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ABSTRACT 

 

 

 

MEMBRANE ADSORBERS AND NOVEL AFFINITY PEPTIDES FOR RECOMBINANT 

PROTEIN PURIFICATION 

 

 

 The purification of recombinant proteins for use as pharmaceutically active ingredients 

represents one of the largest costs of drug development and production. Of the different classes 

of recombinant protein therapeutics monoclonal antibodies represent the largest percentage of 

protein therapeutics currently on the market with even more in clinical development. The work 

presented in this thesis describes the evaluation of both commercial and newly designed anion 

exchange and hydrophobic interaction (HIC) membrane adsorbers as well as identification of 

novel affinity peptides for the purification of recombinant proteins, specifically monoclonal 

antibodies.  

 Commercially available anion-exchange membrane adsorbers were evaluated for their 

potential to remove impurities commonly present at low concentration in recombinant protein 

solutions expressed in mammalian cell culture. These so-called trace impurities include virus, 

host cell proteins, and DNA; these impurities are of particular concern because they are highly 

immunogenic at very low concentrations. Ionic strength and pH were shown to be the dominant 

factors affecting impurity binding on quaternary amine (Q) membranes indicating these ligands 

interact with the impurities primarily through electrostatic interactions. It is likely impurity 

interactions with primary amine ligands involved not only electrostatic but hydrogen bonding 

interactions which stabilized impurity-ligand interactions enabling greater removal at a broader 

range of solution pH and ionic strength conditions. Binding of host cell proteins with a broad 
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range of isoelectric points was also demonstrated using the primary amine ligand as compared to 

the Q ligands. The effect of solution pH, ionic strength, flow rate, and the presence of competing 

anionic species was investigated. 

 In addition to commercially available anion-exchange membrane adsorbers novel anion-

exchange membranes, developed by Dr. Bharat Bhut and Prof. Scott Husson at Clemson 

University, were evaluated for binding capacity and virus removal. Regenerated cellulose 

microfiltration membranes were modified with a negatively-charged quaternary amine polymer, 

systematically varying the polymer chain density and length. IgG and DNA binding capacity, as 

well as minute virus of mice removal, was evaluated as a function of polymer chain density and 

length. It was shown that IgG binding capacity increased with polymer chain density indicating 

IgG access to binding sites was not a limiting factor. Similarly, high polymer chain density and 

longer polymerization time (translating to longer polymer chain length) resulted in higher DNA 

binding and virus removal again indicating ligand accessibility was not an issue even with large 

solutes such as virus. 

 Environmentally-responsive hydrophobic interaction membranes were also developed in 

the Wickramasinghe lab and evaluated for protein binding capacity and recovery. Three-

dimensional polymer brushes were grafted from 0.45 µm pore size regenerated cellulose 

membrane surfaces. The dynamic binding capacity of human IgG was greater than current 

commercially available hydrophobic interaction membranes with comparable recoveries. 

 Affinity purification using novel small peptides was also explored as an antibody 

purification tool. Several heptapeptide affinity ligands were identified that bound specifically to 

the Fc region of IgG. These peptides have similar function to Staphylococcus Aureus Protein A, 

which is used extensively as an affinity purification ligand for monoclonal antibodies in the 
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pharmaceutical industry. A large library of seven amino acid-long peptides was screened via 

M13 Phage Display for specific binding to the Fc, or constant region, of human IgG antibody. 

After initial identification, specificity of binding only to IgG was demonstrated through 

subsequent competitive ELISA assays. Though the affinity peptides were initially screened 

against human IgG4 Fc, binding to a larger subset of human and non-human antibodies was 

shown indicating the peptides were binding to highly conserved regions on the antibodies. 

Because Protein A has some limitations in industrial process applications, these novel 

heptapeptides may provide an alternative solution for affinity purification of monoclonal 

antibodies. 
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Chapter 1 

 

 

 
Introduction 

 

 

 

1.1 Research Motivation 

Recombinant proteins represent a large and growing fraction of the overall 

pharmaceutical products on the current world market, 15% in 2007 (Aitken et al., 2009). The 

price to patients for these biologically-derived products is substantially higher than conventional, 

chemical-based pharmaceutical agents (McNeil, 2007). The high price of biologics can be 

attributed to the more expensive drug discovery process and increased timeframe and costs 

associated with process development and commercial production (Petigara and Anderson, 2008). 

In 2011 monoclonal antibodies (mAbs) represented 25% of all approved biologics and are 

projected to remain a high proportion of approved biopharmaceutical drug products in the near 

future (Rader, 2011). Reducing the costs of these products such as Rituxan
®
 (Non-Hodgkin 

Lymphoma), Remicade
®

 (Rheumatoid Arthritis), Herceptin
®

 (Breast Cancer) as well as future 

products will directly benefit patients through lower prices and insurance co-pays. Therefore the 

work presented in this thesis was focused on developing and evaluating purification technologies 

which have the potential to lower the cost of development and production of protein biologics, 

specifically monoclonal antibodies. 
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1.2 Monoclonal Antibody Purification 

Up until the mid-2000’s the main production bottleneck lay with the upstream side of 

biologic processes; that is, during the production of the protein itself, usually within a 

mechanical bioreactor (Holzer, 2011). Protein titers, in bacterial and especially mammalian 

expression systems, have increased dramatically during the last decade, more than 10-fold in 

many cases (Dinnis and James, 2005). Downstream processes, of which purification is the major 

part, have been identified as the current major production bottleneck for mAbs and other 

biologics (Antoniou et al., 2011; Holzer, 2011; Langer, 2011). Currently mAb purification 

processes are somewhat similar across most biotech companies with most adopting a flexible 

generic, or platform, process in an effort to minimize both costs and time to clinic/market 

(Davies, 2009; Liu et al., 2010; Shire et al., 2010; Shukla et al., 2007b).  

An example mAb platform process is presented in Figure 1.1. After production in a 

bioreactor the mAb supernatant is clarified, or separated from all solids and cell debris, via depth 

filtration or continuous centrifugation. The clarified supernatant containing the mAb is then 

processed through several chromatography unit operations. The great majority of mAb 

chromatography processes begin with a Protein A affinity step because of the high purity and 

product concentration realized. An intermediate chromatography step follows (cation exchange, 

hydrophobic interaction, or other) to remove product-related impurities such as aggregates and/or 

truncated species. The final chromatography unit operation is the polishing step (typically anion 

exchange), so called because it is designed to remove harmful impurities present at much lower 

concentration than the mAb itself. Dedicated virus inactivation and removal steps are also 

included in most processes for added safety (Berthold et al., 1992; Gottschalk, 2011). Finally, a 

tangential flow filtration step is employed to exchange the buffer to optimize long-term product 
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stability and concentrate the mAb before it is filled. Several unit operations within the mAb 

purification process have been identified as bottlenecks including the Protein A step, and the 

polishing step (labeled as Anion Exchange Chromatography in Figure 1.1) (DePalma, 2012). 

 

Figure 1.1: Generic “Platform” mAb purification process (Vázquez-Rey and Lang, 2011). 

 

Protein A, a protein originally derived from S. aureus that specifically binds the Fc-

region of various IgGs and other immunoglobulins, is used extensively as an affinity ligand for 

mAb purification. Typically mAb is secreted into the supernatant in the bioreactor by the 

production cell line, usually Chinese Hamster Ovary (CHO), NS/0 (mouse), or some other 
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mammalian cell line, with resulting very low purity (Chartrain and Chu, 2008). Example 

impurities present in the supernatant along with secreted mAb include cell byproducts (host cell 

proteins, lipids, DNA), possible viral contaminants, and growth media components (small 

molecules, growth factors, and BSA) (Necina et al., 1998). Protein A affinity chromatography is 

therefore an ideal first step; consistently delivering high purity through specific binding 

(Cromwell et al., 2006). However, there are several problems with the protein A ligand (and its 

derivatives) that limit the utility in commercial mAb production such as binding capacity, 

stability, and elution conditions (Cromwell et al., 2006; Pakiman et al., 2012; Shukla et al., 

2007a). The disadvantages of Protein A and the need for an affinity alternative to protein A is 

discussed further in section 1.5 of this thesis. 

The polishing chromatography step has also been implicated as a major mAb production 

bottleneck (Li et al., 2005). Very large diameter columns and column volumes which are 

optimized for high flow rates leads to gross underutilization of conventional packed bead 

columns as polishing steps. The flow rates are necessarily slow for a packed bead column 

polishing step when considering the residence time required to achieve sufficient impurity 

binding capacity. This is due to the diffusion-limited transport of impurities (host cell proteins, 

DNA, virus, etc.) into the pore interiors of the packed beads. The resin pores, small in diameter 

to maximize surface area, represent a significant mass transfer limitation for binding solutes. 

Transport of impurities to binding sites in the pore interiors (the vast majority of binding sites) is 

limited by pore diffusion from the bead surface inwards (Al-Rubeai, 2011; Curling and 

Gottschalk, 2007). Therefore either the flow rate must be sufficiently slow or the column must be 

sufficiently wide to provide a long enough residence time to allow impurity diffusion into the 

pores. Since slower flow rates would entail unacceptably long unit operation oversized columns 



5 

 

have been used leading to significant underutilization of the bed. Therefore alternatives to 

packed bead columns for polishing applications, such as macroporous membrane adsorbers, are 

gaining notoriety but require further evaluation. 

 

1.3 Membrane Adsorbers 

An alternative to adsorptive packed beads with pores large enough to permit convective 

transport of impurities to all binding sites would be advantageous to current and future mAb 

purification processes, decreasing both processing time and resources (Phillips et al., 2005; Zhou 

and Tressel, 2006). Membrane adsorbers fulfill this criterion with interconnected porous 

structures with average pore diameters much larger than packed bead resins. Membrane 

adsorbers created for the purpose of protein purification have pore sizes of 0.22 µm or larger 

(Fraud et al., 2009; Roper and Lightfoot, 1995; Varadaraju et al., 2011; Weaver et al., 2013). The 

larger pore size is responsible for several advantages of the membrane adsorbers when compared 

to porous bead resins. The membrane acts as a support structure permitting the binding species to 

adsorb onto ligands attached to the inner pore surface. 

The large pore diameter allows convective transport of all impurity species to all binding 

ligands on both the external and internal pore surfaces. Ideally binding is limited by binding 

kinetics only. Therefore binding capacity is theoretically independent of flow rate in 

convectively-driven binding processes like within membrane adsorbers, at least at flow rates 

useful to protein purification. Figure 1.2 provides a visual illustration of this point showing 

electron micrographs of both a porous bead and membrane adsorber with icons showing 

transport of impurities to binding sites (Curling and Gottschalk, 2007).  
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Figure 1.2: Comparison of conventional porous bead and macroporous membrane adsorber 

binding mechanisms (Curling and Gottschalk, 2007). 

 

 Back pressure is another parameter in which membrane adsorbers provide a clear 

advantage over porous beads during mAb purification. For a given flow rate the back pressure is 

much lower through a macroporous membrane compared to a packed bead column due to the 

larger pores and open structure. Thus faster flow rates can be utilized without, due to convective 

impurity transport to all binding sites, any loss in binding capacity. This translates to decreased 

processing time during manufacturing which results in substantial cost savings (Zhou et al., 

2006).  

 Membrane adsorbers are also commercially available as pre-sterilized, ready–to-go units 

which don’t require any pre-use cleaning. This allows for much lower buffer usage (and WFI 

usage), also a cost saving measure (Allen, 2008; Fraud et al., 2010). Cleaning validation is also 

not required with pre-sterilized membranes leading to additional cost savings. It is however still 

not clear if economic benefits may be realized using membrane adsorbers as pre-sterilized, 
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single-use units or using a single membrane for many cycles as has been traditionally done with 

packed bead columns (Warner and Nochumson, 2003). 

1.3.1 Anion-Exchange Membrane Adsorbers 

 Though membrane adsorbers have been developed with different binding mechanisms 

such as hydrophobic interaction, affinity, or cation-exchange, anion-exchange packed bead 

columns and membranes are used in the majority of mAb processes for polishing applications 

(Ghosh and Wang, 2006; Giovannoni et al., 2009; Kuczewski et al., 2010; Teeters et al., 2002). 

Anion-exchange is appropriate given most trace impurities are very or somewhat negatively-

charged at neutral pH. Most model viruses approved by the FDA for removal studies are 

negatively charged (Porter, 1980; Strauss et al., 2010). Host Cell Proteins (HCP), no matter the 

expression system, are a broad population of negative- and positively-charged impurities. DNA 

of course is negatively-charged all along its backbone due to the phosphate groups. Other trace 

impurities such as leached protein A are also negatively charged at neutral pH increasing the 

utility of anion-exchange as a polishing mechanism (Liu et al., 2010). Therefore the membrane 

adsorber work presented in this thesis focuses exclusively on anion-exchange membranes. 

1.3.2 Hydrophobic Interaction Chromatography (HIC) Membrane Adsorbers 

 Among the different modes of chromatography Hydrophobic Interaction 

Chromatography (HIC) may be one of the most useful while being the most under-used for mAb 

purification. HIC has been shown to be an effective product aggregate removal step which is a 

major focus of industrial mAb purification processes (Ebert and Fischer-Frühholz, 2011; Lu et 

al., 2009; Yoo and Ghosh, 2012). HIC has also been shown to be a good viral clearance process 

operation; another crucial aspect of biologics and mAb purification (Kelley et al., 2008). 
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However, traditional HIC ligands suffer from two limitations compared with other methods of 

chromatography: lower binding capacity and lower protein recovery (Chen et al., 2008; Müller et 

al., 2011).  

The driving force for binding to hydrophobic media is typically high salt concentration 

(Frau et al., 2009) and many proteins “salt out” of solution below the optimal binding salt 

concentration (Gagnon et al., 1997). This leads to binding capacities much lower than the           

> 50 g/L capacities typically realized over ion-exchange media. The other limitation lies in 

desorption of bound protein from the hydrophobic media. Elution of proteins from HIC media is 

accomplished either through decreased salt concentration and/or introduction of chemicals, such 

as organics or chaotropes, which disrupt hydrophobic interactions (Tsumoto et al., 2007). 

Organics and chaotropes, such as Urea or Guanidine HCl, have detrimental effects on protein 

stability and folding and are therefore unsuited for use in industrial protein HIC processing. 

Many proteins, monoclonal antibodies included, do not fully desorb from hydrophobic media 

with no salt alone, leading to lower recovery (Chen et al., 2008). 

One method which may increase desorption of protein using low or no salt may be the 

use of hydrophobic ligands that become more hydrophilic in lower salt solutions. Chapter 6 of 

this thesis discusses work with polymerized N-vinylcaprolactam, an environmentally responsive 

polymer that is hydrophobic in high ionic strength solutions and hydrophilic in low ionic strength 

solutions. 

 

1.4 Viral Quantification 

Viral clearance during biologic purification, of which anion-exchange polishing is a 

critical step, must be demonstrated to ensure safety of the final product. Therefore an assay for 
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viral quantification is required. The traditional assay most commonly found in academic and 

industrial literature is the cell-based plaque assay. The cell line will necessarily be different for 

each virus type due to most viruses having a very specific cellular tropism (Itah et al., 2004). For 

example the virus used during the work in this thesis, Minute Virus of Mice prototype strain, 

forms lytic plaques on mouse fibroblast cell lines such as A9 only (Ball-Goodrich et al., 1991). 

However, cell-based plaque assays suffer from several limitations: assay time (up to six days), 

assay throughput, and subjective result interpretation (Edelman and Barletta, 2003). Several 

serial dilutions per sample are required to ensure a well with a countable number of plaques is 

obtained. The cell culture must be at a certain confluence as well as within a given number of 

passages in order to obtain reliable and reproducible virus titer data. Therefore a more rapid 

assay was preferred for the work described herein; the assay chosen was quantitative polymerase 

chain reaction (QPCR). 

QPCR is a more complex version of standard PCR; template DNA is amplified 

exponentially over successive cycles during which a reporter dye or probe binds to double-

stranded DNA as it is created. The fluorescence signal, which is below detectability until a 

sufficient amount of DNA is generated, gives a real-time picture of DNA content. Known 

standards are run on each plate as well generating a standard curve, which unknown samples are 

compared against. The number of cycles required for the fluorescence signal of each standard 

and sample to reach a certain threshold value, normally in early log phase, is the output of the 

assay. By plotting the threshold cycle number of the unknown samples on the standard curve, the 

original concentration of DNA present in the samples is obtained. As all viral particles contain 

either DNA or RNA, QPCR is a reliable assay for viral quantification.  
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Because QPCR may be performed in 96-well format many samples can be assayed in a 

short amount of time, generally 3 hours or less. Dilution series, necessary for each sample tested 

by plaque assay, are generally not needed during QPCR due to the very large linear range (6-7 

log copies or more) obtainable (Logan et al., 2009). Cost of assaying viral titer by QPCR is much 

lower per sample than cell-based plaque assays due to the lack of expensive cell lines, media, 

and incubation equipment necessary. Though the fluorescent reagents/probes can be quite 

expensive, hundreds of unknown samples can be assayed per vial of fluorescent reagent. 

Therefore for the reasons of throughput, large linear range, and cost, QPCR was used as the viral 

quantification assay for the work completed in this thesis. 

 

1.5 Protein A 

Protein A affinity chromatography, and specifically the protein A ligand itself, was the 

focus of additional research in this thesis. Protein A is a very effective capture step for mAb 

purification due to its high selectivity, enabling high purity and relatively high concentration in a 

single affinity chromatographic step. However, protein A does have a few characteristics that 

limits its utility during mAb purification. Native and recombinant protein A is not stable under 

alkaline conditions, leaving the ideal cleaning/sanitization solution, 1M NaOH, off the table for 

protein A cleaning (Jones and Smith, 2004). Binding capacity over protein A columns or protein 

A membrane adsorbers is also limited by the kinetics of mAb-protein A binding as well as the 

density of protein A ligand obtainable (Saha et al., 2003; Sheth, 2009).  

The production bottleneck with protein A chromatography using packed bead columns is 

similar to that with the polishing step. Increasing mAb titers create the need for ever larger 

protein A columns and eventually expensive new hardware such as pumps and columns. 
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Columns can only be built so large in diameter before their footprint within existing plants 

becomes prohibitive (Palma, 2005). Increasing the column height is impractical since pressure 

increases with bed height and higher pressure would either compress the resin or damage the 

pumps (Thillaivinayagalingam and Keshavarz-Moore, 2007). Therefore as bioreactor titers 

increase the only method to process the additional material is to increase the number of 

chromatography cycles which increases both total processing time and resources thereby 

increasing the total cost. 

In the work presented in this thesis small peptides (7 amino acids) were explored as an 

alternative to protein A (42 kDa) for several reasons. As mentioned above protein A stability is 

one of the major causes of the protein A chromatography bottleneck and high resin cost. Because 

of this instability, particularly during resin cleaning and sanitization, the binding capacity tends 

to decrease over a number of cycles further lowering the product throughput. Small peptides may 

have greater stability under sanitization conditions, particularly alkaline conditions, because of 

their lack of easily disrupted secondary and tertiary structures.  

Small peptides may also have an advantage over larger ligands such as protein A due to 

the much higher ligand density attainable on the pore surface. On similar polymer porous beads 

as the protein A resin MabSelect®, mAb binding capacities on the cation-exchange resin SPXL 

have reached over 100 mg/mL (Liu et al., 2011); though MabSelect binding capacity is in the 30 

– 50 mg/mL range with typical 2 – 3 min column residence times (Ljunglöf et al., 2011). 

Therefore it is possible to bind mAb to a higher capacity than currently realized with protein A 

resins. Small peptides may be “grown” from the pore surface via surface-initiated 

polymerization. Much higher peptide densities compared to protein A may be realized via this 

surface polymerization method, similar to other chemical ligands (Bhut et al., 2008).  
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1.6 Phage Display 

The method used in this research to identify heptapeptides with binding affinity for the Fc 

region of antibodies was M13 phage display. Phage display is a powerful method of exploring a 

large library of peptides/proteins and finding the needle in the haystack, those few proteins with 

affinity for a given target (Carmen and Jermutus, 2002). This method provides a physical link 

between the phenotype (the displayed protein on the viral surface) and the genotype within the 

virus. Viral-based display also provides a method for easily amplifying those proteins with 

affinity for re-panning during the next round of binding. Therefore successive rounds of binding 

(panning) result in more enriched populations of virus with binding proteins on their surface. 

Because there is a link between phenotype and genotype the peptides/proteins can be easily 

identified by DNA sequencing. Additional background information regarding phage display and 

its uses may be found in Chapter 6 of this thesis. 

 

1.7 Research Objectives 

The overall goal of this thesis was to explore new technologies for protein purification, 

specifically monoclonal antibody purification, to alleviate known production bottlenecks within 

the biotechnology industry. Alleviating these bottlenecks will lower the costs of development 

and production of mAbs translating to lower prices for patients. Specifically two research areas 

were chosen to explore: anion-exchange membrane adsorbers for polishing applications and 

identification of small peptides with function similar to Protein A as possible affinity ligands. 

Anion-exchange media (resins and membranes) have been shown to successfully bind 

trace impurities, but are utilized only under very advantageous conditions such as low 

conductivity and high pH; conditions under which many protein drug products may be unstable 
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or bind to the anion-exchange media. Little is present in current literature regarding the 

mechanisms of trace impurity binding, nor how membrane, ligand, or solution properties 

influence impurity binding.  

Therefore a general hypothesis explored in this thesis was how trace impurity removal 

from protein drug solutions using anion-exchange membrane adsorbers is influenced by both 

membrane properties and solution properties. Specifically, it was hypothesized that the solution 

space under which significant binding of impurities occurs is strongly influenced by the 

characteristics of the anion-exchange ligand; properties such as pore size, ligand type, and ligand 

density may affect binding along with solution properties such as pH, conductivity, flow rate, 

and competitive anion concentration. 

A separate hypothesis related to monoclonal antibody purification was also explored in 

this thesis. The hypothesis was that short peptides could be identified via phage display with 

comparable antibody-binding properties to the protein A ligand used in most industrial mAb 

purification processes. The advantages of small peptides over protein A as an affinity ligand for 

large-scale monoclonal antibody purification are discussed in sections 1.5 and 6.2 of this thesis. 

To evaluate the above hypotheses, several specific research aims were explored during 

the work completed for this thesis. Those research aims are presented below. 

 

1) Evaluate Minute Virus of Mice removal for three different anion-exchange membrane 

adsorbers; variables evaluated were pH, ionic strength, flow rate, and competing 

anionic buffer species. Understand the dominant binding mechanisms of virus to the 

different ligands and the contribution of ligand densities present on the three anion-

exchange membrane adsorbers. 
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2) Understand the binding of Minute Virus of Mice, CHO Host Cell Proteins, and DNA 

in the presence and absence of monoclonal antibody.  

3) Investigate how polymer ligand density and length affect protein, DNA, and virus 

binding on novel strong anion-exchange membrane adsorbers. 

4) Investigate the adsorption and desorption properties of membranes modified with N-

vinylcaprolactam with a goal of high binding capacity and high recoveries. 

5) Identify small peptides using Phage Display that have similar binding specificity and 

affinity for the constant region of various Immunoglobulins. 

 

1.8 Thesis Organization 

Chapter 2: “Anion Exchange Membrane Adsorbers for Flow-through Polishing Steps: 

Part I. Clearance of Minute Virus of Mice” 

In this chapter Minute Virus of Mice binding and removal by anion-exchange membrane 

adsorbers is investigated. Three commercially available membranes with different membrane 

and ligand properties were evaluated for virus removal: Sartobind Q
®
, Mustang Q

®
, and 

ChromaSorb
®
. Solution conditions including pH, NaCl concentration, and competitive anionic 

species as well as flow rate were investigated. These variables, as well as ligand density and 

composition, were systematically evaluated for minute virus of mice binding. A quantitative 

polymerase chain reaction (QPCR) method was developed for quantification of MVM. The 

results show under which conditions virus will bind to the three different membranes. 
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Chapter 3: “Anion Exchange Membrane Adsorbers for Flow-through Polishing Steps: Part II. 

Virus, Host Cell Protein, DNA Clearance, and Antibody Recovery” 

Chapter 3 builds on the work from chapter 2 in further investigating trace impurity 

removal via anion-exchange membrane adsorbers. In addition to removal of virus, host cell 

protein and DNA removal was also investigated, thus presenting a much more complex mixture 

of impurities. Host cell proteins presented an especially challenging case for binding as the 

protein population was diverse, both in terms of size and charge. This work showed that viral 

binding is affected by the competitive binding of host cell proteins and DNA, and is affected by 

the presence of monoclonal antibody. The advantage of using a ligand capable of binding via 

multiple mechanisms was clearly demonstrated. Membrane performance when relying purely on 

electrostatic ligands is shown to be compromised at both high NaCl concentration and low pH. 

 

Chapter 4:  “The Role of Polymer Nanolayer Architecture on the Separation Performance of 

Anion-Exchange Membrane Adsorbers: I. Protein Separations” 

The work in this chapter involves construction of novel strong anion-exchange ligands 

with higher binding capacity than currently reported in literature. Regenerated cellulose 

membranes with Q ligands of differing lengths and surface density were constructed by our 

colleagues at Clemson University. BSA and IgG were used to evaluate the binding capacity as a 

function of ligand chain length and density. Binding capacities greater than 130 mg protein / mL 

membrane were achieved. This work suggests tailoring the 3-D architecture of the ligands 

covering the internal and external pore surfaces significantly increases the binding capacity of 

proteins; binding capacity was found to be independent of flow rate. 
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Chapter 5: “The Role of Polymer Nanolayer Architecture on the Separation Performance of 

Anion-Exchange Membrane Adsorbers: Part II. DNA and Virus Separations” 

Chapter 5 presents work furthering the investigation from chapter 4 in which additional 

impurity binding was evaluated on the novel strong anion-exchange membranes. Ligand chain 

length and ligand spacing were again investigated this time for DNA and minute virus of mice 

removal. The goal was different than chapters 2 and 3 in that instead of evaluating impurity 

binding over a large range of buffer conditions, ligand length and density was optimized for 

maximum impurity binding capacity. Increasing binding capacity for DNA was observed up to a 

degree of ligand polymer grafting of 20 wt% indicating steric or electrostatic hindrance between 

binding ligands was not encountered. Similar results were obtained for minute virus of mice, 

which has a larger (~20nm) diameter than either mAbs or DNA again suggesting crowding was 

not an issue during binding. Binding capacities obtained for DNA were greater than current 

commercial anion-exchange membrane adsorbers, additionally virus removal was equivalent to 

current technology. 

 

Chapter 6: “Responsive Membranes for Hydrophobic Interaction Chromatography” 

 Improved hydrophobic interaction membrane adsorbers are evaluated in chapter 6. An 

environmentally responsive polymer, N-vinylcaprolactam (N-VCL), was grafted from the pore 

surface of regenerated cellulose membranes using ATRP. In the presence of high ionic strength 

solution N-VCL dehydrates and adopts a more hydrophobic conformation while low ionic 

strength causes N-VCL to hydrate and adopt a more hydrophilic confirmation at room 

temperature. As shown in this chapter, this improves the recovery efficiency of BSA and 
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monoclonal antibodies. IgG binding capacities of 21 g/L were demonstrated which is 

significantly higher than current commercially-available hydrophobic membrane adsorbers. 

  

Chapter 7: “Identification and Characterization of Novel Fc-binding Heptapeptides via Phage 

Display and ELISA” 

In chapter 7 small heptapeptides were investigated for specific binding to the Fc region of 

different immunoglobulins; an interaction very similar to that of protein A. A large library 

consisting of billions of heptapeptides was searched for those exhibiting antibody binding 

behavior using M13 phage display. Those peptides showing antibody binding behavior were 

further screened for specific binding under cell culture conditions and with potentially 

competitive proteins present using an ELISA developed for this purpose. Seven heptapeptides 

showing specific binding and affinity at least with micromolar binding affinity or below were 

identified and characterized. 

 

Chapter 8: “Conclusions and Future Work” 

This short chapter presents the conclusions of this thesis and suggested future work. 
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Chapter 2 

 

 

 
Anion Exchange Membrane Adsorbers for Flow-through Polishing Steps: 

Part I. Clearance of Minute Virus of Mice
1
 

 

 

 

2.1 Summary 

Membrane adsorbers may be a viable alternative to the packed-bed chromatography for 

clearance of virus, host cell proteins, DNA, and other trace impurities. However, incorporation of 

membrane adsorbers into manufacturing processes has been slow due to the significant cost 

associated with obtaining regulatory approval for changes to a manufacturing process. This study 

has investigated clearance of Minute Virus of Mice (MVM), an 18 – 22 nm parvovirus 

recognized by the FDA as a model viral impurity. Virus clearance was obtained using three 

commercially available anion exchange membrane adsorbers: Sartobind Q
®
, Mustang Q

®
, and 

ChromaSorb
®
. Unlike earlier studies that have focused on a single or few operating conditions, 

the aim here was to determine the level of virus clearance under a range of operating conditions 

that could be encountered in industry. The effects of varying pH, NaCl concentration, flow rate, 

and other competing anionic species present in the feed were determined. The removal capacity 

of the Sartobind Q and Mustang Q products, which contain quaternary ammonium based ligands, 

is sensitive to feed conductivity and pH. At conductivities above about 20 mS/cm, a significant 

decrease in capacity is observed. The capacity of the ChromaSorb product, which contains 

________________________ 
1
Weaver, J., Husson, SM., Murphy, L., Wickramasinghe, SR., 2013. Anion Exchange Membrane Adsorbers for 

Flow-through Polishing Steps: Part I. Clearance of Minute Virus of Mice, Biotechnol Bioeng. 110(2): 491 – 499 
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primary amine based ligands, is much less affected by ionic strength. However the capacity for 

binding MVM is significantly reduced in the presence of phosphate ions. These differences may 

be explained in terms of secondary hydrogen bonding interactions that could occur with primary 

amine based ligands. 

 

2.2 Introduction 

Biopharmaceuticals, and in particular monoclonal antibodies (mAbs), represent an 

increasingly large fraction of the overall pharmaceutical market. Since downstream purification 

costs can account for up to 80% of the manufacturing cost (Gottschalk, 2005), there is a strong 

demand for new technologies that reduce the overall manufacturing cost. Here we focus on the 

chromatographic polishing steps in the production of mAbs as these steps have become a major 

production bottleneck (Langer, 2009). The impurities and contaminants to be removed during 

these processing steps are orders of magnitude lower in concentration than the mAb.  

Anion-exchange chromatography generally uses packed columns with porous 

chromatographic beads (Riordan et al., 2009a). However, packed-bed chromatography suffers 

from a number of disadvantages: the pressure drop across the bed is usually high and may 

increase during operation due to media deformation or blockage; pore diffusion is slow and often 

leads to degradation of the protein product, and scale up of packed beds is difficult. In addition, 

packed beds have been shown to display a very low dynamic capacity for virus particles at 

common process flow rates of 150 – 450 cm/hr, where binding is restricted to the surface of resin 

particles, as slow pore diffusion prevents the virus particles from entering the resin pores (Ghosh, 

2002; Yao and Lenhoff, 2006; Wickramasinghe et al. 2006). Thus, most of the binding sites in 

the resin pores are not used, leading to underutilized beds (Han et al. 2005).  
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Membrane chromatography or membrane adsorption, where a macroporous membrane is 

used as a support material and the ligands are bound to the pore surface, was first described by 

Brandt et al. (1988). Membrane adsorbers can be run at much lower pressure drops and are easy 

to scale up. Importantly, since the feed is pumped through the membrane pores, transport of the 

solute to the binding sites occurs mainly by fast convective flow. Consequently, the dynamic 

capacity is independent of flow rate over a much larger range of flow rates compared to packed 

beds (Curling and Gottschalk, 2007, Specht et al., 2004).  

Nevertheless one of the major perceived disadvantages of membrane adsorbers is that the 

ligand density is generally higher for porous resin particles compared to macroporous 

membranes. Consequently for smaller protein species that are not excluded from the internal 

resin pores, the dynamic capacity is higher for packed beds than for membranes (Curling and 

Gottschalk, 2007). Membrane adsorbers are therefore ideally suited for removal of large 

molecules and virus particles present at low concentrations (Zhou and Tressel, 2006).  

Presently, membrane adsorbers are used in the biopharmaceutical industry almost 

exclusively in ‘flow-through’ polishing steps (Boi, 2007, Zhou et al. 2008a). Anion-exchange 

membranes are used to bind impurities such as viruses, host cell proteins, and DNA while 

allowing the mAb to flow through. The feed pH is usually greater than 7.0 where the impurities 

to be removed are negatively charged but the generally higher pI mAb is positively charged. 

Riordan et al. (2009a, 2009b) indicate that the ionic strength of the feed stream is usually low, as 

high ionic strength can disrupt electrostatic interactions and reduce the removal of contaminants.  

Here we focus on clearance of Minute Virus of Mice (MVM) an 18-22 nm parvovirus by 

three commercially available anion-exchange membranes: Sartobind Q® (Sartorius AG, 

Göttingen, Germany), Mustang Q® (Pall Corporation, Port Washington, NY, USA) and 
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ChromaSorb® (Millipore Corporation, Billerica, MA, USA). Commercial membrane adsorbers 

have pore sizes ranging from 0.5 – 3 um. Since the feed is pumped through the membrane pores, 

the kinetics of binding is the rate-limiting step (Teeters et al., 2002). Thus, compared to resin 

particles, much higher flow rates may be used. This results in the ability to process a much larger 

load volume or to decrease the process time required for a standard load volume; both cases 

realize an economic benefit. Current commercially available anion exchange membrane 

adsorbers are sold as pre-sterilized, disposable devices, negating the need for costly cleaning 

validation. Zhou et al. (2008a) have demonstrated that an economic benefit can be realized at a 

product load of 2 kg/m
2
 membrane surface area, with cost savings coming predominantly from 

decreased buffer/WFI usage.  

A few investigators have reported the use of membrane adsorbers for removal of low 

concentration high molecular weight impurities and virus particles during the polishing steps in 

the manufacture of mAbs (Knudsen et al. 2001; Zhou et al. 2006; Zhou et al. 2008b; van Reis 

and Zydney, 2001). Brown et al. (2010) have investigated the use of membrane absorbers as a 

prefiltration step prior to virus filtration. Zhou and Tressel (2006) used a Sartobind Q scale-down 

model (Sartobind Q 125) to obtain greater than 6.03 LRV at pH 7.2, conductivity, 4.0 mS/cm, at 

a monoclonal antibody capacity of 3000 g/m
2
. However, for many industrial manufacturing 

processes the feed stream requires a large WFI dilution and/or pH adjustment to reach these 

conditions, which can be both costly and time consuming. Furthermore, operating at low salt 

concentration may increase the likelihood of aggregation of the mAb (Ahrer et al. 2006).  

Frequently, ligands containing quaternary ammonium ions are grafted onto the surface of 

a macroporous membrane to produce a strong anion exchange membrane adsorber, e.g., 

Sartobind Q and Mustang Q. The salt concentration is kept low to prevent screening of the 
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electrostatic interactions between the ammonium ion and negatively charged impurities. High 

salt concentrations can severely limit capture of negatively charged impurities by quaternary 

ammonium based ligands (Curtis et al. 2003; Phillips et al. 2005).  

The low binding capacities of quaternary ammonium based ligands at high salt 

concentration has led to the development of alternative anion-exchange ligands that exhibit high 

capacities at high salt concentrations (Burton and Harding, 1998, Riordan, 2009a). Recent 

studies indicate that increased capacity at high salt concentrations is due to secondary 

hydrophobic and hydrogen bonding interactions between the target species and the ligand (Yang 

et al. 2007). Johansson et al. (2003) indicate that non-aromatic anion-exchange ligands based on 

primary and secondary amines display high capacities at high salt concentrations. The presence 

of hydroxyl groups near the ionic group (primary amine) leads to secondary hydrogen bonding 

interactions. Unlike the Sartobind Q and Mustang Q, the ChromaSorb membrane adsorber 

contains primary amine based ion-exchange ligands.  

The purpose of this study was to determine the level of virus clearance over a range of 

operating conditions for three commercial anion exchange membrane adsorbers: Sartobind Q, 

Mustang Q, and ChromaSorb. This is the first of a two part study. Here we focus exclusively on 

clearance of MVM. In part 2 we investigate the effects of host cell proteins and DNA as well as a 

‘model’ antibody on MVM clearance. Since the anion exchange polishing step can follow anion 

or cation exchange packed bed chromatography two different sets of experiments were 

conducted using an anionic buffer set and a cationic buffer set to represent the feed stream after 

anion- and cation-exchange chromatography respectively. The results of this study will help 

determine the effect of changes in operating conditions on the level of MVM clearance. 
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2.3 Experimental 

2.3.1 Experimental Design 

The anionic buffer set of experiments was a full-factorial design containing three 

variables: NaCl concentration (50, 200 mM), pH (7.5, 9.0), and flow rate (4, 20 membrane 

volume/min (MV/min)). One centerpoint run was also included at 125 mM NaCl, pH 8.25, and 

12 MV/min flow rate. The cationic buffer set of experiments was a half-factorial design 

containing four variables: NaCl concentration (0, 200 mM), pH (6.0, 9.0), phosphate 

concentration (0, 50 mM), and flow rate (4, 20 MV/min). The effect of phosphate in the feed for 

the cationic buffer set of experiments was investigated as negatively-charged buffer species are 

commonly present in the eluate from a cation exchange chromatography step. A centerpoint run 

was also conducted at 100 mM NaCl, pH 7.5, 12 MV/min flow rate, and 25 mM phosphate. One 

additional run was conducted using solution conditions that resulted in poor binding for the 

ChromaSorb (200 mM NaCl, pH 9.0, 50 mM phosphate) where phosphate was replaced by 50 

mM acetate. All runs were conducted in duplicate. Table 2.1 gives the feed buffers tested. 

2.3.2 Materials 

Sartobind Q Nano 1 mL devices, Mustang Q coins with stainless steel housing, and 

ChromaSorb 0.08 mL devices were obtained through gracious donations from Sartorius AG 

(Göttingen, Germany), Pall Corporation (Port Washington, NY, USA), and Millipore           

Corporation (Billerica, MA, USA), respectively. All buffer chemicals (tris-base, tris-HCl, NaCl, 

NaH2PO4 (monohydrate), Na2HPO4 (anhydrous), glacial acetic acid, and sodium acetate 

trihydrate) were purchased from JT Baker (Phillipsburg, NJ, USA). Table 1 gives the various 

feed buffers used in order of increasing conductivity. The column labeled ‘design of 

experiments’ indicates whether the buffer was used for the anionic or cationic buffer set of 
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Table 2.1: Details of buffers. All buffers contained 20 mM tris. 

Conductivity  

(mS/cm) 

NaCl  

(mM) 

pH Phosphate 

(mM) 

Design of 

Experiments 

0.5 0 9.0 0 CEX 

2.3 0 6.0 0 CEX 

6.0 50 9.0 0 AEX 

6.0 0 6.0 50 CEX 

7.2 50 7.5 0 AEX 

7.6 0 9.0 50 CEX 

14.4 125 8.25 0 AEX 

14.6 100 7.5 25 CEX 

21.4 200 9.0 0 AEX/CEX 

22.0 200 7.5 0 AEX 

22.6 200 6.0 0 CEX 

23.7 200 9.0 50 (Acetate) CEX 

25.4 200 6.0 50 CEX 

26.5 200 9.0 50 CEX 

 

experiments. Three pairs of stock buffers were prepared: (1) 20 mM tris-HCl, 20 mM tris-base; 

(2) 20 mM tris-HCl and 50 mM monobasic phosphate, 20 mM tris base and 50 mM dibasic 

phosphate; (3) 20 mM tris HCl and 50 mM acetic acid, 20 mM tris base and 50 mM sodium 

acetate. The buffers given in Table 1 were prepared by titrating the required volume of each pair 

of buffers to obtain the desired pH and adding the appropriate mass of NaCl. 

pMVM (Minute Virus of Mice prototype strain) and mouse A9 fibroblasts were 

purchased from ATCC (Manassas, VA, USA). High glucose DMEM media, DMEM containing 

trypsin/EDTA and fetal bovine serum were obtained from HyClone, a division of Thermo Fisher 

Scientific (Waltham, MA, USA). A9 cells were thawed and expanded into multiple T-150 

culture flasks using high glucose DMEM media with 10% FBS and 100 μg/mL penicillin. Cell 

culture was performed in jacketed incubators (non-infected and infected cultures in separate 

incubators) at 37°C with 10% CO2. Cultures were expanded and grown to ~ 80% confluence at 
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which point infection with MVM was performed. Infection was accomplished by discarding old 

growth media from culture (cells were adherent) and incubating cells at 37 C for 10 minutes in 1 

mL DMEM containing 1×10
10

 – 1×10
11

 virus particles/mL for an MOI (multiplicity of infection) 

of greater than 1000 assuring efficient infection. An additional 34 mL of DMEM media (as 

described above) were added to the cultures after the 10 min incubation for a total 35 mL culture 

volume. A 6 day infection propagation period was found to be suitable for complete 

infection/propagation, which consistently yielded MVM titers of 1×10
10

 – 1×10
11

 particles/mL. 

2.3.3 Assays 

Quantification of MVM was accomplished through a quantitative PCR (QPCR) assay 

(Ros et al., 2002, Klee et al., 2006; Wickramasinghe et al. 2010). iQ SYBR green w/ fluorescein 

master mix was purchased from BioRad (Hercules, CA, USA). Forward (5’ 

GACGCACAGAAAGAGAGTAACCAA 3’) and Reverse (5’ 

CCAACCATCTGCTCCAGTAAACAT 3’) primers were purchased with standard desalting 

purification from IDT (Coralville, IA, USA). RQ1 DNase enzyme and buffer was purchased 

from Promega (Madison, WI, USA). QPCR was performed on a BioRad iQ5 real-time PCR 

system with iQ5 optical system software v2.0.  

QPCR runs were performed in unskirted, low-profile 96-well PCR plates (BioRad) with 

polypropylene microseal ‘B’ adhesive sealers with 20 μL per reaction. The reaction recipe was 

taken directly from the iQ SYBR Green master mix instructions (given per reaction): 10 μL 

SYBR Green master mix, 8.2 μL distilled water, 0.4 μL forward primer (final 100 nM), 0.4 μL 

reverse primer (final 100 nM), and 1 μL sample. MVM standards were created by PCR 

amplification of a highly conserved 501bp portion of the MVM genome using the above 

mentioned primers and capturing the PCR product in the pCR2.1-TOPO plasmid using a 
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Invitrogen TOPO TA Cloning kit (Life Technologies, Carlsbad CA). Standards ranging from 

1×10
9
 copies/μL to 1×10

2
 copies/μL were created by serial dilution of the Maxi-prepped 

(Qiagen, Valencia, CA, USA) cloned PCR product. Annealing temperature was determined 

through temperature gradient runs and melt curve analysis; 57°C resulted in a single dominant 

melt curve. The initial PCR cycle was 95°C for 10 min, which functioned to open virus particles, 

denature DNA, and inactivate RQ1 DNase. Then 45 cycles of the following were repeated: 

denaturing at 95°C for 15 s, primer annealing at 57°C for 10 s, elongation at 72°C for 45 s, and 

an additional 10 s at 72°C to collect the real-time fluorescence data. 

The QPCR assay limit of detection was determined by serially diluting the 1×10
2
 

copies/μL standard 2X until a sample with 1 copy/μL was reached. Samples were run in 

triplicate on a single plate following the above protocol. This plate was repeated 2 additional 

times for 3 total replicate plates and a total of 9 replicates per sample. Limit of detection was 

determined at 95% confidence by Probit analysis using Minitab statistical software. The limit of 

detection was determined to be 14 copies/μL. 

Prior to transferring to the QPCR plate, virus-containing samples (1 μL) were pipetted 

into 96-well plates containing 9 μL of DNase solution (1 μL RQ1 DNase, 1 μL 10X DNase 

buffer, and 7 μL of dH2O). The DNase step provided assurance that the QPCR assay would only 

quantify complete viral particles and not naked viral DNA that would not be infective. These 

plates were sealed and incubated at 37°C for 40 min. 1 μL each of the DNase treated samples 

were pipetted into a BioRad PCR plate with 19 μL of iQ SYBR Green master mix with primers 

(described above). Eight standards were run with every plate (1×10
2
 – 1×10

9
 copies/μL) from 

which a linear standard curve was constructed to quantify unknown samples. All samples were 

run in duplicate. 
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2.3.4 Virus Clearance 

All membrane adsorber evaluation runs were performed on an AKTA FPLC (GE 

Healthcare Bio-Sciences Corp, Piscataway, NJ, USA) with FRAC-950 fraction collector using 

the associated Unicorn software v. 5.1. Conductivity, absorbance at 280 nm, backpressure, and 

temperature were recorded. Prior to testing, all membrane modules were wet with running buffer 

according to the manufacturers’ instructions. The FPLC system was flushed with water followed 

by running buffer prior to attachment of the membrane module. Membranes were installed with a 

slow flow rate (~1 MV/min) in the bottom-to-top or reverse direction to minimize the possibility 

of air entering the membrane devices. Equilibration of the devices was accomplished at flow 

rates (4 – 20 MV/min) in top-to-bottom or forward direction for 20 membrane volumes or until 

the conductivity and UV absorbance at 280 nm were stable. After the membranes were 

equilibrated, the buffer was spiked with a 1:100 dilution of MVM virus stock. Spiking was 

performed immediately prior to loading to minimize any buffer effects on the virus. MVM 

challenge titers for all runs were between 10
8
 and 10

9
 virus particles/mL. 

Virus-spiked load volumes were normalized to 500 mL per mL of membrane with the 

Sartobind Q, Mustang Q, and ChromaSorb having volumes of 1 mL, 0.35 mL, and 0.08 mL, 

respectively. During the load step, effluent was collected in 10 equal volume fractions. Virus 

concentration was determined for all fractions. After virus loading, the membranes were washed 

with at least 20 membrane volumes of running buffer. 

2.3.5 Membrane Characterization 

Membranes were imaged using field-emission scanning electron microscopy (FESEM) 

(Model JSM-6500F, Waltham MA, USA) and analyzed using X-ray photoelectron spectroscopy 

(XPS) (2000 Physical Electronics 5800 ultrahigh vacuum XPS-Auger spectrometer, Chanhassen, 
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MN, USA). The equilibrium ion-exchange capacities of the membrane adsorbers were 

determined by titration. Membrane samples were prepared by soaking them overnight in excess 

0.5 N NaOH, washing with distilled water until the pH was that of the distilled water, and 

soaking overnight in 2 M NaCl. Next the solution was titrated with 0.01 N HCl. The ion-

exchange capacity is defined as the number of OH- ions per surface area. Membrane geometries 

as specified by the manufactures were: Sartobind Q; cylindrically wound 15-layer membrane 

about 36 cm
2
 surface area; Mustang Q; 1.8 cm diameter stack of 10 membranes surface area 

about 24 cm
2
; ChromaSorb; 1.5 cm diameter stack of 8 membranes, surface area about 14 cm

2
. 

 

2.4  Results and Discussion 

Figure 2.1 gives the equilibrium ion-exchange binding capacities for the membrane 

adsorbers. All measurements were conducted in triplicate using membranes from different lots. 

Average results are given. ChromaSorb showed a 4-fold higher static binding capacity than 

Sartobind Q and a 12-fold higher capacity than Mustang Q. While Sartobind Q and Mustang Q 

contain quaternary amine based anion-exchange ligands, ChromaSorb contains polyallylamine 

(primary amine based ligands) (Woo et al. 2011).  

Figure 2.2 gives FESEM images for the three membrane adsorbers. All three membrane 

adsorbers possess a very open structure that gives rise to high permeability and rapid convective 

flow through the membrane pores, which appear to range from 0.5 to 3 µm. According to the 

manufacturers, Sartobind Q consists of a base regenerated cellulose membrane, nominal pore 

size 3 µm; Mustang Q consists of a polyethersulfone membrane, nominal pore size 0.8 µm; 

ChromaSorb consists of a polyethylene base membrane, nominal pore size 0.65 µm. 
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Figure 2.1: Static binding capacity Sartobind Q, Mustang Q and ChromaSorb 

 

 

High resolution XPS spectra for nitrogen for all three membranes indicate the presence of 

primary amine (400 eV) and quaternary amine (402 eV) peaks (Liu et al. 2006). For Sartobind Q 

(Figure 2.3A) only a quaternary amine peak is detected; while for ChromaSorb (Figure 2.3C), 

only a primary amine peak is present. Though the manufacturer describes Mustang Q as 

containing quaternary amine based ligands, Figure 2.3B suggests some primary amines are also 

present at the membrane surface. This is probably a result of the monomer species and the 

linker/coupling chemistry used (Johansson et al., 2003). 

Table 2.2 gives log virus reduction (LRV) for the anionic buffer set of experiments. The 

results are given in order of increasing conductivity. LRV is defined as log(total virus loaded) - 

log (virus in all 10 fractions plus in the wash). Limit of detection based on 1 µL samples, and 

accounting for dilution in DNase solution, was 1.4 × 10
5
 virus particles/mL. Thus, LRV values 
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Figure 2.2: FE-SEM images of membranes. Figures A,D,G (1000 X) and B,E,H (10,000X) give 

images of the Sartobind Q, Mustang Q and ChromaSorb membranes. Figures C,F,I (1000X) give 

cross sectional images of the Sartobind Q, Mustang Q and ChromaSorb membranes, 

respectively. 

 

where the virus titer was below limit of detection are given as greater than (>) limit of detection. 

Uncertainty values for LRV above the level of detection represent 1 standard deviation.  

As pore diffusional resistance is minimized in membrane adsorbers, a constant dynamic 

capacity over a large range of flow rates is frequently observed (Specht et al., 2005; Han et al., 

2005). Though experiments were conducted at flow rates between 4 and 20 MV/min, Table 2.2 

indicates that for conductivities up to 14.4 mS/cm, all three adsorbers displayed virus clearance 

greater than limit of detection. Since the pI of MVM is 5-6 (Anouja, F. et al. 1997), MVM is 

negatively charged at the pH values tested here. Consequently, given the limited data below the 

limit of detection, it was not possible to determine the effect of flow rate on MVM clearance. 
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Figure 2.3: XPS N1s high-resolution region scans from top-to-bottom: Sartobind Q, Mustang Q, 

and ChromaSorb. Counts are plotted against binding energy. 

 

At conductivities above 14.4 mS/cm, Mustang Q gives very low LRV. Sartobind Q 

displays LRV above the limit of detection for conductivities up to 21.4 mS/cm and pH above 7.5. 

Salts in solution shield charges between the virus particles and quaternary amine ligands, leading 

to the lower observed capacities at higher conductivities. Figure 2.1 indicates that Mustang Q has 
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Table 2.2: MVM removal results from the anionic buffer set of experiments. > indicates virus 

titers were below level of detection. LRV-S, LRV-M and LRV-C refer to LRV for Sartobind Q, 

Mustang Q and ChromaSorb, respectively. Errors represent one standard deviation with n = 2. 

 

Conductivity 

(mS/cm) 

NaCl 

(mM) 

pH Flow Rate 

(MV/min) 

LRV-S LRV-M LRV-C 

6.0 50 9.0 4 > 3.58 > 3.25 > 3.70 

6.0 50 9.0 20 > 3.47 > 3.25 > 4.01 

7.2 50 7.5 4 > 3.57 > 3.25 > 4.06 

7.2 50 7.5 20 > 3.54 > 3.25 > 4.04 

14.4 125 8.25 12 > 3.55 > 3.25 > 4.12 

21.4 200 9.0 4 > 3.52 1.17 ± 

0.00 

> 3.70 

21.4 200 9.0 20 > 3.47 1.00 ± 

0.07 

> 3.95 

22.0 200 7.5 4 0.98 ± 

0.05 

1.62 ± 

0.01 

> 3.71 

22.0 200 7.5 20 1.65 ± 

0.04 

1.28 ± 

0.02 

> 4.03 

 

 

a lower static capacity compared to Sartobind Q, which could explain the compromised virus 

clearance at 200 mM NaCl, regardless of pH. 

ChromaSorb displays virus clearance in excess of the limit of detection at all 

conductivities tested. As indicated in Figure 2.1, the static binding capacity of ChromaSorb is 

much higher, which could partially explain the higher capacity at higher salt concentrations. 

Since quaternary amines are much stronger anion exchangers than primary amines, they are more 

effective at low ionic strength. The presence of alkyl groups attached directly to the nitrogen 

atom prevents any secondary hydrogen bonding interactions in these systems. In contrast, the 

hydrogen atoms of primary amines can lead to secondary, hydrogen bonding interactions that 

result in higher capacities for primary amine based ligands at high salt concentrations where 

Coulombic interactions are diminished (Johansson et al. 2003). Consequently, the capacity of the 

ChromaSorb remains high at all conductivities tested. Figure 2.3B indicates that the Mustang Q 
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also displays a primary amine peak. However, the much lower static capacity of the Mustang Q 

may explain the low capacity at higher conductivities. 

Table 2.3 gives virus clearance data for the cationic buffer set of experiments arranged in 

order of increasing conductivity. As was the case for the anionic buffer set of experiments, the 

effect of flow rate on virus clearance cannot be determined. The difference between the anionic 

and cationic buffer set of experiments is the presence of phosphate and acetate ions, as well as an 

expanded pH range. The binding capacities of Sartobind Q and Mustang Q are affected strongly 

by conductivity, in agreement with the results in Table 2.2. Mustang Q, unlike Sartobind Q, 

shows a large decrease in capacity at pH 6.0 and conductivities of 6.0 or 22.6 mS/cm. This result 

is most likely due to the lower static binding capacity for Mustang Q. As was the case in Table 

2.2, uncertainty values for LRV above the level of detection represent 1 standard deviation. 

While the accuracy of the standard deviation is limited given that only two runs were conducted 

for each condition, the uncertainties do indicate if differences in LRV are likely to be significant. 

Table 2.3 indicates that the presence of phosphate ions has a detrimental effect on the 

ChromaSorb binding capacity. Phosphoric acid has three pKa values: 2.3, 7.2, and 12.1. 

Consequently, at pH 6.0 most of the phosphate will be present as H2PO4
-
, while at pH 7.5 and 

9.0 most will be present as HPO4
2-

. When the phosphate is present as HPO4
2-

 it has the greatest 

reduction on the static binding capacity of the ChromaSorb. Since phosphate is doubly charged 

and can form strong hydrogen bonding interactions with the H atoms attached to the primary 

amine it will preferentially bind to the primary amine. Further the presence of a double 

negatively charged phosphate will tend to repel negatively charged MVM particles. 

Consequently a significant decrease in MVM binding capacity is observed. At pH 6.0, the singly 

charged dihydrogen phosphate ion has a much lower effect on capacity. In fact, at a conductivity 
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Table 2.3: MVM removal results from the cationic buffer set of experiments. > indicates virus 

titers were below level of detection. LRV-S, LRV-M and LRV-C refer to LRV for Sartobind Q, 

Mustang Q and ChromaSorb, respectively. Errors represent one standard deviation with n = 2. 

 

Conductivity 

(mS/cm) 

NaCl 

(mM) 

pH Flow Rate 

(MV/min) 

Phosphate 

(mM) 

LRV-S LRV-M LRV-C 

0.5 0 9.0 4 0 > 3.37 > 3.36 > 3.21 

2.3 0 6.0 20 0 > 3.23 > 3.37 > 3.21 

6.0 0 6.0 4 50 > 3.26 2.81 ± 

0.01 

> 3.21 

7.6 0 9.0 20 50 > 3.16 > 3.34 1.12 ± 

0.02 

14.6 100 7.5 12 25 2.76 ± 

0.05 

2.02 ± 

0.07 

1.95 ± 

0.13 

21.4 200 9.0 20 0 > 3.26 1.35 ± 

0.03 

> 3.16 

22.6 200 6.0 4 0 2.53 ± 

0.05 

1.34 ± 

0.04 

> 3.21 

23.7 200 9.0 20 50 (Acetate) 0.64 ± 

0.07 

0.21 ± 

0.04 

> 3.11 

25.4 200 6.0 20 50 1.23 ± 

0.03 

1.57 ± 

0.01 

2.49 ± 

0.26 

26.5 200 9.0 4 50 0.92 ± 

0.02 

1.24 ± 

0.06 

1.34 ± 

0.01 

 

 

of 6.0 mS/cm, the LRV for the ChromaSorb is above the limit of detection. At a conductivity of 

25.4 mS/cm, pH 6.0 and 50 mM phosphate, ChromaSorb shows a slight decrease in MVM 

binding capacity, probably due to combination of charge screening and competitive binding with 

dihydrogen phosphate ion. 

The strong base quaternary amine ligands of Sartobind Q and Mustang Q are much less 

affected by the presence of the doubly charged hydrogen phosphate ion at pH 9.0. The major 

contributor to the decrease in MVM binding is due to charge shielding at higher conductivities. 

The presence of acetate ions has no effect on the binding capacity of the ChromaSorb device. In 

the case of Sartobind Q and Mustang Q it is again the conductivity of the solution that affects 
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MVM capacity. Like dihydrogen phosphate, acetate is singly charged. Consequently the capacity 

of the ChromaSorb is unaffected by the presence of 50 mM acetate. 

Interestingly for Sartobind Q and Mustang Q, at pH 9.0 in the presence of 200 mM NaCl 

the addition of acetate instead of phosphate leads to a greater decrease in LRV. These differences 

between the behavior of the primary amine and quaternary amine are most likely due to the fact 

that the quaternary amine acts as a pure ion exchange ligand. The primary amine on the other 

hand, is affected by acid base interactions. In particular, here the interactions will be affected by 

the acidity of the conjugate base of the primary amine and the basicity of the acetate and 

phosphate species present. Improved membrane adsorber performance may be achieved by 

diafiltering the feed in order to exchange the feed buffer and optimize the ionic strength however 

this will add to the purification cost and reduce product recovery. 

Breakthrough curves for all three membrane adsorbers are given in Figure 2.4. For 

Sartobind Q and Mustang Q the feed consisted of 200 mM NaCl, pH 7.5 and a flow rate of 4 

MV/min. Since the ChromaSorb did not show virus breakthrough at this condition, breakthrough 

behavior at 100 mM NaCl, 25 mM phosphate, pH 7.5, and flow rate 12 MV/min are presented. 

Breakthrough occurs for all three membrane adsorbers after 50 MV of feed have passed through 

the membrane. However, the concentration in the flow through is low and even after 500 MV is 

still less than 15% of the feed concentration. Similar behavior has been observed by others for 

adsorption of virus (Wickramasinghe et al. 2006), proteins (Yang and Etzel, 2003) and plasmid 

DNA (Endres et al. 2003). The slow approach to the feed concentration in the flow through has 

been explained using the ‘car parking’ model (Talbot et al. 2000). Since MVM particles are large 

and attach randomly to ligands, geometric blockage, steric hindrance and charge repulsion will 

slow the rate of binding as surface coverage increases. This effect is greatest when the solute  
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Figure 2.4: Normalized effluent virus concentration (C divided by feed concentration C0) versus 

dimensionless volume (effluent volume / membrane volume). For Sartobind Q and Mustang Q, 

the feed buffer consisted of 20 mM Tris, 200 mM NaCl, pH 7.5, 4 MV/min. For ChromaSorb, 

the feed buffer consisted of 20 mM Tris, 100 mM NaCl, 25mM phosphate, pH 7.5, 12 MV/min 

run. Symbols are as follows: Mustang Q (■), Sartobind Q (●), ChromaSorb (▲). 

 

 

species is large relative to the spacing between the binding sites. After breakthrough occurs, the 

flow through concentration remains low relative to the feed concentration. 

Comparing Figure 2.4 and Figure 2.1 indicates that the flow through concentration for the 

Mustang Q is the lowest though it has the lowest ion-exchange binding capacity. Since MVM 

particles are much larger than OH
-
 ions, the capacity of the three membrane adsorbers for MVM 

could be very different if a large number of ligands are unavailable for MVM binding due to 

steric hindrance and steric exclusion. 
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The three membrane adsorbers tested here contain different base membranes with 

different nominal pore sizes. Thus, in addition to ligand chemistry, optimization of the 

membrane pore structure and three dimensional arrangement of the ion-exchange ligands are 

important factors to consider for maximizing virus capture. Stacking multiple membranes (in a 

radial flow configuration) will modify the ‘effective’ pore size through the membrane. Further, 

the membrane pore surface should be covered with an open, three-dimensional layer of ion-

exchange ligands. Models that describe attachment of virus particles to the membrane surface 

indicate that the spacing of the ion-exchange groups relative to the size of the adsorbed species is 

important. Finally, development of primary amine based ion-exchange ligands that are effective 

at high conductivities will require appropriate substitution of groups capable of forming 

secondary interactions with MVM particles near the cationic sites. 

 

2.5 Conclusions 

A comprehensive evaluation of virus removal capability of leading commercial anion-

exchange membrane adsorbers has been conducted. The capacity for binding MVM is severely 

compromised at higher conductivities for quaternary amine based membrane adsorbers such as 

Sartobind Q and Mustang Q. The binding capacity of the primary amine based ChromaSorb is 

far less sensitive to conductivity of the feed solution. However, it is severely compromised by 

the presence of competing hydrogen phosphate ions. Membrane adsorbers like ChromaSorb that 

contain primary amine based ligands make use of secondary interactions to maintain a high 

capacity at high feed conductivities. Consequently, the presence of ions that also are capable of 

forming hydrogen bonds with the primary amine groups will have a detrimental effect on the 

capacity. 
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Maximizing the capacity of anion exchange membrane adsorbers for capture of large 

contaminants such as virus particles will require optimization of the membrane pore structure 

and the three dimensional arrangement of the ion-exchange groups. Maximizing the density of 

ion-exchange groups alone will not necessarily maximize capacity, as capture of large virus 

particles can lead to steric hindrance and steric exclusion effects that render a number of the ion 

exchange groups inaccessible. 
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Chapter 3 

 

 

 
Anion Exchange Membrane Adsorbers for Flow-through Polishing Steps:          

Part II. Virus, Host Cell Protein, DNA Clearance, and Antibody Recovery
1
 

 

 

3.1 Summary 

Anion exchange membrane adsorbers are used for contaminant removal in flow-through 

polishing steps in the manufacture of biopharmaceuticals. This contribution describes the 

clearance of Minute Virus of Mice, DNA and host cell proteins by three commercially available 

anion exchange membranes: Sartobind Q, Mustang Q, and ChromaSorb. The Sartobind Q and 

Mustang Q products contain quaternary amine ligands; whereas, ChromaSorb contains primary 

amine based ligands. Performance was evaluated over a range of solution conditions: 0-200 mM 

NaCl, pH 6.0-9.0, and flow rates of 4-20 membrane volumes/min in the presence and absence of 

up to 50 mM phosphate and acetate. In addition contaminant clearance was determined in the 

presence and absence of 5 g/L monoclonal antibody. 

The quaternary amine based ligands depend mainly on Coulombic interactions for 

removal of negatively charged contaminants. Consequently, performance of Sartobind Q and 

Mustang Q was compromised at high ionic strength. Primary amine based ligands in 

ChromaSorb enable high capacities at high ionic strength due to the presence of secondary, 

hydrogen bonding interactions. However, the presence of hydrogen phosphate ions leads to  

________________________ 
1
Weaver, J., Husson, SM., Murphy, L., Wickramasinghe, SR. 2013. Anion Exchange Membrane Adsorbers for 

Flow-through Polishing Steps: Part II. Virus, Host Cell Protein, DNA Clearance and Antibody Recovery, Biotechnol 

Bioeng. 110(2): 500 – 510 
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reduced capacity. Monoclonal antibody recovery using primary amine based anion-exchange 

ligands may be lower if significant binding occurs due to secondary interactions. The removal of 

a specific contaminant is affected by the level of removal of the other contaminants. The results 

of this study may be used to help guide selection of commercially available membrane absorbers 

for flow-through polishing steps. 

 

3.2  Introduction 

Membrane adsorbers or membrane chromatography has been proposed as an alternative 

to packed bed chromatography for many years (Klein, 2000). Today membrane adsorbers are 

used in the biopharmaceutical industry in ‘flow-through’ polishing steps (Knudsen et al. 2001, 

Zhou et al. 2006, Boi, 2007, Zhou and Tressel 2006, Zhou et al 2008a, Zhou et al. 2008b, 

Shirataki et al. 2011). Anion exchange membranes are used to bind large contaminant species: 

virus particles, host cell proteins and DNA during the manufacture of monoclonal antibodies 

(mAbs). The feed pH is typically greater than 7.0. Under these conditions the contaminant 

species are negatively charged but the mAb is positively charged. 

Frequently ligands containing quaternary amine groups are used to produce strong anion 

exchange membrane adsorbers e.g. Sartobind Q® (Sartorius AG, Göttingen, Germany), Mustang 

Q® (Pall Corporation, Port Washington, NY, USA). The conductivity of the feed stream is kept 

low to prevent a reduction in capacity due to interference in the electrostatic interactions between 

the ammonium ions and the negatively charged impurities. Alternative ligands that make use of 

secondary hydrophobic and hydrogen bonding interactions between the target species and the 

ligand can maintain high capacity at high salt concentrations (Yang et al. 2007). Johansson et al. 

(2003) indicate that primary and secondary amine based ligands display high capacities at high 
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salt concentrations. The presence of hydrogen atoms attached directly to the amine group as well 

as hydroxyl groups near the amine group lead to secondary hydrogen bonding interactions. 

Recently primary amine based anion-exchange membranes have been commercialized. 

ChromaSorb (Millipore Corporation, Billerica, MA, USA) uses a polyallylamine ligand (Woo et 

al. 2011). Sartobind STIC also uses a primary amine ligand. 

Here the performance of three anion exchange membrane adsorbers: Sartobind Q and 

Mustang Q which contain quaternary amine ligands and the ChromaSorb which contains primary 

amine ligands has been compared. In Chapter 2 of this thesis (Weaver et al. 2012), we examined 

the performance of Sartobind Q, Mustang Q, and ChromaSorb membrane adsorbers for clearance 

of Minute Virus of Mice (MVM), an 18-22 nm parvovirus recognized by the FDA as a model 

viral impurity. The capacities of the Sartobind Q and Mustang Q were very sensitive to 

conductivity. At feed conductivities above 20 mS/cm, a significant decrease in capacity was 

observed. ChromaSorb was much less sensitive to conductivity; however, the presence of 

hydrogen phosphate ions led to a significant decrease in capacity. 

Here in Chapter 3, we report the capacities of Sartobind Q, Mustang Q and ChromaSorb 

for simultaneous removal of MVM, host cell proteins and DNA, as well as recovery of a mAb 

over a range of operating conditions. Since the anion exchange polishing step can follow anion 

or cation exchange packed bed chromatography, two different sets of experiments, were 

conducted using an anionic buffer set and a cationic buffer set to represent the feed stream after 

anion- and cation-exchange chromatography, respectively. 

The pI of MVM and DNA is 5-6 (Anouja, 1997) and 5.0 (Cai et al. 2006) respectively. 

Host cell proteins exhibit a range of isoelectric points. Removal of these proteins based purely on 

electrostatic interactions will only occur if they are negatively charged. Removal of MVM, host 
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cell proteins and DNA will depend on competitive binding among the different contaminant 

species present. In this study, capacities have been determined over a range of feed 

conductivities, pH and flow rates. The effects of phosphate and acetate ions in the feed stream 

also have been studied. 

Removal of MVM, host cell proteins and DNA in the presence of a mAb with a pI of 7.1 

also has been investigated. Since the mAb has a low pI when the feed pH is close to or above the 

pI of the mAb, significant binding of the mAb was expected. The results obtained here indicate 

the effect of changes in operating conditions on competitive binding among different 

contaminant species and the mAb. 

 

3.3  Experimental 

3.3.1 Experimental Design 

The anionic and cationic buffer sets represent the feed stream after anion- and cation-

exchange chromatography, respectively. The anionic buffer set of experiments was a full-

factorial design containing three variables: NaCl concentration (0, 200 mM), pH (7.5, 9.0), and 

flow rate (4, 20 membrane volume/min (MV/min)). Two centerpoint runs were included: 125 

mM NaCl, pH 8.25, 12 MV/min flow rate. All runs were conducted in duplicate.  

The cationic buffer set of experiments was a half-factorial design containing four 

variables: NaCl concentration (0, 200 mM), pH (6.0, 9.0), phosphate concentration (0, 50 mM) 

and flow rate (4, 20 MV/min). Since negatively charged buffer species are commonly present in 

the eluate from cation-exchange chromatography, the effect of phosphate (50 mM) was 

investigated. Two centerpoint runs (100 mM NaCl, pH 7.5, 12 MV/min flow rate, 25 mM 

phosphate) and a run using conditions that resulted in poor binding for the ChromaSorb (200 
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mM NaCl, pH 9.0, 50 mM phosphate) where phosphate was replaced by 50 mM acetate also 

were conducted. 

3.3.2 Materials 

Sartobind Q Nano 1 mL devices (Sartorius-Stedim Biotech), Mustang Q 0.35 mL coins 

(Pall Corporation) with stainless steel housing, and ChromaSorb 0.08 mL devices (Millipore) 

were obtained via gracious donations from each company. All buffer chemicals (tris-base, tris-

HCl, NaCl, NaH2PO4 (monohydrate), Na2HPO4 (anhydrous), glacial acetic acid, and sodium 

acetate trihydrate) were purchased from JT Baker (Phillipsburg, NJ, USA). Three pairs of stock 

buffers were prepared: (1) 20 mM tris-HCl, 20 mM tris-base; (2) 20 mM tris-HCl and 50 mM 

monobasic phosphate, 20 mM tris base and 50 mM dibasic phosphate; (3) 20 mM tris HCl and 

50 mM acetic acid, 20 mM tris base and 50 mM sodium acetate. Feed buffers were prepared by 

titrating the required volume of each pair of buffers to obtain the desired pH. Thus all buffers 

contained 20 mM tris. Further details are given in Chapter 2 of this thesis (Weaver et al., 2012). 

MVM prototype strain (pMVM) and mouse A9 fibroblast cells were purchased from 

ATCC (Manassas, VA, USA). pMVM stocks were expanded in house by growing A9 cells to 

~80% confluence in T-150 flasks and infection at an MOI of greater than 1000 as described 

earlier (Weaver et al., 2012). Briefly, A9 cells were expanded in high-glucose DMEM media 

with L-glutamine (Hyclone, Waltham, MA, USA) supplemented with 10% fetal bovine serum 

(FBS) and 100 μg/mL penicillin. MVM propagation and purification conditions have been 

described earlier (Weaver et al., 2012). Briefly, infected cultures (> 80% confluent) were 

maintained at 37ºC and 10% CO2 for 6 days at which point virus was crudely purified from 

supernatant by three freeze/thaw cycles and centrifugation followed by 0.22 μm filtration. 
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Chinese Hamster Ovary Host Cell Protein (CHOP), DNA and purified human IgG4 

monoclonal antibody (mAb), pI 7.1, were provided by Eli Lilly (Indianapolis, Indiana, USA). 

CHOP and DNA stock was prepared by growing a null CHO culture (CHO cells not expressing a 

recombinant protein). The cells were lysed via freeze/thaw and filtered through a 0.22 μm filter. 

The resulting supernatant contained a concentrated stock of both CHOP and DNA closely 

resembling impurities encountered in typical process conditions. The mAb was provided at a 

concentration of 71 g/L in a buffer containing low concentrations of citrate, surfactant, and NaCl 

at a pH of 6.7. 

3.3.3 Assays 

Quantitative PCR was used to quantify the number of copies of viral genomes present in 

each effluent fraction, and, therefore, the number of virus particles using a BioRad (Hercules, 

CA, USA) iQ5 real-time PCR system with iQ5 optical system software v2.0. Free viral DNA 

was digested with DNAse prior to QPCR, while encapsulated viral DNA was protected from 

digestion allowing QPCR to give a highly accurate virus particle count. iQ SYBR Green master 

mix (BioRad) provided the reaction buffer, free nucleotide triphosphates, DNA polymerase, and 

fluorescent SYBR Green intercalating dye. 1 μL of sample was assayed in each well of a 96-well 

plate; samples were run in duplicate. Samples were diluted 1:10 in wells containing DNAse. 1 

μL of this solution was then transferred to wells containing water, iQ SYBR Green master mix, 

and primers. Primers and PCR conditions have been reported (Weaver et al. 2012). Briefly a 

forward primer 5’ GACGCACAGAAAGAGAGTAACCAA 3’ and reverse primer 5’ 

CCAACCATCTGCTCCAGTAAACAT 3’ were used. PCR conditions were as follows: 1) Initial 

step of 95 ºC for 10 min to inactivate DNAse and open viral capsids. 2) 95 ºC for 15 s. 3) 57 ºC 

for 10 s. 4) 72ºC for 45 s, followed by another 10 seconds for fluorescence data collection. Steps 
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2–4 were repeated 44 times for 45 total cycles. DNA concentration and therefore MVM 

concentration was determined by plotting on a standard curve based on 10
2
 – 10

9
 copies/μL. 

CHOP was quantified using a commercial CHO HCP ELISA kit (Cat No. F015) 

purchased from Cygnus Technologies (Southport, NC, USA). The “High-Sensitivity Protocol” 

was performed as described in the product insert. Limit of detection was determined to be 1 

ng/mL. CHOP ELISA 96-well plates were analyzed on a BioRad Benchmark Plus 

spectrophotometric microplate reader with Microplate Manager 5.2 software. 

DNA was quantified using a PicoGreen fluorescence assay kit (Cat No. P11496) 

purchased from Life Technologies (Carlsbad, CA). PicoGreen is an intercalating dye, which, like 

SYBR Green, only binds to double-stranded DNA. The PicoGreen assay was performed using 

96-well flat-bottom plates (USA Scientific, Ocala, FL, USA) using a BioTek (Winooski, VT, 

USA) FLx800TBIE fluorescence microplate reader with Gen5 software. The limit of detection of 

the picogreen assay was 250 pg/mL. DNA removal for runs with mAb present was not 

determined, as the mAb interfered with the picogreen assay. 

The mAb concentration was measured using standard absorbance at 280 nm on a 

Genesys 10 UV-Vis Spectrophotometer (Thermo Scientific, Waltham, MA, USA). Beer’s law 

was used to derive concentrations using an extinction coefficient of 1.4 ml*(mg*cm)
-1

. 

3.3.4 Contaminant Clearance 

All ion-exchange membranes were tested using an AKTA FPLC (GE Healthcare, 

Piscataway, NJ, USA) with a FRAC-950 fraction collector controlled by Unicorn software v. 5.1. 

Membranes were installed on the FPLC system, wetted, and equilibrated as described earlier 

(Weaver et al. 2012). Load material was prepared by spiking equilibration buffer 1:100 with 

MVM stock and 1:1000 or 1:2000 with CHOP/DNA stock producing load conditions with 
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approximately 1×109 MVM particles/mL, 100-200 ng/mL CHOP, and 40-80 ng/mL DNA. Runs 

with mAb involved spiking mAb to give a concentration of 5 g/L. These runs contained less than 

1 mM citrate and less than 0.001% Tween 80, as they were present in the mAb stock solution. 

Contaminant spiked load volumes were normalized to 500 mL per mL of membrane with 

the Sartobind Q, Mustang Q and ChromaSorb having volumes of 1 mL, 0.35 mL and 0.08 mL 

respectively. Each run effluent was collected in 10 fractions of identical volume. MVM, CHOP 

and DNA were determined in each fraction. For runs conducted with mAb, the mAb 

concentration also was determined in each fraction. After loading, the membranes were washed 

with at least 20 membrane volumes of running buffer. Impurity and mAb spikes were performed 

immediately prior to loading to minimize solution effects on impurities/mAb. Each set of 

experiments, anionic and cationic buffer sets were conducted twice, in the presence and absence 

of the mAb. 

 

3.4 Results and Discussion 

Table 1 gives log virus reduction (LRV) for the anionic buffer set of experiments. The results are 

presented in order of increasing buffer conductivity. LRV is defined as log(total virus loaded) - 

log(virus in all 10 fractions plus in the wash). The limit of detection based on 1 µL samples and 

accounting for dilution in DNase solution was 1.4 × 10
5
 virus particles/mL. Consequently, LRV 

values where the virus titer was below the limit of detection are given as greater than (>) the 

limit of detection. Results are given in the presence and absence of the mAb. The two centerpoint 

runs have a conductivity of 14.4 mS/cm. The difference in LRV for the two centerpoint runs in 

the presence of the mAb gives an indication of the variability of the LRV results. In addition for 

each run, uncertainty values which represent ± 1 standard deviation are included. However given 
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that only two repeat runs were conducted, the accuracy of the standard deviation is limited. The 

largest value of the standard deviation is 0.41 log units (e.g. Table 3.2, conductivity 14.6 

mS/cm). Thus differences in LRV of less than 0.4 log may not be significant. In the absence of 

the mAb, all three membrane adsorbers gave LRV greater than the limit of detection for buffer 

conductivities up to 14.4 mS/cm. Table 3.1 indicates that at higher conductivities the capacity of 

the Mustang Q decreases severely. The capacity of the Sartobind Q is less affected by 

conductivity at 21.4 mS/cm, but decreases severely at higher conductivity. The capacity of the 

ChromaSorb is unaffected by feed conductivity. 

As indicated in Chapter 2 (Weaver et al., 2012), Sartobind Q has a higher static ion-

exchange capacity than Mustang Q, which could explain the higher capacity of Sartobind Q at 

21.4 mS/cm. In addition, comparing the LRV in Table 3.1 with our earlier work in the absence of 

CHOP and DNA, the presence of CHOP and DNA leads to a slight reduction in LRV for 

Sartobind Q and Mustang Q at higher conductivities. This reduction is due to competitive 

binding between MVM and the other contaminant species. This reduction is not observed for 

ChromaSorb as it has a much higher static ion-exchange capacity and displays LRV in excess of 

the level of detection for the anionic buffer set of experiments. Our results can be explained by 

the nature of functional groups on each membrane adsorber. Quaternary amines are stronger 

anion exchangers than primary amines and, at low ionic strength, will be very effective at 

removing negatively charged contaminant species. In addition, quaternary amines function well 

at higher pH values where primary amines become neutral. However, at high conductivities, 

charge shielding between the negatively charged contaminants and quaternary amine ligands can 

occur, leading to the lower observed capacity for Sartobind Q and Mustang Q, which rely largely 

on ionic interactions. Primary and secondary amine based anion-exchange ligands on the other  
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Table 3.1: MVM clearance for anionic buffer set of experiments in the absence and presence of 

mAb. All buffers contained 20 mM Tris. LRV-C, LRV-M, and LRV-S represent log removal of 

virus for ChromaSorb, Mustang Q, and Sartobind Q, respectively. All runs were conducted in 

duplicate. Uncertainty values represent 1 standard deviation. 

 

 No mAb 5 g/L mAb 

Conductivity 

(mS/cm) 

NaCl 

(mM) 

pH Flow Rate 

(MV/min) 

LRV-S LRV-

M 

LRV-C LRV-S LRV-M LRV-C 

6.0 50 9.0 4 > 3.75 > 4.15 > 3.94 0.44 ± 

0.09 

1.44 ± 

0.25 

1.17 ± 

0.19 

6.0 50 9.0 20 > 3.73 > 3.95 > 3.94 0.27 ± 

0.11 

2.56 ± 

0.07 

1.31 ± 

0.54 

7.2 50 7.5 4 > 3.60 > 4.15 > 3.61 0.56 ± 

0.08 

2.46 ± 

0.90 

1.37 ± 

0.17 

7.2 50 7.5 20 > 3.67 > 3.95 > 3.61 0.42 ± 

0.06 

2.88 ± 

0.12 

1.50 ± 

0.07 

14.4 125 8.25 12 > 3.71 > 3.95 > 3.61 0.61 ± 

0.10 

2.73 ± 

0.15 

1.43 ± 

0.04 

14.4 125 8.25 12 > 3.71 > 3.71 > 3.61 1.04 ± 

0.02 

2.01 ± 

0.19 

1.26 ± 

0.48 

21.4 200 9.0 4 2.98 ± 

0.06 

0.64 ± 

0.39 

> 3.61 0.50 ± 

0.00 

0.90 ± 

0.15 

1.53 ± 

0.07 

21.4 200 9.0 20 3.24 ± 

0.28 

0.25 ± 

0.05 

> 3.61 0.46 ± 

0.05 

0.09 ± 

0.17 

1.47 ± 

0.23 

22.0 200 7.5 4 0.62 ± 

0.16 

0.18 ± 

0.01 

> 3.61 0.37 ± 

0.07 

0.43 ± 

0.40 

1.20 ± 

0.29 

22.0 200 7.5 20 0.52 ± 

0.11 

0.41 ± 

0.00 

> 3.61 0.39 ± 

0.42 

0.34 ± 

0.18 

1.87 ± 

0.02 

 

hand can display higher capacities at high conductivities due to secondary hydrogen bonding 

interactions. The capacity results for ChromaSorb show this behavior. 

Table 3.1 shows that the presence of 5 g/L mAb results in a significant decrease in LRV 

for all three membranes. Given the low pI of the mAb used here and its much higher 
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concentration than the contaminant species, it is expected that at all the pH values investigated in 

the anionic buffer set of experiments significant binding of the mAb occurs. This competitive 

binding lowers the capacity for all contaminant species. 

Table 3.2 gives virus clearance data for the cationic buffer set of experiments. Again 

results are presented in order of increasing feed conductivity. The two centerpoint runs have a 

conductivity of 14.6 mS/cm and the LRV values give an indication of the variability in the data. 

As was the case for Table 1, uncertainty values which represent ± 1 standard deviation are 

included. Comparing the result in Tables 3.1 and 3.2, Sartobind Q and Mustang Q give similar 

results. LRV values are high (often above the level of detection) for conductivities up to 14.4 

mS/cm. While the capacity of both Sartobind Q and Mustang Q decrease at conductivities above 

14.4 mS/cm, the Sartobind Q displays a higher capacity for feed conductivities between 14.4 and 

21.6 mS/cm, due to its higher static ion-exchange capacity. Again the presence of the mAb leads 

to a decrease in LRV. 

The ChromaSorb however behaves very differently. The presence of phosphate appears 

to have a detrimental effect on LRV which is more clearly seen in the absence of the mAb. A 

similar result was observed and discussed in Chapter 2 of this thesis. Hydrogen phosphate 

(HPO4
2-

) appears to have the greatest effect on the LRV of the ChromaSorb. When subjected to 

dihydrogen phosphate (H2PO4
-
) at pH 6.0, at low feed conductivities, the ChromaSorb displays 

high LRV. At high conductivities however the LRV is significantly reduced. The same trends 

were observed in the absence of CHOP and DNA (Weaver et al. 2012). The lower LRV at high 

conductivity is probably due to the large number of competing species present. 

Replacing hydrogen phosphate ions by acetate ions at high conductivity, a LRV above 

level of detection is again obtained for the ChromaSorb in the absence of the mAb. However for 
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the two quaternary amine based membrane adsorbers, the LRV is similar in the presence of 

phosphate or acetate. A similar trend was obtained for clearance of MVM in the absence of 

CHOP and DNA (Weaver et al. 2012). These differences are most likely due to the fact that the 

quaternary amine acts as a pure ion exchange ligand. The primary amine on the other hand, is 

affected by acid base interactions. Here the interactions will be affected by the acidity of the 

conjugate base of the primary amine and the basicity of the acetate and phosphate species 

present. The results indicate that the capacity of membrane adsorbers that contain primary amine 

ligands that display significant secondary bonding interactions can be more difficult to predict. 

 The aim of this study was to explore the effect of changes in operating condition on the 

performance of the three membrane adsorbers investigated here. Thus unlike many previous 

studies a rather large range of conditions has been tested. However as only two repeat runs were 

conducted per condition the calculated standard deviations are of limited accuracy. Thus for a 

specific set of operating conditions it will be necessary to conduct sufficient repeat runs for 

greater statistical accuracy. 

Figures 3.1-3.6 give CHOP and DNA removal data. In these figures, the abscissa gives 

buffer conditions in order of increasing conductivity. Tables 3.1 and 3.2 give the actual 

conductivities of the various buffers. Log clearance for the two centerpoint runs give an 

indication of the variability in the results. In addition the average standard deviation for all runs 

in each figure is given in the figure caption. All buffers contain 20 mM tris. 

CHOP removal is given in Figure 3.1 and 3.2 in the absence and presence of the mAb for 

the anionic buffer set of experiments. Log clearance of CHOP is defined as log(total CHOP 

loaded) - log(CHOP in all 10 fractions plus the wash). The results in Figure 3.1 indicate that 

about 2 log CHOP are removed by the ChromaSorb at all conductivities. 
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Table 3.2: MVM clearance for cationic buffer set of experiments in the absence and presence of 

mAb. All buffers contained 20 mM tris. LRV-C, LRV-M, and LRV-S represent log removal of 

virus for ChromaSorb, Mustang Q, and Sartobind Q, respectively. All runs were conducted in 

duplicate. Uncertainty values represent 1 standard deviation. 

 

 No mAb 5 g/L mAb 

Cond. 

(mS/cm) 

NaCl 

(mM) 

pH Flow Rate 

(MV/min) 

PO4 

(mM) 

LRV-S LRV-M LRV-C LRV-S LRV-M LRV-C 

0.5 0 9.0 4 0 3.67 ± 

1.22 

> 4.39 > 3.71 3.13 ± 

0.02 

0.54 ± 

0.13 

0.34 ± 

0.36 

2.3 0 6.0 20 0 3.25 ± 

0.18 

> 4.39 > 3.71 0.39 ± 

0.10 

2.93 ± 

0.00 

1.51 ± 

0.19 

6.0 0 6.0 4 50 3.61 ± 

0.18 

3.29 ± 

0.02 

3.21 ± 

0.29 

2.89 ± 

0.01 

2.33 ± 

0.05 

1.84 ± 

0.22 

7.6 0 9.0 20 50 > 3.93 > 4.39 0.49 ± 

0.24 

0.42 ± 

0.42 

0.33 ± 

0.10 

0.58 ± 

0.05 

14.6 100 7.5 12 25 3.74 ± 

1.22 

1.79 ± 

0.19 

0.58 ± 

0.08 

1.77 ± 

0.25 

0.75 ± 

0.09 

0.08 ± 

0.46 

14.6 100 7.5 12 25 3.76 ± 

1.22 

2.08 ± 

0.11  

0.49 ± 

0.18 

2.04 ± 

0.15 

0.85 ± 

0.21 

0.49 ± 

0.03 

21.4 200 9.0 20 0 3.41 ± 

1.22 

1.07 ± 

0.05 

3.64 ± 

0.26 

1.08 ± 

0.07 

0.53 ± 

0.11 

0.48 ± 

0.10 

22.6 200 6.0 4 0 0.64 ± 

0.32 

0.50 ± 

0.07 

> 3.71 1.56 ± 

0.06 

0.56 ± 

0.21 

1.46 ± 

0.33 

23.7 200 9.0 20 50 

(Ac) 

0.73 ± 

0.09 

0.31 ± 

0.01 

> 3.74 0.34 ± 

0.07 

0.49 ± 

0.04 

0.02 ± 

0.45 

25.4 200 6.0 20 50 0.20 ± 

0.23 

0.93 ± 

0.11 

0.69 ± 

0.04 

1.25 ± 

0.04 

1.69 ± 

0.21 

0.96 ± 

0.24 

26.5 200 9.0 4 50 0.81 ± 

0.40 

0.41 ± 

0.21 

0.13 ± 

0.01 

0.57 ± 

0.05 

0.73 ± 

0.01 

0.63 ± 

0.36 

 

The CHOP spiked into the buffers was not conditioned or purified over any binding 

media that might have changed the distribution of charged CHOP species. Unconditioned CHOP 

encompasses a large range of isoelectric points and negatively and positively charged proteins 

will exist at the various buffer pH values tested (Jin et al., 2009). However, ChromaSorb showed 
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Figure 3.1: CHOP removal for anionic buffer set of experiments in the absence of mAb. The 

abscissa gives buffer conditions in order of increasing conductivity (see Table 1 for values). All 

buffers contain 20 mM tris. Uncertainties defined by Log Removal ± 1 standard deviation were 

determined where the standard deviation is an average for all runs shown in the figure. The 

uncertainties were ± 0.03 for Sartobind Q, ± 0.07 for Mustang Q, and ± 0.10 for ChromaSorb. 

Negative value due to inherent assay variability. 

 

 

at or near limit of detection (1 ng/mL) removal of CHOP. This indicates that even proteins that 

have an overall positive charge were removed. It appears that besides increasing the binding 

capacity at high conductivities, primary amine based ligands that promote secondary hydrogen 

bonding interactions can promote binding of proteins that are neutral overall or even positively 

charged. It is likely these latter proteins contain patches of negative charge. Figure 3.2 indicates 

that in the presence of the mAb, CHOP removal is significantly less than in the absence of the 

mAb. Given the pI of the mAb is 7.1, it will have a net negative charge at all the buffer 

conditions tested and will compete with the CHOP for binding sites, resulting in lower CHOP 
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Figure 3.2: Figure 2: CHOP removal for anionic buffer set of experiments in the presence of 

mAb. The abscissa gives buffer conditions in order of increasing conductivity (see Table 1 for 

values). All buffers contain 20 mM tris. Uncertainties defined by Log Removal ± 1 standard 

deviation were determined where the standard deviation is an average for all runs shown in the 

figure. The uncertainties were ± 0.12 for Sartobind Q, ± 0.15 for Mustang Q and ± 0.18 for 

ChromaSorb. 

 

 

clearance. Though there is considerable variability, in general higher pH and low conductivity 

lead to greater CHOP clearance due to a larger fraction of CHOP being negatively charged and 

less interference in the Coulombic interaction between the CHOP and ligands. 

Figures 3.1 and 3.2 indicate that CHOP removal by Sartobind Q and Mustang Q is 

significantly less than for ChromaSorb. In the case of quaternary amine based ligands used in 

these membrane adsorbers, binding depends largely on Coulombic interactions. Consequently, 

proteins that are neutral or positively charged will have low binding capacity. Figure 3.1 

indicates that in the absence of the mAb, the binding capacity decreases as the conductivity of 
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the feed increases, again highlighting the dominance of Coulombic interactions. Figure 3.2 

indicates that for the ChromaSorb, the low pI of the mAb results in competitive binding between 

contaminant species and the mAb further reducing CHOP clearance. The presence of mAb 

appears to have less of an effect on CHOP removal by the Sartobind Q and Mustang Q. Figure 

3.7 which gives mAb recoveries, indicates, that lower mAb recoveries correspond to lower 

CHOP clearance by the ChromaSorb. 

Results for the cationic buffer set of experiments are given in Figures 3.3 and 3.4 in the 

absence and presence of the mAb, respectively. The ChromaSorb shows the highest capacity 

under all feed conditions. This result further suggests that neutral or even positively charged  

 

Figure 3.3: CHOP removal for cationic buffer set of experiments in the absence of mAb. The 

abscissa gives buffer conditions in order of increasing conductivity (see Table 2 for values). All 

buffers contain 20 mM tris. Uncertainties defined by Log Removal ± 1 standard deviation were 

determined where the standard deviation is an average for all runs shown in the figure. The 

uncertainties were ± 0.04 for Sartobind Q, ± 0.12 for Mustang Q, and ± 0.03 for ChromaSorb. 

Negative value due to inherent assay variability. 
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proteins may be bound due to secondary hydrogen bonding interactions. Figure 3.3 indicates that 

unlike MVM removal, almost 1.6 log CHOP removal is observed in the presence of 50 mM 

phosphate in the absence of NaCl at pH 9.0. In fact, the presence of hydrogen phosphate at low 

conductivity has little effect on CHOP clearance. It is possible that secondary hydrogen bonding 

interactions are more effective than for the case of MVM leading to higher CHOP clearance. The 

presence of NaCl would appear to disrupt hydrogen bonding interactions. 

Figure 3.3 indicates that for 50 mM phosphate, 200 mM NaCl at pH 9.0, ChromaSorb 

 

Figure 3.4: CHOP removal for cationic buffer set of experiments in the presence of mAb. The 

abscissa gives buffer conditions in order of increasing conductivity (see Table 2 for values). 

Uncertainties defined by ± 1 standard deviation were determined where the standard deviation is 

an average for all runs shown in the figure. The uncertainties were Log Removal ± 1 standard 

deviation. The uncertainties were ± 0.02 for Sartobind Q, ± 0.06 for Mustang Q, and ± 0.05 for 

ChromaSorb. 
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shows very poor CHOP removal. However, replacing phosphate by acetate almost doubles 

CHOP clearance. This result highlights the importance of secondary interactions. Since hydrogen 

phosphate has a double negative charge it will probably interact with two amine groups making 

the complex neutral. This could explain why CHOP clearance in the presence of acetate at pH 

9.0 rather than phosphate leads to much higher CHOP removal. In addition for the primary 

amine based ligands, acid base interactions between the acetate and phosphate species present 

will also affect the level of CHOP removal. 

The level of CHOP clearance by the primary amine in the presence of phosphate and  

 

Figure 3.5: DNA removal for anionic buffer set of experiments in the absence of mAb. The 

abscissa gives buffer conditions in order of increasing conductivity (see Table 1 for values). All 

buffers contain 20 mM tris. Uncertainties defined by Log Removal ± 1 standard deviation were 

determined where the standard deviation is an average for all runs in the figure. Uncertainties 

were ± 0.48 for Sartobind Q, ± 0.24 for Mustang Q and ± 0.02 ChromaSorb for. All values above 

2.3 are at limit of detection. 
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acetate ions is complicated by the fact that the acidity of the conjugate acid of the primary amine 

and basicity of the acetate and phosphate species present will also affect the extent to which 

these species will compete for binding sites. In general, the presence of the mAb (Figure 3.4)  

 

Figure 3.6: DNA removal for cationic buffer set of experiments in the absence of mAb. The 

abscissa gives buffer conditions in order of increasing conductivity (see Table 2 for values). All 

buffers contain 20 mM tris. Two centerpoint runs were done (25 mM phosphate, 100 mM NaCl, 

pH 7.5, 12 MV/min). Uncertainties defined by Log Removal ± 1 standard deviation were 

determined where the standard deviation is an average for all runs shown in the figure. 

Uncertainties were ± 0.02 for Sartobind Q, ± 0.02 for Mustang Q and ± 0.62 for ChromaSorb. 

All values above 2.25 are at limitation of detection. 

 

leads to a significant decrease in CHOP clearance due to competitive binding in agreement with 

the results in Figure 3.2. 

Analogous to the anionic buffer set of experiments Figures 3.3 and 3.4 indicate that 

CHOP clearance by the Sartobind Q and Mustang Q is generally much lower. One notable 
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exception is CHOP clearance in Figure 3.3 at pH 9.0 and very low conductivity. In the absence 

of charge screening and at a high pH above the pI of many of the CHOP proteins, the quaternary 

amine based ion exchangers display high CHOP clearance. However, in the presence of the 

mAb, Figure 3.4 indicates that the Sartobind Q and Mustang Q are unsuccessful in clearing 

CHOP under the same conditions. At pH 9.0, the mAb is charged negatively. As it is present at a 

much higher concentration, it competes effectively with CHOP for binding sites as evidenced by 

the low mAb recovery (see Figure 3.8). 

Figures 3.5 and 3.6 give DNA removal for the anionic and cationic buffer set of 

experiments, respectively, in the absence of the mAb. Since the mAb interfered with the assay, 

no clearance data were obtained in the presence of the mAb. Figure 3.5 indicates that for all 

conditions investigated, ChromaSorb gave better than or similar clearance to Sartobind Q and 

Mustang Q. Figure 3.6 indicates that there is significant variability in the results, as seen from 

the difference in the two centerpoint runs. 

Finally, Figures 3.7 and 3.8 give mAb recovery. In general, mAb recovery is better for 

Sartobind Q and Mustang Q. The results highlight the fact that, while secondary interactions can 

lead to ion exchange membrane adsorbers that show high contaminant clearance at high ionic 

strength, these same secondary interactions may lead to high mAb binding and correspondingly 

lower mAb recovery. Taken together the results indicate that for real systems, clearance of virus, 

CHOP and DNA occurs competitively. Maximizing removal of all contaminants will require that 

the total capacity of the membrane adsorber is well in excess of the contaminant species present. 

When selecting a membrane adsorber, the expected performance depends on the type of 

ligand present. Quaternary amine based ligands, which depend largely on Coulombic 

interactions, show reduced capacities at high ionic strength. Primary amine based ligands can  
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Figure 3.7: Antibody recovery for anionic buffer set of experiments. The abscissa gives buffer 

conditions in order of increasing conductivity (see Table 1 for values). All buffers contain 20 

mM tris. Uncertainties defined by ± 1 standard deviation were determined where the standard 

deviation is an average for all runs shown in the figure. Uncertainties were Log Removal ± 1% 

for Sartobind Q, ± 1% for Mustang Q, and ± 1% for ChromaSorb 

 

display high capacities at high ionic strength due to secondary bonding interactions. However,  

the effect of other ionic species in solution, as well as recovery of the product mAb, can be more 

difficult to predict as they depend on a balance among Coulombic interactions, hydrogen 

bonding and other secondary interactions. 
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Figure 3.8: Antibody recovery for cationic buffer set of experiments. The abscissa gives buffer 

conditions in order of increasing conductivity (see Table 1 for values). Uncertainties defined by 

± 1 standard deviation were determined where the standard deviation is an average for all runs 

shown in the figure. Uncertainties were Log Removal ± 1% for Sartobind Q, ± 2% for Mustang 

Q, and ± 3% for ChromaSorb. 

 

 

3.5 Conclusions 

The Sartobind Q and Mustang Q membranes, both using strong quaternary amine ligands, 

demonstrated high degrees of removal of MVM and DNA at low NaCl/high pH but showed 

reduced removal, especially of CHOP, at medium and high NaCl concentration and low pH 

highlighting the importance of Coulombic interactions. ChromaSorb by contrast showed greater 

than limit of detection removal of MVM in all buffers not containing phosphate (in the absence 

of mAb), while reduced binding was observed in the presence of phosphate, especially at higher 
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pH where hydrogen phosphate was the primary phosphate species. CHOP removal by the 

ChromaSorb indicates that it is possible to remove neutral as well as positively charged protein 

species due to secondary binding interactions. DNA clearance was in general high due mainly to 

Coulombic interactions. Though use of a mAb with a low pI meant that the mAb was negatively 

charged at the higher pH values investigated and could be bound due to Coulombic interactions, 

secondary binding effects also were shown to lead to lower recoveries for ChromaSorb. 

Predicting the performance of quaternary amine based membrane adsorbers that rely 

mainly on Coulombic interactions is simpler than for primary amine based adsorbers that display 

secondary interactions. High conductivity reduces the effect of Coulombic interactions. 

Furthermore, it is essential that the feed pH be chosen to ensure that the contaminant species are 

negatively charged. For primary amine based ligands, the existence of secondary bonding 

interactions means that even neutral or slightly positively charged species could be bound. 

However, the effect of charged species such as phosphate and acetate in solution is complicated 

to predict for ligands that show significant secondary bonding effects. The charge and level of 

hydration of these ionic species will determine their effect on contaminant removal. Lower 

product recoveries may occur due to higher product binding by secondary interactions. 
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Chapter 4 

 

 

 
The Role of Polymer Nanolayer Architecture on the Separation Performance of 

Anion-Exchange Membrane Adsorbers: I. Protein Separations
1
 

 
 

4.1 Summary 

This contribution describes the preparation of strong anion-exchange membranes with 

higher protein binding capacities than the best commercial resins. Quaternary amine (Q-type) 

anion-exchange membranes were prepared by grafting polyelectrolyte nanolayers from the 

surfaces of macroporous membrane supports. A focus of this study was to better understand the 

role of polymer nanolayer architecture on protein binding. Membranes were prepared with 

different polymer chain graft densities using a newly developed surface-initiated polymerization 

protocol designed to provide uniform and variable chain spacing. Bovine serum albumin and 

immunoglobulin G were used to measure binding capacities of proteins with different size. 

Dynamic binding capacities of IgG were measured to evaluate the impact of polymer chain 

density on the accessibility of large size protein to binding sites within the polyelectrolyte 

nanolayer under flow conditions. The dynamic binding capacity of IgG increased nearly linearly 

with increasing polymer chain density, which suggests that the spacing between polymer chains 

________________________ 
1
Bhut, BV., Weaver, J., Carter, AR., Wickramasinghe, SR., Husson, SM. 2011, The Role of Polymer Nanolayer 

Architecture on the Separation Performance of Anion-Exchange Membrane Adsorbers: I. Protein Separations, 

Biotechnol Bioeng. 108(11): 2645 – 2653 

 

*My contributions to the published manuscript presented in this chapter include experimental design of protein 

dynamic capacity measurements and buffer conditions. 
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is sufficient for IgG to access binding sites all along the grafted polymer chains. Furthermore, the 

high dynamic binding capacity of IgG (>130 mg/mL) was independent of linear flow velocity, 

which suggests that the mass transfer of IgG molecules to the binding sites occurs primarily via 

convection. Overall, this research provides clear evidence that the dynamic binding capacities of 

large biologics can be higher for well-designed macroporous membrane adsorbers than 

commercial membrane or resin ion-exchange products. Specifically, using controlled 

polymerization leads to anion-exchange membrane adsorbers with high binding capacities that 

are independent of flow rate, enabling high throughput. Results of this work should help to 

accelerate the broader implementation of membrane adsorbers in bioprocess purification steps. 

 

4.2 Introduction 

 Building ‘‘tentacles’’ on a support matrix is an effective method to increase the protein 

adsorption capacity of chromatography materials (Bowes et al., 2009; Muëller, 1986; Tsuneda et 

al., 1995). Polymeric tentacles with adsorptive functionality extend into the protein solution that 

fills the porous volume, providing a scaffold for protein molecules to adsorb. A variety of resin 

beads for column chromatography (Bowes et al., 2009; Franke et al., 2010; Ghose et al., 2007; 

Langford et al., 2007; Muëller, 1986; Tao and Carta, 2008; Zhang and Sun, 2002) and 

macroporous membranes for membrane chromatography (Balachandra et al., 2003; Bhut et al., 

2008; Bhut and Husson, 2009; He and Ulbricht, 2008; Singh et al., 2008; Tsuneda et al., 1995) 

have been modified with adsorptive polymeric tentacles. Incorporating polymeric tentacles into 

macroporous membranes has even greater importance since the surface area per volume of the 

membrane is much lower than a bed of resin particles (Bhut et al., 2010; Wang et al., 2009). A 
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focus of this study was to better understand how membrane performance is affected by the 

architecture of polyelectrolyte nanolayers grafted from the pores of macroporous membranes. 

The separation performance of a membrane adsorber depends on the chemistry and 

architecture of the adsorptive layer, physical properties of the base membrane and membrane 

module design (Charcosset, 1998; Ghosh, 2002; Roper and Lightfoot, 1995; Singh et al., 2008; 

Thömmes and Kula, 1995; Wang et al., 2009; Zeng and Ruckenstein, 1999). Membranes with a 

high density of adsorptive sites are essential for high-throughput chromatography. However, the 

accessibility of binding sites and mass transfer characteristics of the adsorptive polymer layer 

must be good to enable the full utilization of these adsorptive sites. Gebauer et al. (1996) 

conducted a theoretical analysis of the mass-transfer behavior for ion-exchange membranes with 

different degrees of grafting. They showed that differences in degree of grafting affect the rate of 

mass transfer of small size proteins. Camperi et al. (1999) demonstrated that adsorption capacity 

of lysozyme increases with increasing sulfonate group density for tentacle cation-exchange 

hollow-fiber membranes. In their study, the sulfonate group density was varied by controlling the 

extent of reaction during the conversion of epoxy functionality into sulfonate groups; polymer 

chain graft density was not varied. Ulbricht and coworkers (He and Ulbricht, 2008; Wang et al., 

2009) studied the effect of grafting density on the protein adsorption capacities of anion-

exchange (He and Ulbricht, 2008) and cation-exchange membrane adsorbers (Wang et al., 2009) 

prepared by UV grafting. Because conventional photografting methods offer no control 

mechanism for chain growth, significant irreversible termination may occur, and the grafted 

polymer chains have relatively higher polydispersity and may have reduced mobility (e.g., 

radical combination yields chains with both ends tethered to the surface). Thus, the impact of 
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polymer chain density may be different for this case than for the case when polymer grafting is 

done using a controlled radical polymerization technique that minimizes chain termination. 

Thus, the objectives of this study were to design a surface-initiated, controlled graft 

polymerization protocol to prepare quaternary amine (i.e., Q-type) anion-exchange membranes 

with high protein binding capacities and to evaluate the impact of polymer nanolayer architecture 

on the mass-transfer resistance and accessibility of binding sites for large size biomolecules. 

Surface-modified adsorptive membranes with different polymer chain graft density, and, thus, 

different chain spacing, were prepared using surface-initiated atom transfer radical 

polymerization. Bovine serum albumin (BSA) and immunoglobulin G (IgG) were used for 

protein binding studies. BSA was selected as a model protein, as is done commonly, to allow 

comparison with other products reported in the literature. IgG was selected because it is larger in 

size and has a well-defined structure. We draw attention to the fact that binding studies were 

done under pH conditions that would not be used in ordinary practice. The reason for selection of 

these conditions is that our focus was adsorptive membrane development, and we wanted to 

understand the role of chain density on binding capacity of proteins with different size. Dynamic 

binding capacities of IgG were measured to evaluate the impact of polymer chain density on the 

accessibility of these large biomolecules to binding sites within the polyelectrolyte nanolayer 

under flow conditions. This research provides clear evidence that the dynamic binding capacities 

of large biomolecules can be much higher for well-designed macroporous membrane adsorbers 

than commercial ion-exchange adsorbers and resin columns. 
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4.3 Materials and Methods 

4.3.1 Materials 

 Regenerated cellulose macroporous membranes (RC 60) with 70 mm thickness, 47mm 

diameter and 1.0 mm average effective pore diameter were purchased from Whatman, Inc. 

(Piscataway, NJ) These proteins, chemicals and solvents were purchased from Sigma-Aldrich 

(St. Louis, MO): Albumin from bovine serum (BSA, further purified fraction V, 99%, Mr=66 

kDa), 2,2’-bipyridyl (≥99%), 1-bromocarbonyl-1-methylethyl acetate (1-BCMEA, 96%), 2-

bromoisobutyryl bromide (2-BIB, 98%), copper(I) chloride (99.995+%), copper(II) chloride 

(99.99%), ethanol (anhydrous, ≥99.5%), hydrochloric acid (HCl, ACS reagent, 37%), IgG from 

bovine serum (reagent grade, ≥95% (SDS–PAGE), Mr=150 kDa), [2-(methacryloyloxy) 

ethyl]trimethylammonium chloride solution (METAC, 80 wt.% in H2O), methanol (≥99.9%), 

sodium chloride (NaCl, >99.5%), sodium hydroxide (NaOH, ≥98%), tetrahydrofuran (THF, 

anhydrous, ≥99.9%), tris(hydroxymethyl) aminomethane (Tris–base, ≥99%), and water (ACS 

reagent, HPLC grade). 

4.3.2 Buffers and Chromatography Instrumentation 

Loading buffer B1 (20mM Tris–base, adjusted to pH 8 with HCl) was used for BSA 

static protein binding capacity measurements. Loading buffer B2 (25mM Tris–base, adjusted to 

pH 9.0 with HCl) and elution buffer E2 (prepared by adding 1M NaCl to loading buffer B2) were 

used for IgG dynamic binding capacity measurements. Buffers were prepared using distilled 

water that had been passed through a Milli-Q1 Ultrapure purification system (Millipore Corp., 

Bedford, MA). All buffers were degassed by ultrasonication immediately prior to use.  

Dynamic binding capacities of IgG were measured using an AKTA Purifier 100 

chromatography system (GE Healthcare Bio-Sciences, Piscataway, NJ). Membranes were cut 
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into 16mm diameter discs and equilibrated with loading buffer prior to loading them into a 

membrane holder. A stack of 6–10 membrane discs was placed between sheets of filter paper 

(Grade-6, 3mm pore size, Whatman Inc.) and loaded into a Mustang1 Coin Unit (Pall 

Corporation, Port Washington, NY) to prepare a membrane adsorber. Steel flow distribution 

discs were present on both sides of the membrane stack. The outer edge of the membrane is 

covered by an o-ring when it is loaded into the unit. Therefore, the effective filtration diameter of 

membranes stacked into this module is 14 mm. The actual sample diameter of 16mm was used 

for calculation of the membrane bed volume because radial distribution of the adsorbing species 

within the membrane stack is likely to happen during adsorption. Thus, reported capacities are 

conservative values. The effective filtration diameter (14 mm) was used to calculate the linear 

flow velocities. Next, the membrane adsorber was attached to the AKTA Purifier. Loading 

sample was injected using a 50mL capacity SuperloopTM (GE Healthcare Bio-Sciences). The 

effluent from the membrane adsorber was monitored continuously using UV detection (280nm) 

and pH and conductivity meters. 

4.3.3 Preparation of Strong Anion-Exchange Membranes 

4.3.3.1 Membrane Surface Modification 

Details of the surface-modification process were given in our previous publications (Bhut 

et al., 2008; Bhut and Husson, 2009). In the first step, RC60 membranes were activated by 

covalent anchoring of an ATRP initiator. Membrane activation was carried out in solution at 35 

± 2ºC for 2 h. A typical solution comprised an ATRP initiator precursor, 2-BIB (28–111 mL, 

4.5–18.0mM); a non-ATRP-active molecule with similar structure to 2-BIB, 1-BCMEA (0 – 99 

mL, 0–13.5 mM); and solvent, THF (50 mL). The solution volume per membrane (50 mL) was 

kept constant for all experiments. The membrane was placed in a specially designed Teflon cage, 
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and a magnetic stir bar was placed on the top of the cage to agitate the reaction mixture. Next, 

the membrane was washed with THF, HPLC water, and ethanol, and dried at 80ºC for 30 min. 

Activated membranes were modified further by surface-initiated ATRP. Grafting of 

polymer with quaternary amine functionality was carried out from the membrane pore surfaces. 

A typical polymerization solution comprised monomer, METAC (10.4 g, 2.0 M); a catalyst 

system composed of activator, copper(I) chloride (2.0 mg, 1.0mM), deactivator, copper(II) 

chloride (0.3 mg, 0.1mM), and ligand, 2,2’-bipyridyl (8.1 mL, 2.2mM); and a mixture of 

solvents composed of methanol (8.7 mL) and HPLC water (1.8 mL). Here, the values of mass 

and volume are given per membrane sample, along with the final solution concentrations. To 

increase measurement accuracy, the batch volumes for the membrane activation and 

polymerization solutions were scaled-up to allow modification of 5 – 10 membranes at a time, 

and syringes (Hamilton, Inc., Reno, NV) with range of 0 – 50 or 0 – 100 µL and a precision of ± 

1 µL were used for dispensing. Monomer and solvents were mixed in a flask and this mixture 

was de-oxygenated using a procedure reported earlier (Bhut et al., 2008). The flask was isolated 

under nitrogen gas and transferred to an oxygen-free glove box, where catalyst components were 

added. The solution was stirred for 15 min until it became homogeneous. The temperature was 

raised to 50ºC using a bead bath (ISOTEMP 145D, Fisher, Waltham, MA), and an activated 

membrane was placed into the reaction mixture.  

4.3.3.2 Systematic Control of Polymer Chain Density  

The density of polymer chains grafted from the membrane pore surface was controlled by 

varying the concentration ratio of 2-BIB to 1-BCMEA during the membrane activation. The 

concentration ratio of 2-BIB to 1-BCMEA was varied from 0.25 to 1.0 by keeping the total 
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concentration of 2-BIB+1-BCMEA at 18 mM. In a previous study (Bhut and Husson, 2009), we 

found this concentration to be sufficient to activate the maximum number of –OH groups. 

The initiator degree of grafting (DGinit) and polymer degree of grafting (DGpoly) were 

determined by weighing the same 5 – 10 membranes before and after each modification 

step:  

DGinit =
𝑤1−𝑤0

𝑤0
𝑥 100%  (4.1) 

 

𝐷𝐺𝑝𝑜𝑙𝑦 =
(𝑤2−𝑤0)

𝑤0
𝑥 100% (4.2) 

 

w0, w1, and w2 are the masses of unmodified, initiator-activated, and polymer-grafted 

membranes. 

4.3.4 Performance Properties of Surface-Modified Anion-Exchange Membranes 

4.3.4.1 Effect of Grafting Density and Polymerization Time on Protein Binding Capacity 

BSA was used to measure static protein adsorption capacities of poly(METAC)-modified 

membranes. BSA concentrations of 1.0 – 3.0 mg/mL were prepared in loading buffer B1. An 

anion-exchange membrane (47mm dia.) was placed in a glass bottle and incubated in 10mL of 

BSA solution for 20 h to reach equilibrium in a shaker bath at 22ºC. After 20 h, membranes were 

removed from the protein solutions and equilibrium protein concentrations were measured as 

reported earlier (Bhut et al., 2008). Binding capacities were calculated by mass balance using 

initial and equilibrium concentrations of protein solution determined from a calibration plot. 

4.3.4.2 Dynamic Binding Capacity of IgG 

IgG was used to measure dynamic binding capacities of poly(METAC)-modified 

membranes. IgG was dissolved into loading buffer B2 to prepare a 1.0 mg/mL solution. The 
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protein solution was placed into a shaker bath at 18ºC and agitated overnight. Prior to use, 

solutions were pre-filtered through disposable cellulose acetate syringe filters with 0.2 mm pore 

diameter (Puradisc 30, GE Healthcare Bio-Sciences) to remove any protein aggregates. The IgG 

concentration after pre-filtration was measured using UV absorbance at 280 nm. 

The dynamic binding capacities were determined from breakthrough curve analysis. Each 

run started with passage of 10 column volumes (CVs) of loading buffer to equilibrate the 

membrane adsorber bed. Next, IgG solution was injected. The bound IgG was eluted with an 

elution buffer until a stable baseline was observed with UV detection. After every run, the 

membrane bed was cleaned and regenerated with 5 CVs of 0.5M sodium hydroxide solution, 

followed by 10 CVs of 1M NaCl solution, and finally rinsed with 20 CVs of loading buffer to 

prepare the bed for the next run. Three different flow rates (1, 3, and 5mL/min) were used to 

study the effect of linear flow velocity on the dynamic binding capacities of the anion-exchange 

membranes. Two measurements were taken at each flow rate, and protein binding capacities are 

reported as the average of these two measurements. The same membrane bed was used for these 

measurements. The system dead volume was determined using the retention time of IgG through 

the bed prepared from a stack of equivalent un-modified membranes (substrate membrane 

without any treatment). Dynamic binding capacities were calculated at 10% breakthrough and 

50% breakthrough using a method described previously (Bhut et al., 2010). 

 

4.4 Results and Discussion 

 Husson and co-workers (Bhut et al., 2008; Bhut and Husson, 2009) have demonstrated 

that surface-initiated ATRP can be used to prepare weak anion-exchange adsorptive membranes 

for bioseparations. For these surface-modified adsorptive membranes, the binding capacity 
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derives exclusively from the polymer nanolayer (Bhut et al., 2008). The objectives of the current 

study were to design a surface-initiated graft polymerization protocol to prepare strong anion-

exchange membranes with high protein binding capacities and to evaluate the impact of 

nanolayer architecture on the adsorption and mass transfer properties of large size protein. 

4.4.1 Preparation of Strong Anion-Exchange Membranes 

 Membranes with different polymer chain grafting densities were prepared by activating 

the surfaces of cellulose macroporous membranes with ATRP initiator groups and using surface-

initiated ATRP to graft poly(METAC) chains from the initiator groups, yielding quaternary 

amine (i.e., Q-type) anion-exchange membranes. In our previous study (Bhut and Husson, 2009), 

the grafting density was manipulated by using sub-stoichiometric amounts (relative to the 

number of active –OH groups) of the initiator precursor, 2-BIB, during the membrane-activation 

step. This method may lead to an uneven distribution of initiator immobilized onto the 

membrane surface. For example, at low initiator precursor concentration, all of the initiator 

precursor molecules may react near the external surface of the membrane or at pore entrances as 

shown in Figure 4.1, resulting in a high density of initiators, and thus polymer chains, at the 

surface. As we increase concentration, the reactive front may move deeper into the 

membrane/pores. If high chain density hinders protein binding, then spacing initiator groups, and 

consequently polymer chains, more uniformly throughout the membrane may lead to higher 

capacities. In this work, the grafting density of polymer chains, and, thus, the spacing between 

them, was varied using different concentration ratios of an ATRP initiator precursor (2-BIB) and 

a non-ATRP-active molecule (1-BCMEA) during the surface-activation step. The hypothesis 

was that the 1-BCMEA will compete with 2-BIB for –OH groups during surface activation and 

act as a site blocker to ensure variable spacing between the ATRP initiator groups throughout the 
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membrane, as shown in Figure 4.1. By keeping a fixed number of reactive molecules (2-BIB+1-

BCMEA) well above the stoichiometric amount relative to the membrane –OH groups (Bhut et 

al., 2008), the distribution of ATRP initiators immobilized onto the membrane surface will be 

uniform throughout, leading to better uniformity in polymer chain density and possibly higher 

binding capacities. 1-BCMEA was selected because we wanted the –OH reactivity of the site 

blocker to be similar to 2-BIB. Bromine and acetate are both electron-withdrawing substituents, 

with similar impacts on reactivity (McMurray, 1988). 

 

Figure 4.1: Uniform distribution of initiator molecules throughout the membrane pores yields 

uniformly grafted polymer chains (top right) and avoids locally high densities 

and potential pore constriction near the membrane external surface (top left). Initiator is spaced 

apart using a non-ATRP-active molecule. Initiator grafting density was varied 

by changing the concentration ratio of 2-BIB/1-BCMEA in solution (bottom) 

 

4.4.1.1 Degree of Grafting (DG) 

Figure 4.2 shows the dependence of initiator degree of grafting (DGinit) and polymer 

degree of grafting (DGpoly) on the concentration ratio of 2-BIB to 1-BCMEA. The percentage of 

2-BIB in solution was increased from 40 to 100 mol% during the membrane surface-activation 
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step. Surface-activated membranes were modified further with poly(METAC) using surface-

initiated ATRP for 20 h. The degrees of grafting were calculated from Equations (4.1) and (4.2). 

Figure 4.2 shows that DGinit did not change significantly by increasing the fraction of 2-BIB 

during the membrane activation step. This observation agreed with our expectation. Since the 

concentration of 2-BIB+1-BCMEA always exceeded that needed to react fully with all –OH  

 

Figure 4.2: Dependence of degree of grafting on the concentration ratio of 2-BIB to 1-BCMEA 

during membrane activation. Surface-activated membranes were modified further by surface-

initiated ATRP (METAC (2M)/Cu(I)/Cu(II)/2,20-bipyridyl: 2000/1/0.1/2.2) for 20 h. Symbols 

represent degrees of grafting for poly(METAC) (♦) and initiator (2-BIB or 2-BIB+1-BCMEA) 

(●). 

 

groups in the membrane, and since the two reactive species have similar molecular weight, 

replacing 2-BIB with 1-BCMEA should not change DGinit significantly. However, by increasing 

the molar fraction of 2-BIB, DGpoly increased in a regular fashion. This observation validates our 

hypothesis that by changing the concentration ratio of ATRP-initiator to non-ATRP-active 

molecule, the mass of poly(METAC) grafted from the internal pore surface of the membrane can 
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be varied without changing polymerization time. Increasing initiator density leads to higher 

chain densities and, thus, increased polymer mass for a given polymerization time. If termination 

of polymer chains and chain transfer are negligible, as we expect for controlled ATRP and as 

suggested by the results for protein adsorption (vide infra), then the poly(METAC) chains 

grafted from the membrane surface should have similar molecular weight. Thus, differences in 

DGpoly result only from differences in the grafting density of poly(METAC) chains. Another 

observation from Figure 4.2 is that the relationship between the molar fraction of 2-BIB and 

DGpoly is not linear as one would expect if 2-BIB and 1-BCMEA had equal reactivity. 

Nevertheless, our newly introduced method provides relatively precise control over polymer 

chain density. 

4.4.1.2 Effect of Degree of Grafting and Polymerization Time on Static BSA Binding Capacity 

 Figure 4.3 shows the dependence of BSA static (equilibrium) binding capacity on the 

polymerization time and concentration ratio of 2-BIB to 1-BCMEA. As polymerization time 

increases, the protein binding capacity of poly(METAC)- modified anion-exchange membranes 

increases relatively linearly at any given concentration ratio of 2-BIB to 1-BCMEA. These 

results demonstrate clearly that the mass of poly(METAC) grafted from the membrane surface, 

and, thus, the average molecular weight of polymer chains increases with increasing 

polymerization time. The nonlinear behavior at higher 2-BIB to 1-BCMEA ratios may indicate 

deviation from controlled growth. As the grafting density increases, the probability of radical 

combination increases, and deviations from controlled behavior are seen (Bao et al., 2006). For a 

constant polymerization time, the BSA static binding capacity increases with increasing molar 

fraction of ATRP initiator molecule used in the membrane activation step. 
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Overall, the newly designed two-step graft polymerization protocol offers independent 

and nearly linear control of grafting density and average molecular weight of poly(METAC) 

chains grown from cellulose macroporous membranes. The result is anion-exchange membranes 

with very high per volume BSA binding capacities for membrane chromatographic 

bioseparations. 

4.4.2 Effect of Poly(METAC) Chain Density on the Dynamic Binding Capacity of IgG 

 The effect of polymer grafting density on the dynamic binding capacity of IgG was 

evaluated for our newly designed membranes. The isoelectric point (pI) of IgG is about 5.8–7.5 

(Baruah et al., 2006; Hahn et al., 1998; Hemmings and Jones, 1974). Working at a pH value 1 

unit greater than pI, the IgG carries a net negative surface charge and will bind to an anion-

exchange stationary phase (Staby et al., 2000; Staby and Jensen, 2001). Anion-exchange 

membranes with four different polymer chain densities, and, thus, different spacing between 

polymer chains, were prepared using surface-initiated ATRP for 20 h. Volumetric flow rate was 

used as process variable to study the effect of linear flow velocity on the dynamic binding 

capacities. 

4.4.2.1 Dynamic Binding Capacity of IgG 

 Table 4.1 shows the dependence of dynamic binding capacity on DGpoly. Dynamic 

binding capacity was measured at 10% and 50% breakthrough. The dynamic binding capacity of 

this large antibody protein increases nearly linearly with increasing DGpoly. This observation 

suggests that the accessibility of IgG to the binding sites along the polymer chains is not impeded 

by the highest graft densities achieved in this work. If grafting densities were too high, then IgG 

molecules would be excluded from the polymer layer, and we would expect to see the capacity 

go through a maximum with respect to polymer chain density (i.e., DGpoly since polymerization 
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time was constant). We do not see such behavior; therefore, it appears that the spacing between 

polymer chains is enough for IgG to access binding sites all along the poly(METAC) chains 

grafted from the membrane pore surface. Table 4.1 also compares the utilization of grafted  

Table 4.1: Dynamic binding capacity measured at 10% and 50% breakthrough for 

poly(METAC)-modified membranes (bed height: 420mm; loading buffer B2: 25mM Tris–HCl, 

pH 9; elution buffer E2: 1M NaCl in loading buffer B2; feed solution: 1mg IgG/mL buffer B2). 

Surface initiated ATRP (METAC (2M)/Cu(I)/Cu(II)/2,2’-bipyridyl: 2000/1/0.1/2.2) was used for 

20 h to produce the anion-exchange membranes. 

 
 Flow rate IgG dynamic binding capacity 

(mg/mL) 

Polymer utilization          

(mg IgG/mg poly (METAC) 

DGpoly      

(% 2-BIB) 

mL/min cm/hr CV/min 10% 

breakthrough 

50% 

breakthrough 

10 

breakthrough 

50% 

breakthrough 

9.52 (40) 1 39 12 50 73 0.63 0.92 

 3 117 36 52 74   

 5 195 59 49 71   

11.20 (60) 1 39 12 72 96 0.76 1.01 

 3 117 36 73 96   

 5 195 59 72 99   

14.01 (80) 1 39 12 87 120 0.69 0.92 

 3 117 36 90 118   

 5 195 59 89 116   

21.92 (100) 1 39 12 135 180 0.61 0.81 

 3 117 36 138 184   

 5 195 59 134 176   

 

poly(METAC) at different values of DGpoly. The mass of IgG bound per mass of polymer under 

dynamic process conditions remains nearly constant as grafting density increases. This 

observation further strengthens our conclusion that the IgG binding is not hindered. This trend 

contrasts that for resin particles. Franke et al. (2010) discussed the effects of ligand density on 

the dynamic protein binding capacity for linear polymer chain grafted Fractogel EMD SO3
-
 

(strong cation-exchange resin, Merck, Darmstadt, Germany). They reported that, at higher 

grafting densities, the number of overall available sites increases but the number of accessible 

sites decreases. Thus, the dynamic binding capacity shows a maximum with respect to ligand 

density. The maximum dynamic binding capacity of Fractogel EMD SO3
-
 media with optimized 

ligand density was reported to be about 60 mg/mL at 181 cm/h for IgG. Our values are 
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significantly higher. Ghose et al. (2007) studied the effect of ligand density on the dynamic 

binding capacities of antibodies and Fc-Fusion proteins on various commercial protein A 

chromatographic media. They demonstrated that ligand utilization decreases with increasing 

amounts of ligand immobilized on the surface. They attribute this behavior to the spacing 

limitation and inter-ligand steric hindrance at high ligand density. 

Table 4.1 summarizes the effect of linear flow velocity on the dynamic binding capacities 

of IgG. The flow rate was increased five-fold, and, thus, the residence time for IgG molecules 

through the membrane bed was decreased by the same factor. The dynamic binding capacities 

calculated at 10% and 50% breakthrough did not change by increasing linear flow velocity. 

Protein bound to the membrane bed was recovered during elution with a recovery of 100 ± 2%, 

suggesting completely reversible protein binding capacities of membrane bed. The shape of the 

breakthrough curves remained un-changed despite increasing flow rate five-fold. These data 

demonstrate that the mass transfer of IgG molecules to the binding sites for our newly designed 

anion-exchange membranes is primarily via convection, not diffusion, which is the rate 

controlling mechanism for resin beds (Franke et al., 2010; Ghose et al., 2007; Tao and Carta, 

2008). If the diffusion of IgG to the binding sites was the rate limiting step, then the dynamic 

binding capacity of adsorptive material should have varied with residence time inside the 

adsorptive bed. For example, Franke et al. (2010) demonstrated that the dynamic binding 

capacity of polymer chain-grafted resin decreases with increasing volumetric flow rate. They 

concluded that the optimization of ligand density in resins becomes complicated since it is a 

function of volumetric flow rate. Our membranes do not have such complication. 

The contrasting effect of grafting density for resin and membrane substrates may be 

explained by their structural differences: for membranes, the polymer chains with adsorptive 
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functionalities (binding sites) are grafted from the surface of macropores; thus, controlled 

grafting of longer polymer chains (100–200 nm) (Bhut et al., 2008; Singh et al., 2008) in a 

macroporous membrane substrate does not reduce the pore diameter drastically. As long as the 

spacing between grafted polymer chains is sufficient, the accessibility of proteins to the binding 

site is not hindered. While for the resin, the grafting of longer polymer chains in the cylindrical 

and closed-end, nanometer-sized pores hinders the accessibility to binding sites and slows mass 

transfer, even for smaller size proteins such as BSA (Zhang and Sun, 2002) and lysozyme 

(Langford et al., 2007). This effect is exacerbated at high graft densities. 

To better understand the limit of grafting density on protein binding capacity, we used 

Equation (4.3) to estimate the distance between grafted chains (D) as a function of the 

concentration ratio of 2-BIB to 1-BCMEA used during membrane activation. These values were 

compared with reported dimensions for the proteins that were tested. Equation (4.3) relates inter- 

𝐷 = √(
2

√3𝜎
)  (4.3) 

chain distance to chain density(s) assuming that each chain occupies a hexagonal volume 

element. Equation (4.4) was used to determine chain density. M is the average molar mass of the 

polymer, Na is Avogadro’s number, A is surface area per unit mass of the membrane, and s has 

dimensions of chains/area. The surface area per unit mass of the membrane was found using the 

BET method to be 1.35m2/g. 

𝜎 =
(𝐷𝐺𝑝𝑜𝑙𝑦)𝑁𝑎

𝑀𝐴
  (4.4) 

The average molar mass of the grafted polymer chains was determined by first estimating 

the thickness of the dry polymer nanolayer grafted from the membrane surface. Samadi et al. 

(2010) provides layer thickness versus time data for ATRP of poly(METAC) using the same 
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catalyst and solvent system at 25ºC and 0.37M METAC. We have shown for surface-initiated 

ATRP that the increase in film thickness with time is proportional to the monomer concentration 

(Sankhe et al., 2006), and that monomer concentration is a constant for controlled polymerization 

of nanolayer films from low surface area substrates (Gopireddy and Husson, 2002). To account 

for the difference in polymerization temperature between this study and Samadi et al. (2010), we 

applied the Arrhenius equation using activation energy of -14 kJ/mol, estimated from Li et al. 

(2005), who studied the temperature effect on conversion of METAC by ATRP with the same 

catalyst. With these data, dry layer thickness was estimated from Equation (4.5) to be 250 nm. 

𝑇(50°𝐶, 2.0𝑀) =  𝑇(25°𝐶, 0.37𝑀)𝑥 (
𝑘𝑝(50°𝐶)

𝑘𝑝(25°𝐶)
) 𝑥 (

[2.0𝑀]

[0.37𝑀]
) (4.5) 

 This layer thickness was used to determine an approximate molar mass of the polymer,  

M = 360,000 g/mol, using a linear correlation between molar mass and dry layer thickness found 

for another methacrylate-based polymer system (Ejaz et al., 1998). 

 Table 4.2 presents the estimated D values. As expected, this distance decreases (i.e., 

grafting density increases) with increasing percentage of 2-BIB used during membrane 

activation. We compared the estimated inter-chain distances with the dimensions for the proteins 

tested. Serum albumin is reported to be an oblate ellipsoid with dimensions of 14 nm x 4 nm 

(Bendedouch and Chen, 1983). IgG is reported to have a cross-sectional diameter of 4.8 ± 0.3nm 

(Mayans et al., 1995). In both cases, one dimension of the protein is similar in size to the 

estimated inter-chain distances reported in Table 4.2. While more work needs to be done to 

provide accurate values for the inter-chain distances, our estimates suggest that we should be 

approaching the chain densities that will result in maximum binding for these two model 

proteins. 
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Table 4.2: Estimated inter-chain distances for poly(METAC) grafted from regenerated cellulose 

macroporous membranes. 

 

[BIB]/([BIB]+[BCMEA]) x 100% Σ (chains/nm
2
) Dc (nm) Dh (nm) 

40 0.09 3.8 3.6 

60 0.12 3.3 3.1 

80 0.16 2.8 2.7 

100 0.26 2.2 2.1 

 

Overall, results indicate clearly that the spacing between grafted polymer chains is 

sufficient for IgG to access binding sites all along the polymer chains. Our membranes operate 

under predominantly convective mass transfer mode and, as a result, the dynamic binding 

capacity is independent of protein residence time inside the membrane bed. Importantly, the new 

anion-exchange membranes have high and completely reversible protein dynamic binding 

capacities, even for a large size protein. Historically, lower dynamic protein binding capacities of 

membranes have been the bottleneck for implementation of membrane adsorbers in the capture 

step of protein therapeutics (Charcosset, 1998; Ghosh, 2002; Roper and Lightfoot, 1995; 

Thömmes and Kula, 1995; Van Reis and Zydney, 2007; Zeng and Ruckenstein, 1999; Zhou and 

Tressel, 2006). Our current results and those from recent studies (Bhut et al., 2010; Bhut and 

Husson, 2009; Singh et al., 2008) show sizeable improvements in dynamic capacity that may 

expand the range of use of membrane adsorbers in bioprocessing. Our design of a strong anion-

exchange membrane with unprecedented and flow rate-independent dynamic binding capacity 

for a model antibody is a highly significant milestone for membrane chromatography. 

 

4.5 Conclusion 

 Macroporous regenerated cellulose membranes were modified by grafting polyelectrolyte 

quaternary amine polymers from the pore surface thereby generating strong anion-exchange 
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membrane adsorbers with three-dimensional binding architecture. It was shown that polymer 

chain length and density could be independently controlled via polymerization time and initiator 

concentration. IgG binding capacity was shown to increase with both polymer chain length and 

density suggesting chain spacing was not a limiting factor. IgG dynamic binding capacities of 

greater than 130 g/L were realized which is much greater than current commercially available 

anion-exchange membrane adsorbers. The high capacities shown herein prove the utility of 

three-dimensional binding layers grafted from pore surfaces. 
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Chapter 5 

 

 

 
The Role of Polymer Nanolayer Architecture on the Separation Performance of 

Anion-Exchange Membrane Adsorbers: Part II. DNA and Virus Separations
1
 

 
 

5.1 Summary 

The surface-initiated polymerization protocol developed in chapter 4 of this thesis was 

used to prepare strong anion-exchange membranes with variable polymer chain graft densities 

and degrees of polymerization for DNA and virus particle separations. A focus of chapter 5 was 

to evaluate the role of polymer nanolayer architecture on DNA and virus binding. Salmon sperm-

DNA (ssDNA) was used as model nucleic acid to measure the dynamic-binding capacities at 

10% breakthrough. The dynamic-binding capacity increases linearly with increasing poly ([2-

(methacryloyloxy)ethyl]-trimethylammonium chloride) chain density up to the highest chain 

density used in this study. The new membranes yielded threefold higher ssDNA-binding capacity 

(30 mg/mL) than a leading commercial membrane with the same functional group chemistry. 

Elution of bound DNA yielded a sharp peak, and resulted in a 13-fold increase relative to the 

feed concentration. This concentration effect further demonstrates the highly favorable transport 

properties of the newly designed Q-type membranes. However, unlike findings in chapter 4 on 

protein binding, ssDNA binding was not fully reversible. Minute virus of mice (MVM) was used 

________________________________ 

1
Bhut, BV., Weaver, J., Carter, AR., Wickramasinghe, SR., Husson, SM. 2011, The Role of Polymer Nanolayer 

Architecture on the Separation Performance of Anion-Exchange Membrane Adsorbers: Part II. DNA and Virus 

Separations, Biotechnol Bioeng. 108 (11): 2654 – 2660 

 

* My contribution to the published manuscript presented in this chapter includes all viral production, viral binding 

studies and viral quantification assays. 
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as model virus to evaluate the virus clearance performance of newly designed Q-type 

membranes. Log reduction of virus (LRV) of MVM increased with increasing polymer chain 

density. Membranes exhibited > 4.5 LRV for the given MVM impurity load and may be capable 

of higher LRV values, as the MVM concentration in the flow-through fraction of these samples 

was below the limit of detection of the assay. 

 

5.2 Introduction 

 In chapter 4 of this thesis a two-step surface modification protocol was used to prepare 

strong anion-exchange membranes with high and fully reversible protein-binding capacities for 

chromatographic bioseparations. Macroporous membranes were modified by grafting 

polyelectrolyte chains from the pore surfaces using surface-initiated atom transfer radical 

polymerization (ATRP). Results showed that (1) polyelectrolyte chain density can be varied by 

changing the concentration ratio of ATRP-initiator to non-ATRP active spacer molecule during 

membrane activation, and (2) the mass of polyelectrolyte grafted from the membrane surface, 

and, thus, the average molecular weight of polymer chains increases with increasing 

polymerization time. Overall, the protocol offers independent and nearly linear control of 

grafting density and average molecular weight of polyelectrolyte chains grown from cellulose 

macroporous membranes. 

Performance testing was done using two proteins: bovine serum albumin and IgG. The 

dynamic binding capacity of the larger protein, IgG, was shown to increase nearly linearly with 

increasing polyelectrolyte chain density, suggesting that the spacing among polymer chains was 

sufficient for IgG to access-binding sites all along the polymer chains. Furthermore, the 

dynamic-binding capacity of IgG did not change by increasing linear flow velocity, which 
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suggests that the mass transfer of IgG molecules to the binding sites is primarily via convection, 

not diffusion. Overall, the results presented in chapter 4 clearly demonstrated that the 

accessibility of binding sites and the diffusional mass transfer are not limiting factors for the high 

dynamic-binding capacities of large size proteins. 

Here the newly designed membranes were evaluated for DNA and virus separations. 

Dynamic-binding capacities of salmon sperm-DNA (ssDNA) were measured to evaluate the 

impact of polymer chain density on the accessibility of these large biomolecules to binding sites 

within the polyelectrolyte nanolayer under flow conditions. Volumetric flow rate was used as an 

independent variable to study the effect of polymer chain density on mass transfer resistance of 

ssDNA. Membranes also were evaluated for clearance of minute virus of mice (MVM). 

 

5.3 Materials and Methods 

5.3.1 Materials 

 Descriptions of materials used for membrane preparation are provided in chapter 4. 

UltraPureTM Salmon Sperm DNA Solution in a stock concentration of 10 mg/mL (SS-DNA, 2-

kbp size range) was purchased from Life Technologies (Gaithersburg, MD). 

Initial pMVM (Minute Virus of Mice prototype strain) and mouse A9 fibroblasts were 

purchased from ATCC (Manassas, VA). High glucose DMEM media and DMEM containing 

Trypsin/EDTA and fetal bovine serum (FBS) were obtained from HyClone, a division of Thermo 

Fisher Scientific (Waltham, MA). Quantification of MVM was accomplished through a 

quantitative PCR (QPCR) assay developed in our laboratory. iQ SYBR green with fluorescein 

master mix was purchased from BioRad (Hercules, CA). Forward (5’ 

GACGCACAGAAAGAGAGTAACCAA 3’) and reverse (5’ 
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CCAACCATCTGCTCCAGTAAACAT 3’) primers, originally developed by Ros et al. (2002), 

were purchased with standard desalting purification from IDT (Coralville, IA). RQ1 DNase 

enzyme and buffer were purchased from Promega (Madison, WI). 

5.3.2 MVM Propagation 

 Due to the large number of runs conducted during the membrane adsorber performance 

testing, it was necessary to propagate MVM. A9 cells were thawed and expanded into multiple 

T-150 culture flasks using high glucose DMEM media with 10% FBS and 100 µg/mL penicillin. 

Cell culture was performed in jacketed incubators (non-infected and infected cultures in separate 

incubators) at 37ºC with 10% CO2. Cultures were expanded and grown to ~ 80% confluence at 

which point infection with MVM was performed. Infection was accomplished by discarding old 

growth media from culture (cells were adherent) and incubating cells at 37ºC for 10 min in 1mL 

DMEM containing 1x10
10

 to 1x10
11

 virus particles/mL for an multiplicity of infection (MOI) of 

> 1,000, ensuring efficient infection. An additional 34mL of DMEM media (as described above) 

was added to the cultures after 10 min incubation to yield a 35mL total culture volume. It was 

determined that a 6-day infection propagation period was suitable for complete 

infection/propagation. This time period consistently yielded MVM titers of 1x10
10

 to 1x10
11

 

particles/mL, which was acceptable for use in the membrane adsorber performance tests. 

5.3.3 Buffers and Chromatography Instrumentation 

5.3.3.1 Buffers 

 Loading buffer B1 (25 mM Tris-base with 50 mM NaCl, adjusted to pH 8.0 with HCl) 

and elution buffer E1 (prepared by adding 1.15 M NaCl to loading buffer B2) were used for SS-

DNA dynamic-binding capacity measurements. Loading buffer B2 (20 mM Tris-base at pH 9.0, 
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with a conductivity of 0.5 mS/cm) and elution buffer E2 (3 M KCl) were used for virus-binding 

studies. Buffers were prepared using distilled water that had been passed through a Milli- 

Q1 Ultrapure purification system (Millipore, Bedford, MA). All buffers were degassed by 

ultrasonication immediately prior to use. 

5.3.3.2 Chromatography Instrumentation 

 Dynamic-binding capacities of SS-DNA were measured using an AKTA Purifier 100 

chromatography system (GE Healthcare Bio-Sciences, Piscataway, NJ). Membranes that had 

been surface modified with anionic polyelectrolytes were cut into small diameter (16 mm) discs 

and equilibrated with 20mL of loading buffer in a constant-temperature shaker bath prior to 

loading them into a membrane holder. A stack of 6–10 membrane discs was placed between 

sheets of filter paper (Grade-6, 3-mm pore size; Whatman Inc., Piscataway, NJ) and loaded into 

a Mustang
®

 Coin Unit (Pall Corporation, Port Washington, NY) to prepare a membrane 

adsorber. Details of membrane adsorber assembly are given in chapter 4. The membrane 

adsorber was attached to the AKTA Purifier. Loading samples (SS-DNA) were injected using a 

50mL capacity SuperloopTM (GE Healthcare Bio-Sciences). The effluent from the membrane 

adsorber was monitored continuously using UV detection (260nm) and pH and conductivity 

meters installed in the AKTA Purifier system for online measurements. All data were recorded 

and viewed in Unicorn 5.1 software (GE Healthcare Bio-Sciences). 

All virus-binding studies were performed using an AKTA FPLC (GE Healthcare Bio-

Sciences) with FRAC-950 fraction collector. Conditions of the effluent from the membrane 

adsorber were monitored and recorded continuously during all runs using UV detection (280 

nm), a conductivity meter, thermocouple, and pressure transducers installed in the AKTA FPLC. 

Data were recorded and viewed in Unicorn 5.1. Membrane disks were immersed in 20% (v/v) 
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ethanol for 5 min to ensure complete wetting and displace trapped air. Membranes were 

equilibrated with loading buffer prior to loading them into the membrane holder described above. 

The FPLC system was flushed with water and then running buffer prior to installation of the 

membrane adsorber. After installation of the membrane adsorber, loading buffer was flowed at a 

low rate (0.2 mL/min) in the bottom-to-top direction to minimize the possibility of air entering 

the membrane adsorber. Next, the adsorber was equilibrated by flowing buffer at the test flow 

rate (2mL/min, 20 column volumes/min, 70 cm/h) in top-to-bottom direction for 10mL or until 

the effluent conductivity and UV absorbance at 280 nm became stable. 

5.3.4 QPCR Development and Protocol 

 QPCR was performed on a BioRad iQ5 real-time PCR system with iQ5 optical system 

software v2.0. Runs were performed in unskirted, low-profile 96-well PCR plates (BioRad) with 

polypropylene microseal ‘‘B’’ adhesive sealers with 20 µL per reaction. The reaction recipe was 

taken directly from the iQ SYBR Green master mix instructions (given per reaction): 10 µL 

SYBR Green master mix, 8.2 µL dH2O, 0.4 µL forward primer (final 100 nM), 0.4 µL reverse 

primer (final 100 nM), and 1 µL sample. MVM standards were created by PCR amplification of 

a highly conserved 501 bp portion of the MVM genome using the above-mentioned primers and 

capturing the PCR product in the pCR2.1-TOPO plasmid using a TOPO TA Cloning kit from 

Invitrogen. Standards ranging from 1x10
9
 copies/mL to 1x10

2
 copies/mL were created by serial 

dilution of the Maxi-prepped (Qiagen, Valencia, CA) cloned PCR product. Annealing 

temperature was determined through temperature gradient runs and melt curve analysis; 57ºC 

resulted in a single dominant melt curve. The initial PCR cycle was 95ºC for 10 min which 

functioned to open virus particles, denature DNA, and inactivate RQ1 DNase. Then 45 cycles of 

the following were repeated: denaturing at 95ºC for 15 s, primer annealing at 57ºC for 10 s, 
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elongation at 72ºC for 45 s, and an additional 10 s at 72ºC to collect the real-time fluorescence 

data. 

The QPCR assay limit of detection was determined by serial dilution of the 1x10
2
 

copies/µL standard 2X until a sample with 1 copy/µL was reached. Samples were run in 

triplicate on a single plate following the above protocol. This plate was repeated two additional 

times for three total replicate plates and a total of nine replicates per sample. Limit of detection 

was determined by Probit analysis using Minitab statistical software; the limit of detection was 

determined to be 14 copies/µL. One microliter of each unknown virus-containing sample was 

pipetted into 96-well plates containing 9 µL of DNase solution (1 µL RQ1 DNase, 1 µL DNase 

buffer, and 7 µL of dH2O). The DNase step provided assurance that the QPCR assay would only 

quantify complete virus particles and not naked DNA, which would not be infective. These 

plates were sealed and incubated at 37ºC for 40 min. The DNase-treated samples (1 µL each) 

were pipetted into a BioRad PCR plate with 19 µL of iQ SYBR Green master mix with primers. 

Eight standards were run with every plate (1x10
2
 to 1x10

9
 copies/µL) from which a linear 

standard curve was constructed to quantify unknown samples. 

5.3.5 Preparation of Strong Anion-Exchange Membranes 

 The surface-modification process was carried out in two steps, as detailed in chapter 4. In 

the first step, regenerated cellulose macroporous membranes (RC 60) were activated by covalent 

anchoring of an ATRP initiator. Surface-activated membranes were modified further by grafting 

poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride) (poly(METAC)) chains from the 

membrane pore surfaces by surface-initiated ATRP. 

The density of polymer chains grafted from the membrane pore surface was controlled by 

varying the molar concentration ratio of an ATRP initiator precursor and a non-ATRP analogue 
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during the surface-activation step. Chapter 4 details this procedure and the method used for 

measuring the initiator degree of grafting (DGinit) and polymer degree of grafting (DGpoly). 

5.3.6 Performance Properties of Surface-Modified Anion-Exchange Membranes 

5.3.6.1 Effect of Grafting Density on Dynamic-Binding Capacity of SS-DNA 

 SS-DNA was used to measure dynamic-binding capacities of surface-modified anion-

exchange membranes. A 10 mg/mL stock solution of SS-DNA was mixed with loading buffer B1 

to prepare a 60 µg/mL sample solution. 

The dynamic-binding capacities were determined from breakthrough curve analysis. For 

all the measurements, equal experimental conditions were applied starting with passage of 10 

column volumes (CVs) of loading buffer to equilibrate the membrane adsorber bed. Next, SS-

DNA solution was injected. The bound SS-DNA was eluted with an elution buffer until a stable 

baseline was observed with UV detection. The mass of SS-DNA in the elution peak was 

estimated from the area under the elution curve and an independent calibration curve prepared by 

UV analysis of SS-DNA solutions of known concentration. Three different volumetric flow rates 

(1, 3, and 5 mL/min; equivalent to 39, 117, and 195 cm/h) were used to study the effect of linear 

flow velocity on the dynamic-binding capacities of the anion-exchange membranes. A new 

membrane was used for each run. The system dead volume was determined using the retention 

time (initial breakthrough) of SS-DNA through the bed prepared from a stack of equivalent un-

modified membranes (substrate membrane without any treatment). Dynamic-binding capacities 

(q, mg SS-DNA/mL column) were calculated at 10% breakthrough, as described in chapter 4. 
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5.3.6.2 Effect of Grafting Density on Virus Clearance Performance 

 MVM was used as model virus to evaluate the virus clearance performance of our newly 

designed Q-type membranes. Virus-loading samples comprised B2 buffer spiked 1:100 with 

MVM virus stock solution (MVM Propagation section). Spikes were performed immediately 

prior to loading to minimize any buffer effects on the virus particles. The load volume was 160 

mL for each run. After loading, the membranes were washed with 15mL of B2 buffer, and virus 

was eluted with 10mL of E2 buffer. 

 

5.4 Results and Discussion 

 In this work, the role of polymer nanolayer architecture on the separation performance of 

strong anion-exchange membranes was investigated for large biomolecules. The binding 

capacity of surface-modified membranes is attributed exclusively to the adsorptive polymer 

nanolayer (Bhut et al., 2008). Chapter 4 was focused on membrane development and the 

separation of proteins. Here the focus is on the role of polymer chain graft density on the mass 

transfer resistance and accessibility of DNA and virus molecules to binding sites within the 3-

dimensional polymer nanolayer scaffold. 

Anion-exchange membranes with different polymer chain grafting densities were 

prepared using the two-step surface-modification protocol described in chapter 4. In the first 

step, the surfaces of regenerated cellulose macroporous membranes were activated with ATRP 

initiator groups using a new formulation that ensures variable spacing between the ATRP 

initiator groups throughout the membrane. This step was followed by surface-initiated ATRP of 

poly(METAC), using polymerization time to control the degree of polymerization. 
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5.4.1 Effect of Poly(METAC) Chain Density on the Dynamic-Binding Capacity of SS-DNA 

 Strong anion-exchange chromatography is the most widely used unit operation for 

polishing stage purification to remove trace levels of DNA, virus, host cell protein (HCP) and 

endotoxins (Ghosh, 2002; Zhou and Tressel, 2006). The efficiency of trace impurity removal is 

measured using log removal value (LRV). LRV is related directly to the volume of process fluid 

and, thereby, the adsorption capacity of the membranes. Anion-exchange membranes with high-

binding capacity provide higher process capacity. Membrane anion-exchange chromatography in 

bind-and-elute mode also is under investigation to purify large quantities of plasmid DNA for 

vaccine and gene therapy applications (Eon-Duval and Burke, 2004; Knudsen et al., 2001; 

Syre´n et al., 2007). Therefore, a comprehensive set of experiments was conducted to evaluate 

the effect of polymer chain density on the dynamic-binding capacity of DNA for our newly 

designed Q-membranes. SS-DNA was used as model nucleic acid to measure the dynamic-

binding capacities at 10% breakthrough. 

Figure 5.1 shows the bind-and-elute chromatogram for SS-DNA obtained using a newly 

designed Q-type anion-exchange membrane adsorber prepared using surface activation with [2-

BIB]/([2-BIB] + [1-BCMEA] = 0.80. The set of breakthrough curves in Figure 5.1 correspond to 

multiple runs using the same membrane bed. As quantified and discussed in more detail below, 

there is significant irreversible adsorption for DNA, which is common for strong anion-exchange 

media. The breakthrough curves were self-sharpening, indicating highly favorable sorption 

isotherms under the conditions used for loading. Using an adsorptive material with a self-

sharpening breakthrough curve is highly advantageous for large-scale industrial application 

because it offers maximum utilization of binding capacity before breakthrough (Gebauer et al., 

1996; Roper and Lightfoot, 1995). Elution of bound DNA yielded a sharp peak, and more than 
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95% of the area under the elution curve can be collected in a volume fraction of 2mL (20 CV). 

The mass of SS-DNA recovered under the elution curve was 1.60 ± 0.05 mg. Taken together, the 

concentration of the eluted SS-DNA was > 0.8 mg/mL, a 13-fold increase relative to the feed 

concentration. This concentration effect further demonstrates the highly favorable transport 

properties of our newly designed Q-membranes. 

 

Figure 5.1: Bind-and-elute breakthrough curves of Salmon sperm-DNA obtained using the 

newly designed strong anion-exchange membrane adsorber (loading buffer B1: 25mM Tris–HCl 

+ 50mM NaCl, pH 8; elution buffer E1: 1.15M NaCl in loading buffer B1; flow rate: 5mL/min; 

sample load volume: 30 mL). The feed solution was 60 mg SS-DNA/mL buffer B1. Surface 

activation ([2-BIB]/([2-BIB] + [1-BCMEA]) = 0.80) and surface-initiated ATRP (METAC 

(2M)/Cu(I)/Cu(II)/2,20-bipyridyl: 2000/1/0.1/2.2) for 20 h were used to produce the 

poly(METAC) modified membranes. Solid line (—) breakthrough curves represent the UV 

absorbance at 260 nm. Dotted line (…) represents the conductivity. Dashed line (---) represents 

the % of loading buffer B1. The same membrane adsorber bed was used to obtain the four 

breakthrough curves, labeled as 1st, 2nd, 3rd, and 4th run.  

 

 

Figure 5.2 shows the effect of DGpoly (chain density) on the dynamic-binding capacity of 

SS-DNA. The dynamic-binding capacity increases linearly with increasing poly(METAC) chain 
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density up to the highest chain density used in this study. This observation suggests that the 

accessibility of SS-DNA molecules to the binding sites along the polymer chains is not impeded 

by the highest graft densities achieved in this work, which were reported in chapter 4. Table 5.1 

also compares the utilization of grafted poly(METAC) at different values of DGpoly. The mass of 

SS-DNA bound per mass of polymer under dynamic process conditions remains nearly constant 

 

Figure 5.2: Dependence of SS-DNA dynamic-binding capacities on the degree of polymer 

grafting for poly(METAC)-modified membranes (loading buffer B1: 25mMTris– HCl + 50mM 

NaCl, pH 8; elution buffer E1: 1.15 M NaCl in loading buffer B1; flow rate: 5mL/min; sample 

load volume: 20–30 mL). The feed solution was 60 mg SS-DNA/mL buffer B1. Surface 

activation ([2-BIB]/([2-BIB] + [1-BCMEA]) = 0.40, 0.60, 0.80, and 1.00) and surface-initiated 

ATRP (METAC (2M)/Cu(I)/Cu(II)/2,20-bipyridyl: 2000/1/0.1/2.2) for 20 h were used to 

produce the poly(METAC) modified membranes. Symbols represent the 1st (●), 2nd (▲), 3rd 

(■), and 4th run (♦) using the same membrane bed. 
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as grafting density increases. This observation further strengthens our conclusion that the SS-

DNA binding is not hindered. Given the large size of the DNA, it appears, perhaps, that insertion 

of the linear DNA chains in a parallel orientation to the grafted polymer chains allows access to 

binding sites all along the polymer chains. Considering the large size of DNA [radius of gyration 

> 50nm for 2.0 kbp size (Latulippe et al., 2007)] and the available adsorptive surface area of 

membrane [0.53 ± 0.02 m
2
/mL (Bhut et al., 2010)], the parallel orientation of DNA is most 

likely. This orientation is consistent with the findings of Tarmann and Jungbauer (2008), who  

Table 5.1: Normalized SS-DNA dynamic-binding capacities at 10% breakthrough for the 1st 

and 4th runs obtained using poly(METAC)-modified membranes. 

 

 mg ss-DNA/mg PMETAC 

Membrane DGpoly (% 2-BIB) 1
st
 run 4

th
 run 

9.52 (40) 0.11 0.09 

11.20 (60) 0.12 0.10 

14.01 (80) 0.13 0.10 

21.92 (100) 0.13 0.11 

 

demonstrated using a correlation between theoretical calculations and DNA uptake experiments 

that the binding of DNA to an ion-exchange resin surface occurred preferential in an upright 

position. It is clear from the chain densities estimated in chapter 4 that the polymer chains also 

are oriented (‘‘stretched’’) normal to the surface. To support this claim, the radius of gyration 

(Rg) for the polymer in a good solvent (water) was calculated using Equation 5.1 for comparison 

to the estimated inter-chain distances (D) given in chapter 4: 

Rg = CN
0.595  

(5.1) 

C is a constant for a particular polymer, and N is the degree of polymerization of the polymer. 

For poly(METAC), C value was estimated using data for polymers with similar characteristics, 

poly[(3-methacryloylamino)propyltrimethylammonium chloride] and poly(2 

(dimethylamino)ethyl methacrylate). Based on values for Rg and polymer molar mass reported 
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by Rivas et al. (2004) and Jiang et al. (2006), we estimated C = 0.38 for poly(METAC). 

Accordingly, Rg = 30nm for our case. Comparison with the data in chapter 4 shows that D < 2 

Rg in all cases, indicating that the grafted chains have adopted the characteristic stretched 

configuration of a polymer brush (Kilbey et al., 2001).  

 The dynamic-binding capacity of our newly designed anion-exchange membrane is 

remarkably high. The literature reports that the DNA dynamic-binding capacity of the 

commercial Sartobind
®
 Q membrane is much higher than the widely used resins (Eon-Duval and 

Burke, 2004; Knudsen et al., 2001; Syre´n et al., 2007). Knudsen et al. (2001) reports that the 

dynamic capacity of Sartobind
®
 Q membrane was about 9 ± 1 mg/mL under the same process 

conditions used in our study. Therefore, our newly designed membrane has threefold higher SS-

DNA-binding capacity than the Sartobind
®
 Q membrane. The same membrane bed was used 

repeatedly to generate the reversible dynamic capacity data and it was found that the dynamic 

capacity was not completely reversible. This observation is common for strong anion-exchange 

media (Eon-Duval and Burke, 2004; Syre´n et al., 2007). The negatively charged DNA strands 

bind strongly to the strong anion exchangers and are difficult to elute with a salt gradient. 

Volumetric flow rate was used as an independent variable to investigate the impact of 

residence time on the DNA dynamic-binding capacities. The volumetric flow rate was increased 

fivefold. Table 5.2 shows the results. Surprisingly, the dynamic-binding capacity of DNA 

increased slightly with increasing volumetric flow rate. We attribute this behavior to the 

molecular structure of DNA molecules and flow-induced shear forces. Zydney and co-workers 

(Latulippe et al., 2007; Latulippe and Zydney, 2009) have done extensive studies on the effect of 

volumetric flow rate on the sieving of DNA through UF membranes. They reported that DNA 

elongates due to high shear caused by increased flow rate at the pore entrance and that, in turn,  
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Table 5.2: Dynamic-binding capacity measured at 10% breakthrough for  poly(METAC)-

modified membranes (bed height: 420mm; loading buffer B1: 25mM Tris–HCl + 50mM NaCl, 

pH 8; elution buffer E1: 1.15 M NaCl in loading buffer B2; feed solution: 60mg SS-DNA/mL 

buffer B2). 

 

 Flow rate  Dynamic capacity 

mL/min cm/hr CV/min mg ss-DNA/mL 

1 39 15 24 ± 0.8 

3 117 46 30 ± 1.0 

5 195 77 32 ± 0.7 

 

DNA flux increases with increasing flow velocity. As mentioned earlier, insertion of linear DNA 

chains appears to occur in a parallel orientation to the grafted polymer chains. Thus, at higher 

volumetric flow rate, the DNA elongates, which may lead to easier insertion and packing into the 

polymer brush network. In any case, these data demonstrate that the mass transfer of DNA 

molecules to the binding sites of our macroporous membrane beds is limited primarily by 

convection; diffusional limitations are minimal. 

5.4.2 Effect of Poly(METAC) Chain Density on the Virus Removal Performance 

 Figure 5.3 shows the effect of DGpoly (directly related to chain density) on LRV of MVM. 

While the LRV initially increases with increasing poly(METAC) chain density, it is not possible 

to know whether LRV continues to increase for DGpoly > 14 wt%. Membranes exhibiting >4.5 

LRV for the given MVM impurity load may be capable of higher LRV values; however, the 

MVM concentration in the flowthrough fraction of these samples was below the limit of 

detection of the QPCR assay. Increasing the reportable LRV value or viral capacity, without 

altering the method of detection, is possible by either increasing the concentration of virus in the 

load solution or increasing the viral load volume. In the case of this study, viral titers of the 

MVM stock solution were comparable to industrial values, and increasing the concentration by 

ultrafiltration or other means usually results in altered viral stocks, mainly aggregated virus 



110 

 

particles that display different binding characteristics. Increasing the virus solution load volume 

is certainly possible; however, because the QPCR assay is not a real-time assay and is labor 

intensive, a constant load volume was maintained for all evaluation runs to enable more direct 

comparisons between runs. 

 

 

Figure 5.3: Dependence of virus log removal (LRV) performance on the degree of polymer 

grafting for poly(METAC)-modified membranes (loading buffer B2: 20mM Trisbase, pH 9.0, 

conductivity of 0.5 mS/cm; eluent E2: 10mL 3MKCl; flow rate: 2 mL/min (20 CVs/min, 70 

cm/h); sample load volume: 160 mL). The feed solution was loading buffer spiked 1:100 with 

MVM virus stock solution. Surface activation ([2-BIB]/([2-BIB] + [1-BCMEA]) = 0.40, 0.60, 

0.80, and 1.00) and surface-initiated ATRP (METAC (2M)/Cu(I)/ Cu(II)/2,20-bipyridyl: 

2000/1/0.1/2.2) for 20 h were used to produce the poly(METAC) modified membranes. Arrows 

pointing upward indicate that the actual LRV value may be higher for these entries because the 

concentration of MVM was below the limit of detection. 
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Despite the inability to determine true LRV values for membranes prepared with the 

highest poly(METAC) chain densities, it can be said that the achieved value of LRV > 4.5 

represents a high level of MVM clearance for a single unit operation (CPMP, 1996). These 

results are encouraging, but further work with MVM in the presence of protein is needed to truly 

judge the viral removal capabilities of the membranes. 

 

5.5 Conclusion 

 The work presented in this chapter continues the research presented in chapter 4. 

Regenerated cellulose macroporous membranes were prepared with varying strong anionic 

polymer chain lengths and densities grafted from the pore surface via ATRP. The binding of 

larger solutes such as DNA and viral particles were explored in this chapter. Single-stranded 

sperm DNA binding was evaluated as a function of chain length and density. The dynamic 

binding capacity of DNA increased up to the maximum achievable chain density and with 

increasing polymer chain length. Minute Virus of Mice binding capacity also increased with both 

polymer chain length and density; viral clearance is directly applicable to all biologics 

purification in the pharmaceutical industry. 
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Chapter 6 

 

 

 
Responsive Membranes for Hydrophobic Interaction Chromatography

1
 

 

 
 

6.1 Summary 

 Poly N-vinylcaprolactam (PVCL) chains were grown from the surface of regenerated 

cellulose membranes using atom transfer radical polymerization (ATRP). Modified membranes 

were characterized using scanning electron microscopy, infrared spectroscopy, X-ray 

photoelectron spectroscopy and by measuring surface contact angles. The grafting degree of 

PVCL increases with increasing ATRP initiator immobilization time. PVCL is a thermo-

responsive polymer with a lower critical solution temperature (LCST) that depends on the 

concentration of salt ions present in solution. The LCST decreases below room temperature in 

buffer containing 1.8 M (NH3)2SO4 where the polymer adopts a more hydrophobic/collapsed 

conformation. At low ionic strength, the LCST remains above room temperature. Contact angles 

for PVCL in 20 mM phosphate buffer with and without 1.8 M (NH3)2SO4 were determined. 

Contact angles in the buffer with high ionic strength were higher than those in low ionic strength.  

Adsorption and desorption of bovine serum albumin (BSA) and immunoglobulin G (IgG)  

have been investigated. Loading was conducted in high ionic strength buffer. Elution was 

conducted in low ionic strength buffer. By using a responsive ligand that changes its  

________________________ 
1
Himstedt, HH., Qian, X., Weaver, JR., Wickramasinghe, SR. 2013. Responsive membranes for hydrophobic 

interaction chromatography. J Membr Sci. 447: 335-344 

 

*My contribution to the manuscript presented in this chapter includes experimental planning, data analysis, and a 

portion of the chromatography work. 
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conformation during loading and elution, high protein recoveries were obtained. Ligands that 

respond to solution ionic strength show promise for high performance hydrophobic interaction 

chromatography. 

 

6.2 Introduction 

 Chromatography is frequently used in the biotechnology industry to isolate and purify 

protein based therapeutics. Here the term chromatography is used to represent any packed bed 

process as is a common practice in the biotechnology industry. Membrane adsorbers have been 

proposed as alternatives to traditional packed columns that contain chromatographic resin 

particles (Klein, 2000; Ghosh et al, 2002). One of the first descriptions of membrane adsorption 

or membrane chromatography as a process of commercial relevance was by Brandt et al (Brandt 

et al, 1988). A macroporous membrane is used as a support material and ligands are attached to 

the surface of the membrane pores.  

Packed bed chromatography suffers from a number of limitations (Specht et al, 2004; 

Wickramasinghe et al, 2006; Thömmes el al, 1995). The pressure drop across the bed is usually 

high and may increase during operation due to media deformation. Porous particles are used 

where the majority of the binding sites are located on the surface of the internal pores. While this 

leads to increased capacity, pore diffusion is often slow and leads to early breakthrough and 

incomplete usage of the packed bed. Adsorptive membranes overcome all of these limitations 

(Specht et al, 2004). The feed is pumped through the macroporous membrane pores, thus 

eliminating pore diffusion. The pressure drop is much lower compared to packed beds since the 

flow path is much shorter. In addition scale up of membrane modules is much easier than packed 

beds.  
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Membrane adsorbers are a subset of a much larger group of membrane based separation 

devices known as membrane contactors. Common examples include non-dispersive liquid-gas 

and liquid-liquid contactors. Membrane adsorbers represent a liquid-solid contactor (Kovvali el 

al, 2003). Today membrane adsorbers are used routinely in the biopharmaceutical industry in 

flow through polishing steps. Anion exchange membranes are used to bind large contaminant 

species such as virus particles, host cell proteins and DNA (Weaver et al, 2013; Weaver et al, 

2013). Slow pore diffusion renders packed beds particularly inefficient for removal of these large 

contaminant species. In this method of operation, since contaminant species are bound to the 

membrane, there is no need for elution and regeneration of the membrane; however, the adsorber 

is only suitable for single use. 

 Membrane adsorbers may also be used in bind and elute applications (Specht et al, 2004; 

Endres et al, 2003; Teeters et al, 2003). Recent publications indicate growing commercial 

interest in the use of membrane adsorbers to bind and elute target solutes (Kuczewski et al, 2010; 

Vogel et al, 2012). Here we focus on membrane adsorbers for use in hydrophobic interaction 

chromatography (HIC). Traditional HIC depends on reversible interactions between the 

hydrophobic surface patches on proteins and hydrophobic ligands attached to chromatographic 

resin particles (Lienqueo et al, 2007). Proteins are typically loaded at high salt concentration and 

eluted with decreasing salt concentration (Chen et al, 2007). Factors that affect protein 

adsorption and recovery in HIC include protein hydrophobicity and size, ligand chemistry, type 

and concentration of salt and buffer pH (Lienqueo et al, 2007). Both salt-induced protein 

precipitation and HIC depend on surface hydrophobicity of proteins (Nfor et al, 2001; Melander 

et al, 1977; Porath et al, 1973). Due to differences in the interaction between the ligands and 

different proteins the concentration of salt needed for adsorption can vary considerably, allowing 
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different selectivities for different proteins (Machold et al, 2002; Melander et al, 1989; 

Fausnaugh et al, 1986). 

 Membrane based HIC affords all of the advantages of membrane adsorbers: dynamic 

capacities that are independent of flow rate, higher throughput and easy scale up (Hahn et al, 

2003; Kubota et al, 1997; Yoo et al, 2012; Yu et al, 2008; Ghosh et al, 2006; Ghosh, 2001). 

Recent studies indicate a growing industrial interest in membrane based HIC. Here we focus on 

the use of stimuli-responsive membranes for HIC (Kuczewski et al, 2010; Vogel et al, 2012; 

Frau et al, 2009). Stimuli-responsive membranes change their physiochemical properties due to 

change in environmental conditions such as pH, temperature, ionic strength, etc (Wandera et al, 

2010). These physiochemical changes can lead to changes in membrane performance.  

Here poly N-vinylcaprolactam (PVCL) is grafted from the surface of commercially 

available microfiltration membranes. PVCL displays a lower critical solution temperature 

(LCST) at around 32 °C (Maeda et al, 2002). In solution, PVCL phase separates at temperatures 

above the LCST (Vihola et al, 2002). Crosslinking PVCL results in a thermally responsive 

hydrogel that dehydrates at temperatures above its LCST but swells below its LCST (Peng et al, 

2001; Ling et al, 2009; Ramos et al, 2012). When grafted to a solid surface such as a 

chromatographic particle or membrane, the PVCL nanostructure will swell and collapse below 

and above its LCST, respectively (Prabaharan et al, 2008). 

Previous investigators have proposed the use of temperature-responsive ligands for 

hydrophobic interaction chromatography (Kanazawa et al, 1996; Miserez et al, 2010). At 

temperatures above the LCST the ligands adopt a collapsed conformation that promotes protein 

adsorption. The temperature is reduced below the LCST during elution where the ligands adopt a 
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more hydrated conformation promoting protein desorption. However, changing temperature 

during operation is undesirable for bioseparations where purification is often conducted at 4 °C. 

The dependence of LCST on ionic strength, however, may be exploited in HIC (Maeda et 

al, 2002). As the ionic strength increases, the LCST will decrease. The actual decrease in LCST 

depends on the ionic species present (Du et al, 2010; Du et al, 2011). For example Maeda et al. 

(Maeda et al, 2002) indicate that the LCST of PVCL decreases to below 20 °C in the presence of 

1.0 M KCl. In addition the LCST depends on the degree of polymerization of N-

vinylcaprolactam (Ieong et al, 2012). Consequently, when conducting HIC at room temperature 

(approximately 25 °C) at high salt concentration above its LCST, PVCL will adopt a collapsed 

conformation that will promote protein adsorption. At low salt concentration, the LCST remains 

above room temperature. This will lead to a more swollen conformation which will promote 

desorption of the adsorbed protein at room temperature.   

  Huang et al. (Huang et al, 2009) have modified commercially available polyvinylidene 

fluoride membranes by UV-initiated graft polymerization in order to graft a hydrogel consisting 

of cross-linked PVCL. They show that at high ionic strength the grafted nanostructure collapses 

due to exclusion of water. At low salt concentration, hydration leads to swelling of the grafted 

layer. The use of stimuli-responsive ligands should lead to higher recovery of adsorbed protein. 

In a more recent study Mah and Ghosh (Mah et al, 2010) used a PVCL based ligand to purify 

humanized Immunoglobulin (hIgG) using HIC. PVCL is desirable for bioseparations compared 

to similar temperature-responsive polymers, as it is very stable against hydrolysis and is more 

biocompatible (Maeda et al, 2002; Vihola et al, 2002; Ramos et al, 2012). The use of a ligand as 

well as buffer conditions that actively promote adsorption and desorption should lead to high 
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capacity as well as product recovery. However, recent studies indicate that it is often difficult to 

obtain both high capacity and high recovery (Huang et al, 2009; Mah et al, 2010).  

Here atom transfer radical polymerization (ATRP) is used to grow PVCL chains from the 

surface of commercially available regenerated cellulose microfiltration membranes. ATRP is a 

controlled polymerization technique that allows both chain density and molecular weight to be 

varied independently (Himstedt et al, 2012). Further the polydispersity of the grafted chains is 

much lower than for less controlled polymerization methods. Since the LCST depends slightly 

on chain molecular weight (Ieong et al, 2012), obtaining a more uniform molecular weight 

distribution will lead to a sharper transition between the collapsed and swollen conformation at 

the LCST.  This in turn should lead to higher protein recovery. Protein binding capacity can be 

maximized by optimizing chain density.  

Here binding capacity and recovery for bovine serum albumin (BSA) and a monoclonal 

antibody have been determined. Unlike earlier studies the grafted PVCL chains are not cross 

linked. It is likely that cross-linked chains will be more constrained, limiting their response at the 

LCST. Regenerated cellulose membranes were chosen to minimize non-specific binding of the 

target solute to the base membrane. 

 

6.3 Materials and Methods 

6.3.1 Chemicals 

All purified water (0.06 μS/cm) was obtained from a combination Water Pro/RO reverse 

osmosis and Pro Plus deionization purification system from Labconco Corp. (Kansas City, MO). 

All chemicals were 97% or higher purity unless otherwise noted. Triethylamine (TEA), and 4-

N,N-dimethylaminopyridine (DMAP) were purchased from Fluka (Munich, Germany); ethanol 
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(pure), methanol, acetonitrile, and hydrochloric acid (6 M) were purchased from VWR (West 

Chester, PA); α-bromoisobutyrlbromide (BiB), boric anhydride, bovine serum albumin (>99%, 

product #A7638), immunoglobulin G from human serum (>95%, product #I4506), N-

vinylcaprolactam (VCL), CuCl, CuCl2, CuBr2, 2,2’-bipyridine (BPY), and N,N,N′,N′,N′′-

pentamethyldiethylenetriamine (PMDTA) were purchased from Sigma-Aldrich (St. Louis, MO). 

Sodium phosphate monobasic, sodium phosphate dibasic, and ammonium sulfate were purchased 

from JT Baker (Phillipsburg, NJ). Regenerated cellulose membranes (0.45 μm) were purchased 

from Whatman (Piscataway, NJ) as 47 mm diameter discs. Two 20 mM phosphate buffers 

containing 0 and 2.4 M ammonium sulfate at pH 7.0 were made in-house and vacuum filtered 

using Whatman 0.2 μm pore diameter PES sterile membrane filters (Piscataway, NJ). Additional 

buffers containing 1.5, 1.8, and 2.1 M ammonium sulfate were prepared by dilution of the 2.4 M 

ammonium sulfate buffer.  

6.3.2 Membrane Modification  

To prepare the initiator immobilization solution 61 mg DMAP and 1387 μL TEA were dissolved 

in 100 mL of distilled acetonitrile. Boric anhydride (3 g) were added to 150 mL of acetonitrile, 

and the mixture was heated in a 125
o
C oil bath for 30 minutes. A water-filled cooling column 

was attached during heating to collect the distilled acetonitrile. Individual membrane samples 

were placed into jars containing 15 mL of this solution. 150 μL of BiB initiator were added to 

each jar, which was quickly sealed. The membranes were reacted in the immobilization solution 

for a desired amount of time (1-24 hours), on a shaker table. The membrane discs were then 

removed from the jar, rinsed twice with DI water and then placed in excess DI water on a shaker 

table for 4 hours. The membranes were then dried in a 30
o
C vacuum oven for at least four hours. 

This reaction is illustrated in Figure 6.1a. 
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 The ATRP reaction solution was prepared by dissolving 525 mg BPY, 27 g VCL 

monomer, and 30.24 mg CuCl2 in 150 mL equal parts DI water and methanol. This solution was 

degassed with argon under strong stirring for 15 minutes. 148.5 mg CuCl was then added. The 

solution was degassed for an additional 15 minutes under strong stirring. Four membrane discs 

were placed into flasks which were then thrice evacuated and back-filled with argon. 10 mL of 

ATRP solution was injected into each flask, and the reaction proceeded at room temperature for 

12 hours. This reaction is illustrated in Figure 6.1b. 

 Following the reaction, the membranes were placed in a quenching solution consisting of 

500 mg CuBr2 and 1250 μL PMDETA in 100 ml equal parts DI water and methanol to stop the 

polymerization. After 10 minutes in the quenching solution the membranes were washed with 

Milli-Q water for 2 minutes, washed with methanol for 1 minute, and placed in excess DI water 

on a shaker table for 4 hours. The membranes were then dried in a vacuum oven at 30
o
C for at 

least four hours. This reaction is illustrated in Figure 6.1c. 

6.3.3 Degree of Grafting 

 The amount of PVCL which was grafted onto the membrane, the degree of grafting (DG), 

was calculated by dividing the difference in mass of the membrane before and after ATRP 

grafting by the cross-sectional area of the membrane. 

ATRP base

cross

m m
DG

A


       (6.1) 

Since regenerated cellulose membranes are hygroscopic, it was critical to standardize mass 

measurements. Before a membrane was weighed, it was first dipped in ethanol and dried in a 

vacuum oven at 30
o
C for one hour. The membrane was removed from the oven and allowed to 

rest at atmospheric conditions for 30 minutes before the mass was recorded. 
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Figure 6.1: Reaction scheme for surface-initiated ATRP of PVCL showing (A) initiator 

immobilization, (B) polymerization, and (C) quenching steps. 

 

6.3.4 Contact Angle 

Static contact angles were determined with a contact angle goniometer (Model 100, Rame-Hart 

Instrument Company, Netcong, NJ) using the sessile drop method at room temperature and 

pressure. A 2 μL drop of 20 mM phosphate buffer at pH 7.0 containing no ammonium sulfate 

was applied to the surface of the membrane with a syringe. Using the circle fitting method, the 

angle made between the water drop and the membrane surface was measured every 0.1 second. 

Data were collected for 5 seconds at three locations on each membrane. Average contact angles 
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calculated from these 50 measurements are reported. The measurements were then performed at 

three new locations using the same buffer to which 1.8 M ammonium sulfate had been added. 

6.3.5 Field Emission Scanning Electron Microscopy (FESEM) 

 FESEM was used to image the surface and cross section of the membranes in order to 

study the effect of membrane modification on the structural properties of the membranes. To 

prevent pore collapse, critical point drying was performed prior to analysing samples with a 

JEOL field-emission scanning electron microscope (JSM-6500F, JEOL Ltd., Tokyo, Japan). To 

perform critical point drying membrane samples which had been soaked in ethanol were placed 

into a steel vessel. The ethanol was exchanged by flushing the samples inside the vessel with 

supercritical CO2 (37 
o
C, 85 bar) 5-7 times. 

6.3.6 Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR) 

ATR-FTIR spectroscopy provides qualitative information on the types of functional groups 

present at depths between 500 and 2000 nm. A Nicolet Magna 760 FTIR spectrometer, Thermo 

Electron Corporation (Madison, WI), equipped with a mercury-cadmium-tellurium (MCT) 

detector with a resolution of 4 cm
-1

 and zinc selenide (ZnSe) crystal plate with an incidence 

angle of 45
o
 was used. ATR-FTIR spectra were averaged over 512 scans covering a range of 

600-4000 cm
-1

. 

6.3.7 X-ray Photoelectron Spectroscopy (XPS) 

XPS is particularly useful for studying membrane surface chemistry; i.e. the top 1-10 nm of the 

sample. For each sample, 5 survey scans over the range 0-1100 eV with a resolution of 1 eV 

were averaged using a Physical Electron 5800 ultra-high vacuum XPS-Auger spectrometer 

(Chanhassen, MN). Additionally, 20 scans at high resolution of 0.1 eV focusing on individual 



124 

 

regions of interest were averaged to characterize small changes in the surface chemistry with 

respect to carbon, nitrogen, and oxygen. 

6.3.8 Protein Binding and Elution 

 All chromatography runs were performed on an ÄKTA FPLC from GE Healthcare Bio-

Sciences Corp. (Piscataway, NJ, USA) with FRAC-950 fraction collector using the associated 

Unicorn software v. 5.31. A stack of four membranes were loaded into a GE Healthcare stainless 

steel flow cell purchased with the FPLC. Flow distributers were placed at the inlet of the flow 

cell to ensure the flow was uniform across the entire membrane cross-sectional area.  

Bovine serum albumin (BSA) or human serum Immunoglobulin (IgG) solutions were 

created by dissolving 10 mg of protein into 10 mL of 20 mM phosphate buffer (pH 7), which 

contained no ammonium sulfate. 90 mL of buffer containing 2 M ammonium sulfate was then 

added to yield a 100 mL solution of 0.1 mg/mL protein. Solutions containing other 

concentrations of protein or ammonium sulfate were prepared in an analogous manner.  

A method was developed within the Unicorn software to automate the protein (BSA or 

IgG) binding and elution experiments. The membrane stack was loaded into the flow cell and 

wet with 20 mM phosphate buffer (pH 7) in the reverse flow configuration over 5 minutes by 

increasing the flow rate from 0.2 mL/min to 1.0 mL/min in 0.2 mL/min increments. The 

membranes were then equilibrated in the forward flow configuration in the feed buffer (typically 

1.8 M) at 1 mL/min for 10 minutes. 

Protein sample solution was loaded onto the membrane stack at a flow rate of 1 mL/min 

for 10 minutes. The membrane stack was then washed with the feed buffer for 10 minutes at 1 

mL/min. Finally, the membranes were eluted with 20 mM phosphate buffer, pH 7, at 1 mL/min 

until the UV absorbance measured by the Unicorn software was constant. The washing fraction 
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and elution fraction were collected and the volume determined. Protein concentrations in the 

sample solution, washing fraction, and elution fraction were calculated via UV absorbance at a 

wavelength of 280 nm. 

 

6.4 Results and Discussion 

6.4.1 Degree of Grafting (DG) and Contact Angle 

 Figure 6.2 shows the effect of varying initiator immobilization time on DG. Only a very 

small amount of PVCL is grafted for one hour initiator immobilization; however, the amount of 

PVCL grafted to the membrane increases quickly with increasing initiator immobilization time. 

It can further be seen that for initiator immobilization times above 5 hours the increase in DG 

decreases rapidly. The variation of chain density with initiator immobilization time will depend 

on the kinetics of immobilization. Further, higher chain densities will increase the probability of 

chain termination due to reaction between two adjacent chains. The observed variation of DG 

with initiator immobilization time for 12 hour ATRP reaction as shown in Figure 6.2 is a result 

of these effects. 

The effect of increasing PVCL DG and buffer ionic strength on the membrane contact 

angle is shown in Figure 6.3. Regenerated cellulose is quite hydrophilic due to the abundance of  

hydroxyl and ether groups capable of forming hydrogen bonds with water. This corresponds to 

the very low contact angle for the unmodified regenerated cellulose membranes. The contact 

angle increases with increased grafting of the more hydrophobic PVCL. The contact angle in low 

ionic strength buffer (0 M ammonium sulfate) increases with increasing grafting degree, as the 

degree of coverage of the base membrane increases. The same trend exists for the much higher 

ionic strength buffer (1.8 M ammonium sulfate). 
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Figure 6.2: Average degree of grafting of PVCL as a function of initiator immobilization time. 

 

Figure 6.3 further indicates that the contact angle for the higher ionic strength buffer is 

much higher than for the low ionic strength buffer for the same initiator immobilization time. 

The LCST for PVCL in water is reported to be about 32 °C (Peng et al, 2001)
 
while in 1.0 M 

KCl it is below 20 °C (Maeda et al, 2002). The actual LCST of tethered PVCL will depend not 

only on the molecular weight of the grafted chains but also on the grafting density (Maeda et al, 

2002). The contact angle data given in Figure 6.3 provide strong evidence that for the low ionic 

strength buffer at room temperature (around 25 °C), the grafted PVCL chains are below their 

LCST and adopt a more hydrated conformation leading to a low contact angle. However, in the 

high ionic strength buffer the grafted PVCL chains are above their LCST and adopt a more 
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dehydrated and collapsed conformation leading to the observed higher contact angles. The 

contact angle data are in agreement with the measured degree of grafting shown in Figure 6.2; 

for initiator immobilization times above 5 hours little change in contact angle is observed with 

increasing initiator immobilization time.  

 

 

Figure 6.3: Average contact angle as a function of initiator immobilization time for low and high 

ionic strength buffers 

 

6.4.2 Field Emission Scanning Electron Microscopy (FESEM) 

 FESEM was used to study the effect of modification on the appearance and structure of 

the membrane. Figure 6.4(a-b) give images of the top surface of an unmodified regenerated 

cellulose membrane and membranes modified with 5 hours initiator immobilization. The porous 
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structure and large void volume of the unmodified membrane is seen. Qualitatively, the effective 

pore size appears to be on the order of 0.5 µm, in agreement with the manufacturer’s designation 

of 0.45 µm. For the modified membrane the membrane structure is tighter, with less void 

volume, due to the presence of the grafted PVCL. Importantly, the overall membrane structure 

and integrity was not damaged by the modification.   

 

 

Figure 6.4: FESEM images for (A) unmodified membrane (B) membrane modified using 5 hour 

initiator immobilization at 5,000x magnification. 

 

6.4.3 Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR) 

 The spectra for the unmodified membrane and modified membranes with initiator 

immobilization times of 5 and 24 hours are shown in Figure 6.5. For the unmodified membrane 

the largest peak (~3335 cm
-1

) corresponded to the stretching of C-OH bonds. The spectra for the 

modified membranes showed some key differences. Primarily, the large peak at ~3335 cm
-1

 

associated with the hydroxyl groups was diminished with increasing PVCL DG. Additionally, 

peaks associated with hydrocarbon bonds increased at ~2900 cm
-1

. This is consistent with the 

absence of C-OH groups in PVCL. The amide I peak at 1640-1670 cm
-1

 is seen for modified 

membranes and increased with increasing PVCL grafting.  
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Figure 6.5: ATR-FTIR spectra for an unmodified membrane and membranes modified using 5 

and 24 hour initiator immobilization times.  

 

6.4.4 X-ray Photoelectron Spectroscopy (XPS) 

 The three regions of particular interest are nitrogen, oxygen, and carbon. High-resolution 

spectra for each of these regions are shown in Figure 6.6(a-c). Results are given for the 

unmodified membrane as well as membranes modified with initiator immobilization times of 5 

and 24 hours. The most straightforward evidence of PVCL grafting is seen in the nitrogen region 

(Figure 6.6a). No peak was seen for the unmodified regenerated cellulose membrane since it 

contains no nitrogen. Following ATRP, a pronounced nitrogen peak appeared due to the grafting 

of PVCL, which contains an amide group. The height of the nitrogen peak increased with 

increasing initiator immobilization time due to the increased amount of grafted PVCL. 
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Figure 6.6: XPS spectra for the (A) nitrogen, (B) oxygen, and (C) carbon regions. Spectra are 

given for unmodified and modified membranes for 5 and 24 hour initiator immobilization times. 

 

The oxygen (Figure 6.6b) and carbon (Figure 6.6c) regions offer additional evidence for 

the successful grafting of PVCL. The unmodified membranes showed a very strong oxygen peak 

due to the large number of oxygen atoms in the cellulose matrix. With increasing initiator 

immobilization time, this peak steadily decreased as the thickness of the grafted PVCL chains 

increased. The peak also shifted slightly towards lower energy with increasing grafting degree 

due to the carbonyl oxygen present in the PVCL representing a greater percent of the observed 

oxygen.  

Finally, the carbon region also provides evidence of PVCL grafting. The largest peak 

(286.3 eV) corresponded to alcohol and ether groups, both present in large numbers in the 
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unmodified regenerated cellulose membranes. This peak, as with the oxygen region peak, 

decreased with increasing initiator immobilization time due to the increased thickness of the 

grafted PVCL nanostructure. A shoulder can be observed at 288 eV for modified membranes. 

This corresponds to carbonyl groups in the grafted PVCL nanolayer. It can also be seen that the 

hydrocarbon peak (284.8 eV) increased for modified membranes. This is a result of the fact that 

the unmodified membrane contains far fewer carbon atoms that are bonded strictly to carbon or 

hydrogen.  

6.4.5 Hydrophobic Interaction Chromatography (HIC) 

 The flux versus transmembrane pressure was determined before each load cycle. All 

membranes displayed a linear variation of flux with transmembrane pressure as expected. 

Further, no statistical difference in the flux as a function of transmembrane pressure was 

observed for modified and unmodified membranes suggesting that the resistance due to surface 

modification was minimal. The FESEM results (Figure 6.4) support this observation. 

Breakthrough curves for 0.1 mg/mL BSA in phosphate buffer containing 1.8 M 

ammonium sulfate loaded at 1 mL/min for unmodified membranes and membranes modified 

with 5 and 24 hours initiator immobilization times are shown in Figure 6.7(a-c). UV absorbance, 

which is directly proportional to protein concentration, is plotted against the ratio of effluent 

volume to volume occupied by the membrane stacks (0.0806 mL). The right hand side y-axis 

gives the variation of conductivity of the mobile phase.  For the unmodified membrane Figure 

6.7a, the UV absorbance began to increase at about 25 membrane volumes after loading began. 

This corresponded to immediate breakthrough as the system holdup volume was about 25 

membrane volumes (approximately 2 mL). Loading continued for 10 min at 1 mL/min (about 

125 membrane volumes). After this washing was conducted using a further 125 membrane 
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volumes of feed buffer without BSA. The UV absorbance rapidly drops to zero during the 

washing step. Finally elution buffer, 20 mM phosphate with no ammonium sulfate, was pumped 

through the membrane. The absence of an elution peak confirmed that there was little 

nonspecific binding of BSA to the base regenerated cellulose membrane.  

As can be seen the conductivity remains constant during loading and washing but drops 

to a very low value during elution. At the end of the elution cycle, the absorbance drops below 

zero. This is because the UV absorbance is set to zero before the loading cycle in buffer 

containing 1.8 M ammonium sulfate. The elution buffer however, contains no ammonium 

sulfate.  

The chromatograms for the two modified membranes (Figure 6.7(b,c)) indicate that 

breakthrough occurs at about 50 membrane volumes rather than 25 membrane volumes as 

observed for the unmodified membrane.  This longer time to breakthrough indicates adsorption 

of BSA. Both modified membranes also display a sharp elution peak, suggesting rapid 

desorption of the adsorbed BSA and the absence of large resistances due to pore diffusion. In 

fact for flow rates between 0.1 and 10 mL/min, no effect on dynamic capacity was observed.  

Consequently, all experiments were conducted at a flow rate of 1.0 mL/min. As was the case for 

the unmodified membrane, the absorbance falls below zero during elution. Again the 

conductivity remains constant during loading and washing and drops to a very low value during 

elution.  
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Figure 6.7: HIC chromatographs for the (a) unmodified RC membrane and membranes modified 

at (b) 5 and (c) 24 hour initiator immobilization time. Loading conditions were 0.1 mg/mL BSA 

in 1.8 M ammonium sulfate buffer at 1 mL/min. 

 

Based on chromatograms analogous to those in Figure 6.7, BSA binding capacity and 

recovery were determined for membranes modified with a range of initiator immobilization 

times. The binding capacity was defined as the capacity at which the concentration in the flow 

through reached 90% of the feed concentration (90% saturation). Experiments were conducted at 

least 4 times for each condition and average results are reported. The results are given in Table 

6.1. The error values shown give the observed variability.  
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Table 6.1: Average binding capacity and percent recovery for various membranes modified in 

this study. Loading conditions were 0.1 mg/mL BSA in phosphate buffer (pH 7.0) containing 1.8 

M ammonium sulfate pimped at1 mL/min. 

 

Initiator Immobilization   

Time (hr) 

Recovery (%) Binding Capacity        

(mg/mL) 

Control 0 0 

1 97.6 ± 1 3.3 ± 0.1 

3.5 91.0 ± 3 4.3 ± 0.3 

5 96.0 ± 1 4.8 ± 0.2 

13 72.9 ±3 4.5 ± 0.3 

24 70.2 ± 3 4.9 ± 0.2 

 

Table 6.1 indicates that within the observed variability between repeat runs, the overall 

trend is that the binding capacity increases with increasing DG. However, the increase in 

capacity decreases for membranes modified with initiator immobilization times above 5 hours.  

This observation is in agreement with the DG and contact angle data shown in Figures 6.2 and 

6.3. 

The observed recovery remains very high for initiator immobilization times up to 5 hours 

and then decreases. At higher chain densities (higher initiator immobilization times) steric 

hindrance could prevent complete swelling and hydration of the chains at low ammonium sulfate 

concentrations. This could result in less efficient desorption of adsorbed BSA resulting in the 

observed lower recovery. Earlier work in the Wickramasinghe lab (Du et al, 2010; Du et al, 

2011) and preliminary classical molecular dynamics simulations for poly(N-

isopropylacrylamide) (pNIPAM) indicate that the degree of swelling is strongly dependent on the 

distances between the polymer chains. Even for temperature below its LCST transition, two 

pNIPAM chain separated by as much as 30 Å are seen to collapse onto each other even though 

the polymers are in a hydrated extended conformation. High chain density is likely to limit the 
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degree of hydration of these responsive polymers. Consequently all further testing was 

conducted using membranes that were modified with 5 hour initiator immobilization. 

 Figure 6.8 gives some literature data for HIC membranes and resins. Data from Ghosh 

and Wang (Ghosh et al, 2006) are for 0.1 m pore size PVDF membranes and a feed stream 

consisting of 0.5 mg/mL BSA in 20 mM sodium phosphate buffer (pH 6.5). A range of 

ammonium sulfate concentrations in the feed buffer were investigated.  Experiments were 

conducted in pulse mode at a flow rate of 10 mL/min. Results for the loading buffer containing 

1.5 and 1.7 M ammonium sulfate are given in Figure 6.8.  

Data from Fraud et al. (Fraud et al, 2009) are for commercially available Sartobind HIC 

membranes manufactured by Sartorius AG, Göttingen, Germany. Phenyl groups were covalently 

attached to base regenerated cellulose membranes, pore size about 3 m. The BSA concentration 

in the feed stream was 2.0 mg/mL. The feed buffer consisted of 2.0 M ammonium sulfate in 50 

mM potassium phosphate buffer (pH 6.0). The feed flow rate was 10 mL/min. Dynamic binding 

capacities were determined for breakthrough concentrations defined as 10% saturation. No 

recovery data were provided.     

Hahn et al. (Hahn et al, 2003) provide data for various HIC resins. The feed buffer 

consisted of 20 mM sodium phosphate (pH 7.0) containing 1.75 M ammonium sulfate. The BSA 

concentration in the feed was 1.0 mg/mL. Dynamic binding capacities were determined for 

breakthrough defined as 2.5% saturation. A range of feed flow rates from 0.15 to 1.30 mL/min 

were investigated. Recoveries ranged from 80 to 100% though for most resins recoveries were 

above 90%. 
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Figure 6.8: BSA binding capacity as a function of ammonium sulfate concentration in the feed 

buffer. Literature data are for various resins and membranes are compared to the results obtained 

in this study.  

 

Data for membranes modified in this study with an initiator immobilization time of 5 

hours are included in Figure 6.8. The results given in Figure 8 are difficult to compare directly as 

the experimental conditions are not identical. Comparing results for packed beds and membrane 

adsorbers is difficult given the different flow geometries and residence times for these devices. 

Previous studies (Han et al, 2006; Charcosset et al, 1995) have indicated a basis for comparison 

of membranes and resins based on the Thomas model (Thomas et al, 1944) which assumes a 

Langmuir adsorption isotherm. Such a comparison is not possible here as there is insufficient 

information for the previous studies. However Hahn et al. (Hahn et al, 2003) do indicate that the 

dynamic capacity of the various resins they investigated does depend on feed flow rate. It is 
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expected that the adsorptive membranes will display a dynamic capacity that is independent of 

flow rate over a large range of flow rates. The modified membranes in this study displayed a 

dynamic capacity that was independent of flow rate over the range 0.1 to 10 mL/min. 

Figure 6.8 indicates that the dynamic capacity of the resins investigated by Hahn et al. 

have a significant range. Capacities can be less than the membranes tested in this study; 

however, capacities can also be 7 times greater than the membranes developed here. The surface 

area of highly porous chromatographic resins is higher than for membranes. Resin capacities for 

small proteins are frequently much higher than for adsorptive membranes (Weaver et al, 2013) 

though the dynamic capacity does decrease with increasing flow rate due to pore diffusional 

resistances. 

The membranes developed here display much higher capacities than those described by 

Ghosh and Wang (Ghosh et al, 2006). This is not surprising as Ghosh and Wang used PVDF 

membranes with no surface modification. Attaching hydrophobic polymer chains to the internal 

pore surface of the membrane will increase the number of binding sites and hence the capacity. 

As can be seen, the commercially available Sartorius membrane which contains phenyl groups 

attached to a base regenerated cellulose membrane, does display a much higher capacity than the 

PVDF membranes tested by Ghosh and Wang. The capacity of the membranes developed here is 

similar to the commercially available Sartorius membranes.  

The responsive membranes developed in this study were tested using a BSA 

concentration in the feed stream of 0.1 mg/mL much less than the feed concentration used in the 

earlier studies (Fraud et al (Fraud et al, 2009) 2.0 mg/mL, Ghosh and Wang (Ghosh et al, 2006) 

0.5 mg/mL and Hahn et al. (Hahn et al, 2003) 1.0 mg/mL). In the absence of dynamic effects, the 

adsorption isotherm determines the amount of BSA that binds at a given solution concentration. 
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The responsive membranes developed here have a much more favorable adsorption isotherm as 

indicated in Table 6.1 and Figure 6.8. Further, for initiator immobilization times less than 5 

hours high BSA recovery is also observed. Finally, as expected, higher ammonium sulfate 

concentration in the feed buffer yields higher binding capacities.  

Additional experiments were conducted to determine the IgG binding capacity of the 

membrane with 5 hour initiator immobilization in a feed buffer containing 1.8 M ammonium 

sulfate. An average binding capacity of 21.0 mg/mL was obtained at the same operating 

conditions we used for BSA. Fraud et al. (Fraud et al, 2009) obtained a capacity of around 12 

mg/mL using Sartorius membranes. Since the operating conditions used by Fraud et al. were not 

identical to the ones used here, direct comparison of the results is difficult.  However, the results 

do highlight the tremendous potential benefit of designing responsive membranes for HIC.  

The results obtained here indicate that optimization of the grafted nanolayer will be 

essential for maximizing both capacity and recovery. In particular, a very high grafting density is 

likely to limit the ability of the grafted nanolayer to swell below its LCST adversely affecting 

rapid protein desorption (Du et al, 2010; Du et al 2011). On the other hand a low graft density 

will lead to low capacity. Previous studies have indicated that a critical ligand hydrophobicity is 

required to capture and recover a specific protein (Chen et al, 2007). Fractionation of different 

proteins depends on the hydrophobicity of the proteins. More hydrophobic proteins may be 

fractionated at low (0.3-0.5 M) ammonium sulfate concentrations. Further, due to the possible 

loss of protein during adsorption at high salt concentration, there is significant interest in 

conducting HIC at low salt concentrations.   

The relatively high binding capacities at low concentration obtained here could be 

advantageous for purification of biopharmaceuticals, where the concentration of the target 
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product is often very low (< 1 mg/mL). Development of responsive ligands offers the potential to 

tailor ligands for efficient fractionation of proteins. The degree of hydration and dehydration as 

well as their corresponding response time depends not only on the ionic strength of the buffer 

solution but also on the specific cations and anions in solution (Du et al, 2010; Du et al, 2011). 

Our earlier results for PNIPAM in sodium halide salt solutions and more recent results for 

PNIPAM in different singly-charged alkali and doubly-charged alkaline chloride solutions show 

that the radius of gyration and the number of water molecules of PNIPAM in the first hydration 

shell are ion specific at a given temperature. This is likely to be the same for PVCL. Thus it is 

likely that by carefully choosing the salt used during loading, efficient fractionation of proteins 

by HIC in low salt concentration feed solutions may be possible.  

 

6.5 Conclusions 

 Responsive membranes represent a class of multifunctional membranes whose 

performance can be modified by an external stimulus. Here PVCL chains have been grown from 

the surface of regenerated cellulose membranes. The PVCL chains display an LCST. Above the 

LCST the chains adopt a collapsed and dehydrated conformation while below the LCST the 

chains swell. The value of the LCST may be altered by changing the ionic strength of the buffer 

solution. 

 We have shown that BSA may be efficiently adsorbed and desorbed from regenerated 

cellulose membranes grafted with PVCL. At high grafting densities, recovery of BSA is reduced. 

This is likely due to the fact that swelling of the grafted polymer chains is restricted due to steric 

hinder effects. Importantly BSA is efficiently adsorbed at very low feed concentrations.  
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 The use of commercial membrane adsorbers for protein purification is growing. Unlike 

packed beds, membrane adsorbers display dynamic capacities that are independent of flow rate 

spanning a large range of flow rates. Development of efficient HIC membrane adsorbers could 

be of significant benefit in the downstream purification of biopharmaceutical products. 
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Chapter 7 

 

 

 
Identification and Characterization of Novel Fc-binding Heptapeptides via     

Phage Display and ELISA
1
 

 

 

7.1 Summary 

 Purification of biologically-derived therapeutics is a major cost contributor to the 

production of this rapidly growing class of pharmaceuticals. Monoclonal antibodies comprise a 

large percentage of these products therefore new antibody purification tools are needed. Small 

peptides, as opposed to traditional antibody affinity ligands such as Protein A, may have 

advantages in stability and production costs. Multiple heptapeptides that demonstrate Fc binding 

behavior that have been identified from a combinatorial peptide library using M13 Phage 

Display are presented herein. Seven unique peptide sequences of diverse hydrophobicity and 

charge were identified, suggesting multiple sites on the Fc were bound by the peptides. All seven 

peptides showed strong binding to the four major human IgG isotypes, human IgM, as well as 

binding to canine, rat, and mouse IgG. These seven peptides were also shown to bind human 

IgG4 from DMEM cell culture media with 5% FCS and 5 g/L ovalbumin present. These peptides 

may be useful as surface ligands for antibody detection and purification purposes. 

 

 

________________________ 
1
Weaver, J., Wickramasinghe, SR. Identification and Characterization of Novel Fc-binding Heptapeptides via Phage 

Display and ELISA. (submitted) 
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7.2 Introduction 

Pharmaceutical sales, and in particular biologically derived pharmaceutical sales, are 

increasing (Merie, 2011). In fact many of the top selling pharmaceuticals are monoclonal 

antibodies (mAb). However biologically derived pharmaceuticals, including mAbs, are much 

more expensive than typical small-molecule therapeutics due to the complexity of both the 

molecule and the production process. Downstream purification of these mAbs can account for 

almost 80% of the total cost of manufacturing suggesting opportunities for novel antibody 

purification technology (Gottschalk, 2005). Thus there is a continual need to develop new, more 

efficient purification processes.  Recently, much work has gone into finding possible functional 

replacements for protein A which is the workhorse affinity technology for mAb purification.  

Drawbacks of protein A include the fact that it is expensive and unstable under typical column 

cleaning/sanitization conditions such as 1M NaOH (Costioli et al., 2010; Gagnon, 2012).  

Derivatives of protein A have been shown to retain similar binding properties while 

showing an increase either in binding capacity or stability (Gulich et al., 2002; Linhult et al., 

2004). A few alkaline-stabilized protein A derivatives are currently marketed as chromatography 

resins such as the GE Healthcare (Pittsburgh, PA, USA) MabSelect Sure resin which uses a 

modified tetrameric B binding domain, protein A ceramic Hyper D F resin from Pall Corporation 

(Port Washington, NY, USA) and Tosoh Biosciences (South San Francisco, CA, USA) 

Toyopearl AF-protein A-650F resin which uses a tetrameric derivative of the C binding domain 

of protein A. However, protein A derivatives still suffer from high costs associated with 

licensing fees and costs of producing the recombinant protein.   
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Therefore synthetic ligands that have little or no protein A homology have received a 

good deal of academic and industrial interest over the past decade. Totally synthetic chemical 

ligands, such as the multi-modal hydrophobic charge induction MEP Hypercel
®
 ligand from Pall 

Corporation which displays both charge and hydrophobic binding characteristics, are actively 

being researched currently. Wang et al showed that by screening parallel small libraries of 

combinatorial chemical ligands certain ligands could perform chromatographic separation of 

BSA and avidin (Wang and Li, 2002). Haigh et al identified small molecule immunoaffinity 

ligands based on a multicomponent Ugi reaction combinatorial library (Haigh et al., 2009). A 

very interesting study in 2011 by Arnold et al. demonstrated a method for evaluating large 

libraries of small molecules for Fc binding based on surface plasmon resonance (SPR) analysis 

of chemical microarrays (Arnold et al., 2011). Several chemical ligands were identified with 

potential Fc binding properties. While these chemical-based ligands show promise as yet they 

have generally not shown comparable selectivity to protein A. 

Synthetic peptides are also currently being explored as possible antibody purification 

ligands (Verdoliva et al., 2002). Small peptides have several advantages over both large protein 

A derivatives and small-molecule chemical affinity ligands. Due to the much smaller size and 

reduced complexity of peptides as compared large protein A derivatives, peptides may be 

inherently more stable. Short peptides do not assume complex tertiary structures like that found 

in protein A but may or may not form helical secondary structure (Finkelstein et al., 1991). 

Secondary structures such as α-helices and β-sheets are thermodynamically favored. Further, 

recovery of these structures after denaturation is generally rapid and much more reproducible 

than recovery of tertiary structures. Therefore recovery of active peptide after exposure to 
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unfavorable folding conditions is more likely than recovery of large proteins after similar 

exposure.  

There have been multiple peptide-based ligands identified as Fc binders or specific 

protein binders using various selection methods (Berntzen et al., 2009; DeLano et al., 2000; 

Gurgel et al., 2001a; Gurgel et al., 2001b; Jeong, 2010; Krook et al., 1998; Sinha et al., 1999). 

The unusual peptide PAM first described by Fassina et al in 1996, has very promising antibody 

purification characteristics, producing antibody with greater than 90% purity from clarified cell 

supernatant. (Dinon et al., 2011; Fassina et al., 1996).  Another peptide, HWRGWV, was 

identified by Yang et al via an elegant radiolabeled target screening method of a solid phase 

hexapeptide resin library (Yang et al., 2006). The HWRGWV peptide has been shown to 

demonstrate good performance for purification of hIgG from CHO cell culture media, and Fc 

binding site data has been obtained (Naik et al., 2011; Yang et al., 2010). Impurity removal was 

also studied, showing good removal of DNA and host cell proteins. A common method used to 

identify promising peptides is panning of peptides from phage display libraries.  This is the 

method used in this work. 

Phage display is a method for evaluating a very large protein library for specific 

sequences that bind the desired target.  Today the method is used to study molecular biology 

mechanisms involving protein-protein and protein-non-protein interactions (Gaskin et al., 2001; 

Hober et al., 2007; Larbanoix et al., 2011; Levine et al., 2013; Mooney et al., 2011; Serizawa et 

al., 2007; Vodnik et al., 2011b).  Protein libraries of varying length, from short peptides to full 

antibody, are “displayed” on the surface of bacteriophage coat proteins. Since the protein 

displayed on the surface is coded by the genetic material within the viral genome there is a direct 

link between the phenotype of the phage and its genotype, thereby allowing DNA sequencing 
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and identification of the displayed protein. M13 phage is the most common phage currently used, 

and is the one used in this study in the form of the Ph.D-7 library from New England BioLabs 

Inc. (Ipswich, MA, USA) (Georgieva and Konthur, 2011; Sidhu, 2001). 

In this contribution seven novel heptapeptides have been identified through a series of 

solution affinity panning experiments that have specific affinity for the Fc region of 

immunoglobulins. Heptapeptides have been identified as selective binding ligands for other 

targets, providing assurance small 7-amino acid ligands can be selective (Islam, 2013; Islam et 

al., 2014; Ng et al., 2012; Pulicherla and Asokan, 2011; Yang et al., 2011).  To our knowledge 

there have not been any previously reported heptapeptide Fc binding ligands in the public 

literature. Importantly, these peptides may be excellent candidates for either antibody detection 

or purification ligands. The previously mentioned hexapeptide HWRGWV demonstrates small 

peptides may show sufficient selectivity and affinity to Fc to act as a purification ligand. 

Heptapeptides may add some additional selectivity while still retaining the robustness and ease 

of production of small peptides. To that end binding experiments were conducted via ELISA 

with hIgG4 coated wells in challenging cell culture media (DMEM with 5% FCS and 5 g/L 

BSA) to demonstrate specificity. Protein A has known binding tropisms for hIgG1, hIgG2, 

hIgG4 but is a poor hIgG3 binder (Starovasnik et al., 1999). Therefore binding to various human 

and non-human antibodies has also been explored. 

 

7.3 Materials and Methods 

7.3.1 Reagents 

 Ph.D.-7 phage-peptide library and F
+
 E. Coli strain K12 ER2738 were purchased 

from New England BioLabs (Ipswich, MA, USA). 2xYT media (powder mix, 31 g/L) was 
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purchased from Amresco (Solon, OH, USA). Tetracycline hydrochloride (antibiotic), bovine 

serum albumin (BSA), lactoferrin, and horseradish peroxidase enzyme chromogenic substrate 

ABTS (2,2’-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt) was obtained 

from Sigma-Aldrich Corp. (St. Louis, MO, USA). High glucose DMEM media and fetal calf 

serum (FCS) were obtained from HyClone, a division of Thermo Fisher Scientific (Waltham, 

MA, USA). Human IgG4 was obtained through a generous donation by Eli Lilly (Indianapolis, 

IN, USA). Human IgG1, IgG2, IgG3, and IgM, canine IgG, murine IgG, and rat IgG were 

purchased from Athens Research & Technology, Inc. (Athens, GA, USA). Microlon 200 

medium-binding, clear, flat-bottomed, polystyrene 96-well plates were purchased from USA 

Scientific (Ocala, FL, USA). All buffer reagents including mono- and di-basic phosphate, Tris 

base and Tris hydrochloride, L-Glycine, Hydrochloric Acid, cysteine HCl, EDTA disodium salt, 

Tween 20, citric acid, glacial acetic acid, sodium hydroxide, glycine, 30% hydrogen peroxide, 

and NaCl were purchased from JT Baker (Philipsburg, NJ, USA). A Biomax PES 5 kDa MWCO 

TFF membrane was purchased from EMD Millipore (Billerica, MA, USA). Papain proteolytic 

enzyme, protein A, streptavidin agarose beads, and EZ-Link Sulfo-NHS -Biotin no weigh format 

were all purchased from Pierce Biotechnology, Inc. (Rockford, IL, USA). Isopropyl β-D-1-

thiogalactopyranoside (IPTG) and 5-bromo-4-chloro-indolyl-β-D-galactopyranoside (X-Gal) 

were purchased from Fermentas, Inc. (Glen Burnie, MD, USA). Affi-Gel 10 activated 

immunoaffinity agarose resin was obtained from Bio-Rad (Hercules, CA, USA). Anti-M13 HRP-

conjugated antibody was purchased from GE Healthcare (Piscataway, NJ, USA). 
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7.3.2 Fc target preparation 

7.3.2.1 Fc generation 

 Human IgG4 (hIgG4) monoclonal antibody was digested with papain that had been 

immobilized on Affi-Gel 10 agarose beads and then purified over a protein A conjugated agarose 

column to obtain enriched Fc. Originally in citrate buffer pH 6.7, hIgG4 was diafiltered using 10 

diavolumes into 20 mM phosphate, 150 mM NaCl, 10 mM EDTA, pH 7.0 (PBES) using a 5 kDa 

MWCO Biomax TFF membrane module and then concentrated to 20 mg/mL. Papain (5 mg 

lyophilized) was reconstituted with 1 mL of 20 mM phosphate containing 150 mM NaCl at pH 

7.0 (PBS). Next 0.2 mL of 50% slurry of Affi-Gel 10 was transferred to a 1.7 mL centrifuge 

tube, washed with cold DI water, and equilibrated in PBS according to the product instructions.  

The 0.2 mL of equilibrated 50% Affi-Gel 10 slurry (0.1 mL total bead volume) was 

added to the 1 mL of 5 mg/mL papain solution in a centrifuge tube and allowed to conjugate for 

4 hr with agitation at 4 ºC. The effectiveness of conjugation was determined by measuring the 

absorbance at 280 nm of the reaction supernatant (diluted 1:10 in 0.1 M HCl). Any unreacted 

sites on the Affi-Gel 10 were quenched by incubation with 0.1 M glycine overnight at 4 ºC with 

agitation. Then 0.1 mL of the immobilized papain was activated prior to digestion for 30 min at 

37 ºC with 1 mL PBES containing 10 mM freshly added cysteine (pH was readjusted to 7.0).  

The Affi-Gel 10 resin with immobilized papain was pelleted by centrifugation.  

The resin was resuspended in 1 mL of hIgG4 solution (prepared by adding 0.5 mL PBES 

containing 20 mM cysteine to 0.5 mL of 20 mg/mL hIgG4 for final concentration of 10 mg/mL) 

and allowed to digest at 37 ºC for six hours with agitation. The immobilized papain containing 

digested hIgG4 mixture was centrifuged to pellet the resin and the supernatant containing hIgG4 
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fragments was collected, diluted with 9 mL PBS and immediately loaded over 1 mL Affi-Gel 

Protein A conjugated resin packed in a 5/100 tricorn column (GE Healthcare Pittsburgh, PA, 

USA) on an AKTA FPLC (GE Healthcare Pittsburgh, PA, USA).  

Protein A (5 mg lyophilized) was reconstituted and conjugated to 1 mL Affi-Gel 10 resin 

following the same procedure for papain conjugation. The immobilized protein A was 

equilibrated with PBS prior to loading. The column containing resin with immobilized portion A 

was operated at 0.5 mL/min throughout the run. After loading, the column was washed with 10 

column volumes of PBS and the bound material eluted with 0.1 M acetic acid and neutralized to 

pH 7.0 with 1 M phosphate pH 8.5.  

Papain digestion of the antibody in the presence of a mild reducing agent generates Fc 

and a mixture of Fab and fragments. Protein A resin binds to the Fc fragments strongly while Fab 

predominantly passes through the column unbound; therefore the eluted fraction is highly 

enriched in Fc fragments as well as any undigested antibody. Fc enrichment after protein A 

purification was observed on a non-reducing 12% SDS-PAGE gel. 

7.3.2.2 Fc Biotinylation 

1 mL of 0.1 mg/mL Fc in acetate/phosphate buffer pH 7.0 (as described in section 2.2.1) 

was biotinylated using the EZ-Link Sulfo-NHS -Biotin no weigh format at the recommended 

conditions. Briefly we aimed for a 20-fold excess of sulfo-NHS-biotin reagent.  Therefore 4 µL 

of 10 mM sulfo-NHS-biotin was added to 1mL of 0.1 mg/mL Fc (~50 kDa) solution and 

incubated for 2 hr on ice. Biotinylated Fc was diluted with 10 mL (of 50 mM Tris containing 150 

mM NaCl at pH 7.5 (TBS buffer) and concentrated to 0.1 mg/mL (1mL) using an EMD 



153 
 

Millipore Amicon Ultra-15 5 kDa MWCO spin concentrator in a swing-bucket rotor centrifuge 

at 3000 rpm for approximately 40 min.  

7.3.3 Phage Display Panning 

 The Ph.D.-7 heptapeptide phage library was supplied at 2x10
13

 pfu/mL and had a 

sequence diversity of approximately 2x10
9
 unique codon sequences. The panning experiments 

generally followed the procedure outlined in the Ph.D. phage display library manual. A 100-fold 

representation of the sequence diversity, 2x10
11

 phage particles, was added to the 1
st
 round 

panning reaction. Initially, several panning experiments were conducted with Fc (non-

biotinylated) being directly adsorbed to the surface of polystyrene dishes. Though these panning 

experiments yielded clear consensus sequences after 3 rounds of panning, it was subsequently 

discovered all clones showed appreciable plastic binding and not Fc binding, even with strenuous 

(1% Tween 20) surfactant washes. Such behavior has been detected before (Adey et al., 1995; 

Vodnik et al., 2011a). Therefore a solution panning system was employed with no polystyrene 

present. In the first round of panning 2x10
11

 library phage particles were diluted in 200 µL TBS 

with 0.1% Tween 20 and 2 pmol biotinylated Fc (100 ng or 1 µL of 0.1 mg/mL solution) and 

incubated at room temperature with agitation for 1 hr. Previously blocked streptavidin agarose 

beads (blocked with 5 g/L BSA in TBS) were used as an affinity resin to capture the biotinylated 

Fc, along with phage clones displaying Fc-binding peptides. Phage clones were eluted with 1 mL 

of 0.2 M glycine pH 2.4 (0.2 M Glycine adjusted to pH 2.4 with HCl). The supernatant was 

transferred to a separate tube after centrifugation, and neutralized with 150 µL of 1.5 M Tris pH 

8.8. Eluted phages were amplified as described in the Ph.D.-7 phage-peptide library manual.  
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The number of phage particles in the second and third panning rounds were reduced to 

2x10
9
 for each round to increase the stringency of selection. The Tween 20 concentration was 

increased to 0.5% for all binding and washing steps in the second and third rounds to prevent 

non-specific binding. In order further ensure that we did not select clones due to non-specific 

binding, negative streptavidin bead selection was performed in the second and third panning 

cycles. Prior to incubation with the Fc target, the phage particles were incubated with blocked 

streptavidin beads for 30 min after which the tubes were centrifuged.  The supernatant used for 

panning with Fc, and streptavidin beads with non-Fc binders were discarded. In this way all 

components of the panning system were controlled to ensure only Fc binders will be present after 

3 panning rounds.  

Round 2 clones were eluted twice, first with 2 µM protein A (possibly a direct Fc-binding 

competitor depending on where on the Fc peptides bind) and then with 0.2 M glycine, pH 2.4. 

Round 3 was performed similarly to round 2 with two simultaneous panning experiments. Phage 

particles for each panning experiment were previously eluted either using protein A or glycine. 

After each panning experiment phage particles were again eluted by protein A followed by 

glycine for a total of 4 distinct phage pools at the end of round 3. Phage pools were titered and 

plaques picked for confirmation of Fc binding by ELISA.  

7.3.4 ELISA binding experiments 

7.3.4.1 Initial clone screening 

 A total of 44 clones were picked from the 4 enriched phage pools for Fc binding 

confirmation and further analysis by ELISA. The first ELISA plates were intended to 

demonstrate which clones were positive hIgG4 binders; further selecting against weak binders or 
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those binding something other than hIgG4. Odd rows (A, C, E, and G) of clear, flat-bottomed 96-

well polystyrene plates were coated with 200 µL of 100 µg/mL hIgG4 in TBS for at least 24 

hours at 4 ºC with agitation. Even rows (B, D, F, and H) served as negative control rows for each 

clone as they were filled with TBS only. Plates were blocked with 5 g/L BSA overnight at 4 ºC 

with agitation prior to use. Clones were screened by adding 2.5x10
11

 phage in 100 µL in two 

wells, one coated with hIgG4 and the other blank and serially diluting each 5-fold for two more 

wells, giving 6 wells total for each clone. In this way 15 clones could be screened per plate, 

leaving 6 wells as the plate background.  

Phage dilutions in TBS with 0.5% Tween 20 (TBST) were performed on a separate 

blocked 96-well plate to prevent adsorption during dilution. 2.5x10
11

 phage particles in 100 µL is 

equivalent to only a 4 nM phage concentration; therefore lower binding energy clones would not 

give a positive signal. An anti-M13 phage HRP-conjugated antibody and ABTS HRP substrate 

were used as the phage detection system. Criteria for positive clones included a signal of at least 

0.3 A.U. and signals from hIgG4 coated wells were at least 3 times higher than the 

corresponding signal from the negative control uncoated wells. Plates were read at 405 nm (1 sec 

per well) on a Victor X5 multimode plate reader from Perkin Elmer (Waltham, MA, USA) 40 

minutes after ABTS was added to plates. 

7.3.4.2 Peptide-phage binding in cell culture conditions 

 Since these peptides could be used as antibody purification ligands positive clones from 

the initial ELISA assays were subject to more rigorous testing to confirm binding in conditions 

resembling cell culture media with other proteins present. Each positive clone from the previous 

assay (section 2.4.1) was tested further by exploring binding to hIgG4 in DMEM with 5% FCS 
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and 5 g/L ovalbumin. Plates were coated as in the previous section 2.4.1 and clones were assayed 

in triplicate (2.5x10
11

 phage particles in 100 µL per well). Instead of no coating, control wells 

were coated with 200 µL of 100 µg/mL lactoferrin in TBS, again to control for Fc specificity. 

The original phage library was assayed as well (coated and uncoated wells). 

7.3.4.3 Peptide-phage binding to different antibody isotypes 

 All previous binding assays used the same hIgG4 Fc or full antibody as the target. 

Peptide binding to multiple antibody types was also investigated. Plates were coated with 7 other 

types of antibodies, hIgG1, hIgG2, hIgG3, hIgM, canine IgG, murine IgG, and rat IgG. Plates 

were coated with 200 µL of 100 µg/mL for each antibody with the exception of hIgG1 which 

was at 20 µg/mL.  2.5 x 10
11

 phage particles per well were assayed. 

7.3.4.4 Competitive Binding ELISA with Protein A 

 A separate plate was again coated with 200 µL of 100 µg/mL hIgG4. ELISA conditions 

were identical to those in section 2.4.1 except for the addition of 0.2 µM native protein A to one 

virus-peptide solution (the other did not have protein A present) for each individual peptide clone 

prior to addition to coated wells. 

7.3.5 DNA Sequencing of Positive Clones 

 DNA from positive Fc-binding clones was purified and sequenced to determine peptide 

composition. DNA was selectively isolated from viral protein via sodium iodide precipitation. 

DNA was sequenced on an ABI 3130xL Genetic Analyzer (Life Technologies Corp., Carlsbad, 

CA, USA) prepared with ABI BigDye Terminator v3.1 sequencing chemistry at the Colorado 

State University Proteomics and Metabolomics Facility. The sequencing primer used was a 
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downstream (-96 nt) complimentary strand primer with sequence 5’ 

CCCTCATAGTTAGCGTAACG 3’ as suggested in the manual. Therefore sequencing data 

revealed the anticodon sequence. 

 

7.4 Results 

7.4.1 Phage Display Panning Results 

 In round 1 of panning, phage particles were eluted from Fc bound to streptavidin beads 

via a biotin linker with a strongly acidic glycine buffer. This resulted in a phage titer of 6.7x10
5
 

pfu/mL. This relatively high titer after only one round of enrichment for specific Fc binders most 

likely indicated numerous non-specific interactions of phage-peptides with other species present 

such as the streptavidin agarose beads. Negative selection with streptavidin beads and amplified 

round 1 phage eluate (2x10
9
 pfu input) prior to panning with the Fc target was successful in 

reducing non-specific binding of phage particles as shown by the lower titers from both protein 

A (5.0x10
4
 pfu/mL) and subsequent acidic glycine (2.8x10

5
 pfu/mL) eluate pools. This also 

demonstrates the level of non-specifically interacting peptide-phage in the original library that 

need to be removed from the panning pool before successful Fc binders can be isolated.  

Before switching to a solution phase affinity bead panning system, several attempts were 

made to isolate Fc binding peptides with Fc coated to a polystyrene plate. High final round 

panning eluate titers (greater than 1x10
9
 pfu/mL) were observed and consensus sequences were 

reached however all ELISA binding assays were either negative or showed similar binding to 

negative control (uncoated) wells as the positive wells indicating polystyrene or, less probably, 

BSA binding. However, the final round of unamplified eluate titers from the solution panning 
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was in the 10
5
 – 10

6
 pfu/mL range. This, combined with the small amount of target Fc present (2 

pmol) and input phage particles (less than 2x10
9
 pfu/mL, after negative selection) during solution 

panning, gave higher confidence that specific peptide-Fc interactions were dominant.  

7.4.2 Confirmation of selected clone binding by ELISA 

 Previously, non-specific clones had been selected from surface panning experiments; 

therefore initial binding characterization of selected clones was essential before more detailed 

binding experiments. As stated in section 2.4.1, 44 total clones were isolated from titer plates and 

amplified for characterization by ELISA. Of those 44, 15 were from plates eluted with acidic 

glycine in the 2
nd

 panning cycle and 2 µM protein A in the 3
rd

 panning cycle. Another 15 were 

from plates eluted with protein A in both the 2
nd

 and 3
rd

 panning cycles. An additional 14 clones 

were from plates eluted with acidic glycine buffer in both the 2
nd

 and 3
rd

 panning cycles. 

Two criteria were used for selecting positive clones. The signal in the hIgG4 coated well 

with the most phage (2.5x10
11

 particles) had to be at least 0.3 A.U. At such a low concentration 

(4 nM in 100 µL) of phage particles a positive signal was only possible if the dissociation 

constant of the peptides was low (less than µM), increasing the selection of peptides with high 

binding energy. The second criterion was the ratio of the signal from hIgG4 coated wells and 

uncoated wells (non-specific control) had to be greater than 3. Again, this provided assurance 

that selected clones were binding to the Fc portion of the antibody and not unblocked portions of 

the polystyrene well. 
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Figure 7.1: ELISA results showing hIgG4 binding by peptide-virus clones eluted with (2
nd

 

round) 5 µM Protein A followed by (3
rd

 round) 0.2 M glycine pH 2.4. 

 

Figure 1 shows the binding results for clones eluted with acidic glycine buffer and protein 

A.  Elution conditions for round two and three panning were acidic glycine and protein A, 

respectively. Three clones (1, 3, and 5) met the selection criteria and further binding studies 

included these clones. Figure 2 shows binding results from clones eluted with protein A (2
nd

 

round) and protein A again (3
rd

 round).  
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Figure 7.2: ELISA results showing hIgG4 binding by peptide-virus clones eluted with (2
nd

 

round) 5 µM Protein A followed by (3
rd

 round) Protein A.  

 

Interestingly none of the clones isolated from these elution conditions showed strong 

enough binding to evaluate further. Figure 3 presents the binding results from the acidic elution 

conditions. Clones 31 – 44 were isolated using acid elution conditions in both the 2
nd

 and 3
rd

 

rounds. Four clones (34, 36, 40, and 44) satisfied the selection criteria and were further evaluated 

as well.  
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Figure 7.3: ELISA results showing hIgG4 binding by peptide-virus clones eluted with (2
nd

 

round)   0.2 M glycine pH 2.4 followed by (3
rd

 round) 0.2 M glycine pH 2.4.  

 

7.4.3 Secondary screening of clones 

 Seven total clones (1, 3, 5, 34, 36, 40, and 44) were screened further to confirm selective 

binding to hIgG4. The binding conditions in this round of ELISA were designed to mimic 

antibody binding from cell supernatant. Therefore binding to hIgG4 was attempted in DMEM 

cell culture media with 5% FCS and 5 g/L ovalbumin (BSA was present as a blocking agent as 

well). The presence of ovalbumin at orders of magnitude higher concentration compared to the 

peptide-virus clones, as well as the proteins and other molecules associated with FCS established 

a challenging binding environment for the peptides to hIgG4. Figure 4 shows the secondary 
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selection results. Similar to the uncoated negative control well results during the screening 

ELISA, all 7 clones showed at least 3-fold greater absorbance in hIgG4-coated wells than in 

 

Figure 7.4: ELISA results for peptide binding (in triplicate) to hIgG4 in DMEM, 5% fetal calf 

serum, and 5 g/L Ovalbumin. Original phage library (Lib) binding to IgG4 coated wells and 

original library binding to uncoated wells (Lib Neg) are presented as well. Error bars represent 

standard deviation. 
 

lactoferrin-coated negative control wells (data not shown).  All clones also showed greater than 

2.5-fold higher absorbance on IgG4-coated wells than the original phage library indicating 

successful enrichment of IgG4-binding clones. Binding signal of the original phage library to 
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IgG4-coated wells was not statistically different from the phage library signal to negative control 

wells indicating very low positive binding as expected in the non-enriched library. Clones 3 and 

40 showed the highest binding with ELISA signals above 0.85 AU, representing over 4-fold 

enrichments in ELISA signal as compared to the original library. As indicated by the error bars 

which represent the standard deviation, the results were highly reproducible. 

7.4.4 Binding to Multiple Antibody Types 

 To further characterize the binding of the peptides to antibody Fc ELISA plates were 

coated with multiple antibody types. Native Protein A has strong affinity for human IgG1, IgG2, 

and IgG4 antibody isotypes but not IgG3. Therefore peptide binding to all 4 different human IgG 

isotypes was tested as well as binding to human IgM which has shown variable binding to 

protein A (Hakoda, 1996). Binding to non-human IgG molecules such as murine IgG, canine 

IgG, and rat IgG was also investigated. The ELISA binding results from the multiple antibody 

plate are shown in Figure 5. With the exception of binding to human IgG1, all peptides 

demonstrated strong binding to all antibody types tested. It was difficult to conclude the peptides 

do not bind to hIgG1 because the well coating concentration was 5-fold lower than the other 

antibodies as a result of limited available hIgG1 reagent. Higher ELISA signal was observed for 

all peptides binding to hIgG1 as compared to uncoated negative control wells, however the 

signal was not at least 3X higher to match the selection criteria set forth previously. Interestingly, 

clone 44 showed strong binding to all antibody types with the exception of binding to canine IgG 

(and hIgG1, previously explained). In general, the peptides bound strongest to both murine IgG 

and hIgG3, which is particularly interesting given the lack of hIgG3 affinity for Protein A. 
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Figure 7.5: Peptide binding to various human antibody isotypes, as well as canine IgG (cIgG), 

murine IgG (mIgG), and rat IgG (rIgG) 
 

7.4.5 Competitive ELISA with Protein A   

To determine whether selected peptides shared portions of the same binding site as 

Protein A a competitive binding ELISA was conducted. An interesting outcome of the ELISA 

were all wells wherein Protein A was added showed at least 2X higher signal than non-Protein A 

wells, which is the opposite of what was expected of a competitive binding assay (results not 

included). On the surface these data are hard to reconcile until the nature of the Protein A 

binding protein is considered. Multiple studies have characterized the Protein A binding 

stoichiometry as greater than 2.4 to 1 referring to the ratio of antibody molecules to Protein A 
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molecules (Ghose et al., 2007; Jungbauer and Hahn, 2004). When considering the multi-valency 

of the Protein A ligand it is hypothesized that Protein A is binding to the immobilized hIgG4 and 

is subsequently sandwiched by a second antibody which is the HRP-conjugated reporter antibody 

present in the ELISA assay. Therefore high ELISA signal was considered independent of bound 

peptide-viral particle concentration when Protein A was present. 

7.4.6 Sequencing of Selected Peptides 

 Peptides displayed on selected phage clones were sequenced at the Colorado State 

University Proteomics and Metabolomics Facility. Sequencing results are presented in Table 1. 

All seven selected peptides were single heptapeptide displays; previous panning attempts (less 

stringent) had resulted in a high percentage of multi-heptapeptide constructs which were 

subsequently shown to bind in a non-specific manner. The unique heptapeptides selected in this 

work bound specifically to the Fc region of multiple antibody types. 

Table 7.1: Sequencing results from clones showing positive Fc binding 

Clone Amino Acid Sequence 

1 CPSTHWK 
3 NVQYFAV 
5 ASHTQKS 
34 QPQMSHM 
36 TNIESLK 
40 NCHKCWN 
44 SHLSKNF 

 

7.5 Discussion 

This study was successful at identifying seven unique heptapeptides with specific affinity 

for the Fc region of immunoglobulins. The importance of the phage display selection system and 

multiple screening and selection rounds were highlighted for effective peptide selection. 
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Identified peptides were shown to have broader binding tropisms than Protein A as evidenced by 

peptide binding to all major human IgG isotypes including IgG3, human IgM, and canine, 

murine, and rat IgG. Binding was shown not to be inhibited by the presence of Fetal Calf Serum, 

Bovine Serum Albumin, Ovalbumin, or DMEM cell culture medium.  

It was interesting that, even after stringent efforts put forth to remove non-specific clones, 

only 20.5% of the clones were positive Fc and hIgG4 binders. There is the possibility that, 

because panning was performed with Fc only whereas the ELISA’s were all performed with 

intact antibody, several peptides initially selected may have bound Fc near the N-terminal hinge 

region normally connected to the Fab portion of the antibody. That would preclude peptide 

binding of the intact antibody, which was the goal of this study.  

The stringent selection conditions, three rounds of phage display panning, as well as the 

relatively large Fc binding surface, may account for the lack of overall consensus sequence 

obtained in this study. The screening ELISA and secondary selection ELISA data showed 

positive clones were present after three rounds of panning and therefore subsequent panning 

rounds were not undertaken. Four or more rounds of panning may have led to a consensus 

sequence however further rounds of panning can lead to selection not on the basis of binding but 

selection by viral reproductive characteristics. 

Though each peptide identified was unique they did exhibit some common 

characteristics. Histidine residues were present in five of the seven peptides selected; Serine and 

Lysine residues were also present in five of the seven peptides. Histidine, and to a lesser extent 

Lysine and Serine, are common residues in several previously identified Fc binding peptides 

such as CHKRSFWADNC from Jeong et al, or the HWRGWV peptide first identified by Yang 
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et al (Jeong, 2010; Yang et al., 2006). Histidine and Lysine residues are both highly conserved in 

the 5 homologous Fc binding domains present in native Protein A (NCBI GenBank). Protein 

BLAST analysis on the NCBI website showed each selected peptide sequence is present in a 

multitude of different functional and structural proteins however none contain known 

immunoglobulin binding domains providing further evidence these peptides are novel. Though 

the binding site(s) of the peptides to the Fc region have not been elucidated in this study it is 

likely the peptides do not share a common site on the Fc (such as the Protein A groove). The 

differences in charge and hydrophobicity of the residues found in each of the seven peptides 

indicate independent Fc binding regions were likely bound by the different peptides.  

A library of heptapeptides was chosen to evaluate for Fc binding for several reasons. No 

heptapeptides specifically binding Fc have been reported in the existing public literature. 

Existing available heptapeptide libraries enabled relatively quick exploration without the need 

for library generation. Importantly, these short heptapeptides, as well as other Fc-binding 

peptides, may show greater chemical stability than native or recombinant Protein A ligands. 

Their short primary sequence, in this case seven amino acids total, eliminate the need to preserve 

any tertiary or secondary structures present in larger binding ligands. This may make peptides 

less susceptible to denaturing or chemical alteration in sanitizing conditions such as 1M NaOH, 

while current Protein A ligands are highly sensitive to such conditions.  Finally, these peptides 

may prove useful in the purification of Fc-containing immunoglobulins, such as monoclonal 

antibodies, from serum or cell culture supernatant. 

Identification of multiple peptides which specifically bind to a given target (in this case 

Fc) may be beneficial to engineering ligands with higher specificity. Several peptides or small 

binding domains joined together have been shown both in natural and engineered ligands to 
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increase specificity (Heiskanen et al., 2003; Traxlmayra et al., 2011) including protein A itself 

(Moks et al., 1986). The Fc binding peptides identified in this work are disparate enough in 

sequence that we speculate the peptides bind to multiple sites on the Fc. Based on the structure of 

protein A (5 binding domains), MabSelect Sure ligand (4 binding domains), and other successful 

commercially available Fc binding ligands with 4 binding domains (described in section 1.0) a 

multi-domain ligand may be desirable to achieve high specificity.  To that end identification of 

multiple sites within a target for peptides to bind can only occur when the target is of sufficient 

size to allow multiple peptide attachment. The 50 kDa Fc region fits that criterion.   

 

7.6 Conclusion 

 A stringent solution panning phage display method has been used to identify seven 

unique heptapeptides that have specific  affinity for the Fc region of immunoglobulins. Applying 

multiple ELISA screening and selection rounds confirmed selective binding of the peptides to 

Fc. Binding of the peptides to human IgG1, IgG2, IgG3, IgG4, and IgM (Protein A does not bind 

hIgG3) was demonstrated as well as binding to canine, murine, and rat IgG. Due to selective 

binding for Fc and ease of production and use, these peptides may be useful in antibody 

detection and purification applications. 
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Chapter 8 

 

 

 
Conclusions and Suggested Future Work 

 

 

 

8.1   Conclusions 

This thesis presents the development and application of adsorptive membranes for 

recombinant protein, specifically monoclonal antibody, purification as well as identification of 

novel peptide affinity ligands, also for antibody purification. Commercially available anion-

exchange membrane adsorbers were investigated for trace impurity removal, specifically virus, 

host cell protein, and DNA which are all major contaminants in industrial processes. Novel 

anion-exchange membranes, constructed by our collaborators at Clemson University, were also 

evaluated for binding capacity as well as DNA and virus removal. and novel heptapeptides were 

identified with binding affinity and selectivity similar to protein A; a gold standard in 

monoclonal antibody purification processes. Commercially available anion-exchange membrane 

adsorbers including the quaternary amine-containing Sartobind
®
 Q and Mustang Q

®
 from 

Sartorius and Pall, respectively,  as well as the primary amine ligand membrane ChromaSorb
®

 

sold by Millipore were evaluated. Removal of minute virus of mice (MVM), host cell proteins, 

and DNA was demonstrated across a wide range of solution variables including pH, 

conductivity, mono- and multi-valent anionic buffer species, and flow rate.  In addition to 

commercially available membranes, novel strong anion-exchange membranes constructed by Dr. 

Bharat Bhut in the Husson group at Clemson University were evaluated as well. Both the 

commercially available membranes, in particular the ChromaSorb due to its multi-modal binding 
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potential, and the novel membranes were proven to have distinct advantages over traditional 

porous bead packed-bed anion-exchange columns commonly used in the biopharmaceutical 

industry. 

In addition to anion-exchange chromatography investigations and improvements, small 

peptides displaying binding behavior similar to protein A were identified and characterized. The 

peptides were shown to bind specifically to the Fc region of immunoglobulins, particularly 

human IgG’s. Binding of the peptides was not inhibited by cell culture media or the presence of 

5g/L BSA or ovalbumin.  

Chapter 2 presented the work associated with completing research aim one of this thesis 

as outlined in section 1.7. Here a comprehensive evaluation of how solution properties and 

membrane properties affected the binding of MVM. Two of the membranes investigated, 

Sartobind Q and Mustang Q, have strong anion-exchange quaternary amine ligands which were 

capable of electrostatic interactions only. Both membranes showed 4 log removal of virus (LRV) 

or 99.99% binding at pH 9.0 and 0 - 50 mM NaCl, which was consistent with the few papers 

published on membrane virus removal. However MVM binding was severely compromised at 

200 mM NaCl over a pH range of 6 - 9 with the Mustang Q, whereas binding was maintained at 

pH 9 on the Sartobind Q. Further analysis proved the difference may be explained by differences 

in the ligand density on the membrane pore surface. In contrast membranes with primary amine 

weak anion-exchange ligands such as the ChromaSorb make use of both electrostatic and 

secondary H-bond stabilizing interactions which contribute to a high MVM removal over the 

entire pH (6-9) and NaCl (0 - 200 mM) range explored. Competing anionic species with H-

bonding capability such as phosphate have a detrimental affect on MVM removal with primary 

amine ligands; the detrimental affect is minimal over strong quaternary amine ligands. 
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Maximizing the ligand density on the membrane pore surface, while having a positive binding 

affect, alone will not maximize capacity. Because virus particles are large compared with other 

contaminants membrane pore structure and 3-D spacial arrangements of binding ions will need 

to be optimized for maximal virus binding over the largest solution range. 

In chapter 3 trace impurity binding to the three anion-exchange membrane adsorbers was 

investigated further by evaluating more complex impurity solutions, thereby satisfying research 

aim number two in this thesis. MVM removal was shown to be minimally affected by concurrent 

host cell protein and DNA binding; however removal in the presence of 5 g/L monoclonal 

antibody was significantly reduced across all three membranes due to competitive antibody 

binding to the membranes. The combination of low NaCl/high pH resulted in excellent removal 

of MVM and DNA over the quaternary amine membranes (Sartobind Q and Mustang Q) 

however 100 - 200 mM NaCl at pH below 9.0 showed reduced removal, especially of host cell 

protein. This is further evidence of the predominantly coulombic nature of the binding 

interactions on the Q membranes. Continuing the trend demonstrated in chapter 2, the 

ChromaSorb showed greater than limit of detection MVM removal for all buffer conditions not 

containing phosphate. Phosphate containing buffers (25 - 50 mM) contributed to a substantial 

loss of MVM removal; this affect was more pronounced at higher pH where the divalent form of 

phosphate is dominant suggesting mutli-charged/H-bond capable anionic species are especially 

detrimental to impurity binding on primary amine ligands. Host cell protein, a heterogeneous 

population of positive and negatively-charged proteins, removal was to limit of quantification for 

all buffer conditions, excluding phosphate, over the ChromaSorb. This supplied additional 

evidence secondary H-bonding interactions were stabilizing the binding of anionic, neutral, and 

even overall positively charged impurities. DNA binding was generally high across all buffer 
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conditions owing to the strong negative charge in all pH conditions evaluated. Monoclonal 

antibody recovery was poor in all cases indicating excessive binding to the membranes; this was 

most likely due to the low pI of the mAb evaluated. Lowest recovery was encountered on the 

ChromaSorb, indicating both increased ligand density and secondary non-electrostatic 

interactions are a contributing factor. Overall, prediction of trace removal is much simpler over 

purely electrostatic ligands such as the quaternary amine ligands on the Sartobind Q and 

Mustang Q. However, impurity binding decreases rapidly in solutions outside of the favorable 

low NaCl/high pH conditions. Primary amine ligands, such as those on the ChromaSorb, 

overcome those solution limitations as impurity removal was demonstrated across a wide range 

of pH and NaCl concentrations; however, the presence of competing multi-valent anion species 

such as phosphate severely impedes impurity binding. Finally binding was shown to be 

independent of flow rate, proving convectively driven transport of impurities to all binding sites 

on the membrane. 

Chapters 4 and 5 present the work completed to evaluate ligand chain length and density 

on novel anion-exchange membrane adsorbers fulfilling research aim three. This work was 

completed in collaboration with the Husson group at Clemson University, specifically with Dr 

Bharat Bhut who designed and constructed the novel ligands on regenerated cellulose 

membranes. It was shown that IgG, DNA, and virus binding capacity increased with both chain 

length and chain density. Binding capacity for IgG but especially for larger impurities like MVM 

was not impeded at high ligand density suggesting the spacing between ligands was still great 

enough to allow efficient transport of all impurity species to the majority of binding sites. The 

IgG dynamic binding capacities achieved on these membranes was higher than current 
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commercially available membrane adsorbers further proving the utility of three-dimensional 

anion-exchange ligands. 

In chapter 6 protein purification using membrane adsorbers was further explored with a 

different mechanism of binding, hydrophobic interaction. Similar to chapters 4 and 5, three- 

dimensional binding ligands were grafted from the pore surface of regenerated cellulose 

membranes. Poly N-vinylcaprolactam, which has the advantageous property of dehydrating and 

becoming more hydrophobic at high ionic strength, yet transitions to a hydrated, more 

hydrophilic ligand at low ionic strength due to changes in the LCST with ionic strength, was 

used as the binding ligand. Varying the initiator immobilization time, and therefore the ligand 

density across the pore surface and overall degree of grafting, increased the BSA binding 

capacity. As indicated in Chapter 1, one issue with hydrophobic interaction chromatography for 

protein purification is recovery off the hydrophobic media, without the use of denaturing organic 

solvents, is low compared to ion exchange media. However the novel hydrophobic interaction 

membranes discussed in Chapter 6 showed excellent recovery even at high binding capacities. 

This is reflective of the change in hydrophobic properties of the N-VCL in response to solutions 

properties, in this case ionic strength. 

Finally, monoclonal antibody purification was explored from a different perspective than 

membrane adsorbers; small peptides were investigated for activity similar to protein A which is a 

monoclonal antibody gold standard. Chapter 7 discusses the work performed on this topic, 

satisfying research aim number four. A solution phase phage display method was developed with 

high target stringency and low non-specific binding. An ELISA assay was developed to assay for 

and confirm specific binding to the immunoglobulin targets. Multiple rounds of ELISA 

confirmed specific binding of peptides to the Fc region of Ig’s. Binding was demonstrated not 
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only to the original target, human IgG4 Fc, but to human IgG1, IgG2, and IgG3 as well as human 

IgM and murine, rat, and canine IgG. Sequencing results showed different amino acid sequences 

suggesting multiple binding sites on the Fc are being utilized. The selectivity demonstrated as 

well as required affinity for phage display suggest these peptides may be useful alternatives to 

protein A for monoclonal antibody purification. 

 

8.2 Suggested Future Work 

 Though much has been accomplished towards the goal of increasing productivity or 

reducing the cost of monoclonal antibody production through anion-exchange or hydrophobic 

interaction membrane adsorber use or identifying small peptides with protein A-like 

functionality more still needs to be researched in order to fully realize the benefits of these 

technologies. 

 Virus breakthrough behavior analysis was attempted through fractionation of membrane 

effluent however binding site saturation at the 500 membrane volumes per load was not 

accomplished. Construction of binding isotherms of MVM binding to anion-exchange membrane 

media in varying solutions of pH/NaCl/phosphate would give a more thorough understanding of 

MVM equilibrium binding behavior. Though, as noted in chapter 3, competitive binding of 

protein of interest (in this thesis IgG) may present more of a challenge to robust virus binding. 

Competitive binding experiments are complicated, requiring different protein of interest with 

differing binding properties to compete with the virus particles. For a given solution condition 

(constant pH/NaCl/phosphate), different proteins will bind to the anion-exchange media with 

varying binding constants; comparing the binding of proteins with that of virus could perhaps 
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lead to a more predictive model for virus binding. If successful this would negate the need for 

many expensive virus removal experiments in the biopharmaceutical industry. 

 A different approach to use of anion-exchange, or any type, membrane adsorbers would 

be to re-use them for multiple cycles during protein purification processes. The economics of 

membrane adsorbers are generally very favorable as compared to traditional packed-bed column 

processes; however membranes have been designed for single-use only. Membrane regeneration 

and cleaning experiments with both commercial and the novel membranes developed in this 

thesis (chapters 4, 5, and 6) will need to be performed. Parameters to monitor after each protein 

run, and subsequent cleaning with 1N NaOH, include binding capacity, recovery, and 

flow/pressure behavior. Surface characterization techniques like those employed in chapters 2, 3, 

and 6 (FTIR, XPS, and contact angle) could also be used to confirm ligand stability (or 

instability) under such harsh cleaning conditions. 

 The novel HIC membranes developed herein represent a step forward in three-

dimensional and environmentally responsive HIC membranes. Further studies with proteins 

other than BSA (almost always the proof of concept model protein of choice) such as IgG would 

provide additional evidence of the benefits of these membranes to industrial applications. 

Application of these 3-D ligands to traditional chromatography beads with larger pore sizes       

(> 50 nm) to accommodate the polymer brush structure would also be a very interesting series of 

experiments. Similar to the novel anion-exchange membranes developed in chapters 4 and 5, the 

three-dimensional nature of the binding ligand may result in significantly higher binding 

capacities in traditional chromatography beads as well. This would overcome a disadvantage of 

HIC in industry in that binding capacities are typically much lower for HIC than observed in ion 
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exchangers. And again the environmentally responsive nature of the N-VCL ligands may prove 

highly beneficial in obtaining higher protein recovery even at high binding capacities. 

 Finally logical next steps need to follow the identification of these novel heptapeptide Fc-

binding ligands. This thesis deals with the identification of and binding tropism of the peptides. 

The peptides could then be ordered in bulk and attached to either membrane or resin 

chromatography media to show how these peptides could be applied to industrial antibody 

separations. The peptides would be much cheaper than the current Protein A ligands currently 

marketed attached to chromatography media. In addition, because of their small size these 

peptides may be grafted to a three-dimensional binding matrix instead of the membrane/bead 

pore surface; thereby increasing ligand density and theoretically increasing binding capacity, 

which currently is a major economical and logistical bottleneck in the production of antibodies. 

Further, due to the lack of tertiary/quaternary structure of the peptides they are inherently more 

stable than the larger Protein A molecule; studies could be performed similar to those described 

above with the anion-exchange membranes evaluating cleanability/stability in harsh conditions 

(1N NaOH).  
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Appendix 

 

 

 
A.1 QPCR Assay Parameters 
 

 

 

Figure A.1: MVM QPCR limit of detection at 95% confidence. LOD = 14 copies / µL 
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Table A.1: MVM QPCR assay variability  

Copies / µL Coefficient of Variation (%) 

1 x 10
9
 5.59 

1 x 10
8
 9.32 

  1 x 10
7
 17.10 

1 x 10
5
 5.51 

1 x 10
4
 8.61 

1 x 10
3
 19.15 

1 x 10
2
 27.43 

1.4 x 10
1
 66.43 
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