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ABSTRACT

EFFICIENT INPUT SPACE EXPLORATION FOR FALSIFICATION OF CYBER-PHYSICAL

SYSTEMS

In recent years black-box optimization based search testing for Signal Temporal Logic (STL)

specifications has been shown to be a promising approach for finding bugs in complex Cyber-

Physical Systems (CPS) that are out of reach of formal analysis tools. The efficacy of this approach

depends on efficiently exploring the input space, which for CPS is infinite. Inputs for CPS are

defined as functions from some time domain to the domain of signal values. Typically, in black-

box based testing, input signals are constructed from a small set of parameters, and the optimizer

searches over this set of parameters to get a falsifying input. In this work we propose a heuristic that

uses the step response of the system – a standard system characteristic from Control Engineering

– to obtain a smaller time interval in which the optimizer needs to vary the inputs, enabling the

use of a smaller set of parameters over which the optimizer needs to search over. We evaluate the

heuristic on three complex Simulink model benchmarks from the CPS falsification community,

and we demonstrate the efficacy of our approach.
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Chapter 1

Introduction

Cyber-Physical Systems (CPS) combine physical systems including hydraulics, mechanical,

and electrical with computational devices, which are the software systems primarily involved in

gathering, sending, controlling, and manipulating sensory data. These complex industrial control

systems are deployed in numerous domains such as aerospace, automotive, Internet of Things

(IoT), and medical devices and therefore need to be robust enough to operate reliably in real-world

environments. To ensure this robustness, testing and verification of these large systems are an

integral part of the design process, and have a tangible impact on total development costs [1].

Testing and verification are necessary to increase the confidence concerning the performance of

the product and verify that all of the safety standards are met.

The complexity of the system should not lead to the erroneous controller design in the imple-

mentation phase. The controller should work as a same way as envisioned in the design phase.

Traditionally, the software development process of CPS involved developing a monolithic manner

code base generation and there was no clear separation between software modules. This was an

expensive approach and led to sub-optimal controller design because the testing of the systems was

only conducted for experimental test suites.

The model-based design (MBD) paradigm is widely adopted by many organizations. MBD is

a mathematical design of complex industrial control systems. The V-model is given in Figure 1.1

depicting the MBD process. This process often starts with the specifications of systems. The merit

of using MBD over the traditional software development process is the mitigation of complexity by

providing a unified framework for creating, documenting, testing, and deploying reliable software

systems for CPS [1]. Moreover, this framework not only helps to design flexible controllers but

also allows for early detection of unforeseen errors that might occur in real-time.

Initially, in the design phase of the V-model, the designer starts with the plant design of dynamic

characteristics outlined in the specifications using differential, algebraic and logical equations.
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Figure 1.1: V-Model for MBD and MBT from [2]

Next, the design of the controller subsystem that regulates the physical components that is done

from design principles from embedded systems, distributed control, and control theory. Lastly,

the design of an environmental model that encapsulates the behavior of external entities that may

be directly or indirectly interacting with the system [3]. However, these three steps may require

refinements in all systems and subsystems design. For example, an inherently modular system that

is system might need subsystem design and a clear separation of its modules.

On the right side of the V-model in the Figure 1.1, in the integration phase, all models, systems,

or subsystems will be tested individually. The component tests ensure that the individual compo-

nents are working without fault as per specifications. Model-Based Testing (MBT) is a method of

testing the systems, subsystems, or models that are developed in the MBD paradigm in the system

development life cycle of the CPS. MBT also ensures that communications between subsystems

are also tested. The integration tests are performed in MBT to ensure that the specifications are met

and a fully verified system will be released. Both the design and integration phases are involved
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in MBD and MBT, respectively. The V-Model System Development Life Cycle helps in faster,

error-free, and reusable system development and mitigates most of the defects that could lead to

hazards in the real-world applications [2].

However, MBT does not guarantee the correctness of the system through component, network,

and integration testing at different levels. There could be an input for which the corresponding

output of the system demonstrates undesired behavior. If this happens, then at this point in the

system development the refactoring or re-engineering costs could be much higher. The simulation-

based testing approach has proven to be promising since no physical implementation of the plant

is required. The dynamics of the working model are captured in a Simulink based mathematical

model. Note that this mathematical model is the same system that is released in MBT in Figure 1.1.

Verification and testing of the system are two major analysis problems that ensure the correctness

of safety measures and correctness of the integrated systems [3].

A formal definition of testing is to test the output of a system for an experimental input to the

system. There could be multiple inputs from the input space, but the test set in the testing activity

is always a finite set from the input space. As the test inputs are not exhaustive, testing does not

guarantee the absence of bugs. For example, the testing of the internal combustion engine in the

in-house testing facility does not ensure the absence of errors while the vehicle is on the road.

In contrast, verification activity provides the formal proof of correctness of the system for

possibly infinite inputs [4]. Formal approaches such as model checking and theorem proving can

be used in verification of software systems [3]. A well-known technique is reachability analysis

in the CPS domain. The set of reachable states in a given finite time horizon is computed with

a particular set of input signals and a set of initial conditions in reachability analysis [3]. The

idea is that the system should not reach any unsafe states. These unsafe states are provided in

specifications. Also, a common assumption in this technique is the system state is fully observable.
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1.1 Black-Box Optimization for Testing

Industrial Cyber-Physical are large and complex, and fully formal verification approaches are

usually infeasible for such systems. Falsification, based on black-box optimization, has been pro-

posed in order to detect bugs in such complex systems, Falsification is defined as a process of

systematically searching for a valid input for that the given CPS model does not hold desired be-

havior. This input is called counterexample. If the system is given this input counterexample input,

then the system output violates the specified system specification, and in this case the system is

said to be falsified.

In practice, these behavior specifications are represented using temporal logic. Temporal logic

provides flexibility in modeling the behavior of the system concerning time. In falsification, the

different inputs are being tested against the system. Moreover, the selection of input is not random.

Overall, the provided input will be used in simulating the system and generating outputs that will

then be checked against the specifications. Temporal logic includes many extensions such as Linear

Temporal Logic (LTL) [5], [6], Metric Temporal Logic (MTL) [7], [8]. In this thesis, we consider

the setting where the specifications are encapsulated in Signal Temporal Logic (STL) [9], [10].

STL is an extension of LTL. STL allows us to define the constraints in real-time over real-valued

signals.

In the process of simulation-based falsification, the system is considered as a black-box. We

only know the interfaces of the system in terms of inputs and outputs. The advantage of consid-

ering the system as a black-box is that the system dynamics do not need to not be known. Also,

the falsification activity can be constructed as a problem of optimization. The system only sees the

input signals and returns some outputs using some underlying unseen logic. In optimization-based

falsification, the key work is to generate the potential signal of choice that can falsify the system. In

this framework, the falsification of the system will be decided by the robustness function from the

evaluation of STL specifications against the output of the system. The notion of a robustness func-

tion, which is a quantitative measure of how well a system behavior satisfies an STL specification

that has been developed in [10] and used for falsification activity in [11], [12]. If the robustness

4



function returns a negative value then the system is falsified, otherwise, the system behavior is

within specification. Hence, for the optimizer, the robustness function is the main function to be

minimized when subject to inputs. These inputs are parameterizations from which the input sig-

nals will be generated. Intuitively, the system takes input signals and generates the output signals

(for example signals x(t) : [0, T ] → R, and y(t) : [0, T ] → R), however, the optimizer takes an

input parameterization (for example αx
1 , α

x
2 , ..., α

x
5 for signal x(t) and αy

1, α
y
2..., α

y
5 for signal y(t)

each αx
i and αy

i from R for i ∈ {1, 2, 3, 4, 5}), and minimize the robustness functions. To glue the

optimizer to the system execution, there needs to be a signal generator which generates the signals

x(t) and y(t) from the parameter values generated by the optimizer. For example, the full signal

could be completed using some form of interpolation (in such a signal generation scheme from the

parameters, the parameters are also known as control points). We note that the optimizer knows

nothing about signal generation and specification evaluation. Overall, optimization-based falsifi-

cation has been shown to be promising approach in recent work by the falsification community

[12–16]. A more detailed explanation is given in Chapter 2.

1.2 Our Contributions

A basic ingredient of optimization based falsification approaches is the translation of the search

space over input signals – defined as functions [0, T ] → R
n over some time domain [0, T ] – to a fi-

nite parameter space over which the black-box optimizers typically operate. Our main contribution

in this work is the exploration of a heuristic to reduce the number of parameters for more efficient

exploration of the input signal space. Our heuristic takes inspiration from the step response con-

cept from the theory of Control Systems. The step response of a system from a given initial state

is the response of the system when given a step input. Step response behavior is a critical part of

the analysis of control systems [17], and overshoot, rise time, and settling time data from the step

response are key characteristics for behavior analysis of dynamical systems. Our heuristic is to

vary the input signal not over the entire simulation horizon, but over a time duration equal to the

settling time for the step response (defined as the time taken for the system output to reach and stay
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within a specified error band). For example, if the simulation horizon is 80 seconds, and we wish

to have a uniform placement of control points at 2 second intervals, then this would result in 41

control points. If the settling time is 20 seconds, then our heuristic would require 12 control points

(we fix a special control point to be at the beginning of the simulation). The placement of this 20

second interval which contains the control points is itself variable, with the offset being determined

by the optimizer. Such a heuristic, if successful has two benefits: (1) it reduces the search space

for the optimizer, and (2) the falsifying inputs are simpler, as they change over a smaller number

of time points, and hence are more desirable for debugging.

We implemented our algorithms in Breach [18], a state of the art falsification tool for Simulink

models, and ran benchmarks over three widely used complex Simulink models from the CPS

falsification community. Our results show our proposed method to be effective for falsification

over these benchmarks. If we consider the least robustness values obtained, for all of the properties

in our experiments, except for one, our heuristic either performs better (that is, it achieves better

robustness values), or is within 5% of the baseline (where the baseline generates input signals from

a uniform placement of control points).

1.3 Related work

The formal definitions of the verification and the falsification are given in [3]. Verification can

be viewed as proof of all possible outputs of the system satisfying given specification ϕ for all

possible inputs. Falsification is an inverse process of verification. The traditional method of veri-

fication of the CPS, such as model checking is a powerful framework for verifying specifications

of finite-state systems, and works for a partial specification where theorem proving does not work

[19]. However, model checking based approaches suffer from scalability problems, because of

the infinite state space of CPS [20]. In such an infinite state system, the formal verification based

approaches are undecidable.

Hence, in the past decades, researchers have been working on testing based approaches [21]

that explore good strategies to guide the test case selection process. This is thankful to robustness
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guided falsification [22] where a real value robustness function, quantitative semantics over MTL,

and its variants like STL is employed which guide the falsification process. A notion of Boolean

semantics will provide the true/false answer for ϕ satisfaction for system behavior. The adoption

from MTL semantics, STL semantics is also known as quantitative robustness value, and is a nu-

meric measurement of how "robust" a specification ϕ hold in the CPS model. Therefore, the notion

of robustness function that returns the quantitative robustness value by evaluating the specification

ϕ over the system behavior, and needs to be minimized in robustness guided falsification.

Furthermore, robustness guided falsification can be classified into black-box and grey-box ap-

proaches based on the exposure of the underlying CPS model and strategies used for input space

exploration. In the black-box approach, the model is completely hidden, and only interfacing of the

model such as inputs and outputs are available. However, the gray-box approach is more relevant

to the temporal structure of inputs/outputs and the availability of internal dynamics to some extent

[23]. Furthermore, the black-box approach is classified into the global optimization problem that

uses different optimization methods to minimize the robustness function, and statistical modeling

uses different probability distribution based methods [23]. Our work is based on black-box falsifi-

cation, which is in short evaluation of the specification ϕ by simulating the system without looking

into the system. Overall, the robustness guided falsification requires the simulation of the system,

while other traditional verification methods like model checking, theorem proving and reachability

analysis do not require any simulations.

MBT constitutes the testing of individual components and their integration before the final

release. Hence, some automated test case generation techniques and algorithms have been used

that try to cover as much input space as possible. However, there is still a need for inputs that

may violate the specification. The falsification community for CPS has been exploring different

aspects of the falsification process in recent years. For example, the Markov Chain Monte Carlo

method has been used to optimized the problem over input generation to those areas where there

are maximum probabilities for violation of specifications [11].
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The paper [12] talks about the role of input constraints in the falsification process. Many

constraints have been imposed on input signals so that these constraints must be respected by

the optimizer in the falsification process. The evaluation of input constraints is contributing to

the global cost function. If the input constraints are violated then some penalty will be added

in global cost function, otherwise, the cost will be left only to the violation or satisfaction of

specifications [12]. This global cost is a robustness value that must be minimized. The global

cost function is defined using lexicographical methods for multi-objective optimization with first

priority to input constraints satisfaction and then specification evaluation.

While it is relatively the same idea described in the paper [12], the work in [24] proposes a new

framework for calculating robustness by explicitly specifying the input and the output interfaces.

This new notion of relative robustness has been proposed for inputs and outputs. The notion of

vacuity is used to address relative robustness for inputs. Classically, Vacuity is defined as follows:

for a given specification ϕ contains implications (request → response), the system violates the

specification if ϕ suffers from antecedent failure [25]. In other words, the robustness value of

the post-condition (response) is not affecting the falsification if the pre-condition (request) is not

satisfied. The work of [24] presents a proposal for extending this vacuity notion to the case where

the formula does not fall into a request-response template. The output robustness measures the

degree of satisfying the specification those are defined over output signal variables. In Reactive

Systems, the inputs are coming from the environment in which the system operates, while the

outputs are the computational outcome of the environmental inputs and some internal states. In

addition to relative robustness, after the falsification, for finding an input where the worst (negative)

robustness value originated, the work in [12] also proposed a method for narrowing down the time

interval in the output trace responsible for the system specification violation. For this, worst case

diagnostics and the epoch diagnostics algorithms were used. The worst case diagnostics marks a

point in the trace π where the worst robustness value originated, while epoch diagnostics identify

the entire trace or the sub traces in which the worst robustness value originates [24].
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Another aspect in the falsification of CPS, discussed in the paper [26], is only considering the

MTL properties in the form of request → response. In other words, if there is an antecedent then

there is at least one consequent. Intuitively, this is falsified when there is such an input where the

antecedent is satisfied and the consequent is violated. To generate such input, the 2 stage algorithm

has been proposed. During stage 1, the algorithm checks for AF(ϕ). AF stands for antecedent

failure. If the antecedent (request) is true, then falsification is only left to the consequent. In stage

2, first the input condition and the input prefix will be extracted from the input signal, then using

this same prefix, which is a part of input where the antecedent is satisfied the deterministic CPS

model will generate another input with different suffixes so that the consequent in the property can

be falsified [26].

The black-box checking (BBC) is a combined approach of model checking and automata learn-

ing proposed in [27]. The key concept was to apply what had been learned from past falsification

trails. For example, in Breach [18] tool, the multiple specifications will be tested sequentially. In

this paper, knowledge of the falsification process of one specification could help falsify the other

specifications. Intuitively, the learned model will check if it satisfies the specification ϕ through

the model checking, if it does not then it generates a counterexample and checks that the coun-

terexample is also witnessed by the original CPS model. If it does then the counterexample has

been found. Otherwise, we have a learned model that violates the specification and original model

that satisfies the specification. Hence this contradiction leads to a better learning process using the

counterexample.

There are different aspects of verifying the CPS, such as input generation strategies concerning

algorithms or the optimizer, control points placements over simulation horizon, and evolution of

conjunctive specifications. Recently, significant amount of work has been done in the input space

exploration for better input generation strategies [28]. [29] introduces methods for exploiting

randomness in random search. [30] talks about the input search space transformation between the

unconstrained search space to the constrained search space. Moreover, the recent work also shows
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the input and output signal variable importance in the formalism of specifications, [14] mentioned

the vacuity performance on the falsification process.

The work of [31] explores the a non-control point parameterization scheme for input space

exploration. Periodic square wave signals are used for inputs with five parameters for pulse gen-

eration. These five parameters are period, base, amplitude, delay and width. However, not all

parameters were varied in input generation, base was fixed at a lower value from the range in the

input signal. All input signals go from low to high and stays at high for provided width duration. In

experiments, they show the importance of fixing some control point values and their impact on the

performance of falsification. The work concludes the parameterization scheme requires domain

expertise.

There are many recent advancements in tools and technologies that can help to implement

the desired heuristics. Such tools provide many in-build features and functions, including signal

generator of choice, optimizer, and many more toolboxes of machine learning based developments.

These are the tools used in recent work like Breach [18], S-TaLiRo [32], ST-Lib [33], RRT-REX

[13], FalStar [34], and falsify [23]. These tools are implemented based on different optimization

and search strategies.

1.4 Thesis Organisation

Chapter 2 gives an overview of the black-box optimisation based falsification framework.

Chapter 3 presents a formal introduction to Signal Temporal Logic. Chapter 4 explores the core

internals of the Breach falsification tool on which we implemented our falsification strategy. Chap-

ter 5 presents our proposed method for a parameterisation strategy to more efficiently explore the

input signal space for falsification. Chapter 6 gives the benchmarks on which we test our proposed

method. Chapter 7 gives the details of our experiments over the benchmarks, and presents the

results of the experiments. Chapter 8 concludes the thesis.
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Chapter 2

Overview of Black-Box Optimization based

Falsification

Falsification is an inverse process of verification. In falsification, we need to find an input for

which the system output violate a given specification. Falsification is a testing of the system over

infinite input space from which the input is selected using some strategy such that the system does

not hold desired behavior [4]. Property specification can be achieved using different extensions

of temporal logic such as LTL, and MTL. Since most of the system works with real values and

real-time inputs, the specifications are described in STL

A key notion for STL is that of quantitative robustness, which is a measure of how far system

behavior is from violating or satisfying the specification. If the robustness is positive then system

behavior satisfies the specification, otherwise it violates it. For example, the system takes one

input, let us say x, and gives output y. Both x and y are real-valued signals in the domain of

[0, 100]. The STL specification is formalized as y ≤ 50. Then, the robustness for this specification

is just an evaluation with different values that y held during the simulation of the system. A detailed

explanation is given later in this Chapter.

However, the above process is experimenting with one input by simulating the system. Falsi-

fication involves changing the inputs until the negative robustness has been found. Hence, there is

some sort of automatic input generation required that iteratively generates inputs from input space.

There are many tools and methods available that can do this. Please note that experimenting with

different inputs does not mean generating random inputs from input space.

The black-box falsification process is depicted in Figure:2.1. As discussed earlier the falsifi-

cation is a process of finding an input signal such that the system behavior violates the specifica-

tion. In practice, the input signal will be generated by a signal generator and given to the system.

Moreover, this signal generator plays a crucial role in the generation of signals. Black-box based
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optimization is a problem of minimizing the quantitative robustness value subject to input signals

and in the best case, finding the negative robustness value as early as possible. The key technique

that enables the optimization-based falsification is the quantitative robustness value [3,12]. Hence,

designing a signal generation of a choice that generates the input signals for the falsification of the

system using some heuristic is key [11]. The heuristic in this work is the input parameterization

from which an input signal will be generated and given to the system. For a corresponding input

signal from the signal generator, the system will hold an output execution. The design of a signal

generator of a choice is possible due to several recently developed tools that use an optimization-

based falsification approach in the testing of the CPS such as Breach [18]. Other tools are used in

this area such as S-TaLiRo [32], RRT-REX [13], FalStar [34], and falsify [23]. These tools are im-

plemented using different optimization and search strategies. In this work, we have used Breach, a

state-of-the-art industrial falsification tool.

The last step is to check the system behavior by evaluating the specification with the output

execution. This evaluation gives a real value called quantitative robustness value that indicates a

violation or satisfaction of a specification. The big box given in Figure 2.1 is a black-box for a op-

timizer. The optimizer tries different values of input parameterization with the aim of minimizing

the robustness. In this black-box based falsification, the optimizer is not aware about any internal

structure of input signals, the system or output execution. The only interfaces that the optimizer is

aware of are input parameterization with their ranges and quantitative robustness value that needs

to be minimized. Once the negative robustness value has found the optimizer stops searching the

values for input parameterization. The rest of this chapter is detailed explanation of black-box

based falsification process depicted in Figure 2.1.

2.1 Black-Box based optimization

The optimizer in the optimization is a common term that tries to optimize something. So, the

first question that arises in the mind is what to optimize, which is what is often provided as an

objective. Mainly, the optimizer works to either minimize or maximize the objective, given as

12



Figure 2.1: The black-box falsification process

a function. Let us say a function f that takes finite n parameters in R. So, the parameters are

α1, α2, .....αn and αi ∈ R. If the objective is to minimize the function f then optimization problem

can be formulated as below:

minimize
αi∈R

f(α1, α2, ...., αn) (2.1)

where function f is defined as follows:

f : Rn → R (2.2)

The function f maps the n-dimensional input to a real value and the structure of f is given in

Figure: 2.2.

Figure 2.2: Structure of a function f given in 2.2
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Figure 2.3: Optimization loop on function f given in 2.1

As depicted in Figure:2.3, the optimizer will try minimizing O ∈ R for different parameters.

Please note that we do not know what function f looks like, we only know that function f takes n

parameters and returns a single real value. Hence, for an optimizer, the function f is a black-box.

Below are the terminology that makes some distinctions that are required to understand subsequent

sections.

2.2 Black-Box based optimization over signals

The example given in 2.3 is black-box optimization over a set of variables ({α1, α2, ......, αn})

in R. However, the system takes input signals generated by a signal generator, hence, the black-box

optimization is over the input signals that are exercised by the system.

Parameterization:

A Parameterization is to construct an input signal from finite parameters. For example,

these finite parameters are certain signal valuations placed over the simulation horizon, using

linear interpolation on those placed signal valuations the full input signal will be generated.

These particular signal point placements and valuations are called control points. The notion
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of control points is defined as a certain number of signal values from the signal range are

placed over the simulation time domain. The control points are sampled values from the

input signal range [35]. Moreover, this is not the only example of parameterization. There

are also other possible heuristics in the signal generation process. For example, the one way

of parameterizing a cos signal generation would be amplitude and frequency. In Figure: 2.4,

αx
i and αy

i where i ∈ {1, 2, ..., 5} are parameters for input signal x(t) and y(t) respectively.

Also, we may also consider some parameters which are directly required by the system

but not part of signal generation. Those parameters do not contribute to the input signal,

however, the system does allow changes to their values during runtime for tuning. The

αparam
1 and αparam

2 are examples of such parameters. Moreover, the number of parameters in

each signal generation is subject to the simulation horizon in our work.

Signal Variables:

Signal variables are the symbolic representation or the identifiers for a signal.

Signal:

A (discrete-time) signal is a sequence of signal valuations with respect to time. For example,

for a corresponding signal variable x, a (discrete-time) signal x(t) is a sequence of signal

valuations xi : [0, T ] → R. x(t) = x0x1x2.....xm−1 where xi is a signal value at time i ∗∆;

for ∆ the sample time period. m = T/∆ is a positive integer.

Signal Valuations:

For a real-valued signal variable, signal valuation is a real value that the signal variable holds

at a particular time. xi is a signal valuation at time i ∗∆, for ∆ the sample time period.

2.3 Signal Generator

The signal generator in figure 2.1 is a function that generates a signal over the simulation

horizon from a given parameterization. Generally, a signal generator is responsible for generating
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Figure 2.4: A falsification process simplified from 2.1

a valid signal that can be given to the system. A signal generator is often seen as a function of time

that assigns multiple dimensional values to the signal variables with respect to time and, using

linear interpolation, the full signal will be generated. For example, let us say a system has 2 input

signals and 3 output signals. Then, the function of time is defined as

πin : [0, T ] → R
2 (2.3)

Here, πin is a trace or signal, further let’s say those 2 signal variables x and y are in [0, 100]

and [0, 325] respectively and our simulation horizon has T = 10 seconds. With a sampling period

of 2 sec, a total 6 signal valuations will be created by πin.

Now let’s say those valuations given below are created at the sample time period in incremental

order.

πin = {(0, 70), (50, 100), (34, 325), (76, 10), (0, 0), (10, 235)} (2.4)

More specifically, ∆ = 2 sec, then total valuations m = ⌊(T/∆)⌋ + 1 = ⌊10/2⌋ + 1 = 6,

the system is starting the execution from 0, so, the first control point will be placed at 0 in the

simulation horizon.
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For signal x(t) and y(t) , the m valuations from πin are {0, 50, 34, 76, 0, 10} and

{70, 100, 325, 10, 0, 235}, respectively.

Then, the input signals x(t) and y(t) will be created over those 6 signal valuations by linear

interpolation.

These signals will be further given to the system. Earlier in this section, we mentioned a valid

signal and that is, the signal valuations are from given signal ranges.

2.4 System

A system is a mathematical model having exact system dynamics as defined in the specifica-

tions of the system. The underlying layers of CPS are complex. Mathematically, a system that

takes an input signal defined in 2.3 and gives output signal valuations in the same fashion. Let

us now say that those 3 output signals have some ranges. Then for provided inputs, the system

generates the outputs. A system as a function is defined as the following:

M : ([0, T ] → R
2) → ([0, T ] → R

3) (2.5)

2.5 Temporal Logic Specification

The specifications are the system behaviors that must be held with respect to time for a system

under consideration. Temporal logic is a formalism that allows us to represent the specification

with respect to time. For example, for a system under consideration, some phenomena will take

place in some time. As given earlier in this chapter, the specification evaluation is simply checking

the behavior of the system with respect to the specification. Temporal logic have many extensions

such as Linear Temporal Logic (LTL) [5], Metric Temporal Logic (MTL) [8]. The Signal Temporal

Logic (STL) is an extension of MTL, allowing us to develop the specification on continuous-time,

real-valued signals. In this work, the specifications are represented in STL. A simple example of

an STL using a temporal operator is given below:
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Figure 2.5: An input signal x(t) using linear interpolation from the signal valuations given in equation 2.4

Figure 2.6: An input signal y(t) using linear interpolation from the signal valuations given in equation 2.4
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□
(

x(t) > 32 → ♢[0,200]x(t) < 25
)

(2.6)

Intuitively, if the antecedent is satisfied, then the consequent will be served. For example, in

the equation 2.6 a signal x(t) represents the room temperature, if the room temperature goes higher

than 32 °C, then the air conditioning will start, and the room temperature will go lower than 25 °C

within 200 seconds. The temporal operators □ and ♢ are meant for always and eventually. Initially,

the quantitative interpretation of MTL was studied in [16], [36]. An adaption to STL, where the

satisfaction of an STL formula in terms of real-valued robustness degree indicates how far an

observed signal is from satisfying or violating the specification proposed in [10]. This alternative

to binary satisfaction has been seen in many of our Related Work papers. This robustness degree

or robustness value or robustness indicates violation or satisfaction of the specification.

Proposition 1. [10] For a given STL formula ϕ and an output execution π, if the quantitative

robustness value ρϕ(π) < 0 then the system behavior π violates the specification ϕ, otherwise for

the quantitative robustness value ρϕ(π) > 0 means the system behavior π satisfies the specification

ϕ

If the robustness value is positive, that means the system behavior satisfied the specification,

otherwise, it violates it [10]. For example, consider a specification saying the temperature of a room

is never above 35 °C. If, however, the temperature of the room is 37 °C then binary satisfaction is

false and the robustness value is -2. If the temperature of the room is 25 °C then binary satisfaction

is true and the robustness value is 10. The robustness function is given in Figure: 2.4 as ρϕ(π). The

procedure of calculating robustness for different temporal operators for STL is given in Chapter 3.

2.6 Integration falsification and optimization

As discussed earlier the signal to the system is a function of time and using linear interpola-

tion, the input signal will be generated. As per the falsification definition and depiction shown in

Figure 2.4, this activity is all about systematically searching for an input where system behavior
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violates the specifications. Hence, a higher number of input signals leads to a more complex input

search space. The robustness ρϕ(π) is a function that needs to be minimized over the input space.

So, falsification is often seen as a problem of optimization.

In this work, the system is considered a black-box, meaning we only know the interfacing of

the system in terms of inputs and outputs. This black-box consideration of the system makes for

easy integration of optimization and falsification. Hence, the Figure: 2.7, the big middlebox now

can be given as a function to the optimizer, where the optimizer tries minimizing the robustness.

Intuitively, the black-box takes signal generation parameters and returns the robustness by eval-

uating the specifications. If the robustness is negative then the optimizer stops minimizing the

function. Then, the system is falsified. Otherwise, the robustness will help us to pick a better in-

put parameterization. Moreover, these input parameterizations are from an input space. The input

space is denoted as U . Therefore, the optimization problem can be structured as below:

minimize
u∈U

ρϕ(π)

where ρϕ(π) is a robustness value. u is an input parameterization from input space U

In Figure: 2.7, the overall black-box based falsification is explained. In this work, we have

made a signal generator of a choice that is aware of the specification that we are testing. Moreover,

the number of control points considered in input parameterization and their placement is critical

for generating the input. So, the placement strategy of those control points in terms of sparse or

dense control points over the simulation horizon is a key work in this thesis. Existing works usually

take a uniform, fixed number of control points in input parameterization, which we have changed

to allow any number of control points at any time point in this work.
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Figure 2.7: Falsification as a optimization problem
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Chapter 3

Signal Temporal Logic

In this chapter we present Signal Temporal Logic, and the formal definition of the quantitative

robustness function ρϕ(π) that is the function to b e optimized by the optimizer.

3.1 Preliminaries

Systems, signals, traces. (finite) trace or a signal π : [0, T ] → R
n of arity n is a mapping from

a finite closed interval [0, T ] of R+ to R
n. The time-domain of π is the time interval [0, T ] over

which it is defined. We partition signals into input signals, and output signals. A (continuous-

time) system S :
(

R
[ ]
+ → R

nI
)

→
(

R
[ ]
+ → R

nO
)

, where R
[ ]
+ is the set of finite closed intervals

[0, T ] of R+, transforms input signals πip : [0, T ] → R
nI into output traces πop : [0, T ] → R

nO

(over the same time domain). At time we refer to the input-trace output-trace combination as

π : [0, T ] → R
nI+nO , with πip and πop being the corresponding projections; that is if πip(t) =

(a1, . . . , anI
) and πop(t) = (b1, . . . , bnO

), then π(t) = (a1, . . . , anI
, b1, . . . , bnO

). For the signal

value π(t) = (a1, . . . , anI
, b1, . . . , bnO

), we refer to each aj as the value of the j-th input signal

variable, and similarly for output signal variables. variables. We refer to the j-th dimension of the

signal π as πj , that is πj : [0, T ] → R such that πj(t) = dj where π(t) = (d1, . . . , dk).

3.2 Signal Temporal Logic

Signal Temporal Logic (STL), introduced in [9], extends Metric Interval Temporal Logic

(MITL) [7] with real-time signals. We consider STL formulas with bounded-time temporal op-

erators defined recursively according to the grammar

ϕ ::= T | z + c ≥ 0 | z + c ≤ 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U [a,b]ϕ2,
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where ⊤ is the true predicate; z is an input or output signal variable, and c is a constant; ϕ, ϕ1, ϕ2

are STL formulas; ¬ and ∧ are Boolean connectives that respectively indicate negation and con-

junction; and U [a,b] with a, b ∈ R such that 0 ≤ a ≤ b is the until operator. We define additional

temporal operators in the standard way: the “eventually” operator ♢[a,b]ϕ stands for T U [a,b]ϕ;

and the “always” operator □[a,b]ϕ stands for ¬♢[a,b]¬ϕ. The semantics for STL are standard (see

e.g. [9]), we give the semantics here for convenience.

The suffix of the (input-output) signal π from time t (for t ≤ T , the simulation horizon) is said

to satisfy an STL formula ϕ, denoted (π, t) |= ϕ as follows.

(π, t) |= T

(π, t) |= ¬ϕ iff (π, t) ̸|= ϕ

(π, t) |= ϕ1 ∨ ϕ2 iff (π, t) |= ϕ1 or (π, t) |= ϕ2

(π, t) |= ϕ1 ∧ ϕ2 iff (π, t) |= ϕ1 and (π, t) |= ϕ2

(π, t) |= zj + c ≥ 0 iff πj(t)) + c ≥ 0; where zj corresponds to the

j-th dimension of the signal π

(π, t) |= zj + c ≤ 0 iff πj(t)) + c ≤ 0; where zj corresponds to the

j-th dimension of the signal π

(π, t) |= ♢[l,u]ϕ iff there is some δ ∈ [l, u] such that (π, t+ δ) |= ϕ

(π, t) |= □[l,u]ϕ iff for all δ ∈ [l, u] we have (π, t+ δ) |= ϕ

(π, t) |= ϕ1 U [l,u]ϕ2 iff there is some δ ∈ [l, u] such that :

(π, t+ δ) |= ϕ2; and for all 0 ≤ δ′ < δ, we have (π, t+ δ′) |= ϕ1

A trace π is said to satisfy an STL formula ϕ, denoted π |= ϕ if (π, 0) |= ϕ.
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3.2.1 Signal Temporal Logic Robustness

In the previous section, we defined the satisfaction relation for STL. In this section, we give

the quantitative robustness function for STL ρϕ which quantifies the degree of satisfaction of the

formula ϕ over trace π. For T ∈ R+ and finite-time signals on the real segment [0, T ], a quantitative

semantics for STL can be defined similar to the quantitative semantics in [10], which deals with

infinite-time signals. We assign a robustness value ρϕ(π, t) ∈ R ∪ {−∞,+∞} to every STL

formula ϕ over a trace π at time t, where negative robustness values represent falsifications of ϕ:

ρzj+c≥0(π, t) = πj(t) + c; where zj corresponds to the

j-th dimension of the signal π

ρzj+c≤0(π, t) = −(πj(t) + c); where zj corresponds to the

j-th dimension of the signal π

ρ¬ϕ(π, t) = −ρϕ(π, t)

ρT(π, t) = +∞

ρϕ1∧ϕ2(π, t) = min (ρϕ1(π, t), ρϕ2(π, t))

ρϕ1∨ϕ2(π, t) = max (ρϕ1(π, t), ρϕ2(π, t))

ρϕ1 U [δ1,δ2]
ϕ2(π, t) = sup

τ∈(t+[δ1,δ2])∩[0,T ]

(

min

(

ρϕ2(π, τ), inf
s∈[t,τ⟩∩[0,T ]

(ρϕ1(π, s)

))

ρ♢[δ1,δ2]
ϕ(π, t) = sup

τ∈(t+[δ1,δ2])∩[0,T ]

ρϕ(π, τ)

ρ□[δ1,δ2]
ϕ(π, t) = inf

τ∈(t+[δ1,δ2])∩[0,T ]
ρϕ(π, τ)

The robustness value ρϕ(π) of ϕ over π is defined to be ρϕ(π, 0).
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Chapter 4

The Breach Falsification Platform

Breach is an open source state-of-the-art falsification tool widely used by the falsification com-

munity. The main features of Breach are test case generation, formal specifications monitoring,

optimization-based falsification, and mining of requirements for hybrid systems [37]. There are

some other tools used in recent work like S-TaLiRo [32], FALSTAR and falsify (deep learning

approach). Moreover, Breach can be interfaced with any Simulink model. In this work, Breach

version 1.8.0 has been used for experiments. Breach also has official developer documents with

getting started tutorials. However, this chapter is a result of our hands-on experience with Breach

including core understanding of Breach architecture, Breach modules and their interfacing that was

required for implementing our developed methods.

4.1 Breach Architecture

To run the falsification problem using Breach, we primarily need 3 main classes.

• Breach Simulink System: This class will generate an interface on the Simulink model.

• Falsification Problem: This class will run a falsification problem on Breach interface.

• Signal Generation: Signal generation is a generic class that allows generating any other

signal generation of a choice.

For the sake of simplicity, we have divided Breach tool into 3 parts for better understanding. Firstly,

Breach Simulink System. The Breach Simulink System is a class used for inter-

facing Simulink system with the Breach. The class consists of a constructor and some methods for

setting some parameters for the simulink system. Some of the methods are sim time, plot signals,

print signal, etc. The Breach Simulink System is a derived class of Breach System.

Secondly, The Breach Problem class is a derived class from Breach Set. The Breach
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Problem class is responsible for running the optimization problem. It has 3 child classes which

are Falsification Problem, MaxSat Problem and ParamSynth Problem. The

Falsification Problem takes Breach Object (which is an object of Breach Simulink

System class), and STL requirements as an input and run the optimization strategy. However,

some solver options have to be set before running the optimization problem and we discussed later

in this chapter. Lastly, the signal_gen is a base class of all signal generation classes. The

Breach Simulink System uses the this class. The signal_gen class is responsible for

generating different input signals as guided by the solver. The diagram is given in Figure: 4.1 with

primarily 3 components of Breach that we discussed above.

4.1.1 Breach Simulink System

This section contains information about how to interface model with Breach.

Figure 4.1: An Overview of Breach

In practice, the main class is Breach Simulink System. To interface the Simulink model

with Breach, we provide the model name to the Breach Simulink System constructor. One
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thing to note is that we should prepare the model first such that we log all required signals those

need to be monitored. More information about the interfacing is available in the Prepare The Model

section later in this chapter. PrintAll() and PlotSignals() are useful methods to check if

a model interfaced correctly.

1 InitBreach; % initialize Breach

2 model_name = ’AbstractFuelControl_M1’; % Model name

3 Breach_object = BreachSimulinkSystem(model_name); % Breach Object

4 Breach_object.PrintAll(); % Print signals and parameters

5 Breach_object.Sim(); % Run simulation one time

6 Breach_object.PlotSignals(); %Plot all log signals

Figure 4.2: Interfacing Breach

In the above code snippet, InitBreach at line 1 is always required to use when we run

Breach. Otherwise, Breach will throw an error. PrintAll() at line 4 will print all parameters,

signals and signals’ properties as an input (model_input) or output (model_output). On the other

hand, PlotSignals() at line 6 will plot all signals that are logged in the model. Please note that

it must use the Sim() method before plotting signals. Moreover, please initialize any constants

before you interface the model with Breach in a script. Below is an example of both methods that

help to see if interfacing is correct.

It is obvious that no input signals are provided to the model in the code snippet. Because of that

Engine_Speed and Pedal_Angle are constant at zero. These are where signal generation comes

into the picture. More information about signal generation is given in the Signal Gen section later

in this Chapter.

4.1.2 Breach Problem

The section contains information about the Breach Problem. That is further derived into

the Falsification Problem. Once we have the Breach Simulink System object

and a set of properties (STL) defined, we can run a Falsification Problem with the opti-
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1 --- SIGNALS ---

2 AF (model_output)

3 AFref (model_output)

4 Kappa (model_output)

5 MAF (model_output)

6 Omega (model_output)

7 controller_mode (model_output)

8 cyl_air (model_output)

9 cyl_aircharge (model_output)

10 cyl_fuel (model_output)

11 manifold_pressure (model_output)

12 tau_ww (model_output)

13 Pedal_Angle (model_input)

14 Engine_Speed (model_input)

15

16 -- PARAMETERS --

17 AF_sensor_tol=1

18 MAF_sensor_tol=1

19 fault_time=50

20 fuel_inj_tol=1

21 kappa_tol=1

22 ki=0.14

23 kp=0.04

24 pump_tol=1

25 tau_ww_tol=1

26 Pedal_Angle_u0=0

27 Engine_Speed_u0=0

Figure 4.3: Output of PritnAll() method
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Figure 4.4: Plotting of signals using PlotSignals() method
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mization strategy. The solver needs to be set up for optimization. Breach in-built provides some

solver and below is the list of those.

Figure 4.5: An Overview of Breach Problem

Please note that this work is only limited to Falsification Problem. The other two

features of Breach Problem depicted in Figure: 4.5 are out of scope for this thesis. Moreover,

we have used the CMA_ES solver in our experiments. The other solvers listed down below are

just a glimpse of the solver extension that Breach allows for optimizations.

• Quasi-random sequence solver This is a quasi-random (systematic) sampling method. The

control point valuations are initially ordered in ascending or descending order in this sam-

pling procedure. The first individual in the order is chosen at random, with succeeding

individuals being chosen at a regular interval known as a period [38]. This period is the

nearest value of Nn, where N is the population size, and n is the sample size. We must set

the value of n when we set the solver option.
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• Random solver This is unbiased and hence the best method of sampling. This solver uses a

simple random sampling method to sample values from input space. This method’s sampling

feature is that every item in the population is almost certainly included in the sample [38].

The solver allows many distributions in the setup option in Breach. These are binomial,

exponential, Poisson and many more methods.

• Covariance matrix adaptation evolution strategy (CMA_ES) CMAES implements an

Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) for nonlinear function

minimization [18].

• Optimization toolbox (optimtool) This is the Matlab optimization toolbox. The solver that

default setup in Breach is ’fmincon’. Users can try other optimization algorithms as peruse.

This it is a standard Matlab tool available with a graphical user interface [39].

• Find minimum of constrained nonlinear multivariable function (fmincon) FMINCON

finds a constrained minimum of a function of several variables. FMINCON attempts to solve

problems of the form where linear, nonlinear, and bounded constraints are given. FMINCON

implements four different algorithms: interior point, SQP, active set, and trust region reflec-

tive [40]. This solver does allow one to choose a algorithm.

• Find minimum of unconstrained multivariable function using derivative-free method

(fminsearch) This solver uses Nelder-Mead algorithm. For the function f of a variable X,

the solver starts with X0 and attempts to find a local minimizer X of the function f [41].

• Find minimum of function using simulated annealing algorithm (simulannealbnd) This

is also a fminsearch solver with simulated annealing algorithms for finding a local mini-

mum. The only difference is that the variable X is bounded in some LB and UB and the

function f is needed to be optimized over the range of X [42].
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• Corners The corner point-based algorithm helps to solve the multi-objective optimization

problem [43]. This solver depends on which evolutionary algorithms are used to solve the

problem. The main idea in this solver is to cover the corner points in the input space.

• Meta Heuristic This is available under the Metaheuristics and Machine learning package

in Matlab. A metaheuristic is a process of finding, generating or selecting a good heuristic

that is a partial search over input space. Some partial search algorithms are particle swarm

optimization, firefly, harmony search, and others [44].

• Genetic Algorithm (ga) This solver is about constrained optimization using genetic algo-

rithms. Same as ’fmincon’, this solver solves the linear, nonlinear, and bounded constraints

defined over the variables [45].

• Global Nelder Mead Nelder Mead optimization works for local search. The Global Nelder

Mead works for global search. The probabilistic restart makes Nelder Mead a global Nelder

Mead [46].

Each solver has its own properties and those need to be acknowledged as the experiment’s

characteristics. All solvers behave according to the input provided to the solver. So, the one way to

choose a solver is by looking at multiple definitions and picking one accordingly. We have chosen

CMA-ES in out experiments and we have acknowledged some solver properties as per our need.

For example, for the solver CMA-ES available in Breach [18], the range between LB and UB

should be more than 3, otherwise, CMA-ES will throw ’insigma’ error. However, using the solver

setup feature of Breach, you can relax such constraints. Some solver information about CMA-ES

available in Breach [18] is given below.

In the above listing, lines number 4, 10, 11, and 20 are important in running experiments, we

should set up the values for running error-free experiments. We have explained the importance of

those in Chapter 7.
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1 StopFitness: ’-Inf’ % stop if f(xmin) < stopfitness, minimization

2 MaxFunEvals: 100

3 MaxIter: ’1e3*(N+5)^2/sqrt(popsize)’ % maximal number of iterations

4 StopFunEvals: ’Inf’ % stop after resp. evaluation, possibly resume later

5 StopIter: ’Inf’ % stop after resp. iteration, possibly resume later

6 TolX: ’1e-11*max(insigma)’ % stop if x-change smaller TolX

7 TolUpX: ’1e3*max(insigma)’ % stop if x-changes larger TolUpX

8 TolFun: ’1e-12’ % stop if fun-changes smaller TolFun

9 TolHistFun: ’1e-13’ % stop if back fun-changes smaller TolHistFun

10 StopOnStagnation: ’off’

11 StopOnWarnings: ’off’

12 StopOnEqualFunctionValues: ’0’

13 DiffMaxChange: ’Inf’ % maximal variable change(s), can be Nx1-vector

14 DiffMinChange: ’0’ % minimal variable change(s), can be Nx1-vector

15 WarnOnEqualFunctionValues: ’yes’ % ’no’==’off’==0, ’on’==’yes’==1

16 LBounds: [50x1 double]

17 UBounds: [50x1 double]

18 EvalParallel: ’no’ % objective function FUN accepts NxM matrix, with M>1?

19 EvalInitialX: ’yes’ % evaluation of initial solution

20 Restarts: ’1’

21 IncPopSize: ’2’ % multiplier for population size before each restart

22 PopSize: ’(4 + floor(3*log(N)))’ % population size, lambda

23 ParentNumber: ’floor(popsize/2)’ % AKA mu, popsize equals lambda

24 RecombinationWeights: ’superlinear decrease’ % or linear, or equal

25 DiagonalOnly: ’0*(1+100*N/sqrt(popsize))+(N>=1000)’ % C is diagonal for given

iterations, 1==always

26 Noise: [1x1 struct]

27 CMA: [1x1 struct]

28 Resume: ’no’ % resume former run from SaveFile

29 Science: ’on’ % off==do some additional (minor) problem capturing, NOT IN USE

30 ReadSignals: ’on’ % from file signals.par for termination, yet a stumb

31 Seed: 2.1168e+05

32 DispFinal: ’off’

33 DispModulo: 0

34 SaveVariables: ’on’

35 SaveFilename: ’variablescmaes.mat’ % save all variables, see SaveVariables

36 LogModulo: 0

37 LogTime: ’25’ % [0:100] max. percentage of time for recording data

38 LogFilenamePrefix: ’outcmaes’ % files for output data

39 LogPlot: ’off’ % plot while running using output data files

40 UserData: ’for saving data/comments associated with the run’

41 UserDat2: ’’

Figure 4.6: Solver option for CMA-ES
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4.1.3 Signal Gen

The signal generation is responsible for generating the signal and given to the system as in-

put through the Breach Simulink System. This class name is given as signal_gen in

Breach. There are many in-built signals available in Breach. The figure given below contains all

signals generation classes that are implemented from the signal_gen abstract class. Each signal

generation class has its own constructor. It depends on signals’ characteristics for what to provide

as an argument to a constructor. For example, fixed_cp_signal_gen takes a total number of

control points, values of those control points from the input range and the interpolation method.

The control points are defined as a sampled value from the signal range.

Breach also provides flexibility to implement its own signal generation method. The only

thing is that the generic signal generation class should be derived from the signal_gen abstract

class. Below is an example of a generic signal generator where we we define the generic class

afc_sig_gen for the Abstract Fuel Control model (more information about this model is given in

next chapter). The Figure: 4.8 illustrates signal classes available in the Breach.

4.2 Prepare a model with Breach

This is a critical step before using a particular Breach. Breach comes with many capabilities,

and it has an open space to extend as a user would want them to be. However, there are bare min-

imum modifications required to the Simulink model so that Breach can easily interface itself with

the model. The manual work needed to be done still depends how well the Simulink-based model

has been defined. Sometimes, Breach can pick the interfacing by itself. Latter is the thorough

guide for preparing the model and some taken care points for using Breach easily.

When you prepare the model, Please make sure you log all signals that have to be monitored.

This process is easy: you open a model in Simulink software; then you right-click on the signals

(any connecting line between two blocks of Simulink), and log the signals. If the signal is logged

then a wifi like of figure will appears on the signal. Moreover, make sure you name the signal per

your choice. However, it is advisable to make a consistent name that is given to the model. For
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1 classdef AFC_sig_gen < signal_gen

2 properties

3 lambda % some parameter for the signal generator - this won’t be

visible from Breach API

4 end

5 methods

6 % The constructor must name the signals and the parameters needed to

construct them.

7 function this = AFC_sig_gen(lambda)

8 this.lambda = lambda;

9 this.signals = {’Engine_Speed’, ’Pedal_Angle’};

10 this.params = {’my_param_for_Engine’, ’my_param_for_Pedal’};

11 this.p0 = [1000 50]; % default values

12 end

13

14 % The class must implement a method with the signature below

15 function [X, time] = computeSignals(this, p, time)

16 % p contains values for the parameters in the declared order

17 my_param_for_Engine = p(1);

18 my_param_for_Pedal = p(2);

19

20 % Constructs signals as some function of time and parameters

21 Engine_Speed = this.lambda*cos(time)+ my_param_for_Engine;

22 Pedal_Angle = this.lambda*sin(time)+ my_param_for_Pedal;

23

24 % The signals must be returned as rows of X, in the declared order

25 X = [ Engine_Speed; Pedal_Angle ];

26 end

27 end

28 end

Figure 4.7: Generic Signal Generator for AFC
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Figure 4.8: Types of signal generators available in Breach

example, a wind turbine model takes wind speed as an input. So make sure the signal that is given

from the input port to any Simulink block has a wind name otherwise at a time of simulation it will

not show any signal that is generated. Make sure you have saved the model after this modification.

Please take a look at the figure given below. The blue highlighted connecting line depicts a signal

in Simulink, after right-clicking on the blue line, the log signal option be available.

4.3 Notable points for application of Breach

• Breach follows the folder structure. The model must be under

Breach/Example/Simulink/your_folder

– A copy of just a simulink model .mdl or .slx extension file must be kept inside Breach/Ex-

t/Models/your_model

– You are advisable to make own .stl file instead of writing STL in .m file

36



Figure 4.9: An example of Logging signal in Simulink for monitoring in Breach

– A copy of STL file with a .stl extension must be kept inside Breach/Ext/Specs/y-

our_stl_file

• Please take care about the ’addpath’ function when you are playing with Breach. I would

right-click on my Breach_root folder add all folders and its subfolders so that I can smoothly

follow between other scripts. Otherwise, "files not found" error will occur each time you use

functions from different scripts.

• Breach is a big software with so many functions call and it is highly coupled between differ-

ent modules. If you want to track the function call, then you are advised to use the debugging

functionality of Matlab. To do so, place some breakpoints in your script. If required, please

also use the ’disp("print something")’ built-in function of Matlab and print something in the

different script to see the call of the functions.
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• As advised in an earlier section, do not create a falsification problem directly. Please run a

couple of simulations and use PrintAll() and PlotSignals() to see if your model is perfectly

interfaced with Breach.

• It is recommended to use the ’disp()’ function to see if everything works well. Although, you

have corrected some scripts and changes may not apply. This is recommended steps because

running the falsification problem takes time and you do not want to waste your time with old

errors.

• Breach will generate a ’yourModelName_breach.slxc’ which is a cache of your model and

it is generated when you run the simulation using Breach. That file should be removed

manually since it is a cache. If you are running many experiments simultaneously then

remove them once you are done with the experiment.

• Each time you run the experiment makes sure you put the ’Simulink.sdi.clear’ command

without quotes in your main experiment file that has a .m extension. This step is highly

recommended since Matlab with Simulink generates a large number of temporary files and

those must be removed for the smooth running of an experiment.

• If you want to monitor some internal functions or intermediate data that the optimizer gener-

ates, please extend Breach by saving your intermediate data in some emph.txt files. Matlab’s

online community has many ways mentioned doing this.

4.4 CMA-ES solver

Breach allows the use of external black-box optimizers. We use the external CMA-ES opti-

mization library, a state of the art black-box optimization routine [47]. In this section we discuss

the options that were relevant for our experimental setup.

• Seed

There is a static 0 value given to the seed option in Breach for CMA-ES solver, hence it was

generating the same robustness in all experiments. To mitigate this, we explicitly made the
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seed to be sum (100*clock) such that the seed is always unique and depends on the

clock. In the solver option printed in chapter 4, the seed value was 2.1168e+05.

• Equal Function Valuation

CMA-ES was stopped evaluating objective function when robustness was getting the same

values.

1 ------------------------------------

2 # objective time Robustness Minimum Robustness

3 evaluation

4 26 220.0 [+1.00000e+00] (+1.00000e+00) \n

5 ------------------------------------

6 27 229.0 [+1.00000e+00] (+1.00000e+00) \n

7 ------------------------------------

8 28 238.1 [+1.00000e+00] (+1.00000e+00) \n

9 ------------------------------------

10 29 247.3 [+1.00000e+00] (+1.00000e+00) \n

11 ------------------------------------

12 30 256.4 [+1.00000e+00] (+1.00000e+00) \n

13 ------------------------------------

14 31 265.5 [+2.00000e+00] (+1.00000e+00) \n

15 ------------------------------------

16

17 *****************Alert Stopflag Occured ********************
18 equalfunvals

19

Figure 4.10: equalfunvals stopflag occurred after 31 objective evaluations

Resolving this solver option does allow to set the flag to be false such that CMA-ES will not

be stopped for an equal value of the objective. Specifically, this flag is StopOnEqualFunctionValues.

There are some other flags like StopOnWarnings and StopOnStagnation. However,

we have not seen any issues related to stagnation. The warnings were ignored. The next in

this section also contains the steps we took to capture this behavior of CMA-ES. For that,

we introduce stopflag in each evaluation of objective during the experiment.

• Restart
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1 ------------------------------------

2 # objective time Robustness Minimum Robustness

3 evaluation

4 ------------------------------------

5 463 7919.4 [+1.00000e+00] (+8.02562e-01) \n

------------------------------------

6 465 7957.7 [+2.00000e+00] (+8.02562e-01) \n

7 ------------------------------------

8 466 7976.8 [+2.00000e+00] (+8.02562e-01) \n

9 ------------------------------------

10 467 7995.6 [+1.00000e+00] (+8.02562e-01) \n

11 ------------------------------------

12 468 8015.0 [+1.00000e+00] (+8.02562e-01) \n

13 ------------------------------------

14

15 ******************Alert Stopflag Occured ********************
16 maxfunevals

17

Figure 4.11: maxfunevals stopflag occurred after 8000 sec time limit reached

Technically, we have not seen any issue that causes by the restart option. However, the

internal working mechanism of the CMA-ES solver is not part of this work. So, without

investing much time, for the sake of simplicity, we keep this restart flag to be true.

To capture the behavior of the CMA-ES, we have extended Breach tool and allowed to write

the intermediate data in the .txt file. This intermediate data are robustness values for a particular

objective evaluation with input values of input signals. Moreover, we explicitly capture the flag

that stops the execution and we call this an alertflag. Overall, we have seen three cases where

CMA-ES is stopped running experiments.

• Maximum Time Reached

CMA-ES has stopped evaluation objectives when the maximum time limit for an experi-

ment is reached. The maximum time limit is important since a solver may be stucked due to

plateau, limitation of hardware on which experiments running, or allocation of shared mem-

ory storage where no more space is available to store MATLAB generated files. Below is an

example of max time 8000 sec reached and the stop flag occurred.

• equalfunvaluation
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This flag occurred due to some objective function values over time, in other words, the same

robustness value. Moreover, different values of inputs were tried and robustness was the

same. This specifically happened in a particular form of STL that consists of → in the

formula. For example, in STL formula: gear ≥ 3 → speed ≥ 20, this flag occurred because

gear could not reach 3 or more and execution was stopped.

• # Objective Function Evaluation Reached

CMA-ES stopped an experiment when given objective functions are evaluated a certain num-

ber of times specified in the problem setup. For example, for AT and AFC benchmarks,

each experiment should have 800 objective function evaluations, hence after 800 objective

function evaluation, this flag occurred. Below is an example of when 1000 times objective

function evaluated in a trial for AT benchmark.

1 ------------------------------------

2 # objective time Robustness Minimum Robustness

3 evaluation

4 ------------------------------------

5 994 6282.6 [-8.10304e-01] (-2.27383e+00) \n

6 ------------------------------------

7 995 6295.2 [-1.30548e+00] (-2.27383e+00) \n

8 ------------------------------------

9 996 6316.2 [-1.02274e+00] (-2.27383e+00) \n

10 ------------------------------------

11 997 6320.2 [-9.34768e-01] (-2.27383e+00) \n

12 ------------------------------------

13 998 6332.8 [-1.22785e+00] (-2.27383e+00) \n

14 ------------------------------------

15 999 6345.4 [-1.25231e+00] (-2.27383e+00) \n

16 ------------------------------------

17 1000 6358.1 [-2.00307e+00] (-2.27383e+00) \n

18 ------------------------------------

19 ******************Alert Stopflag Occured ********************
20 maxfunevals

21

Figure 4.12: maxfunevals stopflag occurred after 1000 objective evaluation reached
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Overall, to stop at maximum time reached and number of objective function

evaluation reached are normal behavior of CMA-ES. However, equalfunvaluation

is the only flag where we allowed some change in the solver option.
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Chapter 5

Parameterization for Efficient Input Space Search

Recall the black-box optimization falsification framework presented in Chapter 2. Falsification

is done by the use of a black-box optimizer that is searching over the space of the parameters

(control points in our case). It is desirable to have a strategy which uses as few a number of control

points as possible as (1) a smaller number of control points gives a nI (where nI is the dimension of

the input signal) multiplicative benefit for the number of parameters for the optimizer to search over

– this significantly improves optimizer performance; and (2) a smaller number of control points

increases the interpretability, and hence usefulness, of falsifying inputs if any, as this facilitates

debugging of the system under test. In order to reduce the number of control points, we use the

step response concept from Control Engineering.

5.1 Utilizing the Step Response

The step response of a system from a given initial state is the response of the system when given

a step input u(t) which is 0 for t < 0 and A for t ≥ 0 for some constant A for single input single

output systems, with appropriate extensions for multiple input multiple output (MIMO) systems.

Step response behavior is a critical part of the analysis of control systems [17], and overshoot, rise

time, and settling time are part of key characteristics for behavior analysis of dynamical systems.

In our work we propose a heuristic to reduce the number of control points based on the step

response, notably based on the settling time of the system. The settling time is defined as the time

elapsed from when a step input is applied to when the system enters and stays within a band of

the final steady state value. Matlab® provides a function stepinfo, that computes settling time

values (in addition to the other step response entities). Note that we do not propose monitoring

the system over a settling time period, rather a setting time period is where we place the control

points and hence vary the input signal. A factor to consider is the choice of where this settling

time period should be. If the settling time is tsettle time units, the naive choice is have the control
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point placement interval as [0, tsettle]. However, this choice is suboptimal, for instance when the

STL property is monitoring later in the simulation period. We propose the control point placement

interval as [tα, tα + tsettle], where tα is itself a variable, hence the offset of the tsettle-length control

point placement interval is also determined by the optimizer. In addition to placing the control

points in this interval, we also need to place two additional control points, one at 0 and one at the

simulation horizon T so that the input signal over the entire simulation horizon can be constructed

via interpolation.

For MIMO systems, we compute the settling time for each input variable, output variable pair

(holding the other input signals at some nominal value in the middle of their range), and then

take the maximum of these settling times as tsettle. For systems with a fast response time, tsettle

may be a small number, and placing control points in this interval may lead to input signals with

high variance (compared to the simulation horizon); such input signals may not be realistic in an

engineering context. If this is the case, we can place a small number, for example 8, of uniformly

placed control points in a larger interval. Hence, if the chosen inter control point distance is a

constant ∆cp, then we place the control points in an interval of length ∆cp ·8 (excluding the control

point at 0 and at the simulation horizon T ). The control point number can be chosen as an initial

guess about the number of control points needed to achieve sufficient input signal variability, while

balancing the need to keep the number of optimization variables tractable for the optimizers. In

addition, we chose to make the value of the input signal at 0 also variable as the initial signal values

can have long lasting effects. The signal value after the control point placement interval was kept

constant to the value at the last control point. Note that if the input signal is over nI variables,

and we have 8 control points in the control point placement interval, then such a strategy results in

nI ·∆cp · 9+1 optimization variables: nI ·∆cp · 9 due to the 8+1 control points, and an additional

variable due to tα.
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5.2 Encoding Special Input Constraints

In this section we consider requirements of the form □
(

θip → □[0,b]θop
)

, where θip is an input

variable constraint, and θop is an output variable constraint. A naive approach is to encode the

entire specification in STL, and this has been the approach used previously, for example in [48].

However, some commonly occurring signals are hard to encode in temporal logics. We propose

a method where the search over inputs satisfying the input constraints is guaranteed by the sig-

nal generation module (see Figure 2.7) directly, circumventing the need to encode in STL. For

example, consider a formula

□[11,50]

(

rise →
(

□[1,5] |AF − AFref | < 0.02 · AFref
) )

where “rise” is an input constraint which requires that the input be low for some threshold time,

then go high in a very short amount of time, and then stay high for some time. Specifying such a

constraint in STL is cumbersome, however, we can easily design a signal generator with control

points to ensure that the generated signal satisfies this constraint, and moreover, by construction,

we can directly state when the “rise” triggering constraint occurs. In such a case, we can modify

the optimization formula to be only over the output signal variables, with the temporal constraints

being different in each iteration of the optimization loop. For our example, we will use the output

variable formula

□[1+t,5+t] |AF − AFref | < 0.02 · AFref

where t is a variable denoting when the “rise” trigger happens in each iteration of the optimization

loop in Figure 2.7. We will give more details in Chapter 7.

45



Chapter 6

Benchmarks

Our benchmarks are Simulink based models of complex industrial control systems used in

falsification experiments. This section contains descriptions and STL specifications of the well-

known benchmarks. We have employed the proposed method in chapter 5 in 3 known benchmarks:

Automatic Transmission (AT) [49] (the modelling of AT in Matlab and Simulink given in [50]),

Abstract Fuel Control (AFC) [51], and Wind Turbine (WT) [52]. These three benchmarks are

widely used in many works of falsification, which include AT [53–57], AFC [13,34,54–56,58,59],

and WT [48, 60] for experimental set-ups.

The main idea in this thesis work claims that either the falsification could not be achieved

using the existing method and the proposed method can falsify the system or both methods find

the falsification. Latter is a case where our heuristics should be able to find the falsification at

the earlier stage compared to the existing method. More specifically, for benchmark AT in Table

7.1, a custom heuristics works well if falsification is found in nearly 200-300 objective function

evaluations using custom heuristics and 300+ using the existing method.

However, not all specifications are falsified in the existing method. So, to make specifications

difficult to falsify, we have changed constants for most specifications. The simple example is

speed ≤ 120, so 120 is a constant and that has been relaxed to 130 such that speed ≤ 130 is

difficult to falsify.

We have identified these constants by running experiments multiple times (trial and error). The

deciding factor to relax the boundary in multiple trials depends on the minimum robustness found

in the experiment and the number of objective function evaluation it is found at. Moreover, how

quickly the robustness goes negative also helped us change the constant. We have also encapsulated

the case where robustness should not be more positive after modifying the constants. Intuitively,

we want the constant such that the robustness is in desired bound, neither too low (positively) nor
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high. Below are the three benchmarks and their specifications that we have used in this work.

Table 6.1 contains information about the benchmarks and their interface.

Table 6.1: Benchmarks with Input and Output Signals

Model Input Signals Input Ranges Output Signal

AFC Pedal_Angle [0,100] AF (air-to-fuel ratio)

Engine_Speed [900,1100]

AT throttle [0,100] speed

brake [0,325] RPM

gear

Wind Turbine wind [8,16] Theta (Θ)

Theta_d (Θd)

Omega (Ω)

Mg (Mgd)

6.1 Automatic Transmission (AT)

This benchmark has been experimented in [11, 12, 26, 27]. The model is a closed-loop model,

and it contains 3 blocks for imitating the automatic transmission in a vehicle. The main compo-

nents are the model for the engine, the transmission, and the vehicle. The closed-loop engine block

computes the engine’s RPM (this is output signal RPM ) from the input signals throttle and im-

peller torque. Further, the transmission block computes the output torque and impeller torque from

the engine’s RPM (computed by the engine block), gear value (output signal gear) and transmis-

sion RPM. The gear status and transmission RPM are computed by a closed-loop gear block and

the vehicle block, respectively. The vehicle block computes the output signal speed and the trans-

mission RPM from the output torque (coming from the transmission block) and the input signal

brake. Meanwhile, the gear block takes vehicle speed, and commands to up-shift or down-shift

the gear from the provided throttle [54].

The gear calculation is done in the threshold calculation block, which takes throttle and the

current gear as input and decided to up-shift or down-shift using a look-up table given for gear

values and applied throttle. If the current gear is let’s say i then for a up-shift command, the gear
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becomes i + 1, and i − 1 for a down-shift command [54]. Once the gear value is updated, the

transmission block continues with further iteration in the closed-loop model. This model is mim-

icking the actual working mechanism of automatic transmission in the vehicle, and the falsification

community widely used this model for the experimental setups [53–57].

Overall, in other words, the throttle and brake are the inputs and RPM , gear and speed

are the outputs of the system. The output gear takes values from {1, 2, 3, 4}, while other outputs

are real-valued. The range of throttle and break are [0,100] and [0,325] respectively [26]. The

applied throttle increases RPM of the engine and in parallel it is shifting the gear in increment

order. As a result, the vehicle speed increases. These calculations are done using some internal

dynamics of the model. Meanwhile, brake is reducing speed of the vehicle, and internally the

affected parameters shift down the gear and reduce the engine RPM [11, 12, 26, 27].

Below is the list of STL properties that we have used in our experiments.

ϕAT
1 = □

(

gear = 3 → (speed ≥ 20)
)

(6.1)

ϕAT
2 = □(speed ≤ 160) (6.2)

ϕAT
3 = □(RPM ≤ 4800) (6.3)

ϕAT
4 = □

(

gear = 4 → (speed ≥ 35)
)

(6.4)

The original ϕAT
2 and ϕAT

3 are available in [12] and [49], pg-28, table(1), respectively. The ϕAT
1

and ϕAT
4 are taken from [12], pg-10, table(a).

6.2 Air Fuel Control (AFC)

This benchmark is widely used for experiments and evaluations in falsification community

[13,34,54–56,58,59]. This is a mean value gasoline engine model. Before this model was proposed

for the falsification activity, it was initially used for Bayesian statistical model checking [61]. The

model contains a controller that keeps air-to-fuel ratio close to the stoichiometric ratio of 14.7
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[61]. This is the ideal for the vehicle performance concerning the fuel consumption and is a key to

maintaining vehicle response, carbon emission, and vehicle efficiency.

Inputs of this system model are Pedal_Angle and Engine_Speed. Outputs are AF , AFref

and controller mode. Some non-linear and linear differential equations with a switching condi-

tion explain the simulink section of the system [61]. Furthermore, using four sensor measure-

ments, the system estimates the correct fuel rate to reach the required stoichiometric ratio. The

Engine_Speed and the Pedal_Angle are two that are directly related to the inputs. The remain-

ing two sensors give critical feedback: the EGO sensor measures the amount of residual oxygen in

the exhaust gas, and the MAP sensor measures the absolute pressure in the intake manifold. The

air-to-fuel ratio is tied to the EGO value, whereas the air mass rate is related to the MAP value. If

two or more sensors fail due to hardware failure, the engine is shut down since the system cannot

consistently control the air-fuel ratio. [57].

Overall, the Simulink diagram is made up of numerous subsystems containing various types

of continuous and discrete blocks, including look-up tables and a hybrid automaton. Hence, this

model gives a concise description of the key characteristics of hybrid systems [54]. In this work,

we have used the following 4 properties in the experiments. The θ is a signal variable for input

Pedal_Angle in STL specifications given below.

ϕAFC
1 = □[11,50] (|AF − AFref | < 0.03 · AFref) (6.5)

ϕAFC
2 = □[11,50] (|AF − AFref | < 0.06 · AFref) (6.6)

For ϕAFC
1 and ϕAFC

2 , inputs are required to be normal mode 0 ≤ θ < 61.2 and in power mode

61.2 ≤ θ < 81.2, respectively.

ϕAFC
3 = □[11,50]

(

rise →
(

□[1,5] |AF − AFref | < 0.02 · AFref
) )

(6.7)

ϕAFC
4 = □[11,50]

(

fall →
(

□[1,5] |AF − AFref | < 0.02 · AFref
) )

(6.8)
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For ϕAFC
3 and ϕAFC

4 , inputs are required to be only in normal mode 0 ≤ θ < 61.2 In the above

specifications, the “rise” triggering condition happens if the input Pedal_Angle has a low value

that is constant for some time, then rises to a high value within a very short time period, and then

stays at this high value again for some time. The “fall” triggering condition is defined similarly.

6.3 Wind Turbine (WT)

This model is in the early stage of a wide adoption in the falsification community [48,60]. The

need of green energy is in demand due to it being the fastest-growing source of electricity, and this

mechanism has great potential to fulfill that. The proposal of this model was published in [52].

The model was then officially adopted for formal analysis because of the hybrid characteristics of

the model. The wind speed is the model’s input, and the blade pitch angle θ, generator torque Mgd,

rotor speed Ω, and demanded blade pitch angle θd are the model’s outputs [48, 60]. The model

is simplified with some modification for easy use in falsification. The Simulink model contains

5 subsystems: Aero-elastic subsystem, Servo-elastic subsystem, Pitch actuator subsystem, Torque

controller, and Coll Pitch Controller. These three subsystems Aero-elastic subsystem, Servo-elastic

subsystem, Pitch actuator subsystem are combined closed-loop system called WindTurbine that

takes wind, θd, and Mgd as inputs and computes Ω and θ as outputs. Further, the θ and Ω are taken

by the Coll Pitch Controller to compute θd. This θd and Ω are used by the Torque Controller to

compute Mgd. Again, θd and Ω are fed forward to the close-loop system WindTurbine [52].

The input wind speed is constrained by 8 ≤ v ≤ 16. The benchmark has 2 instances that could

be configured at simulation time. The first instance is a "singlerun", which has a v= 11.2, and the

second instance has the different values of v, called "Allruns". It is left to the user to configure any

instances per experimental requirements. This work is only limited to the "Allruns" instance.

The original specifications are taken from the annual ARCH-COMP falsification report [48].

We have modified the constants to make properties harder to falsify.

ϕWT
1 = □[30,200] (θ ≤ 14.4) (6.9)
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ϕWT
2 = □[30,200] (Ω ≤ 14.5) (6.10)

ϕWT
3 = □[30,195]

(

♢[0,5] |θ − θd| ≤ 1.6
)

(6.11)

ϕWT
4 = ♢[190,195] (|θ − θd| ≤ 1.6) (6.12)

ϕWT
4 is an extended version ϕWT

3 . Overall, WT is a complex model with a higher simulation

horizon compared to AFC and AT, the experiments take a large amount of time. Hence, we have

shortened the simulation time for WT from 630 secs to 200 secs.
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Chapter 7

Experiments

7.1 Experiment Setup

We implemented our heuristics in the Breach tool. We used the three benchmarks from Chap-

ter 6. Each benchmark model has various associated temporal logic specifications. We employed

the CMA-ES black-box optimizer in Breach, and gave a fixed simulation budget, that is, the num-

ber of input signals over which the system was executed was fixed. While the high level goal is

falsification, engineers are concerned with how far away the system is from failure, or the degree of

failure, that is they are concerned with the actual robustness values, not just whether the robustness

value is negative or not. Thus, in addition to whether falsification was achieved or not (equiva-

lently, whether the robustness value was negative or not), we also looked at the actual quantitative

values. Due to the stochastic nature of the optimizers, the resulting best robustness values (the

smaller the value, the better for falsification) in repeated experiments were different. Bearing this

is mind, we ran each experiment multiple times, and used two aggregate measures for comparing

performance: avg – the average robustness over different experiments (with the same parameters;

and avg2 – the average robustness over the top 50% of the experiments. We used the second mea-

sure as in some benchmarks, the worst 30-40% of the robustness values were heavily skewing the

results overall otherwise in the standard average.

7.1.1 Baseline and Proposed Strategy

For the baseline input signal exploration strategy, we generated signals using a uniform place-

ment of control point over the simulation horizon, with a constant inter control point (CP) time

distance. This inter CP distance was chosen heuristically. For our heuristic, we keep the inter CP

distance the same, but reduced the interval in which the CPs were placed from the entire simula-

tion horizon of the baseline, to a time interval approximately corresponding to the settling time as
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proposed in Chapter 5. We performed two sets of experiments for this reduced time interval; one

where the reduced interval had variable placement (the placement of the variable interval being an

optimization variable), and one where the reduced interval had a fixed placement from the start of

the simulation.

Two experiments had input triggering constraints, and for these the input triggering condition

was directly encoded in the signal generator for our heuristic as proposed in Section 5.2. For

these two experiments, for the baseline, we generated a fixed number of input signals with one

rise event, where the rise event for the j-th signal occurred at j seconds; and we took the best

robustness value corresponding to this set of fixed signals. Hence the baseline in this case did not

involve an optimizer.

7.1.2 Experiment Parameters

CMA-ES allows setting both the maximum number of function evaluations (which is the same

as the maximum number of simulations for the Simulink model), as well as the maximum time

limit per experiment. Table 7.1 gives the number of experiments for each logical specification, and

the maximum number of function evaluations allowed per experiment. The ballpark experiment

times were 10 minutes for AT, 7 minutes for AFC, and 2 hours for WT. The experiment time was

primarily determined by the simulation time for the corresponding Simulink model.

Table 7.1: A table of experimental setup for each benchmark

Benchmark
# Experiment

per property

# Objective evaluation

per experiment

AT 20 800

AFC 30 800

WT 20 200

As discussed in Section 5.2, the Breach tool can stop when the first negative robustness is

found. We relaxed this constraint and allow to reach maximum objective evaluation regardless of

53



robustness. We set WT to have fewer objective evaluations compared to AT and AFC, the reason

is the time taken for Simulink to compute a single simulation for WT which was about two orders

of magnitude more than that for AT and AFC.

Next we give the benchmark specific parameters.

Automatic Transmission (AT) Parameters. We used a simulation horizon of 120 seconds and placed

CPs at 2 second intervals. For our heuristic, we identified 34 seconds as the settling time (for a

band of 15% of the final value) – the output signal given a step input was gradually increasing, and

hence we chose a larger band in this case. We placed CPs at 2 second intervals in this smaller time

interval, the placement of the time interval was itself an optimization variable. We also placed a

CP at t = 0. The full signal was constructed using linear interpolation.

Air Fuel Control (AFC) Parameters. The simulation horizon was 50 seconds. The inter-CP dis-

tance was kept at 2 seconds for the formulae without input constraints. For our heuristic, the

settling time from the step response was computed to be approximately 12 seconds for a 2% band.

For the formulae that had the “rise” and “fall” input triggering constraints, we used CPs for the

corresponding signal variable (pedal angle) as follows (the engine speed CP placement was as be-

fore). We placed 5 CPs at an inter-CP distance of 2 as before, and then we used 2 variable and 2

dummy CPs to generate the rise signal in a time interval of 1.05 seconds, and 2 more after that to

generate a normal tail end of the signal. In all cases we also placed a CP at t = 0. Here is a an

example placement of the CPs on the time line:

• One at time 0

• 4 CPs at tα, tα + 2, tα + 2 · 2, . . . , tα + 3 · 2, with tα being chosen by the optimizer.

• 1 CP at time tα + 4 · 2, and another dummy CP at time tα + 4 · 2 + 0.5, both of which took

the same signal value in the “low” range [0, 8.7].

• 1 CP at time tα+4 ·2+0.55, and another dummy CP at time tα+4 ·2+1.05, both of which

took the same signal value in the “high” range [40.1, 60.1].

• 2 normal CPs at times tα + 5 · 2 + 1.05 and tα + 6 · 2 + 1.05.
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Thus, for pedal angle, there were in total 9 CPs whose signal values were variable (not taking

the dummy CPs). An example generated input is shown in Figure 7.1.

Figure 7.1: Example: rise Input Signal

Wind Turbine Parameters. We used a simulation horizon of 200 seconds, with an inter-CP distance

of 5 seconds. The largest settling time from the step response data was 30 seconds, and the CPs

were placed in this time interval (in addition to the CP at time 0).

7.2 Results

Table 7.2 presents the falsification results of our experiments corresponding to the formulae

from Chapter 6. Our proposed method varies the placement of the control point interval with

the placement being governed by the optimizer. For the AT benchmarks, our proposed method

performs significantly better than the baseline strategy. For ϕAFC
2 , we also perform significantly

better. For ϕAFC
1 while we have a comparable falsification rate as the baseline, the simulation

at which we falsify is somewhat higher. The other two AFC experiments had input triggering

constraints, the rise and fall trigerring constraints, and our method with circumventing STL for

the input constraints gets a perfect falsification rate compared to no falsifications in the baseline.
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For WT, we perform somewhat worse in two of the cases, for the other two, both the baseline and

our method were unable to falsify.

Table 7.2: Falsification rate and average number of objective evaluations where first negative was found.

FR: % Successfully falsified; Avg # Obj eval: Average Number of Objective Evaluations at which first

negative found

Model Property Baseline Input Variation Strategy

FR % Avg # Obj eval FR % Avg # Obj eval

AT ϕAT
1 15 180 100 3

ϕAT
2 0 – 100 38

ϕAT
3 0 – 95 72

ϕAT
4 50 364 100 5

AFC ϕAFC
1 76.66 208 73.33 400

ϕAFC
2 0 – 66.67 334

ϕAFC
3 0 – 83.33 39

ϕAFC
4 0 – 70 48

WT ϕWT
1 80 79 20 102

ϕWT
2 100 35 85 58

ϕWT
3 0 – 0 –

ϕWT
4 0 – 0 –

While the high level goal is falsification, engineers are concerned with how far away the sys-

tem is from failure, or the degree of failure, that is they are concerned with the actual robustness

values, not just whether the robustness value is negative or not. Table 7.3 presents the robustness

values for the benchmarks (the objective was to get a low a robustness value as possible). “Vari-

able interval placement” is for the heuristic where the placement of the control point interval was

variable, and decided by the optimizer. “Fixed Interval Placement” is for the fixed placement of

this interval, with the interval starting from time t = 0. We also normalized the robustness values.

Normalization was done by multiplying the robustness value by 100/c where c was the constant

the (error) signal (e.g., the error signal |AF − AFref | in ϕAFC
3 ) was compared to in the formula.

Some of the experiments did not see much improvement from a floating CP interval compared to

a fixed interval, some did. Our heuristic either performed better than the baseline, or was within a

5% normalized avg2 value of the baseline, except for ϕWT
4 for which we performed significantly

worse.
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Table 7.3: Results comparison for Baseline, Variable Interval Placement, and Fixed Interval Placement.

avg: Normalized Average Robustness avg2: Normalized Average Robustness of top 50%

Model Property Baseline
Variable Interval

Placement

Fixed Interval

Placement

avg avg2 avg avg2 avg avg2
AT

(19 cps)
ϕAT
1 3.8040 2.6085 -0.8768 -0.8775 -0.8765 -0.8780

ϕAT
2 1.5701 1.0184 -1.0867 -1.1090 -1.0999 -1.1288

ϕAT
3 0.6341 0.5144 -4.5483 -4.5641 -4.5461 -4.5759

ϕAT
4 1.2303 -0.2760 -0.5240 -0.5244 -0.5240 -0.5246

AFC

(8 cps)
ϕAFC
1 -8.0045 -15.1020 -5.6463 -13.9909 14.8919 -4.4429

ϕAFC
2 32.1542 27.0295 2.8005 -12.9252 32.0189 24.0242

(10 cps) ϕAFC
3 98.9206 97.5533 -41.5658 -74.7188 – –

ϕAFC
4 98.0212 95.5147 -29.6429 -62.4059 – –

WT

(8 cps)
ϕWT
1 -0.0069 -0.0660 0.2521 0.0896 0.3559 0.2169

ϕWT
2 -0.3676 -0.4503 -0.2386 -0.3959 -0.0904 -0.2374

ϕWT
3 5.4750 3.4687 10.5675 8.2592 16.5144 12.7954

ϕWT
4 43.3062 36.2000 63.1534 52.3287 100 100

Table 7.4 presents the results of our heuristic when we increased the number of control points

by 2 to see whether this would have an effect on the results. Increasing the number of control

points had a negative impact in some cases, and a negligible impact in others.

The results demonstrate the efficacy of out approach. As an added bonus, the reduction of the

number of control points from our heuristic leads to simpler falsifying input signals.

57



Table 7.4: Results for varying number of CPs: avg : Normalized Average Robustness avg2 : Normalized

Average Robustness of top 50%

Model Property # CPs
Input Variation

Strategy

avg avg_2

AT ϕAT
1 19 -0.8768 -0.8775

21 -0.8764 -0.8769

ϕAT
2 19 -1.0867 -1.1090

21 -0.9989 -1.0398

ϕAT
3 19 -4.5483 -4.5641

21 -4.4986 -4.5203

ϕAT
4 19 -0.5240 -0.5244

21 -0.5238 -0.5243

AFC ϕAFC
1 8 -5.6463 -13.9909

10 -1.1565 -8.8889

ϕAFC
2 8 2.8005 -12.9252

10 -1.5986 -12.7551

ϕAFC
3 10 -41.5658 -74.7188

11 -33.9887 -63.6077

ϕAFC
4 10 -29.6429 -62.4059

11 -14.4376 -38.7619

WT ϕWT
1 8 0.2521 0.0896

10 0.2889 0.0972

ϕWT
2 8 -0.2386 -0.3959

10 -0.1386 -0.3179

ϕWT
3 8 10.5675 8.2592

10 15.1609 11.6013

ϕWT
4 8 63.1534 52.3287

10 63.7391 53.5200
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Chapter 8

Conclusions

In this work we explored the falsification problem for Cyber-Physical Systems with Signal

Temporal Logic specifications based on the black-box optimization framework. Efficient falsifica-

tion in such frameworks depends on a good parameterization scheme for exploring the input signal

space. We proposed a heuristic based on the settling time for the step response of dynamical sys-

tems as a method to reduce the number of parameters to search over, and hence as a heuristic for

dimensionality reduction for input space exploration for falsification of CPS. We demonstrated the

efficacy of our approach on three commonly used complex Simulink benchmarks from the CPS

falsification community. If we consider the falsification rate, out of the twelve properties we tested

over these benchmarks, for eleven, our proposed method either achieved a better falsification rate,

or obtained a rate comparable to the baseline (where the baseline explored the input signal space

via a uniform placement of control points). The largest falsification rate improvement was 100%

(the baseline could not falsify in any of the instances in this case); the three largest falsification

rate deteriorations were 3%, 15% and 60%. If we consider the best (lowest) robustness values

obtained, for eleven properties, our heuristic either performed better in terms of the robustness

value obtained, or was within 5% of the baseline. We note that our heuristic generates signals with

fewer control points compared to a uniform placement (the actual reduction depends on the settling

time), and hence leads to simpler signals that are more desirable for debugging purposes. For our

experiment settings, the largest improvement was a reduction in control points from 61 to 19, the

smallest reduction was 26 to 8 control points. Our work shows that falsification strategies could

benefit from leveraging standard control systems concepts in order to obtain better parameteriza-

tion strategies for more efficient exploration of the input space.

Future work directions would be to run our heuristic on more benchmarks in order to see how

well our heuristic generalizes, explore other signal interpolation strategies, use different optimizers

in the falsification loop, and explore other signal classes that are relevant for engineers.
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and the State Explosion Problem, pages 1–30. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2012.

[21] Alexandre Donzé and Oded Maler. Systematic simulation using sensitivity analysis. In

Alberto Bemporad, Antonio Bicchi, and Giorgio Buttazzo, editors, Hybrid Systems: Compu-

tation and Control, pages 174–189, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[22] Sriram Sankaranarayanan and Georgios Fainekos. Falsification of temporal properties of hy-

brid systems using the cross-entropy method. In Proceedings of the 15th ACM International

Conference on Hybrid Systems: Computation and Control, HSCC ’12, pages 125–134, New

York, NY, USA, 2012. Association for Computing Machinery.

[23] Yoriyuki Yamagata, Shuang Liu, Takumi Akazaki, Yihai Duan, and Jianye Hao. Falsification

of cyber-physical systems using deep reinforcement learning. IEEE Transactions on Software

Engineering, 47(12):2823–2840, 2021.

[24] Thomas Ferrère, Dejan Nickovic, Alexandre Donzé, Hisahiro Ito, and James Kapinski.

Interface-aware signal temporal logic. In Proceedings of the 22nd ACM International Con-

ference on Hybrid Systems: Computation and Control, HSCC ’19, pages 57–66, New York,

NY, USA, 2019. Association for Computing Machinery.

62



[25] Thomas Ball and Orna Kupferman. Vacuity in testing. In Proceedings of the 2nd International

Conference on Tests and Proofs, TAP’08, pages 4–17, Berlin, Heidelberg, 2008. Springer-

Verlag.

[26] A. Dokhanchi, S. Yaghoubi, B. Hoxha, and G. Fainekos. Vacuity aware falsification for mtl

request-response specifications. In 2017 13th IEEE Conference on Automation Science and

Engineering (CASE), pages 1332–1337, 2017.

[27] Masaki Waga. Falsification of cyber-physical systems with robustness-guided black-box

checking. In Proceedings of the 23rd International Conference on Hybrid Systems: Com-
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