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ABSTRACT OF DISSERTATION 

USE OF REMOTE SENSING TO ESTIMATE SOIL SALINITY AND 

EVAPOTRANSPIRATION IN AGRICULTURAL FIELDS 

In recent years, methods for detecting soil salinity have improved greatly. This 

research describes methods to detect soil salinity levels in agricultural lands based on 

crop conditions and evapotranspiration (ET) using satellite imagery. 

Elevated levels of soil salinity affect the growth of most crops as well as their 

appearance. For this research, satellite images of the study area, the Arkansas River Basin 

in Colorado, are used to classify the condition of the crops being grown in fields 

according to their different reflectance values. Using spatially referenced ground data 

collected in the study area, each class in the satellite image is related to a level of soil 

salinity. These classes are then used to create a signature file to classify other areas within 

the same image having the same crop. 

For the purpose of detecting soil salinity in this study, two satellite scenes were 

used: a multi-spectral Ikonos image from July 27, 2001 and a Landsat 7 image from July 

8, 2001. While the Ikonos image provides more details, the results of this study indicate 

that the Landsat imagery also performed remarkably well. 

Evapotranspiration (ET) is one of the processes that are affected by soil salinity. 

Reliable estimates of evapotranspiration from vegetation are needed for investigations of 
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the relationship between soil salinity and ET. Satellite-derived information has been 

found useful for estimation of aerial ET. For this purpose, a surface energy balance-based 

model (RESET) was developed using remotely sensed data from satellite imagery. The 

RESET model takes into consideration the spatial variability in weather. Moreover, the 

model implements a spatiotemporal interpolation methodology in order to obtain ET 

information between satellite scenes. 

The RESET model was applied to estimate ET values in the study area. A 

geographic information system (GIS) was used to spatially relate the ET values to soil 

salinity data. The ET values were regressed against the spatially corresponding soil 

salinity values to develop a relationship between ET and soil salinity. The ET values 

were found to correlate well with the soil salinity levels in the study area, with correlation 

coefficients of up to 0.92. 
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1. INTRODUCTION 

1.1 GENERAL 

1.1.1 Overview 

About 30 percent of the land in the western United States has a moderate to 

severe potential for salinity problems (Nation Research Council, 1996). Where salinity 

problems occur, the productivity and sustainability of agricultural communities are 

diminished (Western Water Policy Review Commission, 1997). This problem is not 

limited to the US. The threat to global crop production is serious (Postel, 1999) and 

losses, when measured in economic terms, can be very significant. Ghassemi et al. (1995) 

estimated that worldwide productivity loss was valued at about $10 billion per year. In 

the Arkansas Valley in Colorado alone it is estimated that over 40,500 ha (100,000 acres) 

are irrigated with water having salinity concentrations greater than 1,500 mg/L (Gates et 

al. 2006). This value represents the second highest classification for salinity hazard 

according to the US Salinity Laboratory. Soil salinity is a main component in salinity 

problems related to agricultural production. 

Mapping soil salinity is the first step in dealing with this problem. Saline soils 

may be delineated by taking soil samples to a lab for analysis or by using Electro 

Magnetic (EM) devices to estimate salinity in the field. Both techniques can generate 

estimates of soil salinity, but they are time consuming, especially when covering large 

areas and the results are for sample locations rather than areal values. 
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Satellite imagery can be used to evaluate the areal extent and severity of soil 

salinity and its impact on yield. Since soil salinity has a direct impact on the crop 

condition, the biomass of the crop can be classified and used to quantify the impact of 

soil salinity. Soil salinity can also be indirectly estimated from crop evapotranspiration 

(ET). The presence of salts in the soil affects the crop ET. Therefore, ET estimates 

derived from satellite imagery can be used to develop relationships between soil salinity 

and ET. 

Satellite-derived information for estimating soil salinity and ET has been a focus 

of ongoing research. A number of studies have used information derived from satellite 

imagery to estimate soil salinity in bare soils (Taylor and Dehaan, 2000; Ben-Dor, 2002; 

Dehaan and Taylor, 2003). Recently, a number of studies have used an energy balance 

approach derived from satellite imagery by calculating the difference between the net 

radiation inflow and the net energy outflow to estimate ET (Bastiaanssen et al., 1998; 

Hafeez et al. , 2002; and Savige et al. , 2005). 

1.1.2 Research Objectives 

Satellite imagery can provide useful information for monitoring the spatial 

distribution and magnitude of soil salinity in agricultural fields. However, there has been 

very little research conducted in this area. Consequently, the main purpose of this 

research is to investigate the effectiveness of using satellite-derived information to 

monitor and evaluate the areal extent and severity of regional soil salinity and its impact 

on yield. The specific objectives are: 

1) To develop a methodology that uses information about crop condition derived 

from satellite imagery to quantify soil salinity in agricultural fields. 
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2) To conduct a ground-based experiment for establishing the feasibility of 

quantifying the relationship between soil salinity and satellite-derived 

information. 

3) To develop a model to estimate ET using information derived from satellite 

imagery based on an energy balance between the net radiation inflow and the net 

energy outflow. The energy balance model will provide a valuable tool to 

evaluate actual evapotranspiration in field conditions using minimum ground data, 

the model will be a valuable tool for irrigation management by identifying areas 

with low evapotranspiration the might be caused by low irrigation efficiency or 

lack of irrigation water (quantity and quality), the model can also be used to 

develop or verify water budgets and pumping records. 

4) To develop a relationship between soil salinity levels and ET values under actual 

field conditions, this relationship will quantify the decrease in evapotranspiration 

due to the existence of different soil salinity levels, this will have two benefits: 

1. Ability to map and quantify areas of high soil salinity in order to start 

dealing with the salinity problems either by leaching or modifying the 

irrigation practices used in the identified areas or planting different crop 

types which have a higher tolerance to soil salinity, 

2. Monitor the impact of any remediation being done to salt affected areas to 

evaluate the success of any remediation activities. 

1.1.3 Defining Soil Salinity 

Soil salinity is a term that refers to a condition of the soil in which water-soluble 

salts are present. Properties and characteristics of saline soils are determined by 
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chemistry and concentration of soluble salts. Generally increases in soil salinity will 

occur after introducing irrigated agriculture, excessive irrigation slowly start to cause the 

water table to rise to the level that up flux starts to draw moisture towards the upper layer 

of soil surface. From this moisture, water will either evaporate and salts in that water will 

accumulate close to the soil surface, or plants will use water then salts accumulate in the 

root zone. Another source of salts can be the soil parent material or deeper geologic 

deposits; however, they have to start accumulating near the soil surface before high soil 

salinity becomes an obvious problem. 

Another cause of soil salinity problems is groundwater movement through the soil 

from higher elevation recharge areas to lower elevation discharge areas. When water 

infiltrates the soil toward lower lying areas, existing salts are dissolved and carried by the 

groundwater. The distance between the recharge zone (infiltration of water) and the 

discharge zone can vary greatly from many kilometers to only a few meters. High water 

table can also be a source of high soil salinity spatially in fine textured soils. 

There is no quick or easy remedy to decreasing soil salinity. Early detection of 

salt-affected areas is critical so as to allow as much time as possible to implement 

remediation strategies, and if possible, stop and reverse the accumulation of soil salinity. 

A field assessment of the severity of soil salinity, using soil sampling and analysis 

techniques, generally produces accurate results, but it is a time consuming and slow 

process if the targeted area is large. Alternatively, soil salinity maps obtained from 

remotely sensed data, such as satellite scenes or sensors mounted on airplanes, can 

provide a much faster and economical way for mapping soil salinity for large areas. 
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Howari (2003) concluded that remote sensing has a potential application for rapid and 

large scale mapping of salt affected lands. 

1.1.4 Causes of Soil Salinity 

Other land management practices other than irrigation and clearing form 

agriculture may also contribute to elevated watertables and saline seepage in many areas. 

Such practices include over watering of lawns and gardens, deforestation as a result of 

urban development, irrigation applied to public recreation areas, septic and sewage 

systems that are poorly designed , and the development of roads, bridges, railway and 

flood control banks, all this interfere with the natural surface drainage patterns and cause 

ponding of surface water (EPA, 1995). 

Recently, Dehaan and Taylor (2002) stated that soil salinization is caused by a 

number of factors, the most significant of which is the rise of saline groundwater to 

where it approaches the ground surface. 

Land salinity is closely related to other land degradation processes such as soil 

erosion, acidification and structural decline. Grossly salt-affected land, where vegetation 

has been reduced or lost, is more prone to erosion. Erosion of topsoil can also hasten the 

expression of land salinity by exposing saline undersoil. Preventive and remedial 

measures are much more difficult when land is affected by more than one form of land 

degradation (EPA, 1995). These linkages highlight the need for integrated catchment 

management so that all land users and the wider community participates in developing 

and implementing appropriate management practices to mitigate the underlying 

processes. 
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1.1.5 Defining Irrigation Salinity 

The areas affected by irrigation salinity can be determined by two criteria: 

• Areas where the ground water elevation is within a couple of meters from the 

land surface. 

• Areas where soil salt levels, measured as electrical conductivity, exceed 2 

dS/m. However, if gypsum (Calcium Sulfate) is present this number might be 

as high as 4 dS/m. 

Detrimental effects on plant growth and crop yield have been noted when 

electrical conductivity levels in the top 30 cm or so of the soil exceed 2 dS/m (Calm, 

1993). When the watertable rises to a critical depth -- around a couple of meters below 

the land surface -- evaporation and capillarity at the surface can result in the upward 

movement of water, carrying dissolved salts into the plant root zone where they 

accumulate and damage vegetation. 

1.1.6 The Effects of Salinity 

The negative impacts of salinity on soil properties and plant growth include: 

• Ion toxicity, which can occur at certain thresholds; 

• Osmotic effects hinders the water uptake for the crops and cause drought-like 

symptoms in them as they are unable to extract water from the soil; 

• In instances when high ground water table is present and accompanies soil salinity 

it contributes to decreasing oxygen needed by the plant which cases additional 

plant stress; 

• Denitrification in saline soils leads to low nitrogen levels and cases of nutrient 

deficiency; 
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• All the previous impacts will result in poor plant growth which reduces the 

ground cover and exposes the ground surface increasing the likelihood of soil 

erosion, which further reduces nutrient levels, such as phosphate levels and 

decreases soil organic matter which leads to reduced cation exchange capacity; 

• Soil stability is reduced. 

1.1. 7 Estimating the Extent and Severity of Soil Salinity 

Saline soils are present in many areas of the world. Moderate to severe salinity, 

which is more or less visible in the landscape, reduces the annual yields of most crops. 

Yield reduction varies depending on the salt tolerance of the individual crops. 

Researchers have tried over the years to record the type, extent, severity, and rate of 

change of soil salinity. These assessments differed in approach and have produced 

varying estimates of lands having high soil salinity levels (Eilers, 1991). In this study, a 

new methodology to map soil salinity is presented. This methodology is applied to 

determine the extent and severity of soil salinity in parts of the lower Arkansas River 

Basin in Colorado. 

1.1.8 Location and Signs of Salinization 

Salinization occurs where the following conditions occur simultaneously: 

• Soluble salts are present of in the soil. 

• Groundwater table is high. 

• A combination of a high rate of evaporation with low precipitation amounts 

occurs (water evaporates from the soil surface rapidly depositing salted in the soil 

and leaching due to rainfall is limited). 
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1.1.9 Signs of Soil Salinity 

Saline soils can be identified before they become seriously affected. The early 

signs of soil salinity include: 

• Increased soil water content, to the point that the area becomes inaccessible. 

• Salt-tolerant weeds, such as kochia, Kochia scoparia, and Schrad, Eragrostis 

curvula, starts to grow among the crop. 

With the increase in soil salinity levels, signs become more obvious. They 

include: 

• Fields show irregular crop growth patterns and lack of plant vigor. 

• A white surface crusting starts to be spotted in the affected area. 

• Broken-ring pattern of salts is detected adjacent to a water body. 

• White spots and streaks in the soil are noticed, with or without surface crusting. 

• Existence of naturally growing, salt-tolerant vegetation, such as red samphire. 

1.1.10 Effects of Salinization 

High levels of salt in the soil have a similar effect as drought since it makes water 

less available for uptake by plant roots (increases the osmotic potential). This effect is 

caused by the difference in salt concentrations between the plant and the soil: the osmotic 

gradient created between the soil and plant interferes with the process by which water is 

absorbed by the roots and, if the soil salinity is high enough, it can cause water to be 

drawn out of the roots. Depending on the degree of salinity, this effect reduces the soil's 

ability to produce crops and lowers annual crop yields. Because few plants grow well on 

saline soils, the farmer's cropping options start to be limited by the increasing levels of 

soil salinity. 
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1.1.11 Responses 

Salinization is a long-term problem and is difficult to reverse. Management 

strategies require a whole-catchment approach (EPA, 1995). Consequently, salinity 

mapping and evaluation techniques that cover large areas or whole catchments would be 

of great benefit to large scale efforts to deal with the soil salinization problem. 

1.1.12 Scope of the Research 

The scope of this research is to develop a new methodology based on remotely 

sensed data (satellite imagery) to detect and quantify soil salinity in irrigated lands, and to 

develop a surface energy balance model (ReSET) that evaluates evapotranspiration using 

satellite imagery. Soil salinity will be evaluated through a direct approach, using crop 

reflectance, and an indirect approach, using evapotranspiration (ET), as indicators of the 

presence and the severity of soil salinization. 

1.2 LITERATURE REVIEW 

1.2.1 Introduction 

It is estimated that half to two-thirds of the increase in food production needed in 

the future will have to come from irrigated lands, which are currently contributing about 

40 percent of the world's food requirement (Serageldin, 1995). The global irrigation 

scenario, however, is characterized by poor performance, increased demand for higher 

agricultural productivity, decreased availability of water for agriculture, and increased 

soil salinity. In addition, the possible effects of global climate change and the changing 

role of the public-sector may negatively impact food production on irrigated lands. 
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Clearly, soil salinity is a serious problem that affects agriculture and causes 

substantial crop loss. Soil salinity is detrimental to the growth of vegetation in general 

(Csillag et al., 1993), and is considered to be a major cause of reduced crop production in 

many areas. Globally, it was estimated that 955 million ha of land were affected by 

salinity and sodicity (Szabolcs, 1992). Saline soils affect the physiological characteristics 

of the plants and the spectral reflectance of crops (Krimes and Kirchner, 1983). When the 

concentration of water-soluble salts in the root zone of plants reduces their growth, the 

soils are termed saline or salt-affected (Richards, 1954). Dissolved salts create an osmotic 

stress that adds to any existing matric stress (Thomas and Wiegand, 1970), which can 

stunt plant growth. When salt concentrations exceed the tolerance of seeds for 

germination, the land is barren. The salts also sometimes contain trace elements and ions, 

such as boron and chloride, in concentrations that are themselves toxic to plants 

(Wiegand, 1990). Soil salinity in agricultural areas has reached a level of great concern 

after a very brief period of human intervention, through irrigation (Abuzar et al. , 2001 ). 

In order to optimize the utilization of these salt-affected lands for sustainable 

agriculture, information on the nature, extent, magnitude, spatial distribution, and 

temporal behavior of salinity is of paramount importance. Improved irrigation 

management and informed decision making calls for the adoption of new tools such as 

satellite remote sensing and geographic information systems to provide the necessary 

spatial and temporal information on different subsystems and for different user groups 

(Thiruven-gadachari, 1996). Until recently, such information has been generated through 

traditional soil surveys using topographical sheets and cadastral maps. This process is 

tedious, time-consuming, and can be cost-prohibitive (Dwivedi and Sreenivas, 1997). 
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Although remote sensing was identified as a tool for assessing salinity in the late 1980' s 

(Abernethy and Pearce, 1987), it has been applied infrequently. 

In order to take corrective and protective measures, it is essential to have accurate 

information about saline-prone areas in the form of maps. Common surveys cannot be 

depended upon for mapping soil salinity because farmer-based surveys are likely to 

underestimate the problem. For instance, Ferdowsian and Grenham (1992) estimated that 

more than 12% of the Upper Denmark catchment was salt-affected, while farmers in the 

area estimated that no salinity was present (Joshi, 1992). Detection and mapping of saline 

soils are the first steps in ameliorating the problem (Ghabour and Daels, 1993). 

Evans and Caccetta (1995) presented a report showing maps of areas historically 

and presently affected by salinity and maps showing areas at risk in the future. These 

types of maps may be produced using remotely sensed data integrated with several 

computer derived terrain attributes. These terrain attributes can be easily derived from 

digital elevation data. 

Using conventional ground methods, mapping of large areas is difficult, time 

consuming, expensive, laborious, and affected by weather (Rao et al., 1998). Until 

recently salinity information had been obtained from traditional soil surveys. 

Traditionally, the distribution of saline soils was mapped by combining aerial photos with 

field surveys (Mongkolsawat and Thirangoon, 1991). Early applications focused on 

mapping irrigated croplands (Huston and Titus, 1975; Draeger, 1976; Wall, 1979; and 

Thiruvengadachari, 1981 ). 

In recent years, methods for studying soil salinization have improved greatly. 

Techniques have evolved from using geographical analysis alone to using remote sensing 
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analysis and visual interpretation of satellite scenes combined with computer processing 

of satellite scenes. Moreover single-source satellite scenes have been combined with 

remote sensing data and with non-remote sensing data. In particular, it is becoming 

increasingly popular to combine a remote sensing method with geographic information 

systems to solve complex problems (Peng, 1998). Hence, as part of this research, an 

attempt has been made to use remote sensing techniques for the purpose of preparing 

maps for fields around the study area in the lower Arkansas River Basin in Colorado. 

Steven (1993) discussed the logistic requirements of remote-sensing applications for 

agricultural management. Peng (1998) concluded that the analysis of soil salinity using 

multi-source data combining remote sensing and non-remote sensing is sufficiently 

scientific and accurate in terms of the theory of genesis of soil. Myers et al. (1966) noted 

that aerial photography was the first remote sensing technique used to study salt-affected 

soil and vegetation. Availability of aerial photographs in the early-1960s improved the 

pace of mapping soils and categorizing salt-affected soils (Karale and Venugopal, 1970; 

and Nagar and Singh, 1979) and ushered in a new era in inventorying natural resources 

and monitoring environmental hazards. Remote sensing has repeatedly been used as a 

promising tool to obtain information regarding soil properties and land degradation 

processes (De Jong, 1994: Dehaan and Taylor, 2002: and Van der Meer et al. , 1999). 

Ghabour and Daels (1993) concluded that detection of soil degradation by means 

of conventional soil survey requires a great deal of time. However, remote sensing data 

and techniques offer the possibility for more quickly mapping and monitoring soil 

salinity. 
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1.2.2 Approaches for Mapping Soil Salinity 

1.2.2.1 Methods Currently Used for Soil Salinity Mapping 

a) Sample Collection 

Soil paste EC has been used to assess soil salinity (Rhoades et al., 1989) by 

collecting samples from the field and analyzing them in the laboratory using suitable 

equipment such as the Salinity Appraisal Laboratory for Soil and Irrigation Water (SIW) 

Kit. This kit works by determining the electrical conductivity of a soil 'saturation extract' 

(a solution obtained by saturating a soil sample with water). The electrical conductivity 

increases with salinity because of the greater presence of ions (usually sodium and 

chlorine ions). Electrical conductivity is often expressed in units such as deciSeimens per 

meter (dS/m). Rainwater, for example, has a conductivity of 0.02-0.05 dS/m, while 

seawater has a conductivity of 50-60 dS/m. Ground water becomes saline at about 6-8 

dS/m. The sample collection and processing is time consuming, 

b) Electrical Conductivity 

Soil salinity can be measured by using an electromagnetic device (EM-38) that 

measures electrical conductivity. When a voltage is applied across a substance an electric 

current will flow if the substance conducts electricity. When salts dissolve in water, ions 

are formed, and the solution will conduct electricity. As a general rule, the higher the 

concentration of ions in solution, the better the solution conducts electricity. Temporal 

variability and measurement error can affect EC stability, but the collection of a large 

amount of data can override these problems (P.C. Robert et al. ed., 2000). EC readings 

can be combined with information from a GPS receiver, and geo-referenced maps can be 

generated since coordinates for each soil salinity measurement are collected. Although 
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this method is more convenient than taking soil samples back to the laboratory for 

analysis, it is still time consuming since measurements need to be taken on a grid 

covering the study area. It usually takes 3 to 4 hours for 2 people to collect the geo­

referenced EM-38 data for 60 to 80 points. The EM-38 method has been used as part of 

this research to collect soil salinity data for fields that were used for calibration and 

validation of the proposed methodology. 

1.2.3 Testing Remote-Sensing Techniques 

Scientists may peer at satellite scenes or process them using high-powered 

computers, but the only way to assess their accuracy is to go out into the field and 

measure the soil salinity at ground level. A recent study by scientists at CSIRO 

Mathematical and Information Sciences tested a remote sensing technique in three study 

areas in Western Australia. They analyzed a series of Landsat scenes, which they 

combined with information on contours, the location of roads and farm boundaries, and 

farm management histories. They then compared the results of these analyses with the 

locations of known salt-affected and changing sites, as supplied by farmers, field officers 

from Agriculture Western Australia and from previous salinity mapping exercises. 

Results were very encouraging. At one study site, salt-affected land was mapped 

remotely at an accuracy of almost 100 percent. However, accuracy was lower at other 

sites. 
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1.3. REMOTE SENSING 

1.3.1 Introduction 

Remote sensing is one of a suite of tools now available to scientists that can 

provide up-to-date, detailed and recurrent information about land conditions. Remote 

sensing techniques have been found to be useful tools in diagnosing and predicting salt­

related crop productivity problems (Rahman et al., 1994). Remote sensing techniques are 

widely used as a rapid method for delineating soil boundaries and characterizing soil 

units (Ghabour and Daels, 1993). Remote sensing uses instruments mounted on satellites 

or in airplanes to produce scenes of the earth's surface. Remote sensing and geographic 

information systems (GIS) are suitable techniques for environmental monitoring and data 

processing (Yamamoto, 2000). Remotely sensed scenes can be used in many 

applications, for example for mineral exploration, monitoring ocean currents, land use 

planning and monitoring the condition of forests and agricultural areas. The use of 

advanced technology such as satellite remote sensing, geographic information systems 

(GIS), and hydrologic modeling can greatly help improve irrigation management 

(Thiruvengadachari, 1996). 

Satellite remote sensing has the ability to show large land areas and to detect 

specific features. Satellite and aerial imagery has been used by many researchers to detect 

salt-affected soils (Abdel-hamid 1992; Peng 1998; and Myers et al., 1966). Data from 

satellite scenes can show larger areas than aerial survey data, and since a satellite 

regularly passes over the same plot of land capturing new data each time, changes in the 

land use and condition can be monitored. The uniqueness of satellite remote sensing lies 

16 



in its ability to show large land areas and to detect features at electromagnetic 

wavelengths, which are not visible to the human eye. 

In the Arkansas River Basin project, satellite scenes are being used to provide 

information on crop condition, specifically related to salinity, and the status of the crops. 

This information is intended to help farmers, environmental managers and planners better 

manage the land. For the last four years data has been collected for three geo-referenced 

soil salinity data sets per year for several fields in the lower Arkansas River basin in 

Colorado. One of the outcomes of the Arkansas River Basin project is an estimate of soil 

salinity in the selected fields. To validate the estimate, satellite scenes are combined with 

ground data. 

1.3.2 Advantages of Using Satellite Images 

The main advantages of using satellite scenes for monitoring and evaluation of 

large areas and features that change over time are that satellite scenes: 

• show large areas of land in a single scene, 

• detect features at wavelengths not visible to the human eye, 

• are regularly and routinely acquired and archived, and 

• can be very cost-effective for monitoring change over large areas. 

1.3.3 How Satellites Acquire Images 

Satellite sensors measure the intensity of electromagnetic radiation reflected from 

the earth at several wavelengths. A portion of the energy emitted from the sun is reflected 

by objects, the rest is absorbed. The amount of energy reflected depends on the object's 

emissivity. Remote sensing uses the different reflectance of earth objects to create a 
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signature that relates each spectrum of reflectance to a group of ground objects. For 

example Grass looks green, because it reflects green light and absorbs other visible 

wavelengths. The infrared portion of the spectrum shows that grass reflects even more 

strongly. Such thing can't be detected by the human eye. 

Scanners mounted on satellites detect and measure the energy that has been 

reflected. The sensors of the satellite acquire energy in defined ranges of wavelengths, 

called 'bands'. The intensity of the reflected energy is measured and recorded as a number 

between O and 255 . 

Satellite systems differs based on three features , first the number and range of 

bands at which they measure the reflected energy. The lkonos satellite, which provided 

some of the data that was used for this research , has bands in the blue, green and red 

wavelengths in the visible part of the spectrum and one band in the near infrared part of 

the spectrum. 

The second feature that characterizes each satellite system is its footprint or pixel 

size. Which is the smallest area on the ground for which it can record the reflected 

energy. For every 4m by 4m plot of land, the lkonos scanner records a number for each 

of the four bands, which is the average intensity of the reflected energy for the features in 

that plot of land. 

The third feature that characterizes a satellite system is the time it takes to revisits 

a particular location. The Landsat 5 and 7 satellites revisit the same location every 16 

days. Theoretically, a site can be viewed every 16 days to detect changes in land use or 

condition. But not all these scenes are unusable because the satellite sensors cannot see 
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through clouds. For the Arkansas River Basin project, one Ikonos image was purchased 

for two growing seasons and multiple Landsat scenes were purchased as well. 

1.3.4 Interpreting Image Displays 

The satellite scenes, as recorded by either Ikonos or Landsat, consist of numbers , 

which are the measurements of the amount of energy that has been reflected from the 

different objects on the earth's surface, these reflectances are displayed in different 

wavelength bands. Some of these bands, such as the infrared bands contain higher 

volume of information regarding vegetation growth and crop condition; the infrared 

portion can not be seen with the human eye. Therefore, those scenes can be displayed 

either using true colors or using false colors , on a computer screen these scenes if 

displayed in true color they would look like aerial imagery since they indicate the true 

colors of objects such as green trees and grass and brown soil. False-color imagery is 

formed by assigning mixtures of the visible and infrared bands to the red, green and blue 

colors on the computer screen. In these scenes different intensities in the wavelength 

bands shows up as different colors on the computer screen. Studies have shown that the 

human eye distinguishes changes in the red color better than in blue or green (American 

Society of Photogrammetry, 1983). Therefore, the band mostly strongly related to the 

feature of interest should be assigned to the red color on the screen. 

Satellite records intensities between O and 255, but usually the actual intensities 

associated with our interest of the ground covers occupy a much smaller portion of 

values. This small portion can be starched over the whole range, this is called 'image 

enhancement'. 
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Several image enhancements can be used to emphasize different details in an 

image. For example to show information over the whole image we assign the minimum 

image intensity to color level O and the maximum image intensity to color level 255. This 

distribution maximizes the number of colors on the computer screen that displays the 

image and shows information over the whole image. If the user only has interest in 

certain features in the image, such as vegetation, then the intensities of the corresponding 

vegetations is to be assigned to the 256 color levels, by this technique we highlight all the 

details in the vegetated areas in the image, but in the same time not showing the rest of 

the features of the image. 

1.3.5 How the Remote Sensing Information is being used 

The information obtained from remotely sensed scenes is used in a number of 

ways depending on the purposes to which it is being put. The information is usually 

combined with information from other data sources and with on-the-ground observations, 

called ' ground truth,' to get a more complete picture of what is happening. 

Remotely sensed scenes have been used to monitor changes in land condition as 

well as changes in productivity. This is done by monitoring several factors that affect the 

land condition such as wind erosion and waterlogging, other usages for remotely sensed 

data are crop yield mapping and monitoring (El Kady and Mack, 1994) as well as 

monitoring rangeland conditions. Remote sensing is also increasingly being used for 

large-scale environmental monitoring because it is able to offer large-scale monitoring in 

a very cost-effective way and fairly easily, and can provide a baseline for future 

monitoring. 
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One of the uses of remotes sensing is the satellite derived estimates of crop 

evapotranspiration (ET) which have become increasingly popular. ET is the most crucial 

information in water balance studies. A large body of literature is available on potential , 

reference, and actual ET and their modeling methods (FA0-24, 1977; Doorenbos et al., 

1977; ASCE-Manual-70, 1990; and FA0-56, 1998). The energy-balance equation can be 

expressed as: 

RN=ET+H+G (1.1) 

Where R0 = the net radiant energy exchange at the earth surf ace, called net 

radiation; ET= the evapotranspiration expressed as latent heat flux density; H = the net 

surface-atmosphere flux of sensible heat; G = the soil heat flux density. At the present 

time, information about these energy-balance parameters is provided for the different 

satellites. A number of studies have applied the energy-balance equation using satellite 

imagery for the estimation of ET (Vidal and Perrier, 1989; Bastiaanssen et al., 1998; 

Hafeez et al., 2002; and Savige et al. , 2005). 

1.3.5.1 Remote sensing in agriculture 

In the next chapters several applications of remote sensing and GIS in agriculture 

will be introduced. The second chapter illustrates a methodology for mapping soil salinity 

in agricultural fields using different types of satellite imagery integrated with ground 

data. Chapter three discusses the enhancement of a model based on the surface energy 

balance equation for calculating evapotranspiration. Chapter four assesses the relation 

between evapotranspiration and soil salinity and Chapter five provides conclusions and 

area for future research. 
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2. USING REMOTE SENSING AND GIS TO DETECT SOIL SALINITY LEVELS 

IN THE ARKANSAS RIVER BASIN IN COLORADO 

2.1 ABSTRACT 

In recent years, methods for detecting soil salinity have improved greatly. This 

chapter describes a methodology to detect soil salinity levels in agricultural lands based 

on crop reflectance using satellite imagery. Elevated levels of soil salinity affect the 

growth of most crops as well as their appearance. In the methodology described in this 

chapter, we classify the image and separate the crop condition into several classes. Then 

using spatially referenced ground data collected at a study area in the lower Arkansas 

Valley in Colorado, each class in the satellite image is related to a level of soil salinity. 

These classes are used to create a signature file to classify (supervised classification) 

other areas within the same scene having the same crop. For this study we used two 

satellite scenes. The first scene is a multi-spectral image from Ikonos (2001) which is 

composed of four bands (red, green, blue and near infrared) with 4 m spatial resolution. 

The second scene is a Landsat 7 (2001) image which is composed of eight bands with 30 

m spatial resolution. The methodology is applied to several agricultural fields in the 

lower Arkansas River Basin in Colorado. While the Ikonos scene provides more spatial 

resolution, it was found that the Landsat scene performed remarkably well. 
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2.2 INTRODUCTION 

Soil salinity is a problem that affects agriculture and reduces crop yields. 

Mapping soil salinity is the first step in identifying the magnitude of the problem. In 

recent years, methods for studying soil salinization have improved greatly. Techniques 

have evolved from using geographical analysis alone to using remote sensing analysis 

and visual interpretation of satellite scenes combined with computer processing of 

satellite scenes. Remote sensing has been used as a promising and convenient tool for 

extracting information regarding soil properties and land degradation processes (De Jong, 

1994; Dehaan and Taylor, 2002; and Van der Meer et al., 1999). Moreover, it is 

becoming increasingly popular to combine a remote sensing method with geographic 

information systems to solve complex problems (Peng, 1998). This research attempts to 

use remote sensing techniques for the purpose of preparing a map of the extent and 

magnitude of salt-affected lands. The methodology is applied to a study area around La 

Junta, in the Arkansas Valley in Colorado. Although remote sensing techniques have 

been used to diagnose general salinity problems (Everitt et al., 1977; and Ripple et al., 

1986), only limited attempts have been made to evaluate their effectiveness in identifying 

soils where the primary inhibitor of plant growth is nutrient deficiency induced by either 

alkalinity or salinity (Weigand et al., 1993). Ghabour and Daels (1993) concluded that 

detection of soil degradation by means of a conventional soil survey requires a great deal 

of time, but remote sensing data and techniques offer the possibility for mapping and 

monitoring these processes faster and more economically. However, to assess the 

accuracy of the ability of satellite scenes to map and monitor salinity, it is necessary to 

compare them with field measurements of salinity. Elevated levels of soil salinity affect 
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the growth of most crops as well as their appearance. The main objective of this study is 

to develop a methodology to detect soil salinity levels in agricultural lands based on crop 

appearance using satellite imagery. 

2.2.1 Previous work 

Remote sensing has been used for identifying and mapping saline areas in several 

countries, including Australia, Bolivia, China, Egypt, India, Iran, and USA. Works by 

Csillag et al. (1993), Epema (1990), Evans and Caccetta (2000), Everitt et al. (1988), 

Kalra and Joshi (1996), Metternicht (1996), Metternicht and Zinck (1996), Mougenot et 

al. (1993), eldiery (2006) , Mulders (1987), Rao et al. (1995), Srivastava, Tripathi, and 

Gokhale (1997), and Verma, Saxena, Barthwal, and Deskmukh (1994) show illustrative 

application examples. These studies have been successful in discriminating between two 

surface types, namely, saline and nonsaline (Evans & Caccetta, 2000). 

Previous attempts at mapping soil salinity showed the potentialities of 

hyperspectral imagery in salinity studies (Taylor and Dehaan, 2000; Ben-Dor, 2002; and 

Dehaan and Taylor, 2003). Several previous studies have focused on mapping soil 

salinity for bare soil. These studies used a method which identifies diagnostic absorption 

bands in the spectrum of evaporate minerals and salt crust either in the field or in the 

laboratory (e.g., Hunt et al., 1971, 1972; Hunt and Salisbury, 1971; Gaffey, 1987; 

Crowley, 1991a,b; Dark, 1995; and Howari et al., 2002). The information obtained was 

then used to produce a relationship between the spectral properties of salt-affected soils 

and the presence of high salinity levels in the soil (Farifteh et al. , 2004 ). These studies 

were successful in detecting soil organic matter, soil moisture and salt-affected areas with 

different degrees of severity. However, there are drawbacks to mapping the soil salinity 
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from bare soil. For instance, Metternicht and Zinck, (2003) report that lack of specific 

absorption bands of some salt types, such as halite (NaCl), affect the mapping accuracy. 

Another problem is that the actual mapping is only done for the top soil layer, even 

though a much deeper soil profile affects plants and therefore should be evaluated. This 

shows the necessity of using other data and techniques, in combination with remote 

sensing, to map soil salinity (Farifteh et al., 2005). 

Most of the published investigations based on remote sensing distinguish only 

three to four classes of soil salinity (Abd-Elwahed, 2005). In this study, the target is to 

produce a detailed soil salinity map that can detect between 9 and 16 levels of soil 

salinity. Farifteh et al. (2005) concluded that most of the remote sensing studies have 

concentrated on detecting severely saline soils and not paid enough attention to slightly 

affected areas, giving an incomplete map for the targeted area. 

2.2.2 Study area 

The methodology developed to detect soil salinity was applied to several com 

fields in the lower Arkansas River Basin in Colorado. This region of the Arkansas River 

Basin is a highly agricultural area. The segment of the river covered by the study area (33 

kilometers) spans from approximately the town of Manzanola on the west to the town of 

La Junta on the east. Although this region has salinity problems, a variety of crops are 

still gown there, including com, alfalfa, melons, and onions. 
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Figure 1. Map of the study area. 

In this study, crop condition is used as the main indicator of the presence and 

severity of soil salinity. Bastiaanssen et al. (2000) and Steven et al. (] 992) have discussed 

using indirect indicators such as crop growth performance and leaf angle orientation (leaf 

roll), as indicators of the existence of soil salinity, and in this study focuses on crop 

condition as a indicator of soil salinity and therefore it is used to produce soil salinity 

maps. 

Crop condition can be detected remotely using satellite imagery. In this research , 

after acquiring a satellite image of the study area, the condition of the crops being grown 
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in fields is classified according to their different reflectance values. Using spatially 

referenced ground data collected in the study area, each class in the satellite image is 

related to a level of soil salinity. These classes are then used to create a signature file to 

classify other areas within the same image having the same crop. 

For this research, two satellite scenes are used. The first image is a multi-spectral 

image from lkonos taken on July 27, 2001. The image is composed of four bands (red, 

green, blue and near infrared) with 4 m spatial resolution. The second scene is a Landsat 

7 image taken on July 8, 2001 , which is made up of eight bands (blue, green, red, near 

infrared, two mid infrared bands, a thermal and a panchromatic band) with 30 m spatial 

resolution. 

2.3.1 Image processing and overlaying 

Image Georectification 

The scenes were georectified using polynomial and rubber sheeting models. 

Ground-control points (GCPs), such as road intersections, canals, and field boundaries 

were needed for the georectification, and these points were provided by geographic 

information system shapefiles and GPS points. The polynomial model was used for the 

initial georectification. This level of accuracy was all that was needed for rectifying the 

Landsat 7 image. For the higher resolution lkonos image, a higher level of accuracy was 

targeted, and the rubber sheeting model that uses differentially corrected GPS points 

around the fields of interest as GCPs was employed. 

Image Classification 

The ERDAS 8.7 software was used to obtain spectral classes for crops from each 

image by using unsupervised classification techniques in this technique pixels with 
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similar spectral characteristics are clustered together , each cluster is called class all 

theses classes is contained into a parametric signature that is based on statistical 

parameters such as mean and covariant matrix of the pixels that falls in each class, when 

using unsupervised classification classes are determined by spectral distinctions that are 

inherent in the data itself then later on those classes can be related to soil salinity classes. 

These spectral classes show different crop conditions. The spectral classes in the output 

image were then converted from raster to vector (polygons). Each set of polygons with 

the same grid-ID code was converted to a unique class. The spectral classes were 

identified based on information from satellite imagery and field surveys. 

Overlaying 

Using GIS (ArcMap 9), the polygons generated from the processed scenes were 

overlaid on a point coverage of soil salinity sample locations inside the study area. The 

combination of the polygons and the point coverage provided the capability of relating 

the soil salinity values within each field to its corresponding class. Each polygon was 

then assigned the average soil salinity value of the points falling within it. This was done 

by using a tool (polystat) developed in ArcMap 9 for this purpose. The tool estimates 

statistics (mean and standard deviation) of any point coverage (in this case soil salinity 

values) and automatically assigns them to the corresponding polygon. Then each set of 

polygons that have the same average salinity value was reclassified as one class. 

Following this procedure, up to sixteen classes of soil salinity were developed from the 

reflectance information extracted from the scenes. 
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2.3.2 Methods for Calibration and Validation 

The methodology described above was calibrated using a field selected for that 

purpose before being applied to other fields covered by the image for validation . Ground 

soil salinity data was collected in the calibration field using both an EM-38 probe and the 

SIW Kit. The calibration was conducted in the middle of the summer, from July 1st to 

August 10th 2001, when the crop was fully developed. Both scenes (the Ikonos image 

from 7/27/01 and the Landsat 7 image from 7/8/2001) were calibrated in this way. 

Several authors have demonstrated the advantage of combining data from remote 

sensing with detailed information observed on the ground (Bishop and McBratney, 2001 ; 

and Carre and Girard, 2002). For this study, over 100 soil samples were collected with 

each sampling point being comprised of 4 sub-samples collected at 4 depths (30, 60, 90, 

and 120 ems). In order to covert the EM-38 readings into actual soil salinity values 

(dS/m), several relationships were evaluated using regression techniques. After multiple 

iterations the following relationship was developed: 

Y = 0.0877 X -1.8303 

Where Y: is the actual soil salinity value in dS/m 

X: is the EM-38 readings (EMvc) 

EMvc = EMv * SSTc 

Where: EMv = EM-38 vertical reading 

SSTc = A * SS1emp 

Where: SSTc = temperature correction factor) 

A= l - .203462F -0.038223(F 2 )-0.005554(F 3
) 

SS,emp = temperature of soil sample measured in deg C 
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Figure 2. Relationship between actual soil salinity values and EM-38 readings. 

2.3.2.1 Ikonos 
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Figure 3 shows the field that was selected (field 80) for calibration of the Ikonos 

image. The calibration field needed to have a wide range of soil salinity values, ranging 

from less than 1 dS/m, which causes no crop loss, to over 7.5 dS/m, which inflicts severe 

crop loss on com. This wide range allowed for the assignment of reflectance ranges to 

sixteen different salinity levels in this calibration field. To separate these levels, the 

satellite image was spatially linked with the soil salinity data collected from points inside 

the field using an EM-38 sensor. The points were spatially located using a global 

positioning system. Using a combination of the blue, green and red bands in the satellite 

image, several pixels were selected, with each one corresponding to a different soil 

salinity level. Reflectance values ranged from 200-800, with high salinity points clustered 

around the 700 reflectance value, moderate salinity points clustered around the 400-500 

reflectance value and the low salinity points around the 200 reflectance value. The 

classified image was re-coded based on the soil salinity points obtained using the EM-38 

sensor. This re-coding process was accomplished by spatially matching each reflectance 

class in the image with the soil salinity values. The sixteen reflectance classes are shown 

in Table 1. 

A subset of the data points collected with the EM-38 sensor was used to calibrate 

the methodology. The subset was selected using the ArcMap 9 "create subset" tool that 

randomly selects 50% of the points. For this subset of points a similar procedure as that 

conducted for the whole set of points was performed. An average value of soil salinity for 

the subset of points that were inside each of the polygons for the sixteen reflectance 

classes was calculated. To validate the methodology within the calibration field, the 

methodology was applied to predict soil salinity classes using another subset of measured 
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Table 1. The sixteen reflectance/salinity classes obtained from the calibrated field. 

Class Number of Minimum Maximum Mean Standard 
Number Points Value Value (dS/m) Deviation 

1 7 0.0 1.3 0.8 0.40 
2 24 1.8 6.0 3.3 1.24 

3 35 1.0 6.6 3.1 1.24 
4 59 1.3 9.7 3.8 1.50 

5 61 1.7 6.7 4.5 0.94 

6 36 1.4 7.0 5.2 0.97 
7 32 3.5 7.7 5.5 1.12 

8 19 3.1 7.3 5.7 1.15 
9 27 3.2 7.4 6.0 0.97 
10 25 3.8 9.2 6.2 1.22 
11 15 2.3 8.0 6.2 1.46 
12 15 4.3 10.4 6.6 1.31 
13 25 1.3 10.1 6.7 1.98 
14 48 4.7 10.6 7.4 1.19 
15 56 4.3 11.0 8.1 1.37 
16 18 7.2 11.4 8.8 1.24 

ground data. The error between the measured and predicted soil salinity values for each 

class was calculated and is shown in Table 2. 

Table 2 shows that the maximum error was 1. 1 dS/m and it occurred in 8 -10 

dS/m category where the crop experiences extreme loss. Areas that correspond to this 

category are bare soil meaning that vegetation, our primary indicator of the presence of 

soil salinity, is not present. Other values of errors between the predicted soil salinity and 

the actual soil salinity were 10% or less as can be seen from the prediction errors in table 

2, which range from O dS/m to 1. 1 dS/m over the range of 11 dS/m. 

Figure 4 shows the expected yield loss in com due to soil salinity in relation to the 

sixteen classes in the calibration field. 
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Table 2. Cross validation of the classes in the calibration field. 

Training Testing 

Class Min. Max. Mean Min. Max. Mean 
Prediction 

Num. Points (dS/m) (dS/m) (dS/m) Points (dS/m) (dS/m) (dS/m) Error 
(dS/m) 

16 6 8 10 8.7 5 8 11 9.8 1.10 
15 16 6 11 8.0 31 4 11 7.9 -0.07 
14 21 6 10 7.5 16 6 11 7.6 0.06 
13 6 6 9 7.7 13 5 10 6.8 -0.86 
12 3 6 7 6.7 4 6 7 6.5 -0.16 
11 5 5 8 6.0 7 6 10 7.0 1.00 
10 15 4 8 6.0 8 5 7 6.0 0.00 
9 8 4 6 6.0 10 5 8 6.0 0.00 
8 10 4 8 5.7 15 5 10 6.0 0.30 
7 10 4 7 5.7 8 4 7 5.7 0.00 
6 20 4 10 5.4 16 3 9 5.5 0.10 
5 29 3 6 4.3 28 2 9 4.8 0.50 
4 26 1 6 3.4 26 1 6 3.5 0.10 
3 22 1 7 3.1 13 2 5 3.1 0.00 
2 16 2 4 2.8 11 3 4 3.0 0.20 
1 4 1 1 1.0 2 1 1 1.0 0.00 
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Figure 4. Expected yield loss in corn due to soil salinity in relation to the sixteen 
classes in the calibration field. 
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Figure 5. Mean values for the sixteen reflectance classes and their respective 
estimated yield losses in the calibration field. 

Validation fields 

Field RR 

To validate the methodology, the EM-38 sensor was used to map soil salinity in 

another com field, known as the RR field (Figure 6). This field is within the Ikonos 

image. In this validation field, EM-38 sensor soil salinity measurements were taken using 

a differential GPS. The points were then overlaid on the classified image, and each class 

was compared to its mean value to assess the prediction accuracy. Figure 7 shows 

predicted and measured salinity levels in the validation field. 
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Figure 7. Measured soil salinity values versus predicted values in the validation field 
(RR). 
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Figure 7 shows that classes 1, 2, 15, and 16 were not represented in the RR field, 

therefore the detection accuracy for these classes was not able to be evaluated. 

Fortunately these four classes are in the no crop loss or severe crop loss categories. These 

categories are usually not important during salinity evaluation since categories 1 and 2 

represent no salinity impact while categories 15 and 16 represent severe crop loss and 

very little vegetation might grow in these areas. The model was able to separate and 

predict the other 12 classes with a range of errors from 1 % to 12% and an average error 

of less than 5%. The accuracy level and error achieved in predicting each class is 

presented in table 3. 

Table 3. Predicted soil salinity values versus measured values for the validation field RR*. 

Class Number 
Predicted Value Measured Value Error 

(dS/m) (dS/m) (dS/m) 
1 0.80 NA NA 
2 3.30 NA NA 
3 3.07 3.50 0.43 
4 3.80 3.67 -0.13 
5 4.50 4.20 -0.30 
6 5.20 5.10 -0.10 
7 5.50 5.40 -0.10 
8 5.73 6.00 0.27 
9 5.95 6.77 0.82 

10 6.24 7.11 0.87 
11 6.20 7.38 1.18 
12 6.64 6.95 0.31 
13 6.65 6.91 0.26 
14 7.35 6.95 -0.4 
15 8.08 NA NA 
16 8.80 NA NA 

Field# 23 

Field 23 is a com field with uniformly low soil salinity. When measured with an 

EM-38, most of the soil salinity measurements were between 3 and 4 dS/m. Using the re­

coded Ik:onos image to classify this field, it was determined that most of the field falls in 

the region of classes 1 and 2. These classes represent soil salinity values of 0.8 dS/m to 
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3.3 dS/m, which match very well with the actual soil salinity values obtained from the 

EM-38 measurements. Taking into consideration that the methodology is not able to 

differentiate between very low soil salinity levels, we can still see the compatibility of the 

soil salinity distribution in the ground data and satellite imagery estimates. Figure 8 

shows (a) soil salinity levels detected from the Ikonos satellite image and (b) soil salinity 

measured in field 23. 

a 
lkonos Soil Salinity 
Classes (dS/m) 

D Class 3 = 3 1 dS/m 

Class 2 = 3.3 dS/m 

• Class 1 = 8 dS/m 

I 

~--• 
b 

Measured Soil Salinity 
(dSfm) 

- 27 

- 27 - 3 

3 - 3 7 

3 7 - 4 

- 4-42 

Figure 8. Soil salinity stimated using the Ikonos image (a) and measured (b). 

2.3.2.2 Landsat 7 

Landsat 7 scenes have 8 bands covering the visible range as well as the near and 

far infrared bands, a thermal infrared band, and a panchromatic band. The resolution of 
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the bands is 30 m by 30 m, except for the thermal band that is 60 m by 60 m and the 

panchromatic band which has a resolution of 15 m by 15 m. 
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When looking at the spectral profile of the Landsat scene for field 80 (Figure 9), 

in the context of targeting areas with different soil salinity levels, the spectral profile 

shows a reasonable separation in the reflectance of the bands. This means that regions 

with different soil salinity levels can be successfully separated into classes, where each 

class represents a range of soil salinity values. The clearest separation is in band 3. This 
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separation is obvious in the severe crop loss category, shown with the brown line. Areas 

of high, moderate, and slight crop loss are also easily separated. However, the separation 

between the categories of very slight crop loss and no crop loss is very small. For these 

classes, the difference in the reflectance for band 4 is minimal, but larger in band 3 which 

is expected since band 3 is the red chlorophyll absorption band of healthy vegetation, this 

proves that there is a significant difference in the crop condition that can be detected by 

band 3 meanwhile band 4 did not show a lot of variation between locations with different 

soil salinity levels and this could be because band 4 which is the reflective infra red is 

responsive to the amount of vegetation biomass but not sensitive to crop condition which 

in this case should vary significantly since it is affected greatly by soil salinity. From 

analyzing the spectral profile it can be concluded that a good soil salinity classification 

can be performed using the Landsat imagery. Several soil salinity classes can be 

identified, enabling the whole study area to be classified and therefore identify the 

salinity affected lands. 

Testing the results of using the methodology on the Ikonos scene against the same 

methodology applied to the Landsat scene is valuable because Landsat scenes cover 

larger areas at a much lower cost per scene, which encourages the application of the 

methodology to different areas at different times. The main limitation of the Landsat 7 

scenes is their spatial resolution. As mentioned previously Landsat 7 bands have 15m, 

30m and 60m resolution for different bands and the detection technique used in this 

research depends on the bands with the 30m resolution , therefore detection of variability 

in salinity using Landsat scenes has a limitation on how small an area can be evaluated. 
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The same methodology that was applied using the Ik:onos scene was applied to 

field 80 using the Landsat scene. The Landsat scene was georectified to preserve the 

geometric integrity of the field. Then, using the unsupervised classification technique in 

ERDAS Imagine 8.7 with the 16 classes, a classified map was generated for the targeted 

field. For field 80, nine classes were detected that can be clearly separated in the range 

between O dS/m and 9.96 dS/m. These classes are shown in Table 4. The first class 

represents areas with a mean soil salinity value of 4.2dS/m, and the ninth class represents 

areas with a mean soil salinity value of 9.96 dS/m. This classification allowed for the 

identification of one class in the no/slight crop loss zone which is class 1. Class 2 (5 

dS/m) represents areas with moderate crop loss. Classes 3 and 4 indicate areas with high 

crop loss, and classes 5 to 9 fall in the category of severe crop loss. 

Table 4. Soil salinity classes extracted from Landsat 7 

Class Training Testing 
1 4.21 4.57 
2 5.1 5.31 
3 6.19 6.58 
4 6.68 5.75 
5 8.04 6.84 
6 8.42 8.11 
7 8.78 8.94 
8 9.57 9.68 
9 9.96 9.62 

When using Landsat 7 imagery all but the no crop loss category was identified. 

The Landsat 7 scenes only compromise the classification to the extent that two classes 

(no crop loss, slight crop loss) were merged into one. Therefore, depending on what level 

of soil salinity impact researchers are trying to determine they may decide that it is to 

their benefit to use the lower resolution but less expensive Landsat 7 imagery. 
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2.3.2.3 Using Principal Component Analysis 

Images can usually be enhanced to improve their appearance for subsequent 

analysis. In this study the principal components analysis (PCA) technique was applied to 

improve the Landsat 7 image's appearance. PCA has proved to be of value in the analysis 

of multispectral remotely sensed data (Press et al., 1992). Applying PCA to an image can 

result in a new image that may be more interpretable than the original image (Singh and 

Harrison, 1985), moreover Principal Component Analysis is a method of data 

compression that computes redundant data into fewer bands, the bands of the PCA are 

noncorrelated and independent, PCA gives better interpretation more than the source data 

(Jensen, 1996; Faust, 1998). To compute PCA a linear transformation is applied to the 

data that re-computes the coordinates of each pixel into a new coordinate system. In this 

new coordinate system the highest variance by any projection of the data lies as the first 

coordinate. Figure lO(a) shows the original and the PCA classified (unsupervised) 

Landsat 7 scenes. Figure lO(b) shows the number of classes that could be extracted from 

the PCA image compared to the original scene. 

Original Image (16 Classes) PCA Image (16 Classes) 
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Figure 10 (a) Original versus (b) PCA Landsat scene 

Using principal component analysis before classifying an image increases the 

accuracy of detecting the soil salinity by generating a better separation of bands as shown 

in Figure 10. Group 1 arrows point to one class in the original image that was separated 

into 3 classes in the PCA image; group 2 arrows point to one class in the original image 

that was separated into 2 classes in the PCA image. Figure 11 compares the salinity 

classes and the corresponding salinity levels extracted from field 80 during the calibration 

(training) and testing phases using the original and PCA scenes respectively. 

As shown in Figure 11 , using PCA one class was added to the classification, 

noting that the classes extracted from the original and PCA scene classification are not 

identical due to the change of the soil salinity points falling within each class; however, 

they should be close. Table 5 shows the number of classes that were extracted from field 

80 using the PCA image. 
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Table 5. Soil salinity classes (dS/m) extracted from field 80 using the PCA image 

Class Trainin2 Testing 
1 4.2 4.55 
2 5.01 5.4 
3 6.68 7.14 
4 7.47 7.65 
5 8.91 7.82 
6 8.91 8.38 
7 9.98 10.07 
8 10.07 9.14 
9 10.17 9.62 
10 11.88 10.93 

The PCA technique was also applied to detect soil salinity on several corn fields. For 

example, Figure 12 shows the soil salinity levels detected in field 23 using the PCA 

image in comparison to soil salinity levels measured in the field. Table 6 presents a 

comparison between the extent (spread) of soil salinity that was detected by the PCA 

image and that measured in field 23.Table 6 presents a comparison between the extent 

(spread) of soil salinity that was detected by the PCA image and that measured in field 

23. The ground data presented in Table 6 shows that soil salinity in the range of 1- 4 

dS/m is spread over 87% of the field area, but the PCA image detected that this level of 

salinity was spread over only 83% of the field, meaning that there was a detection error 

of 4%. Salinity in the range of 4- 5 dS/m is spread over 17% of the field area according to 

the ground data but using the PCA image this level of salinity was only detected on 13% 

of the field area. The PCA image thus had a detection error of -4% for this salinity range. 

These results are shown in Figure 13. 
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Figure 11. Soil salinity classes and the corresponding salinity levels extracted from 
the original (a) and PCA (b) scenes 
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Figure 12. Soil salinity levels in field 23 

Table 6. Extent of soil salinity in field 23 

Soil Salinity Image Ground Error 

1-4 dS/m 83% 87% 4% 

4-5 dS/m 17% 13% -4% 
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Figure 14. Soil salinity levels in field 6.Figure 14, table 7, and figure 15 present the 
extent (spread) of soil salinity in field 6. 
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Table 7. Extent of soil salinity in field 6 

Soil Salinity Image Ground Error 

1-4 dS/m 83% 87% 4% 

4-5 dS/m 17% 13% -4% 
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Figure 15. Spread of two levels of soil salinity in field 6 

The source of error is in the top portion of the field, which was misclassified 

because of the presence of shill rocks that hinder the crop's growth causing the biomass 

to be stressed. However, this inhibition of crop growth is not due to soil salinity but due 

to soil properties. Such situations show some of the limitations of the methodology. Yet, 

the difference between the two classes was only 1 dS/m, which means that soil salinity in 

30% of the field was over estimated by 1 dS/m. 

Figure 16, table 8, and figure 17 show the extent (spread) of soil salinity in field 

77. Field 77 contains very low soil salinity levels. Ground measurements of soil salinity 

were in the range of 1.8 to 4.1 dS/m; such levels of soil salinity have minimal impacts on 

com. In the satellite image most of this field was classified as low salinity except the 
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areas near to the field boundary that contain some mixed pixels. These mixed pixels 

introduce an error of misclassification of the bare soil around the field which results in an 

overestimation of soil salinity. This overestimation was about 1 dS/m in the range of 4-5 

dS/m (20% of the field) and 2.2 dS/m in the range of 5-6.2 dS/m (20% of the field). 
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C ass 3 = 5 2 dS/m 

Ground Data 
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Figure 16. Soil salinity levels in field 77 

Table 8. Extent of soil salinity in field 77 

Soil Salinity Image Ground Error 
1-4 dS/m 60% 100% 40% 
4-5 dS/m 20% 0% -20% 

5-6.2 dS/m 20% 0% -20% 
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Figure 17. Distribution of two levels of soil salinity in field 77 

2.3.3 Sources of Error 

The sources of error in the applied methodology could be either from the satellite 

imagery or from the soil salinity ground data, errors from the imagery can be due to 

inaccuracy in the georectifying of the image that happens either because of inaccurate 

reference points used to rectify the image or because of inaccuracies in the 

georeferencing process, this errors can be reduced by obtaining a sufficient number of 

high accuracy reference points that adequately cover the area of interest in the image, the 

minimum value for this error will at lease be the size of the largest pixel size of the bands 

used which is 4 m when using the Ikonos image and 30 m when using Landsat 7 without 

the thermal band and goes up to 60 m if the thermal band is used, the second error that 

can be introduced from the imagery is the existence of cloud cover which can affect the 

image classification process, this can be reduced by using imagery that has no cloud 

cover or for which cloud have been masked in order to exclude cloud cover areas, the 
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third error that can be introduced by the imagery is the atmospheric effects which are not 

really an error since they are part of the signal received by the satellite, however this can 

be corrected using atmospheric correction techniques, finally the forth source of possible 

error from the satellite imagery is the resolution of the image which is not as much an 

error than it is a limitation, if the resolution of the image (pixel size) is larger than the 

resolution of the ground soil salinity point grid then several soil salinity points will fall 

within one pixel in the image, those points falling within one pixel in the image might 

vary in value, to relate the pixel value to the points, the points will be averaged to one 

value, instead if a higher resolution image was being used that matched the ground data 

resolution, then each ground soil salinity point would be represented by one pixel in the 

image, this would give more details in the soil salinity prediction. The other source of 

errors is caused by ground data collection which could be from GPS errors that cause 

points with certain soil salinity values to be placed away from their actual locations 

causing soil salinity values to be related with image pixels that do not actually fall over 

those points, this error can be eliminated by using high quality GPS receivers that have 

errors smaller than the satellite image pixel size ( 4m in the case of Ikonos images and 

30m in the case of Landsat images) or by using differentially corrected GPS which 

reduces the position to less than a meter, the second error that can be caused by ground 

data are errors of the soil salinity ground surveying device (the EM-38 in this case), the 

EM-38 can produce wrong readings due to either being not correctly calibrated or 

because of the field conditions, this errors can be avoided by performing the right 

calibration on the EM-38 and by doing the survey on the field when the field conditions 

are suitable for conducting soil salinity surveys (not too wet or too dry). One last source 
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of errors on the ground are no crop areas such as area covered with trees, weeds, bare 

soil, burned areas, houses, roads, etc. As an example of these errors the soil salinity 

calibration points (shown in yellow in Figure 18) falling on the edge of one class, due to 

possible GPS or image georectification errors, could be contained in the next high or low 

class causing some over or underestimation of soil salinity for certain classes. To ensure 

proper classification, those points could be identified (by creating a small buffer around 

the class boundaries and selecting any points inside of these buffers) as outliers and then 

eliminating them. 
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Figure 18. Soil salinity points falling in between classes 

2.3.4 Advantages and Disadvantages of Methods Used to Detect Soil Salinity 

Traditional Method 

The traditional method for mapping soil salinity involves collecting soil samples 

from the field and analyzing them in the laboratory to determine the salinity levels in the 

soil. This method has changed slightly in recent years as handheld electromagnetic 

devices have come into use. Once calibrated, these devices can directly estimate the soil 
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salinity in the field, reducing the need to take samples to the lab (some soil samples might 

need to be collected to calibrate and/or validate the values obtained from the 

electromagnetic devices). 

Disadvantages of the Traditional Method 

• More labor: Traditional methods, even using an electromagnetic device, consume 

substantial amounts of time and labor. The number of samples taken is often 

limited due to time and economic constraints. Consequently, the maps produced 

by the traditional method with these limited samples might not capture all the 

spatial variability of the soil salinity in the field. 

• Inaccuracy. When used, electromagnetic devices need to be calibrated properly to 

give good results, but even with calibration, electromagnetic devices might not 

give an accurate estimate of soil salinity levels because of certain field conditions. 

For example, if the field is too wet because of a previous irrigation or rainfall 

event, the EM-38 most likely would overestimate salinity levels, and if the field is 

too dry the EM-38 most likely would underestimate the salinity levels. These 

inaccuracies would result in misleading soil salinity maps. 

• Accessibility and crop damage. Mapping soil salinity using traditional methods 

might result in crop damage if data needs to be collected during the growing 

season; and for certain measuring methods such as the Veris system or the EM-38 

when done using a trailer the accessibility is very limited during the growing 

season and samples have to be collected during the very early part of the growing 

season or the end of the growing season (after harvest). 
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Advantages of Traditional Methods 

• With appropriate field conditions and well-calibrated instruments, soil salinity can 

be accurately estimated in the lab as well as in the field. 

• Actual data is collected and a good idea of the field conditions is obtained by 

visiting each field. 

Satellite Method 

Disadvantages of the Satellite Method 

• Inaccuracy. The satellite method is unable to differentiate between different 

salinity levels below a certain detection limit. However, since the purpose of this 

research is to estimate soil salinity levels that affect crops, lumping very low soil 

salinity into one level is normally not a problem. Likewise, the satellite method is 

unable to differentiate between high salinity and extreme salinity levels. Since the 

methodology depends on the crop biomass reflectance, if the crop is severely 

affected by a certain level of soil salinity, there is no way to estimate higher soil 

salinity levels since the crop is already severely affected. In addition, the satellite 

method is not accurate for small fields when using Landsat images which have 

30m resolution, but most of the com fields in the study area are large enough that 

this is not an issue. 

• Unable to take into consideration special conditions. The satellite image is 

unable to identify the cause of the impact on crop growth. For instance, the 

satellite image is unable to differentiate between loss of biomass due to harvesting 

(alfalfa), irrigation stress, insect infestations or hail damage. However, in most 

cases, these situations are exceptions and not the norm. 
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• Only certain levels of salinity can be detected in fields cultivated with salt 

tolerant crops. Since the satellite image is evaluated for salinity on the basis of 

crop condition, if the crop is salt tolerant and thus is not affected by lower levels 

of soil salinity, the area in the satellite image planted with these types of crops 

will not be able to be evaluate for lower levels of soil salinity, only higher soil 

salinity levels would be able to be identified. These areas would need to be re­

evaluated if the crop type changed to less salt tolerant crops. 

Advantages of the Determining Soil Salinity Using Satellite scenes. 

• Using satellite scenes can be very cost effective and it involves less effort than 

traditional methods. It also offers higher spatial resolution and greater consistency 

in estimation of soil salinity because it is not influenced by field conditions, like 

irrigations (impact that soil moisture has on the EM-38 readings). However, the 

main advantage of using satellite scenes may be its ability to cover a whole basin 

with considerably accuracy. 

2.4 CONCLUSIONS 

Soil salinity is identifiable and quantifiable using different satellite image types in 

conjunction with GIS and some GPS ground data. Images from satellites that offer higher 

spatial resolution offer the researcher the ability to detect soil salinity levels for small 

areas and more salt classes but the tradeoff is that the costs are significant when dealing 

with large areas (tens of thousands of hectares). Landsat imagery provides a larger area of 

coverage for less cost but did not allow us to separate the no loss areas from the slight 

crop loss areas. In spite of this, Landsat 7 imagery is considered to perform well since 

evaluating soil salinity depends mainly on the ability to separate and quantify critical 
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salinity classes (no/slight crop loss, moderate crop loss, severe crop loss). It is anticipated 

that results will be enhanced by using higher resolution imagery that might become 

available for commercial use in the near future. 
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3. SURFACE ENERGY BALANCE-BASED MODEL FOR ESTIMATING 

EV APOTRANSPIRATION TAKING INTO ACCOUNT SPATIAL 

VARIABILITY IN WEATHER 

3.1 ABSTRACT. 

Reliable estimates of evapotranspiration (ET) from vegetation are needed for many 

types of water-resource investigations. How well models can estimate ET from 

vegetation varies depending on the capabilities of the model as well as the nature of the 

targeted vegetation. Model accuracy also depends heavily on the quality and quantity of 

data used. Information about the surface energy balance components derived from 

satellite imagery has been used by several models to estimate ET. This research 

introduces an enhanced surface energy balance-based model, the Remote Sensing of 

Evapotranspiration or ReSET model, for estimating ET. ReSET is an ET estimation 

model that takes into consideration the spatial variability in weather parameters, which 

makes it particularly applicable for calculating regional scale ET. ReSET also has the 

capability of interpolating between the available weather stations in time and space. The 

model's accuracy at daily and seasonal time scales is evaluated in several case studies. 

3.2 INTRODUCTION 

Recently, remote sensing algorithms have been widely used to estimate regional 

surface fluxes (e.g. evapotranspiration). Many of these surface energy balance models 
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were developed in the last decade (e.g., Kustas and Norman, 1996; Bastiaanssen et al., 

1998a and b; Timmermans et al. , 2004; Nagler et al. , 2004; and Allen et al. , 2005). These 

models use information derived from satellite imagery such as Landsat, AVHRR, 

ASTER, and MODIS to estimate ET (Nishida et al. , 2003). 

The remote sensing approach to estimating ET provides advantages over traditional 

methods. One of the most important advantages of the remote sensing approach is that it 

can provide regional estimates of ET. Most conventional methods are based on point 

measurements, limiting their ability to capture the spatial variability of ET. Another 

advantage of the remote sensing/surface energy balance ET models is that unlike most 

conventional methods which estimate a reference crop ET from meteorological data and 

apply crop coefficients to estimate the actual crop ET, remote sensing/surface energy 

balance models are able to estimate the actual crop ET directly. Satellites with high 

spatial resolution such as Landsat (30 m) and ASTER (15 m) give accurate estimates of 

ET with very high spatial resolution. Other satellites such as MODIS can be used for the 

same purpose, but the resolution is much coarser. Several models have been developed 

for estimating ET from satellite imagery, such as SEBAL (Bastiaanssen et al., 1998a and 

b) that uses Landsat 5 and Landsat 7 imagery and can be used with other image formats 

as well and METRIC that stems from SEBAL (Allen et al. , 2005) but adds an internal 

calibration and a better method for calculating seasonal ET. METRIC uses the daily 

weather station reference ET as an index for interpolation between satellite image dates 

to produce seasonal ET estimates. Thus, METRIC is able to take into consideration the 

temporal variability in ET in the periods between satellite image dates. SEBS (Su, 2002) 

is yet another model that uses the same approach of the surface energy balance. SEBS 
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was tested using data obtained with the Thematic Mapper Simulator (TMS-NSOOl) and 

produced good estimates of ET for cotton and shrubs as well as grass. Other models, such 

as the Regional ET Estimation Model (REEM), uses ASTER scenes (Samani et al. , 2005) 

and was developed for the purpose of evaluating evapotranspiration from riparian areas. 

Some of the models, such as TSEB (Kustas and Norman, 1999), use two approaches, 

coupling together the microwave-derived soil moisture and the radiometric surface 

temperature to estimate evapotranspiration using TIMS (Thermal Infrared Multi-spectral 

Scanner) and the L-band EST AR (Electronically Scanned Thinned Array Radiometer). 

Another model for evaluating evapotranspiration that has yielded promising results is S­

SEBI (Roerink et al., 2000). It uses Landsat-Thematic Mapper data and an approach that 

depends on the surface energy balance equation. 

EV APOTRANSPIRA TION (ET) 

ET is the sum of evaporation (water lost from the soil's surface) and plant 

transpiration; these processes occur simultaneously. The evaporation from an area where 

a crop is growing is mainly determined by the fraction of solar radiation that reaches the 

soil surface. This fraction decreases over the growing season as the crop develops and the 

crop canopy increasingly shades the ground. When the crop is small, water is 

predominantly lost by soil evaporation, but once the crop is well developed and 

completely covers the soil, transpiration becomes the dominant process. 

ET estimates are used in addressing a number of different problems, and there has 

been extensive research on this topic, to accurately measure ET, it is necessary to use 

lysimeters. However, lysimeters are very expensive and are in use in only a few, select 

locations. Good estimates of ET can be derived from accurate measurements of various 
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weather parameters, but while weather networks have been widely implemented in the 

U.S. , they only provide information at specific locations. Remote sensing models offer 

attractive new options for measuring ET and have the added advantage of providing 

information on the spatial variability of ET. 

OBJECTIVE 

The objective of this research is to obtain high resolution spatial ET information 

for a region or a river basin. It uses the energy balance methods based on Landsat and 

focused on enhancing the procedure of accounting for spatiotemporal variability. The 

model presented in this research builds on the approach used by Bastiaanssen et al. 

(1998a and b), but improves the approach' s ability to deal with the temporal and spatial 

variability in ET estimates. The model is called Remote Sensing of Evapotranspiration 

(ReSET), and it has been applied using Landsat 5 and Landsat 7 imagery. 

3.3 MODEL DEVELOPMENT 

This section describes the development of a surface energy balance based model, 

ReSET, for estimating actual crop ET. ReSET is an enhanced ET estimation model based 

on the methodology implemented in the Surface Energy Balance Algorithm for Land or 

SEBAL (Bastiaanssen et al. , 1998a and b). SEBAL allows the user to arrive at ET 

estimates using data from only one weather station. ReSET expands upon SEBAL and 

takes into consideration the spatial variability in weather parameters over a region by 

using data from multiple weather stations. The ReSET model has the ability to interpolate 

between the available weather stations in time and space taking into consideration the 

spatiotemporal variability of the available weather data by generating surfaces of wind 
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run and ET between weather stations. Consequently, ReSET represents an improved 

method for looking at ET at a larger scale such as a region or river basin scale. 

The model ' s algorithm computes most of the essential hydro-meteorological 

parameters empirically from the satellite images. The only weather data it requires is 

wind run data at known locations (weather stations). In the model, the surface energy 

balance component, the sensible heat flux H, is solved iteratively, and the ET is derived 

as the closure term of the surface energy balance equation: 

(3 .1) 

where Rn = the net radiant energy exchange at the earth's surface, which is called net 

radiation; LE = the evapotranspiration expressed as latent heat flux density; H = the net 

surface-atmosphere flux of sensible heat; and G = the soil heat flux density. 

The ReSET model is applied in this research to estimate ET using several Landsat 

5 and Landsat 7 scenes. ET is computed for each pixel (the size of the pixel depends on 

the type of satellite image) in the satellite image for the instantaneous time of the image. 

The process is based on a complete energy balance for each pixel where ET is predicted 

from the residual amount of energy remaining from the classical energy balance: ET = 

net radiation - heat to the soil -heat to the air. The procedure for how ET can be 

estimated from satellite imagery is presented in detail in Bastiaanssen et al. 1998a; 

Bastiaanssen, 2000; Bastiaanssen et al., 2002; Allen et al. , 2005; and Tasumi et al., 2005. 

In ReSET the algorithm used to calculate the components of the surface energy 

equation from Landsat imagery can be summarized as follows: Landsat imagery contains 

visible bands (1 , 2, 3), infrared bands (4, 5, 7), and a thermal infrared band (6). From the 

visible and infrared bands, surface albedo is derived. The Normalized Difference 
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Vegetation Index (NDVI) is derived from bands 3 and 4, and the surface temperature is 

derived from the thermal infrared band (band 6). These three components are combined 

with location parameterization (Digital Elevation Models (DEM) and surface roughness) 

to calculate the net radiation (Rn) based on a function developed by Bastiaanssen (2000). 

The soil heat flux (G) is calculated empirically using albedo, NDVI, surface temperature, 

and sensible heat flux. 

The approach implemented in ReSET to estimate the latent heat flux (LE) that 

yields the instantaneous evapotranspiration relies on selecting two locations in the study 

region. The first location is called the wet or cold pixel. Water vapor at this location is 

assumed to be released based on the atmospheric requirement thus the vertical difference 

in temperature is down to the minimum. Under such conditions the sensible heat flux (H) 

goes to zero and components of the surface energy balance equation are reduced to net 

radiation Rn and soil heat flux G and latent heat flux LE, 

(3.2) 

The cold pixel represents one of the two extreme pixels used to solve the energy 

equation. The second extreme pixel is the dry or hot pixel at which ET is assumed to be 

zero meaning that the latent heat flux is assumed to be zero (LE=O). This assumption 

makes it possible to estimate the sensible heat flux at this location (H) since it is equal to: 

(3.3) 

Knowing the surface temperature at the two extreme pixels (dry and wet pixels), 

the difference in temperature between the near surface and the air (dt) at the wet (cold) 

pixel can be assumed to be zero since maximum evaporation conditions are assumed to 

exist, but for the dry (hot) pixel dt is calculated for air temperature of 20°c. With the 
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assumption that the dt at the wet pixel equals zero (i.e. , Hwet = 0) the value of Hat the 

dry pixel can be calculated, knowing the values of H at the two extreme pixels H can be 

calculated for the rest of the image 

The first calculation of H is a preliminary estimate, and calculations for H must be 

repeated until H reaches stability. The instability is caused by the fact that air has three 

stability conditions (stable, unstable, and neutral). Stability conditions must be taken into 

consideration during the calculation of H since they affect the aerodynamic resistance to 

heat transport that directly affects the value of sensible heat flux (H). Once H reaches 

stability, the latent heat flux can be calculated using the energy balance equation 

(equation 3.1). The latent heat flux is then converted to estimate the instantaneous 

evapotranspiration. Assuming that the instantaneous evapotranspiration is constant over a 

whole day (24 hours) the instantaneous and day evapotranspiration can be calculated as 

follows: 

ET;,zs1 = LE /(Rn - G) (3.4) 

Where Rn, G, LE are all instantaneous, then the ET 24-hour is calculated by: 

ET24 = 86,400 * ET;l!St * (Rn24 -G24 ) / L (3.5) 

where ET24 is the 24-hour evapotranspiration, 86,400 is a time conversion from seconds 

to days, Rn24 is the 24-hour net radiation, G24 is the 24-hour soil heat flux, Lis the latent 

heat of vaporization that is used to convert the energy to millimeters of evaporation. Lis 

based on the surface temperature and represents the energy needed to evaporate a unit 

mass of water as calculated by the following equation developed by Harrison (1963): 

L = 2.50l-0.00236(Ts - 2.73.16) * 106 (3 .6) 

where Ts is the surface temperature in kelvin. 
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3.4 MATERIALS AND METHODS 

3.4.1 Study Areas 

The ReSET model was applied to two study regions: the lower Arkansas River 

Basin and the South Platte Basin in Colorado (Figure 19). The study regions have a large 

amount of irrigated agriculture. In both study regions a variety of crops are grown, but 

the most commonly crops are alfalfa and corn. 
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Figure 19. The lower Arkansas River Basin study region in Colorado 

3.4.2 Satellite Imagery for the Lower Arkansas Study Region 

N 

A 

Seven Landsat 7 scenes were used in this study region in order to cover the entire 

2001 growing season, the dates of the scenes span from May 21, 2001 to September 26, 

2001. The Landsat scenes were obtained in a raw National Landsat Archive Production 
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System (NLAPS) format. The images were processed using the ERDAS Imagine 8.7 

software. Using the "layer stack" module in ERDAS, the eight separate bands of each 

image were stacked into one image file (.img) containing the eight bands resampled at a 

15 m by 15 m resolution. This resolution matches the resolution of the highest resolution 

band of the Landsat 7 image, the panchromatic band. 

In order to assure that the Landsat scenes were all spatially aligned correctly, they 

were orthorectified. This is a process by which an image is used as a reference and all 

other images are adjusted so that they spatially match that reference layer. For this work a 

USGS orthorectified Landsat image was used as the reference image. The other Landsat 

images were rectified using the polynomial rectification module in ERDAS. 

Clouds affect the calculation of ET when using remote sensing. Even a thin layer 

of clouds will produce .an error in the calculations, since the areas covered by clouds will 

reflect as cool areas which would be misclassified as actively growing areas with high ET 

values. The cloud cover in the seven Landsat scenes used in this research ranged from 0% 

to 14%. A cloud mask was created for each image to eliminate those areas of the images 

that were covered by clouds or cloud shadows. 

3.5 RESET MODEL ENHANCEMENTS 

The development of ReSET has focused on improving on other remote sensing of 

ET models in two ways: enabling the use of data from multiple weather stations and 

allowing for the calculation of a cumulative ET. 
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3.5.1 Spatial Interpolation Between Weather Stations 

Most of the models that use remote sensing to estimate ET have relied on 

information from one weather station in the area of interest. Yet, due to spatial 

variability, using data from one weather station makes these models only appropriate for 

smaller or homogeneous areas. ReSET provides the advantage that it uses data from 

multiple weather stations. The ReSET model uses ground data in the form of wind run 

data to run the model and ET data for calibrating and validating the model. The model 

captures the spatial variability in ET over large areas by generating a surface for each 

parameter (wind run and ET) using interpolated values from all the weather stations that 

fall within the study region. 

3.5.2 Temporal Interpolation Between Scenes 

The second enhancement offered by the ReSET model is the ability to calculate 

the cumulative ET over time between the dates of the available Landsat scenes. Most 

remote sensing of ET models calculate the actual ET at the time when the satellite passes 

over the area of interest. This calculation is then extended to estimate the ET for that day. 

ReSET interpolates between available Landsat scenes dates by using a grid of ET values 

developed based on data from all the weather stations in the study region. In addition, the 

model calculates a ratio of the ReSET-determined ET (ETReSET) to the ET at the weather 

station (ETws) at the beginning (ET Rb) and at the end of the interpolation period (ET Re). 

Then, using the calculated ET from the weather stations for each day between the 

available Landsat scenes for all weather stations in the study area (ET ct) , a grid of ET is 

generated that represents the weather station based ET for each day for the study region. 

The difference between ET Rb and ET Re is divided by the number of days between them 
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and used to develop a variable correction ratio grid for each day between the available 

Landsat scene dates. The correction ratio grid is multiplied by the weather station based 

ET for each day (ET ct) to produce the interpolated model ET for each day (ETctm). The 

total ET for a given period is calculated as the sum of the daily ET grids (ETctm) for the 

specified period of time. This technique is explained in greater detail later in this chapter. 

Figure 20 shows the ET that was calculated for a portion of the lower Arkansas Valley 

study region using the ReSET model. 
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Figure 20. Estimated ET for a portion of the lower Arkansas River Basin in 
Colorado. 

3.6 DATA PREPARATION 

The data from the weather stations is used in the ReSET model in two phases. In 

the input phase, wind run is used as an input to the model. The second phase where the 

data is used is in producing the cumulative ET for a period of time. Daily ET values 

calculated from meteorological data measured at weather stations are used to interpolate 
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an ET grid for each available scene date. The weather station based ET grids are used to 

interpolate ET between consecutive scene dates . In order to provide the model with this 

data, a database that holds the raw weather station data was created. The database was 

developed using a number of SQL scripts that help retrieve the raw weather data from 

different weather station network websites . Currently, these scripts support downloading 

data from the following weather networks: the Colorado Agricultural and Meteorological 

(CoAgMet) network, the Northern Colorado Water Conservancy District Weather 

(NCWCD) network, the California Irrigation Management Information System and the 

Arizona Meteorological Network. 

The weather data is imported into a consumptive use model: the Integrated 

Decision Support Group Consumptive Use Model (IDSCU) (Integrated Decision Support 

Group, 2004) which calculates the crop ET values (the user can select which ET method 

to use) for different crops and these crop ET values are then stored in the database along 

with the weather data. 

3. 7 GIS MODEL INTERFACE 

In order to implement the model enhancements associated with taking into 

consideration the spatial and temporal variability of ET, a GIS module was created to 

handle the weather station data. The GIS module was integrated into ReSET using ESRI 

ArcMap 9.1. 

The first function of the GIS is to use the locations of the weather stations and 

query the weather database to obtain the daily wind run at each weather station. The user 

then specifies a date, the date of the image being processed, and a cell size, and the GIS 

interpolates a raster layer using the daily wind run values at each weather station. The 
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result is a GIS raster layer where each cell holds a wind run value that is a result of 

interpolating between weather stations, the interpolation is carried out using ordinary 

kriging, the wind run raster layer is used as input to the ReSET model to account for the 

spatial variability in wind run instead of assuming a uniform wind run value for the 

whole area. 

The second function of the GIS module is calculating the cumulative ET for a 

defined period of time. This is accomplished by selecting the weather station point theme 

and the ReSET processed scenes in the order that they occurred during the season. The 

output of this process is a raster layer of unique ET values (in millimeters) for each cell in 

the study region. The interpolation technique used in ReSET is similar to the one used in 

METRIC (Allen et al., 2005) except that METRIC uses only one weather station for 

interpolation. Consequently, METRIC is able to account for the temporal variation of ET, 

but ReSET, which uses multiple weather stations, is able to account for the temporal and 

spatial variability of ET. 

The algorithm to calculate the cumulative ET value was developed by calculating 

the ET ratio at the beginning of the interpolation period as: 

(3.7) 

ET Rb is a grid of the ET ratio between the ReSET ET and the weather station ET 

at the beginning of the interpolation period between scene dates, ET ReSETb is a grid of the 

ReSET ET and ET wsb is a grid of the interpolated weather stations ET, for the beginning 

scene date. A similar ET ratio grid for the end of the interpolation period is calculated: 

ET Re=ET ReSETJET WSe (3.8) 
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Then for each date between the scene dates a grid is generated using the weather 

station ET values for all weather stations in the study area to generate a grid (ET wsct). The 

difference between ET Rb (grid of the ratio at the beginning of the interpolation period) 

and ET Re (grid at the end of the interpolation period) divided by the number of days 

between them is used to develop the first component of the correction ratio y which 

captures the spatial variability of ET 

y = [ (ET Rb-ET Re)/N] (3.9) 

in which N is the number of days between the scenes for which data is being interpolated. 

The interpolated ET changes for each day depending on where that day falls 

between the beginning and end of the interpolation period (T). The interpolated ET grid 

of weather station ET values (ETwsct) for each day (d) is used to produce the modified ET 

grid for each day (ETctm) between scene dates: 

ETdm = [ETRb-(T* y )] * ETwsct (3.10) 

The ETctm grid changes from day to day depending on two variables, the first 

variable is T (location of interpolation date between the scene dates) and the second is the 

daily grid of interpolated weather station ET values (ETwsct). The total ET for the period is 

the sum of daily ET grids (ETctm) for all days between the scene dates (N): 

N 

ETa= L ETctm 
I 

(3.11) 

The final product is a raster layer of the cumulative ET in millimeters for the days 

between the selected scenes. 
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3.8 APPLICATION OF THE RESET MODEL 

ReSET was applied to two locations in Colorado (Figure 19). Weather station 

data were obtained for cross validating the model and estimating its relative accuracy. 

To show the difference in the model results when using multiple weather stations 

instead of a single weather station as well as the spatial technique used to generate an ET 

grid for a region, the model was first applied to the Arkansas River Valley in southeast 

Colorado. A Landsat 7 scene from June 22, 2001 was used to calculate the daily ET 

values. The results of the ReSET model were compared to the daily ET values for alfalfa 

from the CoAgMet weather stations. Using seven Landsat 7 images for the lower 

Arkansas River Basin study area (May 21, 2001; June 6, 2001; June 22, 2001 ; July 8, 

2001; July 24, 2001; September 10, 2001; and September 26, 2001) a seasonal ET was 

calculated for each cell and compared to the values from the weather stations. 

A June 22, 2001 Landsat 7 image was processed using a single weather station 

located near the middle of the image: the Colorado State University, Rocky Ford weather 

station. The ET from this station was used to represent the weather station ET for the 

whole region. The ReSET model results are displayed in Figure 22. Another ET estimate 

using the ReSET model was generated using five weather stations located within the 

boundaries of the image, and it is shown in Figure 23. 
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Figure 21. The satellite imagery for the study area on 6/22/2001. 
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Figure 22. Colorado's Arkansas River Valley ET Grid Using a Single Weather 
Station on 6/22/2001. 
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Figure 23. Colorado's Arkansas River Valley ET Grid Using Multiple Weather 
Stations on (6/22/2001). 

To show the difference between the daily ET estimated using ground data from 

multiple weather stations (ETmws) and the daily ET estimated using ground data from a 

single weather station (ETsws), a wind grid generated for the study area (Figure 24) was 

used in the model to estimate the ET (ET mws) with multiple weather stations. The satellite 

imagery that was used to estimate the ET (June 22, 2001) is shown in Figure 21. 
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Figure 24 . Spatial distribution of wind run in the study area on 6/22/2001. 
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Figure 25 shows the difference in the ReSET ET between using a single weather 

station and multiple weather stations in this region (ETmws - ETsws). The same figure 

zooms in on an area to show the spatial variability of ET even inside some of the 

individual fields. 
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Figure 25. The difference in daily ReSET ET (ETmws - ETsws) for the whole study 
area and a zoomed area. 

One of the major enhancements of the ReSET model is the use of multiple 

weather stations for obtaining wind run. Figure 24 clearly shows the variability in wind 

run within the 160 kilometers or so displayed in the figure. The wind run varied from 

122.3 km/d to 273.53 km/d which is more than 220%. Wind run has a direct impact on 

ET. Therefore, being able to model the spatial variation in wind run over a region allows 

ReSET to capture the spatial variability of ET associated with it. For instance, the 

difference in ET estimated when using the June 22, 2001 Landsat 7 image in conjunction 

73 



with the wind run data obtained from only the station at the center of the image and from 

ET estimated using multiple weather stations amounts to ET of+/- 20 %. If not using the 

ReSET approach, the error can be reduced by selecting smaller areas around each 

weather station to be processed independently or using a grid of wind run developed 

using Thiessen polygons around each weather station. 

The temporal resolution of Landsat is every 16 days which means that, assuming 

no cloud cover which would prevent the use of a scene, a remote sensing ET estimate can 

be obtained approximately every 2 weeks. However, daily ET estimates are needed in 

order to estimate monthly and/or seasonal ET. 

Using the procedure previously described, the cumulative ET for the study area in 

the Arkansas River Valley region was generated and is shown in Figure 26. The 

CoAgMet ET at the Rocky Ford weather station (Figure 26) during the period from May 

20, 2001 to June 6, 2001 sometimes varies significantly over a short period such as the 

changes between May 30th and June 2nd
. During this four day period ET changed from 

less than 6 mm/day to over 9 mm/day, this is and increase of over 50%, such temporal 

variations strongly support the use of the weather station ET's as a daily correction ratio 

for interpolation between scenes rather than just using a linear interpolation. 
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Figure 26. ET estimated at the CoAgMet CSU Rocky Ford weather station. 

Crop growth can change dramatically during the vegetative growth stage. As a 

result, ET can increase significantly in a month of lush growth, and during senescence ET 

can decrease significantly. These changes in growth rates can introduce errors which may 

result in either overestimating or underestimating the cumulative ET in the time span 

between two satellite scenes, especially if only one satellite image is being used per 

month. Therefore using the modified interpolation method presented in this research will 

take into account such temporal and spatial variability in ET .This allows the model to 

adjust for changes in ET between scene dates and improves seasonal ET estimates. 

An example from the South Platte Basin in Colorado (Figure 19) illustrates the 

advantage of calculating the seasonal ET using the proposed method that relies on the 

weather stations as an interpolation index versus using a simple linear interpolation 

between two scenes. This area has a denser network of weather stations than the study 

area in the Arkansas River Basin. Figure 27 shows the cumulative ET calculated using 

the ReSET approach and the cumulative ET calculated using the linear interpolation 
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approach. The two scenes used for this comparison were taken on 6/13/2004 and on 

6/29/2004. When comparing the cumulative ET for this 16-day period, the linear 

interpolation approach produces ET estimates that are higher than the ReSET approach. 

The linear interpolation approach gives a total ET that is larger than the ReSET approach 

with as much as 60 mm (Figure 28), an estimate that is 50% higher than the ReSET 

estimate. This higher estimate is a result of the fact that the linear interpolation approach 

does not take into consideration the changes in the weather occurring during the 16-day 

period. Figure 29 shows that the NCWCD daily reference ET for this period varied 

between 1 mm and 8 mm at some of the weather stations. This temporal and spatial 

variation in ET significantly reduced the cumulative ET calculated by the ReSET model 

and created the difference between the ReSET estimate and the linear interpolation 

approach. This example shows the potential for significant errors when using linear 

interpolation versus taking into account the daily variation in ET during an interpolation 

period. 
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Figure 27. Cumulative ET calculated using ReSET and calculated using simple 

averaging. 
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Figure 28. Difference in cumulative ET between ReSET and average. 
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Reference ET at Brush Weather Station 
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Figure 29. Variability in ETr at the Brush weather station over the 

interpolation period. 

3.9 EVALUATING THE IMPACT OF REDUCING THE NUMBER OF 

WEATHER STATIONS 

Using multiple weather stations when calculating cumulative ET for areas with 

significant spatial variation in ET makes a significant difference in the results. To 

compare the different outcomes obtained by using all available weather stations versus 

using fewer weather stations, we offer an example from the South Platte River Basin 

study area. The area contains six weather stations. ET estimates for a period of time were 

calculated using ReSET with all six weather stations and then using only three weather 

stations. Figure 30 shows the results of using all six weather stations as well as the results 
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when three weather stations are used. Figure 31 shows that the differences in cumulative 

ET estimates were mainly around the missing weather stations (as expected). The level of 

discrepancy between the estimates will depend on the spatial variability in ET. 
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Figure 30. Cumulative ET using 6 and 3 weather stations. 
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Figure 31. Difference in cumulative ET when using 6 weather stations versus 3 
weather stations 
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3.10 CONCLUSIONS 

Using wind run data from a single weather station to estimate aerial ET can 

introduce significant errors. In the cases presented in this chapter, these errors in the 

estimates of ET can be as much as 20%. Introducing the ability to use multiple weather 

stations in calculating the ET from remote sensing using the ReSET model enhanced the 

ET prediction and reduced this potential source of error. 

Spatial and temporal variability between satellite scenes accounts for daily 

changes in ET which can affect seasonal ET estimates. Introducing the use of daily 

values of ET estimated from multiple weather stations as interpolation indexes result in 

estimates of seasonal ET that account for spatial variability. The model developed as part 

of this research, ReSET, uses a grid approach that utilizes multiple weather stations 

creating a surface that adapts to the spatial variability of weather conditions over a 

targeted area. The methodology and results presented here extend the application of 

remote sensing of ET to areas where significant spatial variation in weather data occurs. 
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4. A REMOTE SENSING - GIS APPROACH TO EVALUATE THE EFFECTS OF 

SOIL SALINITY ON EV APOTRANSPIRATION 

4.1 ABSTRACT 

Evapotranspiration (ET) is assumed to be one of the processes important to crop 

production that is affected by soil salinity. This chapter describes the use of geographic 

information systems (GIS) and remote sensing techniques to investigate the relation 

between ET and soil salinity in agricultural areas. Soil salinity data was obtained from 

global positioning system-referenced ground measurements in several corn fields in the 

Arkansas River Basin in Colorado. Evapotranspiration was calculated using a remote 

sensing model named Remote Sensing of Evapotranspiration (ReSET) that is based on 

the concept of surface energy balance. Evapotranspiration values were regressed against 

the spatially corresponding soil salinity values to develop a relation between ET and soil 

salinity. The ET values correlate well with the soil salinity levels in the study region, with 

a correlation coefficient of up to 0.86. 

4.2 INTRODUCTION 

There are many factors that limit crop development and reduce crop yield in 

agricultural lands. These factors include soil salinity, poor land fertility, limited 

application of fertilizers, presence of hard or impenetrable soil horizons, plant diseases 

and pests, and poor soil management (PAO, 2005). 
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Salt concentrations rise when salts present in the soil and the surface and ground 

water accumulate in certain areas. Increases in salt concentration affect several processes 

important to plant growth including evapotranspiration (ET). ET is a vital process for 

plant growth and any perturbation in this process will affect plant growth and yield. High 

levels of salts in water available for plants affect the osmotic pressure that enables the 

plant to absorb water from the soil. The higher the level of salinity in the soil water, the 

harder plants must work to extract water from the soil. This leads to reduced amounts of 

water that can be used by the plant and hence a decrease in the plant's ET. 

Extensive research has been conducted investigating the impacts of soil salinity 

on agriculture. Recently remote sensing and GIS have been used to evaluate the extent 

and impacts of soil salinity on agricultural lands (Peng, 1998). Applying remote sensing 

data and techniques has dramatically improved the ability to monitor or evaluate the 

efficiency of cropping production systems in saline areas (Poss et al., 2006). Remote 

sensing techniques have been used to diagnose general salinity problems (Everitt et al. , 

1977; Ripple et al., 1986). Stewart et al. (1976) concluded that the effect of salinity on 

yield is a direct result of reduced water uptake and transpiration. Other methods for 

calculating plant water uptake were examined by Cardon and Letey (1992a, 1992b, and 

1992c). According to their findings, the most accurate representation of the effects of 

salinity on water uptake was achieved by using an empirical equation based on the soil 

water potential. The Food and Agriculture Organization (FAQ) Irrigation and Drainage 

Paper 56 (Allen et al., 1998) presented a function that predicts the reduction in 

evapotranspiration caused by soil water salinity. They accomplished this combining 

yield-salinity equations from the FAQ Irrigation and Drainage Paper 29 (FAO, 1985) and 
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yield-ET equations from FAO Irrigation and Drainage Paper 33 (FAO, 1979). The 

resulting equation provides an approximation of the reduction in evapotranspiration 

expected under a variety of salinity conditions. However, very few or no studies have 

used remote sensing and ET models to develop a direct relationship between soil salinity 

and ET. 

In this research, remote sensing and GIS techniques were used to investigate the 

relationship between soil salinity and ET in a study area in the Arkansas River Basin in 

Colorado. As part of this research, regional surface fluxes (e.g. evapotranspiration) using 

remote sensing approaches were implemented and enhanced. The evapotranspiration 

estimates were calculated using a surface energy balance model. In the past decade a 

number of researchers have developed models that use this general concept ( e.g. see 

Kustas et al. , 1996; Bastiaanssen et al., 1998; Timmermans et al., 2004; and Allen et al. , 

2005). These models use satellite imagery, such as Landsat, AVHRR, ASTER and 

MOD IS (Nishida et al., 2003) to generate estimates of ET. 

For this study a remote sensing of ET model called ReSET was developed to 

explore correlations between soil salinity and ET. Both soil salinity and ET are spatially 

distributed over large areas, and using a remote sensing-GIS approach makes sense in 

dealing with data that is spatial in nature. Once the relationship between ET and soil 

salinity is developed, this knowledge can be used to quantify the impact of soil salinity on 

ET for certain crops. In this research, the crop that was selected was com. 
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4.3 METHODOLOGY 

The approach developed as part of this research is to generate an ET surface for 

each field in the study area using the surface energy balance-based model ReSET. The 

energy balance components are estimated using Landsat imagery. The ET values are then 

correlated with spatially collocated, field-collected soil salinity values. The soil salinity 

field data was collected at spatially referenced points. Each point was given an x-y 

coordinate using a global positioning system. A geographic information system was then 

used to generate the soil salinity coverage from the field soil salinity points. Once a set of 

points showing the ET and the soil salinity were obtained a regression line was developed 

between ET and soil salinity. 

4.3.1 Selecting Fields to Study 

Six com fields located in Colorado's Lower Arkansas River Basin were selected 

to study the relationship between soil salinity and ET. Corn fields were selected for study 

because com has a medium tolerance for soil salinity and has a fairly long growing 

season (over 110 days), making the effects of soil salinity on biomass and yield 

significant enough to be detected fairly easy. Com shows the damaging effects of salinity 

when it is grown in soil with salinity levels as low as 2 dS/m. However, if gypsum is 

present in the soil, which is the case in the Lower Arkansas River Basin, com does not 

begin to exhibit damage until higher salinity levels (maybe 3 dS/m) are reached. As 

salinity levels progress beyond this threshold, damage to the biomass and yield of corn 

plants increases. With soil salinity levels of 8 dS/m or greater, the crop starts to exhibit 

extreme damage. 
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Study fields were selected to be representative of soil salinity variability existing 

at the field scale. For example, a couple of the fields selected (fields 80 and RR) have the 

full spectrum of soil salinity levels (1 dS/m to 8 dS/m). The variability in these two fields 

provides a good opportunity to capture the correlation between ET and soil salinity over a 

large spectrum of values. Fields 6, 77 and 23 are homogenous fields that have low levels 

of soil salinity (under 4 dS/m). The impact of salinity on the com crop in these fields is 

minor and almost invisible. Therefore, ET was largely unaffected by salinity in these 

fields. In contrast, field 40, which had a large range of soil salinity levels including areas 

where salinity levels were in excess of 12 dS/m, exhibited substantial problems. Parts of 

the field were barren, unable to sustain the crop. 

By using satellite imagery as a data source, the impacts of soil salinity on the 

appearance and biomass of the plant can be detected; however, if the soil salinity level is 

low enough that it has very little impact on the crop, for instance, salinity levels of 3 

dS/m or less, then the impact on the crop falls outside the lower detection limit of the 

satellite image. On the other hand, if the soil salinity level is too high (above 8 dS/m), to 

the point of being extremely damaging to the crop, these values fall outside the upper 

detection limit since in many instances very little or no crop actually grows in these areas. 

Therefore, no relation is developed to cover salinity levels outside the detection limits. 

4.3.2 Estimating Evapotranspiration 

ET is defined as the total water transferred into the atmosphere from the soil 

surface (evaporation) and from the surface of the vegetation (transpiration). When the 

crop is small, water is predominately lost by soil evaporation, but once the crop is well 

developed and completely covers the soil, transpiration becomes the main process. 
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ET is not easy to measure. Specific devices and accurate measurements of various 

physical parameters or the soil water balance from lysimeters are required to determine 

ET (Allen, et al., 1998). Most methods for determining ET are costly and require a great 

deal of accurate data which makes their application only practical for small areas. 

Recently, new methods of estimating ET using remote sensing-based models and an 

energy balance equation have been developed (Kustas et al., 1996; Bastiaanssen et al., 

1998; Timmermans et al., 2004; and Allen et al., 2005). These methods are attractive 

because they tend to involve less field data collection and therefore save time and money. 

4.3.2.1 Energy Balance and Microclimatological Methods 

Evaporation of water requires energy, either in the form of sensible heat or radiant 

energy. That is why the evapotranspiration process is reliant on energy exchange at the 

vegetation surface and is governed by the amount of energy available at this surface. This 

concept makes it possible to predict the evapotranspiration rate using the surface energy 

balance: the energy arriving at the surface should equal the energy leaving the surface for 

the same time period. The equation for an evaporating surface can be written as: 

'AET=Rn-G-H (4.1) 

Rn is the net radiation, His the sensible heat, G is the soil heat flux and 'A ET is the latent 

heat flux. 

In this research this energy balance approach is used to estimate ET. A remote 

sensing-GIS based model (ReSET) was developed for this purpose. ReSET is a model 

used to develop a surface energy balance algorithm based on reflectance information 

from Landsat satellite imagery. The model and processing of the imagery was carried out 
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using ERDAS Imagine 8.7. The model output is a raster layer that contains an estimate of 

the 24-hour ET value for each pixel of interest. 

Image Georectification 

The images were georectified using polynomial models. Ground-control points 

(GCPs), such as road intersections, canals, and field boundaries were needed for the 

georectification, and these points were provided by geographic information system 

shapefiles and GPS points. 

Calculating the ET Surface 

A Landsat 7 image for the study area taken on July gt\ 2001 was used to calculate 

ET. The Landsat 7 spectrum contains eight bands: three visible bands, a near infrared, an 

infrared, a thermal, and a panchromatic band. All the bands have a cell size of 30m by 

30m except for the thermal band that has a cell size of 60m by 60m and the panchromatic 

band, which has a cell size of 15m by 15m. The July 8th Landsat image was selected for 

use because at that date the com was almost at full cover and the image was almost free 

of cloud cover. The image was georectified and processed using the ReSET model to 

generate estimates of ET for each pixel. 

4.3.3 Soil Salinity Data 

Soil salinity data was collected as part of a project to study the impact of soil 

salinity and waterlogging on agriculture in the Lower Arkansas River Basin (Gates et al ., 

2006). The soil salinity was measured in the field using an electromagnetic device, an 

EM-38EE, connected to a differential GPS. The EM-38EE measures the electromagnetic 

conductivity (EC) of the soil. The EC values are then converted to salinity units (dS/m). 
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The EM-38EE usually measures the soil EC in two profiles, horizontal and 

vertical. The horizontal is the shallow soil profile (0.75 rn) and the vertical is the deep 

soil profile (1.5 m). The coordinates of each sample point were recorded using a GPS, 

and these coordinates were used to generate a GIS point coverage for each field. 

4.3.4 Combining the ET Surface and Soil Salinity Points 

The output of the ReSET model is a raster layer for the whole study area with the 

calculated values of ET in millimeters/day for the 24 hour period of the date the image 

was acquired. The raster layers were then clipped to the boundaries of the selected fields. 

Each raster layer was converted to GIS polygons with each polygon retaining the model 

calculated ET value. GIS ET polygons were overlaid on the soil salinity points (Figure 

32). Using a tool developed in ArcGIS the statistical mean of the soil salinity points 

within each ET polygon was calculated and saved in the table of attributes of the GIS ET 

polygon coverage. The table of attributes was then exported to a dbf file to develop a 

regression between the ET values and the corresponding soil salinity values. 

4.4 RESULTS AND DISCUSSION 

The analysis was first conducted at the field scale and then integrated over 

multiple fields. 

Field Scale 

Field 80 

Field 80 is a com field with an area of 113,400 square meters (28 acres). Figure 

33 shows plan views of this field using a 4 rn resolution Ikonos scene in (a) true color and 

(b) false color. The field has a full soil salinity spectrum which enables the monitoring of 
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j Field # 80 Corn In 2001 & et in 7 .A3/01 j 

ET= 0 mm/d & Soi l Salinity= 10 .14 dS/m 

Figure 32. ET polygons with corresponding average soil salinity values for each 

polygon in field 80. 

a smooth gradual decrease in ET corresponding to increases in soil salinity. In this field 

soil salinity levels increase from a low of 2.5 dS/m, which has no detectable effect on the 

crop, to a high of 8.7 dS/m, which has severe impacts on com, reducing some planted 

areas to mostly bare soil. 

Figure 33(c) shows a plan view of field 80 on a false color 30 m resolution 

Landsat 7 image. The Landsat 7 image was used as input to the ReSET model to estimate 

the ET values shown in Figure 33(d). Figure 33(d) shows low values of ET in the areas 

colored the yellow and orange, those areas which are most affected by soil salinity. The 
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ET values increase in the area less affected by soil salinity (light to deep blue colors). The 

values of soil salinity levels were regressed against the ET values in two ways. First, 

(a) (b) 

ET 
High : 8 mm/day 

(c) (d) 
Low : 0 mm/day 

Figure 33. Plan view of field 80 from two different satellite scenes. 

zonal regression was used: all the measured soil salinity points that fall in a zone are 

given one ET value that is represented by one point on the regression graph. The results 

of this analysis are shown in figure 34. Secondly, the regression for each salinity point 

was performed independently, meaning that each pixel from the evapotranspiration grid 
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was combined with the measured soil salinity point that falls within this pixel and 

represented by a point on the regression graph shown in figure 35. 
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Figure 34. Soil salinity levels versus ET values in field 80 (zones to points). 

The relation between the soil salinity and ET is indicated by the correlation 

coefficient (R). The correlation R statistic measures the linear correlation between two 

variables in figure 34 with an optimal value of 1 .0. As shown in the figure, there is a clear 

correlation between soil salinity and ET. The correlation coefficient has a value of 0.86, 

implying a strong correlation between ET and soil salinity. The figure shows that the 

relation between the two variables is an inverse relation: a decrease in the ET corresponds 

to an increase in the soil salinity. The inverse relation for field 80 is expressed by the 

following equation: 

ET= 0.0172(SS)3-0.2806(SS )2 +0.7585(SS)+6.448 

R 2 =0.86 

(4.2) 

The same relation is also displayed in figure 35, the difference between figure 34 

and figure 35 is that in figure 34 we are correlating the mean value of all salinity points 
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that fall in the same ET zone. An ET zone can consist of several pixels that have the same 

ET value. In figure 35, the mean value of the soil salinity points falling within one pixel 

are compared to the ET of this pixel. The pixel dimensions depend on the type of images 

used. In this case the pixel dimensions are 30m by 30m. In the two graphs, there is a 

higher correlation and less scatter when correlating soil salinity points to ET zones than 

when the mean value of the soil salinity points falling within one pixel are compared to 

the ET of the pixel. 
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Figure 35. Soil salinity levels versus ET values in field 80 (pixel to point). 

Field RR 

Field RR is a corn field with an area of 60,750 square meters (15 acres). Like field 

80, field RR displays a full spectrum of soil salinity values. A smooth gradual decrease in 

ET corresponding to an increase in soil salinity was monitored. In this field soil salinity 
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levels increase from a low of 2.6 dS/m, a level which has no detectable effect on the crop, 

to a high of 8.5 dS/m, which damages the com crop reducing these areas to mostly bare 

soil. 

Figure 36. Plan view and soil salinity distribution in field RR. 
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Figure 37. Soil salinity levels versus ET values for field RR. 

ET= 0.0178(SS)3 -0.2339(SS)2 +0.3634(SS) +6.9 

R2 = 0.75 

Field 40 

9 

(4.3) 

Field 40 is a 101,171 square meter (25 acre) corn field. The full spectrum of soil 

salinity is represented in field 40. In addition in field 40, the soil salinity reaches 
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extremely high levels. All soil salinity points that had values higher than 8 dS/m had to 

be excluded because they exceeded the detection limit (no corn was present). However, 

the areas of field 40 that could be used still exhibited a good correlation between ET and 

soil salinity levels as shown in Figure 40. 
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Figure 38. Soil salinity versus ET for field 40 

Field 23, shown in Figure 39, covers an area of 54,000 square meters (12.85 

acres). The field has very low soil salinity resulting in almost no effect on ET. As the 

field is homogenous, the points are all clustered around the zone of low salinity and high 

ET (Figure 40). Therefore, although, this field does not display significant variability, 

field 23 does support the concept of the research by showing that low soil salinity has 

very Httle impact on ET. 
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Figure 39. Plan view and soil salinity distribution in field 23 
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Figure 40. Soil salinity versus ET for field 23 

Combined fields 

To show the consistency of the relation between the soil salinity and ET in com 

fields a combined graph was generated that contains two sets of points. The first set are 

points representing the relation between one grid (pixel) from the ET grid to the 
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georeferenced measured soil salinity point(s) that fall within that grid in field 80. The 

second set of points represents the relation between the average value of soil salinity 

points in one field and the average ET for the same field . The second set of points was 

created to show the relation between ET and soil salinity in the fields for which there are 

non-georeferenced soil salinity points. Due to the presence of non-georeferenced soil 

salinity points, the values of the soil salinity points and ET grid cells for each field were 

averaged to come up with one value of ET and soil salinity for each field. The results are 

presented in figure 41 and show that there is consistency in the two sets of points. This 

supports the idea that as salinity increases the ET decreases at the single point or as an 

average for the whole field. 
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Figure 41. Soil salinity versus ET for individual grids as well as for whole fields 

4.5 CONCLUSIONS 

Evapotranspiration (ET) was used successfully as an indicator of soil salinity in 

corn fields. Strong correlation between ET and soil salinity was found in the corn fields 
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that have a wide variation of soil salinity levels. These correlations were used 

successfully in both detecting soil salinity levels as well as estimating the decline in the 

amount of ET caused by high soil salinity levels. However, the fields with soil salinity 

levels below the level at which the soil salinity starts to impact the crop's growth did not 

show a good correlation between ET and soil salinity as expected. If the soil salinity does 

not reach the level that hinders water uptake by the plant then ET will not be affected. 

These results show the potential for using this methodology to both detect levels of soil 

salinity in an area, if the crop type is known, as well as to help determine the impact that 

soil salinity has on the amount of ET when soil salinity is present. 
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S. SUMMARY AND CONCLUSIONS 

5.1 SUMMARY OF WORK 

Integrating remote sensing and geographic information systems techniques in 

agricultural applications is becoming more common. In this research a methodology was 

develop that maps soil salinity in agricultural areas producing several land cover 

classifications covering the whole spectrum of soil salinity levels. The methodology that 

was developed uses ground data in combination with satellite imagery to create soil 

salinity indices which relate ranges of reflectance in the satellite image to ranges in soil 

salinity, these indices are then used to predict soil salinity in other fields without the need 

to collect ground data. Validation of this methodology was done by comparing the 

predicted soil salinity values to ground data, the maximum error in predicting soil salinity 

levels was 10%. The larger detection errors fall in areas where salinity is known to be 

very high and therefore there is little vegetation which was used as the indicator for 

mapping soil salinity, the use of this methodology to map soil salinity has proven to be 

very efficient, saving significant field work and providing accurate salinity maps for large 

areas. 

Evapotranspiration is another important factor in agriculture which is directly 

related to crop yield, models for remotely measuring evapotranspiration have been in use 

for some time, as part of this research a surface energy balance model was developed 

(ReSET), the ReSET model uses the Landsat 7 and Landsat 5 imagery for estimating 
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evapotranspiration from plants, the model was applied and validated in two locations in 

Colorado. ReSET is an enhanced ET estimation model that takes into consideration the 

spatial variability in weather parameters to enhance its applicability for regional scale 

use; RESET generates grid surfaces of wind run between available weather stations in 

time and space in order to merge the point data (weather stations) with the satellite 

scenes. 

Evapotranspiration can be used as an indicator for the existence and severity of 

soil salinity. Using the ReSET model evapotranspiration maps were developed for 

selected fields on which soil salinity data had been collected, combining the soil salinity 

levels and the corresponding evapotranspiration data, several regressions were generated 

which demonstrate the relation between evapotranspiration and the soil salinity. 

5.2 UNIQUE CONTRIBUTIONS 

The primary contributions of this research are three-fold: 

(1) Using vegetation indices in mapping soil salinity: Many methodologies were 

previously developed for mapping soil salinity using satellite imagery, the majority of 

these metrologies target bare soil as an indictor for soil salinity and therefore they 

were not able to produce enough reflectance classes to cover the whole spectrum of 

soil salinity. The methodology developed as part of this research uses crop condition 

as an indicator of the existence and severity of soil salinity and it produced a large 

number of classes (9 classes for Landsat, and 16 classes for Ik:onos) and therefore 

allowed for more accurate soil salinity maps to be generated. 
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(2) Develop an enhanced surface energy balance based model (ReSET) : 

The first enhancement that was introduced in this model was using multiple 

weather stations for obtaining ground data needed to run and calibrate the model (wind 

run for running the model and ET for calibrating and validating the model), previously 

developed models mainly used ground data from one weather station. The second 

enhancement to the model is the calculation of the cumulative ET between the available 

scenes; since the actual ET is only calculated at best every 16 days (an most often less 

frequently than this) there is a need to estimate the ET for every day in the period 

between the scenes dates , the technique used in ReSET enhances the accuracy in 

interpolation in both space and time. In ReSET the temporal interpolation is done by 

calculating the ET difference ratio at the beginning and the end of the interpolation 

period, the ET from weather stations is calculated for all days for all weather stations in 

the study area as a layer that represents ET for each day. A variable correction ratio is 

calculated in the study area for each cell each day between scene dates , this correction 

takes into account the spatial and temporal variability of all the available weather station 

information. 

(3) Using a surface energy model in demonstrating the impact of soil salinity on ET: 

No study has used remote sensing to develop a relationship between soil salinity 

and ET. In this study remote sensing and GIS techniques were used to investigate the 

relation between soil salinity and ET in agricultural lands. ET was used successfully as 

an indicator of soil salinity in field planted with com. A strong correlation between ET 

and soil salinity was found in fields planted with corn with a wide range of soil salinity 

levels. These correlations were used successfully in both detecting soil salinity levels in 
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fields planted with com as well as estimating the decline in the amount of ET caused by 

high soil salinity levels. 
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6. RECOMENDATIONS FOR FURTHER WORK 

6.1 DETECTING SOIL SALINITY 

Detecting soil salinity can be enhanced by using higher spatial resolution satellite 

imagery. Using higher spatial resolution results in being able to more accurately delineate 

the cultivated areas and reduce the noise around the boundaries caused by roads and 

fallow areas, also high resolution imagery will yield more data to be used for estimating 

soil salinity. When using high resolution imagery, ground data should be collected on 

similar high resolution scale to match the imagery used, meaning that if imagery with 

resolution of 1 m by 1 m is used a point for each pixel should be collected to maximize 

the benefit of the higher resolution. The ground data collected should be geo-referenced 

using high accuracy GPS to minimize location errors. 

6.2 RESET MODEL 

The ReSET model can be modified to use different types of imagery other than 

Landsat 5 and Landsat 7, such as MODIS or ASTER which might be appropriate for 

certain applications. Since the theoretical basis of the ReSET model is the same as that 

of SEBAL it is expected that the accuracy of the ReSET model will be similar to SEBAL 

that was validated previously through several approaches by Bastiaanssen (1998a, 

1998b). However, it would be a valuable contribution to compare the ET estimated by 

ReSET to actual ET measured using Lysimeters to ensure the accuracy of the ET 
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estimates. Seasonal ET can be validated through a detailed water balance for selected 

fields, this would be a valuable way to verify the seasonal ET estimates calculated by 

ReSET and will help to decide on the appropriate number of scenes to use for estimating 

the cumulative ET for a specific period of time. 

6.3 SOIL SALINITY AND ET 

Using evapotranspiration as an indicator for the levels of soil salinity is a new and 

unique approach that can be enhanced if more ground data is collected and additional 

research is conducted. Specifically it would be valuable to extend the application to other 

crops such as alfalfa and sorghum. More fields should be extensively surveyed for soil 

salinity using high accuracy GPS and continued soil salinity measurements to collect 

more data points per pixel to ensure that all the details on the ground are being captured 

in the survey and are located in the correct position which will lead to the development of 

enhanced relationships between soil salinity and evapotranspiration. By accumulating 

data collected for each crop from several regions, the relations between soil salinity and 

ET can be evaluated and if necessary individual relationships can be developed for each 

region, which can be used to enhance irrigation management in these regions. 
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