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ABSTRACT 
 
 
 

EVALUATION OF UAS FLIGHT PARAMETERS FOR RAPID MONITORING OF FOREST CHARACTERISTICS 
 
 
 
Forest managers are increasingly turning to finer spatial and temporal resolution data for 

monitoring forest structure in a rapidly changing world. Traditionally utilized networks of field plots for 

inventorying forest resources require significant time and financial investments; in response to this, 

remote sensing techniques have been investigated for providing inventory data across large extents. 

These methods, including light detection and ranging (LiDAR), require significant financial investment 

that limits the frequency of repeated surveys. Unmanned Aerial Systems (UAS) have emerged as 

potential alternatives for generating fine spatial and temporal resolution 2D and 3D data for modeling 

forest structure. The use of Structure from Motion (SfM) photogrammetry has made it possible to use 

UAS to collect aerial images and generate point clouds that can be used to model vertical forest 

structure information in a cost-effective way. Recent research has indicated that UAS-derived SfM point 

clouds are comparable to LiDAR point clouds for forest structure characterization through both area-

based and individual tree observations. However, substantial knowledge gaps exist regarding the 

influence of UAS flight parameters on SfM-derived forest attributes. This thesis presents two studies to 

address these knowledge gaps. Specifically, Chapter 1 investigates the influence of UAS altitude and 

flight speed on modeling aboveground forest biomass through an area-based approach and Chapter 2 

evaluates the influence of UAS altitude, camera angle, and flight pattern on extracted tree level and 

summarized plot and stand level attributes. Results show a strong positive relationship between flight 

altitude and plot-based aboveground biomass modeling, with UAS predictions increasingly 

outperforming (2-24% increased variance explained) contemporary LiDAR strategies as acquisition 

altitude increased from 80-120 m. When monitored at the individual tree level, UAS acquisitions 
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conducted using a combination of crosshatch flight paths and off-nadir camera angles (20-30°) 

maximized tree detection rates (F-score of 0.77), correlations between stem mapped and extracted tree 

heights and DBHs (0.995 and 0.910, respectively), and estimates of stand and plot level basal area per 

hectare and TPH. These results indicate that UAS can be utilized to accurately summarize tree, plot, and 

stand level forest structure to assist in monitoring and planning of management prescriptions. 
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Chapter 1:  INFLUENCE OF UAS FLIGHT ALTITUDE AND SPEED ON ABOVEGROUND BIOMASS 
PREDICTION 

 
 

1.1 Introduction 

Forests provide a variety of natural and societal benefits, with complex interactions 

governing recruitment, growth, and mortality processes across multiple-scales (Pan et al., 2013; 

Anderegg et al., 2015). In order to maximize these benefits, forest managers are increasingly 

acknowledging the need to monitor and manage forest structure at spatio-temporal scales, 

which accurately describe the spatial variability in forest dynamics (Briggs et al., 2017). Such 

forest management decisions require data that represent the continuous nature of ecological 

phenomena such as structures supportive of wildlife habitat (Vogeler et al., 2016). Complex 

ecological processes in forests that govern recruitment, growth, and mortality occur at the 

scale of tree-tree interactions (Dickinson et al., 2016). Traditional forest inventory methods, 

typically consisting of plot-based networks of in situ measurements, are limited in their ability 

to represent these cross-scale ecological processes and forest spatial arrangements (Lutz, 

2015). Despite the need for more continuous methods for characterizing forest structure across 

landscapes, the acquisition of plot networks of sufficient spatial and temporal resolution is 

limited by financial constraints (Torresan et al., 2016). 

The development of aerial Light Detection and Ranging (LiDAR) techniques for providing 

spatially continuous observations of forest structure has revolutionized the incorporation of 

landscape-level information in the decision-making process (Hudak et al., 2009; Nelson, 2013). 

LiDAR has been shown to produce reliable area-based estimates of forest density (i.e., basal 

area per hectare; Hudak et al., 2006) and biomass (Bouvier et al., 2015), while also providing 
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reasonable individual tree observations of height and volume (Tinkham et al., 2016). Despite 

these recent innovations, LiDAR data acquisition can be cost prohibitive as the price of crew 

mobilization alone starts at >$20,000 (Hummel et al., 2011). This price can preclude low-

productivity forest ecosystems from using the technology, as the value of the forest resource 

must justify the expense of data acquisition for effective management. Smaller land 

management organizations, which are unable to justify the cost, are commonly prevented from 

employing these techniques to inform their planning process. Larger organizations that can 

bear the initial cost may still find it impractical to obtain LiDAR at a temporal resolution suitable 

for monitoring forests responding to combinations of climatic, disturbance, or management 

influences (Mitchell et al., 2017). As ecological management drives increased demand for 

frequent, fine-scale observations of forest structure, new methods of forest structure 

characterization require further development. 

Unmanned Aerial Systems (UAS) are uniquely positioned to meet the demand for fine-

scale observations of forest structure by providing spatially-continuous observations at a higher 

temporal resolution. Professional grade UAS have recently become more accessible to 

consumers with entry costs under $2,000. Despite the low price point, UAS typically have high-

accuracy GPS receivers, automated inertial navigation systems, object detection/avoidance, 

and improved sensors for very high-resolution (VHR; < 10 cm) remote sensing (Torresan et al., 

2017). This combination of technologies is ideal for photogrammetry, which requires high-

resolution, spatially-accurate images. Autopilot technology allows users with minimal technical 

training to operate UAS for repeatable photogrammetry surveys, with commonly used flight 

planning applications, including PrecisionMapper, Pix4Dcapture, DroneDeploy, DJI Ground 
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Station Pro, and Altizure. UAS-mounted sensors are starting to surpass the spatial resolution 

previously only seen in aircraft-based remote sensing, while integrated control and navigation 

systems are becoming better equipped to maximize the sensor’s potential. Preliminary studies 

have evaluated both fixed-wing and multirotor UAS platforms equipped with a range of sensors 

for data collection, including consumer and professional grade RGB compact camera systems, 

among others (Wallace et al., 2016; Fritz et al., 2013; Zarco-Tejada et al., 2014; Webster et al., 

2018; Thiel & Schmullius, 2016). The high-cost and temporal resolution limitations of LiDAR are 

where UAS can fill data needs for forest management organizations; UAS cost orders of 

magnitude less than aircraft-based LiDAR acquisitions and can be flown as often as favorable 

conditions are met. Despite their potential, UAS are currently limited in the area that can be 

covered in a single acquisition by relatively short flight times due to battery capacity and 

governmental regulations requiring pilots to maintain a line of sight or visual contact with the 

platform at all times. Additionally, UAS are known to be impacted by changing light conditions 

during acquisition (O’Connor et al., 2017) and high winds, which can lead to errors in image 

matching (Iglhaut et al., 2019). While UAS have limitations, the low cost of deployment and the 

ability to collect VHR data demonstrates a niche for more frequent monitoring at the stand-

scale that UAS can provide.  

Over the last decade, numerous studies have utilized UAS to generate VHR two-

dimensional orthomosaic maps (Torrez-Sanchez et al., 2015; Fraser & Congalton, 2018) and 

three-dimensional point clouds of forest structure and terrain using various Structure from 

Motion (SfM) processing algorithms (Thiel & Schmullius, 2016; Frey et al., 2018). SfM 

algorithms identify common points within overlapping images and, through a geometric 



4 
 

process utilizing the position and rotation of captured images, a three-dimensional point cloud 

is generated (Frey et al., 2018). Due to the high degree of overlap, SfM point clouds can have 

data densities in excess of 1,000 points m-2 compared to LiDAR’s common 4-30 points m-2, and 

therefore have the potential to better capture the fine-scale complexity of forest structure than 

LiDAR. Additionally, recent studies have found that including UAS orthomosaic spectral data in 

SfM modeling resulted in it being a significant parameter in 80% of models predicting forest 

biomass (Domingo et al., 2019).  

Early UAS research has revealed that the accuracy of forest structure estimates varies 

based on data acquisition parameters such as forward and side image overlap, flight altitude, 

and speed (Dandois et al., 2015, Seifert et al., 2019, Frey et al., 2018). Dandois et al. (2015) 

demonstrated that increasing the levels of forward and side overlap until at least 80% led to 

improved location and height accuracies in forested environments. When controlling forward 

and side overlap separately, Seifert et al. (2019) found that maintaining high (>90%) forward 

overlap with lower side overlap (~70%) provided a balance between data accuracy, flight time, 

area coverage, and data processing time. These studies have concluded that forward overlap 

should be maximized as it does not impact flight time or the area covered in a single 

acquisition. In contrast, side overlap can be reduced depending on data objectives to achieve a 

larger acquisition area. 

Several studies have evaluated the influence of flight altitude on data quality and forest 

structure characterization accuracy with conflicting results. Seifert et al. (2019) found that low 

altitude flights within 15-20 m of the vegetation canopy resulted in significantly more image 

registration points with improved precision. However, Fraser & Congalton (2018) found that 
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flying at 100 m above the vegetation canopy provided the best image alignment. Additionally, 

Torres-Sánchez et al. (2015) found no significant impact of altitude on object-based canopy 

parameter extraction. Faced with these conflicting results, it is necessary to standardize flight 

acquisition parameters for a consistent interpretation of UAS survey results across different 

environments and methods. Additionally, each of these studies evaluated how altitude 

impacted image alignment for study areas at similar forests to understand the role of forest 

structure characterization on end-product forest measurements.  

While these results indicate a range of optimal parameters for UAS image alignment 

within different vegetation types, significant knowledge gaps exist for both guiding future 

image acquisition and the translation of parameter optimization to the accuracy of UAS-based 

forest structure characterization. There is, therefore, a significant need for systematic testing of 

flight survey parameters in order to quantify the impact of forest structure on SfM-derived 

point clouds (Torres-Sánchez et al., 2015).  

This study seeks to examine how flight altitude and speed impact UAS model reliability 

in explaining forest biomass compared to standard aerial LiDAR modeling strategies across a 

range of forest structures found in ponderosa pine (Pinus ponderosa var. scopulorum Dougl. Ex 

Laws.) dominated forests. Specifically, comparisons of variance explained, and precision 

between UAS- and LiDAR-based models of forest biomass will be examined through their 

response to flight altitude and speed. Additionally, this analysis will investigate how 

segmentation of SfM point clouds based on spectral indices impacts model performance. The 

effects of flight altitude and speed will be discussed in terms of data collection, processing 

times, and data density. 
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Figure 1.1. Five 60 x 100 m study areas at the Kaibab National Forest in Northern Arizona (KNF1: 

A, KNF2: B, KNF3: C) and Manitou Experimental Forest in Central Colorado (MEF1: D, MEF2: E), 

with the location of  KNF study area (red) and MEF study area (blue) displayed in panel F. 

1.2 Methods 

1.2.1 Study Area and Field Data 

This study was conducted across two ponderosa pine dominated forests with existing 

aerial LiDAR and stem mapped forest inventories in the central Rocky Mountains (Figure 1.1). 

Within these forested areas, five study units were selected to represent a range of forest 

densities. The first forest is the N1 forest dynamics site located within the Manitou 

Experimental Forest on the Pike-San Isabel National Forest in Colorado, about 40 km northwest 
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of Colorado Springs. The average elevation is 2,500 m, with a mild slope (< 5%) to the 

southeast. This location provides an example of a typical human-influenced montane 

ponderosa pine forest, as it was selectively logged between 1880 and 1886 (Boyden et al., 

2005). After logging, the forest was undisturbed with no significant fire since 1846 and only 

minor mountain pine beetle disturbance in the late 1970’s. During the 140 years following 

harvest activities, the N1 forest has since experienced several regeneration pulses that have led 

to varying forest densities, with minor components of Douglas-fir (Pseudotsuga menziesii 

(Mirb.) Franco var. glauca (Beissn.) Franco) and blue spruce (Picea pungens Engelm.) in the 

understory. Native grasses and a few low growing woody shrubs comprise the sparse 

understory vegetation. To control for variation in forest densities during testing, the N1 forest 

was divided into two separate study units for UAS data acquisition, hereafter referred to as 

MEF1 and MEF2 (Table 1.1).  

Table 1.1. Forest stand structure at the Manitou Experimental Forest (MEF) and Kaibab National 

Forest (KNF) study units, reported as mean (standard deviation) of 0.01 ha sampling unit.  

Study 

Area 

QMD 

(cm) 

Max Tree 

Height (m) 

Basal Area 

(m2 ha-1) 

Trees 

ha-1 

AGB* 

(tons ha-1) 

KNF1 
30.3 

(14.8) 

15.9 

(8.0) 

26.9 

(22.0) 

300 

(197) 

90.6 

(51.1) 

KNF2 
31.2 

(22.0) 

14.9 

(9.6) 

21.2 

(22.1) 

200 

(186) 

80.7 

(55.6) 

KNF3 
32.9 

(14.6) 

22.2 

(6.2) 

44.5 

(29.2) 

626 

(446) 

128.9 

(54.7) 

MEF1 
21.7 

(11.8) 

17.5 

(6.6) 

24.8 

(15.9) 

931 

(806) 

90.2 

(34.9) 

MEF2 
23.5 

(11.3) 

17.1 

(5.4) 

26.9 

(17.4) 

701 

(407) 

93.4 

(35.1) 

* aboveground biomass calculated using Jenkins et al., 2003 

The Lookout Canyon forest dynamics site is located in the Kaibab National Forest in 

northern Arizona, approximately 65 km southeast of Kanab, Utah, at an elevation of 
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approximately 2,400 m. The forest is primarily composed of ponderosa pine and was divided 

into three 4-hectare stands for thinning, including a control stand and two stands thinned to 9.2 

and 13.8 m2 ha-1 of basal area in 1993 (Table 1.1), hereafter KNF1, KNF2, and KNF3. Following 

thinning, quaking aspen (Populus tremuloides Michx.) began reestablishing within the 

understory alongside considerable pulses of ponderosa pine regeneration. A prescribed fire in 

an adjacent stand escaped in 1999 and burnt through the understory killing more than 600 

small diameter trees. 

All trees taller than 1.37 m were stem mapped at each of the five study units using a 

grid of known survey locations. For each mapped tree, the species, diameter at breast height 

(1.37 m; DBH), and height was recorded. Stem mapping of the 60 x 100 m study units (0.6 ha) 

was completed in July 2018 for MEF1 and MEF2 and in May 2019 for KNF1, KNF2, and KNF3. 

The study stem maps were divided into 10 x 10 m (0.01 ha; n = 60) sampling units. Each 

sampling unit was analyzed separately in the Central Rockies variant (Keyser & Dixon, 2008) of 

the Forest Vegetation Simulator (Dixon, 2002) to determine total aboveground biomass (AGB). 

Biomass was estimated as metric tons ha-1 using allometries from Jenkins et al. (2003) as 

implemented in the Forest Vegetation Simulator. 

1.2.2 UAS Data Acquisition 

UAS image data was collected using a DJI Phantom 4 Pro (Dá-Jiang Innovations Science 

and Technology Co. Ltd., Shenzhen, China) multirotor equipped with a 20-megapixel (5472 x 

3648 pixels) metal oxide semiconductor (CMOS) red-green-blue (RGB) sensor, with a fixed 8.8 

mm focal length (Figure 1.2A). For all image acquisitions, the camera was set to infinity focus, 

with an aperture (F-stop) of 5.6, a shutter speed of 1/500s, and ISO values ranging from 100 to 
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200 depending on lighting conditions. The aircraft recorded geolocation (x, y, and z) and camera 

parameter values for each captured photo to a manufacturer-stated vertical accuracy of ±0.5 m 

and horizontal accuracy of ±1.5 m (https://www.dji.com/phantom-4-pro).      

 

Figure 1.2. (A) DJI Phantom 4 Pro aircraft at KNF study area. (B) Conventional UAS survey 

depicting the automated route generated by Altizure. The white circles represent approximate 

camera capture locations for a flight 120 m above ground level.  

Flight planning and execution were performed using Altizure version 4.6.8.193 

(Shenzhen, China) for Apple iOS. The application was utilized to pre-program automated UAS 

flight paths with desired altitude, forward and side photo overlap, flight speed, exposure, 

aperture and shutter speed (Figure 1.2B). To better understand the optimal altitude for 

generating photogrammetric models of forest structure, 40 independent UAS flights were 

planned (8 acquisitions per study area) at randomly chosen altitudes ranging from 40 to 120 m 

above ground level.  Three flight speeds were systematically assigned to each altitude, including 

2, 3, and 4 m sec-1. This study utilized a nadir camera angle, with 90% forward and 90% side 

photo overlap for all data acquisitions. This overlap combination was selected based on 

previous research that suggested that forward and side overlaps greater than 80% improved 

image alignment, improved tree height estimation, and reduced understory occlusion in UAS 

surveys (Dandois et al., 2015; Frey et al., 2018). 

https://www.dji.com/phantom-4-pro
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An adaptive flight boundary methodology was used to maintain a constant number of 

flight lines and photo density or the number of photos viewing the same location at each of the 

desired altitudes. Initial testing showed that failing to increase flight boundary dimensions as 

altitude increases led to fewer flight lines and photos, resulting in reduced data density for the 

point cloud generation. In order to implement this methodology, 10% of the camera footprint 

(widths and lengths in meters) was determined across different altitudes and multiplied by 10 

to ensure maximum photo density at the center of the study area. This resulted in flight 

boundaries varying between 80 x 110 m and 161 x 110 m at flight altitudes of 40 and 120 m, 

respectively. At the Kaibab study units, it was determined that three of the randomly assigned 

UAS surveys could not be completed due to concerns of collision with the canopy at the lowest 

altitudes (<45 m), resulting in a total of 37 flights. 

All UAS surveys were flown between April and August 2019 and within three hours of 

solar noon to maintain a minimum solar angle of 50° from the horizon. All flights were 

conducted within the line of sight of the remote pilot in command with the assistance of a 

visual observer to comply with Part 107 Federal Aviation Administration regulations. 

1.2.3 Ground Control Points 

The methodology for ground control point (GCP) implementation followed the 

procedures outlined in the Australian Photogrammetry for Forest Inventory Planning Guide 

(Osborn et al., 2017). Ten high visibility ~0.2 m2 GCPs were collected using a Trimble GeoXT 

(Trimble Inc., Sunnyvale, CA, USA) with SBAS real-time corrections for each of the five study 

units with accuracies of <1 m. All points were placed to account for visibility from the air with 

the UAS. Four points were set as close to each corner as possible, one along each long edge and 



11 
 

the remaining four points were distributed throughout the center (Figure 1.2). The GCPs were 

differentially corrected using Trimble Pathfinder Office software. GCPs were imported into 

ArcGIS 10.6.1 (ESRI Inc.; Redlands, CA, U.S.A.), and projection was defined as the WGS 1984 

coordinate system to match the UAS imagery. Latitude, longitude, and altitude were then 

exported for use in georectifying the UAS imagery.  

1.2.4 UAS Structure from Motion Point Cloud Generation Data Processing  

Agisoft Metashape version 1.5.3 (www.agisoft.com; Agisoft LLC, St. Petersburg, Russia) 

was used to implement a SfM photogrammetry algorithm. SfM algorithms generate 3D point 

clouds by identifying image features and GCPs in each image and using these features to align 

the images in space. After these matches are found, a photogrammetric sparse bundle 

adjustment calculates the 3D location of each of the images in space using the camera 

parameters and the 3D geometry of the objects found within the images (Dandois et al., 2015). 

The Agisoft Metashape processing was implemented through a cloud server utilizing a 2.7 Ghz 

Intel Xeon E5 2686 V4 computer processor unit with two NVIDIA Tesla M60 graphics cards, and 

a total of 240 gigabytes of random-access memory. 

The Agisoft Metashape workflow closely followed the processing methodology found in 

the Agisoft Photoscan user manual (Link, 2017), with the only departure including local testing 

of the dense cloud and depth filter settings. Using the MEF1 95 m acquisition, the 20 possible 

combinations of the Agisoft Metashape build dense cloud quality settings and depth filtering 

settings were tested on this photo dataset, resulting in 20 unique point clouds with different 

point cloud densities and processing times. From this it was determined that SfM setting in 

Agisoft Metashape for forest reconstruction in this study would be set to High quality and Mild 

http://www.agisoft.com/
https://www.agisoft.com/pdf/photoscan-pro_1_3_en.pdf
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depth filtering as these settings provided a balance between data density and processing time 

and align with settings commonly used in other studies (Fraser & Congalton, 2018; Goldbergs et 

al., 2018). The full suite of selected Agisoft Metashape settings for image dataset processing is 

depicted in Appendix Table 1.1. 

Each of the SfM point clouds were exported from Agisoft Metashape with UTM Zone 

13N and 12N projections for Colorado and Arizona, respectively. CloudCompare version 2.10.1 

(www.cloudcompare.org), a software designed for 3-dimensional point data comparison, was 

used to visually inspect each point cloud to ensure complete dense cloud reconstruction. 

Agisoft Metashape processing reports were also generated and checked to ensure similar 

processing errors across the point cloud models. Clouds with significant processing errors or 

incomplete reconstruction were reprocessed to ensure comparable accuracy and quality across 

the 37 surveys. 

1.2.5 LiDAR Datasets 

At the Manitou Experimental Forest sites aerial LiDAR data was acquired in August 2014 

at a nominal point density of 5.74 points m-2. Aerial LiDAR data for the Kaibab National Forest 

sites was acquired in the winter of 2012 at a nominal point density of 13.70 points m-2. The time 

difference between the LiDAR acquisitions and the field inventory corresponds to average tree 

height growths of 0.5 m at MEF and 1.1 m at KNF, derived from prior site inventories. The LiDAR 

point clouds were cropped to the five study unit extents and used as an industry standard for 

comparing the accuracy of the UAS modeled forest biomass.  
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1.2.6 Point Cloud Processing 

All 37 SfM UAS point clouds and the five aerial LiDAR point clouds were processed using 

LAStools version 1.2 (http://lastools.org). The LiDAR and SfM point clouds were initially clipped 

to a buffered extent of 90 m x 130 m to provide a margin around each of the five study areas 

and to prevent geometry irregularities known to occur at the edge of point clouds during 

processing. Point clouds were filtered to remove noise by selecting block minimum points and 

fitting a digital elevation model with a spline fit; points that fell below the digital elevation 

model were classified as noise and removed from further processing. The remaining points 

were classified as either ground or non-ground points.  

After filtering and classification, each point cloud was clipped to the final 60 x 100 m 

study unit extent. Points classified as ground were extracted from each point cloud and visually 

compared to the LiDAR ground points in CloudCompare, revealing a slight Z-axis misalignment 

between the SfM and LiDAR datasets. This misalignment is attributed to low vertical precision 

in the GCPs from overstory trees, causing some degree of GPS satellite signal occlusion. There 

was minimal observed x- and y-axis misalignment between the SfM and LiDAR ground points, 

which suggested that the GCPs had high horizontal precision. This SfM ground point cloud 

misalignment was corrected using the iterative closest point - fine alignment tool to develop a 

custom transformation matrix for each SfM point cloud that was applied to the full SfM point 

cloud to align it with the LiDAR point cloud. Following geometric transformation, each SfM and 

LiDAR point cloud was height normalized against their classified ground points.  

            The SfM points clouds were further processed to investigate how segmentation of the 

points based on spectral indices impacts the prediction of forest biomass. To train the point 
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segmentation, all filtered and classified point clouds at a study site were merged using LAStools 

and loaded into CloudCompare. From the merged point cloud, 15 random samples each of 

canopy and stem (each containing 20,000-60,000 points) were manually extracted to ensure 

pure representation of both stem and canopy points. These classified stem and canopy point 

samples were imported to the R statistical programming language (R core Team, 2019) using 

the lidR package (Roussel & Auty, 2019). From each point sample, the red and green reflectance 

data was used to calculate the Normalized Green-Red Ratio (NGRR) using Equation 1.  𝑁𝐺𝑅𝑅 = 𝐺𝑏𝑎𝑛𝑑−𝑅𝑏𝑎𝑛𝑑𝐺𝑏𝑎𝑛𝑑+𝑅𝑏𝑎𝑛𝑑                                               [Equation 1] 

 

Figure 1.3. Example density plot of the canopy (green) and stem (red) NGRR values sampled 

from SfM point clouds at the MEF1 study area, where overlapping distribution segments are 

brown. Red and green vertical lines represent the 90th and 10th percentile of the stem and 

canopy values, respectively.  

Visual inspection of density plots for the stem and canopy indexed points for each study 

site (Figure 1.3) showed segregation of NGRR values when the data was split with stem values 

less than their 90th percentile and canopy values greater than their 10th percentile. Across the 

five study units, the stem 90th percentile varied from -0.0096 to 0, and the canopy 10th 

percentile varied from 0 to 0.0747. These segmentation thresholds were used to segment the 
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SfM point clouds into three different categories for each of the 37 acquisitions: Stem, Canopy, 

and Standard, where Standard is the non-NGRR classified point cloud (Figure 1.4). 

1.2.7 Forest Biomass Modeling 

To develop models of aboveground biomass the three SfM point clouds for each of the 

37 UAS acquisitions and the five LiDAR point clouds were processed using the lascanopy utility 

in LAStools. This function generated 21 point cloud distributional metrics for each of the 60 

sampling units (Figure 1.1) that aligned with the FVS modeled AGB for each study unit. These 

distributional metrics included maximum, average, minimum, standard deviation of height, 

skewness, kurtosis, average square height, percentiles (5, 25, 50, 75, 90), bicentiles (5, 25, 50, 

75, 90), vertical complexity index (0, 1, 2), and percent canopy cover.  

At each site, the LiDAR point cloud distribution metrics were used to create baseline 

predictions of AGB using the randomForest package (Liaw and Wiener, 2002) of the R statistical 

programming language. In order to refine the number of predictors being used to model AGB, 

the Random Forest Model Selection tool (Murphy et al., 2010) was used to select the top five 

predictors in each model. The top five point cloud metrics for each dataset were used as 

predictor variables to model AGB using a series of random forest regressions with 10,000 trees 

each (Breiman, 2001), where the 60 sampling units were randomly divided into training 

observations (80% or n=48)  and validation observations (20% or n=12). The same process for 

modeling AGB was repeated for each UAS data acquisition using the Standard SfM point cloud 

distribution metrics and then again with the point cloud distribution metrics combined for the 

Standard, Stem, and Canopy datasets, referred to as Standard + NGRR hereafter. In total, 74 
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UAS random forest models (37 Standard SfM and 37 Standard + NGRR SfM) were compared 

against the five LiDAR random forest models for the same respective study unit. 

 

Figure 1.4. Example point clouds and density histograms for high biomass (top panels) and low 

biomass locations (bottom panels), including LiDAR (A and E), Standard SfM (B and F), Stem SfM 

(C and G), and Canopy SfM (D and H). 

1.2.8 Model Evaluation 

The 74 SfM random forest models were evaluated by relativizing them against their 

respective LiDAR random forest model through the calculation of percent change in model 

performance metrics of the Coefficient of Determination (∆R2; Equation 2), Root Mean Squared 

Error (∆RMSE; Equation 3), and Mean Absolute Error (∆MAE; Equation 4). 

∆𝑅2 = 𝑆𝑓𝑀 𝑅𝑖𝑗2 −𝐿𝑖𝐷𝐴𝑅 𝑅𝑖2𝐿𝑖𝐷𝐴𝑅 𝑅𝑖2 × 100    Equation 2 

∆𝑅𝑀𝑆𝐸 = 𝑆𝑓𝑀 𝑅𝑀𝑆𝐸𝑖𝑗−𝐿𝑖𝐷𝐴𝑅 𝑅𝑀𝑆𝐸𝑖𝐿𝑖𝐷𝐴𝑅 𝑅𝑀𝑆𝐸𝑖 × 100   Equation 3 

∆𝑀𝐴𝐸 = 𝑆𝑓𝑀 𝑀𝐴𝐸𝑖𝑗−𝐿𝑖𝐷𝐴𝑅 𝑀𝐴𝐸𝑖𝐿𝑖𝐷𝐴𝑅 𝑀𝐴𝐸𝑖 × 100   Equation 4 
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Where i denotes an individual study site, while j signifies the individual UAS acquisitions within 

that site. These relativized metrics should be interpreted as positive values of ∆R2 indicating 

percentage improvement of the UAS model over the LiDAR model, while negative values of 

∆RMSE and ∆MAE indicate percentage reductions in the UAS model compared to the LiDAR 

model. To standardize the effect of altitude on model performance across the five sites, the 

effect of altitude was also evaluated as a ratio (A:LH; Equation 5) of altitude (A) compared to 

Lorey’s Mean Height (LH; Equation 6). 𝐴: 𝐿𝐻 = 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 (𝑚)𝐿𝐻(𝑚)      Equation 5 

𝐿𝐻 = ∑ 𝑔×ℎ∑ 𝑔       Equation 6 

Where g is a tree’s basal area (m2) and h is a tree’s height (m), meaning that LH can be 

interpreted as the weighted height of the forest were a stand with more regeneration will see 

this value be less than the arithmetic mean. The model performance metrics ∆R2, ∆RMSE, and 

∆MAE were all evaluated as a function of altitude and LH. 

To evaluate the relationship between Standard UAS random forest model performance 

metrics with UAS data acquisition flight altitude and speed, linear mixed-effects regression was 

performed. In this analysis, the 37 combinations of UAS acquisition altitude and speed were 

treated as fixed effects, while the five study sites were treated as a random-effect. Additional 

covariates of stand-level forest structure and AGB were also evaluated for their influence on 

model performance. While testing for interactions, a stepwise procedure was used to identify 

the best subset of explanatory factors that minimized the Akaike Information Criterion (AIC). All 

regression was performed using lme4 packages (Bates et al., 2015) of the R statistical 

programming language. 
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Finally, after pooling the important point cloud distribution metrics from each random 

forest model, they were evaluated based on the proportion of models they appeared in. This 

analysis was extended to contrast the changes in important distribution metrics for the 

Standard SfM models with the Standard + NGRR SfM models. 

1.3 Results  

1.3.1 LiDAR AGB Model Performance 

The five aerial LiDAR random forest model results for AGB varied across the study sites, 

with R² averaging 0.539 (range 0.424 - 0.666). However, R2 values for the three MEF study sites 

were 0.129 higher than those for the two KNF study sites. Additionally, the KNF study sites had 

nearly twice as much variation in the 0.01 ha sampling units for AGB, basal area ha-1, and max 

tree heights compared to the MEF sites (Table 1.1). Similar contrasts in model performance 

were found in RMSE, which ranged from 23.9 to 56.8 tons ha-1, and MAE, which ranged from 

15.8 to 55.1 tons per ha-1. Variation in these metrics across the five study sites followed the 

same trend as the R² values. 

1.3.2 Standard AGB Model Performance 

Random forest AGB model performance for Standard UAS SfM parameters compared to 

LiDAR models of AGB varied across flight altitudes (Figure 1.5). The lowest altitude UAS 

acquisitions at each study site failed to reconstruct the vertical profile of the vegetation and 

provided substantially worse results compared to the LiDAR predictions (average ∆R2 = -20.6%). 

For acquisitions that correctly generated SfM point clouds, the average ∆R2 was 4.4%, with 

model performance generally improving with increased altitude. Linear mixed-effects modeling 

of ∆R2 as a function of flight altitude and speed demonstrated a significant effect of flight 
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Figure 1.5. Comparison of Standard (panels A, C, & E) and Standard + NGRR (panels B, D, & F) 

AGB model performance metrics relativized to LiDAR, including percent ∆R2 (panels A & B), 

∆RMSE (C & D), and ∆MAE (E & F). The panel is split to show the influence of altitude above 
ground (left) and the ratio A:LH (right). Points in black circles represent acquisitions that failed to 

reconstruct the forest canopy.  

altitude on ∆R2, but not flight speed (Table 1.2). Average ∆R2 varied from nearly a 20% 

reduction in prediction performance at the lowest altitudes to nearly a 20% improvement in 
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prediction performance over the LiDAR models at the highest altitudes (Figure 1.6). Similar 

improvements with increased altitude were seen for Standard UAS SfM models of AGB for 

∆RMSE and ∆MAE (Figure 1.5). For models correctly generating SfM point clouds, the ∆RMSE 

and ∆MAE were reduced by 5.1% and 6.9%, respectively.  

Table 1.2. Linear mixed-effects model of the influence of flight altitude and speed on change in 

aboveground biomass model R2. The five study sites were treated as a random effect. 

Parameter Coefficient Standard Error t-value p-value 

Standard Flight Altitude 

Intercept -30.272 10.401 -2.910 0.0067 

Altitude (m) 0.403 0.082 4.908 <0.001 

Speed (m s-2) -0.574 2.325 -0.247 0.8068 

Relativized Flight Altitude 

Intercept -30.403 10.134 -3.000 0.0053 

Lorey’s Height 7.996 1.594 5.018 <0.001 

Speed (m s-2) -0.606 2.316 -0.261 0.7955 

 

Figure 1.6. Linear mixed-effects model results for the 37 Standard SfM AGB models. 

Standard UAS SfM parameters always resulted in improved model performance at the 

highest altitudes, with altitudes at which models began outperforming LiDAR models varying 

from ~80 to 100 m (Figure 1.5). Standardizing flight altitude as a ratio of altitude divided by 

Lorey’s Height tightens this threshold for outperforming the LiDAR models to 4-4.5 times the 
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site’s Lorey’s Height. Similar to flight altitude, Lorey’s Height significantly explains the variation 

in ∆R2 (Table 1.2). The linear mixed-effects model indicates that for every Lorey’s Height that 

acquisition altitude increases there is an ~8% improvement in ∆R2, indicating that at four times 

Lorey’s Height UAS SfM modeling of AGB typically exceeds the performance of aerial LiDAR 

models in ponderosa pine dominated systems (Figure 1.6).  

1.3.3 Standard + NGRR AGB Model Performance 

Integration of Standard + NGRR UAS SfM parameters for AGB modeling provided a 6.0% 

average increase in ∆R2 across all flights compared to the modeling only using the Standard SfM 

parameters (Figure 1.5). This increase was found to be significant (p-value = 0.0181) when 

tested with a paired Wilcoxon signed rank test. Although there was not a significant difference 

(p-value = 0.5453) in the ∆MAE, the Standard + NGRR models did significantly (p-value = 

0.0284) decrease ∆RMSE by 6.5% compared to models only using the Standard SfM parameters. 

Linear mixed-effects model coefficients for the Standard + NGRR SfM models revealed no 

significant differences compared to the Standard SfM linear mixed-effects models.  

1.3.4 AGB Model Variable Importance 

For the Standard SfM models of AGB the five most important variables fluctuated across 

models, but seven variables stood out from the rest and showed up in at least 40% of these 

models (Figure 1.7A). Across all flight altitudes and sites, the average height of points above 

ground showed up in 74% of all models (or 27 of 37 models) and was the highest ranked 

variable in nearly 40%. The remaining six variables that were highly selected varied in being in 

43 to 57% of models, with their importance metrics level fluctuating. These seven metrics 

accounted for 73.7% of all metrics selected in the Standard SfM models. 
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Figure 1.7. Random forest variable importance for Standard (A) and Standard + NGRR (B), values 

are sorted based on the percentage of the 37 models they appeared in for each grouping. 
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The top seven variables from the Standard metrics did not change even after including 

the NGRR segmented point cloud metrics (Figure 1.7B). However, these seven metrics only 

accounted for 56% of all selected metrics when the Standard and NGRR metrics were 

considered. This reduction was due to 17.8 and 4.9% of all selected variables being chosen from 

the Stem and Canopy distributional metrics, respectively. Of these NGRR metrics, only Stem 

average height, average squared height, and vertical complexity 1 were important in more than 

10% of models (Figure 1.7B). Additionally, none of the Canopy distributional metrics occurred in 

more than 2 of the 37 models. 

1.4 Discussion  

1.4.1 AGB Model Performance 

This study evaluated the impact of flight altitude and speed on UAS SfM plot-based 

modeling of aboveground biomass, with UAS modeling outperforming LiDAR at higher altitudes. 

Across all sites, UAS acquisitions above 80 m AGL resulted in improved model performance 

compared to aerial LiDAR; above this altitude relative to LiDAR models R2 increased on average 

by 7.4% and RMSE and MAE were decreased by 8.8 and 10.9%, respectively (Figure 1.5). While 

the authors could not identify other studies that have seen this relationship for UAS biomass 

modeling, inference might be drawn from studies looking at relationships between UAS SfM 

reconstruction quality and flight altitude. Fraser and Congalton (2018) tested the effect of flight 

altitude on image alignment and found that flying at their highest tested altitude provided the 

best results. Other studies have not directly seen an influence of altitude on SfM vegetation 

reconstruction, but still concluded that flying higher provided the benefit of greater acquisition 

extents (Torres-Sanchez et al., 2015). This literature connects the small decrease in image 
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resolution at higher altitudes with improved imaging matching by reducing the influence of 

vegetation movement in the wind (Iglhaut et al., 2019). There is reason to believe this improved 

image matching better represents vegetation vertical distributions and improves AGB modeling 

at the plot-level. However, there is reason to believe that continued increasing of flight altitude 

and decreasing of image resolution will at some point result in decreased performance in 

modeling forest attributes like AGB.  

While generally flying higher provided better model results, flying at altitudes too close 

to vegetation posed significant problems. Photogrammetric reconstruction of treetops was 

incomplete for the lowest altitudes tested at each site due to the proximity of the onboard UAS 

camera to the treetops. Failure to reconstruct the tops of trees led to inaccurate point cloud 

distributional metrics and resulted in poor AGB biomass model performance in our study 

(Figure 1.8). This truncation at the top of the point cloud can be seen in Figure 1.8, where the 

worse models represent low altitude flights that failed to reconstruct the tops of trees. The 

dependency of reconstruction on altitude is attributed to the proximity of treetops to the 

sensor, when the vegetation is too close, there is not sufficient photo overlap at the top of the 

tree compared to the programmed 90% forward and 90% side overlaps at the ground surface. 

While it varied across sites, consistent point cloud generation was achieved for all flights above 

65 m altitude or ~1.9 times the maximum tree height within a given site. While lower altitude 

UAS acquisitions can provide greater resolution, studies that require close proximity acquisition 

of forest canopies should consider increasing the photo overlap to compensate for the depth of 

vegetation. Therefore, as the height of vegetation increases, the flight altitude needed to 

reconstruct forest canopies should increase as well. 
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Figure 1.8. Relative point density as a function of height above ground for the best and worst 

Standard SfM AGB models (green and red respectively) at each site (from left to right KNF1, 

KNF2, KNF3, MEF1, and MEF2), with LiDAR point cloud distributions displayed in black.  

Standardizing altitude as a ratio of Lorey’s Height for each flight provided better 

consistency for interpreting the relationship between UAS flight altitude and vegetation height. 

All flights above four times a site’s Lorey’s Height resulted in improved model performance, 

with an average increase of 7.8% for R2 and decreases of 9.3 and 11.6% for RMSE and MAE, 

respectively (Figure 1.5). Currently, it is difficult to evaluate the effects of altitude in different 

vegetation types, as it has not become common practice to report vegetation height or its 

relationship to flight altitude. Standardization of this is necessary within the UAS literature to 

improve cross-study synthesis of results. While flying above four times a site’s Lorey’s Height 

promotes improved AGB modeling within these forest systems, understanding the transference 

of this to forest systems that can reach dominant tree heights in excess of 40 m need 

investigation. Such work within the United States will need to address FAA regulations limiting 

UAVs to 120 m AGL flight altitudes. 

Our results did not find a statistically significant effect of flight speed on resultant AGB 

models (Table 1.2), which could be attributed to the narrow range of relatively slow flight 

speeds (2-4 m sec-1) evaluated. These findings differ from O’Connor et al. (2017), which found 

that increased flight speed causes image blurring, location errors, and, therefore, increased 
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image alignment errors. While there is reason to believe this should propagate through to the 

modeling of forest attributes like AGB, it does not appear the moderate increases in flight 

speed tested in this study detrimentally impacted UAS SfM plot-based biomass modeling. 

Although not significant in this study, flight speed should remain an important consideration in 

planning UAS-based forest remote sensing. The effects of flight speed on modeling forest 

attributes like AGB need to be evaluated across a wider range of speeds and cross compared 

between sensor (rolling vs global shutter) and UAS platform types (multi-rotor vs fixed-wing; 

Zarco-Tejada et al., 2014).  

Inclusion of the NGRR point cloud distribution metrics significantly improved the 

prediction of AGB in terms of variance explained (∆R2) and precision (∆RMSE) over the Standard 

point cloud predictions. When NGRR metrics were included, they accounted for ~23% of 

important random forest predictors, with ~18% of them coming from the Stem point cloud 

metrics. The improved model performance, despite using only RGB spectral information, 

suggests that spectral segmentation of photogrammetric point clouds may be a powerful tool 

for improving models of forest structural attributes. Our results are shared by other studies, 

which found that including spectral indices from image orthomosaics as predictors of forest 

structure and biomass significantly improved model performance (Domingo et al., 2019). There 

is reason to believe more advanced segmentation and characterization of SfM points beyond 

indices available from RGB imagery could further improve the modeling of forest biomass done 

in this study. The inclusion of a greater range of spectral data from more powerful multispectral 

sensors may contribute to better discernment between vegetation structural components 

within SfM point clouds. 



27 
 

1.4.2 Implications for Forest Management 

Increasingly UAS are being utilized for characterizing forest structure across many 

ecosystems and forest management objectives (Kattenborn et al., 2014; Goldbergs et al., 2018; 

Navarro et al., 2020). Such UAS approaches can provide data at previously unachievable 

temporal and spatial resolutions with relatively low operational costs compared to similar 

datasets from aerial LiDAR. In order to transition UAS SfM forest structure monitoring from the 

research realm to a management tool, standardization of flight parameter reporting is critical. 

Without common reporting standards, synthesis and advancements in UAS research will be 

limited. This study highlights the potential of UAS SfM plot-based AGB modeling and the 

implications of flight altitude and speed while stating the importance of reporting altitude and 

vegetation height for improved data interpretation. 

Strong trends across all flights were found between altitude and data collection time, 

data processing time, and data density, all of which are important in UAS flight planning for 

forest mapping (Figure 1.9). Wider image footprints at higher altitudes provide more efficient 

flight times (~2 min ha-1), while there was a fivefold increase in flight times at the lowest 

altitude. Similarly, there are fewer images required at higher altitudes, resulting in SfM point 

cloud generation times varying from 10-60 min ha-1 moving from the highest to lowest 

altitudes. Conversely, the benefits of higher flight altitude on data collection and processing 

time reverse, resulting in much lower point densities at the highest altitudes (~1,000 points m-2) 

compared to lower altitudes (~7,000 points m-2). While this is a strong gradient in data density, 

the highest altitude flights still provide greater than 50 times the point density of what is 

considered high quality aerial LiDAR data (Nelson, 2013). These results point to relatively rapid 
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and reliable plot-based AGB modeling from UAS SfM at altitudes above four times a site’s 

Lorey’s Height. Additionally, moderate increases in UAS flight speed would amplify these 

benefits without detrimentally impacting model performance (Table 1.2). 

 

Figure 1.9. Evaluation of the effect of flight altitude above ground level on (A) filtered Standard 

SfM point cloud density, (B) SfM processing time in minutes ha-1, and (C) flight time in minutes 

ha-1, with black lines depicting Loess curves to represent data trend. 

The plot-based UAS modeling strategy used in this study appears to be effective at 

describing forest attributes that lend themselves to imputation methods, with the aerial LiDAR 

literature indicated it should lend itself to describing forest biomass, basal area, and volume. 

While this strategy was successful at describing plot and therefore stand-level AGB, further 

exploration is needed to understand the potential of UAS to characterize things at both tree 

and landscape scales. The ultra-high resolution of UAS data products and potential to fuse 

spectral and structural characteristics should enable improved individual tree observations. 

Early testing of single tree extraction methods from UAS SfM data has successfully identified 
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>90% of trees (Silva et al., 2016). Characterization of individual trees with such high reliability 

will enable modeling of future stand conditions. Additionally, UAS have the potential to serve as 

a sampling tool themselves, vastly increasing the amount of data available for training courser 

landscape-scale satellite-based models of forest biomass. Recent research has demonstrated 

techniques for scaling UAS observations to describe biomass at greater extents than the UAS 

was capable of characterizing (Navarro et al., 2019). 

1.5 Conclusion  

This study demonstrates the high potential of plot-based UAS photogrammetry for 

modeling ponderosa pine aboveground biomass. When flying at altitudes of more than four 

times a forest’s Lorey’s Height, UAS SfM biomass modeling resulted in a 7.8% improvement in 

R2 over aerial LiDAR. Additionally, segmenting the SfM point cloud based on the image spectral 

signature tied to individual points to look at Stem and Canopy distributions provided further 

substantial improvements to the AGB modeling. Beyond improved model performance, higher 

altitude UAS flights provide more efficient image acquisition and photogrammetry processing 

times of ~12 mins ha-1 as opposed to >70 min ha-1 at the lowest tested altitudes. This study 

highlights the role of UAS acquisition parameters on plot-based forest biomass modeling, while 

also showing the strong potential for UAS-based forest monitoring at increased temporal 

frequencies than have been feasible from aerial LiDAR. Further work is needed to understand 

how such acquisition parameters might influence UAS-based single tree monitoring. 
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Chapter 2:  INVESTIGATING THE INFLUENCE OF CROSSHATCH AND OFF-NADIR UAS IMAGERY 
FOR SINGLE TREE DETECTION 

 
 
 

2.1 Introduction 

The increasing focus on restoration of forest structural variation and spatial pattern 

(Tinkham et al., 2017; Addington et al., 2018) in dry conifer forests has led to a greater 

emphasis on forest monitoring strategies that can be summarized across scales (Cannon et al., 

2018). At fine spatial scales, restoration objectives in these forested systems emphasize 

creating a variable matrix of groups and openings, while also reducing the prevalence of small 

trees that have established in the absence of an intact frequent fire regime (Allen et al., 2002). 

Promoting variable density tree groups with openings between groups can increase forest 

resilience to fire (Ziegler et al., 2017). Fine scale restoration objectives also include retention of 

dense groups and patches of older trees for tree squirrels, snags for woodpeckers and 

secondary-cavity nesting species, and logs for invertebrate species and small mammals 

(Reynolds et al., 2013). At broader spatial scales, restoring heterogeneity within stands and in-

between stands is critical for moving dry conifer forest systems towards historical conditions 

that balanced resilience to disturbance with providing a diversity of habitat structures (North et 

al., 2009). To inform these restoration objectives with data sources that can be summarized 

across scales from groups of trees to entire stands, different strategies such as light detection 

and ranging (LiDAR) have been explored.  

 In the past 30 years, research focused on forest structure modeling has investigated 

using both aerial LiDAR (ALS) and terrestrial LiDAR (TLS) to acquire three-dimensional point 
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returns to estimate first-order properties like a tree’s location, height, and stem diameter 

(Hopkinson et al., 2004; You et al., 2016), as well as derive second-order properties like basal 

area and timber volume per hectare (Nilsson, 1996; Tinkham et al., 2016). ALS datasets 

commonly range from 0.5-60 points m-2 and have been widely tested across a range of types, 

densities, and complexities for assessing individual tree characteristics (Wilkes et al., 2015; 

Kandare et al., 2016). Single tree detection accuracies from ALS point cloud-derived canopy 

height models (CHM) range from 40-94%, with detection rates decreasing as forest complexity 

and density increase (Falkowski et al., 2006; Silva et al., 2016; Sačkov et al., 2019). Most 

omitted trees from these techniques tend to occupy lower portions of the forest canopy. The 

use of TLS is newer in the field of forestry but can provide ultra-high density (25-100 thousand 

points m-2; Saarinen et al., 2017) point clouds for sampling individual trees or plots. Despite 

limited spatial extent, TLS observations are now an established forest sampling tool with many 

studies highlighting the technological potential for characterizing individual tree stem 

characteristics. TLS has been found to detect 22-100% of trees, with accuracies varying across 

forest density (Maas et al., 2008; Heinzel and Huber, 2016); various stem extraction methods 

have been shown to achieve diameter at breast height (DBH; 1.37 m) precisions of 1.5-3.5 cm 

RMSE. When applied together, the fusion of ALS spatial extent and TLS resolution has been able 

to generate comprehensive structural data of forest stands (Paris et al., 2017). Unfortunately, 

the high equipment and operational costs of ALS, along with limited TLS spatial extent have 

restricted their widespread adoption in forest monitoring (Cook, 2017).This highlights a need 

for more cost and time efficient methods of acquiring tree level overstory and understory forest 

structural characteristics to inform management strategies.  



38 
 

Similar estimations of tree locations, height, and DBH have been attempted through 

structure from motion (SfM) photogrammetry, which uses a camera’s properties and different 

image viewpoints to solve for the three-dimensional location of co-occurring pixels (Forsman et 

al., 2016). Testing of terrestrial SfM for stem detection has found similar detection rates to TLS, 

with small stand (<100 trees) demonstrations extracting 60%-98% of tree locations (Liang et al., 

2014; Mokroš et al., 2018). Additionally, terrestrial SfM DBH measurement precision only 

decreases slightly over TLS to 5.1-7.2 cm RMSE (Forsman et al., 2016; Piermattei et al., 2019). 

The low cost of Unmanned Aerial Systems (UAS) has made applying SfM to imagery collected 

above the forest canopy a viable alternative to ALS (Dandois and Ellis, 2013; Thiel and 

Schmulluis, 2016). 

Improving sensor technology has enabled UAS-SfM point clouds with data densities in 

excess of 1,000 points m-2 (Swayze et al., in prep). These high data densities enable generation 

of finer resolution CHMs compared to ALS, improving detection rates of suppressed and 

intermediate trees (Creasy et al., in review). In some instances, secondary forest parameters 

like basal area have been modeled from extracted tree densities based on local relations 

between density and basal area (Belmonte et al., 2020). The relatively high precision of these 

efforts suggests these strategies could be applied to monitor ponderosa pine forest restoration 

objectives. The rapidly expanding use of SfM-based photogrammetry in forestry is a ripe area 

for evaluating how UAS image acquisition strategies impact derived estimates of forest 

structure. Early exploration of flight parameters has focused on how photo overlap, flight 

height, and ground sampling distance impact image alignment and point cloud reconstruction 

quality (Dandois et al., 2015; Nesbit and Hugenholtz, 2019). While research has started to 
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evaluate how flight parameters impact structural measurements like tree height and crown 

diameter (Frey et al., 2018), knowledge gaps remain regarding other structural attributes. 

Particularly, the impacts of UAS flight altitude and pattern along with camera angle (Figure 2.1) 

have received little attention for their implications on individual tree parameter assessment.  

 

Figure 2.1. Flight pattern for N-S serpentine (A), E-W serpentine (B), crosshatch (C) and camera 

orientation along a flight line depicting multiple camera angle scenarios (D). 

Most UAS forest photogrammetry studies utilize conventional serpentine flight patterns 

(Figure 2.1A) and nadir (90° to the ground; Figure 2.1D) camera view angles for generating 

point clouds. Nesbit and Hugenholtz (2019) found that creating a crosshatch flight (Figure 2.1C) 

by adding a second serpentine flight pattern (Figure 2.1B) of off-nadir (20-35°) UAS images to a 

nadir serpentine dataset improved digital terrain model precision. Additionally, adding 15° 

oblique imagery to nadir imagery datasets in deciduous and coniferous forest leaf-on and leaf-

off conditions increased understory point cloud density (Díaz et al., 2020). The use of off-nadir 

45° camera angles provided reliable stem reconstruction of ~70% of trees in a leaf-off 

deciduous forest (Fritz et al., 2013); however, the authors speculated that altering the camera 

orientation during crosshatch flight paths to provide a diversity of camera orientations could 

further improve stem identification and DBH extraction. Hybrid SfM photogrammetry 

approaches that utilize both UAS and terrestrially collected images can provide RMSE of less 
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than 1 cm and 1 m for tree DBH and height, respectively (Mikita et al., 2016). While being highly 

precise, the smaller extent of terrestrial image collection limits such direct tree observations 

through data fusion.  

Since preliminary testing of crosshatch and off-nadir UAS data acquisition methods 

indicate improved point density in the lower canopy and stem region (Díaz et al., 2020), it is 

logical to more thoroughly investigate the impact of these variables on extracted tree 

parameters like DBH. However, as it is unlikely UAS point clouds generated from images 

acquired above the forest canopy will directly characterize DBH of all trees, other techniques of 

filling missing DBH values are needed in order to directly summarize basal area or apply 

common allometries of tree volume and biomass. Imputation of missing values in forest growth 

and yield modeling systems commonly occurs by using paired DBH and height values from 

forest inventories to calibrate regional relationships of DBH predicting height in order to fill in 

missing heights within the inventory (Dixon, 2002). This same strategy has potential to be 

reversed to predict missing DBH values from correctly extracted DBH and height observations 

from UAS point clouds. 

This study investigates the influence of UAS flight parameters on modeling individual 

tree and stand-level metrics from UAS developed height to DBH relationships through a series 

of tasks. First, we evaluate the impact of UAS flight altitude, camera angle, and flight path on 

UAS CHM individual tree detection rates and UAS-SfM point cloud extracted tree height and 

DBH accuracy. Next, a regional height to DBH relationship is applied to filter UAS extracted tree 

height and DBH observations, which are then used to develop a local height to DBH model to 

predict missing UAS DBH values. Finally, we evaluate the effect of flight parameters on the 



41 
 

precision of plot and stand level estimates of overstory (> 6 m tall) basal area (m2 ha-1) and 

trees per hectare, along with understory trees per hectare.  

2.2 Methods  

The study workflow (Figure 2.2) consisted of four components: 1) data collection, 2) tree 

extraction, 3) data filtering and modeling, and 4) data analysis and validation. First, UAS 

imagery and stem map data was collected in the field. Second, UAS imagery was processed to 

generate point clouds and CHMs. Third, tree heights and DBHs were extracted from UAS 

datasets. These extracted heights and DBHs were spatially paired, filtering against a regional 

height to DBH relationship, and used to model missing DBH values. Fourth, commission and 

omission errors were calculated for extracted trees, and the accuracy and precision of tree 

height, DBH, and overstory and understory stand density.  

 

Figure 2.2. Integrative workflow of the data collection and processing, tree matching, and 

analysis steps used to assess accuracy of UAS extracted tree- and stand-level characteristics.  

2.2.1 Study Area and Field Data 

This study was conducted in the Manitou Experimental Forest, about 40 km northwest 

of Colorado Springs, Colorado. A 1 hectare (100 x 100 m) stem map of ponderosa pine (Pinus 
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ponderosa var. scopulorum Dougl. Ex Laws.) dominated forest was established for validation. All 

trees > 1.37 m tall (n=890) were mapped and inventoried using a grid of survey points 

distributed across the site with observations of tree height and DBH recorded in August 2018. 

The site exhibits a multi-age forest structure, due to regeneration pulses following a 

shelterwood style harvest in the 1880’s and pine beetle disturbance in the 1980’s (Boyden et 

al., 2005). The inventory demonstrates a stand structure with increased density beyond 

historical levels within the region (Battaglia et al., 2018), with enough overstory shading to 

allow five Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco) and 

two blue spruce (Picea pungens Engelm.) to establish in the understory. Dividing the stand into 

two strata at a 5 m tall breakpoint shows 374 trees ha-1 and 24.32 m2 ha-1 of basal area in the 

overstory tree stratum and 506 trees ha-1 in the understory tree stratum (see inset of tree size 

distributions in Figure 2.2). We selected the 5m threshold as it roughly corresponds to a 10 cm 

DBH, a common regional forest inventory breakpoint for describing overstory and understory 

forest densities, where the understory includes what is commonly referred to as sapling or 

advanced regeneration. 

2.2.2 Regional Field Data 

For development of a regional height to DBH relationship, we acquired USA Forest 

Service Forest Inventory and Analysis (FIA) data (Tinkham et al., 2018) for 6,693 plots in the 

state of Colorado. We filtered plots to only retain those containing >70% ponderosa pine basal 

area and with a site index within ±2 m of the study area’s site index, leaving 92 plots with 196 

trees. We fit a power function to predict DBH as a function of height using the nlme package 

(Pinheiro et al., 2018) in the R statistical program. We generated 90th percentile prediction 
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bounds for the model (see inset model graph in Figure 2.2) to filter UAS extracted DBH values 

that were matched with UAS extracted heights.  

2.2.3 UAS Image Collection 

We conducted a total of 30 UAS flights over the 1 hectare study area in July 2019, 

collecting approximately 7,140 images in 4.66 hours of in-air flight time. The imagery was 

collected with a Da-Jiang Innovations (DJI) Phantom 4 Pro UAS, with a 1 inch 20 MP (5472 x 

3648 pixels) metal oxide semiconductor red-green-blue (RGB) sensor at a fixed 8.8 mm focal 

length. Flights were conducted at three altitudes above ground level (65, 90, and 115 m) with 

90% front and side image overlap at 4 m sec-1, over a 110 x 110 m size grid centered on the 1 

hectare study area. Altizure (version 4.6.8.193; Shenzhen, China) for Apple iOS was used to 

acquire nadir imagery using separate North-South (NS) and East-West (EW) camera orientations 

at each altitude for a total of six nadir image acquisitions. Then Pix4D Capture (Pix4D S.A., 

Laussanne, Switzerland) was used to acquire off-nadir imagery (20, 25, 30, and 35°) using 

separate NS and EW camera orientations at each altitude, a total of 24 off-nadir acquisitions.  

2.2.4 UAS Image SfM Processing and Filtering 

We utilized Agisoft Metashape to process the imagery from the 30 flights. This was done 

by first finding matching tie points and aligning the photos, generating the sparse point cloud, 

georeferencing the imagery, and then finally creating dense RGB point clouds. These consisted 

of 15 serpentine NS and 15 crosshatch SfM point clouds distributed across three altitudes and 

five camera angles. The Metashape SfM processing followed the workflow presented in Swayze 

et al. (in prep), including ten ground control points collected using a Trimble GeoXT (Trimble 

Inc., Sunnyvale, CA, USA) with SBAS real-time correction accuracies of < 1 m.  
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After the SfM processing, dense point clouds were filtered to remove erroneous points 

below ground and above the canopy and classified into ground and non-ground using LAStools 

version 1.2 (http://lastools.org). Following point filtering and classification, the point clouds 

were normalized using the classified ground points, and the normalized point clouds were 

rasterized into 10 cm resolution CHMs. To prepare the SfM point cloud data for DBH extraction, 

the 30 normalized point clouds were merged into a single “hyper-cloud” file. From the 

hypercloud (900+ million point) vertical sections of the stem (0.5-5 m) and canopy (24-27 m) 

were extracted. Next, 60 random sample locations from the hypercloud stem and canopy 

segments were manually extracted in CloudCompare version 2.10.1 (www.cloudcompare.org) 

to obtain pure stem and canopy points. The extracted sample points (>800,000 points in each 

class) were imported into the R statistical programming language (R core Team, 2019) using the 

lidR package (Roussel and Auty, 2019), where a green:red ratio index (NGRR; Equation 1) was 

calculated on each point to determine the distribution (Figure 2.3A) of stem and canopy NGRR 

values. All values below the 90th percentile of stem NGRR values (-0.0152) were segmented 

from each SfM point cloud to produce point clouds only containing points with stem reflectance 

characteristics. From the stem point clouds, a 10 cm tall slice (1.32-1.42 m) was extracted and 

compressed to a height of 1.37 m to represent the DBH region on the trees. An example of this 

process on a single point cloud stem is displayed in Figure 2.3C. These DBH slices were later 

used to extract individual tree DBH values.  𝑁𝐺𝑅𝑅 = 𝐺𝑏𝑎𝑛𝑑−𝑅𝑏𝑎𝑛𝑑𝐺𝑏𝑎𝑛𝑑+𝑅𝑏𝑎𝑛𝑑                                            [Equation 1] 
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Figure 2.3. Distribution of NGRR values for stem (brown) and canopy (green) points, with vertical 

lines representing the 90th percentile of stem (brown; -0.0152) and 10th percentile of canopy 

(green; 0.0451) (A) example stem point cloud following NGRR segmentation (B), 10 cm DBH slice 

(1.32-1.42 m) with thinned ground points (C), and top-down view of stem segment (D) with stem 

points shown in red. 

2.2.5 Tree Location and Height Extraction  

All 30 SfM-derived 10 cm resolution CHMs were analyzed to detect individual tree 

locations and heights using a local maximum variable window function (Popescu and Wynne, 

2004) from the R ForestTools package (Plowright, 2018). The local maximum function searches 

each CHM to identify local maximum heights within a variable radius moving window based on 

the rasterized tree heights, assigning a point to locations with defined maximums. The function 

was parameterized using a linear equation (Equation 2) to determine the window radius based 

on research by Creasy et al. (in review), who found similar parameters for optimizing tree 

detection across all tree sizes in similar forest systems.  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑟𝑎𝑑𝑖𝑢𝑠 = 𝑇𝑟𝑒𝑒 𝐻𝑒𝑖𝑔ℎ𝑡 × 0.1    [Equation 2] 

Where the variable window radius is in meters and Tree Height is in meters and corresponds to 

raster cell values in the CHM. The algorithm was parameterized to extract locations and 

maximum heights of trees > 1.37 m tall in the 30 CHMs. The outputs from the tree location and 
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height extraction step included x and y locations paired with a height estimate in meters, here 

on referred to as extracted tree heights.  

2.2.6 Tree DBH Extraction  

The DBH point cloud slices were analyzed using the R TreeLS package (Conto, 2019), 

following a workflow presented in Conto et al. (2017). The point cloud slices were rasterized so 

a Hough Transform circle search algorithm could be used to identify candidate DBH locations 

with a minimum density setting of 0.001. At each candidate DBH location, a least squares circle 

fitting algorithm was used on the DBH point cloud slice to estimate DBH. This step utilized a 

random sample consensus approach to identify points to keep by iteratively fitting least 

squares circles to candidate DBH locations until the sum of squared distances between the 

circle and points was minimized, with a tolerance of 0.025 and confidence level of 0.99. For 

candidate DBH locations that successfully fit a circle, the process generated estimated x and y 

coordinates and DBH values, here on referred to as extracted tree DBHs.  

2.2.7 Matching Extracted Values with Field Observations 

For each UAS acquisition the extracted tree DBHs were matched with extracted tree 

heights through a multi-stage filtering process. We first predicted DBH values for each 

extracted tree height using the regional FIA height to DBH relationship. We then compared FIA 

predicted DBH values with extracted tree DBHs, identifying matches by iteratively buffering a 

FIA predicted DBH value using a 4 m radius to account for tree lean and to identify candidate 

extracted tree DBHs. The candidate extracted tree DBH with the smallest difference to the FIA 

predicted DBH was assigned to the extracted tree height. Once all extracted tree DBHs had 

been assigned to an extracted tree height, the paired extracted tree heights and DBHs were 
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filtered to only keep extracted tree DBHs conforming to the 90th percentile prediction bounds 

of the regional FIA height to DBH relationship. The outputs from the matching and 90th 

percentile filtering process are here after referred to as paired extracted tree values.  

The 30 paired extracted tree value datasets were then each matched with the field 

observed tree values. After selecting candidate stem map trees within 4 m of a paired extracted 

tree value, the difference between field observed and extracted tree heights was calculated. A 

successful match required < 2 m height error; after a successful match the paired fielded 

observed and extracted heights are removed from the pool of candidates for further matching. 

This matching was repeated until all paired extracted tree values were either matched to a 

stem map tree or were marked as omissions (having no match within 4 m and < 2 m height 

difference). True Positive, False Negative, and False Positive rates were calculated for paired 

extracted tree values and stem mapped trees. The quality of each dataset was summarized by 

calculating recall, precision, and F-score using equation 3, 4, and 5, respectively.  𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒         [Equation 3] 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒              [Equation 4] 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛     [Equation 5] 

2.2.8 DBH Prediction and Stand Parameter Estimation 

For each dataset, we used the paired extracted tree value estimates of DBH and height 

to develop a local predictive model of DBH as a function of height using a power equation. We 

applied these predictive models to the extracted tree heights not matched with an extracted 

DBH value and merged these with the paired extracted tree values to generate a complete 
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dataset of UAS estimated heights and DBHs for each of the 30 datasets. Mean error (ME) and 

root mean square error (RMSE) of the final extracted height and DBH values were determined 

for the 30 SfM extracted datasets to describe the bias and precision of extracted values. 

To assess the accuracy of stand-level density metrics, the field observed trees were 

divided into a 20 x 20 m grid of plots and summarized as trees ha-1 (TPH) for trees > 6 m tall and 

≤ 6 m tall for each plot and across the entire study area. Additionally, basal area (m2 ha-1) was 

similarly summarized for trees > 6 m tall. For each UAS dataset, we also summarized identical 

TPH and basal area metrics from the paired extracted tree values. We determined correlation 

and RMSE by comparing the observed and extracted TPH and basal area at the 20 x 20 m plot 

level, while the absolute error was summarized at the stand level (1 hectare) for each metric.  

2.2.9 Assessment of Altitude, Pattern, and Camera Angle 

We used multiple linear regression to determine the influence of tested UAS flight 

parameters (camera angle, flight altitude, and flight path) on tree extraction performance 

metrics (F-score, precision, and recall). Additional models were generated to describe how 

flight parameters impacted the correlation, ME, and RMSE of extracted tree heights and DBH 

values. The main effects of altitude, camera angle, and flight path were evaluated for 

interactions in all regression models through a forward and backward AIC stepwise selection 

algorithm to determine the best variable subset that minimized the AIC value. Modeling was 

performed using the lm and stepAIC functions of the stats (R Core Team, 2019) and MASS R 

packages (Venables and Ripley, 2002). All main effects were kept in the final model regardless 

of if they were statistically significant or not. 
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2.3 Results  

2.3.1 Extracted Tree Detection Performance 

Extraction quality metrics (F-score, precision, and recall) for trees > 1.37 m tall varied in 

their relationship with UAS camera angle and flight pattern according to multiple linear 

regression (Table 2.1). Overall performance of correct tree detection and matching as described 

by F-score was significantly increased by ~4% for crosshatch flight patterns compared to 

serpentine. F-score values for extracted tree locations varied from 0.429 to 0.771 with a 

decreasing trend as camera angle increased, with average scores varying from 0.739 to 0.626 

for nadir and 35° off-nadir flights, respectively (Figure 2.4). Across testing, crosshatch flight 

patterns paired with nadir camera angles provided the highest SfM tree extraction F-scores. 

Table 2.1. Multiple linear regression results on the effect of UAS acquisition parameters on the 

reliability of extracted trees. Serpentine flight pattern was treated as the base predictor 

(coefficient = 0). Significant parameters (α = 0.05) indicated in boldface. 
Parameter Coefficient Standard Error t-value p-value Adj. R2 

Response = F-score 0.1660 

Intercept 0.7942 0.0639 12.426 <0.001 
 

Altitude (m) -0.0004 0.0006 -0.684 0.5002 
 

Angle (degrees) -0.0023 0.0011 1.815 0.0811 
 

Pattern (Crosshatch) 0.0337 0.0185 -2.080 0.0475 
 

Response = Precision 0.1466 

Intercept 1.0470 0.1312 7.978 <0.001 
 

Altitude (m) -0.0007 0.0013 -0.536 0.5967 
 

Angle (degrees) -0.0053 0.0022 -2.373 0.0253 
 

Pattern (Crosshatch) 0.0108 0.0381 0.283 0.7796 
 

Response = Recall 0.0655 

Intercept 0.5867 0.0449 13.064 <0.001 
 

Altitude (m) 0.0001 0.0005 0.286 0.7777 
 

Angle (degrees) 0.0006 0.0008 0.772 0.4470 
 

Pattern (Crosshatch) 0.0221 0.0130 1.700 0.1010 
 

The proportion of extracted trees that matched field observed trees, summarized as 

precision, significantly decreased as camera angle increased (Table 2.1). Average extracted tree 
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location precision varied from 0.942 to 0.669 at nadir and 35° off-nadir (Figure 2.4). Capturing 

the correct number of trees as described by recall only showed weak variation with flight 

pattern (p = 0.1010). Recall for crosshatch flight patterns averaged 0.627 while serpentine 

patterns averaged 0.59, suggesting crosshatch patterns were slightly closer to the correct 

number of trees compared to serpentine flights (Figure 2.4). 

 

Figure 2.4. Visualization of multiple linear regression response variables (A) F-score, (B) 

precision, and (C) recall against predictors of altitude, camera angle, and flight pattern. 
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2.3.2 Extracted Tree Height and DBH Assessment 

Correlation between paired extracted tree heights and field observed tree heights 

exceeded 0.98 for all datasets (Figure 2.5). Camera angle and flight pattern both significantly 

impacted height errors, with nadir camera angles underpredicting by 0.14 m on average, while 

20-35° camera angles overpredicted heights by 0.17-0.12 m (Table 2.2). Crosshatch flight 

patterns also resulted in increased mean height errors by 0.06 m compared to serpentine 

patterns. The precision of extracted heights averaged a RMSE of 17.9% for nadir camera angles 

and significantly increased as camera angle increased from 20-35° (Table 2.2).  

 

Figure 2.5. Observed versus extracted height and DBH values for the best serpentine and 

crosshatch acquisitions (both 65 m altitude). 
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Table 2.2. Multiple linear regression results of the effect of UAS acquisition parameters on bias 

(ME) and precision (RMSE) of extracted tree heights and DBH values meeting FIA 90th percentile 

prediction bounds filtering. Serpentine flight pattern was treated as the base predictor 

(coefficient = 0). Significant parameters (α = 0.05) indicated in boldface. 

Parameter Coefficient Standard Error t-value p-value Adj. R2 

Response = Height ME (m) 0.4648 

Intercept 0.038 0.103 0.364 0.7189 
 

Altitude (m) -0.001 0.001 -1.346 0.1900 
 

Angle (degrees) 0.008 0.002 4.668 <0.001 
 

Pattern (Crosshatch) 0.064 0.030 2.140 0.0419 
 

Response = Height RMSE (%) 0.1256 

Intercept 15.466 1.215 12.731 <0.001 
 

Altitude (m) 0.016 0.012 1.272 0.2148 
 

Angle (degrees) 0.048 0.021 2.315 0.0287 
 

Pattern (Crosshatch) -0.153 0.353 -0.434 0.6679 
 

Response = DBH ME (cm) 0.3555 

Intercept 1.035 0.970 1.067 0.2958 
 

Altitude (m) 0.001 0.010 0.081 0.9364 
 

Angle (degrees) 0.064 0.016 3.903 <0.001 
 

Pattern (Crosshatch) 0.545 0.281 1.938 0.0635 
 

Response = DBH RMSE (%) 0.0548 

Intercept 53.487 26.750 2.000 0.0561 
 

Altitude (m) -0.138 0.269 -0.512 0.6127 
 

Angle (degrees) 0.895 .454 1.970 0.0595 
 

Pattern (Crosshatch) -5.689 7.762 -0.733 0.4702 
 

Across the 30 datasets, the number of extracted tree DBHs equaled 14.2-47.8% (avg: 

31.1%) of the field observed trees. After filtering the extracted tree DBHs with the FIA regional 

90th percentile prediction bounds, 4.2-11.5% (avg: 8.0%) were retained as conforming to the 

expected height to DBH relationship. This translates to 37-103 trees kept for modeling the local 

height to DBH relationships. Of the tested altitudes, the 65 m flights had a greater proportion of 

extracted and retained (39.6 and 10.1%, respectively) DBH values following FIA regional filtering 

compared to higher altitude flights (25.8 and 7.2%, 28.0 and 7.1% for 90 and 115 m, 

respectively). Similarly, crosshatch flights had greater rates of extraction and filter retained DBH 

values (avg: 31.9 and 8.4%) compared to serpentine flights (avg: 27.3 and 6.5%). 
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For all flights the correlation between extracted tree DBHs and field observed values 

ranged from 0.554 to 0.886. Filtering extracted tree DBHs through the regional FIA relationship 

improved correlation with field observed DBHs so that they were > 0.871 for all UAS datasets. 

The filtered extracted tree DBH correlations were significantly higher for crosshatch flight 

patterns compared to serpentine flights (Figure 2.6), along with significantly increasing 

correlation as camera angle increased.  

 

Figure 2.6. Visualization of multiple linear regression of correlation between extracted and 

observed DBH values against predictors of altitude, camera angle, and flight pattern. 

For the filtered extracted tree DBHs there was constant overestimation bias that varied 

with camera angle and flight pattern (Table 2.2). Nadir acquisition DBH values had a mean error 

(bias) of 0.79 cm, with this increasing 0.64 cm for every 10° increase in camera angle. Similarly, 

DBH bias was on average 0.55 cm greater for crosshatch flight patterns compared to serpentine 

flights. Additionally, the RMSE of extracted and matched DBH values was 41.3% for nadir flight 

patterns and increased for off-nadir datasets by 8.95% for every 10° increase in camera angle.  
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2.3.3 Distribution of UAS Heights and DBHs  

Across the datasets, the distributions of paired extracted tree heights closely followed 

the distribution of field observed heights (Figure 2.7). The small underprediction bias present in 

the nadir serpentine flights (Table 2.2) carries through during comparison of distributions 

(Figure 2.7). However, crosshatch flight patterns and off-nadir camera angles provided closer 

visual approximations of the field observed tree height distribution. The distributions of 

predicted tree DBHs from the UAS relationship between extracted heights and DBHs shows an 

underrepresentation of smaller diameter trees for serpentine acquisitions (Figure 2.7). Visual fit 

of the distribution for both flight patterns improved for off-nadir camera angles. 

 

Figure 2.7. Distributional comparison of (top) extracted tree heights and (bottom) modeled UAS 

DBH values from 65 m altitude acquisitions against field observed heights and DBHs. 
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2.3.4 UAS Basal Area and TPH Accuracy 

Overall, UAS 20 x 20 m plot-level estimates of overstory basal area per hectare, 

overstory TPH, and understory TPH had high (> 0.7) correlation with field observed values, with 

the exception of acquisitions using 35° off-nadir camera angles where correlations averaged 

less than 0.5. For overstory basal area per hectare the best acquisitions exceeded correlations 

of 0.8 and were at lower flight altitudes (65-90 m) with off-nadir camera angles. More than 40% 

of acquisitions had overstory TPH correlations exceeding 0.8, with the top eight acquisitions 

also exceeding 0.9 correlations for understory TPH. All the best performing acquisitions for TPH 

used either crosshatch or off-nadir flight designs.  

Table 2.3. Multiple linear regression results on the effect of UAS acquisition parameters on 

summarized extracted tree density metrics. Serpentine flight pattern was treated as the base 

predictor (coefficient = 0). Significant parameters (α = 0.05) indicated in bold. 
Parameter Coefficient Standard Error t-value p-value Adj. R2 

Response = Understory TPH RMSE (%) 0.0745 

Intercept -96.98 145.82 -0.665 0.5119 
 

Altitude (m) 1.11 1.47 0.759 0.4547 
 

Angle (degrees) 4.78 2.48 1.929 0.0647 
 

Pattern (Crosshatch) -43.09 42.31 -1.018 0.3179 
 

Response = Overstory TPH RMSE (%) 0.1609 

Intercept 26.09 6.79 3.843 0.0007 
 

Altitude (m) 0.05 0.07 0.682 0.5013 
 

Angle (degrees) 0.32 0.12 2.814 0.0092 
 

Pattern (Crosshatch) -0.82 1.97 -0.419 0.6788 
 

Response = Overstory Basal Area Hectare RMSE (%) 0.2608 

Intercept 17.69 12.11 1.460 0.1563 
 

Altitude (m) 0.17 0.12 1.423 0.1666 
 

Angle (degrees) 0.64 0.21 3.134 0.0042 
 

Pattern (Crosshatch) -4.14 3.52 -1.178 0.2496 
 

Camera angle significantly impacted the precision (RMSE) of plot-level estimated 

overstory (> 6 m tall) basal area per hectare and overstory trees per hectare (Figure 2.8). Each 

10° increase in camera angle resulted in a 3.2 and 6.4% RMSE increase of plot-level overstory 
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TPH and BA, respectively (Table 2.3). Assessment of basal area for the entire 1 ha study site 

provided overestimation errors of 1-6 m2 ha-1 (or 4.1-24.7%). Study site basal area errors were 

on average smaller for crosshatch compared to serpentine flight patterns and tended to 

increase with increased camera angles. 

 

Figure 2.8. Visualization of multiple linear regression of the response variable (A) overstory basal 

area RMSE (%), (B) overstory TPH RMSE (%), and (C) understory TPH RMSE (%) against predictors 

of altitude, camera angle, and flight pattern. 
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2.4 Discussion 

This study evaluated the impact of UAS flight altitude, camera angle, and flight path on: 

1) UAS SfM individual tree detection rates; 2) extracted tree height and DBH errors; 3) local 

UAS-based models to predict individual tree DBH; and 4) estimates of UAS-based plot- and 

stand-level overstory and understory density metrics. We found that, 1) tree extraction 

accuracy and correctness was maximized for nadir crosshatch UAS flight designs; 2) extracted 

tree height precision and accuracy was high for all UAS flight parameters, but the quality and 

quantity of extracted DBH values was maximized for lower altitude, nadir crosshatch 

acquisitions; 3) the distribution of predicted DBH values most closely matched field observed 

values for off-nadir crosshatch flight designs; 4) the use of either off-nadir or crosshatch flight 

designs at lower altitudes maximized precision and accuracy of stand density estimates. 

2.4.1 Tree Location Extraction  

Our best acquisitions for tree extraction accuracy and correctness (F-score = 0.77) is in 

the middle of extraction rates found for 30 sites using UAS-based singe tree detection (Mohan 

et al., 2017). However, our study includes all trees > 1.37 m tall whereas most studies only 

include dominant and codominant overstory trees, likely meaning our overstory extraction rate 

should be on the higher range of that reported in the literature. In comparison with a study 

conducted at the same study site, we saw 0.19 increase in F-score across all tree sizes with the 

only difference being the use of 0.10 cm CHM as opposed to a 0.25 cm CHM by Creasy et al. (in 

review). This suggests that CHM resolution should be further investigated to determine its 

impact on tree extraction rates. 
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Linear regression across the 30 UAS extracted tree datasets suggests some flexibility in 

flight parameters for maximizing F-score, precision, and recall (Table 2.1). UAS acquisitions 

conducted using a crosshatch flight pattern paired with nadir a camera angle maximized tree 

detection results (Figure 2.4). The indication of a nadir flight angle is counter to what has been 

seen in previous studies (Nesbit and Hugenholtz, 2019) that suggested 20-35° off-nadir imagery 

improves systematic SfM block bundle adjustment errors. We speculate that the consumer-

grade GPS equipped in the DJI Phantom 4 Pro paired with the difficulty of identifying ground 

control points in off-nadir images led to greater miss-alignment errors compared to the nadir 

acquisitions. Further testing of off-nadir flight designs should explore using UAS platform with 

real time kinematic geolocation accuracy to reduce error through manual ground control point 

georegistration (Tomaštík et al., 2019). 

2.4.2 UAS Extracted Height and DBH  

The high extracted tree height correlations (r = >0.98) found in this study exceed what 

has previously been reported in ponderosa pine dominated forests (0.80-0.95; Belmonte et al., 

2020). Our improved height correlations compared to Belmonte et al. (2020) may be attributed 

to their 15 cm resolution imagery as opposed to the finer resolution used in this study (1.8 and 

3.2 cm at 65 and 115 m, respectively), with our finer resolution imagery likely capturing more 

canopy detail. Additionally, we had generally small tree height biases (< ±0.15 m) in all 

acquisitions, in line with, or slightly better than, accuracies reported in other UAS studies (e.g., -

0.13 to -0.38 m; Krause et al., 2019). 

This study’s highest extracted tree DBH rates (> 40%) were achieved with crosshatch 

flight patterns using moderately off-nadir camera angles (25-30°) that provided more complete 
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stem reconstruction (Figure 2.9). Previous work has demonstrated how the increased overlap 

of crosshatch flight designs improves image registration and provide increased point densities 

beneath the dominant forest canopy (Dandois et al., 2015; Seifert et al., 2019). However, even 

our best extraction rate (47.8%) falls below that of Fritz et al. (2013) who extracted 70% of DBH 

values using off-nadir UAS datasets in a leaf-off deciduous forest. Our lower extraction rates are 

likely due to occlusion caused by the persistent coniferous canopy, resulting in lower point 

densities within the DBH point cloud slices than was seen in Fritz et al. (2013). However, 

incomplete extraction of DBHs was expected, with the hope that enough DBH values would be 

available for UAS modeling of the missing DBH values. 

Filtering of the extracted heights and DBHs that were spatially matched with the FIA 

regional height to DBH relationship removed a substantial component of falsely extracted DBH 

values. Despite extracting an average of 31.1% of DBHs, only 8.1% of DBH values on average 

were retained through the filtering process. In considering just overstory forest structure (tree 

> 6 tall), the best DBH extraction flight (65 m altitude; crosshatch; 25° camera angle) retained 

20.5% of DBHs through the filtering process. Unfiltered extracted DBHs varied widely in their 

correlation (0.554-0.886) with field observed DBHs across the flight designs. However, the 

filtering process increased correlations to 0.871-0.920, with these tending to be strongest for 

crosshatch and off-nadir flight designs (Figure 2.6). These correlations exceed the 0.696 

correlation achieved by Fritz et al. (2013) through direct DBH extraction but was in-line with the 

0.911 reported in González-Jaramillo et al. (2019), who utilized a pre-existing local height to 

DBH relationship. This filtering process was able to remove erroneously extracted DBH values 

that likely resulted from partially reconstructed stems or branches within the point cloud slice, 
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leaving an average of 72 UAS extracted DBHs in each dataset to generate a UAS-based height to 

DBH relationship. 

 

Figure 2.9. Visualization of serpentine (left) and crosshatch (middle) point clouds and DBH slices 

from 65 m acquisitions at nadir (top) and 30° off-nadir (bottom). Point cloud distributions (right) 

are shown for the serpentine (red) and crosshatch (blue) acquisitions at the same camera angles. 

2.4.3 Local UAS height to DBH relationships 

The filtered pairs of extracted tree heights and DBHs provided a large enough sample 

dataset to create UAS-based height to DBH relationships for estimating missing DBH values 

associated with each UAS extracted tree height. The UAS predicted DBH values tended to 

overestimate diameters for smaller trees and underestimated the largest diameters (Figure 

2.7). Errors at the DBH distribution tails are somewhat expected as these values are less 

represented in the extracted data pairs and likely present unaccounted for variation in local 

growing environments. Particularly for smaller trees growing in dense environments or beneath 
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the crowns of mature trees, they often allocate greater resources to height growth compared 

to DBH growth (Barret, 1982). This is at least partially supported by other studies that have 

found UAS estimates of crown diameter and area to improve predictions of DBH compared to 

height only models (Iizuka et al., 2018). Our local UAS-based modeling of DBH could be 

improved by exploring other UAS-based predictors in a multiple linear regression capable of 

accounting for density by including metrics like delineated crown area or extracted local stem 

density.  

2.4.4 Estimations of Plot- and Stand-Level Metrics 

Across all metrics of forest density (overstory and understory TPH and overstory basal 

area per hectare), the best performing acquisitions had plot-level correlations exceeding 0.8 

with field observed density metrics. Of the tested UAS datasets, 40% had correlations 

exceeding 0.8 for overstory TPH (> 6 m tall) and field observed TPH, with the strongest 

correlations coming from crosshatch and off-nadir flight designs. However, acquisitions with a 

35° camera angle had correlations < 0.5. Our strength in estimating overstory TPH aligns with 

previous studies (Bonnet et al., 2017), and indicate that the relative trend in overstory tree 

density was captured. However, the best performing models failed to identify two trees in each 

0.04 ha plot on average, resulting in an underestimation bias of 13% or ~50 TPH. 

Similar high correlations (>0.8) were found for estimates of understory TPH for all but 

the serpentine 35° off-nadir acquisitions. The best correlation values exceeded 0.9, with all of 

these being 65 m altitude acquisitions using either off-nadir or crosshatch flight designs. 

However, the underestimation bias of understory tree density was larger at an average of 4 

trees per plot, equivalent to 20% or ~100 TPH at the stand level. This increased negative bias for 
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understory trees aligns with the decreased probability of detecting understory trees using 

single tree detection strategies described in other studies (Creasy et al., in review).  

Across the 30 UAS datasets, the four top correlations exceeded 0.8 for estimates of 

overstory basal area per acre and were acquired at 65 m altitude with either off-nadir or 

crosshatch flight designs. For these high correlation datasets plot-level basal area per hectare 

RMSE was 27-37%. However, when summarized at the stand scale 43% of datasets estimated 

overstory basal area per hectare to within 10% (2.3 m2 ha-1). This high accuracy at the stand 

level is similar to that reported by Belmonte et al. (2020) who evaluated basal area in pre- and 

post-treatment ponderosa pine. This indicates that while the relative trend and stand average 

basal area per hectare were accurately captured, within-stand variation was spatially 

misaligned. Visual inspection of plot-level basal area per hectare residuals showed that the 

largest error terms were spatially correlated in neighboring plots, such that large positive errors 

were next to large negative errors. The authors take this spatially correlation in errors to 

indicate that small location differences between extracted and stem mapped trees might 

explain the relatively large RMSE. 

Ranking acquisitions based on having high plot-level correlations along with minimizing 

stand-level error for all density metrics places seven 65 m altitude acquisitions in the top 10 

datasets, with this including all five crosshatch datasets. This suggests that individual tree 

assessment for describing plot- and stand-level forest structure in ponderosa pine systems is 

best described through lower altitude UAS flights using either off-nadir or crosshatch flight 

designs. Our high correlation and precision in modeling overstory forest structure has potential 
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as a tool in guiding development of ponderosa pine silvicultural prescriptions that typically aim 

to increase horizontal and vertical forest heterogeneity.  

2.4.5 Tree-Based UAS Monitoring Applications 

The increased focus on spatial heterogeneity management objectives within dry conifer 

forests has elevated the need for monitoring strategies capable of describing the matrix of 

trees, groups of trees, and openings that comprise a stand (Tinkham et al., 2017). This study’s 

demonstrated UAS individual tree extraction workflow could provide complete tree lists of 

locations, heights, and DBHs within low and moderate density (< 1000 TPH) conifer forest 

systems. Having spatially informed tree-level characteristics could enable silvicultural 

prescription development for a range of restoration, resilience, and wildlife focused objectives. 

Such tree lists would be a valuable resource for land managers planning and 

implementing spatially explicit silvicultural prescriptions and would enable managers to map 

explicit locations for tree retention and planned openings for use by marking crews. 

Implementing matrices of openings and tree groups through dry conifer restoration has been 

found to limit crown fire spread (Beaty and Taylor, 2007) and reduce beetle mortality intensity 

by fragmenting continuity between susceptible hosts (Fettig et al., 2007). Such management 

strategies often target removal of understory and suppressed trees, and while our understory 

estimates do not reflect exact density levels, the results capture relative understory densities 

across the stand which could guide thinning objectives that target understory trees (Allen et al., 

2002). While not all trees were successfully extracted from the UAS data, the presented 

methods capture both the relative local trends and stand-level averages that are necessary for 
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informing a broad range of thinning and restoration actions in lower density forests (< ~1,000 

tree ha-1) like temperate and montane pine dominated systems. 

Integration of multispectral information into these tree-level methods has potential to 

further extend the applications of UAS tree-based monitoring. Such tree-level characterization 

of species and structural distributions would be valuable for assessment and management of 

species-specific wildlife habitat and diversity patterns that are often correlated with vertical 

and horizontal forest structure (Merrick et al., 2013). Additionally, extending similar UAS 

techniques to monitor temporal change in habitat distributions for species of conservation 

interest (Vogeler et al., 2016) or assessing the outcomes of forest restoration activities (Almeida 

et al., 2019) would fulfill many adaptive management mandates. 

 While the presented UAS methods have potential to characterize stand wide tree lists of 

locations, heights, and DBHs, these approaches have only been tested at a small scale (1 ha). 

For such approaches to be fully operationalized in land management further testing needs to be 

conducted across a broader range of forest structure and species compositions. Further testing 

will help identify the range of forest conditions that UAS tree-based monitoring can be used to 

reliably inform management decisions. 

2.5 Conclusions and Suggestions 

This study demonstrates a novel UAS-based inventory strategy for estimating individual 

tree structural attributes (i.e., location, height, and DBH) in dry conifer forests. We found that a 

crosshatch flight pattern (1) maximized UAS SfM individual tree detection rates and (2) 

minimized extracted tree height and DBH errors. Additionally, we found that combining 

crosshatch with off-nadir camera angles (3) improved UAS-based modeling of individual tree 
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DBH and (4) provided the best representation of plot- and stand-level density metrics. Our 

filtering of UAS extracted DBH samples with national forest inventory data appears to provide a 

route for modeling individual tree DBH values, without the need for in situ field observations. 

Despite the high accuracy of modeled stand basal area estimates, accuracy of individual tree 

DBHs increased for both the smallest and largest trees. Future work should explore how other 

UAS derived attributes like stem density, crown area, and relative height compared to 

neighboring trees could account for competition impacts on modeled individual tree DBHs. The 

spatial tree list of heights and DBHs provided by this study’s UAS individual tree extraction 

workflow could provide the tree-level characteristics needed for silvicultural prescription 

development for a range of restoration, resilience, and wildlife focused objectives. 

Operationalizing UAS-based individual tree inventories will require balancing data 

precision against characterizing broader extents (10s–100s ha). The crosshatch data acquisition 

conducted in this study doubled the data acquisition time, image storage requirements, and 

processing time to gain an estimated 5-10% improvement in UAS derived inventory products. 

The largest benefit of the crosshatch flight pattern came from an ~30% increase in the number 

of DBH values successfully extracted and matched with UAS derived tree heights compared to 

the serpentine pattern. However, the results make it clear that it is unrealistic to expect above 

canopy UAS acquisitions to capture all DBH values. Meaning UAS-based individual tree 

inventories might see efficiency gains by flying entire stands with serpentine patterns and then 

sample portions of a stand with a crosshatch pattern to improve DBH extraction rates. Work is 

needed to understand what proportion of a stand needs to be sampled with the crosshatch 

pattern to ensure enough DBH values are extracted to impute the missing DBH values. 
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Appendix 

 

Supplemental Figure 1.1: LiDAR vs SfM point cloud structural metric comparisons for the model 

with the highest improved variance compared to LiDAR, which was the 85 m AGL altitude at 

KNF1, which had an improved variance of 26.3% over the LiDAR AGB model for that site.  

 

Supplemental Figure 1.2: Observed (x axis) vs Predicted (y axis) for KNF1 (A), KNF2 (B), KNF3 (C), 

MEF1 (D), and MEF2 (E) AGB models, representing from top to bottom the LiDAR (blue line), 

highest altitude UAS (green line), and lowest altitude UAS (red line) models for each study area.  
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Supplemental Table 1.1. Agisoft Metashape processing parameters for SfM photogrammetry 

forest reconstruction. 

Parameter Setting 

Align Photos 

Accuracy  

Generic preselection  

Reference preselection 

Reset current alignment 

Key point limit 

Tie Point Limit 

Apply masks to 

Adaptive camera model fitting 

Optimize Alignment 

Adaptive camera model fitting  

Build Dense Cloud 

Quality 

Depth Filtering 

Calculate point colors 

Calculate point confidence 

 

Highest 

Yes 

Source 

No 

40,000 

4000 

None 

Yes 

 

Yes 

 

High 

Mild 

Yes 

No 

Supplemental Table 2.1. Detailed settings for Altizure and Pix4D Capture automated flight 

applications. 

Altizure Pix4d 

Focus: set to infinity White balance: Auto 

ISO: 100 Picture trigger mode: fast 

Aperture: f5.6 Look at grids center (no) 

Shutter Speed: 1/500th of second 
 

Min timed shot interval: 2 seconds 
 

Supplemental Table 2.2. Full suite of flight altitude, camera angle, and survey type image 

dataset combinations.  

Flight Altitude (m) Traditional (serpentine pattern) Crosshatch (double serpentine pattern) 

65 0°, 20°, 25°, 30°, 35° 0°, 20°, 25°, 30°, 35° 

90 0°, 20°, 25°, 30°, 35° 0°, 20°, 25°, 30°, 35° 

115 0°, 20°, 25°, 30°, 35° 0°, 20°, 25°, 30°, 35° 
 


