
Perspectives on Robust Resource Allocation for Heterogeneous
Parallel and Distributed Systems

Shoukat Ali†, Howard Jay Siegel‡§, and Anthony A. Maciejewski‡

†University of Missouri-Rolla
Department of Electrical and Computer Engineering

Rolla, MO 65409-0040 USA
shoukat@umr.edu

Colorado State University
‡Department of Electrical and Computer Engineering

§Department of Computer Science
Fort Collins, CO 80523-1373 USA

{hj, aam}@colostate.edu

Submitted to “Parallel Computing: Models, Algorithms, and Applications,” CRC Press, the
Computer and Information Science Series

Corresponding author: Shoukat Ali

Abstract
Parallel and distributed systems may operate in an environment that undergoes unpre-

dictable changes causing certain system performance features to degrade. Such systems need
robustness to guarantee limited degradation despite some fluctuations in the behavior of its
component parts or environment. This research investigates the robustness of an allocation
of resources to tasks in parallel and distributed systems. The main contributions of this
chapter are (1) a mathematical description of a metric for the robustness of a resource al-
location with respect to desired system performance features against multiple perturbations
in multiple system and environmental conditions, (2) a procedure for deriving a robustness
metric for an arbitrary system, (3) derivation of robustness metrics for three example dis-
tributed systems, and (4) design of static heuristics to determine a robust resource allocation
for one of the example systems.

Keywords: robustness, robustness metric, resource allocation, resource management sys-
tems, parallel and distributed systems.

This research was supported by the DARPA/ITO Quorum Program through the Office of Naval Research
under Grant No. N00014-00-1-0599, by the Colorado State University Center for Robustness in Computer
Systems (funded by the Colorado Commission on Higher Education Technology Advancement Group through
the Colorado Institute of Technology), and by the Colorado State University George T. Abell Endowment.



1 Introduction

This research focuses on the robustness of a resource allocation in parallel and dis-
tributed computing systems. What does robustness mean? Some dictionary definitions of
robustness are: (a) strong and healthy, as in “a robust person” or “a robust mind,” (b)
sturdy or strongly formed, as in “a robust plastic,” (c) suited to or requiring strength as in
“a robust exercise” or “robust work,” (d) firm in purpose or outlook as in “robust faith,”
(e) full-bodied as in “robust coffee,” and (f) rough or rude as in “stories laden with robust
humor.” In the context of resource allocation in parallel and distributed computing systems,
how is the concept of robustness defined?

The allocation of resources to computational applications in heterogeneous parallel and
distributed computer systems should maximize some system performance measure. Alloca-
tion decisions and associated performance prediction are often based on estimated values
of application parameters, whose actual values may differ; for example, the estimates may
represent only average values, or the models used to generate the estimates may have lim-
ited accuracy. Furthermore, parallel and distributed systems may operate in an environment
where certain system performance features degrade due to unpredictable circumstances, such
as sudden machine failures, higher than expected system load, or inaccuracies in the esti-
mation of system parameters (e.g., [2, 3, 4, 9, 10, 26, 32, 31, 34, 38]). Thus, an important
research problem is the development of resource management strategies that can guarantee
a particular system performance given bounds on such uncertainties. A resource allocation
is defined to be robust with respect to specified system performance features against per-
turbations (uncertainties) in specified system parameters if degradation in these features is
constrained when limited perturbations occur. An important question then arises: given a
resource allocation, what extent of departure from the assumed circumstances will cause a
performance feature to be unacceptably degraded? That is, how robust is the system?

Any claim of robustness for a given system must answer these three questions: (a)
what behavior of the system makes it robust? (b) what uncertainties is the system robust
against? (c) quantitatively, exactly how robust is the system? To address these questions,
we have designed a model for deriving the degree of robustness of a resource allocation, i.e.,
the maximum amount of collective uncertainty in system parameters within which a user-
specified level of system performance can be guaranteed. The model will be presented and we
will demonstrate its ability to select the most robust resource allocation from among those
that otherwise perform similarly (based on the primary performance criterion). The model’s
use in static (off-line) resource allocation heuristics also will be demonstrated. In particular,
we will describe a static heuristic designed to determine a robust resource allocation for one
of the example distributed systems. In general, this work is applicable to different types of
computing and communication environments, including parallel, distributed, cluster, grid,
Internet, embedded, and wireless.

The rest of the chapter is organized as follows. Section 2 defines a generalized robustness
metric. Derivations of this metric for three example parallel and distributed systems are given
in Section 3. Section 4 extends the definition of the robustness metric given in Section 2 to
multiple specified perturbation parameters. The computational complexity of the robustness
metric calculation is addressed in Section 5. Section 6 presents some experiments that
highlight the usefulness of the robustness metric. Three static heuristics to derive a robust
resource allocation for an example distributed system are described in Section 7, and are

1



evaluated through simulations in Section 8. A sampling of the related work is given in
Section 9. Section 10 gives some possibilities of future work in this area, and Section 11
concludes the chapter. A glossary of the notation used in this chapter is given in Table 1.
Note that, throughput this chapter, new symbols are underlined when they are introduced.
Such underlining is not a part of the symbology.

Table 1: Glossary of notation.
Φ the set of all performance features
φi the i-th element in Φ〈
βmin

i , βmax
i

〉
a tuple that gives the bounds of the tolerable variation in φi

Π the set of all perturbation parameters
πj the j-th element in Π
nπj

the dimension of vector πj

µ a resource allocation
rµ(φi, πj) the robustness radius of resource allocation µ with respect to φi against πj

ρµ(Φ, πj) the robustness of resource allocation µ with respect to set Φ against πj

A the set of applications
M the set of machines
P a weighted concatenation of the vectors π1, π2, · · · , π|Π|

2 Generalized Robustness Metric

This section proposes a general procedure, called FePIA, for deriving a general robust-
ness metric for any desired computing environment. The name for the above procedure
stands for identifying (1) the performance features, (2) the perturbation parameters, (3) the
impact of perturbation parameters on performance features, and (4) the analysis to deter-
mine the robustness. Specific examples illustrating the application of the FePIA procedure
to sample systems are given in the next section. Each step of the FePIA procedure is now
described.

1. Describe quantitatively the requirement that makes the system robust. Based on this
robustness requirement, determine the quality of service, QoS, performance features that
should be limited in variation to ensure that the robustness requirement is met. Identify
the acceptable variation for these feature values as a result of uncertainties in system
parameters. Consider an example where (a) the QoS performance feature is makespan
(the total time it takes to complete the execution of a set of applications) for a given
resource allocation, (b) the acceptable variation is up to 120% of the makespan that was
calculated for the given resource allocation using estimated execution times of applica-
tions on the machines they are assigned, and (c) the uncertainties in system parameters
are inaccuracies in the estimates of these execution times.

Mathematically, let Φ be the set of system performance features that should be lim-
ited in variation. For each element φi ∈ Φ, quantitatively describe the tolerable vari-

ation in φi. Let
〈
βmin

i , βmax
i

〉
be a tuple that gives the bounds of the tolerable vari-

ation in the system feature φi. For the makespan example, φi is the time the i-th

2



machine finishes its assigned applications, and its corresponding
〈
βmin

i , βmax
i

〉
could be

〈0, 1.2× (estimated makespan value)〉.

2. Identify all of the system and environment uncertainty parameters whose values may im-
pact the QoS performance features selected in step 1. These are called the perturbation
parameters (these are similar to hazards in [10]), and the performance features are re-
quired to be robust with respect to these perturbation parameters. For the makespan
example above, the resource allocation (and its associated estimated makespan) was
based on the estimated application execution times. It is desired that the makespan be
robust (stay within 120% of its estimated value) with respect to uncertainties in these
estimated execution times.

Mathematically, let Π be the set of perturbation parameters. It is assumed that the
elements of Π are vectors. Let πj be the j-th element of Π. For the makespan example,
πj could be the vector composed of the actual application execution times, i.e., the i-th
element of πj is the actual execution time of the i-th application on the machine it was
assigned. In general, representation of the perturbation parameters as separate elements
of Π would be based on their nature or kind (e.g., message length variables in π1 and
computation time variables in π2).

3. Identify the impact of the perturbation parameters in step 2 on the system performance
features in step 1. For the makespan example, the sum of the actual execution times for
all of the applications assigned a given machine is the time when that machine completes
its applications. Note that 1(b) implies that the actual time each machine finishes its
applications must be within the acceptable variation.

Mathematically, for every φi ∈ Φ, determine the relationship φi = fij(πj), if any, that
relates φi to πj. In this expression, fij is a function that maps πj to φi. For the makespan
example, φi is the finishing time for machine mi, and fij would be the sum of execution
times for applications assigned to machine mi. The rest of this discussion will be devel-
oped assuming only one element in Π. The case where multiple perturbation parameters
can affect a given φi simultaneously will be examined in Section 4.

4. The last step is to determine the smallest collective variation in the values of perturbation
parameters identified in step 2 that will cause any of the performance features identified
in step 1 to violate its acceptable variation. This will be the degree of robustness of the
given resource allocation. For the makespan example, this will be some quantification
of the total amount of inaccuracy in the execution times estimates allowable before the
actual makespan exceeds 120% of its estimated value.

Mathematically, for every φi ∈ Φ, determine the boundary values of πj, i.e., the values
satisfying the boundary relationships fij(πj) = βmin

i and fij(πj) = βmax
i . (If πj is a

discrete variable then the boundary values correspond to the closest values that bracket
each boundary relationship. See Subsection 3.3 for an example.) These relationships
separate the region of robust operation from that of non-robust operation. Find the

3



smallest perturbation in πj that causes any φi ∈ Φ to exceed the bounds
〈
βmin

i , βmax
i

〉
imposed on it by the robustness requirement.

Specifically, let πorig
j be the value of πj at which the system is originally assumed to

operate. However, due to inaccuracies in the estimated parameters or changes in the
environment, the value of the variable πj might differ from its assumed value. This
change in πj can occur in different “directions” depending on the relative differences in
its individual components. Assuming that no information is available about the relative
differences, all values of πj are possible. Figure 1 illustrates this concept for a single
feature, φi, and a two-element perturbation vector πj ∈ R2. The curve shown in Figure
1 plots the set of boundary points {πj|| fij(πj) = βmax

i } for a resource allocation µ. For

this figure, the set of boundary points
{
πj|| fij(πj) = βmin

i

}
is given by the points on the

πj1-axis and πj2-axis.

The region enclosed by the axes and the curve gives the values of πj for which the
system is robust with respect to φi. For a vector x = [x1 x2 · · · xn]T, let ‖x‖2 be the

`2-norm (Euclidean norm) of the vector, defined by

√
n∑

r=1

x2
r. The point on the curve

marked as π?
j (φi) has the property that the Euclidean distance from πorig

j to π?
j (φi),

‖π?
j (φi) − πorig

j ‖2, is the smallest over all such distances from πorig
j to a point on the

curve. An important interpretation of π?
j (φi) is that the value ‖π?

j (φi) − πorig
j ‖2 gives

the largest Euclidean distance that the variable πj can change in any direction from
the assumed value of πorig

j without the performance feature φi exceeding the tolerable

variation. Let the distance ‖π?
j (φi)− πorig

j ‖2 be called the robustness radius, rµ(φi, πj),
of φi against πj. Mathematically,

rµ(φi, πj) = min
πj : (fij(πj)=βmax

i )∨(fij(πj)=βmin
i )

‖πj − πorig
j ‖2. (1)

This work defines rµ(φi, πj) to be the robustness of resource allocation µ with respect to
performance feature φi against the perturbation parameter πj.

The robustness definition can be extended easily for all φi ∈ Φ (see Figure 2). The
robustness metric is simply the minimum of all robustness radii. Mathematically, let

ρµ(Φ, πj) = min
φi∈ Φ

(rµ(φi, πj)) . (2)

Then, ρµ(Φ, πj) is the robustness metric of resource allocation µ with respect to the
performance feature set Φ against the perturbation parameter πj. Figure 2 shows a small
system with a single two-element perturbation parameter, and only two performance
features.

Even though the `2-norm has been used for the robustness radius in this general for-
mulation, in practice, the choice of a norm should depend on the particular environment
for which a robustness measure is being sought. Subsection 3.3 gives an example situation
where the `1-norm is preferred over the `2-norm.

In addition, in some situations, changes in some elements of πj may be more probable
than changes in other elements. In such cases, one may be able to modify the distance
calculation so that the contribution from an element with a larger probability to change has
a proportionally larger weight. This is a subject for future study.

4



λ
init

orig

ππ

ππ

(φi)

j

j rµ(φi,   j)ππ

j| fij(  j) =ππ{ππ βmax}i

*

2

πj1

πj2

Figure 1: Some possible directions of increase of the perturbation parameter πj, and the
direction of the smallest increase. The curve plots the set of points, {πj|| fij(πj) = βmax

i }.
The set of boundary points,

{
πj|| fij(πj) = βmin

i

}
is given by the points on the πj1-axis and

πj2-axis.

Figure 2: This figure shows a small system with a single perturbation parameter with ele-
ments πj1 and πj2, and only two performance features. There is one robustness radius for
each performance feature. The robustness metric is the smaller of the two robustness radii.

3 Derivations of Robustness Metric for Example Systems

3.1 Independent Application Allocation System

The first example derivation of the robustness metric is for a system that allocates a
set of independent applications to a set of machines [12]. In this system, it is required that
the makespan be robust against errors in application execution time estimates. Specifically,
the actual makespan under the perturbed execution times must be no more than a certain
factor (> 1) times the estimated makespan calculated using the assumed execution times. It
is obvious that the larger the “factor,” the larger the robustness. Assuming that `2-norm is
used, one might also reason that as the number of applications assigned to a given machine

5



increases, the change in the finishing time for that machine will increase due to errors in
the application computation times. As will be seen shortly, the instantiation of the general
framework for this system does reflect this intuition.

A brief description of the system model is now given. The applications are assumed to
be independent, i.e., no communications between the applications are needed. The set A
of applications is to be allocated to a set M of machines so as to minimize the makespan.
Each machine executes a single application at a time (i.e., no multi-tasking), in the order in
which the applications are assigned. Let Cij be the estimated time to compute (ETC) for
application ai on machine mj. It is assumed that Cij values are known for all i, j, and a
resource allocation µ is determined using the ETC values. In addition, let Fj be the time at
which mj finishes executing all of the applications allocated to it.

Assume that unknown inaccuracies in the ETC values are expected, requiring that the
resource allocation µ be robust against them. More specifically, it is required that, for a given
resource allocation, its actual makespan value M (calculated considering the effects of ETC
errors) may be no more than τ (> 1) times its estimated value, Morig. The estimated value
of the makespan is the value calculated assuming the ETC values are accurate (see Figure
3). Following step 1 of the FePIA procedure in Section 2, the system performance features
that should be limited in variation to ensure the makespan robustness are the finishing times
of the machines. That is, Φ = {Fj|| 1 ≤ j ≤ |M|} .

Figure 3: Three applications are executing in this 2-machine cluster. The estimated value of
the makespan, calculated using the estimated computation times, is equal to the estimated
finishing time of machine B in the graph on left. The actual makespan value, calculated
using the actual computation times, is equal to the actual finishing time of machine B in the
graph on right, and is more than the estimated value.

According to step 2 of the FePIA procedure, the perturbation parameter needs to be
defined. Let Corig

i be the ETC value for application ai on the machine where it is allocated

by resource allocation µ. Let Ci be equal to the actual computation time value (Corig
i

plus the estimation error). In addition, let C be the vector of the Ci values, such that
C = [C1 C2 · · · C|A|]. Similarly, Corig = [Corig

1 Corig
2 · · · Corig

|A| ]. The vector C is the
perturbation parameter for this analysis.

In accordance with step 3 of the FePIA procedure, Fj has to be expressed as a function

6



of C. To that end,

Fj(C) =
∑

i: ai is allocated to mj

Ci. (3)

Note that the finishing time of a given machine depends only on the actual execution times
of the applications allocated to that machine, and is independent of the finishing times of the
other machines. Following step 4 of the FePIA procedure, the set of boundary relationships
corresponding to the set of performance features is given by

{
Fj(C) = τMorig|| 1 ≤ j ≤ |M|

}
.

For a two-application system, C corresponds to πj in Figure 1. Similarly, C1 and C2

correspond to πj1 and πj2, respectively. The terms Corig, Fj(C), and τMorig correspond
to πorig

j , fij(πj), and βmax
i , respectively. The boundary relationship “Fj(C) = τMorig”

corresponds to the boundary relationship “fij(πj) = βmax
i .”

From Equation 1, the robustness radius of Fj against C is given by

rµ(Fj, C) = min
C: Fj(C)=τMorig

‖C −Corig‖2 (4)

That is, if the Euclidean distance between any vector of the actual execution times and the
vector of the estimated execution times is no larger than rµ(Fj, C), then the finishing time
of machine mj will be at most τ times the estimated makespan value.

For example, assume only applications a1 and a2 have been assigned to machine j
(depicted in Figure 4), and C has two components C1 and C2 that correspond to execution
times of a1 and a2 on machine j, respectively. The term Fj(C

orig) is the finishing time for
machine j computed based on the ETC values of applications a1 and a2. Note that the right
hand side in Equation 4 can be interpreted as the perpendicular distance from the point
Corig to the hyperplane described by the equation τMorig − Fj(C) = 0. Let n(mj) be the
number of applications allocated to machine mj. Using the point-to-plane distance formula
[42], Equation 4 reduces to

rµ(Fj, C) =
τMorig − Fj(C

orig)√
n(mj)

(5)

The robustness metric, from Equation 2, is ρµ(Φ, C) = minFj ∈Φ rµ(Fj, C). That is, if the
Euclidean distance between any vector of the actual execution times and the vector of the
estimated execution times is no larger than ρµ(Φ, C), then the actual makespan will be at
most τ times the estimated makespan value. The value of ρµ(Φ, C) has the units of C,
namely time.

3.2 The HiPer-D System

The second example derivation of the robustness metric is for a HiPer-D [28] like sys-
tem that allocates a set of continuously executing, communicating applications to a set of
machines. It is required that the system be robust with respect to certain QoS attributes
against unforeseen increases in the “system load.”

The HiPer-D system model used here was developed in [2], and is summarized here for
reference. The system consists of heterogeneous sets of sensors, applications, machines, and
actuators. Each machine is capable of multi-tasking, executing the applications allocated
to it in a round robin fashion. Similarly, a given network link is multi-tasked among all

7



origC

1C

2
C

( , )jr F Cμ

( ) orig
jF C Mτ=

Figure 4: Some possible directions of increase of the perturbation parameter C. The set of
boundary points is given by Fj(C) = τMorig. The robustness radius rµ(Fj, C) corresponds
to the smallest increase that can reach the boundary. The shaded region represents the area
of robust operation.

data transfers using that link. Each sensor produces data periodically at a certain rate, and
the resulting data streams are input into applications. The applications process the data
and send the output to other applications or to actuators. The applications and the data
transfers between them are modeled with a directed acyclic graph, shown in Figure 5. The

 

 

  

 
 

 

 

path 1

path 2

path 3

path 4

S1

S2

S3

d

e

b

c

Figure 5: The DAG model for the applications (circles) and data transfers (arrows). The
diamonds and rectangles denote sensors and actuators, respectively. The dashed lines enclose
each path formed by the applications.

figure also shows a number of paths (enclosed by dashed lines) formed by the applications.
A path is a chain of producer-consumer pairs that starts at a sensor (the driving sensor)
and ends at an actuator (if it is a trigger path) or at a multiple-input application (if it is
an update path). In the context of Figure 5, path 1 is a trigger path, and path 2 is an
update path. In a real system, application d could be a missile firing program that produces
an order to fire. It needs target coordinates from application b in path 1, and an updated

8



map of the terrain from application c in path 2. Naturally, application d must respond
to any output from b, but must not issue fire orders if it receives an output from c alone;
such an output is used only to update an internal database. So while d is a multiple input
application, the rate at which it produces data is equal to the rate at which the trigger
application b produces data (in the HiPer-D model). That rate, in turn, equals the rate at
which the driving sensor, S1, produces data. The problem specification indicates the path
to which each application belongs, and the corresponding driving sensor. Example uses of
this path model include defense, monitoring vital signs medical patients, recording scientific
experiments, and surveillance for homeland security.

Let P be the set of all paths, and Pk be the list of applications that belong to the k-th
path. Note that an application may be present in multiple paths. As in Subsection 3.1, A
is the set of applications.

The sensors constitute the interface of the system to the external world. Let the max-
imum periodic data output rate from a given sensor be called its output data rate. The
minimum throughput constraint states that the computation or communication time of any
application in Pk is required to be no larger than the reciprocal of the output data rate of
the driving sensor for Pk (see Figure 6). For application ai ∈ Pk, let R(ai) be set to the
output data rate of the driving sensor for Pk. In addition, let T c

ij be the computation time

for application ai allocated to machine mj. Also, let T n
ip be the time to send data from appli-

cation ai to application ap. Because this analysis is being carried out for a specific resource
allocation, the machine where a given application is allocated is known. Let D(ai) be the
set of successor applications of ai. It is assumed that ai is allocated to mj, and the machine
subscript for T c

ij is omitted in the ensuing analysis for clarity unless the intent is to show the
relationship between execution times of ai at various possible machines. For the throughput
constraint, T c

i ≤ 1/R(ai) and T n
ip ≤ 1/R(ai) for all ap ∈ D(ai).

Figure 6: There is one throughput constraint for each application and one for each data
transfer. It imposes a limit on each application’s computation time and its data transfer
time.

The maximum end-to-end latency constraint states that, for a given path Pk, the time
taken between the instant the driving sensor outputs a data set until the instant the actuator
or the multiple-input application fed by the path receives the result of the computation on
that data set must be no greater than a given value, Lmax

k (see Figure 7). Let Lk be the actual

(as opposed to the maximum allowed) value of the end-to-end latency for Pk. The quantity
Lk can be found by adding the computation and communication times for all applications
in Pk (including any sensor or actuator communications):

Lk =
∑

i: ai∈Pk
p: (ap∈Pk)∧(ap∈D(ai))

[
T c

i + T n
ip

]
. (6)

It is desired that a given resource allocation µ of the system be robust with respect to the
satisfaction of two QoS attributes: the latency and throughput constraints. Following step 1

9



Figure 7: There is one latency constraint for each path. It imposes a limit on the time
taken from the sensor output to the path “end point,” which could be an actuator or a
multiple-input application.

of the FePIA procedure in Section 2, the system performance features that should be limited
in variation are the latency values for the paths and the computation and communication
time values for the applications. The set Φ is given by

Φ = {T c
i || 1 ≤ i ≤ |A|}

⋃ {
T n

ip|| (1 ≤ i ≤ |A|) ∧ (for p where ap ∈ D(ai))
} ⋃ {

Lk|| 1 ≤ k ≤ |P|
}
(7)

This system is expected to operate under uncertain outputs from the sensors, requiring
that the resource allocation µ be robust against unpredictable increases in the sensor outputs.
Let λz be the output from the z-th sensor in the set of sensors, and be defined as the number
of objects present in the most recent data set from that sensor. The system workload, λ,
is the vector composed of the load values from all sensors. Let λorig be the initial value of

λ, and λorig
i be the initial value of the i-th member of λorig. Following step 2 of FePIA, the

perturbation parameter πj is identified to be λ.
Step 3 of the FePIA procedure requires that the impact of λ on each of the system

performance features be identified. The computation times of different applications (and
the communication times of different data transfers) are likely to be of different complexities
with respect to λ. Assume that the dependence of T c

i and T n
ip on λ is known (or can be

estimated) for all i, p. Given that, T c
i and T n

ip can be re-expressed as functions of λ as T c
i (λ)

and T n
ip(λ), respectively. Even though d is triggered only by b, its computation time depends

on the outputs from both b and c. In general, T c
i (λ) and T n

ip(λ) will be functions of the
loads from all those sensors that can be traced back from ai. For example, the computation
time for application d in Figure 5 is a function of the loads from sensors S1 and S2, but that
for application e is a function of S2 and S3 loads (but each application has just one driving
sensor: S1 for d and S2 for e). Then Equation 6 can be used to express Lk as a function of
λ.

Following step 4 of the FePIA procedure, the set of boundary relationships corresponding
to Equation 7 is given by

{T c
i (λ) = 1/R(ai)|| 1 ≤ i ≤ |A|}

⋃
{
T n

ip(λ) = 1/R(ai)|| (1 ≤ i ≤ |A|) ∧ (for p where ap ∈ D(ai))
} ⋃

{
Lk(λ) = Lmax

k || 1 ≤ k ≤ |P|}.

Then, using Equation 1, one can find, for each φi ∈ Φ, the robustness radius, rµ(φi, λ).

10



Specifically,

rµ(φi, λ) =


min

λ: T c
x(λ)=1/R(ax)

‖λ− λorig‖2 if φi = T c
x (8a)

min
λ: Tn

xy(λ)=1/R(ax)
‖λ− λorig‖2 if φi = T n

xy (8b)

min
λ: Lk(λ)=Lmax

k

‖λ− λorig‖2 if φi = Lk (8c)

The robustness radius in Equation 8a is the largest increase (Euclidean distance) in load
in any direction (i.e., for any combination of sensor load values) from the assumed value
that does not cause a throughput violation for the computation of application ax. This is
because it corresponds to the value of λ for which the computation time of ax will be at
the allowed limit of 1/R(ax). The robustness radii in Equations 8b and 8c are the similar
values for the communications of application ax and the latency of path Pk, respectively.
The robustness metric, from Equation 2, is given by ρµ(Φ, λ) = minφi∈ Φ (rµ(φi, λ)) . For
this system, ρµ(Φ, λ) is the largest increase in load in any direction from the assumed value
that does not cause a latency or throughput violation for any application or path. Note that
ρµ(Φ, λ) has the units of λ, namely objects per data set. In addition, note that although λ is
a discrete variable, it has been treated as a continuous variable in Equation 8 for the purpose
of simplifying the illustration. A method for handling a discrete perturbation parameter is
discussed in Subsection 3.3.

3.3 A System in Which Machine Failures Require Reallocation

In many research efforts (e.g., [27, 31, 38]), flexibility of a resource allocation has been
closely tied to its robustness, and is described as the quality of the resource allocation that
can allow it to be changed easily into another allocation of comparable performance when
system failures occur. This section briefly sketches the use of the FePIA procedure to derive a
robustness metric for systems where resource reallocation becomes necessary due to dynamic
machine failures. In the example derivation analysis given below, it is assumed that resource
reallocation is invoked because of permanent simultaneous failure of a number of machines
in the system (e.g., due to a power failure in a section of a building).

In our example, for the system to be robust, it is required that (1) the total number of
applications that need to be reassigned, N re-asgn, has to be less than τ1% of the total number of
applications, and (2) the value of a given objective function (e.g., average application response
time), J , should not be any more than τ2 times its value, Jorig, for the original resource
allocation. It is assumed that there is a specific resource reallocation algorithm, which may
not be the same as the original resource allocation algorithm. The resource reallocation
algorithm will reassign the applications originally allocated to the failed machines to other
machines, as well as reassign some other applications if necessary (e.g., as done in [40]). As
in Subsection 3.1, A and M are the sets of applications and machines, respectively.

Following step 1 of the FePIA procedure, Φ = {N re-asgn, J} . Step 2 requires that the
perturbation parameter πj be identified. Let that be F , a vector that indicates the identities

of the machines that have failed. Specifically, F = [f1 f2 · · · f|M|]
T such that fj is 1 if mj

fails, and is 0 otherwise. The vector F orig corresponds to the original value of F , which is
[0 0 · · · 0]T .

11



Step 3 asks for identifying the impact of F on N re-asgn and J . The impact depends on
the resource reallocation algorithm, as well as F , and can be determined from the resource
allocation produced by the resource reallocation algorithm. Then N re-asgn and J can be
re-expressed as functions of F as N re-asgn(F ) and J(F ), respectively.

Following step 4, the set of boundary values of F needs to be identified. However,
F is a discrete variable. The boundary relationships developed for a continuous πj, i.e.,
fij(πj) = βmin

i and fij(πj) = βmax
i , will not apply because it is possible that no value of πj

will lie on the boundaries βmin
i and βmax

i . Therefore one needs to determine all those pairs
of the values of F such that the values in a given pair bracket a given boundary (βmin

i or
βmax

i ). For a given pair, the “boundary value” is taken to be the value that falls in the robust
region. Let F (+1) be a perturbation parameter value such that the machines that fail in the
scenario represented by F (+1) include the machines that fail in the scenario represented by
F , and exactly one other machine. Then, for φ1 = N re-asgn, the set of “boundary values” for
F is the set of all those “inner bracket” values of F for which the number of applications
that need to be reassigned is less than the maximum tolerable number. Mathematically,{

F ||
(
N re-asgn(F ) ≤ τ1|A|

)
∧

(
∃F (+1) N re-asgn(F (+1)) > τ1|A|

)}
.

For φ2 = J , the set of “boundary values” for F can be written as{
F ||

(
J(F ) ≤ τ2J

orig
)
∧

(
∃F (+1) J(F (+1)) > τ2J

orig
)}

.

Then, using Equation 1, one can find, the robustness radii for the set of constraints
given above. However, for this system, it is more intuitive to use the `1-norm (defined as
n∑

r=1

|xr| for a vector x = [x1 x2 · · · xn]T) for use in the robustness metric. This is because,

with the `2-norm, the term ‖F−F orig‖2 equals the square root of the number of the machines
that fail, rather than the (more natural) number of machines that fail. Specifically, using
the `1-norm,

rµ(N re-asgn, F ) = min
F : (Nre-asgn(F )≤τ1|A|)∧(∃F (+1) Nre-asgn(F (+1))>τ1|A|)

‖F − F orig‖1, (9)

and
rµ(J, F ) = min

F : (J(F )≤τ2Jorig)∧(∃F (+1) J(F (+1))>τ2Jorig)
‖F − F orig‖1. (10)

The robustness radius in Equation 9 is the largest number of machines that can fail
in any combination without causing the number of applications that have to be reassigned
to exceed τ1|A|. Similarly, the robustness radius in Equation 10 is the largest number of
machines that can fail in any combination without causing the objective function in the
reallocated system to degrade beyond τ2J(F ). The robustness metric, from Equation 2, is
given by ρµ(Φ, F ) = min

(
rµ(N re-asgn, F ), rµ(J, F )

)
. As in Subsection 3.2, it is assumed

here that the discrete optimization problems posed in Equations 9 and 10 can be solved for
optimal or near-optimal solutions using combinatorial optimization techniques [37].

To determine if the robustness metric value is k, the reallocation algorithm must be
run for all combinations of k machines failures out of a total of |M| machines. Assuming

12



that the robustness value is small enough, for example five machine failures in a set of 100
machines, then the number of combinations would be small enough to be computed off-line in
a reasonable time. If one is using a fast greedy heuristic for reallocation (e.g., those presented
in [2]), the complexity would be O(|A||M|) for each combination of failures considered. For
a Min-min like greedy heuristic (shown to be effective for many heterogeneous computing
systems, see [2] and the references provided at the end of [2]), the complexity would be
O(|A|2|M|) for each combination of failures considered.

4 Robustness Against Multiple Perturbation Parameters

Section 2 developed the analysis for determining the robustness metric for a system
with a single perturbation parameter. In this section, that analysis is extended to include
multiple perturbation parameters.

Our approach for handling multiple perturbation parameters is to concatenate them into
one parameter, which is then used as a single parameter as discussed in Section 2. Specifically,
this section develops an expression for the robustness radius for a single performance feature,
φi, and multiple perturbation parameters. Then the robustness metric is determined by
taking the minimum over the robustness radii of all φi ∈ Φ.

Let the vector πj have nπj
elements, and let ♦ be the vector concatenation operator, so

that π1♦π2 = [ π11 π12 · · · π1nπ1
π21 π22 · · · π2nπ2

]T. Let P be a weighted concate-
nation of the vectors π1, π2, · · · , π|Π|. That is, P = (α1×π1)♦(α2×π2)♦ · · · ♦(α|Π|×π|Π|),
where αj (1 ≤ j ≤ |Π|) is a weighting constant that may be assigned by a system administra-

tor or be based on the sensitivity of the system performance feature φi towards πj (explained
in detail later).

The vector P is analogous to the vector πj discussed in Section 2. Parallel to the discus-
sion in Section 2, one needs to identify the set of boundary values of P. Let fi be a function
that maps P to φi. (Note that fi could be independent of some πj.) For the single system
feature φi being considered, such a set is given by

{
P|| (fi(P) = βmin

i )
∨

(fi(P) = βmax
i )

}
.

Let Porig be the assumed value of P. In addition, let P?(φi) be, analogous to π?
j (φi), the

element in the set of boundary values such that the Euclidean distance from Porig to P?(φi),
‖P?(φi)−Porig‖2, is the smallest over all such distances from Porig to a point in the boundary
set. Alternatively, the value ‖P?(φi)−Porig‖2 gives the largest Euclidean distance that the
variable P can move in any direction from an assumed value of Porig without exceeding the
tolerable limits on φi. Parallel to the discussion in Section 2, let the distance ‖P?(φi)−Porig‖2

be called the robustness radius, rµ(φi, P), of φi against P. Mathematically,

rµ(φi, P) = min
P: (fi(P)=βmin

i )
W

(fi(P)=βmax
i )

‖P−Porig‖2. (11)

Extending for all φi ∈ Φ, the robustness of resource allocation µ with respect to the
performance feature set Φ against the perturbation parameter set Π is given by ρµ(Φ, P) =
minφi∈ Φ (rµ(φi, P)) .

The sensitivity-based weighting procedure for the calculation of αj’s is now discussed.
Typically, π1, π2, · · · , π|Π| will have different dimensions, i.e., will be measured in different
units, e.g., seconds, objects per data set, bytes. Before the concatenation of these vectors
into P, they should be converted into a single dimension. Additionally, for a given φi, the

13



magnitudes of αj should indicate the relative sensitivities of φi to different πj’s. One way to
accomplish the above goals is to set αj = 1/rµ(φi, πj). With this definition of αj,

P =
π1

rµ(φi, π1)
♦ π2

rµ(φi, π2)
♦ · · · ♦

π|Π|

rµ(φi, π|Π|)
. (12)

Note that a smaller value of rµ(φi, πj) makes αj larger. This is desirable because a small
value of the robustness against πj indicates that φi has a big sensitivity to changes in πj,
and therefore the relative weight of πj should be large. Also note that the units of rµ(φi, πj)
are the units of πj. This fact renders P dimensionless.

5 Computational Complexity

To calculate the robustness radius, one needs to solve the optimization problem posed
in Equation 1. Such a computation could potentially be very expensive. However, one can
exploit structure of this problem, along with some assumptions, to make this problem some-
what easier to solve. An optimization problem of the form minx: l(x)=0 f(x) or minx: c(x)≥0 f(x)
could be solved very efficiently to find the global minimum if f(x), l(x), and c(x) are con-
vex, linear, and concave functions respectively. Some solution approaches, including the
well-known interior-point methods, for such convex optimization problems are presented in
[11].

Because all norms are convex functions [11], the optimization problem posed in Equation
1 reduces to a convex optimization problem if fij(πj) is linear. One interesting problem with
linear fij(πj) is given in Subsection 3.1.

If fij(πj) is concave, and the constraint “fij(πj) = βmin
i ” is irrelevant for some scenario

(as it is for the system in Subsection 3.2 where the latency of a path must be no larger
than a certain limit, but can be arbitrarily small), then once again the problem reduces to a
convex optimization problem. Because the distance from a point to the boundary of a region
is the same as the distance from the point to the region itself, min

πj : (fij(πj)=βmax
i )

‖πj − πorig
j ‖2 is

equivalent to min
πj : (fij(πj)≥βmax

i )
‖πj − πorig

j ‖2. In such a case, the optimization problem would

still be convex (and efficiently solvable) even if fij(πj) were concave [11].
Similarly, if fij(πj) is convex, and the constraint “fij(πj) = βmax

i ” is irrelevant for some
scenario (e.g., for a network, the throughput must be no smaller than a certain value, but
can be arbitrarily large), then the optimization problem reduces to a convex optimization
problem.

However, if the above conditions are not met, the optimization problem posed in Equa-
tion 1 could still be solved for near-optimal solutions using heuristic approaches (some ex-
amples are given in [15]).

6 Demonstrating the Utility of the Proposed Robustness Metric

6.1 Overview

The experiments in this section seek to establish the utility of the robustness metric in
distinguishing between resource allocations that perform similarly in terms of a commonly
used metric, such as makespan. Two different systems were considered: the independent task
allocation system discussed in Subsection 3.1 and the HiPer-D system outlined in Subsection

14



3.2. Experiments were performed for a system with five machines and 20 applications. A
total of 1,000 resource allocations were generated by assigning a randomly chosen machine
to each application, and then each resource allocation was evaluated with the robustness
metric and the commonly used metric.

6.2 Independent Application Allocation System

For the system in Subsection 3.1, the ETC values were generated by sampling a Gamma
distribution. The mean was arbitrarily set to 10, the task heterogeneity was set to 0.7, and
the machine heterogeneity was also set to 0.7 (the heterogeneity of a set of numbers is the
standard deviation divided by the mean). See [5] for a description of a method for generating
random numbers with given mean and heterogeneity values.

The resource allocations were evaluated for robustness, makespan, and load balance
index (defined as the ratio of the finishing time of the machine that finishes first to the
makespan). The larger the value of the load balance index, the more balanced the load (the
largest value being 1). The tolerance, τ , was set to 120% (i.e., the actual makespan could
be no more than 1.2 times the estimated value). In this context, a robustness value of x for
a given resource allocation means that the resource allocation can endure any combination
of ETC errors without the makespan increasing beyond 1.2 times its estimated value as long
as the Euclidean norm of the errors is no larger than x seconds.

Figure 8(a) shows the “normalized robustness” of a resource allocation against its
makespan. The normalized robustness equals the absolute robustness divided by the es-
timated makespan. A similar graph for the normalized robustness against the load balance
index is shown in Figure 8(b). It can be seen in Figure 8 that some resource allocations are
clustered into groups, such that for all resource allocations within a group, the normalized
robustness remains constant as the estimated makespan (or load balance index) increases.

40 60 80 100 120

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

makespan (seconds)

no
rm

al
iz

ed
 r

ob
us

tn
es

s

(a)

0 0.2 0.4 0.6 0.8

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

load balance index

no
rm

al
iz

ed
 r

ob
us

tn
es

s

(b)

Figure 8: The plots of normalized robustness against (a) makespan, and (b) load balance
index for 1,000 randomly generated resource allocations

The cluster of the resource allocations with the highest robustness has the feature that
the machine with the largest finishing time has the smallest number of applications allocated

15



to it (which is two for the experiments in Figure 8). The cluster with the smallest robustness
has the largest number, 11, of applications allocated to the machine with the largest finishing
time. The intuitive explanation for this behavior is that the larger the number of applications
allocated to a machine, the more the degrees of freedom for the finishing time of that machine.
A larger degree of freedom then results in a shorter path to constraint violation in the
parameter space. That is, the robustness is then smaller (using the `2-norm).

If one agrees with the utility of the observations made above, one can still question if
the same information could be gleaned from some traditional metrics (even if they are not
traditionally used to measure robustness). In an attempt to answer that question, note that
sharp differences exist in the robustness of some resource allocations that have very similar
values of makespan. A similar observation could be made from the robustness against load
balance index plot (Figure 8(b)). In fact, it is possible to find a set of resource allocations
that have very similar values of the makespan, and very similar values of the load balance
index, but with very different values of the robustness. These observations highlight the fact
that the information given by the robustness metric could not be obtained from two popular
performance metrics. A typical way of using this robustness measure in a resource allocation
algorithm would be to have a bi-objective optimization criterion where one would attempt
to optimize makespan while trying to maximize robustness.

The clustering seen in Figure 8 can be explained using Equation 5. Consider a machine
mg that finishes last for a given resource allocation. Then the finishing time for mg is equal
to the makespan, Morig, of that resource allocation. Call mg the makespan machine. Now
Fg(C

orig) = Morig. From Equation 5 for mg, we have

rµ(Fg, C) =
τMorig −Morig√

n(mg)

rµ(Fg, C)

Morig
=

τ − 1√
n(mg)

(13)

The LHS in Equation 13 is the normalized robustness radius for mg. If the makespan
machine is also equal to the robustness machine, i.e, mg is such that g = argminj(rµ(Fj, C)),
then the LHS equals to the overall normalized robustness plotted in Figure 8. Now consider a
set of resource allocations that have different makespans but all share one common feature:
for all, the makespan machine is the same as the robustness machine and the number of
applications on the makespan machine is 2. These resource allocations will give rise to the
top cluster in Figure 8. The lower clusters are for higher values of n(mg). Note that “inter-
cluster” distance decreases as n(mg) increases, as indicated by Equation 13. The outlying
points belong to the resource allocations for which the makespan and robustness machines
are different.

6.3 The HiPer-D System

For the model in Subsection 3.2, the experiments were performed for a system that con-
sisted of 19 paths, where the end-to-end latency constraints of the paths were uniformly sam-
pled from the range [750, 1,250]. The system had three sensors (with rates 4×10−5, 3×10−5,
and 8×10−6), and three actuators. The experiments made the following simplifying assump-
tions. The computation time function, T c

i (λ), was assumed to be linear in λ. Specifically,

16



for real number biz, T c
i (λ) was assumed to be of the form

∑
1≤z≤3 bizλz. In case, there was no

route from the z-th sensor to application ai, we set biz to 0 to ensure T c
i (λ) would not depend

on the load from the z-th sensor. If there was a route from the z-th sensor to application
ai, biz was sampled from a Gamma distribution with a mean of 10 and a task heterogeneity
of 0.7. For simplicity in the presentation of the results, the communication times were all
set to zero. These assumptions were made only to simplify the experiments, and are not a
part of the formulation of the robustness metric. The salient point in this example is that
the utility of the robustness metric can be seen even when simple complexity functions are
used.

The resource allocations were evaluated for robustness and “slack.” In this context,
a robustness value of x for a given resource allocation means that the resource allocation
can endure any combination of sensor loads without a latency or throughput violation as
long as the Euclidean norm of the increases in sensor loads (from the assumed values) is no
larger than x. Slack has been used in many studies as a performance measure (e.g., [18,
31]) for resource allocation in parallel and distributed systems, where a resource allocation
with a larger slack is considered to be more “robust” in a sense that it can better tolerate
additional load. In this study, slack is defined mathematically as follows. Let the fractional
value of a given performance feature be the value of the feature as a percentage of the
maximum allowed value. Then the percentage slack for a given feature is the fractional
value subtracted from 1. Intuitively, this is the percentage increase in this feature possible
before reaching the maximum allowed value (see Figure 9). The system-wide percentage
slack is the minimum value of percentage slack taken over all performance features, and can
be expressed mathematically as

min

 min
k:Pk∈P

(
1− Lk(λ)

Lmax
k

)
, min

i: ai∈A

1−
max

(
T c

i (λ), max
ap∈D(ai)

T n
ip(λ)

)
1/R(ai)


 . (14)

Figure 9: Slack in latency is the percentage increase in the actual latency possible before
reaching the maximum allowed latency value.

Recall that all resource allocations meet the primary performance criteria of obeying all
of the throughput and latency constraints. Thus we can select a resource allocation that, in
addition to meeting primary criteria, is most robust.

Figure 10 shows the normalized robustness of a resource allocation against its slack. For
this system, the normalized robustness equals the absolute robustness divided by ‖λorig‖2. It

17



can be seen that the normalized robustness and slack are not correlated. If, in some research
study, the purpose of using slack is to measure a system’s ability to tolerate additional load,
then our measure of robustness is a better indicator of that ability than slack. This is because
the expression for slack, Equation 14, does not directly take into account how the sensor loads
affect the computation and communication times. It could be conjectured that for a system
where all sensors affected the computation and communication times of all applications in
exactly the same way, the slack and this research’s measure of robustness would be tightly
correlated. This, in fact, is true. Other experiments performed in this study show that for
a system with small heterogeneity, the robustness and slack are tightly correlated, thereby
suggesting that robustness measurements are not needed if slack is known. As the system
heterogeneity increases, the robustness and slack become less correlated, indicating that the
robustness measurements can be used to distinguish between resource allocations that are
similar in terms of the slack. As the system size increases, the correlation between the slack
and the robustness decreases even further. In summary, for heterogeneous systems, using
slack as a measure of how much increase in sensor load a system can tolerate may cause
system designers to grossly misjudge the system’s capability.

0.2 0.3 0.4 0.5 0.6

0.5

1

1.5

2

2.5

slack

no
rm

al
iz

ed
 r

ob
us

tn
es

s

Figure 10: The plot of normalized robustness against slack for 1,000 randomly generated
resource allocations

7 Designing Static Heuristics to Optimize Robustness
for the HiPer-D System

7.1 Overview

The rest of this chapter describes the design and development of several static resource
allocations heuristics for the HiPer-D system described in Subsection 3.2. The resource
allocation problem has been shown, in general, to be NP-complete [16, 21, 29]. Thus, the
development of heuristic techniques to find near-optimal resource allocation is an active area
of research, e.g., [1, 7, 8, 12, 13, 20, 22, 24, 33, 35, 36, 39, 41, 44, 45, 46].

18



Static resource allocation is performed when the applications are mapped in an off-line
planning phase such as in a production environment. Static resource allocation techniques
take a set of applications, a set of machines, and generate a resource allocation. These heuris-
tics determine a resource allocation off-line, and must use estimated values of application
computation times and inter-application communication times.

Recall that for a HiPer-D system there are usually a number of QoS constraints that
must be satisfied. A heuristic failure occurs if the heuristic cannot find a resource allocation
that allows the system to meet its throughput and latency constraints. The system is ex-
pected to operate in an uncertain environment where the workload, i.e., the load presented
by the set of sensors, is likely to change unpredictably, possibly invalidating a resource al-
location that was based on the initial workload estimate. The focus here is on designing a
static heuristic that: (a) determines an optimally robust resource allocation, i.e., a resource
allocation that maximizes the allowable increase in workload until a run-time reallocation of
resources is required to avoid a QoS violation, and (b) has a very low failure rate.

We propose a heuristic that performs well with respect to the failure rates and robustness
to unpredictable workload increases. This heuristic is, therefore, very desirable for systems
where low failure rates can be a critical requirement and where unpredictable circumstances
can lead to unknown increases in the system workload.

7.2 Computation and Communication Models

7.2.1 Computation Model

This subsection summarizes the computation model for this system as originally de-
scribed in [2]. For an application, the estimated time to compute a given data set depends
on the load presented by the data set, and the machine executing the application. Let Cij(λ)

be the estimated time to compute for application ai on mj for a given workload (generated
by λ) when ai is the only application executing on mj. This research assumes that Cij(λ)
is a function known for all i, j, and λ.

The effect of multitasking on the computation time of an application is accounted for by
assuming that all applications mapped to a machine are processing data continuously. Let
Nj be the number of applications executing on machine mj. Let T c

ij(λ) be the computation

time for ai on machine mj when ai shares this machine with other applications1. If the
overhead due to context switching is ignored, T c

ij(λ) will be Nj × Cij(λ).
However, the overhead in computation time introduced by context switching may not

be trivial in a round-robin scheduler. Such an overhead depends on the estimated-time-to-
compute value of the application on the machine, and the number of applications executing
on the machine. Let Ocs

ij (λ) be the context switching overhead incurred when application ai

executes a given workload on machine mj. Let T cs
j be the time mj needs in switching the

execution from one application to another. Let T q
j be the size (quantum) of the time slice

1The function T c
i (λ) used in Subsection 3.2 is essentially the same as the function T c

ij(λ). The subscript
j was absent in the former because the identity of the machine where application ai was mapped was not
relevant to the discussion in Subsection 3.2.

19



given by mj to each application in the round-robin scheduling policy used on mj. Then,

Ocs
ij (λ) =

0 if Nj = 1
Cij(λ)×Nj

T q
j

× T cs
j if Nj > 1

T c
ij(λ) can now be stated as,

T c
ij(λ) =

Cij(λ) if Nj = 1

Cij(λ)×Nj

(
1 +

T cs
j

T q
j

)
if Nj > 1

(15)

7.2.2 Communication Model

This section develops an expression for the time needed to transfer the output data
from a source application to a destination application at a given load. This formulation was
originally given in [2]. Let Mip(λ) be the size of the message data sent from application ai

to a destination application ap at the given load. Let m(ai) be the machine on which ai is
mapped. Let T n

ip(λ) be the transfer time, i.e., the time to send data from application ai to

application ap at the given load.
A model for calculating the communication times should identify the various steps

involved in effecting a data transfer. The two steps identified in [23] for communication in
a similar domain are the communication setup time and the queuing delay. These steps
contribute to the overall communication time to different extents depending on the intended
communications environment.

Communication Setup Time. Before data can be transferred from one machine to an-
other, a communication setup time is required for setting up a logical communication channel
between the sender application and the destination application. Once established, a logical
communication channel is torn down only when the sending or receiving application is fin-
ished executing. Because this study considers continuously executing applications (because
the sensors continually produce data), the setup time will be incurred only once, and will,
therefore, be amortized over the course of the application execution. Hence, the communi-
cation setup time is ignored in this study.

Queuing Delay. A data packet is queued twice enroute from the source machine to
the destination machine. First, the data packet is queued in the output buffer of the source
machine, where it waits to use the communication link from the source machine to the switch.
The second time, the data packet is queued in the output port of the switch, where it waits
to use the communication link from the switch to the destination machine. The switch has
a separate output port for each machine in the system.

The queuing delay at the sending machine is modeled by assuming that the bandwidth
of the link from the sending machine to the switch is shared equally among all data transfers
originating at the sending machine. This will underestimate the bandwidth available for
each transfer because it assumes that all of the other transfers are always being performed.
Similarly, the queuing delay at the switch is modeled by assuming that the bandwidth of the
link from the switch to the destination machine is equally divided among all data transfers
originating at the switch and destined for the destination machine. Let B(m(ai), swt) be
the bandwidth (in bytes per unit time) of the communication link between m(ai) and the

20



switch, and B(swt, m(ap)) be the bandwidth (in bytes per unit time) of the communica-

tion link between the switch and m(ap). The abbreviation “swt” stands for “switch.” Let
N ct(m(ai), swt) be the number of data transfers using the communication link from m(ai)

to the switch. The superscript “ct” stands for “contention.” Let N ct(swt, m(ap)) be the

number of data transfers using the communication link from the switch to m(ap). Then,
T n

ip(λ), the time to transfer the output data from application ai to ap, is given by:

T n
ip(λ) = Mip(λ)×

(
N ct(m(ai), swt)

B(m(ai), swt)
+

N ct(swt, m(ap))

B(swt, m(ap))

)
(16)

The above expression can also accommodate the situations when a sensor communicates
with the first application in a path, or when the last application in a path communicates
with an actuator. The driving sensor for Pk can be treated as a “pseudo-application” that
has a zero computation time and is already mapped to an imaginary machine, and, as such,
can be denoted by αk,0. Similarly, the actuator receiving data from Pk can also be treated
as a pseudo-application with a zero computation time, and will be denoted by αk,|Pk|+1.

Accordingly, for these cases: Mip(λ) corresponds to the size of the data set being sent from
the sensor; B(m(αk,0), swt) is the bandwidth of the link between the sensor and the switch;
and B(swt, m(αk,|Pk|+1)) corresponds to the bandwidth of the link between the switch and the
actuator. Similarly, N ct(m(αk,0), swt) and N ct(swt, αk,|Pk|+1)) both are 1. In the situation
where m(ai) = m(ap), one can interpret N ct(m(ai), swt) and N ct(swt, m(ap)) both as 0;
T n

ip(λ) = 0 in that case.

7.3 Heuristic Descriptions

7.3.1 Overview

This section develops three greedy heuristics for the problem of finding an initial static
allocation of applications onto machines to maximize ρµ(Φ, λ), where Φ is as defined in
Equation 7. From this point on, for the sake of simplicity we will denote ρµ(Φ, λ) by
∆Λ. Greedy techniques perform well in many situations, and have been well-studied (e.g.,
[29]). One of the heuristics, Most Critical Task First (MCTF), is designed to work well in
heterogeneous systems where the throughput constraints are more stringent than the latency
constraints. Another heuristic, the Most Critical Path First (MCPF) heuristic, is designed
to work well in heterogeneous systems where the latency constraints are more stringent than
the throughput constraints.

It is important to note that these heuristics use the ∆Λ value to guide the heuristic
search; however, the procedure given in Section 3.2 (Equation 8) for calculating ∆Λ assumes
that a complete resource allocation of all applications is known. During the course of the
execution of the heuristics, not all applications are mapped. In these cases, for calculating
∆Λ, the heuristics assume that each such application ai is mapped to the machine where its
computation time is smallest over all machines, and that ai is using 100% of that machine.
Similarly for communications where either the source or the destination application (or both)
are unmapped, it is assumed that the data transfer between the source and destination occurs
over the highest speed communication link available in the network, and that the link is 100%
utilized by the data transfer. With these assumptions, ∆Λ is calculated and used in any
step of a given heuristic.

21



Before discussing the heuristics, some additional terms are now defined. Let ∆ΛT be
the robustness of the resource allocation when only throughput constraints are considered,
i.e, all latency constraints are ignored. Similarly, let ∆ΛL be the robustness of the resource

allocation when only latency constraints are considered. In addition, let ∆ΛT
ij be the robust-

ness of the assignment of ai to machine mj with respect to the throughput constraint, i.e.,
it is the largest increase in load in any direction from the initial value that does not cause a
throughput violation for application ai, either for the computation of ai on machine mj or
for the communications from ai to any of its successor applications. Similarly, let ∆ΛL

k be
the robustness of the assignment of applications in Pk with respect to the latency constraint,
i.e., it is the largest increase in load in any direction from the initial value that does not
cause a latency violation for the path Pk.

7.3.2 Most Critical Task First Heuristic

The Most Critical Task First Heuristic (MCTF) heuristic makes one application to ma-
chine assignment in each iteration. Each iteration can be split into two phases. Let M be

the set of machines in the system. Let ∆Λ*(ai, mj) be the value of ∆Λ if application ai is

mapped on mj. Similarly, let ∆ΛT*(ai, mj) be the value of ∆ΛT
ij if application ai is mapped

on mj. In the first phase, each unmapped application ai is paired with its “best” machine
mj such that

mj = argmax
mk∈ M

(∆Λ*(ai, mk)). (17)

(Note that argmaxx f(x) returns the value of x that maximizes the function f(x). If there
are multiple values of x that maximize f(x), then argmaxx f(x) returns the set of all those
values.) If the RHS in Equation 17 returns a set of machines, G(ai), instead of a unique

machine, then mj = argmaxmk∈ G(ai)
(∆ΛT*(ai, mk)), i.e., the individual throughput con-

straints are used to break ties in the overall system-wide measure. If ∆Λ*(ai, mj) < 0, this
heuristic cannot find a resource allocation. The first phase does not make an application to
machine assignment; it only establishes application-machine pairs (ai, mj) for all unmapped
applications ai.

The second phase makes an application to machine assignment by selecting one of
the (ai, mj) pairs produced by the first phase. This selection is made by determining the
most “critical” application (the criterion for this is explained later). The method used to
determine this assignment in the first iteration is totally different from that used in the
subsequent iterations.

Consider the motivation of the heuristic for the special first iteration. Before the first
iteration of the heuristic, all applications are unmapped, and the system resources are entirely
unused. With the system in this state, the heuristic selects the pair (ax, my) such that

(ax, my) = argmin
(ai,mj) pairs from

the first phase

(∆Λ*(ai, mj)).

That is, from all of the (application, machine) pairs chosen in the first step, the heuristic
chooses the pair (ax, my) that leads to the smallest robustness. The application ax is then
assigned to the machine my. It is likely that if the assignment of this application is postponed,
it might have to be assigned to a machine where its maximum allowable increase in the

22



system load is even smaller. (The discussion above does not imply that an optimal resource
allocation must contain the assignment of ax on my.) Experiments conducted in this study
have shown that the special first iteration significantly improves the performance.

The criterion used to make the second phase application to machine assignment for
iterations 2 to |A| is different from that used in iteration 1, and is now explained. The
intuitive goal is to determine the (ai, mj) pair, which if not selected, may cause the most
future “damage,” i.e., decrease in ∆Λ. Let Mai be the ordered list, 〈mai

1 , mai
2 , · · · , mai

|M|〉,
of machines such that ∆Λ*(ai, mai

x ) ≥ ∆Λ*(ai, mai
y ) if x < y. Note that mai

1 is the same
as ai’s “best” machine. Let v be an integer such that 2 ≤ v ≤ |M|, and let r(ai, v) be the

percentage decrease in ∆Λ*(ai, mj) if ai is mapped on mai
v (its v-th best machine) instead of

mai
1 , i.e.,

r(ai, v) =
∆Λ*(ai, mai

1 )−∆Λ*(ai, mai
v )

∆Λ*(ai, mai
1 )

.

Additionally, let T (ai, 2) be defined such that,

T (ai, 2) =
∆ΛT*(ai, mai

1 )−∆ΛT*(ai, mai
2 )

∆ΛT*(ai, mai
1 )

.

Then, in all iterations other than the first iteration, MCTF maps the most critical applica-
tion, where the most critical application is found using the pseudo-code in Figure 11. The
program in Figure 11 takes the set of (ai, mj) pairs from the first phase of MCTF as its
input. Then for each pair (ai, mj) it determines the percentage decrease in ∆Λ*(ai, mj) if ai

is mapped on its second best machine instead of its best machine. Then, once this informa-
tion is calculated for all of the pairs obtained from the first phase, the program in Figure
11 chooses the pair for which the percentage decrease in ∆Λ*(ai, mj) is the largest. It may
very well be the case that all pairs are alike, i.e., all have the same percentage decrease in
∆Λ*(ai, mj) when the program considers their second best and the best machines. In such
a case, the program makes the comparisons again, however using the third best and the
best machines this time. This continues until a pair is found that has the largest percentage
decrease in ∆Λ*(ai, mj) or until all possible comparisons have been made and still there is no
unique “winner.” If we do not have a unique winner even after having compared the |M|-th
best machine with the best machine, we use T (ai, 2) to break the ties, i.e., we choose the
pair that maximizes T (ai, 2). If, even that is not unique, we arbitrarily select one pair. This
method is explained in detail in Figure 11. The technique shown in Figure 11 builds on the
idea of the Sufferage heuristic given in [35].

7.3.3 Two-Phase Greedy Heuristic

This research also proposes a modified version of the Min-min heuristic. Variants of the
Min-min heuristic (first presented in [29]) have been studied, e.g., [6, 12, 35, 46], and have
been seen to perform well in the environments for which they were proposed. Two-Phase
Greedy (TPG), a Min-min style heuristic for the environment discussed in this research, is
shown in Figure 12.

Like MCTF, the TPG heuristic makes one application to machine assignment in each
iteration. Each iteration can be split into two phases. In the first phase, each unmapped ap-
plication ai is paired with its “best” machine mj such that mj = argmaxmk∈M(∆Λ*(ai, mk)).

23



1: initialize: v = 2; F = the set of (ai, mj) pairs from the first phase
2: for v = 2 to |M| do
3: if argmax(ai,mj)∈ F(r(ai, v)) is a unique pair (ax, my) then
4: return (ax, my)
5: else
6: F = the set of pairs returned by argmax(ai,mj)∈ F(r(ai, v))
7: end if
8: end for

/* program control reaches here only if no application, machine pair has been */
/* selected in Lines 1 to 8 above. F is now the set of (ai, mj) pairs from the last */
/* execution of Line 6 */

9: if argmax(ai,mj)∈ F(T (ai, 2)) is a unique pair (ax, my) then
10: return (ax, my)
11: else
12: arbitrarily select and return an application, machine pair from the set of pairs

given by argmax(ai,mj)∈ F(T (ai, 2))
13: end if

Figure 11: Selecting the most critical application to map next given the set of (ai, mj) pairs
from the first phase of MCTF.

The first phase does not make an application to machine assignment; it only establishes
application-machine pairs (ai, mj) for all unmapped applications ai. The second phase makes
an application to machine assignment by selecting one of the (ai, mj) pairs produced by the
first phase. It chooses the pair that maximizes ∆Λ*(ai, mj) over all first phase pairs. Ties
are resolved arbitrarily.

1: while all applications are not mapped do
2: for each unmapped application ai do
3: find the machine mj such that mj = argmaxmk∈M(∆Λ*(ai, mk))
4: resolve ties arbitrarily
5: if ∆Λ*(ai, mj) < 0 then
6: exit (this heuristic cannot find a resource allocation)
7: end if
8: end for
9: from the (ai, mj) pairs found above, select the pair(s) (ax, my) such that (ax, my) =

argmax(ai,mj) pairs(∆Λ*(ai, mj))
10: resolve ties arbitrarily
11: map ax on my

12: end while

Figure 12: The TPG heuristic.

24



7.3.4 Most Critical Path First Heuristic

The Most Critical Path First Heuristic (MCPF) heuristic explicitly considers the la-
tency constraints of the paths in the system. It begins by ranking the paths in the order of
the most “critical” path first (defined below). Then it uses a modified form of the MCTF
heuristic to map applications on a path-by-path basis, iterating through the paths in a ranked
order. The modified form of MCTF differs from MCTF in that the first iteration has been
changed to be the same as the subsequent iterations.

The ranking procedure used by MCPF is now explained in detail. Let Λ̂L(Pk) be the

value of ∆ΛL
k assuming that each application ai in Pk is mapped to the machine mj where

it has the smallest computation time, and that ai can use 100% of mj. Similarly for the
communications between the consecutive applications in Pk, it is assumed that the data
transfer between the applications occurs over the highest speed communication link in the
system, and that the link is 100% utilized by the data transfer. Note that the entire ranking
procedure is done before any application is mapped.

The heuristic ranks the paths in an ordered list 〈Pcrit
1 ,Pcrit

2 , · · · ,Pcrit
|P| 〉 such that Λ̂L(Pcrit

x )

≤ Λ̂L(Pcrit
y ) if x < y. Once the ranking of the paths has been done, the MCPF heuristic

uses MCTF to map each application in a path, starting from the highest ranked path first.

7.3.5 Duplex

For an arbitrary HC system, one is not expected to know if the system is more stringent
with respect to latency constraints or throughput constraints. In that case, this research
proposes running both MCTF and MCPF, and taking the better of the two mappings. The
Duplex heuristic executes both MCTF and MCPF, and then chooses the resource allocation
that gives a higher ∆Λ.

7.3.6 Other Heuristics

To compare the performance of the heuristics proposed in this research (MCTF, MCPF,
and TPG), three other greedy heuristics were also implemented. These included: Two-Phase
Greedy X (TPG-X) and two fast greedy heuristics. TPG-X is an implementation of the Max-
min heuristic [29] for the environment discussed in this research. TPG-X is similar to the
TPG heuristic except that in Line 9 of Figure 12, “argmax” is replaced with “argmin.” The
first fast greedy heuristic, denoted FGH-L, iterates through the unmapped applications in an

arbitrary order, assigning an application ai to the machine mj such that (a) ∆Λ*(ai, mj) ≥ 0,
and (b) ∆ΛL is maximized (ties are resolved arbitrarily). The second fast greedy heuristic,

FGH-T, is similar to FGH-L except that FGH-T attempts to maximize ∆ΛT. For a given

application ai, if FGH-L or FGH-T cannot find a machine mj such that ∆Λ*(ai, mj) ≥ 0,
then the heuristic fails.

7.3.7 An Upper Bound

An upper bound, UB, on the ∆Λ value also is calculated for comparing the absolute
performance of a given heuristic. The UB is equal to the ∆Λ for a system where the
following assumptions hold: (a) the communication times are zero for all applications, (b)
each application ai is mapped on the machine mj where ∆ΛT

ij is maximum over all machines,

25



and (c) that each application can use 100% of the machine where it is mapped. These
assumptions are, in general, not physically realistic.

8 Simulation Experiments and Results

In this study, several sets of simulation experiments were conducted to evaluate and
compare the heuristics. Experiments were performed for different values of |A| and |M|,
and for different types of HC environments. For all experiments, it was assumed that an
application could execute on any machine.

The following simplifying assumptions were made for performing the experiments. Let
ns be the total number of sensors. The estimated time to compute function Cij(λ) for ap-
plication ai on mj was assumed to be of the form

∑
1≤z≤ns

bijzλz, where bijz = 0 if there is
no route from the z-th sensor to application ai. Otherwise, bijz was sampled from a Gamma
distribution with a given mean and given values of task heterogeneity and machine hetero-
geneity. The T c

ij(λ) value would depend on the actual resource allocation as well as Cij(λ),
and can be calculated using the computation model given in Subsection 7.2.1. Similarly, the
Mip(λ) functions for the size of the message data sent from application ai to a destination
application ap at a given load were similarly generated, except that machine heterogeneity
was not involved. The communication time functions, T n

ip(λ), would depend on the actual
resource allocation as well as Mip(λ), and can be calculated using the communication model
given in Subsection 7.2.2. For a given set of computation and communication time functions,
the experimental set-up allowed the user to change the values of sensor output rates and
end-to-end latency constraints so as to change the “tightness” of the throughput and latency
constraints. The reader is directed to [6] for details.

An experiment is characterized by the set of system parameters (e.g., |A|, |M|, appli-
cation and machine heterogeneities) it investigates. Each experiment was repeated 90 times
to obtain good estimates of the mean and standard deviation of ∆Λ. Each repetition of a
given experiment will be referred to as a trial. For each new trial, a DAG with |A| nodes
was randomly regenerated, and the values of Cij(λ) and Mip(λ) were regenerated from their
respective distributions.

Results from a typical set of experiments are shown in Figure 13. The first bar for
each heuristic, titled “∆ΛN,” shows the normalized ∆Λ value averaged for all those trials in
which the given heuristic successfully found a resource allocation. The normalized ∆Λ for
a given heuristic is equal to ∆Λ for the resource allocation found by that heuristic divided
by ∆Λ for the upper bound defined in Subsection 7.3.7. The second bar, titled, “δλN,”
shows the normalized ∆Λ averaged only for those trials in which every heuristic successfully
found a resource allocation. This figure also shows, in the third bar, the value of the failure
rate for each heuristic. The failure rate or FR is the ratio of the number of trials in which
the heuristic could not find a resource allocation to the total number of trials. The interval
shown at the tops of the first two bars is the 95% confidence interval [30].

Figure 13 shows the relative performance of the heuristics for the given system para-
meters. In this figure, FGH-T and FGH-L are not shown because of their poor failure rate
and ∆ΛN, respectively. It can be seen that the ∆ΛN performance difference between MCTF
and MCPF is statistically insignificant. The traditional Min-min and Max-min like heuris-
tics, i.e., TPG and TPG-X, achieve ∆ΛN values significantly lower than those for MCTF
or MCPF (i.e., much poorer robustness). To make matters worse, the FR values for TPG

26



and TPG-X are significantly higher than those for MCTF or MCPF. Even though Duplex’s
∆ΛN value is statistically no better than that of MCTF, its FR value, 12%, is about half
that of MCTF (23%).

Additional experiments were performed for various other combinations of |A|, |M|, and
tightness of QoS constraints, and the relative behavior of the heuristics was similar to that
in Figure 13. Note that all communication times were set to zero in Figure 13 (but not in all
experiments). Given the formulation of UB, it is expected that if the communication times
are all zero in a given environment, then UB will be closer to the optimal value, and will
make it easier to evaluate the performance of the heuristics with respect to the upper bound.

0

0.2

0.4

0.6

0.8

1

1.2

∆Λ
N

, δ
λN

, a
nd

 F
R

   
 M

C
T

F
 

   
  T

P
G

 

   
T

P
G

−
X

 

   
 M

C
P

F
 

  D
up

le
x 

∆ΛN

δλN

FR

Figure 13: The relative performance of heuristics for a system where |M| = 6, |A| = 50.
Number of sensors = number of actuators = 7. Task heterogeneity = machine heterogeneity
= 0.7. All communication times were set to zero. A total of 90 trials were performed.

9 Related Work

Although a number of robustness measures have been studied in the literature (e.g.,
[10, 14, 17, 18, 19, 25, 31, 34, 38, 43]), those measures were developed for specific systems.
The focus of the research in this chapter is a general mathematical formulation of a robustness
metric that could be applied to a variety of parallel and distributed systems by following the
FePIA procedure presented in this chapter.

Given an allocation of a set of communicating applications to a set of machines, the
work in [10] develops a metric for the robustness of the makespan against uncertainties in

27



the estimated execution times of the applications. The paper discusses in detail the effect of
these uncertainties on the value of makespan, and how the robustness metric could be used
to find more robust resource allocations. Based on the model and assumptions in [10], several
theorems about the properties of robustness are proven. The robustness metric in [10] was
formulated for errors in the estimation of application execution times, and was not intended
for general use (in contrast to our work). Additionally, the formulation in [10] assumes that
the execution time for any application is at most k times the estimated value, where k ≥ 1
is the same for all applications. In our work, no such bound is assumed.

In [14], the authors address the issue of probabilistic guarantees for fault-tolerant real-
time systems. As a first step towards determining such a probabilistic guarantee, the authors
determine the maximum frequency of software or hardware faults that the system can tolerate
without violating any hard real-time constraint. In the second step, the authors derive a
value for the probability that the system will not experience faults at a frequency larger than
that determined in the first step. The output of the first step is what our work would identify
as the robustness of the system, with the satisfaction of the real-time constraints being the
robustness requirement, and the occurrence of faults being the perturbation parameter.

The research in [17] considers a single-machine scheduling environment where the process-
ing times of individual jobs are uncertain. The system performance is measured by the total
flow time (i.e., the sum of completion times of all jobs). Given the probabilistic information
about the processing time for each job, the authors determine the normal distribution that
approximates the flow time associated with a given schedule. A given schedule’s robustness
is then given by 1 minus the risk of achieving substandard flow time performance. The risk
value is calculated by using the approximate distribution of flow time. Like [10], the robust-
ness metric in [17] was formulated for errors in the estimation of processing times, and was
not intended for general use.

The study in [18] explores slack-based techniques for producing robust resource alloca-
tions in a job-shop environment. The central idea is to provide each task with extra time
(defined as slack) to execute so that some level of uncertainty can be absorbed without hav-
ing to reallocate. The study uses slack as its measure of robustness. The study does not
develop a robustness metric; instead, it implicitly uses slack to achieve robustness.

The Ballista project [19] explores the robustness of commercial off-the-shelf software
against failures resulting from invalid inputs to various software procedure calls. A failure
causes the software package to crash when unexpected parameters are used for the proce-
dure calls. The research quantifies the robustness of a software procedure in terms of its
failure rate — the percentage of test input cases that cause failures to occur. The Ballista
project extensively explores the robustness of different operating systems (including experi-
mental work with IBM, FreeBSD, Linux, AT&T, and Cisco). However, the robustness metric
developed for that project is specific to software systems.

The research in [25] introduces techniques to incorporate fault tolerance in scheduling
approaches for real-time systems by the use of additional time to perform the system func-
tions (e.g., to re-execute, or to execute a different version of, a faulty task). Their method
guarantees that the real-time tasks will meet the deadlines under transient faults, by reserv-
ing sufficient additional time, or slack. Given a certain system slack and task model, the
paper defines its measure of robustness to be the “fault tolerance capability” of a system
(i.e., the number and frequency of faults it can tolerate). This measure of robustness is
similar, in principle, to ours.

28



In [31], a “neighborhood-based” measure of robustness is defined for a job-shop environ-
ment. Given a schedule s and a performance metric P (s), the robustness of the schedule s
is defined to be a weighted sum of all P (s′) values such that s′ is in the set of schedules that
can be obtained from s by interchanging two consecutive operations on the same machine.

The work in [34] develops a mathematical definition for the robustness of makespan
against machine breakdowns in a job-shop environment. The authors assume a certain
random distribution of the machine breakdowns and a certain rescheduling policy in the
event of a breakdown. Given these assumptions, the robustness of a schedule s is defined to
be a weighted sum of the expected value of the makespan of the rescheduled system, M , and
the expected value of the schedule delay (the difference between M and the original value
of the makespan). Because the analytical determination of the schedule delay becomes very
hard when more than one disruption is considered, the authors propose surrogate measures
of robustness that are claimed to be strongly correlated with the expected value of M and
the expected schedule delay.

The research in [38] uses a genetic algorithm to produce robust schedules in a job-shop
environment. Given a schedule s and a performance metric P (s), the “robust fitness value”
of the schedule s is a weighted average of all P (s′) values such that s′ is in a set of schedules
obtained from s by adding a small “noise” to it. The size of this set of schedules is determined
arbitrarily. The “noise” modifies s by randomly changing the ready times of a fraction of
the tasks. Like [31], [38] does not explicitly state the perturbations under which the system
is robust.

Our work is perhaps closest in philosophy to [43], which attempts to calculate the
stability radius of an optimal schedule in a job-shop environment. The stability radius of an
optimal schedule, s, is defined to be the radius of a closed ball in the space of the numerical
input data such that within that ball the schedule s remains optimal. Outside this ball,
which is centered at the assumed input, some other schedule would outperform the schedule
that is optimal at the assumed input. From our viewpoint, for a given optimal schedule, the
robustness requirement could be the persistence of optimality in the face of perturbations in
the input data. Our work differs and is more general because we consider the given system
requirements to generate a robustness requirement, and then determine the robustness. In
addition, our work considers the possibility of multiple perturbations in different dimensions.

Our earlier study in [2] is related to the one in Sections 7 and 8 chapter. However, the
robustness measure we used in [2] makes a simplifying assumption about the way changes in
λ can occur. Specifically, it is assumed that λ changes so that all components of λ increase
in proportion to their initial values. That is, if the output from a given sensor increases by
x%, then the output from all sensors increases by x%. Given this assumption, for any two
sensors σp and σq, (λp − λinit

p )/λinit
p = (λq − λinit

q )/λinit
q = ∆λ.

10 Future Work

There are many directions in which the robustness research presented in the paper can
be extended. Examples include the following.

1. Deriving the boundary surfaces for different problem domains.

2. Incorporating multiple types of perturbation parameters (e.g., uncertainties in input
sensor loads and uncertainties in estimated execution times). Challenges here are how

29



to define the collective impact to find each robust radius and how to state the combined
bound on multiple perturbation parameters to maintain the promised performance.

3. Incorporating probabilistic information about uncertainties. In this case, a perturbation
parameter can be represented as a vector of random variables. Then, one might have
probabilistic information about random variables in the vector (e.g., probability den-
sity functions) or probabilistic information describing the relationship between different
random variables in the vector or between different vectors (e.g., a set of correlation
coefficients).

4. Determining when to use Euclidean distance versus other distance measures when calcu-
lating the collective impact of changes in the perturbation parameter elements.

11 Conclusions

This chapter has presented a mathematical description of a metric for the robustness of
a resource allocation with respect to desired system performance features against multiple
perturbations in various system and environmental conditions. In addition, the research
describes a procedure, called FePIA, to methodically derive the robustness metric for a
variety of parallel and distributed computing resource allocation systems. For illustration,
the FePIA procedure is employed to derive robustness metrics for three example distributed
systems. The experiments conducted in this research for two example parallel and distributed
systems illustrate the utility of the robustness metric in distinguishing between the resource
allocations that perform similarly otherwise based on the primary performance measure (e.g.,
no constraint violation for HiPer-D environment and minimizing makespan for the cluster
environments). It was shown that the robustness metric was more useful than approaches
such as slack or load balancing.

Also, this chapter described several static resource allocation heuristics for one example
distributed computing system. The focus was on designing a static heuristic that will (a)
determine a maximally robust resource allocation, i.e., a resource allocation that maximizes
the allowable increase in workload until a run-time reallocation of resources is required
to avoid a QoS violation, and (b) have a very low failure rate. This study proposes a
heuristic, called Duplex, that performs well with respect to the failure rate and the robustness
towards unpredictable workload increases. Duplex was compared under a variety of simulated
heterogeneous computing environments, and with a number of other heuristics taken from
the literature. For all of the cases considered, Duplex gave the lowest failure rate, and
a robustness value better than those of other evaluated heuristics. Duplex is, therefore,
very desirable for systems where low failure rates can be a critical requirement and where
unpredictable circumstances can lead to unknown increases in the system workload.

Acknowledgments : The authors thank Vladimir Shestak for his valuable contributions.

References

[1] S. Ali, T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, and B. Yao, “Characterizing resource allocation heuristics for
heterogeneous computing systems,” Parallel, Distributed, and Pervasive Computing,

30



A. R. Hurson, ed., Vol. 63 of Advances in Computers, Elsevier Academic Press, San
Diego, CA, 2005, pp. 91–128.

[2] S. Ali, J.-K. Kim, Y. Yu, S. B. Gundala, S. Gertphol, H. J. Siegel, A. A. Maciejewski,
and V. Prasanna, “Greedy heuristics for resource allocation in dynamic distributed real-
time heterogeneous computing systems,” 2002 International Conference on Parallel and
Distributed Processing Techniques and Applications, Vol. II, June 2002, pp. 519–530.

[3] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Measuring the robustness of a
resource allocation,” IEEE Transactions on Parallel and Distributed Systems, Vol. 15,
No. 7, July 2004, pp. 630–641.

[4] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Robust resource allocation
for sensor-actuator distributed computing systems,” 2004 International Conference on
Parallel Processing (ICPP 2004), Aug. 2004, pp. 178–185.

[5] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Sedigh-Ali, “Representing task
and machine heterogeneities for heterogeneous computing systems,” Tamkang Journal
of Science and Engineering, Vol. 3, No. 3, Nov. 2000, pp. 195–207, invited.

[6] S. Ali, Robust Resource Allocation in Dynamic Distributed Heterogeneous Computing
Systems. PhD thesis, School of Electrical and Computer Engineering, Purdue University,
Aug. 2003.

[7] H. Barada, S. M. Sait, and N. Baig, “Task matching and scheduling in heterogeneous sys-
tems using simulated evolution,” 10th IEEE Heterogeneous Computing Workshop (HCW
2001) in the proceedings of the 15th International Parallel and Distributed Processing
Symposium (IPDPS 2001), Apr. 2001.

[8] I. Banicescu and V. Velusamy, “Performance of scheduling scientific applications with
adaptive weighted factoring,” 10th IEEE Heterogeneous Computing Workshop (HCW
2001) in the proceedings of the 15th International Parallel and Distributed Processing
Symposium (IPDPS 2001), Apr. 2001.

[9] P. M. Berry. “Uncertainty in Scheduling: Probability, Problem Reduction, Abstractions
and the User,” IEE Computing and Control Division Colloquium on Advanced Software
Technologies for Scheduling, Digest No. 1993/163, Apr. 26, 1993.

[10] L. Bölöni and D. C. Marinescu, “Robust scheduling of metaprograms,” Journal of
Scheduling, Vol. 5, No. 5, Sept. 2002, pp. 395–412.

[11] S. Boyd and L. Vandenberghe, Convex Optimization, available at http://www.

stanford.edu/class/ee364/index.html.

[12] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund, “A comparison
of eleven static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems,” Journal of Parallel and Distributed Computing, Vol. 61,
No. 6, June 2001, pp. 810–837.

31

http://www.stanford.edu/class/ee364/index.html
http://www.stanford.edu/class/ee364/index.html


[13] T. D. Braun, H. J. Siegel, and A. A. Maciejewski, “Heterogeneous computing: Goals,
methods, and open problems (invited keynote presentation for the 2001 International
Multiconference that included PDPTA 2001),” 2001 International Conference on Par-
allel and Distributed Processing Techniques and Applications (PDPTA 2001), Vol. I,
pp. 1–12, June 2001.

[14] A. Burns, S. Punnekkat, B. Littlewood, and D. Wright, “Probabilistic guarantees for
fault-tolerant real-time systems,” technical report, Design for Validation (DeVa) TR No.
44, Esprit Long Term Research Project No. 20072, Dept. of Computer Science, Univ.
of Newcastle upon Tyne, UK, 1997.

[15] Y. X. Chen, “Optimal Anytime Search for Constrained Nonlinear Programming,” Mas-
ter’s thesis, Dept. of Computer Science, Univ. of Illinois, Urbana, IL, May 2001.

[16] E. G. Coffman, Jr., ed., Computer and Job-Shop Scheduling Theory, John Wiley & Sons,
New York, NY, 1976.

[17] R. L. Daniels and J. E. Carrillo, “β-Robust scheduling for single-machine systems with
uncertain processing times,” IIE Transactions, Vol. 29, No. 11, 1997, pp. 977–985.

[18] A. J. Davenport, C. Gefflot, and J. C. Beck, “Slack-based techniques for robust sched-
ules,” 6th European Conference on Planning (ECP-2001), Sept. 2001, pp. 7–18.

[19] J. DeVale and P. Koopman, “Robust software – no more excuses,” IEEE International
Conference on Dependable Systems and Networks (DSN 2002), June 2002, pp. 145–154.

[20] M. M. Eshaghian, ed., Heterogeneous Computing, Artech House, Norwood, MA, 1996.

[21] D. Fernandez-Baca, “Allocating modules to processors in a distributed system,” IEEE
Transaction on Software Engineering, Vol. SE-15, No. 11, Nov. 1989, pp. 1427–1436.

[22] I. Foster and C. Kesselman, eds., The Grid 2: Blueprint for a New Computing In-
frastructure, Morgan Kaufmann, San Fransisco, CA, 2004.

[23] I. Foster, Designing and Building Parallel Programs, Addison-Wesley, Reading, MA,
1995.

[24] R. F. Freund and H. J. Siegel, “Heterogeneous processing,” IEEE Computer, Vol. 26,
No. 6, June 1993, pp. 13–17.

[25] S. Ghosh, Guaranteeing Fault Tolerance Through Scheduling in Real-Time Systems.
PhD thesis, Faculty of Arts and Sciences, Univ. of Pittsburgh, 1996.

[26] S. D. Gribble, “Robustness in complex systems,” 8th Workshop on Hot Topics in Op-
erating Systems (HotOS-VIII), May 2001, pp. 21–26.

[27] E. Hart, P. M. Ross, and J. Nelson, “Producing robust schedules via an artificial im-
mune system,” 1998 International Conference on Evolutionary Computing, May 1998,
pp. 464–469.

32



[28] R. Harrison, L. Zitzman, and G. Yoritomo, “High performance distributed comput-
ing program (HiPer-D)—engineering testbed one (T1) report,” technical report, Naval
Surface Warfare Center, Dahlgren, VA, Nov. 1995.

[29] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling independent tasks on
nonidentical processors,” Journal of the ACM, Vol. 24, No. 2, Apr. 1977, pp. 280–289.

[30] R. Jain, The Art of Computer Systems Performance Analysis, John Wiley & Sons, Inc.,
New York, NY, 1991.

[31] M. Jensen, “Improving robustness and flexibility of tardiness and total flowtime job
shops using robustness measures,” Journal of Applied Soft Computing, Vol. 1, No. 1,
June 2001, pp. 35–52.

[32] E. Jen, “Stable or robust? What is the difference?,” Santa Fe Institute Working Paper
No. 02-12-069, 2002.

[33] A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L. Wang, “Heterogeneous computing:
Challenges and opportunities,” IEEE Computer, Vol. 26, No. 6, June 1993, pp. 18–27.

[34] V. J. Leon, S. D. Wu, and R. H. Storer, “Robustness measures and robust scheduling
for job shops,” IEE Transactions, Vol. 26, No. 5, Sept. 1994, pp. 32–43.

[35] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dynamic mapping
of a class of independent tasks onto heterogeneous computing systems,” Journal of
Parallel and Distributed Computing, Vol. 59, No. 2, Nov. 1999, pp. 107–131.

[36] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics, Springer-Verlag,
New York, NY, 2000.

[37] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, John
Wiley & Sons, New York, NY, 1988.

[38] M. Sevaux and K. Sörensen, “Genetic algorithm for robust schedules,” 8th International
Workshop on Project Management and Scheduling (PMS 2002), Apr. 2002, pp. 330–333.

[39] V. Shestak, H. J. Siegel, A. A. Maciejewski, and S. Ali, “Robust resource allocations
in parallel computing systems: Model and heuristics,” The 2005 IEEE International
Symposium on Parallel Architectures, Algorithms, and Networks, Dec. 2005.

[40] S. Shivle, P. Sugavanam, H. J. Siegel, A. A. Maciejewski, T. Banka, K. Chindam,
S. Dussinger, A. Kutruff, P. Penumarthy, P. Pichumani, P. Satyasekaran, D. Sendek,
J. Smith, J. Sousa, J. Sridharan, and J. Velazco, “Mapping subtasks with multiple
versions on an ad hoc grid,” Parallel Computing, Special Issue on Heterogeneous Com-
puting, Vol. 31, No. 7, jul 2005, pp. 671–690.

[41] V. Shestak, H. J. Siegel, A. A. Maciejewski, and S. Ali, “The robustness of resource
allocations in parallel and distributed computing systems,” 19th IEEE International
Conference on Architecture of Computing Systems: System Aspects in Organic Com-
puting (ARCS 2006), Mar. 2006.

33



[42] G. F. Simmons, Calculus With Analytic Geometry, Second Edition, McGraw-Hill, New
York, NY, 1995.

[43] Y. N. Sotskov, V. S. Tanaev, and F. Werner, “Stability radius of an optimal schedule:
A survey and recent developments,” Industrial Applications of Combinatorial Optimiza-
tion, G. Yu, ed., Kluwer Academic Publishers, Norwell, MA, 1998, pp. 72–108.

[44] P. Sugavanam, H. J. Siegel, A. A. Maciejewski, M. Oltikar, A. Mehta, R. Pichel, A. Ho-
riuchi, V. Shestak, M. Al-Otaibi, Y. Krishnamurthy, S. Ali, J. Zhang, M. Aydin, P. Lee,
K. Guru, M. Raskey, and A. Pippin, “Robust static allocation of resources for inde-
pendent tasks under makespan and dollar cost constraints,” Journal of Parallel and
Distributed Computing, accepted, to appear.

[45] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, “Task matching and
scheduling in heterogeneous computing environments using a genetic-algorithm-based
approach,” Journal of Parallel and Distributed Computing, Vol. 47, No. 1, Nov. 1997,
pp. 8–22.

[46] M.-Y. Wu, W. Shu, and H. Zhang, “Segmented min-min: A static mapping algorithm for
meta-tasks on heterogeneous computing systems,” 9th IEEE Heterogeneous Computing
Workshop (HCW 2000), May 2000, pp. 375–385.

34


	1 Introduction
	2 Generalized Robustness Metric
	3 Derivations of Robustness Metric for Example Systems
	3.1 Independent Application Allocation System
	3.2 The HiPer-D System
	3.3 A System in Which Machine Failures Require Reallocation

	4 Robustness Against Multiple Perturbation Parameters
	5 Computational Complexity
	6 Demonstrating the Utility of the Proposed Robustness Metric
	6.1 Overview
	6.2 Independent Application Allocation System
	6.3 The HiPer-D System

	7 Designing Static Heuristics to Optimize Robustness for the HiPer-D System
	7.1 Overview
	7.2 Computation and Communication Models
	7.2.1 Computation Model
	7.2.2 Communication Model

	7.3 Heuristic Descriptions
	7.3.1 Overview
	7.3.2 Most Critical Task First Heuristic
	7.3.3 Two-Phase Greedy Heuristic
	7.3.4 Most Critical Path First Heuristic
	7.3.5 Duplex
	7.3.6 Other Heuristics
	7.3.7 An Upper Bound


	8 Simulation Experiments and Results
	9 Related Work
	10 Future Work
	11 Conclusions

