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ABSTRACT 

In formulating the equations describing the flow of water on the surface of a watershed, geometric 
simplifications (the substitution of a simple geometry for a more complex one) must be made. The problem is to 
examine techniques for and consequences of such simplifications; and thereby to develop objective procedures for 
geometric simplification of complex watersheds. Watershed geometry is represented by a series of planes and 
channels in cascade. When overland flow and open channel f low in the cascade are described by the kinematic 
wave equations the resulting mathematical model is called the "kinematic cascade model." 

Planes are fitted to coordinate data from topographic maps by a least squares procedure. Residuals of this 
fit form a geometric goodness~of-fit statistic as the improvement over using the rnoan elevation. Channel ele~ 
ments are determined using Gray' s method, as the slope of the hypotenuse of a right triangle with the same area 
as that under the observed stream profile. The ratio of the altitude of this right triangle to the total relief 
of a s tream is the index of concavity, a channel goodness~of~fit statistic. An overall goodness~of~fit statis~ 
tic is the drainage density ratio (the ratio of drainage density in the cascade of planes and channels to drain­
age density of the watershed). 

The kinematic impulse response is the solution of the kinematic cascade model for an impu~se 
(instantaneous) input . For overland flow, peak discharge of the impulse response is affected more by the shape 
of the overland flow surface than is the character istic time. Peak discharge of the kinematic impulse response 
is greater for parabolic than for uniform slope surfaces. These differences in peak discharge are greater for 
laminar than for turbulent f low. A goodness~of-fit stati stic measuring how well a cascade of planes fits a 
parabolic slope is related to the resulting peak discharge of the impulse response from the parabolic surface 
and from the cascade of planes approximation. This stat istic can also be used to determine the number of planes 
in cascade necessary to approximate the kinematic impulse response from a parabolic surface. 

For a concave channel, the index of concavity is related to the error in peak discharge of a routed 
hydrograph when the channel s lope is assumed uniform. Using the equivalent , or Gray's slope, results in less 
error than using a uniform slope estimated as the total channel relief over the length. For a channel system, 
underestimating the drainage density results in overestimated time characteristics and underestimated peak dis­
charge. Moreover, lag time, as the first moment of a linear instantaneous unit hytlrograph, decreases as drain­
age density increases. The degree of apparent nonlinearity is affected by drainage ucnsity as a measure of the 
relative proportions of laminar and turbulent flow. 

The mean value of a hydrograph goodness-of-fit statistic, as the improvement over using the mean discharge, 
increases as the geometric goodness-of-fi t statistic increases but decreases as the urainage density increases . 

A combined goodness-of-fit statistic , the product of the drainage density ratio and the geometric 
goodness-of~fit statistic, is related to the degree of distortion in optimal -hydraulic roughness parameters. 
Distortions in watershed geometry result in optimal roughness parameters smal l er than the corresponding empir~ 

ically derived values for simple watersheds where less distortion is involved. 

Given rainfall, runoff , and topographic data for a small watershed , it is possible to define the simplest 
kinematic cascade geometry which when used in s imulation will, on the average, preserve selected hydrograph 
characteristics to a given degree of accuracy. 

iv 



Chapter I 
INTRODUCTION 

1.1 General Statements 

To address the problem of surface runoff as 
related to watershed features one must study fundamen­
tals of the past as well as current research . How can 
the hydrologic processes be understood? One way is t o 
investigate the properties of simple mathematical mod­
els constructed to simulate the operation of nature 
with respect to specific quantities of interest. If 
the model is understood, then one attempts to infer 
properties of its prototype. This method is a stan­
dard tool, a mathematical model. The method can be 
summari~ed as an oversimplification in the following 
sequence: Nature - Questions - Mathematical 'lode 1 -
Understanding - Inference. There is a great deal of 
mire between each element in the sequen~e . Unfortu­
nately, the sturdy links are for the most part based 
on experience and judgment and (for want of more pre­
cise terms) creativity, cleverness, and insight. For­
tunately, there is a partial solution by way of ob­
served data--supportive or fiegative empirical 
evidence , i.e. , observed data provide the means of 
testability. 

Con.sidering surface runoff, the thesis is that 
mathematical models can be strengthened by systemati­
cally incorporating more basin or watershed character­
istics into them. By this means, the links between 
the phases discussed above are strengthened so that 
they become more objective. By constructing the mod­
els based upon theory and by testing them with data 
the result is a procedure with systematic and empiri­
cal import , i.e., the theory helps to distinguish laws 
from accidental generalizations and the obser ved data 
provide the basis for testing hypothesized relation­
ships . Thus, theories are introduced to explain a 
system of regularities but they must be definite 
enough to allow testing. 

Before proceeding, we would like to define some 
terms basic to this discussion. The terms "water­
shed," "drainage basin," and "catchment" are synony­
mous . "Watershed" means an area above a specified 
point on a stream enclosed by a perimeter. The 
"watershed perimeter" is an area in which surface run­
off will move into the stream or its tributaries above 
the specified point. Thus , "watershed" connotes a 
physical entity for which statements of continuity can 
be made. With respect to surface runoff, the water­
shed boundaries are, except for the stream outlet, the 
locus of points where there is no mass flux of water. 

If attention is limited to stream channels that 
are conceptuali~ed as single l i nes, then the resulting 
line diagram is called a "channel network." A simple 
concept of the surface of a watershed is that it con­
sists of the channel network and the interchannel 
areas of overland flow within the watershed perimeter. 
Flow from this surface is called "surface runoff." 

1.2 Scope and Objectives 

Although many of the concepts discussed here may 
have wider applicability, the study excludes urban 
watersheds. Emphasis is on rainfall excess -surface 
runoff relationships on small rural watersheds. Data 
from artificial watersheds are used in developing 
relationships, but the main interest is in natural 
and cult ivated agricultural watersheds. 

l 

Before the analyses, t he basic models are 
presented and discussed. Then the theory of overland 
flow over complex surfaces. Next, the analyses are 
extended to natural watersheds, and, finally, to 
parameter estimation and model testing. 

The four preliminary or auxiliary objectives are: 

1. To select hydrograph characterist ics which 
should be preserved in simulating surface runoff from 
smal l agricultural watersheds. 

2. To develop statistics which can be used to 
determine when the selected hydrograph characteristics 
have been preserved to a given degree in a surface 
runoff simulation. 

3. To select a set of watershed characteristics 
which should be preserved in simulating surface run­
of f from small agricultural watersheds. 

4. To develop statistics which can be used to 
judge when the selected watershed characteristics have 
been preserved to. a given degree in a simplified 
geometrical representation of the watershed. 

With these objectives as prerequisites, the major 
objective in this study is then to relate statistics 
of the simplified geometry to watershed characteris­
tics and to hydrograph characteristics to define the 
simplest geometry which when used in simulation will 
preserve the selected hydrograph characteristics to a 
given degree of accuracy. 

1.3 Brief Review of Relevant Literature 

Only a few representative or typical articles are 
reviewed. Of the many papers read, only those direct­
ly relevant (explicitly used) to this study are cited. 
Obviously, these references are only a small portion 
of the extensive body of excellent liter ature avail­
able. This review is intended to provide a short list 
of select quality sources that should provide both a 
starting point for introduction to the literature and 
an overview of sources influential in the present en­
deavor. 

Three areas of fundamental import here are 
kinematic wave theory, unit hydrograph theory , and 
the theory of incorporating basin characteristics in 
surface runoff models. Kinematic wave theory via the 
kinematic cascade model is the basic tool for surface 
runoff simulation used here. References chosen are 
those which show the development of this theory. Al­
though the flow of papers on unit hydrographs is 
seemingly endless , the noteworthy steps in its devel­
opment can be traced in a few sources. The literature 
on incorporating basin characteristics in surface run­
off models is enormous , but relevant ones are implic­
itly defined by the conceptual form of the kinematic 
and unit hydrograph models. For the kinematic wave 
theory, characteristics distributed over the basin are 
relevant, while for the unit hydrograph theory lumped 
parameters can be used . 

Under conditions where the momentum equation 
can be approximated to a good degree by maintaining 
only terms expressing bottom slope and friction slope, 
flow is called "kinematic." Under these conditions, 
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local depth and dischar~e on a plane have a simole 
functional relation 

Q = ahn (1.1) 

where: Q = local discharge, h • local depth, a • 
,·oefficient incorporating s l ope and roughness, and n = 
••xponent reflecting flow type (laminar or turbulent). 
I'IH!Se definitions are for flow over a hydraulically 
o;mooth p lane. However, the same form can be used for 
i rrcgular surfaces where the mean flux per unit width 
i~ proportional to the st orage in an incremental area . 
\n early reference (Lighthill and ll'hitham, 1955) pre­
~cnted the theory of kinematic waves. The next step 
is to sources developing the kinematic cascade. 

llenderson and Wooding (1964) applied the theory 
to flow over a plane and compared their results to 
dat:~ with a good reproduction of observa'tions. Then 
l~ooding (1965a , 1965b , and 1966) extended the theory 
t o a watershed model, discussed numerical solutions, 
'md compared rcsul ts with observed runoff data . This 
.. ;ncnsion was an important step in developing a gener­
.11 ,;at ershed model based upon kinematic f low. A cam­
p I t!X ~·atershed ,;as modeled as two symmetric lateral 
t•lancs cont ributing to a channel bisecting the area. 
•;,·h('matically the model could be compared to an open 
hnnk with the channel in the center so that there is 
·' lateral slope for the planes but also a down channel 
·dnpe for the channel and planes. This model is 
rc·fcrrcd to as the Wooding model and will serve as a 
·.tandard for comparison as well as a first approxi­
:na t ion throughout this study. 

Brakensiek (1967) made the essential step from 
II•H>d1ng' s model to the kinematic cascade model. This 
··t <'P is fundamental because rather than a singl e plane 
.1 i o;,·ha rging into a channel--a lumped non linear model-­
ltralo.cnsiek broke the lateral flow portion into a se­
t••t•ntial series (cascade) of planes . Nith this cas­
,·.•de formulation an obvious extension was to let each 
pl.me have its o"''TI characteristics resul tin~: in a dis­
t r lhuted model. Kibler and Woolhiscr (1970 , p. vii) 
.lt·fined a kinematic cascade as: '' ... a sequence of n 
rliscr~te overland flow planes or channel segments in 
1.h i..:h the kinematic wave equations arc used to des­
•· ribe the unsteady flow. Each olane or channel i s 
, h:lr:tcterized by a length, lk ' width, "'k' and a rough­
III.!Ss-s lope factor, '\'" 

Thus, the kinematic cascade is a distributed 
!~ incc each el ement may have different characteris ­
ti cs , including rainfa l l excess) model with lumped 
uararncters in the subelements. It is nonlinear since 
•:alucs for n in Eq. 1.1 are generally not equal to 
•>ne. For example!' nf recent applications in urban 
and rural agricultural 1~atcrsheds, see Harley, et al., 
( 1~70) and Singh (1974). 

A great many papers have been published on unit 
hrc.Jroeraphs . ~lany papers aro repetitive or merely 
r';1mi 1 iar applications on a new or slightly different 
''atcrshed. However, because the concept is so ele­
gantly simple and historically and pract ically basic 
to rainfal l-runoff studies, it is also used as a stan­
d;tnl for cor.lparison as ~>ell as a first approximation 
in this study . In all of the following the instanta­
neous unit hydrograph (IUH), rather than finite dura­
l ion unit hydrographs , are used. The reason for this 
~~ that the IUH or l inear impulse response character-
• .:t·s a 1 in ear, time-invariant system. 

llcfine a delta function or impulse as a function 
·" that 

2 

( 1. 2) 

and 

+co 

f o(t-t
0
)dt • 1.0 

_., 
( 1. 3} 

i.e., an i mpulse or delta function is a function with 
some properties. such as homogeneity, so that 

( 1. 4) 

and 

.... 
( 1. 5} 

~~here a is a rea 1 constant. A de lta function also 
has the sifting property 

... 
f Ht) o(t-t )dt = ¢Ct ) 

0 0 
( 1. 6) 

where ~(t) is a function of time. 

Consider a linear t ime-invariant !'ystem which 
has the properties of superposition , time invariance, 
and homogeneity. Superposition requires that if an 
input to the system, xi' produces an output, yi, and 

an input of x. produces y., then x. + xJ. produces 
J J l 

y
1 

+ yj . "Time invariance" means that xi produces 

y i ~~i thout regard to time, and "homogenei ty" means 

that ax
1 

as input produces ayi as output. The 

linear system response to a delta or impulse input 
denotes the linear impulse response or the instanta ­
neous unit hydrograph (IUH) . 

Let h(t) be the linear impulse response, x(t) 
be an arbitrary input or rainfall excess function, and 
y(t) be the surface runoff response to this arbitrary 
input. 

oCt) produces h (t) ( 1. 7) 

by definition, 

6 (t-"r) produces h(t-T) (1. 8) 

by time invariance, 

X (T) 0 (t-T) produces X(T) h(t-T) (1. 9) 

by homogeneity, and 

... 
J x(T) o(t-T} d< produces f x(T) h(t - <) dr (1 .10) 
_ .. 

by superpos1t1on . By substitut ing Eq . 1.6 in the left 
side of Eq . 1.10 is then x(T}, the arbitrary input 
producing y(t) as the response. Titerefore, the 
right side of Eq. 1.10 is identically y(t ) , the 
response. Hence 

. ... 
y(t ) J x(r) h(t-r) dT . (1.11) 



as the familiar convolution integral. Gupta (1966) 
developed Eq. 1.11 on which the above is based. Oooge 
(1973) is a complete and excellent source on linear 
theory in hydrology. 

Obvious questions are how well does the linear 
model conform with observed data from watersheds and 
how to ob~ain h(t). Dooge (1973) discussed the sec­
ond question, and the first question will be investi­
gated in a later chapter. 

A much more difficult question is how are basin 
characteristics incorporated into rainfall-runoff 
models? First one might ask, why is it necessary to 
incorporate basin characteristics into the models? 
Many models are used to simulate surface runoff, given 
parameters for the model , input data, and initial con­
ditions. Efficients methods for ~priori estimation 
of parameters are fewer. Surface runoff on ungaged 
basins must be estimated, and unlike the situat ion 
for gaged basins (where parameters may be obtained by 
optimization), parameter estimates for ungaged basins 
are not based on observed rainfall-runoff data for the 
basin in question. Hence, the desire to develop re­
lationshi ps between basin characteristics and surface 
water response. Also the hydrologic consequences of 
changing land use on small watersheds must be esti­
mated. Hopefully, geomorphic parameters can be a 
useful means of quantifying these changes in ways that 
will be logically reflected in hydrologic models. 

Si ificant Geomo hie Parameters Which May Be 
Incorporated into Specific Mathematical Ho els. 
Geomorphic parameters of interest here can ibe classi­
fied into four main groups: (1) Linear factors of 
channel systems, (2) Areal factors of channel systems, 
(3) Relief factors of basins, (4) Energy factors on 
the watershed surface. The last category includes 
both potential and dissipative factors . Judging which 
parameters are significant is a subjective matter, 
however, aside from those parameters necessary for 
description in a classical sense, only those parame­
ters which can be incorporated into a specific model 
are judged significant with respect to that model. 
Markovic (1966) gives an excellent descript ion of 
many geomorphic parameters and is a primary source for 
much of the following. 

1. Linear Factors of Channel Systems. 

Stream Order, u. In the Horton-Strahler system 
(Horton, 1945; Strahler, 1952) a first- order stream is 
the smallest unbranched stream. Two first-order 
streams join to form a second-order stream, etc. The 
order of the main stream is the highest and is also 
the order of the basin at that point on the main 
stream. Strahler (1964, pp. 4-43) gives a .summary of 
the reasoning in judging the i mportance of .stream 
order: "Usefulness of the stream-order system depends 
on the premise that, on the ave~age, if a sufficiently· 
large sample is treated, order number is directly pro­
portional to size of the contributing watershed, to 
channel dimensions, and to stream discharge at that 
place in the system. Because order number is dimen­
sionless, two drainage networks differing greatly in 
linear scale can be compared with respect to corres­
ponding points in their geometry through use of order 
number." 

Number of Streams of a Given Order u, Nu. The 

number of streams of each order is counted up to 
N = 1, where u is the basin order. Since a water­
u 

shed of order u may be modeled as a collecti on of 
subel ements of lower order, the number of streams of 

3 

each order is an i mportant concept. A parameter 
derived from N is the bifurcation ratio 

u 

N 
R ,. u 
b Nu+l 

(1 . 12) 

which may be used as one index of hydrograph shape, 
given two basins simi l ar in other respects (Strahler, 
1964). 

Stream Lengths of Order u, Lu. The total length 

of all streams of order u is the stream length, L • 
u 

which can be used to define the mean stream length of 
order u as 

L 
L = Nu 
u u 

(1.13) 

This term is also important in describing components 
of a watershed. 

Length of Main Stream, Lc . The length of the 

main stream is the length of the highest order stream 
projected back to the watershed divide. This parame­
ter is important in determining hydrograph time char­
acteristics (Gray, 1961). 

Length of Overland Flow, L
0

• The length over 

which water must flow to reach a stream channel is the 
length of the overland flow. Horton (1945) has a good 
discussion of i ts importance. It is important t o note 
that perhaps in nature and certainly in many hydrolog­
ic models the length of overland flow determines the 
flow type. 

2. Areal Factors of Channel Systems. 

Watershed Area, A. The area enclosed by the 
watershed perimeter projected on a horizontal plane is 
the watershed area. Nearly all geomorphic parameters 
in a basin are related to basin or watershed area. 

Drainage Density, Dd. The ratio of the total 

l ength of all streams in a watershed to the watershed 
. area is the drainage density. This is an important 
parameter in hydrology because it is an index of 
drainage efficiency and length of overland flow. The 
average length of overland flow is approximately equal 
to one over twice the drainage density (Horton, 1932). 
Thus, drainage density is important as an index of t he 
relat ive proportion of overland and open channel 
flow. Moreover, recent observations point to the im·­
portance of the areal distribution of drainage density 
within a watershed to the hydrologic response of that 
watershed. The apparent nonlinearity of the surface 
response varies with the drainage density and areal 
distribution of drainage density. 

Watershed Shape. There are several parameters 
expressing watershed shape, such as circularity or 
elongation. These parameters may be important in 
drainage efficiency or travel time characteristics. 
Just how to assess these influences due to form is 
not yet known. Recent regression studies have 
indicated their importance , but perhaps a calibrated 
hydrologic model could be used to analyze the influ­
ence of basin shape . 
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3. Relief Factors of Basins. 

Slope of the ~lain Channel , S c. The main channel 

of length, L , is the highest order stream projected 
c : 

to the basin divide. Define S (Gray, 1961) as the 
c 

slope of the right triangle hypotenuse with the same 
length and the same area as the area under the stream 
profil e. This slope is important in calculating main 
channel velocity. 

Average Watershed Slope, Sw . If a plane is fit 

to watershed coordinate data by least squares, then 
this slope of the best-fit plane is a measure of the 
overall watershed slope. Moreover, this is one objec­
tive method of fitting planes to subareas of a drain­
age basin. 

Total Relief, H. The total or basin relief is 
the difference between the lowest (outlet ) and the 
highest (divide) points in the watershed. The total 
relief provides a maximum elevation drop of surface 
water. 

Hypsometric Curve, f(x). The hypsometric curve 
rel ates relative basin height to relative basin area 
and is thus a measure of the distribution of elevation 
with respect to area. The hypsometric integral is the 
lrea under this curve. 

Average Watershed Elevation , h. The average 
watershed elevation can be defined i n several ways . 
Ne define average elevation as the mean of the verti­
~al coordinates of distance above base level. 

4. Energy Factors of the Watershed Surface. 

Potential Energy, U. The total potential energy 
of a uniform depth of water on the watershed surface 
is equivalent to the amount of work required to raise 
that volume of water to the given elevation above base 
level. The total potential energy is related to the 
hypsometric integral as shown below. 

Drainage basin area is related to elevation by 
the hypsometric curve, f(x). If A is total basin 
area and H is tot al basin height, then a/A and 
h/H define relative area and relative height. The 
hypsometri c (area-altitude) curve is expressed as a 
funct ion. 

The hypsometric integral is then expressed as 

1 
J [f(x)dx] 

x=O 

1 
f [h/H d(a/A)) 

a/A=O 

1 
AH 

A 
f [hda] 

a=O 
(1.14) 

as the relative area below the hypsometric curve. 

4 

The potential energy, dU, of a differential 
volume of specific weight, y, at an elevation, h, 
above base level is 

dU = yhdv = yhzda (1.15) 

where dv is differential volume, equal to zda; z 
is depth of differential element, and da is differ­
ential area (projected area). 

The total potential energy of a sheet of water of 
uniform depth over the projected watershed area is 
then 

U f dU f yzhda 
A 

(Ll6) 

where h is a function of position in the basin . 

Relation of Potential Energy to Hrpsometric 
Integral. If Eq. 1.14 is multiplied by A and H, 
basin area and relief, we have 

1 
AH J f(x) dx 

0 

1 
AH f h/H d(a/A) 

0 

If Eq. 1.17 is m.ul tiplied by yz then 

A 
f hda (1 .17) 

a=O 

AHih yz = f yzhda = U, (1.18) 
A 

1~hich demonstrates that the total potential energy of 
a uniform input of depth, z, to a basin of area A is 

U = AHyzih (1.19) 

as stated above. 

Topographic Roughness, Bf. One measure of 

topographic roughness (as opposed to hydraulic ·rough­
ness) is derived from fitting a plane to coordinat e 
data from the watershed surface . Define Bf as the 

standard deviation of the watershed surface from the 
plane and consider its distribution. A very small 
variance would indicate a relativel y good fit by the 
plane , while a large variance would indicate the op­
posite . Deviations from the plane produce an objec­
tive criterion in fitting planes to subareas of the 
watershed in modeling its components. 

llydraulic Roughness. Roughness coefficients are 
such as C in the Chezy formula or n in the ~Ianning 
formula. These coefficients relate flow velocity and 
friction losses in overl and and open channel flow. 
Thus, the potential energy is dissipated by flow over 
the watershed surface. 



Chapter II 
BASIC MODELS 

2.1 Watershed Geometry: Cascade of Planes and 
Channels 

In the simplest terms a watershed is modeled as a 
channel network and the interchannel areas of overl~1d 
flow. The elements (planes and channels) are arranged 
in a cascade with a logical plane to plane, plane to 
ch~nel, and channel to channel system of flm~. 

Each interchannel (including upland) area is 
modeled as a plane or as a cascade of pl anes . Each 
plane is characterized by an area, l ength and width, 
a s lope, and a roughness. If any of these factors 
vary excessively within an area, the area is modeled 
as a cascade of planes containing a sufficient number 
of elements to distribute the fact ors to the extent 
necessary to preserve their areal variability. 

One way of estimating. the slope of each plane is 
by der iving a least squares estimate of the s l ope by 
fitting a plane to coordinate data from topographic 
maps. Hobson (1967) has taken such an approach in 
t rying to describe sur face shape in a topographic 
sense. The reasoning is that the deviations from the 
plane can be analyzed to characterize the goodness -of­
fit of the least squares plane . Hobson's procedure 
has been modified to provide estimates of the s lope of 
each element and to provide a measure of how w~ll the 
pl ane or cascade of pl~es f its the original coordi ­
nate data. Thus, there seems to be an objective means 
of estimating overland flow-plane slope, as well as an 
objective means of determining the number of planes 
necessary to model an area. 

A topographic map defines a watershed perimeter 
and channel network. ~1oreover each point on and 
within the perimeter is defined by it s coordinates (x, 
y, z) . Similar to Hobson ' s (1967) notation, ei is an 

elevation point corresponding to (ui' vi) as the cor­

responding x and y coordi nates. The coefficients 
of the least squares fitted plane are bi . In matrix 
form 

s = (uvr1 E (2.1) 

where 

(2.2) 

is the coefficient vector, 

E " (2. 3) 

is called the "elevation vector," and 

[ ;", Iui l:vi 

·,] (UV] = }:u~ Iui 

}:vi Iui 
2 

v. }:vi 1 

(2. 4) 
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with this notation a computed elevation value is 

z. = b
1 

+ (b
2 

u. + b. v.). 
1 l .) 1 

A deviation from the observed elevation is then 

(2 . 5) 

e. -
l 

z. or z. - z.; where the hat denotes an estimated 
l ]. l 

val ue. A goodness-of- fit statistic based 
deviations is derived in Chapter IV. 

upon these 

The general procedure for fitting a cascade of 
planes and channels to watershed data from topographic 
maps is to sel ect coordinate data over the watershed 
area with each point representing nearly the same area 
within the perimeter. A single plane fit to the coor­
dinate data is the simplest cascade. The next cascade 
would be one channel and two lateral planes--the 
Wooding model. The procedure is then to include suc­
cessively more planes and channels in t he cascade to 

· fo~ more complex models. Throughout the procedure 
certain watershed properties are preserved. Each of 
the successively more complex models has the same 
total drainage area . If the length of the main chan­
nel, Lc' is also preserved, then the area and length 

specify the width for a single plane . For the Wooding 
model, the main channel is located and thus this 
length specifies the width of the lateral planes . As 
the complexity of the kinematic cascade increases, the 
freedom in choosing the arrangement and size of the 
elements also increases. This procedure is discussed 
in more detail in Chapter IV. 

Gray (1961) defined slope of the main stream, Sc' 

as the s lope of a line drawn along the measured pro­
f ile which has the same area under it as is under the 
observed prof ile. This slope is the slope of the hy­
potenuse of a right triangle with the same area, A, 
~d length, Lc ' as the observed profile. These slopes 

are illustrated in Fig. 2. 1. With respect to the tri­
angle, the area is 

A = 1/2 Lc h (2. 6) 

and the slope is 

S = h/L c c 
(2 . 7) 

If Eq. 2.6 is solved for 
in Eq. 2 . 7 , then 

h and this is substituted 

S 2A/L 2 
c c 

as the equival ent channel slope . 
observed stream profile 

H 

A ( 
y=O 

(L -x) dy 
c 

where i f the slope i s S(x) , then 

dy " S(x) dx 

in Eq. 2.9. 

(2 . 8) 

With respect to the 

(2. 9) 

(2 .10) 

- ~ 

'.I 
t . 



Distance 

Fig. 2.1. Definition sketch of main channel slope 
determination. Solid l ine represents the 
measured stream profile and dashed line the 
right triangle. 

With this value of dy, Eq. 2 . 9 is 

L 

f

c 
A = (Le-x) S(x) dx, 

x•O 

and then Eq. 2.8 becomes 

s c 

? 

L 

Ic (Lc -x) 
2 --2 - S(x) 

x=O Lc 

dx, 

(2 .11) 

(2 . 12) 

where (Lc-x)/L~ can be considered a weighting factor 

(lane, 1974). For example , this factor is zero at 
x • Lc and a maximum at x • 0. Therefore , Gray's 
method produces a channel slope which is weighted by 
distance from the headwaters of the main stream. The 
highest weight is given to the slope at the outlet. 

If H is the. total relief of the stream and h 
c 

is the altitude of the above right triangle, then 
their ratio, h/llc' can be used as an index of concav-

ity so that a value less than one (the usual case) 
corresponds to an overal l concave profile while a 
value greater than one indicates an overall convex 
profi l e. This index is used as a measure of how well 
t he channel slope is represented by a straight line. 

Assuming that a given watershed with drainage 
density, Od, is modeled as a simpli fied cascade of 

pl anes and channel s with drainage density, dd, then 

the ratio dd/Dd is a measure of how well the channel 

network is modeled with respect to total length. This 
ratio and the index of concavity provide measures of 
the goodness-of-fit of the model ' s channels with re­
spect to the linear dimensions of the channels in the 
watershed. Subsequent analyses investigate the hy­
draulic import of these indices. 

2.2 Rainfall Excess-Surface Runoff: Kinematic 
Cascade 

Recall the kinematic wave theory wherein the 
continuity equation is 

!.!:!. + ~ • q(x,t) 
at ax (2. 13} 

with tho stage-discharge equation as 

6 

(2 .14 ) 

where: h = depth of flow, u = velocity, t = time, x 
distance in direction of flow, q = lateral inflow, Q = 
discharge rate, a = coefficient, and n = exponent. 
The kinematic cascade model is the above equations for 
the cascade of planes and channels. Kibler and 
Woolhiser (1970) presented a finite-difference method 
of solution known as the single-step Lax-Wendroff 
method. This method , from Houghton and Kasahara 
(1968), was compared with two other finite-difference 
schemes given by Kibler and Woolhiser (1970). Their 
results are summarized in their Table 3 on p. 14. 
Briefly , the Lax-Wendroff scheme is second order and 
produced less numerical distortion in peak discharge 
rates than the other finite-difference schemes. The 
basic tool in this study is a general program for the 
kinematic cascade using the Lax-Wendroff method. As 
programmed by Woolhiser, channel flow is turbulent and 
the Chezy relationship is assumed. Flow over the 
planes begins as laminar flow with a transition to 
turbulent flow if a transitional Reynolds number is 
reached. 

2. 3 Summary of Modeling Procedure 

The modeling procedure can be summarized by 
showing how watershed geometry is combined with kine­
matic wave theory in the kinematic cascade model . The 
basic tool used here is the finite difference program 
for the kinematic cascade . Input to this program con­
sists of the geometry from topographic analysis and 
rainfal l - runoff data from hydrologic analysis. 

The modeling procedure is summarized in the form 
of a block diagram in Fig. 2.2. The left portion of 

I 
Topographic 

Analysis 

Fig. 2.2. Summary of modeling procedure. 

n 
HydroloQic 

Analysis 

HydrOQrOph 
Goodness­
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this figure deals with topographic analysis and the 
right portion shows the sequence of hydrologic analy­
sis. Topographic maps are used to provide coordinate 
data defining the watershed perimeter, channel net­
work, and interior points on the watershed surface . 
These data are used to determin~ the geometry of 
planes and a geometric goodness-of-fit statistic as a 
measure of how well the cascade of planes fits the 
original coordinate data. Here the term goodness-of­
fit statistic is used to describe how well a watershed 
component is represented in a mathematical model. 
Thus, the term has a slightly different connotation 
than its classical statistical one. 

The original coordinate data are also used to 
~etermine the channel network. The index of concavity 
15 a goodness-of-fit statistic for an individual chan­
nel and the drainage density ratio is a goodness-of­
fit statistic for the entire channel network. 

7 

The channel geometry and geometry of the planes 
define the kinematic cascade geometry. Topographic 
input to the finite difference program consists of the 
cascade geometry and initial estimates of the rough­
ness coefficients. The goodness-of-fit statistics are 
described in Chapter IV, and the roughness coeffi­
cients are described in Chapter V. 

Observed hydrologic data consist of rainfall and 
runoff data. The latter are used to estimate rainfall 
excess from rainfall data and to define the runoff 
objective function for optimization. Rainfall excess 
and runoff data are input to the finite difference 
program which produces simulated runoff hydrographs 
and thus hydrograph goodness-of-fit statistics. The 
hydrograph goodness-of-fit statistic is a measure of 
how well the simulated runoff corresponds to observed 
runoff. The above description is brief, but addi­
tional material is presented in later chapters after 
overland flow analysis presented in the next chapter. : J 

~l 
l 
'r 
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Chapter Ill 

ANALYSIS OF OVERLAND FLOW OVER UNIFORM AND COMPLEX SlOPES 

3.1 Equations for Description ofOverland Flow 
Surfaces 

Before proceeding to an analysis of complex 
watersheds consisting of interchannel areas (areas of 
overland flow) and the channel network, overland flow 
must be examined as a first step in watershed simula­
tion. In addit ion to the effect s of slope , l ength, 
and roughness , the influence of slope shape upon over­
land flow must be examined. 

Kibler and Woolhiser (1970) developed a procedure 
to approximate a two-plane cascade as a single plane. 
In a step closer to actual slope shapes, slopes can be 
modeled wi th a cubic equation with parabolic and plane 
shapes as simpl ifications or special cases. 

Let 
surface. 

where: 
and a . 

1 

y(x) be the elevation of the overl and flow 
Assume a function of the following form: 

(3. 1) 

y = elevation of the surface, x • distance, 
coefficients to be determined . 

A t hird degree equation can be fit to four points 
(xi' yi)(i = 1 . 2, 3, 4), using the Lagrange form 

(Conte, 1965) as 

3 
y(x) • r Lk(x) Yk' 

k"'O 
(3.2) 

where 

3 (x->/ ~ Lk (x) • n (xk - xj) 
j=O J j=O 
j~k jfk 

(3.3) 

Lk(x) are third degree polynomials whose parameters 

depend only on the chosen values of xi . If x is 

scaled by dividing it by the l ength of flow, L
0

, then 

(3.4) 

and four convenient points for x. on (0, l) are 0.0, 
0.25, 0.50 , and 1.0. With these values the corre­
sponding pol ynomials are 

L0(x) l-7x + 14x2 - 3 8x , (3.5) 

L1 (x) " 10. 66x - 32x2 3 
+ 21.33x , (3.6) 

L2 (x) -4x + 20x
2 

-
3 16x , and (3. 7) 

L3 (x) • 0 .333x - 2x
2 3 

+ 2. 667>t • (3.8) 

where the subscript has been dropped . The equation of 
the surface is then found by choosing the Yk values 

and substituting them and equations 3.5 to 3.8 into 
Eq. 3.2. Constraints relevant to the problem are that 
yk must be chosen so that t here are no extrema on the 

interval (0, 1] . That is, the s l ope function 

8 

s(x) • y ' (x) " al + 2a
2
x + 3a_x 

.) 

2 (3.9) 

must not have roots on [0, 1]. or. it must be that 

-2a2 :t }4a~ - 12a1a
3 (3.10) p 6a3 

so that p t [0, 1] . 

As derived in Chapter I, the hypsometric integral 
is a measure of the potential energy of a uniform in­
put to a surface. In anticipation of testing the sig­
nificance of potential energy in overland flow, the 
hypsometric integral is derived for surfaces described 
by Eq . 3 .1 . For a uni t wi dth of an arbitr ar y sur face, 
then the product of elevation (with r~spect to Y 

0
) 

and differential area (in projection on a horizontal 
plan•) becomes the product of elevation and differen­
tial distance per unit width, i.e. 

(3. ll) 

Integr ating over x(scaled) the result is t he i ntegral 
of t he area-altitude curve or the hypsometric curve. 
[f y is scaled by Y

0
, y* = y/Y

0
, but used without 

the subscript, the hypsometric integral becomes 

1 

Ih • J (1-y(x)) dx 
xzO 

(3.12) 

The area per unit width is L
0 

and the total relief 

is Y
0

, so that the potential energy of a uniform in­

put of depth h
0 

is 

(3.13) 

which becomes 

(3.14) 

where U is potential energy and y is the specific 
weight of water . 

3 . 2 Det ermination of Characteristic Time for a Plane 

Before examining overland flow on ar bitrary 
surfaces , overland flow on a plane must be considered. 
Characteristic time (time to equilibrium, time of 
concentration) is defined in terms of length and 
velocit y at steady state. 

For a discussion of characteristic t imes for 
more complex configurat ions see Golany and Larson 
(1971) . For a nomograph for time of concentration 
i n t urbulent f l ow, see Ragan and Duru (1972) . In 
cont rast , the study described here considers laminar 
flow and situations where the overland flow is 
laminar and t urbulent at t he same time at different 
positions on the plane. ~foreover, the equations 
presented incorporate the transition Reynolds number 
i nto t he equations for calculating charact er ist ic 
time . 



In considering f low over a plane t he fol l owing 
parameters are necessary to determine the characteris­
tic time; length, slope and roughness of the plane, as 
well as the Reynolds number for t r ansi tion f rom lami­
nar to turbulent flow. In addition, a pulse input of 
magnitude P is assumed uniform over the plane. 
Finally, kinematic flow is assumed . 

Let Q be the equilibrium discharge per foot of 
width at the do~~stream boundary corresponding to the 
uniform rainfall excess rate, P. Let V be the nor­
mal velocity at t he downstream boundary corresponding 
to the equilibrium discharge. The length of the plane 
is L, and the characteristic time is T. The Darcy­
ll'eisbach friction factor is f, where 

for laminar flow, and 

f 8g/C
2 

for turbulent flow; where: f = Darcy-Weisbach 
friction factor, K =roughness coefficient, Re 

(3.15) 

(3 .16) 

Reynolds number, g = gravity constant, and C = 
Chezy C. Furt hermore, Rc is the Reynolds number 

above which flow is turbulent so that 

c = 18g/f 

and then to match friction factor at R R 

C = 18gR /K . 
c 

e c 

(3 .17) 

(3. 18) 

Thus, the roughness is described by the parameter K 
and a transition Reynolds number. 

Recall the kinematic stage-discharge equation 

(3. 19) 

where n = 3 . 0 for laminar flow and n = l. 5 (Chezy 
form) for turbulent flow. The coefficient a for 
laminar flow is 

a = ~ 
Kv 

where S is the slope and v is the kinematic 
viscosity. For turbulent flow, 

(3. 20) 

a= ciS (3.21) 

where C is determined by Eq . 3. 18. 

From Eq. 3. 19 the steady state depth H is 

H (Q/a)l/n (3.22) 

so that the steady state velocity 

v = aH n- 1 (3 . 23) 

becomes 
n-1 

v .. a(Q/a) n (3.24) 

Since 

n-1 1- -= n 1/n then 
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n- 1 
V a l /n Q n- (3.25) 

To convert 
Eq . 3.25, 

P (in in./hr) to Q (in cfs/ft) to use in 

Q = P(L/43200). 

Substituting Eq. 3.26 i nto 3 . 25, the result is 

n-1 

V = a0 P n 

n-1 
L n 

(43200) 

as the velocity (in ft/sec). Since 

T = L/V 

the char acteristic time in sec is 

T = (43200) a 

1 
n 

p L 

1 
n 

(3. 26) 

(3- 27) 

(3. 28) 

(3. 29) 

Equation 3. 29 is valid if the flow is all laminar. 
However if there is a transition to turbulent flow 
then 

(3 . 30) 

where TL is the time corresponding to laminar flow 

and TT is the time corresponding to turbulent flow. 

To evaluate Eq . 3.30 whether there is a transition to 
turbulent flow must be determined, and if so, the two 
lengths of flow of each type. At any point on the 
pl ane (in the direction of flow and with respect to 
discharge per unit width) the Reynolds number is 

R e = Q/v (3. 31) 

which by Eq . 3.26 is 

R 
PL 

e 43200v (3 . 32) 

Now if Eq . 3 . 32 is solved for L at the transition 

(3. 33) 

is the length of laminar flow before the tra1lsition. 
Two cases arise: (1) the length of the plane is less 
than LL' so that Eq . 3 . 30 becomes 

T"' \ (3.34) 

~~here TT " 0; and (2) the length of the plane is 

greater than LL so that 

LT = L- LL" (3.35) 

In this case TT is evaluated by Eq. 3.29 and then 

corrected for the nonzero upstream boundary condition. 
That is, the turbulent portion of the plane is equiv­
alent to a plane of length, LT, with an upstream 

boundary condition corresponding to the point of tran­
sition from laminar to turbulent flow. Moreover, by 
Eq . 3.29 TT varies as the 2/3 power of L. There-

fore, the combined characteristic time for the entire 
plane is 



T T + ( ~ )2/3T 
• L T LL + LT 

(3.36) 

The Reynolds number, as ·dcfined by Eq. 3.32, is 
for various values of L and P shown in Fig. 3.1A. 
The length of laminar flow, LL' from Eq. 3.33 is shown 

in Fig . 3.1B. For example, for an input rate of P • 
1.0 in./hr and a transition number of Rc = 500, the 

length of laminar flow from Fig. 3.1B is approximately 
270 ft . 

0 
0: 

P•I.OO inthr 

400 600 800 
Lenqlh of Plone ,l., II 

Intensity of Pulse Input, P , (inthrl 

1000 

Fig. 3 .1 . Reynolds number and length of laminar flow 
as functions of input rate and length of 
the plane . (A) Reynolds number Re' at 

cqui librium discharge. (B) Maximum length 
of plane for laminar flow. 

Using the length of laminar f l ow, LL, Fig. 3.2 

can be used to give an approximate solut ion to Eq. 
3.29 for TL (in sec). Now, if LL < L then the 

length of turbulent flow, ~· is greater than zero. 

With the positive value of LT, Fig. 3.3 can be used 

to estimate the characteristic time for turbulent 
flow, TT. Finally, the values of Lt.' ~· TL, and TT 
are entered in Eq. 3.36 to estimate the composite 
characteristic time. 

To test the above procedure, 10 simulation runs 
were made using the finite-difference program and 
assuming that equilibrium discharge was equal to 95 
percent of the input rate. Properties of the 10 
planes as well as the times are given in Table 3.1 . 
Test cases no. 2, 6, 7 and 8 are examples of transi­
tions to turbulent flow, while for the others flow was 
entirely laminar. The extent to which calculated and 
simulated characteristic times correspond is shown in 
Fig . 3.4. 
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Fig. 3.2. Characteristic time for laminar flow, TL' 
over a plane: (A) As a f unction of 
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1 eng1:h, L, and roughness coefficient, K; 
(B) As a function of slope, 5, and (C) As a 
func1:ion of intensity of pulse input, P. 
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Fig. 3.3. Characteristic time for turbulent flow, TT, 

over a plane: (A) As a function of length, 
L, and roughness coefficient, K; (B) As a · 
function of slope, 5; (C) As a function of 
transition Reynolds number, Rc' and (D) As 

a function of intensity of pulse input, P. 



Table 3. 1. Simulation Results for Equilibrium Times on Selected Planes. 

Length Intensity Cal culated Simul ated 
of of Pulse Characteristic Time to 

Test Plane Roughness Transition Input Time Equilibrium 
Case L Coefficient Slope Reynolds p T Te. 
No. (ft ) K s Number 

2S. 24 . . OS soo. 
2 250. 24. . OS 500 . 

3 100. 500 . . 10 soo . 
4 100. 500 . . IS 500 . 

5 250. 500. . 10 500 . 

6 250. 500. .10 250. 

7 250. soo. .10 500. 

8 250. 500. . 10 750 . 

9 2SO. 500. . 10 1000. 

10 25. 500 . . OS 500. 

*Lami nar and Turbulent Flow. 

1000 0 Laminar Orly, T • TL till 

0 Laminar and _Turbulent, T • TL + ( ~T) Tr 

750 

u 
! 
~ 0 

-o 
500 ~ 0 

0 
3 
E 

00 c;; 
9 

250 

19 

0 

00 250 500 750 1000 

Calculated T (sec) 

Fig 3.4. Comparison of simulated times to equilibr ium 
and calculated values for 10 t est cases. 

3.3 Storage at Eguilibrium 

ln addition to the characterist ic time derived 
above , the storage on the surface at equilibrium is 
proposed as a characteristic number. The reasoning is 
t hat this storage represents t ho overall system per­
formance at equil ibrium. The storage per unit widt h 
on a plane surface at equilibrium is 

s "HL e 
(3. 3 7) 

where H is the average equilibrium or steady state 
depth, and · L is the l ength of the pl ane. Consid~ 

er ing the dept h at an arbitrar y distance, x, from the 
upstream boundary, st eady state di schar ge is 

q(x) • a h (x)n (3.38) 
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(in. /hr) (sec) (sec) 

2. 0 67. 63 . 

2 .0 177. 170.* 

1.0 365. 356. 

1. 0 318. 308 . 

1.0 492. 488. 

l.O 607. S95." 

2 .0 385. 377. * 

2.0 322. 326.* 

2.0 310 . 302 . 

2. cr 185. 173 . 

.. 
where a and n have values corresponding t o the 
flow type at the point x. Solving Eq. 3.38 for the 
s t eady state depth with q(x) determined as in Eq. 
3. 26 f or an arbitrary X inst ead of L, the result is 

h (<) • [ .. :;, .-] ~ (3.39) 

for 0 s x s L. The average depth is then 

(3.40) 

where a possible transition from laminar to turbulent 
flow is account ed for by adopting t he proper val ues of 
a and n in Eq. 3.39. The resulting equation is 

( 

LL 

H • l h (x)dx + (3.41) 

where the length of laminar flow, LL, is determined by 

Eq . 3.33 . If LL is greater than or equal t o the 

length of the plane , L, then the second integral in 
Eq. 3 .41 is zero. 

To illustrate t he application of the average 
storage concept to specific planes, again consider the 
10 test cases given i n Table 3.1 . The average depth 
at equil ibrium dischar ge is calculated using Eq. 3.41 
for each of t he 10 cases. These results are summa­
r ized in Table 3.2. 

The relation between average dept h and depth at 
the downstream boundary is shown i n Fig. 3 .S. Fr om 
Eqs . 3. 39 and 3. 40 , the depths should be related by 
the factor n/(n+l) , t he coefficient due to integra­
tion, equal t o 0. 75 for laminar and 0.60 for turbulent 
f l ow. The cases wi th mixed l aminar and t urbul ent f l ow 
fall between these ext remes. The equil ibr i um storage 



Table 3.2. Summary of Storage at Equilibrium for Uniform Input to Planes with Kinematic Flow, 
for 10 Test Cases from Table 3.1 . 

Intensity Length of Flow Coefficient of Pulse Length Average Depth at Storage 
Test Input, of Plane Laminar Turbulent (l a Depth Downstream s 
Case p L LL Lr (Laminar) (Turbulent) H Boundary e 

(ft 3/ft) No. (in./hr) (ft) (ft) (ft) (ft) h(L) (ft) 

2.0 25 . 25. 44700. .0022 .0030 .056 

2 2. 0 250 . 130. 120. 44700 . 16.38 . 0052 .0079 1.290 
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Fig. 3.5. 
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0.005 0.010 0.015 

120. 

120. 

56 . 

12) 

0.020 
Equilibrium Depth at Downstream Boundary, 

h(L l , (ft) 

Relat ion between downstream boundary and 
average depths at equilibrium, uniform, 
constant input on planes. 

can be estimated from the equilibrium depth at the 
downstream boundary as well as from the average equi­
librium depth as derived above. 

4293. .0061 .0081 .611 

6440. . 0053 .0071 .533 

4293. .0083 .0110 2.072 

4293. 3.59 .0089 .0138 2.233 

4293. 5.08 .0113 .0173 2.818 

4293. 6 .22 .0106 .0151 2.643 

4293. .0104 .0139 2.610 

2147. .0061 . 0081 . 152 

of a plane in response to a pulse input (uniform and 
constant) of magnitude P. 

3.4 Kinematic Impulse Response 

As in the previous two sections, the intent here 
is to examine overland flow on arbitrary surfaces and 
to see how the characteristics of the surfaces are re­
flected in the flow characteristics. However, in the 
previous sections the analyses were restricted to 
equilibrium or steady state conditions. Is there a 
similar theory for dynamic conditions? The extreme 
contrast is the i mpul se response. A pulse input is an 
input of finite magnitude beginning at time zero and 
continuing at a constant rate. An impulse input is an 
input of finite depth occurring instantaneously. A 
pulse input is also known as a "step function" while 
an impulse input is also known as a "delta function . " 
In contrast with the linear impulse response, or in­
stant aneous unit hydrograph, the kinematic impulse 
response is nonlinear; i.e., the response varies with 
the magnitude of the impulse input. In spite of this, 
the nonlinear impulse response is proposed as an effi­
cient means of representing the combined effects of 
several factors in a functional form. The reasoning 
is that the nonlinear impulse response is a function 
characterizing a particular dynamic response of a com­
plex nonlinear system. By using the impulse input, 
the space and time variabilities of the input are 
eliminated. Thus the influence of the surface config­
uration is emphasized. 

The kinematic impulse response was used as a 
kernel function by Eagleson (1967) to allow superposi­
tion in a study of the influence of spatial vari abil­
ity of the rainfall. Harley, et al., (1970) obtained 
impulse responses for a single plane and derived a 
minimum sampling interval for the input in terms of 
the time of concentration. The following sections 
examine the kinematic impulse response for planes (see 
above references) and for surfaces described by second 
order (parabolic) equations. 

In Section 3. 2 characteristic time for a plane 
is derived and in this section equilibrium storage or 
characteristic depth which determines storage is de­
rive~. Both factors r eflect the hydraulic performance 

Recall the kinematic wave equations: 

~~ + aca:h> = q(x,t) (3.42) 
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and 

n-1 u = ah , (3.43) 

where the variables are as defined previous ly. lf 
Eq. 3.43 is substituted into Eq. 3.42 the result is: 

oh + n a(x)hn-1 oh = q - a' (x)hn at ax (3.44) 

where 

a' (x) = aa(x)/ox . 

An impulse input is equivalent to an initial condition 
of 

h(o) = h
0 

(3 .45) 

for the partial differential equation, Eq . 3.44 . 

3.4.1 Plane Surface 

For a plane surface, the equation for the slope, 
Eq. 3.9 is S(x)•= 5

0
, a constant . Evaluation of the 

coefficient a(x) reduces to the case of a as a con­
stant, so that a'(x) = 0 and Eq. 3.44 reduces to 

ah 
- + 
at 

n-1 ah 
nah ax = q. (3.46) 

To obtain a solution to Eq. 3.46, consider the 
equation of the characteristic defined by dx/dt. So 
we must first solve for h as a function of x . 

Take the total derivative of h with respect to 
time , which produces 

(3 .47) 

which is the same as the left side of Eq. 3.46, if 

dx _ hn-1 
dt - na . 

Therefore, 

d
dth = ~th + nahn-1 ah = q 

o ax 

so that from Eq. 3.49 

and f rom Eqs. 3.48 and 3. 50 

dh dh/dt - ___g_ 
dx = dx/dt - hn-1 

n(l 

which must be solved to obtai n h 
x. Rearranging Eq. 3. 51, 

which produces 

lnh = f ~ dx + ln cl 
nnh 

with h(x) as its solution. 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

as a function of 

(3 . 52) 

(3.53) 
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The sol ution to Eq. 3.53, h(x), can be 
substituted into Eq. 3.48 to give 

dx n-1 
dt = na(h(x)) 1 

with its sol ution t(x) as a function of x. 

(3.54) 

Before obtaining the impulse response, it is 
desirable to consider some.of its features qualita­
tively. As discussed pre.viously , the usual sequence 
of events for a pulse response is for overland flow 
to begin as laminar flow with transition to turbulent 
flow, if the flow depth reaches the transition depth 
for the given conditions. With an impulse input the 
situation is reversed. Flow begins with an initi al 
depth which may or may not exceed the transition 
depth . If it does, flow begins as turbulent and will 
revert to laminar flow somewher e on the recession. If 
the initial depth is less than the transition depth, 
the flow wi ll begin and remain laminar. This transi­
tion depth is 

h = (R v/a) 113 
T c 

which is compared with 
flow type. 

h 
0 

For an impulse input, q 
that Eq. 3.53 becomes 

ln h = ln c
1 

and 

h(x) = c
1

. 

(3.55) 

to determine the initial 

in Eq. 3.42 is zero, so 

(3.56) 

("3.57) 

For t s tc, the time of concentration or 

characteristic time defined earli er, it must be that 
c1 = h

0 
1 the uniform impulse input. l~i th this so lu-

tion1 Eq . 3.54 becomes 

dx 
dt = 

n-1 111Clh 
0 

(.3.58) 

and 

dt dx 
n-1 nah 

0 

(.3. 59) 

with solution 

t (x) X 
+ c2 n-1 nah 

0 

(3.60) 

which defines characteristics in the x-t plane as 
strai ght lines . 

To show how the above method is used in 
calcul ating the impulse r esponse, assume that only 
laminar flow exists. Furthermore, assume a pl ane as 
described in Tabl es 3.1 and 3. 2 as Test Case No. 5. 
Therefore, L = 250 ft; K = 500; S = 0 .10, and from 
Eq. 3.55 the transition depth is hT = 0.0112 ft . 
Thus, assume an impulse input of h

0 
= 0. 01 ft which 

insures laminar flow, then Eq. 3.60 takes the form 

t (x) 
X 

3ah 2 
0 

(3.61) 

·, 

,. 
' oj ,, 

q 
I 

I 

I 
i 

' ' 



where a i s computed by Eq. 3.20 and then, as in 
Table 3.2, a • 4293. ~herefore, 

t(x) = 0.776x, {3 . 62) 

which is 194 sec at the downstream boundary, or ~he 
time of concen~ration is t = 194 sec. Characteris­e 
tics for t his example are shown in Fig. 3.6. The 

300 

250 

• 
E 
i= 

Fig. 3. 6. 

150 

Distance x 1ft l 

Charac~eristics in x-t plane, (1) h =O.Olft, 
0 

x
0

• 0.0, (2) h
0
=0.01, x

0
• 100. ft, (3) h

0
= 

0.009 ft, x
0

=0 . 0. 

curve (I) is for x
0 

= 0 and h
0 

= 0.01 ft. All 

characteristics below this are straight and parallel 
for the same h

0 
but for different x

0 
values (see 

curve (2)). Curve (3) above, is for x
0 

= 0, but at a 

smaller depth (0.009 ft). If x • L, downstream 
boundary, then for h

0 
= 0.01 each x

0
, so that 0 s 

x
0 

s L, determines a point on the impulse response, 

between t = 0 and t = tc' as fo l lows: 

and 

t(h
0

,x) = 0.0000776{x-x )/h 
2 

0 0 

Q " 4293 h 
3 

0 

(3. 63) 

(3.64) 

For t > tc' each h less than h
0 

produces a point 

on the recession of the impulse response as follows 

t(h,x) = 0.0000776 x/h2, 0 ~ h S .01 (3.65) 

and 

(3 . 66) 
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Thus , Eqs . 3.63 to 3 .66 determine each point (t,Q) on 
the impulse response. rf t he flow were entirel y tur­
bulent, a similar procedure, with appropriate values 
of a and n, could be used to compute the impulse 
response. Values of Q in Eqs. 3.64 and 3.66 are in 

ft 3/sec- ft. To convert to in~hes per hour, i t is nec­
essary to multiply by 43200/L . Rather than assuming 
various va l ues of x

0 
in Eq. 3.63 and various values 

of h < h
0 

in Eq. 3.65 it is possible to expr ess the 

i mpulse response in terms of the time of concentra­
tion, tc' from Eq. 3 . 60 with x = L, and the impulse 

h
0 

(see Harley, et al., 1970). If discharge is ex­

pressed in cubic feet per second per foot of widt h, 
and 

L 

na h n-l 
0 

(3.67) 

then the impul se response for flow of a single t ype is 

{ 

n 
• a h

0 
, 

Q • 

a(_!:_) n~l, 
nat 

t > t 
c 

In inches per hour, the equation is 

{

(43200 . /L)ah
0

n, o 5 t 

Q • 
n 

(43200./L) a(n~t)O-T, t > t . c 

(3.68) 

(3.69) 

A relevant question is how to account for a 
transition from turbulent to laminar flow in the re­
cession when the flow is. initially turbulent. An 
abrupt transition (negative shock, see Woolhiser, 
et al . , 1971) is shown in Fig. 3.7A. The continuity 
equation for a region as shown over an interval , dt, is 

(3. 70) 

per unit width. Dividing by dt and with 4h as 
hT - hL, the result is 

(3.71) 

so that the shock velocity as shown in Fig. 3.78 is 

(3. 72) 

where T and L represent turbulent and laminar 
flow. In addition, if Eq. 3.72 must agree with simi­
lar calcul ations for laminar and t urbulent flow, t hen 

_h 1.5 h 3 
CLT T ·aL L 

hT - 1\ 
(3. 73) 

which is also equal to l (dx/dt) as calculated by 
n 

Eq. 3.48 for turbulent and laminar flow. Thus, by 
equating these values 

h " ,{ ~ hTl/2 
L j Z aL 

(3. 74) 



Depth 
h (x,tl 

Time 
l( x) 

Fig. 3.7. 

Laminar 
Flow 

tAl 

-i dx ~ 
T .. 
~h 

Distance x 

(8) 

Turbulent 
Flow 

Dist ance x 

Schematic description of abrupt transition 
from turbulent flow to laminar flow in the 
impulse response recession. (A) Schematic 
of abrupt transition from laminar to tur­
bulent flow; and (B) Schematic for charac­
teristic of the transition depth. 

If such a recessional transition to laminar flow 
is assumed, then after a sufficiently large time, the 
flow will be laminar. 

In anticipation of relating nonlinear and linear 
impulse responses, consider calculating moments o~ the 
nonlinear impulse response using Eq. 3.68 for lam1nar 
flow. To calculate the first moment tQ(t) must be 
integrated for a laminar recession. Consider the time 
fr,m beginning of laminar flow, and the integral 

f tQ(t)dt (3.75) 

tt 

which becomes 

.. 
f ta(...l_)3/2 

nat dt (3.76) 

tt 

for t t > tc' the time of concentration. 

Therefore, Eq. 3.76 is of the form 

15 

c f t-112 dt (3. 77) 

tt 

which is 

[zctl/2] :t (3. 78) 

and thus the moments do not exist. If the flow were 
entirely turbulent, then the first moment would exist 
but higher ones would not. Finally, moments could be 
calculated by approximating Eq. 3.75 by a summation 
with numerical val ues for t and Q(t). 

Figure 3.8 shows an impulse response beginning as 
turbulent flow with a transition to laminar flow for 
Test Case No. 5 (Table 3.1) with an impulsive input of 
magnitude 0.25 in., and the solution as given by Eq. 
3.69. Several properties of the nonlinear impulse 
response of a pl ane are illustrated in this figure. 

Test Case No. 5 
Impulse Input of h. •0.25 ln. :\.0 

~ "C 2.0 
::> 

• 
~ 
0 

'§ 
i5 1.0 

oL-----~-------L------~------L-----~ 
0 100 200 300 400 500 

Fig. 3.8. 

.Time lsecl 

Example of nonlinear impulse response 
starting as turbulent flow with a transi­
tion to laminar flow in the recession for 
a plane as described as Test Case No. 5 in 
Table 3.1. 

The initial rate is constant up until the time of 
concentration; then there is a portion of turbulent 
recession, followed by a transition to laminar flo~­
In contrast with the linear impulse response, phys1cal 
features of the system are reflected in the nonlinear 
impulse response. In the next sections the kinematic 
impulse response is used to examine the influence of 
slope shape upon overland flow. 

3.4.2 Parabolic Surface 

A parabolic surface is next examined. In this 
case the elevation of the surface is y(x) as given by 
Eq. 3.1 with a3 = 0, so that 

s (x) = y' (x) = a + 
1 

(3. 79) 

Eq. 3.44 becomes 

(3.80) 

'! 

' .. ., 
I 
'l 
I 
·I 

·I 

I 
I 

I 
i 

·. 



where 

(3 . 81) 

for laminar flow and 

a(x) 

(3 .82) 

for turbulent flow. Let cl • 8g/Kv and c z 

(8gR /K) 1/ 2 so 
2 

that c 

a(x) = cl (al + 2a2x) (3. 83) 

for laminar flow, and 

a(x) = c
2

(a
1 

+ 2a
2
x) 112 (3.84) 

for turbulent flow. The derivative of a is now no 
longer zero; in fact: 

for laminar flow, and 

for turbulent f l ow. 

Recall that the total derivative 

dh ah dx 3h -:::-- +-
dt ax dt at 

is equal to the left side of Eq. 3.81, if 

dx hn-1 
dt = no(x) 

and then 

dh 3h hn- 1 
dt = at+ no(x) 

as before. From Eq. 3.89 

dh n Cit " q - o 1 (x)h 

and then from Eq . 3.88 

dh/dt 
n 

dh q - o 1 (x)h -= __ ., 
dx dx/dt n-1 na(x)h 

which reduces to 

dh 9 

h = no(x}hn 
dx-~ dx. 

no(x) 

For an impulsive input q " 0, and 

dh = _ l. o I (ic) dx 
h n o (x) 

which has its sol ution, 

(3.85) 

(3.86) 

(3.87} 

(3.88) 

(3. 89) 

(3. 90) 

(3.91) 

(3.92) 

(3.93) 
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and thus, 

In h : - l. In o(x} + ln c 
n 3 

c3 
h(x) = --

1 

a(x)n 

(3.94) 

(3.95) 

where c
3 

must be evaluated. Require that h (x
0

) at 

time zero equal h
0 

the impulsive input. T:1erefore, 

c = o(x )n h 
3 0 0 

Substitute h(x) into Eq. 3.88 to produce: 

:~ = no(x) h(x)n-1 

which simplifies to; 

dt = dx 
n- 1 no(x) h(x) 

which has the solution 

t ( x) = J dx + c 
na(x) h(x)n-1 4 

(3.96) 

(3.97) 

(3.98) 

(3.99) 

where c
4 

must be evaluated. Subst ituting for h(x), 

as given by Eq . 3. 95, the result is 

I dx t (x) = __ ..:;;..;.;c_--:-
1 

+ c
4 

n-1 n nc3 o ( x ) 

(3.100) 

where c
3 

is given by Eq. 3.96. Now, solving for 

t(x): 

(3.101) 

for laminar flow, and 

(3.102) 

for turbulent flow. Let c
6 

= c4 + c
5

, and requjre 

that t(x
0

) = 0 so that 

-a(x )2/3 
0 

for laminar flow and 

a(x )4/3 
0 

for turbulent flow. 

(3 .103} 

(3 .104) 



Since a(x) is proportional to x for laminar 

flow and x112 for turbulent flow, t(x) is propor-
2/3 tional to x in Eqs. 3.~01 and 3.102. From Eq . 

3.95, h(x) is proportional to x-113 for bot h flow 
types. 

Before considering a specific example, impulse 
responses from parabolic surfaces must be examined 
qualitatively . Consider an impulse input so that the 
plane response is entirely laminar, and assume a simi­
lar but concave surface and the possibility that there 
might be a transition to turbulent flow . If attention 
is limited to flow at the downstream boundary, then 
the transition will occur if q/v exceeds Rc ' the 

transition Reynolds number. The procedure would be t o 
start with an x

0 
slightly less than L, the length 

of t he surface, and apply Eqs. 3.95 and 3.99 for de­
creasing x

0 
until the transition discharge is 

reached. At this point the equat ions for turbul ent 
flow would apply unti l the recessional transition . 

As examples, consider two parabolic surfaces with 
other properties as in Test Case No . 5 (Table 3. 1, 
Fig. 3.8). Slope profiles for these exampl es and the 
plane ar e shown in Fig. 3.9. For the concave surface 

- 10 

.:: 
0 

:::: 
0 

,; 20 
w 

30 

Distance x I ft l 

100 150 200 250 

Fig. 3.9. Slope profil es for uniform and parabolic 
surfaces. 

a 
0 

is 

0, a
1 

= 0.15, and a
2 

z - 0. 0002, so that Eq. 3. 79 

2 y(x) ~ 0. 15x- 0.0002x (3.105) 

and for the convex surface a
0 

= 0, a1 = 0.05, and 

a
2 

= 0.0002 so that 

y(x) = O.OSx + 0.0002x2 . (3.106) 

The impulse responses for the plane , concave, and 
convex surfaces are shown in Figs. 3.10 and 3.11 . 
Figure 3.10 shows the three hydrographs for initially 
t urbulent flow, and Figure 3.11 is for i ni tially lami ­
nar flow. The concave and convex surfaces are symmet­
rical (but opposite) in their deviations from the uni­
form slope plane (Fig . 3.9). For parabolic surfaces , 
such as shown in Fig. 3.9, a measure of the degree of 
departur e from a uniform s l ope (plane) is the differ­
ence in elevations. If L is the length of the sur­
face (in proj ection on a horizontal plane) and S

0 
is 

the average slope , then 
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0 

4.0 

Test Case No. 5 
Impulse Input of ho•0.25 in. 
F low Initially Turbulent 

0o~------10~0~----2~0~0~--~30~0----~40~0----~5~00 

Time (sec) 

Fig. 3.10. Impulse responses for uniform and 
parabolic slopes, flow initiallyturbulent. 

Test Case No.5 
Impulse Input of ho • 0.10 in. 

1.00 F low Entirely Laminar 

0.75 

oL------L----~~----~----~----~ 
0 250 500 750 1000 1250 

Time (sec) 

Fig. 3. 11. Impulse responses for uniform and 
par abolic s l opes, flow initially laminar. 

d(x) • S x - a x - a x
2 

0 l 2 
(3.107) 

is the departure as a function of distance. 

Now, in anticipation of using a similar statistic 
in modeling complex watersheds, consider the int-egr al 

of [d(x)] 2 divided by the integral of (S
0

x) 2. That is, 

L 

J [d(x)] 2 dx 

2 
1.0 -

0 (3.108) r 
L 

J 
52 

0 

2 
X dx 

0 



is the proposed statistic. The next step is to relate 
this statistic to characteristics of the impulse re­
sponse. 

From Eq . 3.68 the peak ~ischarge of the impulse 
response for a plane is 

(3.109) 

and for a concave parabola, 

q = a(o) hn 
p 0 

(3.110) 

(from Eqs . 3.95 and 

tc " t(L) as in Eqs. 

parabola the peak is 

3.96, for 

3.101 and 

at t = 0 

x
0 

= 0, and at t = 
3.102) . For the convex 

so that 

~ = a(L) h~ (3 . 111) 

where h
0 

is the magnitude of the impu l se input and 

a(x) is a function of x. Recall that a(x) is a 
function of s lope (assuming constant roughness) as 
given by Eqs . 3.83 and 3.84 

n/3 a(x) = c S(x) (3.112) 

where the coefficient c and exponent n depend upon 
the flow type. Now, the ratio of the peak of the 
impulse response from the concave surface to the peak 
of the impulse response from the plane is 

~(concave) 

q (plane) 
p 

a(o) hn 
0 S(O) n/3 

C-s-l 
0 

(3 .113) 

where S
0 

is the slope of the plane or the average 

slope and S(O) is the initial (maximum) slope of the 
concave surface . The corresponding ratio for the con­
vex parabolic sur face is 

q (convex) 
p 

a(L) hn 
0 S(L) n/3 

(- ) 
so (3 . 114) 

where S (L) is the slope of the convex surface at the 
downstream boundary (the maximum slope) . Therefore, 
the ratios then become (S IS ) for laminar flow and 

112 
max o 

(Smax/S
0

) for turbulent flow . 

The relation between these peak ratios and the 

corresponding values of r 2 is shown in Fig. 3 .12 . 
The circle points correspond to entirely laminar flow 
and the square points are for initially turbulent 
flow. Since n = 3. 0 for laminar f low and n = 1.5 
for t urbulent flow i n Eqs. 3.113 and 3.114 , the 
effects of slope shape upon the peak rate of runoff 
is more pronounced for l aminar flow. 

ln subsequent analysis, a cascade of planes will 
be used to model compl ex s l ope shapes. The statisti c 

of deviations, r 2, of the planes from the complex 
slope wil l be used as a measure of how well the slope 
is being modeled with respect to peak discharge of the 
i mpul s e response. 
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Relation between the st atistic of 

deviations, r
2

, and ratio of peak dis­
char ge of the impulse response from con­
cave parabolic and pl ane surfaces. 

3.4.3 Compl ex Surfaces 

To examine the influence of complex slope shape 
upon overland flow, assume that geometrically simpler 
surfaces than those found on natural hillslopes could 
reproduce some essential properti es. For example, 
parabolic surfaces were used to investigate concave 
and convex slope shapes . As discussed earlier , a 
cubic equation is a simple representation of a complex 
surface with both convex and concave portions. For 
cubic surfaces, the s·lope function is now quadratic. 
Equation 3.80 could be solved as in t he previous sec­
tion . However, because of the trade-off between 
analytic and numerical methods when the former becomes 
more involved and because of the necessity of exam­
ining a cascade of planes approximation to complex 
s lopes , numerical methods are used in this sect ion. 
The procedure is to use a cascade of planes and t he 
finite difference program for a kinematic cascade. 

Cascade of Planes Approximation. For example, 
consider Test Case No. 5 (Table 3.1) with a concave 
parabolic surface as the lower curve in Fig. 3.9. The 
procedure is to model the concave surface as a plane, 
a cascade of two planes, three planes, and so on. 

Then , t he goodness-of-fit statistic (r2 or l-r2) is 
compared with the corresponding impulse responses. 

Again , r 2 is defined by Eq . 3. 108, where d(x) is the 
difference between the cascade of planes and the con­
cave parabolic sur face. 

Table 3.3 presents the results of simulation, 
using t he finite difference program. The first four 
rows of the table are for laminar flow and the last 
four rows are for turbulent flow. Moreover, the 



Table 3.3. Surface Characteristics of the Cascade of Planes Approximations to Parabolic Surfaces Versus Peak 
Discharge of the Impulse Responses. Test Case No. 5 as Given in Table 3.1. 

Ratio of Peak Discharge 
of ImEulse ResEonses to: Logar ithmic 

Goodness Transformed Peak Discharge Peak from Peak from Par- Transformed 
of Fit Plane abolic Surface Ratios of Peaks Number of Statistic Statistic of Impulse 

yl y2 ln Y1 
ln Y

2 Planes in 2 2 5/12 ResEonse ~in./hr1 
Cascade r (1-r ) Concave Convex Concave Concave Concave Concave 

Laminar 

2 .9906 .1429 . 7124 .6440 1.659 1.106 .5062 .1007 

3 .9966 .09358 .6640 .6440 1. 547 l. 031 .4363 .0305 

4 .9982 .07150 .6445 .6440 1.501 l. 001 .4061 .0010 
.... 1.00 0.0 .6440 .6440 1.500 1.000 .4055 0.0 

Turbulent 

2 .9906 .1429 3.379 3.230 1.281 1.046 .2476 .0450 

3 .9966 .09358 3.268 3.230 l. 239 1.012 .2143 .0119 

4 .9982 .07150 3.232 3. 23Q 1.226 1.001 .2038 .0010 ... 1. 00 0.0 3.230 3.230 1.225 1.000 .2029 0.0 

*Infinite number of planes corresponds to the parabolic surfaces, see curves labeled "concave/convex" in 
Figs. 3.10 and 3. 11. 

impulsive inputs are identical to those used in 
producing hydrographs (Figs. 3.10 and 3.11). The 
columns labeled Y

2 
shows the ratio of the cascade 

of planes peak discharge to the parabolic surface peak 
dischar ge. For the convex surface two planes are suf­
ficient to duplicate the peak discharge from the para­
bolic surface because the discharge for an impulse 
response peaks at time ~ero and is thus a function of 
h

0 
and o at the downstream boundary. However, the 

hydrograph shape is not well reproduced. For the con­
cave surface, the peak discharge comes closer to the 
theoretical value as the number of planes in the cas­
cade increases. For example,_ a cascade of three 
planes has a peak discharge differing only by 3 per­
cent from the theoretical value for laminar flow and 
only about 1 percent for turbulent flow. There seems 
to be a linear relation between In Y

2 
and (1-r2) 5112 

for the concave cascades. 

As an index of how time properties are preserved 
in the cascade approximation to the concave surface, 
the time to peak discharge (equal to the time of con­
centration for the concave parabolic surface) is 
plotted in Fig. 3.13. Since time to peak, T , is un-

p 
defined for the impulse response, it is represented as 
0, tc/2, and tc; where tc is the time of concentra-

tion for a plane. These three points are shown in the 
vertical axis in Fig. 3.13. The horizontal line in 
Fig. 3.13 represents the time of concentration or the 
characteristic time for the parabolic surface. The 
percent errors in characteristic time for the two, 
three and four plane cascades are -22 , -14, and -11, 
respectively. For example of the overall correspon­
dence of the impulse response from a similar parabolic 
surface, hydrographs for a three-pl ane cascade and for 
the parabolic surface are shown in Fig. 3.14. The 
peak values, time to peak, and later recession values 
are in excellent agree~ent. 

While it is perhaps premature to discuss some 
implications of the above analyses due to the lack of 
extension of the above results to complex watersheds 
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Fig. 3.13. Rel ation between number of planes in 
cascade and time to peak of impulse re­
sponse as an approximate characteristic 
time. Test Case No. 5 as described in 
Tables 3.1 and 3.3. 

and for complex inputs, let us proceed to do so. 
First, it is established that overland flow is af­
fected by slope shape and that the effects on peak 
discharge and time characteristics of the impulse re­
sponse can be related to statistics of the surface as 
related to uniform slopes. Moreover, the impulse re­
sponse of complex slopes can be simulated by a cascade 
of planes. The goodness-of-fit of the geometric ap­
proximation via a cascade of planes can in turn be re­
lated to goodness-of-fit measures of the impulse re­
sponses. These basic relationships provide hints as 
to methods of analyzing complex watersheds, i.e . • they 
provide clues as to possible relationships between 
geometric and hydrologic goodness-of-fit statistics 
for complex watersheds. Before this development, how­
ever, responses to inputs other than impulse inputs 
must be examined. 
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3.5 Pulse Response 

In the previous section it was noted that as the 
anal ytic solution became more complex numerical 
methods became more attractive. The situation is 
similar when the input pattern becomes more complex. 
This sect ion presents an analytic solution for con­
stant, uniform i nput (pul se input ) to a plane. Numer­
ical methods are used for more compl ex input to planes 
and for pulse (uniform and constant ) input on concave 
slopes. 

3.5.1 Plane Surface 

As with the i mpulse response, the pulse response 
of a plane is well - known. For example, see Henderson 
and Wooding (1964) f or analysis and plots of pulse 
responses ; f or a general discussion, see Chapter 15 
of Eagleson (1970) , for discussi on in terms ·of non­
linear systems, see Dooge (1967) and Singh (1974) for 
plane and converging surfaces . 

The basic equation (Eq. 3.44) is solved in two 
parts; the rising and recession limbs. For a pulse 
input of duration equal to the time to equilibrium, T, 
the rising hydrograph is given as 

Q = Q (t/T)n e 

where T is given as 

T = a n 

(3.ll5) 

(3 .116) 

Jr since Qe = P{l/43200.), T is also given by Eq. 

3.29. Thus, from Eq . 3.115 the discharge on the 

rising hydrograph ,is related to t 3 for laminar flow 

and t 1 ' 5 for turbulent flow. The recession from 
equilibrium is given as 
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(~ - 1) (Q/Qe) ~ = a{t/T) (3.117) 

where Q is discharge; Qe i s the equilibrium 

discharge, and t is elapsed time after cessation of 
input. If the pulse input ends before time T then 
the response is called a "partial equilibrium ;e­
spo~se . " The rising hydrograph is given by Eq. 3.115 
unt 1l, D, the duration of input, then constant at the 
rate Q(D) for a per iod of time given by 

1 

t' • T n- 1 (Q(D)/Qe)n (Qe/Q(D)-1) (3 .118) 

until recession begins as described by Eq. 3.117 
starting from equi l ibrium at time D. 

3.5.2 Parabolic Sur face 

As described i n Section 3. 4. 3 , parabolic surfaces 
ar e modeled as cascades of planes for analysis using 
the f~nite difference program. As before , the good-

f f . i . 2 . ness- o - lt stat st1c , r , lS used to j udge the number 
of planes necessary . The procedure is to derive a 
re l ation as shown in Table 3.3 and Fig . 3. 13 and then 
use the runoff from the resulting cascade of planes as 
an approximation to the pul se response of the para­
bolic surface. Rather than examine pulse responses 
separately , t he r esponses of a plane and a concave 
cascade of three planes are considered. 

3 .5. 3 Comparison of Partial Equilibr ium Hydrographs 

The 10 test cases as described in Tables 3.1 and 
3.2 were used for comparison. Each plane was com­
pared with a concave cascade of three planes with 
similar characteristics, except the slope of the 
uppermost plane in the cascade had 1.5 times the aver­
age s l ope, the second plane had the average slope 
(same as the uniform plane described in Table 3.1), 
and the lowest plane had 0 .5 the average slope. Char­
acteristic times, T. were derived by simulation for 
each case. The resuits of this simulation are shown 
in Fig. 3.15 where corresponding times are shown for 
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cascade. Equil ibrium discharge as 
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the u~iform slope and concave slope surfaces. The 
differences are small, · about 5 percent. 

~imensionless rising hydrographs for a plane are 
shown in Fig. 3.16 as the solid lines. The upper 
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Fig. 3.16. Comparison of partial equilibrium 
hydrographs from uniform (plane) slopes 
and from concave cascades of three planes. 
Test Cases Nos. 1 to 10, as in Tables 3.1 
and 3.2. 

graph is for entirely laminar flow and the solid curve 
in the lower graph is for entirely turbulent flow. 
The circled points in the upper portion of Fig. 3.16 
are simulation results for the concave cascade with T 
as calculated from the uniform slope. The ratio of 
Gp/Qe for the cascade to Gp/Qe for the uniform 

slope is nearly 1.5 as predicted by Eq. 3.113, for the 
points at 0.25, 0.50, and 0.75 on the 0/T axis. The 
least squares fit to these points has an exponent of 
2. 77 as compared with the 3.0 value for laminar flow 
on a plane. The circled points in the lower portion 
of Fig. 3.16 are for those cases where there was both 
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laminar and turbulent flow on the plane for 0 = T. 
For 0/T values less than 0.5, flow was almost en­
tirely laminar; hence, the points fall below the line 
for turbulent flow. This suggests that under condi­
tions where flow becomes turbulent on the uniform 
slope but remains laminar on the cascade that peak 
discharge from the plane would exceed the peak dis­
charge on the concave surface. 

As in the case of i mpulse inputs, pulse responses 
for inputs of duration less than equilibrium are sig­
nificantly influenced by characteristics of the over­
land flow surface. For laminar sheet flow, the re­
sults are straightforward--concavity increases peak 
discharge. For mixed- flow type, if there is a dif­
ference in the flow types, peak discharge from the 
concave surface can be less than or greater than the 
corresponding peak discharge from a plane. 

3 . 6 Response to Complex Input 

As used here, complex input means rainfall excess 
that can vary in time and space. If the input varies 
i~ time but not in space it is uniform, varying. If 
it varies in space but not time, it is nonuniform, 
constant. Finally, if the rainfall excess varies in 
t ime and space, it is varying, nonuniform. 

If the above concepts of complex input are 
considered in light of laminar and turbulent flow, as 
well as uniform slope and complex slope su'rfaces, the 
problem becomes complex. This section will consi der 
a specific example to accomplish two objectives. 
First, to demonstrate cognizance of the problems in 
assuming uniform constant input to a plane surface, as 
representative of all overland flow situations. 
Second, to illustrate the power of simulation and to 
suggest a procedure for simulation studies to sort out 
the influence of the various factors. 

This discussion is limited to two input patterns, 
as shown in Fig. 3.17 . In the upper 1 portion of t .he 
graph, P 

1 
= 0. 5 P and P 2 = 1, 5 'If, Jwhere P is the 

average rainfall excess rate. In the lower portion of 
Fig . 3.17, P1 = 1.5 P, and P2 = 0.5 ~- For example, 

consider Test Case No. 5 as described in Table 3.1 . 
The average rainfall excess ~. is 1.0 in./hr for a 
duration equal to the time to equilibrium. 

Overland flow hydrographs corresponding to the 
input patterns shown in Fig . 3.17 are shown in 
Fig. 3.18. For these hydrographs the average input. 
rates are equal as are the durations. There is a 
difference in the rising portions of the hydrographs 
and in the peak discharge which in a qualitative 
sense, are l arge due to the large variations in the 
input-variations in rate and to the large time inter­
val, D/2, as compared with the duration. 

Every hydrologist seriously considering surface 
runoff on natural watersheds is aware of space-time 
variability of rainfall and rainfall excess. In spite 
of this, spatial variability of rainfall excess and 
the resulting runoff are described as "partial area 
response" or some other term which suggests a new con­
cept. The concept is not new nor does it require spe­
cial attention. Models which admit distributed param- ' 
eters and distributed input implicitly and explicitly 
account for this concept. For exampl e, just as a cas­
cade of pl anes can adequately represent a complex 
slope, the number of planes can be increased--each 
with a different rainfall excess--to account for 
spatial variability of rainfall excess. 

'' 
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Chapter IV 

RUNOFF FROM COMPLEX WATERSHEDS 

4.1 Geometric Simplification 

The term "compl ex watershed" as used here denotes 
situations where a one-to-one correspondence between 
geometrical elements in the model and in the real sys­
tem cannot be maintained. Thus, the term connotes 
overland flow over natural surfaces and open channel 
flow in natural channels as opposed to hypothetical 
flow situations. 

Before more involved discussions of 
simplification techniques, the reasons for geometr ic 
simplification are discussed. Geomet ric simplifica­
tion is the substitution of a rather simpl e geometry 
for a more complex one; i.e., ·a complex watershed is 
modeled as a simple cascade of planes and channels . 
To model surface runoff from a compl ex watershed 
(i .e. , to formulate and solve the equations describing 
the process) one must assume a simpl ified geometry. 
Moreover, there is a tradeoff between network complex­
ity and accuracy, on the one hand, and computational 
ease and data requirements on the other. Finally, to 
sort out the influence of specific components within 
the system, these components must be isolated and 
computationally separate enough to allow sensitivity 
analysis. Assuming the need to adopt simplified 
geometric representations of complex watersheds, now 
it is possible to examine techniques for and conse­
quences of such simplifications. 

4.1.1 Characteristics Which Are Preserved 

In adopting the kinematic cascade model for 
surface runoff, several watershed characteristics 
should be preserved. A watershed characteristic is 
preserved if its value remains unchanged in the sim­
plified geometry. As discussed in the Introduction, 
watershed area is the single most important geomorphic 
parameter. To preserve mass continuity, watershed 
area must be preserved. Also, nearly all geomorphic 
characteristics are related to area. The length and 
equivalent (Gray' s) s lope of the main channel is pre­
served. By fitting planes by least squares, the 
average watershed slope (as calculated from coordinate 
data) is also preserved. The total relief, average 
elevation and hypsometric integral may be nearly pre­
served or slightly distorted. Finally, by preserving 
the above characteristics , the potential energy is 
nearly preserved. 

Suppose that some of the above geomorphic 
parameters (see column 1 of Table 4.1) were not pre­
served in the surface runoff model. ~fany peak dis­
charge equations have been developed, and most of them 
contain area. For example, Jarvis (1926) plotted 

A1/ 2 versus peak discharge for a large number of 
drainage basins. The rational formula is used for 
estimating peak discharge as 

Q • CIA (4.1) 

where C is a coefficient, is rainfall intensity, 
and A is drainage area. Thus, a misrepresentation 
of the area is likely to result in errors in runoff 
estimates . As shown by Gray (1961) and confirmed by 
Murphey et a l . , (1974) the lengt h and slope of the 
main channel are correlated with hydrograph time char­
act er istics . As shown by Hickok et al., (1959) aver­
age watershed slope (along with other geomorphic pa­
rameters) is important in estimating lag time. 
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Finally, if the total relief, average elevatio~ and 
hypsometric. integral are not preserved then neither is 
the potential energy of a uniform input to the 
watershed. 

4 . 1.2 Some Characteristics Which Are Distorted in the 
Simplified Geometry 

The third column of Table 4.1 is a list of some 
geomorphic -parameters which are distorted i n tllle sim­
plified geometry. Stream order and drainage density 
are not preserved in modeling complex watershees. 
However, it may be possible to preserve stream order, 
but by modeling only a portion of all streams, the 
drainage density may not be preserved. The effects of 
a modified drainage density wi ll be discussed ln de­
tail later. Topographic roughness will always be dis­
torted in fitting planes to irregular coordinate data. 
If complex slopes are poorly modeled by a plane, then 
the measure of topographic roughness will be l arge. 
If an irregular area containing many channels is mod­
eled as a plane, then the topographic roughness will 
not be preserved nor will the drainage density be pre­
served. In the kinematic cascade model used here, 
channel cross sections are assumed trapezoidal or tri­
angular. However, i n the absence of detailed data, 
assumptions can be made based upon relationships be­
tween hydraulic factors and channel geometry. A pri­
mary source in this area for ephemeral streams is the 
paper by Leopold and Miller (1956) who present exten­
sive data- -photographs, tables, and graphs. An ex­
cellent review of the state-of-the-art and a good 
bibliography are presented by Chitale (1973). 

Given observed rainfall-runoff data and an 
assumed model, it is possible to derive optimal rough­
ness coefficients. Any errors in the data as well as 
geometric distortions will be reflected in these esti­
mated roughness coefficients. Therefore, it is rea­
sonable to expect distortions in estimated (optimized) 
roughness parameters when there are distortions in 
other watershed characteristics. A detailed analysis 
is postponed until after the effects of distortions in 
channel characteristics and in drainage density are 
examined. 

Before considering the effects of the above 
distortions, why distortions are needed must be dis­
cussed. From Eq. 1.12, the number of first order 
streams seems to i ncrease with the bifurcation ratio 
to a power of u-1 , where u is the basin order. For 
higher order basins, the number of streams becomes so 
large that the trade-off (previously discussed) favors 
distorting the total number of channels and thus the 
drainage density. That is, there is a point where the 
return from including more channels in the model is 
overcome by the added cost and effort of doing so. 
How this point is quantified is a major portion of 
this study and is discussed and analyzed subsequently. 

4.1.3 Effects of Distortions 

Effects of distortions considered here ar e 
limited to those which are reflected in the surface 
runoff. For example , in Chapter III the influence of 
over land flow- surface shape upon peak discharge was 
examined in detail. Slope shape affects the magnitude 
and time of occurrence of peak discharge of the over­
land flow hydrograph. Since slope shape was analyzed 
in Chapter III and drainage density is a measure of 



Table 4.1. Some Watershed Characteristics Affected by Geometric Simplifications 
Adopted in Model Formulation in This Study. 

Characteristics 
Essentially 

Preserved 

: Characteristics 
Slightly 
Changed 

Characteristics 
Distorted 

Area F (x), 

Main Channel Length H, 

Hypsometric curve 

Total relief 

u, Stream order 

Drainage density 

Main Channel Slope h, Mean watershed elevation Topographic rough­
ness 

Mean Watershed Sl ope Hypsometric integral C, K, Hydraulic rough­
ness coeffi­
cients 

U, Potential energy Channel character­
istics such as 
cross sections , 
concavity, etc. 

stream order and topographic roughness, the following 
discussions will be limited to the effects of distor­
tions in channel characteristics, drainage density, 
and hydraulic roughness coefficients. 

Effects of Distortions in Main Channel 
Characteristics . If the channel cross section is 
adequately represented, then the depth area relation 
for the stream is preserved. If the cross section is 
not preserved, then the distortions will be reflected 
in the depth-area and depth-discharge relations. In 
situations where such data are available, the cross 
sections are modeled as accurately as possible; when 
data are not available it is necessary to assume a 
cross-sectional configuration. 

A common conception (e.g. Eagleson, 1970) is that 
in the absence of lateral inflow, kinematic flood 
routing results in a steepening of the hydrograph 
rise, a lengthening of the recession, but no attenua­
tion of peak discharge. The routed hydrograph does 
change shape as described above and there is a de­
crease in peak discharge. As an example, consider a 
rectangular channel with the impulse response of a 
plane 250 ft long by 100 ft wide as the input hydro­
graph at the upstream boundary. This input hydrograph 
is described in Table 3.1 as Test Case No. 5 and is 
shown in Fig. 3.8. The method of characteristics as 
described in Chapter III is used to route this hydro­
graph in a channel. The original calculations were 
with dimensionless variables, but for this example 
assume a 1500 ft long channel with a 25 ft wide rect­
angular cross section. The assumed channel has an 
average slope of 0.02 and a Chezy C of 40. 

At the upstream boundary there is an abrupt rise 
to rate of Q

0 
at time zero. The discharge is then 

to t • tc' the time concentra­

The characteristic for this con-
constant from t : 0 

tion of the plane. 
stant depth is 

dx n-1 
dt=anh 

c 
(4. 2) 

where the subscript c denotes characteristic. 
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Watershed shape 

The corresponding equation for the shock is 

(4. 3) 

where the subscript s denotes shock. Consider the 
characteristic originating at x • 0 and t = tc' 

that is at the upstream boundary at the end of the 
period of constant discharge. Since this characteris­
tic is n-times faster than the shock, the two will 
intercept at a point (ts' xs). The situation is as 

follows: (1) for (t, x) less than (ts ' xs) there is 

no reduction in peak discharge but the duration of 
constant discharge i s decreasing, (2) for (t, x) be­
yond (t , x ) there will be a reduction in peak dis-

s s 
charge. This reducti on in peak discharge is denoted 
decay by shock . 

Simultaneous solution of Eqs. 4.2 and 4.3 for xs 
yields: 

x "' ahn- l t 
s 0 s 

(4.4) 

where h
0 

is the initial depth of the upstream bound­

ary. The solution also yields ts as three times 
t , if n = 1.5. Therefore, 

c 

is the solution for x s 
(t , x ) the cumulative 

s s 
total volume of storage 
D. A. Woolhiser): 

tl 

(4.5) 

For points (t
1

, x
1
) beyond 

inflow can be equated to the 

(following a suggestion by 

xl 
J Q(s)ds 
0 

b J h(s ) ds 
0 

(4.6) 

where Q(s) is the inflow hydrograph at the upstream 
boundary; h(s) is the depth in the channel, and b 

I 
l 



\ 
\ 

is the width of channel . The solution to Eq. 4.6 
gives x1 as a function of t

1 
> t

5
; h(x) is then a 

function of x1, and t 1, and final l y the peak dis­

charge is ~ as a funct}on of h(x). The procedure 

i s to select a value of t 1, then solve for x1, h(x), 

and ~· This procedure is followed for the example 

discussed above. The results are shown as the solid 
line in Fig. 4.1. The channel properties for this 
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Fi g. 4.1. Routed peak discharge as a function of 
distance for various channel confi gurations 
(as described in Table 4.2). 

example are summarized as the fir st row of Table 4.2. 
Numerical solution for the same example (Channel Con­
figuration No. 1) is shown as the dashed line in 
Fig. 4.1. At x = xs = 853 ft, the numerical solut ion 

seems to be about 9 percent in error . For distances 
less than xs' the errors are somewhat less, but for 

x > x the errors can be about 10 percent. There-s 
fore , for all values of x, numerical errors are pres­
ent . However, the numerical results agree with ana­
lytic results in predicting the magnitude of the decay 
by shock. 

The effects of concavity in channel slopes are 
examined by simulation. The simulation resul ts are 
for three channel segments in cascade as described in 
Table 4.2. These results are also shown in Pig. 4.1. 
Rows 2, 3, and 4 of Table 4.2 describe the channel 
configurations with time to peak and peak discharge at 
the downstream boundary shown in the last two columns . 
Time to peak increases and peak discharge decreases 
as concavity increases . These peak discharge values 
are shown a s the circ l ed poi nts in Fi g. 4.2. The 
last three rows of Table 4.2 correspond with uniform 
s lope channe l s wi th equi valent slope by Gray' s method. 
Peak discharge values at the downstream boundary for 
these equivalent s l ope channels are shown as the 
square points i n F.ig . 4. 2. 

If the downstream channel profile is concave (as 
described by a parabola with the same relief and thus 
the same average slope) and other factors are similar, 
then the distance to the beginning of decay by shock 
is less than in the uniform slope channel. For exam­
ple, for a parabolic slope with the initial s lope 1.5 
times the wtiform slope and the final slope 0.5 times 
the uniform s l ope , the distance xs is 690 ft or 

about 80 percent of the value for a uniform slope 
channel. This value is consistent with the numerical 
results . 

Assessing t he effect s of dist ort ions in 
downstream channel concavi ty is possible when using 

Table 4.2. Channel Characteristics and Corresponding Peak Discharge Values 
for the Routed Impulse Response* in the Assumed Channels. 

Channel Total Equivalent Slopes for Index of Routed Impulse Response at 
Configuration Length of Channel Channel Se~ents Concavity Downstream Bowtdait 

Number Channel Slope 51 52 53** for Entire Time to Pe 
(ft) s Channel Peak Discharge 

c 
Ic (min) (cfs) 

1 1500. . 020 .020 .020 . 020 1.000 24 . .91 

2 1500. .0178 . 025 .020 .015 .889 25 • .84 

3 1500. . 0156 . 030 .020 .010 .778 26 . .74 

4 1500. .0133 . 035 .020 .005 .667 30 • .59 

2A 1500. . 0178 . 0178 . 0178 .0178 1.000 26 • .88 

3A 1500. .0156 . 0156 .0156 .0156 1.000 27 . .85 

4A 1500. . 0133 . 0133 .0133 .0133 1.000 29 . .81 

• Input to upstream end of channel reach is the impulse response of a plane, Test Case No. S as described in 
Table 3.1 and Fig. 3.8, with no lateral inflow. 

** 
53 is the slope of the channel at the downstream boundary. 
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for a uniform slope channel versus index of 
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kinematic flood routing. The dis tances involved 
may be large, but peak discharge of the routed 
hydrographs can decay by shock in the absence of 
lateral inflow . Concave channel profiles can result 
in increased time to peak and decreased peak dis­
charge with respect to corresponding uniform slope 
channels.. The magnitude of the changes in routed peak 
discharge is related to the index of concavity as 
shown in Fig . 4.2. Moreover, the differences between 
the two curves in Fig. 4.2 represent the errors in 
using an equivalent or weighted slope . 

Effects of Distortions in Drainage Density. The 
previous example of flood routing in the absence of 
lateral inflow is not suited for inference in complex 
channel networks with lateral inflow as overland flow 
and tributary flow. As such channel networks fast be­
come unmanageable in terms of detailed simulation and 
sensitivity analyses , drainage density is used as a 
single number representing many complex interactions 
of the varying factors. The veracity of this assump­
tion is tested using simulation results and observed 
data. 

Simulation Results. As an example of how 
distortions in drainage density affect the surface 
response, runoff from a simplified watershed is simu­
lated using the finite difference program. The pro­
cedure is to simulate runoff from a given watershed 
with fixed area, roughness , slope , etc., but with 
changing drainage density. Since nearly all other 
watershed characteristics do not change, differences 
i n surface response can be related to differences in 
drainage density. The three test configurations are 
shown schematically in Fig. 4.3. With respect to 
these configurations, the first is a single plane with 
zero drainage density, the second has two planes and 
one channel (Wooding model) with a drainage density of 

0.005 ft/ft2, and the third configuration has three 
channels and six lateral inflow-planes with a drainage 

density of 0.007 ft/ft
2

. The third configuration is 
assumed as the true watershed with the other two as 
simple approximations. Impulse responses for the 
three configurations are shown in Fig. 4.4, where the 
number 1 refers to configuration number 1 as in 
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of the effects of distortions in drainage 
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Fig. 4.4 . Impulse responses for the three test 
configurations as shown in Pig. 4.3. 

IS. 

Pig. 4.3, 2 refers to configuration 2, and 3 refers to 
the impulse response from configuration number 3. 
There is a large difference in these hydrographs, par­
ticularly the difference in hydrographs labeled 2 and 
3. A decrease of approximately 29 percent in drainage 
density resulted in a 26 percent decrease in peak dis­
charge. Peak discharge values for this example are 
plotted against drainage density as the circled points 
in Fig. 4.5. Although this is a simple example (the 
next section deals with data from natural watersheds), 
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considering its implications can aid in determining 
the like~y effects of distortions in drainage density. 

If the relative porportion of overland flow to 
open channel flow influences the characteristics of 
surface runoff, then it should be apparent in the im­
pulse responses of systems with different proportions. 
Moreover, drainage density is an index of this propor­
tion. As seen in the above example, likely there is a 
strong relation between hydrograph characteristics 
(peak discharge, time to peak, etc.) and drainage den­
sity. The configuration with the highest drainage 
density, had the shortest time characteristics and the 
highest peak discharge. Since open channel flow is 
relatively faster t han overland flow, the results are 
as expected. As shown in the next section, other 
effects of changes in drainage density suggested by 
the existence of laminar and turbulent overland flow 
are in fact supported by data from natural watersheds. 

Analysis of Observed Data. The effects of 
varying drainage density from watershed to watershed 
are studied using observed data from natural water­
sheds in conjunction with unit hydrograph theory. 
Nash (1957) published a paper proposing a functional 
form for the instantaneous unit hydrograph (IUH) as 

h(t) = _1_ (!.)N-1 - (t/K) 
Kr(N) K e (4. 7) 

where h(t) is an ordinate of the IUH at time t, K 
is a linear reservoir constant, and N is a param­
eter. Nash also proposed a conceptual model as a cas­
cade of N linear reservoirs of time constant K. 
What is special about Nash's paper and the resulting 
model (Eq. 4. 7), (hereafter called the "Nash model") 
is that it presented an equation and a conceptual mod­
el. Although the analogy has undoubtedly been over­
worked, e.g. to require that N be an integer, the 
model re11111ins one of the foremost in unit hydrograph 
applications. The lag time or first moment of the 
IUH is 

T • NK 
L 

(4.8) 

and the time to peak of the IUH is 

{N-l)K (4.9) 

where N and K are as described above. 

Importance of the lag time in unit hydrograph 
theory was explained by Dooge (1973, p. 202): "One 
of the most important factors in surface water hydrol­
ogy is the delay imposed on the precipitation excess 
by the action of the catchment . If the parame·ter rep­
resenting this delay is to be useful for corre·lation 
studies, it should, if possible, be independent of the 
intensity and duration of rainfall. In the case of a 
linear system--and unit hydrograph theory assumes that 
the system under study is linear- -the time parameters 
are independent of the intensity of precipitation ex­
cess, but only the lag time (tL) has the property of 

being i ndependent of both the intensity and du~ation. 
Accordingly, with the hindsight given by the systems 
approach, we can say that only the lag time should be 
used as a duration parameter in unit hydrograph 

.. studies." In extending the above concepts, these 
writers and R. S. Parker used the lag time, particular­
ly its variation with rainfall-excess intensity, as a 
measure of nonlinearity. This study in nonlinearity 
was a concurrent and complimentary study (see Parker, 
1975) to the work reported here. The experimental 
data were taken before this study so that the studies 
were concurrent only in the last phase of the analysis 
as described here. 

27 

Numerous investigators have examined the 
influence of drainage density upon surface runoff. 
For example, Hickok et al., (1959) related lag time 
(defined as the time from the center of mass of the 
rainfall to the hydrograph peak) to area, slope, and 
drainage density. The lag time and drainage density 
were found to be related with lag time proportional to 
drainage density to the approximately -0.3 power (see 
their Eqs. 1 and 2, p. 610). Therefore, a variat ion 
in lag time with varying drainage density suggests a 
direct effect of distorting drainage density in mod­
eling surface runoff. However, there have also been 
numerous studies (e.g. Minshall, 1960, and discussions 
of his paper) indicating a variation in lag time with 
variations in intensity because hydrologic systems are 
in fact nonlinear. Thus, variations in lag time with 
drainage density and intensity of rainfall excess must 
be examined. 

The principal source for data used in the 
following analyses is the Drainage Evolution Research 
Facility (DERF) at Colorado State University. This 
unique facility is described in detail by Parker 
(1975) so that only a brief de~cription is given here. 
The DERF is essentially a laboratory facility (30 ft 
by SO ft by 6 f t) filled with a soil which can be 
sprinkled at four intensities from 0.5 and 2.5 in./hr. 
The area of this experimental watershed is approxi-

mately 1240 ft 2 or 0.0285 acre. During 1971 rainfall , 
runoff, and geomorphic or network data were taken. As 
explained in detail by Parker (1975) , the facility was 
open and exposed to wind during that year and the data 
taken contained errors. In 1972 the facility was en­
closed in a building which eliminated the effects of 
wind and thus many of the errors in esti~ting the 
rainfall input. For this reason the 1972 data form 
the basis of the analyses but 1971 data are also used 
with the understanding that errors are likely. There­
fore, except where noted, the following discussion 
refers to the 1972 data. 



The basic data of interest here are 
rainfall-runoff data from the DERF along with the cor­
responding geomorphic parameters. The procedure was 
t~ sprinkle . the facility for long periods until a par­
tlcular drunage density was :obtained and then to re­
cord ~ series o~ hydro graphs. Rainfall was applied in 
a ser1es of l -m1n pulses for each of four intensities. 
Geom~rphic data were then taken and the surface was 
again sprinkled for several hours to change the chan­
nel networ~ before a new series of hydrographs were 
recorded. The 1972 data are from four networks with 

- i~creasing, then decreasing, drainage density. A 
f1fth network was the fourth network which was covered 
with a plastic sheet. The primary purpose was for 
calibration, ~ut the plastic covered surface provided 
data from a d1fferent surface with the same overall 
configuration but drastically reduced drainage densi­
ty. Throughout the 1972 experiments drainage density 
changed but total relief remained constant. In con­
trast, the 1971 DERF data were taken on networks with 
changing relief and drainage density. 

As discussed above, all hydrographs from the 
DERF were the result of 1-min duration rainfall puls­
es. The changes in lag time with changes in rainfall 
(input) intensity provide a way of analyzing the de­
gree of nonlinearity of the system. Systematic de­
~artures £:om independence of the lag time with chang­
lng intens1ty reflect the nonlinearity. 

As lag time is a characteristic time, it can be 
related to input intensity in the following form 

T • ai - b 
L (4 .10) 

where TL is the lag time; a is a coefficient, b is 

an exponent, and i is intensity of the rainfall ex­
cess. If the system were linear then b would be 
zero producing a constant lag time. Since in laminar 
flow the depth and local mean velocity are related 
with an exponent of 2.0 and in turbulent (Chezy) flow 
~he exponent is 0.5, similar values might be expected 
1n Eq. 4.10. Therefore, if the rainfall excess­
surfa-ce runoff process is nonlinear, b should be 
greater than zero. Moreover, its magnitude is a mea­
sure of the degree of nonlinearity in t he process. 
Values_of i in Eq . 4. 10 were estimated once using 
the f-lndex (an average) for infiltration and once 
again using the Philip (1957) infiltration equation. 

Values of a and b for the DERF data are 
shown in Table 4.3 and Fig. 4.6. The other data 
shown will be discussed later . . The first three col­
umns of Table 4.3 identify the data and describe the 
watershed. The next four columns give values of a 
and b from Eq . 4.10 for both methods of estimating 
rainfall excess. Lag time versus intensity is plot­
ted in the lower portion of Fig. 4.6 for the 1972 
data. 

The coefficient, a, tends to increase as drainage 
density decreases. For the 1972 DERF data the regres­
sion equation relating the coefficient a and drain­
age density for the ''average" rainfall' ex~ess is: 

a • 3.97 - 5.83 Dd (4.11) 

with a coefficient of determination R2 = 0.98, while 
for all of the DERF data (1971 and 1972 combined) the 
corresponding equation is 

28 

100 

lalh"'-'"1 
r..cllllr 

Fig. 4.6. Lag time, TL, of Nash model as a function 

of intensity of rainfall excess. 

a • 3.01 - 3.38 Dd (4.12) 

with R
2 

• 0.65. 

For the 1972 data, the exponent b seems 
constant, except for the DERF-5, the plastic-covered 
surface which has a higher exponent. The high value 
of b = 0.66 for the plastic surface may indicate a 
change in the relative proportion of laminar-overland 
f low with respect to turbulent flow. The values of a 
and b are uniformly smaller for the cases where 
"average" rather than "maximum" rainfall excess data 
are used (Table 4.3) . This suggests that using an 
average rainfall excess rate may result in under­
estimating the degree of nonlinearity. 

Two naturai watersheds were chosen to test the 
results indicated by analysis of the DERF experimental 
data. The two watersheds are similar with respect to 
drainage area and relief (see rows labeled SW-17 and 
2-H in Table 4.3) but no well- defined channel system 
exists on the Riesel, Texas watershed (SW-17) while 
there is a definite channel system on the Hastings, 
Nebraska watershed (2-H) (see U.S.D.A., 1963, 
pp. 42.28-5 and 44.6-3). Values of a and b in 
Eq. 4.10 are also shown in Table 4.3 for these two 
watersheds. The solid lines in the upper portion of 
Fig. 4.6 are for these watersheds and rainfall excess 
estimated using Philip's equation. The corresponding 
dashed lines are for rainfall excess estimated using 
the ~-index. As in the data from the experimental 
facility, lag time decreases as rainfall excess­
intensity increases, and the exponent and coefficient 
in the equation relating intensity and lag time are 
smaller when the ~-index is used. 

Finally, some previous results are examined with 
the intention of seeking empirical support or refuta­
tion. A well- known example of nonlinearity in runoff 
from small agricultural watersheds was presented by 
Minshall (1960). In his Table 2 on page 29, he pre­
sented data used to derive unit hydrographs for W-1, 
Edwardsville, Il l inois. Time to peak and peak dis­
charge of the derived unit hydrographs were shown in 
Fig. 5 of his paper, and of these data he plotted five 
selected unit hydrographs in his Fig. 6. These five 
storms were chosen to represent a wide range of inten­
sity. The intensity values presented were for total 

' I 
~ 



Table 4.3. Summary of Relation Between Rainfall Excess Rate and Lag Time. 

Rainfall Excess as the: 

Drainage 
Area 

Average Rate 
(in . /hr) 

(from +-index) 
Data Set (ft2) 1 

Drainage 
Density 

(ft/ft
2
)

2 

Maximum Rate 
(in./hr) 

(from Philip Eq.) 
Coefficient Exponent Coefficient Exponent Source of Data 

1972 DERF-1 
't '' -2 
'' '' -3 
'' '' -4 
'' '' - 5 

1971 DERF-1 
'' '' -2 
I I I I -3 
I I I I -4 

SW-17 

2-H 

W-1 

W-1 

W-1 

1. 24xl03 
II 

II 

I I 

I I 

1. 24xl03 
II 

II 

II 

1.302xl0
5 

1.48lxl05 

1.185xl06 

1.185xl06 

1.18Sxl0
6 

1ft 2 = 0.0929 m • 

2ft/ft2 ~ 3.281 m/m2• 

.48 

.50 

.46 

.37 

.099 

.35 

.54 

.63 

.75 

4 

.0022 

.0014 

.0014 

.0014 

a b 

1.32 .37 
1.17 .41 
1.62 .42 
1. 81 .42 

3 

1.19 .22 
1.06 .21 
1.12 .36 
1.20 .35 

71.7 .47 

17.6 .21 

29.35 .25 

28.95 
.55 

58.35 .60 

a b 

1.19 . 29 
1.03 .33 
1.44 .34 
1.60 .36 
3.44 .66 

1.13 .19 
.99 .17 

1.03 .32 
1.13 .34 

30.9 .29 

13.1 .12 

23.2 .10 

19.2 .45 

37.2 .49 

Parker, (1975) 

'' 
II 

I I 

II 

Parker, (1975) 
I I 

I I 

' ' 
USDA , (1963) 

I I 

Minshall, (1960) 
Table 2 

Minshall, (1960) 
Fig. 6 

Amorocho, (1961) 
Eq. 14 

Dooge, (1967) 
Eq. 38 

~aximum and average rates are the same for plastic surface. 

4No well-defined channels . 

5values are for rainfall, not rainfall excess. The equation gives time to peak, not lag time , except for 
Dooge (1967), who uses lag time. 

rainfall , not rainfall excess as he stat ed on p. 31. 
Minshall ' s conclusion that using rainfall excess did 
not improve the correlation for his data was confirmed 
by using rainfall excess estimated by means of the 
data he presented and the +-index. Values of a and 
b as in Eq. 4.10 but with time to peak are given in 
Table 4.3 in the last three rows labeled W-1. For 
total rainfall b • 0.25 while for average rainfall 
excess rate b • 0.10 using all 28 storms presented 
by Minshall. 

Amorocho (1961) discussed Minshall ' s paper and 
by selecting the five storms (shown in Minshall's 
Fig. 6) demonstrated nonlinearity. The value of b 
in his equation relating time to peak and intensity 
was 0.547. If he had used average rainfall excess, 
the exponent would have been 0.45, while if he had 
used all of Minshall's data, instead of the five 
selected storms, the exponent would have been 0.25 for 
total rainfall and 0. 10 for rainfall excess. These 
results are given in Table 4.3 in tbe rows labeled 
W-1. 

Minshall and Amorocho were discussing time to 
peak and not lag time. A later analysis by Dooge 
(1967) examined lag time, but again he used rainfall 
rather than rainfall excess. Dooge used the same 
five st orms as Amorocho and derived lag times for each 

29 

unit hydrograph. His equation relating lag time 
(Eq. 38, p. 33) to intensity had an exponent of 0.605. 
If rainfall excess had been used, the exponent would 
have been 0.49. The line labeled "Dooge, W-1" 
(Fig. 4.6) is a plot of this relation. 

Using all of the data, except for SW-17, resulted 
in an equation 

a • 18.8 - 33.3 Dd (4 .13) 

relating the coefficient a &nd drainage density. 

The value of R2 for this equation is 0.59 , but is 
consistent with Eq. 4 . 11. 

The results of the analysis reported above .and 
the reinterpretation of Minshall's data are summarized 
in Table 4.3. Misinterpretations of Minshall's data 
resulted in an overestimation of the degree of non­
linearity in the rainfall excess-surface runoff rela­
tion. The degree of nonlinearity in this relation is 
seen as a funct ion of rainfall estimation procedure as 
well as the basin char acteristics. Increasing drain­
age density tends to lower the lag time, while a dras­
tic change in drainage density affected t he rate of 
change of lag with changi ng i ntensity. 



Returning to the question of the effects of 
distorting the observed drainage density in modeling 
a watershed, evidently a gross underestimation in 
drainage density could result in overestimating the 
lag time and the degree of nonl~nearity. Suppose that 
lag time is fitted in an optimitation procedure but 
that drainage density is underestimated. A likely re­
sult is underestimation of hydraulic roughness or a 
similar compensating error in another factor. 

The effects of distorting main channel 
characteristics and drainage density upon surface run­
off are seen as significant modificiations in the sur­
face runoff hydrograph. Quantifying the hydrologic 
effects of each distortion resulting from simplifica­
tions assumed in the mathematical modeling is diffi­
cult due to the complexity of the problem. However, 
several goodness-of-fit statistics have been proposed 
and illustrated by simulation results. 

4.2 Goodness-of-Fit Statistics for the Simplified 
Gepmetry 

Several goodness-of-fit statistics are proposed 
in this study for modeling complex natural watersheds 
and their components by simplified geometrical repre­
sentations. The obvious question resulting from such 
modeling is how well does the simplified model repre­
sent the complex natural system. This question can be 
considered in two parts: First is the goodness-of­
fit of the simplified geometrical representation to 
its complex prototype, its topographic features, and 
second is the goodness-of-fit of the hydrologic res­
ponse of the simplified geometry to the hydrologic 
response of the complex prototype hydrographs. The 
first part is the subject of this section and the sec­
ond is covered in the next section. 

Three dimensional coordinate data (x .• y1 , ~.) 
l l 

for i • 1, 2, ... , N are taken from a topographic 
map. The normal procedure is to take x

1
, y 

1
, and z1 

equal to zero at the watershed outlet so that all ele­
vation values are positive. A function measuring de­
partures of fitted elevation values, ei' from given or 

observed elevation values, zi' is G such that 

N 2 
G • i~l (zi - ei) (4.14) 

where N is the number of selected data points. If 
a plane is fit to N data points by least squares, 
the result is a minimum G as defined by Eq. 4.14. 
The mean or average elevation is 

z./N 
1 

(4.15) 

so that the sample variance of the observed elevation 
data about their mean is 

-2 
(z. - h) /(N-1). 

1 
(4.16) 

The sample variance of the observed data about the 
best fit plane is 

(z. - e.)
2/(N-l) 2 G/(N-1) 

l 1 
( 4 .17) 
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since the mean deviation is zero . The proposed 
goodness-of-fit statistic is 

(4.18) 

as a measure of the residual variance. If the average 
2 

elevation were the best fit plane, then R a 0, and p 
if the least squares plane had a perfect fit to the 

observed coordinates then R2 = 1. Therefore, R2 
X 100 

p p 
is the percent of the total variance explained by the 

least squares fit plane. The statistic, R2
, is called 

p 
the "geometric goodness-of-fit statistic." It can be 
used for a single plane fit to hillslope data or for 
an entire cascade of planes fit to watershed coordi-

nate data. For a cascade of planes, 

calculated for all planes as is R
2

. 
p 

2 2 s
1 

and s
2 

are 

In a manner similar to that described above, 
coordinate data are taken for points along the main 
channel. Distances along the main channel are calcu­
lated by 

(4.19) 

for all points along the channel reach. 

The length of the main channel is then 

(4. 20) 

where N is the number of data points. Also the 
total relief of the main channel is 

where z. are the observed elevation data. If the 
1 

area under the stream profile formed by (di' zi) is 

calculated and a right triangle with base length Lc 

and the same area as under the profile is constructed, 
then for h as the altitude of this triangle the 
slope of the hypotenuse is 

5 = h/L 
c c 

as Gray 's slope or the equivalent channel slope. 
index of concavity described earlier is 

I • h/H c c 

(4.22) 

The 

(4. 23) 

with values less than one for a concave profile and 
values greater than one for convex profiles. 

"Drainage density" is defined as the ratio of the 
total length of all streams to the drainage area. If 
drainage density for the watershed is Dd and drain -

age density of the simplified geometry is dd, then 

(4. 24) 

( 
l 



is the proposed statistic measuring the 
goodness-of-fit with respect to the drainage density. 
Id will vary between zero and one, since dd will 

always be less than Dd. 

The above three goodness-of-fit statistics--R2, 
p 

the geometric goodness-of-fit statistic; Ic' the index 

of concavity; and Id' the drainage density ratio- ­

form the set of goodness-of-fit statistics used here. 

In the most simplified terms, R2 is a measure of the 
p 

goodness-of-fit for the 
model; Ic is a measure 

main channel slope, and 

overland flow portion of the 
of the goodness-of-fit of the 

Id is an overall goodness-

of-fit measure. That is, there is a watershed- slope 
statistic, a channel-slope statistic, and an overall 
statistic. These statistics are summarized in 
Table 4.4. The first two columns describe the element 

watershed. The final column gives the source of data 
for each watershed which are presented to show the 
range of the proposed statistics and for reference in 
subsequent analyses. Some of the watersheds do not 
have well-defined channel systems and since only a 
single plane was fit to data from each watershed, the 
ratio of drainage d~nsities was not calculated. 

Of the 27 watersheds represented in Table 4.5, 
four of the Riesel watersheds were selected for addi­
tional analysis--W-e, W-D, SW-12, and SW-17(Fig. 4.7) . 

Values of R2, for increasing numbers of planes in p 
cascade, were calculated for these four watersheds. 

2 These values of Rp versus the number of planes in 

the simplified geometry are shown in Fig. 4.8. Water­
sheds C and D require two or more planes to produce a 

high value of R2 while one plane produces a ~igh 
p 

value for watersheds SW- 12 and SW-17. Moreover, the 

Table 4. 4 . Summary of Proposed Goodness-of-Fit Statistics for the Simplified 
Geometrical Representation. 

Element or Component 
of System 

Watershed Model 

Hill slope 
or 

Watershed 

Main 
Channel 

Watershed 

Cascade 
of 

Planes 

Cascade 
of 

Channels 

Cascade 
of 

Planes 
and 

Channels 

Goodness -of-fit 
Statistic for the 

Simplified Geometry 

I 
c 

modeled. The first column labeled "watershed" refers 
to the quantity being modeled as a component of the 
natural system, and the colUDDl labeled "model" refers 
to the corresponding component in the simplified geo­
metrical representation. The third column lists the 
symbols used with explanatory comments listed in the 
last column. 

Watershed characteristics and some 
goodness-of-fit statistics are shown in Table 4.5. 
The first eolumn gives the watershed identification 
(see U.S.D.A., 1963 and earlier publ ications). 
"Riesel" refers to selected watersheds at Riesel, 
Texas; "Hastings" refers to the watershed at Hastings, 
Nebraska; "Tombstone" refers to watersheds on Walnut 
Gulch Experimental Watershed near Tombstone, Arizona; 
and "Pawnee" refers to watersheds at the Pawnee Site, 
Grasslands BlOME in Colorado. The second column of 
Table 4 .5 lists the water shed area. The next column 
gives N, the number of coordinate data points read 
from topographic maps and used in least squares fit­
ting. The fourth column gives the slope of the plane 
fit to the N. points, and column 5 gives the geomet-

rlc goodness-of-fit statistic R2 for each watershed. 
p 

The next three columns give the length, slope, and 
index of concavity for the main channel on each 
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Comments 

Ratio of residual variance about fitted planes 
to original variance of elevation coordinate data. 
Also used for entire watershed. 

Index of concavity, ratio of height of equal area, 
equivalent slope triangle to total relief of main 
channel. 

Ratio of drainage density in model to observed 
drainage density in the watershed. 

necessity of interpolating for boundary points, as the 

number of planes i ncreases, can slightly reduce R~ 
by adding additional errors without improving the fit. 
This is what happened for SW-12. 

4.3 Goodness-of-Fit Statistics for Hydrograph Fitting 

Of the four auxiliary objectives listed in the 
Introduct ion, the two dealing wi th watershed charac­
teristics were discussed in the previ ous sections. 
This section examines hydrograph characteristics and 
their associated goodness-of-fit statistics . Before 
the analysis, some ·basic notions need to be defined. 

There is often a great deal of confusion 
concerning the terms "fitted" and "predicted." For 
this reason the two terms are given rather restricted 
meanings here. A "fitted hydrograph" is one produced 
with a knowledge of and by using the observed hydro­
graph; i.e., a hydrograph is fitted or calibrated to 
a known hydrograph and then the goodness-of-fit is 
judged with respect to the given observed hydrograph. 
For the predicted hydrograph, the observed hydrograph 
can be used to judge the goodness-of-fit, but it is 
not used in making the prediction. The emphasis in 
this chapter is upon fitting rather than predicting. 



Table 4.5. Summary of Some Goodness-of-Fit Statistics for Selected Experimental Watersheds . 

Watershed 
ID. 

RIESEL 

W-C 
W-D 
W-G 
W-1 
W-2 
W-6 
W- 10 
W-Y 
W-Y2 
W-Y4 
W-Y6 
W-Y7 
W-Y8 
W-YlO 
SW-12 
SW-17 

HASTINGS 

2-H 

TOMBSTONE 

LH-5 
LH-6 

PAWNEE 

P-1 
P-2 
P-3 
P-4 
P-5 
P-6 
P-7 
P-8 

* 

Drainage 
Area 

(acres) 

579. 
1110. 
4380. 

176. 
130. 
42.3 
19.7 

309. 
132.5 
79.9 
16.3 
37.9 
20.8 
18.1 
2.97 
2.99 

3.40 

.56 
1.07 

1. 24 
1.24 
1.23 
1. 23 
1. 24 
1. 23 
1. 23 
1. 24 

. Single Plane Fit 
' to Coordinate Dat a 

Number Slope of Goodness-
of Data Best Fit of-Fit 
Points Pl ane Statistic 

N S R2 

47 
75 

185 
81 
75 
30 
22 

125 
62 
42 
22 
28 
22 
21 

120 
56 

74 

21 
30 

87 
62 
81 

137 
160 
126 

92 
97 

.005 

.004 

.003 

.009 

.015 

.017 

. 022 

.010 

.012 

.Oll 

.020 

.012 

.021 

.009 

.030 

.020 

.035 

.067 

.078 

.031 

.018 

.025 

.050 

.053 

. 042 

.030 

.036 

.38 

.41 

.38 

.66 

.56 

. 76 

. 72 

.64 

.53 

.39 

.87 

.62 

.95 

.17 

.87 

.92 

.72 

.46 

. 89 

.95 

.98 

.97 

.98 

.98 

.97 

.98 

.94 

No well-defined channels on these watersheds . 

The concept of an observed hydrograph and the 
associated fitted hydrograph is il lustrat ed in 
Fig. 4.9. The solid l i ne represents t he observed or 
measured hydrograph and the dashed line repr esents 
the fitted hydrograph. The regular symbols represent 
variables associated with the measured hydrograph, 
while those with hats correspond to the fitted hydro­
graph. Therefore , funtions involving the differences 
between observed and fitted variables can be used as 
goodness-of-fit measures . 

Unit hydrograph procedure, especially the Nash 
model, is used in analyses of goodness-of-fit statis­
tics for ·hydrograph fitting . Observed data for the 
analyses are from the sixteen ARS watersheds at 
Riesel, Texas, (see Table 4.5, watersheds at Riesel). 

Length 
L c 

(ftxl03) 

7. 05 
10.74 
22.77 
4.65 
2.68 
1.38 

. 58 
3.86 
2.78 
2.18 
<l.OO 

.93 

.94 

.66 
* 
* 

.28 

.29 

. 21 

* 

Main Channe 1 
Equivalent 

Slope 
s c 

.0056 

.0041 

.0034 

.0101 

.0161 

.0139 

. 0299 

.0099 

.0113 

.0121 

.0285 

.0195 

.0284 

.0177 

.0388 

.0543 

.0542 

Index of 
Concavity 

I 
c 

.79 

.72 

.78 
1.07 
1.03 

.96 

. 92 

.81 

.82 

.82 
1.18 

.87 
1.03 

. 78 

.82 

.98 

.77 

4.3.1 Sum of Squared Errors 

Source of Data 

USDA Misc. 
Publication 

I I 

I I 

I I 

I I 

I I 

I I 

II 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

SW Watershed 
Research Center 
Tucson, Arizona 

Smith & Strifler 
(1969) 

II 

I I 

I I 

I I 

II 

I I 

Each of a set of n hydrographs has 
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mi (i = 1, 2, . • . , n) ordinates or discharge values at 

corresponding t imes . For example, see the point 
l abeled (ti' qi) in Fig. 4.9. 

An objective function, G
1

, is defined as 

n mi 2 
G

1 
• r r (q. - 4.) 

i•l j=l J J 
(4.25) 

where m. is t he number of ordinates for the ith 
1 

event, n is the number of events, q is observed 
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Fig. 4.7. Topographic map of watershed SW-17 at 
Riesel, Texas (from USDA Misc. Pub.). 
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discharge, 
Parameters 
minimizing 

2 3 4 
Number of Planes in Configuration, p 

Relation between geometric goodness-of-fit 

statistic, R2, and the number of planes , p , 
p 

in the geometry for selected Riesel, Texas 
watersheds. 

and ~ is the fitted discharge. 
of the Nash IUH, Eq. 4.7, are estimated 
G

1 
subject to 

N > 0, and K > 0. (4.26) 

Oiseho<qe 
Role 

Fig. 4.9. Definition sketch for iobserved ann fitted 
hydrographs and associated variables. 

Values of N and K satisfying Eqs. 4.25 and 4 . 26 
.. are called the "optimal values" of the parameters and 

G
1 

is called the "sums-of-squares" objective ftmc-
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tion. The optimization procedure used is Rosenbrock's 
(Rosenbrock, 1960_and Palmer, 1969) as programmed by 
Singh (1974). In summary, each hydrograph is fitted 
and produces a sum of squared errors, and then these 
sums are in turn summed over a set of n hydrographs. 
Predicted values of ~. result from convolution of 

J 
rainfall excess (via the Philip equation) and the IUH 
(Eq. 4.7). 

4.3.2 Deviation of Peaks 

For each of the n hydrographs there is a 
maximum or peak value, Qp i n Fig. 4.9 , at a time t . 

p 
An objective function G

2 
is defined as (Singh , 

1974): 

G • 
2 

n 

~ 
i=l 

(4. 27) 

where n is the number of ~ydrographs; Qp is ob­

served peak discharge and Qp is fitted peak dis­

charge. Optimal parameters of the Nash model are ob­
tained as before by minimizing G2 subject to 

Eq. 4.26 . The function c2 is called the "optimiza­

tion on peaks objective function." In summary, each 
hydrograph is fitted and produces an error in peak 
discharge and then these errors are squared and summed 
over a set of n hydrographs. 

4.3.3 Comparison of Characteristics of the Fitted 
Hydrognphs 

There are many characteristics or associated 
variables (Fig. 4 .9) of the hydrographs which can be 
compared to aid in the choice of objective functions. 
In general , and as is confirmed by plotting observed 
and fitted hydrographs, the peaks objective function 
should result in better reproduction of peak discharge 
but perhaps not hydrograph shape when compared with 
the total sums-of-squares optimization method. 

Fitted peak discharge can be compared with the 
corresponding observed peak discharge by a linear 
regression equation 



C),=a+b<), (4. 28) 

where <), is observed peak discharge and Qp 
ted peak discharge. 

is fit-

: 

A perfect fit would result in a zero value for 
the intercept, a, and a 1.0 value for t he slope, b, in 

Eq. 4.28. The coefficient of determination, R2
, for 

this regression equation is the proportion of the 
variance of fitted peak discharge about the mean which 
is explained by the equation. The standard error of 
estimate, Se, is the standard deviation of the residu-

als or the errors about the regression line. The term 

R
2 

can be considered a goodness-of-fit statistic for 
the fitted peak discharge. Results of fitting hydro­
graphs for the 16 Riesel, Texas watersheds are sum­
marized in Table 4.6. The intercept , a, is near zero 

objective function used. However, the choice of 
objective function remains a subjective decision. 
Evaluation of the above results using criteria empha­
sizing peak discharge would result in choosing the 
optimization on peaks objective function. Conversely, 
evaluation of the results using criteria emphasizing 
overall hydrograph shape and relative variability of 
estimated lag time would result i n choosing the total 
sums-of-squares objective function. 

Finally, it is possible to construct 
goodness-of-fit statistics based upon the objective 
function. As before, the intent is to derive a mea­
sure of the degree of improvement over using the mean 
discharge. Define the "mean discharge" as 

m. 
q = El. q./m. 

j•l J ]. 
{4. 29) 

Table 4.6. Summary of Fitted Peak Discharge and Optimal Nash IUH Parameters 
for the Two Optimization ~feth~ds . 

Objective Function 

Optimization on 
sums-of-squares 

Optimization 
on peaks 

* 

Regression Equation Relating 
Observed and Fitted Peak Discharge* 

<\ = a + bQp Coefficient Standard 
of Error of Intercept Slope Determination Estimate a b 
R2 s e 

(in./hr) 

-0.006 0.70 0.76 0.31 

0.016 0.92 0.81 0.35 

Mean** 
N 

3.42 

2.84 

Data base is for 122 hydrographs from 16 watersheds at Riesel, Texas. 
** Means and standard deviations computed from 16 optimal values. 

Optimal IUH Parameters for 
Nash Model 

Lag Time TL 
Mean Mean Standard Deviation 

K (min) (min) 
(min) 

24.4 75.1 61.8 

20.3 54.8 66.5 

for both optimization methods, but the slope term for 
the optimization on total sums-of-squares is siBnifi­
cantly different from 1.0 at the 10 percent level. 
However, the coefficients of determination and stan­
dard errors are comparable for both methods. 

for the observed data. The sum-of-squares about the 
mean is then 

Values of N and K are shown in Table 4.6 for 
both procedures. The last two columns of Table 4.6 
give means and standard deviations for lag time on the 
Texas watersheds. As discussed earlier, the lag time 
is an important time characteristic in unit hydrograph 
theory and is an overall measure of watershed perfor­
mance. Mean lag times are statistically different at 
approximately the 10 percent level, i.e. , apparently 
the sums-of-squares optimization method produces lar­
ger values of lag time than does the optimization on 
peaks method. The standard deviations of lag time 
are nearly the same so that the coefficients of varia­
tion are 0.82 for the sums-of- squares method and 1.21 
for the peaks method. Thus, the sums-of- squares opti­
mization procedure may produce a relatively lower 
variability in lag time estimates. 

Results of the analyses indicate significant 
differences in parameter estimates depending upon the 
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mi 2 
E CqJ. - Ci'J 

j=l 
(4. 30) 

where qj are the observed hydrograph ordinates. 

proposed goodness-of-fit statistic is 

The 

which is equal 

R2 ,. 
Q 

-2 
q) 

m 
}:i (q. 

j • l J 
m. 2 
p (qj- q) 

j=l 

to 

s2 
- G Q 1 

52 
Q 

(4. 31) 

(4 . 32) 



as the degree of improvement over using the mean 
discharge. Thus, there is a hydrograph goodness-of­
fit statistic for each hydrograph. 

4. 4 Relating Statist ics of t.he Simplified Geometry 
to Statistics of the Fitted Hydrographs 

Recall the objective as given in the 
Introduction: "To relate statistics of the simplified 
geometry to watershed characteristics and to hydro­
graph characteristics in order to define the simplest 
geometry which when used in simulation will preserve 
the selected hydrograph characteristics to a given de­
gree of accuracy." This section deal s with relating 
statistics of the simplified geometry to statistics of 
the fitted hydro graphs. If this obj ecti.ve is met for 
watersheds with topographic, rainfall, and runoff data 
given, the means will be available to objectively 
choose adequate geometric representations as simpli­
fied models of these watersheds. 

The procedure adopted here is graphically 
represented in Fig. 4.10. A given natural watershed 
produces an observed hydrograph as illustrated in the 
left portion of this figure. A single plane is fit to 

topographic data (x, y, z coordinates) producing R2 
1 

as a geometric goodness-of-fit statistic. The equa­
tions of overland flow are solved for the given rain­
fall input_producing the fitted hydrograph as the 
dashed line in the central portion of Fig . 4.10. From 
the fitted and observed hydrographs, ·a goodness-of-fit 

statistic, R~, is computed using Eq. 4.32. The pro­

cedure is repeated for two planes and one channel 

Fig. 4.10. 

Ia 

Schematic representation of a watershed, 
simplified models, and associated 
goodness-of-fit statistics. 

(Wooding model ) as shown in the right portion of 
Fig. 4.10. The procedure could then be repeated to 
any degree of complexity. 
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Hypothetical relationships between R2 and R2 
p Q 

for various geometries are shown in Fig. 4.11. The 
upper curve (A) might result from a small watershed 
where one or two planes provide a relatively good fit 
geometrically and hydrol ogically. The lower curve (B) 
might result from a larger watershed with a more 
developed channel system. Here a more complex con­
figuration might be necessary. The goodness-of-fit 
statistics can be related for real watersheds using 
plots such as in Fig. 4.11. 

1.00·.---- ----------.....,.,...., 
~ ~ 

X (A}--~-~ 

r: 0 .50 

X --- X + 'I(' 
X 
+ 

0 

o (B~-8 
0 o..-- 0 

~--o /, 0 

o /' B 
~/ 
0 

0 

OL-----------~----------~ 
0 1.00 

Fig. 4.11. Hypothetical relation between geometric 
and hydrograph goodness-of-fit statistics. 
Curve A represents small watersheds and 
Curve B represents larger watersheds with 
a more developed channel system. 

To represent a range of watershed 
characteristics, watersheds W-C and SW-17 at Riesel, 
Texas are chosen . Geometric goodness-of-fit statis­
tics for these two watersheds are shown in Table 4.5 
and Fig. 4.8. The curves in Fig. 4.8 are quite dif­
ferent from W-C and SW- 17. 

The finite difference program for a kinematic 
cascade of planes and channels was modified to deter­
mine optimal roughness values for the planes and 
channels separately. The procedure is to find optimal 
roughness values for K on planes given a Chezy C in 
the channels. The procedure is repeated over a range . 
of channel parameters to find the best of a set of 
optimal roughness coefficients for the planes. Values 
of the objective function, G1, are shown in Fig. 4.12. 

The event is for the storm of 6/10/41 on watershed W-C 
at Riesel, Texas. The upper portion of Fig. 4.12 
shows the objective function G

1 
and associated opti-

mal values of K for each of four values of C in 
the channel. Optimal values of C • 42 and K • 1870 
are indicated for the point at the minimum of the ob­
jective function. The lower graph of Fig. 4.12 shows 
a plot of channel C versus plane K for this exam­
ple. 

Observed and fitted hydrographs for the event of 
6/10/41 on watershed W-C at Riesel, Texas are shown 
in Pig. 4.13. The hydrograph labeled (O) is the ob­
served surface runoff resulting from the rainfal l 



., ., 
c: 
0 

a: 
c: 
0 

:.: 

0 
.§ 
ii 
0 

cS 
c: 

.!:! 
:;:; 
c: 
::> 

lJ.. ., 
-~ -;:; .. 
;;; 
0 

0 
.§ 
a. 
0 

0.3 

0 .1 

20 40 60 80 
Chezy C in Channel 

3000 

2000 

1000 

oL-----~----~------~----~ 
0 20 40 60 80 

Chezy C in Channel 

Fig. 4.12. Illustration of procedure for selection of 
optimal Chezy C in the Wooding model, W-C, 
Riesel, Texas. Event of 6/10/41. 
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Fig. 4. 13. Observed and fitted hydrographs (for a 
kinematic cascade model) for watershed 
1~-C, Riesel, Texas. Event of 6/10/41. 

pattern shown. That labeled (1) is the best fit 
2 hydrograph for a single plane wi th RQ = 0.78. The 

the curve labeled (2) is the best fit hydrograph for 
Wooding model- -two planes and one channel with 
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2 
RQ = 0.95. Th.e above example illustrates the 

procedure followed in examining data from the two 
watersheds as discussed below. 

4.4.1 Single Plane--The Simplest Geometry 

Watershed SW-17 when modeled as a single plane 
has a mean 0.020 slope, a 392 ft length, and a 332 ft 
width. As discussed earlier, the geometric goodness-· 

2 
of-fit statistic is R1 = 0.92. Corresponding values 

for watershed 1~-C at Riesel , Texas are s = 0.005 and 
2 

Rl = 0.38. For watershed 2-H at Hastings , Nebraska 
2 the values are S = 0.035 and R1 = 0. 72. Values of 

observed peak discharge and time to peak (from begin­
ning of rainfall) are shown in Table 4.7 along with 
the corresponding values for the fitted hydrographs. 
The last column in Table 4.7 shows the hydrograph 
goodness-of-fit statistic and its mean value for each 
watershed . 

Originally, the intent was to examine the two 
Texas watersheds in detail but the third watershed at 
Hastings, Nebraska is included to extend the analysis 
beyond Texas and to include a watershed of nearly the 
same size as SW-17, but with a well-defined channel 
system. 

For SW-17 the peak discharge was, as expected, 
underestimated using a single plane as was the time to 
peak. The most serious error is for the largest 

event. In Table 4.7 the range of R~ is 0.44 to 0.96 

with a mean value of 0.69, i.e., approximately 70 
percent of the variance about the mean discharge is 
explained (on the average) by the best -fit hydrograph 
derived from modeling the watershed as a single plane . 
This is a surprisingly good fit. Except for the 
large event discussed above , unlikely more complex 
geometries will result in much improvement in the 

hydrograph goodness-of-fit statistic R~. However, 

likely peak discharge and time to peak will be better 
represented by a more complex geometry. 

For watershed W-C, the peak discharge values were 
also underestimated and as on SW-17, the most serious 
error was associated with the largest event. The 

range in R2 is 0,22 to 0.78 with a mean value of 
Q 

0 .53; i.e., on the average, approximately 50 percent 
of the variance in discharge about the mean discharge 
is explained by fitting a single plane to data from 
watershed W-C. As expected, this value is lower than 
for watershed SW-17 (Fig. 4.11) . In contrast to SW-17 
likely a better geometric fit would produce a better 
hydrograph goodness-of-fit statistic for watershed 
W-C. Better reproductions of peak discharge and time 
to peak values are also expected. 

Data for watershed 2-H at Hastings, Nebraska are 
shown in the bottom of Table 4.7. In general , peak 
discharge is underestimated, but unlike before, the 
largest peak discharge is well fitted. Values of 

R~ vary from .0 to 0.92 with a mean value of 0.44. 

These results are more comparable with those for W-C 
than for SW-17 . Recall that SW-17 has a drainage area 
of 2.99 acres, W-C has 579 acres, while 2-H has 3.40 
acres (Table 4.5). Therefore, the reasons for the 



Table 4.7. Summary of Goodness-of-Fit Statistics for a Single 
Plane as the Simplest Geometry.* 

Watershed 

SW'-17 

R
2 

= • 92 
p 

W-C 

2-H 

.72 

* 

. Observed Data 
Peak Dtscharge Time to Peak 

(in./hr) (min) 

1.61 48. 
.44 17. 

1. 74 28. 
2.17 51. 

.60 159. 

.35 33. 
3.79 40. 

.88 77. 

.87 71. 

.57 92. 

.62 148. 

.15 137. 
~ 

. 31 128. 
1. 38 183. 

.28 39. 
3.47 23 . 

.85 16. 

.81 9. 
1.48 28. 

.99 27. 
1.39 17. 

.90 150. 
1.11 16. 

. 068 29. 

Fitted Dat a 
Peak Discharge Time to Peak 

(in./hr) (min) 

1.10 47. 
.20 10. 

1.47 30. 
2.08 51. 

.28 150. 

.17 20. 
1.93 34. 

.60 80. 

.58 so. 

.33 so. 

.31 60. 

.088 30. 

.17 70. 

.75 150. 

.033 27. 
3.52 24. 

.96 13. 

.62 12. 

.30 18. 

.46 21. 

.56 14. 

.41 148. 

.30 11. 

.01 11 . 

Hydrograph 
Goodness-of-Fit 

Statistic 
R2 

Q 

.66 

.56 

. 94 

.96 

.63 

.44 

.63 
Mean • 0.69 

.78 

.73 

.53 

.37 

.22 

.37 

.68 
Mean "' 0. 53 

.13 

.92 

.ss 

.86 

.14 

.42 

.53 

.58 

.30 

.o 
~lean = 0.44 

Data taken as tabulated, no arbitrary time corrections. 

apparent differences in R~ for the two 3-acre 

watersheds must be examined . The first comparisons 
are between the goodness-of-fit stat istics for the 
s i mplified geometrical representations as summarized 
in Table 4.4. 

Watershed characteristics for watersheds SW-17, 
W-C, and 2-H are listed in Table 4.5. Some associated 
geometric goodness-of-fit statistics are shown in 
Table 4.8. The first row in each of the three sec­
tions of Table 4 . 5 is for a single plane fit to the 
coordinate data. For example, the drainage density 
ratio, Id , is zero whenever a watershed is modeled as 

a single plane. However, since there are no well­
defined channels on SW-17, the drainage density ratio 
and the index of concavity are not defined for this 
watershed. The sole stat istic for this watershed is 

the geometric goodness-of-fit statist ic , R
2

. Drainage 
density is highest on watershed 2-H. P 

2 The values of RQ seem to decrease as drainage 

density increases. To test this hypothesis , data from 
two of the artificial watersheds at Colorado State 
University DERF-4 and DERF-5 (see Table 4.3) were 
included in the analysis; i.e. , a single plane was 
fit to coordinate data and used as a model for the 
two watersheds. The resulting mean hydrograph 
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goodness-of-fit statistics , R~, are then related to 

drainage density for the four watersheds: W-C, 2-H, 
DERF-4, and DERF-5. These data are shown as the 
circled points in Fig. 4.14. As hypothesized, the 

2 mean value of RQ decreases as drainage density in-

creases. In fact , the least squares line shown in 
Fig. 4.14 and labeled single plane is 

if~= o.24 Dd0
·
11 (4. 33) 

where R~ is the mean hydrograph goodness-of-fit 

statistic and Dd is the drainage density. 

If the relationship shown in Fig. 4.14 and 
described by Eq. 4.33 is representative of small 
watersheds as considered here, possibly some implica­
tions for watershed modeling can be discussed. Also 
recall the variation of lag time witbLi ntensity as a 
measure of nonlinear ity (Fig. 4.6 anQ Table 4.3). 
Simple watersheds with a relatively low drainage den­
sity can be modeled with a small number of planes in 
a kinematic cascade (Fig. 4.14). However, more com­
plex watersheds with high drainage density cann~t be 
as adequately modeled with such simple geometrical 
representations. However, these very complex water­
sheds may be the ones which could be modeled as a 



Table 4.8. Some Goodness-of-Fit Statistics for Selected Geometrical 
Representations of the Three Watersheds. 

WateTshed 

SW-17 

W-C 

W-C 

2-H 

2-H 

NO 
10:: 
.~ 1.00 ... 
VI -0 

Ui 

-0 

VI 
VI 
Ql 
c: 
'0 
g O.IO 

<!> 

.c. 
Q. 
0 ... 
0> 
0 ... 
'0 
>o 

::1: , 
c 
0 
Ql 
~ 

Drainage Density (ft/ft2) 
Observed·' Modeled 

Dd dd Id = diDd 

.00069 0.0 0.0 

.00069 .00028 0.40 

.0022 0.0 0.0 

.0022 .0019 0.85 

0 

Simplified Geometry 
Number of Planes Geometric 

1 

1 

2 

1 

2 

Goodness-of-Fit 
Statisti c 

R2 
p 

.92 

.38 

.76 

.72 

.91 

DERF-4 

Comments 

No well-
defined 
channels 

Single plane 

Wooding 
Model 

Single plane 

Wooding 
Model 

0~~ -~~--------~~~----------~~------------~------------~----
0.000I 0.001 0.01 2. 0.10 1.0 

Drainage Density Dd , (ft If t 1 

Fig. 4.14. Relation between drainage density and mean hydrograph goodness-of-fit statistic. 

linear system (Fig. 4.6). Before elaborating upon 
this hypothetical situation, the hydrograph goodness­
of-fit statistics for more complex geometrical repre­
sentations must be examined. 

4.4.2 More Complex Geometry--Wooding Model 

Hydrographs were also fitted for these four 
watersheds using the Wooding model--two planes contri­
buting to a channel. These data are shown as the 
square points in Fig. 4.14 and the line labeled 
Wooding. The least squares line is 
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R~ = 0.32 D~0 · 09 ( 4.34) 

where R~ is the mean hydrograph goodness-of-fit 

statistic for the Wooding model, and Dd is drainage 

density. Thus, the hypothesized relation, based on 
results from the previous section, seems to hol d for 
the Wooding model; i.e., drainage density can be used 
as an index of t he relative goodness-of-fit in hydro­
graph fitting. 



The effects of drainage density can be seen if 

R~ is related to R~, the geometric goodness-of-fit 
. . 2 d 2 stat 1st1c. Values of RQ . an Rp are shown i n 

Fig. 4:15 for each of the . four watersheds. Again, the 
two po1nts represent a single plane and the Wooding 
model, wi th the left point for the plane and the right 
point for the Wooding model. Values of drainage den­
sity are given below the watershed i dentification in 
F~g. 4.15. The points in Fig. 4.15 are connected by 
l1nes to associate each point with a watershed, not to 
represent values of the variables between or out side 
the points. 
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C) 

-a e 
~ 
~ 0.2" 
:I: 
e 
0 • :IE 

w-e~ 
( .00069) ~ 

toZ0~~7 ____...-:: 
0 .25 

DERF-~ ~ 
(.099) 

OERF -4 
(.371 

0 .50 0 .75 
Geometric Goodness of Fit Statistic 

R: 

1.00 

Fig. 4.15. Relation between geometric and hydrograph 
goodness-of-fit statistics for watersheds 
wit h different drainage densities. 

Some implications of the results shown in 
Pig. 4.15 are relevant in evaluating the geometric 

goodness-of-fit statistic. A high R2 value is not i n 
p 

itself sufficient to insure a correspondingly high 

value of R~. Drainage density is shown as an i mpor­

tant index for the watersheds tested ; i.e ., a rela­
tively high value of drainage densit y may indicat e a 
correspondingly complex system. Therefore, the geo­
metric goodness-of-fit statistic is a valuable measure 
of how well the watershed topography is represented in 
the model , but it must be interpret ed with respect to 
drainage density. However, for a single watershed 

with a fixed drainage density, R2 is a good indicator 
p 

of how well the watershed is being represented geo­
metrically (Pig. 4.15). 

Distortions caused by underestimating the 
drainage density from Figs. 4.14 and 4.15, result if 
the model drainage density is less than the watershed 
drainage density and then the hydrograph goodness-of­
fit statistic will probably be smaller; i.e., the 

2 
value of RQ will be less than if the drainage densi-

ty had been better represented. 

4.5 Relation Between Combined Goodness-of-Fit 
Stat istics and Hydraulic Roughness Parameters 

Given rainfall -runoff data and an assumed model 
optimal roughness parameters can be derived. Data ' 
errors as well as geometric distortions will be re­
flected i n these estimated roughness parameters. 
Thus, i t is reasonable to expect distortions in opti­
mal roughness parameters when there are distortions i n 
other watershed characteristics. Throughout the fol ­
lowing discussion, a t ransition Reynolds number of 500 
is assumed . By matching friction factors at t his 
transition from laminar to tur bulent flow, the problem 
reduces to determining a single roughness parameter, 
K. The next chapter gives details for a pr ior i esti­
mates of roughness parameters. For now~ assume that 
empirical ly derived roughness coefficients can be ob­
tained from graphs like that presented subsequentl y in 
Fig. 5 . 2 . The mid or median value of such est imates 
is denoted K . 

0 

Examination of data in Table 4.7 suggests that 

~ low R~ values are associat ed with the events where 

the fitted and observed times to peak are very differ­
ent. For this reason those events where the times to 
peak differed by SO percent or more were excluded 
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from the following analysis. Data from watershed W-C 
at Riesel , Texas; watershed 2-H at Hastings , Nebraska; 
network 4 (DERF-4), and network 5 (DERF-5) at Colorado 
State University were used t o derive optimal roughness 
parameters for a plane and for the Wooding model. The 

mean values of the optimal K values are then related 

to IdR~ as a combined geometric goodness-of-fit 

statistic . Data from a more complex geometry for 
watershed W-C at Riesel, Texas and watershed UH-6 at 
Tombstone, Arizona are used to check the derived rela­
tion between optimal K values and t he combined 
goodness-of-fit statist ic. 

The optimal roughness parameters can be 
normalized by K

0
, the !_priori estimat es from 

Fig. 5.2 . If the ratios of K/K are different from 
0 

one, then this indicates a distortion in the optimal 
roughness coefficient. Moreover, if this ratio is re­
l ated to goodness -of- f it statistics reflecting the de­
gre7 of geometric distortion, then possibly ~ pr~ofi 
est1mates of roughness parameters can be adjuste or 
use in simplified models. The circled points in 
Fig. 4.16 were used to derive the relation shown. The 
two plus signs in Fig. 4.16 are for more complex mod­
els for watersheds W-C and LH-6. These points agree 
with the least squares curve through the circled 
points. The t wo arrows at the right of Fig. 4. 16 are 
for watersheds SW-17 at Riesel , Texas and P-1 and P-7 
at the Pawnee sit e. Ratios of K/K

0 
were determined 

for these watersheds but there are no I R2 values . 
d p 

The major difficulty with data, as presented in 
Fig. 4.16, is the subjective nature of the!. priori 
roughness parameters. For this reason and because K 
is determined from a sample , the equation relating 

2 K/K
0 

and IdRp may be unique. However, optimal 

roughness parameters will l ikely increase as the geo­
metric distortions in simpl i fied models decrease. 
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Chapter V 

PARAMETER ESTIMATION AND MODEL TESTING 

This chapter describes parameter determination 
techniques from previous chapters, presents some new 
material on roughness parameter estimation and some 
example or test cases chosen so as_to test hypotheses 
arising from analyses in previous chapters. As sensi­
tivity analysis was implicit in previous chapters, the 
emphasis here is on empirical support or refutation 
via specific examples. 

5.1 Selection Criteria for Simplified Geometry 

Recall the definition of R2 as the geometric 
p 

goodness-of-fit statistic expressing the degree of 
improvement by fitting a set of planes to coordinate 
data over using t he mean elevation . This statistic 
was seen to be associated with the overland f l ow por­
tion of the kinematic cascade model. Moreover, the 
coefficient a in the depth-discharge equation for a 
plane is a function of the plane slope 

a=~ 
Kv 

for laminar flow and 

(5. 1) 

(5.2) 

for turbulent flow. Therefore, since the slope S 
assumes a direct role in a and thus in determining 
the discharge, it must be estimated which is the re­
sult of least squares fitting. 

The geometric goodness-of-fit statistic was 
related to the peak discharge of the overland flow 
impulse response. For more complex watersheds with 

2 overland and open channel flow, RQ was related to 

drainage density in an inverse manner. Wit h drainage 

density variations 
2 

RQ' the hydrograph 

2 allowed, R was also related to 
p 

goodness-of-fit statistic . With 

respect to simulation of surface runoff, the degree 
of geometric complexity required can be determined 

by constructing a graph rel ating R~ and R;. In 

such a procedure, a decision concerning the required 

f R2 . f level o Q lS necessary. As with the choice o 

objective function, this level will be based upon user 
2 requirements. However, given a required RQ' such a 

plot will determine if it can be reached, and if so, 
the required geometric complexity. Obviously other 
criteria might require different degrees of geometric 
goodness-of-fit. 

The procedure for determining the number of 
channel elements in cascade required to represent the 
main channel is analogous to the procedure described 
above; i.e., the index of concavity is related to the 
hydrologic characteristic of interest. The number of 
elements is increased until the index of concavity is 
sufficiently close to 1.0 to meet the required hydro­
graph criterion . 

The above notions are graphically summarized in 

Fig. 5.1. The upper portion relates R; and R~ 
for fitting planes to coordinate data. Assume that 
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Fig. 5.1. Illustration of procedures for selecting 
the simplest kinematic cascade of planes 
and channels to meet given hydrograph 
criteria. (A) Geometric goodness-of-fit, 
determination of degree of geometric com­
pl exity. (B) Main channel concavity, 
determination of number of channel elements 
in cascade. 

rainfal l , runoff, and topographic data are availabl e 
on a given watershed. A set of rainfall-runoff events 
is selected for analysis. Best fit hydrographs are 
produced for each of three proposed geometries--la­
beled 1, 2, and 3 in the upper portion of Fig. 5.1. 
Furthermore, assume that on the average, it is re-

quired to explain R2 of the var iance in discharge 
c 

about the mean discharge. Configuration No. 3 would 
be chosen (see dashed lines) as the required model-­
the simplest configura~ion ~eeting the criterion 

R~ ~ R~. 
To determine the number of channel elements in 

cascade necessary to reproduce the hydrologic charac­
ter, with respect to downstream concavity of the main 
channel, a graph must be constructed as in the lower 
portion of Fig. 5.1. Assume that hydrographs are 
routed down main channels consisting of one, two, etc. 
channel segments in cascade. Each added channel seg­
ment increases the concavity and thus increases the 
index of concavity. If the error in routed peak dis­
charge, EQ' is chosen as the requir~u hydrograph cri-
terion, and E is the required level or maximum 
error allowed,cthen it would be necessar y to have 



three channel elements in cascade. Thus, it is 
possible to construct graphs which then can be used to 
specify the simplest geometry (with respect to planes 
and channels) which when used in simulation will, 
usually, preserve the selected hydrograph characteris­
tics to a given degree of accuracy. In the examples 
discussed here the selected hydrograph characteristics 

2 
are RQ' the hydrograph goodness-of-fit statistic and 

EQ' the error in routed peak discharge due to under­

estimating the degree of concavity i n the main stream. 

5.2 Determination of Roughness Parameters 

In overland flow there are two roughness 
parameters , K as in Eq. 5.1 and C as in Eq. 5.2 
(see Chapter III for details) . If the Reynolds number 
for transition from laminar to turbulent flow is 
specified, then given K or C, the parameter not 
give~ is determined. A transition number is assumed 
leaving K as the single overland· flow-roughness pa­
rameter to be determined. Channel flow is assumed to 
always be turbulent so that only the Chezy C value 
needs to be determined. Two cases arise: (1) When 
initial estimates or ! priori estimates of roughness 
parameters are needed; and (2) When data are available 
to derive optimal roughness parameters. Since for 
efficient optimization the initial values should be as 
close as possible to the optimal values, estimates 
(even if only initial values are needed) of roughness 
parameters must always be made. 

5.2.1 A Priori Estimates of Roughness Parameters 

As discussed in Chapter IV, the degree of 
complexity in the simplified model is related to the 
apparent roughness. A gross misrepresentation in 
geometry may result in a compensating error in esti­
mated roughness coefficients. Therefore, it is as­
sumed that the roughness parameter is for sufficiently 
complex geometrical configurations so that the geome­
try-roughness interaction is minimal. 

For open channel flow any of several handbooks, 
(e.g. King and Brater, 1963), can be used to estimate 
Chezy coefficients directly or from tabular values of 
Manning 's n. The equation relating n and C is 

(5. 3) 

where R is hydraulic radius. There is a broad class 
of references where estimates of roughness parameters 
for open channel flow may be obtained (e.g. Barnes , 
1967) . For this reason, the emphasis in this section 
is on roughness parameters (K, C, n) for overland 
flow. 

Data presented in a table by Woolhiser (1974) are 
summarized in Fig. 5.2. The l i ne in Fig. 5. 2 relates 
K and C for a transition from laminar to turbulent 
flow at a Reynolds number of 500. Ranges of K values 
for several surfaces are shown by the arrows in Fig. 
5.2. Valuesof n forthe Manning formula are shown 
below each surface description. For example, with a 
bare sand surface , K varies from 30 to 120, C varies 
from 65 to 32, and n varies from 0.01 to 0.016. As 
can be seen from the wide ranges of roughness coeffi­
cients, there is a great deal of freedom in inter­
preting a specific value of a coefficient. In spite 
of this, Fig. 5.2 provides the best available basis 
for interpreting roughness-surface relations for 
natural watersheds. 
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Fig . 5.2. Laminar and turbulent roughness 
coefficients for overland flow. Manni ng n 
values given below surface description. 

• 
5.2 . 2 Optimal Values of Roughness Parameters 

Recall the sums-of-squares objective function 
given as 

m 
G • I (q. - - ) 2 

1 j = l J qj 
(5.4) 

where qj is an observed hydrograph ordinate and qj 

is the fitted value. Optimal roughness parameters 
(K and C for a plane) are the values which minimize 
G1. Again , for a specified transition number, the 

value of K determines the value of C. The optimi­
zation proced~re used here is a two-stage method opti­
mizing on planes and channels separately. The proce­
dure is illustrated in Fig. 4.12. For a given value 
of C in the channels an optimal value of K on the 
planes is derived. The process is repeated over a 
range of channel C values until G1 is a minimum. 

The resulting channel C and plane K values are the 
optimal values for that hydrograph. 

5.3 Model Testing 

Procedures outlined in the first two sections of 
this chapter are tested using data from experi mental 
watersheds . The intent is to apply techniques pre­
sented in earlier chapter s to watersheds not used in 
their development, thus testing their efficacy. In 
effect, the tests will be for the model selected and 
for its selecti on procedure. 

5.3 . 1 Effects of Nonuniform Slopes Upon Overland Flow 

To test the effects of slope shape upon overland 
f low hydrographs, two simple experiments were con­
ducted on the erosion (DERF) facility at Colorado 
State University. The first involved recording runoff 
hydrographs for three durations and four intensities 
on an impervious plastic surface graded to uniform 
slope . The surface was a V-configuration (see 
Wooding, 1965, p. 258), symmetric about a channel 
24 ft long with a 0.03 slope. The lateral s l ope of 
the two 14- ft planes was 0.04. 



three channel elements in cascade. Thus , it is 
possible to construct graphs which then can be used to 
specify the simplest geometry (with respect to planes 
and channel s) which when used in simulation will, 
usually, preserve the selected hydrograph characteris­
tics to a given degree of ~curacy. In the examples 
discussed here the selected hydrograph characteristics 

2 
are RQ, the hydrograph goodness-of-fit statistic and 

EQ' the error in routed peak discharge due to under­

estimating the degree of concavity in the main stream. 

5.2 Determination of Roughness Parameters 

In overland flow there are two roughness 
parameters, K as in Eq. 5.1 and C as in Eq. 5.2 
(see Chapter III for details). If the Reynolds number 
for transition from laminar to turbulent flow is 
specified, then given K or C, the parameter not 
given is determined. A transition number is assumed 
leaving K as the single overland' flow-roughness pa­
rameter to be determined. Channel flow is assumed to 
always be turbulent so that only the Chezy C value 
needs to be determined. Two cases arise: (1) When 
initial estimates or ! priori estimates of roughness 
parameters are needed; and (2) \\'hen data are available 
to derive optimal roughness parameters. Since for 
efficient optimization the initial values should be as 
close as possible to the optimal values , estimates 
(even if only initial values are needed) of roughness 
parameters must always be made. 

5.2.1 A Priori Estimates of Roughness Parameters 

As discussed in Chapter IV, the degree of 
complexity in the simplified model is related to the 
apparent roughness. A gross misrepresentation in 
geometry may result in a compensating error in esti­
mated roughness coefficients. Therefore, it is as­
sumed that the roughness parameter is for sufficiently 
compl ex geometrical configurations so that the geome­
try-roughness interaction is minimal. 

For open channel flow any of several handbooks, 
(e.g. King and Brater, 1963), can be used to estimate 
Chezy coefficients directly or from tabular values of 
~fanning's n. The equation relating n and C is 

(5. 3) 

where R is hydraul ic radius. There is a broad class 
of r eferences where estimates of roughness parameters 
for open channel flow may be obtained (e.g. Barnes, 
1967). For this reason, the emphasis in this sect ion 
is on roughness parameters (K, C, n) for overland 
flow. 

Data presented in a table by Woolhiser (1974) are 
summarized in Fig . 5.2 . The line in Fig. 5.2 relates 
K and C for a transition from laminar to turbulent 
flow at a Reynolds number of 500. Ranges of K values 
for several surfaces are shown by the arrows in Fig. 
5. 2. Values of n for the Manning formula are shown 
below each surface description. For example, with a 
bare sand surface, K varies from 30 to 120, C varies 
from 65 to 32 , and n varies from 0.01 to 0.016. As 
can be seen from the wide ranges of roughness coeffi­
cients , there is a great deal of freedom in inter­
preting a specific value of a coefficien~. In spite 
of this, Fig. 5.2 provides the best available basis 
for interpreting roughness-surface relations for 
natural watersheds . 
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5.2.2 Optimal Values of Roughness Parameters 

Recall the sums-of-squares objective function 
given as 

m 
G = r (q. - • )2 

1 j = 1 J qj 
(5.4) 

where qj is an observed hydrograph ordinate and qj 

is the fitted value. Optimal roughness parameters 
( K and C for a plane) are the values which minimize 
G

1
. Again, for a specified transition number, the 

value of K determines the value of C. The optimi­
zation proced~re used here is a two-stage method opti­
mizing on planes and channel s separately. The proce­
dure is illustrated in Fig. 4.12. For a given value 
of C in the channels an optimal value of K on the 
planes is deriv·ed. The process is repeated over a 
range of channel C values until G1 is a minimum. 

The resulting channel C and plane K values are the 
optimal values for that hydrograph. 

5.3 Model Testing 

Procedures outlined in the first two sect ions of 
this chapter are tested using data from experimental 
watersheds. The intent is to apply techniques pre­
sented in earlier chapters to watersheds not used in 
their development, thus testing their efficacy. In 
effect , the tests will be for the model selected and 
for its selection procedure . 

5.3.1 Effects of Nonuniform Slopes Upon Overland Flow 

To test the effects of slope shape upon overland 
flow hydrographs, two simple experiments were con­
ducted on the erosion (DERF) facility at Colorado 
State Universit y. The first involved recording runoff 
hydrographs for three durations and four intensities 
on an impervious plastic surface graded to uni form 
slope . The sur face was a V-configuration (see 
Wooding, 1965, p. 258), symmetric about a channel 
24 ft long with a 0.03 slope . The lateral slope of 
the two 14-ft planes was 0 . 04. 



The second experiment was similar, except the two 
side slopes were regraded to each form cascades of 
three 4.67-ft planes with lateral slopes of 0.07, 
0.04, and 0.01, respectively. The lowest (0.01) slope 
was at the bottom of the cascade. The second channel· 
was inadvert ently modified to a slightly concave pro­
file with an equivalent slope of 0.028, with an index 
of concavity of approximately 0.90. Compounding this 
error, the channel cross-section was changed from a 
triangular section with side slopes of 0.04 to a 
triangular section with side slopes of 0.01. Together 
these inadvertent modifications in the main channel 
significantly changed its character. A second inad­
vertent modification was in the length of overland 
flow. While drainage density remained the same in 
both experiments, the maximum lengt h of overland flow 
was approximately 17 ft in the first experiment and 
approximately 31 ft in the second experiment. 

As a measure of the influence of concavity on 
overland flow, peak runoff rates were compared from 
the uniform and concave configurations. Experimental 
results indicated an approximately 40 percent reduc­
tion in peak rate for the concave configuration. 7o ' 
determine the cause of this difference in peak dis­
charge, optimal roughness parameters were obtained 
using data from both configurations . Simulation 
analyses were then conducted using the previously de­
termined parameters. From the simulation results, the 
relative effects of several factors can be estimated 
which might have influenced the magnitude of 40 per­
cent reduction in peak discharge in the second experi­
ment. Changes in the channel (as described above) 
should result in a decrease of 6 to 10 percent in the 
routed hydrograph. In contrast, the concave overland 
flow should produce about 7 to 10 percent increase in 
peak discharge. Nonuniform input might have resulted 
in a decrease due to its greater influence on the 
flatter-sloped planes of the concave configuration. 
Changes in the length of overland flow may have af­
fected peak discha~e by increasing the time to equi­
l ibrium in the second experiment. However, this is 
difficult to simulate due to other distortions in 
model geometry required to account for the difference 
in length of flow. The main conclusion from these 
simulation studies was that the effect being sought 

. was likely to be completely masked by larger effects 
from uncontrolled changes from the first to the second 
experiment. 

The experiments described above were valuable in 
emphasizing the need for complete experimental design 
and devotion to detail in experimental work. In terms 
of testing the effects of slope shape upon overland 
flow, variability in the data due to uncontrolled fac­
tors masked. the anticipated effects of concavity. 

In an additional attempt to test the hypothesized 
influ81lce of slope shape upon overland flow, data from 
two of the Pawnee watersheds (see Table 4.5) were 
chosen for analysis. Watershed P-1 has a mean sl ope 
of 0.031, while watershed P-7 has a mean slope of 
0.036. Watershed P-1 has a concave shape with an 
index of concavity from a midwatershed slope profile 
of Ic = 0.76. Watershed P-7 has a convex shape with 

an index of concavity for the midwatershed profile of 
Ic = 1.09. Four planes were fit to each watershed to 

adequately account for the concavity and convexity. 
Optimal roughness parameters were then derived for 
each~atershed from the rainfall-runoff event of 
Septdmber 11, 1973 . As an example. rainfall excess, 
observed runoff, and fitted runoff are shown in Fig. 
5.3 for watershed P- 1. Optimal roughness parameters 
are K • 1690 for watershed P-1, and K = 1670 for 
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Fig. 5.3. Observed and fitted hydrographs for Pawnee 
Watershed P-1, September 11, 1973. 

watershed P-7. These values are very close so that 
any differences in simulated runoff would not be due 
to different values of estimated roughness coeffi­
cients. As shown in Fig . 5.3, the rainfall input 
pattern for the observed data is quite compl ex. For 
this reason, optimal roughness parameters were used to 
simulate responses to a partial equilibrium-pulse in­
put on both watersheds. This procedure--calibrate, 
simulate to insure similar input, and then compare 
results--is implicit throughout this study. Any dif­
ferences in the responses should be due to geometrical 
differences--concavity versus convexity. The re­
sponses are shown in Fig. 5.4 wherein (1) refers to 
the hydrograph from watershed P-1 (concave) while (7) 
refers to the hydrograph from watershed P-7 (convex) . 
The differences in the hydrographs are as hypothe­
sized. The concave watershed produces a more delayed 
response when compared with the convex watershed . 
Peak discharge values are comparable for the two 
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Partial equilibrium-pulse responses for 
Pawnee Watersheds, complex geometry, 
optimal roughness. 



watersheds. Howev~r. the differences in the 
hydrographs shown irt Fig. 5 .4 ara small, about 
20 percent in time to peak and about S percent in peak 
discharge, leading to the conclusion of no significant 
difference in peak discharge. That is, under condi­
tions as observed on the Pawnee watersheds, the ef­
fects of slope shape upon overland flow may be signif­
icant with r espect to time to peak but may not be 
significant with respect to peak discharge. 

As a final comparison for these watersheds , 
impulse responses were computed as shown in Fig. 5.5. 
As expected, impulse response analysis is most power­
ful in detecting the influence of slope shape. The 
impulse response of the concave watershed is delayed 
in comparison with the response from the convex water­
shed. There are no significant differences in the 
recessions of the impulse responses. 
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Fig. 5. 5. Impulse responses for Pawnee l~atersheds, 
complex geometry, optimal roughness. 

Overton (1971) made an independent analysis of 
the influence of slope shape upon overland flow. 
Unfortunately, Overton considered steady-state condi­
tions so that peak discharge was not a part of his 
analysis . His conclusions were for a particular defi­
nition of lag time (related by a constant factor to 
equilibrium time). As shown in Fig. 3.4 herein, mini­
mum time differences will be at equilibrium. This is 
in agreement with Overton's (1971) conclusion that 
slope shape has little effect upon his lag or hydro­
logic response time. Therefore, to the extent that 
they are comparable, the results reported here are 
consistent with Overton's. 

5.3.2 Complex Watersheds 

To test the proposed procedure for modeling 
complex watersheds, watershed LH- 6 on the Walnut Gulch 
Experimental Watershed near Tombstone, Arizona was 
selected as an example . As shown in Table 4.5, LH-6 
is a 1.07 acre watershed with a concave main channel 
profile. A detailed description of Walnut Gulch is 
given by Renard (1970). While LH-6 is slightly 
smaller than the Pawnee watersheds , the sizes are com­
parable. Moreover, LH-6 has a rather high drainage 

density of 0.012 ft/ft 2 in contrast with the absence 
of channels on the Pawnee watershed. 

A complex geometrical representation of watershed 
LH- 6 eonsists of nine planes and three channels. 
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Model drainage density is 0.007 ft/ft 2 so that the 
drainage density ratio is Id = 0.6 , which means that 

the total length of channels in the kinematic cascade 
model is 60 percent of the total length of channels in 
the watershed. The geometric goodness-of-fit statis-

tic for the complex configuration is R2 • 0.96. 
p 

Fitted and observed hydrographs for the event of 
August 18, 1971, are shown in Fig. 5.6. The optimal 
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Fig. 5.6. Fitted and observed hydrographs for tho 
event of August 18, 1971, on watershed 
LH-6. 
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K value is 16.30, and the hydrograph goodness-of-fit 
2 

statistic is RQ = 0.89. The most serious errors for 

this event are in peak discharge and later recession 
values. In this example rainfall excess-volume is 
known since runoff volume is known and observed runoff 
data are used in determining the optimal roughness 
parameter. In the next example (Fig. 5.7) rainfal l 
excess-volume is known but the roughness parameter is 
assumed. Thus the term simulation is used. In the 
third example rainfall excess-volume is not known and 
the roughness parameter is assumed. This situation 
is termed predicting. Infil tration parameters from 
the event of August 10, 1971 (Fig. 5.7) were assumed 
for the event of August 12, 1971, as shown in Fig. 
5.8 . Also, a roughness parameter of K = 2000, which 
roughly corresponds with the optimal value from the 
event of August 18, 1971, was assumed for this ex.nmplc. 

The simulated hydrograph as shown in Fig. 5.7 
represents an example of a good reproduction of hydro­
graph shape and peak rate but a poor time correspon­
dence. Parameters determined from optimization on 
data such as these would be quite different from those 
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Fig. 5.7. Simulated and observed hydrographs for the 
event of August 10, 1971, on watershed 
LH-6. 
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Fig. 5.8. Predicted and observed hydrographs for the 
event of August 12, 1971, on watershed 
LH-6. 

obtained if there had been better timing 
•Correspondence . As expected, the predicted hydrograph 
(Fig. 5.8) is a poorer reproduction of the observed 
hydrograph than in the fitted and simulated cases. 
Even so, this example is probably a better-than­
average case, especially with respect to peak dis­
charge . There are timing, volume, and hydrograph 
shape errors in this test case. 

Some watershed characteristics for W-C at Riesel, 
Texas are shown in Tables 4.5 and 4 .8. A third model 
for this watershed consists of two channel s in cascade 
each with two lateral planes. Thus, the model is com­
posed of four pl anes and two channels as discussed in 
Section 4.5. Selected runoff events were used to ob­
tain optimal roughness parameters for the watershed 
modeled as a single plane, the Wooding model, and the 
four plane configuration. Mean hydrograph 
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goodness-of-fit statistics and the corresponding 
geometric goodness-of-fit statistics for these data 
are shown in Fig. 5 . 9. 'The following observations can 
be drawn from this graph. A twofold increase in 
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Fig . 5.9. Relation between goodness-of-fit statistics 
for watershed w-e. 

R~ results in an increase of about one-third in R~. 
The rate of increase in R~ with increasing R; de­

creases in going from the second to the third model. 
Expanding upon these observations, the upper portion 

of Fig. 5 .10 shows the relation between R~ and the 
(A} 
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number of planes in each model. The lower portion of 
Fig. 5.10 is a plot of the geometric goodness-of-fit 
versus the number of planes in the models. Goodness­
of-fit statistics increase as geometric complexity in­
creases but at a decreasing !ate. 

Therefore, for watersheds, as examined here, it 
seems reasonable to assume that there wil l be dimin­
ishing return in hydrograph goodness-of-fit for in­
creasing geometric complexity. This is not to suggest 
that there will not be additional benefits associated 
with the increasing distribution in space of other 
watershed characteristics. For the simplest geometry, 
the kinematic cascade model is a lumped parameter 
model. As the geometric complexity increases, so does 

the potential for distributing associated model 
parameters in space. 

A second cautionary note is with respect to 
optimal roughness parameters . An increase in geo­
metric complexity yields a diminishing return in 
hydrograph goodness-of-fit but not in terms of rough­
ness parameter estimation. The data in Fig. 4.16 
suggest a nearly linear relation between a combined 
goodness-of-fit statistic for watershed geometry and 
normalized roughness coefficients. This concept is 
illustrated in Fig. 5.11, where relatively small 

i ncreases in R~ are associated with larger increases 

in the normalized roughness parameter. 
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Fig. 5.11. Relation between distortion in 
roughness parameter and hydro­
graph goodness-of- fit statistic 
for watershed W-C. 



Chapter VI 

CONCLUSIONS AND RECOMMENDATIONS 

Surface nmoff, conc.eptualhed here as overland 
and open channel flow, is a complex process which is 
invariably simplified in the formulation of mathemati­
cal models. This thesis is an endeavor to develop ob­
jective procedures for geometric simplification of 
complex watersheds modeled as kinematic cascades of 
planes and channels . The development of goodness -of­
fit statistics for geometric and hydrograph fitting 
represents a theoretical basis for empirical develop­
ment of inferential relationships between geometric 
and hydrograph goodness-of-fit statistics. 

6.1 Conclusions 

Throughout this research, the writers were often 
led to conclusions concerning the mechanism whereby 
rainfall becomes runoff on small watersheds. Many of 
these conclusions are of a subtle nature and, as yet, 
not succinctly formulated to allow expression. The 
conclusions presented do reflect areas where suffi~ 
cient theory, data, and experience were brought to­
gether to justify specific conclusions. 

Conclusions resulting from this study are: 

1. A simple concept of the surface of a 
watershed is that it consists of the channel network 
and the interchannel areas of overland flow within the 
watershed perimeter. This study verifies that this 
simple concept is useful in modeling surface runoff. 

2. Kinematic impulse response analysis was 
demonstrated to emphasize the influence of surface 
configuration upon overland flow. 

3. Peak discharge of the kinematic impul se 
response is greater for parabolic than for uniform 
slope overland flow surfaces, and the differences are 
greater for laminar flow than for turbulent flow. 

4. Analyses of partial equilibrium-overland flow 
hydrographs from uniform and parabolic slopes indicate 
that concave slopes produce higher peak discharge for 
laminar flow and higher or lower peak discharge for 
mixed laminar and turbulent flow depending on the 
duration of the i nput pulse. 

5. Simulation results for complex watersheds 
suggest that underestimating the drainage density 
would result in overestimated time characteristics 
and underestimated peak discharge, unl ess there were 
compensating errors in other parameters. In the ab­
sence of such errors , underestimating drainage density 
would probably result in overestimated lag time and 
i ncreased nonlinearity in the rainfall excess- surface 
runoff relation. 

6. The hydrograph goodness-of-fit statistic, 
2 RQ, is related to the geometric goodness-of-fit 

tistic, R2, and to drainage density. 
p 

sta-

7. The ratio of optimal roughness parameters to 
experimentally derived roughness parameters is related 
to a combined goodness-of-fit statistic as the product 
of the drainage density ratio and the geometric good­
ness-of-fit statistic. 

8. Under real conditions, as observed on the 
Pawnee watersheds, the effects of slope shape upon 
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overland f low are significant with respect to t ime to 
peak but may not be significant with respect to equi­
librium time or peak discharge. 

9. Successive increases in complexity of 
kinematic cascade models may yield diminishing returns 
in hydrograph goodness-of-fit but not in terms of 
roughness parameter estimates. 

6.2 Recommendations for Further Research 

Four main areas of study, where additional 
research may yield answers to questions raised by this 
study, are: (1) To obtain better timing relationships 
between rainfall, rainfall excess, and runoff; (2) To 
obtain more accurate rainfall excess estimates partic­
ularly with respect to initial abstract!ons and tempo­
ral variation caused by the action of different pro­
cesses varying in space; (3) To develop a nonlinear 
identification and linear prediction procedure (as 
suggested by the research of Singh (1974) and that 
reported here); and (4) To conduct an empirical study 
relating geometric with hydrograph goodness-of-fit 
statistics . 

6.2.1 Timing Relationships 

Synchronous measurements of rainfall and runoff 
on small watersheds, such as the Pawnee and 
Lucky Hills watersheds, are needed. It is suggested 
that a simple electrical link between the rain gage 
and water stage recorders be established. Per 
example, two solenoids could make simultaneous marks 
upon the rain gage and runoff charts at the beginning 
of a rainfall event which would not only reduce the 
variability of future data but also aid in interpret­
ing existing data. With the mechanical timing errors 
eliminated, i t would then be possible to investigate 
the true nature of the timing relationships. 

6.2.2 More Accurate Rainfall Excess Estimates 

Although an oversimplification, the assumption of 
a simple infiltration function as used here is common. 
That a blocK of rainfall divided into infiltration and 
rainfall-excess providing input to a routing model is 
an oversimplification is well-known (see e.g. Foster 
(1968), Smith (1970), or Smith and Woolhiser (1971)). 
One infi ltration equation may be necessary during 
rainfall when the entire area is active and another 
after rainfall when the rills and microrills are still 
active but the interrill areas of overland flow are 
not. The procedure (as discussed by Foster (1971), 
p. 174) may be a logical starting point. If the 
timing errors can be eliminated, possibly only the 
inclusion of an initial abstraction term may satisfy 
observed time lag phenomena. The procedure (described 
by Langford and Turner (1971) or the threshold pro­
cedure discussed by Lane {1972)) may be logical 
starting points. In any event, if the errors due to 
distortions in geometric simplification can be quan­
tified then it may be fruitful to begin quantifying 
the errors due to oversimplification in estimated 
rainfall excess. A second step in attacking the prob­
lem might be via a calibrated simulation model, as 
suggested by the example of the effects of variability 
of rainfall excess upon overland flow hydrographs. 
Finally, since drainage density is a measure of all 
channels in an area , it may prove to be an important 
parameter in studying rill infiltration, as suggested 



by Foster and others. This would seem to be another 
potential area for additional research. 

6.2.3 Toward an Optimal Nonlinear Identification-­
Linear Prediction Scheme 

As stated earlier, the work of Singh (1974) in 
analyzing prediction results with linear and nonlinear 
models and this work analyzing effects of watershed 
characteristics upon overland flow may provide a 
starting point for further research. These studies 
provide a reason for asking the questions: Is there 
an optimal procedure, with respect to power of identi­
fication and accuracy of prediction, for nonlinear 
system identification and linear system prediction in 
surface runoff and when can one say that with speci­
fied degree of accuracy a given hydrologic system can 
be assumed linear? 

6.2.4 Empirical Development of Inferential 
Relationships Between Geometric and Hydrograph 
Goodness-of-Fit Statistics 

Assuming that timing errors can be overcome and 
that rainfall excess-estimates of sufficient accuracy 

can be made, then if R2 and R2 can be related 
Q p 
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there is a basis for inference in modeling rai nfall 
excess-surface runoff on small watersheds. Moreover, 
this inferential procedure (geometric to hydrol ogic 
goodness-of-fit) may provide a method for extending 
more meaningful rainfall-runoff relationships to 
ungaged basins. Therefore, there is need for an 

empirical study relating R~ to R; and other water­

shed characteristics for a variety of small 
watersheds. 

As discussed earlier, the process of surface 
runoff is complex with a large number of variables 
involved. An alternative approach to the problem of 
analysis of the significance of selected geomorphic 
parameters i n determi ning hydrograph goodness -of- fit 
statistics may be through multivariate analysis. For 
example, Overton (1969) used principal component anal­
ysis to investigate the interrelation of geomorphi c 
parameters. Yevjevich, et al., (1972) showed the pos ­
sibility of selecting a smaller number of parameters 
from an extensive list of geomorphic parameters re­
lated to flood characteristics on small watersheds. 

, Similar analyses might prove fruitful in relating 

R
2 

to R
2 

and to other watershed characteristics. Q p 
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