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ABSTRACT 

 

 

IMPROVEMENTS IN COMPUTATIONAL ELECTROMAGNETICS SOLVER 

EFFICIENCY: THEORETICAL AND DATA-DRIVEN APPROACHES TO ACCELERATE 

FULL-WAVE AND RAY-BASED METHODS 

 

Simulation plays an ever-increasing role in modern electrical engineering design. However, the 

computational electromagnetics solvers on which these simulations rely are often inefficient. For 

simulations requiring high accuracy, full-wave techniques like finite element method and method 

of moments dominate, yet existing practices for these techniques frequently allocate degrees of 

freedom sub-optimally, yielding longer solve times than necessary for a given accuracy. For larger-

scale simulations, frequency-asymptotic methods like shooting-bouncing ray tracing dominate, yet 

existing algorithms suffer from incomplete parallelizability and are consequently unable to take 

full advantage of modern massively parallel computing resources. We present several approaches, 

both theoretical and empirical, to address these efficiency problems. 
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INTRODUCTION 

This dissertation proposes several improvements to the current state of the art in full-wave 

frequency-domain and frequency-asymptotic computational electromagnetics (CEM) methods. 

CEM software increasingly relies on hybrid approaches, so we consider it prudent that 

improvements to the state of the art consider both full-wave and frequency-asymptotic methods. 

Full-wave frequency domain methods are the backbone of modern CEM for problems at small to 

moderate electrical scale. Such approaches, like the finite element method (FEM), method of 

moments (MoM), and finite difference (FD) method, allow simulation of electromagnetic 

phenomena governed by Maxwell’s equations in high detail for highly varying, complicated 

propagation environments using a discretized differential or integral description of the underlying 

physics. The choice in discretization is paramount to the efficiency of such methods. The 

discretization must resolve the relevant behavior of the analytical solution to achieve an accurate 

numerical solution, meanwhile, the discretization must remain as simple as possible to yield a 

tractable and efficiently solvable numerical problem. These competing factors are the major 

compromise of modern full-wave CEM techniques, and how to best reconcile them is an open 

problem of great interest. Frequency asymptotic methods, in contrast, are most popular for 

problems at large electrical scale. Such approaches are substantially faster than full-wave methods 

for large problems, remaining tractable at much larger electrical lengths. Despite this, even the 

fastest of the frequency-asymptotic methods, shooting-bouncing-ray (SBR) tracing, suffers from 

diminishing returns with increased parallel computing power, limiting the maximum practical 

problem size to which frequency-asymptotic methods can be applied.  

Chapter one investigates and evaluates applications of the adjoint problem and its solution 

in frequency-domain CEM. The chapter establishes and validates adjoint-based applications 
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including higher-order parameter sampling, a posteriori error estimate evaluation, and p- and h-

refinement. These applications can improve efficiency, automation, and robustness of CEM 

methods. We employ a one-dimensional finite-element-method scattering solver, simplifying 

implementation, replicability, clarity, and intuitiveness of analysis results and conclusions, which 

then extend naturally to higher-dimensional solvers and more-complicated CEM problems. While 

demonstrated with a higher-order solver, the derived techniques apply to low-order methodology 

as well. This is the first demonstration of applicability of adjoint-based a posteriori error estimation 

techniques to adaptive discretization refinement in frequency-domain CEM with arbitrary-order 

basis functions. This work introduces application of dual-weighted residual error estimation and 

selective adaptivity based on error cancellation. The proposed targeted, adaptive mesh/model p- 

and/or h-refinement heuristics informed by adjoint element-wise error contribution estimates show 

near-monotonic reduction of quantity-of-interest error with increased number of refined elements, 

yielding high accuracy solutions efficiently. 

In chapter two, we apply some of the concepts from chapter one to fully three-dimensional 

CEM, giving examples of the adjoint solution and associated elementwise a posteriori error 

estimates for a three-dimensional FEM scattering problem. To substantiate our claims that adjoint 

methods from chapter one may lead to efficiency gains for CEM problems, especially those 

requiring solution of many related sub-problems, chapter two also explores the correlation between 

a posteriori error estimates for related sub-problems. We use a set of lossy dielectric scatterer FEM 

problems with identical discretization but varying relative permittivity to demonstrate that 

elementwise a posteriori error contribution estimates can be more correlated between sub-

problems than even quantities of interest and their gradients. Correlation of a posteriori 

elementwise error contribution estimates between related subproblems is important for eventual 
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application of adjoint-based a posteriori error estimation to adaptive refinement of multi-solve 

problems.  

In chapter three, we address one of the main and often-ignored limitations to practical 

application of adjoint methods to refinement in CEM: meshing. We propose a general, robust 

surface meshing approach based on discrete surface Ricci flow (DSRF) with iterative adaptive 

refinement in the parametric domain for the automated generation of high-quality surface meshes 

of arbitrary element type, (low and high) order, and count. Such a widely-applicable surface 

meshing approach is crucial to realize application of any h- or hp-refinement based adaptive 

unknown reallocation scheme, such as that proposed in chapter one, to MoM, the most widely-

used full wave frequency domain technique. In the proposed method, surfaces are classified by 

their Euler characteristic and conformally mapped by DSRF to a canonical parametric domain, 

allowing a canonical seed mesh to be mapped back to an approximation of the original surface. 

The new DSRF-based meshing technique provides excellent element quality, corner angle 

uniformity, and local surface-current basis vector orthogonality, aimed to greatly enhance the 

accuracy, conditioning properties, stability, robustness, and efficiency of surface integral equation 

CEM solutions. The ability of the proposed DSRF technique to produce high-quality meshes for 

complicated, highly-varied surfaces is demonstrated for the NASA almond and a fighter jet model, 

using triangular, quadrilateral, and discontinuous quadrilateral elements. Other element types are 

also discussed. Where high-fidelity meshing is desired, the technique can near-perfectly capture 

fine-scale detail using very few high order elements. Where low-fidelity meshing is desired, DSRF 

with adaptive refinement can accurately recreate course-scale detail using standard first-order 

elements (e.g., flat triangular patches). This not only enables practical h- and hp-refinement for 

complicated surfaces, but also allows future surface integral methodologies to take full advantage 
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of the inherent efficiency of double-higher-order methods, which have previously been limited due 

to the substantial mesh generation challenges they present for arbitrary problems. 

To address CEM solver efficiency for problems out of reach of full-wave approached, we 

propose and experimentally validate in chapter four a new ray spawning and associated double 

count removal (DCR) technique for shooting bouncing ray tracing (SBR). This technique allows, 

for the first time, efficient parallelization of ray DCR, the major bottleneck and least parallel aspect 

of modern SBR ray-tracing relying on the ray-cone approximation (RCA). We define non-self-

adjacent (NSA) ray classes on a recursively sampled icosahedron, guaranteeing removal of mutual 

adjacency data dependencies between rays that previously prevented efficient parallelization of 

ray double count removal and, by extension, SBR. Using a GPU-parallelized implementation of 

the technique, we demonstrate speedups of DCR over 300×, limited in our testing only by the 

available hardware. As DCR is the asymptotically dominant contributor to the computation time 

of SBR-RCA, with respect to the number of parallel processes available, the achieved speedup 

applies to parallel SBR-RCA as a whole. By enabling substantial acceleration of SBR-RCA, the 

methods proposed in chapter four not only reduce the time cost of solving existing, electrically 

large CEM problems, but also extend the size threshold beyond which such problems become 

intractable for fixed parallel computing resources and time. 

In chapter five, we return to methods at the shorter end of the electrical length spectrum. 

We propose and demonstrate a data-driven, machine learning based approach to accelerate the 

finite element method, method of moments, finite difference method, and related variational 

methods while maintaining the attractive properties that have allowed such methods to dominate 

computational science and engineering fields like computational electromagnetics. We use a 

neural network to predict a set of macro basis functions for a given problem, using only the solution 
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to an extremely coarse, and therefore computationally cheap, description of the problem as input. 

We then solve the problem using the predicted macro basis. Unlike some existing methods, ours 

does not rely on direct prediction of the solution. We show that our macro basis function approach 

corrects errors in the raw prediction of the network, achieving a far more accurate solution. Results 

are presented for a class of finite element scattering problems, with error statistics presented from 

1000 validation examples and compared to standard and naïve approaches. These results suggest 

the described macro basis function approach is superior to machine learning approaches that 

directly predict the solution. Meanwhile our method achieves comparable accuracy to the full 

solution while requiring only a fraction of the degrees of freedom. We discuss how the value of 

this fraction translates to efficiency gains and provide direct time comparisons. 

Chapter six explores the feasibility of applying the method proposed in chapter five to 

problems of higher complexity. The simple one-dimensional FEM slab scattering problem from 

chapter five poorly captures the complexity of problems of interest to CEM researchers and 

practitioners. To address this, chapter six explores the feasibility of predicting macro basis 

functions for vastly more complicated problem classes. In addition, we demonstrate the generality 

of the predicted macro basis function approach by applying it to MoM, rather than FEM, problems 

in this chapter. We provide error statistics and representative examples for neural networks trained 

on simple and complicated datasets of MoM scattering problems with highly varying surface 

features, shapes, and electrical lengths. Notably, we demonstrate that the trained networks learn 

generalizable knowledge applicable not only to new problems, but entire problem types on which 

they were not trained. We conclude that the networks produce encouraging results, especially for 

cross-validation, and larger training datasets will improve reliability for general scattering 

problems.
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1 A POSTERIORI ERROR ESTIMATION AND ADAPTIVE DISCRETIZATION 

REFINEMENT USING ADJOINT METHODS IN CEM: A STUDY WITH A ONE-

DIMENSIONAL HIGHER-ORDER FEM SCATTERING EXAMPLE 

1.1 Introduction 

Two dimensional In the majority of CEM methods, numerical discretization relies on low-

order techniques, for which the structure of interest is modeled by volume or surface elements that 

are electrically small, and the fields or currents within the elements are approximated by low-order 

basis functions, often resulting in large linear system size and high computational overhead. 

Alternatively, higher-order techniques can greatly reduce the number of unknowns for a given 

problem and enhance the accuracy and efficiency of the CEM analysis, utilizing higher-order basis 

functions, e.g., sets of linearly independent polynomials, defined over relatively large geometrical 

elements [1]. This allows for much greater flexibility in adjusting the resolution of the 

discretization, including h-refinement where the element size is adjusted, p-refinement where the 

basis function order is adjusted, and hp-refinement which combines both approaches. However, 

the practical application of that flexibility still presents a significant challenge. Choosing which 

subset of elements to p- or h-refine to most-optimally improve solution accuracy remains an open 

challenge with both the higher-order methodology and low-order techniques.  

Previous literature on higher-order CEM techniques has focused mainly on solver 

algorithm efficiency, computation times, and convergence properties with respect to p- or h-

refinement in the contexts of both FEM and MoM based numerical discretization procedures, 

while offering some general heuristics for discretization (mesh or model) building and 

discretization refinement [1]-[13]. However, increasing demands of uncertainty quantification for 

complicated engineering simulations [14] necessitate accurate error estimation of computed 
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results, preferably using approaches that quantify the contributions to error from various 

discretization choices involved in the simulation. 

A practical issue with FEM and MoM CEM techniques in general is the relative 

inefficiency of gradient-based optimization. Many of the most effective optimization techniques 

rely on gradient information––in the CEM case, sensitivity of some property of the solution, the 

Quantity of Interest (QoI), e.g., radar cross-section (RCS), input impedance, etc., to some 

parameter of the electromagnetic structure in question (scatterer shape, material permittivity, etc.). 

This sensitivity information is expressed as a partial derivative of the QoI with respect to the input 

parameter, which is obtained in the classical approach by introducing a small perturbation to the 

input parameter and recording the corresponding change in the output quantity. This technique 

requires a minimum of two complete solves––one with the nominal value and the other with the 

perturbed value of the parameter and is subject to issues of subtractive cancellation that necessitate 

accurate solves for the differences. To compound this, CEM optimization problems are often 

multidimensional, with several parameters forming a basis for the search space. So, the full 

gradient of the QoI over an n¬-dimensional parameter space requires n+1 full solves. For practical 

CEM problems, the computation time of which can often be measured in hours and sometimes 

days, this classical approach can be untenable.  

As an optimization algorithm explores the search space, the parameters of the CEM 

problem being solved may vary substantially, a challenge associated with optimization applied to 

higher-order and low-order FEM and MoM techniques that has broader implications for both 

traditional (including gradient information) and gradient-free optimization techniques, like genetic 

algorithms and particle swarm optimization. For optimization problems with large search spaces, 

a sufficiently refined mesh for all possible parameter combinations within the search bounds is 
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often extremely fine, slowing the simulation time for each evaluation of the objective function. 

Rather than attempting to preconstruct a one-size-fits-all mesh, it is often advantageous to begin 

with a coarse discretization and refine progressively as parameter changes necessitate. This, 

however, potentially introduces a remeshing step between successive evaluations of the objective 

function (FEM or MoM solves). Each remeshing can add significant computational overhead to 

the optimization algorithm and raises issues regarding which elements to refine for maximum 

benefit and how to refine them.  

We often need to improve the accuracy of an existing CEM solution to a given problem by 

p-, h-, or hp-refining the model adaptively. In adaptive CEM schemes, the solution is automatically 

refined step by step, according to an error indicator which can be derived from a posteriori error 

estimates, computed from the existing numerical solution at each step. Ideally, the adaption to 

reduce the global error in the QoI would be selective and targeted; an element would be selected 

for refinement based on its a posteriori error contribution estimate, with selected elements subject 

to a change in field or current approximation order, split into smaller elements, or both. It is 

therefore highly desirable to produce an automated, adaptive, targeted refinement algorithm that 

can not only quickly refine the discretization, but can do so near-optimally, choosing the best K 

elements in the mesh to p- or h-refine for the largest increase in solution accuracy for a given QoI 

and a given K.  

Adjoint methods, employing a generalization of the notion of a Green’s function, and a 

posteriori error estimation techniques have been widely studied in the field of applied mathematics. 

Influential references include application to ordinary differential equations [15] and in-depth 

studies concerning specific and general partial differential equations (PDEs) [16]-[20]. We direct 

an interested reader to [18] for an excellent summary of the methods and to [16] for a thorough 



9 
 

study of adjoint methods as they pertain to adaptive refinement for the numerical solution of 

differential equations in general. These methods, although well-explored from a theoretical 

perspective and more frequently applied in other numerical fields like computational fluid 

dynamics (CFD), have not seen such widespread utilization in CEM for frequency-domain 

techniques, and have seen very little application toward higher-order CEM techniques. Previous 

work on the application of adjoint methods to CEM has most often focused on their 

implementation and application using time-domain methods [21]-[27]. The majority of this work 

has focused around sensitivity analysis, the calculation of QoI gradients with respect to various 

input parameters, and often the application of these gradients toward optimization, either directly 

through gradient-based approaches or indirectly through the construction of surrogate functions 

[22], [24]-[29]. Most implementations have relied on finite-difference time-domain (FDTD) 

approaches with various modifications. Sensitivity analysis has been applied to quantify QoI 

response to material discontinuities [26], optimize transmission line design [27], perform 

sensitivity analysis for photonic devices [25], optimize antennas [23], [29], and on similar 

optimization problems using frequency-domain techniques. The paper [28] notably applies adjoint 

sensitivity analysis to a higher-order two-dimensional triangular-element FEM solver for design 

optimization of planar microwave devices. The optimization approach in [28] uses adjoint 

information only for computation of the gradient of a QoI with respect to various parameters, but 

it does not apply this information to remesh or quantify numerical error.   

Previous work in CEM on the quantification of numerical error has focused predominantly 

on adjoint-free methods quantifying error in the field solution by estimating a norm directly [30]-

[33] or indirectly by convergence of this norm [34]. These methods form an a posteriori error 

estimate from an established norm. Our approach differs substantially by our consideration of 
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approximate error in a quantity of interest due to the solution error, rather than a norm of a quantity 

approximating the solution error itself, and the use of the adjoint solution toward this goal. Use of 

a norm can lead to a rigorous bound to the solution error, but unfortunately, these bounds often 

overestimate the true error due to local and global cancellation effects. By neglecting the norm, 

our work exploits cancellation effects for more-accurate estimates and more precisely targeted 

refinement of the discretization. While examining the solution error can be useful if the application 

(i.e., our motivation for solving the PDE) is unknown, we are most often interested in one or few 

quantities derived from the field solution, e.g., radar cross section of a scatterer. In such cases, 

computing an approximation of the QoI error from an existing field error estimate is often less 

accurate than approximating the QoI in the error directly [14], [16]. Refinement based on the 

former, established approach, therefore tends to oversaturate the discretization, refining more 

elements than necessary for the given QoI when compared to the latter approach explored in this 

chapter. Most closely related to the a posteriori error estimation in the present work is that of Monk 

and Suli [35], [36], in which the adjoint is used to derive a posteriori error bounds for the far-field 

pattern, with the error estimate then applied to refining the discretization. However, unlike the 

present work, these papers produce a highly discretization-dependent error estimate specifically 

for the far-field pattern, limiting its applicability to first-order (linear) finite element approaches 

with far-field QoI. Meanwhile, the estimate given in this present chapter is presented for a general 

QoI (with backscattered field given as an example QoI) and is broadly applicable to FEM solvers 

of arbitrary basis function order. This allows application to h-refinement, similar to [36], and 

rapidly-convergent p-refinement and hp-refinement. In three-dimensional cases, the error 

estimates defined in this chapter are straightforwardly extensible to elements of arbitrary geometric 

shapes, while the estimate given in [35] is defined specifically for tetrahedra. Unlike [30]-[36], the 
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present work also gives in-depth examples of the broadly applicable sensitivity information that 

can be attained inexpensively where the adjoint problem is solved (for instance for error 

estimation) and a discussion of its applications. 

In this chapter, we investigate useful applications of the adjoint problem and its solution 

toward frequency-domain CEM methods. We demonstrate how QoIs can be expressed in inner 

product form and show how this form can efficiently generate gradient information for a given 

QoI with any number of parameters using the adjoint solution. We give two useful examples of 

such parameters using the backscattered field amplitude as the QoI. A one-dimensional higher-

order FEM scattering solver is chosen as an ideal testbed to investigate the usefulness of the 

proposed techniques due to its conceptual and computational simplicity, ease of implementation 

and replicability, and the clarity with which results from a one-dimensional model can be 

displayed. Namely, it is advantageous to represent much of the information obtained by adjoint 

methods as a scalar field over the computational domain, which facilitates displaying data in a 

useful and intuitive manner and enables straightforward qualitative and quantitative conclusions 

of the analyses. Results and observations from this model extend naturally to higher-dimensional 

solvers and more-complicated CEM techniques and problems. Describing how the gradient 

information can be used to produce a reconstruction of a QoI’s response to varying parameters, we 

invoke the higher-order parameter sampling (HOPS) technique [37] to produce these 

reconstructions with applications to the example problem. We highlight how such gradient 

information and response reconstructions can be applied to practical CEM problems requiring 

many solves, for instance, RCS computation, antenna design, optimization, and Monte Carlo 

simulation. We introduce a posteriori error estimation techniques using the adjoint solution [38], 

and apply these error estimates to novel targeted p- and h-refinement schemes. To the best of our 
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knowledge, this is the first demonstration of the applicability of both adjoint-based a posteriori 

error estimation and adaptive discretization refinement in frequency-domain CEM using arbitrary-

order basis functions. In addition, this chapter introduces to CEM the application of a dual-

weighted residual (DWR) estimate to the adjoint-informed a posteriori error estimation, the 

selective adaptivity based on error cancellation, and p-refinement using the adjoint solution. The 

adjoint-based DWR technique for CEM proposed in this work produces an accurate, signed error 

estimate, which is exploited to cancel local error contributions by grouping. This results in rapid 

reduction in global QoI error with a high selectivity not possible using existing norm-based error 

estimates in CEM that seek to rigorously (or approximately) bound error in a norm.  

For a useful and broadly applicable means of evaluating the performance of different 

refinement approaches, we introduce a metric based on the degree of monotonicity of a given 

refinement to quantify its efficacy in comparison with other approaches. Using the same example 

scattering problem, we propose targeted, adaptive discretization (mesh or model) refinement 

heuristics informed by adjoint element-wise error contribution estimates. These heuristics perform 

exceptionally well, greatly reducing error in a QoI for only modest increases in the number of 

unknowns, while also near-monotonically reducing error with respect to an increasing number of 

refined elements. The results demonstrate the benefits that adjoint techniques offer for adaptive p- 

and h-refinement schemes using these heuristics. Although demonstrated with a higher-order 

solver, all derived and applied techniques generalize to low-order methodology, and the results in 

this chapter show the usefulness and efficiency of the proposed techniques to low-order methods 

with h-refinement only. A goal of this work is also to promote the use of adjoint approaches within 

future CEM techniques and implementations as a means of attaining useful refinement, 
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optimization, and uncertainty quantification methodologies. Some preliminaries of this chapter are 

presented in a summary form in [39] and [40]. 

1.2 One-Dimensional FEM Scattering Problem 

We consider a simple electromagnetic scattering problem––the infinite lossy dielectric slab 

scatterer in a one-dimensional domain––so that the underlying physics, solutions, and numerical 

method parameters are straightforward to describe. We define the model domain and material 

subdomains for an infinite (in y and z) dielectric slab with air and a perfectly matched layer (PML) 

domain on either side as specified in Table 1.1. 

TABLE 1.1. Model domain and material subdomains for scattering from the infinite (in y and z) 

lossy dielectric slab truncated by PML. −𝑡PML < 𝑥 < 0 
Left PML subdomain (tPML is the selected 
PML thickness) 0 < 𝑥 < 𝜆 Left air subdomain (of thickness λ) 

𝜆 < 𝑥 < 𝑎 

Lossy dielectric slab subdomain (of 
thickness 

 a – λ) 𝑎 < 𝑥 < 𝐿 Right air subdomain (of thickness L – a) 𝐿 < 𝑥 < 𝐿 + 𝑡PML Right PML subdomain (of thickness tPML) 

 

On this domain, we use the double-curl frequency-domain wave equation [1] and the 

associated boundary condition,  𝛻 × 𝜇𝑟-1𝛻 × 𝑬sc − 𝑘02𝜀𝑟𝑬sc = −𝛻 × 𝜇𝑟-1𝛻 × 𝑬inc + 𝑘02𝜀𝑟𝑬inc,  −𝑡PML < 𝑥 < 𝐿 + 𝑡PML                                                                                                   (1.1a)                𝒏 × 𝑬sc = 0,  𝑥 = −𝑡PML,  𝑥 = 𝐿 + 𝑡PML                                                                                       (1.1b) 

where r and r are complex relative permittivity and permeability of the inhomogeneous medium 

(tensors for anisotropic materials), Einc and Esc are the incident and scattered electric field complex 
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intensity vectors,  𝑘0 = 𝜔√𝜀0𝜇0 is the free-space wave number,  is the angular frequency of the 

implied time-harmonic variation, and n is the outward unit normal on the boundary surface. 

Enforcing homogeneity in the y and z directions and restricting the incident field to have only a z 

component that depends only on x, we simplify (1.1) to − 𝑑𝑑𝑥 1𝜇𝑟(𝑥) 𝑑𝑑𝑥 𝐸𝑧sc(𝑥) − 𝑘02𝜀𝑟(𝑥)𝐸𝑧sc(𝑥) = 𝑔(𝑥), −𝑡PML < 𝑥 < 𝐿 + 𝑡PML                                                                                                  (1.2a) 
 𝑔(𝑥) = 𝑑𝑑𝑥 ( 1𝜇𝑟(𝑥)− 1) 𝑑𝑑𝑥𝐸𝑧inc(𝑥) + 𝑘02(𝜀𝑟(𝑥) − 1)𝐸𝑧inc(𝑥),                                                     (1.2b)        −𝑡PML < 𝑥 < 𝐿 + 𝑡PML 
 𝐸𝑧sc(𝑥) = 0,  𝑥 = −𝑡PML,  𝑥 = 𝐿 + 𝑡PML                                                                                               (1.3)                                             

With the incident field representing a z-polarized plane wave propagating forward along the x-axis 

and the standard PML implementation, we have  

𝐸𝑧inc(𝑥) = { 𝐴𝑒−𝑗𝑘0𝑥    0 < 𝑥 < 𝐿      0  − 𝑡PML < 𝑥 < 0,   𝐿 < 𝑥 < 𝐿 + 𝑡PML
                                                              (1.4) 

where we choose A = 1 to normalize the field. The material parameter functions in the subdomains 

defined in Table 3.1.1 are given by:  

𝜀𝑟(𝑥) = { 1            0 < 𝑥 < 𝜆    𝜀𝑑          𝜆 < 𝑥 < 𝑎    1           𝑎 < 𝑥 < 𝐿    1 − 𝑗𝛼PML   − 𝑡PML < 𝑥 < 0,  𝐿 < 𝑥 < 𝐿 + 𝑡PML                               (1.5a)     

𝜇𝑟(𝑥) = { 1            0 < 𝑥 < 𝐿    1 − 𝑗𝛼PML   − 𝑡PML < 𝑥 < 0,  𝐿 < 𝑥 < 𝐿 + 𝑡PML                               (1.5b)  

with εd denoting the equivalent complex relative permittivity of the lossy dielectric slab of relative 

permittivity εr and conductivity σ [41],  𝜀𝑑 = 𝜀𝑟 − 𝑗 𝜎𝜔𝜀0                                                                                                                                 (1.6)                                                                           

The lossy dielectric slab scattering problem is solved using a higher-order PML-truncated 

FEM approach similar to that described in [10], [11], [42], and [43]. The domain is discretized 
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using line segments along the x-axis with scalar basis functions. This geometric simplicity allows 

for simple h-refinement (e.g., an element can be split in half just by adding a new element boundary 

node at its midpoint).  

Like their three-dimensional counterparts in [42], the basis functions used for the one-

dimensional solver are defined in a domain parameterized by a single coordinate s which ranges 

from −1 to 1. The element-specific index of the chosen basis function is given by i, and the field 

expansion order for a given element is denoted M. Note that the higher-order approach outlined in 

[42] allows for arbitrary x-domain sizes and arbitrary, positive field expansion orders for adjacent 

elements. This allows adjacent elements to be h- and p-refined to differing degrees entirely 

independently of each other. The ith basis function for an element is given in the s domain as:  

𝑢𝑖(𝑠) = { 0.5(1 + (−1)𝑖𝑠)   𝑖 = 0,10.5(1 − 𝑠)(1 + 𝑠)𝑖−1  2 ≤ 𝑖 ≤ 𝑀                                          (1.7) 

The first and second basis functions maintain field continuity between adjacent elements, 

while the higher-order basis functions allow for additional p-refinement. Note that functions in 

(1.7) are just one simple choice of higher-order scalar bases on the s-parametric domain, and 

alternative hierarchical polynomial basis functions with improved orthogonality and conditioning 

properties could also be chosen. For example, a one-dimensional variant of those used in the 

higher-order FEM-PML method [43] may be easily implemented.  

 

1.3 The Adjoint Problem and the Quantity of Interest 

The notion of an adjoint problem generalizes the method of Green’s functions [38], [44], 

[45]. To define the adjoint operator for a given problem, we must cast the problem in linear 

operator form. For the lossy dielectric slab scattering problem, we consider the Dirichlet boundary 
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value problem given in (1.2)-(1.3). The differential equation in (1.2a) can be expressed in linear 

operator form as   𝐿𝑬𝑧sc = 𝒈                                                                                                                                              (1.8)                                   

L represents the “forward” operator the forward solution (the scattered electric field), designated 𝑬𝑧sc. The adjoint operator of L is the operator Ladj that satisfies the Lagrange identity [38],  ⟨𝑬 adj, 𝐿𝑬𝑧sc⟩ = ⟨𝐿adj𝑬 adj, 𝑬𝑧sc⟩                                                                                                             (1.9)    

with angle brackets denoting the L2 inner product on functions. The data for the adjoint problem 

is, in this case, a QoI determined by a linear functional on the forward solution. In inner product 

form, the QoI is given as QoI = 𝑞[𝐄𝑧sc] = ⟨𝑬𝑧sc, 𝒑⟩                                                                                                                  (1.10)                                                 

where p is a function that determines an instrumental or measurement characteristic. For instance, 

the QoI could be chosen as the field value at a given point in the domain by defining p as a Dirac 

delta function at that point, in which case the adjoint solution is the Green’s function [45]. The 

sampling property of the Dirac delta function when the inner product is applied then evaluates the 

field at one point. For a given measurement characteristic, the adjoint problem is 𝐿𝑎𝑑𝑗𝑬 adj = 𝐩                                                                                                                                   (1.11) 

Note that, in a physical interpretation of (11), the measurement characteristic defining some QoI 

on the forward solution becomes the excitation of the adjoint problem. As p defines a unique QoI, 

(11) implies that the adjoint equation must be re-solved with a new right-hand-side for each new 

QoI, analogous to re-solving a forward problem with new incident fields.  

We choose a QoI that yields the magnitude of the reflected field from the lossy dielectric 

slab subject to some incident field. We express the solution in the air-filled region 0 < 𝑥 < 𝜆 as 𝐸𝑧sc(𝑥) = 𝐸𝑖,𝑧𝑒−𝑗𝑘0𝑥 + 𝐸𝑟,𝑧𝑒𝑗𝑘0𝑥, 0 < 𝑥 < 𝜆                                                               (1.12)      
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where 𝐸𝑖,𝑧 and 𝐸𝑟,𝑧 are (complex-valued) numbers characterizing the forward and backward 

traveling electromagnetic fields, respectively. Since A = 1 in (1.4) and the zero-phase point of the 

reflected field is x = 0, 𝐸𝑟,𝑧 is equal to the complex reflection coefficient. We express the amplitude 

of the reflected field as a QoI in inner product form (1.10) as 

𝑞[𝑬𝑧sc] = 𝑘02𝜋∫ 𝑒−𝑗𝑘0𝑥𝑬𝑧sc𝑑𝑥2𝜋/𝑘00  

= ⟨𝑬𝑧sc, 𝑘02𝜋 𝑒𝑗𝑘0𝑥 [𝐻(𝑥) − 𝐻(𝑥 − 2𝜋𝑘0)]⟩ = ⟨𝑬𝑧sc, 𝒑⟩                                                                           (1.13)  

where H(x) is the unit step (Heaviside) function and p denotes the defined measurement 

characteristic. The behavior of this QoI can be evaluated from (1.13) on a function of the form 

(1.12) yielding  𝑞[𝐸𝑖,𝑧𝑒−𝑗𝑘0𝑥 + 𝐸𝑟,𝑧𝑒𝑗𝑘0𝑥] = 𝐸𝑟,𝑧                                                                           (1.14)      

Note that in (1.14), it is assumed that the surface of the dielectric slab is outside the limits of 

integration. The idea behind this type of functional evaluation is easily extended to a higher-

dimensional scattering problem––different components of the spatial Fourier transform of a 

scattered electromagnetic wave along a closed surface in free space effectively gives the scattered 

electromagnetic field in different far-field directions.  

To derive the adjoint operator for (1.2a), we apply the Lagrange identity in (1.9), where 

the left-hand side of (1.9) may be expressed as 

∫ 𝐸 adj∗(𝑥) (− 𝑑𝑑𝑥 1𝜇𝑟(𝑥) 𝑑𝑑𝑥 𝐸𝑧sc(𝑥)) 𝑑𝑥𝐿+𝑡PML−𝑡PML − 

∫ 𝐸 adj∗(𝑥)(𝑘02𝜀𝑟(𝑥)𝐸𝑧sc(𝑥))𝑑𝑥𝐿+𝑡PML−𝑡PML                                                                                                  (1.15) 

with 𝐸 adj denoting the unknown adjoint solution. Integrating the first term in (1.15) by parts, it 

becomes 
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−𝐸 adj∗(𝑥) 1𝜇𝑟(𝑥) 𝑑𝑑𝑥 𝐸𝑧sc(𝑥)|−𝑡PML𝐿+𝑡PML + 

∫ 1𝜇𝑟(𝑥) 𝑑𝑑𝑥𝐸𝑧sc(𝑥) 𝑑𝑑𝑥𝐸 adj∗(𝑥)𝑑𝑥𝐿+𝑡PML−𝑡PML                                                                                                   (1.16) 

Then integration of the second term of (1.16) by parts results in  

𝐸𝑧sc(𝑥) 1𝜇𝑟(𝑥) 𝑑𝑑𝑥 𝐸 adj∗(𝑥)|−𝑡PML𝐿+𝑡PML − 

∫ 𝐸𝑧sc(𝑥) 𝑑𝑑𝑥 1𝜇𝑟(𝑥) 𝑑𝑑𝑥𝐸 adj∗(𝑥)𝑑𝑥𝐿+𝑡PML−𝑡PML                                                                                              (1.17) 

Applying the forward boundary conditions from (1.3), we cancel the first term of (1.17). By 

similarly cancelling the first term in (1.16), we enforce the adjoint boundary conditions, 𝐸 adj(𝐿 + 𝑡PML) = 0 𝐸 adj(−𝑡PML) = 0                                                                                        (1.18)  

The FEM approach studied in this chapter utilizes in general a PML terminated in a perfect 

electric conductor (PEC) to truncate the computational domain. As such, this treatment of the first 

term in (1.16) and (1.17) is universally applicable for this method and is analogously true in two 

and three dimensions. We next rewrite (1.15) by rearranging its second term and applying the 

results of integration by parts, yielding 

−∫ 𝐸𝑧sc(𝑥) 𝑑𝑑𝑥 1𝜇𝑟(𝑥) 𝑑𝑑𝑥 𝐸 adj∗(𝑥)𝑑𝑥𝐿+𝑡PML−𝑡PML − 

∫ 𝐸𝑧sc(𝑥)𝑘02𝜀𝑟(𝑥)𝐸 adj∗(𝑥)𝑑𝑥𝐿+𝑡PML−𝑡PML                                                                                                   (1.19) 

from which we recover the form of the adjoint operator on the right-hand side of (1.9) by taking 

the complex conjugate,  𝐿𝑎𝑑𝑗𝐸 adj = − 𝑑𝑑𝑥 1𝜇𝑟∗(𝑥) 𝑑𝑑𝑥 𝐸 adj(𝑥) − 𝑘02𝜀𝑟∗(𝑥)𝐸 adj(𝑥) = 𝑝(𝑥)                                       (1.20)    
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Note the similarity of the adjoint equation (1.20) to the forward equation (1.2a). We see that the 

one-dimensional analogue of the double-curl wave equation (1.1a) is nearly self-adjoint, its adjoint 

being described entirely by complex conjugation of the material parameters. 

 

1.4 A Posteriori Error Estimation and Refinement 

Accurate estimation of error in computational simulation results is a key component in 

uncertainty quantification [14]. Additionally, adaptive p- and h-refinement schemes require 

indicators of the error in a QoI on which the adaption is done, namely, new field/current 

approximation orders and/or new element sizes are assigned in the new, refined model. 

Furthermore, in CEM problems requiring many computational simulations, it is useful to have an 

estimate of whether accuracy of a forward solution for a given parameter set and discretization is 

sufficient for the desired tolerance, or if refinement is needed for subsequent solves. Such 

problems, including optimization, antenna design, and radar cross-section determination, are 

common in CEM. An adjoint-based a posteriori error estimate can address each of these needs.  

Due to the Galerkin orthogonality property [45], computing this error estimate essentially 

involves evaluating a numerical approximation to derivatives of the adjoint solution, and therefore 

requires that the adjoint problem be solved on a discretization different than that used for the 

forward solution, for instance, using either finer geometric elements or higher-order basis 

functions. In general, the adjoint discretization need not present more unknowns than the forward 

discretization, but for more-accurate estimates it is desirable to compute the adjoint solution using 

a finer discretization. The use of hierarchical basis functions in this work makes the calculation of 

many of the required degrees of freedom simpler.  
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We express the numerical solution of the forward problem on a given mesh as 𝑬𝑧sc ≈ 𝑬̃𝑧sc = ∑ 𝛼𝑖𝑢𝑖(𝑥)𝑢𝑖∈𝑽𝑏 ,                                                                            (1.21)                  

where Vb is the space of basis functions for the forward solution. Additionally, we express the 

numerical solution to the adjoint equation by 𝑬 adj ≈ 𝑬̃ adj = ∑ 𝛽𝑖𝑢𝑖(𝑥)𝑢𝑖∈𝑽b' ,                                                                                                        (1.22)  

with Vb’ designating the space of basis functions for the adjoint problem, where the M in (1.7) for 

each element has been increased by 1 from Vb. Also, we let 𝜋ℎ𝑬̃ adjdenote a projection or 

interpolant of the adjoint solution into the discrete space Vb in which we numerically solve the 

forward problem. In this work, 𝜋ℎ𝑬̃ adjis defined by a least squares approximation of 𝑬̃ adjin the Vb 

subspace of Vb’. Following the arguments expressing the QoI in terms of the adjoint solution 

above, the a posteriori estimate on the error in the QoI is   ⟨𝑬𝑧sc − 𝑬̃𝑧sc, 𝒑⟩ ≈ ⟨𝑔(𝑥), 𝑬̃ adj − 𝜋ℎ𝑬̃ adj⟩ −⟨ 1𝜇𝑟(𝑥) 𝑑𝑑𝑥 𝑬̃𝑧sc, 𝑑𝑑𝑥 𝑬̃ adj − 𝑑𝑑𝑥 𝜋ℎ𝑬̃ adj⟩ + 𝑘02⟨𝜀𝑟(𝑥)𝑬̃𝑧sc, 𝑬̃ adj − 𝜋ℎ𝑬̃ adj⟩                                     (1.23)           

Essentially, (1.23) represents the inner product (in weak form) of the residual of 𝑬̃𝒛sc and a weight 

determined by the adjoint solution 𝑬̃ adj, so it is also called a dual-weighted residual (DWR) 

estimate. The residual quantifies how well the numerical solution solves the differential equation 

while the adjoint weight quantifies how the local residual affects the global error [14]. 

As the adjoint-based a posteriori error estimate requires an additional numerical solve on a 

finer discretization, it may seem counterintuitive to spend this on an adjoint solve. We recall 

Richardson extrapolation suggests the classical approach to obtain an error estimate on the 

accuracy of a forward solution on a given discretization, which is obtained by subtracting the 

forward solution from a more accurate forward solution obtained from a refined discretization. 

Because the classic estimate is on the error of the solution rather than a QoI, the level of refinement 
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needed for reliably accurate estimates using the classical approach is generally higher than needed 

to compute an accurate a posteriori error estimate [14]. Moreover, the classical approach does not 

yield an estimate on a QoI that distinguishes residuals determined by local discretization choices 

and the effects of stability as determined by the adjoint solution, hence the classical estimate is 

less useful for adaptive discretization [14]. Finally, once obtained, the adjoint solution can be used 

for other purposes, e.g., optimization and sensitivity analysis. 

The standard FEM implementation computes integrals through the domain element-by-

element; the inner product integrals in (23) are evaluated in a similar manner, with integrals first 

computed over each element separately and then summed to obtain the final error estimate. The 

information at the intermediate step before summation is immensely useful toward remeshing and 

determining which locations in the mesh are most in need of refinement. This information is 

referred to as the element-wise error contribution estimate and can be represented as a vector of 

error contribution estimates from each element  𝒆 = (𝑒1, 𝑒2, . . . , 𝑒𝑁)                                                                          (1.24)                                                          

where ei denotes the error contribution of the ith element and N is the total number of elements. 

The sum of (3.1.24) then gives the total QoI error estimate. 

 
1.5 Utilizing Gradient Information from the Adjoint Solution 

A classical first-order finite difference approach to compute the gradient of a QoI with 

respect to P independent parameters requires a minimum P+1 solves of the forward problem. 

Using adjoint methods, the same gradient information is obtained using a single adjoint solve over 

a finer discretization as expressed in (1.22), requiring only an expression of the partial derivative 

of the operator with respect to each parameter as shown below. From [38], we use a Taylor 
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expansion of the QoI, represented here in inner product form as in (1.10), at an arbitrary parameter 

value, r, in terms of a known value of that QoI for a nominal parameter value, r0, ⟨𝑬𝑧sc, 𝒑⟩ = ⟨𝑬𝑧,0sc , 𝒑⟩ + ⟨𝐿𝐷𝑟𝑬𝑧,0sc (𝑟 − 𝑟0), 𝑬 adj⟩ + ⟨𝑹, 𝑬 adj⟩                                                           (1.25)                          

where 𝑬𝒛,𝟎sc represents the forward solution at r0, Dr denotes the Frechet derivative operator, in this 

case with respect to r, and R is a higher-order remainder term.  

Neglecting the remainder term, we obtain a linear approximation for the QoI around the 

nominal parameter value using the higher-order parameter sampling (HOPS) method [37], ⟨𝑬𝑧sc, 𝒑⟩ ≈ ⟨𝑬𝑧,0sc , 𝒑⟩ + ⟨𝐿𝐷𝑟𝑬𝑧,0sc (𝑟 − 𝑟0), 𝑬 adj⟩                                                                                 (1.26)                                                                   

with the partial derivative of the QoI with respect to the chosen parameter near the nominal 

parameter value given by 

𝜕𝑞𝜕𝑟 (𝑟0) = ⟨𝐿𝐷𝑟𝑬𝑧,0sc , 𝑬 adj⟩                                                                                                                  (1.27)        

The gradient of a QoI with respect to multiple parameters, each around a nominal value, 

can then be formed by a vector of partial derivatives of form (1.27), requiring only the evaluation 

of inner products with an adjoint solution, rather than numerous additional perturbed solutions of 

the forward problem. 

To briefly demonstrate where (1.27) comes from and how the 𝐿𝐷𝑟𝑬0sc term may be 

evaluated, we begin by noting 𝐷𝑟𝑞 = 𝐷𝑟⟨𝑬𝑧sc, 𝒑⟩ = ⟨𝐷𝑟𝑬𝑧sc, 𝒑⟩                                                                                                         (1.28)                           

Applying (1.9) and (1.11), we then get 𝐷𝑟𝑞 = ⟨𝐿𝐷𝑟𝑬𝑧sc, 𝑬 adj⟩                                                                                                                           (1.29) 

Applying the Frechet derivative operator to both sides of (1.8), we can write 𝐷𝑟[𝐿𝑬𝑧sc = 𝒈] = [𝐷𝑟𝐿𝑬𝑧sc + 𝐿𝐷𝑟𝑬𝑧sc = 𝐷𝑟𝒈] 𝐿𝐷𝑟𝑬𝑧sc = 𝐷𝑟𝒈 − 𝐷𝑟𝐿𝑬𝑧sc                                                                                                                  (1.30) 
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1.6 Numerical Results and Discussion 

We first present results for HOPS applied to the lossy dielectric slab scattering problem with 

the described reflected field amplitude QoI. Implementing HOPS for two parameters, the 

imaginary part of the slab relative permittivity and the left slab-air interface location, we show the 

efficacy of this technique in obtaining derivative information and approximate reconstructions of 

QoI response to changing parameters from only a few sample points. Separating the slab complex 

relative permittivity into real and imaginary parts,  𝜀𝑟(𝑥) = 𝛼 + jβ,  𝜆 < 𝑥 < 𝑎                                                      (1.31)                                                             

we choose β as the HOPS parameter with nominal value β0. The linear approximation of the QoI 

around β0 can then be expressed in the form of (1.26) as  𝑞(𝛽) ≈ 𝑞(𝛽0) + 

⟨[−𝐷𝛽(−𝑘02𝜀𝑟(𝑥)𝑬𝑧,0sc ) + 𝐷𝛽(𝑘02(𝜀𝑟(𝑥) − 1)𝑬𝑧inc)], 𝑬0adj⟩(𝛽 − 𝛽0)                                       (1.32)                                                                                                              

which, writing the inner products in integral form, is given by   𝑞(𝛽) ≈ 𝑞(𝛽0) + (𝛽 − 𝛽0)𝑗𝑘02 ∫ (𝐸𝑧,0sc (𝑥) + 𝐸𝑧inc(𝑥))𝐸0adj∗(𝑥)𝑑𝑥𝑎𝜆                                           (1.33)                                                         

Note that all integrals over elements within the slab required for evaluation of (1.33) are 

calculated during assembly of the stiffness matrix for the FEM, provided each element in the 

integration domain has a homogeneous permittivity value. The HOPS technique is applied to a set 

of 5 nominal parameter values to reconstruct the response of the QoI to β. Results generated using 

first-order forward solves and second-order adjoint solves with h-uniform elements are overlaid in 

Fig. 1.1 with the QoI response over the same parameter range obtained by analytical solution of 

(1.2)-(1.3). Each of the five lines obtained by (1.33) at the five sample points is truncated at 
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intersections with its left and right neighbors to produce a piecewise-linear reconstruction of the 

QoI response.  

The five-point HOPS results in Fig. 1.1 agree closely with the analytical solution, both in 

the real component and imaginary component, despite a large parameter domain and low number 

of sample points. A piece-wise linear approximation of a QoI response in this form has many 

useful applications. For instance, such an approximation could be used as an inexpensive surrogate 

function for optimization, requiring fewer expensive direct evaluations of the QoI response by 

forward solves.  The approach in (1.33) can be easily extended to variations in other material 

parameters and higher-dimensional problems, requiring only an expression for 𝐿𝐷𝑟𝑬0sc from the 

chosen problem. 

 

 
Fig. 1.1. Higher-order parameter sampling using five sample points to produce a linear 

reconstruction of the response of the reflected field amplitude to the imaginary component of the 
slab relative permittivity. Results are generated using first-order forward solves and second-order 

adjoint solves. The domain length is L = 4 m, the slab left boundary location is  = 1 m, the 
frequency is f = 600 MHz, and the real part of the slab relative permittivity is α = 7. Elements are 

h-uniform with size 0.02 m. Samples were taken at β = [−2.0, −1.0, −0.5, −.025, 0]. 
 

It is often of great interest in practical CEM problems to determine effects of the location 

of a material interface on some QoI, for instance the response of the RCS in a given direction to 

the shape of a scatterer. We give a one-dimensional analogue of this problem here, choosing the 



25 
 

analogous QoI from (1.13) and approximating its response to changes in the left slab interface 

location . The permittivity function in the subdomain 0 < x < L can be represented in terms of 

unit step functions as 𝜀𝑟(𝑥) = 1 + (𝜀𝑑 − 1)𝐻(𝑥 − 𝜆0) − (𝜀𝑑 − 1)𝐻(𝑥 − 𝑎)                              (1.34) 

We may approximatively express q(), again using the HOPS method from (1.26),  as  𝑞(𝜆) ≈ 𝑞(𝜆0) + 

𝑘02⟨[−𝐷𝜆(𝜀𝑟(𝑥)𝑬𝑧,0sc ) + 𝐷𝜆((𝜀𝑟(𝑥) − 1)𝑬𝑧inc)], 𝑬0adj⟩(𝜆 − 𝜆0)                                                  (1.35)                                                 

which requires the calculation of the derivative of the permittivity function (1.5a) with respect to 

 for direct implementation. The Frechet derivative of the permittivity function can be written in 

terms of the Dirac delta function as 𝐷𝜆𝜀𝑟(𝑥) = −(𝜀𝑑 − 1)𝛿(𝑥 − 𝜆0)                                                                           (1.36) 

which, after evaluating the inner product using the sampling property of the Dirac delta, gives a 

form of (1.35) that can be evaluated directly:   𝑞(𝜆) ≈ 𝑞(𝜆0) − 𝑘02[𝐸0𝑎𝑑𝑗∗(𝑥 = 𝜆0)(𝜀𝑑 − 1) (𝐸𝑧,0sc (𝑥 = 𝜆0) + 𝐸𝑧inc(𝑥 = 𝜆0))](𝜆 − 𝜆0)                                                                                       (1.37) 

Note that here we have assumed a piecewise constant permittivity function (1.34). Were the 

permittivity function instead smooth and continuous, evaluating the corresponding analogue of 

(1.35) becomes simpler, requiring no use of the sampling property of the Dirac delta as in (1.37). 

In fact, we only require that a function describing the material renders both sides of (1.8) Fréchet 

differentiable with respect to the chosen parameter. 

Like Fig. 1.1, Fig. 1.2 shows results of a five-sample HOPS reconstruction of the QoI 

response, this time with respect to the x-coordinate of the left slab face. Results are again generated 

using first-order forward solves, second-order adjoint solves, and h-uniform elements. We again 
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see excellent agreement between the HOPS result and the analytical QoI response over the 

parameter domain.  

 
Fig. 1.2. Higher-order parameter sampling using five sample points to produce a linear 

reconstruction of the response of the reflected field amplitude to the location of the left slab face, 
using first-order forward solves and second-order adjoint solves, with L = 4 m,  = 1 m,  f = 600 

MHz, slab relative permittivity εr  = 7 − j1.8, and h-uniform elements of size 0.02 m. Samples 
were taken at 0 = [0.96, 0.98, 1.0, 1.02, 1.04]. 

 
We next show the application of the adjoint method to obtain e, the element-wise error 

contribution estimate, for a given problem. Maintaining most parameter values from solves used 

in the HOPS results and coarsening the element size to 0.05 m, we compute e through a partial 

(un-summed) evaluation of (1.23) as previously described. Fig. 1.3 shows the real and imaginary 

components of e plotted throughout the different material subdomains, with ei for the ith element 

plotted at the x-coordinate of the element’s midpoint.  
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Fig. 1.3. Real and imaginary element-wise error contribution estimates over the computational 
domain. Results are generated using first-order forward solves and second-order adjoint solves, 

with L = 4 m,  = 1 m,  f = 600 MHz, εr  = 7 − j1.8, and h-uniform elements of size 0.05 m. 
 

We note several crucial things from the element-wise error contribution in Fig. 1.3. Most 

importantly, the real and imaginary error contributions are oscillatory, varying from positive to 

negative values through the domain. As the total error estimate is obtained by the sum of these 

individual error contribution estimates, we can conclude that there is a high degree of cancelation 

between error contributions throughout the domain. Clearly this cancelation is not complete, or the 

error estimate given in (1.23) would be zero. An interesting question then becomes where in the 

computational domain this lack of cancelation occurs––which elements are contributing the most 

to the total error estimate. This is a deceptively ill-posed problem, however, see [45]. We cannot 

directly assign the bulk of the residual error to any one set of elements. To do so suggests some 

necessary ordering to e.  

It is difficult if not impossible to apply a universally-applicable and consistent method to 

identify which elements contribute the most to the total error estimate that relies on the ordering 

of elements in the spatial domain or the order in which error contributions are summed [45]. No 

ordering actually exists for the summation of e—the error contribution of a given element can be 

said to cancel with that of any other element or combination of elements, no matter how distant 
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the elements are in the computational domain. To accurately apply this element-wise error 

contribution estimate toward targeted, adaptive mesh or model refinement, we must define a means 

by which to identify a “bad” element that relies on no such ordering.  

We show here the application of two un-ordered refinement heuristics and their 

applications to h- and p-refinement on a variety of evaluations of error in the QoI for a three-

dimensional parameter space consisting of , α, and β. The different locations in this search space 

at which the QoI error estimate is evaluated are given in Table 1.2.  

 
TABLE 1.2. Parameter space locations at which QoI error estimate is evaluated for refinement 
results.  

Plot Identifier α β  (m) 
Case A 7 −1.8 1 
Case B 7 −1.8 1.2 
Case C 7 −1.8 0.8 
Case D 7 −4 1 
Case E 7 −4 1.2 
Case F 7 −4 0.8 
Case G 3 −1.8 1 
Case H 3 −1.8 1.2 
Case I 3 −1.8 0.8 
Case J 3 −4 1 
Case K 3 −4 1.2 
Case L 3 −4 0.8 

 
A refinement heuristic can be stated as one by which elements in the domain are ranked 

according to the expected error reduction incurred by their refinement. As described previously, 

defining such a heuristic is difficult due to error cancellation effects between elements. Therefore, 

a successful refinement heuristic must in some way take into account the aggregate effects of error 

cancellation, rather than applying a ranking methodology to each element dependent only on the 

error contribution of that element. Additionally, the element-wise error contribution for each 

element does not vary exclusively with its own size or basis function order but is instead dependent 

on the discretization fineness for all elements. If we have a positive total error estimate, we cannot 
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simply refine a few of the elements with the largest positive error contributions and hope to sway 

the sum toward zero. This is in practice a poor approach and will typically result in higher total 

error despite refinement in the mesh.  

Examination of each refinement approach in this chapter is performed by evaluating the 

relative error of the QoI calculated by a forward solve on a mesh with K refined elements at each 

of the locations in the parameter space defined in Table 3.1.2 with respect to the analytical QoI at 

those parameter space locations. A base mesh (K = 0) is used for all test cases that contained 100 

first-order elements of size 0.05 m. K is then varied from 0 to 100 for each simulation, using the 

heuristic to select a constant dK elements to refine at each subsequent refinement. p-refinement of 

an element consisted of increasing M for that element by 1, while h-refinement entailed splitting 

the element into two elements of size 0.025 m. Relative error calculated in this manner is here 

referred to simply as error. Adjoint solutions are calculated on meshes of one order higher than the 

forward solution for each location in the parameter space to obtain an error estimate for each 

location and K. These error estimates are added back onto the QoI to produce a corrected QoI, and 

the relative error of this corrected QoI which with respect to the analytical QoI is referred to as the 

corrected error. All relative error values are given as percentages for clarity. A vector of relative 

error values, formed separately for uncorrected and corrected results, is recorded for each test case. 

The entries of these vectors correspond to the relative errors for each K tested. To show general 

trends, these vectors are averaged for a given heuristic trial, giving for each a vector of average 

relative errors, k, over the range of K for both uncorrected and corrected errors. 

To quantify the efficacy of various refinement heuristics, we define a so-called 

improvement metric as 𝐼(𝒌) = ∑sign(diff(𝐤))length(𝐤)                                                                                                                            (1.38)                                                                 
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where k represents either the uncorrected or corrected error, length(k) is the length of the vector 

k, and diff(k) returns a vector of length one lower than k containing the differences in value 

between adjacent entries of k. A lower value of this metric implies better performance with −1 or 

1 representing a heuristic that always decreases or increases, respectively, the error with increasing 

number of refined elements. An I value of zero represents a heuristic that has an equal chance to 

increase or decrease error with additional refined elements.  

The first refinement heuristic explored is referred to as the magnitude refinement heuristic. 

This heuristic simply ranks elements by the absolute value of their error contribution estimate, 

such that elements with higher error contribution estimate magnitude rank higher. Note that this 

heuristic does not directly satisfy our earlier desire for a heuristic that considers aggregate error 

cancellation effects for refinement rather than applying a ranking methodology to each element 

dependent only on the error contribution of that element. Respective results for uncorrected and 

corrected relative errors and two different dK values for the magnitude refinement heuristic applied 

to p-refinement are shown in Fig. 1.4. Fig. 1.5 shows corresponding results for the magnitude 

refinement heuristic applied to h-refinement.  

We see from Fig. 1.4 that the magnitude refinement heuristic informed by adjoint 

information reduces the QoI relative error from ~30% to <1% by K = 30 when applied to p-

refinement. We also see that the corrected QoI obtained by adding the error estimate from (1.23) 

obtained by the adjoint solve to the forward QoI is vastly more accurate, with an initial relative 

error of ~0.42% which is reduced below 0.01% by K = 30. For K = 30, we have therefore reduced 

the initial error in the QoI by over three orders of magnitude with just four solves––two forward 

and two adjoint. Note also that all refinement performed here is entirely automated, requiring no 

input from the user other than a desired K, and furthermore that the technique used is not dependent 
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on the dimension of the problem, variety of element, or volume vs. surface nature of the 

discretization. This demonstrates the usefulness of adjoint-assisted targeted, adaptive refinement 

for difficult-to-refine higher-order techniques based on the FEM and/or MoM where efficient 

automated discretization refinement presents a challenge.  

As is inherent to the scaling of FEM and MoM error with h-refinement vs. p-refinement, 

we see that convergence is more-gradual in Fig. 1.5 for the magnitude refinement heuristic applied 

instead to h-refinement. We still observe desirable reduction in error, however, with the relative 

error decreasing from ~30% to ~10% and ~0.4% to <0.1% for K = 60. Note that this does not seek 

to discount the usefulness of h- refinement as a technique––a mesh (model) insufficient to describe 

a given problem certainly requires both h- and p-refinements to obtain a useful solution efficiently–

–but rather seeks to point out the power of adjoint-informed p-refinement on meshes already h-

fine enough to describe the problem of interest.  

The second refinement heuristic explored is more complicated and will be referred to as 

the greedy refinement heuristic. The greedy refinement heuristic is an approximate approach to a 

more-desirable but computationally untenable approach here referred to as minimum sum 

grouping. Instead of seeking the K elements that should be refined, minimum sum grouping seeks 

a solution to the problem of which elements should not be refined.  
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Fig. 1.4. Relative errors of the QoI calculated at each of the locations in the parameter space 
defined in Table 1.2 with respect to the analytical QoI for the magnitude refinement method 

implemented with p-refinement vs. the number of refined elements: (a) uncorrected error for dK 
= 5, (b) uncorrected error for dK = 1, (c) corrected error for dK = 5, and (d) corrected error for 

dK = 1. 
 
In concrete terms, it computes the subset, e’, of entries in e of length length(e) − K the absolute 

value of the sum of which is the smallest possible for a given e and K. The K elements selected for 

refinement by this method are then the elements associated with the remaining K entries in e that 

are not in e’. 

 

(a) (b) 

(d) (c) 
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Fig. 1.5. The same as in Fig. 1.4 but for the magnitude refinement method implemented with h-

refinement. 
 

The subset e’ is in practice not computable, as it requires evaluating the absolute value of 

the sum of all possible combinations of entries in e of length length(e) − K. The computational 

complexity of this problem scales factorially, making the application of minimum sum grouping 

to problems of even moderate element count computationally infeasible. Hence, we use a “greedy” 

refinement heuristic that offers a greedy approximate solution to the minimum sum grouping 

approach. We begin by computing a length(e) by length(e) matrix S from e with entries of the form 𝑠𝑖𝑗 = abs(𝑒𝑖 + 𝑒𝑗)                                                                                                                            (1.39)                                                         

neglecting the diagonal entries (j = i), and we find the minimum sij, appending the corresponding 

ei and ej to an ordered list. We then select the second smallest sij in S that does not include any of 

the particular e entries used previously, appending its corresponding ei and ej to the end of the 

(a) (b) 

(d) (c) 
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same ordered list. This is repeated until all entries of e have been included in the ordered list, or 

for odd length(e), one entry remains, in which case this entry is appended to the end of the list. 

The K elements chosen for refinement are then those corresponding to the last K entries in the list. 

The greedy refinement heuristic approached in this way can be evaluated in polynomial time. Note 

that the order in which we append ei and ej to the list for a given iteration will somewhat affect 

results. This effect becomes insignificant in practice once K >> 1. For the purpose of this chapter, 

we place ej before ei. Figs. 1.6 and 1.7 show the results for the greedy refinement heuristic applied 

to p- and h-refinements, respectively.  

We see from Figs. 1. 6 and 1.7 that the adjoint-informed greedy refinement heuristic 

performs similarly to the magnitude refinement technique regarding error reduction over the range 

of tested K values. Comparing these figures to Figs. 1.4 and 1.5, note that, although both 

approaches trend downward rather smoothly [the improvement metric in (1.38) is strongly 

negative], this is not true of individual cases. By observation of the heuristic behavior for 

individual cases, we see there are several instances where the refinement of additional elements 

increases the error, sometimes substantially. Note, however, that few cases exceed the initial K = 

0 error for another K, i.e., the error may increase from one K to another, but rarely does it exceed 

the initial value (K > 0 still leads to a reduction in the initial error for almost all K). Exceptions to 

this, for instance in Fig. 1.6(d), tend to be for narrow ranges of K making it less likely these 

undesirable K-values will be encountered by chance. This is reflected by a reduced occurrence and 

severity of these error-increasing K values for higher dK, for instance comparing Fig. 1.6(d) to Fig. 

1.6(c).  

This highlights and exemplifies the previously-stated desirability of heuristics that take into 

account aggregate cancellation effects––the tested heuristics perform better for higher dK as 



35 
 

choosing a larger pool of refined elements increases the likelihood the error contribution of a given 

element will be sufficiently cancelled. Heuristics that group elements in one way or another are 

therefore often more effective. Note then, that the magnitude refinement heuristic applied to dK > 

1 in this way now satisfies the previously stated desire for a heuristic considering aggregate effects. 

 

 
Fig. 1.6. The same as in Fig. 1.4 but for the greedy refinement method (implemented with p-

refinement). 
 

The greedy refinement heuristic and magnitude refinement heuristic are evaluated against 

a benchmark refinement method in which K elements are chosen for refinement at random. Results 

for the random refinement heuristic are shown in Figs. 1.8 and 1.9 as applied to p- and h-

refinements, respectively. Comparing these figures to the results for the two adjoint-informed 

heuristics, in Figs. 1.4–1.7, we see that, although the random refinement approach of course 

(a) (b) 

(d) (c) 
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achieves the same error reduction for K = 100 (all elements refined), error reduction for nearly all 

other values of K is significantly worse. 

Tables 1.3 and 1.4 show improvement metric values, based on (1.38), for the results in 

Figs. 1.4–1.9 for p- and h-refinements, respectively. Examining the tables, we see that desirable 

vs. undesirable behavior of the heuristics demonstrated in Figs. 1.4–1.9 can be partially captured 

by the improvement metric, most notably their degree of monotonicity. Without exception, the 

metric is poorer (less negative) for applications of the heuristics with dK = 1 rather than dK = 5. 

 
Fig. 1.7. The same as in Fig. 1.4 but for the greedy refinement method implemented with h-

refinement. 
 
This reflects the described grouping behavior advantageous to higher dK values. We also note that 

the random refinement heuristic presents lower metric values than the two adjoint-informed 

heuristics in all cases, indicating the superior performance of the adjoint-informed techniques. In 

(a) (b) 

(d) (c) 
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addition, examining the results in Table 1.4 in comparison to those in Table 1.3, we note that, 

interestingly, although heuristics applied to h-refinement reduce error more slowly, they tend to 

do so somewhat more consistently, reflected in the higher improvement metric values for most 

entries in Table 1.4 than the corresponding entries in Table 1.3.  

 

 

TABLE 1.3. Improvement metric values based on (1.38) for magnitude, greedy, and random 
refinement heuristics applied toward p-refinement, i.e., for the results in Figs. 1.4, 1.6, and 1.8. 
The best value for each column has been bolded.  

p-refinement dK = 5 dK = 1 
Heuristic Uncorrected Corrected Uncorrected Corrected 
Magnitude −0.3 −0.2 −0.22 −0.20 
Greedy −0.3 −0.4 −0.08 −0.28 

Random −0.2 −0.3 −0.02 −0.0 

 
 
 
 
TABLE 1.4. The same as in Table 1.3 but for h-refinement, i.e., for the results in Figs. 1.5, 3.1.7, 
and 1.9. 

h-refinement dK = 5 dK = 1 
Heuristic Uncorrected Corrected Uncorrected Corrected 
Magnitude −0.7 −0.6 −0.38 −0.10 
Greedy −0.8 −0.4 −0.22 −0.12 

Random −0.2 −0.0 −0.02 −0.04 
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Fig. 1.8. The same as in Fig. 1.4 but for the random refinement method (implemented with p-

refinement). 
 

(a) (b) 

(d) (c) 
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Fig. 1.9. The same as in Fig. 1.4 but for the random refinement method implemented with h-

refinement. 
 
 
1.7 Conclusion 

This chapter has investigated and evaluated useful applications of the adjoint problem and 

its solution for higher-order frequency-domain computational electromagnetics methods. Based 

on implementation of HOPS, QoI error estimation and error correction, element-wise error 

contribution estimate evaluation, and adjoint-informed automated targeted p- and h-refinements, 

this study has established and validated uses of adjoint techniques for improved efficiency, 

automation, and robustness of higher-order frequency-domain methods. Although the techniques 

applied in this chapter have been demonstrated using a higher-order solver, all, with the exception 

of p-refinement, apply with no modification to low-order solvers. We have employed a one-

dimensional higher-order PML-truncated FEM scattering solver as an ideal testbed for the ease of 

(a) (b) 

(d) (c) 
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implementation, clarity of displaying the results, and intuitiveness of drawing conclusions from 

analyses, which then extend naturally to higher-dimensional solvers, more-complicated CEM 

techniques, adaptive CEM solutions, and problems requiring many solves.  

Adjoint-based error estimation determines accurately whether a given discretization 

sufficiently describes a problem, and such error estimates can be applied to automated h- and p-

refinement heuristics with little if any input from the user. Such heuristics reduce error quickly 

and vastly outperform a random refinement benchmark. On the tested problems, these heuristics 

are enough to reduce error by several orders of magnitude while only p-refining a modest number 

of elements (30/100) by one order using hierarchical basis functions and only four solves (two 

forward and two adjoint). Furthermore, these techniques can reduce error by a factor of more than 

4.5 while h-refining roughly half of the elements in the domain (60/100). Most usefully, the 

adjoint-assisted h- and p-refinement methods we have demonstrated in this chapter are near-

monotonic in their error reduction with respect to number of refined elements. The usefulness of 

the demonstrated adjoint-informed refinement compounds with the p-refinement technique offered 

by higher-order FEM or MoM frequency-domain methods, especially on meshes already h-fine 

enough to describe the problem of interest, but nonetheless offers substantial error reduction and 

excellent convergence properties for low-order methods using h-refinement schemes. In fact, while 

heuristics applied to h-refinement reduce error more slowly, they result in higher improvement 

metric values than p-refinement. 

To the best of our knowledge, this is the first demonstration of applicability of adjoint a 

posteriori error estimation techniques to adaptive discretization refinement in the field of CEM 

using arbitrary-order basis functions. In addition, among the novelties this work introduces to CEM 

are the application of a dual-weighted residual estimate to the adjoint-based a posteriori error 
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estimation, the selective adaptivity based on error cancellation, and p-refinement using the adjoint 

solution. Unlike existing error estimates used in CEM that seek to bound error in a norm, the signed 

nature of this estimate is exploited to cancel local error contributions by grouping, leading to rapid 

reduction in global QoI error with a high selectivity. Our work has produced novel targeted model 

refinement heuristics that quickly and effectively reduce error in a quantity of interest. The study 

has demonstrated the exceptional benefits that adjoint techniques offer toward targeted, adaptive 

h- and p-refinement schemes using these heuristics. It has also attained a useful and broadly 

applicable improvement metric as a figure of merit for different refinement heuristics while 

providing an instructive discussion of the properties of a refinement heuristic that produce 

desirable values of this metric. In addition, we have demonstrated how HOPS can be used to obtain 

useful gradient information with respect to several parameters with vastly fewer additional solves 

than classical methods, requiring n – 1 fewer solves to compute the gradient, where n is the number 

of parameters with which the QoI varies. The additional applicability of this technique toward 

producing surrogate functions for optimization has also been shown. The surrogate functions 

generated, although piece-wise linear, closely match complicated QoI responses to various 

parameters.  

In general, adjoint techniques are under-utilized in CEM where they could be applied to a 

wide variety of problems. The simple, one-dimensional FEM solver by which these relatively 

complicated adjoint techniques have been demonstrated for the purposes of this study should serve 

as a useful, easily replicable introduction to the described methods. The developed and evaluated 

adjoint techniques proposed and discussed in this chapter may be used to derive and demonstrate 

useful applications of adjoint methods to more complicated CEM techniques and solvers. Namely, 

the methodology described in the chapter generalizes well to higher dimensional problems by 
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extension of, for instance, (1.11), (1.23), and (1.26) to the double-curl wave equation. In such a 

case, if three-dimensional problems are considered, the pertinent inner products become volume 

integrals of vector fields representing the three-dimensional measurement characteristic, forward 

field, and adjoint field. This study should be especially valuable for future development of adjoint-

informed adaptive discretization p- and/or h-refinement schemes for such CEM techniques, as well 

as for adjoint-assisted CEM procedures applied to large-scale optimization problems, Monte Carlo 

simulations, RCS computation, and RF design problems among other uses.   
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2 APPLICATION OF ADJOINT METHODS TO THREE-DIMENSIONAL FEM 

SCATTERING PROBLEMS: EXPLORING CORRELATION BETWEEN A 

POSTERIORI ERROR ESTIMATES FOR RELATED SUB-PROBLEMS 

2.1 Introduction 

Error estimation, adaptive refinement, and uncertainty quantification are of growing 

interest in computational electromagnetics (CEM). In chapter one, adjoint-based techniques were 

demonstrated as effective approaches to these three related research areas. For error estimation 

problems, adjoint methods excel at producing accurate, signed error estimates for a quantity of 

interest (QoI), or many, stated as a linear or linearized functional on an approximate field solution 

obtained by finite element method (FEM), finite different (FD) method, or method of moments 

(MoM). Such error estimates are typically more accurate than those produced by a priori means or 

application of a norm. Adjoint-based a posteriori error estimates can be applied effectively to 

adaptive discretization refinement to dramatically reduce solution error in few solves, for instance 

using the techniques outlined in chapter one and [46].  

Applied to uncertainty quantification, adjoint methods serve as an accurate approach to 

estimating QoI responses to uncertain model parameters. HOPS, described in chapter one and [37], 

is the most notable approach. Recent research has demonstrated HOPS can approach the accuracy 

of Monte Carlo for FEM scattering problems while using two orders of magnitude fewer solves 

[47], making HOPS a compelling technique for accelerating uncertainty quantification 

computations in CEM. For complicated uncertainty quantification problems and low error 

tolerances, HOPS can still require tens or hundreds of solves, however, making HOPS a large, 

multi-solve problem.  
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In chapter one, we speculated that adaptive refinement using adjoint-based a posteriori 

error estimates may be applicable to achieve efficiency gains for large, multi-solve problems like 

HOPS, Monte Carlo simulation, and radar cross section (RCS) computation, all of which require 

the solution of many similar sub-problems. Naïvely, we could imagine performing adaptive 

refinement for each sub-problem separately, perhaps performing a handful of simulations on 

adapted discretizations to meet an error tolerance for each sub-problem, treating each sub-problem 

as [46] does. However, as the individual sub-problems composing most multi-solve problems 

relate closely, we contend so too should their a posteriori elementwise error contribution estimates 

(EECEs). If this is true, then such refinement techniques could be iterated across sub-problems, 

rather than for each sub-problem, potentially yielding efficiency gains. Accordingly, this chapter 

presents explores the relatedness (as measured by Pearson’s correlation) between EECEs for a set 

of lossy dielectric sphere FEM scattering problems, a 3D analogue of the lossy dielectric slab 

scattering problems explored in chapter one. 

 
2.2 Theory and Problem Description 

To define the adjoint operator for a given problem, we first put the problem in variational 

form. If the problem is nonlinear, we use the integral mean value theorem to write the problem in 

linear form. For the illustrative dielectric scatterer problem, we consider the solution of the 

Dirichlet boundary value problem:  

Find Esc H1
 (the space of L2 functions with L2 first derivatives) such that the variational 

formulation of the following holds 𝛻 × 𝜇̄̄𝑟-1𝛻 × 𝑬sc−𝑘02𝜀̄̄𝑟 𝑬sc =− 𝛻 × 𝜇̄̄𝑟-1𝛻 × 𝑬inc+𝑘02𝜀̄̄𝑟 𝑬inc,                                            (2.1a)  
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𝑛 × 𝑬𝑠𝑐 =0, (2.1b) 

where the former equation holds through the volume of the domain and the latter holds on the 

boundary of the domain. Note that (2.1a) and (2.1b) describe the broader class of problems of 

which one-dimensional slab scattering problems used in chapter one are a small, simplified subset. 

This may be stated in linear operator form as 𝐿𝑬 sc = 𝒈,                                                                                                                                              (2.2)                                 

a more-general form of (1.8). The adjoint operator is then that which satisfies the following 

identity: ⟨𝑬 adj, 𝐿𝑬 sc⟩ = ⟨𝐿adj𝑬 adj, 𝑬 sc⟩                                                                                                            (2.3)    

the adjoint problem then given by (1.11).  

To generate a small dataset of sub-problems from which to explore the relatedness of 

EECEs, we simulated a set of 41 lossy dielectric sphere scattering sub-problems. Each sub-

problem consisted of a lossy sphere 2 wavelengths in diameter encased in a spherical shell of air 

0.3 wavelengths thick. The domain was truncated using a shell of conformal perfectly matched 

layer (PML) with 0.3 wavelength thickness surrounded by PEC. A single plane wave was used to 

excite each sub-problem, and double-higher-order frequency domain FEM was used to generate 

an approximate field solution for each, as in [47]. All discretizations were topologically identical, 

containing 256 higher-order quadrilateral elements, and used the same basis. Sub-problems varied 

only in the lossy dielectric sphere real relative permittivity, with relative permittivity values 

ranging from 4.0-2.0j to 8.0-2.0j. Figure 1 shows the basic geometry of the domain. 
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Fig. 2.1. Lossy dielectric sphere problem geometry. 

 
Using the backscattered field QoI from [47], a posteriori EECEs were computed using 

higher order adjoint solutions, as in as in [46], for all sub-problems. Solution examples for the 

lossy dielectric sphere scattering problem are shown in Figs. 2.2 and 2.3 (note that a low relative 

permittivity is used for these figures to produce field features easily identifiable at the chosen 

figure resolution).  

Adjoint solutions were also applied to compute a QoI value and QoI gradient for each sub-

problem using the methods of [47]. Note that all QoI values, QoI gradients, and element-wise error 

contribution estimates are complex-valued. 

 

 
Fig. 2.2. Solutions to the scattering problem for a lossy dielectric sphere of  εr=2.25-1i and radius 

1 meter in free space. Domain terminated with perfectly matched layer with perfect electric 
conductor (PEC) exterior boundary. Incident wave was chosen to arrive from θ = 90°, ϕ = 0° and 
θ-polarized at 300 MHz with unit electric field amplitude. Solutions to the adjoint problem are 

given below the corresponding forward solution. 
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Fig. 2.3. Magnitude of the z-component of the adjoint solution for the problem described in Fig. 
1. The areas most affecting the backscattered field lie in the region facing the radar receiver and 

the Arago spot. Z = 0 cross section is given. 
 
 
 
 
2.3 Results and Discussion 

Solving and computing error estimates for all 41 sub-problems produced 41 complex 

valued EECEs for each element. These EECEs were ordered by real relative permittivity. For each 

of the first 33 EECE values per element, we cut a subset of length 9, consisting of the EECE value 

and the next 8 in the list. Performing this for all 256 elements, we had a total of 8,448 9-

dimensional observations, the dimensions corresponding to relative indices between a given sub-

problem and the 8 next sub problems. We similarly sampled 9-dimensional observations for real 

QoI values and QoI gradients. We computed correlation coefficients between all 9 dimensions for 

EECEs, QoI values, and QoI gradients, summarized in Fig. 2.4.  
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Fig. 2.4. Correlation coefficients for EECEs (error), QoI values, and QoI gradients with respect 

to relative permittivity (dqoi). Error contribution estimates are substantially more correlated 
between related sub-problems than QoI values or QoI gradients. 

 
As evident in Fig. 2.4, correlation coefficients for EECEs decay slowly with respect to 

increased separation between sub-problems (relative index), and therefore with respect to 

increasing relative permittivity difference. Correlation coefficients for QoI values and QoI 

gradients decay far more quickly, for reference. However, for applications like adaptive 

refinement, we care about values of some refinement indicator derived from EECEs, rather than 

EECE values themselves (complex values cannot be ordered consistently). For a simple example 

refinement indicator, we use the magnitude of each EECE.  

EECE magnitude has often been used as a simple benchmark for adaptive refinement using 

adjoint-based a posteriori error contribution estimates, for instance in chapter one or [46]. Fig. 2.5 

shows EECE magnitudes for all 41 sub-problems and all 256 elements, ordered by the mean EECE 

magnitude over all sub-problems for each element. Qualitatively, the vertical banding of Fig. 2.5 

suggests how slowly EECE magnitudes, and therefore our example refinement heuristic, vary over 

the range of real relative permittivity values tested.  
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Fig. 2.5. EECE magnitudes. Vertical axis corresponds to sub-problems ordered by real relative 
permittivity. Horizontal axis corresponds to element index sorted by mean EECE magnitude 

(ECM). Mean was evaluated for each element over all sub-problems. Note that several elements 
have nearly identical error trends due to symmetry of the problem. 

 
However, Fig. 2.5 also qualitatively suggests something potentially troubling: elements 

with higher mean EECE magnitude cover a wider range of EECE magnitude values with varying 

real relative permittivity. Fig. 2.6 presents this trend qualitatively, showing EECE magnitude 

standard deviation with respect to EECE magnitude mean. We find the two are correlated with 

Pearson correlation 0.73.  

 

 
Fig. 2.6. EECE magnitude standard deviation with respect to mean. Standard deviation and mean 

are correlated. 
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This suggests that EECE correlation for such elements with high refinement indicator values may 

decay more quickly. If EECE correlation decays too quickly between related sub-problems, 

adaptive refinement methods like those presented in [46] may be unable to converge to desired 

error tolerances when applied across sub-problems. However, in Fig. 2.7, we suggest this may not 

be the case for existing adaptive refinement schemes. Fig. 2.7, similar to Fig. 2.4, shows correlation 

coefficients between EECE values for neighboring sub-problems. Unlike Fig. 2.4, 2.7 also shows 

correlation coefficients for the top and bottom 25% of elements (as ordered by mean EECE 

magnitude). Even for elements with EECE mean magnitude values within the highest 25%, EECE 

values remain highly correlated over the relative index range tested.  

 

 
Fig. 2.7. Correlation coefficients for EECE (error) for all problems, problems in the top 25% of 
EECE magnitude, and problems in the bottom 25% of EECE magnitude. Note the difference in 

vertical axis scale from Fig. 2.4. Top 25% and bottom 25% have similar correlation between 
related sub-problems. 

 
 As demonstrated in [46], many adaptive refinement approaches can reach low tolerances 

within a few iterations, so the mild correlation coefficient decay shown in Fig. 2.7 is likely 

tolerable, even given increased adaptive refinement convergence time due to application across 

sub-problems. 
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2.4 Conclusion 

Correlation statistics were presented for elementwise error contribution estimate values for 

41 lossy dielectric sphere scattering problems with varying relative permittivity. We found that 

EECE values were highly correlated between related sub-problems, and their correlation 

coefficients decayed slowly with increasing difference in relative permittivity between problems. 

These results suggest that application of adjoint-based a posteriori EECE-informed adaptive 

refinement methods across sub-problems may be able to achieve efficiency gains for multi-solve 

problems. 
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3 DISCRETE SURFACE RICCI FLOW FOR GENERAL SURFACE MESHING IN 

COMPUTATIONAL ELECTROMAGNETICS USING ITERATIVE ADAPTIVE 

REFINEMENT 

3.1 Introduction 

Mesh generation is a critical, yet largely neglected, aspect of research in CEM The quality 

of a surface discretization has substantial impacts on the numerical solution and solution efficiency 

of electromagnetics problems, yet many researchers and innovators of new surface integral 

equation (SIE) techniques within the MoM framework seem to mostly defer this aspect due to its 

difficulty. Meanwhile, as more new simulation techniques emerge and problem sizes grow, a 

relatively static pool of surface meshing approaches must contend with an ever-increasing variety 

of surface mesh types, each with unique benefits but added geometric constraints. For many, 

promising, new MoM-SIE techniques, existing meshing approaches simply cannot automatically 

produce the required discretizations at any usable quality, limiting the applicability of new research 

and relegating practitioners of such approaches to heavily involved semi-manual meshing. SIE-

based CEM methods also increasingly rely on numerical error estimate-based adaptive refinement 

techniques to efficiently and dynamically modify problem discretizations during computation [48], 

necessitating the integration of complicated surface meshing algorithms with existing CEM 

software. As such, it is of growing importance that CEM researchers and practitioners have access 

to and understanding of meshing techniques that can be implemented into research codes or 

commercial software products under development. 

There is a variety of existing surface mesh generation approaches available to CEM 

researchers. However, to our knowledge, none allow for the automatic generation of meshes with 

user-defined element type, count, and order. Moreover, first-order triangular mesh generation is 
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well-explored and often simple due to desirable topological properties of triangles as a 2-simplex. 

For instance, see [49] for surface triangulation from arbitrary point clouds or [50] for improving 

existing triangular surface meshes. Triangular meshes can also be generated from arbitrary 

polygonal meshes by subdivision of any polygon [51]. Triangular meshes are ubiquitous in SIE 

numerical methods, for instance, see [52]. In terms of the best-known and most common mesh 

type of first order triangular meshes, namely, those built from flat triangles, much first-order 

triangular surface meshing in CEM has relied on Delaunay triangulation-based meshing 

approaches due to its simplicity and robustness [53, 54, 55]. Unfortunately, applying the Delaunay 

triangulation directly limits its applicability strictly to 2D (plate) structures or 2D domains. Other 

prior work for triangular surface meshing in CEM has focused on refining and improving an 

existing triangle mesh using various implementations of node addition with local mesh 

rearrangement [56, 57, 58]; quad-tri conversion [59]; and iterative refinement beginning from user-

defined vertex labels [60].  

First-order quadrilateral elements are also common in CEM, although less so than first-

order triangular, see for instance [61]; meanwhile, first-order quadrilateral mesh generation is 

somewhat more difficult. Approaches typically rely on direct tri-quad conversion [62, 63], patch-

based methods [64, 18], Voronoi-based methods [66], or parametrization-based methods [67, 68, 

69]. See [70] for a recent overview of the state of the art in quadrilateral mesh generation. Our 

proposed method, applied to quadrilateral meshing, fits in the fourth category but maintains 

generality to other surface mesh types. Discontinuous quadrilateral meshes, in which adjacent 

quadrilaterals need not share entire edges, are a generalized case of quadrilateral meshes simple to 

generate at high quality from existing continuous quadrilateral surface meshes by merging or 

subdividing chosen quadrilaterals [70]; see [71] for the advantages of DG SIE methods. We 
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therefore first focus on continuous quadrilateral mesh generation but generalize to the 

discontinuous case by this property. Direct tri-quad conversion typically leads to poor mesh quality 

for most CEM applications (highly irregular elements with varied corner angles) and can greatly 

increase the element count of a mesh for little gain in fidelity. Voronoi-based approaches can lead 

to quad-dominant meshes in which many triangles remain, raising issues for SIE solvers not 

equipped to handle both quadrilateral and triangular elements simultaneously. Patch-based 

methods, meanwhile, are not guaranteed to generate a complete mesh and can fail during the 

generation process [70]. They are therefore unreliable for quintessential surfaces in CEM such as 

vehicles, antennas, or building environments. The parameterization-based approaches are typically 

the most robust, but little work has been done to optimize them or apply them for CEM applications 

with the exception of prior work in their application to parameter sweeping on 2D surface meshes 

[72]. Other CEM-specific first-order quad meshing work has typically concerned iterative 

partitioning by sets of node placement rules [73, 74]. More recently, much first-order quad 

meshing research in CEM has relied on approaches that, although robust, are limited to mixed 

quad-tri meshes and therefore not applicable for methods relying on meshes of a single type [75, 

76, 77, 78].  

Beyond the well-known first-order techniques, higher-order methods are of growing 

interest in CEM. Although such techniques have shown great promise reducing the system 

dimension for comparable or higher accuracy in MoM-SIE solvers, thereby reducing the 

computation time and/or increasing accuracy substantially [1, 5], the complexity of generating the 

needed higher-order quadrilateral or triangular meshes has limited the promised applicability of 

these techniques from true large-domain modeling. The methodology for generating such meshes 

is often left out of scope [7], semi-manual, or, at best, unable to effectively generate large-domain 
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elements, typically relying on the combination of several existing elements into larger high-order 

elements [1]. This can only be done on highly structured meshes, with most others lacking the 

topology for merging elements to satisfy common geometric interpolation techniques. No robust 

meshing process has been developed for this application, and existing parametrization-based 

techniques, optimized for first-order elements, are not well-suited to the task. Prior work seeking 

to produce robust and broadly applicable higher-order quadrilateral and triangular surface meshing 

techniques has used existing high quality first-order meshes of the desired type and subsequently 

interpolated them [79, 80]. This approach is excellent where such meshes are available but cannot 

be used when such meshes are unavailable or difficult to produce at high quality, for instance when 

large-domain quadrilateral meshes are desired. Overall, meshing is an open problem of great 

relevance, and potentially the most challenging and restrictive component of higher order CEM. 

This chapter proposes an efficient and robust general surface meshing technique that is 

applicable to any of the discussed mesh types and extends easily to others. Able to seamlessly 

handle higher order and very high order elements, the developed technique is aimed to finally 

surmount the major barrier to widespread use of otherwise highly efficient higher order methods. 

Meanwhile, due to its generality, the technique also constitutes a robust and competitive low-order 

meshing approach useful for first-order triangular (flat triangles) and first-order quadrilateral mesh 

generation at high quality. Due to its conformal nature, the technique also maintains high local 

regularity of surface Jacobians and high basis function orthogonality, preventing degeneration of 

the basis functions and associated increases in condition number. A parametrization-based 

approach, the technique leverages the discrete surface Ricci flow to map between an arbitrary 

triangulated mesh and an appropriate canonical parametric domain dependent on the underlying 

geometry of the original surface and desired mesh properties. A uniform seed mesh, known in the 
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parametric domain, is then taken by this mapping to the original surface, on which a refinement 

indicator, defined for the choice of mesh type, is computed. The seed mesh is then refined in the 

parametric domain based on this indicator and the process is repeated until some stop criterion is 

met, for instance maximum element size or element count. Although we begin here with a 

triangular mesh of the original surface, in general we can begin with an arbitrary surface 

representation, this representation then needing conversion to a high-quality triangulation by 

sampling, subdivision, or surface reconstruction as appropriate to the type of surface 

representation, for instance using techniques from [49] or [51].  

Overall, this appears to be the first demonstration of a general, robust surface meshing 

technique able to seamlessly handle arbitrary (low and high) geometric order and element type. 

Furthermore, this appears to be the first technique able to generate high-quality very high order 

elements; the lack of such a technique previously constituting the main shortcoming of large-

domain methods [1, 7]. We demonstrate the technique for a variety of common mesh types used 

for the low-order and higher order MoM-SIE methods including triangular, quadrilateral, and 

discontinuous quadrilateral, and offer suggestions for simple extension to other, less common 

element types. For each of these types, we maintain generality in element order and show typical 

results for the most commonly used first-order (lowest-order), e.g., flat triangular patches, as well 

as higher-order elements. For the latter, we demonstrate meshes using both Lagrange interpolation 

and cubic spline interpolation, but again offer suggestions for extension to other interpolation 

methods. We focus here on the application of this technique to MoM-SIE in CEM but do not limit 

its usefulness to only this application. Some preliminaries of this work are presented in a summary 

form in [81, 82, 83].  
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We note a few limitations of the proposed method. Firstly, the method as presented does 

not enforce continuity for multi-part objects. To work for such cases in practice, the method 

therefore requires either a discontinuous Galerkin solver or special treatment at part interfaces to 

enforce continuity. The adaptive refinement we present here also does not guarantee perfect 

sampling of the original surface on non-differentiable features (i.e., sharp edges). The error due to 

imperfect sampling of sharp features drops asymptotically to zero with increased iteration but may 

be unacceptable where perfect preservation of sharp features at otherwise low mesh fidelity is 

required. Although all refinement methods we present scale as 𝑂(𝑁𝑙𝑜𝑔𝑁) with the number of 

iterations, the time complexity of the DSRF with the number of triangles remains formally 

unknown and is likely the asymptotically dominant factor. We are aware of no study of DSRF 

scaling with respect to the triangle count, and we consider such a derivation involved enough to 

warrant its own, separate study. With respect to multiple parameters, DSRF scales formally as 𝑂(𝑁𝑡𝑁𝑚𝑁𝑛), where 𝑁𝑡 is the number of triangles in the original mesh, 𝑁𝑚 is the average number 

of iterations required to solve the Hessian system to a chosen tolerance, and 𝑁𝑛 is the number of 

Newton method iterations required to meet a tolerance on the curvature error. The open problem 

is relating 𝑁𝑛 and 𝑁𝑚 to 𝑁𝑡.  
In the rest of the chapter, we begin by recapitulating the mathematics of the discrete surface 

Ricci flow, tailored specifically to be understandable and useful to the CEM community and 

having the MoM-SIE modeling goals in mind. In this, the key aspects of the DSRF are outlined as 

it applies to the present work at a level understandable to those without significant experience in 

formal topology or geometry. We encourage readers interested in a more-formal, in-depth 

theoretical discussion with additional implementation details to review [84]. We use the same 

notation where applicable. We then describe the developed surface meshing technique, with 
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emphasis on iterative adaptive refinement, and offer specific implementations for common mesh 

types. Following this, we present a variety of meshes produced by the method as well as statistics 

on mesh quality. In particular, we present meshing results using the proposed DSRF meshing 

technique with iterative adaptive refinement for the following two illustrative examples. To 

demonstrate the proposed method on a well-known CEM test case, we have applied adaptive Ricci 

flow meshing to the NASA almond, an established CEM benchmarking shape usually used to 

demonstrate difficulty of surface modeling given its one sharp end. To test the technique on a 

more-complicated case, we have also produced meshing results for a far more-complicated fighter-

jet model. For each of these models, we show continuous triangular, continuous quadrilateral, and 

discontinuous quadrilateral surface meshes of both low and high geometric order. We conclude 

further outlining the potential of the new DSRF meshing technique with adaptive refinement. 

 
3.2 Summary of the Method 

Since much of the material covered in this chapter is predicated on recent and non-trivial 

theory work in discrete conformal geometry and computer graphics with which most CEM users 

and practitioners will have little experience, we begin with a high-level summary of the method to 

contextualize the details presented in the remainder of the chapter. The basic steps of the method 

are as follows: 

1. If it is not already, convert the surface to be meshed into a triangle mesh 

2. Obtain a mapping between the original surface and a simple surface of prescribed curvature by 

DSRF 

a. Choose a simple surface in which we can easily manipulate mesh topology (e.g. a flat 

rectangle) 
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b. Assign a target curvature to each point in the original triangle mesh consistent with 

the prescribed surface 

c. Perform the DSRF to compute locations of vertices from the triangle mesh when 

flattened to the prescribed surface 

3. Apply the mapping to resample the original surface adaptively (adaptive refinement), 

manipulating mesh topology in the simple prescribed surface (parametric) domain 

a. Define a simple seed mesh that covers the prescribed surface 

b. Define a refinement indicator and refinement method appropriate for the target mesh 

type 

c. Compute the refinement indicator for the seed mesh 

d. Refine the seed mesh using the refinement method, based on computed values of the 

refinement indicator 

e. Iterate steps d and e until some stop criterion is met (number of steps, maximum 

element size threshold, etc.) 

Step 1 is simple for almost all surface descriptions, so we consider it outside the scope of 

this chapter. As we are resampling the triangle mesh of the original surface, we require that this 

triangle mesh is sufficiently dense to capture relevant surface features. Note that we require a 

triangle mesh regardless of the desired output mesh type. 

Step 2 is described in section 3.3 in detail, but we offer key considerations here. The surface 

of prescribed curvature can be arbitrary but should be a surface on which it is simple to manipulate 

mesh topology. We use the simple and broadly applicable example of a flat Euclidean rectangle 
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for this chapter. If the original surface is closed (has no boundary), choosing the prescribed surface 

is substantially easier, as we can assign a constant target curvature to all vertices in the original 

triangle mesh to flatten it to one of three canonical domains, the sphere, the Euclidean plane, or 

the hyperbolic plane. If the original surface is not closed, we can distribute its curvature to its 

boundary to obtain a prescribed surface that is a subset of the Euclidean plane, sphere, or 

hyperbolic plane. Here, we use a rectangle as an example. 

Step 3 is described in section 3.4 in detail with several examples, but we offer the following 

high level considerations here. The mapping produced by DSRF, although angle-preserving, does 

not preserve relative area. This can cause details from the original surface to be missed when a 

uniform sampling of the parametric domain is used to generate element sample points. The goal 

of adaptive refinement (AR) is to distribute mesh sample points to mitigate this. 

Figure 3.4.1 compares quadrilateral surface meshes obtained for an ellipsoid using a 

nonconformal versus conformal mapping to map a 20×20 grid of square elements to the surface. 

 

 

 
 

Fig. 3.1. 20×20 structured quadrilateral meshes mapped to an ellipsoid using (a) a nonconformal 
mapping, (b) a conformal mapping automatically obtained by DSRF, and (c) a conformal 

mapping using DSRF coupled adaptive refinement to capture more detail in regions of high 
curvature. 

 

(a) 

(b) 

(c) 
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Figure 3.4.2 shows angle histograms for the three meshes in Fig. 3.4.1, demonstrating that 

the nonconformal mapping preserves corner angles poorly, while the conformal mappings 

obtained by DSRF achieve good angle preservation. 

 

 
Fig. 3.2. Corner angle histograms for 20×20 structured quadrilateral meshes show in Fig 3.1. 
Nonconformal mesh has a poor corner angle distribution while meshes obtained using DSRF 

have distributions concentrated closely around 90 degrees. 
 

Although the nonconformal mapping samples the ellipsoid excellently, it does so while 

producing poor corner angles for most elements. Meanwhile, the mesh produced with pure DSRF 

has excellent corner angles, but under-samples the highly curved left and right tips of the ellipsoid, 

shown Fig. 3.4.1(b). The mesh produced with DSRF and adaptive refinement, on the other hand, 

maintains the excellent corner angles of the pure DSRF mesh while better distributing corner 

angles to the left and right ellipsoid tips, shown in Fig. 3.4.1(c). 

 
3.3 Obtaining the Mapping by DSRF 

Popularized by its role in Perelman’s 2006 proof of the Poincaré conjecture [85], Ricci 

flow offers a mathematical framework for diffusing irregularities in the metric of a Riemannian 

manifold. In the context of this work, surface Ricci flow, by the discrete formulation described in 

[86], allows the generation of a conformal (angle-preserving) mapping between a surface of 

choice, and a homeomorphic (or non-homeomorphic, given a suitable cut graph) surface of 
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prescribed Gaussian curvature, here constituting a parametric domain for the mesh and referred to 

as the prescribed surface. For instance, this allows the NASA almond to be mapped to the unit 

sphere or cut and mapped to the plane. Information on the prescribed surface can then be 

conformally mapped back to the original surface. In our application, this information comprises 

element vertices, and in our higher order cases, element sample points.   

We begin with a triangular surface mesh Σ = (V, E, F) where V, E, and F are the sets of 

vertices, edges, and faces composing the mesh, respectively. Here we assume our mesh represents 

the boundary of a realizable three-dimensional (3D) object, i.e., the surface does not intersect itself, 

is continuous, and is finite. We refer to this as the initial surface. The initial surface may either be 

closed or have a boundary (a one-dimensional curve in 3D space) ∂Σ. We wish to deform this 

original surface to a much simpler, prescribed surface on which we can easily define and 

manipulate mesh topology. The prescribed surface has discrete Gaussian curvature given by 

𝐾(𝑣) = { 2π − ∑ θ𝑖𝑗𝑘𝑗𝑘  ,    𝑣 ∉ ∂Σπ − ∑ θ𝑖𝑗𝑘𝑗𝑘  ,    𝑣 ∈  ∂Σ  ,                                                                              (3.1)                                                                                                  

where v refers to a given vertex and  ∑ θ𝑖𝑗𝑘𝑗𝑘  denotes the sum of all triangle corner angles of which 

v is a part. Here 𝑖 denotes the index of 𝑣, and θ𝑖𝑗𝑘 denotes the corner angle formed by vertex  𝑣  

and two adjacent (connected by an edge) vertices with indices 𝑗 and 𝑘. We define the Euler 

characteristic as, 𝛸 = NV − NE + NF .                                                                                                    (3.2)                                                     

Here NV, NE, and NF represent the number of vertices, edges, and faces of the surface, respectively. 

With this, the Gauss-Bonnet theorem asserts,  ∑ 𝐾(𝑣)𝑉 +  ϵA = 2πΧ,                                                                           (3.3)                                    
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with A denoting the total surface area of the mesh and the scheme coefficient term ϵ determined 

by the chosen background geometry, taking a value of 1, 0, or -1, that the discrete Gaussian 

curvature (3.1) must be conserved during this deformation.   

To proceed, we must specify the background geometry. For our purposes and for intuition, 

we can consider the background geometry as a geometric perspective we choose for a given 

surface. For instance, consider the approximately spherical surface of the Earth. Locally, any part 

of the Earth looks like the Euclidean plane, but globally, the Earth has properties not possible from 

the Euclidean perspective. Consider we are standing on the equator facing north, and we draw two 

parallel lines, both at right angles to the equator, also facing north. In the Euclidean plane, parallel 

lines never intersect, yet, consider we extend these two straight lines as far north as possible: they 

will intersect at the north pole. This quirk, and similar properties, are unique to the spherical 

geometry of the Earth. It is therefore natural to understand global properties of the Earth’s surface 

from a spherical perspective. This is true even though the Earth is not a sphere (rather an oblate 

spheroid). This does not prevent us from choosing a Euclidean description of the Earth’s surface 

instead, for instance, a Mercator-projected map. However, we note that all points along the north 

edge of the Mercator map correspond to just one point on the Earth: the north pole (this is similarly 

true for the south edge and south pole). By choosing a Euclidean perspective for an inherently 

spherical surface, we have lost some of the properties of that surface (in this case, uniqueness of 

the north pole, among others not mentioned) and have introduced singularities at the poles. By the 

discrete uniformization theorem [84], any surface naturally admits one of three potential 

background geometries: spherical, Euclidean, or hyperbolic, shown in Fig. 3.3 and corresponding 

to ϵ values of 1, 0, and -1, respectively. A natural choice in background geometry depends on the 

topological properties of the object [86]. This can be determined by examining the Euler 
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characteristic (3.2) of the initial surface and comparing to the Euler characteristic of the prescribed 

surface.  

 
Fig. 3.3. Examples of objects naturally admitting the three background geometries: (a) spherical, 

(b) Euclidean, and (c) hyperbolic geometry. 
 

To avoid singularities, Euclidean background geometries are typically most useful for 

closed surfaces containing one hole (homeomorphic to the 1-torus) and having Euler characteristic 

0. Due to its simplicity, it is also favorable for open surfaces (those having a boundary and Euler 

characteristic 1) for our application. Spherical background geometries are naturally applied to 

closed surfaces containing no holes (those homeomorphic to the sphere), for instance, the NASA 

almond, with Euler characteristic 2. Hyperbolic background geometries, meanwhile, are useful for 

more-complicated closed surfaces containing several holes (homeomorphic to n-tori) and having 

Euler characteristic -2n for integer n 1 or higher. A singularity will occur when our original surface 

and prescribed surface have different natural background geometry. Note that closed surfaces can 

alternatively be cut (specifying a topological boundary without removing faces or vertices) to 

produce an open surface with Euler characteristic 1. By Ricci flow, such a surface can be mapped 

to the Euclidean plane, offering attractive choices for the seed mesh. Such cuttings will admit 

singularities that in practice do not substantially impact the quality of the mesh, introducing 

perhaps a handful of elements with poor corner angles, so long as the arc length along the cut is 

nonzero on both the original and prescribed surface. This is not true, for instance, in the case of 

the sphere and Mercator projection, which can be considered to involve an infinitesimal cut of zero 

(a) 

(b) 

(c) 
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arc length at each pole of the sphere to produce a cylinder (which is then cut once more to produce 

a plane). The cuts of zero arc length at the poles introduces the substantial degeneracy of the 

Mercator projection at the poles. 

Figure 3.4(a) shows an initial surface, in this case a fighter jet. Here we chose to apply a 

cut to the surface along its plane of symmetry and prescribe a flat, rectangular section of the 

Euclidean plane as the prescribed surface. Euclidean Ricci flow was chosen for this task, and the 

total discrete Gaussian curvature (3.1) was divided evenly among four points along the boundary 

to satisfy the Gauss-Bonnet theorem (3.2) for the 

 

 

 

Fig. 3.4. (a) Initial fighter jet surface. (b) Triangle mesh of fighter jet cut and conformally 
flattened to the plane with highly warped areas boxed in red. (c) Refinement indicator 

(normalized) for each quadrilateral element demonstrating high degree of warping at fighter jet 
fin, wing, and fuselage tip when uniform sampling is used. 

 

chosen prescribed surface.  Figure 3.4(b) shows the flattening of the initial fighter jet 

triangle mesh to the parametric domain by solution of the discrete surface Ricci flow system with 

curvature concentrated at four boundary vertices to produce corners. The parent jet mesh contained 

Fuselage 
Tip 

Front 

Fin 

Wing and Wing Tip 

Warping 
Warping 

(a) 

(b) 

(c) 
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115,967 triangles, and the DSRF took 14.3 seconds to compute on an i7 3770k at 3.50 GHz with 

a fully parallelized implementation. 

Once a background geometry and prescribed surface are selected, a target curvature 𝐾̅(𝑣) 
is chosen constrained by (3.2). For instance, using Euclidean background geometry on an open 

surface and mapping to the Euclidean plane, the total curvature can be allocated entirely to four 

boundary vertices. These vertices will then become the vertices of a rectangular image of the 

original surface in the Euclidean plane after mapping. Once the target curvature is selected, the 

discrete surface Ricci flow system  

𝑑𝑢𝑖(𝑡)𝑑𝑡  =  𝐾̅𝑖 − 𝐾𝑖(𝑡)                                                                                             (3.4)                                 

can be solved by any number of standard numerical methods to obtain the final conformal mapping 

between surfaces. The above semi-discrete form retains continuous time, 𝑡, which in practice is 

discretized into a finite set of iterations. A nonlinear equation, (3.4) must be solved iteratively. For 

a thorough background on computing the Hessian of the Ricci energy for this system and applying 

it through Newton’s method to obtain the final mapping, see [84]. We give a brief overview here. 

To compute and solve the DSRF system, we must first define several discrete parameters 

and structures over Σ. We first define a circle packing metric. We associate with each vertex 𝑣𝑖 ∈𝑉 nonnegative radius 𝛾𝑖 corresponding to a circle centered on 𝑣𝑖. We also define a real-valued 

discrete conformal structure coefficient on E denoted 𝜂. Together with the scheme coefficient from 

(3.2), our circle packing metric is then defined by the tuple (Σ, 𝛾, 𝜂, 𝜖), from which we can then 

determine any edge length 𝑙𝑖𝑗 ∈ 𝐸 between vertices 𝑣𝑖 , 𝑣𝑗  ∈ 𝑉. Defining the discrete conformal 

factor 𝑢𝑖, dependent on the background geometry, 

𝑢𝑖 = { log 𝛾𝑖log tanh0.5𝛾𝑖log tan0.5𝛾𝑖   𝔼
2   ℍ2  𝕊2                                                                                (3.5)                                     
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where  𝔼2, ℍ2, and 𝕊2 denote Euclidean, hyperbolic, and spherical background geometry, 

respectively, we can compute 𝑙𝑖𝑗 in general by  

{  
  𝑙𝑖𝑗2 = 2𝜂𝑖𝑗e𝑢𝑖+𝑢𝑗 + 𝜀𝑖e2𝑢𝑖 + 𝜀𝑗e2𝑢𝑗  𝔼2cosh 𝑙𝑖𝑗 = 4𝜂𝑖𝑗e𝑢𝑖+𝑢𝑗+(1+𝜀𝑖e2𝑢𝑖)(1+𝜀𝑗e2𝑢𝑗)(1−𝜀𝑖e2𝑢𝑖)(1−𝜀𝑗e2𝑢𝑗) ℍ2
cos 𝑙𝑖𝑗 = −4𝜂𝑖𝑗e𝑢𝑖+𝑢𝑗+(1−𝜀𝑖e2𝑢𝑖)(1−𝜀𝑗e2𝑢𝑗)(1+𝜀𝑖e2𝑢𝑖)(1+𝜀𝑗e2𝑢𝑗) 𝕊2                                                     (3.6)                                                          

The 𝜀 coefficients and range of the conformal structure coefficient for a few common circle 

packing schemes [84] are defined in Table 3.4.1. We use inversive distance circle packing for the 

results presented in this chapter. 

TABLE 3.1. Range of conformal structure coefficient and 𝜀 coefficient values for common circle 
packing schemes.  

Scheme 𝜂𝑖𝑗 𝜀𝑖 𝜀𝑗 
Thurston’s [0,1] +1 +1 

Tangential +1 +1 +1 

Virtual radius > 0 -1 -1 

Inversive Distance > 0 +1 +1 

 

With a circle packing scheme defined and chosen, we can now solve the DSRF system 

(3.4) iteratively as follows. At every iteration we begin by computing all circle radii 𝛾𝑖 from the 

discrete conformal factor (3.5). Following this, we use 𝜂 and 𝛾 values to compute all edge lengths 

by application of (3.6). From the edge lengths, we compute the corner angles θ𝑖𝑗𝑘 from the cosine 

law appropriate to the chosen background geometry  

{ 𝑙𝑘2 = 𝛾𝑖2 + 𝛾𝑗2 − 2𝑙𝑖𝑙𝑗cos 𝜃𝑘
cosh𝑙𝑘 = cosh𝑙𝑖cosh𝑙𝑗 − sinh𝑙𝑖sinh𝑙𝑗cos𝜃𝑘

cos𝑙𝑘 = cos𝑙𝑖cos𝑙𝑗 − sin𝑙𝑖sin𝑙𝑗cos𝜃𝑘         𝔼2          ℍ2         𝕊2                                                    (3.7)                                     
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and subsequently the vertex curvature K from the angle deficit (3.1). We then compute the Hessian 

matrix, H, from the local (face) Hessian matrices:  

𝜕(𝜃𝑖,𝜃𝑗,𝜃𝑘)𝜕(𝑢𝑖,𝑢𝑗,𝑢𝑘) = − 12𝐴 𝐿Θ𝐿−1𝐷                                                                                               (3.8)                                                                          

where  

𝐿 = [𝑠(𝑙𝑖) 0 00 𝑠(𝑙𝑗) 00 0 𝑠(𝑙𝑘)
]                                                                                               (3.9)                                                       

𝐴 = sin𝜃𝑖𝑠(𝑙𝑗)𝑠(𝑙𝑘)                                                                                       (3.10)                                                  

and  

𝐷 =  [ 0 𝜏(𝑖, 𝑗, 𝑘) 𝜏(𝑖, 𝑘, 𝑗)𝜏(𝑗, 𝑖, 𝑘) 0 𝜏(𝑗, 𝑘, 𝑖)𝜏(𝑘, 𝑖, 𝑗) 𝜏(𝑘, 𝑗, 𝑖) 0 ]                                                                         (3.11)                                                     

Note, as in [84], we define here for convenience between background geometries 

𝑠(𝑥) =  { 𝑥
sinh𝑥
sin𝑥         𝔼2          ℍ2         𝕊2                                                                           (3.12)                                          

and 

𝜏(𝑖, 𝑗, 𝑘) =  { 12(𝑙𝑖2+𝜖𝑗𝛾𝑗2+𝜖𝑘𝛾𝑘2)
cosh𝑙𝑖cosh𝜖𝑗𝛾𝑗 − cosh𝜖𝑘𝛾𝑘

cos𝑙𝑖cos𝜖𝑗𝛾𝑗 − cos𝜖𝑘𝛾𝑘         𝔼2          ℍ2         𝕊2                                               (3.13)                                            

Finally, we solve the linear system 𝐻𝛿𝑢 =  𝐾̅ − 𝐾                                                                               (3.14)                                                     

for 𝛿𝑢, updating the discrete conformal factor to be used in the next iteration as 𝑢  ←  𝑢 − 𝛿𝑡𝛿𝑢.                                                                             (3.15)                                                      

This process is iterated until a convergence criterion is met, most simply until the maximum 

difference between the current and target discrete curvature falls below some threshold, i.e., until 
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max𝑖|𝐾̅𝑖 − 𝐾𝑖| < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                                                                  (3.16)                                                        

From the final 𝜂, 𝛾, 𝑢, and 𝜃 values, we can compute the final vertex locations in the target domain 

by flattening from a seed face as in [86]. For additional discussion of convergence rate, stability, 

and modifications to improve the robustness of the above approach, see [84, 87, 88]. 

Once the locations of all vertices are known in the parametric domain, any point within 

that domain can be mapped back to the initial surface using barycentric coordinates, defining a 

piecewise-linear inverse of M. A point p with parametric coordinate (u0, w0) in the parametric 

domain is found to lie in face f. If f has parametric vertices v1, v2, and v3, each with parametric 

coordinate of form (ui, wi) and nonparametric coordinate of form (xi, yi, zi), the image of p on the 

original surface, here denoted 𝑝′ with coordinate (x0, y0, z0), is given by  (𝑥0, 𝑦0, 𝑧0) = ∑ 𝑘𝑖(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)3𝑖=1 ,                                                                        (3.17) 

where addition is understood component-wise and the Barycentric coordinates are given by 

𝑘1 = |𝑢3−𝑢0 𝑣3−𝑣0𝑢2−𝑢3 𝑣2−𝑣3|𝑠                                                                             (3.18a)                                                                

𝑘2 = |𝑢1−𝑢0 𝑣1−𝑣0𝑢3−𝑢1 𝑣3−𝑣1|𝑠                                                                             (3.18b)                                                      

𝑘3 = |𝑢2−𝑢0 𝑣2−𝑣0𝑢1−𝑢2 𝑣1−𝑣2|𝑠                                                                                     (3.18c)                                                     

with scaling factor  𝑠 = |𝑢1 − 𝑢2 𝑣1 − 𝑣2𝑢3 − 𝑢1 𝑣3 − 𝑣1|                                                                          (3.19)                                                         

By choosing a simple prescribed surface on which element sample points in the seed mesh 

can be easily defined and manipulated, we exert a high degree of control over the resultant re-

mapping. However, the mapping produced by Ricci flow preserves only angles, not relative areas, 

so simply mapping a uniform grid of sample points from the prescribed surface to the surface of 
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choice produces poor results for our application, leading to wide discrepancies in mesh fidelity 

between minimally-warped and highly-warped portions of the resulting surface mesh, as illustrated 

in Fig. 3.4(c). This is the motivation for beginning with an initial seed mesh and iteratively refining, 

an approach that allows the unknown degree of local warping to be compensated for adaptively.  

 
3.4 Iterative Adaptive Refinement 

3.4.1 Overview 

We describe here how to construct a mesh informed by some refinement indicator, in 

general motivated by either geometric error or numerical solution error estimates. Focusing on the 

geometric properties of the method, we offer specific examples of refinement indicators to reduce 

geometric error but maintain generality for easy application of the method to adaptive refinement 

(AR) based instead on solution error.  

With an initial triangular surface mesh Σ = (V, E, F), a mapping of this surface to the 

parametric domain, Σ̅  =  (𝑉̅, 𝐸̅, 𝐹̅), and an associated map 𝑀: Σ̅ → Σ from the parametric domain 

to the initial surface, we wish to construct a new surface mesh, Σ̃ =  (𝑉̃, 𝐸̃, 𝐹̃), of arbitrary type. 

Beginning with a seed mesh Σ̃0 of the chosen mesh type in the parametric domain, we must define 

a refinement indicator, 𝑅𝑛(Σ̃,𝑀) and a refinement method 𝑄(𝑅𝑛, Σ̃𝑛) =  Σ̃𝑛+1. We may then 

iterate Q on Σ̃0 N times, updating 𝑅𝑛 at each iteration, to produce a final surface mesh Σ̃ =  Σ̃𝑁. N 

may be user-defined or may be a function of Σ̃, e.g., some stop criterion like total element count 

or maximum element size. We give examples of such 𝑅𝑛 and Q for a variety of common mesh 

types and offer suggestions to extend these to other mesh types. We also define the simplest seed 

mesh for each mesh type covered if Euclidean DSRF is used to map to the plane. Note that the 

refinement methods described here have linearithmic time complexity with the number of 

refinement iterations. 
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3.4.2 Continuous Structured Quadrilateral Meshes 

Here we give an example of a refinement indicator and associated refinement method for 

the continuous quadrilateral case using Euclidean DSRF. For every edge 𝑒 ∈ 𝐸̃, we find the 

Euclidean distance, d, between its endpoints, (x1, y1, z1) and (x2, y2, z2) in the nonparametric domain  𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2                                                       (3.20)                                                 

We assign such a distance to each 𝑒 ∈ 𝐸̃, constituting 𝑅𝑛(Σ̃,𝑀) with domain 𝐸̃. 

Starting from a seed mesh in the parametric domain consisting of one quadrilateral element 

aligned with the parametric coordinate axes as in Fig. 3.5(a), we find the row and column 

containing the edge with highest d for the vertical (w1 = w2) and horizontal (u1 = u2) edges, 

respectively. We then subdivide the appropriate row and column in half in the parametric domain, 

taking one row to two rows and one column to two columns. This can be repeated N times and 

constitutes a simple and effective example of one possible 𝑄(𝑅𝑛, Σ̃𝑛) =  Σ̃𝑛+1. Figures 3.5(b)-(d) 

show this subdivision process in the parametric domain for the fighter jet mesh from Fig. 3.4(a) 

for N = 2, N = 10, and N = 20 iterations, respectively. 

Note that the example 𝑄 given here constitutes only a simple and informative refinement 

method to produce a structured quadrilateral mesh. If unstructured meshes are permissible, any 

existing quadrilateral mesh refinement method could be used in the parametric domain, with the 

resulting mesh then mapped back to the original surface conformally. For instance, node-

placement schemes like those in [73], [74], and [89] could be adapted to serve as the refinement 

method. 

If higher order elements are chosen, we may subsample Σ̃𝑁 in the parametric domain to 

produce the necessary interpolation nodes. For instance, if high order elements requiring a grid of 

k*k nodes per element are chosen, we may split each row and column of Σ̃𝑁 k-2 times to obtain 
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the necessary sample density. In this chapter, to improve accuracy and maintain adaptivity for the 

given examples, we do this implicitly. If an L*L grid of higher order elements, each requiring k*k 

nodes, is chosen, we define N to be L*(k-1)-1 to obtain the necessary sample points for all elements. 

For the given examples, we order higher order sample points for quadrilateral elements as defined 

in [1].  

 

 

 

 

 
Fig. 3.5. Iterative adaptive refinement in the parametric domain for a continuous curved 

quadrilateral mesh of a fighter jet in Fig. 3.4(a) to increase mesh quality intelligently, with more 
elements being allocated to high density areas in the parametric domain, leading to a more-

uniform final jet mesh: (a) seed mesh with one element aligned with coordinate axes in 
parametric domain, (b) refined mesh with N = 2 iterations, (c) refined mesh with N = 10 

iterations, and (d) refined mesh with N = 20 iterations. 
 

(a) 

(b) 

(c) 

(d) 
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3.4.3 Continuous Triangular Meshes 

We now give a similar example for the continuous triangular case using Euclidean DSRF. 

For every edge 𝑒 ∈ 𝐸̃, we again find the Euclidean distance, d, between its endpoints in the 

nonparametric domain (3.20). We assign such a distance to each 𝑒 ∈ 𝐸̃, again constituting 𝑅𝑛(Σ̃,𝑀) with domain 𝐸̃. For 𝑒 ∈ 𝐸̃ with maximum 𝑑 and parametric endpoints (u1, w1) and (u2, 

w2), we compute the parametric midpoint 𝑝 as 𝑝 = (𝑢1+𝑢22 , 𝑣1+𝑣22 ) ,                                                                                (3.21)                                                                               

and include it in the set of existing vertices in Σ̃. We then update a Delaunay tessellation of this 

augmented 𝑉̃ in the parametric domain to update 𝐸̃ and 𝐹̃ to include the added vertex.  

 

 

 
Fig. 3.6. Iterative adaptive refinement in the parametric domain for a continuous curved 

triangular mesh of a fighter jet in Fig. 3.4(a): (a) seed mesh with two elements in the parametric 
domain, (b) refined mesh with N = 50 elements, and (c) refined mesh with N = 100 iterations. 

 

(a) 

(b) 

(c) 
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This can be repeated N times and constitutes a possible 𝑄(𝑅𝑛, Σ̃𝑛) =  Σ̃𝑛+1. Figures 3.6(a)-

(c) show similar parametric-domain adaptive refinement results for N = 2, 50, and 100 iterations, 

respectively.  

As in the continuous quadrilateral case, extension to higher order elements is simple, 

requiring only additional sampling of the mapping at interpolation nodes. Interpolation nodes can 

be chosen for each element in the parametric domain and mapped by 𝑀 as before. For the examples 

given in this chapter, we define higher order sample points for each triangle as in [1]. 

 
3.4.4 Discontinuous Quadrilateral Meshes 

To define a suitable refinement indicator in the discontinuous quadrilateral case using 

Euclidean DSRF, we again compute (3.20) for all 𝑒 ∈ 𝐸̃, beginning from the seed mesh defined 

for the continuous quadrilateral case and shown in Fig. 3.5(a). For e with maximum d, we split an 

adjacent face in the direction perpendicular to such e, introducing two new vertices and one new 

edge. Note that, although an edge may have two adjacent faces, it is in practice inconsequential 

which face is split on a given iteration, as the unsplit face is guaranteed to be refined on a 

subsequent (typically the next) iteration, dependent on the number of edges with identical 

maximum d. Such face splitting constitutes a possible 𝑄(𝑅𝑛, Σ̃𝑛) =  Σ̃𝑛+1 and introduces one new 

face per iteration. Additional constraints could be imposed on which element to split at each 

iteration to satisfy potential requirements of specific discontinuous quadrilateral codes. For 

instance, if an implementation requires that one edge joins to at most two, conditions that would 

violate this if refined could be detected at each iteration, with e with the next highest d chosen 

instead. Figure 3.7 demonstrates this refinement method for various N on the jet fighter mesh with 

no such additional constraints. For extension to higher order, we sample on a quadrilateral-by-
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quadrilateral basis and again use the sampling convention defined for higher order quadrilaterals 

in [1]. 

 

 

 

  
Fig. 3.7. Adaptive refinement for discontinuous quadrilaterals in the parametric domain: (a) N = 

50 , (b) N = 100, and (c) N = 300 iterations. 
 
3.4.5 Continuous Unstructured Quadrilateral Meshes 

Here we demonstrate how DSRF-AR can be used to convert an existing 2D meshing 

technique into a 3D surface meshing technique, in this case for continuous structured quadrilateral 

meshes. We begin with the 2D continuous quadrilateral subdivision method described in [89]. The 

method in [89] first refines elements uniformly by splitting each refined element into a 3×3 grid 

of quadrilaterals. A set of 4 irregular subdivision patterns is then applied to adjacent elements to 

repair any discontinuities introduced during refinement. To apply this method to 3D surfaces using 

our DSRF-AR approach, we again compute (3.20) for all 𝑒 ∈ 𝐸̃. For e with maximum d, we split 

an adjacent face into a 3×3 grid of quadrilaterals. Any neighboring faces of the refined face are 

also refined uniformly if needed to maintain the criterion that no edge joins to more than 3. This 

(a) 

(b) 

(c) 
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is iterated until some stop criterion is met, after which the irregular subdivision templates from 

[89] are applied to repair all discontinuities. Note that no irregular element is ever subdivided, as 

this would lead to unbounded mesh quality deterioration. This constitutes another possible 𝑄(𝑅𝑛, Σ̃𝑛) =  Σ̃𝑛+1. Figure 3.4.8 demonstrates this refinement method on the fighter jet mesh for 

several N. As in previous quadrilateral examples, extension to higher order constitutes 

quadrilateral-by-quadrilateral resampling using the convention defined in [1]. Note that, since [89] 

assumes square elements to maintain reasonable corner angles in the irregular subdivision 

templates, we use a different seed mesh here, splitting the rectangular parametric domain into 

approximately square elements (here 3). This can be automated by comparing the width and height 

of the rectangular parametric domain, subdividing it appropriately.  

 

 

 

 
Fig. 3.8. Adaptive refinement for continuous unstructured quadrilaterals in the parametric 

domain: (a) N = 5 (b) N = 10, and (c) N = 50 iterations. 
 

(a) 

(b) 

(c) 
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3.4.6 Generalization to Mesh Types Not Covered 

Although we have covered three common mesh types, we by no means wish to limit the 

applicability of DSRF with adaptive refinement to production of only continuous quadrilateral, 

continuous triangular, discontinuous quadrilateral meshes. We hope the given examples offer clear 

guidance for generalizing to other mesh types, but we additionally give recommendations for 

generalization by offering a few notes on surface mesh features and pertinent aspects of DSRF 

with adaptive refinement not otherwise covered in this chapter. 

We have chosen in this chapter to use the Euclidean case of DSRF and map to a rectangular 

subspace of the Euclidean plane. This choice was made for simplicity not only in the intuitiveness 

of Euclidean space, but also the simplicity of defining and visualizing seed meshes on a flat 

rectangular domain. In practice, spherical and hyperbolic DSRF have excellent advantages when 

applied to complicated topologies to reduce or eliminate singularities. As mentioned, these 

singularities often have only minor impacts on the conformality of the computed mapping but tend 

to produce some singularity-adjacent elements for which angles are poorly preserved when 

mapping from the parametric domain. For most applications, this is not an issue, as the vast 

majority (> 99%) of elements are typically well-mapped. However, for methods extremely 

sensitive to even small proportions of poorly shaped elements, we suggest avoiding singularities 

by using spherical or hyperbolic DSRF where needed.  

As stated, we chose to map to a rectangle in the Euclidean plane for the given examples. 

In practice, other regions and other spaces can be chosen, and indeed can produce superior results 

depending on the geometry of Σ, the shape of its boundary, and its topology. The difficulty in 

choosing more-complicated prescribed surfaces is definition of the seed mesh. For other subsets 

of the Euclidean plane, we recommend using an existing 2D mesher for the chosen mesh type to 
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produce a coarse seed mesh of the prescribed surface. If mapping to the unit sphere using spherical 

DSRF, we recommend choosing a spherical polyhedron of the appropriate element type as the seed 

mesh. If using hyperbolic DSRF, we recommend choosing a polygonal tiling of a region in the 

Poincaré disk.  

It is furthermore crucial to choose 𝑅𝑛(Σ̃,𝑀) and especially 𝑄(𝑅𝑛, Σ̃𝑛) =  Σ̃𝑛+1. to prevent 

the creation of malformed elements during refinement in the parametric domain. “Malformed” 

depends on the mesh type and user application, but typically is related to the regularity of corner 

angles and local Jacobian within and between elements. As 𝑀(𝑝) = 𝑝′ is conformal, malformed 

elements in the parametric domain become malformed elements in the final surface mesh. 

 

3.5 Results and Discussion 

3.5.1 Example Meshes Produced by DSRF with AR 

Here we demonstrate meshing by DSRF with adaptive refinement for the well-known 

NASA almond model and a complicated fighter jet model. Higher order elements were 

reconstructed using Lagrange interpolation as in [1] or cubic spline interpolation of the sample 

points on an element-by-element basis. The same initial Σ triangular meshes were used for all cases 

(one for the almond, one for the fighter jet). The DSRF was computed on these initial meshes and 

used to generate one 𝑀(𝑝) = 𝑝′ for each model. The parametric domain adaptive refinement 

methods described previously were then iterated through these mappings to produce a variety of 

surface meshes shown in Figs. 3.9-3.20. We show the robustness of the proposed technique to 

recreate complicated surfaces for arbitrary mesh types with arbitrary element counts and orders, 

for instance accurately representing the fighter jet model with as few as 32 elements. We are not 

aware of any other meshing technique that can reliably produce such large-domain meshes. 
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Figure 3.9(a) shows a high-resolution higher order continuous quadrilateral surface mesh 

generated using DSRF with the refinement scheme outlined in section 3.4.2.  

 

 
Fig. 3.9. Comparing effects of adaptive iterative refinement vs. uniform sampling on mesh 
quality: (a) continuous quadrilateral mesh of a fighter jet in Fig. 3.4(a) with 32 64th-order 

elements using DSRF with iterative adaptive refinement outlined in Fig. 3.5 and (b) the same 
using uniform sampling. 

 
Figure 3.9(b) shows the equivalent surface mesh instead using uniform sampling in the parametric 

domain. All parameters including element count, element order, Σ, and M were identical between 

Figs. 3.9(a) and 3.9(b). Spline interpolation was chosen in both cases. Extreme loss of fidelity can 

be seen around the fuselage tip and wing tips in the uniformly sampled case, these details 

meanwhile excellently captured in the adaptive case. This shows not only the importance but also 

the effectiveness of the proposed adaptive sampling methods for accurately capturing detail in the 

desired model.  

(a) (b) 
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Figure 3.10 shows the same mesh as Fig. 3.9(a) from an oblique angle, making the high 

fidelity with which the adaptive sampling technique captures fine detail in the initial surface 

apparent. A comparison between this higher order continuous quadrilateral mesh and the 1st-order 

triangular mesh (chosen for Σ and shown in Fig. 3.4(a)) shows the near perfection with which this 

instance of Σ̃ recreates the original surface. A similar result is shown in Fig. 3.11 for the NASA 

almond, here using 32 16th-order continuous quadrilateral elements with Lagrange interpolation. 

The parent almond mesh contained 2,023 triangles and the DSRF took 0.168 seconds to compute. 

Adaptive sampling was also used for Fig. 3.11 as outlined in section 3.4.2. Note that, for most 

practical use cases, such large, curved elements would be supported by extremely high-order 

current expansions, most importantly to compensate for their large electrical size.  

Figures 3.12 and 3.13 show 1st-order discontinuous quadrilateral meshes generated using 

the technique outlined in Section 3.4.4. Figure 3.12 shows the fighter jet model recreated using 

6490 1st-order elements, while Fig. 3.13 shows the NASA almond featuring 2000 elements of the 

same type. In both cases, the original surface is well-reconstructed.  

Figures 3.14 and 3.15 show higher-order analogues of Figs. 3.12 and 3.13, now using 300 

30th-order and 300 10th-order discontinuous quadrilateral elements, respectively. Spline 

interpolation was used in both cases. Note that roughness present on the almond surface in Fig. 

3.15 is not an artifact of the proposed meshing technique, but rather shows an accurate recreation 

of roughness due to 1st-order triangular facets in the original almond mesh chosen as Σ.  
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Fig. 3.10. Fighter jet model featuring as few as 32 64th-order quadrilateral elements in Fig. 3.9(a) 

viewed from oblique angle. Note excellent curvature/detail modeling with hyper-large hyper-
curved quadrilateral patches. 

 
 

 
Fig. 3.11. NASA almond model using adaptive refinement from Fig. 3.5 with only 32 16th-order 

continuous quadrilateral elements.
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Fig. 3.12. Fighter jet model constructed from 6490 1st-order discontinuous quadrilateral elements 

using iterative adaptive refinement from Fig. 3.7. 
 

 

 
Fig. 3.13. NASA almond model featuring 2000 1st-order discontinuous quadrilateral elements 

obtained by the adaptive refinement technique from Fig. 3.7. 
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Fig. 3.14. Fighter jet model composed of 300 30th-order discontinuous quadrilateral elements by 

the technique in Fig. 3.7. 
 

Figure 3.16 shows a low-resolution meshing of the fighter jet model using 2898 first-order 

triangular elements. Adaptive sampling was used as outlined in section 3.4.3. Despite the low 

element count and lowest possible geometric order, the model is well represented at coarse-scale, 

showing that the proposed method works well even as a first-order triangular mesher.  

Figures 3.17 and 3.18 show higher order triangular meshes for the fighter jet and almond, 

respectively, using the technique outlined in Section 3.4.3. The fighter jet was meshed using 3702 

10th-order elements interpolated by cubic spline, while the almond was meshed using 1098 10th-

order elements interpolated using Lagrange polynomials. We see excellent fidelity in both cases. 

Note that roughness from facets in Σ can again be seen in Fig. 3.18, like Fig. 3.15. 

 

 



84 
 

 
Fig. 3.15. NASA almond model using refinement from Fig. 3.7 with 300 10th-order 

discontinuous quadrilateral elements. 
 

 
Fig. 3.16. Low-resolution fighter jet model using 2898 1st-order continuous triangular elements 

with adaptive refinement as in Fig. 3.6. 

 
Fig. 3.17. Fighter jet model featuring 3702 10th-order continuous triangular elements generated 

by the iterative adaptive refinement technique in Fig. 3.6. 
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Figures 3.19 and 3.20 show first order quadrilateral meshes for the fighter jet and almond, 

respectively, using the technique from Section 3.4.5. The fighter jet was meshed using 4562 first 

order elements while the almond was meshed using 1544 first order elements. Detail from the 

original surfaces is captured well in these continuous quadrilateral meshes despite their low 

element count and low order. 

 

 
Fig. 3.18. NASA almond model containing 1098 10th-order continuous triangular elements based 

on the adaptive refinement from Fig. 3.6. 
 

 
Fig. 3.19. Fighter jet model featuring 4562 1st-order continuous quadrilateral elements generated 

by the iterative adaptive refinement technique in Fig. 3.8. 
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Fig. 3.20. NASA almond model containing 1544 1st-order continuous quadrilateral elements 

based on the adaptive refinement from Fig. 3.8. 
 
3.5.2 Corner Angle Statistics 

Here we demonstrate the conformality of the DSRF method with adaptive refinement for 

the almond and fighter jet models. For the given examples, we sample both the jet and the almond 

in the parametric domain adaptively using the refinement indicator and refinement method given 

for the continuous quadrilateral case in Section 3.4.2. Both meshes were sampled using N = 256 

to obtain a dense sampling of the conformality of 𝑀(𝑝) for both models. Corner angles were 

computed for every vertex 𝑣 ∈ 𝑉̃ in the resulting surface meshes, and histograms were produced 

from the resulting set of corner angles for each mesh and are shown in Fig. 3.21. Note that almost 

all corner angles are close or equal to 90°, indicating excellent conformality of the DSRF method. 

This is of utmost importance for many singularity-extraction techniques used in MoM that are not 

robust to poor corner angles, but otherwise offer excellent accuracy [1]. Additionally, the 

conformality of the method is critical to maintain high local orthogonality of the basis functions, 

thereby controlling system condition number.  
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Fig. 3.21. Corner angle histograms for mappings generated using DSRF on continuous 

quadrilateral meshes. Mappings were sampled using a 256×256 grid of sample points as in Fig. 
3.5 for the fighter jet in Fig. 3.4(a) and the NASA almond, respectively. 

 

3.6 Conclusion 

This chapter has addressed a crucial but largely under-investigated aspect of modern 

computational electromagnetics research – high quality surface mesh generation. We have 

introduced a general, robust surface meshing approach intended here for use as a geometric 

discretization technique for MoM-SIE problems in electromagnetics but easily extensible to other 

applications. The proposed technique makes use of new mathematics in the field of topology that 

has, to our knowledge, not previously breached the field of CEM. The method uses the discrete 

surface Ricci flow to generate a high-quality discrete conformal mapping from an arbitrary input 

surface of arbitrary geometry to a parametric domain in which a seed mesh is defined. Iterative 

adaptive refinement is then used to refine the seed mesh, from which the final surface mesh is 

produced by an inversion of the mapping using barycentric interpolation. The novel proposed 

technique has been demonstrated capable of high-quality mesh generation for a variety of surface 

mesh types, given suitable refinement indicators and methods, including triangular, continuous 

quadrilateral, and discontinuous quadrilateral of both low and high order. We have defined such 
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refinement indicators and methods for the studied mesh types and have offered guidelines for 

extension to mesh types not covered in this chapter. 

The mesh generation results presented have shown that DSRF with adaptive refinement 

easily recreates even complicated initial surfaces using several mesh types over a large range of 

orders and fidelities. The ability of the new DSRF-based meshing technique to produce high 

quality meshes even for complicated, highly varied surfaces has been demonstrated for the NASA 

almond and a fighter jet model. Where high-fidelity meshing is desired, the proposed DSRF 

technique has been able to near-perfectly capture fine-scale detail using very few high order 

elements, here demonstrated with as few as 32 elements of up to 64th-order, unprecedented in the 

field of CEM. Where low-fidelity meshing is desired, DSRF with adaptive refinement has been 

able to accurately recreate course-scale detail using standard first-order elements. Corner angle 

measurements have shown that the generated discrete mappings are highly conformal, leading to 

excellent angle conservation between parametric and final surface meshes when inverse mapped, 

yielding meshes ideal of angle-sensitive singularity extraction techniques used in MoM.  

While the DSRF method with adaptive refinement has been shown a highly effective 

general surface meshing technique, we consider this the first work in a relatively experimental line 

of research and appropriately, we have noted some drawbacks of the method as presented. The 

method is not applicable to complicated multi-part objects when continuity between meshes of 

individual parts is required. It is also not formally applicable to non-differentiable surfaces where 

perfect preservation of sharp (non-differentiable) features is required. The method can only 

asymptotically approach preservation of sharp features, so the error introduced may be 

unacceptable where sharp feature preservation on otherwise low fidelity meshes is required. We 

therefore anticipate several areas for future work including improvement of refinement methods 
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to include sharp-feature preference; extension to multi-part objects while maintaining mesh 

continuity between parts; improvements to the potentially poor computational scaling of the 

DSRF; and utilization with simulation-derived error data for adaptive refinement to mitigate not 

only geometric error during the meshing process, but also numerical error in CEM solvers.  

Overall, by leveraging the DSRF, we can provide a unified framework for generating low- 

or high-order surface meshes of arbitrary element type that integrates with any existing mesh 

reconstruction tool, to quickly remesh, refine, and optimize. Our DSRF technique enforces high-

quality discretizations, even for sub-optimal parent meshes. It provides a mathematical guarantee 

of element quality, corner angle uniformity, and local surface current basis vector orthogonality, 

aimed to greatly enhance the accuracy, conditioning properties, stability, robustness, and 

efficiency of the CEM solution. The ability to automatically generate geometrically ultra-high 

order elements of high quality demonstrates significant advantages for practical application in 

CEM, both in reducing the number of unknowns and improving accuracy and robustness. 

Additionally, mesh refinement or full reconstruction (e.g., first-order triangle to ultra-high order 

quadrilateral and vice versa) is extremely inexpensive. A precomputed map from the parent surface 

and its parameterization enables this low-cost reconstruction and may assist many other common 

and desirable goals such as optimization. As such, DSRF meshes can be locally or globally refined 

efficiently motivated by geometric constraints, solution error constraints, or both.  
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4 NON-SELF-ADJACENT RAY CLASSES FOR PARALLELIZABLE SHOOTING 

BOUNCING RAY TRACING DOUBLE COUNT REMOVAL 

4.1 Introduction 

Ray tracing is an old and simple computational electromagnetics (CEM) technique that has 

seen renewed interest in recent years due to increased computing power and demand for fast 

propagation modeling in electrically large, complicated environments. A frequency-asymptotic 

technique, ray tracing is well-suited to the types of propagation problems to which classical full-

wave techniques like method of moments (MoM), finite difference (FD), and finite element 

method (FEM) are least suited. As such, ray tracing fills an important gap in the toolkit of methods 

available to CEM researchers and practitioners for diverse applications including 5G planning, 

propagation modeling in tunnel environments, and received signal strength (RSS) mapping [90]-

[93].  As ray tracing is applied to a broader suite of increasingly demanding applications, the 

efficiency and scalability of the technique is now, more than ever, paramount to its usefulness. 

For electrically large propagation environments with linear, homogeneous media, ray 

tracing techniques have predominantly relied on image theory (IT) or the shooting-bouncing rays 

method (SBR); see [94] for an overview of these methods. In both cases, rather than explicitly 

solving variational formulations of Maxwell’s equations and resulting linear systems, as full-wave 

techniques do, ray tracing iteratively constructs an approximate solution by propagating rays, each 

representing radiation from a source over a differential solid angle, and recording their interaction 

with the environment constrained as modeled by high frequency approximations like the Fresnel 

coefficients and theory of geometric optics (GO). For an excellent historical and theoretical 

background, see [95].  
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Image theory computes the paths rays follow from a source to a given receiver by 

recursively reflecting a source over all boundaries visible from that source to produce a set of 

image sources—each image source then treated as a new source. This process is continued to some 

maximum number of reflections, 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠, at which point any valid paths from source to 

receiver with up to 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 reflections can be computed from the set of image sources—see 

[95] for a good overview. The advantage of this approach is that all possible paths between source 

and receiver with 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 or fewer are captured exactly, reducing phase error. However, the 

computational complexity of IT is 𝑂(𝑁𝑓𝑎𝑐𝑒𝑠𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠), where 𝑁𝑓𝑎𝑐𝑒𝑠 is the number of flat 

surfaces used to represent material discontinuities in the propagation environment. Since, for 

modern problems, 𝑁𝑓𝑎𝑐𝑒𝑠 is large, IT quickly becomes computationally untenable, even for small 

numbers of reflections. We note, however, that some techniques like reflection spaces or 

illumination zones can somewhat reduce the computational cost of IT. 

SBR overcomes the computational shortcomings of IT by instead choosing a set of ray 

directions and a fixed number of rays a priori, then propagating each ray through the environment 

until it has made 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 reflections or some other stop criterion is met, e.g., the ray leaving 

some region of interest. This yields linear complexity with the number of rays, and, using domain 

partitioning methods like the binary space partition (BSP), logarithmic complexity with respect to 

the number of facets [96]. However, this does not produce a set of exact paths between source 

point and receiver point, necessitating a method to decide which rays’ field contributions should 

be counted at a given receiver. This is typically resolved by applying either the ray-cone 

approximation (RCA) [97]-[98] or ray-tube launching (RTL) [99]. Note that we only consider flat, 

triangular facets in this chapter. 
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RTL has the advantage of exactly tiling the sphere of possible initial ray directions with no 

overlap. However, RTL introduces cases where ray tubes are split when only part of a tube’s 

subtended solid angle reflects from a given face. Handling such cases introduces computational 

overhead and heavily conditional execution, yielding a ray count that grows dynamically with 

reflection order in a way that cannot quickly be predicted a priori. RTL can therefore not be 

parallelized in an efficient, synchronous manner, making it a poor choice for modern SBR 

applications where scalability on synchronous, parallel hardware like graphics processing units 

(GPUs) is critical [100].  

RCA also suffers from a barrier to efficient and complete parallelization: double count 

removal (DCR). DCR is necessary when using RCA due to inherent overlap between ray cones in 

the three-dimensional (3D) domain [100]. If a receiver point falls within the overlap of two cones 

from the same source, the field contribution from that source may be counted twice, leading to 

significant error in the resulting received power [100]. This necessitates a method to either prevent 

such cases a priori or detect them and remove them during computation. Many DCR approaches 

have been proposed in the past, but none have been developed with scalability on modern parallel 

hardware in mind. In [101], the authors present a DCR method by which rays are described by a 

characteristic sequence of planes hit, such that two rays with the same characteristic sequence 

when arriving at the same receiver are duplicates, necessitating the removal of one. This requires 

a comparison of characteristic sequences between all rays that arrive at a receiver to detect identical 

characteristic sequences—leading to a worst case complexity of 𝑂(𝑁𝑟𝑎𝑦𝑠2) and producing a 

mutual data-dependency between rays that prevents effective parallelization. This also suffers 

from additional computational overhead where multiple coplanar, adjacent facets are present and 

therefore need to be tracked as the same object to maintain uniqueness of the characteristic 
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sequence of a unique ray. A similar method is described in [102] that relies on information about 

each ray’s number of reflections, distance traveled, and angle of transmission to detect and remove 

double counts. This is essentially a continuous version of the characteristic sequence from [101], 

with which we identify ray paths by continuous-valued properties of their propagation paths rather 

than discrete indices. The method in [102] suffers from the same mutual data-dependency between 

rays that hinders the method in [101] from effective parallelization. The most common type of 

DCR is described well in [103], which uses explicit geometric calculations to determine if two 

rays that have arrived at the same reception sphere contain the reception point in the overlap of 

their ray cones, indicating a double count. This approach is fast and reliable for sequential 

execution, but, as with previous methods, suffers from a mutual data dependency between rays 

that hinders its parallel performance and scalability. A useful structured sampling method is 

described in [97] that constrains the number of neighboring rays for any given ray, limiting double 

count checks to a known set of neighbor rays by sampling recursively on the icosahedron. This is 

useful to reduce the worst-case complexity of DCR to 𝑂(𝑁𝑟𝑎𝑦𝑠). However, the DCR method 

described in [97] still introduces a mutual data dependency between neighboring rays that prevents 

efficient parallelization. We elaborate on what we mean by a data dependency and why it makes 

efficient parallelization difficult in Section 4.5.3. 

This chapter proposes an efficient method of double count removal in SBR ray tracing that 

is highly parallelizable and removes the last major bottleneck to efficient parallel scaling of SBR 

applied to CEM. We take a similar sampling approach as [97] to limit potential double counts for 

each ray to a set of known neighbor candidates and maintain an 𝑂(𝑁𝑟𝑎𝑦𝑠) worst case run time, but 

introduce a new DCR method that does not suffer from the mutual data dependency between rays 

that prevents effective parallelization of previous DCR methods. We introduce non-self-adjacent 
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(NSA) classes of rays on the structured icosahedral and octahedral samplings such that no two rays 

in the same class are neighbors. When only one NSA class is processed at a time, no ray has mutual 

data dependency with any other ray currently being processed, removing the major barrier 

presented by previous methods to effective parallelization of SBR. Due to the structure of the 

sampling we use and the way we define the NSA classes, information from at most six neighbor 

rays needs to be checked for double counting at the time a given ray is processed. The number of 

neighbor rays that need to be checked and their indices is known a priori for any ray. The NSA 

classes we introduce have useful properties like symmetry, asymptotic inter-class isotropy, and 

simple definition yielding easy implementation. We present a four-class NSA formulation on the 

icosahedron, maintaining complete non-self-adjacency at the minor expense of inter-class 

isotropy. We also present two three-class NSA formulations: one on the icosahedron maintaining 

inter-class isotropy but only asymptotic NSA, and one on the octahedron, maintaining inter-class 

isotropy and full NSA at the expense of decreased global sampling regularity. 

In the rest of the chapter, we introduce these NSA classes and associated DCR 

methodology. We begin with a review of the icosahedral sampling technique, followed by a 

description of the introduced NSA classes, along with their definition, useful properties, and 

relative advantages. We next discuss application of the introduced NSA classes to highly scalable 

DCR, offering a theoretical discussion of the asymptotic correctness of our simple DCR method 

in terms of sampling the SBR image space. We introduce the image space with motivating 

examples to facilitate this theoretical discussion. We then present speedup, computation time, and 

scaling results demonstrating efficacy of the proposed method, achieving over 300× speedup. We 

conclude by further outlining the potential of the new DCR technique using NSA classes for 

efficient and scalable SBR. 
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4.2 The Non-Self-Adjacency Property 

To facilitate simple discussion of NSA classes, we make a variety of useful definitions and 

assumptions while noting a few important consequences. We begin denoting by 𝑅 the set of all 

rays to be processed and by 𝑟𝑖 ∈ 𝑅 the ith ray in R. We assume here that each ray is unique, or 

formally that 𝑟𝑖 ≠ 𝑟𝑗, 𝑖 ≠ 𝑗. We then define the total number of rays, 𝑁𝑟𝑎𝑦𝑠 = |𝑅|. We also denote 

by K the set of ray classes, and by 𝐶𝑖 ∈ 𝐾 a specific ray class. A ray class is a set of rays. The total 

number of classes is 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = |𝐾|. For all classes, we enforce completeness ⋃ 𝐶𝑖𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑖=1 = 𝑅, and 

independence 𝐶𝑖 ∩ 𝐶𝑗 = ∅, 𝑖 ≠ 𝑗. In general, we denote the neighborhood (set of neighbors) of 𝑟𝑖 
as 𝑁𝑖 with only the constraint that 𝑟𝑖 ∉ 𝑁𝑖. The most useful choice of 𝑁𝑖 for RCA is the set of 

spherical Voronoi neighbors of 𝑟𝑖, denoted here 𝑉𝑖. However, we maintain generality in the choice 

of neighbors wherever we use 𝑁𝑖. We formally define the NSA property as  {𝑟𝑖|𝑟𝑖 ∈ 𝑁𝑗 , 𝑟𝑖 ∈ 𝐶𝑘, 𝑟𝑗 ∈ 𝐶𝑘} = ∅,   ∀𝐶𝑘 ∈ 𝐾,                                 (4.1) 

and similarly, the asymptotic NSA property as 

lim𝑁𝑟𝑎𝑦𝑠→∞ |{𝑟𝑖|𝑟𝑖∈𝑁𝑗,𝑟𝑖∈𝐶𝑘,𝑟𝑗∈𝐶𝑘}||{𝑟𝑖|𝑟𝑖∈𝐶𝑘}| = 0, ∀𝐶𝑘 ∈ 𝐾.                                 (4.2) 

 

4.3 Non-Self-Adjacent Ray Classes 

4.3.1 Requirements and Motivation 

NSA ray classes are those that satisfy (4.1). Structured DCR methods like ours or [97] limit 

the DCR data dependency to a known neighbor set. For such DCR methods, ray classes that satisfy 

(4.1) guarantee that no rays within a given class are dependent, allowing all members of a class to 

be processed in parallel. Any ray class can satisfy (4.1) with the correct neighbor sets, most simply 
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and least usefully 𝑁𝑖 = ∅, ∀𝑟𝑖 ∈ 𝑅. In competition with this, the specific choice  𝑁𝑖 = 𝑉𝑖, ∀𝑟𝑖 ∈ 𝑅 

is geometrically correct for detecting SBR double counts but constrains the possible classes that 

satisfy (4.1) for a given sampling pattern. Satisfaction of (4.2) gives an easy solution to this 

problem. For ray classes with 𝑁𝑖 = 𝑉𝑖, ∀𝑟𝑖 ∈ 𝑅 that satisfy (4.2) but not (4.1), we can ignore 

possible double counts between neighbors in the same class, allowing members of the same class 

to be processed in parallel while introducing only minimal error. In practice, this is done by 

excluding from the neighbor set of a ray any Voronoi neighbors that share the class of that ray. 

Because of this, ray classes based on 𝑁𝑖 = 𝑉𝑖, ∀𝑟𝑖 ∈ 𝑅 that satisfy only (4.2) are almost as useful 

as those that satisfy (4.1). We show three useful ray class definitions based on 𝑁𝑖 = 𝑉𝑖, ∀𝑟𝑖 ∈ 𝑅 

that satisfy (4.2) or (4.1). 

Among the possible methods to define NSA ray classes for SBR, the simplest is to assign 

each ray to its own class. Since, for removal of the SBR DCR data dependency, we require ray 

classes to be processed sequentially, assignment of each ray to its own class is equivalent to fully 

sequential SBR. This may seem trivial but reveals an important consideration for the number of 

rays per class: if the number of rays per class is less than the number of rays our given hardware 

can process in parallel, then ray classing presents a computational bottleneck. To maximize the 

minimum value of 𝑁𝑟𝑎𝑦𝑠 for which this bottleneck occurs, it is desirable to choose the minimum 

number of ray classes possible—the fewer ray classes, the more rays per class. In choosing the 

minimum number of ray classes, it is easy to see that neither one class nor two classes can give us 

the necessary NSA property. For 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 1, (4.1) is not satisfied unless 𝑁𝑖 = ∅, ∀𝑟𝑖 ∈ 𝑅, 

otherwise a ray and its neighbors are in the same class. For 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 2, (4.1) is not satisfied 

unless neighbors of a ray are themselves never neighbors, or in other words, the graph, 𝐺, 

constructed by connecting each 𝑟𝑖 ∈ 𝑅 to its neighbors contains no topological triangles. 𝐺 with 
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no topological triangles can exist in general, but for the most useful case of 𝑁𝑖 = 𝑉𝑖, ∀𝑟𝑖 ∈ 𝑅 , 𝐺 is 

the spherical Delaunay triangulation of 𝑅, which contains only triangles for 𝑁𝑟𝑎𝑦𝑠 > 2.  

For (4.1) to hold when 𝑁𝑖 = 𝑉𝑖, ∀𝑟𝑖 ∈ 𝑅 , neighbors of any  𝑟𝑖 ∈ 𝑅 cannot be in the same 

class as 𝑟𝑖 and no adjacent neighbors can be in the same class as each other. This requires, at 

minimum, 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3 to fully satisfy (4.1). Since 𝑉𝑖 lie on a topological circle around 𝑟𝑖 we 

require  |𝑉𝑖| 𝑚𝑜𝑑 2 = 0, ∀𝑟𝑖 ∈ 𝑅,                                                               (4.3) 

or in other words, an even number of neighbors for each ray. A few regular neighborhoods with 

varying neighbor counts are shown in Fig. 4.1.  

 

 
(a)                     (b)                      (c)                      (d) 

Fig. 4.1.  Examples of uniform local topology with three classes: (a) triangular, (b) square, (c) 
pentagonal, and (d) hexagonal. Neighbors of central cell lie on a topological circle. 

 

For global sampling uniformity, we desire the Voronoi cells of all rays to be identical, regular 

polygons. In the Euclidean plane, we could simply tile with either squares (Fig. 4.1b) or regular 

hexagons (Fig. 4.1d) and the class patterns from Fig. 4.1 to satisfy sampling uniformity and (4.1). 

However, satisfying sampling uniformity on the sphere is only possible for the five platonic solids, 

offering at most 20 sample points in the case of the dodecahedron (sampled on vertices) or the 

icosahedron (sampled on face centroids). This motivates methods like the icosahedral subdivision 
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approach in [97] that, more generally speaking, sample at the vertices of high-frequency geodesic 

polyhedra to maximize sampling uniformity in a structured way. 

 

4.3.2 Three Classes in Icosahedral Topology 

Unfortunately, geodesic polyhedra with icosahedral symmetry never emit a topology that 

can satisfy (4.1) with 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3; they contain 12 vertices with 𝑁𝑖 = 5, necessitating 𝑁𝑖 ∩ 𝑁𝑗 ≠∅, 𝑖 ≠ 𝑗 in some cases. However, this defect need only occur at the edges of the original (pre-

subdivision) icosahedron. The number of samples that lie on the original icosahedral edges grows 

linearly with the number of subdivisions while the total number of sample points grows 

quadratically. The asymptotic NSA property (4.2) is therefore satisfied with 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3. We 

show a simple method here.  

We can easily define a set of possible sample points on any triangle and three associated 

classes that satisfy (4.1) when only points on that triangle, 𝑡, are considered. We denote by {𝑎𝑡, 𝑏𝑡, 𝑐𝑡} the set of vertex locations of the triangle, and by 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 the desired number of 

subdivisions (an edge of  𝑡 is split into 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 new edges). Each sample point on the triangle is 

then given by 𝑠𝑖,𝑗𝑡 = 𝑎𝑡 + 𝑖𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 (𝑏𝑡 − 𝑎𝑡) + 𝑗𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 (𝑐𝑡 − 𝑎𝑡),                    (4.4) 

with indices defined by 𝑖, 𝑗 ∈ ℕ0, 𝑖, 𝑗 ≤ 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 + 1, 𝑖 + 𝑗 ≤ 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 + 1.                  (4.5)                             

The classes on 𝑡 are then given by 𝐶𝑘𝑡 = {𝑠𝑖,𝑗𝑡 |(𝑗 − 𝑖) 𝑚𝑜𝑑 3 = 𝑘 − 1}, 𝑘 ∈ {1,2,3}.                          (4.6) 

Figure 4.2 shows these classes on a triangle for 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 11. 
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Fig. 4.2.  NSA classes defined by (6) for 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 11. 

 

Since (4.6) may assign different classes to a point lying on an edge depending on which 

adjacent triangle we consider, we require an extra step to maintain class independence 𝐶𝑖 ∩ 𝐶𝑗 =∅, 𝑖 ≠ 𝑗 and expand classes from (4.6) to the entirety of a geodesic polyhedron by a union of (4.6) 

over its triangles. 

We denote by 𝐺 the set of edges, by 𝑃 the set of vertices, and by 𝑇 the set of triangular 

facets of an arbitrary polyhedron with triangular faces. Each vertex 𝑝 ∈ 𝑃 has a set of incident 

edges. We specify that a given 𝑝 is a member of only one of its incident edges. Similarly, each 

edge 𝑔 ∈ 𝐺 separates two triangular faces. We specify that points on a given 𝑔 are a member of 

only one of the two triangles it separates. By these definitions, each point on the geodesic 

polyhedron is a member of one and only one 𝑡 ∈ 𝑇. If  𝑠𝑖,𝑗𝑡 ∈ 𝑡, we say 𝑡 is the parent triangle of 𝑠𝑖,𝑗𝑡 . The parent triangle of any sample point is unique. The classes on the geodesic polyhedron are 

then given by 
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𝐶𝑘 =⋃𝐶𝑘𝑡𝑡∈𝑇 ,             (4.7) 
 

where indices are as defined in (4.5). Figure 4.3 shows these classes on the icosahedron with 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 13. 

 
Fig. 4.3.  Asymptotically-NSA classes on the icosahedron with  𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 13 and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 =3. Voronoi-adjacent rays in the same class are common here due to very low ray count. 

 
This choice of classes and sample points offers an excellent foundation for parallel SBR-

DCR. Although only (4.2) is satisfied, the points that violate (4.1) are constrained to those lying 

on the edges of the original icosahedron and their immediate neighbors. These points represent a 

proportion of the total 𝑁𝑟𝑎𝑦𝑠 that decreases linearly with increased 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠. This makes double 

counting between adjacent same-class neighbors inconsequential at the high ray counts typically 

used in most SBR applications.  
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4.3.3 Three Classes in Octahedral Topology 

The presence of twelve points with five neighbors on geodesic polyhedra with icosahedral 

topology prevents such polyhedra from satisfying (4.3) at all vertices. Octahedral geodesic 

polyhedra, on the other hand, contain only points that satisfy (4.3), making them a good option for 

sampling where perfect non-self-adjacency is desired with the minimum number of classes.  

Figure 4.4 shows (4.6) and (4.7) applied to the octahedron with 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3. We use an 

ordering of {𝑎𝑡, 𝑏𝑡, 𝑐𝑡} for each triangle that maintains class independence on edges between 

triangles regardless of parent triangle assignment. Many such orderings exist on the octahedron, 

so we do not specify one here. These octahedral classes have the advantage of fully satisfying (4.1) 

with only three classes, but at the cost of somewhat reduced sample uniformity compared to the 

icosahedron. 

 

 
Fig. 4.4. Perfect NSA classes on the icosahedron with  𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 17 and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3. No 

Voronoi-adjacent rays are in the same class. 
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4.3.4 Four Classes in Icosahedral Topology 

To achieve both high sampling uniformity and satisfaction of (4.1), we can define fully 

NSA classes on the icosahedron with 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4. We choose one of many four-color vertex 

colorings of the icosahedron, with colors corresponding to class indices 𝑘 ∈ {1,2,3,4}. This assigns 

to each of the icosahedron’s twelve vertices one of four classes, such that no adjacent vertices 

share a class.  

On a given triangle, we again denote by {𝑎𝑡, 𝑏𝑡, 𝑐𝑡} the set of vertex locations, and now by {𝑘𝑎𝑡 , 𝑘𝑏𝑡 , 𝑘𝑐𝑡} the set of corresponding class indices. For simplicity, we define the vector ℎ =〈𝑘𝑎𝑡 , 𝑘𝑏𝑡 , 𝑘𝑐𝑡〉, with ℎ(𝑙) denoting its lth entry. Sample points are again defined by (4.4) with indices 

defined by (4.5). However, instead of (4.6), the classes on 𝑡 are now given by 𝐶ℎ(𝑙)𝑡 = {𝑠𝑖,𝑗𝑡 |(𝑗 − 𝑖) 𝑚𝑜𝑑 3 = ℎ(𝑙) − 1}, 𝑙 ∈ {1,2,3}.                  (4.8)  

Assigning parent triangles as before to maintain class independence, the four classes on the 

icosahedral geodesic polyhedron are again given by (4.7). Note that 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 must be one less 

than an integer multiple of 3 to maintain class independence. Figure 4.5 shows (4.7) and (4.8) 

applied to the icosahedron with 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 13 and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4. These classes fully satisfy (4.1) 

and have the same sampling uniformity as those from Fig. 4.3, but each class no longer samples 

the entire sphere. 
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Fig. 4.5. Perfect NSA classes on the icosahedron with  𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 13 and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4. No 

Voronoi-adjacent rays are in the same class. 

 

4.4 SBR as a Sampling of the Image Space 

To facilitate a discussion of SBR DCR, we introduce the concepts of the environment space 

and image space. The environment space, 𝐸, is the physical space in which we are modeling 

propagation. Any point 𝑒 ∈ 𝐸 is given by a scalar real-valued triplet with spherical coordinates 〈𝜌, 𝜃, 𝜙〉, 𝜌 ∈ [0,∞),   𝜃 ∈ [0, 𝜋], 𝜙 ∈ (−𝜋, 𝜋]. A ray, 𝑟, with initial direction 〈𝜃0, 𝜙0〉 follows a 

curve, 𝑠, through 𝐸, parametrized by 𝑑 such that 𝑠(𝑑) = 𝑒 is the point on 𝑠 at which the ray has 

traveled 𝑑 distance along 𝑠. The curve 𝑠 is a straight line radiating from the origin if no reflections 

occur, a continuous path composed of line segments of reflections occur in homogeneous media, 

or a general continuous, curved path in inhomogeneous media. We consider only the first two 

cases here. The image space, 𝑄, represents the space in which paths taken by rays follow straight 

lines radiating from the origin regardless of their reflections in the environment space. Note that 

we consider only reflections here, not transmission. Any point 𝑞 ∈ 𝑄 is also given by a real-valued 
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triplet with spherical coordinates 〈𝑑, 𝜃0, 𝜙0〉, 𝑑 ∈ [0, 𝐷𝑚𝑎𝑥], 𝜃 ∈ [0,2𝜋], 𝜙 ∈ (−𝜋, 𝜋], where 𝑑 is 

the distance traveled in 𝐸 for the ray with initial direction 〈𝜃0, 𝜙0〉. 𝐷𝑚𝑎𝑥 gives the maximum 

propagation distance considered. The ray source is the origin of both spaces. We define a map 𝑀 

such that 𝑀(𝑞) = 𝑒 = 𝑠(𝑑). Note that 𝑀 is in general not invertible: ∃𝑒 ∈ 𝐸 𝑠. 𝑡. {𝑞|𝑀(𝑞) = 𝑒} =∅; we call such 𝑒 occluded. Note that 𝐸 = 𝑄 in homogeneous media with no reflections and 𝐷𝑚𝑎𝑥 = ∞. 

For clarity, we give a few examples, shown in Fig. 4.6, in two dimensions of 𝐸 and the 

associated 𝑄. To produce these plots, we constrained 𝜙 = 0 and uniformly distributed initial ray 

directions in 𝜃. Since a given ray only samples 𝐸 along a given path, in turn sampling 𝑄 only along 

a straight radial path from the origin, we interpolate 𝑄 between rays using RCA and assigning any 𝑞 not on a ray path the properties of the nearest 𝑞 on a ray path. This produces a piecewise 

approximation of 𝑀: 𝑀̃. Rays were propagated for a fixed, constant distance. We chose 𝑁𝑟𝑎𝑦𝑠 =1000 so no defects due to the 𝑀̃ approximation are visible at the chosen figure resolution and 

propagation distance. To demonstrate the relationship between  𝐸 and 𝑄, we assign hues to 𝑒 ∈ 𝐸 

corresponding to 𝜃 and opacity increasing with 𝜌. Each  𝑞 ∈ 𝑄 is then assigned the hue and opacity 

of 𝑀̃(𝑞).  
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Fig. 4.6.  Examples of environment and associated image spaces. Reflectors are shown in black. 
The left column shows three examples of environment spaces: a single plane, a triangle, and a 

pentagon. The right column shows the associated image spaces. 
 

We quantify the geometric error introduced by approximating the mapping 𝑀 as  

𝜀𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 = 34𝜋𝐷𝑚𝑎𝑥4 ∫‖𝑀(𝑞) − 𝑀̃(𝑞)‖ 
𝑄 𝑑𝑞.  

(4.9) 

Note that the 4th rather than 3rd power in (4.9) comes from normalizing with respect to 𝐷𝑚𝑎𝑥  in 

addition to the volume of integration. We define geometric convergence of SBR as the property 

that lim𝑁𝑟𝑎𝑦𝑠→∞ 𝜀𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 = 0.                                                              (4.10) 
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SBR has geometric convergence if, for an arbitrary region, Ω, in 𝜃, 𝜙 on the sample sphere surface,  lim𝑁𝑟𝑎𝑦𝑠→∞|{𝑟|〈𝜃0, 𝜙0〉 ∈ Ω}| = ∞.                                                 (4.11) 

It is easy to show from (4.4) that the sampling patterns in Section 4.3 enforce (4.11) and therefore 

(4.10). 

 

4.5 Efficient, Parallel Double Count Removal 

4.5.1 The Proposed Method 

To present our DCR method, we first make some definitions for clarity. We have a set of 

observation points 𝑂 with 𝑜 ∈ 𝐸, ∀𝑜 ∈ 𝑂 and 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = |𝑂|. We denote by 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 the 

maximum number of reflections considered for all rays. The goal of SBR is to compute the field 

at all observation points due to a set of source points. We consider only one source point at a time, 

combining fields at observation points by superposition when multiple source points are present. 

To compute from which rays contributions are considered at a given 𝑜 ∈ 𝑂, we use the 

dynamically-sized sphere intersection method from [103]. We choose 𝛼 from [103] for a given 𝑟𝑖 ∈ 𝑅 as the maximum angle between 𝑟𝑖 and any 𝑟𝑗 ∈ 𝑉𝑖. This prevents any gaps between ray 

cones, allowing errors only in the form of overlap (double counts) between neighbors.  

Our DCR technique is more straightforward than those in [97]-[103] and can be 

summarized simply when implementation details are ignored: We process only one ray class and 

only the nth reflection for rays in that class at a time, recording any ray-observation pairs for sphere 

intersections that occur between the nth and (n+1)th reflection. We only keep a ray-observation pair 

containing 𝑟𝑖 and 𝑜𝑗 if no neighbors of 𝑟𝑖 are members of pairs containing 𝑜𝑗. Note that, for NSA 

classes like those in Section 4.3.2 that satisfy (4.2) but not (4.1), we do not consider Voronoi-

neighboring rays in the same class as neighbors for the purpose of DCR. This introduces an error 
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that is asymptotically negligible, as discussed in Section 4.3.2.  

This DCR method is extremely simple, and with the NSA classes from Section 4.3, highly 

parallelizable and scalable. We give a comparison to existing DCR methods as well as a 

pseudocode example for one possible implementation in Section 4.5.3. First, however, we consider 

the glaring omission we make in defining such a simple method. Our method introduces an obvious 

error that previous methods have mitigated with more-complicated techniques. Where neighboring 

rays hit different, non-coplanar facets but intersect the same observation sphere with the same 

reflection count, our method will detect a false double-count not detected by more-rigorous DCR 

methods. A simple example of the type of false double count detected by our method is shown in 

Fig. 4.7. If rays 𝑟1 and 𝑟2 are neighbors, only one of their field contributions will be counted at 𝑜 

after having reflected one time, even though these reflections were from different, non-coplanar 

facets. The field contributions of 𝑟1 and 𝑟2 in this case represent different image sources, so both 

should be counted. 

 

 
Fig. 4.7.  A simple example of how a false double count may be detected by our method. If the 
two rays are neighbors, our method will count only one of their contributions at  𝑜, despite the 

rays representing unique images. 
 

 Production of false double counts, superficially, seem like a major flaw with our DCR 

method. However, we show here that the proportion of false double counts drops asymptotically 

to 0 with increased 𝑁𝑟𝑎𝑦𝑠, and by extension the asymptotic correctness of our DCR method. 
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4.5.2 Asymptotic Correctness 

 To show asymptotic correctness of our method, it suffices to show the proportion of 

neighboring rays that hit the same triangular facets in the same order after having traveled some 

finite maximum distance 𝐷𝑚𝑎𝑥  approaches 1 asymptotically as 𝑁𝑟𝑎𝑦𝑠 → ∞. Satisfaction of this 

property can be shown using the notion of the image space as follows. 

Denote by 𝐸𝐺 the set of points in 𝐸 on facet edges and 𝑄𝐺 = {𝑞|𝑀(𝑞) ∈ 𝐸𝐺}. Projecting 𝑄𝐺 in the 𝑑 direction onto the unit sphere gives 𝑄𝐺′. If the domain contains a finite number of 

reflecting facets and 𝐷𝑚𝑎𝑥  is finite, 𝑄𝐺′ partitions the unit sphere into a finite number of polygonal 

regions. Note that these partitions correspond to the largest possible polygonal cone boundaries of 

ray tubes in RTL after splitting if rays are only traced until 𝐷𝑚𝑎𝑥 . By (4.11) and the observation 

that the region boundaries subtend only an infinitesimal solid angle, the proportion of neighboring 

rays that hit the same triangular facets in the same order by their 𝐷𝑚𝑎𝑥  approaches 1 and our DCR 

method introduces a proportion of false double counts that decreases to 0 as 𝑁𝑟𝑎𝑦𝑠 → ∞. 
Convergence is also apparent from (4.11) and the perspective of image theory. Since (4.11) 

implies the solid angle subtended by each ray cone decreases asymptotically toward zero as 𝑁𝑟𝑎𝑦𝑠 → ∞, the probability of neighboring rays hitting different facets at their first reflection 

(necessary but not sufficient for a false double count) also decreases toward zero. In the case where 

rays hit the same facet at their first reflection, the resulting reflected rays can be considered to 

radiate from the same image source. The rays’ second reflection can then be treated as a first 

reflection, yielding an inductive proof of convergence for arbitrary reflection count or 𝐷𝑚𝑎𝑥 . 
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4.5.3 Pseudocode and Comparison to Existing DCR Methods 

To understand our DCR approach with NSA classes and why it allows for efficient 

parallelization, it is useful to understand why existing approaches make this more difficult. 

Generically speaking, existing DCR methods attempt to apply some function 𝐷𝐶𝑅(𝑟𝑖, 𝑜, 𝑐), to 

determine whether a ray causes a double count at a given observation 𝑜 for a given context 𝑐 and, 

if so, resolve that double count in some data structure that tracks ray-observation intersections. All 

ray-observation intersections remaining after DCR are counted in the final field computations for 

the corresponding observation. Our method is no different in this regard. Consider the case, 

however, where 𝑟1, 𝑟2, and 𝑟3 are mutual neighbors; i.e. 𝑟1, 𝑟2 ∈ 𝑁3, 𝑟1, 𝑟3 ∈ 𝑁2, 𝑟2, 𝑟3 ∈ 𝑁1. As 

noted in Section 4.3, the correct neighbor choice 𝑁𝑖 = 𝑉𝑖, ∀𝑟𝑖 ∈ 𝑅 yields the spherical Delaunay 

triangulation for 𝐺, so cases like this occur for every ray regardless of the sampling method chosen. 

Consider also that 𝑜 falls in the overlap of all three rays’ cones. Only one of these rays should be 

counted, although each of the three is equally valid under RCA. For a given context, we have three 

potential instances of 𝐷𝐶𝑅 to process: 𝐷𝐶𝑅(𝑟1, 𝑜, 𝑐), 𝐷𝐶𝑅(𝑟2, 𝑜, 𝑐), and 𝐷𝐶𝑅(𝑟3, 𝑜, 𝑐). To 

correctly resolve this situation by counting only one of the three rays, the outputs of the three 

processes must be consistent, e.g. if 𝑟1 is counted, 𝑟2 and 𝑟3 cannot be counted. This requires that, 

for instance, computation of 𝐷𝐶𝑅(𝑟2, 𝑜, 𝑐) and 𝐷𝐶𝑅(𝑟3, 𝑜, 𝑐) is dependent on the result of 𝐷𝐶𝑅(𝑟1, 𝑜, 𝑐), so the three processes cannot complete execution simultaneously. This is equally 

true if 𝐷𝐶𝑅 constitutes a simple comparison of characteristic sequences [101] as it is for geometric 

computations between rays [103]. The problem lies in how synchronization mechanisms like 

mutexes that allow such data dependencies to be handled in a parallel execution environment delay 

process completion; a given thread must wait for others on which it is dependent. Such 
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parallelization approaches are inefficient, since processor cycles are wasted while waiting, or, in 

more complicated approaches, while switching between threads.  

To further illustrate the problem presented by adjacent ray data dependencies, we give 

below two examples of pseudocode, one for our DCR approach with NSA classes, and another for 

a generic DCR approach without NSA classes. For both examples, we assume that neighbor sets 

are defined and known ahead of time, as in our method or e.g. [97], since this is already a common 

approach in recent literature to limit the data dependency to only a small neighbor set. We also 

assume that indices of observations intersected by a given ray, 𝑟𝑖, are recorded in a hitlist denoted 𝐻𝐿𝑖. We denote a generic observation point index as 𝑖𝑑𝑥. There are many ways to manage this 

information, but we consider this the simplest and most illustrative.  

 

Algorithm 4.1. Example of DCR with NSA classes. 
1 for 𝑘 ∈ [1. . 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠] do 
2   for 𝑖 ∈ [1. . |𝐶𝑘|] do in parallel 
3    for 𝑟𝑗 ∈ 𝑁𝑖 do 
4    𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 ← {𝑖𝑑𝑥|𝑖𝑑𝑥 ∈ 𝐻𝐿𝑖 , 𝑖𝑑𝑥 ∈ 𝐻𝐿𝑗} 
5    for 𝑖𝑑𝑥 ∈ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 do 
6     𝐻𝐿𝑖 ← 𝐻𝐿𝑖\{𝑖𝑑𝑥} 
 

 

Algorithm 4.2. Example of DCR with no NSA classes. 
1 for 𝑖 ∈ [1. . 𝑁𝑟𝑎𝑦𝑠] do in parallel 
2  for 𝑟𝑗 ∈ 𝑁𝑖 do 
3   if 𝑖 > 1 then 
3    while not 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑗 do 
4     wait 

5   𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 ← {𝑖𝑑𝑥|𝑖𝑑𝑥 ∈ 𝐻𝐿𝑖 , 𝑖𝑑𝑥 ∈ 𝐻𝐿𝑗} 
6   for 𝑖𝑑𝑥 ∈ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 do 
7    𝐻𝐿𝑖 ← 𝐻𝐿𝑖\{𝑖𝑑𝑥} 
8  𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑖 ← 𝑡𝑟𝑢𝑒 
 

 

Using NSA classes as in Algorithm 4.1, only non-neighboring rays are processed in 

parallel, so 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 can be readily computed for each parallel instance. Note that lines 3 through 



111 
 

6 are effectively an implementation of 𝐷𝐶𝑅(𝑟𝑖, 𝑜, 𝑐). Consider, in contrast, if we use no NSA 

classes. We must somehow resolve cases like 𝑟1, 𝑟2 ∈ 𝑁3, 𝑟1, 𝑟3 ∈ 𝑁2, 𝑟2, 𝑟3 ∈ 𝑁1. One way to do 

this is Algorithm 4.2. Rays processed in parallel may now be dependent on each other, so we define 

the Boolean variable 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑗 to keep track of whether double count removal has been 

completed for 𝑟𝑗. Here, lines 2 through 8 are effectively an implementation of 𝐷𝐶𝑅(𝑟𝑖, 𝑜, 𝑐). The 

process for 𝑟1 can execute immediately, but other threads must wait until their dependencies are 

resolved. In fact, in this implementation, most threads will spend most of the total computation 

time waiting. 

For simplicity, both examples intentionally ignore context. This is appropriate for our DCR 

method, but not for existing methods. Context is information other than ray index and observation 

index that identifies a unique field contribution. For instance, in [101], 𝑐 is a characteristic 

sequence of facets hit by a ray before registering a hit for an observation. To consider context in 

general, updates to 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 would require comparison of e.g. characteristic sequences [101] or 

geometry information [103], adding a layer of complexity and reducing performance.  

 

Algorithm 4.3. Example of ordering of our DCR method relative to other SBR processes. 
1 for 𝑛 ∈ [1. . 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠] do 
2   initialize 𝐻𝐿𝑖 to empty ∀𝑖 ∈ [1. . 𝑁𝑟𝑎𝑦𝑠] 
3   for 𝑘 ∈ [1. . 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠] do 
4    for 𝑖 ∈ [1. . |𝐶𝑘|] do in parallel 
5     trace 𝑟𝑖 to nth reflection 
6    compute sphere intersections 

7    fill 𝐻𝐿𝑖 
8  DCR 

 

Our DCR method avoids this by defining 𝑐 as the number of reflections taken by a ray before 

encountering an observation sphere. We then only calculate hits for the nth reflection of all rays 

simultaneously, resetting hitlists before the (n+1)th reflection. Since all entries in 𝐻𝐿𝑖 correspond 



112 
 

to the same 𝑐, our method allows 𝑐 to be ignored during DCR. A simple example of how we order 

our DCR method relative to other SBR processes is presented in Algorithm 4.3. 

 

4.6 Results and Discussion 

To demonstrate the scalability of the proposed NSA class-based parallel DCR method and 

its practical advantages over inherently sequential approaches, we produced an efficient GPU-

based implementation. As a baseline, we also produced an efficient but fully sequential CPU-based 

implementation of the method. The CPU-based implementation performs the same operations 

from Section 4.5, but processes only one ray at a time, rather than rays in each class in parallel. 

Both implementations used the same parallel, GPU-based SBR ray propagation, sphere 

intersection, and field computation implementations, the computation times of which were 

included in the total computation time. We show results using the 3- and 4-class icosahedral 

schemes from Section 4.3, denoted Ico3 and Ico4, respectively. Our intention in presenting results 

for both Ico3 and Ico4 here is to demonstrate the bottleneck introduced by NSA classes does not 

occur for 3-class or 4-class schemes over the range of typical parameters tested (as low as 𝑁𝑟𝑎𝑦𝑠 =103). Note that, since our DCR technique requires fewer operations to detect and handle double 

counts than existing methods, its use as a sequential benchmark here likely underestimates the 

computation time of most existing DCR approaches. Also note that, with good implementation, no 

pre-process step is required for management of ray class designations. Each ray’s class can be 

determined in constant time from its parent triangle index and its indices within that triangle. All 

results were produced on a mid-range (as of 2019) consumer workstation equipped with an Intel 

i7-3770 3.4 GHz CPU and an NVIDIA GeForce GTX 1060 6GB GPU with 1280 CUDA cores. A 

4×4×1000-meter waveguide was used as the propagation environment. Since our initial 

implementation is targeted to CUDA-enabled GPUs, we are not able to include a strong scaling 
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plot (i.e., scaling with respect to core count) since threads are automatically distributed to GPU 

streaming multiprocessors in the CUDA paradigm, offering us little control over how many are 

used simultaneously. We hope to present a strong scaling plot in future work once we have an 

efficient CPU implementation. 

Figure 4.8 shows the computation time taken only by DCR for both the sequential and 

parallel implementations with respect to increasing 𝑁𝑟𝑎𝑦𝑠. We chose to test a wide range of 𝑁𝑟𝑎𝑦𝑠  
values that we believe is representative of the range of ray counts used for most practical 

applications. We see vastly improved performance and scaling of parallel DCR over the sequential 

implementation, with parallel DCR outperforming sequential for all 𝑁𝑟𝑎𝑦𝑠 tested and a maximum 

observed speedup over 300×. We observe the largest speedups for the highest 𝑁𝑟𝑎𝑦𝑠 tested, with 

the speedup for lower ray counts likely constrained by host-device communication overhead below 𝑁𝑟𝑎𝑦𝑠 = 106. 

Figure 4.9 shows the fraction of the total computation time taken by DCR for each approach 

with respect to 𝑁𝑟𝑎𝑦𝑠. The sequential example takes roughly 50% of the total computation time by 

100 million rays. The parallel examples, meanwhile, take less than 1% of the total time. Measuring 

the time proportionality of DCR is useful because it offers a simple, relative comparison of DCR 

to other important steps of the SBR algorithm. Encouragingly, the results of Fig. 4.9 indicate that 

time taken by our parallel implementation is asymptotically non-dominant with respect to 

increasing ray count. Furthermore, the fact that Ico3 and Ico4 agree almost perfectly shows that 

no bottleneck is introduced by NSA ray classing over the wide range of ray counts tested.  
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Fig. 4.8.  Computation time of sequential vs. parallel DCR with respect to 𝑁𝑟𝑎𝑦𝑠. Other 

parameters were constant: 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 20, 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 500. 

 

 
Fig. 4.9.  Proportion of total SBR computation time taken by sequential vs. parallel DCR with 

respect to 𝑁𝑟𝑎𝑦𝑠. Other parameters were constant: 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 20, 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 500. 

 

We also note that the time proportionality peak in Fig. 4.9 around 𝑁𝑟𝑎𝑦𝑠 = 106 lends 

evidence to our belief that non-asymptotic effects like communication overhead constrain the 

speedup in Fig. 4.8 below this value.  

 Figure 4.10 shows similar results to figure 4.8, but with respect to the maximum number 

of reflections simulated for any given ray. We again chose a range of values that we consider 
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typical for most practical applications. The parallel examples are once again faster in all cases, 

even at high reflection orders, with a maximum observed speedup over 100× for the parameter 

values tested. We note that the observed speedup becomes lower at higher reflection orders. We 

believe this is due to memory limitations of our GPU hardware at high reflection orders 

necessitating host-device communication.  

 
Fig. 4.10.  Computation time of sequential vs. parallel DCR with respect to 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠. Other 

parameters were constant: 𝑁𝑟𝑎𝑦𝑠 = 2,505,000, 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 500. 

 

 
Fig. 4.11.  Proportion of total SBR computation time taken by sequential vs. parallel DCR with 
respect to 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠. Other parameters were constant: 𝑁𝑟𝑎𝑦𝑠 = 2,505,000, 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 =500. 
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Figure 4.11, analogous to Fig. 4.9, shows the proportion of the total computation time taken 

by each example. Although it appears in Fig. 4.11 that asymptotic behavior of the time 

proportionality has begun to dominate (we observe a linear trend on the semilog scale by around  𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 100), this is unlikely to be the case. The proportion of the total time taken by DCR 

is limited to 1, so the observed trend is misleading (all three curves must level out at some point). 

As with Fig. 4.10, we believe the reduced efficiency at higher reflection orders can be attributed 

to memory limitations of our GPU hardware and associated host-device communication overhead. 

 

 
Fig. 4.12.  Computation time of sequential vs. parallel DCR with respect to 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠. Other 

parameters were constant: 𝑁𝑟𝑎𝑦𝑠 = 2,505,000, 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 20. 
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Fig. 4.13.  Proportion of total SBR computation time taken by sequential vs. parallel DCR with 

respect to 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠. Other parameters were constant: 𝑁𝑟𝑎𝑦𝑠 = 2,505,000, 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 20. 

 

Figures 4.12 and 4.13 are analogous to figures 4.8 and4. 9 but with respect to the number 

of field observation points. The parallel examples tested for Fig. 4.12 achieve a maximum observed 

speedup over 10,000×, although this is for very low 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠. At high 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠, the 

observed speedup levels out to about 10× on our test hardware. Like Figs. 4.10 and 4.11, we believe 

the reduced efficiency in Figs. 4.12 and 4.13 for high 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 is due to host-device 

communication overhead.  

 

 
4.7 Conclusion 

This chapter has introduced non-self-adjacent ray classes for efficient, parallelizable 

shooting-bouncing-ray tracing double count removal. Unlike previous DCR methods, the approach 

made possible by the NSA ray classes introduced in this chapter can take advantage of modern, 

parallel computing hardware, e.g., GPUs, that was not available in ray tracing’s theoretical infancy. 

Predominantly geometric aspects of SBR like ray path computation and ray intersection tests have 

long been efficiently parallelizable, and most modern SBR approaches have taken advantage of 
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this. However, the parallel approach to DCR enabled by the present work removes the last and 

final barrier to fully parallel, large-scale SBR simulations. This is crucial as problem sizes continue 

to grow, necessitating highly parallel and efficient CEM algorithms. 
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5 DATA-ENABLED ADVANCEMENT OF COMPUTATION IN ENGINEERING: A 

ROBUST MACHINE LEARNING APPROACH TO ACCELERATING VARIATIONAL 

METHODS IN ELECTROMAGNETICS AND OTHER DISCIPLINES  

5.1 Introduction 

Variational techniques like FEM, MoM, and FD method are dominant for solving 

numerical physics problems in CEM and computational science/engineering (CSE) due to their 

flexibility, robustness, and rigorous mathematical underpinnings. The principal shortcoming of 

these methods is their poor scaling and high computational cost. We introduce a broadly applicable 

method by which neural networks can be applied to speed up variational methods without 

sacrificing their desirable characteristics. Rather than predicting solutions to these problems 

directly, we use neural networks to guess a highly simplified basis on which to solve the problem 

rigorously using existing techniques. 

Previous work seeking to use neural networks to make predictions about the solutions to 

computational physics or CSE problems has capitalized on the strong predictive power of well-

trained neural networks but has not addressed the shortcomings of using such an inherently 

empirical approach for real-world engineering problems. This has limited the real-world 

usefulness of such results. Most previous work has focused on predicting quantities derived from 

a numerical solution given a description of the physical problem, typically material parameters in 

the computational domain and excitations for the problem [104]–[108]. There has been occasional 

work that uses a neural network to predict the solution itself, rather than a derived quantity [109]–

[110]. In this way, such research has sought to effectively replace variational methods with neural 

networks as the numerical tool used to solve computational physics problems.  
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In contrast, some of the biggest breakthroughs and substantial applications of neural 

networks to perform challenging tasks with the accuracy needed for industry use have used 

existing, mathematically formal methods guided by the intuitive predictive capability of neural 

networks to achieve speedup and even improve accuracy [111]–[112]. We believe this is critical 

to the application of machine learning in most engineering contexts. We have found no existing 

research that has coupled neural networks with variational methods in a broadly applicable, robust 

way. The closest we have found is the use of neural networks to predict bulk material parameters 

for faster multi-scale FEM simulations in structural mechanics [113]–[118]. We consider this 

excellent work and in line with the philosophy of using neural networks to guide more-rigorous 

methods, but unfortunately the method described is specific to structural mechanics problems.  

Predicting basis functions directly, rather than trying to predict solutions or derived 

quantities, we exploit the crucial strength of neural networks: the ability to efficiently and 

accurately learn low-dimensional representations of complicated, high-dimensional datasets to 

understand underlying correlations. In the context of variational methods for CSE, this means 

learning not only the fundamental physical behavior of problems, but also larger emergent trends 

that define the aggregate behavior of a physical structure under simulation. By using predicted 

bases to rigorously solve a given problem, we maintain the key strengths of variational methods: 

rigorous bounding of solution error, accurate error estimation, and well-substantiated methods to 

improve solution accuracy when solution error is found to be excessive for the given application. 

These benefits are crucial for any numerical method applied in an engineering context. Meanwhile, 

the proposed method avoids the downsides traditionally associated with empirical, data-driven 

predictors like neural networks, namely their black box nature and unpredictability when subject 

to inputs dissimilar to those used for training.  
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5.2 Theory 

We consider in general a discretized linear (or linearized) differential or integral equation-

based problem with solution 𝑆, set of basis functions 𝐹, and linear system of form [𝐴]𝑥 = 𝑏, where 𝑓𝑖 ∈ 𝐹 and 𝑥𝑖 denote the ith basis function and associated solution weight, respectively. This system 

may be Galerkin-weighted, but we do not impose this. The weak solution to the problem with 𝑁 

basis functions in this notation is given by 𝑆̃ = ∑ 𝑥𝑖𝑓𝑖𝑖∈[1..𝑁] ≈ 𝑆  (5.1) 

Construction and solution of the linear system for large problems is computationally time 

consuming and memory intensive. With 𝑁 basis functions, solution of the system has time 

complexity 𝑂(𝑁2) for iterative methods or 𝑂(𝑁3) for direct methods [1]. Meanwhile, construction 

of the system, typically dominated by performing the necessary integrations, has complexity 𝑂(𝑁2) for boundary integral methods due to global coupling of the basis functions and 𝑂(𝑁) for 

finite element and finite difference methods due to local coupling.  

Convolutional neural networks (CNNs) have seen an explosion in popularity in recent 

years due to advances in parallel computing power and network architecture that have, together, 

enabled applicability of CNNs to a broad range of complicated tasks from playing board games 

[111] to classifying images with record accuracy [119]. For an excellent overview of the theory 

and concept of modern CNN architectures, see [120]. CNNs take advantage of spatial correlation 

in data to efficiently learn complicated underlying trends more effectively than classical fully 

connected neural networks. If our data have 𝑑 discrete spatial dimensions, input to a CNN is an 

array with 𝑑 + 1 dimensions; the extra dimension of the array corresponding to the number of 
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input channels, 𝑐. We denote by 𝑛𝑖 , 𝑖 ∈  [1. . 𝑑] the size of the input array in the ith spatial 

dimension. The total number of scalar inputs to a CNN is then 𝑁𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑐 ∗ ∏ 𝑛𝑖 𝑖 ∈ [1..𝑑]  

 

 (5.2) 

The time complexity of evaluating a CNN is 𝑂(𝑁𝑖𝑛𝑝𝑢𝑡𝑠 ), a substantial improvement over the 𝑂(𝑁𝑖𝑛𝑝𝑢𝑡𝑠2 ) complexity of evaluating a fully connected neural network, assuming a typical case 

where the fully connected network has a similar number of neurons in a hidden layer as the number 

of inputs [121].  

TABLE 5.1. Asymptotic speedup using CNNs for various cases.  

Solver MoM FEM 

Direct Solver 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∝ 1𝛾3 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∝ 1𝛾3 

Iterative 

Solver 
𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∝ 1𝛾2 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∝ 1𝛾2 

 

We propose to use a deep convolutional neural network to predict the solution weights, 𝑥, 

to complicated FEM, MoM, and FD problems given only the solution to a computationally 

inexpensive analogue of the problem solved on a reduced basis. Most simply, the reduced basis, 𝐹̌, would constitute a small subset of the complete basis, 𝐹.  A reduced basis is easy to conceive 

of for FEM and MoM, especially using higher-order bases. We can simply reduce the number of 

polynomial basis functions allocated to each element. A reduced basis is less obvious at first for 

FD, since we typically do not consider the concept of basis functions when working with finite 

difference techniques, but rather sample points. However, we can consider the sample points used 

in FD as a weighting of Dirac-delta basis functions centered on the spatial locations of the sample 

points. In this sense, FD is a special case of FEM given a particular choice of basis and a particular 
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quadrature rule. From this perspective, a reduced basis is easy to conceive of: a coarser grid, the 

sample points of which are a subset of the original grid. 

If a CNN can predict 𝑥 from 𝑥̌, the solution to the problem discretized using basis 𝐹̌ 

containing 𝑁̌ = 𝛾𝑁, 𝛾 ∈ (0,1] basis functions, then the achieved speedup of solving for 𝑥 is 

asymptotically proportional to expressions given in Table 5.1. 

A difficulty with CNNs and applicability of their results for certain tasks is their black box 

nature. A trained CNN is a purely empirical model, typically with little theoretical underpinning 

nor theoretical guarantee on the accuracy of its output. To counteract this to quickly obtain accurate 

FEM, FD, and MoM solutions, we propose to use 𝑥 predicted by the network not as the final 

solution, but rather to generate a set of macro basis functions that can be used to re-solve the 

problem at comparable accuracy to the approximation using 𝐹, but instead using a substantially 

smaller number of basis functions. We define a macro basis function in general as a linear 

combination of basis functions from 𝐹 

𝑓𝑚𝑎𝑐𝑟𝑜 = ∑ 𝛼𝑖𝑓𝑖𝑖∈[1..𝑁]  

 

 (5.3) 

where 𝛼 coefficients are specific to a particular macro basis function. We denote the set of macro 

basis functions 𝐹𝑚𝑎𝑐𝑟𝑜. 

By this approach, we can guarantee that the solution obtained using the CNN’s prediction 

exactly and rigorously solves a weak formulation of the problem. We also guarantee that the 

solution satisfies the boundary conditions of the problem by careful choice of the original basis 

function in 𝐹 and careful definition of the macro basis functions. We denote by 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  ⊂ 𝐹 

the set of basis functions in the original basis that are nonzero wherever a boundary condition is 

imposed in the original problem. We also denote by 𝐹𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝐹 − 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 the remaining 
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basis functions in the original basis. We then place the additional constraint on any macro basis 

function that it contains no contribution from basis functions in 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

𝑓𝑚𝑎𝑐𝑟𝑜 = ∑ 𝛼𝑖𝑓𝑖𝐼𝑚𝑎𝑐𝑟𝑜 ,  𝐼𝑚𝑎𝑐𝑟𝑜 = {𝑖 ∈ [1. . 𝑁]| 𝑓𝑖 ∉ 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦} 
 

(5.4) 

 

 

 
We then solve the problem with the modified basis 𝐹̅ =  𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∪ 𝐹𝑚𝑎𝑐𝑟𝑜. The macro basis 

function approach scales as before but with specification that 𝛾 = |𝐹̅| |𝐹|⁄  where vertical brackets 

denote set cardinality.  

 
5.3 Numerical Results and Discussion 

We demonstrate here the usefulness of the proposed macro basis function approach for 

FEM. We randomly generated a dataset of 1000 lossy dielectric slab scattering FEM problems as 

in chapter one. Both slab location and slab material parameters were varied and randomly sampled 

from a uniform distribution, with slab location varied over 3 wavelengths, slab real relative 

permittivity varied between 1 and 10, and slab imaginary relative permittivity varied between 0j 

and -5j. The domain was PML-truncated. 𝐹 for this test was a set of 6th-order polynomial basis 

functions as defined in [1]. 𝐹̌ comprised only the linear subset of 𝐹, giving 𝛾 = 0.33. A simple 

feedforward CNN was trained on all 1000 examples to predict 𝑥 from 𝑥̌. We used a simple four-

layer CNN with 3×1 filters and 64 filters per layer. Convolution was performed only in the spatial 

dimension of the data, with basis functions of different orders encoded as different input or output 

channels.  𝑁𝑖𝑛𝑝𝑢𝑡𝑠  for this network was 27, and the network had 162 outputs. For each element, a 

single macro basis function was constructed as a linear combination of higher-order basis functions 

with 𝛼 coefficients equal to predicted complex solution weights in 𝑥. To validate, 1000 new 

problems were generated from the same distribution. For each, the problem was solved using 𝐹̅ 
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predicted by the network. Fig. 5.1 compares the solution obtained using 𝐹̅ to the solution using 𝐹 

and to a 2nd-order solution for a typical example. Note that the 2nd-order basis and 𝐹̅ have the same 

number of basis functions. 

We see poor agreement between the 2nd-order solution and the 6th-order solution. 

Meanwhile, despite yielding the same linear system size and structure as the 2nd-order solution, 

the solution using 𝐹̅ agrees well with the full 6th-order solution. To further demonstrate the strength 

of the proposed macro basis function approach, we used the raw output of the neural network (a 

prediction of the solution weights) to plot a “naïve” predicted solution without re-solving the 

system. This serves as a benchmark for the somewhat common approach in existing literature to 

predict a solution directly. Fig. 5.2 compares this solution with the actual solution and the predicted 

solution using the proposed method.  

Although the naïve predicted solution agrees with the actual solution somewhat better than 

the 2nd-order solution, we see various inaccuracies in the network’s prediction manifest themselves 

directly in the form of amplitude errors (for instance in the imaginary plot around 2.5 meters) and 

even substantial errors in solution behavior (around 1.3 meters in the imaginary plot). Because we 

have taken the solution predicted directly by the neural network at face value as the naïve predicted 

solution, these errors go uncorrected. Meanwhile, our proposed macro basis function approach 

compensates for inaccuracies and misconceptions of the network to produce a substantially more 

accurate solution with the same number of basis functions as the 2nd-order solution. 
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Fig. 5.1. Scattered field (z-directed) solution comparison between weak solution obtained using 
predicted macro basis functions, actual solution, and 2nd order weak solution: (a) real component 

and (b) imaginary component. Predicted solution using the proposed macro basis function 
approach agrees almost perfectly with the actual solution, despite using only 14% as many basis 
functions. The 2nd-order solution shown uses the same number of basis functions as the predicted 

solution but does not agree with the actual solution. 
 

Fig. 5.3 shows the root mean square (RMS) error with respect to the 6th-order solution for 

all 1000 validation problems. The validation problem from Figs. 5.1 and 5.2 was chosen to fall at 

the peak of the real predicted RMS error histogram, i.e., an example with typical error.  

 

 
 

Fig. 5.2. Scattered field (z-directed) solution comparison between weak solution obtained using 
predicted macro basis functions, actual solution, and naïve predicted solution: (a) real component 

and (b) imaginary component. Naïve predicted solution is obtained by plotting the solution 
directly predicted by the network without the macro-basis function approach. 
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The error at the peak of the histograms for the solutions obtained using the predicted macro 

basis functions is approximately an order of magnitude less than that for the 2nd order solutions. 

The proposed method also dominates the naïve predictive approach. In no case does the naïve 

approach have error equal to or lower than the peak of the distribution for the proposed method. 

This demonstrates the potential of the proposed predicted macro basis function approach over both 

neural network predicted solutions and variational method solutions in isolation. 

We also present a direct computation time comparison between the 2nd-order, 6th-order, 

naïve, and proposed macro basis function methods. Table 5.2 gives the time taken by our 

implementation of each method to solve 1000 randomly generated validation problems. Note that 

direct time comparisons are highly implementation-dependent, so, although we believe our 

implementations are efficient, we present Table 5.2 with that in mind. 

 

Fig. 5.3. Real (a) and imaginary (b) RMS error histograms for all 1000 validation problems. 
Predicted case is for the proposed macro basis function approach. Naïve case gives the error of 
the solutions directly predicted with the network using no macro basis function approach (the 

typical, existing approach). 2nd-order case serves as a comparison to the proposed approach. The 
2nd-order case and predicted case use the same number of basis functions, but the proposed 

method yields error an order of magnitude lower. 
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TABLE 5.2: Direct time comparisons for 1000 random problems. 

Method 2nd 

Order 

6th 

Order 

Naïve 

Method 

Proposed 

Method 

Time 

(ms) 

41.9 439.7 110.9 152.1 

 

 
 
 
5.4 Conclusion 

This chapter has introduced a robust data-enabled machine learning approach to accelerate 

CEM and CSE variational methods like FEM, MoM, and FD techniques. Predicting macro basis 

functions by which a weak formulation can be solved rigorously, the described approach 

substantially reduces the number of unknowns required to solve a given problem, offering an 

asymptotic speedup over pure FEM, MoM, or FD solutions while maintaining the rigorousness, 

accuracy, and broad applicability of these methods. The described method has been demonstrated 

on a class of FEM problems and rigorously validated on a set of 1000 unseen validation problems. 

Compared to the naïve approach of predicting the solution directly, our method obtains 

substantially higher accuracy, its solution typically almost indistinguishable from the true solution. 

Our method also obtains far higher accuracy than a typical (no predicted macro basis) solution 

with an equal number of unknowns.  
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6 PREDICTING MACRO BASIS FUNCTIONS FOR METHOD OF MOMENTS 

SCATTERING PROBLEMS 

6.1 Introduction 

Neural networks have seen widespread use in various areas of science and engineering in 

recent years due to increased computing power and improved network architectures. Neural 

networks excel at learning complicated, non-obvious correlations between data to make useful 

predictions for tasks including image classification, computer vision, text processing, image 

synthesis, text synthesis, robotic motion planning, language processing, and more. See [119] for 

an in-depth overview of neural network applications and the current state of the art. Few studies 

have sought to apply machine learning to computational electromagnetics (CEM) and 

computational science and engineering (CSE), especially in the modern context of deep learning 

[104]–[110].  

In contrast to numerically rigorous CEM methods, neural networks take a strongly 

empirical approach to making predictions, with little mathematical underpinning other than that of 

the backpropagation and gradient descent typically used to train them. This is not to downplay the 

strength of neural networks for many tasks—they excel, given sufficiently high quality training 

data, at distilling a process or dataset to its fundamental, most crucial components, from which the 

network can efficiently (computationally speaking) make inferences that are often times of 

substantially higher quality than those of more-rigorous techniques. However, neural networks are 

effectively black boxes once trained, and their empirical nature makes them unpredictable and 

sometimes subject to substantial error for cases not similar to their training set [119], [122]–[128]. 

This makes their direct application to CEM challenging and somewhat questionable. Indirect 

application, on the other hand, offers a possible avenue for more-rigorous use of neural networks 
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in CEM. Through indirect application, we seek to couple the efficient predictive capabilities of 

neural networks with the robustness and rigorousness of existing CEM methods.   

In general, out of various modern network architectures, deep residual networks have 

shown excellent performance for highly complicated tasks [119], [120], [111] and can be 

structured for regression problems to be fully convolutional. Fully convolutional neural networks 

can accept arbitrarily sized gridded inputs, a useful trait for CEM applications requiring arbitrarily 

sized meshes. For simplicity, we do not exploit this trait here, using only fixed-sized meshes, but 

we consider it prudent to perform the present study with the reality of arbitrary-sized meshes in 

mind. 

Most prior work in applying machine learning to CEM and CSE has focused on predicting 

quantities derived from a numerical solution given a problem description, often material 

parameters throughout a domain and an excitation [104]–[108]. Others have focused on predicting 

the numerical solution itself [109]–[110], effectively attempting to replace the existing 

methodology (e.g. MoM) with learned models.  

In chapter five, we proposed a robust application of neural networks for accelerating 

variational methods like finite element method (FEM), method of moments (MoM) and finite 

difference (FD) method for CEM and CSE problems. Rather than predicting a solution directly, 

our approach uses networks to predict sets of macro basis functions on which the problem is then 

re-solved. We demonstrated in chapter five that such an approach meaningfully reduces the 

number of unknowns (and therefore runtime) of simple one-dimensional (1-D) FEM scattering 

problems while producing solutions of comparable accuracy to classical solutions of substantially 

higher dimensionality. Although the 1-D FEM slab scattering problem set explored in chapter five 

was ideal for proof of concept, conclusions about the usefulness and versatility of our method 
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cannot be drawn from such a simple case. In this chapter, we explore the ability of neural networks 

to predict macro basis functions for more-complicated sets of 3-D MoM perfect electric conductor 

(PEC) scattering problems. In fact, the main challenge in MoM for radiation and scattering 

applications relates to the appearance of large matrices resulting from discretization of large and 

complicated electromagnetic problems. Any significant and systemic reduction of the number of 

basis functions and unknowns in MoM computations is therefore highly beneficial. We consider a 

double-higher-order surface integral equation (SIE) approach [7], with arbitrarily curved surface 

elements, higher order polynomial basis functions, and complex-valued solution weights, to be a 

general and challenging example on which to test and demonstrate the proposed method for MoM. 

The MoM-SIE problem datasets in this study are: a set of 10,000 warped cylinders, tori, plates, 

and spheroids, with electrical sizes ranging over two orders of magnitude subject to incident plane 

waves from varying directions; and a comparably simple set of 1,000 bent plates. These datasets 

of scatterers with diverse shapes and both large-scale and small-scale features capture a greater 

variety and complexity of the hypothetical set of all scattering problems of interest to CEM 

practitioners, advancing toward validation and a generalizable application of our method.  

 Our predicted macro basis function approach, in contrast to the naïve approach of 

predicting the solution directly, leverages learned models to reduce the dimensionality of CEM 

and CSE problems, then solved by classical methods like MoM. This is inspired by some 

significant breakthroughs (outside of CEM and CSE) in application of neural networks to 

completing challenging tasks with high accuracy. Such breakthroughs, like [111] and [112], have 

used existing mathematically formal methods, guided by the predictive capability of neural 

networks. We believe this is critical to the application of machine learning in most engineering 

contexts. Although we have found little existing research that couples neural networks with 
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variational methods in a broadly applicable way, [113]–[118] are in a similar vein of reasoning, 

applying networks to predict bulk material parameters for faster multi-scale FEM structural 

mechanics simulations.  

The chapter is organized as follows. Section 6.2 outlines the theoretical background of our 

approach to predicting macro basis functions for method of moments scattering and radiation 

problems using deep learning. Section 6.3 describes and discusses generation, characteristics, and 

use of datasets for this study. This section also explains the implemented network architecture, 

network versions, and training and testing procedures. Section 6.4 gives extensive and clear 

numerical results which assess network performance and ability to accurately predict macro basis 

functions for 3-D MoM scattering problems. It provides comparisons between predicted and actual 

basis functions, error statistics, and representative examples for networks trained on simple and 

complicated datasets. Section 6.5 further evaluates application of networks to problem types on 

which they were not trained, establishing useful generalizability of networks’ learned knowledge. 

Section 6.6 then summarizes the main conclusions of the study. 

 

6.2 Background Theory and Context 

As in chapter five, we consider a discretized linear integral or differential equation-based 

problem with solution 𝑆, set of basis functions 𝐹, and linear system of form [𝐴]𝑥 = 𝑏, where 𝑓𝑖 ∈𝐹 and 𝑥𝑖 denote the ith basis function and associated solution weight, respectively. The weak 

solution to such a problem with 𝑁 basis functions is  𝑆̃ =∑𝑥𝑖𝑓𝑖𝐹 ≈ 𝑆 (6.1) 

We apply neural networks to predict solution weights, 𝑥, given the solution, 𝑥̌, to a computationally 

inexpensive analogue of the problem solved on a reduced basis, 𝐹̌, most simply, a small subset of 
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the complete basis, 𝐹. To compensate for errors in predicted solution weights, we use 𝑥 predicted 

by the network not as the final solution, but to generate a set of macro basis functions that can be 

used to re-solve the problem. We define each macro basis function as some linear combination of 

basis functions from 𝐹, 

𝑓𝑚𝑎𝑐𝑟𝑜 = ∑𝛼𝑖𝑓𝑖𝐹  (6.2) 

To satisfy boundary conditions, we require careful definition of the macro basis functions. We 

denote by 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  ⊂ 𝐹 the set of basis functions in the original basis that directly contribute to 

satisfaction of boundary conditions and by 𝐹𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝐹 − 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 the remaining basis 

functions from the original basis. We impose a simple constraint on each macro basis function: 𝑓𝑚𝑎𝑐𝑟𝑜 = ∑ 𝛼𝑖𝑓𝑖𝐹𝑚⊂𝐹𝑎 , 𝐹𝑎 ∈ {𝐹𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 , 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦} 
 

 
(6.3) 

Note that this constraint is relaxed from that in chapter five, allowing macro basis functions to 

include 𝑓𝑖 ∈ 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 so long as they do not include 𝑓𝑖 ∈ 𝐹𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟. We then solve the problem 

with the modified basis 𝐹̅  ⊂  𝐹𝑚𝑎𝑐𝑟𝑜, a chosen subset of all macro basis functions using the 

network’s prediction of 𝑥𝑖 as 𝛼𝑖 for each 𝑓𝑖 present in a macro basis function. Our simple approach 

to forming macro basis functions is therefore limited by the network’s ability to predict 𝑥 

accurately from 𝑥̌, so we seek to evaluate that ability in this chapter. 

 
6.3 Datasets and Networks 

Meshes used for general MoM problems are highly varied both geometrically and 

topologically, describing a broad range of surfaces and consisting of a variety of surface element 

types in a wide range of configurations. Our goal here is only to explore the ability of neural 

networks to predict 𝑥 for complicated MoM scattering problems, so we chose to constrain all 
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models in our datasets to a single mesh topology: a 20×20 grid of rectangular surface elements. In 

the MoM implementation used to generate training data, we discretized the electric-field SIE over 

PEC surfaces [7], using generalized curved quadrilaterals of arbitrary geometrical orders ku and kv, 

shown in Fig. 6.1 [1],  

𝐫(𝑢, 𝑣) =  ∑ ∑𝐫𝑚𝑛𝐿𝑘𝑢,𝑚(𝑢)𝐿𝑘𝑣,𝑛(𝑣),    𝑘𝑣
𝑛=0

𝑘𝑢
𝑚=0  −1 ≤ 𝑢, 𝑣, ≤ 1                                           (6.4) 

 
where L represents Lagrange interpolation polynomials and rmn are the position vectors of 

interpolation nodes. We approximated the electric surface current, Js, over quadrilaterals by means 

of hierarchical vector basis functions of arbitrarily high current-expansion orders nu and nv [7] 

arranged in a maximally orthogonalized fashion [130]. For instance, the 𝑢-oriented current 

expansion over a quadrilateral in Fig. 6.1 is given by  

𝐉𝑢(𝑢, 𝑣) =  ∑ ∑ 𝛼𝑢,𝑗𝑘𝑆𝑗(𝑢)𝑃𝑘(𝑣) 𝐚𝑢𝑛𝑣−1
𝑘=0

𝑛𝑢
𝑗=0  (6.5) 

where S and P are the respective divergence-conforming maximally orthogonal functions from 

[130],  {α} are unknown current-distribution coefficients,  = |au × av| is the Jacobian of the 

covariant transformation, and au = ∂r/∂u and av = ∂r/∂v are unitary vectors along the parametric 

coordinates in Fig. 6.1. Note that the expansion is one order lower in the parametric direction 

perpendicular to its orientation. An analogous form exists for the 𝑣-directed expansion, 𝐉𝑣. 
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Fig. 6.1. Generalized curved parametric quadrilateral patch for higher order MoM-SIE modeling, 

defined in (6.4). Square parent domain is also shown. 
 

In this study, each element was geometrically 2nd order [ku = kv = 2 in (6.4) and Fig.  6.1] 

and current expansion orders of 5 were chosen for all elements [nu = nv = 5 in (6.5)] for the 

complete basis 𝐹. Each model in our datasets therefore had the same number of elements and basis 

functions, all with the same relative ordering in two parametric dimensions. This allows us to 

ignore challenges associated with mapping surface currents on arbitrary meshes to network inputs 

(which we consider out of scope for the goals of this study), although we note some methods like 

[131] exist. Such a 20×20 grid of rectangular elements is surprisingly versatile and can be warped 

and glued to describe a variety of surface types using parametric mappings.  

Fig. 2 shows representative objects from the complicated dataset of 10,000 warped plates, 

cylinders, tori, and spheroids. These objects vary in length scale from 0.1 to 10 wavelengths (λ), 

measured in an object’s longest dimension, and have a wide distribution of aspect ratios and 

deformations on multiple scales. Fig. 6.3 shows representative objects from the simple dataset of 

1,000 bent plates. These objects have simple deformation patterns and length scales on the order 

of a wavelength. All objects in the simple dataset shared the same orientation with respect to the 

incident field and the same aspect ratio (square) in the non-vertical directions. Note that objects in 

Fig. 6. 2 and Fig. 6.3 are rendered at the same scale, and all objects are shown from the direction 

of the incident plane wave used as excitation.  
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The basis function weights for each element can be displayed intuitively in a 6×5 grid. For 

symmetry, we present weights in a 6×6 grid for both 𝑢- and 𝑣-directed current expansions, with 

the rightmost column left empty (or set to zero) to represent the column of missing basis functions 

in the perpendicular direction due to the lower sum limit in (6.5). The complete basis 𝐹 for each 

element therefore contains 60 basis functions (30 for 𝐉𝑢 and 30 for 𝐉𝑣). Per-element basis function 

grid patterns are shown in Fig. 6.4. Note that each element will have two such grids of complex-

valued basis functions weights associated with it: one for 𝑢- and one for 𝑣-directed current 

expansions. Gray cells represent weights in  𝐹̌. Green, orange, and blue cells represent weights to 

be predicted.  

Weights in the first two rows in Fig. 6.4 constitute 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, so either the first or second 

row of weights are zero for elements without neighbors (present on plates and cylinders). For such 

elements, zero-valued weights in the A and B or C and D regions were still input to the network, 

but network predictions for I or J, appropriately, were ignored when computing error statistics (as 

they are necessarily set to zero when re-solving the system).  

Functions in cells H, I, and J are those intended to be merged into macro basis functions 

weighted by network predictions. These regions were chosen for simplicity. If we were attempting 

to build a solution directly from the weights predicted by the network, we would desire a network 

that predicted these values on some common scale. However, we intend to use these weights to 

form macro basis functions of form (6.3) for re-solving of the problem on 𝐹̅, so, ignoring numerical 

constraints, we do not care about the relative value of weights not in the same region. 
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Fig. 6.2. Representative objects from the complicated dataset of 10,000 randomly generated PEC 
scatterers, with length variation from 0.1 to 10 λ. All objects are at the same scale. These objects 

fit into 4 categories among which the dataset was uniformly divided: plate-like, cylinder-like, 
torus-like, and spheroid-like objects. All objects had varying degrees of randomly generated 

large-scale and small-scale features added to their surfaces. MoM-SIE analysis was performed 
for these surfaces, discretized using a 20×20 grid of 2nd-order quadrilateral elements (ku = kv = 2, 
Fig. 6.1) with 5th-order basis functions [nu = nv = 5, see (6.5)] constituting the complete basis, 𝐹, 

in response to an incident plane wave from a randomly-generated direction (one direction per 
model). Each object is viewed from the direction of the incident excitation. Plates shown top left; 

cylinders top right; tori bottom left; spheroids bottom right. 
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Fig. 6.3. Representative objects from the simple dataset of 1,000 bent plates, with length scales 
on the order of λ and simple deformation patterns. Each object is viewed from the direction of 

the incident wave. 
 

 
Fig. 6.4. Basis function weight grids. Function weights in A-G were given to network as input. 

Weights in regions H, I, and J were predicted by the network. 
 

Therefore, we normalized all weights within regions H, I, and J such that the value of 

highest magnitude in each region has unit magnitude. Basis functions in regions A through G, 

corresponding to functions in 𝐹̌, were included uncombined in 𝐹̅ for examples in this chapter. This 

is a degenerate case of (6.3) where only one 𝛼𝑖 is nonzero per 𝑓𝑚𝑎𝑐𝑟𝑜, rendering such 𝑓𝑚𝑎𝑐𝑟𝑜 

equivalent to 𝑓𝑖 ∈ 𝐹̌. 

The same network architecture was used for both the simple and complicated datasets. The 

architecture consisted of a simple 16-block residual network [120] with no batch normalization 

and a hyperbolic tangent nonlinearity after the final convolutional layer. We used 128 filters per 

layer. This architecture was not optimized for the problem but was sufficient for proof of concept. 

One version of the network was trained exclusively on 800 examples from the simple dataset, the 

other 200 held-out for testing. We denote this Network A. Another version, Network B, was trained 
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exclusively on 9,800 examples from the complicated dataset, evenly partitioned between the four 

subcategories. The remaining 200 objects were held-out as a test set. For both networks, the test 

sets were drawn randomly. There was no overlap between the training dataset and the test dataset. 

No object appeared in both the test and training datasets, meaning objects in the test dataset, not 

just their solutions for a particular excitation, had never been seen by the network. Both networks 

were trained using the Adam optimization algorithm [132] with a batch size of 10 and learning 

rate of 1e-4 for 150 and 500 epochs, respectively. Interestingly, we noted substantial overfitting 

for longer training runs, indicating these networks will benefit from larger training datasets. 

Input to each network was 20×20×28, the 28 channels corresponding to real and imaginary 

values for both 𝑢- and 𝑣- directed basis functions in cells A-G. The 20×20 spatial grid corresponds 

to the 20×20 grid of quadrilateral elements comprising each mesh. Similarly, the output was 

20×20×92, the 92 channels corresponding to real and imaginary values for both 𝑢- and 𝑣-directed 

basis functions in H, I, and J. Network loss was computed as mean squared error between predicted 

and actual values. 

 

6.4 Numerical Results and Discussion 

To accurately assess network performance, both networks were evaluated on their test sets 

after training. Both networks were also tested on the opposite test set. To present results, we split 

the 20×20×92 output for each test problem into 400 1×1×92 vectors of element-wise weights. We 

then further subdivided each vector into four 1×1×23 vectors, for real 𝑢, imaginary 𝑢, real 𝑣, and 

imaginary 𝑣, respectively. Each vector was then rearranged and padded into a 6×6 grid 

corresponding to weight assignments for H, I, and J in Fig. 6.4. Values in these grids corresponding 

to input weights A-G and values in the right-most column were set to zero for presentation of 
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representative examples. Error statistics were computed between these grids and corresponding 

grids constructed from the true solution weights (normalized in the same way). Fig. 6.5 shows 15-

bin root mean square error (RMSE) histograms. Weight boundaries are the same for all four sub-

plots. Fig. 6.5(a) shows application of Network A to the simple test set, while Fig. 6.5(b) shows 

application of Network A to the complicated test set. Similarly, Figs. 6.5(c) and 6.5(d) show 

application of Network B to the complicated and simple test sets, respectively. 

 

 

 

 

 
Fig. 6.5. 15-bin RMS error (of basis function weights prediction with respect to actual weights) 
histograms for both networks on both validation datasets: (a) Network A on the simple set (Fig. 

6.3); (b) Network B on the simple set; (c) Network B on the complicated set (Fig. 6.2); (d) 
Network A on the complicated set. 

 

Figs 6.6 and 6.7 show representative examples for each bin, corresponding to histograms 

in Fig. 6.5. Fig. 6.6 shows bin examples for Figs. 6.5(a) and (b), while Fig. 6.7 shows bin examples 

for Figs. 6.5(c) and (d). For each, the bin of highest probability (mode) is highlighted green. 
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 Network A Network B 
Bin# Predicted/Actual Error Predicted/Actual Error 
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Fig. 6.6. Representative bin examples for histograms in Fig. 6.5(a), left, and Fig. 6.5(b), right, for 
testing of Network A and Network B, respectively, on the simple dataset (Fig. 6.3): predicted 

weights, actual weights, and errors for per-element basis functions (Fig. 6.4). Some entries were 
left blank for Network A on this dataset, as no examples fell in bins 10-11 for this case. Neither 
case produced examples that fell in bins 12 or higher, so these bins were omitted from this plot. 

The bin of highest probability is highlighted green. 
 

Network A, trained only on the simple dataset, was able to predict weights for objects in 

the simple test set accurately. This is especially apparent in the representative mode example 

(green) for Network A in Fig. 6.6. Network B, trained on the complicated dataset, performed 

similarly well for the complicated test set, although with somewhat higher error overall. Both 

results are expected, but we are pleased with the accuracy with which the networks predicted basis 

function weights on their corresponding test sets. More interestingly, however, were the cross-

validation results. Despite the complicated dataset containing no objects similar to those found in 

the simple dataset (evident by comparison of the plates in Fig. 6.2 to those in Fig. 6.3), Network 

B performed better on the simple test set than it did on its own (the complicated) test set. 
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 Network B Network A 
Bin# Predicted/Actual Error Predicted/Actual Error 
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Fig. 6.7. Similar to Fig. 6.6. Representative bin examples for histograms in Fig. 6.5(c), left, and 
Fig. 6.5(d), right, for validation of Network B and Network A, respectively, on the complicated 
dataset (Fig. 2). Some entries were left blank for Network B on this dataset, as no examples fell 

in bins 13-15 for this case. 
  

This indicates that Network B learned generalizable knowledge applicable beyond the complicated 

dataset on which it was trained. Network A clearly also learned generalizable knowledge, 

demonstrated in Figs. 6.5(d) and 6.7, but at far higher error.  

 
 
6.5 Conclusion 

This chapter has presented development, implementation, analysis, and validation of a 

machine learning approach to predicting macro basis functions for method of moments 3-D 

scattering and radiation problems using deep neural networks. We generated and used two datasets 
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of MoM PEC scattering problems, a complicated dataset of 10,000 randomly warped cylinders, 

tori, plates, and spheroids of high variability of electrical sizes and wide distribution of aspect 

ratios and deformations on multiple scales; and a comparably simple set of 1,000 bent plates, 

simulated by the double-higher-order MoM-SIE technique. Two deep residual networks were 

trained on the two respective datasets. To accurately assess network performance, both networks 

were evaluated on their test sets after training, as well as on the opposite test set for cross-

validation.  

The results have shown that the networks are able to accurately predict basis function 

weights on their own test sets. Even more importantly, cross-validations have demonstrated 

networks’ ability to learn generalizable knowledge applicable beyond the types of objects on which 

they were trained.  

Overall, the numerical examples have shown that deep neural networks are a promising 

approach to macro basis function prediction for MoM scattering and radiation problems. The 

performed study has demonstrated that these networks have the capacity to understand 

complicated, widely varying 3-D MoM problems, which, although intuitively plausible, is far from 

an obvious conclusion without such a study. In particular, the predicted macro basis function 

approach leverages learned models to considerably reduce the total number of basis functions and 

number of unknowns in MoM computations and thus MoM matrix size. Meanwhile, the 

appearance of large matrices generally constitutes the main problem in MoM for practical radiation 

and scattering applications. While the implemented and analyzed networks have produced highly 

encouraging results in this study, especially for cross-validation, larger training datasets will 

improve reliability for general antenna and scattering problems.  
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CONCLUSION 

This dissertation has presented several improvements, both theoretical and empirical, to 

the state of the art in computational electromagnetics solver efficiency. As CEM problem sizes 

have continue to grow, so too have the demands placed on the techniques at the core of tools used 

by CEM practitioners, spurring hybridization of previously disparate methods to cover the wide 

range of problem types and scales of interest. It has therefore been of increasing importance that 

improvements to CEM methods consider the plethora of CEM techniques in common use. 

Accordingly, this dissertation has explored efficiency gains for the two most common classes of 

CEM solver: full-wave and ray-based.  

In chapter one, we applied and demonstrated the use of adjoint-based a posteriori error 

estimation and adaptive discretization refinement to CEM using a simple, one-dimensional higher 

order FEM scattering example as an ideal testbed. This chapter demonstrated how the adjoint 

solution can be leveraged to efficiently compute multi-dimensional gradient information with a 

static (with respect to the dimensionality of the gradient) number of solves. This is immensely 

useful in nearly all modern contexts where CEM is used. Efficient computation of gradients was 

demonstrated for the one-dimensional lossy dielectric slab scattering problem using real and 

imaginary relative permittivity values as the problem dimensions with respect to which gradient 

information was computed. We further showed how QoI responses can accurately be reconstructed 

using only a few forward and adjoint solves from which gradient information is obtained, allowing 

efficient construction of surrogate models for several engineering contexts, including optimization 

and sensitivity analysis. In addition to leveraging adjoint methods for the computation of gradient 

information, we demonstrated how a higher order adjoint solution can be used to compute accurate, 

signed error contribution estimates for every element in a domain. We then described and 
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experimentally validated how such elementwise error contribution estimates can be used not only 

to quantify solution error, but also to adaptively refine a problem discretization to achieve far 

higher solution accuracy for only a modest increase in discretization dimension. These findings 

indicate that adjoint methods, previously rarely studied in CEM contexts, can benefit accuracy and 

efficiency of CEM solves as they have partial differential equation solvers in a variety of other 

disciplines like structural mechanics and computational fluid dynamics.   

In chapter two, we applied the adjoint methods from chapter one to a more-complicated 

three-dimensional lossy dielectric sphere scattering problem set—a 3D analogue of the one-

dimensional slab scattering problem set explored in chapter one. In chapter one, we claimed that 

the benefits of adjoint methods to CEM solver efficiency may be compounded for large, multi-

solve problems in which many related sub-problems must be solved accurately. Such multi-solve 

problems are ubiquitous in CEM and include radar cross-section computation, design optimization, 

and uncertainty quantification. For such problems, we note that, in addition to adjoint methods 

enabling efficient computation of useful gradient information, the elementwise error contribution 

estimates they provide may also be applicable across sub-problems for dynamic discretization 

refinement without sub-problem repetition. We remarked in chapter two how such efficiency gains 

for multi-solve problems are contingent on the relatedness of EECEs between sub-problems. 

Chapter two, therefore, substantiated our claims about efficiency gains for multi-solve problems 

by demonstrating that EECEs can be considerably more correlated between sub problems than 

even QoIs or their derivatives. We further demonstrated that, for our example problem set, EECEs 

remain highly correlated between sub-problems across their spectrum of magnitudes, indicating 

that application of EECE-based refinement schemes across sub-problems is likely feasible.  



146 
 

In chapter three, we addressed one of the major barriers to application of adaptive 

refinement schemes to real-world CEM problems solved on surface discretizations: the difficulty 

of producing and manipulating surface meshes at high quality. Leveraging the discrete surface 

Ricci flow, we described a technique by which an arbitrary surface can be conformally mapped to 

a simple parametric domain, allowing complicated meshing operations to be performed in e.g. a 

rectangular domain rather than on the surface of a fighter jet. The conformal nature of the produced 

mappings maintains relative element shape between domains, allowing high quality meshes in the 

parametric domain to be mapped to high quality meshes of the original surface. We further defined 

a simple iterative adaptive refinement technique to mitigate area distortion inherent to conformal 

mappings and provided a variety of examples for common CEM mesh types. In addition to 

enabling application of adaptive refinement schemes, like those outlined in chapter one, to 

complicated surface meshes, the techniques introduced in chapter three also allowed, for the first 

time, application of highly efficient double-higher-order quadrilateral surface element-based 

techniques to arbitrary surfaces. Such techniques have been shown, for geometrically simple test 

problems like spheres and cubes, to greatly reduce the number of unknowns required to meet a 

certain error tolerance. The work in chapter three, therefore, will allow the efficiency gains of 

double-higher-order techniques to finally be realized for realistically complicated surfaces.  

Chapter four addressed scaling problems of the most popular large-domain simulation 

technique in CEM: SBR. The chapter discussed how data dependencies inherent to shooting 

bouncing ray double count removal hinder efficient implementation of SBR on parallel computing 

platforms and therefore SBR’s scalability, despite perfect parallelism of all other aspects of the 

method. To remedy this, we proposed in chapter four the concept of non-self-adjacent ray classes. 

By partitioning the set of rays into NSA ray classes, we showed in chapter four that the data 
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dependency can be circumvented, so long as the number of rays to be processed is greater than 

three times the number of executing threads. Chapter four provides a detailed theoretical 

description of our NSA ray classing approach and subsequently provides numerical results 

demonstrating the efficiency gains achievable using NSA ray classes for an example problem, 

implementation, and hardware.  

Chapter five returned to efficiency gains for variational methods in CEM including MoM, 

FEM, and FD, this time from a semi-empirical perspective. In contrast to the formal techniques in 

chapters one and two, which leveraged information in a higher order adjoint solution to produce 

error information from which the discretization could be refined (or coarsened) to efficiently 

allocate dimensions in the problem space, chapter five described a technique by which the 

dimension of the problem space can be substantially reduced a priori using prior knowledge. 

Specifically, the technique outlined in chapter five leverages the predictive capability of deep 

neural networks to generate a set of macro basis functions on which to project the problem, 

achieving accurate solutions at substantially lower computational cost than standard bases. In 

chapter five, we demonstrated this technique for the same type of lossy dielectric slab scattering 

problem used in chapter one and provided several error statistics for its application to a set of 1,000 

such problems. Results indicated the predicted macro basis function approach was highly effective 

at producing efficient bases on which to solve a given lossy dielectric slab scattering problem.  

Chapter six explored the feasibility of applying the predicted macro basis function 

approach to substantially more-complicated CEM problems in the context of MoM. Although 

results presented in chapter five were encouraging, their usefulness was limited to proof-of-

concept due to the simplicity of the lossy dielectric slab scattering problem set. Real-world CEM 

problems of interest to CEM practitioners and engineers are more complicated, describing 
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propagation phenomena in the presence of objects like printed circuit boards, aircraft, and mine 

tunnels. To better capture this variety, we presented in chapter six a dataset of 10,000 randomly 

generated PEC scatterers with varied surface features over a broad range of shapes and sizes. In 

addition, we presented a comparably simple set of 1,000 warped PEC plates. One scattering 

solution was computed for each object in response to an incident plane wave. As in chapter five, 

deep neural networks were trained to predict macro basis functions from these solutions. One 

network was trained per dataset. Chapter six showed that, despite the complexity of the datasets 

tested, networks were able to predict solutions and therefore predict macro basis functions at high 

accuracy, demonstrating the applicability of our predicted macro basis function approach to 

complicated problems.  
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