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Fig. 3. Adaptive deita modulator for speech coding.

TABLE I
DETERMINED FIXED-POINT ATTRIBUTES FOR THE ADAPTIVE DELTA MODULATOR
desired | group signals integer minimum optimum

SQNR word-length | word-length | word-length
ul prediction filter -1 8 [
19.0 u013 syllabic filter -4 8 8
u007 DAC -1 8 8
ul prediction filter -1 20 20
20.5 u013 syllabic filter -4 18 18
007 DAC -1 14 15

efficient search methods. This software was applicable not only
to- digital filters but to complex systems, such as the 8 x 8 IDCT
conforming to the IEEE specifications, CELP speech vocoder, and
MPEG audio algorithms as well. Although the optimization results
are dependent on the input signal samples, it was possible to obtain
the robust results by choosing the input signal carefully, adding
guard bits, using adders with saturation logic, or applying several
input signal files.
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New

Parameter Estimation for Two-Dimensional
Vector Models Using Neural Networks

Lin Xu and Mahmood R. Azimi-Sadjadi

Abstract— This correspondence addresses the problem of . two-
dimensional (2-D) vector image model parameter estimation using .
a mew recursive least squares (RLS)-based learning method. Vector
autoregressive (AR) models with various 1-D and 2-D, causal and
noncausal regions of support (ROS) are. considered. Numerical results
are presented which demonstrate the usefulness of the proposed scheme
for en-line implementation.

I. INTRODUCTION

Finite-order autoregressive (AR), moving average (MA) and au-
toregressive moving average (ARMA) models have found numerous
applications in parametric representations of both 1-D and 2-D
discrete time processes. For example, such statistical models can be
used in-the area of time series prediction [1], image restoration [2],
image data compression [3], and texture analysis [4].

Until very recently, research on statistical image modeling was
mainly focused on 2-D scalar [5], [6] or 1-D vector causal models
[71, [8]. However, by using causal models, typically close to half
of the adjoining pixels .are ignored in' the process of modeling.
Using noncausal modeling, on the other hand, the correlational
information is extracted from as many pixels, surrounding a given
pixel (or a column of pixels) in a full plane ROS, as possible
and these correlations are reflected in the image model. Therefore,
one would expect that noncausal models provide substantially better
representation of the image process than their causal counterparts.

Conventional modeling methods typically require prior statistical
knowledge of the image process. As a result, on-line implementation
of these methods becomes very difficult or virtually impossible as the
whole image field must be available prior to the modeling process.
Moreover, these methods can be computationally laborious especially
for higher order models. A neural network-based modeling algorithm
is developed in this paper for 1-D and 2-D AR vector modeling with
various ROS geometries. The learning scheme is based upon RLS
algorithm which possesses inherent fast convergence behavior. This
new modeling scheme does not require any prior statistical knowledge
of the process and thus, lends itself for on-line implementation.
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Simulation results for various 1-D and 2-D vector AR models are
also presented.

II. IMAGE VECTOR MODELING AND PARAMETER ESTIMATION

Consider a zero mean image {z; ;}, which is scanned vectorially
in strips of width N. The direction of the scanning is assumed to be
from left-to-right, and top-to-bottom. The strips may be overlapped
to reduce the edge effects. Using such a scanning scheme, the image
process can be represented by a vector or multichannel AR or
ARMA process [7], [8]. A vector AR process with ROS, W, can
be represented by

2G.5)= Y, ¢t~k j—1)+E(@j) €
kJlew

where Z(i,j) represents an N x 1 vector with the pixel intensity
values as its elements, i.e., Z(¢,5) = [®ij Tig1,5:- -~ iy N-1,51"
Titm,j,m € [1,N], denotes the intensity of the pixel at location
(i + m,j) of the column; vector E(i,j), which is defined similar
to Z(i,j), represents the driving noise vector process and ¢x,;’s, for
(k,1) € W, are N x N parameter matrices. The statistics of the
driving process are

E[E(, /)] =0
{S[E(i,j)EJ(i,j)] = Qs @

where Qg is the covariance matrix of the error vector E(4,j) and
&[] denotes the expectation operator.

The purpose of 2-D vector AR modeling is to find the parameter
matrices ¢ ; for a given image and a choice of the geometry for ROS.
Similar to 2-D scalar image modeling [6], the choice of ROS is one of
the most important aspects in vector image model estimation. Scalar
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Fig. 1. (a) 1-D Mth order causal ROS. (b) Extended 2-D first order causal NSHP ROS. (c) 1-D Mth order noncausal ROS. (d) Extended 2-D first
order noncausal ROS.

ROS geometries can be extended to vector models. For a 1-D Mth
order vector causal ROS as shown in Fig. 1(a), W is defined as

Wy = {(k,1): k= 0,1 € [1, M]}. (3a)

For the extendéd 2-D Mth order vector causal nonsymmetric half
plane (NSHP) ROS as shown in Fig. 1(b) (M = 1), W is defined
as

W = {(k,0): (k= 0,1 € [1, M) U(k = 1,1 € [-M, M])}. 3b)

For the 1-D M th order vector noncausal ROS, as shown in Fig. 1(c),
W3 is defined as .

Ws = {(k,]) : k=0,1 € [~M, M]}. (3c)

For the extended 2-D Mth order vector noncausal or full-plane ROS
as shown in Fig. 1(d) (M = 1), W4 is defined as

Wa = {(k,1) : k € [-1,1],1 € [-M, M], (k1) # (0,0)}. (3d)

Let us consider the causal vector model with ROS, as shown in
Fig. 1(a). To estimate the parameter matrices ¢; for this model using
the Yule—Walker method, transpose (1), premultiply both sides by
Z(i,j —n), and then take the expectation. Using the orthogonality
property [7], (8], £[Z(4,j — n)E(i, j)] = O, this yields

M
P = pa-1$+ Qub(n) C)

i=1

where p, is the covariance matrix of Z(¢,j) and pf, = p_, for
n € [0, M]. The normal equation (4) can be arranged in a vector
Yule-Walker system of equations from which ¢;’s, I € [1, M], and
QE can be determined [8]. With the assumption that the image field
is column wide-sense stationary within each strip [8], one may use
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Fig. 2. Vector 2-D neural network modeling with 1-D Mth order causal
ROS with nonzero mean.

the ergodicity property to get reasonable estimates of p,.’s, p’s for
these parameters, i.e.,

P—1-NP-1

Z Z Z(i,j —n)Z'(i,5) (5)

where P is the dimension of the image. In [7], the elements of matrix
pr, are estimated using a scalar version of (5) as the vector model is
assumed to be formed of several scalar processes.

The conventional causal vector modeling method can easily be
extended to the noncausal vector model with ROS, as shown in
Fig. 1(c). In this case, the normal equation in (4) can be medified to

1
(P—n)x (P-N)

pAn:

M .
Pn = Z pnwl¢l + QE(S(n)a n < ["M7M] (6)
A
which can also be arranged in a vector Yule-Walker system of
equations. Note that in the noncausal case the vector model is driven
by a colored noise process [6], [8].

III. A NEURAL NETWORK-BASED
SCHEME FOR PARAMETER ESTIMATION

In this section, a new approach for parameter estimation of
vector image models is suggested using the RLS learning algorithm
[9] which is inherently fast converging and suitable for on-line
implementation.

Assuming that the image is wide-sense stationary within each strip,
the vector process in (1) can be decomposed into IV scalar processes
[7]. Writing the AR models for the elements of vector Z(1,j) yields

Titn-1j= Y AYUZ@—kj—1)+eitn1j, n€[LN]

klEW
(7a)
where A_ﬁ”‘ represents the nth column of matrix ¢, i.e.
$rp = [ATLAD AR, (R EW (7b)
and
AV =lan, a5, el e, N] (7¢)

where af,;fn is the mth element of vector Aﬁ’l, m € {1, N].

From (7a), one can see that each element in Z (4,7) is estimated
based on all pixels inside the ROS, and the corresponding coefficients
are the elements of parameter matrices ¢x,i’s. Thus, a scalar 2-D
neural network-based modeling scheme [10] can be used to extract
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Fig. 3. Boat image.

the parameters of each scalar model. The structure of the network
consists of a single layer of neurons as shown in Fig. 2 for the 1-
D causal vector AR model with ROS of Wy in Fig. 1(a). Note that
since the ROS is identical for all the pixels in the vector, the network
input vector is the same for all the elements in the vector. This input
vector is given by

U(,0) = [#i -1, Zit1,5215 - - 5 Tik N o115

Lij—25 e o s Tit N—1,5—25+++5;
(8a)
and the corresponding parameter vector for the nth element of the
vector, Vn € [1, N], is
.. 0,1 .. - 0,1 /. . 0,1 /. -y,
W, (i,5) = [al,n(l7])’ az,n(l77)a S aN,n(%])v
0,2 /: - 02 /1 .
a’l,n (17.7)7 Tty aN,n(la])v
0M;; 0,M: it
N (Z,j),...,aN’n(’L,j)]
In these vectors, (4,7) represents the position of the top element
of the current vector where. the estimation is taking place and
ak! (i,5), m € [1,N], represents the intermediate parameter for
position (7, j). Now using the RLS weight updating rule, the model

parameters in W, (7,7) can be estimated. This procedure involves,
the following steps [9]-{11]

t
TG My e Tif N—1,j—M]

(8b)

Pa(i,j — DU, j)

OIS TaanGc -ooey
W) =W, (65 - D)+ K, (i,5)
X [ign—1,; — W (6,5 — DU(i, )] (9b)

Pulin) = 31— K )T G )P — 1) - 90

where A is the forgetting factor with 0 < X < 1, K (4,5) is the
gain vector, and P,(z,7) is the inverse of data correlation matrix.
The initial weights are either randomly set to small values or are
initialized to zero and P, (0,0) = «l, where « is a small value and
I is the identity matrix. For a relatively large image, the effects of
initial conditions would not impact the performance. The:process is
repeated for each new position of the window until -the end of the
strip is reached. At the end of each strip, a new strip is started in
a zig-zag fashion to avoid discontinuities in the process. The strips
are overlapped to reduce the edge effects. Generally speaking, better
results are obtained for larger overlap. '
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Fig. 5. Diagonal elements of error covariance matrices (conventional method
versus neural network method).

The above procedure is repeated for each n € [1, N] sequentially.
However, if a parallel processor is used, the procedure can be applied
to all IV elements in parallel. If the image has nonzero mean, a bias
node can be added, as shown in Fig. 2, to compensate for this nonzero
mean. With proper arrangement of the input and weight vectors, the
parameters of other vector models, in Fig. 1, can also be estimated
using the above procedure. :

Although the above discussion only considered the case of causal
and noncausal vector AR modeling, causal vector MA or ARMA
model parameter estimation can be treated using similar methods as
in the 2-D scalar MA or ARMA neural network-based modeling {10].
A similar scheme can be applied to each element of the vector with
very little modifications in the structure of the network.

IV. SIMULATION RESULTS

The test image chosen was “Boaf” image as shown in Fig. 3. This
image has 256 gray levels and 512 x 512 pixels. Four cases of ROS
in Fig. 1(a)—(d), i.e., 1-D causal and noncausal vector AR models, 2-
D first order extended NSHP model and 2-D first order extended
noncausal vector AR model were studied. In all cases, N = 8
with seven pixel overlap between strips and mean compensation
input vector was also implemented. Initial weights were randomly
initialized between —0.5 and 0.5, P(0,0) = 0.5] and A = 1.

Under the assumption that the vector neural network parameter
estimator is composed of several scalar parameter estimators, the
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convergence behavior of the algorithm becomes similar to that of
the scalar case [9]. The mean vector and the covariance matrix of
the driving noise were computed to determine the performance of
the algorithm for the four cases in Fig. 1(a)~(d). Fig. 4 shows the
plots of the diagonal elements of the covariance matrix, Qg, for the
four cases when M = 1. Some 1-D causal and noncausal vector AR
modeling results using the conventional methods are also presented
for comparison. Fig. 5 gives the plots of the diagonal elements of
the covariance matrix, Qg, for various order M = 1,2,4, and 8§,
1-D causal and noncausal cases and using conventional and neural
network schemes. From these results, the following observations can
be made:

1) As expected, higher order models provide smaller error covari-
ances (see Fig. 5), but the rate of improvement decreases as
the order of the model increases.

2) Noncausal 2-D vector AR models have significantly smaller
driving error covariances as they provide more accurate fit to
the image data. Fig. 4 clearly discloses the difference between
the causal and noncausal 1-D and 2-D vector AR models.

3) As can be seen from the plots in Fig. 4, for 1-D vector models
with ROS inside a strip (Fig. 1(a) and (c)), the error covariances
associated with the top and bottom pixels in the current vector
are sightly larger than those in the middle. For 2-D causal
vector models (Fig. 1(b)), the error covariances associated with
lower pixels are significantly larger than those of the upper
ones. For 2-D noncausal vector models (Fig. 1(d)), the error
covariances are slightly smaller for those of the boundary
pixels. The reason for this variation in the values of error
covariances lies in the fact that each individual pixels has
a different support region. Pixels with larger support region
tend to have smaller error covariance values, while those with
smaller support region have larger error covariance values.
The off-diagonal elements of the error covariance matrices
continued to decrease from causal 1-D vector models to 2-
D noncausal vector models owing to the improvements in the
accuracy in the modeling.

4) Comparing the results with those of the models obtained using
the conventional method (Fig. 5) indicated that the models
generated by the conventional method appear to have better fit.
The reason for this discrepancy is that the conventional method
computes the parameters of the model by solving a vector
- Yule—Walker in which p.’s are obtained vectorially using
(4); while using the neural network scheme the multichannel
process is assumed to be decomposed into multiple scalar
processes. Nevertheless, all models obtained using the neural
network have much smaller covariance values at off-diagonal
positions.

5) The values of elements in the bias compensation vector are
close to the true image mean.

These observations indicate that the neural network-based vector
modeling method provide a simple and efficient approach for no-line
parameter estimation applications.

V. CONCLUSION

In this paper, a new method for image vector AR model param-
eter estimation was proposed. Several causal and noncausal ROS
geometries were considered. The proposed scheme is based upon
the application of a single layer neural network trained with a fast
RLS-type algorithm. To apply the neural network modeling scheme
developed in this correspondence, the vector model was decomposed
into several scalar models. This algorithm is applicable to causal
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as well as noncausal AR models with various ROS geometries. In
addition, the algorithm is suitable for on-line implementation as prior
statistical knowledge of the image is not needed. The simulation
results show the usefulness of the proposed method.
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A New Polynomial Perceptron Based 64QAM
Cellular Mobile Communications Receiver

Zeng-Jun Xiang and Guéng—Guo Bi

Abstract— A mew lattice polynomial perceptron (LPP) with faster
convergence rate is introduced. The LPP based 64QAM cellular mobile
communications receiver structure is described. Computer simulation
results are given, which shows that, in 64QAM system, the performance
of LPP is clearly superior to that of the other structures.

I. INTRODUCTION

Multilevel quadrature amplitude modulation (MQAM) is a band-
width efficient transmission method for digital signals. However,
the optimal receptions for MQAM mobile communication systems
in the presence of frequency-selective fading and adjacent-channel
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interference (ACI) are inherently nonlinear problems. Nonlinear
structures and the corresponding nonlinear processing methods are
therefore required to achieve fully or nearly optimal performance.
Neural network is one kind of nonlinear signal processing techmques
and shows the potential for solving the above problems.

In [1], a model of polynomial perceptron (PP) is investigated in
detail and a new fractionally spaced bilinear perceptron (FSBLP)
model is introduced. Their nonlinear mapping abilities are evaluated.
Applications of PP and FSBLP for fading channel equalization and
co-channel interference suppression in a 16QAM receiver system are
considered. Simulation results show that the performance of FSBLP
is clearly superior to that of the other structures. However, when
FSBLP is applied to 64QAM communication system with fading and
ACI, its performance is worse.

In this paper, we introduce a new lattice polynomial perceptron
model. The new model, as will be shown in Section IV, achieves
the same performance as that of FSBLP in 16QAM system with
fading and ACI. While in 64QAM system, its pelformance is clearly
superior to that of the other structures.

The rest of the paper is organized as follows. The model of PP
is presented in Section IL Section III introduces the model of LPP.
Application examples, computer simulation results and. discussions
are given in Section IV. Section V inclides concluding remarks.

. POLYNOMIAL PERCEPTRON MODEL

The model of PP can be defined as [1], [2]
y(n) = fF(PR{X(n)})

where, f(-) is a nonlinear function of the sigmoid type. P is a
degree-L polynomial function with coefficient vector W,

N

PE{X(n)} = wo + Z wi;z(n —i1 + 1)
ii=1
N N
+ Z Z wiyiyz(n — iy + Da(n — iz + 1)
i1=1ip=1
N N N
+-e Z Z Z Wigig.iy,
i3=1%y=1 =1
cz(n—di + Da(n —iy 1) 2(n —ip + 1)
X(n) = [z(n),z(n - 1),...,2(n ~ N + T is the
N-dimensional input signal Vector, and W = [wo, w1, ws,...,
WN, Wil -y WNNy oo ey Wileilyeers WNN-N]L represents the
v ;V_/

L
coefficient vector. When L — oo, P {X (n)} is the well-known
Volterra series.

II. LATTICE POLYNOMIAL PERCEPTRON

A. Model of LPP

The basic idea of the lattice realization of PP is to obtain the
Gram-Schmidt orthogonal decomposition of the input signals of the
polynomial percepiron, and then estimate the desired response signal
as the output of the linear combination of the transformed signals
through a nonlinear activation function f(-). For simplicity, we give
the lattice realization method of the third order PP. Let N = L = 3

1053-587X/95%04.00 © 1995 IEEE



