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ABSTRACT 
 
 
 

THE DYNAMIC NATURE OF SNOW SURFACE ROUGHNESS 
 
 

Throughout the winter season, the snowpack becomes the surface-atmosphere boundary 

for the energy balance within the hydrologic cycle and is key for understanding and modeling 

meltwater availability, streamflow, and groundwater recharge. The aerodynamic roughness 

length, z0, is one metric to quantify the roughness characteristics of the snowpack surface. 

Roughness is a key component when analyzing the snowpack surface energy exchange because it 

exerts a strong influence on turbulent energy exchanges between the snowpack and atmosphere. 

Snow surface roughness fluctuates throughout the winter season due to snowpack accumulation 

and melt, redistribution, ecological, and meteorological influences. However, current hydrologic 

and energy balance models use a static z0 value despite the snowpack surface, and resulting z0 

value, being spatially and temporally dynamic throughout the winter. Inclusion of a site specific, 

spatially, and temporally variable z0 is expected to improve hydrologic and energy balance 

models. Therefore, the following research investigates 1) comparing the anemometric and 

geometric methods of measuring z0, 2) the correlation between z0 and snow depth, 3) spatial and 

temporal variability of z0, 4) post-processing effects on z0 measurements, and 5) application of a 

variable z0 within the SNOWPACK model.  

 

Results of this study indicate a strong correlation when comparing geometric versus 

anemometrical methods of calculation. 30 wind profiles were compared to 30 corresponding 

geometrically calculated surface measurements using a terrestrial based LiDAR. These combined 

profiles had a Nash-Sutcliffe Coefficient of Efficiency of 0.75, an r2 of 0.96, a best fit slope of 0.98, and a 
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Root Mean Square Error of 8.9 millimeters. The correlation between snow depth and z0 is variable 

depending on periods of melt, accumulation, and the initial snow-free roughness. The z0 was 

shown to be spatially and temporally variable across study sites. Interpolation resolution during 

post processing of z0 was found to modify z0 by several orders of magnitude. Variable z0 values 

were found to alter SNOWPACK model results within several of the output variables. The most 

sensitive output variables were sublimation, latent, and sensible heat due to the direct use of z0 

within the calculations. These key findings highlight the importance of a variable z0. Inclusion of 

a variable z0 parameterization within models should be site specific, spatially and temporally 

dynamic, with special attention to post-processing steps.  
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1.0 INTRODUCTION 
 
 
 

The hydrological cycle dominates the Earth’s climatic processes with 50% of the Northern 

Hemisphere being covered in shallow, seasonal snowpacks that create a natural water reservoir and 

creates a high albedo (Dutra et al., 2010; Kukko et al., 2013). The timing, depth, and duration of this 

seasonal snowpack determines the spring melt runoff which influences everything from the ecology to the 

economy (Lopez-Moreno et al., 2017; Wayand et al., 2018). In addition, the role of the snowpack within 

the hydrologic cycle impacts year-round soil moisture content, evaporation rates,  precipitation (Magand 

et al., 2014), annual recharge of groundwater and streamflow (Musselman et al., 2017), sediment and 

nutrient supply (Huss et al., 2017), biogeochemical fluxes, nitrate concentrations,  soil respiration (Bales 

et al., 2006), freeze thaw cycles, erosion and weathering, permafrost, and ecological responses including 

phenology and animal mortality rates (Lopez-Moreno et al., 2017).  

1.1 Background 

1.1.1 Snow Dominated Systems 

The snowpack is a key component in both global (Figure 1.1) and local (Figure 1.2) climate 

systems (Bales et al., 2006). Throughout the winter season, the snowpack becomes the primary interface 

for the earth-atmosphere boundary (Fassnacht et al., 2009a; Kukko et al., 2013). This interface is a key 

driver in atmospheric and climate processes and is affected by meteorological (Anttila et al., 2014; 

Lopez-Moreno et al., 2011; Magand et al., 2014), ecological (Magand et al., 2014), topographical 

(Lopez-Moreno et al., 2011), and spatial and temporal snowpack fluctuation (Magand et al., 2014; 

Raleigh et al., 2013).  

On a global scale, the timing of snow accumulation and melt regulates the amount of shortwave 

radiation that the earth absorbs, therefore, snow albedo has a substantial impact on climate in the northern 

hemisphere (Figure 1.1; Wang et al., 2015).  An expansive snow-covered area has a much higher 

reflectance capacity (0.40 - 0.95) compared to bare ground (0.05 - 0.40) or open water (0.03 - 0.10), 
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resulting in less absorption into the atmosphere (Oke, 1987; Sato, 2001; Raleigh et al., 2013). Over the 

past century, over half of the earth’s continental surface was covered by a seasonal snow (Anttila et al., 

2014), however due to climate change the expanse of that snowpack is diminishing, causing an overall 

increase in global air temperature (Langlois and Barber, 2008; Park et al., 2013; Wang et al., 2015). 

Locally, snowmelt is the primary source of runoff in mountainous regions (Luce et al., 1999), and 

the influence of the timing and magnitude of the peak runoff is essential to local phenology (Harpold et 

al., 2012; Lopez-Moreno et al., 2017), freeze thaw cycles (Lopez-Moreno et al., 2017), length of the 

growing season (Harpold et al., 2012), vegetation distribution, water storage for drinking water supply, 

and irrigation (Bales et al., 2006; Barnett et al., 2005). Due to climate change, by the end of the 21st 

century it has been predicted that peak flow in the northern hemisphere will occur 30-40 days earlier than 

it currently does (Musselman et al., 2017), consequently measuring and quantifying the snowpack and 

snow water equivalent is vital, especially in areas with over allocated watersheds (Painter et al., 2010).  

Snow water equivalent (SWE), the measure of snow water volume within the snowpack, is the 

primary variable when considering snowpack storage for water supply (Anttila et al., 2014). The 

snowpack, and the resulting SWE, is used by over 1 billion people worldwide for drinking water (Clow, 

2010; Sturm et al., 2017; Jennings et al., 2018), however, all populations benefit from the snow based on 

reservoir water storage which determines the water supply for crop irrigation, residential use, agriculture, 

industry, and even the timing of water release for salmon runs (Barnett et al., 2005).  

Since 1915, there has been an observed 21% decrease in western US snowpack storage (Mote et al., 

2017) with a decrease in 3-9 snow covered days per year (Harpold et al., 2012). Each region of the US 

has noticed a variation in timing and magnitude of SWE (Trujillo and Molotch, 2014). For example, 

maritime climates have been influenced by earlier rain on snow events due to the warming climate, which 

have caused earlier melt, especially at lower elevations (Trujillo and Molotch, 2014). In 2015, the 

maritime region saw an April 1 record low SWE resulting from high temperatures, not lack of 

precipitation (Mote et al., 2017). These climate-based changes are becoming so commonplace that terms 
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like ‘snow drought’ or ‘anthropogenic drought’ are being used to refer to situations where drought is 

occurring based on increasing demand on water resources (Harpold et al., 2017b).  

1.1.2 Atmospheric Interactions and Climate Driver 

In snow covered regions, the hydrologic cycle during the winter is driven by the energy balance 

of the snowpack. The energy balance equation in terms of available energy for melt (QM) is given as: 

 𝑄𝑀 =  𝑄𝐾∗ + 𝑄𝐿∗ + 𝑄𝐻 + 𝑄𝐸 + 𝑄𝑃 + 𝑄𝐺 + 𝑄𝐶𝐶     (1.1), 

 

where Q*
K is net shortwave radiation, Q*

L is net longwave radiation, QH is sensible heat flux (Equation 

1.2), QE is latent heat (Equation 1.3), QP is heat associated with the precipitation flux, QG is the ground 

heat flux at the snow-soil interface, and QCC is snowpack cold content. Within the context of this study, 

we are focused on the spatial and temporal sensible and latent heat fluxes. Sensible heat (QH) is the gain 

or loss of energy within a system due to an increase or decrease in temperature (Oke, 1987), as follows:  

 𝑄𝐻 = 𝜌𝑎𝑐𝑝𝐶𝐻𝑈𝑧(𝑇0 − 𝑇𝑧)     (1.2), 

 

where ρa is density of air, cp is specific heat of air at a constant pressure, Uz is the wind velocity at a 

reference height, T0 is surface temperature and Tz is the potential temperature at a reference height (z). CH 

is bulk transfer coefficient for sensible heat at neutral stability. Sensible heat is driven by momentum due 

to wind and conductivity due to temperature gradients, while latent heat (Equation 1.3) is driven by 

momentum and diffusivity due to vapor gradients (Oke, 1987). Latent heat is the flux of energy due to a 

change of phase associated with no change in temperature, and is expressed by the equation: 

     𝑄𝐸 = 𝜌𝐿𝑠𝐶𝐸𝜁(𝑞0 − 𝑞𝑧)        (1.3), 
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where Ls is latent heat of sublimation of ice, ζ is the atmospheric stability parameter, q0 is water vapor 

density at the surface, qz is water vapor density at an arbitrary reference height, and CE is the bulk transfer 

coefficient for latent heat. Both the sensible and latent heat fluxes include roughness for the momentum; 

sensible and latent heat fluxes also include roughness for conductivity and diffusivity, respectively. 

1.1.2.1 QE and QH in the Snowpack 

As the climate warms, shifting patterns in precipitation type and quantity have been observed 

(Harpold et al., 2017a), influencing snow accumulation rates and timing, average height of the annual 

snowline (Bales et al., 2006; Kapnick and Hall, 2012), internal snowpack metamorphism, frequency of 

rain on snow events, and timing of melt rates (Anttila et al., 2014). Turbulence on the surface of the 

snowpack is a function of the size, shape, and distribution of roughness features which influence the rates 

of conduction, diffusion, and momentum. The latent heat flux (equation 1.3) can be re-written using the 

sublimation term (E): 

𝑄𝐸 = −𝐿𝑆𝐸      (1.4), 

where Ls is the latent heat of sublimation (2835 kJ/kg at 0°C). Thus, sublimation is often estimated by the 

latent mass flux: 

𝐸 =  
0.622∗𝜌𝑎∗𝑘2𝑃𝑟𝑎∗𝜑𝑚∗ 𝜑𝑒 ∗ 𝑈𝑧ln (𝑧𝑎−𝑧𝑑𝑧0𝑀 ) ∗ 𝑞𝑎−𝑞0ln (𝑧𝑎−𝑧𝑑𝑧0𝑞 )2    (1.5), 

where ρa is air density (kg/m3), Pra is air pressure (mb), φm and φe are the stability terms, Uz is wind speed 

(m/s) at height z (m), qa is the specific humidity at height z (mb), q0 is the specific humidity at the snow 

surface (mb), za is the measurement height (1.72 m), zd is the zero-plane displacement (m), and z0 is the 

roughness (m). 

Latent heat exchanges over the surface of the snowpack are heavily influenced by the z0 via 

energy exchange in the form of sublimation (Hultstrand and Fassnacht, 2018). As the saturated vapor 

pressure, turbulence, and/or air temperature increases, an increase in sublimation will occur which will 
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decrease the amount of snow available to melt resulting in increased turbulent energy fluxes (Harpold et 

al., 2012). Harpold et al. (2012) found that an air temperature change of 1.3 C between two winter 

seasons led to an increase in sensible and latent heat flux from 25% to 54%.  

1.1.2.2 Stability Terms  

Oke (1987) defines atmospheric stability as the relative tendency of an air parcel to move 

vertically. There are three potential conditions that can occur within the atmosphere: stable, neutral, and 

unstable.  Stable conditions indicate that the parcel is cooler than the air, and it sinks and compresses. 

Neutral conditions indicate the parcel and air are the same, and it remains in place. Unstable conditions 

indicate the parcel is warmer than the air, so it rises and expands. The latent and sensible heat fluxes at the 

surface will then directly affect the parcel’s ability to find equilibrium after the vertical displacement 

(Oke, 1987). The latent and sensible heat fluxes create eddies within the wind profile that are controlled 

by the surface boundary layer and the frictional drag caused by the underlying roughness features on the 

surface (Oke, 1987). During the winter, the snowpack becomes this surface boundary interface, and the 

state of atmospheric stability is important for estimating latent and sensible heat fluxes from the 

snowpack (Fassnacht, 2010). There are several methods and variables used to determine the stability of 

the atmosphere within a wind profile.  

The Reynolds Number is a dimensionless coefficient used to predict flow patterns; it is the ratio 

of inertial forces to the fluid or viscous forces (Oke, 1987; Manes et al., 2008). Aerodynamic roughness 

length and atmospheric stability is dependent on the roughness of the surface (Oke, 1987; Manes et al. 

2008). In terms of the Reynolds Number, rougher surfaces have a higher Reynolds Number (turbulent 

flow) and lower values are for smoother surfaces (laminar flow) (Oke, 1987).  

The Richardson Number categorizes atmospheric stability and the amount of turbulence caused 

by a surface; it is the ratio of the buoyancy to the flow shear stress (Oke, 1987).  

𝑅𝑖 =  𝑔𝑇 ∗ ( ∆𝑇∆𝑧 )2(∆𝑢Δz)2       (1.6), 
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where g is the acceleration due to gravity, 𝑇 is the mean temperature in layer Δz, 𝑢 is the mean wind 

speed in layer Δz. In stable conditions, the flow is considered laminar until it reaches a Richardson 

number critical value (assumed to be 0.2 to 0.25), in which case flow becomes turbulent and therefore 

unstable (Andreas, 2002). In this study, when determining atmospheric stability, only wind profiles with a 

Richardson Number between -0.01 and 0.01 were used.  

The von Karman constant is used to relate the momentum profile to turbulent fluid flow using 

fluid density, shear stress, and friction velocity (Andreas et al., 2006). This value is height dependent. 

However, a value of 0.4 is typically used (Andreas et al., 2006). The von Karman constant is used in the 

equation 1.2, 1.3 and 1.5 (sublimation equation). 

1.1.3 Aerodynamic Roughness Length Uncertainty 

The term roughness is applied to many earth science topics with specific definitions and 

measurement techniques based on the type of study (Smith, 2014). Roughness is used to understand and 

quantify many natural processes, and Smith (2014) provides a comprehensive review of the different 

approaches and models developed to analyze the various types of surface roughness. The roughness of 

naturally occurring surfaces are not homogenous, creating difficulty in measuring and quantifying them 

(Andreas, 1987; Smith, 2014). Roughness is controlled by many meteorological, topographical, and 

environmental influences ranging from the macro (>1-meter) to micro (<1-meter) scales. The current 

research focuses on topographic surface roughness and its effect on snowpack surface roughness.  

The aerodynamic roughness length, z0, is a measure of the height above the surface at which wind 

velocity is equal to zero (Lettau, 1969; Manes et al., 2008; Smith, 2014). Aerodynamic roughness length 

is a key component in the estimation of the sensible and latent heat fluxes between the ground surface and 

the atmosphere (Fassnacht et al., 2009a; Hultstrand and Fassnacht, 2018), and these roughness 

characteristics influence the air-surface momentum transfer on the snowpack due to wind (Amory et al., 

2016). The variation of rough and smooth surfaces directly affects the amount of turbulent exchanges of 
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sensible and latent heat as well as the resulting transfer rates over the surface (Andreas, 1987; Miles et al., 

2017). The turbulent heat fluxes over the snowpack are influenced by the seasonal snow accumulation, 

wind and resulting snow redistribution, incoming radiation, melt patterns, internal snowpack 

metamorphism (Musselman et al., 2015), and changes in snow-covered area (SCA) throughout the season 

(Luce and Tarboton, 2004). To estimate these fluxes and understand the movement of air over the 

surface-atmosphere boundary, it is necessary to know or calculate z0 (Fassnacht et al., 2009a; Manes et 

al., 2008).  

 

1.2 Research Motivation  

The seasonal, shallow snowpack are a critical factor for anthropogenic use (Barnett et al., 2005; 

Grunewald et al., 2010; Jacobson, 2010; Sturm et al., 2017), natural ecological processes (Barnett et al., 

2005; Huss et al., 2017; Magand et al., 2014; Musselman et al., 2017), and meteorological processes 

(Barnett et al., 2005; Magand et al., 2014; Musselman et al., 2017). There is a desperate need in science 

to understand, quantify, and implement spatial and temporal variations in the snowpack for water quantity 

estimations (Sturm et al., 2017).  

Surface roughness decreases during accumulation as the snow follows the underlying terrain in 

the initial stages of accumulation until the roughness features have been enveloped by a certain snow 

depth (Sanow et al., 2018). Vegetation height from small shrubs and grasses to dense forests create spatial 

heterogeneities and heavily influence the z0 (Niu and Yang, 2007). Small grasses and shrubs will typically 

be covered by the seasonal snowpack, whereas large vegetation, such as sagebrush, will create larger 

scale roughness features and usually be visible throughout the winter season (Tedesche et al., 2017). 

Throughout the winter season, the snowpack depth and surface roughness can change due to 

redistribution from wind-swept areas (Musselman et al., 2015; Fassnacht et al., 2009a). Snowpack surface 

roughness variability throughout the winter is caused by various types of elevation, aspect, canopy cover, 
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and ground cover within a single watershed (Jost et al., 2007; Watson et al., 2006). Jost et al. (2007) 

found that these factors contributed to 80-90% variability of snow accumulation within a watershed. 

Watson et al. (2006) found that various ground and canopy covered landscapes (i.e. burned forests, 

meadows, etc.) resulted in up to a 61% variation within the snowpack.  Lastly, heterogeneities in 

snowmelt are common based on topography, slope, aspect, meteorological conditions, and land cover 

(Niu, 2007).  

Hydrological, snowpack, and climate models have typically used snow surface roughness as a 

static parameter (Manes et al., 2008; Gromke et al., 2011), with z0 only varying as a function of land 

cover type. For example, the Community Land Model version 4.0 (CLM4) applies a single z0 value of 2.4 

x 10-4 m to all snow-covered surfaces (further examples are shown in Table 1.1). However, z0 varies both 

spatially (Brock et al., 2006) and temporally (Andreas, 2002) resulting in variable estimates of turbulent 

heat fluxes within models (Fassnacht, 2010). Thus, in models it is proposed that for snow, z0 should be 

considered a variable and not a parameter. 

1.2.1 Spatial and Temporal Implications of z0  

Spatial and temporal variability of the snowpack is a difficult measurement to capture (Deems et 

al., 2013). A single roughness element affects and is affected by the arrangement of all other roughness 

features around it (Fassnacht, 2010; Smith, 2014). The variability leads to a non-uniform snowpack 

surface from the micro to macro scale (Niu, 2007) that is also influenced by meteorological conditions, 

snow movement, and metamorphism (Fassnacht, 2010). The z0 variability is especially drastic during 

snowmelt, which is greatly affected by incoming solar radiation, longwave radiation, snowpack 

metamorphism, and wind redistribution (Bales et al., 2006; Fassnacht, 2010; Liston, 2004; Luce, 2004). 

Brock et al., (2006) found that the z0 associated with spatial variability on glaciers pre and post ablation 

season changed considerably based on the smoother snow cover to the hummocky, ice surface.  
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Meteorological conditions, especially in the spring time during snowmelt, have a large effect on 

the spatial and temporal variability. Rain on snow events are becoming more frequent, earlier in the 

season (Anttila et al., 2014; Trujillo and Molotch, 2014), this can increase melt and refreeze on and 

within the snowpack which can alter the overall snowpack surface roughness (Anttila et al., 2014). Wind 

direction and speed can drastically redistribute the snowpack which regulates snowmelt timing, duration 

and rates (Fassnacht et al., 2009a; Wayand et al., 2018). The direction of the wind over the primary 

roughness features can increase the turbulence and therefore sublimation (Fassnacht et al., 2009a; 

Harpold et al., 2012; Hock et al., 2017). 

1.2.2 Variable versus Static z0 

Surface roughness hardly consist of uniform, evenly distributed roughness features (Smith, 2014). 

The spatial and temporal variability of z0 is often represented in hydrologic and meteorological models as 

a static value instead of a dynamic variable based on site specific observations (Quincey et al., 2017). 

Heights of only <10 centimeters can change the calculated z0 value by an order of magnitude, meaning 

values calculated over highly heterogeneous surfaces will not be accurately represented by a static value 

(Quincey et al., 2017). Similar studies have shown a decrease in z0 following 1-2 snowfall events, and an 

increase in z0 due to melting as a function of time since last snowfall (Brock et al., 2006; Fassnacht et al., 

2009a; Fassnacht, 2010; Smeets and van den Broeke, 2008). Just one snowfall event of 0.1 meters of 

fresh snow has the potential to alter the z0 by a factor of 20 to 50 (Smeets and van den Broeke, 2008). An 

example of snowpack variability is highlighted in Figures 1.3 and 1.4, where the differences between the 

initial surface roughness with and without snow are shown. Vegetation causes variability (Figure 1.3a, 

1.4a) which is then covered by the entirety of the snowpack (Figure 1.3b, 1.4b), depending on the height 

of the vegetation. As the snowpack depth increases, it is able to encapsulate larger roughness features 

(Figure 1.3c, 1.4c). A general, conceptual model of this concept is shown in Figure 1.5. 

1.2.3 Sublimation Case Study 
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In order to illustrate the importance of z0 within the energy balance, specifically focusing on 

sublimation, two case studies were performed. Data was download from the NRCS SNOTEL Site #457 

Dry Lake, located in Dry Lake, CO for the 2017-2018 winter season 

(https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=457). Sublimation rates were calculated as a monthly 

total using Equation 1.5 and a static z0 value of 2.4 millimeters. The static z0 value was chosen because of 

its use in the CLM. Sublimation was then calculated again, but instead of a static value, a dynamic value 

was used for z0. These dynamic values were based on z0 values found for fresh snow and melting snow 

from Brock et al. (2006). When snow depth was between 0-40 millimeters, the z0 of 2.4 millimeters was 

used, when snow depth between 41-90 millimeters, the z0 of 1.0 millimeters was used, etc. This entire 

process was repeated for the Trout Farm site, however, instead of using dynamic values from the Brock et 

al. (2006) table, terrestrial LiDAR based scans were taken throughout the season and the geometric z0 was 

found (explained further in Chapter 2), and a static z0 value of 35 millimeters was used (calculated as the 

initial value of the site based on terrestrial LiDAR calculations). 

The results of the first case study from the Dry Lake SNOTEL Site #457 are shown in Figure 

1.6a. The results show a decrease in sublimation rates with the inclusion of a dynamic z0 value, excluding 

October. Snow first accumulated during October. Consequently, z0 values changed considerably due to 

snow depth compared to the rest of the season. Since the majority of the snow throughout the season was 

greater than 100 millimeters deep, the z0 value of 0.2 millimeters was used most often. The total 

sublimation for the entire winter season with a dynamic z0 is 100 mm compared to a static z0 total of 120 

millimeters. The application of only three dynamic z0 values changed the sublimation rates by 19.0%. If 

the z0 is measured and changed throughout the season, sublimation as well as energy balance estimations 

can be substantially improved. The results of the second case study from the Trout Farm study site, 

located near Meeker, CO are shown in Figure 1.6b. The total amount of static z0 sublimation was 140 

millimeters and the dynamic z0 sublimation was 120 millimeters. The overall sublimation values were 

similar throughout the winter season with the exception of January and February.  
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1.2.4 Calculation Methods 

LiDAR scans taken throughout the study were processed using a combination of Cloud Compare, 

Surfer, and MATLAB in order to compute the geometric z0. The MATLAB code written by Ron Pasquini 

(Colorado State University, Senior Mathematics Project, 2017). The code uses the formula for z0 based on 

the geometry of the surface for irregular arrays of reasonably homogenous elements developed by Lettau 

(1969):  

      𝑧0 = 𝑧ℎ𝜆𝐹                          (1.7), 

where zh is the mean height of the roughness elements in meters, and λF is equal to, 

𝜆𝐹 = 𝐿𝑦 𝑧ℎ𝜌𝑒𝑙       (1.8), 

where Ly is the mean breadth of the roughness elements perpendicular to the wind direction, and ρel is the 

density or number of roughness units per unit area (Lettau, 1969; Sanow et al., 2018). Typically, this 

equation includes the experimentally-derived average drag coefficient of 0.5, however, this has been 

shown to produce geometric z0 estimates that are half of their corresponding anemometric estimates 

(Sanow et al., 2018), and therefore were disregarded in this study. An example of this formulation using 

synthetic roughness features is shown in Figure 1.7. First, the mean obstacle height, zh, is calculated by 

finding the local maximums and minimums relative to their neighbors across the surface. The lot area, 

ρel, is calculated by the total area divided by the total number of maximums. Silhouette area, Ly, is 

similar to a cross section of each obstacle and is computed within the north-south and east-west 

directions. The final result is a z0 value in N-S and E-W direction, for this study the z0 value was chosen 

based on the dominate wind direction of the site. Snow depths were calculated using Cloud Compare by 

subtracting the initial snow-free scan from a snow-covered scan. The mean snow depth was computed 

across the AOI. This LiDAR based snow depth was compared to depth measurements using the t-posts 

and taken from each site visit. 

1.2.5 Alternative Methods 
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Other methods include using millimeter-scale variations in snow-surface roughness features to 

estimate from a black plate pushed partially into the snow (Rott, 1984; Fassnacht et al., 2009a; Lacroix et 

al., 2008) obtained from two-dimensional photography followed by digital processing, and automated 

post-processing software (Fassnacht et al., 2009a; Fassnacht et al., 2009b; Fassnacht, 2010; Manninen et 

al., 2012). Three-dimensional snow surface elevation data are now available over large areas at the 

resolution of airborne LiDAR (< 1 meter2 over >100 kilometer2 horizontal resolution with <30 centimeters 

vertical resolution) (Deems et al., 2006; Harpold et al., 2014), terrestrial laser scanners (TLS) (resolution 

of +/-5 millimeters) (Hood and Hayashi, 2010; Prokop, 2008; Revuelto et al., 2014; Lopez-Moreno et al., 

2016; Lopez-Moreno et al., 2017; Nolan et al., 2015; Deems et al., 2013), and photogrammetry (Nolan et 

al., 2015). Most LiDAR and photogrammetry efforts have only focused on snow depth (Deems et al., 

2013), therefore very few datasets have been used to evaluate snow surface roughness at the meter-scale 

or sub-meter scale (Fassnacht et al., 2014; Fassnacht et al., 2015). However, even fewer of these datasets 

have been applied to interpolate z0 and create a digital elevation model of the snowpack surface for 

evaluating surface roughness (Fassnacht et al., 2014).  

 

1.3 Research Objectives 

Currently, hydrologic, snowpack, and climate models have typically used z0 as a static parameter 

(Manes et al., 2008; Gromke et al., 2011). However, hydrologic processes vary spatially and temporally, 

and it is imperative to determine an adequate measurement method to incorporate this variable z0. This 

dissertation first examines two methods of measuring z0, anemometric and geometric to provide insight of 

advantages and limitations for each. Second, we observe the spatial and temporal characteristics of the 

snowpack and the effects on the roughness value. This was captured by using a terrestrial based LiDAR 

during a series of site visits to locations spread throughout Northwest Colorado. Finally, the resolution 

and scaling of z0 is examined based on post-processing methodology. These resulting z0 values are then 

used within the SNOWPACK model to determine the sensitivity of a variable versus static z0. 
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Tables 

 

Table 1.1. Aerodynamic roughness values found within the literature for several land cover and 
topographic areas. 

z0 (mm) Surface Type Citation 

0.01 - 20 Fresh Snow 
Brock et al, 2006; Poggi, 1977; Clifton et al, 2006 and 
2008; Poggi 1976; Gromke, 2011 

0.05 – 9.2 Snow 
Brock et al, 2006; Lacroix et al., 2008; Price, 1977; 
Jackson and Carroll, 1978; Pluss and Mazzoni, 1994; 
Moore and Owens, 1984; Wagnon et al, 1999 

0.1 – 13.5 Melting Snow Brock et al, 2006; Plus and Mazzoni, 1994 

0.65 - 0.88 Slush Brock et al, 2006 

0.01 - 70 Flat, Antarctic terrain Jackson and Carroll, 1978 

0.07 – 6.89 Ice sheet, bare ice Brock et al, 2006 

0.01 - 50 Glacier Ice 

Brock et al, 2006; Rees and Arnold, 2006; Irvine-Fynn 
et al, 2014; Grainger and Lister, 1966; Smeets et al, 
1998; Munro, 1989; Poggi, 1977; Denby and Snellen, 
2002; Skieb, 1962; Hogg et al, 1982; Greuell and 
Smeets, 2001; Van de Wal et al, 1992; Denby and 
Smeets, 2000; Hoinkes and Untersteiner, 1952; 
Hoinkes, 1953; Strenten and Wendler, 1968; 
Untersteiner, 1957; Wendler and Weller, 1974; 
Ishikawa et al, 1992; Martin, 1975; Smeets et al, 1999; 
Obleitner, 2000 

0.9 - 30 Glacier Snow 

Wagnon et al, 1999; Munro, 1989; Wendler and 
Strenten, 1969; Wendler and Weller, 1974; Greuell and 
Smeets, 2001; Obleitner, 2000; Sverdrup, 1936; Fohn, 
1973 

5 - 50 
Debris Covered 

Glacier 
Miles et al, 2017; Takeuchi, 2000; Brock et al, 2010; 
Rounce et al, 2015 
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     Table 1.2. Dynamic z0 values used for changing snow depths. 
z0 (mm) Snow Depth (mm) 

4.4 0-40 

1.0  41-90 

0.2 91+ 
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Figures 

 

Figure 1.1. Snow regimes in the taken from Sturm and Liston, 2021. 
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Figure 1.2. Snow regimes across the Western United States, highlighted with watersheds. Taken from 
Hammond et al., 2018. 
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Figure 1.3. Yellow Jacket Pass site location a) photo of the initial site set up facing north, the snow stake 
with white sphere on top is the same throughout all photos. b) Photo of the peak snow depth (101 
centimeters) on 02-26-2020, taken from a slightly different angle than A, however the snow stake with 
sphere can be seen against the vegetation. c) Screen shot of a Cloud Compare point cloud taken from 
terrestrial LiDAR scans taken at the site, the vegetation and ground cover was taken on 10-01-2019 (a) and 
the snow surface scan was taken on 02-26-2020 (b), these two scans were overlaid to demonstrate the 
difference of surface roughness with and without snow. 
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Figure 1.4. Lost Creek site, photo of the initial site set up facing south, the snow stake on top is the same 
throughout all photos, this is noted in the photo as well as the fire pit. b) Photo of the peak snow depth (76 
centimeters) on 01-07-2020, taken from a slightly different angle than A, however the snow stake can be 
seen against the vegetation this is noted in the photo. c) Screen shot of a Cloud Compare point cloud 
taken from terrestrial LiDAR scans taken at the site, the vegetation and ground cover was taken on 10-08-
2019 (a) and the snow surface scan was taken on 01-07-2020 (b), these two scans were overlaid to 
demonstrate the difference of surface roughness with and without snow. Note the fire pit in both A and C 
and how a slight variation in the snow surface is noticed above the pit in the point cloud. 
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Figure 1.5. Conceptualization of the changes in snow-covered area (SCA), snow depth (ds), and snow 
surface roughness (z0) throughout the winter season and their relation with the underlying surface 
topography. 
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Figure 1.6. a) Monthly totals of sublimation rates over the 2017-2018 winter season at Dry Lake 
SNOTEL #457. The blue columns represent calculated sublimation using a static z0 value of 2.4 
millimeters. The red column uses a dynamic z0 based on snow depths shown in Table 1.2. The total 
amount of sublimation for the static and dynamic z0 values were 127 and 104 millimeters, respectively. b) 
Monthly totals of sublimation rates over the 2019-2020 winter season at the Trout Farm snow study site. 
The blue columns represent the calculated sublimation using a static z0 value of 3.5 x 10-2 meters (this 
value was the calculated initial roughness value at the site). The red column uses a dynamic z0 based on 
terrestrial LiDAR scans taken throughout the winter season at the site. 
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Figure 1.7. Visual representation of the MATLAB code used to calculate the geometric surface 
roughness. 
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2.0 OBSERVING DIFFERENCES IN AERODYNAMIC ROUGHNESS LENGTH USING THE 

ANEMOMETRIC VERSUS GEOMETRIC ESTIMATION METHODS 

 

 

 

2.1 Summary 

Aerodynamic roughness length, z0, is a key feature in the energy balance and is an important 

parameter in hydrologic and atmospheric models. There are two primary methods of determining z0 for a 

study site: anemometric, z0-A, and geometric, z0-G. Wind sensors on a meteorological tower are used to 

measure a wind profile which is used to compute z0-A, and the surface topography is measured, here with a 

terrestrial light detection and ranging (LiDAR) system to compute for z0-G. The z0-A and z0-G values were 

compared for three study areas in Colorado. There were 30 wind profiles that correlated with TLS scans. 

These combined profiles had a Nash-Sutcliffe Coefficient of Efficiency of 0.76, an r2 of 0.98, a best fit 

slope of 0.98, and a Root Mean Square Error of 9.7 millimeters. There were four notable outliers that 

were attributed to low wind values during the time of the TLS scan. Overall, results indicate the 

anemometric, z0-A, and geometric, z0-G had similar values, and the geometric calculation method proved 

suitable in determining z0. 

 

2.2 Introduction 

The snowpack is the primary interface between the atmosphere and ground surface during the 

winter season, thus making it the control on surface energy fluxes (Bales et al., 2006; Fassnacht et al. 

2009a; Gromke, 2011; Harpold et al., 2012; Raleigh et al., 2013). The snowpack surface undergoes 

alterations spatially and temporally based on meteorological, ecological, and thermodynamic processes 

within the snowpack (Andreas, 1987; Fassnacht et al., 2009a; Musselman et al., 2015; Lopez-Moreno et 

al., 2017). The exchange of turbulent fluxes is dictated by the characteristics of the surface which is 
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represented by the aerodynamic roughness length (z0), defined as the length scale above the ground 

surface when the wind velocity is equal to zero (Smith, 2014).This evolution of the snowpack surface 

throughout a winter season changes the value of the z0, and thus, alters the exchange of turbulent fluxes, 

including latent and sensible heat exchange, and the resulting sublimation (Fassnacht et al., 2009a; 

Raleigh et al., 2013; Musselman et al., 2015). However, spatial and temporal measurements of z0 are 

difficult to obtain due to inaccessibility, cost, and severe weather (Deems et al., 2008). Currently, the 

most accepted method of measuring z0 is the anemometric method, which generates a logarithmic z0 wind 

profile estimate (Jacobson, 2005). The anemometric method can be used for any surface with any 

arrangement of roughness elements but requires a meteorological tower with at least two vertically spaced 

wind, temperature, and humidity measurements that can be used to approximate the respective gradients. 

The measurement is integrated over a defined area rather than the single-point location of the sensors 

based on the distance from measurement source, elevation of sensor relative to the surface, 

meteorological conditions, turbulent boundary layer, and atmospheric stability (Andreas et al., 2006). 

Each of these components can potentially create turbulent fluctuations affecting the downwind 

measurements of the wind profile (Schuepp et al., 1990; Sexstone et al., 2016). The anemometric method 

is also very sensitive to reported wind measurement heights. Munro (1989) found that adding 0.1 meters 

to any of the heights can alter z0 by an order of magnitude. This makes determining a reference plane of 

zero difficult in rough terrain (Munro, 1989). Hultstrand and Fassnacht (2018) found that the greatest 

source of uncertainty when calculating sublimation rates, was using a static z0 based on distance from 

ground as opposed to a dynamic z0 based on distance from the snow surface. Anemometric data are used 

to estimate z0 from the logarithmic wind profile through an empirical relation that describes the vertical 

distribution of horizontal wind speeds within the lowest portion of the planetary boundary layer (Oke, 

1987). The wind speed (Uz in meters per second) at height z (meters) above a surface is given by: 

    𝑈𝑧 = 𝑈∗𝑘 ln[ 𝑧𝑧0 + 𝜓(𝑧, 𝑧𝐿 , 𝐿)]          (2.1) 
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where 𝑈∗  is the friction velocity (m/s), and ψ is a stability term, and L is the Monin-Obukhov stability 

parameter. Under neutral stability conditions, z/L tends towards zero, and therefore ψ is often neglected 

(Oke, 1987; Sanow et al., 2018). Wind velocity profiles are often used to calculate z0 estimates, but there 

are a limited number of sites that measure a wind profile over a snowpack surface, making the spatio-

temporal representation of z0 challenging. Anemometric towers can be expensive to set up and maintain, 

and they represent a limited point at the snowpack surface (Sanow et al., 2018). A single-point 

measurement does not represent the spatial and temporal characteristics of a snowpack throughout the 

winter season and thus limits the representation accuracy of the snowpack influence on the hydrologic 

cycle (Bales et al., 2006).  

Geometric measurements to derive aerodynamic roughness length values have shown to be an 

effective method to account for a larger area with centimeter scale resolution throughout a winter season 

(Sanow et al. 2018).  The geometric method uses the relation of z0 to characteristics of surface roughness 

elements and does not require tower instrumentation, but instead measures the surface geometry (Lettau, 

1969). The most common and general geometric method for estimating z0 is simply a function of the 

height of the elements: 

     𝑧0 = 𝑓0𝑧ℎ           (2.2) 

where zh is the mean height of roughness elements in meters, and f0 is an empirical coefficient derived 

from observation. Lettau also created a reference table outlining a generalized guide to surface roughness 

values ranging from 3.6 x 10-5 m for sand flats to 2.14 m for forests (Lettau, 1969). For snow surfaces 

Fassnacht (2010) and Fassnacht et al. (1999) estimated a z0 value (from Lettau, 1969) of 0.005 m. Various 

relations have been developed to relate the geometry of roughness elements with z0 (Lettau, 1969; Munro, 

1989). For example, the dependence of z0 on the size, shape, density, and distribution of surface elements 

has been studied using wind tunnels, analytical investigations, numerical modeling, and field observations 

(Grimmond and Oke, 1999; Foken, 2008). 
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This study focuses on the measurement techniques of z0 by directly comparing the anemometric 

and geometric methods. LiDAR and other methods (e.g., Structure from Motion) for producing high-

resolution surface topographic measurements are becoming more readily available (Deems et al., 2013, 

Harpold et al., 2014) and are considered a better representation of the snowpack spatially and temporally 

(Bales et al., 2006). Therefore, it is expected that the two methods should generate comparable results. 

The objective of this study is to answer the question: How well geometrically calculated (z0-G) values 

compare to anemometrical calculated (z0-A) values? 

 

2.3 Methodology and Data 

The snowpack surface was scanned using a FARO Focus3D X 130 model Terrestrial LiDAR 

Scanner (TLS). This LiDAR tool generates a point cloud scan with an error of +/- 2 millimeters and a 

resolution of approximately 7.5 millimeters. For each site visit, the TLS was set up in three different 

locations around the site in order to account for shadows caused by scan angles. The three LiDAR scans 

were cropped and merged in the open source program Cloud Compare (https://www.danielgm.net/cc/) 

and an Area of Interest (AOI) was determined. Within the AOI the point spacing was 1.2 points/mm2. 

Then, the AOI was interpolated using the 0.01-meter kriging method in the Golden Software Surfer 

(https://www.goldensoftware.com/products/surfer). The final, gridded AOI was calculated using the 

modified Lettau method implemented in MATLAB (Lettau, 1969; Sanow et el., 2018; shown in Equation 

2.3) to calculate the final z0-G value. The code takes the interpolated surface and finds the mean obstacle 

height (h*) by finding all local maximums and minimums relative to each other across the surface. Then, 

the lot area (S) is calculated as the total area divided by the total number of maxima. Next, the silhouette 

area (s) is found as the profile of an obstacle, this is done at a pre-defined resolution step within the code. 

This study used a resolution step of 0.01 meters over the 10x10 meter study site. All of these steps applied 

within Equation 2.3, results in the average z0 of the surface. 
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     𝑧0 = ℎ∗𝑠/𝑆           (2.3) 

Further details of the MATLAB code can be found in Chapter 1.2.4. 

2.3.1 Site Descriptions  

A meteorological tower was set up at Colorado State University Agriculture Research, 

Development and Education Center (ARDEC) (https://aes-ardec.agsci.colostate.edu/, 2021), for the 2014-

2015 (data collected by Kamin, 2015), 2017-2018, and 2018-2019 winter seasons. The site was flat with 

plowed furrows and troughs that had an amplitude of approximately 25 centimeters deep and 50 

centimeters wide, oriented East-West. This area receives an average of 119 centimeters of snow per year 

(https://wrcc.dri.edu). The study area was 40 meters wide with the tower placed in the middle, leaving 

100 unobstructed, homogenous meters upwind. Five anemometers and five temperature/relative humidity 

sensors were set up on the tower at heights ranging from 137-549 centimeters from the ground surface 

(Figure 2.1a). The temperature and relative humidity sensors were manufactured by METER (previously 

Decagon) VP-3. The temperature and relative humidity were variable across a range of +/-4% and +/- 

0.25-0.50°C, respectively. The METER Davis Cup Anemometers had a wind direction accuracy of +/- 7° 

at 1° increments, and speed accuracy within +/- 5 % from 1-58 m/s. Meteorological data was recorded 

continuously every 15 minutes throughout the winter season using a datalogger. The Davis Cup 

anemometers integrates wind speed for one minute. The average of the one-minute values becomes the 

average speed. The depth of the snow was also accounted for in the anemometric calculations for the 

distance from each anemometer from the surface.  

The Trout Farm site consisted of a meteorological tower set up in an open, grassy, farm field 

about 3 kilometers west from Meeker, Colorado. The tower included the same anemometers as the 

ARDEC tower and was monitored during the 2019-2020 winter season (Figure 2.1b). The site was flat 

with no dominate roughness features. Meeker, Colorado averages 177 centimeters of snow per year 

(https://www.wrcc.dri.edu). A total of 30 correlating scans and wind profiles were used for the study. The 
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results are plotted in Figures 2.2 with a black 1:1 line. The Nash-Sutcliffe coefficient of efficiency 

statistic was calculated from data fit to the 1:1 line. For both sites, wind speeds of >2.5 m/s were used for 

analysis. Typically, wind speeds of 4 m/s are used (Andreas et al., 2006), however, due to lack of 

corresponding scans and high wind speeds this threshold was lowered. 

2.3.2 Stability Parameters 

Stability parameters are used to determine the amount of turbulence within the study area. This 

can be calculated using the Richardson Number, a dimensionless ratio of buoyancy and gravitational 

force (Oke, 1987), which is given in the following equation: 

 𝑅𝑖 =  𝑅𝑇𝑆+273.15 (𝑇𝑆−(𝑇2+𝛾𝑅))𝑈22                   (2.4) 

where R is the reference height of the mid-point anemometer; T2 is the air temperature (°C) at height R, TS 

is the surface temperature (°C), γ is gravity multiplied by the specific heat of air at a constant pressure, 

and U2 is the wind speed (m/s) at height R. Only values with a Richardson Number between -0.01 and 

0.01 were used within this study to ensure neutral stability (Oke, 1987). 

 

2.4 Results 

Lettau’s general surface roughness z0 value estimates that bare soils have a value of 0.58 x 10-3 

meters, assuming a flat study area with no variation (Lettau, 1969). Therefore, with the addition of the 

furrows, vegetation, and snow in the field, the calculated z0-G values ranged from 0.6 x 10-4 meters to 0.06 

meters. The differences in these calculated values reflect variations in snow depth. For example, the 

smallest value was from January 24, 2020 at Trout Farm when the site had 0.21 meters of snow. For the 

entire grouping of results, the z0-G values underestimated in 12 out of 30 profiles, overestimated in 14 out 

of the 30 profiles and were almost exact in 4 out of the 30 profiles. These profiles had combined NSCE of 
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0.76, r2 of 0.98, and a RMSE of 9.7 millimeters. Statistics for all data and individual groups is in Table 

2.1.  

The first group of data from ARDEC during the 2017-2018 and 2018-2019 winter seasons are 

shown in Figure 2.2 in red, this grouping had a best fit line slope of 0.96 and a NSCE of 0.35. This dataset 

showed a lot of variation around the 1:1 line, with one particular outlier on December 24, 2017 with a z0-G 

value of 0.0086 meters (log value of -4.76 meters) and z0-A is 0.00053 meters (log value of -7.54 meters), 

an entire order of magnitude difference. Another outlier on January 21, 2018 yielded a z0-G value of 

0.00201 meters (log value of -6.21 meters) and 0.0221 meters (log value of -3.81 meters) for z0-A. The 

second group of data from Trout Farm during the 2019-2020 winter season in illustrated in blue (Figure 

2.2). This group had a slope of 1.05, and a NSCE of 0.69 with only four data points that met criteria for 

use.  All four points all aligned closely to the 1:1 line. The third grouping is from Sanow et al. (2018) at 

ARDEC-South during the 2014-2015 winter season and this group had a slope of 0.96 and a NSCE of 

0.89 (Figure 2.2). Overall, this grouped aligned the best with the 1:1 line, thus the low NSCE value. One 

outlier taken on February 13, 2014 had a z0-A value of 0.0007 meters (log value of -7.26 meters) and z0-G 

of 0.00012 (log value of -9.03 meters). However, all data was plotted together the trendline (yellow 

dashes) resulted in a slope of 1.001 and NSCE of 0.70 (Figure 2.2).  

 

2.5 Discussion 

Wind parameters are very sensitive to the measurement height, which makes it very difficult 

when measuring over a spatially diverse area (Miles et al., 2017; Quincey et al., 2017). This problem is 

also reflected in the z0-A data as the calculation is based off of the height of the anemometers. The height 

was measured from the base of the meteorological tower and then modified based on snow depth; 

however, in the case of the Kamin dataset (Sanow et al., 2018) it did not account for the potential 

difference in height in the trough of the furrows, which may have influenced the anemometric calculation. 
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Since the raw data is not available, sensitivity cannot be calculated. This error was explored using two 

outliers from 12/24/2017 and 01/21/2017 in Figure 2.3a,b. The blue error bars were calculated using the 

standard deviation of a +/- 2 centimeter error for the height measurements associated with each outlier. 

This error analysis indicates there is a prominent error margin associated with wind measurement height 

and the resulting z0-A value. The coefficient of variation for these values were 1% for 12/24/2017 and 4% 

for 01/21/2018 outliers. 

Other outliers not previously discussed are likely due to several factors, including low wind 

speeds, lack of data points, and equipment accuracy. The most apparent error is likely from the 

anemometers themselves. Davis Cup anemometers have an assumed error of +/- 5%, which is common, 

however, the generally lower wind speeds that were common throughout the study coupled with the older 

age of the equipment led to greater inaccuracies. Andreas et al. (2006) did similar work, however much 

higher wind speeds were present due to the location of the study and therefore Andreas et al. (2006) wind 

profiles of U(z) and ln(z) resulted in a correlation constant of r>0.99, whereas in this study a correlation 

of r>0.70 was deemed adequate due to the quality of Davis cup anemometer and the generally low winds 

speeds at the site. Ideally, the study could be repeated with sonic anemometers and over more terrain 

variation as well as deeper, longer lasting snow pack coverage. This error was explored using two outliers 

from 12/24/2017 and 01/21/2017 in Figure 2.3a,b. The red error bars were calculated using the standard 

deviation of the +/-5% error for the wind speeds associated with each outlier. This error analysis indicates 

there is a notable error margin associated with wind speeds and the resulting z0-A value. The coefficient of 

variation for these values were 6% for 12/24/2017 and 55% for 01/21/2018 outliers. This associated error 

was found to be the most sensitive error compared to the height measurement. 

Because of the lack of higher wind speed data, all profiles had to be considered for the analysis. 

However, previous studies such as Andreas et al. (2006) typically only use speeds greater than 4 m/s. 

This study used wind speeds greater than 2.5 m/s due to the lack of correlating scan and high wind data. 

However, the low wind speeds do have the potential to create instability in the aerodynamics and 
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therefore may have led to inaccuracies in the calculations (Fassnacht, 2010; Oke, 1987). This situation 

occurred at the ARDEC site on December 24, 2017 where lower wind values were likely the cause of the 

large differences. The z0-A wind values were low during the time of the scan (0.1-0.9 m/s); so, the next 

closest time was used which was six hour later.  

Observations throughout the study indicate a decrease in z0 as the snow depth increased, this 

relation is further explored in Chapter 3 (Luce and Tarboton, 2004; Magand et al., 2014; Sanow et al., 

2018). This relation is why both z0-A and z0-G values changed throughout the winter season based on the 

varying snow depths. As the snow depth increased, the ground surface was covered, thus encapsulating 

the small scale variability of the topography and/or vegetation leading to a smoother surface (Swenson 

and Lawrence, 2012; Magand et al., 2014; Sanow et al., 2018). These less variable, smoother surfaces 

decrease the extremities of the maxima and minima. Since calculations of z0-G require averaging over 

several local maxima and minima (Chapter 1), this relation has an effect on the calculations which can 

lead to large distributions of values. For instance, Figure 2.4a and Figure 2.4b show the frequency density 

distribution histogram. The distribution of values is erratic with frequent maxima and minima. These 

values end up being averaged together in order to calculate the z0-G value. Conversely, Figure 2.4c and 

Figure 2.4d show a point that falls directly on the 1:1 line from Trout Farm taken on 2/10/2020. 

Typically, the other points have a distribution of values that create a general bell curve shape with 

dominate values clustered around the mean. 

The current study followed the methodology outlined in Section 2.3, however since the Kamin 

dataset (Sanow et al., 2018) was supplementary data, the exact methodology of post-processing is 

unknown. There is also uncertainty in the snow depth measurements being applied to the measurement 

height for z0-A, and the size and consistency of the AOI. Kamin only used two LiDAR scans per site visit 

and the current study used three to ensure no shadow was interfering with the scan integrity. This study 

cropped the AOI to the exact area for every scan. The AOI was chosen based on the distance from the 

tower (approximately 2 meters). The LiDAR was set up around the AOI (approximately 1.5 meters from 
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the edges of AOI) to ensure minor ellipsoids did not occur when scanning. Ellipsoids can occur due to the 

increased resolution (more points per square centimeter) closer to the scanner. Kamin stated at times there 

were notable shadows in the scans from the furrows and vegetation, as well as more ‘point clusters’ 

around the scanner location, which could lead to possible interpolation problems (Kamin, 2015). The use 

of Kamin’s data also led to the inability to explore all outliers and meteorological information, snow 

depths, site photos, etc. to help explain any discrepancies that are noticed in the data, as we do not have 

access to the original data. 

Errors within the z0-G calculation were also examined in Figure 2.3a,b. The final surface that was 

run within the MATLAB code was multiplied by a value of 2, this enhances the local maxima and 

minima in which the MATLAB code calculates z0-G. This process was repeated using a multiplier of 0.5 

as well. The mean, standard deviation, and coefficient of variance of the resulting z0-G values for all three 

runs were found. The standard deviation is plotted in Figure 2.3a,b by the purple, vertical error bar. The 

COV was 163% for the outlier on 12/24/2017 and 113% for the outlier on 01/21/2018. The 12/24/2017 

outlier was affected more than the other outlier. This had to do with the initial surface being slightly 

rougher which was further enhanced by the multipliers. 

Future studies exploring z0-A and z0-G data could investigate larger geometric areas measured by 

LiDAR, including the utility of airborne LiDAR, or other spatially derived surface measurements such as 

photogrammetry. Further, additional anemometric data with concurrent geometric measurements could be 

explored. Here, Ameriflux towers (https://ameriflux.lbl.gov/) were examined to find overlapping LiDAR 

scans available on (https://opentopography.com), but no overlap between the two datasets could be found. 

The rapid increase in availability of snow surface geometric data (Deems et al., 2013; Harpold et al., 

2014; Nolan et al., 2015; Shaw et al., 2020) is another reason to favor the z0-G approach when calculating 

z0. Another factor to be considered in future studies is the resolution of the geometric data. Airborne 

LiDAR may be too coarse to represent the small-scale surface features occurring on the snowpack 

throughout the winter (Fassnacht et al., 2009). 
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2.6 Conclusions 

In conclusion, the geometrically calculated z0 values using the Lettau equation showed much 

more spatially and temporally dynamic estimations of the snowpack surface throughout the study period, 

while producing similar values when compared to z0-A. Results show the z0-G values underestimated in 12 

out of 30 profiles, overestimated in 14 out of the 30 profiles and were almost exact in 4 out of the 30 

profiles. These profiles had combined NSCE of 0.76, r2 of 0.98, and a RMSE of 9.7 millimeters. Although 

z0-A has been the traditional method of measuring z0, LiDAR and other methods of spatial data are 

becoming more available. These other methods have the potential to capture the spatial and temporal 

roughness changes over a snowpack surface, whereas the anemometric tower is limited to smaller area of 

integration. The geometric method was able to capture these small-scale variations of the snowpack and 

was only limited by the TLS site measurement area. The variability captured throughout the study 

indicates that a site specific, variable z0-G is necessary to consider. Whereas, using a static value for z0 

within hydrologic and meteorological models will lead to inaccuracies resulting in either over or 

underestimating the snowpack.  
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Tables 

 

Table 2.1. Table of all statistical parameters of the datasets. 

Dataset r2 Slope of 
best fit line 

RMSE 
(mm) 

NSCE 
Mean σ 

LN(z0-A) LN(z0-G) LN(z0-A) LN(z0-G) 
All 0.98 0.98 9.7 0.76 - - - - 
Kamin 0.89 1.05 7.7 0.89 -4.90 -5.16 1.65 1.68 
ARDEC 0.96 0.92 8.1 0.35 -5.48 -5.20 1.36 1.20 
Trout Farm 0.77 0.98 2.0 0.69 -8.40 -7.07 1.36 0.93 
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Figures 

 

 

Figure 2.1. a) Meteorological tower at ARDEC study site for the 2017-2019 winter seasons. Photo is 
taken looking west. Furrows are in the East-West direction. b) Meteorological tower set up at the Trout 
Farm site for the 2019-2020 winter season. Photo is taken looking north. 
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Figure 2.2. The natural log of anemometric versus geometric z0 data from 2014-2015 winter season at ARDEC-South (Kamin, 2015), 2017-2019 
winter seasons at ARDEC, and 2019-2020 winter season at Trout Farm. 
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Figure 2.3. Error analysis of two dominate outliers, a) from 12/24/2017 and b) from 01/21/2018, both from ARDEC. The blue, horizontal error 
bars represent the error associated with a +/- 2 cm height difference with each of the anemometers, the red, horizontal error bars represent error 
associated with +/-5% difference in wind speeds, and the purple, vertical error bars represent the geometrically calculated z0 error based on 
multiplying the scan are by 0.5 and 2. 
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Figure 2.4. Histograms of a) the local maxima and b) local minima for an outlier point taken at ARDEC on 2/24/2018 with a z0-G value of 0.0001 
meters and z0-A value of 0.0006 meters, and c) the local maxima and b) local minima for a point on the 1:1 line taken at Trout Farm on 2/10/2020 
with a z0-G value of 0.00063 meters and z0-A value of 0.00060 meters.  
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3.0 THE RELATION BETWEEN SNOW DEPTH AND A SPATIALLY AND TEMPORALLY 

DYNAMIC AERODYNAMIC ROUGHNESS LENGTH  

 

 

 

3.1 Summary 

 A shallow, seasonal snowpack is rarely homogeneous in depth, layer characteristics, or surface 

structure throughout an entire winter. Aerodynamic roughness length (z0) is typically considered a static 

parameter within hydrologic and atmospheric models. However, observations have shown that z0 is a 

dynamic variable. Therefore, accurate spatial and temporal measurements of z0 are necessary. Terrestrial 

LiDAR data at nine different study sites from the 2019-2020 winter season in northwest Colorado were 

collected to observe variability of the snowpack surface. The z0 and snow depth (ds) were observed 

throughout 112 site visits, and all sites illustrated a change in z0 as a function of ds. The data show a 

decrease of z0 during snow accumulation as the snow follows the underlying terrain in the initial stages of 

accumulation and an increase of z0 during melt. The correlation varied spatially and temporally, though, it 

was obscured by modifications of the snowpack surface (presence of vegetation, anthropogenic or 

ecologic influence, etc.). The slope of the plotted z0- ds correlation was found to differ based on the initial 

roughness of the site and the x-intercept was influenced by the size of the initial roughness features.  

 

3.2 Introduction 

A seasonal, shallow snowpack covers approximately 50% of the Northern Hemisphere, making 

the snowpack surface the primary land-atmosphere interface during the winter season (Mialon et al., 

2005; Fassnacht et al. 2009a). Within Colorado, an important headwater state in the western United 

States, 60% of annual precipitation falls as snow (Barnett et al., 2008; Fassnacht et al., 2018). Accurately 
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observing and modeling snow water resources in the western United States is essential for water 

budgeting, recreation, wildfire management, and ecological resources (Fassnacht et al., 2018).  

The snowpack varies spatially and temporally (Niu and Yang, 2007),  and is controlled by local, 

regional, and global weather and climate (Anttila et al., 2014). Consequently, snowpack conditions will 

vary between maritime to continental climates (Trujillo and Molotch, 2014). Because of the variability of 

the snowpack across these regimes, a standard metric to quantify the snowpack is difficult to acquire. The 

aerodynamic roughness length, z0, can be used as a measure of the snowpack surface (Luce and Tarboton, 

2004; Smith, 2014). The z0 captures the variability that is produced by land cover characteristics as well 

as the underlying topography (Niu and Yang, 2007; Fassnacht et al., 2009a; Fassnacht et al., 2009b). The 

variability is further enhanced by meteorological conditions (Niu and Yang, 2007), non-uniform 

distribution of snow cover during accumulation and melt (Luce and Tarboton, 2004; Niu and Yang, 

2007), snow-canopy interactions (Moeser et al., 2015), and snow redistribution by wind (Liston, 2004). 

Small scale (<1 meter) and large scale (>1 meter) variations within the snowpack can alter the overall z0 

value (Blöschl, 1999; Smith, 2014). The effect of a single roughness feature coupled with non-uniform 

spatial arrangement among other elements affects all aspects of the snowpack surface (Luce and 

Tarboton, 2004; Smith, 2014). A dynamic z0 characterizes heterogeneities in snow-water equivalent, melt 

rates (Luce and Tarboton, 2004), redistribution, snow deposition (Niu and Yang, 2007), and surface 

energy fluxes (Magand et al., 2014).  

The snow surface roughness will decrease during accumulation as the snow follows the 

underlying terrain in the initial stages of accumulation and roughness can increase during melt (Figure 

3.1) (Magand et al., 2014). When the snow initially accumulates, it will match the underlying terrain until 

there is enough snow depth, ds, to cause a decoupling from the underlying topography and form a mostly 

smooth surface (Luce and Tarboton, 2004; Brock et al., 2006; Magand et al., 2014). Quincey et al. (2017) 

found that one new snowfall decreased z0 by ~75% since it covered small scale feature variability and 

only large features were left to increase the roughness. As ds decreases, ground-based surface features and 
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underlying topographical features are recoupled with z0, increasing the variability (Manes et al., 2008; 

Magand et al., 2014). 

This relation of increasing ds and decreasing z0 in some form has been observed previously by 

Sanow et al. (2018), Luce and Tarboton (2004), Fassnacht et al. (2009a), and others. This correlation of ds 

and z0 is not considered within hydrologic, snowpack or land surface models. The relation of these two 

factors is also expected to differ between periods of melt and accumulation as periods of melt are 

typically less uniform (Magand et al., 2014). Swenson and Lawrence (2012) found that topography and 

land cover features have the most influence on the hysteresis. Once the snow cover has reached full 

coverage over these features, the snowpack will accumulate homogeneously (Magand et al. 2014). These 

early, mid, and late-season snowpack surface changes have important impacts on estimating an accurate 

z0 value within hydrologic models (Manes et al., 2018).  

To accurately understand and model the snowpack, variability needs to be considered at the local 

level. Otherwise, hydrologic models will either over or underestimate melt water availability (Luce et al. 

1999; Manes et al., 2008; DeBeer and Pomeroy, 2017). At present, the same z0 is used for an entire 

watershed based on the assumption of 100% snow covered area, undeviating melt throughout an area, 

despite the topographic or vegetation influences (Niu and Yang, 2007; DeBeer and Pomeroy, 2017), and 

no other spatial or temporal variation representation (Hock et al., 2017). However, we hypothesize that 

the incorporation of z0 as a dynamic variable, rather than a static parameter, will improve hydrologic and 

meteorological models (Manes et al., 2008; Fassnacht et al. 2009a; DeBeer and Pomeroy, 2017; Sanow et 

al., 2018). To understand and observe the relation between z0 and ds, we ask the following questions, 1) 

Does the snow surface roughness, defined here as z0, change as a function of ds? 2) Does the correlation 

between z0 and ds vary spatially? 3) Is the decrease in z0 as ds increases consistent regardless of the initial 

ground roughness? 4) Is the correlation between increasing ds and decreasing snow surface z0 a function 

of the initial roughness feature, such as dominate vegetation and topographic features? and, 5) Is there a 

difference between the z0-ds correlation during periods of accumulation and melt, i.e., is it a hysteretic? 
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3.3 Methodology and Data 

3.3.1 Field Data Collection  

The snowpack surface was measured using a FARO Focus3D X 130 model Terrestrial LiDAR 

Scanner (TLS) (www.faro.com). This LiDAR instrument generates a point cloud scan of a given area 

with an error of +/- 2 millimeters and a resolution of approximately 7.5 millimeters. Three LiDAR scans 

from different locations were taken during each site visit to avoid shadowing from roughness features. 

Blue Maestro data downloads, air temperature on arrival and departure, current weather conditions 

(sunny, cloudy, windy, etc.), upcoming storm predictions, approximate new snow accumulation, snow 

depths at each T-post, and site photos were recorded during each site visit. These data and photos were 

used to explore any inconsistencies with z0 calculations or processing errors. Meteorological data were 

used to explore any major increases or decreases in temperature that may alter melt rates. 

3.3.2 Site Descriptions 

We selected ten sites near Meeker, Colorado (Figure 3.2), with an elevation range of 1,885 to 

2,468 meters, to evaluate these questions. Land cover ranged from open, grassy fields to large Pinyon-

Juniper and shrub dominated sites. Sites were chosen for land cover variability (i.e. size of the primary 

roughness feature), elevation, and winter accessibility (Table 3.1). TLS scan frequency ranged from 

monthly to every two days. Annual precipitation ranged from 391 to 631 millimeters 

(https://wrcc.dri.edu/). Scan interruptions occasionally occurred due to extreme winter weather and/or 

inability to reach the site safely. Each site was equipped with a Bluetooth Blue Maestro Tempo Disc 

sensor (https://bluemaestro.com/) which recorded hourly temperature, humidity, and dew point 

temperature, 3-4 T-posts with measuring tape to record ds during each site visit, and a silver sphere on the 

north facing T-post for direction orientation.  

3.3.3 Data-Processing 
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The three LiDAR scans were cropped, merged, and aligned with each other in the corresponding 

cardinal direction (Figure 3.3) in the open source program Cloud Compare 

(https://www.danielgm.net/cc/). An area of interest (AOI) was chosen for each site within the middle of 

the t-posts that varied in size from 2x2 m to 8x8 m, and typically included a primary roughness feature 

such as a sagebrush, shrub, etc. The AOI had a nomial point density of 1-10 millimeters with a total of 

~1.3 million points. The AOI was cropped out of each merged/aligned scan and interpolated using the 

kriging method at 0.01 meters in the Golden Software Surfer 

(https://www.goldensoftware.com/products/surfer). This created an interpolated, gridded AOI which was 

de-trended (Fassnacht et al., 2009b) in the x-y plane to remove the bias from the slope of the field or the 

angle of the LiDAR scanner (Sanow et al., 2018). The final geometric z0 for the AOI was calculated using 

the same method as Sanow et al. (2018) and Lettau (1969). This method finds the mean obstacle height 

(h*) by finding all local maximums and minimums relative to each other across the surface. Then, the lot 

area (S) is calculated as the total area divided by the total number of maxima. Next, the silhouette area (s) 

is found as the profile of an obstacle, this is done at a pre-defined resolution step. All of these steps, 

applied within Equation 3.1, results in the average z0 of the surface. 

     𝑧0 = ℎ∗𝑠/𝑆      (3.1) 

The ds were calculated using Cloud Compare by subtracting the initial snow-free scan from a snow-

covered scan. The mean ds was computed across the AOI. Snow depths from site visits were cross 

validated against LiDAR point clouds to ensure accuracy during post-processing. 

3.3.4 Data Analysis  

 Initial roughness LiDAR scans were taken with no snow on the ground. Throughout the season 

when snow was present, the initial scans were subtracted from the snow-covered scans to find average 

snow depth. Corresponding z0 values were calculated for each scan with and without snow, and compared 

across sites throughout the season. The sites were selected based on varying topography, vegetation cover 
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and abundance, elevation, and distribution throughout the watershed. This aided in determining spatial 

differences and the z0-ds correlation. Resulting snow depths were plotted again the natural logs of z0 for 

each site, and grouped by slope. The coefficient of determination, r2, was found for each site. One site, 

Julie Circle, was chosen to observe the hysteresis between periods of accumulation and melt due to the 

high temporal frequency of scans. Melt versus accumulation was determined by the ds of the previous 

scan. If ds had increased since the time of the last scan, it was an accumulation point. If it had decreased, 

it was a melt point. This was verified using site photos as well as recorded hand measurements.   

 

3.4 Results  

Over the 2019-2020 winter season, 112 total site visits were conducted between October and 

April. All sites, except one, showed that as ds increased and enveloped roughness features, the 

corresponding z0 decreased (Figure 3.4). Lost Creek, the exception, was disturbed during the spring and 

therefore did not follow this trend (Figure 3.5). For example, the Piceance site shows the ds increasing and 

the corresponding z0 value decreasing until 03/03/2020 when melt began (Table 3.2). Furthermore, as the 

ds starts decreasing the z0 values begin to increase. This relation developed quickly, and roughness feature 

size had an impact on the trend line slope.  

In interest of identifying trends amongst all sites, the sites were placed into smaller groups using 

the resulting slopes from the least square regression fit; Trout Farm, Julie Circle, and CR11 (Figure 3.4a); 

Piceance, Spring Creek, Upper Piceance Creek, and Cathedral Creek (Figure 3.4b); Yellow Jacket (Figure 

3.4c); and Lost Creek (Figure 3.4d). Figure 3.4a displays CR11 and Julie Circle having similar r2, slope, 

roughness feature height, and initial z0 values. The r2 values of CR11 and Julie Circle are 0.73 and 0.68, 

respectively, which are similar r2 values. This result occurred even with the drastic difference in data 

point quantities between the two sites, 5 compared to 31. The primary roughness feature height (height of 

the tallest feature found within the AOI, sagebrush, grass, etc.) at CR11 and Julie Circle are 0.46 meters 
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and 0.35 meters and with -0.048 and -0.043 slope, respectively. Julie Circle had one notable outlier on 

2/6/2020, with a ds of 0.521 meters and a z0 value of 0.0035 meters (Figure 3.5). This occurred after a 

storm had deposited 0.18 meters of new snow overnight. Conversely, the lowest z0 at the site occurred on 

2/10/2020 with a total ds of 0.41 meters and a z0 of 0.00025 meters (Figure 3.7). Figure 3.7 also highlights 

the subtle snowpack surface differences which indicate that these small-scale features have a notable 

impact on the overall z0 value. Similar to Julie Circle, CR11 had a maximum ds of 0.488 meters with a z0 

of 0.00018 meters on 2/10/2020, yet, the lowest roughness value at the site occurred during the second 

highest ds of 0.434 meters and a z0 of 0.00007 meters on 01/29/2020. Trout Farm had a similar slope to 

this pair (Figure 3.4a). Yet, compared to CR11 and Julie Circle with initial z0 values of 0.066 meters and 

0.040 meters, Trout Farm had the lowest roughness feature height (0.01 meters for a grassy lawn) and 

initial z0 of 0.00476 meters. These initial z0 values are an order of magnitude different between CR11 and 

Julie Circle. However, Trout Farm produced a slope of -0.0233 which is only a difference of 0.02 from 

Julie Circle. Similar to the Julie Circle outlier on 02/10/2020, Trout Farm had a ds value of 0.002 meters 

greater than the snowpack on 2/25/2020, but the z0 values were 0.00063 and 0.00025, respectively (Figure 

3.7). 

The second grouping of sites by slope includes Cathedral Creek, Piceance, Spring Creek, and 

Upper Piceance Creek shown in Figure 3.4b. These sites had the lowest number of site visits (three to 

eight) due to distance and winter access difficulty. The slopes of all four sites were alike, Cathedral Creek 

-0.15, Piceance -0.11, Spring Creek -0.13, and Upper Piceance Creek -0.14. The main variation among 

these sites is the r2, primary roughness feature height, and initial z0 values. Spring Creek and Upper 

Piceance Creek have the highest r2 of 0.71 and 0.79, respectively. We note, Spring Creek had the least 

amount of site visits and corresponding data. Upper Piceance has the highest amount of site visits in this 

grouping. Outliers from Cathedral Creek are from the two highest ds with depths of 0.187 meters and 

0.229 meters, and z0 values 0.495 meters and 0.454 meters, respectively. Between the scan dates of 

01/16/2020 and 02/10/2020 temperatures were often above freezing, with a maximum temperature of 18.7 
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°C. The interpolated surfaces of the 01/16/2020 (lowest z0) and the 02/24/2020 (deepest snow) are shown 

in Figure 3.8. 

This second group had the largest variation of roughness feature sizes ranging between 0.68 

meters at Piceance and 1.65 meters at Upper Piceance Creek. It was initially thought that Piceance would 

fall into the category with the last group (Figure 3.4a) due to the size of the primary roughness feature 

height. Yet, the initial z0 was 0.114 meters, which is much larger than the others within the last grouping. 

Spring Creek had a roughness feature height of 1.1 meters and initial z0 of 0.22 meters which represents 

an average among the sites. The all-site average slope, roughness feature size, and initial z0 was -0.10, 

0.84 meters, and 0.19 meters, respectively. Cathedral Creek had the highest initial z0 value of 0.56 meters, 

but it had only the third largest roughness feature (1.3 meters), indicating the site had the most roughness 

features compared to the others. Upper Piceance Creek had the second-largest initial z0 value and 

roughness feature height at 0.39 meters and 1.65 meters, respectively. However, both sites fell below 

Yellow Jacket, which was placed into Figure 3.4c on its own. Yellow Jacket had the largest roughness 

feature of 1.85 meters (large sage and shrubbery). Though, it produced the third largest initial z0 value of 

0.33 meters. Additionally, it had the steepest slope of any of the sites at -0.32. Yellow Jacket had two 

outliers (Figure 3.4C) that resulted in a higher z0 value than the initial. These instances occurred on 

03/16/2020 and 04/07/2020, late in the season after peak ds had occurred (Figure 3.9). 

Lost Creek experienced heavy anthropogenic influence as shown in Figure 3.4d. Sometime 

between 01/28/2020 and 02/26/2020 a snowmobile drove through the site which altered the natural 

progression of the snow (Figure 3.5). Still, Lost Creek results show some similarities to the other sites. 

Prior to the snowmobile, Lost Creek was following the same hysteresis relation as the other sites. Lost 

Creek had the lowest r2 (-0.279), attributed to the data being forced through the origin on the plot. When 

the data is not forced, the r2 becomes 0.0798, still a very low correlation that can be explained by the 

snowmobile tracks. 
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Since Julie Circle had the most data points of any site, it was used to analyze melt and 

accumulation values (Figure 3.6). There are 12 accumulation points, 17 melt points, and two points with 

ds of 0 m, taken as the initial surface roughness scan (fall) and the final surface roughness scan (spring). 

The results had a varying slope of -0.03 for melt, and -0.04 for accumulation. Melt resulted in an r2 of 

0.36, and accumulation resulted in an r2 of 0.66.  

 

3.5 Discussion  

The calculated z0 changed as a function of observed ds, although outliers of the relation existed. 

The first outlier was at the Julie Circle location (Figure 3.4a). The initial point on the x-axis indicates the 

highest z0 value due to the lack of snow, however two points fell on the x-axis. Upon investigation of the 

two points, they occurred during the first and last scan of the year. The initial z0 was less than half 

compared to the terminal roughness, a large difference in z0 at the exact same place. We attribute this to 

vegetation type, which is a regular lawn grass that was pushed down by the weight of the snow 

throughout the year. We note that this scenario could happen to flexible vegetation, fluctuating z0 values 

throughout the year (Smith, 2014; Quincey et al., 2017).  

Another discrepancy at the Julie Circle site is the lack of correlation between the highest ds and 

lowest z0 value. A likely explanation for this observation is the large Cottonwood tree that overhangs the 

Julie Circle site. For example, we note in the point clouds the pock-marks in the snowpack surface where 

accumulated canopy snow fell from the limbs and altered the roughness (Figure 3.6). No other sites in this 

study had canopy cover like Julie Circle. Although, most sites did have shrubbery vegetation present, so 

even small-scale canopy interception and deposition was possible (Quincey et al., 2017). Canopy 

interception and deposition is a potential issue when correlating between ds and z0. Therefore, to assume a 

uniform or linearly metamorphosing or melting snowpack would lead to potential errors (Luce and 

Tarboton, 2004; Gromke, 2011; Smith, 2014). 
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This lack of correlation is also noted at CR11 and Trout Farm. Similar to Julie Circle, the highest 

ds value did not correspond with the lowest z0 value at CR11. This can be attributed to a recent snowfall 

event of about 10 centimeters that had fallen the day before the 01/29/2020 scan. On 02/10/2020 there 

was less fresh snow (approximately 5 centimeters) and conditions were sunny and warmer. These 

differences in the snowpack were recorded in site notes and photos from the visits. Likewise, Trout Farm 

also experienced the same contradiction, the highest ds value had a z0 greater than double the lowest 

calculated z0. This indicates that these small variations of the snowpack surface is key to addressing z0 

beyond simply considering the snow depth. These small variations are highlighted in Figure 3.7. 

Accounting for small surface variations is especially important on flat sites where initial z0 may be 

surpassed by the development of surface features such as sun cups, sastrugi, surficial features, and 

wildlife and anthropogenic modifications (Fassnacht, 2010; Gromke, 2011; Quincey et al., 2017; 

Fassnacht et al., 2018).  

Cathedral Creek, shown in Figure 3.4b, followed the ds and z0 relation until the 02/10/2020 and 

02/24/2020 surveys. Between the scan dates of 01/16/2020 and 02/10/2020 temperatures were often 

above freezing, with a maximum temperature of 19°C. The interpolated surfaces of 01/16/2020 (lowest 

z0) and 02/24/2020 (deepest snow) are shown in Figure 3.10, highlighting pock-marks and uneven 

melting. These elevated temperatures resulted in an increased, non-uniform melt (Luce and Tarboton, 

2004). Correspondingly, even though additional snow fell between the scans, it did not completely cover 

the snow surface characteristics (Luce and Tarboton, 2004; Brock et al., 2006; Magand et al., 2014).  

Yellow Jacket had the highest initial z0 of any of the sites (Figure 3.4c). Photos from the field 

visits late in the season show a lot of recent melt, which revealed larger shrubs as well as the development 

of sun cups within the AOI (Figure 3.9). The late season increase in roughness likely produced two 

irregular points with a higher z0 than the initial after peak ds had occurred (Fassnacht et al., 2009a). 

Another influence on the site was the anthropogenic modifications of snowmobile tracks (Figure 3.4c and 

Figure 3.5). Combining these two factors led the roughness variations to be larger than the initial grassy, 
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shrub-filled plot. This same anthropogenic disruption occurred at the Lost Creek site. This led to an 

extreme increase in z0 after the disturbance, even with the deep snowpack 0.85 meters (Figure 3.4d). The 

large increase in z0 at the site was exacerbated by the very flat topography that contained one small 

controlled roughness feature railroad tie in the middle.  

We hypothesized that slopes would remain the same and the x-intercept would change, however, 

initial ground roughness played a critical role in the slope of the data. The 0.13 meter railroad tie at the 

Lost Creek site is an example, of a feature responsible for the initial site z0 value of 0.0094 meters. 

Without it, the z0 would have been lower as the site was an open, grassy field. Due to this controlled 

roughness feature, none of the snowmobile-caused roughness values were larger than the initial. Lost 

Creek also had some of the highest ds, which led to high z0 values due to the snowmobile tracks. 

Snowmobiling and other recreational activities are common throughout public lands during the winter. 

Anthropogenic factors such as these are important to consider when evaluating a spatially and temporally 

dynamic z0 (Fassnacht et al., 2018). Moreover, this could explain the data discrepancies like that in the 

Yellow Jacket site, another site influenced by snowmobiles. Together, land cover type and function be 

considered when applying z0 (Fassnacht et al., 2018). 

Figure 3.4b shows the grouping of Cathedral Creek, Piceance, Spring Creek, and Upper Piceance 

Creek. The slopes of all four sites were similar ranging from -0.11 to -0.15. The r2 values, roughness 

features (ranging between 0.68-1.65 meters), and initial z0 values (ranging from 0.11 to 0.57 meters) 

varied among the sites. Based on the primary roughness feature heights, Piceance aligns more with the 

CR11, Julie Circle, and Trout Farm group than the one in which it was placed. Upper Piceance was more 

similar in initial z0 and roughness feature size to Yellow Jacket, but their slopes have a difference of 

0.167. However, as discussed, there were some values that skewed the slopes in these sites. Potential 

reasoning for this was noted at several sites, such as overall changes of the surface of the snowpack 

throughout the season due to wind redistribution (Musselman et al., 2015); surface energy fluxes (Luce 

and Tarboton, 2004); formation of surface features (Fassnacht et al, 2009a); and non-uniform melt and 
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accumulation (Luce and Tarboton, 2004). These influences metamorphose the snowpack and are very 

difficult to quantify or predict. The development of surface features is one reason why the slopes of Trout 

Farm and Julie Circle have only a 0.02 difference despite the initial z0 values being an order of magnitude 

different, 0.0048 meters and 0.0400 meters, respectively.   

Julie Circle was used to compare melt and accumulation values in Figure 3.6. The accumulation 

values (blue) had a stronger r2 value of 0.66, compared to the melt 0.36 r2, indicating accumulation was 

more uniform (Magand et al., 2014).  This was to be expected, since this relation was not observed to be 

linear in either case. The low correlation of the melt values can be attributed to several environmental 

processes, which is typical to occur within any snowpack. Potential melt factors are sensible and latent 

heat fluxes, dust deposition (Harpold et al., 2012), spatial and temporal distribution of incoming solar 

radiation (Bales et al., 2006), wind redistribution (Gromke, 2011; Wayand et al., 2018), longwave 

radiation, anthropogenic alterations (Liston, 2004), air temperature (Raleigh et al., 2013), spatial 

heterogeneity of the snowpack (Debeer and Pomeroy, 2017), and vegetation cover (Anttila et al., 2014). 

Since melting occurred throughout the season, the environmental influences were also affecting 

accumulation rates, which supports the heterogeneity of the accumulation z0 values. Melt rates influence 

atmospheric and hydrologic processes (Liston, 2004), and understanding the processes and rates that 

control melt water production is important for predicting the timing and magnitude of peak melt in a 

watershed (Liston, 1995; Luce et al., 1999; DeBeer and Pomeroy, 2017). Initially, this aspect of the study 

was to be conducted at Lost Creek and Yellow Jacket, however, these sites were anthropogenically 

altered and were unable to be used. It was hypothesized that the melt versus accumulation at Yellow 

Jacket would yield a higher difference between the melt and accumulation slopes. This is because of the 

higher initial roughness and quantity of roughness features to enhance melt. Since Lost Creek was a flat, 

open site it was hypothesized that the slopes would be similar to Julie Circle. The primary influence of 

melt at Julie Circle was the addition of ecological factors from the tree near the site, and the proximity to 

a residential house increasing the effects of longwave radiation induced melt. At Lost Creek, incoming 
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solar radiation and temperature would be considered the only dominate form of melt, therefore, slopes 

even more similar to each other were expected. 

The method used to determine melt compared to accumulation values is also a source of potential 

error. Settling and metamorphism of the snowpack could have occurred resulting in snow depth decreases 

without any actual snowmelt taking place (Liston, 2004; Bales et al., 2006; Magand et al., 2014).  Photos, 

atmospheric conditions, and visual assessments of the site were completed, however, without soil 

moisture sensors and other atmospheric/hydrologic monitoring equipment, exact periods of melt are 

difficult to assess.  

3.5.1 Limitations 

 This study consisted of 112 site visits, which proved to produce an adequate amount of data to 

observe trends and correlations. However, an increase of temporal scan frequency is needed to explore 

this correlation further. Ideally, daily scans at each site would have been feasible because the surface of 

the snowpack is constantly changing due to surface processes (Niu and Yang, 2007; Anttila et al., 2014) 

and meteorological factors (Fassnacht et al., 2009a; Raleigh et al., 2013). Scan areas per site are only a 

small fraction of the White River watershed, and although they provide insight on spatial and temporal 

changes, application to a watershed scale may not be possible due to the small idiosyncrasies with each 

plot. For example, the large cottonwood at Julie Circle substantially altered the surface, and therefore the 

addition of canopy cover. Such plot specific features enhance the assumed variability of the plots 

(Magand et al., 2014), though, plots with similar land cover characteristics could be similar. For example, 

Upper Piceance Creek and Cathedral had similar land covers and were both on an old river terrace 

surrounded by (50-100 meter) cliffs within ~0.3 kilometers. Upper Piceance Creek had a primary 

roughness feature height of 1.65 meters and initial roughness of 0.389 meters. Cathedral Creek had 

primary roughness feature height of 1.3 meters and initial roughness of 0.566 meters. These initial values 

are similar, and they both produced a slope of -0.15. This indicates that similar land covers in similar 

locations can produce comparable z0 values. Once the correlation of z0-ds is established, it could be 
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applied to a larger area with similar characteristics.  No sites were at any significant surface slope; 

however, incoming and outgoing shortwave and longwave radiation were not accounted for, which are 

another source of differential melt patterns (Bales et al., 2006; Harpold et al., 2012). The lack of radiation 

collection was due to lack of equipment and funding. 

 Future studies should include larger plots within a smaller watershed that can be LiDAR scanned 

for snow accumulation and melt more frequently (Magand et al., 2014; Sanow et al. 2018). Inclusion of 

meteorological data beyond relative humidity and temperature could provide more insight to determining 

melt patterns and following accumulation patterns during mid-season melt (Davison, 2003). The results 

from this work will improve snowpack, hydrological and meteorological modeling (Manes et al., 2008; 

Fassnacht et al. 2009a; DeBeer and Pomeroy, 2017; Sanow et al., 2018), by better representing the 

aerodynamic roughness length for snow (Figures 3.4 and 3.6). Additional controlled experiments 

modifying the ground characteristics together with more meteorological monitoring and snowpack 

modeling would further quantify the relation between ds and z0 (Swenson and Lawrence, 2012; Magand et 

al., 2014; Sanow et al. 2018). 

 Future studies could explore errors of uncertainty within the z0 calculations. The current code 

(described in Chapter 1) calculates z0 based on the local maxima and minima within the scan area. This 

method is acceptable when roughness elements are homogenously spaced and sized, however that is not 

always the case in nature. The code could be reformed to calculate z0 on a certain sized area (every 0.012 

meter, or 0.12 meter, etc. depending on the size of the scan). This would give a distribution of z0 values 

that would encompass the variations in the terrain, vegetation, size, and/or distribution of roughness 

features. This methodology could enhance the estimation of z0 for an area that is larger, as a larger area 

(>102 meters) will tend to have more variations than a small area, such as sites used within this study. 
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3.6 Conclusions 

At all study locations, it was observed that as ds increased z0 decreased. This correlation varied 

spatially and was dependent on the initial roughness of the site. Initial roughness features played a large 

role in determining the slope and x-intercept of the z0- ds correlation. Although, when sites are disturbed 

during the course of data collection, the variability of z0 can change by orders of magnitude, an 

observation made at several sites. Hence, the land use factor changes the correlation. We observed 

hysteresis between the z0- ds correlation from periods of melt and accumulation, however, further studies 

are necessary to explore this relationship further.   
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Tables 

Table 3.1. Site locations, elevations and land cover type, all sites are located within the White River watershed during the 2019-2020 
winter season. The annual precipitation is found from the Western Regional Climate Center website (https://wrcc.dri.edu/).  

Site Name Latitude Longitude 
Elevation 

(m) 
Land Cover 

Scan 
Frequency 

Annual 
Precipitatio

n (mm) 
Slope r2 Initial z0 

(m) 

Primary 
Roughn

ess 
Feature 
Height 

(m) 

Trout 
Farm 

40.0263 -107.9386 1885 
Farm field, 

open 
Weekly 426 -0.02 0.16 0.005 0.01 

Cathedral 
Creek 

39.7825 -108.6433 1917 Sagebrush Bi-weekly 391 -0.15 0.05 0.566 1.30 

Julie 
Circle 

40.0453 -107.9136 1945 Grass 

Every 
storm 

event or 
melt 

416 -0.04 0.68 0.040 0.35 

CR11 40.1194 -107.9161 2098 
Sagebrush, 

slope of 
plateau 

Bi-Weekly 545 -0.05 0.73 0.066 0.46 

Upper 
Piceance 39.7296 -107.9847 2162 

Sagebrush, 
within large 

canyon 
Bi-Weekly 507 -0.14 0.79 0.389 1.65 

Yellow 
Jacket  

40.1481 -107.7389 2297 
Conifers, 
Aspen, 

Sagebrush 
Tri-Weeks 607 -0.32 0.61 0.328 1.85 

Piceance 39.8939 -108.1625 2297 
Sagebrush, 
on top of 
plateau 

Bi-Weekly 489 -0.11 0.45 0.114 0.68 

Lost 
Creek 

40.0514 -107.4667 2320 Grassy field Weekly 631 -0.05 -0.28 0.009 0.13 
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Spring 
Creek 

40.0339 -108.5489 2468 

Pinyon-
Juniper 

forest, on top 
of plateau 

Monthly 546 -0.13 0.71 0.223 1.10 

 

Table 3.2. Mean ds and corresponding z0 values from  
Piceance snow study site. 

Date ds (m) z0 (m) LN(z0) 

11/15/2019 0.000 0.137 -1.991 

12/02/2019 0.163 0.121 -2.116 

12/30/2019 0.335 0.124 -2.085 

01/24/2020 0.356 0.058 -2.842 

02/11/2020 0.503 0.029 -3.546 

03/03/2020 0.380 0.051 -2.977 

03/12/2020 0.140 0.121 -2.113 
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Figures 

 

Figure 3.1. Hypothesized relation between snow depth and z0. As the snow depth increases, the roughness feature will be enveloped and z0 will 
decrease.   
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 Figure 3.2. Study site locations around Northwest Colorado 

  

Colorado 
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Figure 3.3. LiDAR scans from Julie Circle showing several different merged scans on top of each other demonstrating snowpack depth and 
decoupling from underlying surface roughness features within the AOI. a) a direct side profile view and b) a top-side view. The bottom scan (snow 
free) was taken on 11/25/2019 and has a z0 value of 0.04001 meters. The middle scan is from 12/09/2019, with a depth of 0.21 meters and z0 of 
0.00419 meters. The top scan is from the largest ds of the season, at 0.52 meters on 2/6/2020 with a z0 of 0.00035 meters.   

a 
2 meters 

2 meters 

b 
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Figure 3.4. Sites grouped by similarities in the resulting slope of snow depth and ln(z0). a) Shows CR11, Julie Circle (JC), and Trout Farm (TF). b) 
Shows Cathedral Creek (CC), Piceance (P), Spring Creek (SC), and Upper Piceance Creek (UPC). c) Shows Yellow Jacket (YJ). d) Shows Lost 
Creek (LC). 
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Figure 3.5. Lost Creek snow site on 02/26/2020, with a ds of 0.85 meters and z0 of 0.00338 meters. A) Shows a close up view of the snow stake 
with nearby snowmobile tracks and B) a general site view with a red arrow highlighting the snowmobile tracks. 

 

 

 

a b 
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Figure 3.6. Accumulation (blue) and melt (red) values from Julie Circle. Accumulation was defined as any time where the snow depth was 
greater than the day before, and melt was defined as any time where snow depth was less than the day before.  
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Figure 3.7. Cloud Compare images showing the Julie Circle AOI snowpack surface on a) 02/10/2020 the scan with the lowest z0 (0.00025 meters), 
but the second deepest snowpack (0.41 meters), and b) 02/06/2020 the scan with the deepest snowpack (0.52 meters), but a higher z0 (0.00035 
meters). 

  

a 

b 
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Figure 3.8. Trout Farm site game camera photos taken looking south a) on 02/10/2020 (ds of 0.29 meters and z0 of 0.00063 meters) showing minor 
variations of the snow surface topography highlighted by the red arrow and b) on 02/25/2020 (ds of 0.29 meters and z0 of 0.00025 meters) showing 
a smoother snowpack surface. Note that the footprints included in the site are not within the AOI. 

  

a b 
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Figure 3.9. Photos from two field visits to the Yellow Jacket site. a) Taken on 03/16/2020 (ds of 0.40 meters and z0 of 0.355 meters) recently after 
a snowmobile had driven through the site, plus the addition of sun cup development. b) Taken on 04/07/2020 (ds of 0.21 meters and z0 of 0.58083 
meters) where the site had undergone extensive melt increasing the roughness. Both photos are taken from the north t-post facing south. 

  

b a 
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Figure 3.10. Interpolated surfaces from the Cathedral Creek site on a) 01/16/2020 with a lower ds (0.145 meters) and a lower z0 value (0.26797 
meters), and b) on 02/24/2020 with the highest ds recorded at the site (0.23 meters) but a very high z0 value (0.45376 meters). The red arrow 
highlights the larger surface features. 

 

a 

b 
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4.0 RESOLUTION AND APPLICATION OF z0 

 

 

 

4.1 Summary 

 Terrestrial and airborne based LiDAR and other three-dimensional scans of the earth’s surface are 

becoming more readily available. These data are across a range of resolutions and at varying scales, 

which can alter the value of aerodynamic roughness length, z0. Inclusion of site specific z0 values into 

hydrologic and meteorological models as a dynamic, instead of a static parameter, is critical to represent 

energy processes, and can be observed when simulating the snowpack surface using the SNOWPACK 

model. Results indicate that as the resolution increased, the z0 value decreased. When these values were 

applied to the SNOWPACK model, smaller z0 values (<0.002 meters) produced smaller sublimation and 

latent heat fluxes, and larger peak SWE, cumulative snow depths compared to larger (>0.02 meters) z0 

values. Similar trends were observed when a dynamic z0 was applied to the SNOWPACK model, 

although output parameter values varied when comparing a static versus a dynamic z0 value. 

 

4.2 Introduction 

Throughout the winter season, the snowpack becomes the interface for all atmospheric-ground 

interactions (Fassnacht et al., 2009; Gromke, 2011). Understanding and quantifying the small- and large- 

scale processes of the snowpack is important for hydrologic, climate, and ecological models (Blöschl, 

1999; Luce et al., 1999; Manes et al., 2008; Quincey et al., 2017). One metric to increase understanding 

of the snowpack surface and improve models is the aerodynamic roughness length, z0 (Andreas, 2002; 

Fassnacht, 2010; Hulstrand and Fassnacht, 2018; Sanow et al., 2018). The snowpack surface, and 

resulting z0 value, is spatially and temporally variable due to accumulation and melt patterns, wind 

redistribution, land cover, aspect, meteorological conditions, and snowpack metamorphism (Niu and 
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Yang, 2007; Lacroix et al., 2008; Nield et al., 2013; Smith, 2014; Quincey et al., 2017; Sanow et al., 

2018). This complex surface variability is present at any micro (<1-meter) or macro-scale (>1-meter) and 

changes based on that scale (Liston, 2004; Deems et al., 2006). This can lead to substantial effects on 

hydrologic and climate models when ignored (Liston, 2004). Current hydrologic models often do not 

represent the spatial and temporal variability of z0 (Quincey et al., 2017), which is a significant problem 

when determining snow cover, snow water equivalent, and runoff quantities (Debeer and Pomeroy, 2017).  

Scaling of z0 has had limited investigation, and the scale at which z0 can be collected is rarely 

similar to the scale at which hydrologic and meteorological models are run (Blöschl, 1999). This is 

problematic for any model resolution and/or extent, whether local, regional, or global, where an accurate 

depiction of snowpack surface roughness is necessary (Liston, 2004). Any data resampling or 

extrapolation, and along with collection methodology, can alter the resolution and scale of the data, and 

thus effect the model results (Blöschl, 1999). Current methods to estimate z0 from surface geometry use 

terrestrial and airborne LiDAR (Lacroix et al., 2018; Sanow et al., 2018) which has data ranging in scales 

of ±80 mm and ±50-300 cm, respectively (Prokop, 2008; Deems et al., 2013; Harpold et al., 2014; López-

Moreno et al., 2016; Painter et al., 2016). Coarse resolutions over a larger scale may be lumped together 

to negate complex terrain features or combine accumulation and ablation zones leading to an incorrect 

representation of a study area (DeBeer and Pomeroy, 2017). Conversely, smaller scaled LiDAR data does 

not capture the large-scale process, which can lead to inconsistencies in the macroscale variability of the 

study area along with large quantities of data points (Munro, 1989; Blöschl, 1999; Fassnacht et al., 2014; 

Quincey et al., 2017). Small scale z0 values are altered based on scale and resolution, potentially leading 

to overestimates (Quincey et al., 2017). The scale of the measured data needs to be considered in terms of 

the model scale, as this is defined as the spatial properties of the model itself, not the measurements 

(Blöschl, 1999). 

As the availability of LiDAR and other three-dimensional scans of the earth’s surface become more 

readily available (Deems et al., 2013; Nolan et al., 2015; Gilbert and Fassnacht, 2017; Shaw et al., 2020), 
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the application to derive a site specific, spatially, and temporally variable z0 is becoming more practical 

(Deems et al., 2006). As shown in Chapter 3, the snowpack surface is dynamic spatially and temporally. 

However, the sensitivity of varying resolutions of z0 and its implication on models has had minimal 

investigation. The objectives of this study are 1) to determine how the geometrically calculated z0 value 

changes with varying resolutions for typically available data (1mm, 1cm, and 1m), 2) to determine the 

implications of a different z0 within the SNOWPACK model (2mm (default), 2cm, 20cm, 2m) and 3) to 

determine the implication of a variable z0 within the SNOWPACK model using measured values 

throughout a winter season. 

 

4.3 Methods 

4.3.1 Datasets 

The geometric z0 was calculated at three different sites with different resolutions and extents (1, 10, 

and 1000 m) (Table 4.1). The first site, Niwot Saddle Airborne LiDAR dataset was collected on 

September 29, 2005 by University of Colorado at Boulder and can be found on Open Topography 

(https://www.opentopography.org) (ID: OTLAS.102012.26913.1). The data were downloaded as a 

1000x1000 meter area with a resolution of 1 meter. The site is located south of Rocky Mountain National 

Park and is part of a long-term ecological study site. The Niwot Saddle ALS data were downloaded by 

Graham Sexstone and de-trended (Fassnacht et al., 2009) by Steven Fassnacht.  

The Trout Farm terrestrial LiDAR scan was taken using a FARO Focus3D X 130 model 

Terrestrial LiDAR Scanner (TLS). This LiDAR tool generates a point cloud scan of a given area with an 

error of +/- 2 millimeters and a resolution of approximately 7.5 millimeters. The scan was taken on March 

3, 2020 and consisted of an open, grassy, farm field about 3 kilometers from Meeker, Colorado city 

center. The site was flat with no dominate roughness features. Meeker, Colorado averages 177 

centimeters of snow per year (https://www.wrcc.dri.edu). This site was the only one used for the 
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SNOWPACK model section of the study. There was a meteorological tower set up at the site, however, 

not all of the required input variables for SNOWPACK were collected. Nearby sites provided the 

additional data, as described in the SNOWPACK section.   

Lastly, the Elm Street terrestrial LiDAR scan was taken April 16, 2021 by Steven Fassnacht. The 

scan area was in a residential yard of a grassy lawn surrounded by a 2 meter tall hedge. The location is 

within city limits of Fort Collins, Colorado which averages 119 centimeters of snow per year 

(https://www.wrcc.dri.edu). This particular snowfall event produced 20-30 centimeters of fresh snow in 

Fort Collins. 

The intent is to examine coarsening resolutions of surface data, considering the initial size of the plot 

(Table 4.1). The LiDAR scans were processed and cropped in the open source program Cloud Compare 

(https://www.danielgm.net/cc/). An area of interest (AOI) was cropped out of the center area of the 

overlapping scans, which was a 10x10 meter plot at Trout Farm and a 1x1 meter plot at Elm Street. AOI’s 

were then interpolated at different values using the kriging method in Golden Software Surfer 

(https://www.goldensoftware.com/products/surfer). The kriging method is dependent on the overall 

spatial arrangement of measured points. These surfaces were then run through a MATLAB code to 

calculate to the z0 value. The code produces a figure of the surfaces shown in Figures 4.1 to 4.3 of Niwot 

Saddle, Trout Farm, and Elm Street, respectively. The figure highlights the maxima (red) and minima 

(blue), except for Figures 4.1a, 2a, and 3a that are too fine of a resolution to illustrate all the points. 

4.3.2 SNOWPACK Model 

The SNOWPACK model was developed at the Swiss Federal Institute for Snow and Avalanche 

Research as a response to an extreme avalanche period in February 1999 (Bartlet and Lehning, 2002). 

SNOWPACK is a one-dimensional physical snowpack model which numerically solves mass, energy, 

and momentum conservation partial differential equations (Bartlet and Lehning, 2002). Since the primary 

purpose of the model is for avalanche safety and research, the focus of the model is on layer formation 
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and evolution and surface heat exchanges (Lehning et al., 2000). The model uses meteorological input 

parameters to build a snowpack profile throughout a designated time-step (Lehning et al., 2002a; b).  

The aerodynamic roughness length is incorporated into the surface heat flux calculations 

(Lehning et al., 2002b). Calculations for the surface heat fluxes assume a neutral atmospheric surface 

layer using the Monin-Obukhov similarity theory (Lehning et al., 2002b). To calculate the surface 

sensible heat flux, QH, the following equation is used: 

𝑄𝐻 =  −𝑘𝑢∗0.74 ln( 𝑧𝑧0) 𝜌𝑎𝑐𝑝(𝑇(𝑧) − 𝑇(0))    (4.1) 

where k is the von Karman constant (0.40), u* is the friction velocity, z is the vertical coordinate where 

the surface of the snow is 0, 𝜌𝑎 is the density of air, cp is the heat capacity, T(z) is the temperature of the 

air at height z, and T(0) is the temperature of the snow surface. The latent heat equation is: 

𝑄𝐸 =  −𝐶 0.622𝐿𝑖𝜌𝑎𝑝𝑎 [𝑒𝑠𝑤(𝑇(𝑧))𝑟𝐻 − 𝑒𝑠𝑖(𝑇(0))]   (4.2) 

 

where 𝐿𝑖 are the latent heat values for vaporizations and sublimation, respectively, 𝑒𝑠𝑖is the saturation 

vapor pressure (Pa) over water or ice, 𝑝𝑎 is the air pressure, and C is the Kinematic Transfer coefficient: 

𝐶 =  𝑘𝑢∗0.74ln ( 𝑧𝑧0)      (4.3) 

The default z0 within SNOWPACK is 0.002 meters. The second part of the study used z0 values 

of 0.002, 0.02, 0.2, and 2 meters within SNOWPACK at the Trout Farm site. These values were chosen 

based on the default z0 value and then increased by a factor of 10 to determine the differences of output 

variables from SNOWPACK. A final SNOWPACK value was run using a dynamic z0 from measured 

values of the Trout Farm site. This consisted of z0 values changing on a weekly time step within the 

model (Table 4.2). At present, z0 is a parameter in SNOWPACK, i.e., the model cannot have a variable 

value for z0. Therefore, to create this dynamic run, each measured z0 value was run for the entire year. 
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Then, the z0 values and resulting output values were combined for each corresponding week. For 

example, z0-1 was run for the entire year, but output values were only used for the allotted time frame of 

12/01/2019-12/25/2019. Then, z0-2 was run for the entire year, but output parameters were only used 

between 12/26/2019-12/29/2019. This was done throughout the entire season, then, the output values 

were summed for the entire year.  

4.3.3 Meteorological Data 

The SNOWPACK model was used to gage the sensitivity of a static compared to a dynamic z0 

parameter over the 2019-2020 winter season at Trout Farm. The input data was from a combination of 

three weather stations (due to the lack of equipment available at the study site). Air temperature, relative 

humidity, air pressure, and verification snow heights (i.e. the manual snow depths taken) were all from 

the study site. Wind speed and precipitation were from the Meeker Airport ASOS station located 4 

kilometers from the study site (https://mesonet.agron.iastate.edu). Incoming solar radiation data were 

from the Pinto RAWS station located approximately 30 kilometers from the study site 

(https://wrcc.dri.edu/cgi-bin/rawMAIN.pl?coCPIN). Ground temperature values were assumed to be 

0°Celsius. Data were collected on an hourly time step and the model was run December 1, 2019 to March 

31, 2020. Meteorological data from Trout Farm and Pinto RAWs were compared with other nearby sites 

in case of any erroneous data. The output variables used for comparison are sublimation, snow water 

equivalent, snow depth, sensible heat flux, and latent heat flux.  

 

4.4 Results 

 As the resolution increased, the z0 value decreased for all three sites (Table 4.1). The Niwot 

Saddle site, was the largest initial extent and therefore produced the largest z0 values, ranging from 0.17-

2.44 meters. Figure 4.1 highlights the small-scale topographic features in detail in the produced 

MATLAB surfaces based on the differing resolutions. There are small rocks and disparities in the 



89 
 

topography that are noticed in 4.1a compared to 4.1b, c. The other two sites, were predominantly grass 

and resulted in overall smaller z0 values, ranging from 0.2 – 0.001 meters. Figure 4.2 and 4.3 display the 

three output surfaces for each Trout Farm and Elm Street from MATLAB.  

  The results of the first objective showed that varying resolutions can have impacts on the 

resulting z0 value, however, will these difference in z0 be substantial enough to alter results from the 

SNOWPACK model? Due to the lack of meteorological data at Niwot and the Elm Street site, this aspect 

of the study was conducted only at Trout Farm. The first grouping used z0 values calculated for the 

previous section of the study based on the 0.01, 0.1, and 1 meter resolutions, which were found to be 

0.26, 0.08, and 0.01 meters, respectively.  

Four output values were used to observe differences, sublimation, peak SWE, latent heat, and 

sensible heat. Cumulative sublimation is plotted in Figure 4.4a. Overall, the runs follow the same trend 

until the end of January where they begin to fan out. The timing and magnitude of spikes in all runs are 

very similar. Peak SWE values for the 0.01 and 0.1 meter runs had very similar values of 12 and 13 mm, 

respectively. The 1 meter resolution run had a peak SWE value of 17 mm, which is noticeably different 

than the other two. Figure 4.4b shows the SWE values over the course of the study period. The 1 meter 

run shows much larger and longer values than the other two runs. The smaller spikes throughout the year 

are more similar in their magnitude and timing. Cumulative snow depth (Figure 4.4c) highlights that the 1 

meter run had larger spikes than the other two runs. Overall, the cumulative snow depth values were 

similar to each, varying by only 3 centimeters per run.  Cumulative latent heat values got progressively 

smaller as the resolution increased (Figure 4.4d). The timing and magnitude of the spikes are very similar 

between the runs. The largest difference between the runs are the periods of very small values for the 1 

and 0.1 meter runs. Between 12/24/2019 – 1/15/2020 and 1/21/2020 – 2/3/2020 the 1 meter results are 

very small compared to the 0.01 run, which continued to have large spikes throughout this period. This is 

also noticed during 12/24/2019 – 1/5/2020 within the 0.1 meter run. Cumulative sensible heat values were 

also similar to each other across all three runs (Figure 4.4e). Similar to the latent heat in Figure 4.4d, the 
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sensible heat results in Figure 4.4e show the exact same low value trends for the 1 and 0.1 meter runs. All 

other spikes within the three runs are similar in magnitude and timing. 

The next grouping of results used z0 values ranging from 2 to 0.002 meters and a dynamic value 

(Table 4.2) (Figure 4.5). However, the z0 value of 2 ended up stopping the model and therefore was not 

plotted with the other results. The dynamic value was calculated by incorporating measured z0 values 

from throughout the 2019-2020 winter season during the appropriate times when measured. The 

SNOWPACK model was run from December 1, 2019 to March 31, 2020.  

Cumulative sublimation rates were similar between the dynamic and 0.002 meter run with values 

of -16 and -14 mm, respectively. Since the 0.002 meter and the dynamic run values are in the same order 

of magnitude in most cases, it was expected that these values would be similar (Table 4.2). Figure 4.5a 

shows the cumulative sublimation plot over the year. The variable z0 spiked early on and then leveled out, 

similar to the 0.002 run, except the latter spiked roughly one month later. The 0.2 and 0.002 runs started 

out opposite then merged together during the middle of January, a time when all values showed an 

overlap. From there, they followed a very similar trend with spikes of the same magnitude and timing. 

The peak SWE values had a similar grouping trend where the dynamic and 0.002 run had values of 0.66 

and 50mm, and the 0.02 and 0.2 runs produced 17 and 13 mm, respectively. The groupings were 

consistent when plotted and Figure 4.5b highlight the trends. The first grouping (dynamic and 0.002) 

were much larger than the other two and with similar spikes, though the magnitude of these spikes were 

much smaller for the 0.002 values. The 0.02 run followed the same trends as the previous two, but with a 

much smaller magnitude. Lastly, the 0.2 run had the smallest magnitude of all and did not follow the 

trends of the other values.  

Snow depths were the most similar between all runs, with the dynamic, ranging between 132 cm 

and 142 cm. The snow depth trends (Figure 4.5c) are similar to the ones discussed in SWE. Although, 

instead of the variable run being the largest, in this case, it was smallest and rarely followed and 

similarities to the other runs. Latent heat values varied considerably between all the runs. Even though the 
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values were very different, the overall trends were very similar between all runs (Figure 4.5d). This was 

because of the periods of smaller values in the data, for instance, the variable and the 0.002 run recorded 

very small values between 12/24/2019 – 3/4/2020. The 0.02 run had periods of small values between 

12/25/2019 – 1/14/2020 and again 1/22/2020 – 2/3/2020. The 0.2 run had only a small period of small 

values between 1/21/2020 – 1/28/2020. Sensible heat values followed the grouping pattern similarly to 

SWE and sublimation. The periods of small values occurred exactly as they did for latent heat for every 

run (Figure 4.5e). When the data overlapped in periods of high or very low values, the trend and 

magnitude were often the same. 

Table 4.4 highlights the percent change of each output variable compared to the default 0.002 

meter run. Latent heat as most affected by a varying z0 value and had an average change of 191%. 

Sublimation was the second most affected with an average of 111%, then SWE with -54%, and the least 

affected was sensible heat with an average of -42%. The most affected run was latent heat with a z0 value 

of 0.2 meters which resulted in a percent change of 271%. The least affected run was sensible heat during 

the dynamic run with a percent change of only 8%.  

 

4.5 Discussion 

Each of the three sites resulted in differences between the varying resolution z0 values. This was 

most apparent at the Niwot Saddle location (Figure 4.1). The 1 meter resolution (Figure 4.1a) run has a lot 

of fine detail within the surface, the 10 meter run shows much less fine detail (Figure 4.1b), and the 100 

meter resolution run (Figure 4.1c) shows almost no details and all large topographic features have been 

leveled. This trend is reflected in the resulting computed z0 values (Table 4.1). The other two sites, Trout 

Farm and Elm Street, produced the same trend of a decreasing z0 with an increasing resolution. The initial 

z0 values of these two study sites were much smaller due to the extent of the site being limited to one type 

of land cover, compared to Niwot Saddle which had complex terrain over a large area. This trend affirms 
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previous assumptions by Gromke et al. (2011) that if the initial resolution is coarser the z0 value will be 

higher. The TLS is capable to vertically capture small scale features (vegetation, topography, rocks, land 

cover, etc.) for use within the z0 geometric calculation method (Gilbert and Fassnacht, 2017). Coarse 

resolutions will not capture these small-scale features and therefore will not be reflected in the z0 value 

(Quincey et al., 2017). This could cause an underestimation in resulting values; however, a finer 

resolution could cause overestimation (Quincey et al., 2017).  

Even though the LiDAR from the Niwot Saddle site was able to produce a finely detailed surface 

of the area, the resulting z0 value is not necessarily representative of the site. This is due to the calculation 

method within the MATLAB code (described in Chapter 1), in that the z0 is averaged over the entire area. 

This is problematic due to the large area and variation in slope, topography, and elevation change. 

Instead, a z0 derived over smaller areas within the scan (i.e. 10 square meter sections within the 1,000 

square meter plot) may lead to a more likely overall z0 value. Therefore, focusing on smaller 

representative plots within a study area can determine an overall z0 to be used for the area. This could 

limit the capability of an ALS to areas that are more homogenous, compared to variable terrains. Overall, 

determining a z0 is dependent on the site, arrangement and height of roughness features, and the goal of 

the study. 

Post-processing of spatial data is also a factor leading to the differences in the results. For this 

study, the kriging method was applied for interpolation. Varying methods of interpolation or resampling 

could lead to potential changes in the resulting surface and change the estimated z0 values (Blöschl, 

1999). For example, Figure 4.3b shows the amount of variation within the site, with sharp peaks and 

troughs. In Figure 4.3c, these sharp features have been muted, therefore changing how drastic the 

resulting z0 can potentially be. It is also important to consider the resolution of the measured data and the 

and interpolation method. For instance, a field of corn has very high roughness when considering the top 

of the plant to the soil surface, but the features are very skinny and tall. If the collected data is interpolated 

at a 1 meter scale, the definition of the corn stalks will be lost. The resulting surface will be a smoothed 
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average of the corn stalk height and the soil surface. In some studies, the smooth averaging technique may 

be acceptable, however, the end result of the study is an important factor to consider when deciding upon 

the post processing and data collection procedure (Blöschl, 1999; Smith 2014; Antonetti and Zappa, 

2018). Another within post-processing is the detrending methodology. All sites were detrended in the x-y 

direction, but the Niwot Saddle data also had a cubic de-trend. The x-y detrending eliminates linear trends 

from the site and without it can result in larger z0 values. The addition of a cubic detrend also removes 

non-linear trends, which was important in the Niwot Saddle site due to the variable topography, and 

without will results in a higher z0 value. Overall, applying a site specific z0, it must be understood the 

consequences of an over or under assumed z0 value, and the scales at which it is being applied (Blöschl, 

1999).   

The applied z0 values to SNOWPACK model produced very different results for each run, ranging 

from -42% to 191% average difference compared to the default output values (Table 4.4). This occurred 

even with all runs throughout the same time period and all other meteorological factor remaining 

constant. The first group of Trout Farm results were z0 values that were found from differing resolution 

interpolations. The sublimation output was initially similar across all runs, until 1/26/2020 where they 

diverged. Upon investigation of field notes, it was around this time the snowpack was near its deepest 

value and there was a time of increased temperature along with direct sunlight. These meteorological 

factors heavily impact the sublimation equation used in SNOWPACK, which is one potential reason for 

the split. Since the 0.01 meter resolution run had the highest z0, this resulted in the higher sublimation 

rates. The z0 is incorporated into both the sensible (Equation 4.1) and latent heat (Equation 4.2). The low 

data values for the 1 meter and 0.1 meter resolution runs occurred at times with a generally low wind 

speed. It is concluded that the low values noticed in Figures 4.4d and 4.4e are due to the smaller z0 values 

combined with the low winds speeds to produce smaller heat fluxes during these times. The size of z0 has 

an obvious influence over these parameters, which then effect the modeled snow depth and SWE 

calculations. Peak SWE values and snow depths varied the least at the output parameters, though there 
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were still differences in results, especially with the 1 meter resolution run. This run had the lowest z0 

(0.01 meters) and resulted in the highest SWE and snow depths. A z0 value of 0.01 meters is still much 

higher than the typical generalized, static z0 value used within many models. For instance, the Community 

Land Model 4.0 (CLM4; https://www.cesm.ucar.edu/models/clm/) uses a z0 of 0.0024 meters, which is a 

full order of magnitude higher.  

 The final grouping of results included z0 values that ranged from 0.002-2 meters and a dynamic 

run. The 2 meter z0 value stopped the SNOWPACK model on 1/27/2020, which was a little less than 

halfway through the allotted time steps. There was nothing mentioned in the literature by Lehning et al. 

(2002a; b) about a maximum z0 value, however, 2 meters was too large. This is likely a boundary within 

the model that should be adjusted or removed. Especially when considering the two z0 values found at 

Niwot Saddle were larger than 1 meter. The other values 0.002-0.2 meters ran within the model and 

produced similar results to the previous discussed trends. Sublimation values began very similar before 

diverging around 01/14/2020, a few days earlier than the previous group. The 0.002 meter z0 had much 

lower sublimation values than the rest, although it followed very similar trends in terms of timing of 

spikes. In tandem with the previous grouping, the lowest z0 values (0.002 meters and the dynamic run) 

produced the lowest sublimation rates. The latent and sensible heat values aligned very well with the 

results of the previous grouping. The periods of small values aligned with the lower z0 values between 

each grouping as well. The snow depth and SWE plots matched with the previous grouping. The lower z0 

values resulted in a higher peak SWE and a cumulative snow depth value.  

4.5.1 Limitations 

 Several limitations existed within the study as well within hydrologic models in general. Ideally, 

several scans over an entire area of various scales (watershed, mountain range, state, etc.) would be 

incorporated into the study. These larger scan areas could be coarsened to many different resolution 

values increasing the observations between them. Understanding the differences each resolution has and 

to what extent, is key in determining the correct site-specific z0 value for a model. Without more data, it is 
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difficult to make a determination of the best practice in finding a site specific z0. However, cost, time and 

availability of equipment are always the limiting factor for acquiring more LiDAR scans.  

A very limited amount of runs within the SNOWPACK model were completed. Meteorological 

data collected at the Trout Farm study site was not adequate to run the model and so meteorological data 

from a location farther away had to be used. However, for the purpose of this study using the available 

data to illustrate the general patterns of a differing z0 value was sufficient. The lack of equipment also 

resulted in failing to acknowledge the micrometeorology of the site, which is a potential source of error. 

The site was located near the base of rocky cliffs and hills which could create wind eddies, temperature 

reflectance, etc. The site was also near a river (within 120 meters) which will impact moisture content in 

the air. Similarly to Trout Farm, there were no nearby meteorological data available for the Niwot Ridge 

site, which would have been interesting to run through the SNOWPACK model as well to have 

verification in the observed trends. Even if meteorological data had been available for this site, the z0 

value of 2 meters run in the final grouping of SNOWPACK resulted in inconclusive results and so, the 

use of this site would not have been possible.  

The variable SNOWPACK run posed a variety of limitations and was completed to highlight an 

overall potential outcome. A variable z0 value is unable to be performed within the SNOWPACK model, 

which is why the piece-wise run was developed. However, this method breaks up the cumulative measure 

of the snowpack throughout the entire season, in which the energy balance is based on. This creates 

strange relics and outliers when plotting over the entire winter because of the fragmented nature of the 

run. Even though this run was not completely legitimate within the realm of mass balance, the overall 

story it represents highlights that a variable z0 will produce different results.  

Beyond the focus of this study are the limitation within hydrologic and meteorological models in 

general. These models are typically inadequate at representing the snowpack spatial and temporal 

variability (Liston, 2004) and one of the subsequent metrics of that limitation is the snowpack surface 
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roughness. These models are less physically based and rely on meteorological inputs (Fassnacht, 2010; 

Hock et al., 2017). Therefore, models will assume 100% snow coverage in a grid cell without taking 

topography, metamorphism, redistribution, melt uniformity and rate, or sub-grid variability into account 

(Liston, 2004; Niu and Yang, 2007; Fassnacht, 2010; DeBeer and Pomeroy, 2017). Snowpacks are 

dynamic in nature and are constantly evolving, which makes modelling z0 extremely difficult (Liston, 

2004; Gromke, 2011). 

Future studies should include more sites with a more diverse range of collected LiDAR data. 

Models are run at different scales, climate models are 10-100 kilometers, meteorological and hydrologic 

models are 1-10 kilometers, and snowpack models are 10-100 meters, so running the site specific z0 value 

through each type of model at different resolutions could prove to be useful. This study was limited to the 

ALS data that was available, though LiDAR across a larger area (10 kilometers, or more) would be 

useful. TLS data could be taken at a similar location to see how they may scale from each other.  

 

4.6 Conclusions 

The study explored how z0 values change with varying resolutions and showed that there are 

differences between the different computed z0 values at each resolution. It was found that as the resolution 

increased, the z0 value got smaller. When these various values were applied to the SNOWPACK model, it 

was found that a varying z0 value will have implications on the results of the model. The general trends 

showed that lower z0 values produced smaller sublimation and latent heat values, and larger peak SWE, 

cumulative snow depths, and latent heat values compared to larger z0 values. 
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Tables 

Table 4.1. The z0 values based on different resolution interpolations. 

 Initial 
Extent (m) 

Interpolation 
Resolution (m) Grid Size z0 (m) 

N
iw

ot
 

Sa
dd

le
 

1000x1000 
1 1,000 x 1,000 2.4399 
10 100 x 100 0.4269 

100 10 x 10 0.1744 

T
ro

ut
 

Fa
rm

 

10x10 
0.01 1,000 x 1,000 0.2592 
0.1 100 x 100 0.0843 
1 10 x 10 0.0100 

E
lm

 
St

re
et

 

1x1 
0.001 1,000 x 1,000 0.2055 
0.01 100 x 100 0.0817 
0.1 10 x 10 0.0026 
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Table 4.2. Table of measured z0 values from the Trout Farm site over the 2019-2020 winter season. These z0 values were used in the ‘dynamic’ run 
in the SNOWPACK model. 

Dates Used z0 (m) 
12/01/2019-12/25/2019 0.00476 
12/26/2019-12/29/2019 0.00043 
12/30/2019-01/01/2020 0.00149 
01/02/2020-01/05/2020 0.00008 
01/06/2020-01/18/2020 0.0074 
01/19/2020-01/23/2020 0.00011 
01/24/2020-02/03/2020 0.00006 
02/04/2020-02/09/2020 0.00047 
02/10/2020-02/24/2020 0.00063 
02/25/2020-03/04/2020 0.00025 
03/05/2020-03/10/2020 0.01948 
03/11/2020-03/31/2020 0.00476 
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Table 4.3. SNOWPACK results from Trout Farm. The plot was interpolated with the same resolution (0.1 meters) unless otherwise noted by 
parentheses. 

z0 Value 
(m) Sublimation (mm) 

Peak 
SWE  
(mm) 

Sensible Heat  
(MW/m2) 

Latent Heat 
(MW/m2) 

0.002 
(Default) -14 50 3.5 -1.7 

0.010 
(1m) 

-28 17 1.9 -4.6 

0.020 -30 17 2.1 -4.8 
0.084 -33 13 1.9 -5.7 
0.200 -35 13 1.5 -6.3 
0.259 

(0.01m) 
-39 12 1.5 -6.4 

2.000* 95 57 -1.3 -2.6 
Dynamic -16 67 3.2 -1.8 
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Table 4.4. Percent change of SNOWPACK results from the default (0.002 meter) value.  

SNOWPACK  
Run 

Sublimation Peak 
SWE   

Sensible 
Heat  

Latent Heat 

0.02 112% -66% -40% 184% 
0.2 143% -74% -57% 271% 

Dynamic 12% 32% -8% 7% 
0.01 174% -76% -58% 275% 
0.1 129% -74% -44% 238% 
1 97% -66% -44% 170% 

Average 111% -54% -42% 191% 

Standard 
Deviation 0.5524 0.4235 0.1833 1.0002 
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Figures 

 

Figure 4.1. Interpolated surface of the Niwot site at three resolutions, a) 1 meter, b) 10 meter, and c) 100 meter. 

a b 

c 
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Figure 4.2. Interpolated surfaces of the Trout Farm site at three resolutions, a) 0.01 meters, b) 0.1 meters, and c) 1 meter.  

c 

a b 
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Figure 4.3. Interpolated surfaces from the Elm Street study site of a) 0.001 meters, b) 0.01 meters, and c) 0.1 meters. 

  

a b 

c 
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Figure 4.4. SNOWPACK results from the Trout Farm site using z0 values computed from varying resolution interpolations which resulted in z0 

values of 0.259 meters (0.01 meter resolution), 0.08 meters (0.1 meter resolution), and 0.01 meter (1 meters resolution). The SNOWPACK outputs 
are from a) cumulative sublimation, b) SWE, c) snow depth, d) latent heat, and e) sensible heat. 
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Figure 4.4. SNOWPACK results from the Trout Farm site using 0.002, 0.02, 0.2 meters, and a dynamic z0 values from the outputs of a) sum of 
sublimation, b) SWE, c) snow depth, d) latent heat, and e) sensible heat. 
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5.0 DISCUSSION 

 

 

 

5.1 Study overview and objectives 

The primary goal of this research was to examine the spatial and temporal variability of the 

aerodynamic roughness length and the relevance thereof to hydrological processes. The inclusion of a 

variable as opposed to a static z0 within climate, snowpack, and hydrologic models will improve model 

representation of processes (Fassnacht, 2010; Gromke, 2011; Miles et al, 2017; Hultstrand and Fassnacht, 

2018). Chapters 2 through 4 examined how to measure z0, the variation of z0 as a function of snow depth, 

and the implications of incorporating a dynamic z0 into a snow model rather than the current use of a 

static z0.  

The values of z0 computed from surface geometry were found to be similar to those computed 

from the anemometric method (Figure 2.2). Out of 30 correlating LiDAR and anemometric wind profiles, 

the z0-G values underestimated in 12 out of 30 profiles, overestimated in 14 out of the 30 profiles and were 

almost exact in 4 out of the 30 profiles. The Nash-Sutcliffe Coefficient of Efficiency was 0.75, the r2 was 

0.96, the linear regression best fit slope of 0.98, and a Root Mean Square Error of 8.9 millimeters. 

However, the anemometric method requires a meteorological tower and primarily uses wind speed data 

from anemometers, temperature, and relative humidity sensors.  Four or more anemometers are required 

to create a proper wind profile, though they are subject to over estimating the speed during gusty events 

(Gromke, 2011). Sonic anemometers and eddy covariance are preferred for wind profile studies (Sexstone 

et al., 2016), but are more expensive. This elaborate set up limits the uses to locations where the 

necessary measurements exist or a tower can be established with no obstacles upwind from the placement 

of the tower (Lettau, 1969). The geometric method has greater spatial applicability as is identifies surface 

roughness elements from surface geometry (Lettau, 1969); measurements of the surface are becoming 

much more available. Airborne and terrestrial LiDAR measurement of the Earth’s surface, specifically of 
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the snowpack surface, have become more readily available over the past two decades (Hopkinson et al., 

2004; Deems et al., 2013; Harpold et al., 2014; Revuelto et al., 2014; López-Moreno et al., 2015). More 

recently photogrammetry from camera in aircraft (Nolan et al., 2015), unmanned aerial vehicle (Bühler et 

al., 2016), or satellite imagery (Shaw et al., 2019) have been used to map the snow surface. Interestingly, 

all these applications (in the aforementioned citations) have mapped snow depth, by differencing the 

snow surface from the snow off, or ground, surface. Here, terrestrial (and in chapter 4 airborne) LiDAR 

was used to map the snow surface. Thus, using maps of the snow surface enables application the 

geometric method to estimate z0 over much larger areas than are available with the anemometric method, 

further enhancing the ability to capture the spatial and temporal of z0. There is much variability in the 

snowpack (Bales et al., 2006; Deems et al., 2013; López-Moreno et al., 2015), among various scales 

(Blöschl, 1999), including for snow roughness (Figure 3.3) (Brock et al., 2006; Fassnacht et al., 2009b; 

Sanow et al., 2018). Due to the strong correlation between the anemometric and geometric derived z0 

values, the geometric method was used throughout the remainder of this study. 

The snowpack is not homogenous throughout the winter season and the snowpack depth and 

surface will vary (Niu and Yang, 2007; Kukko et al., 2013; Smith, 2014). The spatial and temporal 

variability of the snow surface can be characterized using z0. Thus, the correlation between z0 and snow 

depth needs to be further explored (Niu and Yang, 2007; Fassnacht et al., 2009a; Fassnacht et al., 2009b). 

Once the geometric method was established as an effective method to measure z0, the correlation between 

z0 and snow depth (ds) was examined. This correlation was observed at all unaltered study sites, and 

varied both spatially and temporally. The initial roughness of the sites and the primary roughness feature 

influenced the z0-ds correlation with the slope ranging between -0.05 to -0.32 and the initial z0 values to 

range between 0.005 to 0.57 meters (Table 3.1; Figure 3.3). This was likely due to land cover and 

underlying topography, reducing z0 as the snowpack developed (Niu and Yang, 2007; Fassnacht et al., 

2009a; Fassnacht et al., 2009b). If the land cover, i.e., snow-free z0, is known, then the z0-ds correlation 

could be applied as dynamic variable with the minimum z0 occurring when max snow depth envelopes all 
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roughness features. These relations can be developed for areas with similar land cover, snowpack cover, 

and depth. However, where possible, the correlation should still be determined for any specific study area 

(Fassnacht, 2010). The z0- ds correlation can be disrupted in the presences of external factors, such as the 

altering of the snow surface due to anthropogenic and ecological influences such as recreational activities, 

wildlife tracks, vegetation snow loading, etc. (Figure 3.4, 3.8). Overall, the inclusion of a dynamic z0 will 

improve process representation in hydrologic models since it is currently considered a static parameter 

(Manes et al., 2008; Fassnacht et al. 2009a; DeBeer and Pomeroy, 2017; Sanow et al., 2018).  

Periods of accumulation and to periods of melt were compared at Julie Circle. This affected the 

z0-ds correlation by altering the slope of the trendlines by -0.01 (Figure 3.5). This further highlights the 

existence of hysteresis in snowpack processes (Davidson, 2004; Luce and Tarboton, 2004; Swenson and 

Lawrence, 2012; Magand et al., 2014). During snowmelt, the surface of the snowpack tends to be 

rougher, implying a larger z0, (Fassnacht et al., 2009a), especially with the presence of various melt 

features, such as meltwater rills at the surface or sun cups (Mitchell and Tiedje, 2010). This variation 

between melt and accumulation indicate that it should be included in hydrologic, snowpack, climate, and 

meteorological models to estimate z0. Further, other snow roughness features form, especially in the 

presence of wind, such as sastrugi (Kochanski et al., 2018), and these can dramatically alter z0. While not 

addressed in this research, wind-induced snow roughness features tend to recur in similar locations (Filhol 

and Sturm, 2015) and thus their evolution in terms of z0 could be estimated. 

Snowpack processes occur over large and small scales (Blöschl, 1999; Luce et al., 1999; Manes 

et al., 2008; Quincey et al., 2017). Current hydrologic models rarely represent the spatial and temporal 

variability of the snowpack, and consequently, z0 (Quincey et al., 2017). Using a static z0 value for snow, 

instead of a dynamic value, can lead to over or underestimations in model outcomes (Figures 1.6, 4.4 and 

4.5) (Luce et al. 1999; Manes et al., 2008; DeBeer and Pomeroy, 2017). To better understand the 

limitations of using a static z0, several model runs were completed using SNOWPACK at varying scales 

and resolutions. The interpolation resolution was found to have a substantial effect on the z0 value. As 
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resolution values increased, the z0 decreased (Table 4.1). Changing z0 by just an order of magnitude (or 

less) led to varying SNOWPACK output results of sublimation, peak SWE, snow depth, sensible, and 

latent heat values (Figure 4.4). The trends show that a lower z0 value produced smaller sublimation and 

latent heat values, and larger peak SWE, cumulative snow depths, and latent heat values compared to 

larger z0 values. These results indicate that the resolution of the measurement and of the post-processing 

needs to be considered when applying z0 in a hydrologic model. 

 

5.2 Implications of findings 

 Globally, up to 66% of area is covered in a shallow, seasonal snowpack (Sturm and Liston, 2021). 

These snowpacks vary spatially and temporally, based on local, regional, and global weather and climate 

(Sturm and Liston, 2021). As of now, these snowpacks are modeled as static and homogenous, as 

opposed to a dynamic, accurate representation (Liston, 2004; Debeer and Pomeroy, 2017). Not all 

physical properties and processes of these snowpacks are being represented, which cause these models to 

be less accurate (seDebeer and Pomeroy, 2017; Quincey et al., 2017). For example, Hulstand et al. (2018) 

found sublimation uncertainty rates can vary 1-29%, and z0 was one of the top three variables accounting 

for this uncertainty. Sexstone et al. (2018) found that simulated sublimation rates can vary between 15-

35% based on the land cover type. Sublimation, energy fluxes, snowpack properties and metamorphism, 

etc., are all connected to the surrounding topography and land cover, and should be modeled as such.  

The implications of this research have potential uses for several aspects of the hydrologic cycle. 

The z0 is one metric to represent the surface-atmospheric interface, which is necessary when modeling the 

snowpack. Using a developed, robust z0, we can enhance model outputs of the heat exchanges at the 

snowpack surface. This improves the accuracy of all aspects of the model which are controlled by this air-

snow heat transfer within the energy budget (Lacroix et al., 2008; Manes et al., 2008). Sublimation is one 

variable that is highly dependent on accurate latent and sensible heat fluxes (Fassnacht, 2010). Most 
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studies involving sublimation are limited to point scale measurements (Sexstone et al., 2018). 

Additionally, many of these studies, such as SNOTEL locations, are in open areas within forest, as 

opposed to open areas or areas above tree line (Landry et al., 2014; Sexstone et al., 2018). SNOTEL 

stations are underrepresented at high elevations and over-represented in forested environments (Fassnacht 

et al., 2012; Harpold et al., 2012; Sexstone and Fassnacht, 2014). Open, alpine sites have increased wind 

speeds which enhances redistribution and sublimation rates (Hock et al., 2017). Exclusion of these areas 

that are highly susceptible to increased sublimation rates can underestimate total sublimation loss. 

Sublimation is an important factor within water balance models and has been found to contribute to an 

average of 28% loss in the Colorado Rocky Mountains (Sexstone et al., 2018). A spatially and temporally 

based z0 value will aid in these calculations as it is a necessary variable within the sublimation 

computation (Fassnacht, 2010).  

The snowpack directly affects all aspects of the hydrologic cycle and is crucial as a freshwater 

reservoir (Clow, 2010; Dutra et al., 2010; Magand et al., 2014; Huss et al., 2017; Wayand et al., 2018). 

The need for understanding and quantifying every aspect of the hydrologic cycle is increasingly important 

due to global climate change (Bales et al., 2006; Harpold et al., 2012). The spatial and temporal 

variability of the snowpack highlights the variability of the mass and energy balance, which is key to 

predicting possible impacts on water resources (Harpold et al., 2012). Bathurst and Cooley (1996) varied 

z0 from 0.001 to 0.003 meters and found a 30% increase in total runoff volume due to increased snowmelt 

related to the turbulent exchange.  

Small scale roughness features (<1 km) have had limited studies, and the resulting sub-grid 

variability within models has been ignored (Manes et al, 2008; Magand et al, 2014). The sub-grid 

variability is critical when modeling the turbulent heat fluxes (Magand et al, 2014). One reason for the 

lack of inclusion in models is because of the difficult nature of measuring roughness and the limitations of 

access throughout the winter season (Lacroix et al., 2008). The addition of a z0-ds correlation within the 

land surface scheme could enhance these predictions, even with limited temporal data. Models use 100% 
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coverage as opposed to snow covered fraction, even in complex terrain (Debeer and Pomeroy, 2017). This 

study showed that the snowpack melt rates are different than the accumulation. Additionally, melt and 

accumulation rates are also affected by the initial roughness value due to topography and land cover. 

Ignoring this variability will decrease the accuracy of the model (Liston, 2004; Debeer and Pomeroy, 

2017).  

Spatial and temporal variability have been discussed within this research, both have notable 

implications, however, spatial variability in the context of a shallow, seasonal snowpack may be slightly 

more consequential. The snowpack will be impacted by the land cover of the surface. For example, the 

type of forest (boreal, montane, etc.) and its density will impact the amount of intercepted snowfall 

(Pomeroy et al., 1998). This study was conducted primarily on open, arid plots with little interference by 

large trees (with the exception of Julie Circle). It was shown that the variation in land cover impacted the 

amount of snow on the ground and the ability to capture z0 using a LiDAR. Within a dense forest setting, 

a terrestrial or airborne LiDAR may not be able to capture all the variations within the snowpack due to 

the interference from the trees. The snowpack tends to exhibit some amount of temporal repeatability 

(Pflug and Lundquist, 2020), and therefore once a site has been observed, even for a limited amount of 

time (1-2 seasons), temporal characteristics can still be incorporated into a study.  

Surface roughness has been explored within other fields of hydrology, such as glaciology 

(Munro, 1989; Brock et al., 2006; Miles et al., 2017; Quincey et al., 2017). During the summer, or melt 

season, glaciers are typically rough with exposed crevasses. These large scale roughness features enhance 

the turbulent heat exchanges between the air and the glacier which drive melt rates (Smeets and van den 

Broeke, 2008; Quincey et al., 2017). During the winter season, these rough areas are covered in fresh 

snow and roughness decreases (Brock et al., 2006). Understanding and measuring glacier mass balance is 

becoming more critical as glacier retreat is more prominent, especially during the melt season (Brock et 

al., 2006; Smeets and van den Broeke, 2008; Quincey et al., 2017). 
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Another field of the hydrologic processes affected by z0 is calculated albedo measurements. Using 

the results from the SNOWPACK model within this study albedo was calculated for the 2019-2020 

winter season at Trout Farm (Figure 5.1). The albedo was calculated for each of the varying resolution 

runs as well as the variable z0 run. The 0.01 resolution run had the highest of all calculated incoming 

shortwave radiation. This run also produced the highest z0 value of 0.259 meters. The variable run 

produced the lowest albedo, and also had the lowest z0 values ranging between 0.019-0.00006 meters. As 

climate change progresses, the snowpack duration (and resulting albedo) is getting shorter (Anttila et al., 

2014; Minder et al., 2018). Proper modeling of this process using z0 is necessary to understand the full 

extent of potential warming due to reduction in snowpack depth and duration that is being observed 

(Minder et al., 2018). 

 

5.3 Limitations and future opportunities 

 Weather and location were limitations in this study. The ARDEC data were collected for two 

years and rarely was there much snow (deeper than 15 centimeters) with correlating high wind (>4 m/s). 

Data collection was attempted during storm events; however, the high wind speeds blew away most of the 

snow resulting in a lack of measurable accumulation rates. Data collection during calm snow events, 

returned no correlating high wind speeds, i.e., reducing the data available for chapter 2 (Figure 2.2). The 

meteorological tower was then moved to Northwest Colorado for the remainder of the study. Wind there 

also stayed very low due in part to the placement in a farm field near a large sandstone wall ~0.4 

kilometers away. The location was chosen based on land owner permission. Other fields were active with 

livestock during the winter. Ideally, future studies could place a tower in a location where wind speeds 

reach >4 m/s and also received enough snow that immediate wind caused redistribution is less of an issue. 

The anemometers in this study were also a limitation throughout data collection. At ARDEC two of the 

five anemometers stopped working, one was able to be fixed, the other was not. A similar problem 

occurred at the Trout farm site, one of the anemometers stopped working mid-season and it was 
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unfixable. Since funding was very limited in this study, sonic anemometers were not used; in future work, 

these could be deployed for better reliability during concurrent scans.   

 Field data collection in this study only used snow surface data from one short-distance TLS unit; 

other TLS units can collect much more data (López-Moreno et al., 2017). Future studies could use other 

three-dimensional surface scanning methods, such as ALS and photogrammetry, to recreate the z0-ds 

correlation. ALS can cover much larger study areas. Study sites can be divided in land cover types and 

larger swaths could be recorded during ALS flights (Bühler et al., 2016; Painter et al., 2016). Future 

studies could increase the scan frequency to improve the temporal coverage of scans. Another potential 

for increased temporal coverage is with the use of unmanned aerial systems (UASs). UASs are able to 

capture snowpack variability in areas not accessible from the ground, are cost-effective, and can cover 

larger areas (Bühler et al., 2016). At easily accessible study sites, especially during snowfall events, 

scanning several times a day would be improve quantifying the z0-ds correlation. Frequent scans would 

also improve the hysteresis correlation between melt and accumulation. Future studies would build on the 

data collected during this study (Table 5.1). 

Inclusion of spatial and temporal z0 within models does not have to be limited to the snowpack 

surface. It could be used for any surface that is the ground-atmosphere boundary. Future studies could 

observe z0 in relation to evapotranspiration in agriculture and ecological processes (Harpold et al., 2012). 

For example, water yield in post-disturbance watersheds (i.e. burn scars) are critical for modeling flood 

quantities and determining flood mitigation strategies (Goeking and Tarboton, 2020). Having pre- and 

post- z0 values of these watershed can improve the hydrologic models. Another opportunity to apply this 

method involves winter recreation. Winter activities are becoming more popular and this trend will 

likelihood increase (Bowker et al., 2012). This is having an effect on the disturbance of the snowpack 

with both motorized and non-motorized recreationists, near and far from road access (Olson et al., 2017). 

This wide-spread disturbance of the snowpack effects ecological, hydrological, and meteorological 



 

 

118 
 

processes (Olson et al., 2017, Goeking and Tarboton, 2020). Modeling z0 throughout these highly 

trafficked areas can improve understanding of the effects recreation on the snowpack. 

The resolution aspect of the study showed variable z0 values as post processing resolution 

changed (Table 4.1). Future studies could explore this farther using more meteorological monitoring 

equipment. By comparing high quality in-situ measurements of the study site to model results, an 

optimum post processing resolution could be explored. The current study had limited financial resources 

to determine the resolution necessary to sample the snow surface to achieve the most accurate heat fluxes.  

Uncertainty potential should be considered when estimating hydrologic processes (Sexstone et 

al., 2016; Hulstrand and Fassnacht, 2018). For example, sublimation has been found to vary spatially and 

temporally by 10-35% of snowpack losses (Hulstrand and Fassnacht, 2018). Future studies could examine 

the uncertainty within this research using the Monte Carlo framework and the estimated z0 values. This 

process could be completed for each chapter. In Chapter 2, the addition of meteorological variables could 

also be assed that were used to compute z0-A. In Chapter 4, further resolution interpolations and resulting 

z0 values could be explored. Additionally, these values could be applied to the SNOWPACK model to 

assess the model outputs.  

 As climate change develops, there has been an observed decrease in snowpack duration and 

earlier snowmelt timing (Harpold et al., 2012; Lopez-Moreno et al., 2017). Therefore, it is more critical 

than ever to have properly calibrated models with a dynamic z0 value to quantify the rate of change in 

these hydrologic processes (Gromke et al., 2011; Debeer and Pomeroy, 2017). Warmer temperatures will 

enhance sublimation, which is directly affected by z0 (Chapter 1) (Harpold et al., 2012). The increase in 

temperature is also leading to earlier melt rates, and once the snowpack begins to melt, the sensible and 

latent heat fluxes will further enhance that rate (Harpold et al., 2012). Future studies should explore all 

aspects of the snowpack energy and mass balance and the contribution of z0 within these processes. 
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Tables 

Table 5.1 New datasets collected for this research 

Name Data Type  Year Description 
ARDEC 
Met 

Met Data 2017-
2019 

All meteorological data collected at the 
ARDEC study site 

Trout Farm 
Met 

Met Data 2019-
2020 

All meteorological data collected at the Trout 
Farm study site 

19-20 Met Met Data 2019-
2020 

All meteorological data collected at snow 
sites in Northwest Colorado (Trout Farm, 
Julie Circle, CR11, Lost Creek, Yellow 
Jacket, Upper Piceance Creek, Piceance, 
Cathedral Creek, and Spring Creek) 

ARDEC 
LiDAR 

LiDAR 2017-
2019 

All LiDAR scans taken at the ARDEC study 
site 

19-20 
LiDAR 

LiDAR 2019-
2020 

All LiDAR scans taken at NW Colorado 
study sites 
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Figures 

 

Figure 5.1. Results from the SNOWPACK model with varying z0 values applied to calculate albedo 
throughout the 2019-2020 winter season at Trout Farm. 
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6.0 REFLECTION 

 

 

 

 As I began as a PhD student, I assumed the process would be rigid and outlined, and I was 

immediately proven incorrect. Throughout school, I played by the rules, thinking from class to class, from 

point A to point B. Upon reaching grad school, I realized that this is a deceptively simplified view of the 

path to becoming a scientist and that assuming anything within a research project is a linear process is 

laughably naïve. I am proud of the finished product that I have produced, but even more proud of the 

skills and abilities I learned along the way.  

First, when using scientific instruments, their ability to function throughout a cold winter is not 

always constant. Checking their readings, not just initially, but every single field visit is imperative. This 

is the basis for the ‘great anemometer debacle’ on which I look back with overwhelming frustration. I 

didn’t download the data every time I went to the meteorological tower for a LiDAR scan (usually 

because of the bitter cold and snow falling and potentially ruining my laptop), but worse, I only checked 

the data at the end of the year. One of the biggest lessons in fieldwork is to look over the data 

immediately, is it working? Are you collecting it correctly? Where is there room for improvement? Even 

if the end results and methodology in which the data is used is changed over the course of the project, at 

least you know what you have is accurate data.  

 One thing that I did start doing early on was keeping detailed notes of my LiDAR processing 

methodology. This was very useful when I would stop processing for a month or more. When I came back 

to it, I was able to avoid making mistakes, leaving out steps, etc. This process was also helpful in passing 

along guidance to newer graduate student who were also working with similar data. After the first year of 

data collection, I learned to also keep detailed notes of site visits. This included photos, weather, time, 

LiDAR scan numbers, etc. which I then kept very organized with folders and backups. Organization of 

data and processes proved to be one of the most valuable tools for future research and field work. 
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 Beginning my PhD, I read a lot of background paper for my literature review. I referred back to 

this literature review and all notes I took from my readings any time I was writing a piece of the 

dissertation. I also kept hard copies that were highlighted with notes in the margin to refer back to, 

eventually I ended up digitizing these highlighted passages and notes which was helpful to search through 

when trying to find certain citations throughout my writing. Looking back, I should have kept this process 

going; but with most papers I read in the latter years, I just kept digital copies to search through instead of 

adding them to my notes. If I were to do it again, I would add the literature notes every 6 months or so, as 

my topics became more robust.  

 Time management was crucial throughout my time working towards this degree. From my second 

semester until graduation 4.5 years later, I held a full-time government job. I started off with the USGS in 

Fort Collins as an Operations Research Analyst. My field research at this time took place at the ARDEC 

field outside of Fort Collins, and I’d have to rush out to the field during any period when snow might 

occur. I had to use annual leave or work extra hours to make up for my erratic vacancies. During the 

winter of 2018-2019, I added sites at Cameron Pass and Rabbit Ears Pass, which were 3 hours away from 

Fort Collins, one way. This filled my weekends with long car rides and cheap gas station burritos for the 

entire winter, and kept me up late into the night reading papers and catching up on schoolwork that I 

didn’t have time for during the week. My second federal job was working with the Bureau of Land 

Management’s White River Field Office in Meeker, CO as their only hydrologist. Meeker is 5 hours from 

Fort Collins, so I had to pick up and move away from the original study sites and come up with an entire 

new plan. Here, I was able to ‘double-dip’ work and school. The study sites I set up around the field 

office for snow monitoring were of great value to everyone in the office. In this position, a lot of NEPA 

analysis was done and having snow depths and on/off dates was very valuable when writing grazing 

permits, oil and gas leases, and water right analyses. It was very helpful to conduct these site visits during 

working hours and I will be forever grateful to the White River Field Office for their support. This also 

freed up my night and weekends to spend more time analyzing LiDAR scans taken over the past few 
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years. My final job during my PhD program, was as a hydrologist for the National Weather Service – 

Alaska Pacific River Forecast Center, in Anchorage, Alaska. So once again, I had to abandon my study 

sites and move far north. At this point, my data collection was mostly done, so I was once again back to 

writing, data-processing, and analyzing on nights and weekends. Throughout this process, some days, 

weeks, and months were more difficult than others; however, I ultimately found a lot of joy in it all. It 

gave me the freedom to advance my federal career and experience and finish a degree I had been longing 

to get.  My ability to manage my time, expectations, and responsibilities for myself and others developed 

to a new level of which I am very proud.  

This research started off as a ‘thing to check off my to do list’ but by the end it became so much 

more. I find myself incredibly engaged with the snowpack when snowboarding, cross-country skiing, or 

just driving around town. I have almost as many photos of surface hoar and sublimation on my phone as I 

do of my cats! Surface roughness has become a surprisingly interesting topic to discuss at work, with 

friends, and even during my weekly curling game with teammates. I feel the research I conducted will 

truly enhance the way we use hydrologic models going forward. At my current position with the National 

Weather Service, I have already begun to implement more dynamic variables in our forecast models. Our 

current hydrologic models use static z0 and ET values, which I intend to modify. 

 I’d be remiss if I didn’t mention one of the most important people throughout this whole process, 

my husband Luke. He acted as a field technician, an editor, a sounding board, a mover, and a 

psychologist. His dedication even resulted in the loss of an entire thumbnail to a mild field work accident. 

I never could have done any of this without him making dinner on late nights, walking our dog when I 

couldn’t get away, feeding the cats when I was at the office late, or one of the other innumerable 

responsibilities that pop up in everyday life. I wish I could give him an ‘Assistant PhD, because he earned 

it. I should also mention that we got married just 1 month into this process, so I imagine he is looking 

forward to my graduation even more than I am! 
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Throughout the jobs, research, moving around, etc., I have discovered something very 

unexpected: joy for the unknown. Most people hear the history of my past 5 years and think I am insane, 

but what they don’t understand is the thrill of a deadline, the pressure to get things done, and the 

happiness when the new destination has been reached. My resume is wildly un-traditional, but I think 

that’s what makes who I am a fierce candidate for any job. This entire process was critical in shaping the 

researcher, scientist, and person that I feel I was supposed to become. At the beginning, I thought I was 

trying to prove to everyone else I could do this, but by the end, I realized the only one really needing 

convincing was me. As Taylor Swift so eloquently said, ‘haters gonna hate, hate, hate.’ Just make sure the 

hater isn’t yourself! 

 


