log —i— + ¥(R) is called a Green's func-

tion of the domain D. Such a function is however not yet defined, for
it depends upon an arbitrary regular harmonic function. The Green's
function will be completely determined if we prescribe its boundary
values. The usual Green's function is the one which takes tae value

zero on the boundary, i.e., G(Q,P) =0 on C. This condition determines

completely V(P), for it is a harmonic regular function of value on C:

¥(Q) = - (1/2xn) log (1/rqP)

Assuming that such a function can be found, then Formula (4.3) reduces
to

p(e) = [ pla) B o (h.1)
C

If the Green's function of the domain D is known, then any regular
harmonic function in D of given boundary value @(Q) will te obtained
from Formula (4.L4).

Most problems however are not that simple. In the case cf the
rectangular channel already we are faced with a mixed boundary problem.
On parts of the boundary the value of the potential is given, on the
other its normal derivative. A method for treating such mixed boundary
value problems is that of combining the method for conjugate-fuaction
transformations with that of mixed Green's functions, which are defined
so that they vanish over parts of the boundary where the velocity poten-
tial is specified and their normal derivatives vanish over those parts
where the normal derivative is specified. The determination of such a
function is not easy and to quote Muskat (1937), "Even the simple case
in which the potential is specified over the right half of the X axis
and the normal derivative over the left half, does not seem to be solvable

by the methods given in the standard textbooks".
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Green's theorem in its general form can be written as

pe) = [ p@) ELE) _o(q,p) XA 4
C

Suppose the boundary C is divided inzto two parts C and C such

1 2
that G(Q,P) = O on C, and X(Q,P)/dn = 0 on C,. Then we have
- BG(Q; P) . o) _B_Q_(Q,_)_ L
#(p) = | #Q) =< do 6(Q,P) 5~ do (4.5)
Cl CQ

where G(Q,P) is the Green-Neumann or mixed Green's function.

4,2 Green-Neumann function for the rectangular channel. The geometry

of the domain and the boundary values for the potential and the Green-

Neumann function are indicated below in the {-plane in Figure L.2.

v ko

¥ = - Q/2 or 3/an =0
dG _ 0
3n
Q a
1 ¥ = 0 or F/dn = O
GG:¢=O ({\, F=¢=O >§‘
a | | K
i
Figure k4.2

We shall obtain the Green-Neumann function by a methcd of images, as
gshown in Figure 4.3. The superposition of the four scurce potentials is
a8 harmonic function singular at P, which is zero or O ¢ and whose

normal derivative is zero on O 7.
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An
O R(gy;mn,)
(-&gsm) ® @ P(egmg)
>
(-€5-ng) O O (Egs-1g)

Figure L.3

The potential due to a source of strength unity is (1/bsx)log 8o

that we have

2

1 St )2 2 2 .
G(8.7) - - — 1og [{g = &5) )7I0(e + £5)7 + (0 - 1)7)

N (RN L C RS b [ (G I L G WLy
(4.6)

+(n - ng

In theory then, any mixed boundary potential problem in the {-plane
can be solved. Once the potential is known, the complex poteatial is
known also from the Cauchy-Riemann conditions, and we can complete the

solution of the problem by use of conformal mapring.

4.3 Singularities and the boundary value prodblem. The harmonic function

#(P) given by Formula (4.5) is regular over the whole domain D. In
many problems the potential will not be regular everywhere but will pre-
sent irregularities at a few points. The potential § 1is then the sum
of a singular part and a regular harmonic function @ which satisfies
different boundary conditions from Q and can be obtained from (k.5).
Suppose that at S there is a source of strength unity. Then if
is the distance from S to the point P, we have that Q(P) =

r
SP
1/(2x)log Lo + g(P). On the boundary C, the function #(P) has the
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value {J(Q) = = (1/2xn) log rgq = #(Q), where Q designates a point
of the boundary. On the other part of the boundary 02, the function
#(P) has the value

Q) 1 1 _ Q)

on 2x r on

The solution is then given by

Qp) = %; log rg, +\£~ lQ(Q) - %E log rSQ] égégﬁl do
1
Q) 1 1
- | &(Q,P) [ A2l - S = ]d (4.7)
{ on 21 rSQ o

2

We now proceed to work out the explicit result for the rectangular
channel. In the {-plane of Figure 4.2, the potential shows a singularity
at point a, namely, a sink. Direct application of (L.17) yields

o0

1 2 ' 2
Q&g 1) = - 1z 108 [0+ (g - DF] - & [ 108 (74 1) E e

0
0
1 dn
) o
0

V- 1)

The mixed Green's function G is given by (4.6). On the 7 axis

(n - nx)%17

(n + ny)%)°

|
—
Ve
O
+

0
1l
1
£
A
|
O
=
-
o
-+

—
e
1

2
271710 - ro l

1l
1
l
—
O
(0]

2
2n n —Znno-ro I

- P =



where r02 = §02 + nog. Similarly, we evaluate OG/dn on the ¢ axis:
G 1 1 1
> x ( 2 4 n2 = s+t )+ 2
Then
1
2 2
(e,n,) = - o loe [ty + (g - 1)7]
7T
o o 1 1
- __§ u/‘log (¢ + 1) ( )2 2 + . Z 2 at
X -2n, - T . dn
A 4.8
—é' ) ( ° )
0 N + emy - T \Vn - 1)?

Evaluation of these definite integrals would yield the searched for
solution. However, here the method of images yields an immediate

solution. The function:
1 2 2 1 , 2 2
B(egong) = - 7 Tog [65” + (ng - 1)7) + 37 log [55" + (ng + 1)7)

shows a singularity at a is harmonic everywhere else in the {-plane

and satisfies the boundary conditions. Consequently
2 2 2 2
Re W(¢) = A|log [t + (n - 1)7] - log [£” + (n + 1)7]
The Cauchy-Riemann conditions yield

F o 1 1

2 ) P)
3 2+ (n-1)% %+ (n+1)
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i e g s

o oV n-1 1+ 1

N 3 2+ (n-1)° £+ (n+1)

Integration of these equations yields the stream function

Vv = 2A (arc ten H—é—l - arc tan 2 Z l) + B

The constants A and B are determined by the conditions that for

t =0, V=-Q/2 when 7>1 and V=0 when 7 <1.
- % = 2A [arc tan (+ ») - arc tan (+ »)] + B B=- %
0 = 2A [arc tan'(— ®) - arc tan (+ «)] - % = - 2Ax - %

Substitution in the preceding equation shows that A = -Q/hﬁ and

B = - Q/2. Then finally
2 2 2 2
g=- %;(log (7 + (n - 1)7] - log[e” + (n + 1) ])
- .9 n-1 . n+l
v = - ox (arc tan i arc tan E )

The complex potential W = @ + iy is given by:

wit) = - %; (log _\/ge + (n - l)2 + 1 arc tan ﬂ—éék)

[N
o

& %; (lOg —\/EQ + (n + 132 + i arc tan 3—§;_.)_

or



€ -1

W(L) = - & log « §

O

(4.9)
€+ 1

This result is only apparently different from Formula (3.7) for

aw(t) Q 1 1 Q ei
at o 2x \ t -1 ) € + 1 o 2 1 + §2
iQ 1
- s 1+ §2

]

- (iQ/x) arc tan .
The simplicity of the domain geometry allowed us to bypass the

and consequently W({)

rather tedious integration of the Green's function method with the help
of the method of images. However, a minor changes of the boundary slope
would invalidate this procedure. It is then that the Green's function

method will prove very useful as we shall see in a later section.
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5. SEEPAGE FROM CHANNELS OF ARBITRARY SHAPE

The solution of Laplace's equation with mixed gecmetry of the
boundary departs from the elementary forms, There is little hope to
solve the problem completely or in simple terms, but the case when the
boundary departs from an elementary Zorm by an infinitesimal amount may
be a first step to the solution. If it is possible tc find a complex
function which will map the perturbed boundary onto its original shape,
the problem is then solved, at least in principle, if the potential
function is known for the elementary geometry boundary problem. Of the
three methods used in previous chapters, which are rot really unrelated,
the method of images seems hopeless even for a minor change. The methods
of conformal mapping and of the Green's function are, however, still

usable and can best be used concurrently.

5.1 Domain variation of the Green's function. Concider a domain D

bounded by a smooth curve C and suppose that the Creen's function
G(z,t) of this domain is known. We will now investigate how G(z,¢)
varies with slight variations of the boundary curve C. We shall star
all the quantities which refer to the new domain D*. We shall assume
that the smooth boundary curve C* 1lies inside C. Thus, if dv 1is
the normal distance from C to C¥, we may write g&v = ev(s) where
€ >0 is a smallness parameter and v(s) >0 is a smooth function of
the distance s along the curve C. The problem is now to find the
Green's function G*(z,f) for the new domain in terms of G(z,f) up to
an error of the order €2°

Before going any further we shall write down several versions of
Green's fdrmula. First, by means of the Green's function we may expfess
every function h(z) which is regular harmonic in D in terms of its

boundary values on C as follows:

n(z) = [ [30(t,2)/3v,] B(t) as, (5.1)
C

where v 1s the inner normal. Second, consider two harmonic functions
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u(z,t) and v(z,n), both of which are regular in a domain R except
maybe at z = { and 2z = 1. Then in a subdomain D bounded by C

which does not include any singular point, we have

0 =[ [u(t;ﬁ) dv(t,n)/ov - v(t,n) au(t,é)/av] s, (5.2a)

and in a subdomain D bounded by C which includes one of the singular

points, say =z = {, we have

1 du(z, ) av(z,n)
vt - — [ Ef(z,n) e - afng) e ] G (5.2)
ox o BVZ sz

Furthermore, in a subdomain D Dbounded by C which includes both

singular points, we have

du(z,t) ov(z,n)
—— - u(z,t) ——— ] ds (5.2¢c)

|
v(6,1) - u(n,t) = ——j [V(z,n)
2x s,

ov v
VA Z

The factor (l/2ﬁ) comes from the logarithmic singularity. Finally,

we write Green's identity in the form

U[L[u div (grad v) dx dy =k/~u(av/av) ds —L/L/-grad u - grad v dA
E

R S
(5.24)

!

*,
Consider now the difference in the Green's functions [G_\Z,C) -
I
G(z,§)] . It is a regular harmonic function in the smaller domain D¥

since the singularities cancel each other. It can be shown that

G (t,z) 6 (t,¢)

G*(z,t) - G(z,¢) = _f

C

oV, ds, (5.3)

v

th t

w 85 =




s i i i

The proof of this result, which is known as Hadamard's formula, is given
in the monograph by Bergman and Schiffer (1953). The formula can be
extended to the case in which v(s) is still twice continuously differ-
entiable but is no longer restricted in sign. However, the limitation
of (5.3) to the case of smooth boundaries is a serious one and restricts
the usefulness of Hadamard's formula considerably. To alleviate this
difficulty we shall use a different approach, the method of interior
variation. But first we shall have to discuss in more detail the V
variation. The following is a digest of articles on the subject by
Schiffer (1943 - 1958).

Consider the complex transformation (with p > 0)

2ip 2
€ P
2¥ = 2 4+ ——— 0 <B<2n (5.4)
z -z,
It transforms the circle 7 - zol = p 1into a segment in the z*-plane,

1
as shown in Figure 5.1, More specifically, the circle =z = Zb + pe

i
trensforms into z* =z, + 2p cos (B - o) B,

Y
Ve
\

z~-plane z*-plane
Figure 5.1

The transformation is univalent for the exterior of [z - ZO, = p. For
p sufficiently small this representation is univalent on all curves Cn
and transforms them in one-tc-one manner into neighboring curves C*n
which enclose a new domain D¥ of the z-plane (note that z. is an

0
interior point of D).
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The transformation (5.4) is a particular case of a larger class we

shall now define:

z¥ = 7z + pq(z) (5.5)

where q(z) is a uniform function regular everywhere excep: at a finite

number of poles Zy- Thus

a

i
q(z) = —— + b, + e, (z - Zi) P
Z - 2

i

The function 2z + pg(z) will be regular in K except at z = » and
at the points Zg Around each point zi we describe a circle Ki
with radius r, so small that no branch point and no =z, 1lies in the

K

interior Ri of Ki' If now m is the maximum absolute value of

a(z), we have
Z - zil = r/2 i=0,1...m

If p 1is such that Ipl %E than 2z*(z) is exactly p-valued over
the domain R -ZZ Ri . In other words, the representation z*(z)
i=
m
transforms R -jg Ri contained in the Riemann surface R inzo a
i=0
domain bounded by (m + 1) simple curves K*iA and covering the z¥ plane
p times at most. If we add to this domain in the interiors K*i of the
curves K*i, we get a closed Riemann surface. R*pq with p sheets.
Hence, R*pq is the Riemann surface obtained from R by meaas of the
variation qu and this variation preserves the number of saezts and
the genus of the Riemann surface.
Let D be a domain on R. If no pole z4 of q(z) is situated

on the boundary of D and if r 1is so small that no point of this
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boundary is situated in any Ri’ then qu determines in an unambiguous
way a variation of the domain D, say D*p . Therefore, a domain D

on & closed Riemann surface R with p sheets and with genus g is
transformed by means of a variation qu into a domain D¥* on a

Riemann surface R¥* of the same type.

5.2 Interior variation of the Green's function. Consider the domain

D on a Riemann surface R of the above type, which is bounded by
analytic curves and a transformation of the type (5.5) with appropriate
smallness for p. Then the Green's function G* (z,{) is defined for

z end { in D*. Consider the function

A(z,8) = 6*(z%,6%) - G(z,()
with the points 2z and € in the domain D —j;‘ Ei where
Ly

i=0,1,2, . . . , ms Moreover, suppose all the points z; are

situated in D. Then A(z,t) is hsrmonic in D - Z ii and is a
uniform function of =z, for V transforms this domain into D'-§5E¥
and there G*(i*,g*) is defined and harmonic.

Use of Green's formula (5.2b) yields

A(Z)g) == (tlg) —— = G(t:z)

o dv dv

1 X (t,z) d A (t,8)
[A 2l )
t t

Here P 1is the boundary of D -z'ﬁj , that is, C +ZKi . But on

C, G(t,z) = 0 and A(t,f) = 0 so that

1 3G (t,z) 3 A (t,z)
Az, t) = — [ alt,t) ——— - G6(t,z2) ——— ]dst

21 Y oV on
t
ZKi



——

On Ki let t = zi + reie. Then after some manipulation Si takes the

form:
I e 8,p % (t,z)
Si i ——L/» G*(t + TR A (re ) (%) —————
2% o re Brl
oG a,p
- G(t,z) ———( t + lie +p A (eier)) g*) ]
or re
&4 i6
for t* =t + pq(t) =t + p —=— + p ?\ (re ) where ?\i(re1 ) iw
t - 2z,
i

an analytic function of its argument.
Let p(z,t) and p*(z,{) be the analytic completion of the
corresponding Green's functions and p'(z,{) =he derivative with

respect to the first argument. Taylor's developrent yields:

#1P 2
p(2%,6%) = p(z,0%) + |—2—+ p A, (2 - 2,) |p'(z,8%) + 0(o7)
2 - Zi
a.p
6(2%,8%) = 6(z,0%) + Re | —F—+ p A (5 - 2;) p'(z,t%) | + 0(s")
2 -~ Z
i

Replacing into Si yields and use of Green's formula (5.2a) yields:

1 e a
S, = ——L[‘ %e(
s
21 0 re

% (t,2) D
p'* (t, g*)) - G(t,z) — Re

or

a,

i 1
and since Re [ kﬁ“(t,g*) - p*'(zi,g* ] 1s regular

—Zi
harmonic in ﬁi we find that
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2

1 (840 G(t,z)
= — e b * ——————————.
25 e or
0
1 2t a.p 5
+ j G(t,z) Re lie p'*(zi,g*)) ae + 0(p“)
“exn 0 re _

Now G(t,z) can be developed in a series of powers of reiez

[e2]

= 1 )
G(t,z) = G(zi,z) + Re ZL —_ p(N) (zi,z) g g i

|
Nel N?

if r is sufficiently small. Hence, we have

21 co
. 4P e (v) v-1 iyt
S. = — [ Re [p*'(z,,t¥)—=— | Re s PV L 2y 2V g dt
i ot . i el T by = l)' i
0] 1 ’
L 2 < 1 (v) v iv 8;p
e G(Z-)Z) + Re > ~—P (Z-;Z r'e V" Re P*'(Z-)C*) = = dr
21 + — Vl 1 1 rei‘
0 1! ’
i %Y = ip , B io 2
Let pa,p (zi,g ) = Ae P (zi,z) = Be and remembering the

orthogonality of trigonometric functions:

1 ex
Si = — Re Aeiu . e_ie Re Beideie ae + O(p2)
21
0
1 en | ,
= — 2AB cos (p - 0) cos (o + @) do + 0(p“)
en '
0
AB o . .
= — [ cos (0 +p) +cos (p -0 - 29i]d9 + 0(p")
o 0
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= AB cos (0o + p + O(p2) = Re [paip%' (zi,g*)p'(zi,z)]

Explicitly:
m

GH(2%,£%) = Glz,t) + ) Re [ e 000 o) |+ 06) (59)
ot
i=0

but

Gx(z*,t%) = G*¥[z + pa(z),t + pc(t)]

and since p*'(u,v) = p'(u,v) + 0(p) we finally obtain the formula:

G*(z,¢) = G(z,¢)
e B of ) ap(a,t) B'(a2) - a(ed!(5,8) - a(t)p'(t,2)
i=0
+ 0(p°) (5.7)

We note that G¥*(z,{) is expressed in terms of the original
Green's function and its derivative for the variable argument or evalu-
ated at the fixed interior points =z. Therefore, the method is called
the "method of interior variation". The new Green's function is obtained
without any quadrature along the bourdary by mears of the values of the
original Green's function at some fixed interior points. It is inter-
esting to note the differentiation of the terms in the modification
factor: a magnitude factor and a shape factor. 1In many applications
Formula (5.6) will be most useful since we are concerned with the value
of the Green's function on the boundary.

As an example, consider the following simple case. Let

z¥ =z + €f(z - zo). Then we find that

p'(z,¢) (¢,2) 2
G*(z,8) - G(z,¢) = Re|e P'(ZO’Z)P'(ZO)C) -p' ——— - p' ——|| + 0(¢ )
: Z - 2g t - Z,




5.3 Variation of the Green-Neumann fuaction. We begin with the deriva-

tion of Hadamard's analogous formula. Suppose that the boundary C is
divided into two parts such that G(z,{) is zero on C, end

3G (z,t)/on = 0 on C,. Consider again the difference AN(z,t) = 6*(z,¢t)
- G(z,¢). Green's identity then yields

A% (t,2) | 3 Alt, L)

Az, t) =f By L) e = O¥(f;8) ~——e g8,
C¥ + C, v, O vy
But on C¥, Alt,8) = - G(t,t) and G*(t,Az) = 0 while on C,,
BG*(t,z)/avt =0 and JdA(t,£)/d v, = 0. Hence, we find that
aG*(t,Z)
6(2,8) - 6(z,8) = | - Gle,8) — " as,
on
C*
1
to the second order in €, and since G(t,{) =0 on ¢,
BG(t,z)
G*(z,¢) - G(z,¢) =f - 6(t, 6) B ds,
1%
c, +C¥ %
which by (5.2d4) gives
r BG(’C,Z) BG(t,Q)
xopt) - 6l l) = - | ——— —— by, a5,
1% 1%
N t t
BG(t,Z) aG(t)g)
= -Jf ev(s) ds,
v v
N % t
(5.9)

We now undertake to apply this result to the rectangular channel.
In the {-plane the Green-Neumann is so defined that on the t-axis
G =0 and
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G oG 1 1
TS = ) 5 5+ 5
o dv, oLt - )%+ 0" L+ )%+ 07
-
o]
a Q Svt
el Sl
e — e
a c €
Figure 5.2
® 1 1
68 t) - 66 tg) = - [ Hm S x
0 0 0 2 2 5 2
o (t - &) + 0" (b + &))" + 0
& 2 1 ev(t)at (5.10
(6 -8)%+0° (t+8)%+0°

The problem is reduced to the integrati

(o]

/

0

g v(t)

[(t - 50)2 + 7102]

5 dt

[(t - €)% +1°]

To determine the potential in the
of G*(g,go) on the original boundary
This value is given by the formula:

00

bnngev(t)

on of the integral of type

0

/

0

v(t) ér

li

(t2 - 265t + rg)(t2-2§t+r2)

{*¥-plane we only need the value

C, if we linearize the problem.

1 1

G*(g,go) = - limitu[

nao% (-8 et [

~ 4O =

+

dt
2 2 "

2

(5.11)




— — e —

l

1 1 2 |
G*(g,go) = - limit ueno v(t) = 5 + = 5 f 55 dt
bl 6-6,)" + 1y~ (Bre)T + gy (6-8)%

1 1
+

2 2 2 2

1l

- heno v(g) i

The Green-Neumann function for the new domain, evaluated on the

t-axis boundary of the old domain, is (provided o #0):

o Mo

-+
2 2 2 2
(6 - g5)" + gy~ (8 +E5)" + g

G*(glo) §Olno) Sl )“'er V(g)

1 1
- b s _(&)n + (5.12)
O T N (T A

and similarly, if 73 #£ 0,

1 1
G*(&,m585,0) = - bws  (g)In TR + TR (5.13)
0 *0

We next consider the qu variation for the Green-Neumann function.

Formula (5.5) can be rewritten in a slightly different notation

tx = ¢+ e O(C) (5.1k)

For the particular problem of the rectengular channel, this transforma-

tion must conserve the n-axis for 7 > 0. Let

E* + in* = ¢ + in + €[A(g,n) + 1B(%,1)]

The condition is A(0O,n) = O for 1 > 0. A harmoniec function A(¢,n)
which is odd in ¢ will satisfy this condition, say
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i it

[ARSE Ny

(S

©0

fB(w) e sin wt aw
0

I

A(gﬂl)

I

B(w) ™ sin wt

From the Cauchy-Riemann conditions dA/dt = dB/dn and JA/dn =
- OB/dt. Hence we have

3B 3B
— = uB(w) cos wte — = aB(w) sin @t ™M
on ot
or
B(¢,n) = - B(w) ™M nag wE

This leads to

o]

@) =] B(w) e (sin a0 - 1 cos wt) dw
0

o0

ifC(cn) oD% dw
0

00

ifC(co) 20 am

-0

i

1

where C(w) is a real function. The transformation

[ee]

o= tet [ o) e (5.15)
0

would satisfy the required conditions. Conservation of the origin

would require

fC(a)) dw = 0.
0
- 4o .



5.4 Interior Vvariation of the Green-Neumann function. Here EQ(C)

should be meromorphic and have a pole, say at ¢ = Cp with coordinates
(§p,np). Such a function can be easily constructed aad the transforma-

tion explicitly written by use of an image at (—gp,np). The result is

[ee]

1 1 N '
(% =t 4 e 5 . ij c(w) X% au (5.16)
g & gP g + gp 0

We now proceed with the derivation cf the basic formulas. 1In a process
similar to that followed for the usual Green's function, we shall start

from the function: A(z,f) = G¥(z*,t*) - G(z,t) with z and { in

7
1
£

and suppose all the zi are situated in D. Then as before

suppose that G(z,{) =0 on € and 6(z,{)dv, =0 on C,. Use of

Green's Fprmula (5.2b) yields:

1

A(z,8) = — (A(t)g)

2n P

3 (t,z2) d A, ¢t)
— - G(t,2) ———— )dst

t 9 vy

dv

Here P 1is the boundary of D _ZQKi il.e., Cl + CQ.*ZS Ki

Then on  C, G(t,z) = 0 and A(t,z) = 0; while on C:) G (t,2z) /av = 0

BG*(t,z)/Bv =0 and MNA(t, z)/Bv = 0. Hence

Sk, ) N(t, )
7)== ( A4y ) = - ofn) —— | s,

ovt th

and ultimately, if terms of order 62 are neglected

m

Gt 1) = 0(8,8)) + ) Re € p'(E ) p(E b)) (5.17)
10 i i
or
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GH(8,8y) = L tg) + ) Fe e [pr(E,6) p(E 1) - Bt t) ()
i=0

- p'(Ert) (L) ] (5.18)

Conservation of the origin of coordinates in the transformation (5.15)

will be satisfied under the condition

m o
M.
2 Z —g—s + /C(w) dw = 0 (5.19)
10 Spi t Mpi 0
Since
m [e5)
L™
Z —s—s >0 fc(w) dw < 0
10 Sp1 tMpt 0

However, we probably would like sometimes a modification of the boundary
without the alternating term, still conserving the origin. According to
Formula (5.19) it seems impossible. This is illusory for we have re-

stricted too much the class of admissible functions @(t). Let

m n

b bk e jg 1 . l_ ) zg 1 § %“

S ot-ty t+T,

00

+ 1 [ ola) 1 3o (5.20)

Ay

0

Conservation of the origin is then expressed &s

N - N ¥
22 s 2> N - N / c(w) dw =0  (5.21)

2 L2 L LB J.

i=0 “pi pi J=0 °pJ PJ 0

o by -




Any sum of two points on & circle passing through the origin with center
on the n-axis will satisfy the condition (5,21). The simplest

transformation will be

1 1 1 1
(¥ =L+ ¢ + - - (5.22)

-t t+T, bt t+T

2 2
where and. are related by the formula r = r . .For
- y y n,/ b nq/ ;

simplicity's sake we can even choose gp = gq, Then if R 1is the

radius of the circle we have

1.

o e

r - r - 2R
p q

which corresponds to a well-known geometrical property for a right

triangle.

5.5 Shape of the modified boungﬁﬁxﬂ We have

1 A
tx =t + ¢ - +
(¢ - gp) + i(q - np) (e + gp) +i(n - np)

i 1

(g a0 () H il )

(¢ -ep) -i(n-n)  (e+e)-i(n-n)

Ex = € + ¢ % 4
(¢ - ép)2 + (n - np)a (£ + Ep)2 + (n‘- np)2

. - Iln = + - 1(n -
(¢ sq) iln nq) (¢ gq) i(n nq)

— i (¢ + Eq)e + (n - nq)2

(& - 8%+ (0 - n)°

o BE -




[

This

transformation leaves the n-exis unaltered, but the t-axis (1 = 0)

is modified. Then

B+

When

*
: Pq

x
R Pq

As a

g*

"

(¢ - &)+ in (¢ + ¢ )+ in (¢ - &)+ in
in*=§+€[ p P_ . P p p q2

2 5 ¥ D 5 " >
(& ~_§P) oy (¢ + gp) 0, (¢ - gp) 0y

(¢ + gp) +ing
2

- 2
(¢ + ep) + 0y

separated into real and imaginary parts —his becomes

e [ (£ -¢) ) (& +¢) ) (e -¢)
(

2 2 2 2 2 2
£ - gp) 0, (¢ + FP) oy (¢ - gp) 1y

(¢ +¢)
P 5 ] (5.23)

- 2
(¢ + gp) + g

1 1 1
- e [ D N D q

2 2 2
ep) g (¢ - gp) +ny

—~
U
1
U
kel
~
no
i
=3
el
no
—~
uve
4

- W% 2]
(& gp) 0y

+

numerical example let gp

1

1 and nq = 1/2. Consequently

[ g =3 £+ 1 W(e - 1) b(e - 1) ]
£ + € (

+ - -
E-1)2 44 (e+1)24b Me-1)2+1 Ue+1)241

1 1 1 i |
2¢€ + - -
(6-1% 4k (e+1)%+b Me+1)Pr1 Me+1)® 1

- U6



...L-q-

TABLE 5.1

3 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.50 3.00 4. 00
5:’ 0.2940 0.5223 0.4556 -0. 2204 -0.9141 -1.0233 -0.8728 -0.6933 -0.42k7 -0.2668 -0.1188
g; -0.0466 -0.2047 -0.4880 -0.4906 -0.4906 ~0.2056 ~0.03%0 0.0499 0.1015 0.1008 0.0745

e = 0.2

3 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.50 3.00 4.00
£ 0.31 0.60 0.84 0.96 1.07 1.30 1.58 1.86 2.h2 2.95 3.98
n* ~0.02 -0.08 -0.20 -0.27 -0.20 -0.08 -0.01 0.02 0.0k4 0.04 0.03




i
©

Numerical values may now be tabulated as in Table 5.1. A superposition
of functions n*pq’ allowing a fair number of parameters, enables one

to fit any curve n*(t), at least approximately as

x* = *
W) = ) nr (8)
' b,q
6. SEEPAGE FROM A NEARLY RECTANGULAR CHANNEL

In Section L4 we had derived the Green-Neumann function for the
{-plane, but ultimately solved the potential problem,by a method of
imaces, o simpler method for suchk simple boundery sliape cic boundory
conditions. 1In the last section we studied the Green-Neumenn function
for the {-domain. Such a study led us to discover the mappirg function
which conserves the origin and the imaginary axis and modifies the real
axis in an arbitrary fashion. The Green-Neumann function method would
be the only available method if, together with the modification of the
boundary curve, the boundary conditions were modified, too. This is
not the case and the problem can be solved by conformal marping trans-

formations, now that the perturbation mapping is known.

6.1 Perturbation mappings and assumptions. First of all, we assume

that the symmetry of the problem is conserved, i.e., ad 1is a streamline
and Va remains finite as indicated in Figure 6.1. The new boundary
curve is tangent to dc at point d. Second, we assume that the velocity
at b remains zero. The new boundary curve is therefore tangent to
bec at b. Third, we assume that points b and b¥* and also d and
d*¥ coincide.

Using the result of Equation (3.7) we have the relations between

the potential W* and §*

wx(gx) = - i%i arc tan (* (6.1)
WE = ¥ 4 i f T S (6.2)
0

Introduce the following definitions for fl and f22
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g,7%
i o ¢t ?
‘ 2 o*Q¥
o i::— 2
) e¥* L
b § -q/2
Q%
pro—*/2
W-,W*-planes
c¥
b, b¥ - - —>- C %
’ o~-,0%-planes A,r,rx
) by b
n 7o) O Oossoc S,
Hodograph b,b* a,a* d c c¥
A '
a,a* pt————————3
c,cX b, b* A¥
ol
a*
|
1
i
| t-plane
AR
c vy,vy*
E,E%
>—-
c* b,b¥
peeP z*-plane
| 1
a* a X¥
i

Figure 6.1
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0

L/\C(a)) cos wt* dw = fl(g*)
(0]

00

C(w) sin of* dw

1

£,5(L%) - (6.3)

o

[e@ % an =20 = £ (60) + 11,60
0

Conservation of the origin in the perturbation mapping is expressed
through the condition
o0

fC(w) dw = 0 or fl(O) =0 (6.4)
0

After perturbation the point c¢¥* must remain on the real axis. Now
'v; \/X; + ief OJX;)

Ve + der) (V) - er (V)

VA - en, (V) | (6.5)

it

1

Consequently the condition for c¢* +to remain on the real axis is

flc\fil) =0 (6.6)

Similarly we find:

»-\[5 =1 + ef(i) (6.7)

As shown in Figure 6.1 the next transformation is Z*2 =%'*., From

Equation (3.6) we find the relation between the v*/]v*le-plane and the
Z¥-plane to be

- 5 =




2 p -V

(6.8)

v*/lv*l2 = — arc cosh ;
7 p+ v 2

Relation (6.5) can be rewritten

v = A

e\ £,(\*) + 0(c?)

= - 2e\h £ (VR + 0(e)

Let M =X+ ex(C(w) = A+ € a (f) where a is a scalar functional

of the domain boundary, i.e., of C(w) or f(¢*). Hence

v=A+E€ [a - 2/ fe(\/i)] (6.9)

Similarly
p=1+2¢ (i) "~ (6.10)

The discharge Q¥ will be modified according to
Q* = Q(L + B €) (6.11)

where B = B(f) and similarly to (3.10) we have the physical plane

}_‘

gx 1 2 5 p - v
z*(Lx) = —L/» — arc cosh %* + + 2iel* £({*) ]x
k T o+ v 2

iQ*  dtx

© 1+ §*2
Let us develop the arc cosh term in a series of powers of € and

drop higher order terms. Since there is no ambiguity we shall now

write { instead of {*. The end result is:

- 51 -




N iq f’ 5% & 1w % at
* = g-—-——— B sh
z*(¢ 2 3 € arc co T - €2
i /5 21 ¢ £(t) at
- ey € Is
TS LY

1@ S 1 [a+ef(i) - Q‘VX'fg( V)] tCat
+——'"2-€j

kit 1+ A [(C2 - 7\)(§2+l)]l[2 1+ §2

iQ /5 [on £(1) + e"vﬁ'fe(\[i) - a(l - N\)/2) at
(2 - n(e° + 1)17° e

(6.12)

6.2 Hadamard's normal variation. In writing Hadamard's formula two

cases must be distinguished. First, on the channel bottom dc we

have 0 < § < \/X- and on dc
2(t) = 2(ty) + (L - &) 2'(t,)

z¥(t) - z(¢)

24(t) - 2(t) + (L - t) 2 (L)

-1ie5(t) + real terms

Equating the imaginary parts we obtain

. /ﬁ - 1tr (¢) at
-1€ep = —5 €
ke (- ONE )P 1 P
¢ |
2Q £e, (€) at
5(¢) = 5
mff[o-c%@l+nfﬁ 14 g2

[Formula (6.13) is continued on the following page. ]
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[N ST

2Q £, (¢) ¢

Bt = 2 [6h ~ 9L #1372 14 ¢°

V- €7 1) - (e ) e (0)
£.(¢) = - g (6.13)

Second, on the channel side bc, we have § >\/X-
Z(g) = Z(Co) + (C - go)zl(go)

z*(¢) - z(¢)

it

2%(t) - zx(t) + (& - £) 2'(L)

- € 5(t) + imaginary terms

Equating the real parts we obtain

¢

(0 2Q / ¢ fl(C) ag
- € = m——
° ko (§2 - )\)(g2 +1) 1+ §2
kﬁe 1+ §2
f = . SR Tl o ' 6.14
D = emss = V- e e (6.14)

6.3 Boundary conditions. In addition to the above results, we must

take proper account of the boundary conditions. First, conservation

of the origin implies that fl(O) = 0 or that

5'(e) _
== 0

limit
£ -0

|
Second, since the point c¢* 1is on the real axis of (* we have
!
to the order 62:

51 (f2) = 0+ or » ' (V) = 0

- 53 =



Third, since the new boundary curve is tangent to dec at point 4,

we must have

a5(t) dRe z*(s) _

a a ©
Hence, 5'(t)/z'(¢) = 0 for & = 0. Then
) £, (e) & 1
2 2 2 1/2 2
ot { BC 10 D074 1)) T S
£ >0 :i% arc cosh C WX AR L 5
kx A+ 1 1+ ¢

So finally
limit ¢f (&) = O
1
£ >0

Since fl(O) = 0 this is always true.

Fourth, the new boundary curve 1s tangent tc be at b, and so

- ds(e) dImazx(e) | _
limit [ at at = 0

£ »

3 fl(g) arc cosh 2§2 +1 - A
limit 5 5 5 1/2 2 =9
fow LA+E)IGET-NE" 1777/ @+ t7) 1+ A

£, (¢) 1
limit —_—— ° =0
b o @ 3 log ¢
or ) _
£,(¢) = 0(¢ log &) for £ = o,

Fifth, the points d and d¥* coincide. This leads to the condition

that

- 5h -




5(0) =0

Sixth, the points b and b* coincide, But

o]

(=) - 50V = - [
5(w) -8 = -
. kS (5 - M + 1)

e £, (¢) dg

sLf2 1+ 52

This integral makes sense if, as ¢ - o, the ratio fl(g)/§3 goes
to zero at least as fast as 1/¢. This implies that fl(g) = o(gg)
for ¢ —» » and for ¢ - W

AN )
(2 - 22 (¢ -
£,() = 0(£%) vhen £ > o

1 -
f.(¢) =0 - when 3 -»’\[7\
1 179
((g ) )
The fifth conditior can be written

g £ 1 (t)

5(VA) - 8(0) = —5

ki - 2T+ 1)1

dg

' e 7 (¢)

1

eQ .
g f.(£) =0 as £ +7\/A.
2 {[ TG 1 ((w/i - g)1/2) \?
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[RRER

vimiv &8 o or g0l =0 | )
t >0

5' (1) =0 or £ (V) =0 ' (6.15)

£,(e) = 0(¢ log &) for

v
\
8

N

6.4 Evaluation of the discharge. In this section we will derive the

formulas necessary for calculating the discharge. Referring to Figure
6.2, we see that at the point d, (O) O + i and z (O) =
Also at points c* and c¢ we find z* ( V A) =B - he + i(H - ve)

and z(f) B + i,

Figure 6.2

From (6.12) there results:
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isq VN 26241 -n  ar
z*(\/—)-\) - z¥(0) = z(\[i) ~ g0} - 5 ‘/’i arc cos

kit 0

1+ A l+§,2

giQédf\fX £ £(E) at

[(h - £2)(e2 + 1)1H2 14 ¢?

Qe V 1 [o+2£(1) - 2n fg(‘\ﬁ\)] £2ae

172 Lt E?

kn® L L+ [(h - £9)(E5 + 1))

(@)

e« VN [2af(1) + 2\ fz(\ﬁ\) - a(i—;—i)] dt

1/2 2

ks 14 [(h - £5)(6° + 1))

Let us introduce the notations:

[z*('\[i) - z(’)‘(O)] - [z(\/_?\) - Z(O)] = - (2 + iv)e

\/3\- 2§2 + 1 - A dg
1(N) =f arc cos 5

0 1L+ A 1+ ¢

Then separation into real and imaginary parts results in

-he

5Q Qe \/3/X e £,(¢) g

—5 I\) + 2 —5 3
kit - 65 1P 1 P

e [(£(1) - VA £,/ I at
+
e 1ea o [ - €2+ 1)1/
e VA at
of(i) - f

ke U (L D)0 - ) 1))

[Formula (6.16) is continued on the following page. ]
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o e 4 i

asn V) ae asn ae

- { (- )2+ D12 2 fo (") 08 (%) 12
(6.16)
2Q vaﬁr 3 fl(é)_ dg
R O T T G

The last equation checks the result we found before. Equation (6.16)
yields a relation between §Q and ®A. The coefficients f(i) and
f2('Vri) and the function fe(g) have to te evaluated in terms of
fl(g) vhich is known.

Now fz(g) is the Hilbert transform of fl(g), that is,

i g2 £,(t)
£(6) = -~ [ at (6.17)
nV o t-k
and consequently 1 © 5 (t) +if (t)
£(t) = — [ L 2" gt (6.18)
i v t - €
A, 1T (b)) - ary(e)
£(1) = — j at (6.19)
o YV t -1
e B R A [£(8) + 1,5(¢))(¢ + 1)
Cf(i) = — /- 5 dt
2ni ‘_oo t + 1
and since f(i) is real, we have
£,() + £,(¢)
f(i) = — /- 5 dt
25 ‘_m t 4+ 1
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e

1 A% (t) P 1 A (%)
i 1
= — 5 dt + — /N 5 —-—J[ dx
21 t +1 25 t™ + 1 7 x -t
-00 -00 -00
Interverting the order of integration leads to
00
_.x‘
17 (v) 1 A t dt
(i) = — s @ # =g /. fl(x) /~ 5
25 7+ 1 ex * ; (7 +1)(x - t)
=00 -0 -00

We now proceed to evaluate the integral g(x), where

*oo

t dt
[ — - ()
. (7 + 1)(x - t)
-0
¥*
(¢t - x)dt oo dt
g(x) = /\ 5 + X /\ 5
Y (t7 + 1)(x - t) ¢ (t7 + 1)(x - =)
+4-00
*
*© /fm dt x A% tat x dt
= - 7 + + 4} —_——t — [
l+x2 $ t2+l l+x2 ‘ t2+l l+x2 Y X -t
-00 -0 -00
x2ﬁ X 1 o e
= = & 4 —z—-t 5 = (1 #17) - —5 log [x = ]
X+l lex~ 2 1+x o
2
X b1
= 70 - 1 = - s
x2 + 1 1+ x2
Therefore
£.(t) 1 e £, (x)
f(i) = — /\ = at + — ]- 5 dt
2n - t7 o+ 1 2% 1+ x
-C0 -0
a2 & £, (¢)
f(i) = - 5 dt
T o 1+t
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We need a second equation in §Q &and Bt to solve the problem

entirely. It is provided by considering the situation at points b and

"c. Thus, z* (») =B and z (=) = B while z*c*('\‘/_?\) = B - he

+i(H - ve) and z (\/ ) = B + iH. Consequensly

isQ [ 2t 4+ 1 - 2 ae
e(h +iv) = - x/\ arc cosh ;

kit _\/)T 1+ A 1+ ¢

2Qe f £ £(¢) e
Y N,
G E IEAE TS

iQe f‘” a+ of(i) - 2'\/7\f /) £%ae
Y R G KA

1 [2?\f(i)‘+ 2\[X fe('\ﬂ) —a('}-é—)‘ ] ag

i 1+ £2

F‘{/{Mk [(6% - N)(% + 1)]

Taking only the imaginary parts of this complex equality, we find that

. ) 2qe f e £, () dg
€V = —5 I¥(\) + —5 .

- kaxt [(g,2 - x)(g2 + 1)]1[2 1+ g2
e a+ 2f(1) - ah £2(VN) efae

1/2 1+ 2

(/—l+% S ONE% + 1))

Qe f 1 onf(i) + 2\A fe(\/'i) - af* 5 9 de

1+ % [(gg—x)(g,eJrl)]l/2 1+¢

[Formula (6.21) is continued on the follcwing page. ]
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vV = =g I¥(A ——-—
) ki : )+k7t2 W[(E - A)(¢E )]1/2 l+§2
2Qe £(1) - VA £,(\VA [ at _.
+ o
k- 1+ A W( - A)(ET + 1)
Qe ® dt
- 2f(i) —5
()kxeh/;[_(l+g)( 2 oNER )R

QBA f dg BA j ag
+ — - >
e L (62 - N2+ 0172 2Py (0 (R - (212

VA
Let
Vv "
Wé‘[(%-ég)(§2+1)]l/2 S “£k; (2N (202 HECA)

e o AR e
= H(A
} (D) (87 (5%0) 12 5 EELEEN %))

= H*(R)

J[ g £,(¢) a@ = )
LI (P) e 1?8

| uf” £ 208 a -
N I A S

\r o e (e
Fe(wzf 2§2 172 d§2 ("l‘f fl”('t_) e
o [(-e7)(e7+1)) :




0

3 1 1 fl(t)
* = - dt
e f [-e2)(e2) M2 1+ 62 |« j .

'\/?'\ -0

With these notations the previous equations can be written as

5Q 2Qe 2qe [£(1) - VA £,(\N)]
-he = -5 I()\) + = F2(7\) + 5 E(?\)
kxt ki ki 1+ A

Qe A DA
- 2r(1) - H(A) + - E(A) - 5 H(N) (6.22)
kit kit 2k

5QI* () 2 2qe [£(1) - VN £,(V M)
ve = 5 4 = FX (A) + 5 E*(A)
k7t kit ki 1+ A

Qe QBA QA
- of(i) . H*(A) + = Ex(\) -
kit kit 2kt

H*(2) (6.23)

In other words, we have two equations for the two unknowns $Q and BA.

In Appendix A a numerical example is given to illustrate the method.
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APPENDIX A. NUMERICAL EXAMPLE

We consider perturbations for the ditch correspording to A = 4
and select an arbitrary function &(&). The formulas for the velocity

distribution on the perimeter are:

A 5

—= 5 0 <t <1.2249

E % - arc cos (;:25:55_)

v, T

= & 5 1.2249 <t <2

k arc cos E - 212

' 2.5
2 /

Va £2 - 154 (e - 32 - 4)MP

— = 1.3647/10g, o<t

k 2.5

(A.1)
X 1 2 1.5 - €7\ a
— = — | 0.2467h b -j arc cos 5 0 < ¢ < 1.22h9
B 2.208 2.5 1+
0
X 1 2N /g2 + 1.5 dt
—_—= 1.30808 +f arc cos . = 1.2249< t< 2
B 2.208 \ 2.5 1+&
1.2249

Yb 1 E'b 52 -1.5 + [gh - 352 - l;]l/2 dt
—_—_=1 - /\ log, 4 . 5 £>2
H 0.597 2.5 1+ €

In the Table A.l are given the coordinates of the points on the
perimeter, and the velocity at these points, such that between any two
successive points flows a discharge Q/hO. The case A= L4 is

characterized by the discharge ratio H/B formulas:
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(SR

“TABIE A.l. Case H/W = 0.31

P px /40 3 va/kf x/B. y/H
0 0 0 1.419 0 1.000
I k.59 0.079 1.421 0.079 1.000
2 9.0 0.158 1.k27 0.157 1.000
3 13.5 0.240 1.437 0.235 1.000
L 18.0 0.325 1.453 0.313 1.000
5 22.5 0.41k 1. 47k 0.389 1.000
6 27.0 0.510 1.503 0.464 1.000
7 3.5 0.613 1.542 0.537 1.000
8 36.0 0.727 1.595 0.609 1.000
9 40.5 0.854 1.667 0.678 1.000
10 45.0 1.000 1.773 0.743 1.000
11 49.5 1171 1.937 0.803 1.000
12 54,0 1.376 "2.224 0.857 1.000
13 58.5 1.632 2.891 0.909 1.000
1k 63.0 1.962 9.009 0.959 1.00
15 67.5 2.4k 2,743 1.000 0.964
16 72.0 3.078 1.719 1.000 0.879
17 76.5 4.165 1.240 1.000 0.755
18 81.0 6.31k 0.918 1.000 0.589
19 85.5 12.706 0.647 1.000 0.351
20 90.0 ® 0 1.000 0
Q/ﬁgkf = B/2.21 = H/1.38 H/B = 0.62 (A.3)

A velocity distribution diagram is indicated on Figure A.l. Between
two successive arrows flows a discharge Q/MO.

Let us plot xkzé(g)EQ, 5'(¢), and fl(g) as shown in Figure A.2.
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Figure A.1l
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Figure A.2
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We approximate fl(g) by a polynomiel times a damping exponential
3 2 .
fl(g)/lQO = (67 - 3t +2t) e for £ >0 (A.L)
The function fg(g) is defined by the formula

400
£ ()

f2(§)=..if t_gdt:—H[fl(t)]

b1g

-00

Here fl(g) is an even function and is defined for all values of ¢

by the formula

£(£)/120 = (sgn £)63 e 1Bl - 362 eItk o(ogn £)g &It (A.5)

The Hilbert transform is then easily obtained, knowing that:
H [ehlgl] = % sgn t [elgl Ei(- lgl)— e—|§| Ei(lg|ﬁ

and

H [sgn 3 e-lgl] = - % [elgl Bi(- |e]|) + e-lgl EI(Iglﬂ

by repeated use of the formula:

©0

i [ee(e)] = o [2(2)] +»§;/‘ £()az.

-00

Ultimately:

£,(8)/120 = (t/x) (% + 2) [élﬁ| Bi(- [¢]) + e I8l 5T (Igl)] + g /x

v ) s g [l e e - o7lel (O )

which becomes for ¢ > O:

- BT =



£,(2)/120 = (23 + 2¢) [eg Bi(-g) + o7t iﬂ(e,)]
+ 3t° [eg Ei(-¢)- e Ef(g)] + bg (A.7)

In the Table A.2 we compare the values of &(&) as arbitrarily
selected with the values calculated from the chosen approximate

£,(8) and &*(¢).

TABLE A.2

¢ K725 /2Q Kt p* /2Q

0 0.00 0.00
0.20 - 0.25
0.50 1.50 1.58
0.70 - 2.h3
1.00 3.00 2.91
1.20 - 2.76
1.50 2.00 2.22
1.70 - 1.86
2.00 1.50 ; L4.00 1.53 ; 3.T3
2.50 - JedT
3.00 2.50 2.37
4.00 1.00 1.17
5.00 0.50 0.56
6.00 - 0.29
16.00 - < 0.002

Numerical integrations yield for the definite integrals E,E¥, H and

H*, the following values:

2

E(L) _f ot = 1.010 Ex*(4) —f - = 0.755
DByt T L (2B e

- BB =



2

H(r) f o 0.528
T a A - e

©

ag

*(4) = = 0.
o lu C O R

and it was calculated earlier that

2

x2 - 1.5 dx
1(h) =\/‘arc cos 5 = 2.208
0 2.5 1+ x

< . 1.5 + [xh - 3x2 - h]l/z dax
5 = 1.375
1

2.5

+ X

. x
I*(h4) = 2.3026\/‘loglo [
2

Two more definite integrals must be calculated by numerical integration:

2 2
£ £, (&) ag
Fo(4) = = = | n(e)er (e)ae
¢ {[(h- t5) (5% + 1012 1 4 P { ¢
2 e £, (8) at 2
x(L) = 2 = | nx d
Hence
. |
(x/120)5,(4) = [ n(s) [52(52 +2) [ ef Bi(-g) + e ﬁ(g))

0

+ 363 (eg Ei(-t) - e Ei(e) ) * hge] a
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o
(n/120)7,(4) =k/\h(§) [§2 (:° + 2) (egEi(- £) + et ET(&))

0]

+ 3g3( et Ei(-¢) - efg Ei(g)) ] dt + 4 B(4) - H(k)

0

(x/120)F (1) :\/§h*(g){ég(g2 3 2)(e§ Ri(- g) + e 5 Ez(gj
2

+ 352(9,§ Ei(- €)- et Ef(g)) ] ae + 4 Ex(4) - H*(4)

A vord needs to be said about the convergence of the integral
2
Fg(h), For large values of &, h*(¢) =1/ 1 + §2[(§2~h)(§“+l)]1/2

is asymptotically equivalent to £ . The integral will be convergent

provided

©0

[ ef Ei(- )+ et Fi(t) + (3/e)[ed Ei(- &) - 7 Ei(e)] at
A |

is convergent. The asymptotic expansions of Ei(- ¢) and Ei(¢) are:

: . & T T Eoer oy _ 1,1 2
Ei(- £) = - e -t e e*FEi(- &) = - R e £
&t £ %
BI(t) = b £+ 55+ 2 £ E(g)alsl 2
Bk} =& f+ £ ¥ e t oane e~ Ei(f) F 2 I

and the integral for large values of ¢ 1is equivalent to:

/‘ 2 12 3 ( 2 k4 ) ]
- + F oees + === = = —= + ... dg
\ [52 P e | ¢ 63
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Numerical inteération then yields (n/lEO)F2(h) = - 0.01 and
(ﬂ/lQO)FE(h) = - 0.55. It is easy to evaluate the constant f2(2).
Thus, we find (rr/lQO)fe(Q) = - 0.96. The constant f(i) is calculated

numerically since

.f(i) = -

zf“ £,(t) 2 wf (1)

= = — O(k) = 0.21
7 1+t e 240
0]
The two eguations for 5Q and BA Dbecome
2.21 5Q/Q + 0.75 8\ = - 310¢ 1.38 5Q/Q + 0.69 sA = 22¢
or
5Q/Q = - Lble &N = 950¢ (A.8)

This is an interesting result but valid only for very small values of

€. Qualitatively, it shows very well that the dimensionless parameter
q = Q/k\/K; where A 1is the cross-sectional area, increases with the

perturbation and A > O. Since

2Qd bottom discharge 2
o = C - = — arc tan 1/2
Q total discharge i
' arc tan =
ch ) side discharge 1/%*
— = 1 ,
Qdc bottom discharge — CV[X;)
Qb 7 aa
5 2 . _
Qd 2 (1 + kg)(arc tan 7/ K)a
c

More water flows from the bottom than from the side as compared to the

original case.

Formulas (A.9) are valid for relatively very small values of €
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because a boundary condition f; (\/A*) = 0 was approximated -as.
fl (\/ %) = 0, which is a good approximaticn only for BA << A.
Taylor's development of f]( A¥) yields

2

&N
fi(\[i) + o f{(yfi) ¥ wes

&A

£ (V%) = 2,0/ + "

A better approximation is then obtained, replacing the condition

fl(\/%*) =0 by flfvri) =0 and fi(v A) = 0. We select for fl(g)

the function
8 - 1-¢)/20 =
£,(8) = 200%) (¢ - 2)3 & (L1820 gy (P ()
Indeed, fl(g) satisfies the condition f{(?) = 0. In the Table A.3

we compare the values of §(t) as arbitrarily selected with the values

calculated from the chosen approximate fl(g), 5*(¢).

TABLE A.3
3 kﬂ26/2§ kﬁea*/EQ
0 0.00 . 0.00
0.20 - 0.0082
0.50 1.50 0.84
0.70 - 2.13
1.00 3.00 3.1k
1.20 - 2.84
1.50 2.00 2.3
1.70 - 1.97
2.00 1.50 ; L4.00 1.93 ; 3.63
2.50 - : 3.50
3.00 2.50 _ 2.80
4.00 1.00 0.80
5.00 0.50 0.20
6.00 - 0.06
11.00 - < 0.001
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The Hilbert transform is then easily obtained. Calling

et Ei(- at) + et Ei(at) = Aia)

26 Ei(- at) - o8t Fi(at) = D(a)
we obtain
et (&) 2 A(a) A(a)
5=t [(g +10) gA(a)s(a) - 22 5 + 12% ]
2.1026 x 10 a a
+ (6% + 8) sA(a) D(a) (A.10)

where the summations are to be taken for a discrete set of values as

indicated in Table A.L.

TABLE A.L
a 4,05 4,00 3.85 3.80 3.65 3.60
A(a) 1 - 0.9512 -5 L. 756 20 - 9.512
a 3.L45 3.40 3.25 3.20 3.05 3,00
A(a) - 10 9.512 5 L. 756 = 1 0.9512
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APPENDIX B. SEEPAGE FROM TRIANGULAR AND TRAPEZOIDAL CHANNELS

This appendix is a free translation of the major part of a paper
in Russian by B. B. Vedernikov (1936). Substantially the same theory
was also published in German by Vedernikov (1937).

B.1 Introduction. Problems of seepage of water through soils have

much importance in hydrology and hydraulic engineering. Questions of
seepage from canals, especially seepage with formation of a free surface
appeared first with the study of water filtration for irrigation. There
is available a method of analysis applicable to the solutior of such
problems. This method may be used in cases of filtration with a free
surface, when in the domain of the complex potential the boundaries of
the problem consist only of straight lines, on which either tle real or
imaginary part of the complex potential is constant. In the physical
plane the boundary must also consist only of straight lines except, of
course, for the free surface. Introducing now the vector of reduced
velocity, we have the possibility of further necessary trancsformations
because in the domain l/v' (where v' = vx - 1ivy, the complex conjugate
of the velocity vector) the boundaries will be rectilinear because of
the properties of the inversion transformation. Thus, by mapping the
domain l/v' upon the half plane ¢ through the Schwarz-Christoffel
formula and mapping again this half plane upon the domain of the complex
potential, through the same formula, we get ths relations of the form

1/v' = v/[v]2 = fl(g); W=g+ iy = - i(X +iY) ky = f2(§)

1/v' = £(W)

Further, we can obtain the relation between th= complex potential and
the physical domain in the formula

z = (l/kf?/Nv dw/lvl2 = F(d) (B.1)

In such a form, which is modified from Kirchhoff's method, prcblems of
filtration can be solved without distortion of the boundary ccnditions
on the free surface.

On the basis of the above method we give in the present work the
solution of seepage from triangular and trapezoical canals with linear
slopes and without influx. It is further assumec that there is an
extremely deep water table or, in other words, the filtraticn does down
to infinity. The y-axis is directed downwards and consequently the
angles of the velocity directions with the x-axis will be read clockwise.

B.2. Filtration from triangular canals. In the domain =z the profile

of the waterway is represented by a triangle with an angle cf the slopes

with the horizontal, of value & (m = ctn @). The depth of water in

the waterway is H and the width of the water surface B as indicated

in Figure B.l. The profile of the free surfacz is not known beforehand.

The velocity directions on the slopes on the right and left arc, respectively,

= Th =




i g kg

i e

Hodograph

Inverse hodograph

Y ¥
Figure B.1
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il

arc tan (vy/vx) /2 - o

/2 + «

]

arc tan (vy/vx)

On the free surface the pressure is constant, which leads to the
condition:

v+ [y, - (1/2))1° = (1/2)

or

Far from the bottom of the canal (i.e., for y = w) the filtration
velocity has the uniform direction arc tan (vy/vy) = /2 and the

reduced value |v| = 1. At points b and d
Vx = 4+ cos @ ¢ sin Q&
2
v_ = cos «
y

or 5
v/|v|® = (vx + ivy)/vy = + tan o + 1

In the domain of the complex velocity vector, to the reduced velocity
on the right bank corresponds to line be, making an angle (/2 - a),
and on the left side dc making an angle (x/2 + @) with the
horizontal axis. To the point ¢ of the contour corresponds the whole
infinity of the domain v Dbetween the lires he and de, but to the
whole line ae at infinity corresponds the point (a,e) in the
hodograph plane.

To the free surface corresponds the arc of circumference bacd.
In the inverse velocity domain, to the channel profile corresponds the
triangle cbd with vertex at c¢, corresponding to the bottcm of the
canal. In the domain Z, to the boundary of the problem, ccrresponds
the semi-infinite strip abda. Let us assign the following ccrrespon-
dence of points in the several domains:
Q

1. x=+ g y = 0; - Y=0 z

—— = + tan @ + 1
Ekf’ Ivl2 —

o
»
I
o
<
I
F
<
I
o
=
I
=




Let Q ©be the discharge per unit length of canal. Thus to the bottom,
corresponds the point & = O. The sides are distributed on the axis &
from ¢t =1 to tE =0 and from § = -1 to ¢ = 0 and the free surface
t=0o to E=1 and from ¢t = - o to E = -1.

Let us map on the half-plane { <he semi-infinite strip 2.
Schvwarz~-Christoffel formula yields: '

. ag
X+iY’=B‘£W=qlm=qarcsirxg (3.2)

For ¢ =1 we obtain Q/2k, = x q/2 or q = Q/ﬂkf. Finally:

Z

It

(Q/ﬂkf) arc sin ¢ (B.3)

or
W

]

-1 (Q/x) arc sin ¢ (B.4)

Let us map on the upper half plane { the triangle cbd of the inverse
velocity domain. Then application of Schwarz-Christoffel theorem yields:

g
V/|V|2 _ Df geoz/:r-l (¢2 . l)(ﬂ/2-a)/1r—l at + ¢ (5.5)
0

For ¢ =0 we have v/|v|2 = 0 and hence C = 0. The preceding
equation then becomes, after some recuction,

v ( ) ¢ at
—5 = - D(sin @ + 1 cos C
IVI A l 2(1/1‘[(1 g

2)1/2+a'[rr (.6)

The constant D 1is determined from the condition on the free surface
for ¢ = 1. Let us denote:

1 at

% = f (L-2G] (| _(2)L/2%a]
0 /2+Q/ 7
) ()

(B.7)

This definite integral can be easlly expressed in terms of Beta
function B and Gamma function I'. As is well known, these functions
are related by

iR

L/\xm(l--xn)p dx = (1/n) B [(m + 1)/n, p + 1]

0]
[Formula (B.8) is continued on tke following page. ]
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1 7 [(m+1)n]T [p+1]

= — (B.8)
n T [(m+1)/n+p+1]
where (m + 1) >0, n >0 and (p + 1) > 0. We then obtain
I = (1/2) Bla/x, (1/2 - ax)]
1 r[a/=] r[1/2 - a/x] 10[1/2 - a/x] n[a/x)]
= — = (B.9)

2 r[1/2] a(l - 2afa)\fx

From this formula one can see immediately that I(a/x) = 1(1/2 - a/x),
f.e., I takes the same value for two values of Q/n related by the
condition

(o/n)l =1/2 - (o:/n-)2 ' (B.10)

For instance, for o/ = 1/8 and @/ = 3/8, the integral I has the
game value. This character of I will be necessary for the derivation
of the formula of discharge. For ¢ = 1 Equation (B.6) takes the form

]

V/IVI2 =tan ¢+ 1 =~ D (sin ¢ + i cos @) I

Therefore:

D=-1/I cos o (B.11)
Thus in a final form:
v 1
lV12 . (tan o + i)k/‘ - ea/m(l ; )1/2+o¢n (B.12)

This formula can be rewritten, in conformity with relation (B.4), in
the form:

v (tan a + i) ixm K aw

I Q Y sin L~2a 190 /Q) cos

2a/ﬁ(iﬂw/Q

(B.13)

Let us switch to the éstablished relation between the cocrdinates
of the domain 2z and the values of the complex potential or the coordi-
nates of the half-plane ¢, since the relation between the latter and
the values of the complex potential is known and is determired by
relation (B.4). By Formula (B.l) we get:

1 /-vdw (tan a+i)(-iQ) U[g at at
. l ea/

- - + C
ke T kT 3 (-6 H @Y
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Note that for ¢ =0 2z = iH and consequently that C = iH. The integral
of Formula (B.1ll4) can be integrated by parts. We get then for the
coordinates of the cross-section

(1-1 tan a)Q

f -
o TInk., e = 205/1\1 C2)1[2+oz/7r
¢ at
\/Narc sin ¢ l T t )l/2+a/ﬂ + iH (B.15)

0

For the coordinate of the free surface, i.e., for € > 1 wve get

B 1 ! Q J b/g arc cosh € a¢f
z = ; + S ‘ﬂkf . gl—20/ﬁ(€2_l)l/2+a/f
¢ dat iQ
+ arc cosh { [I cos & —\{\gl-Ea/n(€2_l)l/2+a/ﬂ + ;;; arc cosh €

(B.16)

B.3. Discharge formula for a triangular waterway. Let us turn now to
the determination of the discharge of filtration from a triangular
canal. We define:

Al

ag

Q
arc sin — =f(-) B.17)
j[ 6 l 2a/5r(l CB)l/a+o:71r ( @ (

for ¢ =1 Formula (B.15) takes the form

g & 5%; [1 - 2f(o/s/n1] (B.18)
Further we also have:
H = (Q/2k,) tan o[l - 2f(a/x)/x1] (B.19)

Solving jointly relations (B.18) and (B.19), we get the formula for the
discharge per unit length of canal:

2 1
Q=k_|B+ -1} +H (B.20)

f
tan ¢ d 7l
l-f(;)/g—

We define A such that
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2 1
A= -1 (B.21)
tan o d 7T
l-f(;)/g‘

and then we obtain:

Q = k(B + AH) ' (B.22)

where A is e function of the angle of the slopsz of the channel side
with the horizontal, or in other words, of the ratio of the width of
the water surface to the water depth. From relation (B.17) we see that:

f(a/x) = x1/2 - £(1/2 - a/x) (B.23)

Using this and knowing that tan a = 1/tan(i/2-a) we can easily
express the coefficient A for the canal with angle of slopes of value
(n/2 - @) through the coefficient A for a canal of slope angle of
value . We obtain on the basis of Formula (B.10)

A(x/2 - ) = 4/Aa() (B.24)

Therefrom we can easily evaluate the value of A for a = x/4 (for a
canal with slopes of unity), namely, A(x/4) = 2. We compute the value
of A for canals with slope angles «f/x = 1/6, o/x = 1/8, and a/n =
1/20, the latter being the lower limit of practical significance. At
the same time, knowing the value of A for those angles, we can compute
from Formula (B.24) the values of A for the angles afx = 1/3, a/x =
3/8 and a/x = 9/20. For this it is necessary to compute the function
f(a/n). We calculate using the formula of Gauss. For this it is first
of all necessary that the integral expressing f(o/x) in such a form
that the integrand does not become infinite. For a/x = 1/6 we have

\

1
£(1/6) =L/~(arc sin ¢) d§/§2/3 (1 - §2)2/3
0

We make a change of variables such that ¢ = (1 + x3)-l/2o Then

b |
3 1 dx
£(1/6) = —l/‘arc sin( )

2% (l+x3)l/2 (l+x3)l/§ '

1 1 dx
[‘arc sin( . } :
s (3L )22

n oW

To get rid of the infinite limit in the second of these integrals we
employ the change of variables x = 22 and we obtain:

(1) SJ i( 1 dx ; ( 1 ) dz
f = - rc sin + arc cos
6 5 4 : (l+x3)l/2) (1ec)2 T (e P42 (1427 )18
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Treating similérly the cases Q/n = 1/8 and a/x = 1/20, we ultimétely
obtain

1

[‘ L dz
) arc cos (

(1+28)1/2) (L2 yoi 2

1
ﬂg) [am:unb—~g~7
0

" "[l 1 ) dx
f(z=) = 10| larc sin
20 J ( 20\1/2 20,1/2
o (1+x77) (1+x77)
/; ( 1. ) dz
+ arc cos R s "

These forms are suitable for the evaluation of those integrals by the
formula of Gauss. Such computation of f(a/x) for ofx = 1/4 gives
the result f(1/4) = 2.9123666. The exact value of f(1/4) by Formula
(B.23) is

e(L/4) = (x/8)T  or  £(L/A) = 2 Af7 Mo(L/N)

Using tables of Jahnke and Emde we obtain f£(1/4) = 2.912... . For
practical purposes, it is quite sufficiert to have for A the first
three significant figures. The values of II(x) for the determination
of ﬁI/2, which are necessary for the computation of A, are found in
the tables of Jahnke and Emde, where 1I(x) is given with four digits.
The results of the computaticns are collected in Tatle B.1l.

TABLE B.1l

a/x a ctn f(a/5) A
1/20 90 6.31375 1.887 1.579
1/8 220 30¢ 2.41h21 2.092 1785
1/6 30° 1.73205 2.276 1.821
1/4 150 1.00000 . 2.912 2.000
1/3 60° 0.57735 -e- 2.197
3/8 67° 30° 0.h1k21 - 2.306
9/20 810 0.15838 - 2.533

With the aid of those data a plot can be made of the coefficient
A as a function of the slope angle. In the region a/ﬂ = 1/20 to
a/n = l/h the function A can be expressed approximately by the formula
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A = 2.123 (/) + 1.47 (B.25)

For the commonly encountered slopes m = 1.0, m = 1.5 and m = 2.0 we
get A = 2,000, A=1.864 and A = 1.781.

B.4., Diagram of filtration from a triangular waterway. We can now give
a picture of the velocity distribution on the wetted perimeter of a
triangular canal and the configuration of the free surface. As an
example we analyze a canal with slopes m = 1.0 and depth H = 1.0
meter. In that case on the side slopes the horizontal and vertical
components of the velocity are equal end the value of the reduced fil-
tration velocity on the perimeter can be derived from the relation

1 1 1 1
lv] =2 v, = 5 = (B.26)
* V2 v /P 2 Vy1v|2

The value of v /|v|2 is determined for m =1 and o = 45° from
Formula (B.12) In the relation

o8] By = is o 4) fg - (3.27)
141 == (141 B.27
R R 1 | G T

We set §2 = l/(l+xh) and we obtain

o/ Ivf? = 2ua)/ny [ e/

For x>1 (¢ < l/VfE) we carry through the change of variable x = 1/z
and get

v/|v|2 = [2(l+i)/I]/ dz/(l+zb')l/2 (B.28)
0
For x<1 (¢ > l/dg) we get
v/|v|2 = [(1+1)/1]]1 - ef dx/(1+xl’)l/2 (B.29)
0

The value of the integrals in (B.28) and (B.29) can be fouind by
decomposition in series:

jx ax 1 1.3 ¥ _—
= X = — — 4 ——— — = ... + R B.30
A (1+xl’)l/2 2 5 2.k 9 "




B

Here the residual term Rn can be estimated by the formula:

1. 3. 5... (far1) x*

L (B.31)
2. 4, 6 ... 2n hn+1

where n 1is the rank number of terms, starting with 2, and further
fixing the value |Rnl < 0.00005 we arrive at the value of both
integrals.

Substituting in Formula (B.15) the value ¢ from Formula (B.3) we
obtain for n = 1 the following expression for the waterway coordinates:

v Q RN
x =X IVI2 - T, 2( = £) (B.32)
y=H-x=32-x (8.33)
Here 4
£(afx, t) =f are sin €) at/tM? (1 - £7)3/
0
For ¢ < l/\/§~ ve get
z
1 dz
LU (R S
1
=2 akjnarc cos " +lah)l/2 . o Zizu)l/Q (B.3k4)

0

Here, for convenience of application of the formula of Gauss, the upper
limit of the integral is made unity, whereupon

at = 201 - t5)

where ¢ is the upper limit of the integral f(x/a),t). For

t >1/ 2, f(a/x,t) = % g I - (arc cos ¢)I
il
+ 2 a [;rc cos igﬂ 175 qé’u 1/2
J (1+a'z ) (l+a 'z ")

0
(B.35)

provided ah = (1 - §2)/§2 where { is the upper limit of the integral

f(a/n,t). Setting intervals between the value of X equal to Q/20 x kf
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we find the value ¢ corresponding to this value of X, and after this
the value of the velocity v and the coordinates x and y. From this
same value we derive the coordinates of the points of the weterway
perimeter, between which seeps 1/20 of the discharge and the value of
the velocity at those points. On the free surface for m = 1.0, from
relation (B.5) we have:

v v, 1 ¢ at
= — 4+ i=1 - \/ + i (B° 36)
2 2 3/h
IVI. Yy Icos a Yy (L™ - 1)
Making the substitution §2 =1/(1 - xu)l/2 we obtain
v 2 ¥ ax
5 =1+ 1l - k/\ —T =1+ 1
Ivl I cos & o 1 - x
2 5 9
- —— | x + % %— + %L% %— + et (B.37)
I cos & ’

The residual term of the series can bz written in the form

L h1/2
R <x B+l ne1) (1-x )l/d (B.38)
For values of x close to unity the series convergeshextremelx slowly.
Consequently, we introduce the change of variables x =1 - z and we
get

X dx T z dz 22
2 Jf —————wﬂ——7— =T cos -2 [ =Tcosa-2 | =
1/2 Jd P 37k 2
0 (l - X ) 0 ('— - 2 )
6 10
Z T =z
+ % Fe % g 5t t Rh) (B.39)
where the residual term of the series can be determined by the formula
R <2 [(ins2)(1-2) " (B.140)
Let us set Rn < 00,0005,

The coordinates of the free surface are determined by Formula (B.16)
with the relations:

Yy = (Q/ﬂkf) arc cosh {
<

LR Q ag
X=y — - arc cosh {
v J e (- 03

y i kf I cos & 1

= 8l =




e

?here we introduce the same substitution as for the calculation of
v/lvl and we obtain

1

Ve Q 2a f 1 dz
X=y— - . arc cosh ( ) (B.k41)
hzh]l/E [l_éhzﬂ]172

vy Tk, TIcosa'y [1-a

2
where au = (Ce - 1)/t° provided ¢ is the upper limit of the integral.

For the given problem we take H = 1.0 meter. Then B = 2. O meters
and the discharge of filtration per unit length of canal is (B+2H)
= 4 k_. For the calculation of f(a/x,{) and of the 1ntegral (B E
by the formula of Gauss as before, we use five values of . The
results of calculation of the coordinates of the points of the canal
perimeter, between which 1/20 of the discharge seeps, of the filtration
velocities of those points and the coordinates of the free surface are
illustrated in Table B.2.

TABLE B.2

Waterway Parameters

ka/Q a = arc sin { v X y

0 0 w 0 1.000
0.05 9° 3.302 0.029 0.971
0.10 18° 2.323 0.081 0.919
0.15 27° 1.881 0.1k9 0.351
0.20 36° 1.608 0.231 0.769
0.25 1450 1.4k 0.325 0.675
0.30 540 1.262 0.431 0.569
0.35 63° 1.333 0.549 0.451
0.40 T 1.017 0.681 0.319
0.45 81° 0.900 0.829 0.171
0.50 90° 0.707 1.000 0.000

(Table B.2 is continued on the following page.)

- 85 -




TABLE B.2 (Continued)

Free Surface Coordinates

Y vx/vy X y
0.0 1.000 1.000 0.0
0.k 0575 1.286 0.k
0.8 - 0.410 1.481 0.8
1.2 0.293 1.621 1.2
1.6 0.271 1.722 1.6

The filtration picture and the velocity distribution or. the wetted
perimeter is presented in Figure B.l, where the points between which
1/20 of the discharge seeps are indicated with lines.

B.5 Filtration from a trapezoidal canal. 1In the case of filtration
from a trapezoidal canal the boundaries of the problem, in addition to
the sides and the free surface, will include also the bottom of the
canal of width b on which arc tan (vy/vy) = /2.

In the domain Z, the filtration pattern is mapped as in the case
of a triangular canal upon a semi-infinite strip as shown in Figure B.2.
In the domain of the reduced velocity vector the filtration pattern is
mapped onto a pattern analogous to that of the triangular canal, but
with an interior cut on line ¢ d e, i.e., on the vertical axis corres-
ponding to the bottom of the canal. In the domain of inverse velocity
the figure will have the form of a triangle abcefg with also an
interior cut on line c¢ d e, We designate the discharge through the
bottom Qp and the velocity on the axis on the tottom \SE We map
upon the semi-plane € the contour of the problem in the domain l/v‘,
and in the domain Z. Let us set the following corresponding points:

le =0 y=H X=¥=0; *2*5 =2 £=1=0
vl v,
B v .
2. x=+ 55 A = & %E—; 5=+ tan o + i; & =+ 1
£y
y=o Y:O n:o

v :
f S
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Hodograph

§ o — Ty

Vy/|v|2 Y

Inverse hodograph 8 a
Z-plane

* Figure B.2
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The relation between Z and ¢ will have the same form as before

(B.3)
X+ 1iY = (Q/xkf) arc sin

or ¢ = sin (iWn/Q). The relation between the vector of the domain
l/v' and the vector of the upper half-plane € we get by use of the
Schwarz-Christoffel formula in the form:

Q tag
|v|2 ) D\éﬁ (gg - l)l/2+a/n (¢° x2)L-a/x el
¢
- tdg ' i
= iDb‘[[~ (1 - C2)1/2+a/n (kE _ gg)l'a/f * ;; - (B.L2)

For k¥ < { <1 we have

= - D (sin a + i cos G)J[ Cg)l/gié/n

(§2 2)l—a/n (B.43)

lvl

We designate k

ta .

1
f tat 1
) Q- g2)1/2+o:/3r (22 ) ke)l-a]i 2

After the substitutions k2 - §2 = k2u in I, and §2 - k2 = k2t

in 12 we get 1

1 ‘
1k \2a/x du
4= 2’1&1 (EI) f i 1/2+a/x  1-a/x (B.L4)
0 1 + -—2-— u 5 (u)
Ey
1

I, = 2}1{1 f . 1/2304/?: Toa/x (B.45)
0

The latter integral can be easily expressed through Gamma functions.
We arrive to
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n(1/2 - a/x) n(a/x)
I, = (B.46)
kl(a/ﬁ) (/2 - a/n)yﬁ?

I, = I/k (B.U7)

where I 1is defined in Formula (B.9). Hence I possesses the same
characteristic as I, expressed in Formula (B.logn We now determine
the constant D. For € =1 we have:

v/|v|2 =tan ¢ i = - D(sin @ + i cos Q) I,

and hence

= /
D= l/1'2 cos @ =k, /I cos a.
The velocity v, on the axis of the bottom of the canal by (B.L42) is
equal to:

v, = - 1/DIl = I

4 cos a/Il (B.48)

2

The relation between the coordinates of the plane =z and of the complex
potential plane or of the { plane [the relation between those last two
planes is known and is determined by Formula (B.4)] can be derived with

the help of (B.1) in the form:

! L ¢ £
5 o -1 (z1)Q €t ag
Tycos @ wke o |G (1 - €2)1/2+a/n (kz ) g2)1-oz/n \ C2
+ %;- ;%; erc sin ¢ + iH (B.49)
For the coordinates of the bottom (0 < { < k) we obtain:
C gat
| Q . f
g = . arc sin € |I. - - -
I, cos a kg - 5 AL = §2)l/2+o/n (k2 - §2)l a/x
§ €at
d .
+ /Aarc sin € - 5175 5 57T + iH (B.50)
oA (1 - ()YE AR (F By

For the coordinates of the sides (k < £ < 1) we have:
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E+iH

«
N
]

2
1 Q s tat .
+ (1 - 1 tan @) =— —— in ¢ - s
i tan ¢ . ﬁkf arc sir \}/{ (1 - g2)_/z+oc/1t(l;2 ) kz)l_a/,r
5 tdg
- in ¢ - ; _ , .
{arc sin (- g2)1/2+oc/rr (¢° - k2)1~a/:r ( )

and for the coordinates of the free surface (¢ > 1):

g
. : i ) f (arc cosh ) tdt
2

I, cos a Rk (CQ ) 1)172+Cx/n (g?- _ ke)l-aﬁ

+

a
g
N tag
.h g L s a - ~ N ,
arc cos o COS [ (QZ ) l)l/g+a/ﬂ (§2 k(_)l—a/n

+1 -2 arc cosh £. ) (B.52)

ﬁKf

B.6 Formula of discharge for a trapezoidal canal. Let us introduce
the following notation:

k
-/arc sin ¢ 5 l/?Eiﬁﬂ 5 T = fl(a/n:,k) (B.53)
A (1 - YT (R
‘ 1
i farc sin 5 l/2+§}1§t 5 E TG © £ (afn,k) (B.54)
: : (- ¢) (£ - %)
The width of the waterway on the bettom will be determined by the
relation ‘
'; 2 -
| b = -2 £, (a/m,k) (B.55)
I2 cos o ntkf

The waterway width on the surface and the depth will be given Dy

£, (a/x,k) f (a/n,k)
B=b+9-— 1 - H:-—-@’——t&na 1__3__/___
Kk nI./2 2k nI./2
) 2 J(8.56) g 2 (357
! The discharge formula has the form Q = kf(B + AH) (B.58)
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\ 1
where 2 f2(a/:r,k) ~ er fl<a/7f;k)

A= - (B.59)
tan @ w 12/2 - fe(a/n,k)

Let us turn now to the calculation of the value cf A. For this
purpose we calculate the values of fl(a/ﬁ,k) and f, (a/x,k) by the
formula of Gauss. We figure out the nzscessary 1ntegral: for values of
o’ corresponding to a=ax/4 a==x/6, end a= x/8. For those angles
f (a/ﬂ k) and fg(a/n,k) can be determined by way of substitutions
analogous to thosé for the calculatlon of f(?/ni in Section B.3. For
a/n = 1/4 we have for ¢ = [1 - kj 2/(1 - H11/2" yhere
(0 <t <k):

2k : k dz
f (a/ﬁ k) = — [ arc cos 4

%170 \é L ahe \ﬁ_- ahy

and for ¢ = [1 - klg(l + xb')]l/2 and x = 1/z where (k < ¢ <1):

dx

\/ Vl + x

klz dz
+ \/‘ arc cos :
N i

0 1l + z \ 1l + z

o 1
fz(a/ﬂ,k) = — /\arc cos
% Lo

For a/x = 1/6 we obtain for ¢ = [1 - k) /(1 - x5z 6 1/2

(0 <t <k):

where

3\VE k) dz .
f (a/n,k) = —— arc cos ;
= k 26 26
1 0 1-%k"2 1-kz
and for ¢ = [1 - k12x2/(l + x3) 1/2 with x = 1/z2 where (k< ¢ <1):
/
K x3/2

f2(a/n,k) = — arc cos

%1 %0 \[___—__— V[—-—_——_

3 J[
— arc cos ~3 =
kl L \[*—““‘6 . [“‘—;o

2 8

For o/x = 1/8 wve have for t = [1 - k) /(] - )]1/2 where

(0 <t <k):

- Gl =




= O O O O O

and for

fg(a/n,k)

g

arc

0

COSs

\/l - k z

\/l - k228

=1~k /(1 + x8) Lfe with x = 1/z, vhere (k <t <1):

1L0

1

L
—— f arc cos
k

!

\/Vl -+ x

1 u
+ j arc cos J
e A v
Results of the calculations are illustrated in Table B.3.
TABLE B.3
K° bk ./Q Q,/a Bk./Q Hk./Q A B/H
a=54° m=1.0
0 0 0 0.5000 0.2500 2.0000 2.000
0.2500 0.1668 0.3333 0.54L49 0.1891 2.4o7 2.882
0.5000 0.3035 0.5000 0.5947 0.1456 2.785 L.084
0.7500 0.4788 0.6667 0.6760 0.09860 3.286 6.856
0.8750 0.6093 0.7699 0.7456 0.06817 3.732 10.94
0.9375 0.7061 0.8392 0.8021 0.04801 4.123 16.71
1.000 1.0000 1.0000 1.00CO 0 o o
a=30° m=1.732
0 0 0.655 0.1892 1.821 3.464

. 2500 0.2036 0.3333 0.68L40 0.1387 2.279 4,932

. 5000 0.3526 0.5000 0.7203 0.1062 2.634 6.785

. 7500 0.5299 0.6667 0.7769 0.07129 3.130 10.90

875 0.6533 0.7699 0.8245 0.04841 3.552 16.69

.000 1.0000 1.0000 1.0000 0 o0 -

(Table B.3 is continued on the following page.)
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TABLE B.3 (Continued)

2 .
k bkf/Q Qb/Q Bk./Q ka/Q A B/H
Q= 22°30' n = 2.4k
0 0 0 0.7357 0.15240 1.735 L4.828
0.250 0.2289 0.3333 0.7572 0,10940 2.220 6.921
0.500 0.3840 0.5000 0.7856 0.08316 2.579 9.446
0.750 0.5592 0.6667 0.82g2 0.05592 3.054 14.83
0.875 0.6782 0.7699 0.8652 0.03872 3.482 22,34
1,000 1.0000 1.0000 1.00C0 0 ) P

In this table are given the values of b, B, H in portions of Q/k
i.e., of the width of the flow strip filtrating under the bottom,
and corresponding to the values of the modules k and the quantities
A and B/H, directly of interest to us.

f}

The portion Qb/Q of the discharge filtrating ﬁhrough the bottom
of the canal is determined according to relation (B.4):

Qb/Q = (2/x) arc sin k.
and consequently the portion seeping through the side is

1 - Qb/Q =1 - (2/x) arc sin k

B.7 Filtration pattern from a trapezoidal channel. We give now the
picture of the velocity distribution on the wetted perimeter and the
configuration of the free surface. We figure it out in detail for a
canal of one-on-one slopes. Let us take the value arc sin k = 52°30',
With this we get, as we shall see later, the cross seczion of a canal
sufficiently typical for the average irrigation canal, and the ratio
(width of bottom)/(depth) will be b/H = 3.16.

The values of the filtration velocities on the bottom §k <t <k)
of the canal are determined by the relation: lvl =v_ = ilv /v
where with use of (B.L2) v y

v B i 1 u[ tat
= - Fly . 2,3/4
WP ryeosa | T4 - - )Y

2 L

Carrying out the change of variables { = k2(l -z )/(1 - kzzu) we get
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[g ¢at Ve £
7 =2
J 2y3/k . 2 2,3/h \/\ o L
Vx I 9
1 1, k
= 2 ;— Z + '53 k 25 ’2-"%' ——-9——— + ae0o + Rn ) (B.60)
1
where Rn can be put in the form:
Zhn+l 1
R < K (B.61)
hn+1 N kgzh

The value of the
derived from the

Here

£, (o/70,%, £)

L

provided a = (k
integral fl(a/n,k,g).

coordinates of the bottom in (B.50) and (B.3) can be
relation:

i - S 4 (5.6
= f (a/7,k,t) B.62)
|v|2 " I, cos Q ﬂkf 1T
= H (B.63)
[E - tat
= arc sin =
J SR Sk
1 dz

\/k ke
1
2 ———-ak/;rc cos

& ~\/l - k2auzh ﬁy/l - kgahzh

1 0
(B.6L)

» Qe)/kg(l - §2) where
On the side we have:

{ is the upper limit of the

v = »\/2— Vx = —\/’2— Vy
tat
x l
= — (B'65)
R { - B (B LBy

' 2
Substituting ¢

2
substitution

1 -k /(1 + xh, but for ¢ > \/1 - & /c the
1 - k /(1 + zh) we obtain for k < ¢ <\/1 - k) /2
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%5 = % (B.66)

and for \/1 - Ky /2 <t< 1

V

le\)

dz
e (B.67)
{ \/ 1+ zh___

The sequence of calculation of integrals j (l + X ) 1/2
0

|v

explained in Section B.k.

The coordinates of the side points using (B.51) and (B.3) are
determined by the relation:

b Vx Q
z ¥5+ 1H + (1 ~14) | % 5 - fg(a/n,k,g) (B.68)
{v| I, nk,
Here for k < ¢ < (1 - kg/z)l/2
€
d
£, (a/x,k,t) = farc sin €
2 2 n 2 2 N
4 (- ) (7 B
a fl kl dx ( ¢ )
=2 — arc cos B.69
k [ /
& 0 \/l + ahxu \/l + ahxu
provided au = (§2 - k2)/(l - §2) where { is the upoer limit of the
integral f2.
For \/1 - k12/2 <t<1
i }:l dx
f (a/:r k,t) = — jarc cos
kl L L
0 l+x 1+ x
s klz2 dz
4 jarc cos
0 1+ zh 1+ zh
: a2z2 dz
- E-ai farc cos ! = (B.70)
. 0 l+azh Vl+ahzh



L 2
provided & = (1 - ¢ )/(C2 - ke), where € is the upper limit of

D
the integral fe(a/zr,k,g) for ¢t > \/1 - k /2.

On the free surface using (B.42) we have

oM f tat
vy I o8 o l ((;2 . l)S/h (Cg _ k2)37[¥
=1- £ fx T (.71)
kl °
0 1l - x
2

where xh = (§2 - l)/(§2 -k

x
b[(l - xh)-l/de is shown in (B.4).
0

). The method of calculation of

The coordinates of the free surface we derive using (B.52) and
(B.3) from the relations:

y = (Q/ﬁkf) arc cosh §

; .
v k Q
- g =t 4 1 k/Narc cosh ¢ A

X

2 2 3/4 .2 2\3/k
L Icosa k. vV, (¢ - 1) (¢= - k7,
B vx 2 Q x k52x2 dx
=gty —4% a L/‘arc sinh
v I cos a kg 5 '\/l ) ahxh 1. ahxh
| (B.72)
L 2 2 2 A .
provided a = (t° - 1)/(t" - x°), where ¢ is the upper limit of the
integral.
8 ka2x2
The values fl(a/ﬁ,k,g), fe(a/n,k,g), and U[‘ arc sinh
0 RN
dx i
were computed using the formula of Gauss for five
\/ L i
_ 1l -ax
ordinates. On the waterway perimeter we set intervals between values of
X = Q/l8ﬁk . We derive the coordinates of perimeter points between which

1/8 of the discharge seeps and the values of the filtration velocity
of those points. In addition a few complementary points are given.
Results of the calculation are indicated in Table B.k.
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TABLE B.h4

ka/Q a = arc sin ¢ v xkf/Q ykf/Q
Bottom of Canal
0 0 1.350 0 0.1226
1/18 10° 1.359 0.0413 0.1226
2/18 20° 1.391 0.0820 0.1226
3/18 30° 1.459 0.1213 0.1226
4/18 o 1.612 0.1578 0.1226
5/18 50° 2.886 0.1883 0.1226
— 520 30! o 0.1934 0.1226
Side Slope of Canal
——— 52° 30° © 0.1934 0.1226
- 55° 2.099 0.1971 0.1189
6/18 60° 1.640 0.2073 0.1087
— 64° 30' 11".8 1.414 0.2191 0.0968
7/18 700 1.224 0.2375 0.0784
8/18 80° 0.993 0.2711 0.0448
1/2 900 0.707 0.3159 0
Free Surface

Yi,/Q v /vy xk./Q ¥k /Q
0 1.000 0.3159 0
0.1 0.705 0.3799 0.1
0.2 0.295 0.h4172 0.2
0.3 0.199 0.4412 0.3
0.4 0.139 0.4558 0.4
0.5 0.099 0.4636 0.5

= G7 =



a—— e p——

———

v

The waterway width at the bottom is b = 2b/2 = 0.3867 Q/kf, and
the depth is H = 0.1226 Q/qu The width on the surface is B =

0.6319 Q/kf° Consequently, "B/H = 5.158, b/H = 3.158, and A = 3.005.
All the figures in the table are given in ratios of Q/k . Setting the
same value of Q/k we get the absolute dimensions of the waserway.
Conversely, fixing one of the quantities b, B, or H we derive the

two others and the discharge Q. Let us take for example D = 5.0 meters,

then H = 1.58 meters, B = 8.16 meters, and the seepage discharge per
unit length of canal is

Q = kft(8.16)+ (3.005)(1.58)] = 12.91 ko

The filtration pattern i1s indicated on Figurs B.2. Arrows

indicate
the points between which l/l8 of the discharge seeps.

- 98 -

i e e————————————— RS 2 i et




BIBLIOGRAPHY

BATEMAN MANUSCRIPT PROJECT: Tables of Integral Transforms, McGraw-Hill,
New York, 1953.

L. D. BAVER: Soil Physics, John Wiley and Scns, New York, 1956.

S. BERGMAN and M. SCHIFFER: Kernel Functions and Elliptic Differential
Equations in Mathematical Physics, Academic Press, New York, 1953.

H. S. CARSLAW: Theory of Fourier's Series and Integrals, Dover
Publications, New York, 1930.

W. FLﬁGGE: Four-place Tables of Transcendental Functions, McGraw-Hill,
New York, 195k,

E. JAHNKE and F. EMDE: Tables of Functions, Dover Publications, New
York, 1945,

O. D. KELLOGG: Foundations of Potential Theory, Dover Publications,
New York, 1953.

W. V. LOVITT: Linear Integral Equations, Dover Publications, New York,
1950.

L. M. MILNE-THOMSON: Theoretical Hydrodynamics, The Macmillan Company,
New York, 1955.

M. MUSKAT: The Flow of Homogeneous Fluids through Porous Media,
J. W. Edwards, Inc., Ann Arbor, Michigan, 1937.

-------- Physics, Vol. 7, page 116, 1936.

-------- Physics, Vol. 6, page 27, 1935,

———————— Physics, Vol. 6, page 402, seczicn B, 1935.

P. POLUBARINOVA-KOCHINA and S. FAIKOVER: Theory of filtration of
liquids in porous media, Advances in Applied Mechanics, Vol. II,

edited by R. von Mises and T. von KArmén, Academic Press,
New York, 1952.

B. K. RISENKAMPF: Hydraulics of Soil Waters, Uchen. zap. Saratovskogo
gos. un-ta. Seriya, fiz-mat. 1, Vol. XIV, No. 1, pp. 89-11k,
1938.

A. SCHEIDEGGER: The Physics of Flow through Porous Media, 2nd edition,
The Macmillan Co., New York, 1961.

M. SCHIFFER: Variation of the Green's function and theory of the p-
valued functions, Am. J. Math., Vol. 65, page 340, 1943,

- 99 -



+ BIBLIOGRAPHY (Continuzsd)

———————— Hadamard's formula and variation of domain functions, Am. J.
Math., Vol. 68, p. 417, 1946,

-------- Variational methods in the theory of conformal mapping, Proc.
of the International Congress of Mathematicians, Vol. II,
p. 233, 1950. .

———————— Variation of domain functionals, Bull. Am. Math. Soe., Vol. 60,
p. 303, 195h.

-------- Lecture series of the symposium on partial differential equa-
tions, held at the Univ. of California at Berkeley, June 20-
July 1, 1955, Univ. of Kansas Press, Lawrence, Kansas.

-------- Applications of variational methods in the theory of conformal
mapping, Stanford Univ., Stanford, California.

V. V. VEDERNIKOV: Seepage from triangular and trapezoidal channels,
Mauchnie Zap. Mosk. instituta inzh. vednogo khoz. No. 2,

pp. 248-288, 1936.

--------- Uber die Sickerung und Grundwasserbewegung mit frier Oberfldche,
Z. F. Angewandte Math. Mech., Vol. 17, pp. 155-168, 1937.

E. WHITTAKER and G. WATSON: A Course of Modern Analysis, hth edition,
Cambridge, 1927.

N. E. ZHUKOVSKY: Theoretical investigation on the motion of ground
waters, Poln, sobr. soch., VII, 1937.

- 100 -

e e —



	CERF_61_84_001
	CERF_61_84_002
	CERF_61_84_003
	CERF_61_84_004
	CERF_61_84_005
	CERF_61_84_006
	CERF_61_84_007
	CERF_61_84_008
	CERF_61_84_009
	CERF_61_84_010
	CERF_61_84_011
	CERF_61_84_012
	CERF_61_84_013
	CERF_61_84_014
	CERF_61_84_015
	CERF_61_84_016
	CERF_61_84_017
	CERF_61_84_018
	CERF_61_84_019
	CERF_61_84_020
	CERF_61_84_021
	CERF_61_84_022
	CERF_61_84_023
	CERF_61_84_024
	CERF_61_84_025
	CERF_61_84_026
	CERF_61_84_027
	CERF_61_84_028
	CERF_61_84_029
	CERF_61_84_030
	CERF_61_84_031
	CERF_61_84_032
	CERF_61_84_033
	CERF_61_84_034
	CERF_61_84_035
	CERF_61_84_036
	CERF_61_84_037
	CERF_61_84_038
	CERF_61_84_039
	CERF_61_84_040
	CERF_61_84_041
	CERF_61_84_042
	CERF_61_84_043
	CERF_61_84_044
	CERF_61_84_045
	CERF_61_84_046
	CERF_61_84_047
	CERF_61_84_048
	CERF_61_84_049
	CERF_61_84_050
	CERF_61_84_051
	CERF_61_84_052
	CERF_61_84_053
	CERF_61_84_054
	CERF_61_84_055
	CERF_61_84_056
	CERF_61_84_057
	CERF_61_84_058
	CERF_61_84_059
	CERF_61_84_060
	CERF_61_84_061
	CERF_61_84_062
	CERF_61_84_063
	CERF_61_84_064
	CERF_61_84_065
	CERF_61_84_066
	CERF_61_84_067
	CERF_61_84_068
	CERF_61_84_069
	CERF_61_84_070
	CERF_61_84_071
	CERF_61_84_072
	CERF_61_84_073
	CERF_61_84_074
	CERF_61_84_075
	CERF_61_84_076
	CERF_61_84_077
	CERF_61_84_078
	CERF_61_84_079
	CERF_61_84_080
	CERF_61_84_081
	CERF_61_84_082
	CERF_61_84_083
	CERF_61_84_084
	CERF_61_84_085
	CERF_61_84_086
	CERF_61_84_087
	CERF_61_84_088
	CERF_61_84_089
	CERF_61_84_090
	CERF_61_84_091
	CERF_61_84_092
	CERF_61_84_093
	CERF_61_84_094
	CERF_61_84_095
	CERF_61_84_096
	CERF_61_84_097
	CERF_61_84_098
	CERF_61_84_099
	CERF_61_84_100
	CERF_61_84_101
	CERF_61_84_102
	CERF_61_84_103
	CERF_61_84_104
	CERF_61_84_105
	CERF_61_84_106

