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ABSTRACT

The velocity distribution in the laminar flow over a semi-
infinite plate was calculated by Blasius (1908). The corres-
ponding problem for the laminar symmetric flow over a wedge
was solved by Falkner and Skan (1930), in collaboration with
Hartree (1937). In the present paper, a line source of mass is
considered to be situated at the leading edge of the plate or
wedge, which is supposed to be nonconductive of vapor, and the
resulting vapor distribution is sought. If free convection is
neglected, and the velocity distribution is assumed essentially
undisturbed by the variation of vapor concentration, the bound-
ary-layer equation of diffusion for each case can be solved by
certain simple substitutions and integrations, the solutions being
applicable to similar problems in heat diffusion. Numerical
calculations have been earried out for Blasius flow.

1. LAMINAR FLOW OVER A WEDGE

ONSIDER a wedge placed symmetrically in a uniform

incident stream, with its edge perpendicular to the
general direction of flow. In a plane perpendicular to the
edge, let the trace of the edge be the origin, from which x
is measured along the trace of the wedge, and let y be
measured in a direction normal to that of x. It can be
shown that the velocity in the x-direction just outside of
the boundary layer is approximately

U = cx™ [1]

where ¢ is a constant depending on the incident velocity,
and m is connected with the included angle of the wedge,
B, by the relation

e 2 (2]

m + 1 c 9 [3]
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¢=‘, 2 V@ ox 2 k) [4]
m + 1

where v is the kinematic viscosity, and ¢ is the stream-
function from which the velocity components in the x-and
y-directions can be obtained, respectively, as follows:

u="2=cx" { =, ¢ (5]
dy
vz_ﬁ:‘{ 2 vaxm—l m+1€+m—1€l{_—
Ox m+ 1 2 2
(6]

Falkner and Skan (2) transformed the boundary-layer equa-
tion of motion

du du Ou,

u— +v =u, —L+v

Ox dy Ox

in] [7]
dy ?

to the ordinary differential equation
élll+éévll_'8(élz~1)=0 [8]

where, as in Equations [5] and [6], the primes denote dif-
ferentiations with respect to the variable £. The bound-
ary conditions for Equation [7]

u=v =0

aty =0

=il at the outer edge of the boundary layer

can be replaced by

£0)=<¢"(0)=0, (') =1 )

Numerical solution of Equation [8] with the above bound-
ary conditions was carried out by Hartree (3) for different
values of 3.

Imagine now a line source of mass situated at the edge
of the wedge, which is supposed to be non-conductive of
vapor. Since the vapor flux through any section perpen-
dicular to the x-axis must then be constant, the quantity
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[10]

M:/ u(c—co) dy
(o]

where ¢ and ¢ are the concentrations (mass per unit vol-
o

ume) of vapor at any point and in the ambient flow, re-
spectively, must be independent of x and indeed is a
measure of half the strength of the line source.

Let p denote the density of the ambient fluid, and p
its dynamic viscosity. Taking M, x, vy, Cops il and p

as the independent variables for a certain 3 or m, and
c —c as the dependent variable, a dimensional analysis
0

shows that the parameter

[11]

M U, x (&
I o 2
e v’ v '’ p’ o

£1is given by Equation [3] and is chosen instead of

-3

where

i at the suggestion of Falkner and Skan’s solution. In

%

order that M may be independent of x and Equation [10]
may be identically satisfied, it can be easily verified that
0 must be of the form

M v M v

1) = S
m + 1
U, % c CX.
o

0= t(#) [12]

c v
o

where #(#) must satisfy the integral condition

f 1) ¢ (£)ds=1
(o]

c
. (o] .
Noteworthy is the fact that — does not appear in Equa-

[13]

p
tion [13]. It should be remembered, however, that the
quantities p, p, and v are taken as those of the ambient

C
fluid. The effect of _ is therefore reflected in the quan-

P
tity v in Equation [12]. The variation of v due to that of
c is neglected. This is justified at sufficient distances
from the line source, where ¢ — < is not excessively large.

From Equation [12] one obtains

=m*3

W el 7 lmelitetm—1 £t (14
Ox 2

a_6=x—1 m—l)cil [15]

dy 2v

_m+3
Ly 2 axlis o [16]
dy: 2 v

The boundary-layer equation of diffusion (K = diffu-
sivity)
y % o g &e

dy

de
u— 4

Ox

[17]

(]}/2
is to be solved with the boundary conditions

de

dy

aty =0

at the outer edge of the boundary layer.

Substituting Equations [5], [6], [11], [14], [15] and [16] in
[17], one obtains (¢ = Prandtl number = 1/K)

t"=—o@t ¢ +C1t") (18]

to be solved with the transformed boundary conditions
t'(0)=0 [19]
1() =0 (207

and the integral condition expressed by Equation [13].
A first integration of Equation [18] yields

t'=—at¢ [21]

the constant of integration being zero because of Equa-
tions [9] and [19]. A second integration yields

E .
- {ds§
o

t(£) =Ce [22]
where C is determined from Equation [13] to be
1
G e ¥ (23]
- Ldg
e L'(E)dE
(o]
Equation [20] being satisfied by Equation [22], and the

the values of ¢ and (' for different £ being given by Har-
tree, Equations [22] and [23], together with Equations
[11] and [12], constitute the desired solution.

2. BLASIUS FLOW
When 3 =m =0, Equation [8] becomes

¢4 g =0

for Blasius flow. Blasius’ original equation, however,
was slightly different, due to the removal of two constant
multipliers occurring in Equations [3] and [4]. Assuming

[24]

1-NZ [25]
Y=/ vUx [(n) [26]

where U is the ambient velocity and i/ the stream-function
from which
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a 00
u= 2oy [27] b(n)['(q)dn=1 [32]
(9}/ (]
b= W _ 1 V_U(T]/:- 0 [2g] corresponding to Equa.tion [13]. "
g 7 \x By means of Equation [29] and the result /" (0)
= 0,33206 given by Blasius.
he obtained i
m nf Nk
ff"+ 2" =0 [29] f fdn=—2f —dnp==2In{
° = / o
where the primes indicate differentiation with respect to "
n. Blasius’ solution of Equation [29] yielded the tabu- f (33]
lation of f, /', and [", which can be found in (1) or (4). ==2In{—
c-c = Substitution of the above in Equation [31] gives
= “cv \Ux k) [30] /" o
° h(n)=C [—— [34]
: : 0.33206
a similar procedure as before yields
where from Equation [32]
m
o
=5 fdn
2 ,[ C, = 1 [35]
h(n)=C,e [31] 0 ( i )U/'d
N TR SN n
where C, .is to be determined by [ 0.33206,
TABLE 1 VALUES OF h(7m) FOR DIFFERENT PRANDTL NUMBERS
n/o 0.6 0.7 1 2 4 8 16 32 64 128 256 512 1024
0 0.4921 0.5363 0.6639 1.0153 1.5743  2.4625 3.8773 6.1516 9.7800 15.5111 24.6853 39.1696 59.9710
0.2 0.4921 0.5632 0.6637 1.0149 1.5729 2.4583 3.8643 6.1103 9.6492 15.0988 23.3905 35.1684 46.7322
0.4 0.4916 0.5357 0.6627 1.0117 1.5631 2.4276 3.7684 5.8107 8.7262 12.3485 15.6453 15.7340 9.3536
0.6 0.4904 0.5341 0.6599 1.0032 1.5371  2.3475 3.5238 5.0809 6.6719 7.2189 5.3466 1.8375 0.1275
0.8 0.4880 0.5310 0.6545 0.9869 1.4876  2.1987 3.0914 3.9104 3.9519 25327 0.6581 0.0278
1.0  0.4840 0.5302 0.6458 0.9607 1.4095 1.9741 2.4920 2.5410 1.6687 0.4515 0.0210
1.2 0.4782 0.5187 0.6330 0.9229 1.3008 1.6811 1.8072 1.3364 0.4615 0.0346
1.4 0.4703 0.5087 0.6155 0.8727 1.1633 1.3446 1.1560 0.5468 0.0773 0.0009
1.6 0.4623 0.4986 0.5981 0.8241 1.0372 1.0690 0.7307 0.2184 0.0123
1.8  0.4477 0.4803 0.5657 0.7371 0.8297 0.6840 0.2991 0.0366 0.0004
2.0 0.4411 0.4720 0.5333 0.6552 0.6556 0.4270 0.1166 0.0055
2.2 0.4134 0.4376 0.4965 0.5679 0.4926 0.2411 0.0371 0.0006
2.4 0.3928 0.4122 0.4560 0.4790 0.3505 0.1220 0.0095 0.0001
2.6 0.3701 0.3845 0.4128 0.3925 0.2353 0.0550 0.0019
2.8 0.3452 0.3547 0.367 0.3118 0.1485 0.0219 0.0003
3.0 0.3194 0.3239 0.3226 0.2398 0.0878 0.0077
3.2 0.2922 0.2918 0.2782 0.1782 0.0485 0.0023
3.4 0.2732 0.2701 0.2357 0.1280 0.0250 0.0006
3.6 0.2369 0.2285 0.1961 0.0886 0.0120 0.0002
3.8 0.2096 0.1886 0.1602 0.0582 0.0053
4.0 0.1734 0.1695 0.1284 0.0380 0.0022
4,2 0.1590 0.1432 0.1010 0.0235 0.0009
4.4 0.1360 0.1196 0.0779 0.0140 0.0003
4.6 0.1150 0,0985 0.0589 0.0080 0.0001
4.8 0.0960 0.0796 0.0437 0.0044
5.0 0.0795 0.0640 0.0318 0.0023
5.2 0.0651 0.0507 0.0227 0.0012
5.4 0.0524 0.0395 0.0159 0.0006
5.6  0.0423 0.0308 0.0109 0.0003
5.8 0.0327 0.0228 0.0073 0.0001
6.0 0.0257 0.0171 0.0048 0.0001_j;
6.2 0.0195 0.0125 0.0031
6.4 0.0150 0.0091 0.0020
6.6 0.0112 0.0065 0.0012
6.8 0.0083 0.0046 0.0007
7.0 0.0061 0.0032 0.0004
7.2 0.0044 0.0022 0.0003
7.4 0.0031 0.0014 0.0001
7.6 0.0022 0.0010 0.0001
7.8 0.0014 0.0006
8.0 0.0009 0.0004
8.2 0.0008 0.0003
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and is a function of ¢ only.
Equation [34] could have been written as

1 &

h (77) = Cz (/ )

f (f“)o—/ld"]

But since " varies from 0.33206 to zero, use of Equa-
tions [34] and [35] for numerical calculation yields more
accurate results for large values of 0. Therefore, and be-
cause of the advantages of- systematic computation, they
are used throughout in computing b (7) for values of o
ranging from 0.6 to 1024. The results are shown inTable

[36]

and Equation [35] as

- [37]

b(y) instead of h(7) is plotted in
€

* Fig. 1 for different values of o, the values of C, corres-
ponding to different values of o being the same as those
of h(o) given in Table 1.

1. For convenience,
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