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ABSTRACT 
 
 
 

A STUDY OF FACTORS ASSOCIATED WITH GIARDIA AND CRYPTOSPORIDIUM  
 

INFECTIONS IN HUMANS, DOGS AND CATS IN THE USA 
 
 
 

  Giardia spp. and Cryptosporidium spp. are two of the leading causal agents of parasitic 

diarrhea in humans, dogs and cats. The two pathogens contain both host-adapted and zoonotic 

strains and dogs and cats can harbor both strains. There is critical need to understand factors 

potentially associated with the risk and prevalence of infection due to Giardia spp. and 

Cryptosporidium spp. in dogs, cats and humans. This will ultimately aid in disease management 

and control. Furthermore, molecular characterization of the human, dog or cat isolates may 

identify zoonotic genotypes and may provide further information concerning the transmission 

routes between humans, dogs and cats. 

In Chapter 1, a review of literature regarding Giardia duodenalis and Cryptosporidium 

spp. in humans and companion animals (dogs and cats) was conducted. The review involves a 

brief description of the two pathogens’ current taxonomy, epidemiology, and diagnostic 

methods.  

Chapter 2 presents a retrospective study designed to analyze results from dog and cat 

polymerase chain reaction (PCR) panels from the commercial laboratory, ANTECH Diagnostics. 

The main purpose of this study was to evaluate associations between the probability of testing 

positive to Giardia spp. and Cryptosporidium spp. and risk factors such as animal’s age, sex, 

region, and season. The results of this study showed that age (younger animals) was significantly 

associated with the risk of PCR positive results for Giardia spp. and Cryptosporidium spp. in 
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both dogs and cats. Region was significantly associated with Cryptosporidium spp. in both dogs 

and cats, whereas season was only associated with Giardia spp. in dogs. 

Chapter 3 describes the validation and optimization a previously published 60 kDa 

glycoprotein (gp60) gene-based PCR assay. The objective of this study was to use the assay to 

subtype C. parvum and C. hominis isolated from human fecal samples. The analytical sensitivity 

of this PCR assay was determined by assaying serial dilutions of C. parvum oocysts and C. 

hominis DNA. The analytic specificity was determined by assaying Cryptosporidium and non-

Cryptosporidium spp. DNA. The gp60 PCR assay consistently detected DNA of C. parvum if 

oocysts were present at 104/mL. The assay was detected the DNA of C. hominis in the lowest 

concentration. 

In Chapter 4, a prospective study was conducted to assess the risk of factors potentially 

associated with Giardia duodenalis and Cryptosporidium spp. infections and estimate the 

prevalence of these two pathogens in senior veterinary students and their pet dogs and cats. A 

structured questionnaire was developed to assess a baseline exposure of the students to large and 

small animals. In addition, a single voluntary sample was requested from students and their dogs 

or cats that live within the household. Giardia duodenalis and Cryptosporidium spp. were 

detected by the PCR and immunofluorescence (IFA) assays in students and their dogs and cats. 

As a result of the recruitment, 51 surveys, 42 human fecal samples, 31 dog fecal samples, and 17 

cat fecal samples were collected. Clinical rotation, track preference, gender, pet ownership and 

farm exposure were factors selected to be evaluated for the risk of both pathogens in senior 

veterinary students. As a result of this evaluation, none of these factors selected was statistically 

associated with the risk of infection due to G. duodenalis or Cryptosporidium spp.  All Giardia 
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isolated from dogs were host-adapted assemblages. However, a zoonotic Cryptosporidium 

genotype (C. parvum subtype family IIa) was identified in one human sample.   

The analysis conducted in this dissertation provided an evaluation of potential risk factors 

associated with giardiasis and cryptosporidiosis in pet dogs and cats. The results of this research 

enhanced the understanding of the disease prevalence of Giardia spp. and Cryptosporidium spp. 

among senior veterinary students and their dogs and cats. The survey collected valuable and 

novel information on the students’ characteristics, student health status, their pets’ health status 

and activities that may have led to an increased risk of infection during their clinical rotations or 

intense handling of small or large animals.  The analysis of the survey provided an evaluation of 

potential risk factors associated with the risk of infection in senior veterinary students. Molecular 

analysis of isolates of human, dog and cat origin helped in differentiating between G. duodenalis 

assemblages and Cryptosporidium spp. genotypes.  

Future directions may include an evaluation for associations of positive test results with 

clinical findings and further studies determining the likelihood dogs or cats are carrying zoonotic 

Giardia spp. or Cryptosporidium spp.. National research is recommended to be conducted to 

identify risk factors in veterinary students from different states in the United States. Additionally, 

a larger study should be performed to determine the baseline exposure of veterinary school 

faculty, specifically, those who work on large animal rotations and collect fecal samples from 

their pet dogs and cats to for genotyping to detail whether zoonotic infections with these two 

protozoans occur.  
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CHAPTER 1: GIARDIA DUODENALIS AND CRYPTOSPORIDIUM SPP.: A REVIEW 

Introduction to Internal Parasites: 

 Most internal parasites that infect dogs and cats and colonize in the gastrointestinal tract 

are worms such as hookworms, roundworms, whipworms and tapeworms and single-celled 

organisms such as coccidia and Giardia.1 In this chapter, G. duodenalis, and Cryptosporidium 

spp. will be addressed in humans, dogs and cats. 

1.1 Giardia duodenalis 

1.1.1 Taxonomy 

Based on the new systematic data for the taxonomical classification of the parasite, 

Giardia duodenalis belongs to the kingdom: Protista; subkingdom: Protozoa; phylum: 

Metamonada; subphylum: Trichozoa; class: Trepomonadea; subclass: Diplozoa; order: Giardiida 

and Family Giardiidae.2 

Giardia was first described in 1859 by Lambl.3 He described a flagellate in the human 

intestine that he named Cercomonas intestinalis. In 1875, Davaine described a strain of Giardia 

that infected a rabbit and called it Hexamita duodenalis.3 Even though the generic name 

described by Davaine was incorrect, Filice (1952) proposed that this name is valid and the 

species name (duodenalis) has priority over (intestinalis) according to the Rules of Zoological 

Nomenclature.4 The latter generic name of Giardia was accepted by several scientists to be used 

to name isolates from humans and animals. Filice suggested in a later evaluation that the 

taxonomy of Giardia would be more meaningful if it was based on the organism morphology not 

the host due to the lack of reliable experimental evidence.3,4 Thus, Filice divided Giardia into 

three morphologically distinct groups based on the shape of the trophozoites and the median 

bodies. In short, the current scientific name of Giardia is Giardia duodenalis.  The use of G. 
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lamblia or G. intestinalis interchangeably is based on personal preference and has no taxonomic 

justification.3,4  

Giardia duodenalis trophozoites, which was the first group of organisms classified by 

Filice, are pyriform-shaped and have a distinctive “claw-hammer” median body and adhesive 

disc as well as four pairs of flagella5 (Figure 1.1). The second group, G. muris species 

trophozoites have rounded median bodies and a rounder trophozoite shape. The third group is G. 

agilis whose trophozoites have long narrow bodies and long club-shaped median bodies. Three 

more species were later identified including G. psittaci, G. ardeae and G. microti (Table 1.1).6-

8,10 

Giardia spp. are single celled organisms that share many biological characteristics with 

anaerobic prokaryotes.6,9 Laboratory classification of G. duodenalis strains defined all species 

using the ribosomal RNA gene sequencing.11,12 In fact, G. duodenalis genotypes are named after 

identifying substantial sequence differences in the glutamate dehydrogenase (GDH), triose-

phosphate isomerase (TPI) and β-giardin (βG) genes using phylogenetic analysis.11,12 The closely 

related genotypes are grouped into assemblages and sub-assemblages. Recent genotypic 

classification of G. duodenalis isolates has identified a change in the rule of sub-assemblage 

grouping that is based on three different loci not genes. Due to the inconsistency of the usage of 

genotype, assemblage, sub-assemblage, and sub-genotype in international literature, and because 

sub-genotype means under the category genotype, one study suggested avoiding the use of sub-

genotype and recommended using genotype, assemblage, and sub-assemblage terms only.11,12 
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Figure 1.1 Giemsa-stained trophozoite of Giardia duodenalis showing multiple flagella, nuclei 
and median bodiesa 

aAdapted from Thompson, RC. The zoonotic significance and molecular epidemiology of 
Giardia and giardiasis. Vet Parasitol. 2004; 126:15–35. doi: 10.1016/j.vetpar.2004.09.008.11 

  

A proposed nomenclature for Giardia duodenalis A-G Assemblages has been recently 

published. In that proposal, assemblage A is called G. duodenalis, assemblage B is G. enterica, 

assemblage C and D are G. canis, assemblage E is G. bovis, assemblage F is G. cati, and 

assemblage G is G. simmondis.13  
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1.1.2 Epidemiology  

Giardiasis was recently added to the World Health Organization’s Neglected Disease 

Initiative. 14 This initiative includes a spectrum of parasitic, bacterial, and viral diseases that are 

widespread in developing countries. Major risk factors that influence the occurrence of the 

disease in such countries can include poverty, climate, and lack of access to medical services. 

These factors, when considered together, lead to an increase in the disease global burden.14 

Multiple factors contribute to the variability in the prevalence estimates of Giardia infection. 

First, giardiasis is only reportable in some countries. Second, the diagnostic methods used have 

variable analytical sensitivity and specificity. Third, many infected people in endemic areas are 

asymptomatic and have no access to the medical care nor they do not seek out medical 

treatment.15 Regardless, G. duodenalis is the most common causes of protozoal diarrhea in most 

countries in the world.15 In a meta-analytic study of giardiasis and cryptosporidiosis in European 

countries, it has been estimated that the prevalence of Giardia is 3.0% in asymptomatic human 

patients and 6.0% in symptomatic ones.16 In a review article published evaluating 33 different 

studies, it was found that prevalence estimates varied drastically and the risk was higher in rural 

areas, among poor communities, in males, among college students, in the elderly, in HIV-

positive patients, and in patients with gastric carcinoma.17 It also has been reported that co-

infections with other parasites frequently occur in patients with giardiasis.18 A mix of prospective 

and retrospective studies in the Netherlands was used to determine the incidence of 

gastroenteritis due to parasitic agents. The target population ages ranged from infants to 65 years 

old. The authors determined the incidence of giardiasis was 3.3% in asymptomatic people 

compared to 5.4% in the symptomatic ones. 19,20 In several European countries, the overall 

incidence rate is about 58 cases per 100,000 persons.19 
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The incidence rates of giardiasis in people in the United States ranged from 1-30 cases 

per 100,000 during the period from 2003-2005. The number of annual reported cases per 

100,000 people in the United States is higher in the northern states than that in the southern 

states.18  

  Giardia outbreaks vary in their occurrence due to the season. For instance, a marked 

seasonality in the onset of illness was described in early summer through early fall.18 Also, the 

odds of disease transmission through summer time is two times higher than other seasons due to 

the increased outdoor activities and swimming.15  

Giardia outbreaks are most frequently waterborne, i.e. the consumption of contaminated 

drinking water).22,23 Before 2007, more than 100 water-related Giardia outbreaks were reported 

worldwide. 24 It was reported that G. duodenalis was responsible for about 132 out of 325 

waterborne outbreaks recorded from World War I until 2003. Of these 132 Giardia outbreaks, 

103 (78%) were associated with contaminated drinking water systems.24 In 2010, a large Giardia 

outbreak in Belgium was caused by consumption of drinking water contaminated with river 

water.25 Generally, waterborne giardiasis is more important than foodborne giardiasis26 because 

of the large water bodies such as rivers or lakes that serve as water supplies for a large 

communities; thus, if water is contaminated with viable Giardia cysts and distributed, a large 

number of individuals who drink this contaminated water can become infected. 

Epidemiologically this is called a point-source outbreak. Transmission in this type of outbreak is 

terminated when the source of contamination is eradicated. Interestingly, the majority of 

waterborne outbreaks were reported in the United States where improved contamination 

detection and monitoring systems for drinking water supply are more likely to be in place. In the 

underdeveloped countries, giardiasis is considered an endemic disease where water supply 
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detection and monitoring systems are usually not in place which puts these countries at an 

increased risk of giardiasis.27 However, in recent years, it was reported that outbreaks associated 

with drinking water have been significantly reduced due to the establishment of water treatment 

and regulations.26  

Giardia duodenalis also has been identified as the cause of recreational water outbreaks. 

28-30 These waters include swimming and wading pools, thermal and other natural springs, fresh 

and marine waters, water parks, interactive fountains, and any other places where water contact 

occurs. Contamination of water bodies occurs due to urban and non-urban run-off, industrial 

pollution, storm waters, and human or animal fecal matter. Contamination of swimming pools is 

often associated with accidental fecal contamination, poor pumping, poor filtration systems, and 

insufficient use of disinfectants.28-30  

In terms of sporadic cases, the routes of transmission usually are unknown. Some studies 

have identified potential risk factors for giardiasis that include: person to person transmission, 

travel to endemic areas, interaction with livestock and consumption of potable and recreational 

fresh water.15 In addition to the risk factors of sporadic giardiasis mentioned above, other studies 

have determined the cause of sporadic cases is because of consumption of contaminated lettuce, 

drinking treated tap water, and consumption of green salads on a daily basis.31,32  

Foodborne giardiasis has received relatively little attention compared to waterborne 

outbreaks and few outbreaks have been reported. These outbreaks have implicated mainly food 

handlers, but direct contamination of foodstuffs is possible. Regardless, foodborne Giardia 

outbreaks are underreported due to the low number of cases identified.27  
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1.1.2.1 Agent 

Giardia cysts are relatively small in size (8-12 µm).33 One feature that influences 

Giardia’s infectivity is that the cysts are readily infectious when excreted in feces into the 

environment. Furthermore, the cysts are extraordinarily stable in the environment and can 

survive from weeks to months.15 The life cycle of Giardia duodenalis consists of two key stages: 

a trophozoite stage and a cyst stage.34,35 An infectious Giardia cyst excysts in the upper part of 

the small intestine to release the two trophozoites. After ingestion by the host, the trophozoites 

will attach to the intestinal epithelial wall and reproduce asexually by the binary fission. The 

trophozoite encysts again after an exposure to the biliary salts to produce immediately infectious 

cysts when passed via feces to the environment. This life cycle is completed within 72 hours 

after ingestion.34,35  

1.1.2.2 Host 

Giardia duodenalis is distributed worldwide and it causes diarrhea in variety of hosts 

including humans. Giardia duodenalis is transmitted via ingestion of the cysts, commonly called 

the fecal – oral route, either directly or indirectly.12 Giardiasis is usually reported in younger 

populations that range in age from 1 to 9 years old and younger adults from 35 to 39 years. Older 

hosts can develop adaptive immunity which results in less cyst excretion; however, they also can 

be considered as a source of infection.36 Research has been conducted to study the adverse health 

effects of Giardia infection in children from underdeveloped countries. The research involved 

investigating whether the health effects followed by Giardia infection are temporary or cause 

long-term health problem such as poor cognitive function or death. However, the possibility that 

Giardia causes long term health problems determined from such research have been 

controversial.15 A study conducted in Guatemala concluded that the reduced age effect observed 
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in diseased children compared to non-diseased was confounded with co-infections with other 

endo-parasites.37 The parents of infected children, especially mothers, are more prone to 

infection with Giardia compared to the general public and outbreaks of giardiasis have been 

reported in daycare centers.15 Additionally, children who have the voluntary consumption 

behavior that tend to eat mud or sand (also known as geophagia or ‘pica’) are more susceptible to 

giardiasis.38 The host immune system can be suppressed due to malnutrition, HIV infection, 

cancer, and immune-suppressive therapy. Immunity can influence the severity of infection due to 

giardiasis in the host. For example, giardiasis is more frequently reported in immune-

compromised individuals compared to immune-competent individuals.39 However, the severity 

of giardiasis in HIV positive individuals is not significantly different from HIV negative 

individuals.39 Also, in immune-compromised individuals’ giardiasis tend to become a chronic 

infection.40  

Physiopathology of Giardiasis 

People can be infected with G. duodenalis without exhibiting any symptoms and can be 

considered healthy carriers.12 The mechanism of pathogenesis that causes some individuals to 

develop clinical signs and others to remain asymptomatic still is not fully understood (Figure 

1.2). Personal risk factors such as the immune status, nutritional status and age of the host can be 

potential risk factors for acquiring the disease. Also, environment-related factors can be 

responsible for differences in the severity of infection.11 Infection with Giardia produce 

alterations in villus and microvillus which can cause decreased crypt/villus ratio, shortening of 

the microvillus brush border and brush border enzyme deficiencies. This outcome is due to 

trophozoite/epithelium interaction and host immune reaction. Also, pathogenesis of giardiasis 

can involve enterocyte apoptosis along with cytoskeletal re-organization induced by trophozoite 
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toxic products which result in an increased epithelial permeability and local disruption of tight-

junctional proteins. 41-43 The toxins excreted by the trophozoites along with the T-cell activation 

lead to a diffuse shortening of brush border microvilli and a decreased activity of the small 

intestinal brush border enzymes, especially lipase, some proteases and the disaccharidases 

lactase, and maltase44 Malabsorption due to giardiasis is associated with an increased number of 

intraepithelial lymphocytes and a decreased villus to crypt ratio. The malabsorptive diarrhea can 

lead to a lower weight gain.45 In addition, the presence of the mucous in diarrheal stool is due to 

the reduced activity of lipase and the increased production of mucine by goblet cells.45 Giardiasis 

can lead to decreased transit time of food in the gut and an increase in gut contractility. The 

increased contractility may explain the abdominal cramps that frequently are reported in 

giardiasis.46  

1.1.2.3 Environmental risk factors 

Generally, surface water can become contaminated with Giardia cysts through the 

discharge of untreated human sewage and/or from urban or rural land drainage containing animal 

fecal waste, especially livestock feces. In fact, the presence of cattle and livestock around water 

resources is considered a risk factor for water contamination with Giardia cysts, especially if 

these animals are infected with this protozoan.12 Usually large rivers and lakes receive 

agricultural runoff and both treated and untreated local wastewater.47 Additionally, aquatic 

rodents such as muskrats, beaver, nutria and wild otter play an important role in water 

contamination with Giardia spp. cysts.12  

One of the risk factors associated with Giardia contamination of the environment is that 

Giardia spp. cysts are readily infectious to the new host once they are excreted in the 

environment and do not require sporulation.48 These cysts are hardy and can survive in surface 
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water and soil for 2-3 months, but the cysts do not persist well in cold environments.49 Another 

factor is that a large number of cysts are shed to the environment from infected animals. The 

prolonged excretion period of infectious cysts to the environment can be another factor that go 

hand in hand with the high excretion rate from infected individuals that contribute to a 

significant environmental contamination.27  

Several challenges can contribute to the persistent of Giardia in the environment. 

According to previous studies, Giardia cysts may remain viable or infective for at least one 

month at low temperatures and in the absence of freeze-thaw cycles.50,51 The survival of the cysts 

is due to their filamentous cyst wall. This wall contains an even ratio of carbohydrate to protein. 

The filament has a unique type of carbohydrates that is not degradative by any enzyme.52 

Second, Giardia cysts are resistant to many water treatment procedures which means treated 

water can be contaminated with Giardia cysts. Third, some Giardia assemblages can be 

zoonotic. This increases the potential for ongoing environmental spread of contamination by 

many mammals.27 Fourth, the spread of disease by transport hosts such as wild and aquatic birds 

and insects can facilitate environmental contamination by Giardia.53-55   

1.1.3 Giardia in Humans  

The infective dose of G. duodenalis for symptomatic humans is relatively low and is 

thought to be about 10 to 100.15 Infected humans shed Giardia cysts intermittently12 up to 2 x 

106/gram of feces.56 Human giardiasis can range from mild or self-limiting illness to severe or 

life threatening. Common clinical symptoms include abdominal cramps and diarrhea, bloating 

and flatulence, nausea and weight loss.12 The illness usually lasts from 1-2 weeks, but in some 

cases it can extend to up to seven weeks. Giardiasis can become chronic illness in malnourished 

children.57   
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Giardia duodenalis usually inhabits the upper part of the small intestine.58 This can be 

attributable to agent factors such as the virulence of the infective strains or the infective dose (i.e. 

number of cysts ingested) or host factors such as age, the status of the immune system at the time 

of infection.15 Human giardiasis can be classified into acute and chronic phases. The acute phase 

is usually short, characterized by flatulence and abdominal distension with cramps, small bowel 

watery diarrhea that becomes greasy, and bulky with mal odors. The chronic phase of giardiasis 

includes malaise, weight loss, and other features of malabsorption. Diarrhea in the chronic phase 

is characterized as pale or yellow, frequent and small in volume.39  

1.1.4 Giardia in Companion Animals 

The G. duodenalis assemblages responsible of infection in dogs are C and D whereas 

assemblage F is responsible for infection in cats. However, assemblages A and B can also infect 

both dogs and cats.59 The estimated prevalence of G. duodenalis in companion animals varies 

depending on the region of the study, the diagnostic method used and the general health 

condition of the host. In the USA, the prevalence estimated for 38 kennel/shelter dogs using 

microscopic examination was 39.0%, whereas the prevalence estimate for 79 household dogs 

using the same method of diagnosis was 34.0%.60 In another study conducted in the USA, the 

estimate of the prevalence was 15.6% for 16,064 clinically affected dogs using a 

immunochromatography (ICG) method61 whereas the prevalence estimate was only 4.0% for 

1,119,293 clinically affected dogs in a study in the USA using microscopic examination.62 The 

prevalence estimates of Giardia in 211,105 cats in a study conducted using microscopic 

examination was relatively low (0.58%) compared to dogs.63 

  Young animals tend to shed more cysts than adult animals do, and this can be attributed to 

the slow development of adaptive immune system by the host.64 Thus, young animals may be 
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more likely to transmit the agent directly to other susceptible hosts as well as contribute to the 

environmental contamination with Giardia cysts.59  

1.1.5 Zoonotic Consideration of Giardia duodenalis 

     Giardia duodenalis was characterized as zoonotic agent by the World Health Organization 

because of the waterborne outbreaks in people by infected beavers.65 Zoonosis means disease can 

be transmitted from animals to humans.66,14 Reverse zoonosis (i.e. infection from humans to 

animals) can also occur with giardiasis.67 The clinical impact of zoonotic transmission due to 

Giardia has not been explained yet. Among G. duodenalis eight assemblages that include 

assemblage A-H, assemblages’ A and B are isolated in both humans and animals.67 Assemblage 

A has four subgroups (AI, AII, AIII, and AIV). These subgroups were described by the analysis 

of 10 isolates at 23 genetic loci in a study. The subgroup of assemblage A normally isolated from 

humans is AII. Subgroups AIII and AIV are frequently isolated from animals. The subgroup AI 

is isolated from humans and animals’ isolates; thus, it is the only subgroup that has a zoonotic 

potential.68 Additionally this study supported the existence of four subgroups of assemblage B 

(BI, BII, BIII and BIV).68 The zoonotic potential among the subgroups is minimal if it exists.68 In 

this study, one human isolate characterized in subgroup BIII also was close to subgroups BI and 

BII. Assemblage B subgroups BIII and BIV are commonly isolated from humans. Animal 

isolates belong to subgroups BI and BII. Assemblage A and B can be maintained by direct 

transmission between humans. In addition, these two assemblages can infect companion animals, 

livestock and wildlife.3  

Giardia isolates in assemblage A have a greater zoonotic risk than isolates in assemblage 

B.69 However, some studies have reported the zoonotic potential for assemblage A only.70,71 For 

example, a prospective study conducted in daycare centers in Western Australia concluded that 
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the odds of diarrhea in children infected with assemblage A were 26 times higher than with 

assemblage B of Giardia isolates.72 Furthermore, in a study conducted in Bangladesh, patients 

infected with assemblage A (genotype AII) isolates had the highest probability of developing 

diarrhea compared to patients infected with assemblage B.72-74 However, several studies have 

shown that assemblage B patients can also develop persistent diarrhea.75,76 These studies reveal 

evidence of genetic variation between and within the genotypes3,71,77  

In most case-control studies, companion animals appeared to be negatively associated with 

risk to their owners.47 In fact, the issue of whether there is potential zoonotic transfer of Giardia 

spp. infection between companion animals and their owners is controversial. Numerous studies 

conducted in different parts of the world demonstrated that dogs or cats can be infected with 

host-adapted and/or zoonotic Giardia assemblages.78,79 However, there is a lack of data that 

support the frequency of zoonotic transmission in dogs or cats to humans.11,78 A study conducted 

in northern India indicated that there is potential that dogs that live in close contact with humans 

can transmit Giardia to humans, but the molecular data of the study was rather unconvincing.80 

In contrast, a study conducted in Bangkok, Thailand has provided more epidemiological 

evidence supporting the role of dogs in disease transmission to humans.81 

1.1.6 Diagnosis  

The diagnosis of Giardia infections is difficult in that the clinical signs are not specific to 

the disease. Therefore, the clinical diagnosis is confirmed by detecting the parasite in fecal 

samples. The diagnostic assays for giardiasis include: microscopic examination after fecal 

flotation, immunofluorescence antibody assay (IFA), fecal antigen tests or polymerase chain 

reaction (PCR). The intermittent shedding of Giardia cysts requires collecting multiple samples 

from the same animals to increase the clinical sensitivity of the test. Also, sampling in young 
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animals should be performed routinely at 2-4 weeks of age where the peak excretion is reached 

even if they do not exhibit clinical signs.59 

1.1.6.1 Microscopic Examination  

Giardia trophozoites can only be detected by fecal smear on a fresh sample. Giardia cysts can be 

detected by microscopic examination, either directly (fecal smear) or after concentration with 

sucrose, zinc sulfate or sodium nitrate. Frequently, the cysts are preferred for diagnosis over the 

trophozoites because the latter requires the fecal samples to be fresh.59 The cysts can be stained 

using common stains such as iodine and trichrome.82,83 The main advantage of microscopic 

examination is the lower cost associated with the test and the main disadvantages are the need for 

an experienced and skilled microscopist, the lower sensitivity of the test and that the assay is 

time consuming.59 The test also is less specific because pseudoparasites or other particles can be 

diagnosed as Giardia cysts.84 

1.1.6.2 Antigen Detection 

Antigen detection tests include commercially available assays such as 

immunofluorescence assays (IFA), enzyme-linked immunosorbent assays (ELISA) and rapid 

solid-phase qualitative immunochromatography assays. These assays were developed and 

evaluated for use in human and animal stool samples. 85-87 Even though the IFA assay is 

relatively sensitive,88 there is a higher cost associated with the technique compared to 

microscopy, it is time consuming and requires experienced personnel.59  

The immunochromatography assay uses monoclonal antibodies directed against specific 

cyst wall proteins. This assay enables on-site diagnosis within 15 minutes. The commercial 

antigen detection assays in human medicine include dip-sticks and rapid membrane assays. 

Similarly, in veterinary medicine the SNAP Giardia test (IDEXX Laboratories Inc., Westbrook, 
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Maine, USA) has been approved to be used with dog and cat samples.88 Commercial fecal 

ELISA kits are effective for dogs and cats.59  

1.1.6.3 Molecular Typing 

The lack of morphological differentiation among Giardia spp. isolates is a limitation in 

understanding the taxonomy, epidemiology and public health impact of this important 

pathogen.14 However, molecular tools have expanded the understanding of the variation among 

isolates of this parasite.36 The PCR- based procedures allow for direct characterization of the 

parasite isolates from fecal and environment samples which eliminates the need for laboratory 

culture. Multilocus genotyping has improved the species level taxonomy for Giardia spp. and 

obviates the disagreement of the results when comparing genotypes.89,90 Advanced molecular 

analysis such as multiplexing, real-time PCR and melting curve analysis also facilitate genotype 

and multiple species detection. The value of sub-genotyping or strain characterization tools is to 

help define the map of transmission in an outbreak analysis.47 In some cases, the detection limit 

of the PCR is one cyst which substantially improves the diagnostic sensitivity.91 One of the 

disadvantages of this assay is the presence of PCR inhibitors which are known to occur in DNA 

extracted from fecal samples.92 The other disadvantage is that it can be too expensive and labor 

intensive for some veterinary diagnostic laboratories.92 

1.2 Cryptosporidium spp.  

1.2.1 Taxonomy 

Cryptosporidium spp. belong to the kingdom: Protozoa, phylum: Apicomplexa, class: 

Coccidea, order: Eucoccidiorida, family: Cryptosporidiida.93,94 Cryptosporidium spp. are rather 

divergent from other Coccidea by several characteristics, both genomic and biochemical.95,96 In 
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addition, Cryptosporidium spp. are closely related to Gregarines, which are a diverse group of 

apicomplexan parasites that inhabit vertebrates and invertebrates hosts.97,98 

Ernest Edward Tyzzer, a British physician, was first to describe the genus 

Cryptosporidium and recognize its multispecies nature.90 During this period, the pathogens C. 

muris and C. parvum were identified and named by Tyzzer.98 A few years after Tyzzer, C. 

meleagridis was described by Slavin.94,99 Since Tyzzer’s discovery of Cryptosporidium in 1907, 

more than 40 species and over 40 genotypes have been reported. However, only 25 species have 

been confirmed by the International Code for Zoological Nomenclature (ICZN) in the genus 

Cryptosporidium (Table 1.2). 94,100  

Molecular tools and phylogenetic analysis (that have been widely used to characterize 

Cryptosporidium) have provided insights about the biology, epidemiology and the public health 

significance of this pathogen.90,101 Because hosts can be naturally infected with multiple species 

of Cryptosporidium, differentiating those species based on morphology alone is not sufficient. 

Instead, genetic differences between species that have been identified by PCR and DNA 

sequence analysis have been used to determine the identity of the organism.90 Cryptosporidium 

spp. genes such as 18S ribosomal RNA (rRNA) and 60-kDa glycoprotein (gp60) have been 

widely used as genetic markers to identify different species and help determine the mode of 

transmission.102-104 For instance, the gp60 gene character has tandem repeats and extensive 

sequence differences in the non-repeat regions, that characterize C. parvum and C. hominis each 

to several subtype families.102  

1.2.2 Epidemiology in Humans 

Like Giardia spp., Cryptosporidium spp. were included in the “Neglected Diseases 

Initiative” in 2004.14 Cryptosporidiosis is a reportable disease in the USA105 and the first full year 
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of reporting was 1995.106 The transmission route of Cryptosporidium spp. is fecal-oral. This 

means the pathogen is excreted from the gastro-intestinal tract of an infected person to the 

environment and enter another person’s gut via mouth.107  

Cryptosporidiosis can occur through several modes of exposure. Contaminated water 

(either drinking, recreational or surface water) is one mode of Cryptosporidium exposure and 

likely the most common one. In the USA, the first waterborne outbreak due to Cryptosporidium 

spp. was reported in 1984 in Braun Station, a suburb of San Antonio, Texas.108 Two years later, 

another outbreak due to Cryptosporidium spp. among college students was identified in Carroll 

County in Georgia, USA.109 Since the 1980’s, approximately 43 waterborne outbreaks due to 

Cryptosporidium spp. have been reported worldwide.110 Exposure to reactional water led to nine 

waterborne outbreaks due to Cryptosporidium spp. worldwide during the period from 1987-

1996.110 In 1993, Cryptosporidium spp. caused the largest documented waterborne outbreak in 

Milwaukee, Wisconsin.111 Cryptosporidium was considered the main causative agent of all 

waterborne outbreaks that occurred during 2001-2010 in the USA.112 Each year, an estimated 

748,000 human cases occur in the USA caused by Cryptosporidium spp.113 However, this 

number of cases can be an underestimate because less than 2.0% of cases are reported to health 

authorities.114 Human cryptosporidiosis can result in hospitalizations that can cost an estimate 

$45.8 million annually.115 

Another mode of Cryptosporidium spp. transmission is person-to-person either directly or 

indirectly. Studies suggest that Cryptosporidium spp. can be transmitted sexually.116 Data also 

has shown that the risk of acquiring cryptosporidiosis is higher in homosexual men compared to 

intravenous drug users and HIV positive individuals.116 Another example of person to person 

contact of cryptosporidiosis was in one study that reported 19.0% of family members that have 
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children with cryptosporidiosis in Brazil developed clinical signs of the disease.117 Additionally, 

5.4% of Milwaukee residents developed diarrhea due to contact with infected family members 

during the Cryptosporidium epidemic in 1993.118 Cryptosporidium infections due to contact with 

infected individuals also can occur in hospitals and daycare facilities if sanitation is 

inadequate.117,119  

Cryptosporidium spp. can be transmitted via animal to-human or animal-to-animal 

contact. In one study, dairy farmers had a 44% Cryptosporidium seroprevalence compared to 

24% seroprevalence in individuals that are not exposed to cattle.120 Dogs and cats infected with 

host adapted Cryptosporidium, also can be infected with C. parvum and C. meleagridis that 

mainly infect cattle and birds, respectively.121,122  

Another mode of transmission for Cryptosporidium spp. infection in humans can be via 

food. Even though waterborne cryptosporidiosis is of greater public health significance than 

foodborne cryptosporidiosis,123 it has been recognized that food may play a more significant role 

in the transmission of cryptosporidiosis than formerly believed.124 Cryptosporidium spp. oocysts 

have been detected in shellfish such as oysters, clams, and mussels.125-127 Other foods such as 

raw vegetables128-130, milk and chicken salad have been implicated in causing cases of 

cryptosporidiosis.131,132  

Although uncommon, airborne transmission of Cryptosporidium spp. have been 

suggested in numerous papers.116,133 Generally, the epidemiologic triad of Cryptosporidium spp. 

is described in the flowing sections.  

1.2.2.1 Agent 

Cryptosporidium spp. oocysts are subspherical in shape. The dimensions of the oocysts 

slightly vary among species of Cryptosporidium, but in general, the length ranges from 4.5 to 7.5 
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µm and the width ranges from 4.2 to 5.7 µm.93 The sporozoites of the pathogen are 4.5 to 7.5 µm 

long and 1.2 to 1.8 µm wide. The pathogen completes its sexual and asexual life cycle in one 

host. The ingestion of the sporulated oocysts by the host results in Cryptosporidium spp. 

infection. This pathogen does not reproduce outside the host.105 Additionally, all stages of 

Cryptosporidium spp. life cycle occur within one host93 (Figure 1.3). After ingestion, the oocysts 

excyst in the epithelial cells of the gastrointestinal tract or other tissue such as the respiratory 

tract. This process (excystation) releases the infective sporozoites which become trophozoites. 

These trophozoites asexually proliferate by merogony to produce two types of meronts: type I 

meronts (contain eight merozoites) invade other epithelial cells where they develop into more 

type I meronts or type II meronts. The latter contains four merozoites. Type II meronts do not 

undergo merogony but produce sexual reproductive stages (gamonts).  The zygotes formed by 

sexual reproduction (gametogony between male microgamonts and female macrogamonts) form 

either thick-walled or thin-walled oocysts, each containing four sporozoites. Thick walled 

oocysts then are passed in the infected host feces.134 The oocysts which are shed in the feces are 

readily infectious and highly resistant to environmental conditions.93 This pathogen can cause 

infection with a very low dose. For instance, some studies have demonstrated that healthy 

individuals can be develop cryptosporidiosis with as low as 10 oocysts for C. hominis or C. 

parvum.135,136 It has been reported that infected persons can shed 107–108 oocysts in a single 

bowel movement137 and continue to excrete the oocysts for up to 60 days after recovering from 

the clinical signs of the disease.137  

It has been reported that C. parvum oocysts can remain viable in the environment for 

months.110 The oocysts can resist moderate temperatures at 20˚C and remain infectious to 

suckling mice.138 In experimental conditions, the oocysts lose their infectivity at 55˚C and 
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59.7˚C139,140 and are killed at 71.7˚C.141 Furthermore, the oocysts remain infectious at -5˚C for up 

to two months. Additionally, oocysts survived at -20˚C or -10˚C for a week and 8 hours, 

respectively.138,142 Extreme low temperature like -70˚C resulted in immediate killing of the 

oocysts.143,144 Oocysts are killed in extremely dry conditions or desiccation. Only 3.0% of 

oocysts were viable after 2 hours of desiccation and 100% killing was reported at 4 hours.143,144  

1.2.2.2 Host  

Cryptosporidium spp. infect the small intestine of a wide range of vertebrate hosts, 

including humans. Clinical signs vary from self-limiting to acute or life threatening depending on 

the immune status of the infected host.90 For instance, Cryptosporidium spp. infection is more 

common in children, elderly, and immunosuppressed individuals, and the prognosis of 

cryptosporidiosis can be more severe in patients that are immunocompromised such as HIV+ 

individuals.105,145-147 Cryptosporidiosis occurs more often in children under five years of age114 

(in the USA and developing countries) and clinical signs develop in children younger than two 

years of age in developing countries.148-150 Overall, cryptosporidiosis rates were higher among 

females than males. For specific age groups, rates were higher among males than females aged 

<15 years and higher among females than males aged ≥15 years.105 Even though it is unclear 

why the risk of cryptosporidiosis is elevated in females at this age, females aged ≥15 years are 

more likely to fill caregiver roles for young children, which is considered a risk factor for 

Cryptosporidium infection.151 

Physiopathology 

The mechanism of diarrhea due to Cryptosporidium spp. is not fully understood. It has 

been suggested that diarrhea occurs due to the disruption of microvillus surface area, the 

presence of an enterotoxin, or adhesion factors affecting parasite attachment to host cells.152 
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Generally, diarrhea due to Cryptosporidium spp. is profuse, watery, and non-bloody. Other 

symptoms are non-specific and can include weight loss, abdominal pain, anorexia, fatigue, 

cramps, headache, fever, and vomiting.153 However, diarrhea does not develop in the majority of 

infections and are classified as asymptomatic infections.154-157 Recurrence of symptoms after 

apparent recovery has been reported. Regardless, illness is self-limiting, and symptoms typically 

resolve completely within 2–3 weeks in immunocompetent persons.158  

1.2.2.3 Environment  

The pathogenic oocysts enter the environment in feces from both human and other 

hosts.159 One of the challenges presented by Cryptosporidium spp. is that it is ubiquitous in the 

environment. This characteristic allows for several transmission routes of Cryptosporidium 

infectious to humans and other animals.160 

It has been reported that livestock manure production is approximately 5.45 billion metric 

tons per year.161 In developed countries, most of this manure is deposited to the soil with little or 

no treatment which can result in an accumulation of numerous number of pathogens. Also, 

Cryptosporidium spp. oocysts have been detected in the soil.161  

Other sources that play a role in Cryptosporidium spp. contamination to the environment 

are wild animals and insects. Examples of wild animals are Canadian geese, Peking ducks, bears, 

marsupials, mountain gorillas, and red deer.110,162 Furthermore, insects such as flies, and 

cockroaches have been reported to serve as reservoirs for C. parvum oocysts and capable of 

transmitting of the agent into the environment.110,163  

1.2.3 Cryptosporidium spp. in Companion Animals 

Cryptosporidium canis is a Cryptosporidium genotype that infects dogs.164 This genotype 

was first identified as a dog genotype in 1999165and classified as a species in 2001 on the basis 
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that C. canis oocysts were genetically distinct from all other species and were not infectious to 

mice.164 Cryptosporidium canis and its sub-genotypes (C. canis fox genotype and C. canis 

coyote genotype) have been reported in dogs, foxes and coyotes.101 Cryptosporidium canis also 

has been reported worldwide in humans. 101,166,167  

Canine cryptosporidiosis is more prevalent in pups compared to adult dogs and the risk of 

the disease increases when coinfections with other pathogens are present.168-173 Commonly 

reported clinical signs in dogs include: diarrhea, anorexia, and weight loss. The diarrhea is small 

bowel and is characterized as watery, non–mucoid or non-bloody. Vomiting is uncommon unless 

other abnormalities exist. The small intestines may feel slightly thickened when the abdomen is 

palpated.174  

Cats become infected with C. felis which were first described in 1979.175 When the 

oocysts from a cat were fed to mice, rats, guinea pigs and dogs, and infection was induced only 

in cats. 175,176 Cryptosporidium felis also has been detected in cattle and in human cases.166,167,177-

181 Immunocompetent cats may not develop diarrhea due to cryptosporidiosis and sub-clinically 

infected cats can shed Cryptosporidium oocysts.175,176,182 

Clinical signs of cats with cryptosporidiosis include diarrhea, anorexia and weight loss. 

Factors such as weakened immune system, pre-existing diseases in the intestinal tract or 

coinfection with other infectious or non-infectious causes can lead to the risk of developing 

clinical signs.183-185 Coinfection with pathogens such as Cystoisospora spp., Toxocara cati, 

coronavirus, and Campylobacter have been documented in cats with cryptosporidiosis.184,186-189  

1.2.4 Zoonotic Consideration of Cryptosporidium spp. 

Infection with Cryptosporidium spp. is believed to be primarily zoonotic.47 

Cryptosporidiosis has been reported among veterinarians and farm workers. In these populations, 
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it was found that the oocysts were transmitted from cattle infected with C. parvum. 190,191  In the 

late 1990’s, genetic analysis of C. parvum identified type I which is considered human exclusive 

(now named C. hominis) and type II C. parvum that infects both humans and cattle.47,192,193  

Even though some species are considered host adapted, such as C. canis and C. felis have 

been detected in humans,194-197 the pet’s role in transmitting the infection to their owners has not 

been defined.47 

1.2.5 Laboratory Diagnosis 

To diagnose Cryptosporidium spp. disease or infection in humans and animals, several 

techniques have been employed. These techniques include: ultrastructural examination of biopsy 

material for life cycle stages, microscopic examinations, and molecular based techniques. Types 

of specimens that are submitted for Cryptosporidium detection can include: feces, sputum, bile, 

mucoid secretions and tissue biopsies. Fecal specimens are the primary type of samples 

examined for Cryptosporidium.198 In this section, microscopic examination of the oocysts, 

Cryptosporidium spp. antibody and antigen tests, and molecular testing for Cryptosporidium spp. 

DNA from fecal specimens of humans and companion animals will be discussed.  

1.2.5.1 Microscopic Examination  

Detection of Cryptosporidium spp. oocysts using microscopy has been widely used in the 

diagnostic workup of diarrhea.199 This examination can be performed by several methods.  

Concentration Techniques 

 Prior to the microscopic examination of fecal specimens, it is recommended to use 

concentration procedures for detection of the oocysts. These procedures are useful in maximizing 

the recovery of the oocysts.198 Sheather’s sucrose flotation, zinc sulfate flotation, saturated 

sodium chlorine methods,200 discontinuous sucrose, isopropynic Percoll, discontinuous Percoll, 
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or cesium chloride gradient centrifugation201,202 are used as concentration methods for fecal 

specimens. 

Staining Methods 

 Two types of stains are used to stain the Cryptosporidium spp. oocysts. These include: 

acid-fast staining and non-acid-fast staining. The acid fast Ziehl-Neelsen stain is widely used in 

the Cryptosporidium spp. oocysts staining procedure for fecal smears.203 This stain permits a 

better differentiation from fecal matter after counter-staining with malachite green or methylene 

blue.204 The oocysts have distinct walls and stain from light pink to bright red color. This stain is 

used for oocyst detection.205 The acid-fast carbol-fuchsine also may be used to stain the 

oocysts.204 The oocysts in this type of stain appear ringlike (4-6 µm in diameter) and exhibit a 

characteristic bright fluorescence (brilliant green) against a dark red background.198 Other acid-

fast staining methods include safranin-methylene blue,206 Trichrome,205 and Kinyoun207 stains. In 

the staining procedures using safranin and trichrome stains, the detection of the oocysts can be 

accomplished, but these techniques are not adequate for the confirmation.205 The Kinyoun stain 

is preferable to the enzyme immunoassays.207 This assay is considered the gold standard assay by 

many laboratories for Cryptosporidium spp. oocyst detection.205 The non-acid-fast staining 

techniques include: negative stains such as light–green or mercuramine, and fluorescent stains 

such as phenol auramine.  The advantage of these techniques is that they allow a fast screening 

of the specimen, but they require a fluorescent microscope.204  

Monoclonal antibody based immunofluorescence staining of Cryptosporidium spp. 

oocysts is a type of staining that involves detection of an immunologic reaction between 

antibody and antigen. The IFA detects antigen using a fluorescent antibody performed either 

directly or indirectly. The direct IFA method involves the conjugation of a specific monoclonal 
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immunoglobulin (antibody) with a fluorescent dye and this complex is added to a concentrated 

fecal specimen. The product then combines with specific antigen and results in an antigen-

antibody complex. This complex is visualized using a fluorescent microscope. The indirect IFA 

involves adding an unlabeled immunoglobulin (antibody) to the fecal specimen. The antigen-

antibody complex then is labeled with fluorescein-conjugated anti-immunoglobulin antibody 

with the resulting triple complex visualized with a fluorescent microscope.208 Studies have found 

no significant difference in the limit of detection of stool samples from asymptomatic carriers 

when this assay was compared to the acid-fast staining techniques.204   

Wet Mount  

 This type of examination is used for screening of oocysts. It is useful when the specimen 

contains a high number of oocysts. Fresh or concentrated fecal specimens can be examined, 

using either conventional bright light, phase contrast or differential interference contrast 

microscopy without staining of the sample.209 In this method, the oocysts appear as small 

spherical structures (on average 5μm), but misdiagnoses can occur if yeast is present.205 

1.2.5.2 Immunological Methods 

Enzyme-Linked Immunosorbent Assay (ELISA) 

 The enzyme-linked immunosorbent assay (ELISA) has been used to detect both the 

antibody and antigen of C. parvum. Cryptosporidium spp. such as C. parvum induce mucosal 

infection and C. parvum IgA antibody is released in the feces. Thus, ELISA has been developed 

to detect this antibody in the fecal samples.210 Fecal anti-C. parvum IgA, IgM, and IgG were 

monitored by ELISA in calves that were experimentally and naturally infected with C. 

parvum.210 In this experiment, even though experimentally infected calves had high level of 

colostral antibodies in their feces, they were all infected with C. parvum and three of five died. 
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Calves naturally infected with C. parvum, had only diarrhea. Experimental infection was 

followed by a rise in local anti-C. parvum IgM levels. In naturally infected calves, serum anti-C. 

parvum IgG levels rose during maximal oocyst excretion, whereas serum anti-C. parvum IgA 

levels peaked later than did local IgA levels.210 In addition, ELISA has been used to detect the 

free fecal antigen of Cryptosporidium spp. in feces.134 This approach has been widely applied in 

laboratories that do not have a fluorescent microscope, and in situations when processing batch 

specimens may be crucial due to its increased sensitivity compared to microscopy for 

Cryptosporidium spp. diagnosis.134 Seven commercial ELISA kits were evaluated for their 

sensitivity using the IFA as a reference test. The sensitivity of five kits ranged from 94.5% - 

100% which was equivalent to the sensitivity of the IFA assay.204 However, two ELISA kits 

performed poorly with sensitivity ranged from 29%-93%.204 The sensitivity of a fecal ELISA kit 

was compared to carbol fuchsine stain (microscopy) in the detection of Cryptosporidium in 

canine and feline samples in a study.211 Twenty-six of 270 dog samples (9.5%) tested positive for 

Cryptosporidium by microscopy. However, only eight of 270 (2.95%) tested positive by the fecal 

ELISA. Whereas none of the 100 cats tested positive for Cryptosporidium by microscopy, but 22 

of 100 (22.4%) tested positive by the fecal ELISA, in the same study.211 

1.2.5.3 Molecular Techniques 

Molecular techniques or DNA – based methods include polymerase chain reaction (PCR) 

assays. The PCR assays are characterized by the increased sensitivity, specificity and 

reproducibility. In addition, the PCR product results are easy to interpret.134 It has been reported 

that PCR has increased sensitivity of detection in comparison to microscopic and 

immunological-based techniques for clinical samples.92,212 Several PCR protocols have been 

developed to differentiate Cryptosporidium spp. using 18srRNA, HSP70,162 and GP60213 genes.  
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Molecular techniques also can include sub-genotyping tools. These tools are helpful in 

the epidemiological investigation of outbreak situations because they provide more accurate 

identification of the causative agent and hopefully the mode of transmission.214 Sub-genotyping 

tools available include: DNA sequence analysis of microsatellites,215,216 HSP-70 gene,217 GP60 

gene,218,219 and a double stranded (ds) RNA.220 Molecular tools based the oocyst wall protein 

(COWP) have limited usefulness in genotyping Cryptosporidium spp. of animals because of their 

narrow specificity.221 

There are several benefits in using subtyping tools, especially in understanding the 

epidemiology of Cryptosporidium spp. for instance, these tools provide understanding of the 

complexity of human cryptosporidiosis at the genotype and sub-genotype levels.221 Furthermore, 

subtyping provides understanding of the transmission routes of Cryptosporidium in developing 

and developed countries and has improved the understanding of infection sources in humans.221 

1.2.6 Prevention and Control of Giardiasis and Cryptosporidiosis  

In humans, the prevention of giardiasis can be accomplished by practicing good hygiene 

such as handwashing and avoid direct contact with animal’s feces, especially young animals. 

Because giardiasis is more frequently reported in young children, those with diarrhea should not 

be sent to the daycare until the disease has resolved. Also, hands must be washed after changing 

diapers. Contaminated food or water with Giardia cysts or Cryptosporidium oocysts should be 

avoided. Disinfection of public drinking water is not effective in inactivating Giardia cysts. 

However, Giardia cysts can be inactivated by thorough steam cleaning or using effective 

detergent regimes.222,223  

Routine diagnosis of Cryptosporidium cases and reporting the disease in humans to local 

and national surveillance organizations is an important measure for disease prevention. 
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Furthermore, implementing of water treatment procedures and enforce better regulations can be 

useful in controlling the spread of Cryptosporidium contamination to the environment, yet this 

protocol can be challenging, especially in swimming pools. Additionally, as a preventative 

measure, travel-related causes should be examined and controlled.224 

Prevention measures for Giardia transmission include treating water collected from the 

environment by either filtration or boiling. For premises contaminated with feces containing 

Giardia cysts, steam cleaning or quaternary ammonium compounds should be used. To control 

the spread of the pathogen in infected animals, treatment or bathing of all animals as well as 

prompt removal of feces from infected animals should be implemented. Even though 

Cryptosporidium spp. oocysts are environmentally resistant, they can be controlled by steam 

cleaning. This application can rupture the oocysts wall. Best prevention measures for 

cryptosporidiosis are avoiding contaminated water or food.225 
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1.3 Tables  

Table 1.1 Giardia species based on original taxonomic description and new nomenclature in 
different hostsa 

 
Species Assemblagesb Hosts 
Giardia duodenalis  Assemblagec  A Humans and other primates, dogs, 

cats, livestock, rodents, wild 
mammals 

Assemblaged  B Humans and other primates, dogs, 
cats, wild mammals 

Assemblagee  C/D Dogs, canids 
Assemblagef  E Cattle, hoofed livestock 
Assemblageg  F Cats  
Assemblageh  G Rats  
Assemblagei  H Pinnipeds  
Assemblagei  -- Marsupial (Quenda, bandicoot) 

G. muris  Rodents 
G. microti  Rodents 
G. psittaci  Birds  
G. ardeae  Birds  
G. agilis  Amphibians 

b New proposed nomenclature 
c G. duodenalis  
d G. enterica 
e G. canis 
f G. bovis 
g G. cati 
h G. simondi 
i Novel lineages or likely new species of Giardia that have not been formally described yet 

aModified from Thompson RCA, Monis P. Giardia – from genome to proteome. Adv Parasitol. 
2012;78:57-95. doi: 10.1016/B978-0-12-394303-3.00003-7.226 
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Table 1.2 Cryptosporidium species in different hostsa 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

aAdapted from Ryan U, Xiao L. Taxonomy and molecular taxonomy. In: Cacciò SM, Widmer G, 
ed. Cryptosporidium: Parasite and Disease. New York, NY: Springer; 2014: 3-41. doi 
10.1007/978-3-7091-1562-6.100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Species Host Reference 
C. hominis Humans 227  
C. viatorum Humans 228  
C. parvum Cattle, sheep, humans, whiting (fish), 

barramundi (fish) 
229,230,231  

C. parvum like whiting (fish), barramundi (fish) 229,231 
C. bovis Cattle  232  
C. ryanae Cattle  233  
C. andersoni Cattle  234  
C. xiaoi Sheep, whiting (fish), barramundi (fish) 229,231,235  
C. ubiquitum Sheep/ wildlife 236  
C. felis Cats 175  
C. canis Dogs 164  
C. muris Rodents, (ringed, harbor, hooded) seals   98,237,238 
C. tyzzeri Mice  239  
C. suis Pigs, 240  
C. scrofarum Pigs, whiting (fish), barramundi (fish) 229,231,241 
C. wrairi Guinea pigs 242 
C. cuniculus Rabbits  243,244 
C. fayeri Marsupials 245  
C. macropodum Marsupials 246  
C. meleagridis  Turkey, Indian ring-necked parrot, red-

legged partridge, cockatiels, Bohemian 
waxwing, rufousturle dove, fan-tailed 
pigeon, chicken, quails, Pekin ducks 

99,247-257 
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1.4 Figures 

 
aFrom http://www.cdc.gov/parasites/giardia/pathogen.html 258 

Figure 1.2 Illustration of the Giardia duodenalis life cycle in humansa 

 
 
 

 

 

 

 

http://www.cdc.gov/parasites/giardia/pathogen.html
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aFrom http://www.cdc.gov/parasites/crypto/pathogen.html259 

Figure 1.3 Illustration of the Cryptosporidium parvum life cycle in humansa 
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CHAPTER 2: EVALUATION OF FACTORS ASSOCIATED WITH THE RISK OF TESTING 
POSITIVE TO GIARDIA SPP. AND CRYPTOSPORIDIUM SPP. IN PET DOGS AND CATS 
IN THE USA 

Summary 

 Giardia spp. and Cryptosporidium spp. are protozoans that colonize and reproduce in the 

intestines of several domesticated animals, including dogs and cats and can include a range of 

manifestations from subclinical infection to severe diarrhea. Cryptosporidium spp. infection rates 

in dogs and cats are largely unknown as sensitive diagnostic procedures were not previously 

available.  Polymerase chain reaction (PCR) assays are now available to amplify Giardia spp. 

and Cryptosporidium spp. DNA from feces. 

     The main purpose of this study was to estimate the risk of testing positive for Giardia 

or Cryptosporidium among pet dogs and cats in the USA. Additionally, whether the animals’ 

age, sex, region of origin, and time of the year (season) were associated with the risk of testing 

positive for these pathogens were evaluated. Finally, coinfections due to Giardia spp. and 

Cryptosporidium spp. among the studied pets was quantified.   

Data from fecal samples processed at ANTECH® Diagnostics during the period 2010-

2015 were analyzed for this study. PCR assays were performed on fecal samples from 22,959 

dogs and 16,273 cats.  The assays amplified Giardia spp. and Cryptosporidium spp. in dogs and 

Giardia spp., Cryptosporidium felis and Cryptosporidium spp. in cats. Descriptive analysis, 

univariable, and multivariable logistic regression analyses were conducted to assess associations 

between age, sex, region, and season with the risk of testing positive to either Giardia spp. or 

Cryptosporidium spp. in pet dogs and cats.  

The percentage of Giardia spp. positive test results among pet dogs was 7.7 (95% CI: 

7.3, 8.0). For Cryptosporidium spp. in dogs the percentage of positive results was 5.4 (95% CI: 
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5.1, 5.7).  Whereas in pet cats, the percentage of positives to Giardia spp. was 5.2 (95% CI: 4.9, 

5.5), for C. felis was 5.1 (95% CI: 4.7, 5.4) and for Cryptosporidium spp. was 7.4 (95% CI: 7.0, 

7.9).  

The results of logistic regression models showed that age was a significant factor 

associated with both Giardia spp. and Cryptosporidium spp. in dogs and cats. Region was also 

significantly associated with the risk of Cryptosporidium spp. infections in dogs and cats. Season 

variable was significantly associated with the risk of Giardia spp. in pet dogs only. 

Cryptosporidium spp. was detected in fecal samples of 336 (19.1%) of the 1,762 Giardia 

spp. positive dogs and Giardia spp. was detected in fecal samples of 336 (27.2%) of the 1,237 

Cryptosporidium spp. positive dogs.  For cats, Cryptosporidium spp. was detected in 132 

(15.7%) of 843 Giardia spp. positive cats.  Of the 843 Giardia spp. positive cats, 97 (11.8%) 

were positive for C. felis.   

  Our study results indicate that Giardia spp. and Cryptosporidium spp. are common 

pathogens in pet dogs and cats. In all multivariate models, the results showed that age was a 

significant predictor associated with Giardia spp. and Cryptosporidium spp. in dogs and cats.  

This finding calls suggests that infection by these protozoans should be suspected more highly in 

younger dogs and cats. Our multivariate analysis has also identified that the regional distribution 

is significantly associated with Cryptosporidium spp. infections in dogs and cats, whereas 

seasonal distribution is only associated with the risk of Giardia spp. in pet dogs.  Thus, 

veterinarians in the Midwest region may be more likely to encounter Cryptosporidium infections 

in dogs and cats and veterinarians evaluating dogs with diarrhea in the summer season are more 

likely to encounter Giardia spp. infections.  Coinfections with both pathogens can occur in pet 

dogs and cats.   
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As the histories from these dogs and cats are unknown, additional studies will be required 

to evaluate for associations of positive test results with clinical findings and to determine the 

likelihood dogs or cats are carrying zoonotic Giardia spp. or Cryptosporidium spp.  

2.1 Introduction  

Giardia spp. and Cryptosporidium spp. both are intestinal protozoan parasites that 

colonize and reproduce in the intestines of domesticated animals included dogs and cats and can 

be associated with diarrhea.1 The clinical signs in dogs and cats depend greatly on the status of 

the host immune system, which is considered one determinant of whether disease will occur.2 For 

instance,  immune-competent cats may not develop diarrhea when they are infected with 

Cryptosporidium felis even though the cats are shedding the oocysts.3 However, in 

immunocompromised cats, clinical signs associated with feline cryptosporidiosis can involve 

diarrhea, anorexia and weight loss.4 Another determinant of whether disease will occur is the age 

of the host. For example, infections with Cryptosporidium spp. in dogs are more prevalent in 

young animals compared to older ones.4 Furthermore, cryptosporidiosis can be acute if the 

animal had underlying conditions such as preexisting disease in the intestinal tract, or coinfection 

with other infectious or non-infectious agents.4 For example, cryptosporidiosis in pups can result 

in severe diarrhea when associated with co-infections of parvovirus, distemper or parasitism.5-7 

Intestinal malabsorption was reported in an adult dog with cryptosporidiosis suggesting the 

infection can be chronic.8 

Regarding feline giardiasis, it has been documented that kittens are more susceptible to 

the infection and diarrheal disease than adult cats.9 Diarrhea in cats is usually mucoid, pale, soft, 

has a strong odor, and steatorrhea may also be seen.9  
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Canine giardiasis is common and Giardia associated diarrhea in dogs is usually self-

limiting in immunocompetent animals. Immune-compromised animals may develop chronic 

malabsorption; therefore, weight loss may be detected.10  

The diagnosis of these two protozoans still is challenging for a considerable number of 

veterinary practices. Even for animals presenting with diarrhea, direct diagnosis of the causal 

agent is not easy.11 While conventional diagnosis techniques such as microscopy, immuno-

fluorescence assay (IFA) or enzyme-linked immunosorbent assay (ELISA) are widely used in 

veterinary medicine to diagnose Cryptosporidium spp. and Giardia spp., these techniques have 

several limitations. 

Cryptosporidium spp. diagnosis can be initially performed by microscopic examination 

as initial diagnostic workup. However, this technique is commonly falsely negative due to poor 

sensitivity and cannot be used to determine the species of Cryptosporidium-associated with the 

infection. In addition, infected dogs and cats shed Cryptosporidium spp. intermittently; thus, 

multiple samples from the same infected animal are required to confirm results.12 

The diagnosis of giardiasis can be challenging for a number of reasons and can result in 

underdiagnosis, misdiagnosis or overdiagnosis.13 Giardia cysts are shed intermittently which can 

cause false negative results; therefore, repeated fecal analysis may be required.  Identification of 

Giardia cysts requires a trained microscopists as examination by less trained individual may 

result in a misdiagnosis.12,13 Either pseudoparasites and yeasts can be easily mistaken as Giardia 

cysts giving false positive results.  In addition, Giardia cysts can deteriorate in fecal flotation 

solutions giving false negative results.13   

 Several polymerase reaction chain (PCR) protocols have been used to amplify 

Cryptosporidium spp. and Giardia spp. DNA from fecal specimens of pet dogs and cats and now 
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are available in many commercial diagnostic laboratories.   Genotyping can also be performed 

with some molecular techniques and has been used to study potentially zoonotic species of both 

protozoans and transmission probability to pet owners.14-18  

 Several studies19-31 conducted throughout the USA that have used microscopy, ELISA 

and IFA have shown that intestinal parasites such as Giardia spp. and Cryptosporidium spp. are 

common in pet dogs and cats.  Several of those studies were conducted during the period of 

1999-2012. For instance, the reported prevalence of canine giardiasis ranged from  5.0 % - 7.0% 

in dogs with no clinical signs, 0.4 % - 16.0% in dogs with clinical signs, and 3.0% - 4.0% in dogs 

with unknown clinical signs.19-25 For feline giardiasis, the reported prevalence estimates were 

2.0% in cats with no clinical signs, and ranged from 8.0% - 14.0% in cats with clinical signs, and 

2.0% in cats with unknown clinical signs.22,26-29 The reported prevalence of canine 

cryptosporidiosis in dogs with clinical signs ranged from 2.3% - 5.6%, and 1.7% in dogs without 

clinical signs20,25. Whereas feline cryptosporidiosis estimates in cats with clinical signs ranged 

from 3.9% - 25.0% and from 1.9% - 10.0% in cats without clinical signs.29,30,31  

 Fewer studies have been conducted in different regions of the USA using PCR assays for 

genotyping or confirmation of a positive result for Giardia spp. and Cryptosporidium spp., 

during the period of 2000-2012.20,28,32 In addition, fewer studies have evaluated the prevalence of 

Giardia spp. in dogs and cats by regional distribution in the United States.23,24 

In this retrospective study, we analyzed results of PCR panels performed by a 

commercial service laboratory (ANTECH® Diagnostics) on feces from dogs and cats. The 

purpose of this cross-sectional study was to evaluate associations between the probability of 

testing positive to Giardia spp. and Cryptosporidium spp. and to determine potential risk factors 
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including animals’ age, sex, region of origin, and time of the year in which fecal samples were 

collected (season).    

2.2 Materials and Methods 

2.2.1 Study Samples  

 PCR results of testing for Giardia spp. and Cryptosporidium spp. in canine and feline 

species were obtained from ANTECH® Diagnostic laboratories in January, 2015. The data 

contained information about fecal samples collected by veterinarians from fifty states in the 

United States from the period of 2010-2015. A total of 22,959 PCR canine test results for 

Giardia spp. and Cryptosporidium spp. and a total of 16,273 PCR feline test results for Giardia 

spp., Cryptosporidium spp. and Cryptosporidium felis were analyzed in this study. 

2.2.2 Inclusion and Exclusion Criteria 

 The original data received from ANTECH contained test results of PCR panels for 13 

pathogens. For the purpose of this study, only data regarding Giardia spp. and Cryptosporidium 

spp. in both dogs and cats was evaluated.  Most of the samples were submitted by clinics located 

within the United States; however, the data also contained a few samples from commonwealth 

territories such as the Virgin Islands, Guam and Puerto Rico as well from Japan, Canada and 

South Korea.  Test results from these regions were excluded from the dataset.  The outcome of 

interest in our analysis was a “positive” or “negative” test results for Giardia spp. and 

Cryptosporidium spp. and only complete records containing test result information were included 

in our analysis.    

2.2.3 Data Organization   

 The accession result identifier (i.e. animal identity) was used to track the same animal test 

results for the different pathogens. The fifty states of the United States were placed in the 
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Northeast (Connecticut, Delaware, Washington DC, Massachusetts, Maryland, Maine, New 

Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, Midwest (Iowa, 

Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri, North Dakota, Nebraska, Ohio, South 

Dakota, Wisconsin), South (Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, 

Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West 

Virginia), or West (Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, New 

Mexico, Nevada, Oregon, Utah, Washington, Wyoming) according to the U.S. Census Bureau 

classification for regions as previously described and as displayed in Figure 2.1.23  

The months in which the fecal sample was obtained were grouped and characterized 

based on the meteorological season classification of the northern hemisphere into four season 

categories: spring, summer, fall and winter. Each category contained three months.33 Spring 

months were March, April and May, summer months were June, July, and August, autumn 

months were September, October, and November), and winter months were December, January, 

and February.33 Animal age was categorized and analyzed as a categorical variable including five 

age categories were created: 1) <6 months, 2) 6 months – 1 year, 3) 1-2 years, 4) 3-7 years, and 

5) >7 years similar to previously described.23  

2.2.4 Causal Model 

Causal model was created for the study variables as presented in Figure 2.2. The factors 

in the model are displayed per their causal order and relationship to the outcome variable on the 

far right (i.e. Giardia spp. and Cryptosporidium spp. infections in dogs and cats).  

2.2.5 Regression Model Building Steps 

 Four predictor variables (age, sex, region, and season) were evaluated for inclusion in the 

models. The outcome variable in this study is dichotomous i.e. it represents the probability of 
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testing either positive or negative to either Giardia spp. or Cryptosporidium spp. or both. Thus, 

logistic regression analysis was used to analyze the data and identify associations between risk 

factors and the outcome of interest.  

2.2.5.1 Descriptive Analysis   

  The outcome of interest and risk factors distributions were evaluated using standard 

descriptive statistics. The distribution (%’s) of test positive dogs and cats for Giardia spp. or 

Cryptosporidium spp. was calculated with the corresponding 95% CI, and similarly, the 

frequency distribution for age, sex, region and season, was calculated and presented as 

percentages with the corresponding 95% CI for each category.  

2.2.5.2 Logistic Regression Analysis 

 As a first screening step, associations between individual risk factors and the outcome 

(testing positive or negative to Giardia spp., or Cryptosporidium spp.) were evaluated using 

univariable logistic regression analysis. Odds ratios and their corresponding 95% CIs were 

calculated. To account for the effect of multiple factors in the outcome and to control for 

potential confounding, associations between potential risk factors and the outcome were 

evaluated using a multivariable logistic regression. Factors showing a p-value <0.25 at the 

univariable analysis were used in the multivariable model. The likelihood ratio test (LRT) was 

used to determine the statistical significance of individual predictors in the multivariable model. 

The Hosmer – Lemeshow goodness of fit test was used to evaluate the overall fit of the final 

models generated. The presence of outliers and/or influential observations that could affect the 

model fit was evaluated. This evaluation was conducted by plotting the standardized residuals.34  

  



63 

2.3 Statistical Analysis 

STATA® 13.0 (StataCorp. 2013. Stata Statistical Software: Release 13. College Station, 

TX: StataCorp LP.) was used for data manipulation, descriptive analysis, univariate and 

multivariate logistic regressions. These analyses were carried out to assess and compare of the 

risk of testing positive to Giardia spp. or Cryptosporidium spp., in dogs and cats. Associations 

between two predictor variables were evaluated using Chi-squared tests to determine collinearity. 

Logistic regression analysis was used to obtain the odds ratios with their corresponding 95% 

confidence interval and p-values when comparing the risk of testing positive to Giardia spp. or 

Cryptosporidium spp., in dogs and cats. Statistical significance was declared at p<0.05.  

2.4 Results  

2.4.1 Descriptive Analysis  

The Outcome of Interest 

 The proportion of positive results for Giardia spp. and Cryptosporidium spp. in dogs and 

cats are shown in Tables 2.1-2.2. In total, 1,762 dogs were positive to Giardia spp., representing 

7.7% (95% CI: 7.3, 8.0%) of the dog samples. In total, 1,237 dogs were positive to 

Cryptosporidium spp. representing 5.3% (95% CI: 5.1, 5.7%) of all dog samples.  For cats, the 

percentage of positives for Giardia spp. was 5.2% (95% CI: 4.9, 5.5%), C. felis was 5.1% (95% 

CI: 4.7, 5.4%), and Cryptosporidium spp. was 7.4% (95% CI: 7.0, 7.9%) (Table 2.2).    

Coinfections  

Cryptosporidium spp. DNA was amplified from fecal samples of 336 (19.1%) of the 

1,762 Giardia spp. positive dogs and Giardia spp. DNA was amplified from fecal samples of 

336 (27.2%) of the 1,237 Cryptosporidium spp. positive dogs.  For cats, Cryptosporidium spp. 
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DNA was amplified from 132 (15.7%) of 843 Giardia spp. PCR positive cats.  Of the 843 

Giardia spp. PCR positive cat samples, 97 (11.8%) were positive for C. felis DNA.   

Risk Factors Distribution of Dogs and Cats 

 The distribution of dog and cat ages is shown in Table 2.3. The majority of dogs were at 

age between 3-7 years old (29.3%; 95% CI: 29, 30%) whereas the majority of cats were at age > 

7 years old (29.4%; 95% CI: 29, 30%). The sex categories used in this study are described in 

Table 2.4.  As shown in the Table, the majority of dogs were castrated males and spayed females 

(34%; 95% CI: 34, 35%), but the majority of cats were castrated males (42.1%; 95% CI: 41.3, 

42.8%). The analysis of region variable is shown in Table 2.5 for dogs and cats. The majority of 

dogs (38.2%; 95% CI: 37.6, 38.9%) and cats (31.0%; 95% CI: 30.3, 31.7%) were located in the 

west region.  

Four season categories for dogs and cats are shown in Table 2.6. For dogs, the majority 

of samples were submitted in autumn (26.4%; 95% CI: 25.9, 27.0%) as well as for cats (29.9%; 

95% CI: 29.2, 30.6%).  

Giardia spp. PCR Test Results Distribution by the Risk Factors of Dogs 

The distribution of PCR test results (positive or negative) of Giardia spp. for dogs by 

age, sex, region and season are displayed in Table 2.7. For the age variable, the majority of test 

positive dogs were at age < 6 months (19.4%; 95% CI: 18.1, 20.8%). For the sex variable, the 

higher percentage positive were in intact female and male dogs (13.6%, 13.2%), respectively. 

The Midwest region had highest percentage positive compared to other region categories (9.9%; 

95% CI: 8.7, 11.1%). For the season, spring represented highest percent positive dogs for 

Giardia PCR test (8.6%; 95% CI: 7.8, 9.3%).  
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Cryptosporidium spp. PCR Test Results Distribution by the Risk Factors of Dogs 

The distribution of PCR test results of Cryptosporidium spp. for dogs by age, sex, region 

and season are shown in Table 2.8. For the age variable, the majority of test positive dogs were at 

age < 6 months (14.7%; 95% CI: 13.4, 15.9%). For the sex variable, the highest percentage 

positive was in intact female dogs (9.8%; 95% CI: 8.7, 11.0%). The west region had the highest 

percentage positive compared to other region categories (6.8%; 95% CI: 6.3, 7.3%). For the 

season, there was not much variability among the four categories.  

Giardia spp. PCR Test Results Distribution by the Risk Factors of Cats 

The distribution of PCR test results (positive or negative) of Giardia spp. for cats by age, 

sex, region and season are displayed in Table 2.9. For the age variable, the majority of test 

positive cats were at age between 6 months – one-year-old (8.8%; 95% CI: 7.4, 10.3%). For the 

sex variable, the highest percentage positive was in intact female cats (8.1%; 95% CI: 6.9, 9.4%). 

The Midwest region had highest percentage positive compared to other region categories (5.8%; 

95% CI: 4.8, 6.9%). For the season, autumn represented highest percent positive cats for Giardia 

PCR test (5.6%; 95% CI: 5.0, 6.3%). 

Cryptosporidium felis PCR Test Results Distribution by the Risk Factors of Cats 

The distribution of test results (positive or negative) of Cryptosporidium felis for cats by 

age, sex, region and season is shown in Table 2.10. For the age variable, the majority of test 

positive cats were at age between 6 months – one-year-old (10.7%; 95% CI: 9.2, 12.4%). For the 

sex variable, the highest percentage positive was in intact female cats (6.8%; 95% CI: 5.7, 8.0%). 

The west region had highest percentage positive compared to other region categories (6.4%; 95% 

CI: 5.7, 7.1%). For the season, autumn represented highest percent positive cats for C. felis PCR 

test (5.5%; 95% CI: 4.9, 6.2%). 
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Cryptosporidium spp. PCR Test Results Distribution by the Risk Factors of Cats 

The distribution of test results (positive or negative) of Cryptosporidium spp. for cats by 

age, sex, region and season is shown in Table 2.11.  For the age variable, the majority of test 

positive cats were at age between 6 months – one-year-old (15.1%; 95% CI: 13.3, 17.1%). For 

the sex variable, the highest percentage positive was in intact male cats (9.8%; 95% CI: 8.5, 

11.3%). The south region had highest percentage positive compared to other region categories 

(9.1%; 95% CI: 8.3, 10.0%). For the season, autumn represented highest percent positive cats for 

Cryptosporidium spp. PCR test (8.1%; 95% CI: 7.3, 8.9%).  

2.4.2 Univariate Logistic Regression Analysis  

2.4.2.1 Univariate Analysis for Dogs  

Giardia spp.  

The results of univariate logistic regression for individual risk factors for Giardia spp. are 

shown in Table 2.12. For age, all categories were compared to the reference category (>7 years 

old) with 21,622 total dogs with complete data for this factor. There was no difference in the 

odds of testing positive to Giardia spp. when comparing dogs aged 3 -7 years old to dogs older 

than 7 years old (p = 0.62). The odds of testing positive for Giardia spp. in dogs aged 1-2 years 

old were 3.0 times higher than the odds of testing positive for Giardia spp.in dogs older than 7 

years old, and this difference was statistically significant (p < 0.0001). The odds of testing 

positive for Giardia spp. in dogs aged 6 months to one-year-old were 6.6 times higher than the 

odds of testing positive for Giardia spp. in dogs older than 7 years old, and this difference was 

statistically significant (p < 0.0001). The odds of testing positive for Giardia spp. in dogs aged 

less than six months old were 7.8 times higher than the odds of testing positive for Giardia spp. 

in dogs older than 7 years old, and this difference was also statistically significant (p < 0.0001). 



67 

The overall p-value for this variable was p <0.00001; therefore, age category met the p < 0.25 

entry criteria and it was subsequently included in the multivariate logistic regression analysis.  

Regarding sex, all categories were compared to the reference category castrated male 

with 22,629 total dogs with complete data regarding sex. The odds of testing positive to Giardia 

spp. in intact females was 2.6 times higher than in castrated males (p < 0.0001). The odds of 

testing positive for Giardia spp. in intact male dogs were 2.5 times higher than the odds of 

testing positive for Giardia spp. in castrated male dogs (p < 0.0001).  The odds of testing 

positive for Giardia spp. decrease as female cats are spayed (OR= 0.83, p < 0.01). There was no 

difference in the odds of testing positive to Giardia spp. when comparing dogs with unknown 

sex to castrated male dogs (OR = 1.3, p 0.16). The overall p-value for sex was p < 0.00001; 

therefore, sex met the p < 0.25 entry criteria and it was subsequently included in the multivariate 

logistic regression analysis. 

The Northeast region was used as the reference category when comparing the risk of 

testing positive to Giardia spp. among regions. Complete data on region was available for 

22,948 dogs. The odds of testing positive to Giardia spp. in dogs from the Midwest were 1.3 

times higher than those located in the Northeast, and this difference was statistically significant 

(p < 0.0001).  However, there was no difference in the odds of testing positive to Giardia spp. in 

dogs from the Southern (OR = 0.90, p = 0.14) or Western (OR = 1.0, p = 0.85) regions in the 

USA compared to Northeast region. The overall p-value for region was p < 0.0001; therefore, 

region met the p < 0.25 entry criteria and it was subsequently included in the multivariate logistic 

regression analysis. 

Winter was used as the reference category in the season variable with complete 

information being available from 22,959 total dogs. There was no difference in the odds for dog 
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samples submitted in spring compared to samples submitted in winter (p = 0.65). However, the 

odds of testing positive for Giardia spp. in samples submitted in summer were 0.79 times less 

than the odds of testing positive for Giardia spp. in winter time, and this difference was 

statistically significant (p < 0.001). Also, the odds of testing positive for Giardia spp. in samples 

submitted in autumn were 0.87 times the odds of testing positive for Giardia spp. in winter. This 

difference was statistically significant (p = 0.04). The overall p-value for season was p < 0.0003; 

therefore, season met the p < 0.25 entry criteria and it was subsequently included in the 

multivariate logistic regression analysis. 

Cryptosporidium spp.  

The results of univariate logistic regression for individual risk factors for 

Cryptosporidium spp. are shown in Table 2.13. For age, all categories were compared to the 

reference category (> 7 years old) with 21,622 total dogs with complete data for this factor. The 

odds of testing positive for Cryptosporidium spp. in dogs aged 3-7 years old were 0.63 times less 

than the odds of testing positive for Cryptosporidium spp. in dogs older than 7 years old, and this 

difference was statistically significant (p < 0.0001). There was no difference in the odds of 

testing positive to Cryptosporidium spp. when comparing dogs aged 1-2 years old to dogs older 

than 7 years old (p = 0.25). The odds of testing positive for Cryptosporidium spp. in dogs aged 6 

months to one-year-old were 2.1 times higher than the odds of testing positive for 

Cryptosporidium spp. in dogs older than 7 years old, and this difference was statistically 

significant (p < 0.0001). The odds of testing positive for Cryptosporidium spp. in dogs aged less 

than six months old were 4.4 times higher than the odds of testing positive for Cryptosporidium 

spp. in dogs older than 7 years old, and this difference was also statistically significant (p < 

0.0001). The overall p-value for this variable was p < 0.00001; therefore, age category met the p 
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< 0.25 entry criteria and it was subsequently included in the multivariate logistic regression 

analysis.  

Regarding dogs’ sex, all categories were compared to the reference category castrated 

male with 22,630 total dogs with complete data regarding sex. The odds of testing positive to 

Cryptosporidium spp. in intact females was 2.5 times higher than in castrated males (p < 0.0001). 

The odds of testing positive for Cryptosporidium spp. in intact male dogs were 2.3 times higher 

than the odds of testing positive for Cryptosporidium spp. in castrated male dogs (p < 0.0001).  

The odds of testing positive for Cryptosporidium spp. decrease as female cats are spayed (OR= 

0.82, p < 0.02). The odds of testing positive for Cryptosporidium spp. were 1.9 in dogs with 

unknown sex compared to the reference category. This difference was statistically significant (p 

< 0.001). The overall p-value for sex was p < 0.00001; therefore, sex met the p < 0.25 entry 

criteria and it was subsequently included in the multivariate logistic regression analysis. 

The Northeast region was used as the reference category when comparing the risk of 

testing positive to Cryptosporidium spp. among regions. Complete data on region was available 

for 22,948 dogs. The odds of testing positive to Cryptosporidium spp. in dogs from the Midwest 

were 1.8 times higher than those located in the Northeast, and this difference was statistically 

significant (p < 0.0001).  However, there was no difference in the odds of testing positive to 

Cryptosporidium spp. in dogs from the Southern (OR = 1.2, p = 0.12) region. The odds of testing 

positive to Cryptosporidium spp. in dogs from Western region were 1.8 times higher than those 

in the Northeast region and this difference was statistically significant (p < 0.0001).  The overall 

p-value for region was p < 0.00001; therefore, region met the p <0.25 entry criteria and it was 

subsequently included in the multivariate logistic regression analysis. 
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Winter was used as the reference category in the season variable with 22,959 total 

number of dogs for season variable. The univariate analysis for season revealed this variable 

insignificant at 0.05 level of significance. The overall p-value for season was p < 0.60; therefore, 

season did not meet the p < 0.25 entry criteria and it was excluded from the multivariate logistic 

regression analysis. 

2.4.2.2 Univariate Analysis for Cats   

Giardia spp.  

The results of univariate logistic regression for individual risk factors for Giardia spp. are 

shown in Table 2.14. For age, all categories were compared to the reference category (> 7 years 

old) with 15,003 total cats with complete data for this factor. The odds of testing positive for 

Giardia spp. in cats aged 3-7 years old were 2.3 times higher than the odds of testing positive for 

Giardia spp. in cats older than 7 years old, and this difference was statistically significant (p < 

0.0001). The odds of testing positive for Giardia spp. in cats aged 1-2 years old were 4.6 times 

higher than the odds of testing positive for Giardia spp. in cats older than 7 years old, and this 

difference was statistically significant (p < 0.0001). The odds of testing positive for Giardia spp. 

in cats aged 6 months to one-year-old were 5.4 times higher than the odds of testing positive for 

Giardia spp. in dogs older than 7 years old, and this difference was statistically significant (p < 

0.0001). The odds of testing positive for Giardia spp. in cats aged less than six months old were 

4.3 times higher than the odds of testing positive for Giardia spp. in cats older than 7 years old, 

and this difference was also statistically significant (p < 0.0001). The overall p-value for this 

variable was (p < 0.00001); therefore, age category met the (p < 0.25) entry criteria and it was 

subsequently included in the multivariate logistic regression analysis.  
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Regarding cats’ sex, all categories were compared to the reference category castrated 

male with 15,946 total cats with complete data regarding sex. The odds of testing positive to 

Giardia spp. in intact females was 1.9 times higher than in castrated males (p < 0.0001). The 

odds of testing positive for Giardia spp. in intact male dogs were 1.7 times higher than the odds 

of testing positive for Giardia spp. in castrated male dogs (p < 0.0001).  There was no difference 

in the odds of testing positive to Cryptosporidium spp. in spayed female cats (p = 0.34) and cats 

with unknown sex (p = 0.42) compared to castrated males. The overall p-value for sex was (p < 

0.00001); therefore, sex met the (p < 0.25) entry criteria and it was subsequently included in the 

multivariate logistic regression analysis. 

The Northeast region was used as the reference category when comparing the risk of 

testing positive to Giardia spp. among regions. Complete data on region was available for 16, 

269 cats. The univariate analysis for region showed that none of this variables categories was 

significant at (p = 0.05). The overall p-value for region was (p = 0.43); therefore, region did not 

meet the (p < 0.25) entry criteria and it was excluded from the multivariate logistic regression 

analysis. 

Winter was used as the reference category with 16,273 total number of cats for season 

variable. There was no difference in the odds for cat samples submitted in spring compared to 

samples submitted in winter (p = 0.07). In addition, there was no significant difference in the 

odds of testing positive to Giardia for cat samples submitted in summer (p = 0.12) and autumn 

(p = 0.88). The overall p-value for season was (p = 0.08); therefore, season met the (p < 0.25) 

entry criteria and it was subsequently included in the multivariate logistic regression analysis. 

Cryptosporidium felis 
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The results of univariate logistic regression for individual risk factors for 

Cryptosporidium felis are shown in Table 2.15. For age, all categories were compared to the 

reference category (> 7 years old) with 15,003 total cats with complete data for this factor. There 

was no difference in the odds of testing positive to C. felis when comparing cats aged 3-7 years 

old to cats older than 7 years old (p = 0.23). The odds of testing positive for C. felis in dogs aged 

1-2 years old were 3.2 times higher than the odds of testing positive for C. felis in cats older than 

7 years old, and this difference was statistically significant (p < 0.0001). The odds of testing 

positive for C. felis in cats aged 6 months to one-year-old were 6.6 times higher than the odds of 

testing positive for C. felis in cats older than 7 years old, and this difference was statistically 

significant (p < 0.0001). The odds of testing positive for C. felis in cats aged less than six months 

old were 5.6 times higher than the odds of testing positive for C. felis in cats older than 7 years 

old, and this difference was also statistically significant (p < 0.0001). The overall p-value for this 

variable was (p < 0.00001); therefore, age category met the (p < 0.25) entry criteria and it was 

subsequently included in the multivariate logistic regression analysis.  

Regarding cat’s sex, all categories were compared to the reference category castrated 

male with 15,946 total cats with complete data regarding sex. The odds of testing positive to C. 

felis in intact females was 1.4 times higher than in castrated males (p < 0.001). The odds of 

testing positive for C. felis in intact male cats were also 1.4 times higher than the odds of testing 

positive for C. felis in castrated male cats (p < 0.004).  The odds of testing positive for C. felis 

decrease as female cats are spayed (OR = 0.81, p < 0.02). There was no significant difference in 

the odds of testing positive to C. felis in cats with unknown sex compared to the reference 

category (p = 0.34). The overall p-value for sex was (p < 0.00001); therefore, sex met the (p < 
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0.25) entry criteria and it was subsequently included in the multivariate logistic regression 

analysis. 

The Northeast region was used as the reference category when comparing the risk of 

testing positive to C. felis among regions. Complete data on region was available for 16,269 cats. 

The odds of testing positive to C. felis in cats from the Midwest were 2.2 times higher than those 

located in the Northeast, and this difference was statistically significant (p < 0.0001). The odds 

of testing positive to C. felis in cats from Southern region were 2.4 times higher than those in the 

Northeast region and this difference was statistically significant (p < 0.0001).  The odds of 

testing positive to C. felis in cats from Western region were 2.6 times higher than those in the 

Northeast region and this difference was statistically significant (p < 0.0001).  The overall p-

value for region was (p < 0.00001); therefore, region met the (p < 0.25) entry criteria and it was 

subsequently included in the multivariate logistic regression analysis. 

Winter was used as the reference category in the season variable with 16,273 total 

number of cats. There was no significant difference in the odds of testing positive to C. felis 

compared to the reference category (p = 0.69).  The odds of testing positive to C. felis from cat 

samples collected in summer were 0.71 times less than the reference category and this difference 

was statistically significant (p < 0.001). The overall p-value for season was p < 0.002; therefore, 

season met the (p < 0.25) entry criteria and it was subsequently included in the multivariate 

logistic regression analysis. 

Cryptosporidium spp.  

The results of univariate logistic regression for individual risk factors for 

Cryptosporidium spp. are shown in Table 2.16. For age, all categories were compared to the 

reference category (> 7 years old) with 15,003 total cats with complete data for this factor. There 
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was no difference in the odds of testing positive to Cryptosporidium spp. when comparing cats 

aged 3-7 years old to cats older than 7 years old (p = 0.33). The odds of testing positive for 

Cryptosporidium spp. in dogs aged 1-2 years old were 2.8 times higher than the odds of testing 

positive for Cryptosporidium spp. in cats older than 7 years old, and this difference was 

statistically significant (p < 0.0001). The odds of testing positive for Cryptosporidium spp. in 

cats aged 6 months to one-year-old were 5.7 times higher than the odds of testing positive for 

Cryptosporidium spp. in cats older than 7 years old, and this difference was statistically 

significant (p < 0.0001). The odds of testing positive for Cryptosporidium spp. in cats aged less 

than six months old were 4.9 times higher than the odds of testing positive for Cryptosporidium 

spp. in cats older than 7 years old, and this difference was also statistically significant (p < 

0.0001). The overall p-value for this variable was (p < 0.00001); therefore, age category met the 

(p < 0.25) entry criteria and it was subsequently included in the multivariate logistic regression 

analysis.  

Regarding cat’s sex, all categories were compared to the reference category castrated 

male with 15,946 total cats with complete data regarding sex. The odds of testing positive to 

Cryptosporidium spp. in intact females was 1.4 times higher than in castrated males (p < 0.0001). 

The odds of testing positive for Cryptosporidium spp. in intact male cats were 1.5 times higher 

than the odds of testing positive for Cryptosporidium spp. in castrated male cats (p < 0.0001).  

There was no significant difference in the odds of testing positive to Cryptosporidium spp. in 

spayed female cats (p = 0.10) and cats with unknown sex (p = 0.80) compared to the reference 

category. The overall p-value for sex was (p < 0.00001); therefore, sex met the (p < 0.25) entry 

criteria and it was subsequently included in the multivariate logistic regression analysis. 
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The Northeast region was used as the reference category when comparing the risk of 

testing positive to Cryptosporidium spp. among regions. Complete data on region was available 

for 16,269 cats. The odds of testing positive to Cryptosporidium spp. in cats from the Midwest 

were 1.8 times higher than those located in the Northeast, and this difference was statistically 

significant (p < 0.0001). The odds of testing positive to Cryptosporidium spp. in cats from 

Southern region were 2.1 times higher than those in the Northeast region and this difference was 

statistically significant (p < 0.0001).  The odds of testing positive to Cryptosporidium spp. in cats 

from Western region were 2.0 times higher than those in the Northeast region and this difference 

was statistically significant (p < 0.0001).  The overall p-value for region was (p < 0.00001); 

therefore, region met the (p < 0.25) entry criteria and it was subsequently included in the 

multivariate logistic regression analysis. 

Winter was used as the reference category in the season variable with 16,273 total 

number of cats. There was no significant difference in the odds of testing positive to 

Cryptosporidium spp. in cat samples collected in spring (p = 0.62) and samples collected in 

autumn (p = 0.60) compared to the reference category.  The odds of testing positive to 

Cryptosporidium spp. from cat samples collected in summer were 0.81 times less than the 

reference category and this difference was statistically significant (p < 0.02). The overall p-value 

for season was (p < 0.02); therefore, season met the (p < 0.25) entry criteria and it was 

subsequently included in the multivariate logistic regression analysis. 
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2.4.3 Multivariate Logistic Regression Analysis  

2.4.3.1 Multivariate Analysis for Dogs  

Giardia spp. 

The results of multivariate logistic regression are shown in Table 2.17. After adjusting for 

the effect of other factors in the model, age, region and season were included in the final main 

effects model for dogs with Giardia spp..  

As shown in Table 2.17, there was no difference in the odds of testing positive to Giardia 

spp. when comparing 3-7 years old to > 7 years old dogs (OR=0.95, 95% CI: 0.77, 1.2, p = 0.63). 

The odds of testing positive for Giardia spp. in dogs aged 1-2 years old were 3.0 times higher 

than the odds of testing positive for Giardia spp. in dogs older than 7 years old. This difference 

was statistically significant (p < 0.0001) and the 95% CI (2.5, 3.6). The odds of testing positive 

for Giardia spp. in dogs aged 6 months – one-year-old were 6.6 times higher than the odds of 

testing positive for Giardia spp.in dogs older than 7 years old. This difference was statistically 

significant (p < 0.0001) and the 95% CI (5.4, 8.0). The odds of testing positive for Giardia spp.in 

dogs aged <6 months old were 7.8 times higher than the odds of testing positive for Giardia spp. 

in dogs older than 7 years old. This difference was statistically significant (p < 0.0001) and the 

95% CI (6.6, 9.2). 

For region, the odds of testing positive for Giardia spp. in dogs located in the Midwest 

region are 1.3 times higher than dogs located in the Northeast, and this difference was 

statistically significant (p < 0.001) and the 95% CI (1.1, 1.6). The odds of testing positive for 

Giardia spp. in dogs located in the South are 0.84 less than dogs located in the Northeast. This 

difference was statistically significant (p = 0.03) and the 95% CI (0.72, 0.98). However, there 
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was no difference between dogs located in the West than dogs located in the Northeast (OR=1.0, 

p = 0.52) and the 95% CI (0.73, 1.0). 

For the season variable, there was no significant difference in samples submitted in 

spring than those submitted in winter time (OR=1.0, 95% CI: 0.90, 1.2, p = 0.60). However, the 

odds of testing positive to Giardia spp. in samples submitted in the summer time were 0.80 less 

than those submitted in winter time, and this difference was statistically significant (p = 0.002) 

and the 95% CI (0.69, 0.92). Also, the odds of testing positive to Giardia spp. in samples 

submitted in autumn were 0.84 less than those submitted in winter time. This difference was 

statistically significant (p = 0.02) and the 95% CI (0.73, 1.0). The total number of dogs of this 

final model were 21,612.  

Cryptosporidium spp.  

Table 2.18 contained a summary of multivariable analysis for the predictor variables age, 

sex and region with testing positive to Cryptosporidium spp. in dogs as the binary outcome. 

After adjusting for the effect of other factors in the model, age, sex and region were the final 

predictors for dogs with Cryptosporidium spp.  

As shown in Table 2.18, the odds of testing positive to Cryptosporidium spp. in dogs 

significantly decrease as age increase by one year (OR=0.62, 95% CI: 0.50, 0.77, p < 0.0001). 

There was no significant difference of testing positive to Cryptosporidium spp. between dogs 

that are 1-2 years old and those that are more than 7 years old (OR=1.1, 95% CI: 0.90, 1.3, p = 

0.37). However, the odds of testing positive to Cryptosporidium spp. in dogs aged 6 months – 1 

year were 2.0 times higher than those that are more than 7 years old. This difference is 

statistically significant (p < 0.0001) and the 95% CI (1.6, 2.6). In addition, the odds of testing 
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positive to Cryptosporidium spp. in dogs aged < 6 months were 4.0 times higher than those that 

are more than 7 years old and the 95% CI (3.2, 4.8). 

Regarding the sex, there was no significant difference in the probability of testing 

positive to Cryptosporidium spp. in intact females compared to castrated males (OR = 1.2, 95% 

CI: 0.94, 1.4, p = 0.20). Likewise, there was no significant difference in the probability of testing 

positive to Cryptosporidium spp. in intact males compared to castrated males (OR = 1.2, 95% 

CI: 0.95, 1.4, p = 0.10). However, odds of testing positive to Cryptosporidium spp. in spayed 

females decrease by 0.84 compared to castrated males. This difference was statistically 

significant (p = 0.05) and the 95% CI (0.71, 1.0). There was no significant difference in the 

probability of testing positive to Cryptosporidium spp. in unknown sex dogs compared to 

castrated males (OR = 1.4, 95% CI: 0.81, 2.4, p = 0.23).  

For the region variable, the odds of testing positive to Cryptosporidium spp. in dogs 

located in the Midwest were 1.7 times higher than those located in the Northeast. This difference 

was statistically significant (p < 0.0001) and the 95% CI (1.4, 2.1). In contrast, there was no 

difference in the odds of testing positive to Cryptosporidium spp. in dogs located in the South 

and those located in the Northeast (OR=1.1, 95% CI: 0.90, 1.3, p = 0.35). However, the odds of 

testing positive to Cryptosporidium spp. in dogs located in the West were 2.0 times higher than 

those located in the Northeastern region, as shown in Table 2.18 and the 95% CI (1.7, 2.3). The 

total number of dogs of this final model were 21,448. 

2.4.3.2 Multivariate Analysis for Cats 

Giardia spp. 

Regarding multivariate logistic regression models in cats, Table 2.19 represented   a 

summary of multivariable analysis for the predictor variables age and sex with testing positive to 
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Giardia spp. as the binary outcome. After adjusting for the effect of other factors in the model, 

age, and sex were identified as significant predictors for Giardia spp. in cats. 

As shown in Table 2.19, the odds of testing Giardia spp. in cats aged 3-7 years old were 

2.4 times higher than those aged more than 7 years. This difference was statistically significant p 

< 0.0001 and the 95% CI (1.8, 3.2). Also, the odds of testing Giardia spp. in cats aged 1-2 years 

old were 4.5 times higher than those aged more than 7 years. This difference was statistically 

significant p < 0.0001 and the 95% CI (3.4, 5.9). Furthermore, the odds of testing Giardia spp. in 

cats aged 6 months to one-year-old were 5.2 times higher than those aged more than 7 years. 

This difference was statistically significant p < 0.0001 and the 95% CI (4.0, 6.9). Finally, the 

odds of testing Giardia spp. in cats aged less than 6 months were 3.7 times higher than those 

aged more than 7 years. This difference was statistically significant p < 0.0001 and the 95% CI 

(2.8, 4.9).  

The odds of testing positive to Giardia spp. in intact female cats were 1.3 times higher 

than in castrated male cats. The difference was statistically significant (p < 0.0001) and the 95% 

CI (1.1, 1.7). However, the odds of testing positive to Giardia spp. in intact male cats were not 

statistically significant than in castrated male cats (OR = 1.2, p = 0.07) and the 95% CI (0.98, 

1.6). Likewise, the odds of testing positive to Giardia spp. in spayed female cats were not 

statistically significant than in castrated male cats (OR = 0.91, 95% CI: 0.76, 1.1, p = 0.33). 

Also, the odds of testing positive to Giardia spp. in unknown sex cats were not statistically 

significant than in castrated male cats (OR = 0.92, 95% CI: 0.40, 2.1, p = 0.85). The total number 

of cats in this final model were 14,891. 
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Cryptosporidium felis  

Table 2.20 display a summary of multivariable analysis for the predictor variables age, 

region, and season with testing positive to Cryptosporidium felis as the binary outcome. After 

adjusting for the effect of other factors in the model, age, region, and season were identified as 

significant predictors for C. felis in cats. 

As shown in Table 2.20, there was no significant difference for testing positive to C. felis 

in cats that are 3-7 years old compared to cats that are more than 7 years old (OR = 1.2, 95% CI: 

0.88, 1.7, p = 0.21). However, the difference was statistically significant (p < 0.0001) in cats 

aged 1-2 years old compared to the reference category. The odds of testing positive to C. felis in 

cats aged from 1-2 years are 3.3 times higher than in cats that are older than 7 years and the 95% 

CI (2.5, 4.3). The odds of testing positive to C. felis in cats aged from 6 months to one-year-old 

are 6.4 times higher than in cats that are older than 7 years. The difference was statistically 

significant (p < 0.0001) and the 95% CI (4.9, 8.5). Additionally, the odds of testing positive to C. 

felis in cats aged less than 6 months are 5.6 times higher than in cats that are older than 7 years. 

The difference was statistically significant (p < 0.0001) and the 95% CI (4.5, 7.2). 

Regarding region variable, the odds of testing positive to C. felis in cats located in the 

Midwest are 2.1 times higher than in cats that were located in the Northeast. The difference was 

statistically significant (p < 0.0001) and the 95% CI (1.6, 2.8). Also, the odds of testing positive 

to C. felis in cats located in the South were 2.2 times higher than in cats that are located in the 

Northeast. The difference was statistically significant (p < 0.0001) and the 95% CI (1.7, 2.8). 

Furthermore, the odds of testing positive to C. felis in cats located in the West were 2.5 times 

higher than in cats that are located in the Northeast. The difference was statistically significant (p 

< 0.0001) and the 95% CI (2.0, 3.2). 
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Regarding season, there was no significant difference in the odds of testing positive to C. 

felis in cats between samples submitted in spring to samples submitted in winter time (OR=1.0, p 

= 0.77) and the 95% CI (0.83, 1.3). Whereas the odds of testing positive to C. felis in samples 

submitted in summer time were 0.7 times less than in samples submitted in winter time. The 

difference was statistically significant (p = 0.002) and the 95% CI (0.60, 0.88). Lastly, there was 

no significant difference in the odds of testing positive to C. felis in cats between samples 

submitted in autumn to samples submitted in winter time (OR = 1.0, p = 0.94) and the 95% CI 

(0.82, 1.2). The total number of cats for this final model were 14,999.  

Cryptosporidium spp. 

Table 2.21 represented a summary of multivariable analysis for the predictor variables 

age and region with testing positive to Cryptosporidium spp. as the binary outcome. After 

adjusting for the effect of other factors in the model, age, and region were identified as 

significant predictors for Cryptosporidium spp. in cats. 

As shown in Table 2.21, there was no significant difference for testing positive to 

Cryptosporidium spp. in cats that are 3-7 years old compared to cats that are more than 7 years 

old (OR = 1.1, p = 0.30) and the 95% CI (0.88, 1.5). However, the difference was statistically 

significant (p < 0.0001) in cats aged 1-2 years old compared to the reference category. The odds 

of testing positive to Cryptosporidium spp. in cats aged from 1-2 years are 2.8 times higher than 

in cats that are older than 7 years and the 95% CI (2.3, 3.6). Also, the odds of testing positive to 

Cryptosporidium spp. in cats aged from 6 months to one-year-old are 5.7 times higher than in 

cats that are older than 7 years. The difference was statistically significant (p < 0.0001) and the 

95% CI (4.6, 7.2). Additionally, the odds of testing positive to Cryptosporidium spp. in cats aged 
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less than 6 months are 4.9 times higher than in cats that were older than 7 years. The difference 

was statistically significant (p < 0.0001) and the 95% CI (4.0, 5.9). 

Regarding region variable, the odds of testing positive to Cryptosporidium spp. in cats 

located in the Midwest are 1.8 times higher than in cats that are located in the Northeast. The 

difference was statistically significant (p < 0.0001).  Also, the odds of testing positive to 

Cryptosporidium spp. in cats located in the South are 2.0 times higher than in cats that are 

located in the Northeast. The difference was statistically significant (p < 0.0001) and the 95% CI 

(1.7, 2.4). Furthermore, the odds of testing positive to Cryptosporidium spp. in cats located in the 

West are 2.1 times higher than in cats that are located in the Northeast. The difference was 

statistically significant (p < 0.0001) and the 95% CI (1.7, 2.5).  The total number of cats for this 

final model were also 14,999 cats. 

2.4.4 Model Evaluation  

Hosmer – Lemeshow (HL) goodness – of – fit test for Giardia spp. model in dogs 

indicated no significant lack of fit (p = 0.07). For Cryptosporidium spp. model in dogs, the HL 

goodness – of – fit test indicated no significant lack of fit (p = 0.37). The HL goodness – of – fit 

test for Giardia spp. model in cats indicated no significant lack of fit (p = 0.16). For C. felis 

model in cats, the HL goodness – of – fit test indicated no significant lack of fit (p = 0.12) and 

for Cryptosporidium spp. model indicated no significant lack of fit (p = 0.36). The evaluation of 

outliers and/or influential observations showed no effect of these observations on the model fit 

(Figures 2.3-2.4). 

2.5 Discussion 

 Intestinal parasites such as Giardia spp. and Cryptosporidium spp. are common in pet 

dogs and cats in the United States. According to the USA source book in 2012, there are about 
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70 million pet dogs in the United States.34 Several studies have identified the prevalence of 

different intestinal parasites in pets in the USA using diagnostics such as microscopy, ELISA, 

IFA or PCR.20-23,25,26,27,29,30,35 In these studies, sample sizes ranged from 129-16,114 dogs or cats 

or both. Our study is considered novel in that a large data set was evaluated (22,959 pet dogs and 

16,273 pet cats), information was available from all states in the USA, and a standardized and 

sensitive test modality was used (PCR assays). In addition, our study evaluated the prevalence of 

Giardia spp. and Cryptosporidium spp. in pet dogs and cats using the real-time PCR assay and 

evaluated risk factors such as age, sex, region and season. Most veterinarians order PCR tests 

only for dogs and cats with clinical signs (i.e. diarrhea) and not for those without clinical signs. 

Therefore, we suspect the samples collected from dogs and cats in this study were from those 

with diarrhea.  

 The results of this study showed that the prevalence of positive tests for Giardia spp. in 

dog samples was 7.7%. This result falls into the range of prevalence estimates (0.4% – 16.0%) in 

pet dogs in the USA with clinical signs of diarrhea diagnosed by centrifugal fecal flotation, 

ELISA and IFA.19-25 Regarding Cryptosporidium spp. prevalence in pet dogs, the proportion was 

5.4%, and also this result falls within the range of estimates of 2.3% and 5.6% for pet dogs with 

diarrhea diagnosed by microscopy and ELISA.20,25  

Regarding cat percentage of positive estimates, the prevalence of Giardia spp. in 

diarrheic cats was 5.2% as shown in Table 2.2. This estimate was less than prevalence estimates 

(8.0% - 14.0%) of cat giardiasis determined by previous studies.22,26-29 This disagreement in the 

estimates could merely be due to increased false negative rates measured by the PCR assays of 

our study.  Fecal PCR inhibitors are known to lead to false negative results in Giardia PCR 

assays.36 Regarding the prevalence of Cryptosporidium spp. DNA in feline feces, the average of 
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proportion of positives due to C. felis and Cryptosporidium spp. was approximately 6.3% (Table 

2.2). This estimate is within the range of prevalence estimates (3.9% -25.0%) in pet cats with 

diarrhea.29,30,31 

 Co-infections in dogs and cats can occur. Our study showed that nearly 30% of dogs with 

Cryptosporidium spp. were also positive to Giardia spp.  Also, a smaller proportion of cats 

positive to Cryptosporidium were positive to Giardia spp.. One study37 found that dual or triple 

infections are significantly associated with the clinical signs, specifically, diarrhea. In that study, 

the prevalence for Giardia spp. and Cryptosporidium spp.  with bacterial agents was 6.2% and 

triple infection with viral and bacterial agents was approximately 21.9%.37 Also, some studies 

reported that dogs that are naturally infected with Cryptosporidium spp. are likely to be infected 

with Giardia spp.10,38 In a study, cats infected with Giardia spp. were more likely to shed 

Cryptosporidium spp. oocysts.28 Triple or quadruple infections with pathogens other than 

Giardia spp. and Cryptosporidium spp. were not investigated in this study.  Coinfections with 

Giardia spp. and Cryptosporidium spp. are not surprising as both have similar risk factors, are 

immediately infectious when passed in feces, and are both transmitted primarily by fecal-oral 

contact. 

 The distribution of PCR test results with the risk factor, age, showed also that the 

majority of animals tested positive to Giardia spp. and Cryptosporidium spp. in dogs and cats 

were in puppies and kittens less than 6 months old. This indicates that the likelihood of disease 

or infection due to both protozoans is more prevalent in young animals which is with accordance 

with previous study.19 One study conducted nationally found the prevalence of Giardia spp. 

using microscopy examination in dogs that were less than 6 months old was 13.1% compared to 

<1.0% in dogs that were greater than 3 years old.23 In another study, Giardia antigen was 
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detected in 6.1% pet cats that were less than 1 year of age.29  The increased risk of infection due 

to both pathogens in younger animals can be attributed to their immature immune systems.39  

 The descriptive analysis of this showed that the majority were from dogs (69.5%) and 

(73.5%) from cats that were spayed or neutered (Table 2.4).  This is attributed to legislations of 

some states that require pets to be spayed or neutered. However, this procedure is not mandatory, 

but the American Society for the Prevention of Cruelty to Animals (ASPCA) supports 

spay/neuter programs at low to no cost in some states.40 In our study, the risk of testing positive 

to Giardia spp. in dogs was higher in intact males and females (13.4%) compared to castrated 

males and spayed females (5.3%) (Table 2.7). Similarly, the risk of testing positive to 

Cryptosporidium spp. was higher in intact male and female dogs (9.3%) compared to castrated 

males and spayed females (3.8%) (Table 2.8). This result is consistent with different studies 

conducted elsewhere and the reason why the percentage positive is higher in intact males and 

females compared to neutered or spayed is merely related to differences in the exposure to both 

parasites of these two animal groups.41,42 However, one study indicated no significant difference 

of testing positive to Giardia spp. in dogs between intact males or females vs spayed/neutered 

males or females (OR= 1.31 vs 1.0), respectively.19    

 Regarding region, statistics showed that the majority (38.2%) of the dogs were located in 

the Western region (Table 2.5). However, the risk of contracting Giardia spp. was higher in the 

Midwest (9.9%) (Table 2.7). Per the National Oceanic and Atmospheric Administration 

(NOAA), the Midwest region characterized by a wide range of temperature and precipitation 

extremes due to cold air masses from the far north, and warm, humid air masses from the Gulf of 

Mexico.43 Since Giardia cysts are affected by humidity, temperature, and 
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freeze–thaw cycle, climatic conditions of the Midwest region are favorable to those cysts which 

might remain infective for longer periods of time.44,45 A study found that the prevalence of 

Giardia spp. by state was highest in Maine (4.0%) and Colorado (2.6%) and lowest (0.10%) in 

11 different states (WA, ID, ND, IA, OK, AR, LA, MS, AL, GA, and FL). Also, the highest 

regional prevalence of Giardia in pet dogs was reported in the Mountain region (1.4%) followed 

by the New England region (0.80%).19 The actual regional differences in Giardia transmission 

cycles or giardiasis reporting capacity across states might be related to the geographic 

differences in the prevalence estimates of the disease.46 The risk of contracting Cryptosporidium 

spp. in dogs was not different among all four regions, but it was the lowest in the Northeastern 

region (3.8%) (Table 2.8). For cats, most samples also were obtained from the Western region 

(31.0%). Cross-tabulation with the outcome, the risk of contracting Cryptosporidium spp. was 

highest in cats located in the South (9.1%) (Table 2.11) and there was no difference in the risk of 

contracting both Giardia spp. and C. felis (Tables 2.9, and 2.10).    

 The descriptive analysis of the variable, season, showed the highest percentages of 

positives noticed in spring (8.6%) and autumn (7.3%)  (Table 2.7).  This finding is consistent 

with seasonal patterns observed in a different study where the increased rates of the disease can 

be related to the increased outdoor activities (i.e. camping, hiking, swimming, etc.).46  In 

contrast, a study evaluated the prevalence by season or dogs tested positive to Giardia spp. and 

found slight seasonal increases during the winter and summer.19 For dogs with cryptosporidiosis, 

there was no difference in the percentage of positives due to seasonal distributions (Table 2.8).  

For cats with Giardia spp., there was no difference in the percentage of positives due to seasonal 

distributions (Table 2.9). The percentage of positives in cats infected with C. felis was lowest in 

the summer time (3.9%) compared to other seasons (5.4%) (Table 2.10). For cats with 
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Cryptosporidium spp., the percentage of positives was highest in autumn (8.1%) (Table 2.11).  

This finding of variations in percentages positives from season to the other may be coincides 

with the effect of climate on the parasite or host physiology.47,48 

2.6 Conclusion 

 Giardia spp. and Cryptosporidium spp. are common protozoan pathogens that can be 

associated with diarrhea in pet dogs and cats.  Age was identified as significant predictor that is 

associated with the probability of testing positive to Giardia spp. and Cryptosporidium spp. in 

both dogs and cats.  The probability of testing positive to either pathogens was likely in the very 

young animals which calls for more attention should be paid in this population. Additionally, 

region and season were identified as significant predictors of both pathogens in pet dogs and cats 

by the logistic regression models.  One strength of this study was the use of a highly sensitive 

and standardized PCR assay to estimate prevalence rates of the infections.  However, since the 

clinical histories are not known, we cannot use the results to determine associations with 

diarrhea.  Additionally, this study successfully identified risk factors associated with infection in 

a large sample size. This study provided a base of future studies to be conducted for pet dogs and 

cats using PCR test results. Future research may involve an evaluation for associations of 

positive test results with clinical findings in pets. In addition, research should be performed to 

determine the proportion of dogs or cats that are carrying zoonotic species of Giardia spp. and or 

Cryptosporidium spp.. 
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2.7 Tables 
 
Table 2.1 Percentage of positive PCR test results of Giardia spp., Cryptosporidium spp. in dogs 

Pathogen Total Positives Percentage  95% CI 

Giardia spp. 22,959 1,762 7.7 (7.3, 8.0) 
Cryptosporidium spp. 22,959 1,237 5.4 (5.1, 5.7) 

 
Table 2.2 Percentage of positive PCR test results of Giardia spp., Cryptosporidium spp. in cats 

Pathogen Total Positives Percentage 95% CI 
Giardia spp. 16,273 843 5.2 (4.9, 5.5) 
Cryptosporidium felis  16,273 824 5.1 (4.7, 5.4) 
Cryptosporidium spp. 16,273 1,211 7.4 (7.0, 7.9) 

Table 2.3 Dogs and cats age distribution from submitted fecal samples 

Variable (Age) Frequency Percent 95% CI 

Species: 

 

 
 
Dogs 

 

>7 yrs. 6,112 28.1   (28.0, 29.0) 

3-7 yrs. 6,358 29.3 (29.0, 30.0) 

1-2 yrs. 4,254 19.6 (19.0, 20.0) 

6 mo. -1 yr. 1,728 8.0 (7.0, 8.0) 

<6 mo. 3,245 15.0 (14.0, 15.0) 

Total 21,697 100  
 
Cats  

 

>7 yrs. 4,428 29.4 (29.0, 30.0) 

3-7 yrs. 3,173 21.1 (20.0, 22.0) 

1-2 yrs. 2,425 16.1 (16.0, 17.0) 

6 mo. -1 yr.  1,483 9.9 (9.0, 10.0) 

<6 mo. 3,538 23.5 (23.0, 24.0) 

Total 15,047 100  
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Table 2.4 Distribution of fecal samples by sex among dogs and cats 
 
Variable (SEX) Frequency Percent 95% CI 
Species: 

 
 

 
Dogs 

 

Castrated Male (CM) 7,927 34.9 (34.3, 35.0) 
Intact Female (F) 2,651 11.7 (11.3, 12.0) 
Intact Male (M) 3,818 16.8 (16.3, 17.3) 
Spayed Female (SF) 7,866 34.6 (34.0, 35.3) 
Unknown Sex (U) 447 2.0 (1.8, 2.2) 
Total 22,709 100  
 
Cats 

  

Castrated Male (CM) 6,731 42.1 (41.3, 42.8) 
Intact Female (F) 1,941 12.1 (11.6, 12.6) 
Intact Male (M) 1,905 11.9 (11.4, 12.4) 
Spayed Female (SF) 5,023 31.4 (30.8, 32.1) 
Unknown Sex (U) 398 2.5 (2.3, 2.7) 
Total 15,998 100  
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Table 2.5 Distribution of fecal samples by region among dogs and cats 

Variable (REGION) Frequency Percent 95% CI 

Species: 

 

 
 
Dogs 

 

Northeast 6,410 27.8 (27.3,  28.4) 

Midwest 2,612 11.3 (10.9, 11.8) 

South 5,201 22.6 (22.0, 23.1) 

West 8,807 38.2 (37.6, 38.9) 

Total 23,030 100  
 
Cats  

 

Northeast 4,693 28.8 (28.0, 29.5) 

Midwest 2,004 12.3 (11.8, 12.8) 

South 4,571 28.0 (27.3, 28.7) 

West 5,053 31.0 (30.3, 31.7) 
Total 16,321 100  
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Table 2.6 Descriptive statistics of season  
 
Variable (SEASON) Frequency Percent 95% CI 
Species: 

 
  

Dogs 
  

 
Winter (12,1,2) 5,419 23.5 (23.0, 24.1) 
Spring (3,4,5) 5,560 24.1 (23.6, 24.7) 
Summer (6,7,8) 5,972 25.9 (25.4, 26.5) 
Autumn (9,10,11) 6,090 26.4 (25.9, 27.0) 
Total 23,041 100  
Cats 

 
 

Winter (12,1,2) 4,244 26.0 (25.3, 26.7) 
Spring (3,4,5) 3,288 20.1 (19.5, 20.8) 
Summer (6,7,8) 3,909 23.9 (23.3, 24.6) 
Autumn (9,10,11) 4,884 29.9 (29.2, 30.6) 
Total 16,325 100  
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Table 2.7 Distribution of PCR test results for Giardia spp. by age, sex, region and season for 
dogs 
 
Variable Level Negative Positive Total 95% CI 

Age  >7 yrs. 5,909 (97.0%) 183 (3.0%) 6,092 (2.6, 3.5) 
3-7 yrs. 6,156 (97.1%) 181 (2.9%) 6,338 (2.5, 3.3) 
1-2 yrs. 3,881 (91.5%) 359 (8.5%) 4,240 (7.6, 9.3) 
6 mo. – 1 yr.  1,430 (83.1%) 291 (16.9%) 1,721 (15.2, 18.8) 
< 6 mo. 2,604 (80.6%) 628 (19.4%) 3,232  (18.1, 20.8) 
Total 
  

19,980 (92.4%) 1,642 (7.6%) 21,622 
 

  

Sex CM 7,445 (94.2%) 456 (5.8%) 7,901 (5.3, 6.3) 
F 2,283 (86.4%) 358 (13.6%) 2,641 (12.3, 14.9) 
M 3,302 (86.8%) 502 (13.2%) 3,804 (12.1, 14.3) 
SF 7,457 (95.2) 379 (4.8%) 7,837 (4.4, 5.3) 
U 414 (92.6%) 33 (7.4%) 447 (5.1, 10.2) 
Total 20,901 (92.4%) 1,728 (7.6%) 22,629 

  
 

Region  Northeast 5,891 (92.4%) 485 (7.6%) 6,377 (7.0, 8.3) 
Midwest 2,349 (90.1%) 257 (9.9%) 2,606  (8.7, 11.1) 
South 4,814 (93.1%) 356 (6.9%) 5,170  (6.2, 7.6) 
West  8,134 (92.5%) 662 (7.5%) 8,796  (7.0, 8.1) 
Total 21,188 (92.3%) 1,760 (7.7%) 22,948 

  
 

Season  Winter 4,961 (91.7%) 449 (8.3%) 5,410 (7.6, 9.1) 
Spring  5,064 (91.4%) 474 (8.6%) 5,538 (7.8, 9.3) 
Summer 5,549 (93.3%) 397 (6.7%) 5,946  (6.1, 7.3) 
Autumn  5,623 (92.7%) 442 (7.3%) 6,066  (6.6, 8.0) 
Total 21,197 (92.3%) 1,762 (7.7%) 22,959   
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Table 2.8 Distribution of PCR test results for Cryptosporidium spp. by age, sex, region and 
season for dogs 
 
Variab le Level Negative Positive Total 95% CI 

Age >7 yrs. 5,868 (96.3%) 227 (3.7%) 6,091 (3.3, 4.2) 
3-7 yrs. 6,188 (97.6%) 152 (2.4%) 6,339 (2.03, 2.8) 
1-2 yrs. 4,064 (95.8%) 177 (4.2%) 4,240 (3.6, 4.8) 
6 mo. – 1 yr. 1,591 (92.4%) 131 (7.6%) 1,721 (6.4, 9.0) 
<6 mo. 2,759 (85.3%) 474 (14.7%) 3,231 (13.4, 15.9) 
Total 20,461(94.6%) 1,161 (5.4%) 21,622 

 
 

Sex CM 7,581 (95.9%) 323 (4.1%) 7,904 (3.7, 4.5) 
F 2,382 (90.2%) 258 (9.8%) 2,640 (8.7, 11.0) 
M 3,470 (91.3%) 333 (8.8%) 3,803 (7.9, 9.7) 
SF 7,571 (96.6%) 265 (3.4%) 7,836 (3.0, 3.8) 
U 414 (92.6%) 33 (7.4%) 447 (5.1, 10.2) 
Total 21,418 (94.7%) 1,212 (5.4%) 22,630 

 
 

Region Northeast 6,134 (96.2%) 242 (3.8%) 6,376 (3.3, 4.3) 
Midwest 2,433 (93.5%) 170 (6.5%) 2,603 (5.6, 7.5) 
South 4,949 (95.6%) 226 (4.4%) 5,175 (3.8, 5.0) 
West 8,197 (93.2%) 597 (6.8%) 8,794 (6.3, 7.3) 
Total 21,713 (94.6%) 1,235 (5.4%) 22,948 

 
 

Season Winter 5,115 (94.5%) 296 (5.5%) 5,411 (4.9, 6.1) 
Spring 5,235 (94.6%) 298 (5.4%) 5,533 (4.8, 6.0) 
Summer 5,647 (94.9%) 302 (5.1%) 5,949 (4.5, 5.7) 
Autumn 5,725 (94.4%) 341 (5.6%) 6,066 (5.1, 6.2) 
Total 21,722 (94.6%) 1,237 (5.4%) 22,959  
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Table 2.9 Distribution of PCR test results for Giardia spp. by age, sex, region and season for cats  
 
Variable Level Negative Positive Total 95% CI 
Age >7 yrs.  4,335 (98.2%) 78 (1.8%) 4,413 (1.4, 2.2) 

3-7 yrs. 3,037 (96.0%) 128 (4.1%) 3,165 (3.4, 4.8) 
1-2 yrs. 2,234 (92.4%) 184 (7.6%) 2,418 (6.6, 8.7) 
6 mo. – 1 yr. 1,349 (91.2%) 130 (8.8%) 1,479 (7.4, 10.3) 
<6 mo. 
Total 

3,276 (92.9%) 
14,232 (94.9%) 

 

252 (7.1%) 
772 (5.2%) 

3,528 
15,003 

(6.3, 8.0) 

Sex CM 6,412 (95.5%) 299 (4.5%) 6,711 (4.0, 5.0) 
F 1,777 (91.9%) 157 (8.1%) 1,934 (6.9, 9.4) 
M 1,764 (92.9%) 136 (7.2%) 1,900 (6.0, 8.4) 
SF 4,802 (95.9%) 205 (4.1%) 5,007 (3.6, 4.7) 
U 373 (94.7%) 21 (5.3%) 394 (3.3, 8.0) 
Total 15,129 (94.9%) 818 (5.1%) 15,946 

 
 

Region Northeast 4,441 (95.1%) 227 (4.9%) 4,668  (4.3, 5.5) 
Midwest 1,884 (94.2%) 116 (5.8%) 2,000  (4.8, 6.9) 
South 4,324 (94.9%) 232 (5.1%) 4,556  (4.5, 5.8) 
West 4,777 (94.7%) 268 (5.3%) 5,045 (4.7, 6.0) 
Total 15,426 (94.8%) 843 (5.2%) 16,269 

  
 

Season  Winter 3,996 (94.5%) 234 (5.5%) 4,230 (4.9, 6.3) 
Spring  3,124 (95.4%) 150 (4.6%) 3,274  (3.9, 5.4) 
Summer  3,713 (95.2%) 186 (4.8%) 3,899  (4.1, 5.5) 
Autumn 4,597 (94.4%) 273 (5.6%) 4,870  (5.0, 6.3) 
Total 15,430 (94.8%) 843 (5.2%) 16,273   
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Table 2.10 Distribution of PCR test results for Cryptosporidium felis by age, sex, region and 
season for cats 
 
Variable Level Negative Positive Total 95% CI  
Age >7 yrs. 4,336 (98.2%) 79 (1.8%) 4,415 (1.4, 2.2) 

3-7 yrs. 3,094 (97.8%) 69 (2.2%) 3,163 (1.7, 2.8) 
1-2 yrs. 2,282 (94.5%) 134 (5.5%) 2,416 (4.7, 6.5) 
6 mo. – 1 yr. 1,322 (89.3%) 159 (10.7%) 1,481 (9.2, 12.4) 
< 6 mo. 3,202 (90.8%) 326 (9.2%) 3,528 (8.3, 10.2) 
Total 14,236 (94.9%) 767 (5.1%) 15,003 

 
 

Sex CM 6,384 (95.1%) 327 (4.9%) 6,715 (4.4, 5.4) 
F 1,802 (93.2%) 131 (6.8%) 1,934 (5.7, 8.0) 
M 1,777 (93.5%) 124 (6.5%) 1,901 (5.5, 7.7) 
SF 4,807 (96.01%) 200 (4.0%) 5,008 (3.5, 4.6) 
U 379 (96.2%) 15 (3.8%) 394 (2.1, 6.2) 
Total 15,149 (95.0%) 797 (5.0%) 15,946 

 
 

Region Northeast 4,547 (97.4%) 120 (2.6%) 4,667 (2.1, 3.1) 
Midwest 1,892 (94.6%) 108 (5.4%) 2,000 (4.5, 6.5) 
South 4,283 (94.0%) 273 (6.0%) 4,556 (5.3, 6.7) 
West 4,723 (93.6%) 323 (6.4%) 5,046 (5.7, 7.1) 
Total 15,445 (94.9%) 824 (5.1%) 16,269 

 
 

Season  Winter 3,999 (94.6%) 230 (5.4%) 4,229 (4.8, 6.2) 
Spring 3,099 (94.8%) 171 (5.2%) 3,270 (4.5, 6.0) 
Summer 3,749 (96.1%) 153 (3.9%) 3,902 (3.3, 4.6) 
Autumn 4,602 (94.5%) 270 (5.5%) 4,872 (4.9, 6.2) 
Total 15,449 (94.9%) 824 (5.1%) 16,273  
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Table 2.11 Distribution of PCR test results for Cryptosporidium spp. by age, sex, region and 
season for cats 
 
Variable Level Negative Positive Total 95% CI 
Age >7 yrs. 4,282 (97.0%) 133 (3.0%) 4,415 (2.5, 3.6) 

3-7 yrs. 3,055 (96.6%) 108 (3.4%) 3,163 (2.8, 4.1) 
1-2 yrs. 2,222 (92.0%) 194 (8.0%) 2,416 (7.0, 9.2) 
6 mo. – 1 yr. 1,257 (84.9%) 224 (15.1%) 1,481 (13.3, 17.1) 
< 6 mo. 3,063 (86.8%) 465 (13.2%) 3,528 (12.1, 14.3) 
Total 13,879 (92.5%) 1,124 (7.5%) 15,003  

Sex CM 6,244 (93.1%) 467 (7.0%) 6,711 (6.4, 7.6) 
F 1,750 (90.5%) 183 (9.5%) 1,933 (8.2, 10.9) 
M 1,714 (90.2%) 187 (9.8%) 1,901 (8.5, 11.3) 
SF 4,697 (93.8%) 310 (6.2%) 5,007 (5.5, 6.9) 
U 365 (92.6%) 29 (7.4%) 394 (5.0, 10.4) 
Total 14,770 (92.6%) 1,176 (7.4%) 15,946 

 
 

Region Northeast 4,458 (95.5%) 209 (4.5%) 4,667 (3.9, 5.1) 
Midwest 1,848 (92.4%) 152 (7.6%) 2,000 (6.5, 8.8) 
South 4,142 (90.9%) 414 (9.1%) 4,556 (8.3, 10.0) 
West 4,610 (91.4%) 436 (8.6%) 5,046  (7.9, 9.4) 
Total 15,058 (92.6%) 1,211 (7.4%) 16,269 

  
 

Season  Winter  3,902 (92.3%) 327 (7.7%) 4,229  (6.9, 8.6) 
Spring  3,027 (92.6%) 243 (7.4%) 3,270 (6.5, 8.4) 
Summer 3,654 (93.6%) 248 (6.4%) 3,902  (5.6, 7.2) 
Autumn  4,479 (91.9%) 393 (8.1%) 4,872  (7.3, 8.9) 
Total 15,062 (92.6%) 1,211 (7.4%) 16,273   
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Table 2.12 Univariate logistic regression analysis to evaluate associations between individual 
risk factors and the probability of testing positive to Giardia spp. for dogs 

Variable Level OR       95% CI P Value Overall P Value 
Age  >7 yrs.   

3-7 yrs.   
1-2 yrs.   
6 mo. – 1 yr.   
<6 mo.  
  

Ref. 
0.95 
3.0 
6.6 
7.8 

 
0.77 
2.5 
5.4 
6.6 

 
1.2 
3.6 
8.0 
9.2 

   
  0.62 
<0.0001 
<0.0001 
<0.0001 

 
 
 
<0.00001 

Sex  CM 
F 
M 
SP 
U 

Ref. 
2.6 
2.5 
0.83 
1.3 

 
2.2 
2.2 
0.72 
0.90 

 
3.0 
2.8 
0.96 
1.9 

 
<0.0001 
<0.0001 
  0.01 
  0.16 
  

 
 
<0.00001 

Region  Northeast   
Midwest   
South   
West  
  

Ref. 
1.3 
0.90 
1.0 

 
1.1 
0.78 
0.06 

 
1.6 
1.0 
1.1 

 
<0.0001 
  0.14 
  0.85 

 
 
<0.0001 

Season Winter   
Spring   
Summer   
Autumn   

Ref. 
1.0 
0.79 
0.87 

 
0.90 
0.69 
0.76 

 
1.18 
0.91 
1.0 

   
  0.65 
  0.001 
  0.04 

 
 
<0.0003 
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Table 2.13 Univariate logistic regression analysis to evaluate associations between individual 
risk factors and the probability of testing positive to Cryptosporidium spp. for dogs 

Variable Level OR       95% CI P Value Overall P Value 
Age  >7 yrs. 

3-7 yrs.  
1-2 yrs.  
6 mo. – 1 yr. 
<6 mo.  
 

Ref. 
0.63 
1.1 
2.1 
4.4 

 
0.52 
0.92 
1.7 
3.8 

 
0.78 
1.4 
2.7 
5.2 

 
<0.0001 
  0.25 
<0.0001 
<0.0001 

 
 
<0.00001 

Sex  CM 
F 
M 
SP 
U 

Ref. 
2.5 
2.3 
0.82 
1.9 

 
2.1 
1.9 
0.70 
1.3 

 
3.0 
2.6 
1.0 
2.7 

 
<0.0001 
<0.0001 
  0.02 
<0.001 
  

 
 
<0.00001 
 

Region  Northeast  
Midwest  
South  
West  

Ref. 
1.8 
1.2 
1.8 

 
1.4 
0.96 
1.6 

 
2.2 
1.4 
2.2 

 
<0.0001 
  0.12 
<0.0001 
  

 
 
<0.00001 
 

Season Winter  
Spring  
Summer  
Autumn  

Ref. 
0.98 
0.92 
1.0  

 
0.83 
0.78 
0.88 

 
1.2 
1.1 
1.2 

  
  0.84 
  0.35 
  0.72 

   
 
0.60 
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Table 2.14 Univariate logistic regression analysis to evaluate associations between individual 
risk factors and the probability of testing positive to Giardia spp. for cats 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

Variable Level OR   95% CI P Value Overall P Value 

Age  >7 yrs.   
3-7 yrs.   
1-2 yrs.   
6 mo. – 1 yr.  
<6 mo.   
 

Ref. 
2.3 
4.6 
5.4 
4.3 

 
1.8 
3.5 
4.0 
3.3 

 
3.1 
6.0 
7.1 
5.5 

 
<0.0001 
<0.0001 
<0.0001 
<0.0001 

 
 
<0.00001 
 

Sex  CM 
F 
M 
SP 
U 

Ref. 
1.9 
1.7 
0.92 
1.2 

 
1.5 
1.3 
0.76 
0.77 

 
2.3 
2.0 
1.1 
1.9 

 
<0.0001 
<0.0001 
  0.34 
  0.42 
  

 
 
<0.00001 
 

Region  Northeast   
Midwest   
South   
West   
 

Ref. 
1.2 
1.0 
1.1 

 
0.96 
0.87 
0.92 

 
1.5 
1.3 
1.3 

  
  0.11 
  0.61 
  0.32 

   
 
0.43 

Season Winter   
Spring   
Summer   
Autumn   

Ref. 
0.82 
0.85 
1.0 

 
0.66 
0.70 
0.85 

 
1.0 
1.0 
1.2 

 
 0.07 
 0.12 
 0.88 

   
 
0.08 
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Table 2.15 Univariate logistic regression analysis to evaluate associations between individual 
risk factors and the probability of testing positive to Cryptosporidium felis for cats 

Variable Level OR    95% CI P Value Overall P Value  
Age  >7 yrs.  

3-7 yrs.  
1-2 yrs.  
6 mo. – 1 yr. 
<6 mo.  

Ref. 
1.2 
3.2 
6.6 
5.6 

 
0.88 
2.4 
5.0 
4.4 

 
1.7 
4.3 
8.7 
7.2 

  
 0.23 
<0.0001 
<0.0001 
<0.0001 
 

 
 
 
<0.00001 
 

Sex  CM 
F 
M 
SP 
U 

Ref. 
1.4 
1.4 
0.81 
0.77 

 
1.2 
1.1 
0.68 
0.46 

 
1.7 
1.7 
0.97 
1.3 

 
<0.001 
  0.004 
  0.02 
  0.34 
  

 
 
<0.00001 
 

Region   Northeast  
Midwest  
South  
West  

Ref. 
2.2 
2.4 
2.6 

 
1.7 
1.9 
2.1 

 
2.8 
3.0 
3.2 
 

 
<0.0001 
<0.0001 
<0.0001 
  

 
 
<0.00001 
 

Season Winter    
Spring     
Summer  
Autumn  

Ref. 
0.96 
0.71 
1.0 

 
0.78 
0.58 
0.85 

 
1.2 
0.87 
1.2 

  
  0.69 
<0.001 
  0.83 

   
 
0.002 
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Table 2.16 Univariate logistic regression analysis to evaluate associations between individual 
risk factors and the probability of testing positive to Cryptosporidium spp. for cats 

Variable Level OR       95% CI P Value Overall P Value 

Age  >7 yrs.   
3-7 yrs.   
1-2 yrs.   
6 mo. – 1 yr.   
<6 mo.   

Ref. 
1.1 
2.8 
5.7 
4.9 
 

 
0.88 
2.2 
4.6 
4.0 

 
1.5 
3.5 
7.2 
6.0 

  
 0.33 
<0.0001 
<0.0001 
<0.0001 

 
 
 
<0.00001 
 

Sex  CM 
F 
M 
SP 
U 

Ref. 
1.4 
1.5 
0.88 
1.1 

 
1.2 
1.2 
0.76 
0.72 

 
1.7 
1.7 
1.0 
1.6 

 
<0.0001 
<0.0001 
  0.10 
  0.80 
  

 
 
<0.00001 
 

Region   Northeast   
Midwest   
South   
West   

Ref. 
1.8 
2.1 
2.0 

 
1.4 
1.8 
1.7 

 
2.2 
2.5 
2.4 

 
<0.0001 
<0.0001 
<0.0001 
  

 
 
<0.00001 
 

Season Winter     
Spring      
Summer   
Autumn   

Ref. 
0.96 
0.81 
1.0 

 
0.81 
0.68 
0.90 

 
1.1 
0.96 
1.2 

   
  0.62 
  0.02 
  0.60 

   
 
 0.02 

 
 
 
 
 
 

  



102 

Table 2.17 Multivariate logistic regression analysis to evaluate associations between multiple 
risk factors and the probability of testing positive to Giardia spp. for dogs 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable Level Odds Ratio 95% CI 
 

P Value Total No. of 
Dogs 

Age >7 yrs. Ref.     
 3-7 yrs. 0.95 0.77 1.2   0.63 21,612 
 1-2 yrs. 3.0 2.5 3.6 <0.0001  
 6 mo. – 1 yr.  6.6 5.4 8.0 <0.0001  
 <6 mo. 

 
7.8 6.6 9.2 <0.0001  

Region Northeast Ref.     
 Midwest 1.3 1.1 1.6   0.001  
 South 0.84 0.72 0.98   0.03  
 West 1.0 0.92 1.2   0.52  
       
Season Winter Ref.     
 Spring 1.0 0.90    1.2   0.60  
 Summer 0.80 0.69     0.92   0.002  
 Autumn 0.84 0.73     1.0   0.02  
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Table 2.18 Multivariate logistic regression analysis to evaluate associations between multiple 
risk factors and the probability of testing positive to Cryptosporidium spp. for dogs 

 

 

 

 

 

 

 

 

 

 

 

  

Variable Level Odds Ratio     95% CI   P Value Total No. of 
Dogs 

Age >7 yrs. Ref. 
   

 
 3-7 yrs. 0.62 0.50 0.77 <0.0001 21,448 
 1-2 yrs. 1.1 0.90 1.3   0.38  
 6 mo. – 1 yr.  2.0 1.6 2.6 <0.0001  
 <6 mo. 4.0 3.2 4.8 <0.0001  
       
Sex CM Ref.     
 F 1.2 0.94 1.4   0.20  
 M 1.2 0.95 1.4   0.10  
 SP 0.84 0.71 1.0   0.05  
 U 

 
1.4 0.81 2.4   0.23  

Region Northeast Ref.     
 Midwest 1.7 1.4 2.1 <0.0001  
 South 1.1 0.90 1.3   0.35  
 West 2.0 1.7 2.3 <0.0001  
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Table 2.19 Multivariate logistic regression analysis to evaluate associations between multiple 
risk factors and the probability of testing positive to Giardia spp. for cats 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Variable Level Odds Ratio   95% CI P Value Total No. of 
Cats 

Age >7 yrs. Ref. 
   

 
 3-7 yrs. 2.4 1.8 3.2 <0.0001 14,891 
 1-2 yrs. 4.5 3.4 5.9 <0.0001  
 6 mo. – 1 yr. 5.2 4.0 6.9 <0.0001  
 <6 mo. 3.7 2.8 4.9 <0.0001  
 
Sex 

 
CM 

 
Ref. 

    

 F 1.3 1.1 1.7   0.01  
 M 1.2 0.98 1.6   0.07  
 SP 0.91 0.76 1.1   0.33  
 U 0.92 0.40 2.1   0.85  
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Table 2.20 Multivariate logistic regression analysis to evaluate associations between multiple 
risk factors and the probability of testing positive to Cryptosporidium felis for cats 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Level Odds Ratio 95% CI P Value Total No. of 
Cats 

Age >7 yrs. Ref. 
   

 
 3-7 yrs. 1.2 0.88 1.7   0.21 14,999 
 1-2 yrs. 3.3 2.5 4.3 <0.0001  
 6 mo. – 1 yr.  6.4 4.9 8.5 <0.0001  
 <6 mo. 5.6 4.5 7.2 <0.0001  
       
Region Northeast Ref.     
 Midwest 2.1 1.6 2.8 <0.0001  
 South 2.2 1.7 2.8 <0.0001  
  West 2.5 2.0 3.2 <0.0001  
 
Season 

 
Winter 

 
Ref. 

    

 Spring 1.0 0.83 1.3   0.77  
 Summer 0.7 0.60 0.88   0.002  
 Autumn 1.0 0.82 1.2   0.94  
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Table 2.21 Multivariate logistic regression analysis to evaluate associations between multiple 
risk factors and the probability of testing positive to Cryptosporidium spp. for cats 

Variable  Level Odds Ratio 95% CI P Value Total No. of 
Cats 

Age >7 yrs. Ref. 
   

 
 3-7 yrs. 1.1 0.88 1.5   0.30 14,999 
 1-2 yrs. 2.8 2.3 3.6 <0.0001  
 6 mo. – 1 yr.  5.7 4.6 7.2 <0.0001  
 <6 mo. 4.9 4.0 5.9 <0.0001  
 
Region 

 
Northeast 

 
Ref. 

    

 Midwest 1.8 1.4 2.2 <0.0001  
 South 2.0 1.7 2.4 <0.0001  
 West 2.1 1.7 2.5 <0.0001  
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2.8 Figures  
 

 
Figure 2.1 USA Census Bureau classification for regionsa 

aAdapted from http://www.spinward.com/us_map/us_map.htm  

  

http://www.spinward.com/us_map/us_map.htm
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Figure 2.2 A causal model for Giardia spp. in pet dogs in the United States 

 

 

Figure 2.3 Plot of standardized residuals of Giardia spp. and Cryptosporidium spp. model for 
dogs 
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Figure 2.4 Plot of standardized residuals of Giardia spp., C. felis and Cryptosporidium spp. 
model for cats 
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CHAPTER 3: VALIDATION OF A POLYMERASE CHAIN REACTION ASSAY FOR THE 
SUBTYPING OF CRYPTOSPORIDIUM SPP. ISOLATES OF HUMAN ORIGIN 

Summary 

 Cryptosporidium spp. have been associated with diarrhea in a wide range of hosts 

including humans. The objective of this study was to present the optimization and validation of a 

polymerase chain reaction (PCR) assay to subtype Cryptosporidium parvum and 

Cryptosporidium hominis from positive human isolates for application in a study of veterinary 

students.  A published 60 kDa glycoprotein (gp60) gene-based PCR assay was previously 

optimized elsewhere for subtyping of C. parvum and C. hominis. In this study, the gp60 PCR 

assay was validated in negative fecal samples experimentally inoculated with C. parvum oocysts 

and C. hominis DNA. After optimization experiments, the optimal primer concentration (0.2 

µM), DNA volume (2.0 µl) and annealing temperature (55̊ C) were selected to achieve the 

highest sensitivity. The gp60 assay amplified DNA from C. parvum and C. hominis as expected.  

 To evaluate the analytic sensitivity of the gp60 assay, five replicates of serial dilutions for 

C. parvum were prepared in three different methods: Method A involved preparing five sets of 

serial dilutions of the C. parvum oocysts. Method B involved making five sets of dilutions by 

adding 0.25 g of the fecal matter to the purified oocysts. Method C involved making five sets of 

dilutions by adding 2.5 g of fecal matter to the oocysts.  All C. parvum oocysts were at 

concentrations from 106 to 101/mL in PBS-EDTA in each set of dilutions. The lowest limit of 

detection for the gp60 PCR assay was 1x103 oocysts/mL for C. parvum oocysts and 0.001 ng/mL 

for C. hominis DNA, respectively.  

 To determine the analytic specificity of the gp60 PCR assay, DNA was extracted from C. 

parvum, C. canis, C. felis, as well as the C. hominis DNA. In addition, the DNA was extracted 

from non-Cryptosporidium spp. such as Cyclospora cayetanensis Toxoplasma gondii, and 
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Giardia duodenalis. While the gp60 PCR assay amplified DNA of C. hominis and C. parvum, no 

other non – targeted DNA was amplified. 

 In this study, we have presented the optimization and evaluation processes for the gp60 

assay. In our study, method C has been identified to be superior for C. parvum oocysts and it is 

recommended for use in the future research. The gp60 assay optimized is suitable to genotype 

and subgenotype isolate of human origin and this is considered a novel approach for our 

laboratory.  

3.1 Introduction 

 Cryptosporidium spp. are protozoans that can cause gastrointestinal disease in several 

species including cats, dogs and humans. Serologic studies report that 25% or more of the USA 

population has been exposed to Cryptosporidium spp..1    

 Human cryptosporidiosis is mainly caused by Cryptosporidium hominis (previously 

known as the Cryptosporidium parvum anthroponotic genotype or genotype 1) and 

Cryptosporidium parvum.2,3 Cryptosporidium hominis is harbored almost exclusively by 

humans, but C. parvum is found in domestic livestock, wild animals, and humans.3 Since both 

Cryptosporidium spp. are detected in humans, two cycles of infection: the anthroponotic and the 

zoonotic cycles can cause human cryptosporidiosis.3 

 Several molecular techniques have been developed for the differentiation of 

Cryptosporidium at the genotype or species level.4 However, to understand the transmission 

dynamics of human cryptosporidiosis, subtyping within a species is critical. Subtyping analysis 

is more informative than genotyping alone as it can clarify genetic variation on a finer scale. 

Thus, to determine the proportion of C. parvum infections in humans attributable to zoonotic 

transmission, subtyping of this species is crucial.5  
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 One of the popular subtyping tools is the PCR amplification and DNA sequence analysis 

of the 60 kDa glycoprotein (gp60).4 An important feature of this gene is its high degree of 

sequence polymorphism, particularly among C. hominis and C. parvum isolates.2,3  The gp60 

gene has tandem repeats of the serine-coding trinucleotide at the end of the gene and also has 

extensive sequence differences in the non-repeat regions, which categorize C. parvum and C. 

hominis each to several subtype families.4 The gp60 PCR has shown at least 10 subtype allele 

families, IIa–IIj, among C. parvum isolates from humans and animals.6-8 Among these subtype 

families, only IIa and IId have been detected in cattle.8  

 The Center for Companion Animal Studies has extensive experience of performing 

Cryptosporidium spp. genotyping from canine and feline isolates.  However, the Center has not 

performed the gp60 PCR assay on isolates from humans. The hypothesis of this study is that the 

gp60 PCR assay followed by DNA sequencing analysis will allow for the C. parvum human and 

bovine subtype allele families’ differentiation from human isolates as previously reported.   The 

specific aim was for this technique to be optimized for use in a subsequent experiment using 

veterinary student feces (Chapter IV).    

3.2 Materials and Methods  

3.2.1 Gp60 Assay Verification  

 A published gp60 PCR assay was selected from published articles.3,9,10 The assay was 

verified in a feline fecal specimen (that was negative to Cryptosporidium spp. using the IFA and 

PCR assays) and experimentally inoculated with C. parvum oocysts and in C. hominis DNA. The 

sample was then evaluated in serial dilutions.  The DNA of C. parvum oocysts was extracted 

using a FastDNA® Kit (MP Biomedicals, LLC. Solon, OH) as previously described.11 The C. 

parvum and C. hominis isolates were then used for the analytic sensitivity testing.  
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3.2.2 Gp60 Optimization Process 

 The optimization process involved comparing different concentrations of each PCR 

component to determine which combination performs better under our laboratory conditions.  

AmpliTaq Gold™ DNA Polymerase (Life Technologies, Grand Island, NY) and two commercial 

premade, ready to use master mixes, these are: HotStar Taq Master Mix (QIAgen, Valencia, 

CA), and the Fast Cycling PCR Kit (QIAgen, Valencia, CA) were compared against each other. 

Annealing gradient ranged from (50°C - 65°C) were chosen to check which temperature would 

perform best. The primer concentrations (0.1, 0.2, and 0.5 µm) and different DNA volumes (1.0, 

2.0, and 5.0 µl) were tested in the gp60 PCR assay.   

3.2.3 Assay Validation        

 Validation provides the essential evidence to justify the continued use of the assay in 

further research projects.12  

3.2.3.1 Analytic Sensitivity Testing 

 The C. parvum oocysts isolate (99-13) was obtained from a positive cow. It was stored in 

(0.9 x108 /mL) phosphate buffer saline and antibiotics (1,000 U Penicillin 1,000 µg 

Streptomycin) at 4°C prior until required. Pure DNA of C. hominis from a positive human 

patient was donated by the global bioresource center (NR – 2520) of the American Type Culture 

Collection (ATCC/ Manassas, VA) as a commercial source of oocysts was not available.  

 A 1:9 dilution was made with C. parvum oocysts as (10.0 µl of the oocyst solution in 

90.0 µl of PCR water). Then, 10.0 µl of this solution were placed in a hemacytometer in order to 

count the oocysts. This procedure was repeated three times. 

  An average of three counts resulted in enumerating approximately 980 oocysts. The 

hemacytometer calculation was as follows: 980 (oocysts) x 10 (dilution factor) x 

2500=24,500,000 oocysts/mL. The oocysts were diluted to a concentration of 2,450,000 
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oocysts/mL. This stock was serially diluted to create oocyst concentrations from 1 x 106 to 1 x 

101 oocysts/mL. Five replicates of the serial dilutions for the C. parvum oocysts were prepared to 

be used for sensitivity testing.  

 The gp60 PCR assay detection limit was compared in three different methods of 

dilutions. Additionally, to determine the overall performance of the assay, it was compared with 

the IFA as well as two different PCR assays that include the Heat shock protein 70 (hsp70) and 

18SrRNA performed as described previously.13,14 

Method A 

 Cryptosporidium parvum oocysts with a concentration from 106 to 101 oocysts/mL were 

replicated five times in PBS-EDTA dilution.  No fecal matter was added to these concentrations 

using this method.  

Method B 

 Cryptosporidium parvum oocysts with a concentration from 106 to101 oocysts/mL were 

replicated five times in PBS-EDTA dilution. Then, an amount of 0.2-0.25 grams of a feline fecal 

specimen (that was negative to Cryptosporidium spp. using the IFA and PCR assays) was added 

to these concentrations. 

Method C 

 Cryptosporidium parvum oocysts with a concentration from 106 to 101 oocysts/mL were 

replicated five times in 5.0 mL of PBS-EDTA dilution. Then, an amount of 2.5-3.0 grams of a 

feline fecal specimen (that was negative to Cryptosporidium spp. using the IFA and PCR assays) 

was added to these concentrations. The samples then were concentrated using Sheather’s sugar 

centrifugation technique. The DNA for each method of dilutions was extracted using the 

FastDNA® extraction kit.11   
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Cryptosporidium hominis Dilutions: 

 Due to the unavailability of C. hominis oocysts, the three methods of dilutions (A, B and 

C) were not prepared. Instead, DNA of C. hominis with concentration of 10 ng/mL was used to 

make five sets of serial dilutions starting with 1.0 ng/mL to 0.0001 ng/mL.   

3.2.3.2 Analytic Specificity Testing 

 The main purpose of conducting the analytic specificity testing is to confirm whether the 

primers that have been chosen for this assay are binding only to the desired sequences or to 

additional irrelevant sequences. The analytic specificity of the gp60 PCR assay was assessed by 

testing the DNA from a range of Cryptosporidium spp.: C. parvum (obtained from a calf isolate), 

C. hominis (DNA), C. canis, C. felis, and non-Cryptosporidium spp.: C. cayetanensis (obtained 

from a human isolate), T. gondii, and G. duodenalis (obtained from a dog and a cow isolate).  

3.3 Results  

3.3.1 Gp60 Verification and Optimization Process 

 In terms of the assay optimization process, comparing the HotStarTaq and AmpliTaq 

Gold™ DNA Polymerase master mixes showed that the HotStar Taq master mix was more 

efficient because it produced brighter bands and less PCR byproducts compared to the AmpliTaq 

Gold. The Fast Cycling PCR master mix did not produce any bands. Therefore, the HotStar Taq 

master mix was selected for performing all PCR reactions.  The non-specific amplification has 

not occurred in any of the selected annealing temperature, however the highest yield was 

observed in annealing gradient of 55°C. The results of this optimization process were displayed 

in Figure 3.1. In terms of primer and DNA concentrations, optimal primer concentration that has 

worked best was 0.2 µM and 2.0 µl best volume for the DNA template.  
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3.3.2 Gp60 Assay Validation 

3.3.2.1 Analytic Sensitivity  

 To determine the overall performance of the gp60 PCR, this assay was compared to 

18SrRNA PCR assay, hsp70 Cryptosporidium PCR assay, and the IFA.  The maximal number of 

replicates detected by the gp60 assay varied by method (Tables 3.1, 3.2, and 3.3).  All 5 

replicates were positive in method A at the concentration of 106 oocysts/mL, method B at the 

concentration of 106 oocysts/mL, and method C at the concentration of 104 oocysts/mL. The 

lowest concentration of oocysts to be detected in the gp60 assay were 1 of 5 replicates positive at 

the concentration of 104 oocysts/mL in method A, 3 of 5 replicates at the concentration of 103 

oocysts/mL in method B, and 2 of 5 replicates at the concentration of 103 oocysts/mL in method 

C.  The gp60 assay was positive for C. hominis DNA in all 5 replicates at the concentration 

0.001 ng/mL and 2 of 5 replicates at the concentration of 0.0001 ng/mL (Table 3.4).  

 The results were similar for the 18sRNA PCR, the hsp70 PCR assay and the IFA (with 

some slight differences in the concentrations for which the most replicates were positive (Tables 

3.1, 3.2, and 3.3). 

 Cryptosporidium hominis DNA (Table 3.4) was amplified from more replicates at the 

0.0001 ng/mL for the gp60 (2 replicates) and hsp70 assay (4 replicates) than the 18sRNA PCR (0 

replicates). Since C. hominis oocysts were not available, the IFA technique was not performed 

for this method of dilutions. 
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3.3.2.2 Analytic Specificity 

 The results of blasting the primers selected in the C. parvum and C. hominis PCR 

reaction showed that those primers as specific to amplify the DNA of these two pathogens only 

and did not amplify the DNA of other pathogens included in the PCR reaction. As shown in 

Figure 3.2, the gp60 PCR assay revealed no cross-reactions with other genera and detected all 

the C. hominis and two out of six C. parvum samples correctly. 

3.4 Discussion  

 Cryptosporidium species are indistinguishable morphologically and species can only be 

identified using molecular techniques.  The gp60 PCR assay and DNA sequence analysis have 

been widely used in molecular epidemiology because it allows for both genotyping and 

subtyping of Cryptosporidium spp.4 Due to its high sequence polymorphism resolution, 

particularly among C. hominis and C. parvum isolates, and because these two species are 

commonly isolated from human samples, a gp60 PCR assay have been optimized to be applied 

for human samples.  

 In the sensitivity evaluation of the assay, dilutions prepared with purified C. parvum 

oocysts were used to spike feline feces. The use of feline feces instead of the human feces was 

merely because this protocol has been previously used in similar experiments in the laboratory.  

We do not believe that the use of cat feces affected the sensitivity of the assay even though 

human and feline feces were not compared. Our laboratory spiked different fecal matrices 

(bobcats, foxes, and other carnivores) with C. parvum oocysts and similar detection limits were 

observed.  One study showed that spiking cat feces with a known number of C. parvum oocysts 

did not affect the much improved sensitivity of the PCR assay in detecting C. parvum DNA 

compared to the IFA method.17  
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 In these experiments, method A was expected to give the highest analytical sensitivity as 

feces was not present which should increase sensitivity because of the lack of potential PCR 

inhibitors.  One study that stated the presence of PCR inhibitors in the sample matrix can lead to 

a reduced efficiency of the PCR assay itself.19 However, all 3 PCR assays had fewer positive 

replicates at the concentration of 104 oocysts than the IFA, a technique that is predicted to be less 

sensitive than PCR (as was documented in Table 3.3).  These results can only be explained by a 

laboratory error.  The diluted oocysts used in method A were stored at 4̊ C for a much longer 

period of time for method A (two months) compared to the other two methods (two months). 

This storage condition might have negatively affected the amplification yield of the DNA. The 

DNA in low DNA concentration samples might degrade and become unavailable for the PCR 

amplification under such storage situations. One study documented that there was significant 

difference in the amplification yield between samples stored frozen in any buffer and those that 

are stored in 4̊ C.18 Additionally, in method C, concentration technique before DNA extraction 

was performed. This technique is reported to enhance the recovery of Cryptosporidium spp. 

oocysts.15,16   Overall, all replicates were positive consistently only at the concentration of 104 

oocysts/mL regardless of PCR assay.  Due to other published research (as of our knowledge) did 

not report the sensitivity of the gp60, 18SrRNA and the hsp70 PCR assays, we could not 

compare this level of sensitivity (104 oocysts/mL) to that previously reported with these three 

PCR assays.3,13,14 The results of these experiments show that analysis of a single fecal sample in 

a clinically ill person or animal could have false negative results and so the combination of 

assays or evaluating more than one sample might be indicated. 

 Table 3.5 shows the average DNA concentrations for all five replicates in the three 

dilution methods for C. parvum.  In methods B and C, the spiked samples contained a large 
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amount of DNA that can be attributed to the fecal matter. For method C, the hsp70 PCR assay 

performed best compared to other assays, detecting a few more positive replicates at 102 and 103 

oocyst concentrations than the other assays. A possible explanation of this result is that the hsp70 

PCR protocol is nested which increases the sensitivity of this assay.13  

 Since oocysts of C. hominis were not available, the analytic sensitivity of gp60 PCR 

assay could not be completely determined.  In addition, the IFA method could not be assessed at 

all as it requires intact oocysts.  Regardless, the 18SrRNA PCR assay appeared to be less 

sensitive than the other two assays.   This finding may relate to the fact that both the gp60 and 

hsp70 are nested PCR reactions which can be considered more sensitive.  As the C. hominis 

DNA was not diluted in feces, it is unknown the effect PCR inhibitors have on this assay.   

 Evaluation of analytical specificity of the gp60 PCR assay revealed no cross-reactions 

with other genera and detected all the C. parvum and C. hominis isolates correctly. That indicates 

that this PCR assay was 100% specific for C. parvum and C. hominis. Furthermore, another 

study conducted to evaluate the analytical specificity of primers designed to detect C. cuniculus 

using both nested, and real time gp60 PCR assay in a panel of 97 fecal samples contained 

Cryptosporidium spp. and non-Cryptosporidium spp. DNA. The primers amplified all 

Cryptosporidium spp. DNA and did not amplify other non-target DNA.20 The analytic sensitivity 

and specificity of gp60 assay in this study was in accordance with studies conducted 

previously.2,3,9,10 

3.5 Conclusion  

  In the present study, the gp60 PCR assay consistently detected DNA of C. parvum if 

oocysts were present at 104/mL if the spiked fecal sample was concentrated before assay (method 

C).  This method of dilutions is recommended to be used for future fecal samples processing in 
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this research.  The analytic sensitivity of C. hominis in this study was detected in the lowest 

DNA concentration studied, but was not studied in feces and so the effect of fecal inhibitors is 

unknown.  The strength of the optimized Gp60 assay is that it is suitable to genotype and sub-

genotype isolates of human origin.  This assay will be utilized in Chapter 4 of this dissertation.



126 

3.6 Tables 

Table 3.1 Analytic sensitivity of the IFA and PCR assays using purified C. parvum oocysts diluted in PBS-EDTA solution 

Method A 
  

Serial Dilution 
101 
oocysts/mL 

102 
oocysts/mL 

103 
oocysts/mL 

104 
oocysts/mL 

105 
oocysts/mL  

106 
oocysts/mL 

Gp60 0/5 0/5 0/5 1/5 3/5 5/5 
18SrRNA 1/5 1/5 2/5 2/5 4/5 4/5 
Hsp70 0/5 1/5 0/5 1/5 3/5 5/5 
IFA 1/5 2/5 0/5 4/5 5/5 5/5 

 

Table 3.2 Analytic sensitivity of the IFA and PCR assays using C. parvum oocysts spiked into 0.20-0.25 gram of feces 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Method B 
  

Serial Dilutions   

101 
oocysts/mL 

102 

oocysts/mL 
103 
oocysts/mL 

104 
oocysts/mL 

105 
oocysts/mL 

106 
oocysts/mL 

Gp60 0/5  0/5 3/5 4/5  4/5 5/5 

18SrRNA 0/5 0/5 2/5 4/5 5/5 5/5 

Hsp70 0/5 0/5 0/5 2/5 3/5 5/5 

IFA 0/5 0/5 0/5 3/5 5/5 5/5 
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Table 3.3 Analytic sensitivity of the IFA and PCR assays using C. parvum oocysts spiked into 2.0-3.0 grams of feces 
 

 

 

 

 

Table 3.4 Analytic sensitivity of the three PCR assays using dilutions of C. hominis DNA dilutions 

 

 

 

 

 

 

 

Method C 
  

Serial Dilution 

101 
oocysts/mL 

102 
oocysts/mL 

103 
oocysts/mL 

104 
oocysts/mL 

105 
oocysts/mL 

106 
oocysts/mL 

Gp60 0/5 0/5 2/5 5/5 5/5 5/5 

18SrRNA 0/5 0/5 1/5 5/5 5/5 5/5 

Hsp70 0/5 2/5 3/5 5/5 5/5 5/5 

IFA 0/5 0/5 0/5 2/5 3/5 5/5 

C. hominis 
 

Serial Dilution 
1.0 ng/mL 0.1 ng/mL 0.01 ng/mL 0.001 ng/mL 0.0001 ng/mL  

Gp60 5/5 5/5 5/5 5/5 2/5 
18SrRNA 5/5 5/5 5/5 2/5 0/5 
Hsp70 5/5 5/5 5/5 5/5 4/5 
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Table 3.5 DNA concentration per each method of C. parvum dilutions 

Serial Dilutions 
Oocysts/mL 

DNA Concentration 
ng/µl  

Method A:  
101 37.10 
102 30.99 
103 37.48 
104 42.63 
105 40.70 
106 42.07 
Method B: 
101 135.12 
102 159.43 
103 142.08 
104 176.59 
105 191.86 
106 161.38 
Method C: 
101 41.27 
102 50.44 
103 40.91 
104 40.87 
105 75.84 
106 46.92 
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3.7 Figures  

 

 

Figure 3.1 Gp60 Optimization Process 
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Figure 3.2 Analytic specificity of gp60 primers on 1.5% Agarose gel electrophoresis  
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CHAPTER 4: RISK ASSESSMENT OF FACTORS AND PREVALENCE OF GIARDIA 

DUODENALIS AND CRYPTOSPORIDIUM SPP. INFECTIONS IN VETERINARY 

STUDENTS AND THEIR DOGS AND CATS 

Summary 

 Giardia duodenalis and Cryptosporidium spp. are considered zoonotic agents, however, 

few data are available assessing the genotypes of these organisms in humans and their 

companion animals. The primary objectives of this study were to determine potential risk factors 

associated with G. duodenalis and Cryptosporidium spp. infections in senior veterinary students 

and their dogs and cats. The secondary objective was to identify and to molecularly characterize 

G. duodenalis and Cryptosporidium spp. isolates obtained from feces of senior veterinary 

students, as well from their dogs and cats.  

All senior veterinary students (N=137) were contacted by a hard copy letter as well via 

email and were invited to participate in an anonymous, voluntary study.  The students were 

requested to complete a survey designed to obtain information on potential risk factors 

associated with exposure or infection due to G. duodenalis and Cryptosporidium spp.. 

Additionally, students were requested to supply a personal fecal sample as well as a fecal sample 

from one dog and one cat if present in the household.  Respondents’ demographics, their pet 

demographics, and their clinical rotations were descriptively analyzed.  

Feces were analyzed using microscopic examination for parasite eggs, cysts and oocysts 

after using Sheather’s sugar centrifugation. For detection of Cryptosporidium spp. oocysts and 

Giardia spp. cysts a commercially available IFA (MERIFLUOR® Cryptosporidium/Giardia, 

Meridian Biosciences) was used.  DNA was extracted from each fecal sample and was assayed 

for G. duodenalis using PCR assays for the glutamate dehydrogenase, triosephosphate isomerase, 
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and ß-giardin genes. DNA extracted from each human fecal sample was assayed for 

Cryptosporidium spp. using PCR assays for the 18SrRNA and gp60 genes whereas dog and cat 

DNA extracts were evaluated by PCR assays for the 18SrRNA and heat shock protein 70 genes. 

Fifty-one (n=51) students participated in the online survey, corresponding to a response 

rate of 37.2%. The majority of respondents (72.6%) completed the online survey and supplied 

human and pet fecal samples.  Potential factors evaluated for the risk of G. duodenalis and 

Cryptosporidium spp. in senior veterinary students included: veterinary track preference, gender, 

pet ownership, and farm exposure. Veterinary students supplied 42 personal fecal samples; 31 

dog fecal samples, and 17 cat fecal samples. Giardia duodenalis, Cryptosporidium spp. and 

hookworm were the only parasites detected in the human, dog, and cat samples tested.   

Out of 42 student fecal samples, five students were positive to either Giardia or 

Cryptosporidium. DNA sequencing was conducted in five dogs, one cat and one human fecal 

sample. Two dogs were positive for G. duodenalis Assemblage D using tpi and gdh genes, one 

dog was positive for G. duodenalis Assemblage C using β-giardin and gdh genes. One dog that 

was positive for G. duodenalis was also positive for Cryptosporidium spp. using the 18SrRNA 

gene. The two other dogs were positive for Cryptosporidium spp. and C. felis using the hsp70 

gene. One cat DNA sequencing result showed that this cat was infected with Cryptosporidium 

spp.. The one human positive for Cryptosporidium DNA was infected with C. parvum subtype 

family (allele) IIa. 

The stratification of risk factors including track preference, gender, pet ownership and 

farm exposure by laboratory results using IFA and PCR assays showed that none of these factors 

was statistically associated with the risk of infection for either pathogen.  
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The results of this study show that both protozoans are isolated from humans, dogs, and 

cats in the region.  The Giardia positive dogs that were successfully sequenced harbored a host-

adapted assemblage and the owners were negative which suggests that zoonotic transmission did 

not occur in these households.  The strength of this study involved providing valuable 

information about senior veterinary students via the survey and identify and characterize isolates 

using highly sensitive assay. The main limitation of this study is the low participation and a 

single fecal sample collected. For future evaluation of the risk for zoonotic transmission of G. 

duodenalis and Cryptosporidium spp., a larger sample size is required.  

4.1 Introduction  

Based on several studies conducted in developed countries such as the United States of 

America (USA), the United Kingdom (UK) and Australia, the main risk factors associated with 

human cryptosporidiosis are direct contact with Cryptosporidium spp. infected individuals or 

those with diarrhea (< 2 -11 years old), international travel and contact with cattle/calf as well as 

swallowing freshwater that is not filtered.1,2 However, contact with companion animals such as 

pets was not associated with the risk of infection or disease.1,2  Other risk factors can also include 

caregiving to children or toddlers who are < 5 years old and consuming contaminated raw fruits 

and vegetables.3, 4 According to human cryptosporidiosis surveillance conducted in the USA for 

the period of 2011-2012, the risk of infection increased in females rather than males aged more 

than 15 years old. In addition, the peak onset of symptoms increased in late summer months 

about 4.4-fold compared to other seasons.5  

Regarding human giardiasis, the same risk factors associated with cryptosporidiosis seem 

to apply for giardiasis. Based on several case-control studies in industrialized countries, human 

giardiasis can be associated with consumption of contaminated surface water, swallowing 
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recreational water, foreign travel, contact with farm animals, contact with pets, presence of 

children or toddler in the house and nursing mothers.6-10 Additionally, cases of human giardiasis 

were more frequently reported in children aged 1-4 years and adults aged 45-49 years old and 

symptoms increased in early summer through fall.5 

Serologic studies report that 25% or more of the U.S. population has been exposed to 

Cryptosporidium spp.11 and giardiasis is the most frequently reported intestinal parasitic infection 

in the USA where it is estimated that 1.2 million cases occurs annually.12  

A very low number (n=10) of Giardia cysts or Cryptosporidium oocysts is enough to 

cause infection in people.11,12 Infected cats and dogs can shed up to 103 Cryptosporidium 

oocysts/gram of feces and up to 105 Giardia cysts/gram of feces.13,14 Infected humans can shed 

up to 108–109 Giardia cysts or Cryptosporidium oocysts in their stool per day and both pets and 

humans can excrete cysts or oocysts for months.11,12 Prevalence estimates can be over 20% for 

both organisms in animals presented with diarrhea.15 

Epidemiological investigations support the theory that zoonotic infections due to G. 

duodenalis and Cryptosporidium spp. amongst humans, dogs and cats exists.16-21 Dogs and cats 

harbor host-adapted strains of Giardia (assemblages C and D for dogs and F for cats) and 

Cryptosporidium (C. canis and C. felis) and also zoonotic strains (Giardia assemblages A and B 

and C. parvum).12-22 Most Cryptosporidium infections in humans are caused by C. hominis and 

C. parvum and less frequently by C. canis and C. felis.22 

While human Giardia genotypes (assemblage A and B) are occasionally detected within 

feces of dogs, and C. felis and C. canis are occasionally detected within feces of people, there 

have been almost no studies that directly compare the results of sensitive assays (immune-
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fluorescent assay (IFA) and polymerase chain reaction assay (PCR) using samples from people 

and their personal dogs or cats.23-24 

Commercial diagnostic laboratories in some countries (including the USA) currently 

offer PCR assays to amplify the DNA of Giardia spp. and Cryptosporidium spp. from feces of 

dogs and cats. However, genotyping assays are not routinely provided and so whether dogs or 

cats are carrying zoonotic or host-adapted genotypes is unknown. An inadvertent sequela from 

increased recognition of G. duodenalis and Cryptosporidium spp. infections in dogs and cats is 

an increase in pet relinquishment due to fear of zoonotic transmission to human family members. 

A study conducted by the National Council on Pet Population and Study Policy showed pet 

illness is one of the top ten reasons why pets are relinquished, which has negative impact on 

companion animal welfare.25 There is a critical need to study and evaluate the role of pets in 

transmitting Giardia and Cryptosporidium related infections to their owners and vice versa.  

To date, there has been no research directly comparing Giardia spp. and Cryptosporidium 

spp. isolates from owners and their pets using highly sensitive assays capable of genotyping. 

Additionally, fewer studies have evaluated factors associated with infections in humans and their 

pets. We selected senior veterinary students and their dogs and cats as our study source 

populations since veterinary students are usually pet owners and occupationally exposed to small 

and large animals. Thus, the objectives of this study were to determine factors associated with G. 

duodenalis and or Cryptosporidium spp. infections in senior veterinary students and to identify 

and characterize G. duodenalis and or Cryptosporidium spp. isolates of human, dog and cat 

origin.  
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4.2 Materials and Methods 

4.2.1 Recruitment  

Al l senior veterinary students (N=137) were provided information concerning this 

anonymous, elective study by hard copy and email. This contact was established after an 

approval from the Institutional Review Board (IRB) on June 26, 2014. There were two phases of 

recruitment. The first phase of student recruitment took place in the first six months of the 

curriculum (between May – October). In this phase, students were asked to complete an online 

survey (Appendix 1). Students were also asked to supply a personal fecal sample as well as a 

fecal sample from one dog and one cat if present in the household.  

The IRB approved a compensation of $75.00 for students that submit a personal fecal 

sample, a pet fecal sample and complete the survey, and a stipend of $50.00 for those who take 

the survey and submit a personal fecal sample without pet samples.  

The second phase of the recruitment took place in the last six months of the curriculum 

(November – May). In this phase, due to the low participation, students were requested to submit 

pet samples without the requirement to submit human samples. They were also requested to take 

the survey only without submitting any fecal samples. During this phase, a renewal to the IRB 

protocol was needed and an amendment to the protocol was needed. The amendment involved an 

increase to the student compensation in order to enhance students’ participation in the study. The 

compensation involved a $100.00 for students who take the survey and submit their own fecal 

samples. In addition, those who completed the survey and submit their pet samples, received 

$50.00. Lastly, those who completed the online survey without submitting fecal samples 

received $25.00.  From the beginning of the study until the end, five to six reminders for 

participation in the study were sent via email to the students. The protocol amendment and IRB 
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approval of this protocol was received on April 17, 2015. The study actively started on July 2014 

and ended in May, 2015. The two official IRB letters of approval are provided in Appendices 2 

and 3.  

4.2.2 Questionnaire Development and Delivery  
 

Structured questionnaire was developed using SurveyMonkey® Inc. software. The 

survey entitled “Evaluation of Zoonotic G. duodenalis and Cryptosporidium spp. Infection 

amongst Veterinary Students and their Dogs and Cats”. The objective of the survey was to 

collect information regarding factors that can potentially be risk factors for acquiring G. 

duodenalis and Cryptosporidium spp. infections in human, dog and cat populations. A total of 59 

questions were developed and the survey was pilot tested at the veterinary teaching hospital.   

The survey was divided into seven main sections. The first section involved veterinary students’ 

demographics. The second section involved an assessment of student health of seven required 

questions. Third section consisted of one required pet ownership question. Fourth section 

involved seven questions of dog demographics, health assessment and husbandry practices. The 

fifth section involved seven questions cat demographics, health assessment and husbandry 

practices. The sixth section involved 11 questions of dog and cat demographics, health 

assessment and husbandry practices. The last section involved 14 questions on students’ clinical 

rotations. Closed-ended questions with multiple choice type of questions were provided in the 

survey. Response choices were limited to specified response categories, a (yes or no) question, or 

time frequency response categories that include: always, most of the time, sometimes, rarely, and 

never.  
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Fecal Sample Collection   

Students were asked to collect the study fecal sample kits that have their unique sample 

identifier that they should also use in the survey. This approach was used to in linking between 

samples and surveys. Students were provided with sample kits. Each kit included: 1) labeled 

stool container for human sample, 2) labeled stool container for dog sample, 3) labeled stool 

container for cat sample, 4) unlabeled brown bag, 5) pair of latex gloves, and 6) three tongue 

depressors. Pet fecal sample containers were labeled with the same sample identifier as the 

human fecal sample container identifier. Fecal samples submission was anonymous i.e., students 

were directed to submit their samples to the laboratory refrigerator.  

In the recruitment, students were requested to collect their samples in the second week of 

a clinical rotation that involves intensive handling of small or large animals. Fecal character (i.e. 

texture and consistency) for dog and cat samples was reported subjectively by the researcher 

using the Nestle Purina Fecal Scoring System for dogs and cats (Nestle-Purina Pet Food Co, St 

Louis, MO). Fecal scores of 1-3 were considered as normal, whereas scores with 4-7 were 

classified as diarrheic. All fecal samples were stored in the laboratory refrigerator at 4˚C until 

processed.  

4.2.3 Diagnostic Tests and Procedures 

 The diagnostic test for G. duodenalis and Cryptosporidium spp. included microscopic 

examination of the cysts and oocysts and molecular techniques to identify both pathogens 

genomic DNA. G. duodenalis case definition was based on the CDC definition in 2011 of cases 

which involved:  
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Laboratory-confirmed giardiasis should meet the criteria as the detection of 

Giardia organisms/cyst using IFA, or amplification of DNA from stool by PCR (molecular 

characterization (e.g., assemblage designation) should be reported.5 Cryptosporidium spp. case 

definition was based on the CDC definition in 2012 of cases which involved: 

A confirmed case of cryptosporidiosis is defined as having evidence of Cryptosporidium oocysts 

by IFA or amplification of DNA from stool by PCR tests.5  

4.2.3.1 Fecal Flotation 

All fecal samples were subjected to fecal flotation procedure as previously described.30 

The protocol involved weighing 2-3 grams of feces. A volume of 3-5 ml of distilled water 

(depending on the stool consistency), were used to wash the fecal matter instead of PBS-EDTA 

which was a little adjustment of the previous protocol. The distilled water was then filtered 

through gauze. The filtrate was placed in a clean 15 ml tube and was centrifuged at 500 X g for 3 

minutes. The filtrate then was mixed with Sheather’s sugar flotation solution (Jorgensen Labs. 

Loveland, CO) with specific gravity of 1.27. The tube was centrifuged at 1,500 X g for 10 

minutes. A coverslip was placed on top of the solution to give a positive meniscus.  After 10 

minutes, the coverslip was transferred on a microscope slide to be later examined under the light 

microscope for Giardia cysts and other potential parasites. The slide was initially screened at 

magnification power with 10x, then if potential parasites were noted, the examination was 

continued at 20x or 40x to confirm the findings.  

4.2.3.2 Concentration Technique and Immuno-Fluorescent Assay (IFA) 

All fecal samples were subjected to fecal concentration technique as described in 

previous study.26,27 This procedure enhances the recovery of Giardia spp. cysts and 

Cryptosporidium spp. oocysts.28  
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4.2.3.3 PCR DNA Extraction 

All fecal specimens were subjected to DNA extraction. The genomic DNA of G. 

duodenalis and Cryptosporidium spp. in the concentrated fecal samples was extracted using 

FastDNA® Kit (MP Biomedicals, LLC. Solon, OH) following published protocols.28,29,30 The 

extracted DNA was stored at 4°C until used for molecular analysis.   

4.2.3.4 Molecular Analysis  

G. duodenalis PCR 

The isolates of G. duodenalis were genetically characterized using gdh26,31, β-giardin32 

and tpi26,33,34 loci.  

Cryptosporidium spp. PCR 

The isolates of Cryptosporidium spp. were genetically characterized using 18SrRNA35,36, 

and gp6037 loci for human isolates and 18SrRNA35,36 and hsp70 for animal isolates38.  

4.2.3.5 Stratification of Laboratory Results by Risk Factors 

Fisher’s exact test was used to assess associations between positive and negative 

laboratory results for IFA and PCR assays of human fecal samples by the study selected risk 

factors. The factors involved in this stratification included: student track preference, gender, pet 

ownership, and farm exposure. This analysis was conducted merely for descriptive purposes.  

4.2.3.6 DNA Sequencing  

All PCR-positive samples were subjected to sequencing as previously published.26 All 

PCR products (10.0 µl) were separated by electrophoresis in 1.5% agarose gels stained with 2.0 

µl EZ-Vision® One DNA dye (Biochemicals and Life Science Research Products, Solon, OH) 

for 30-35 minutes. After the positive band has been identified using the BIO-RAD (Gel DocTM 

EZ Imager), the remaining PCR reaction (40.0 µl) was then re-separated by the electrophoresis 
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in 1.5% agarose gel stained with 5.0 µl EZ-Vision®.  The gel was visualized by the 

Spectroline® UV Transilluminator (Slimline™ Series) and the positive band DNA was sliced. 

The gel was extracted using QIAquick Gel Extraction kit (QIAgen, cat. No. 28704, Germany) 

per the manufacturer’s protocol. PCR products were sequenced in both forward and reverse 

directions. The DNA sequence data from G. duodenalis and Cryptosporidium spp. isolates was 

compared by BLAST analysis with sequences from the nucleotide database from the GenBank. 

4.3 Data Analysis  

STATA® 13.0 (StataCorp. 2013. Stata Statistical Software: Release 13. College Station, TX: 

StataCorp LP.) was used for data formatting and descriptive analysis. The survey data analysis 

included descriptive analysis of the characteristics related to students and pet demographics and 

student clinical rotations as previously described and did not contain any open-ended questions. 

Statistical significance was declared at p < 0.05.   

4.4 Results  

4.4.1 Results of the Survey 

Survey Participation 

  Survey responses were received from 51 (37.2%) of senior veterinary students (Table 

4.1). 

Section I – Veterinary Student Demographics 

The majority of respondents (n = 37, 72.6%) took the online survey and also submitted 

human and pet samples. Most samples (n = 12, 23.5%) were submitted in May, 2015 (Table 4.1). 

 The majority of respondents (n = 44), (86.3%; 95% CI: 73, 94%) were females. The 

mean age of all respondents was 28 years old with 95% corresponding confidence interval 

between (27, 28.9%). The majority of respondents were in the small animal track (n = 23), 
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(45.1%; 95% CI: 31, 59%). In terms of the type of residence for the students, the majority (n = 

44), (86.3%; 95% CI: 73, 94%) of students lived in single family residence where no cattle were 

housed. Forty-five percent (n = 23), (45.1%; 95% CI: 31, 59%) of respondents have lived with 

one adult other than the respondent. The majority of students (n = 48), (94.12%; 95% CI: 83, 

98%) had no children under five years old in the household, and only three students (5.9%) had 

children under five years old in their household. The majority of respondents (n = 32, 62.8%; 

95% CI: 48, 75.0%) had worked in an operation that was their own or owned by others where 

cattle of any age were housed or fed in the last 10 years and the majority of respondents (n = 21, 

67.7%; 95% CI: 27, 55%) have worked on these farms within last year. In terms of activities 

performed on these farms, the majority of respondents were involved in adult cattle and calf 

treatments (n = 25 (86.2%; 95% CI: 68, 96%), n=21 (72.4%; 95% CI: 52, 87%), respectively 

(Table 4.1).   

Section II – Veterinary Students Health Assessment  

 Forty-nine (n = 49, 96.1%; 95% CI: 86, 99%) respondents had no diabetes, cancer, HIV, 

or leukemia. Of the 44 respondents who were females, only three were pregnant (6.8%). The 

majority of respondents (n = 49, 96.1%; 95% CI: 86, 99%) had not taken medications that 

suppress their immune system. The majority (n = 46, 90.2%; 95% CI: 78, 96%) of students 

responded not-applicable (N/A) to the question asking about use of filter when drinking 

freshwater from water surface that is not chlorinated (Table 4.2). Water sources and number of 

times water swallowed accidentally or intentionally by respondents were displayed in Tables 4.3-

4.4. The majority of respondents reported that they have not swallowed water from the 

mentioned water sources neither accidentally or intentionally. In terms of the frequency of 
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diarrhea, the majority of students had never had diarrhea in the last 3, 6 or 12 months (71.4%, 

75.5%, or 60.8%), respectively (Table 4.5).  

Section III – Pet Ownership 

 In terms of pet ownership, 20 students (39.2%; 95% CI: 25, 53%) of the students had 

dogs only and same percentage of students had both dogs and cats. Whereas 13.7% of 

respondents (n = 7) had cats only and 7.8% (n=4) had neither dogs nor cats (Table 4.6).  

Section IV – Dog Demographics, Health Assessment, Husbandry  

For those students who had only dogs (n=20; 95% CI: 19, 63%), eight students had at 

least one dog that their age range was from 1-5 years old. The majority (n = 13, 65.0%; 95% CI: 

40, 84%) of students adopted their dogs from the shelter or rescue group. Regarding medication 

use such as dewormers and heartworm preventatives, the majority of respondents (n = 13, 

65.0%; 95% CI: 40, 84%) had used Heartgard® for their dogs. Fifty percent (95% CI: 27, 72%) 

of respondents (n = 10) indicated that their dogs did not have abnormal health events. 

Furthermore, 80.0% of respondents (n = 16; 95% CI: 56, 94%) indicated that their dogs have 

never been used for herding or hunting. Additionally, 35.0% of respondents (n = 7; 95% CI: 15, 

59%) had never taken their dogs to a dog park. However, 30.0% of respondents (n = 6) had taken 

their dogs to a dog park at least less than once a week. For the frequency of diarrhea in the last 

three months, 80.0% of students (n=16; 95% CI: 56, 94%) reported that their dogs have never 

had diarrhea, but 15.0% of students (n = 3) reported that their dogs have had diarrhea once in the 

last three months (Table 4.7).  
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Section V – Cat Demographics, Health Assessment, Husbandry  

 For those responders who had only cats (n = 7; 95% CI: 9, 81%), three students had at 

least two cats that their age range was from 6-12 years old. Five responders (71.4%; 95% CI: 29, 

96%) reported that their cats were adopted from the shelter or rescue group. Regarding 

medication use such as dewormers and heartworm preventatives, the majority of respondents (n 

= 6) (85.7%; 95% CI: 42, 99%) had not used any cat dewormers or heart worm preventatives. 

Four respondents (57.1%) indicated that their cats did not have health events. Furthermore, three 

responders (42.9% 95% CI: 9, 81%) indicated that they clean the litterbox daily. Additionally, 

six respondents (85.7%; 95% CI: 42, 99%) have always used to wash their hands after handling 

the litterbox. For the frequency of diarrhea in the last three months, six students (85.7%; 95% CI: 

42, 99%) reported that their cats have never had diarrhea, but one student (14.3%) reported that 

their cat have had diarrhea once per three months (Table 4.8). 

Section VI – Dog and Cat Demographics, Health Assessment, Husbandry  

For those 20 students that had both dogs and cats, nine students (60.0%; 95% CI: 23, 

68%) had at least one dog with an age ranging from 1-5 years old and 10 students (50.0%; 95% 

CI: 27, 72%) had at least one cat aged from 1-5 years old. All owners (100.0%; 95% CI: 83, 

100%) adopted their dogs and cats from the shelter or rescue group. Regarding medication use 

such as dewormers and heartworm preventatives, the majority of responders (n = 11, 55.0%; 

95% CI: 31, 76%) had used Heartgard® for their dogs and (50.0%) of responders (n=10; 95% 

CI: 31, 76%) have not used any cat dewormers or heartworm preventatives. However, seven 

respondents (35.0%) have used Advantage Multi for their cats. Seven responders (35.0%; CI: 15, 

59%) indicated that their dogs or cats did not have abnormal health events. However, seven 

respondents (35.0%; 95% CI: 15, 59%) also indicated that their dogs or cats have had acute 
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health conditions. Furthermore, 18 responders (90.0%; 95% CI: 68, 98%) indicated that they 

have never used their dogs for herding or hunting. Also, 10 responders (35.0%; 95% CI: 31, 

76%) have taken their dogs to the dog park at least once per week. Additionally, six responders 

(30.0%) have cleaned the litterbox daily and 11 responders (55.0%; 95% CI: 31, 76%) have 

always used to wash their hands after handling the litterbox.  For the frequency of diarrhea in the 

last three months, 15 students (75.0%; 95% CI: 50, 91%) reported that their dogs or cats have 

never had diarrhea, but three students (15.0%) reported that their dogs have had diarrhea at least 

once per three months (Table 4.9). 

Section VII – Clinical Rotations  

 A list of procedures performed for adult cattle or calves on senior practicum whether core 

or elective rotations is displayed in Table 4.10. Those procedures involve intensive exposure to 

large animals such as cattle and calves’ treatments. The majority of respondents responded yes to 

some of these procedures. Table 4.11 displays the frequency of handwashing procedure after 

handling cattle or calves. As shown in the table, the majority of students (n=31, 60.8%; 95% CI: 

46, 74%) have always washed their hands after performing activities listed in Table 4.10. Also, 

forty-nine percent of students (n = 25; 95% CI: 34, 63%) reported that they sometimes would eat 

or drink within an hour after performing any of the activities listed in Table 4.10. In terms of 

washing coveralls or rubber boots, 22 students (43.1%; 95% CI: 29, 57%) indicated that they 

wash their coveralls or boots daily, whereas (41.2%) of students (n = 21; 95% CI: 27, 55%) 

answered not-applicable (Table 4.11). The frequency of use of personal protective equipment 

(PPE) when handling diarrheic and non-diarrheic cattle or claves is displayed in Table 4.12.  The 

majority of students were used the PPE whether cattle or calves were diarrheic or non-diarrheic.  

Additionally, a list of procedures performed for dogs and cats on senior practicum whether core 
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or elective rotations is displayed in Table 4.13. Those procedures involved intensive exposure to 

dogs and cats such as physical exams and diagnostic tests. The majority of students responded 

yes to performing these activities.  

As shown in Table 4.14, 26 students (51.0%; 95% CI: 36, 65%) washed their hands most 

of the time after performing any activities listed in the previous table (Table 4.13). Additionally, 

55% (95% CI: 40, 68%) of students (n = 28) indicated that they have washed their hands 

between patients most of the time. A total of 55% (95% CI: 40.0, 68.0%) of students (n = 28) 

reported that they would eat and drink sometimes within an hour after handling dogs and cats. 

Furthermore, 21 students (41.2%; 95% CI: 27.0, 55.0%) washed their clinic smocks or cloth 

surgical gowns at least once per week (Table 4.14). The frequency of use of personal protective 

equipment when handling diarrheic and non-diarrheic dogs or cats is displayed in Table 4.15. In 

addition, the frequency of rotations that have completed from the beginning of the senior 

practicum until the time of survey was listed in Table 4.16.  

4.4.2 Fecal Samples Diagnostic Tests Results  

A total of 42 human, 31 dog, and 17 cat fecal samples were submitted to the Center of 

Companion Animal Studies at the Department of Clinical Sciences at Colorado State University 

laboratories by the senior veterinary students.  

G. duodenalis Diagnostic Tests  

Results from fecal flotation, IFA, and molecular analysis are shown in Table 4.17. All 

human fecal samples tested negative to the fecal flotation test, one dog fecal sample tested 

positive to G. duodenalis (3.23%; 95% CI: 0.1,16.7%) and one hookworm egg was identified in 

one Giardia negative dog. None of the cat samples tested positive in the fecal flotation test. In 

the IFA, G. duodenalis cysts were identified in one out of 42 human fecal samples (2.38%; 95% 
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CI: 0.1, 12.6%), and three fecal samples from dogs (9.68%; 95% CI: 2.0, 25.8%). None of the cat 

samples tested positive to Giardia using the IFA test. Regarding the PCR results in humans (see 

also Table 4.18), three out of 42 samples (7.14%; 95% CI: 1.5, 19.5%) tested positive for G. 

duodenalis, all the positive human isolates were typed by the tpi gene (7.14%).  Three out of 31 

dog samples (9.68%; 95% CI: 2.0, 25.8%) tested positive to G. duodenalis, two of the isolates 

were typed by the gdh gene (6.45%), three were typed by the tpi gene (9.67%) and one isolate 

were typed by the β-giardin gene (3.22%). Also, one out of 17 samples (5.88%; 95% CI: 0.1, 

28.7) tested positive G. duodenalis in cats. This one isolate was typed by the β-giardin gene. 

Cryptosporidium spp. Diagnostic Tests 

Results of the fecal flotation, IFA, and molecular analysis are shown in Table 4.19. 

Regarding the fecal flotation test, none of human, dog or cat samples tested positive to 

Cryptosporidium spp..  In the IFA, Cryptosporidium spp. oocysts were identified in one of 42 

human samples (2.38%; 95% CI: 0.1, 12.6%) and one of 31 dogs (3.23%; 95% CI: 0.1, 16.7%) 

tested positive. None of the cat samples tested positive to Cryptosporidium spp. using the IFA 

test. Regarding the PCR results in humans (see also Table 4.20), one out of 42 samples (2.38%; 

95% CI: 0.1, 12.6%) tested positive for Cryptosporidium spp.. This human positive isolate was 

typed by gp60 gene (2.38%).  Four out of 31 dog samples (12.9%; 95% CI: 3.6, 29.8%) tested 

positive to Cryptosporidium spp.. The four isolates were typed by hsp70 gene (12.9%) and two 

of these isolates were also typed by 18SrRNA gene (6.45%). In cats, one out of 17 samples 

(5.88%; 95% CI: 0.1, 28.7%) tested positive to Cryptosporidium spp. that were typed by hsp70 

gene (5.88%).  
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Stratification of Laboratory Results by Risk Factors 

Tables 4.21-4.23 describe the probability of testing positive to G. duodenalis or 

Cryptosporidium spp. in senior veterinary students by track preference, gender, pet ownership 

and farm exposure. As shown in the Table 4.21, one student of 20 students (5.0%; 95% CI: 0.12, 

25%) in the small animal track was positive to G. duodenalis and Cryptosporidium spp. using the 

IFA test. This student was female (2.8%; 95% CI: 0.1, 14.5%) who owned pets (2.6%; 95% CI: 

0.1, 13.5%) and had worked on a farm that had cattle (3.8%; 95% CI: 0.1, 19.6%). Table 4.22 

shows G. duodenalis PCR test results of veterinary students stratified by track preference, 

gender, pet ownership and farm exposure. Two of 20 students (10.0%; 95% CI: 1.2, 32%) 

positive to G. duodenalis were in the small animal track and one student of 14 (7.1%; 95% CI: 

0.2, 33.9%) was in the general track. Each of these students were females (8.3%; 95% CI: 1.7, 

22.5%), all owned pets (7.7%; 1.6, 20.9%), and all had farm exposure (11.5%; 95% CI: 2.4, 

30.2%). As noted in Table 4.23, one student positive to Cryptosporidium spp. using the PCR test 

was in the large animal track (12.5%; 95% CI: 0.3, 52.7%), male (16.7%; 95% CI: 0.4, 64.1%), 

owned pets (2.6%; 0.1, 13.5%) and had farm exposure (3.8%; 95% CI: 0.1, 19.6%). However, 

none of these factors was significantly associated with using Fisher’s exact test.  

Results of DNA Sequencing  

     The DNA sequencing was completed in one human, five dogs and one cat samples. As 

shown in Table 4.24, dogs who were diagnosed with G. duodenalis were infected with G. 

duodenalis host-adapted assemblages C and D.  The two dogs were identified with 

Cryptosporidium spp. and C. felis, respectively. The one cat isolate was found to be 

Cryptosporidium spp. and species determination failed. One human isolate was identified with C. 

parvum subfamily IIa, which is zoonotic as shown in Table 4.25. 
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4.5 Discussion 

The response of students’ participation to the survey was 37.2%. Compared to another 

study used mailed surveys and several follow up that achieved 19% response rate, our study 

response rate can be considered good.39 Several journals in the USA and Canada, recommend 

survey response rates of at least 60.0% to prevent non-response bias.40,41 

Studying the sample characteristics through the survey in combination with the 

examining each stool sample collected, helped in forming understanding of the risk factors that 

can lead to infection due to G. duodenalis and Cryptosporidium spp.. Regarding fecal sample 

collection, the logic of this emphasis was due to the length of the incubation period for G. 

duodenalis and Cryptosporidium spp.. Based on evidence from experimental infections, it has 

been estimated that the incubation period is between 5 and 7 days for human cryptosporidiosis 

42,43,44 and from 1 to 45 days in human giardiasis. In most cases, the symptoms appear in 1-2 

weeks.45   

From the total of 51 respondents, 42 students (82.4%) provided fecal samples. From the 

laboratory result data of this study, five students out of 42 (11.9%) were positive to G. 

duodenalis and/or Cryptosporidium spp.. One student was positive to both G. duodenalis and 

Cryptosporidium spp. using the IFA test. Three students were positive to G. duodenalis and one 

student was positive to Cryptosporidium spp. using the PCR assays. Therefore, the prevalence of 

G. duodenalis was 9.5% (4/42) and prevalence of Cryptosporidium spp. was 4.8% (2/42) in 

human samples. 

From the survey analysis of these positive cases, four students out of five were females 

(80.0%) and one student was male. From the students’ demographic analysis, the majority of 

respondents were females (86.3%). Therefore, the number of positives were four females 
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compared to one male, in this study. According to the Morbidity and Mortality Weekly Report, 

2011-2012 for human giardiasis and cryptosporidiosis, females are more likely to be infected 

with these protozoans due to their care giving to infected infants or toddlers. Giardia duodenalis 

cases are usually reported in younger populations that age range from 1-9 years old and younger 

adults from 35-39 years.46 Positive females in this study, did not have children under 5 years old 

that have lived in the household. Also, all positive female students were not pregnant and have 

not been diagnosed with any health conditions that can suppress the immune system.  It has been 

reported that the host immunity status can influence the severity of infection due to giardiasis in 

the host. For example, giardiasis is more frequently reported in immune-compromised 

individuals compared to immune-competent individuals.47,48 

From the stratification by risk factor analysis conducted in this study, three students that 

were positive to G. duodenalis, were in the small animal track. A study conducted on Australian 

veterinarians where 63% of participants have worked in the small/companion animal practice. 

That study reported that 45% of respondents have contracted gastrointestinal conditions caused 

by different pathogens during their occupation as veterinarians.49  

In this study, analysis of the laboratory results has shown that the dogs and cats owned by 

the five positive cases, were negative to either Giardia or Cryptosporidium except for one dog 

that was positive to both pathogens. The owner of this dog was G. duodenalis positive. 

Unfortunately, the DNA sequencing was not completed to this human isolate due to the low 

DNA concentration. Therefore, we were unable to determine which Giardia assemblage this 

isolate was.  However, the DNA sequencing was completed in the dog isolate and that dog 

harbored host–adapted Giardia assemblage D.  Few studies have suggested the zoonotic 

potential of Giardia transmission among dogs and cats and their owners or people live in close 
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proximity.50-53  However, other studies reported that dogs were infected with Giardia either 

assemblage C or D and people were infected with assemblage A, i.e. independent transmission 

cycles among humans, dogs and cats.54,55 Therefore, this finding is consistent with studies 

concluded that the contact with pets can be negatively associated with the risk of infection.1,56,57  

All positive students, including the two Cryptosporidium spp. positive ones, one 

identified by the PCR and one identified by the IFA test have lived in a single-family residence 

where no cattle were housed. Regardless, all positive students have worked on an operation 

where cattle were raised from one year to more than five years. Some studies 58-60 suggested that 

contact with farm animals, especially cattle, are capable of transmitting Cryptosporidium spp. 

infections to farm workers and veterinary students. Also, Cryptosporidium bovis infections have 

been identified in few persons that were living and or working on cattle operations.61,62 One 

report found out that Cryptosporidium infections occurred in approximately 90% of the USA 

dairy farms and about 20% pre-weaned heifers of any given day are shedding Cryptosporidium 

spp.63  

DNA sequencing was completed in one of the two Cryptosporidium student cases. As 

suggested by chapter 3 of this dissertation, this isolate was assessed by the optimized gp60 assay. 

The data showed that this isolate was positive to C. parvum subfamily IIa. Cryptosporidium 

parvum possess complex epidemiology due to its ability to infect humans through zoonotic and 

anthroponotic transmission.64 The demographic data indicated that the student was a 29 years old 

male in the large animal track, and has worked on an operation in adult cattle treatment for three 

to five years. In addition, this student had recently completed the dairy field service, large animal 

emergency medicine, and livestock medicine and surgery rotations. All these rotations involve 

intensive contact with cattle. However, it is unclear whether the student positive to this isolate 
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acquired it due to intensive exposure to cattle or from another human.  However, if it was a 

human exposure, the species would have been more likely to be C. hominis. Farm exposure or 

majoring in large animal track can be considered an important risk factor for the infection due to 

Cryptosporidium since calves are frequently infected with a C. parvum subtype that is commonly 

found in humans in the same geographic areas65 and epidemiologic studies have reinforced the 

occurrence of zoonotic transmission.66 As part of the evaluation process for the optimized gp60 

assay, this assay was compared to the IFA assay.  The gp60 PCR Cryptosporidium spp. positive 

isolate was negative to the IFA assay. On the other hand, one Cryptosporidium oocyst was 

detected in one student by the IFA assay and negative to the gp60 PCR assay. This result can be 

interpreted as a false negative in the gp60 PCR assay. The demographics showed that this student 

is a 26-year-old female, in the small animal track, and all clinical rotations involved small animal 

medicine. This student worked on an operation in cattle milking for three to five years. The 

diagnostic sensitivity and specificity for the gp60 PCR assay and IFA was 50% and 100% 

respectively and this result was in accordance with another study.67 

In terms of seasonality, all our Giardia cases had submitted their fecal samples in July to 

September. This finding is consistent with the Giardia surveillance in the United States that 

stated peak onset of this pathogen is in early summer through early fall.5 Regarding, the one C. 

parvum case, the sample was submitted in February.  

The one student that had dual infection of Giardia and Cryptosporidium, submitted her 

samples in July. In the Cryptosporidium surveillance work, the peak onset of the pathogen was in 

late summer months.5 

Regarding the clinical rotations, most of the positive cases whether Giardia or 

Cryptosporidium as well as negative cases, were more likely to wear personal protective 
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equipment (PPE) and exam gloves when handling small or large animals with diarrhea. This 

finding is in accordance with a study conducted on Australian veterinarians that were more likely 

to use PPE for each case.49 

Regarding pet positive cases in this study, all positive animals had female owners as 

shown in Table 4.26. All owners lived in a single-family  residence with no cattle in the 

surroundings except for one student who lived in a single-family residence where cattle of any 

age were housed or fed. The dog of this student was positive to both pathogens. Also, all positive 

dog owners, except for two, had worked on a farm. It seems that dogs owned by students that 

worked on a farm or lived in a farm were positive to Giardia and Cryptosporidium using at least 

two diagnostic methods due to the intensive exposure to either pathogens.  

In all seven positive dogs to any assay, four dogs (57.1%) dogs that were positive to 

either Giardia or Cryptosporidium or both, have attended the dog park at least once per week. 

Attending dog park was considered a risk factor in a study compared between dog and non-dog 

park attending dogs in the USA that concluded dog park attending dogs were more likely to be 

positive for Giardia or Cryptosporidium than non-dog park-attending dogs.68 However, in this 

study, 14/26 (53.8%) of negative dogs also attended dog parks. Similarly, we had two out of 

seven (28.6%) positive dogs were used for herding or hunting at least once or twice per week. In 

this study, 11.5% of dogs that were negative for both protozoans were also used for herding or 

hunting. Additionally, the age range for positive dogs was from 1-5 years old. That means the 

risk of acquiring Giardia or Cryptosporidium increases as age decreases which agrees with the 

findings reported in Chapter 2 of this dissertation. The one hookworm egg identified in dog 

labeled 82 using the microscopic examination was most likely to belong to Ancylostoma 
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caninum. However, the egg size may overlap with Uncinaria spp. and confirmation was not 

available due to the very low number of eggs.  

Regarding the two positive cats, cat #389 that was positive to Cryptosporidium spp. lived 

in the same household with a dog that was also positive to C. felis. While Cryptosporidium spp. 

can also be reported in cats, it is unusual to identify C. felis in dogs. The only justification for 

this can be that since the dog and the cat live together in the household a cross transmission may 

have occurred and because dogs are likely to eat cat feces.   Cat #300 was positive for Giardia 

DNA by PCR. However, we were unable to determine which Giardia assemblage that cat was 

infected with due to the very low DNA concentration. 

4.6 Conclusion  

Giardia duodenalis and Cryptosporidium spp. isolates were detected in humans and their 

pets. Dogs that were positive to G. duodenalis harbored host-adapted genotypes. Gp60 PCR 

assay had high diagnostic specificity and low diagnostic sensitivity in our studies which were 

comparable to other studies. Additionally, veterinary students that completed the survey were 

more likely to work on farms that contain cattle regardless whether their track is small or large 

animals. The strength of this study is providing valuable information about veterinarians via the 

survey and identifying and characterizing isolates using highly sensitive assay. The main 

limitation of the study was the low participation and single fecal sample collected. It is 

recommended to continue working on the veterinary students’ population and collect larger 

sample size to evaluate zoonosis amongst veterinary students and their pets. 
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4.7 Tables 

Table 4.1 Respondents demographic descriptors of section I in the survey 

Variable Category  Number (%) 95% CI  
Participation Preference Yes 51/137 (37.23)  
 No 86/137 (62.77)  
    
Response Type  Survey Only 8/51 (15.69)   
 Survey and Pet Samples 1/51 (1.96)   
 Survey and Human 

Samples 
5/51 (9.80)  

 Survey, Human, and Pet 
Samples 

37/51 (72.55) (58.0, 84.0) 

    
Time of Participation:    
Month February 4/51 (7.84)  
 April  9/51 (17.65)  
 May 12/51 (23.53) (12.0, 37.0) 
 July 6/51 (11.76)  
 September   9/51 (17.65)  
 October 3/51 (5.88)  
 November 2/51 (3.92)  
    
Year  2014 26/51 (50.98) (36.0, 65.0) 
 2015 25/51 (49.02) (34.0, 63.0) 
    
Respondents’ gender Female 44/51 (86.27) (73.0, 94.0) 
 Male 7/51 (13.73)  
    
Respondents’ age Average age in years 28 years  (27.08, 28.87) 
    
Track Preference Small Animal Track 23/51 (45.10) (31.0, 59.0) 
 General Track 15/51 (29.41)  
 Large Animal Track 13/51 (25.49)  
    
Residence Type  SFR*/No Animals 4/51 (7.84)  
 SFR/No Cattle 44/51 (86.27) (73.0, 94.0) 
 SFR/With Cattle 3/51 (5.88)  
 Other 0/51 (0)  

*SFR = Single Family Residence 
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Table 4.1 Continued   

Variable Category  Number (%) 95% CI  
Number of Adultsa  0 6/51 (11.76)  
 1 23/51 (45.1) (31.0, 59.0) 
 2 15/51 (29.41)  
 3 6/51 (11.76)  
 4 1/51 (1.96)  
    
Number of Childrenb 0 48/51 (94.12) (83.0, 98.0) 
 1 3/51 (5.88)  
    
Take Children to 
Daycare 

N/A 48/51 (94.12) (83.0, 98.0) 

 Daily 2/51 (3.92)  
 Otherc  1/51 (1.96)  
    
Respondent’s Working 
on Farmd 

Yes 32/51 (62.75) (48.0, 75.0) 

 No 19/51 (37.25)  
aAdults other than the respondent 
bChildren under 5 years and live within the household 
c5 days/week 
dIn the last 10 years 
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Table 4.1 Continued (optional questions) 

Variable Category  Number (%) 95% CI  
Respondent’s Time 
Spent Working on 
Farm* 

Within last year 21/51 (67.74) (27.0, 55.0) 

 1-2 Years 2/31 (6.45)  
 3-5 Years 5/31 (16.13)  
 >5 Years 3/31 (9.68)  
    
Type of Work on Farm  1. Adult cattle barn 

cleaning  
8/29 (27.59)  

 2. Adult cattle barn 
bedding changing 

8/29 (27.59)  

 3. Adult cattle feeding 13/29 (44.83)  
 4. Adult cattle birthing 

assistance  
10/29 (34.48)  

 5. Adult cattle fecal 
disposal 

8/29 (27.59)  

 6. Cattle milking 15/29 (51.72)  
 7. Cattle breeding 9/29 (31.03)  
 8. Adult cattle 

treatments 
25/29 (86.21) (68.0, 96.0) 

 9. Adult cattle 
vaccinations 

19/29 (65.52)  

 10. Newborn calf care 14/29 (48.28)  
 11. Newborn calf 

feeding 
13/29 (44.83)  

 12. Calf treatments 21/29 (72.41) (52.0, 87.0) 
 13. Calf vaccinations 15/29 (51.72)  
 14. Care of recumbent 

cattle or calves 
15/29 (51.72)  

 15. Cow/calf movement 
and transportation 

10/29 (34.48)  

 16. Other 2/29 (6.90)  
*In the last 10 years 
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Table 4.2 Respondents health assessment of section II in the survey 

Variable Category  Number (%) 95% CI  
Diagnosed conditions None  49/51 (96.08) (86.0, 99.0) 
 Diabetes 0/51 (0)  
 Cancer 0/51 (0)  
 HIV/AIDS 0/51 (0)  
 Leukemia 0/51 (0)  
 Othera 3/51 (5.88)  
    
Pregnancy  Yes 3/51 (5.88)  
 No 41/51 (80.39) (66.0, 90.0) 
 Unsure  0/51 (0)  
 N/A if male 7/51 (13.73)  
    
Medications that suppress 
the immune system  

None  49/51 (96.08) (86.0, 99.0) 

 Oral steroids  2/51 (3.92)   
 Azathioprine 0/51 (0)  
 Mycophenolate  0/51 (0)  
 Other  0/51 (0)  
    
Use of water filters before 
drinking waterb 

Yes 3/51 (5.88)  

 No 2/51 (3.92)  
 N/A 46/51 (90.20) (78.0, 96.0) 

aHypothyroidism, Systemic lupus erythematosus 
bFreshwater that not is chlorinated 
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Table 4.3 Water sources and number of times water swallowed accidentally by respondents   

Source  
                  Time  

None Once/3 mo. Twice/3 
mo. 

3 times/3 
mo. 

>3 times/3 
mo. 

Total 
Respondents 

Swimming pools 39/51 (76.47) 8/51 (15.69) 0/51 (0) 2/51 (3.92) 2/51 (3.92) 51 
Water play 45/52 (88.24) 5/51 (9.80) 1/51 

(1.96) 
0/51 (0) 0/51 (0) 51 

Hot tubs 40/51 (80.00) 9/51 (18.00) 0/50 (0) 0/50 (0) 1/50 (2.00) 50 
Lakes 41/51 (80.39) 7/51 (13.73) 0/51 (0) 2/51 (3.92) 1/51 (1.96) 51 
Rivers 44/51 (86.27) 5/51 (9.80) 0/51 (0) 1/51 (1.96) 1/51 (1.96) 51 
Springs 48/51 (94.12) 0/51 (0) 1/51 

(1.96) 
0/51 (0) 2/51 (3.92) 51 

Hot springs 45/51 (88.24) 5/51 (9.80) 0/51 (0) 0/51 (0) 1/51 (1.96) 51 
Ponds 48/51 (94.12) 1/51 (1.96) 0/51 (0) 1/51 (1.96) 1/51 (1.96) 51 
Streams 48/51 (94.12) 0/51 (0) 0/51 (0) 1/51 (1.96) 2/51 (3.92) 51 
Other 27/28 (96.43) 0/28 (0) 0/28 (0) 1/28 (3.57) 0/28 (0) 28 

  

Table 4.4 Water sources and number of times water swallowed intentionally by respondents   

Source  
                  Time  

None Once/3 mo. Twice/3 
mo. 

3 times/3 
mo. 

>3 times/3 
mo. 

Total 
Respondents 

Lakes 50/51 (98.04) 1/51 (1.96) 0/51 (0) 0/51 (0) 0/51 (0) 51 
Rivers 50/51 (98.04) 1/51 (1.96) 0/51 (0) 0/51 (0) 0/51 (0) 51 
Springs 48/51 (94.12) 2/51 (3.92) 0/51 (0) 0/51 (0) 1/51 (1.96) 51 
Ponds 50/51 (98.04) 1/51 (1.96) 0/51 (0) 0/51 (0) 0/51 (0) 51 
Streams 48/50 (96.00) 1/50 (2.00) 0/50 (0) 0/50 (0) 1/50 (2.00) 50 
Other 32/33 (96.97) 1/33 (3.03) 0/33 (0) 0/33 (0) 0/33 (0) 33 
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Table 4.5 Frequency of watery non-bloody diarrhea self-reported by respondents   

  
                    

Never Once Twice 3-5 
times 

>5 times  Total 
Respondents 

In the last 12 months  31/51 
(60.78) 

8/51 
(15.69) 

5/51 
(9.80) 

4/51 
(7.84) 

3/51 
(5.88) 

51 

In the last 6 months 37/49 
(75.51) 

7/49 
(14.29) 

1/49 
(2.04) 

3/49 
(6.12) 

1/49 
(2.04) 

49 

In the last 3 months 35/49 
(71.43) 

10/49 
(20.41) 

2/49 
(4.08) 

1/49 
(2.04) 

1/49 
(2.04) 

49 

 

Table 4.6 Owning dogs and cats – section III  

Variable Category  Number (%) 95% CI  
Pet ownership Dogs only 20/51 (39.22) (25.0, 53.0) 
 Cats only 7/51 (13.73)  
 Dogs and cats 20/51 (39.22) (25.0, 53.0) 
 Neither dogs nor cats 4/51 (7.84)  
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Table 4.7 Dog demographics, health assessment, and husbandry – section IV 

Variable Category  Number of 
dogs per 
age group 
(0-20+) 

Number of 
respondents 
(%) 

95% CI  

Dog age  < 1 mo. 0 0/20 (0)  

 1-6 mo. 0 0/20 (0)  

 < 1 yr. 1 2/20 (10.00)  

 1-5 yrs. 1 8/20 (40.00) (19.0, 63.0) 

  2 4/20 (20.00)  

  3 1/20 (4.00)  

  4 1/20 (5.00)  

 6-10 yrs. 1 4/20 (20.00)  

  2 3/20 (15.00)  

  3 1/20 (5.00)  

 >10 yrs. 1 1/20 (5.00)  

Dog source  Pet shop  0/20 (0)   

 Former research 
animal 

 0/20 (0)  

 Breeders  5/20 (25.00)  

 Shelter or rescue 
group  

 13/20 (65.00)  (40.0, 84.0) 

 Friend  3/20 (15.00)  

 Other*  3/20 (15.00)   
*Guide dogs for the blind, south American street dog, released/retired from guide dog school 
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Table 4.7 Continued  

Variable Category  Number of 
respondents (%) 

95% CI  

Dog dewormers and 
heart worm 
preventatives 

 None  1/20 (5.00)  

 Advantage Multi® 3/20 (15.00)  
 Sentinel® 1/20 (5.00)  
 Heartgard® 13/20 (65.00) (40.0, 84.0) 
 Othera  

 
 

Dog health events No health events 10/20 (50.00) (27.0, 72.0) 
 Acute conditions 7/20 (35.00)  
 Chronic conditions 3/20 (15.00)  
 Behavioral issues 1/20 (5.00)  
 Otherb 3/20 (15.00)  
    
Dog use for herding 
or hunting 

Never 16/20 (80.00) (56.0, 94.0) 

 Daily 1/20 (5.00)  
 Twice/wk. 0/20 (0)  
 Once/wk. 1/20 (5.00)  
 <Once/wk. 1/20 (5.00)  
 Other  1/20 (5.00)  

aHeartgard plus, Advantage multi, and fenbendazole all together, Sentinel and heartgard plus 
bTibial plateau leveling osteotomy, allergic dermatitis, eosinophilic folliculitis & furonculosis 
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Table 4.7 Continued  

Variable Category  Number of 
respondents (%) 

95% CI  

Taking dogs to dogs 
park 

Never 7/20 (35.00) (15.0, 59.0) 

 Daily 1/20 (5.00)  
 Twice/wk. 2/20 (10.00)  
 Once/wk. 2/20 (10.00)  
 <Once/wk. 6/20 (30.00)  
 Othera 2/20 (10.00)  
    
Frequency of diarrhea 
in dogsb 

None  16/20 (80.00) (56.0, 94.0) 

 Once/3 mo. 3/20 (15.00)  
 Twice/3 mo. 0/20 (0)  
 3 times/3 mo. 0/20 (0)  
 >3 times/3 mo. 1/20 (5.00)  
 I don’t know 0/20 (0)  

aOnce in past 3 months, no dog parks, but she has been to the beach in California about 3 times/week     over the 
previous 6 weeks 
bIn the last 3 months 
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Table 4.8 Cat demographics, health assessment, and husbandry – section V 

Variable Category  Number of 
cats per 
age group 
(0-20+) 

Number of 
respondents 
(%) 

95% CI  

Cat age  < 1 mo. 0 0/7 (0)  

 1-6 mo. 0 0/7 (0)  

 < 1 yr. 1 1/7 (14.28)  

 1-5 yrs. 1 2/7 (28.57)  

  2 1/7 (14.28)  

 6-12 yrs. 2 3/7 (42.85) (9.0, 81.0) 

 >12 yrs. 0 0/7 (0)  

     

Cat source  Pet shop  0/7 (0)   

 Former research 
animal 

 1/7 (14.29)  

 Breeders  0/7 (0)  

 Shelter or rescue 
group  

 5/7 (71.43)  (29.0, 96.0) 

 Friend  1/7 (14.29)  

 Othera  1/7 (14.29)  

     

Cat dewormers 
and heart worm 
preventatives 

 None   6/7 (85.71) (42.0, 99.0) 

 Advantage 
Multi® 

 1/7 (14.29)  

     

Cat health events No health events  4/7 (57.14)  

 Acute conditions  3/7 (42.86)  

 Otherb  1/7 (14.29)  
aSt. Kitts Stray 
bHairballs and intermittent vomiting 
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Table 4.8 Continued 

Variable Category  Number of respondents 
(%) 

95% CI  

Litter box cleaning 
frequency  

 Daily 3/7 (42.86) (9.0, 81.0) 

 3-4 times/wk. 1/7 (14.29)  
 Twice/wk. 2/7 (28.57)  
 Once/wk. 0/7 (0)  
 <Once/wk. 1/7 (14.29)  
 Other 0/7 (0)  
    
Washing hands 
frequency after 
handling the litter box 

Always  6/7 (85.71) (42.0, 99.0) 

 Most of the time 0/7 (0)  
 Sometimes 0/7 (0)  
 Rarely 1/7 (14.29)  
 Never 0/7 (0)  
    
Frequency of diarrhea 
in cats* 

None  6/7 (85.71) (42.0, 99.0) 

 Once/3 mo. 1/7 (14.29)  
 Twice/3 mo. 0/7 (0)  
 3 times/3 mo. 0/7 (0)  
 >3 times/3 mo. 0/7 (0)  
 Unsure 0/7 (0)  

*In the last 3 months 
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Table 4.9 Dog and cat demographics, health assessment, and husbandry – section VI 

Variable Category  Number of 
dogs per age 
group (0-
20+) 

Number of 
respondents (%) 

95% CI  

Dog age  < 1 mo. 0 0/20 (0)  

 1-6 mo. 0 0/20 (0)  

 < 1 yr. 2 1/20 (5.00)  

 1-5 yrs. 1 9/20 (60.00) (23.0, 68.0) 

  2 3/20 (15.00)  

  3 3/20 (15.00)  

  4 1/20 (5.00)  

 6-10 yrs. 1 3/20 (15.00)  

  2 3/20 (15.00)  

  3 2/20 (10.00)  

 >10 yrs. 1 2/20 (5.00)  

  2 1/20 (5.00)  

     

Cat age  < 1 mo. 0 0/7 (0)  

 1-6 mo. 0 0/7 (0)  

 < 1 yr. 1 1/20 (5.00)  

  2 1/20 (5.00)  

 1-5 yrs. 1 10/20 (50.00) (27.0, 72.0) 

  2 4/20 (20.00)  

 6-12 yrs. 1 2/20 (5.00)  

  2 3/20 (15.00)  

 >12 yrs. 1 4/20 (20.00)  

  2 1/20 (5.00)  
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Table 4.9 Continued  

Variable Category  Number of 
respondents (%) 

95% CI  

Dog and cat source  Pet shop 0/20 (0)   
 Former research 

animal 
1/20 (5.00)  

 Breeders 7/20 (35.00) (15.0, 59.0) 
 Shelter or rescue 

group  
20/20 (100.00)  (83.0, 100.0) – 

One-sided CI 
(97.5%) 

 Friend 4/20 (20.00)  
 Other 1/20 (5.00)   
    
Dog dewormers and 
heart worm 
preventatives 

None 1/20 (5.00)  

 Advantage Multi 4/20 (20.00)  
 Sentinel 3/20 (15.00)  
 Heartgard 11/20 (55.00) (31.0, 76.0) 
 Othera 1/20 (5.00)  
    
Cat dewormers and 
heart worm 
preventatives 

None 10/20 (50.00) (31.0, 76.0) 

 Advantage Multi 7/20 (35.00)  
 Revolution 1/20 (5.00)  
 Drontal 1/20 (5.00)  
 Otherb 1/20 (5.00)  
Dogs and cats health 
events 

No health events 7/20 (35.00) (15.0, 59.0) 

 Acute conditions 7/20 (35.00) (15.0, 59.0) 
 Chronic conditions 2/20 (10.00)  
 Diseases 4/20 (20.00)  
 Internal parasitic 

infections 
2/20 (10.00)  

 Behavioral issues 5/20 (25.00)  
aStray cats 
bPyrantel and praziquantel 
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Table 4.9 Continued  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

aTwice daily 
bIn the last 3 months 
 

 

 

Variable Category  Number of 
respondents (%) 

95% CI  

Dogs used for hunting/ 
herding  

Never 18/20 (90.00) (68.0, 98.0) 

 Daily 0/20 (0)  
 Twice/wk. 1/20 (5.00)  
 Once/wk. 0/20 (0)  
 <Once/wk. 1/20 (5.00)  
 Othera 0/20 (0)  
Taking dogs to a dog 
park 

Never 10/20 (50.00) (31.0, 76.0) 

 Daily  1/20 (5.00)  
 Twice/wk. 0/20 (0)  
 Once/wk. 2/20 (10.00)  
 <Once/wk. 7/20 (35.00)  
 Other 0/20 (0)  
Cleaning the litterbox 
frequency  

Daily  6/20 (30.00)  

 3-4 times/wk. 3/20 (15.00)  
 Twice/wk.  5/20 (25.00)  
 Once/wk. 2/20 (10.00)  
 <Once/wk. 2/20 (10.00)  
 Otherb 2/20 (10.00)  
Washing hands after 
handling the litterbox 

Always 11/20 (55.00) (31.0, 76.0) 

 Most of the 
time 

8/20 (40.00)  

 Sometimes 1/20 (5.00)  
 Rarely 0/20 (0)  
 Never 0/20 (0)  
Diarrhea in dogs and 
cats  

None 15/20 (75.00) (50.0, 91.0) 

 Once/3 mo. 3/20 (15.00)  
 Twice/3 mo. 1/20 (5.00)  
 3 times/3 mo. 0/20 (0)  
 >3 times/3 mo. 1/20 (5.00)  
 I don’t know 0/20 (0)  
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Table 4.10 Procedures frequency performed on senior practicum core, elective or externship 
rotations, have you performed for adult cattle and/or calves – section VII of the survey 

Variable  Yes (%) No (%) Total 
Cattle rectal palpation 
exams 

26 (50.98) 25 (49.02) 51  

Cattle physical exams 27 (52.94) 24 (47.06) 51 
Cattle treatments  27 (52.94) 24 (47.06) 51 
Diagnostic tests for 
cattle 

27 (52.94) 24 (47.06) 51 

Calving assistance  12 (23.53) 39 (76.47) 51 
Breeding soundness 
exams 

22 (43.14) 29 (56.86) 51 

Calves physical 
exams 

24 (47.06) 27 (52.94) 51 

Calves treatments  25 (49.02) 26 (50.98) 51 
Diagnostic tests for 
calves 

25 (49.02) 26 (50.98) 51 

Brucellosis 
vaccinations 

20 (39.22) 31 (60.78) 51 

Postmortem 
diagnosis 

34 (66.67) 17 (33.33)  51 
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Table 4.11 Activities frequency after handling cattle and/or calves in the clinical rotations – 
section VII of the survey 

Variable Category  Number of 
respondents (%) 

95 % CI  

Washing hands  Always 31/51 (60.78) (46.0, 74.0) 
 Most of the time  9/51 (17.65)  
 Sometimes 6/51 (11.76)  
 Rarely 1/51 (1.96)  
 Never  4/51 (7.84)  
    
Eating/drinking  Always 6/51 (11.76)  
 Most of the time  8/51 (15.69)  
 Sometimes 25/51 (49.02) (34.0, 63.0) 
 Rarely 5/51 (9.80)  
 Never  7/51 (13.73)  
    
Washing 
coveralls/rubber 
boots  

N/A 21/51 (41.18) (27.0, 55.0) 

 Daily 22/51 (43.14) (29.0, 57.0) 
 Twice/wk. 3/51 (5.88)  
 Once/wk. 0/51 (0)  
 <Once/wk. 3/51 (5.88)  
 Other    
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Table 4.12 Use of personal protective equipment when handling cattle and/or calves in the 
clinical rotations – section VII of the survey 

PPE Always 
(%) 

Most of 
the time 
(%) 

Sometimes 
(%) 

Rarely (%) Never (%) Total  

PPE/Diarrheic 
cattle or calves 

      

Exam gloves 33 (64.71) 8 (15.69) 4 (7.84) 1 (1.96) 5 (9.80) 51 
Coveralls  39 (76.47) 5 (9.80) 1 (1.96) 1 (1.96) 5 (9.80) 51 
Rubber boots 39 (76.47) 4 (7.84) 2 (3.92) 0 (0) 6 (11.76) 51 
Surgical mask 
or N95 

3 (5.88) 0 (0) 6 (11.76) 8 (15.69) 34 (66.67) 51 

PPE/Non-
diarrheic cattle 
or calves 

      

Exam gloves 25 (49.02) 9 (16.65) 9 (17.65) 3 (5.88) 5 (9.80) 51 

Coveralls  37 (72.55) 4 (7.84) 4 (7.84) 1 (1.96) 5 (9.80) 51 

Rubber boots 37 (72.55) 3 (5.88) 5 (9.80) 0 (0) 6 (11.76) 51 

Surgical mask 
or N95 

3 (6.00) 0 (0) 6 (12.00) 7 (14.00) 34 (68.00) 50 
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Table 4.13 Procedures frequency performed on senior practicum core, elective or externship 
rotations, have you performed for dogs and cats – section VII of the survey 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable  Yes (%) No (%) Total 
Physical exams 51 (100.00) 0 (0) 51 

Diagnostic tests 51 (100.00) 0 (0) 51 

Taking animals to defecate or urinate 50 (98.04) 1 (1.96) 51 

Change bedding 50 (98.04) 1 (1.96) 51 

Cleaning exam rooms or tables  51 (100.00) 0 (0) 51 

Cleaning cages, kennels or runs 49 (96.08) 2 (3.92) 51 

Monitoring animals under sedation 
or anesthesia  

48 (96.000 2 (4.000 50 

Restraining animals for procedures 51 (100.00) 0 (0) 51 

Post-operative care  50 (98.04) 1 (1.96) 51 

Postmortem diagnosis 39 (76.47) 12 (23.53) 51 
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Table 4.14 Activities frequency after handling dogs and cats in the clinical rotations – section 
VII of the survey 

Variable Category  Number of 
respondents (%) 

95% CI  

Washing hands after 
procedures 

Always 11/51 (21.57)  

 Most of the time  26/51 (50.98) (36.0, 65.0) 
 Sometimes 12/51 (23.53)  
 Rarely 2/51 (3.92)  
 Never  0/51 (0)  
    
Washing hands 
between patients 

Always 9/51 (17.65)  

 Most of the time  28/51 (54.90) (40.0, 68.0) 
 Sometimes 9/51 (17.65)  
 Rarely 5/51 (9.80)  
 Never  0/51 (0)  
    
Eating/drinking  Always 7/51 (13.73)  
 Most of the time  14/51 (27.45)  
 Sometimes 28/51 (54.90) (40.0, 68.0) 
 Rarely 2/51 (3.92)  
 Never  

 
0/51 (0)  

Washing clinic 
smocks or cloth 
surgical gowns 

N/A 3/51 (5.88)  

 Daily 6/51 (11.76)  
 Twice/wk. 14 (27.45)  
 Once/wk. 21/51 (41.18) (27.0, 55.0) 
 <Once/wk. 7/51 (13.73)  
 Other  0/51 (0)  
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Table 4.15 Use of personal protective equipment when handling diarrheic and non-diarrheic dogs and cats in the clinical rotations – 
section VII of the survey 

PPE Always (%) Most of 
the time 
(%) 

Sometimes 
(%) 

Rarely (%) Never (%) Total  

PPE/Diarrheic dogs 
and cats 

      

Exam gloves 25 (49.02) 
 

14 (27.45) 8 (15.69) 
 

3 (5.88) 
 

1 (1.96) 
 

51 

Clinic smocks 39 (76.47) 
 

8 (15.69) 
 

4 (7.84) 
 

0 (0) 
 

0 (0) 
 

51 

Surgical gowns 4 (7.84) 
 

2 (3.92) 
 

15 (29.41) 
 

21 (41.18) 
 

9 (17.65) 
 

51 

Masks 0 (0) 
 

0 (0) 3 (5.88) 
 

22 (43.14) 
 

26 (50.98) 
 

51 

Foot covers 0 (0) 
 

1 (1.96) 
 

8 (15.69) 
 

20 (39.22) 
 

22 (43.14) 
 

51 

PPE/Non-diarrheic 
dogs and cats 

      

Exam gloves 7 (13.73) 
 

2 (3.92) 
 

21 (41.18) 
 

17 (33.33) 
 

4 (7.84) 
 

51 

Clinic smocks 35 (68.63) 
 

12 (23.53) 
 

4 (7.84) 
 

0 (0) 0 (0) 51 

Surgical gowns 0 (0) 1 (1.96) 
 

4 (7.84) 
 

21 (41.18) 
 

25 (49.02) 
 

51 

Masks 0 (0) 0 (0) 2 (3.92) 
 

22 (43.14) 
 

27 (52.94) 
 

51 

Foot covers 0 (0) 0 (0) 3 (5.88) 
 

21 (41.18) 
 

27 (52.94) 
 

51 
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Table 4.16 Rotations completed from the beginning of the senior practicum until the time of the 
survey 

Clinical Rotation Number of Respondents 
(%)  

Total 

Dairy Field Service 19 (37.25) 
 

51 

Herd Management 5 (9.80) 
 

51 

Livestock Medicine any Surgery 0 (0) 
 

51 

Large Animal Emergency Medicine 20 (39.22) 
 

51 

Livestock Medicine and Surgery 21 (41.18) 
 

51 

 
Any senior practicum involving contact 
with cattle 

 
20 (39.22) 
 

 
51 

Small Animal Internal Medicine 36 (70.59) 
 

51 

Community Practice 31 (60.78) 
 

51 

Critical and Emergency Care 29 (56.86) 
 

51 

Afterhours Small Animal Urgent Care 33 (64.71) 
 

51 

Postmortem Diagnosis (Large and 
small animals) 

30 (58.82) 
 

51 
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Table 4.17 Fecal flotation (FF) immuno-fluorescent assay (IFA), and polymerase chain reaction 
(PCR) results of G. duodenalis for human, dog and cat samples 

 Species Diagnostic 
Test 

Positives Percentage 95% CI 

Humans (42) FF 0  N/A N/A 
Dogsa (31) FF 1  3.23 (0.1, 16.7) 
Cats  (17) FF 0  N/A N/A 
     
Humans (42) IFA 1  2.38 (0.1, 12.6) 
Dogs (31) IFA 3  9.68 (2.0, 25.8) 
Cats  (17) IFA 0  N/A N/A 
     
Humans (42) PCR 3 7.14 (1.5, 19.5) 
Dogs (31) PCR 3 9.68 (2.0, 25.8) 
Cats  (17) PCR 1 5.88 (0.1, 28.7) 

aOne dog was identified with hookworm egg that was G. duodenalis negative 
 

Table 4.18 Polymerase chain reaction (PCR) results distributed by genes of G. duodenalis for 
human, dog and cat samples 

Species gdh tpi β-giardin 
Humans (42) 0/42 (0%) 3/42 (7.14%) 0/42 (0%) 
Dogs (31) 2/31 (6.45%) 3/31 (9.67%) 1/31 (3.22%) 
Cats (17) 0/17 (0%) 0/17 (0%) 1/17 (5.88%) 
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Table 4.19 Fecal flotation (FF), immuno-fluorescent assay IFA, and polymerase chain reaction 
(PCR) results of Cryptosporidium spp. for human, dog and cat samples 

Species Diagnostic 
Test 

Positives Percentage 95% CI 

Humans (42) FF 0 N/A N/A 
Dogs (31) FF 0 N/A N/A 
Cats (17) FF 0 N/A N/A 
     
Humans (42) IFA 1 2.38 (0.1, 12.6) 
Dogs (31) IFA 1 3.23 (0.1, 16.7) 
Cats (17) IFA 0 N/A N/A 
     
Humans (42) PCR 1  2.38 (0.1, 12.6) 
Dogs (31) PCR 4 12.9 (3.6, 29.8) 
Cats (17) PCR 1 5.88 (0.1, 28.7) 

 

Table 4.20 Polymerase chain reaction (PCR) results distributed by genes of Cryptosporidium 
spp. for human, dog and cat samples 

Species 18SrRNA hsp70 gp60 
Humans (42) 0/42 (0%) N/A 1/42 (2.38%) 
Dogs (31) 2/31 (6.45%) 4/31 (12.9%) 0/31 (0%) 
Cats (17) 0/17 (0%) 1/17 (5.88%)  0/17 (0%) 
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Table 4.21 Stratification of positive and negative human samples due to G. duodenalis and 
Cryptosporidium spp. by risk factors using the IFA test 

 

Table 4.22 Stratification of positive and negative human samples due to G. duodenalis by risk 
factors using the PCR test 

 

 

 

 

 

Variable Level  Positive (%) Total  Fisher’s exact 
P value 

95% CI 

Track Preference  SA 1 (5.0%) 20 0.65  (0.12, 25.0) 
 GEN 0  14   
 LA 0 8   
      
Gender M 0 6 0.86 (0.1, 14.5) 
 F 1 (2.8%) 36   
      
Pet Ownership Yes 1 (2.6%) 39 0.93 (0.1, 13.5) 
 No 0  3   
      
Work on Farm Yes 1 (3.8%) 26 0.61 (0.1, 19.6) 
 No 0 16   

Variable Level  Positive (%) Total  Fisher’s exact 
P value 

95% CI 

Track Preference  SA 2 (10.0%) 20 0.59  (1.2, 32.0) 
 GEN 1 (7.1%) 14  (0.2, 33.9) 
 LA 0 8   
      
Gender M 0 6 0.62  
 F 3 (8.3%) 36  (1.7, 22.5) 
      
Pet Ownership Yes 3 (7.7%) 39 0.79 (1.6, 20.9) 
 No 0 3   
      
Work on Farm Yes 3 (11.5%) 26 0.23 (2.4, 30.2) 
 No 0 16   
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Table 4.23 Stratification of positive and negative human samples due to Cryptosporidium spp. by 
risk factors using the PCR test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Level  Positive (%) Total  Fisher’s exact 
P value 

95% CI 

Track Preference  SA 0 20 0.32   
 GEN 0 14   
 LA 1 (12.5%) 8  (0.3, 52.7) 
      
Gender M 1 (16.7%) 6 0.14 (0.4, 64.1) 
 F 0  36   
      
Pet Ownership Yes 1 (2.6%) 39 0.93 (0.1, 13.5) 
 No 0 3   
      
Work on Farm Yes 1 (3.8%) 26 0.62 (0.1, 19.6) 
 No 0 16   
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Table 4.24 DNA sequencing results for G. duodenalis  

Sample ID Species Age Stool Character Typed by 
gene  

Parasite 

242 Dog 1-5 yr. Score = 4 tpi G. duodenalis Assemblage D 

    gdh G. duodenalis Assemblage D 

      

276 Dog 1-5 yr. Score = 2 tpi G. duodenalis Assemblage D 
    gdh G. duodenalis Assemblage D 
      
204 Dog <1 yr. Score = 2 β-giardin G. duodenalis Assemblage C 
    gdh G. duodenalis Assemblage C 

 

Table 4.25 DNA sequencing results for Cryptosporidium spp. 

Sample ID Species Age Stool Character Typed by 
gene  

Parasite 

242 Dog 1-5 yr. Score = 4 18SrRNA Cryptosporidium spp. 
      
389 Cat 1-5 yr. Score = 1 hsp70 Cryptosporidium spp. 
      
389 Dog 6-10 yr. Score = 4 hsp70 C. felis 
      
575 Dog 1-5 yr. Score = 3 hsp70 Cryptosporidium spp. 
      
643 Human 29 Non-diarrheic gp60 C. parvum (IIa Allele) 
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Table 4.26 Positive dog, cat and owner demographics  

Animal ID Pet Demographics  Owner Demographics 
Dog #448  G. duodenalis (IFA)  Age from <1 year and 6-10 years  Breeders  Chronic health conditions  Herding or hunting – once/wk.  Dog park – attended daily  Had diarrhea > 3 times /3 mo.  

 Giardia/Cryptosporidium –negative  Female   Large animal track  Lived in single family residence/no 
cattle  Worked on a farm   Owned multiple dogs 

 
 

Dog #242  G. duodenalis (FF, IFA, PCR)  Cryptosporidium spp. (PCR)  Age 1-5 yrs.  Shelter   Acute health conditions  Behavioral issues  Never used for herding  Dog park – attended once/wk.  No diarrhea 

 Giardia/Cryptosporidium –negative 
 Female  Small animal track  Lived in single family residence/no 

cattle  Worked on a farm  Owned dogs and cats 
 

Dog #204  G. duodenalis (IFA, PCR)  Cryptosporidium spp. (IFA, PCR)  Age <1 yr.  Breeder and shelter  No health events  Herding or hunting – twice/wk.  Dog park – not attended  No diarrhea  

 Giardia/Cryptosporidium –negative 
 Female   Large animal track  Lived in single family residence/with 

cattle  Worked on a farm   Owned dogs and cats 
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Table 4.26 Continued 

Animal ID Pet Demographics  Owner Demographics 
Dog# 276  G. duodenalis (PCR)  Cryptosporidium spp. (PCR)  Age 1-5 yr.  Shelter  Acute conditions and diseases 

such as diabetes  Herding or hunting – never  Dog park – not attended  No diarrhea 

 G. duodenalis (PCR)  Female   Small animal track  Lived in single family 
residence/no cattle  Worked on a farm   Owned dogs and cats 
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Table 4.26 Continued 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Animal ID Pet Demographics  Owner Demographics 
Dog #575  Cryptosporidium spp. (PCR)  Age 1-5 yrs.  Shelter   No health events  Herding or hunting – never  Dog park – once/wk.  No diarrhea 

 Giardia/Cryptosporidium –negative 
 Female   Small animal track  Lived in single family residence/no 

cattle  Have not worked on a farm   Owned one dog only 
 

Dog #389  Cryptosporidium spp. (PCR)  Age 6-10 yrs.  Shelter   No health events  Herding or hunting – never 
 Dog park – not attended 
 No diarrhea 

 Giardia/Cryptosporidium –negative 
 Female   Small animal track  Lived in single family residence/no 

cattle  Have not worked on a farm   Owned dogs and cats 
 

Dog#82  Hookworm   Giardia/Cryptosporidium –
negative 

 Age 1-5 yrs.  Breeder/shelter   No health events  Herding or hunting – never 
 Dog park – <1/wk. 
 No diarrhea 

 Giardia/Cryptosporidium –negative 
 Female   Small animal track  Lived in single family residence/no 

cattle  Have not worked on a farm   Owned dogs and cats 
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Table 4.26 Continued 

Animal ID Pet Demographics  Owner Demographics 
Cat #389  Cryptosporidium spp. (PCR)  Age 1-5 yrs.  Shelter   No health events 

            No diarrhea 

Same owner as Dog #398 

Cat #300  G. duodenalis (PCR)  Age 1-5 yrs.  Breeder and Shelter   Acute conditions 
           Had diarrhea > 3 times /3 mo. 

 Giardia/Cryptosporidium –negative 
 Female   Small animal track  Lived in single family residence/no 

cattle  Worked on a farm   Owned dogs and cats 
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Conclusions 

 Giardia spp. and Cryptosporidium spp. are the leading causal agents of parasitic diarrhea 

in humans, dogs and cats. Our studies highlight that these two protozoans can be isolated from 

all three species. Both pathogens contain host-adapted and zoonotic strains. Dogs and cats can be 

infected with both strains. Assessing exposure factors that are associated with the increased 

probability of infection to these two pathogens as well as identifying and characterizing the 

isolates that infect dogs, cats and humans could help in understanding which factors are 

significantly associated with the infection due to these two pathogens that will ultimately aid in 

disease management and control. Furthermore, molecular characterization of the human, dog or 

cat fecal isolates identifies zoonotic genotypes in these species which may point out to the 

transmission routes of infection or disease among humans, dogs and cats.  

 Our study results showed that all G. duodenalis assemblages were host-adapted in dogs 

and was not identified in cats. In addition, most cats in the national study were infected with C. 

felis. This finding could indicate that pet dogs and cats are not potential reservoirs for zoonotic 

transmission in humans.  

Even though the senior veterinary student track preference was not significantly 

associated with the increased probability of infection or disease of Giardia or Cryptosporidium, 

C. parvum was identified in cats and dogs who their owners have previously worked in farms 

contained cattle. There is baseline exposure to these two pathogens due to intensive contact with 

cattle. Thus, humans can potentially transmit the infection to their pets. Regardless, this 

conclusion needs further investigation by collecting more samples from veterinary students who 

have previously worked in the farm.  
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Even though the majority of dogs or cats owned by senior veterinary students that 

participated in this study were adopted from the shelter, we did not identify any other protozoan 

or intestinal parasites. This indicates that these dogs are well taken care of by their owner, 

especially, the majority of students have used the dewormers or heartworm preventative 

programs for their dogs, but not their cats. Regardless, we have not identified other intestinal 

parasites in cats as well.  

In one research study conducted for this dissertation, molecular genotyping to 

Cryptosporidium spp. using gp60 locus was more specific for samples of human origin and not 

of dog or cat origin.  

The importance of the timely processing of fecal samples was noted to reserve as much 

pathogen DNA as possible for detection. Another technique followed for diagnostic tests 

conducted in this dissertation, the PCR assay was applied to all samples regardless whether they 

are tested positive or negative to the IFA assay that is the gold standard. Additionally, it is 

recommended to use multilocus PCR protocol to characterize Giardia spp. isolates due to the 

divergent agreement between genes in the Giardia genome.  

It is worth noting from conducting research that involved human subjects, that students’ 

participation was lower than expected most likely because of the requirement to collect fecal 

samples. That could be attributed to cultural perspectives or recruitment methods. Therefore, it is 

suggested that multiple face-face recruiting approach can be more efficient than recruiting via 

email alone. Also, students were more willing to take the anonymous online survey without 

submitting fecal samples.   
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5.2 Future Directions 

 To continue investigating potential risk factors that can associate with the infection of G. 

duodenalis and Cryptosporidium spp. in veterinary students, research is needed to identify those 

factors in both junior and senior veterinary students in collaboration with other universities in the 

USA. This will allow for a larger sample size and to compare the risk in these two segments of 

populations. In addition, it will be helpful to identify a baseline exposure of the faculty that work 

on large animal rotations. More particularly, it is helpful to determine zoonotic or anthroponotic 

transmission of Cryptosporidium spp. in large animal track veterinarians, those who have worked 

or are working on a dairy farm and faculty veterinarians and their pet dogs or cats.  

 As a follow up of research conducted in Chapter 2 of this dissertation, an evaluation for 

zoonotic transmission can be determined. This evaluation can be conducted for associations of 

positive test results tested by the PCR assays with the clinical findings and determine the 

probability of dogs or cats are carrying the zoonotic species of Giardia and Cryptosporidium. 
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