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ABSTRACT

METRIC THICKENINGS AND GROUP ACTIONS

Let G be a group acting properly and by isometries on a metric space X; it follows that the quo-

tient or orbit space X/G is also a metric space. We study the Vietoris–Rips and Čech complexes of

X/G. Whereas (co)homology theories for metric spaces let the scale parameter of a Vietoris–Rips

or Čech complex go to zero, and whereas geometric group theory requires the scale parameter to

be sufficiently large, we instead consider intermediate scale parameters (neither tending to zero nor

to infinity). As a particular case, we study the Vietoris–Rips and Čech thickenings of projective

spaces at the first scale parameter where the homotopy type changes.
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Chapter 1

Introduction

Vietoris–Rips and Čech complexes are geometric constructions which transform a metric space

X into a simplicial complex depending on the choice of a scale parameter r. Indeed, the Vietoris–

Rips complex VR(X; r) includes as its simplices all finite subsets of X of diameter at most r, and

the Čech complex Č(X; r) includes all finite subsets of X contained in a ball of radius r. These

complexes have been used in nerve lemmas [4] to relate homotopy types of spaces with good

covers thereof. They have also been used to define (co)homology theories for metric spaces [5–7].

Indeed, one can associate to a metric space the homology or cohomology of its Vietoris–Rips or

Čech simplicial complex and then take the limit as the positive scale parameter goes to zero.

Vietoris–Rips complexes were independently developed for use in geometric group theory as

a way to thicken a metric space, i.e. to view it from a zoomed-out perspective [8]. In partic-

ular, one can use Vietoris–Rips complexes to construct finite-dimensional Eilenberg–MacLane

spaces for torsion-free hyperbolic groups (Theorem 3.21 of [9]). Indeed, let G be a hyperbolic

group, equipped with the shortest path metric on its Cayley graph for some choice of generators.

Then VR(G; r) is contractible for scale r sufficiently large, G acts simplicially, and if G is tor-

sion free, then this produces a finite-dimensional model VR(G; r)/G for the Eilenberg–MacLane

space K(G, 1). Vietoris–Rips complexes have also been connected to Bestvina–Brady Morse the-

ory [10], singular homology theories depending on a choice of scale [11], and notions of homotopy

type depending on a choice of scale [12, 13].

More recently, in applied and computational topology, Vietoris–Rips and Čech complexes have

been used to recover the “shape” of a dataset. Indeed, there are theoretical guarantees that if X

is a sufficiently nice sample from an unknown underlying space M , then one can recover the

homotopy types, homology groups, or approximate persistent homology of M from X [14,15]. In

data analysis contexts, instead of letting r be arbitrarily small (as for (co)homology theories), and

instead of letting r be sufficiently large (as in geometric group theory), we instead are interested

1



in an intermediate range of scale parameters r. Indeed, if r is smaller than the distance between

any two data points in X , then VR(X; r) = X is a disjoint union of points. Conversely, if r is

larger than the diameter of X , then VR(X; r) is necessarily contractible. Neither of these regimes

help us describe the “shape” dataset X . Instead, the interesting topology appears when scale r is

varied in an intermediate regime, as computed by persistent homology. These varying regimes of

scale parameters (r small, r intermediate, r large) are analogous to the subcritical, critical, and

super-critical regimes in random topology [16, 17].

As a finite dataset X converges (say, as more samples are drawn) to an underlying infinite space

M , the persistent homology of VR(X; r) converges to that of VR(M ; r) [18]. There has thus been

interest in the literature to identify the homotopy types of the Vietoris–Rips complexes of man-

ifolds. Essentially, the only examples that are fully understood are the Vietoris–Rips complexes

of the circle [19, 20], which obtain the homotopy types of all odd spheres as the scale parameter

increases, before they finally become contractible. We have a countably infinite number of “phase

transitions” from one odd-dimensional sphere S2k−1 to the next one S2k+1 as the scale increases,

demonstrating the complexity of the situation. Vietoris–Rips thickenings of n-spheres for n > 1

are understood only up to the first change in homotopy type [21]. The 1-dimensional persistent

homology of geodesic spaces is also understood [22, 23].

In this paper we take one step towards merging the perspectives on Vietoris–Rips complexes

provided by geometric group theory and by applied topology. We study Vietoris–Rips complexes

of spaces which are equipped with a group action (as in geometric group theory) but in the range

of intermediate scale parameters (as in applied topology). More specifically, let G be a group

acting properly and by isometries on a metric space X; it follows that the quotient space X/G is a

metric space. We study the Vietoris–Rips complexes of the quotient space X/G. Our first results

are for small scale parameters (but not tending to zero), in which we are able to show that the

Vietoris–Rips complex of the quotient, namely VR(X/G; r), is isomorphic to the quotient of the

Vietoris–Rips complex, namely VR(X; r)/G. We furthermore identify which scale parameters lie

in this regime in terms of the quantitative properties of the group action. Our results apply not only
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for the Vietoris–Rips simplicial complex but also for the Vietoris–Rips metric thickening [21], and

we give analogous results for Čech simplicial complexes and Čech metric thickenings.

We also consider a slightly larger regime of scale parameters for projective spaces. Let Sn be

the n-sphere equipped with the geodesic metric1 such that the circumference of any great circle is

one. The sphere is naturally equipped with a G = ({±1},×) ∼= Z/2Z action, which exchanges

each point x with its antipode −x. Let RPn = Sn/(x ∼ −x) = Sn/G be real projective space

equipped with the quotient metric. Note that with the quotient metric, the circumference of any

great circle in RPn is 1
2
. We demonstrate that VR(RPn; r) is homotopy equivalent to RPn for

all r less than 1
6
, which is the diameter of an inscribed equilateral triangle in any great circle

of RPn. Furthermore, we study the metric thickening VRm
≤ (RP

n; r) at the first scale parameter,

namely r = 1
6
, where the homotopy type changes. In doing so, we leverage the fact that RPn

is the quotient of Sn under the antipodal action. We prove that VRm
≤ (RP

n; 1
6
) has the homotopy

type of a (2n + 1)-dimensional CW complex and hence has trivial homology and cohomology in

dimensions 2n+ 2 and above.

As one example application of our work, suppose X is an unknown space of confirmations of

a molecule or perhaps only those confirmations of a molecule whose associated energy is bounded

from above by a chosen energy cutoff. If the molecule has a group G of symmetries, then G

will act on the space X . Given a random sample Yn of n points from X , recovered for example by

molecular dynamics, one might try to estimate the topology of conformation space X by computing

the persistent homology of the Vietoris–Rips complexes VR(Yn; r) as r varies. As one forms a

denser and denser sample by increasing the number of random points n, the persistent homology

of VR(Yn; r) converges to that of VR(X; r) and hence can be used to estimate the homology

groups of X [18]. How would this experiment compare if instead one first quotiented out by the

molecular symmetries G and instead considered a finite sample Y ′
n of n points from X/G? As

n goes to infinity, the persistent homology of VR(Y ′
n; r) will converge to that of VR(X/G; r).

1Analogous results also hold with the Euclidean metric on Sn, with the relevant scale parameters being adjusted
accordingly, and with no change to the homotopty types. We restrict attention to the geodesic metric for convenience.
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Our results show that these two experiments are consistent in the following sense. For scale r

small enough, the quotient of VR(X; r) by the symmetry group G is isomorphic to VR(X/G; r)

as simplicial complexes, and therefore quotienting out by the group of symmetries affects the

experiment, and the predicted topological types, in a way that is understood. Furthermore, we give

precise bounds on which scale parameters r are small enough for such results to hold.
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Chapter 2

Preliminaries

We recall a few standard preliminaries in point set topology and algebraic topology that will

lead into an introduction to Vietoris–Rips and Čech simplicial complexes and thickenings.

2.1 Metric spaces

A metric space (X, d) is a set X equipped with a metric d : X×X → R satisfying the following

properties:

• d(x, y) is a nonnegative real number for all choices of x and y in X ,

• d(x, y) is zero if and only if x = y, and

• d(x, y) + d(y, z) ≥ d(x, z).

For x ∈ X and r > 0, we let B(x, r) = {y ∈ X | d(x, y) < r} denote the open ball in X of radius

r about x. Given a subset Y ⊆ X of a metric space, we let diam(Y ) = sup{d(x, x′) | x, x′ ∈ Y }

denote the diameter of this subset. Metric spaces are a commonly studied topic in mathematics,

and they are generalized by topological spaces, which also have a notion of open neighborhoods

but need not have a notion of distance.

2.2 Simplicial complexes

A simplex on the vertices v0, v1, v2, . . . , vk may be thought of as the convex hull of these points

when they are placed at the location of the standard basis vectors ei in Euclidean space. A simpli-

cial complex is a union of simplices joined together by gluing maps. More precisely, given a set

of vertices V , an abstract simplicial complex K is a collection of subsets of V (called simplices)

containing all singleton sets with the property that if σ ∈ K is a simplex and τ ⊆ σ, then we also

have τ ∈ K. The geometric realization of a simplicial complex is a way to turn this combinatorial
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data into a topological space containing vertices, edges, triangles, tetrahedra, and so forth; in this

paper we identify abstract simplicial complexes with their geometric realizations.

2.3 Vietoris–Rips simplicial complexes

Let X be a metric space and let r ≥ 0 be a scale parameter. A Vietoris–Rips simplicial complex

VR≤(X; r) is a simplicial complex with vertex set X in which the simplex {x0, x1, . . . , xk} is in

the complex if, for all 0 ≤ i, j ≤ k, the pairwise distance between xi and xj is at most r. We

instead write VR<(X; r) when the pairwise distances are required to be strictly less than r and

VR(X; r) when the distinction is not important.

2.4 Čech simplicial complexes

Let X be a metric space and let r ≥ 0 be a scale parameter. A Čech simplicial complex

Č<(X; r) is a simplicial complex with vertex set X in which the simplex {x0, x1, . . . , xk} is in

the complex if ∩k
i=0B(xi, r) 6= ∅. We write Č≤(X; r) to instead specify the use of closed balls

B≤(x, r) = {y ∈ X | d(x, y) ≤ r}.

2.5 Vietoris–Rips and Čech metric thickenings

As sets, the Vietoris–Rips and Čech metric thickenings [21] are identical to the geometric

realizations of the corresponding Vietoris–Rips and Čech simplicial complexes. However, they are

equipped with a different topology, indeed a metric, which sometimes produces a different (and

often more natural) homeomorphism type, or it can even produce a different homotopy type.

More explicitly, let X be a metric space and let r ≥ 0. The Vietoris–Rips metric thickening is

the set

VRm
≤ (X; r) =

{

k
∑

i=0

λiδxi
| k ∈ N, λi ≥ 0,

∑

λi = 1, diam({x0, . . . , xk}) ≤ r

}

,
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equipped with the 1-Wasserstein metric [24–26]. Here δx denotes the Dirac delta probability mea-

sure with mass one at x ∈ X . Roughly speaking, one can think of a measure as a mass distri-

bution. From this viewpoint, two measures can be thought of as two mass distributions, and the

1-Wasserstein distance between the two measures is the minimum amount of work required to

transport the mass in the first mass distribution to the mass in the second mass distribution. This is

sometimes called the earth mover’s distance [27]. The definition for VRm
< (X; r) is analogous.

We remark that the inclusion X →֒ VRm(X; r) defined by x 7→ δx is continuous (in fact

an isometry onto its image), whereas the analogous inclusion X →֒ VR(X; r) into the simplicial

complex is not continuous for X not discrete. It is also worth remarking that the simplicial complex

VR(X; r) is not metrizable if it is not locally finite by Proposition 4.2.16(2) of [28] even though

the input X is a metric space. By contrast, the thickening VRm(X; r) is always a metric space,

and furthermore VRm(X; r) is an r-thickening of X by Lemma 3.6 of [21].

The Čech metric thickening is the set

Čm
< (X; r) =

{

k
∑

i=0

λiδxi
| k ∈ N, λi ≥ 0,

∑

λi = 1, ∩k
i=0B(xi, r) 6= ∅

}

,

again equipped with the 1-Wasserstein metric.

For the remainder of the paper, we refer to a point
∑

λiδxi
in a metric thickening simply as

∑

λixi. This allows us to let
∑

λixi refer to either a point in a metric thickening or to a point in

the geometric realization of a simplicial complex.
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Chapter 3

Group actions and Vietoris–Rips thickenings

Let a group G act on a metric space X . We study Vietoris–Rips complexes and thickenings of

X/G. We begin in Section 3.1 by describing when X/G is metrizable. In Section 3.2, we survey

additional metric assumptions on the action of G on X . These additional assumptions allow us, in

Section 3.3, to relate VR(X/G; r) to VR(X; r)/G. We end with examples in Section 3.4.

3.1 Metrizable quotient spaces

An action of a group G on a set X is a function G×X → X , denoted (g, x) 7→ g ·x, satisfying

g · (h · x) = (gh) · x for all g, h ∈ G and x ∈ X and satisfying e · x = x for all x ∈ X (where

e is the identity element of G). The orbit of an element x ∈ X , under the action of G, is the set

O(x) = {g · x | g ∈ G}. Note that x ∈ O(x) and that, for any two elements x, y ∈ X , either

O(x) = O(y) or O(x) ∩ O(y) = ∅. As a consequence, the orbits of the group action partition X .

Let G be a group acting on a metric space X . We say that G acts by isometries on X if,

for each g ∈ G, the map g : X → X defined by x 7→ g · x is an isometry. In other words,

we have a homomorphism from G into the group of isometries of X . Furthermore, we say that

the action of G on X is proper if, for each x ∈ X , there exists some r > 0 such that the set

{g ∈ G | g ·B(x, r)∩B(x, r) 6= ∅} is finite. In particular, an action by a finite group is necessarily

proper.

For x ∈ X , we let [x] denote the corresponding orbit in X/G. It follows from Proposition I.8.5

of [9] that if G acts properly by isometries on X , then the quotient space X/G is itself a metric

space. Its quotient metric is defined via

dX/G([x], [x
′]) = inf

g∈G
dX(x, g · x′). (3.1)
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The assumption of a proper action rules out examples such as the action of the rationals Q on the

reals R by addition in which the quotient space R/Q is not metrizable.2

If the metric space X is equipped with an isometric action of G, it follows that the Vietoris–Rips

complexes VR(X; r) are also equipped with an action of G. Indeed, given any point
∑

λixi ∈

VR(X; r) and g ∈ G, we define g ·∑λixi =
∑

λig · xi. For
∑

λixi ∈ VR(X; r), we let

[
∑

λixi] denote the corresponding orbit in VR(X; r)/G. Analogous actions can be defined on the

Vietoris–Rips thickening VRm(X; r) as well as on Čech complexes and thickenings.

If G acts properly by isometries on X , then X/G is a metric space with distance given by (3.1),

and so we can define its Vietoris–Rips and Čech simplicial complexes and thickenings. Our goal

in this section will be to explain the relationship between VR(X/G; r) and VR(X; r)/G when r

is small and analogously for the Čech and the metric thickening versions.

3.2 Different types of group actions

We now survey a list of increasingly stringent properties that the action of G on X could

satisfy. The definition of a free action requires X to be a set, the definition of a covering space

action requires X to be a topological space, and the definitions of an r-ball action and an r-distance

action require X to be a metric space. Free actions and covering space actions are classical: see [9]

for a wide variety of properties that a group acting on a metric space could satisfy, such as being

faithful, free, cocompact, or proper. We introduce r-ball and r-distance action as quantitative

versions of these properties.

• The action of G on X is free if g · x = x for any x ∈ X implies that g is the identity element

in G.

• The action of G on X is a covering space action if every point x ∈ X has a neighborhood

U ∋ x such that if U ∩ g ·U 6= ∅, then g is the identity element in G. See Section 1.3 of [31]

2Other contexts in which X/G is a metric space, with the quotient metric as described above, are in Section 5
of [9], Sections 3 and 10 of [29], and Chapters 4–7 of [30].
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or pages 311–312 of [32] for more details; the term covering space action is introduced by

Hatcher in part in order to disambiguate terminology.

• For r > 0, we define the action of G on X to be an r-ball action if B(x, r)∩ g ·B(x, r) 6= ∅

for any x ∈ X implies that g is the identity element in G.

• For r > 0, we define the action of G on X to be an r-distance action if dX(x, g · x) < r for

any x ∈ X implies that g is the identity element in G.

We have the following sequence of proper inclusions for r > 0:

2r-distance actions ⊂ r-ball actions ⊂ covering space actions ⊂ free actions.

Definition 3.2.1. Let r > 0. The action of G on a metric space X is an r-diameter action when, for

any nonnegative integer k, diamX/G{[x0], . . . , [xk]} < r implies that there exists a unique choice of

elements gi ∈ G for 1 ≤ i ≤ k such that diamX{x0, g1 ·x1 . . . , gk ·xk} = diamX/G{[x0], . . . , [xk]}.

We claim that an r-diameter action is also an r-distance action. Indeed, suppose r > dX(x, g ·

x) ≥ diamX/G{[x], [g · x]}. Then the r-diameter action assumption implies there exists a unique

element g ∈ G such that dX(x, g · x) = diamX{x, g · x} = diamX/G{[x], [g · x]} = 0, i.e.

necessarily x = g · x, and so g is the identity since r-diameter actions are free. Hence, this is an

r-distance action.

However, we give the following example to show that r-distance actions are not necessarily

r-diameter actions.

Example 3.2.2. Let G = Z act on X = R by translation, i.e., for any g ∈ Z and x ∈ R we have

g · x = g + x. Note this action is a 1-distance action, since if 1 > d(x, g · x) = d(x, g + x) = |g|,

then g = 0 is the identity in Z. Clearly, it is not a (1 + ε)-distance action for any ε > 0. This

action is not an r-diameter action for any r > 1
3

since we have diamR/Z{[0], [13 ], [23 ]} = 1
3
, but

ming1,g2∈Z diamR{0, g1 + 1
3
, g2 +

2
3
} = 2

3
. One can check that this is an r-diameter action for

r ≤ 1
3
.

10



Definition 3.2.3. Let r > 0. The action of G on X is an r-nerve action when, for any nonnegative

integer k, ∩k
i=0BX/G([xi], r) 6= ∅ implies that there exists a unique choice of elements gi ∈ G for

1 ≤ i ≤ k such that ∩k
i=0BX(gi · xi, r) 6= ∅, where we require g0 is the identity element of G.

We now demonstrate that Z acting on R by translation is both a 1
2
-ball action and a 1

4
-nerve

action, with the r parameters being as high as possible, demonstrating that r-nerve actions and

r-ball actions are distinct concepts.

Example 3.2.4. We first show that Z acting on R by translation is a 1
2
-ball action. Select an

arbitrary open ball of radius 1
2

in R. Then, it follows that this action is a 1
2
-ball action since, for any

0 6= g ∈ Z, the balls B(x, 1
2
) and g · B(x, 1

2
) do not intersect. So Z acting on R by translation is a

1
2
-ball action.

We will now demonstrate that Z acting on R by translation is not a (1
2
+ ε)-ball action for any

ε > 0. Now, take an arbitrary 1
2
+ε ball. Then, we note that B(x, 1

2
+ε) and the action of g = 1 ∈ Z

result in an intersection of B(x, r) and g ·B(x, r) and yet g is not the identity element. Therefore,

Z acting on R by translation is not a (1
2
+ ε)-ball action for any ε > 0.

Now, we show that Z acting on R is a 1
4
-nerve action. Take an arbitrary set of intersecting

balls of radius 1
4
, namely ∩k

i=0BR/Z([xi],
1
4
) 6= ∅. These balls are open intervals of length half

the circumference of the circle, and, hence, they intersect in a single, smaller, connected interval.

It follows that once g0 = 0 ∈ Z is chosen, there exists a unique choice of elements gi ∈ Z for

1 ≤ i ≤ k such that ∩k
i=0BR(gi · xi, r) 6= ∅, as required (see Figure 3.1).

Finally, for any ε > 0, the action of Z on R by translation is not a (1
4
+ ε)-nerve action,

demonstrating that 1
4

is indeed the maximum parameter we can use. To see this, take two balls

of radius 1
4
+ ε in R/Z centered at [0] and [1

2
]. These two balls intersect at both [1

4
] and [3

4
] in

R/Z = S1. The two components of intersection correspond to the fact that when we lift to balls

of the form BR(0,
1
4
+ ε) and g1 · BR(

1
2
, 1
4
+ ε), we can maintain a nontrivial intersection either

by choosing g1 = 0 or g1 = −1. Since this choice of g1 is not unique, the action of Z on R by

translation is not a (1
4
+ ε)-nerve action.
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Figure 3.1: As explained in Example 3.2.4, the action of Z on R is a 1
4 -nerve action. Indeed, let x0 ∈ R,

indicated above by the black tick mark, and consider the ball BR/Z([x0],
1
4), drawn as the blue arc on the

circle. For any other open ball of radius 1
4 in the circle, there is at most one lift of this ball to R that intersects

BR(x0,
1
4).

3.3 Group actions and metric thickenings

Let G be a group acting properly and by isometries on a metric space X . We now explain how

to understand the Vietoris–Rips and Čech simplicial complexes and metric thickenings of X/G for

sufficiently small scale parameters depending on the behavior of the action of G.

Proposition 3.3.1. Let G be a group acting properly and by isometries on a metric space X . If the

action is a t-diameter action, then

• VR<(X/G; r) is isomorphic to VR<(X; r)/G for all r ≤ t,

• VR≤(X/G; r) is isomorphic to VR≤(X; r)/G for all r < t,

• VRm
< (X/G; r) is homeomorphic to VRm

< (X; r)/G for all r ≤ t, and

• VRm
≤ (X/G; r) is homeomorphic to VRm

≤ (X; r)/G for all r < t.

12



Proof. We first consider the case of the Vietoris–Rips simplicial complexes. We can handle the

first two bullet points simultaneously simply because a simplex in either complex has diameter less

than t.

Consider the simplicial map h : VR(X; r) → VR(X/G; r) defined by h(x) = [x]; on geomet-

ric realizations this is defined via h(
∑

λixi) =
∑

λi[xi]. This map is well-defined since G acts

isometrically. Note that if two points in the geometric realization of VR(X; r) are in the same orbit

of the G action on the geometric realization, then they have the same image under h. It follows

that h induces a map h̃ : VR(X; r)/G → VR(X/G; r). We will show that h̃ is a homeomorphism.

We need to show the following two facts.

1. Map h̃ is surjective.

2. Map h̃ is injective.

For (1), note that h̃ is surjective if h is surjective. The map h is surjective because, given any

simplex σ = {[x0], . . . , [xk]} ∈ VR(X/G; r), by the definition of an r-diameter action, there exists

a simplex σ′ = {x0, g1 · x1 . . . , gk · xk} ∈ VR(X; r) with h(σ′) = σ.

For (2), we would like to consider any two points [
∑

λixi], [
∑

λ′
jx

′
j] ∈ VR(X; r)/G with

h̃([
∑

λixi]) = h̃([
∑

λ′
jx

′
j]). This means that h(

∑

λixi) = h(
∑

λ′
jx

′
j), i.e., that

∑

λi[xi] =
∑

λ′
j[x

′
j]. It suffices to show that there is some g ∈ G with g ·∑λixi =

∑

λ′
jx

′
j . This follows

from the “uniqueness” part of the definition of an r-diameter action. Indeed, given any simplex

σ = {[x0], . . . , [xk]} ∈ VR(X/G; r), there exists a unique simplex σ̃ = {x0, g1 · x1 . . . , gk · xk} ∈

VR(X; r) containing x0 with h(σ′) = σ and hence a unique simplex σ′′ ∈ VR(X; r)/G with

h̃(σ′′) = σ.

For the case of Vietoris–Rips metric thickenings, we will now consider the analogous map

h : VRm(X; r) → VRm(X/G; r) defined by h(
∑

λixi) =
∑

λi[xi]; this map is well-defined

since G acts isometrically. The only additional observation to make in this case is that both h and

its inverse are continuous.

The Čech case is similar.
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Proposition 3.3.2. Let G be a group acting properly and by isometries on a metric space X . If the

action is a t-nerve action, then

• Č<(X/G; r) is isomorphic to Č<(X; r)/G for all r ≤ t,

• Č≤(X/G; r) is isomorphic to Č≤(X; r)/G for all r < t,

• Čm
< (X/G; r) is homeomorphic to Čm

< (X; r)/G for all r ≤ t, and

• Čm
≤ (X/G; r) is homeomorphic to Čm

≤ (X; r)/G for all r < t.

Proof. We first consider the case of the Čech simplicial complexes. Consider the simplicial map

h : Č(X; r) → Č(X/G; r) defined by h(x) = [x]; on geometric realizations this is defined via

h(
∑

λixi) =
∑

λi[xi]. This map is well-defined since G acts isometrically. Note that if two

points in the geometric realization of Č(X; r) are in the same orbit of the G action, then they have

the same image under h. It follows that h induces a map h̃ : Č(X; r)/G → Č(X/G; r). We will

show that h̃ is a homeomorphism.

Again, we need to show the following two facts.

1. Map h̃ is surjective.

2. Map h̃ is injective.

For (1), note that h̃ is surjective if h is surjective. The map h is surjective because, given any

simplex σ = {[x0], . . . , [xk]} ∈ Č(X/G; r), by the definition of an r-nerve action, there exists a

simplex σ′ = {x0, g1 · x1 . . . , gk · xk} ∈ Č(X; r) with h(σ′) = σ.

For (2), we would like to consider any two points [
∑

λixi], [
∑

λ′
jx

′
j] ∈ Č(X; r)/G with

h̃([
∑

λixi]) = h̃([
∑

λ′
jx

′
j]). This means that h(

∑

λixi) = h(
∑

λ′
jx

′
j), i.e., that

∑

λi[xi] =
∑

λ′
j[x

′
j]. It suffices to show that there is some g ∈ G with g ·∑λixi =

∑

λ′
jx

′
j . This follows

from the “uniqueness" part of the definition of an r-nerve action. Indeed, given any simplex σ =

{[x0], . . . , [xk]} ∈ Č(X/G; r), there exists a unique simplex σ̃ = {x0, g1 ·x1 . . . , gk ·xk} ∈ Č(X; r)

containing x0 with h(σ′) = σ and hence a unique simplex σ′′ ∈ Č(X; r)/G with h̃(σ′′) = σ.
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For the case of Čech metric thickenings, it suffices to observe that the map h and its inverse are

also continuous as maps on the Čech thickenings.

3.4 Examples

We now look at some examples of groups acting isometrically on topological spaces. Although

we don’t often know the precise homotopy types of Vietoris–Rips complexes of arbitrary spaces,

we can sometimes address the relationship between VR(X/G; r) and the quotient of VR(X; r)

under the group action.

Example 3.4.1. Suppose X consists of several connected components which are all isometric. Let

G act by isometries on X , and suppose furthermore that G acts freely on the connected components

of X , meaning that if x, g · x ∈ X are in the same connected component, then g is the identity

element. Suppose no two distinct connected components are within distance t of each other. It

follows that G is a t-diameter action on X . Therefore, Proposition 3.3.1 implies that for r < t, the

complex VR(X; r) is isomorphic to the disjoint union
∐|G| VR(X/G; r).

For example, let Y be a circle in R3 with center at (5
8
, 3
8
,−

√
2
8
), lying in the plane with normal

vector (1, 1, 0), and with radius 1
5

using the Euclidean metric. The action of G = A4, as the group

of rotational symmetries of a particular regular tetrahedron centered about the origin (with vertex

coordinates (±1
2
, 0,−

√
2
4
), (0,±1

2
,
√
2
4
)), extends to R3. The orbit of the circle, Y , consists of 12

copies of Y ; see Figure 3.2. We let X denote the union of these 12 copies, so X/G = Y . We

obtain that VR(X; r) is isomorphic to the disjoint union of 12 copies of VR(X/G; r) for all r

smaller than the distance between connected components in X .

In some cases we can conjecture the full homotopy type over all scale parameters r, as the next

example shows.

Example 3.4.2. Take the unit circle with center (4, 0) in R2. If we rotate this circle about the origin

under the action of G = Z/6Z, i.e. by rotating R2 about the origin in multiples of 60 degrees, we

obtain 6 unit circles (with centers (±4, 0), (±2, 2
√
3), (±2,−2

√
3)). We let X denote the union
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Figure 3.2: In Example 3.4.1, the space X is a set of 12 circles in R3.

of the 6 circles. The closest distance between two adjacent circles in X is 2. By Example 3.4.1

and Proposition 3.3.1, for r < 2 we have an isomorphism VR(X; r) ∼=
∐6 VR(X/G; r). The

homotopy types of the Vietoris–Rips complexes of the unit circle VR(X/G; r) are known for all

r [19]. We obtain VR<(X; r) ∼=
∐6 S2k+1 for all 0 < r < 2, where the integer k is monotonically

nondecreasing with r.

For larger scale parameters r > 2, we can form conjectures by noting that the Vietoris–Rips

complex of each individual circle is contractible, but that we have six unit circles that are evenly-

spaced around a larger circle of radius 4. Think of each of the six circles, momentarily, as a single

point, giving six evenly-spaced points. Vietoris–Rips complexes of evenly-spaced points on the

circle have been studied in [20, 33]. In particular, the Vietoris–Rips complex of six-evenly spaced

points on the circle, as the scale increases, obtains the homotopy types of six disjoint points, the

circle S1, the two-sphere S2, and finally the contractible space. This knowledge allows us to

conjecture the homotopy type of VR(X; r) at r > 2 when the six circles join up but individually

are contractible. Indeed, we conjecture that the successive homotopy types of VR<(X; r) are the
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following, starting from r = 0 and going up to the diameter of the whole space:
∐6 S1,

∐6 S3,
∐6 S5,

∐6 S7,
∐6 S9, . . . for 0 < r < 2 (this part is proven), S1 for 2 < r < 4

√
3 − 2, S2 for

4
√
3− 2 < r < 6, and finally the contractible space for r > 6.

Example 3.4.3. Take the torus X with the flat metric (i.e., X is a quotient of R2) under the action

of G ∼= Z/14Z ∼= Z/2Z×Z/7Z, defined as follows. Take the torus to be [0, 2π]× [0, 2π] with the

top and bottom (respectively, left and right) edges identified. Then, identify the points [x, y] with

[x, y + 2π
7
] and [x+ π, y]. The quotient space is a torus with different distances for traveling along

geodesics around the short loop and long loop in this torus.

The action of G is a 2π
21

-diameter action, but not a (2π
21

+ ε)-diameter action for any ε > 0.

If we take the points [0, 0], [0, 2π
21
], and [0, 4π

21
], then we note that the diameter of these points

in the quotient metric is 2π
21

, but there is no choice of elements in G so that the diameter of the

corresponding lifted points in X is 2π
21

. However, if an arbitrary number of points are selected next

to an arbitrary point [x0] ∈ X/G that are of diameter less than 2π
21

, then there exists a unique choice

of elements in G so that diamX{x0, g1 · x1 . . . , gk · xk} = diamX/G{[x0], . . . , [xk]}. This follows

since, when moving along a geodesic in X/G, it requires at least 2π
7

in path length to return back

to the initial starting point.

We deduce from Proposition 3.3.1 that VR(X/G; r) = VR(X; r)/G for r < 2π
21

, though we do

not know what the homotopy types of these Vietoris–Rips complexes of tori are.3

A related group action on the torus X , i.e. the square [0, 2π] × [0, 2π] with sides identified, is

by the dihedral group D7 with fourteen elements. Put 7 equally spaced points of the form (2πk
7
, 0)

along the bottom edge of this square, and 7 equally spaced but “offset” points of the form (2πk+π
7

, π)

along the line y = π in this square. The dihedral group of order 14 will act by translations and

glide reflections, permuting these 14 points. We can similarly obtain some information relating the

Vietoris–Rips complexes of the quotient space X/G to the quotient of the Vietoris–Rips complex

of the original space X , for r small.

3Homotopy types of tori with the L∞ or supremum metric are fully understood by Proposition 10.2 of [19].
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Example 3.4.4. Consider the 22-holed torus X depicted in Figure 3.3 in R3, with the Euclidean

submetric. Equip X with the action of G = Z/7Z as a group of rotations by 2π/7. The quotient

space X/G is obtained from a single severed arm of the torus after identifying two boundary

circles: this is a 4-holed torus with an asymmetric metric. For scale r small, the Vietoris–Rips

complex of the X , after quotienting this complex by G, is isomorphic to the Vietoris–Rips complex

of the quotient 4-holed torus X/G. Hatcher notes that these types of actions of Z/mZ on an

(mn+ 1)-holed torus are the only covering space actions on this torus (Example 1.41 of [31]).

Figure 3.3: A 22-holed torus in R3.

Example 3.4.5. Section 5 of the paper [3] considers a space X that is an “infinite ladder” with a

countable number of rungs that is equipped with an action by the group of integers G = Z which

is generated by translating by n rungs. The quotient space of this action X/G is a “circular ladder”

with n rungs. The paper [3] uses our Proposition 3.3.1 in order to understand the homotopy type

of the Vietoris–Rips complex of the circular ladder X/G in terms of the (known) Vietoris–Rips

complex of the infinite ladder X .
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In the following two sections we treat, with a fair amount of detail, the example where X is the

n-sphere, equipped with its antipodal action, and hence X/G is real projective n-space.
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Chapter 4

Vietoris–Rips thickenings of projective spaces at

small scales

We study Vietoris–Rips thickenings of projective spaces at small scales in this section before

proceeding to large scales in the following section.

4.1 Notation

We first describe our notation for spheres and projective spaces.

4.2 Spheres

The n-sphere Sn is the set of points at distance one from the origin in Euclidean space:

Sn =

{

(x1, x2, x3, . . . , xn+1) ∈ Rn+1 |
∑

i

x2
i = 1

}

.

The n-spheres may alternatively be described (up to homeomorphism) in an iterative fashion with

S0 as two distinct points and with Sn the suspension of Sn−1.

A metric on Sn may be defined by either retaining the Euclidean metric by viewing Sn as a

subspace of Rn+1 or by looking at the geodesic arc length of walking along Sn as a surface. For

convenience, we will equip Sn with the geodesic metric where the circumference of any great

circle is one.

4.3 Real projective space

The projective space RPn is the quotient space

RPn = Sn/ ∼
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where the ∼ relation maps vectors to other vectors through multiplication by ±1. We often denote

a point ±x ∈ RPn with the notation [x]. We will equip RPn with the quotient metric induced from

the geodesic metric on Sn. That is, we have

dRPn([x], [x′]) = min{dSn(x, x′), dSn(x,−x′)}.

This is a specific case of the metric on a quotient spaces defined in Eq. (3.1). Since each great

circle in Sn has circumference one, the “great circles” in RPn have circumference 1
2
. One could

instead use the Euclidean metric on Sn to get a different metric on RPn; our results also apply to

this case with only minor changes to the relevant scale parameters.

4.4 Complexes and thickenings

For r < 1
6
, we will show that VRm(RPn; r) ≃ RPn. We do this by noting that RPn = Sn/(x ∼

−x) is the quotient of Sn under the action of G = ({±1},×) ∼= Z/2Z. The following two lemmas

imply in Corollary 4.4.3 that this action is a 1
6
-diameter action (though the constant in the first

lemma is slightly better).

Lemma 4.4.1. Suppose x0, . . . , xk ∈ Sn with diam{x0, . . . , xk} < 1
4

and let gi ∈ {±1} for all

0 ≤ i ≤ k. Then diam{g0x0, . . . , gkxk} < 1
4

if and only if all signs gi are chosen to be positive or

all signs are chosen to be negative.

Proof. Suppose d(xi, xj) <
1
4
. Then we compute

• d(−xi,−xj) = d(xi, xj) <
1
4
,

• d(xi,−xj) =
1
2
− d(xi, xj) >

1
4
, and

• d(−xi, xj) =
1
2
− d(xi, xj) >

1
4
.

This means that diam{gixi, gjxj} < 1
4

if and only if the signs gi and gj are both positive or both

negative, from which the claim follows.
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Lemma 4.4.2. If diamRPn{[x0], . . . , [xk]} < 1
6
, then there is a choice of signs gi ∈ {±1} for

1 ≤ i ≤ k such that

diamSn{x0, g1x1 . . . , gkxk} < 1
6
.

Proof. Let 1 ≤ i ≤ k. By hypothesis, we have dRPn([x0], [xi]) <
1
6
, and, hence, we can pick a sign

gi such that dSn(x0, gixi) <
1
6
. For the remainder of this proof, we let x∗

i denote gixi.

We have chosen signs such that dSn(x0, x
∗
i ) <

1
6

for all i; it remains to show that dSn(x∗
i , x

∗
j) <

1
6

for all 1 ≤ i, j ≤ k. If not, then since dRPn([xi], [xj]) < 1
6
, necessarily we would have that

dSn(x∗
i ,−x∗

j) < 1
6
. However, since dSn(−x∗

i ,−x0) = dSn(x∗
j , x0) < 1

6
, this would give the

contradiction

1
2
= dSn(x0,−x0) ≤ dSn(x0, x

∗
i ) + dSn(x∗

i ,−x∗
j) + dSn(−x∗

j ,−x0) < 3 · 1
6
= 1

2
,

from the triangle inequality. Hence, it must be the case that dSn(x∗
i , x

∗
j) <

1
6

for all 1 ≤ i, j ≤ k,

and, therefore, the action of G on Sn is a 1
6
-diameter action.

Qualitatively, we see from Lemma 4.4.2 that a cluster of sufficiently close points in RPn has

as its preimage “two clusters” of sufficiently close points in Sn. The above two lemmas combine

together to give the following.

Corollary 4.4.3. The action of G = ({±1},×) ∼= Z/2Z on Sn for n ≥ 1 is an r-diameter action

for r < 1
6
, and this bound is tight.

Proof. The existence part of the definition of an r-diameter action is given by Lemma 4.4.2, and

uniqueness is given by Lemma 4.4.1.

Furthermore, the bound r < 1
6

in Lemma 4.4.2 is tight. Indeed, if we had r = 1
6
, then a

counterexample is obtained by letting {[x0], [x1], [xk]} be three evenly-spaced points on a great

circle of RPn for n ≥ 1 whose preimage is six evenly-spaced points on a great circle of Sn.

We are now prepared to study Vietoris–Rips thickenings of projective spaces at sufficiently

small scale parameters. Let ∼ denote the equivalence relation on VRm(Sn; r) induced by the
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canonical Z/2Z action on Sn; more explicitly this equivalence relation is given by
∑

i λixi ∼
∑

i λi(−xi). By definition RPn ∼= (Sn/ ∼); Lemma 4.4.4 will generalize this to say that for r

sufficiently small, we also have VRm(RPn; r) ∼= VRm(Sn; r)/ ∼.

Let W be the set of all interior points of equilateral 2-simplices in VR≤(RP
n; 1

6
) inscribed in a

great circle of RPn. More precisely,

W =

{

2
∑

i=0

λixi

∣

∣

∣
λi > 0 and {[x0], [x1], [x2]} is a regular 2-simplex in a great circle

}

.

Lemma 4.4.4. We have have the following isomorphisms of simplicial complexes and homeomor-

phisms of metric thickenings.

VR(RPn; r) ∼= VR(Sn; r)/ ∼ for r < 1
6

VRm(RPn; r) ∼= VRm(Sn; r)/ ∼ for r < 1
6

VR<(RP
n; 1

6
) ∼= VR<(S

n; 1
6
)/ ∼

VRm
< (RP

n; 1
6
) ∼= VRm

< (S
n; 1

6
)/ ∼

VR≤(RP
n; 1

6
) \W ∼= VR≤(S

n; 1
6
)/ ∼

VRm
≤ (RP

n; 1
6
) \W ∼= VRm

≤ (S
n; 1

6
)/ ∼

Proof. We prove the case of the simplicial complexes; the proof for metric thickenings is analo-

gous.

We first consider the cases of VR(RPn; r) with r < 1
6
, and VR<(RP

n; 1
6
). The group Z/2Z

acts properly by isometries on Sn and by Corollary 4.4.3 is a 1
6
-diameter action. Thus, by Propo-

sition 3.3.1, we have VR(RPn; r) = VR(Sn/ ∼; r) is homeomorphic to VR(Sn; r)/ ∼.

The case of VR≤(RP
n; 1

6
) \ W follows similarly. Indeed, since W has been removed, for

any simplex {[x0], . . . , [xk]} ∈ VR≤(RP
n; 1

6
) \W , there exists a unique choice of elements gi ∈

({±1},×) for 1 ≤ i ≤ k such that diamSn{x0, g1 ·x1 . . . , gk ·xk} = diamRPn{[x0], . . . , [xk]}.
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4.5 Thickenings

We now identify the scale parameters which are sufficiently small so that the Vietoris–Rips

thickenings of the projective space RPn are homotopy equivalent to RPn. Though Hausmann’s

theorem [5, 21] guarantees that such a sufficiently small scale parameter exists, we identify the

optimal such scale because the bounds given in Hausmann’s theorem are not optimal. We restrict

attention to metric thickenings instead of simplicial complexes, as those are the results needed in

Section 5 in order to study larger scales.

Let f : Sn → Rn+1 be the inclusion map, and extend linearly to obtain a (non-injective) map

f : VRm(Sn; r) → Rn+1 sending a formal convex combination of points in Sn to its corresponding

linear combination in Rn+1. Let π : Rn+1 \ {~0} → Sn be the radial projection map. Let rn be the

diameter of an inscribed regular (n+1)-simplex in Sn. For r < rn, the image of f : VRm(Sn; r) →

Rn+1 misses the origin in Rn+1 by the proof of Lemma 3 in [34]. Hence, we have a composite map

πf : VRm(Sn; r) → Sn. If furthermore r < 1
6
, then by Lemma 4.4.4 we get an induced map

VRm(RPn; r) ∼= (VRm(Sn; r)/ ∼)
f/∼−−→ ((Rn+1 \ {~0})/ ∼)

π/∼−−→ (Sn/ ∼) = RPn.

By an abuse of notation, we also denote the above composite map by πf : VRm(RPn; r) → RPn.

Figure 4.1: A 2-simplex inscribed in Sn (in the drawing n = 1), along with its antipode, containing example
points (drawn in red) that get identified under the map VRm(Sn; r) → (Rn+1 \ {~0})/ ∼ .
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Theorem 4.5.1. The maps

πf : VRm(RPn; r) → RPn for r < 1
6

πf : VRm
< (RP

n; 1
6
) → RPn

πf : VRm
≤ (RP

n; 1
6
) \W → RPn

are homotopy equivalences.

We remark that the above theorem is also true for Vietoris–Rips simplicial complexes after

adding the additional restriction that r > 0.

Proof. We have that πf : VR(Sn; r) → Sn is a homotopy equivalence by [21] since r < rn. Since

πf : VR(Sn; r) → Sn respects the identifications ∼, this gives that the three maps above are also

homotopy equivalences.

The following lemma will be used in the proof of Theorem 5.2.1 on the Vietoris–Rips thicken-

ings of projective spaces at large scales.

Lemma 4.5.2. Let ∆ be an equilateral 2-simplex inscribed in a great circle of RPn. Note ∂∆ ⊆

VRm
≤ (RP

n; 1
6
) \W . The map πf : VRm

≤ (RP
n; 1

6
) → RPn, when restricted to ∂∆, is bijective onto

its image, namely the great circle in RPn in which ∆ is inscribed.

Proof. We will work in the unit sphere Sn ⊆ Rn+1, which is a double cover of RPn. Without

loss of generality, the equilateral triangle ∆ can be supposed to have coordinates ±(1, 0, . . . , 0),

±(cos π
3
, sin π

3
, 0, . . . , 0), and ±(cos π

3
,− sin π

3
, 0, . . . , 0). That is, the triangle inscribed in RPn

can be viewed as a hexagon inscribed in Sn. Considering πf to have domain VR(Sn; 1
6
) at first,

we note that the restriction of πf to this hexagon maps bijectively onto the great circle in Sn given

by (cos θ, sin θ, 0, 0, . . . 0), where θ ∈ [0, 2π), with antipodal points on the hexagon mapped to

antipodal points on Sn. After quotienting out by the antipodal action on both the domain and

codomain, i.e. after returning to the point of view where πf has domain VR(RPn; 1
6
), we see
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that πf |∂∆ : ∂∆ → RPn maps bijectively onto its image, the great circle in RPn in which ∆ is

inscribed.
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Chapter 5

Vietoris–Rips thickenings of projective spaces at

large scales

As a subgoal of this document, we would like to identify the homotopy type of VRm
≤ (RP

n; r),

the Vietoris–Rips thickenings of projective space, for larger scale parameters r. We are able to

describe this homotopy type for r = 1
6
, which is the first scale parameter where the homotopy

type of VRm
≤ (RP

n; r) changes. The proof is analogous to (but more complicated than) the proof

of the homotopy type of Vietoris–Rips thickenings of the sphere in Theorem 5.4 of [21]. In Sub-

section 5.1 we recall the proof of Theorem 5.4 of [21], with a few more details added, so that we

can set notation and clarify the ideas. We then modify these techniques to handle the equivariant

setting of the projective space in Subsection 5.1.

At larger scales, we will restrict attention to the Vietoris–Rips metric thickenings and not dis-

cuss simplicial complexes. The reason for this is as follows. If S1 is the geodesic circle of unit

circumference, then VRm
≤ (S

1; 1
3
) ≃ S3 is a 3-sphere [21, 35], whereas VR≤(S

1; 1
3
) ≃ ∨

c S2 is

an uncountably infinite wedge sum of 2-spheres [19]. We think of the former homotopy type as

being “correct,” and by contrast we think of the wild homotopy type of the simplicial complex

VR≤(S
1; 1

3
) as an artifact of the fact that it is equipped with the “wrong” topology. Indeed, the

topology on VR≤(S
1; 1

3
) is such that the inclusion S1 →֒ VR(S1; 1

3
) is not even continuous, since

the vertex set of a simplicial complex is equipped with the discrete metric. Additionally, one should

think of the 3-sphere S3 as being the “right” homotopy type at scale 1
3

since for all 0 < ε < 2π
15

,

we have VR≤(S
1; 1

3
+ ε) ≃ S3. A similar story is true for the Vietoris–Rips thickenings and sim-

plicial complexes of n-spheres and projective spaces, and this is why we now restrict attention to

Vietoris–Rips metric thickenings.
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5.1 Vietoris–Rips thickenings of the sphere at large scales

Let Sn be the n-sphere equipped with the geodesic metric. Recall rn is the diameter of an

inscribed regular (n + 1)-simplex in Sn. For r < rn, we have VRm(Sn; r) ≃ Sn. The first

new homotopy type of the Vietoris–Rips thickening of the sphere VRm
≤ (S

n; r) is determined in

Theorem 5.4 of [21]. We obtain a homotopy equivalence to an adjunction space

VRm
≤ (S

n; rn) ≃ Sn ∪h

(

Dn+1 × SO(n+ 1)

An+2

)

,

where Dn+1 is the closed (n+1)-dimensional ball, where SO(n+1)
An+1

parametrizes all regular oriented

(n+ 1)-simplices ∆n+1 inscribed in Sn, and where h : Sn × SO(n+1)
An+1

→ Sn via h(x, y) = x.

Figure 5.1: Two regular inscribed simplices in S2.

It takes some care to describe the parameter space SO(n+1)
An+1

. Note SO(n + 1) is a topological

group, and as we explain in the paragraph below, An+2 can be seen as a subgroup of SO(n + 1)

even though there is no canonical way to do this. Once An+2 has been identified with a subgroup

of SO(n+1), then An+2 acts on SO(n+1) via left multiplication, as explained in Example 3.88(f)

of [32]. Therefore, we define SO(n+1)
An+2

as the quotient space or “orbit space” of this action, i.e.

SO(n+1)
An+2

is SO(n+1)/ ∼, where ∼ is the equivalence relation where x ∼ g ·x for all x ∈ SO(n+1)
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and g ∈ An+2. We emphasize that we are not trying to identify An+2 with a normal subgroup of

SO(n+ 1), nor are we trying to give SO(n+1)
An+2

the structure of a quotient group.

The above paragraph relies on identifying An+2 with a subgroup of SO(n+1). To do this, fix a

regular (n+1)-dimensional simplex inscribed in Sn inside Rn+1, with the center of the simplex at

the origin. The (n+1)-simplex has n+2 vertices, and An+2 as its group of rotational symmetries.

We can therefore associate each element g ∈ An+2 with an (n + 1) × (n + 1) rotation matrix

that permutes the vertices of the simplex in the same way that g does. For example, if n = 1,

then no matter what fixed regular 2-simplex inscribed in S1 in R2 one picks, the three elements of

A3 = Z/3Z will be the rotation matrices







1 0

0 1






,







cos 2π
3

− sin 2π
3

sin 2π
3

cos 2π
3






, and







cos 4π
3

− sin 4π
3

sin 4π
3

cos 4π
3






.

However, if n ≥ 2, then different choices of a fixed regular (n + 1)-simplex inscribed in Sn in

Rn+1 will give different rotation matrices corresponding to the elements of An+2. Since any two

ways of viewing An+2 as a subgroup of SO(n + 1) are conjugate, Exercise 24(b) in Section 1.3

of [31] implies that the homeomorphism type of SO(n+1)
An+2

does not depend on this choice.

Let ΣkX denote the k-fold suspension of a topological space X .

Theorem 5.1.1 (Theorem 5.4 of [21]). We have a homotopy equivalence

VRm
≤ (S

n; rn) ≃ Σn+1 SO(n+1)
An+2

.

Proof. Let W be the set of all interior points of regular (n+1)-simplices inscribed in VR≤(S
n; rn).

More precisely,

W =
{
∑n+1

i=0 λixi

∣

∣ λi > 0 for all i and {x0, . . . , xn+1} is a regular (n+ 1)-simplex
}

.
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Note the closure of W in VR≤(S
n; rn) is homeomorphic to Dn+1 × SO(n+1)

An+2
. We construct the

following commutative diagram.

Sn

Dn+1 × SO(n+1)
An+2

⊇ Sn × SO(n+1)
An+2

VRm
≤ (S

n; rn) \W

h

g

πf ≃

The function h : Sn× SO(n+1)
An+2

→ Sn is defined by h(x, y) = x. For y ∈ SO(n+1)
An+2

, let {y0, . . . , yn+1}

be the n+ 2 vertices of the rotated regular (n+ 1)-simplex parameterized by y. Let

∂∆y =

{

n+1
∑

i=0

λiyi ∈ VRm
≤ (S

n; rn) \W
∣

∣

∣
λi = 0 for some i

}

be the boundary of the corresponding simplex. Note πf |∂∆y
: ∂∆y → Sn is bijective. Define map

g : Sn × SO(n+1)
An+2

→ VRm
≤ (S

n; rn) \ W by letting g(x, y) be the unique point of ∂∆y such that

πf(g(x, y)) = x; that is, g(x, y) = (πf |∂∆y
)−1(x). We have πf ◦ g = h, meaning the square

commutes.

We now have the following sequence of homotopy equivalences, where C(X) denotes the cone

of a topological space X .

VRm
≤ (S

n; rn) =
(

(VRm
≤ (S

n; rn) \W
)

∪g

(

Dn+1 × SO(n+1)
An+2

)

≃ Sn ∪h

(

Dn+1 × SO(n+1)
An+2

)

≃
(

Sn × C
(

SO(n+1)
An+2

)

)

∪
Sn×SO(n+1)

An+2

(

C(Sn)× SO(n+1)
An+2

)

= Sn ∗ SO(n+1)
An+2

= Σn+1 SO(n+1)
An+2

.

Indeed, the first line is by the definitions of W , of g, and of adjunction spaces. The second line

follows from the commutative diagram above and the homotopy invariance properties of adjunction
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spaces (7.5.7 of [36] or Proposition 5.3.3 of [37]). The third line follows from these same properties

of adjunction spaces, induced by contractibility of C(SO(n+1)
An+2

). The fourth line uses an equivalent

definition for the join of two topological spaces as Y ∗ Z = Y × C(Z) ∪Y×Z C(Y )× Z, and the

fact that joining with a sphere gives an iterated suspension.

5.2 Vietoris–Rips thickenings of the real projective plane at

large scales

We henceforth have proved that the metric thickening VRm
≤ (RP

n; r) is homotopy equivalent to

RPn for r < 1
6
. The first change in homotopy type occurs when r = 1

6
. Indeed, for n = 1, we

have VRm
≤ (RP

n; 1
6
) = S3, as there is a homeomorphism between RP1 and S1 which results in an

isometry (up to scaling all distances by two) between VRm
≤ (RP

1; 1
6
) and VRm

≤ (S
1; 1

3
).

The flavor of VRm(RPn; r) is different than that of VRm(Sn; r) at large scales r. Indeed,

whereas the homotopy type of VRm(Sn; r) first changes due to the appearance of regular (n+ 1)-

simplices [21], the homotopy type of VRm(RPn; r) first changes due to the appearance of (lower-

dimensional) 2-simplices inscribed in great circles of RPn.

Theorem 5.2.1. The metric space VRm
≤ (RP

n; 1
6
) has the homotopy type of a (2n+1)-dimensional

CW complex.

Proof. Let Gr(k, d) denote the Grassmannian of all k-planes through the origin in Rd. The space

Gr(k, d) is a manifold of dimension k(d− k). Let I = [0, 1] be the closed unit interval.

We define

Y = {(V,±y,±x, r) ∈ Gr(2, n+ 1)× RPn × RPn × I | ± y,±x ∈ V }/ ∼,

where ∼ will be defined below. The 2-plane V ∈ Gr(2, n + 1) encodes a great circle in RPn,

i.e., the 2-fold quotient of intersection circle of V with Sn ⊆ Rn+1. The point ±y encodes a point

along that great circle, the point ±x encodes a second point along that great circle, and the radius

r ∈ I encodes a radius inside a disk. The identifications ∼ are defined as follows.

31



• (V,±y,±x, 0) ∼ (V,±y,±x′, 0) for all x and x′.

• (V,±y,±x, r) ∼ (V,±y′,±x, r) for any points ±y and ±y′ whose angles in the great circle

corresponding to V are a multiple of 2π
6

apart.

The point (V,±y,±x, r) can be thought of as a point of radius r at angle ±x in a disc attached to the

great circle corresponding to V , where the boundary of that disk will be attached to VRm
≤ (RP

n; 1
6
)\

W via some map g (defined below) along an equilateral triangle containing ±y. Indeed, observe

that if V and y are fixed, then {(V,±y,±x, r) ⊆ Y | V = V0, y = y0 are fixed} is homeomorphic

to a disk. The first bullet point defining ∼ above is since in polar coordinates, the center of any

disc has radius r = 0 and an undetermined angle that could correspond to any ±x. The second

bullet point defining ∼ above is so that inscribed triangles with a vertex at y or y′ (whose angles in

the great circle corresponding to V are a multiple of 2π
6

apart) are identified.

We let Z ⊆ Y be the subset of all points of the form (V,±y,±x, 1), i.e., those points that are

on some great circle. Consider the following commutative diagram, where the vertical map is a

homotopy equivalence by Theorem 4.5.1.

RPn

Y ⊇ Z

VRm
≤ (RP

n; 1
6
) \W

h

g

πf ≃

We define map h : Z → RPn by h(V,±y,±x, 1) = ±x. We define g : Z → VRm
≤ (RP

n; 1
6
)\W

as follows. Let ∆ be the equilateral triangle containing ±y that is inscribed in the great circle

corresponding to V . Define g(V,±y,±x, 1) to be the unique point on the 1-skeleton ∂∆ of this

2-simplex such that πf(g(V,±y,±x, 1)) = ±x; existence and uniqueness of this point follow

since πf |∂∆ : ∂∆ → RPn is bijective onto its image by Lemma 4.5.2. It follows that πf ◦ g = h.
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Therefore, we have the following homotopy equivalence.

VRm
≤ (RP

n; 1
6
) =

(

VRm
≤ (RP

n; 1
6
) \W

)

∪g Y ≃ RPn ∪h Y,

where the last step is by Theorem 4.5.1 and the homotopy invariance properties of adjunction

spaces (7.5.7 of [36] or Proposition 5.3.3 of [37]).

It remains to show that RPn ∪h Y is homotopy equivalent to a (2n + 1)-dimensional CW

complex. We begin with the torus bundle

T ′ = {(V,±y,±x) ∈ Gr(2, n+ 1)× RPn × RPn | ± y,±x ∈ V }

over Gr(2, n + 1), with projection map T ′ → Gr(2, n + 1) via (V,±y,±x) 7→ V . Consider also

the circle bundle

C ′ = {(V,±y) ∈ Gr(2, n+ 1)× RPn | ± y ∈ V }

over Gr(2, n + 1), with projection map C ′ → Gr(2, n + 1) via (V,±y) 7→ V . The space T :=

T ′/ ∼1, where (V,±y,±x) ∼1 (V,±y′,±x) for any points ±y and ±y′ whose angles in the great

circle corresponding to V are a multiple of 2π
6

apart, is also a torus bundle over Gr(2, n+1). Hence

T is a manifold of dimension two more than dim(Gr(2, n+1)) = 2(n−1), meaning dim(T ) = 2n.

Similarly, the space C := C ′/ ∼1, where (V,±y) ∼1 (V,±y′) is defined analogously, is a circle

bundle over Gr(2, n + 1). The space T × I is therefore a (2n + 1)-dimensional manifold with

boundary, and hence a (2n+1)-dimensional CW complex. Finally we claim that Y = (T×I)/ ∼2,

where (V,±y,±x, 0) ∼2 (V,±y,±x′, 0) for all x and x′, is also a (2n + 1)-dimensional CW

complex. Indeed, note that T × {0} is a CW subcomplex of T × I . The map q : T × {0} → C

defined by (V,±y,±x, 0) 7→ (V,±y) is a differentiable fiber bundle (with circular fibers). Hence

Corollary 2.2 of [1] states that we can put simplicial complex structures on T ×{0} and C so that q

is simplicial; see also [2]. Since q is cellular, the adjunction space C ∪q (T × I) is a CW complex,

and so we we have that
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Y = ((T × I)/ ∼2) ∼= C ∪q (T × I)

is a (2n + 1)-dimensional CW complex. To see that Z is a CW subcomplex of Y , note that Z

sits inside Y as T × {1}. It follows from Corollary IV.2.54 of [38] that that the adjunction space

RPn ∪h Y is homotopy equivalent to a (2n+ 1)-dimensional CW complex.

We obtain as a consequence the following corollary. We remark that this corollary is far from

obvious, as VRm
≤ (RP

n; 1
6
) is in some sense “infinite dimensional.”

Corollary 5.2.2. Since VRm
≤ (RP

n; 1
6
) has the homotopy type of a (2n+ 1)-dimensional CW com-

plex, its homology and cohomology groups are trivial in dimensions 2n+ 2 and larger.

Conjecture 5.2.3. We conjecture that there is some ε > 0 sufficiently small such that for all

0 < δ < ε, the homotopy types of VRm(RPn; 1
6
+ δ) and VR(RPn; 1

6
+ δ) are equal to that of

VRm
≤ (RP

n; 1
6
).

Question 5.2.4. What are the homotopy types of VRm(RPn; r) at larger scale parameters r > 1
6
,

and, in particular, what is the smallest value of ε > 0 for which which we obtain a new homotopy

type VRm
≤ (RP

n; 1
6
+ ε) 6≃ VRm

≤ (RP
n; 1

6
)?

4Related results are Theorem II.5.11 of [38] or Theorem II.4.3 of [39], which furthermore implies that if h is a
cellular map, then RPn ∪h Y is a CW complex.
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Chapter 6

Conclusion

We have initiated the study of what happens when a group acts on a metric space, and hence also

on its Vietoris–Rips simplicial complex and metric thickening, at intermediate scale parameters.

We show that, for small enough scale parameters r, both the simplicial complex VR(X/G; r) and

the metric thickening VRm(X/G; r) are homotopy equivalent to VR(X; r)/G and VRm(X; r)/G,

respectively. We give precise quantitative control on which scale parameters r are small enough

and provide a similar result for Čech complexes. We further extend these results to analyze the

homotopy types of Vietoris–Rips thickenings of real projective spaces at the first scale parameter

where their homotopy types change.

We end with a description of a few open questions motivated by this work.

Question 6.0.1. What are the homotopy types of the Čech complexes Č(RPn; r) of projective

spaces? We note that the action of G = ({±1},×) ∼= Z/2Z on Sn is an r-nerve action for all

r < 1
8
, where the circumference of a great circle in Sn is 1 (and so the circumference of a great

circle in RPn is 1
2
). Hence Č(RPn; r) ≃ RPn for all r < 1

8
. What are the homotopy types of

Č(RPn; r) at larger scales?

Question 6.0.2. We note that RP3 is just one example of a spherical 3-manifold, i.e., a quotient

space S3/G where G is a finite subgroup of SO(4) acting freely by rotations. What can one say

about Vietoris–Rips thickenings of other spherical manifolds?

Question 6.0.3. In addition, what can be said about lens spaces? Let S2n−1 be the unit sphere

in complex n-dimensional space Cn. For integers p, ℓ1, . . . , ℓn with each ℓi relatively prime to p,

we define the lens space L(p; ℓ1, . . . , ℓn) to be the quotient of S2n−1 under the action of Z/pZ

generated by

(x1, . . . , xn) 7→ (e2πℓ1/px1, . . . , e
2πℓn/pxn).
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See Example 2.43 of [31]. Any such lens space has fundamental group Z/pZ. Interestingly, differ-

ent choices of the ℓi’s can produce lens spaces that are either homeomorphic, homotopy equivalent

but not homeomorphic, or not homotopy equivalent. What can be said about the homotopy types

of Vietoris–Rips thickenings of lens spaces?
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