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Abstract

Movement, Resource Selection, and the Physiological Stress Response of

White-bearded Wildebeest

White-bearded wildebeest (Connochaetes taurinus) are the dominant herbivores found

across grassland savannas of East Africa. Known to be particularly important to ecosystem

diversity and function, many resident populations of wildebeest have become threatened with

extinction over the past few decades. Surprisingly little is known about the movements of

individual wildebeest. Using data from GPS collared wildebeest across three study areas in

southwest Kenya, this dissertation increases our understanding of the response of wildebeest

to differing levels of landscape disturbance. Specifically, I focus on five objectives: (1)

describe the movements of wildebeest across three study areas in southwest Kenya with

varying degrees of anthropogenic and natural disturbance; (2) compare the movements of

resident wildebeest with the movements of Serengeti migrants; (3) assess the physiological

stress response in wildebeest populations as it relates to landscape disturbance; (4) evaluate

the space use of GPS collared wildebeest between study area and season; and (5) incorporate

GPS movement data and an analysis of space use into an agent-based modeling simulation

to evaluate the use of a hypothetical wildlife corridor to re-connect former habitat ranges of

the species.

In Chapter 2, I analyze the movements of thirty-six wildebeest, fitted with Lotek Wild-

Cell R© GPS collars across three study areas in 2010, and compare these movements with

broad-scale dynamics of vegetation productivity. I found that the movements of collared

wildebeest were greatest across the Amboseli Basin, the driest and least anthropogenically
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disturbed of my three study areas. Across the Athi-Kaputiei Plains, the most heavily dis-

turbed of my study areas and located directly adjacent to Nairobi National Park, wildebeest

moved the least of my study populations in all categories measured. Movements across the

Mara were more similar to wildebeest collared across the Amboseli Basin, with wildebeest

dispersing further from initial collaring locations than either of the other two study popula-

tions. Interestingly, wildebeest movements declined almost identically across the Amboseli

Basin and Mara when analyzed across different temporal resolution (e.g., 1-day, 2-day, 4-day,

8-day, 16-day), an analyses that can be used to infer the degree of tortuousness in movement.

Movements across the Athi-Kaputiei Plains, however, declined more sharply than the other

two study areas, indicating that wildebeest across this region are less directed in their move-

ments, which may potentially be related to the increased levels of anthropogenic disturbance

across this region.

In Chapter 3, I focus specifically on the movements of the Mara population, comparing

the different movement strategies of GPS collared animals within this population with those

from the Serengeti migratory herd, a population that has remained relatively stable during

the same time period in which resident wildebeest have declined precipitously. Analyses in

this chapter were conducted in a Bayesian framework, distinguishing two different movement

strategies among individuals within the resident population. A third movement strategy was

identified when comparing the movements with the Serengeti migratory herd. This work

demonstrates the many different movement strategies employed by wildebeest across the

region, which likely relate to animals’ ability to cope with changing resource dynamics and

rapid land-use changes that are occurring across the region.
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In Chapter 4, I shift from analyzing the animal movement data to assess the physiological

stress response in wildebeest sampled across each study area. This analysis consisted of an

extensive 3-month field sampling period to collect fecal samples from a random sample of

each study population. Using a validated laboratory technique that is becoming increasingly

popular in the field of ecology to non-invasively assess the health of wildlife populations, I

quantified the concentration of fecal glucocorticoid metabolites (i.e., stress hormones) within

collected fecal samples. The stress of sampled populations was similar between study areas,

with a seasonal decline in stress hormones observed between dry and wet season data col-

lection periods. I used an information-theoretic approach to rank models relating quantified

fecal glucocorticoid metabolite concentrations with measures of landscape disturbance. My

highest ranking model included an interaction between locally collected plant biomass and

disturbance, the number of calves in a group, and ∆NDVI (change in Normalized Difference

Vegetation Index). A strong positive effect related to biomass and disturbance suggested that

tall/standing biomass and high levels of disturbance contribute to elevated levels of stress in

wildebeest. These results suggest that new growth has the potential to lower average stress

levels, while increased levels of habitat disturbance can have adverse effects on wildebeest

populations when conditions deteriorate. In addition, wildebeest likely avoid areas of high

anthropogenic disturbance, which may be altering the space use of wildebeest across heavily

disturbed areas.

I further investigate the hypothesis that wildebeest space use may be altered by anthro-

pogenic disturbance, conducting a seasonal resource selection function analysis across each

study area (Chapter 5). Consistent with expected outcomes, wildebeest avoided areas with
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high levels of anthropogenic disturbance and in close proximity to woody vegetation, irre-

spective of season. This response shifted between daytime and nighttime periods across each

study area, with wildebeest located in closer proximity to human features during nighttime

periods. Wildebeest were also observed to avoid primary roads, most especially across the

Athi-Kaputiei Plains, a significant result considering the continued threat of road construc-

tion across the region. I also observed pronounced shifts in space use across the Amboseli

Basin, especially in relation to the parameters ‘distance to rivers’ and the ‘distance to sec-

ondary roads’, representing a change in the functional response of wildebeest to these features

between seasons. Across the Mara, response curves were similar to observed results across the

Athi-Kaputiei Plains, except in relation to the parameters ‘distance to primary/secondary

roads’, likely a result of differing traffic volumes between study areas. These results provide

detailed information related to the space use of wildebeest that may help guide conservation

management plans across the region.

Lastly, in Chapter 6, I incorporate results on the movements of individual wildebeest

(Chapter 2) and the space use of wildebeest across the Athi-Kaputiei Plains (Chapter 5), to

parameterize an agent-based modeling simulation to assess the use of a hypothetical habitat

corridor aimed to re-connect the seasonal habitat ranges of wildebeest across this study

area. Once regarded for supporting some of the most spectacular concentrations of wildlife

in all of East Africa, this region has experienced rapid land-use development over the past

few decades, leading to precipitous declines in wildlife, particularly wildebeest. The results

from this analysis, which assesses four different scenarios of habitat mitigation, highlight

that simulated wildebeest used the corridor regardless of scenario, with a maximum of 57

crossings observed over a 10-year simulation period. The methodology described could be
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further applied to test a variety of scenarios, including the effectiveness of the location

and width of corridor on wildlife usage, allowing for an evaluation of potential use prior to

construction.

My dissertation work suggests that increased levels of anthropogenic disturbance lead

to decreased movement rates and an altering of space use in wildebeest populations. Stress

in populations may also be adversely effected, most especially during times of poor habitat

quality, such as extended dry periods. In other periods, wildebeest likely move away from

areas of high anthropogenic disturbance, with the potential to shift the distribution of wilde-

beest to lower quality habitat. Resident wildebeest also move significantly less than their

migratory counterparts across the Serengeti-Mara ecosystem, a factor that may contribute

to the different population trajectories observed. Incorporating these data into animal sim-

ulation models affords the possibility of making realistic depictions of the effect of landscape

changes on the movements and spatial distribution of wildebeest over time.
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CHAPTER 1

Introduction

Over the past half century, resident wildebeest (Connochaetes taurinus) have experienced

widespread and precipitous declines across much of their range in east Africa (Ogutu et al.,

2011, 2013; Ottichilo et al., 2001; Reid et al., 2008). Directly related to these declines is the

pervasive expansion of mechanized agriculture and large-scale ranching that have occurred

across much of the region (Serneels and Lambin, 2001). These processes fragment the land-

scape, leading to habitat discontinuities and imposing barriers (e.g., roads, fences) to daily

and seasonal movement. A vast catalog of research has been conducted on wildebeest over

this same time period, with information collected on the feeding habits (Talbot and Tal-

bot, 1963), breeding synchrony (Estes, 1976), abundance (Fryxell et al., 1988), population

structure (Georgiadis, 1995), resource limitations (Mduma et al., 1999), spatial distribution

(Wilmshurst et al., 1999), keystone processes (Sinclair, 2003), and factors influencing move-

ment (Boone et al., 2006; Hopcraft et al., 2014). Most of this research, however, has been

conducted on Serengeti migratory wildebeest, a population of ∼1.3 million animals that has

remained relatively stable since recovery from the rinderpest virus in the mid-1960s (Dobson,

1995; Thirgood et al., 2004), rather than the smaller resident populations in sharp decline.

Movement is a fundamental aspect of animal ecology, enhancing an individual’s ability to

obtain resources, encounter mates, avoid predation, or disperse from an area when conditions

deteriorate. Wildebeest escape resource limitation by being constantly on the move, a factor

which partially explains why wildebeest across the Serengeti ecosystem are more abundant

than all other large mammals combined (Hopcraft et al., 2013). Only three studies to date

have focused on the movements of individual wildebeest and each of these studies focused on
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the movements of Serengeti migratory animals, amounting to data on 41 animals across vari-

able (although often short) time periods (Inglis, 1976; Thirgood et al., 2004; Hopcraft et al.,

2014). Each of these studies quantified space use of wildebeest within formally designated

protected areas centered around Serengeti National Park, a 60,000 km2 United Nations Ed-

ucational, Scientific, and Cultural Organization (UNESCO) World Heritage Site in northern

Tanzania.

The research presented here and funded by the National Science Foundation (DEB Grant

0919383) differs significantly from these past studies by focusing intently on the movements

of resident wildebeest located primarily outside of protected area boundaries. These areas,

once open and facilitating the movement of wildlife and livestock between wet and dry season

ranges, have become increasingly fragmented or lost altogether over the past few decades

to competing human demands. It is this focus that is of particular importance because it

recognizes the impact that humans are having on ecosystems, while also acknowledging that

the information gained on current responses to drought and anthropogenic disturbance can

help aid policy decisions and conservation management plans in the future.

To understand how wildebeest, the dominant herbivore across the region, respond to cur-

rent conditions and make predictions about future scenarios, Lotek WildCell R© GPS collars

were placed on thirty-six (36) adult wildebeest across three landscapes in Kenya with vary-

ing degrees of natural and anthropogenic disturbance in 2010 (Boone et al., 2009). These

devices, programmed to collect the position of each animal sixteen (16) times per day (every

hour between 6:00 AM and 6:00 PM and every three hours between 6:00 PM and 6:00 AM)

for a 2-year study period, represent the most detailed dataset on the movements of individual

wildebeest to date, with 279,718 points collected.
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My dissertation uses these data and focuses on improving the overall understanding

of space use, movement, and the physiological effects of disturbance on these populations.

Specifically, I sought to answer five (5) questions:

(1) How do resident wildebeest move across each landscape and how do landscape dy-

namics affect these movements?

(2) How similar are the movement strategies of Mara wildebeest and do these animals

move similarly to Serengeti migratory wildebeest?

(3) Do landscape factors of disturbance (natural and anthropogenic) lead to elevated

levels of stress in wildebeest?

(4) Does resource selection change across dry and wet season periods, especially as it

relates to measures of disturbance?

(5) What is the likelihood that wildebeest will use a habitat corridor established to

re-connect the dry and wet season range of the species across the Athi-Kaputiei

Plains?

In each data chapter (chapters 2-6), I use a suite of tools to address these questions,

incorporating field and remotely sensed data organized in a Geographic Information System

(GIS), statistical tools including frequentist and Bayesian methods, agent-based modeling

simulations, and laboratory analyses to extract fecal glucocorticoids (i.e., stress hormones).

A common data source throughout all of my work is NASA’s Moderate Resolution Imaging

Spectro-radiometer (MODIS), which provides a measure of vegetation greenness in the form

of the Normalized Difference Vegetation Index (NDVI). NDVI is a normalized transformation
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of the Near-Infrared (NIR) to red spectral band reflectance ratio, commonly expressed as:

NDV I =
ρNIR− ρred
ρNIR + ρred

Attractive components of NDVI are its near global coverage, and its relatively high spatial

(250-meter) and temporal (16-day repeat period) resolution.

I begin in chapter 2 by summarizing the movements of GPS collared wildebeest (n =

36) across three study areas. These areas, referred throughout the text as the Amboseli

Basin, Athi-Kaputiei Plains, and Mara, have markedly different levels of habitat disturbance,

resulting in concomitant differences in animal movement. As a result, these data provide

the necessary information to parameterize an agent-based movement model simulating how

wildebeest are likely to respond to future landscape scenarios, a core objective of this project

(Boone et al., 2009).

Chapter 3 follows upon this work, comparing the movement strategies of the Mara wilde-

beest population with the movements of the Serengeti migratory herd. Here, I incorporate

an external wildebeest GPS dataset (Thirgood et al., 2004; Hopcraft et al., 2014) and use

Bayesian methods for statistical inference. In chapter 4, I step away from the animal move-

ment data to assess the physiological stress response of wildebeest by analyzing glucocorti-

coids (i.e., stress hormones) from fecal samples collected across each study area. This chapter

constitutes a significant field campaign to collect samples and was completed in collaboration

with the International Livestock Research Institute in Nairobi, Kenya.

Chapter 5 investigates the space use of wildebeest in relation to habitat disturbance

factors. Results from this chapter complement those from chapter 4 and provide support for

the research hypothesis that increased anthropogenic disturbance may be altering wildebeest
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space use. Response curves from this chapter are then integrated in my final chapter (and in

Boone et al. in prep) to simulate the movements of wildebeest in an agent-based movement

model, assessing the likelihood of use of a man-made habitat corridor designed to connect

seasonal habitat ranges across the heavily fragmented Athi-Kaputiei Plains.
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CHAPTER 2

Comparison of the movements of resident

wildebeest across three landscapes in southwest

Kenya

2.1. Summary

1Over the past 40 years, many populations of wildebeest have experienced precipitous

declines across much of their range in eastern Africa. While we have a strong understanding

of the broad-scale causes of these population declines, which include the loss and fragmenta-

tion of remaining habitat, we know little about how individual wildebeest respond to these

landscape changes. To better conserve the species, fine-scale data is required to assess the

effect of landscape disturbance on animal movements. In 2010, thirty-six Global Positioning

System (GPS) collars were fit on wildebeest across three study areas in Kenya with varying

degrees of anthropogenic and climatic disturbance. These data represent the most detailed

study on the movements of individual wildebeest to date. Wildebeest across each study

area used the habitat outside of protected areas extensively (> 87% of fixes), highlighting

the importance of areas with lesser degrees of protection and the need for community-based

conservation efforts to better protect the species. Across the Amboseli Basin, the driest and

least anthropogenically disturbed of our three study areas, wildebeest moved the most of

our three study populations. Across the Athi-Kaputiei Plains, the most heavily disturbed of

our study areas and located adjacent to Nairobi National Park, wildebeest moved the least

in all categories measured. The movements of wildebeest across the Athi-Kaputiei Plains

1This chapter is in preparation for submission to The African Journal of Ecology with co-authors Randall
B. Boone, Robin S. Reid, and Jeffrey S. Worden.
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were also less directed than the other two study areas, potentially related to the increased

levels of anthropogenic disturbance across this region. Mara wildebeest moved more sim-

ilarly to wildebeest across the Amboseli Basin and dispersed further from initial collaring

locations than either of the other two study populations. These results provide an improved

understanding of the effects of current conditions on wildebeest movement, which may facil-

itate realistic assessments of the effects of future conditions and contribute to the long-term

sustainability of these threatened populations.

2.2. Introduction

The ability to move and locate areas of available forage is essential for animals to meet

energy demands, especially across dryland systems where broad-scale patterns of vegetation

productivity can vary drastically between seasons or years. Until recently, analyses of the

movement of animals has almost exclusively focused on the quality of landscape patches

(Wiens, 2001), with little consideration for the importance of the matrix habitat that con-

nects them. With a global human population expected to reach 9 billion by 2050 (United

Nations, 2013), understanding how animals respond and navigate between habitat patches

and across an often anthropogenically disturbed matrix is becoming increasingly important.

The loss and fragmentation of habitat is known to limit the ability of herbivores to locate

areas of available forage (Ben-Shahar, 1993; Boone and Hobbs, 2004; Fryxell et al., 2005;

Hobbs et al., 2008; Newmark, 2008; Ottichilo et al., 2001). Whereas the effects of habitat

loss are straightforward (i.e., reduced habitat area reduces the landscape carrying capacity),

the effects of fragmentation (the combination of habitat loss and habitat isolation) can be

more complicated, especially in combination with the effects of changes in climate. Drought,

for instance, can interact with fragmentation and require animals to move further afield to
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acquire available resources, depleting energy reserves and increasing the risk of mortality

(Boone, 2007; Ogutu et al., 2008). These effects are expected to be most severe in areas

with medium-levels of vegetation productivity, since animal densities and competition are

likely to be relatively high (Boone, 2007; Boone et al., 2005). As a result, increased levels

of habitat disturbance may limit the ability of animals to move between patches and access

areas of better quality forage.

White-bearded wildebeest (Connochaetes taurinus) are the dominant grazers found across

grassland savannas of eastern and southern Africa. The ability of animals to move with spa-

tially and temporally changing resources is one of the main reasons why wildebeest across

the Serengeti ecosystem outnumber all other large herbivores combined (Hopcraft et al.,

2013). Although perhaps best known for their long-distance seasonal migrations, wildebeest

are also recognized as keystone species (Sinclair, 2003), affecting nearly every aspect of the

ecosystem (Hopcraft et al., 2014) including local biodiversity, wildfire intensity, grassland-

tree dynamics, food web structure, and local economies (Holdo et al., 2011a, 2009a; Sinclair,

2003). Thus, a loss or severe reduction in the abundance of wildebeest would be expected

to have widespread and long-lasting effects.

Surprisingly little is known about the movements of individual wildebeest, with only

three studies to date (Hopcraft et al., 2014; Inglis, 1976; Thirgood et al., 2004) focused on

the movements of wildebeest across the Serengeti-Mara ecosystem. These studies, however,

focused specifically on Serengeti migratory wildebeest, a population of ∼1.3 million indi-

viduals that has remained relatively stable since recovery from the rinderpest virus (‘cattle

plague’) in the late 1960s (Thirgood et al., 2004). In other parts of the species range, many

local populations of wildebeest have become threatened with extinction (Ogutu et al., 2011,
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2013; Reid et al., 2008; Western, 2010). Central to these population declines is the pervasive

loss and fragmentation of the remaining habitat (Serneels and Lambin, 2001).

Most often, research investigating the space use and distribution of animal populations

is completed by incorporating static resource dynamics derived from satellite-derived land-

cover maps in traditional resource function analysis frameworks (Manly et al., 2002). While

exceptions exists (e.g., Stabach et al., in prep; Northrup et al., in prep), these methods are

likely inadequate in dynamically changing environments where animals switch between dif-

ferent movement strategies in different years or seasons (e.g., Bunnefeld et al., 2011; Mueller

and Fagan, 2008; Mueller et al., 2011; Singh et al., 2012. In addition, most studies focus on

the movements of individual animals, with few attempting to understand the relationships

between individuals or broader population-level effects (although see Geremia et al., 2014;

Morales et al., 2010; Mueller et al., 2011).

Here, I examine the relocations of GPS-collared individuals to describe the movement

patterns of resident wildebeest across three study areas in Kenya with varying degrees of cli-

matic and anthropogenic disturbance. In particular, I focus on the movements of wildebeest

located primarily outside of protected area boundaries, as these areas continue to experience

rapid anthropogenic changes and are necessary to maintain the long-term viability of local

populations, especially in times of drought. In the absence of anthropogenic disturbance,

I expect a direct linear relationship between landscape productivity and movement, with

wildebeest moving the most across regions with low levels of productivity (Amboseli Basin,

see below) and the least across areas with high levels of productivity (Mara, see below).

Anthropogenic disturbance is expected to restrict the movement of animals across all levels
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of productivity, but most especially across areas with medium levels of vegetation produc-

tivity. I, therefore, expect anthropogenic disturbance to have a pronounced effect across the

Athi-Kaputiei Plains (see below), an ecosystem with moderate levels of productivity and

where levels of disturbance and fragmentation are now pervasive. By linking the observed

movement patterns with underlying landscape dynamics, I provide detailed information on

the movements of three threatened populations of wildebeest with inference to landscape

changes that may aid conservation and management decisions into the future.

2.3. Methods

2.3.1. Study Area. Research was conducted across three study areas located princi-

pally across Kajiado and Narok Counties in southwest Kenya (Fig. 2.1). These areas, referred

in the text as the Amboseli Basin (2◦30’S, 37◦15’E), Athi-Kaputiei Plains (1◦30’S, 36◦55’E),

and Mara (1◦15’S, 35◦20’E), represent portions of the wildlife dispersal areas in and around

Amboseli National Park, Nairobi National Park, and the Maasai Mara National Reserve, re-

spectively. I use these names as a means of convenience to reference the geographic regions

where wildebeest were initially collared, even though some animals monitored moved exten-

sively beyond the extent of these areas throughout the course of our study period. Thus,

our description of each area includes additional habitats and portions of ecosystems that are

not normally considered part of these singular areas, especially as it relates to the Mara.

A strong southeast to northwest rainfall gradient occurs across the study areas, which

relates to the relative productivity of each system. The Amboseli Basin is the least productive

of the three study areas, with rainfall averaging 370 mm yr−1 (range [1998-2013]: 300-525

mm yr−1, (Xie and Arkin, 1997)). Rainfall across the Athi-Kaputiei Plains averages 475 mm

yr−1 annually (range [1998-2013]: 415-570 mm yr−1, (Xie and Arkin, 1997)), representing
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moderate levels of productivity. The Mara is the most productive of our three study areas,

averaging 665 mm yr−1 (range [1998-2013]: 350-1425 mm yr−1, (Xie and Arkin, 1997)). April

is generally the wettest month of the year, with the majority of rainfall falling during two

rainy seasons (short rains: November-December; long rains: April-June). A more detailed

description of each study area is provided below.

2.3.1.1. Amboseli Basin. The Amboseli Basin (6,600 km2) is a semi-arid tropical envi-

ronment located in the rain shadow of Mount Kilimanjaro. Our description of this area

extends from Longido in Tanzania to the Chyulu Hills in Kenya, the extent of observed

wildebeest movements across this ecosystem (Fig. 2.1). Amboseli National Park (400 km2)

lies at the center of this study area, providing formal protection to a small portion (6%)

of the range in which wildlife disperse. The area is covered primarily by open grassland,

with woodlands and swamps fed from mountain run-off prevalent in the southern part of

the ecosystem (Western, 1973). During the dry season, most species of wildlife and livestock

are limited to the immediate basin vicinity where permanent water exists. In wet season

periods, species disperse and are more widespread across the ecosystem.

Over the past few decades, widespread changes have occurred across the region, with

average annual temperature increasing in all months of the year, but particularly in months

with higher maximum temperatures (e.g., January - March) (Altmann et al., 2002). Rainfall

has remained consistently low throughout the long dry season (June - October), with seasonal

timing becoming more variable (Altmann et al., 2002). Woodlands, formerly dominated by

Acacia (xanthophloea and tortilis), are increasingly being replaced by shrubs dominated by

salt tolerant halophytes (Altmann et al., 2002).
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Traditional pastoralism is the dominant land-use across the region. Livestock density

and grazing pressure is high, a factor leading to habitat degradation and changes to the

woodland-grassland mosaic (Altmann et al., 2002). Human population density has remained

Figure 2.1. Wildebeest movements (colored lines) tracked (2010-2013)
across three study areas in Kenya (A = Mara, B = Athi-Kaputiei Plains,
C = Amboseli Basin). Protected areas (1 = Maasai Mara National Reserve, 2
= Serengeti National Park, 3 = Nairobi National Park, 4 Amboseli National
Park) partially obscured.
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low across the ecosystem, averaging 14 people km−2 (LandScan, 2008). Climate remains the

main determinant controlling wildebeest populations, with the recent 2009 drought leading

to 97% mortality (6,800 of 7,000 individuals) (Western, 2010).

2.3.1.2. Athi-Kaputiei Plains. The Athi-Kaputiei Plains (3,425 km2) were once reported

to support some of the highest densities of wildlife in all of East Africa (Simon, 1962). In

the last half-century, however, human settlement has expanded rapidly across the region,

reducing and fragmenting the remaining habitat and resulting in precipitous wildlife popu-

lation declines (Ogutu et al., 2013). Reid et al. (2008) estimate a 72% population decline in

wildebeest from 1977-2004, with most recent estimates (Ogutu et al., 2013) indicating that

population declines could be as high as 93% (a decline from 25,765 to 1,700 individuals).

The area is sometimes referred to as the three ‘triangles’ (Fig. 2.1). The first triangle,

bordered to the north by Nairobi National Park (112 km2) and located just 10 km from

Kenya’s capital city, Nairobi, is the northernmost section of this landscape. Human popula-

tion density is greatest across across this area, averaging 50 people km−2 (LandScan, 2008).

Open habitat still exists in the eastern and southern part of the ecosystem (described as the

2nd and 3rd triangle, respectively), although these areas too are threatened with development

(e.g., construction of the Konza Technology City, located in the 2nd triangle, has already

begun). Livestock raising continues to be the dominant livelihood. Readers are directed

to Reid et al. (2008) for images depicting the extent of fencing that have occurred across

this region, resulting in a 19% reduction in area accessible to wildlife. A major highway,

connecting Kitengela with Kajiado and demarcating the boundary between the 1st and 2nd

triangle, also separates the traditional dry and wet season range of the species, bisecting a

major migratory route.
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Soils are rich and comprised predominantly of clay (Ogutu et al., 2013; Reid et al., 2008).

Grasses include Pennisetum mezianum, Bothriochloa insculpta, Themeda triandra, and Dig-

itaria macroblephora (Foster and Coe, 1968). Wooded areas consist of Acacia drepanaolo-

bium with A. xanthophloea, Croton macrostachys, and Olea africana located in more densely

forested areas (Reid et al., 2008).

2.3.1.3. Mara. The Mara, as referred to here, is the largest of the three study areas

(19,200 km2). Extending across portions of the Serengeti-Mara ecosystem in Kenya and

Tanzania, this area includes the Loita Plains, Mara Plains, Maasai Mara National Reserve

(MMNR), Loliondo Game Controlled Area, Ngorongoro Conservation Area, and Serengeti

National Park (Fig. 2.1). A series of conservancies also lie adjacent to and north of the

MMNR (1,505 km2), extending across 960 km2 of the Mara Plains. Maasai pastoralists area

restricted from the MMNR, but granted limited access to the conservancies during the dry

season. This area is bounded by the Siria Escarpment to the west, the forested Mau Uplands

to the north, and the Loita Hills to the east.

Large-scale mechanized agriculture has occurred across the northern and western bound-

ary of this ecosystem (Homewood et al., 2001; Serneels and Lambin, 2001), resulting in sharp

declines in wildebeest (Serneels et al., 2001). From 1977 to 1997, resident wildebeest declined

from 119,000 to 22,000 individuals, an 81% population decline (Ottichilo et al., 2001). Hu-

man population density across this study area averages 15 people km−2, with higher densities

(27 people km−2) occurring in the Kenyan portion of the area where research was primarily

focused (LandScan, 2008).

2.3.2. Wildebeest Movement Data. Thirty-six adult wildebeest were opportunisti-

cally captured across the three study areas (National Council for Science and Technology
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research permit no. NCST/RR1/12/1/MAS/39/4), fitting animals with Lotek WildCell R©

GPS collars. Collaring activities occurred in May 2010 across the Mara (n=15) and in Octo-

ber 2010 across the Athi-Kaputiei Plains (n=12) and the Amboseli Basin (n=9). No animals

were collared within national park/reserve boundaries. All collared individuals were selected

from distinct groups. The mean pairwise distance between initial locations was < 13 km

in the Amboseli Basin, < 27 km in the Athi-Kaputiei Plains, and < 22 km in the Mara.

Animals were darted intramuscularly with etorphine (M99) and xylazine and processed, on

average, in < 20 minutes. The anaesthesia was reversed using diprenorphine (M5050) and

atipamezole after fitting the GPS collar. Wildebeest were visually monitored for up to 1

hour, resuming normal activity shortly after drug reversal. All aspects of animal handling

were conducted under the direction of a Kenya Wildlife Service field veterinarian and ap-

proved by the International Animal Care and Use Committee (IACUC) at Colorado State

University, Fort Collins, Colorado, USA (Approval No. 09-214A-02).

Devices were programmed to collect sixteen positions per day (every hour during the

day (6 AM - 6 PM) and every three hours at night (6 PM - 6 AM)) over a two-year study

period. I filtered the dataset, removing suspected erroneous data points using the positional

accuracy information output with each data point. Three-dimensional positions with a

positional dilution of precision (PDOP) > 10.0 and two-dimensional positions with a PDOP

> 5.0 were removed (Appendix A.1). One-dimensional positions were removed. Data were

projected to Albers Equal Area projection, WGS84. The gender, approximate age (estimated

from tooth wear), and start/end dates of the collaring period are summarized in Table 2.1.

Fix success and the fate of each animal are summarized in Appendix A.2.
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Table 2.1. Summary of GPS collared white-bearded wildebeest (Connochaetes taurinus)
monitored across three study areas in Kenya. Mean/Maximum Displacement is the aver-
age/maximum net squared displacement from initial collaring locations.

Total Mean Maximum
Movement Displacement Displacement

ID Sex Age Start Date End Date (km) (km) (km)

Amboseli Basin
2837 M 9 11-Oct-2010 8-Jul-2011 2023.3 11.7 44.4
30069 F 10 12-Oct-2010 8-Oct-2012 6197.8 15.5 61.8
30073 F 7 10-Oct-2010 15-Jan-2013 5604.4 10.0 25.8
30075 F 6 10-Oct-2010 7-Apr-2012 3023.7 18.3 41.7
30076 F 10 11-Oct-2010 29-Oct-2012 5895.9 20.8 52.1
30078 F 10 11-Oct-2010 16-Feb-2011 1146.1 27.5 56.8
30081 M 8 10-Oct-2010 12-Dec-2010 872.1 17.3 34.4
30083 M 9 12-Oct-2010 1-Jun-2011 2502.5 15.0 31.4
30085 M 8 11-Oct-2010 10-Jun-2012 5547.8 17.2 54.1

Athi-Kaputiei Plains
2840 M 6 15-Oct-2010 13-Sep-2011 1628.2 12.2 30.0
2842 M 5 15-Oct-2010 17-Mar-2012 2467.4 3.4 13.2
30068 F 9 16-Oct-2010 25-Dec-2010 324.0 1.2 5.5
30070 F 8 20-Oct-2010 14-Jun-2011 1037.8 11.1 34.6
30071 F 9 19-Oct-2010 11-Jan-2013 2759.1 2.7 23.5
30072 F 9 18-Oct-2010 19-Oct-2012 2386.7 1.0 7.2
30074 F 9 16-Oct-2010 15-Jan-2013 2891.9 5.1 25.4
30077 F 10 19-Oct-2010 20-Nov-2012 3182.4 14.0 34.1
30079 F 9 21-Oct-2010 17-Oct-2012 3187.8 6.2 38.2
30082 M 10 17-Oct-2010 15-Jan-2013 2556.0 1.2 22.9
30084 M 8 19-Oct-2010 8-Dec-2011 1794.1 2.1 6.7
30086 M 10 16-Oct-2010 5-Feb-2012 1634.4 1.2 11.4

Mara
2829 F 9 28-May-2010 21-Jun-2012 4117.9 21.2 40.5
2830 F 10 28-May-2010 18-Aug-2010 333.2 1.9 6.6
2831 M 5 26-May-2010 13-Jun-2012 3042.1 18.1 26.7
2832 F 8 27-May-2010 15-Jan-2013 5354.0 7.6 25.7
2833 F 7 28-May-2010 18-Mar-2011 1384.3 1.8 8.2
2834 F 7 30-May-2010 18-Dec-2011 4257.5 45.2 205.4
2835 F 10 26-May-2010 24-Nov-2010 617.4 2.7 9.4
2836 M 9 30-May-2010 10-Dec-2012 4676.1 28.6 64.1
2838 F 12 29-May-2010 12-Mar-2011 1747.9 36.0 76.9
2839 M 10 26-May-2010 27-Sep-2011 2283.2 4.6 29.7
2841 M 8 29-May-2010 14-Jun-2010 87.7 1.1 3.4

Continued on next page
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Table 2.1 – continued from previous page
Total Mean Maximum

Movement Displacement Displacement
ID Sex Age Start Date End Date (km) (km) (km)

2843 F 12 27-May-2010 28-Mar-2011 1562.6 5.3 21.2
2844 F 7 27-May-2010 15-Jan-2013 3915.6 1.4 16.5
2845 F 8 29-May-2010 24-May-2012 4197.0 45.1 138.1
2846 M 10 25-May-2010 11-Aug-2011 2177.7 6.8 25.2

Mean: 2735.5 12.3 37.6
Std Dev: 1673.6 12.1 38.6

2.3.2.1. Quantifying Individual Movement. I calculated hourly and daily movement rates,

net squared displacement, tortuosity, and circular statistics for all animal movement paths

throughout the study period. I defined tortuosity as the daily distance moved by each indi-

vidual divided by the daily maximum net squared displacement, such that animals moving

in a straight line would have a tortuosity = 1. The mean resultant length, ρ, was calculated

to estimate the concentration of hourly turning angles, with values close to 1 being highly

concentrated around the mean. I tested for significant differences between movement statis-

tics by performing Kruskal-Wallis tests and post hoc tests for multiple comparisons in R [R

Development Core Team (2013); library pgirmess, function kruskalmc, Siegel and Castellan

(1988)].

To compare annual movements across each study area, I subset the dataset to include

only those animals that were monitored over the same temporal period, standardizing the

start/end dates to 21-October-2010 - 20-October-2011. This reduced the total number of

animals being compared to n = 21 (Appendix A.3). Data gaps (< 5% of each dataset)

were filled with linear interpolation, the most conservative method for estimating missing

locations (Tremblay et al., 2006). I filtered this dataset to longer temporal periods (i.e., 1-day,
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2-day, 4-day, 8-day, and 16-day) to investigate the interaction between temporal resolution

and annual movement across each population (Mueller et al., 2011). Annual movement and

temporal resolution were log transformed and fit in a linear mixed model framework [function

lme, R library nlme (Pinheiro et al., 2014)], with individual specified as the random effect.

2.3.2.2. Quantifying Population-level Movement. I calculated two measures, the real-

ized mobility index (RMI) and the movement coordination index (MCI), to investigate

population-level movement patterns across each study area. Described by Mueller et al.

(2011), the RMI is the proportion of habitat occupied by each individual in relation to the

total range of the collared population (i.e., the combined annual range of each individual

within the population). I calculated the minimum convex polygon range of each individual

and computed the RMI as the area of each individual range divided by the combined area

of the entire population. The MCI is based on the X and Y shifts among individuals at

each movement step and captures variation in both direction and distance. The MCI (from

Mueller et al., 2011) can be written:

MCItemporalperiod(16−day) =

(∑N
i=1 |xi − x̄|∑N

i=1 |xi|
+

∑N
i=1 |yi − ȳ|∑N

i=1 |yi|

)

where xi and yi represent the observed displacements of the ith individual along orthog-

onal axes in a movement step. N is the number of individuals. Similar to a cross-correlation

analysis, the MCI is less sensitive to outliers and does not over-emphasize large deviations

from the mean (Mueller et al., 2011). Identical movements among individuals (in direction

and distance) yield MCI = 1, with more independent and random movements yielding MCI

values closer to 0.
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Wildebeest across the Athi-Kaputiei Plains were assumed to represent two distinct pop-

ulations, based on collaring locations (Fig. 2.1) and observations from field efforts over

a 2-year study period, and were analyzed separately. I refer to these populations as the

Athi-Kaputiei Plains ‘western’ and ‘eastern’ populations (Appendix A.3), signified by their

location relative to the Athi-Namanga road that bisects the two groups (Fig. 2.1). Results

of the RMI and MCI analyses are representative of the full 1-year dataset, with the MCI

analyzed only on animals filtered to the 16-day temporal period.

2.3.2.3. Quantifying Landscape Dynamics. To describe spatial-temporal changes in re-

sources across each study area, I analyzed MODIS Normalized Difference Vegetation Index

(NDVI) data (Carroll et al., 2004). NDVI is known to be a direct measure of an areas vege-

tation productivity/greenness (Goward and Prince, 1995; Tucker, 1979) and has been shown

to be an important predictor of ungulate movement and use (Boone et al., 2006; Hopcraft

et al., 2014; Pettorelli et al., 2005; Ryan et al., 2012). NDVI from MODIS are provided as

16-day cloud-free data composites (i.e., 23 images per year) with 250-m spatial resolution. I

extracted raster subsets from the minimum convex polygon (MCP) of wildebeest locations

across each study area, buffered by 10-km, over a 10-year period (2004-2013).

Using the semi-monthly NDVI data, I calculated the temporal variability, spatial variabil-

ity, and unpredictability of each landscape, as described by Mueller et al. (2011). Temporal

variability was calculated by summarizing the mean NDVI across space to provide an es-

timate of resource phenology within years (i.e., the spatial average of the mean NDVI of

all images within a semi-monthly period). To estimate the spatial variability across each

landscape, I calculated the temporal average of semi-variograms with lags from 5- to 55-km,
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providing a measure of how resource availability varied across different spatial scales. Un-

predictability characterizes the variation across each landscape from year to year (i.e., the

repeatability (or lack thereof) of the landscape) (Mueller and Fagan, 2008). To estimate

unpredictability, I calculated the spatial average of the standard deviations of NDVI at each

grid cell across all images within a semi-monthly period.

2.4. Results

2.4.1. Summary of Movement. GPS collars functioned for 16 - 964 days (mean = 518

days) and collected 279,718 fixes. Average fix success was 94.4% (range = 79.3 - 100.0%)

(Appendix A.2). One wildebeest across the Amboseli Basin moved 6,197.8 km over a 728 day

study period, the longest distance traversed by any animal monitored. A second wildebeest,

animal 2834, moved south from the Loita Plains to the Ngorongoro Conservation Area in

Tanzania (Fig. 2.1), a total net displacement of 205.4 km from its initial collaring location.

Across the Athi-Kaputiei Plains, no animal was observed to cross the tarmac road (Athi-

Namanga road, Fig. 2.1) bisecting the seasonal habitat range of the species. Information on

collar function is provided in Appendix A.2, with images depicting the movements of each

animal in Appendix A.4.

Thirty-four percent (33.7%) of GPS locations (21,075 of 62,392) were located within the

national park boundary across the Amboseli Basin. Only 3.8% of locations (3,795 of 101,265)

across the Athi-Kaputiei Plains and 8.0% of locations (9,228 of 116,061) across the Mara were

observed within national park/national reserve boundaries (Fig. 2.1). Wildebeest across the

Mara, however, used the conservancies located to the north of the Maasai Mara National

Reserve heavily, increasing the percentage of locations within protected area boundaries to

73.4% (85,194 of 116,061) when included.
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Figure 2.2. Summary of annual movements (A), realized mobility (B), av-
erage displacement (C), and movement coordination (D) across three popula-
tions of resident wildebeest. Data were subset to the same temporal period
(21-Oct-2010 - 20-Oct-2011). Results of the movement coordination index
(MCI) are measured in 16-day intervals. Identical movements across individu-
als have a MCI value of 1. Random movements have a MCI closer to 0 (Mueller
et al., 2011). The Athi-Kaputiei Plains population has been split into a west-
ern (Athi (west)) and eastern (Athi (east)) population for the RMI and MCI.
See Methods for details.

Hourly movements peaked crepuscularly and were greatest across the Amboseli Basin

(mean = 407.6 m hr−1, SD = 204.4). Across the Mara and the Athi-Kaputiei Plains, hourly

movements averaged 258.0 m hr−1 (126.7) and 184.8 m hr−1 (93.5), respectively. Table

summaries of hourly movements are provided in Appendix A.5 and A.6. Circular statistics

highlight that wildebeest movements were most directed (ρ= 0.44) across the Amboseli Basin

between 7:00 - 8:00 AM (Appendix A.5). Similarly, although to a lesser degree, wildebeest

21



movements across the Mara and the Athi-Kaputiei Plains were most directed during this

same time period (ρ = 0.37 and ρ = 0.27, respectively; Appendix A.5).

Wildebeest across the Amboseli Basin moved more per day (8.2 km day−1, SD = 2.3)

than wildebeest across the Athi-Kaputiei Plains (3.6 km day−1, SD = 0.6, P < 0.001) or

the Mara (4.6 km day−1, SD = 0.9, P < 0.001) (Appendix A.7). No significant difference

in mean daily movement was observed between Athi-Kaputiei Plains wildebeest and the

Mara population (P > 0.05). These results were consistent with results of the mean daily

displacement. Tortuosity was also consistent across study areas, with no statistical difference

between populations observed (P > 0.05) (Appendix A.7).

2.4.2. Population-level Movement. Comparing animals with location data subset

to the same temporal period, wildebeest across the Amboseli Basin moved the furthest

annually (mean = 2,827.2 km yr−1, SD = 602.8, n = 5), significantly different (P < 0.01)

than wildebeest across the Athi-Kaputiei Plains (1,385.2 km yr−1, SD = 265.6, n = 9) (Fig.

2.2). Mara wildebeest (2,127.9 km yr−1, SD = 572.0, n = 7) were not significantly different

from either population (P > 0.05). Wildebeest across the Mara ranged across the largest

area (Fig. 2.1) and were also observed to have the greatest range in displacement among

individuals (mean displacement = 22.8 km, range = 0.7 - 66.7 km). Mean displacement was

3.1 km (range = 0.6 - 7.1 km) across the Athi-Kaputiei Plains and 17.3 km (range = 6.7 -

22.6 km) across the Amboseli Basin (Appendix A.3). Mean displacement, however, was not

significantly different between populations (P > 0.05) (Fig. 2.2).

The Realized Mobility Index (RMI) indicated a high degree of overlap among the move-

ment ranges of individual wildebeest across the Athi-Kaputiei Plains (western population)

(mean = 0.50 range = 0.20 - 0.71) and the Amboseli Basin (mean = 0.44, range = 0.08 -
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Figure 2.3. Annual movement in relation to temporal resolution of wilde-
beest across three study areas in Kenya. Regression lines are species estimates
from a linear mixed-effects model.

0.77). Less overlap was observed across the Athi-Kaputiei Plains (eastern population) (mean

= 0.26, range = 0.07 - 0.82) and the Mara (mean = 0.24, range = 0.00 - 0.81), with most in-

dividuals covering only a small portion of each population range (Fig. 2.2). The movements
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of individuals within each population were uncoordinated, with no significant difference ob-

served in the movement coordination (MCI) across populations (P > 0.05). The MCI was

low across all populations (Amboseli Basin = 0.06, Athi-Kaputiei Plains (western) = 0.06,

Athi-Kaputiei Plains (eastern) = -0.06, Mara = -0.06), with a maximum MCI of 0.72 ob-

served across the Amboseli Basin during a single 16-day time period (Fig. 2.2).

Analyses of annual movement were nearly identical across the Mara and Amboseli Basin,

with no significant difference (P > 0.5) observed in the slope or intercept across different

temporal resolutions (1-day, 2-day, 4-day, 8-day, 16-day) (Fig. 2.3). Significant differences (P

< 0.01), however, were observed in both the slope and the intercept of regression lines when

comparing Athi-Kaputiei Plains wildebeest with animals from the other two study areas.

This is an indication that the movements of wildebeest across the Athi-Kaputiei Plains are

more tortuous than the movements of wildebeest across the Amboseli Basin or Mara (Fig.

2.3).

2.4.3. Landscape Dynamics. Pronounced spatio-temporal variability in vegetation

productivity was observed across the Amboseli Basin and the Athi-Kaputiei Plains (Fig.

2.4). Less variability was observed across the Mara, although increased variability was ob-

served during the long dry season (June - November). Variability generally increased at

broader spatial scales, and was highest across the Amboseli Basin from November to April

and the Athi-Kaputiei Plains during the long dry season.

Similar seasonality patterns were observed across each study area, with the Athi-Kaputiei

Plains exhibiting the greatest degree of landscape seasonality and the Amboseli Basin the

least (Fig. 2.5A). Across the Mara, landscape unpredictability peaked from December - June

(day 321 - 161). Landscape unpredictability across the Athi-Kaputiei Plains was similar
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Figure 2.4. Semi-variance of productivity based on 10-years (2004-2013) of
MODIS normalized difference vegetation index (NDVI) data across the Mara,
Athi-Kaputiei Plains, and the Amboseli Basin. Study areas defined by the
minimum convex polygon (MCP) from wildebeest relocation data.
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Figure 2.5. Comparison of landscape phenology across three landscapes in
southern Kenya with regard to vegetation biomass (A) and landscape unpre-
dictability (B). Analyses based on 10-years (2004-2013) of MODIS NDVI data.

to the Mara, with the short rains (February - April; day 49 - 81) being marginally more

predictable across this region. Landscape unpredictability was lowest across the Amboseli

Basin, with the long dry season (June November; day 177 - 305) being the most predictable

feature across each study area (Fig. 2.5B).

2.5. Discussion

Following methods described by Mueller et al. (2011), I provide detailed information on

the movements of three populations of wildebeest that have experienced recent and wide-

spread population declines. This analysis compliments previous work completed on these

populations, including analyses of space use (Stabach et al. in prep) and the effects of habitat

disturbance on fecal glucocorticoid metabolites (i.e., stress hormones) (Stabach et al., 2015).

In addition, by analyzing movement across three study areas with differing levels of natural
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and anthropogenic disturbance, I provide insight into the likely effects of future conditions

on individual animal movement.

Movement is intimately linked with an animal’s fitness, facilitating an animal’s ability to

access better quality resources, encounter potential mates, and move away from an area when

conditions deteriorate. Wildebeest across the Amboseli Basin moved more than wildebeest

across the Mara and the Athi-Kaputiei Plains in almost every category measured. This was

an expected result considering the limits on productivity and the low-levels of anthropogenic

disturbance across this arid landscape. Wildebeest across the Athi-Kaputiei Plains, however,

moved less than expected based on landscape productivity alone. I expected annual and daily

movement to be less across the Athi-Kaputiei Plains than movement across the Amboseli

Basin because better quality resources should reduce an animal’s requirement to move. But,

Athi-Kaputiei Plains wildebeest also moved less than wildebeest across the Mara, the study

area with the greatest availability of resources. While lowered intraspecific competition

resulting from observed wildebeest declines could contribute to a decreased need to move

and locate resources, stocking rates of domestic livestock are high, with cattle competing

with wildebeest across the area for resources. Thus, it is more likely that the observed

decrease in movement of wildebeest across this study area is the result of increased levels

of anthropogenic disturbance (e.g., roads, fences) and not due to a lack of competition.

This is clearly evident related to the decline in annual movement when observed across

longer temporal periods, indicating more tortuous (i.e., less directed) movement paths in

wildebeest across this region (Fig. 2.3).
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I also incorporated two additional metrics (the Movement Coordination Index (MCI)

and the Realized Mobility Index (RMI) (Mueller et al., 2011)) to describe animal move-

ment. Movement coordination (MCI) was similar across each study area, although highest

across the Amboseli Basin, with wildebeest demonstrating near random movements. These

results indicate that collared animals were distributed in separate groups and that animals

reacted independently to fine-scale resource dynamics. Realized Mobility (RMI) was highest

across the Athi-Kaputiei Plains (western population) and the Amboseli Basin, indicating a

high degree of range overlap between individuals across these regions. Lowest RMI values

were observed across the Mara. The RMI of the eastern population of Athi-Kaputiei Plains

wildebeest was also significantly lower than that of the western population, indicative of addi-

tional space available to wildebeest across the eastern portion of this study area. Fencing and

anthropogenic disturbance are considerably lower across this portion of the Athi-Kaputiei

Plains, potentially providing increased habitat suitability for remaining wildebeest.

Analyses of landscape dynamics indicate that the Amboseli Basin has the greatest degree

of variability across different spatial and temporal scales. This is due to differences between

(1) the dense green vegetation located in the swamps within the national park boundary and

the dry, low quality vegetation that exists across the remainder of the ecosystem and (2)

productivity in dry season and wet season periods. Seasonality was also most predictable

across this study area, indicating that although variability exists related to the timing of the

start and end points (Altmann et al., 2002), dry seasons in the Amboseli Basin are far less

variable when compared to either the Mara or Athi-Kaputiei Plains; a factor known to lead

to migratory movement patterns (Mueller and Fagan, 2008; Mueller et al., 2011). Wildebeest

across the Amboseli Basin are largely restricted to obtaining water from the swamps within
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the national park during the dry season, dispersing away from the national park daily and

during wet season periods to exploit resources with lower levels of competition (Appendix

A.4). The Mara is the most productive of our study areas, with less variability across different

temporal and spatial scales than the Amboseli Basin or Athi-Kaputiei Plains. The observed

variability is less predictable between years, however. Consequently, I observed a mixture of

movement strategies across this study area, which include nomadism, range residency, and

migration (Appendix A.4). The lack of exclusivity is a common problem when attempting to

characterize population-level movements from analyses of individual animals (Mueller et al.,

2011), with an animals sex, reproductive status, and social status all having potentially

confounding effects on movement. Across the Athi-Kaputiei Plains, wildebeest are almost

exclusively range residents (Appendix A.4). It is unclear, however, the degree to which the

movement strategies of animals across this landscape are dictated by the observed levels of

anthropogenic disturbance.

Collared wildebeest were located primarily outside of protected area boundaries through-

out our study period. This is an interesting result considering the low levels of anthropogenic

disturbance found within the boundaries of these areas, especially across the Athi-Kaputiei

Plains where high levels of anthropogenic disturbance lie directly adjacent to the national

park boundary. The observed effect could be reflective of differences in vegetative quality,

predation pressure, or alternatively, a result of capture-induced bias, since animals were not

fit with collars within national park/reserve boundaries. Additional research is assuredly

necessary to confirm these results. Across the Athi-Kaputiei Plains, results are at least par-

tially biased by the Athi-Namanga road, as wildebeest did not move between the 1st and

2nd triangles during the study period. Wildebeest collared in the 2nd triangle were therefore
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unable to disperse to the national park. These data also provide quantitative support that

this historic local migration may have collapsed, with no collared wildebeest crossing the

road over the length of the study period.

My results also have important conservation implications across the region that can be

applied to other systems, especially dryland systems where the ability of species to move

between seasonal habitat ranges is essential for survival. Animals collared across the Athi-

Kaputiei Plains were observed with a single movement strategy (i.e., range residency), a stark

contrast to the Mara. In years of high levels of productivity, the restrictions on movement

likely have minimal effects on animals across this landscape, with the available habitat

seemingly providing the necessary requirements for extant animals to meet energy demands.

In excessively dry years, animals simply have no place to disperse. Unlike the Amboseli Basin,

where wildebeest are in the process of recovering from the multi-year drought that caused

extreme mortality in 2009, habitat isolation resulting from anthropogenic disturbance across

the Athi-Kaputiei Plains could result in a population that is unable to recover. Pastoralists

across the region recognize this threat, voicing concern about how and where they will find

suitable habitat for their livestock in times of drought.

Road construction is also a consistent threat across this region, and which has been

debated for years related to the potential effects of a road constructed to connect rural

communities across the Serengeti ecosystem (Dobson et al., 2010). While I did not set out

specifically to address this issue, my results clearly illustrate the effect that a developed

road (and the increased human land-uses that often develop alongside them) can have on

wildebeest movement and dispersal. While the Athi-Namanga road represents a road with
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greater road traffic volume and road-side development than is envisioned across the Serengeti

ecosystem, the threat to migrating animals is too great to risk.

By linking the movements of wildebeest across three study areas in Kenya with dynamics

of landscape productivity, I provide a greater understanding of how broad-scale landscape

changes effect individual movement patterns. The most predictable and dynamically chang-

ing landscape, the Amboseli Basin, led primarily to local-scale migratory-type movement.

The Athi-Kaputiei Plains was both more predictable and more variable than the Mara, with

wildebeest across this study area ranging across the smallest areas and moving the least per

day among the study areas monitored. Anthropogenic habitat disturbance likely acts as a

key contributor limiting movement across this study area, with wildebeest moving far less

than expected based on landscape productivity alone. Mara wildebeest had the greatest

range in movements, with some animals dispersing long distances while others remained lo-

cally resident throughout the entire study period. Taken together, these results provide an

increased understanding into the likely effects of future conditions on wildebeest movements,

an important determinant on the long-term sustainability of these threatened populations.
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CHAPTER 3

Mixed movement strategies in resident

white-bearded wildebeest

3.1. Summary

1In order to optimize access to resources and minimize risk of predation or conflict,

animals structure their spatial behaviour by switching between different movement states,

classically defined as encampment, exploration, or nomadism. In some dynamic environ-

ments, the combination of these movement states results in migration, a tactic employed to

access resources that vary spatially and/or temporally in a predictable manner. While most

populations can be characterized discretely as adhering to a specific strategy (i.e. migratory

or non-migratory), systems with mixed strategies are increasingly recognized. The distinc-

tion between individual strategies in such systems and related drivers remain poorly defined.

I investigated the movement strategies of Mara wildebeest, a sub-population of the greater

Serengeti wildebeest population, alleged to be non-migratory and restricted to the northern

range of the ecosystem. Using analyses of movement metrics (displacement distance, linear-

ity and range size) and conducted in a Bayesian framework, I distinguish two categories of

movement among individuals within this local population, with a ‘migratory’ class of individ-

uals that displaced nearly 5 times as far from initial collaring locations and moved 1.8 times

the distance per day as ‘residents’. A third movement state was identified when incorporat-

ing GPS data from the Serengeti migratory herd, with Serengeti migrants moving further

per day than either of the Mara wildebeest categories. Contrary to simple expectations, this

1A version of this chapter has been submitted for review at Animal Conservation with co-authors George
Wittemyer, J. Grant C. Hopcraft, Randall B. Boone.
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work demonstrates that the resident Mara wildebeest, a sub-population that has experienced

widespread decline, employs a mixture of movement strategies that likely relate to its ability

to cope with changing resource dynamics and rapid landuse changes occurring across this

ecosystem. Further, this study provides a framework for identifying where individuals fall

along the migratory-resident movement continuum based on movement metrics.

3.2. Introduction

Movement is a fundamental aspect of animal ecology, enhancing an individual’s ability to

obtain resources, encounter potential mates, avoid predation, or disperse from an area when

conditions deteriorate. Many studies have focused on quantifying different movement states

(Fryxell et al., 2004, 2008; Dalziel et al., 2008; Bunnefeld et al., 2011; Singh et al., 2012)

classifying movement as encamped/residential, exploratory/migratory, or nomadic. In most

systems, however, animals exhibit a mixture of movement strategies across time, making

exclusive assignment into one particular category difficult (Mueller and Fagan, 2008; Milner-

Gulland et al., 2011; Singh et al., 2012). As such, movement strategies can be thought of as

a continuum across these common classifications. Identifying where a species, population,

or individual falls along this continuum is important both for understanding conservation

threats and management needs.

There is increased concern about the sustainability of long-distance migrations (Berger

and Barbieri, 2004; Bolger et al., 2008; Wilcove and Wikelski, 2008; Harris et al., 2009;

Dobson et al., 2010), especially across terrestrial environments where habitats are becoming

increasingly fragmented or lost altogether due to competing human demands. For large

mammals, the connectivity of landscape patches is essential to allow animals to move from

areas of poor habitat quality when conditions deteriorate (Owen-Smith, 2004). Across the
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Mara Plains, a dryland system in southern Kenya that is the northernmost section of the

Mara-Serengeti ecosystem, expansion of mechanized agriculture and increased large-scale

ranching have decreased the total area available to grazers and fragmented portions of the

remaining habitat (Serneels et al., 2001; Homewood et al., 2001), leading to an approximate

81% decline in this population of white-bearded wildebeest (Connochaetes taurinus) (119,000

to 22,000 animals) over the past 30 years (Ottichilo et al., 2001; Serneels and Lambin, 2001;

Homewood et al., 2001; Ogutu et al., 2011). Concern exists, not only for this declining

resident wildebeest population, but also for the ∼1.3 million Serengeti migratory wildebeest

(Thirgood et al., 2004) which rely on this region for annual dry season grazing (Norton-

Griffiths, 1995).

The movement of the ‘Mara resident’ sub-population is largely unknown, despite the

threat it faces from landuse changes and fragmentation. To better characterize its spatial

needs, twelve Mara resident wildebeest were tracked from May 2010 to January 2013 (Boone

et al., 2009) using GPS collars from which I classified their movement strategies along a

resident to migratory continuum using a statistically robust approach. I also compared

the Mara residents with GPS movement data on five wildebeest from the larger Serengeti

migratory sub-population (Thirgood et al., 2004; Hopcraft et al., 2014). The degree of mixing

between these two sub-populations is unknown. I discuss the similarities and differences in

movement metrics and highlight a simple method that can be used to differentiate migratory

from non-migratory individuals within the same population.

3.3. Methods

3.3.1. Study Area. The Maasai Mara National Reserve (MMNR) is the northernmost

section of the Serengeti-Mara ecosystem located in southwest Kenya (bounding coordinates:
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34.7◦W, 35.4◦E, -1.2◦N, -1.8◦S) (Fig. 3.1) and characterized by open savanna. The MMNR

covers an area of 1,506 km2, with conservancies adjacent to the MMNR covering an additional

960 km2 of the Mara Plains. The Loita Plains are located to the north of the conservancies

and are recognized as the prime calving grounds of the resident sub-population. Widespread

wheat farming has expanded across this region over the past few decades (Serneels et al.,

2001), resulting in precipitous wildebeest declines (Serneels and Lambin, 2001). Traditional

agro-pastoralism is practiced by Maasai across this region. Maasai are restricted from the

MMNR but granted limited access to the conservancies during the dry season. Seasonality

is markedly bimodal with average precipitation ranging from 775 - 1,350 mm yr−1 (Xie and

Arkin, 1997). January and April are generally the wettest months.

3.3.2. Wildebeest Position Data. In May 2010, twelve wildebeest (eight female and

four male) were fit with Lotek WildCell R© Global Positioning System (GPS) collars (Table

3.1) across the Mara and Loita Plains. During this time period, resident wildebeest and

migratory wildebeest are located in different geographic areas (i.e., the populations are sepa-

rate). Thus, it was assumed that collars were deployed only on resident wildebeest, referred

to as Mara wildebeest. Animals were opportunistically selected from distinct herds, sepa-

rated on average by 21.8 km (mean pairwise distance). Approximate age (estimated from

teeth wear) at the time animals were collared ranged from 5 to 12 years old. Herd size ranged

from 10 to 64 animals, inclusive of adults, juveniles, and calves (Table 3.1). All aspects of

animal handling were conducted under the care of a Kenya Wildlife Service veterinarian

using nationally approved methods. Handling was approved by the International Animal

Care and Use Committee (IACUC) at Colorado State University, Fort Collins, Colorado,

USA (Approval No. 09-214A-02).
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Figure 3.1. Movements (1-year) of GPS collared wildebeest across the
Serengeti-Mara ecosystem. Mara residents (n = 9) (dashed lines) and Mara
migrants (n = 3) (solid lines) highlighted. Protected areas, including Mara
conservancies, displayed. Note that residents are almost exclusively located to
the north of the Maasai Mara National Reserve boundary.

GPS collars were programmed to acquire sixteen GPS positions per day, every hour during

the day (6 AM to 6 PM) and every three hours nocturnally (6 PM to 6 AM). Erroneous data

points were removed using accuracy estimates output with the positions. Only 2D positions

with a Dilution of Precision (DOP) < 5.0 and 3D positions with a DOP < 10.0 were included

in analyses. In total, 114 798 GPS positions were collected. Data were projected to Albers

Equal Area projection, WGS84 datum.
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Table 3.1. Summary of GPS collared white-bearded wildebeest (Con-
nochaetes taurinus). Age estimated on the collaring date. Herds include
adults, juveniles, and calves. Age and approximate herd size not collected
(–) for every animal. Dataset was filtered to a 1-day time interval, noon fixes
(± 2 h). Unprotected is the percentage of fixes collected to the north of the
boundary of the Maasai Mara National Reserve and across the Mara/Loita
Plains. Pct is the total number of fixes received (Fixes)/total fixes expected
(Period). Serengeti wildebeest from Thirgood et al. (2004) and Hopcraft et al.
(2014).

ID Sex Age Herd Unprotected Start Date End Date Fixes Period Pct

Mara wildebeest
2829 F 9 12 90.9 30-May-2010 29-May-2011 352 365 96.4
2831 M 5 64 100.0 30-May-2010 29-May-2011 353 365 96.7
2832 F 8 13 100.0 30-May-2010 29-May-2011 356 365 97.5
2833 F 7 51 100.0 30-May-2010 18-Mar-2011 282 293 96.2
2834 F 7 – 71.0 30-May-2010 29-May-2011 356 365 97.5
2836 M 9 11 94.4 30-May-2010 29-May-2011 357 365 97.8
2838 F 12 22 73.2 30-May-2010 12-Mar-2011 275 287 95.8
2839 M 10 39 94.1 30-May-2010 29-May-2011 354 365 97.0
2843 F 12 12 95.1 30-May-2010 28-Mar-2011 289 303 95.4
2844 F 7 25 100.0 30-May-2010 29-May-2011 358 365 98.1
2845 F 8 18 39.5 30-May-2010 29-May-2011 355 365 97.3
2846 M 10 16 99.7 30-May-2010 29-May-2011 355 365 97.3
Serengeti wildebeest
W04 F – – 0.0 1-May-1999 2-Nov-1999 185 186 99.5
W07 F – – 0.0 6-Jun-2000 8-Mar-2001 231 276 83.7
W08 F – – 3.5 2-Jun-2000 14-Dec-2000 195 196 99.5
W09 F 6 5000 0.0 21-Jun-2003 13-Jan-2004 207 207 100.0
W10 F 6 5000 0.0 20-Jun-2003 14-Jan-2004 209 209 100.0

I standardized the start/end dates that each animal was tracked to a 1-year study period

(30-May-2010 29-May-2011) and filtered to a 1-day time interval. Remaining data gaps (<

5% of each dataset) were filled using linear interpolation, conservatively estimating missing

locations as the linear midpoint between two observed locations (Tremblay et al., 2006).

The resulting dataset represents a complete daily trajectory for each animal (Table 3.1).

Additional versions of the data, filtered by longer temporal periods (i.e., 2-day, 4-day, 8-day,
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and 16-day), were also created. Results when analyzing these datasets representing coarser

sampling, however, did not change reported conclusions (provided in Appendix B.1).

3.3.3. Analysis of Movement Patters. I assessed the movements of Mara wilde-

beest by calculating linear and home range movement metrics. Linear movement metrics

consisted of the maximum linear path distance moved by each animal over the study pe-

riod, the average and maximum daily movement rate, and the average and maximum net

squared displacement (as described in Bunnefeld et al. (2011) and Singh et al. (2012)). Home

range metrics included the calculation of 100% Minimum Convex Polygons (MCP) (Mohr,

1947), Localized Convex Hull (LoCoH) home ranges parameterized from a fixed number of

k nearest neighbors (2
√

k/3)(Getz and Wilmers, 2004; Getz et al., 2007), and the 50% and

90% Gaussian fixed kernels using the reference parameterization (i.e., ‘href’). Movements of

collared wildebeest are displayed in Figure 3.1, with individual trajectories of each animal

displayed in Appendix B.2.

Three animals (2833, 2838, and 2843) were not tracked for the entire 1-year study period

(Table 3.2). To include these animals in statistical analyses, I proportionally adjusted the

home range metrics and the linear path distance of these animals based on animals that

completed the full length of study. That is, I calculated the difference between home range

and movement metrics for a 300-day study period (nearly equal to the period that each of

the three animals completed the study, Table 3.2) with results calculated over the entire

365-day study period. This method, as opposed to adjusting each metric based on the total

number of days tracked, more similarly and conservatively updated the metrics of the three

animals with those that completed the study.
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Localized changes in range use were assessed by calculating the arithmetic mean of the

X and Y coordinates (Wall et al., 2013). Movements in the north-south direction were

considered independently from movements in the east-west direction. I also calculated the

Movement Coordination Index (MCI). Formulated by Mueller et al. (2011), the MCI is based

on the X and Y shifts among individuals at each movement step and captures variation in

both direction and distance. Similar to a cross-correlation analyses, the MCI is less sensitive

to outliers and does not over-emphasize large deviations from the mean (Mueller et al., 2011).

Identical movements among individuals yield MCI = 1, with more independent and random

movements yielding MCI values closer to 0.

I calculated the MCI for Mara wildebeest, separated into residents and migrants (see

below) for the entire study period and pairwise between animals. Because the number of

animals differed between residents and migrants, I used a jackknife procedure when calcu-

lating the MCI on residents. Samples were analyzed from three individuals at a time, drawn

randomly and without replacement. The process was repeated for 100 iterations, calculating

the mean MCI at each movement step, before aggregating the statistic to a mean measure

for each temporal period. All movement analyses were calculated in the statistical program

R (Version 2.13.1, R Development Core Team (2013)), inclusive of the adehabitatHR/LT

(Calenge, 2006), proj4 (Urbanek, 2012), and sp (Pebesma and Bivand, 2005; Bivand et al.,

2013) packages.

3.3.4. Distinguishing Movement Strategies among Collared Wildebeest.

To distinguish between different movement strategies, I separated Mara wildebeest into two

categories (‘Mara Plains residents’ and ‘Mara migrants’) using a k -means cluster analysis

(Forgy, 1965; MacQueen, 1967; Hartigan and Wong, 1979). All home range and linear
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movement metrics (Table 3.2) were input into the clustering algorithm, resulting in nine

Mara residents (five female and four male) and three Mara migrants (all female).

3.3.5. Comparison to Serengeti Migrants. To assess if Mara residents/migrants

moved similarly to the Serengeti sub-population, I incorporated data from two separate GPS

studies on the movements of Serengeti migratory wildebeest (Thirgood et al., 2004; Hopcraft

et al., 2014). I refer to these animals as ’Serengeti migrants’. Five female Serengeti migrants,

collared for a period of 186 to 209 days, were subjected to the same data cleaning steps as

outlined above. I allowed for greater flexibility in the start dates among animals, which

ranged from 01-May-1999 to 21-June-2003 (Table 3.1).

I assessed the similarity in local conditions between collaring periods by comparing rain-

fall estimates (Xie and Arkin, 1997) across the time periods. I extracted 10-day (i.e., dekadal)

estimates of rainfall from a 10 km buffer around the MCP of each animal and compared the

means of these years with the mean and standard deviation (SD) of rainfall across our

study period. Year 2003 was wetter than 2010, while years 1999 and 2000 received a similar

cumulative amount of rainfall as year 2010 (Appendix B.3).

3.3.6. Statistical Analyses. I tested for statistical differences between the move-

ments of collared wildebeest using hierarchical Bayesian fixed-effect one-way ANOVAs. This

analysis method allowed us to make inference on the population and provide statements of

the probability that the movement metrics for each group (i.e., Mara residents, Mara mi-

grants, and Serengeti migrants) were derived from the same distribution. Following (Kery,
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2010) and (McCarthy, 2007), our model specification was:

yijk = αj(i) + εi

εi ∼ Normal(0, σ2)

where yijk is the observed movement metric k (listed in 3.3.3 above) of wildebeest i in

population j, αj(i) is the expected movement of a wildebeest in population j, and residual εi is

the random movement deviation of wildebeest i from its population mean αj(i). Observations

that did not meet the assumptions of normality, assessed using a Shapiro-Wilk test (Royston,

1982) with a significance of p < 0.05, were log-transformed.

Table 3.3. Summary of movement statistics of GPS collared white-bearded
wildebeest (Connochaetes taurinus). Results include linear movements and
home-range metrics. Difference is the probability that the movement statistic
mean of migrants was greater than that of residents.

Mara Residents Mara Migrants

Posterior Posterior
Statistic Median 95% CI Median 95% CI Difference

Total Movement (km) 656.0 (391.1, 906.0) 1102.6 (597.1, 1537.9) 0.948
Mean Velocity (km/day) 1.7 (1.2, 2.3) 3.1 (2.2, 4.0) 0.995
Max. Velocity (km/day) 14.6 (8.8, 20.3) 28.1 (18.1, 38.0) 0.988
Mean Displacement (km) 4.8 (2.4, 9.3) 43.5 (13.6, 138.7) 0.998
Max. Displacement (km) 19.7 (12.0, 32.5) 97.5 (41.2, 231.0) 0.998
100% MCP Area (km2) 260.2 (69.9, 966.7) 5497.8 (470.7, 64934.4) 0.983
50% Kernel Area (km2) 28.0 (7.0, 113.6) 2011.3 (178.2, 22768.4) 0.997
90% Kernel Area (km2) 153.0 (43.7, 535.9) 6269.2 (718.6, 55083.9) 0.997
LoCoH Area (km2) 49.2 (17.2, 141.0) 1029.0 (165.5, 6399.0) 0.996

Marginal posterior distributions of parameters were estimated using Markov chain Monte

Carlo (MCMC) methods. Analyses were implemented in program R (R Development Core

Team, 2013) using the rjags package (Plummer et al., 2010), JAGS version 3.2.0. Each of

three MCMC chains was run for 100 000 iterations; the first 20 000 iterations were discarded
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to allow for burn-in. Convergence was assessed by visual inspection of trace plots to ensure

a reasonable exploration of the parameter space, and by ensuring that the potential scale

reduction factor was < 1.02 for each variable (Gelman and Rubin, 1992). Results were back-

transformed, if necessary. At each MCMC step, I calculated the Bayesian equivalent to a

p-value by assessing whether the mean of one group was greater than the other. Sample R

code, comparing the median daily movement between Mara residents and Mara migrants, is

provided in Appendix B.4.

3.4. Results

3.4.1. Movement Patterns. Mara migrants moved at least double the amount of

Mara residents in nearly every movement category (Table 3.3). Mara residents displaced

a maximum distance of 19.7 km (posterior median) from initial collaring locations (95%

credible interval: 12.0 - 32.5) and spent > 90% of the year to the north of the Maasai Mara

National Reserve (MMNR) and outside of formally recognized protected areas. In contrast,

the maximum distance (posterior median) displaced by Mara migrants was 97.5 km (95%

credible interval: 41.2 - 231.0), nearly 5 times the distance displaced by Mara residents.

Mara migrants spent < 75% to the north of the MMNR boundary, with one migrant (ID

2845) spending < 40% of the year in this region (Table 3.1).

Similar trends were observed for home range metrics (Table 3.3). The probability that

the mean movement metric of the Mara migrants was greater than that of Mara residents was

0.95 for all movement and home range metrics. Posterior medians, 95% credible intervals,

and probabilities that the Mara migrant mean was greater than the Mara resident mean

are provided in Table 3.3. Animal trajectories and associated home ranges are displayed in

Appendix B.2.
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The Movement Coordination Index (MCI) showed differences between movement cate-

gories, with Mara migrants being more coordinated (MCI: 0.13, 95% credible interval: 0.11

- 0.15) than Mara residents (MCI: 0.02, 95% credible interval: 0.01 - 0.04). Pairwise, no two

animals had a MCI> 0.26. I also observed a strong north-south movement component among

Mara migrants (Appendix B.5). The timing of this movement (i.e., December-January) is

past the time period in which Serengeti migratory wildebeest would be expected to have

already moved from the area (i.e., October-November; see (Inglis, 1976; Thirgood et al.,

2004; Boone et al., 2006; Hopcraft et al., 2014)). The north-south movement of Mara mi-

grants, however, was small in comparison with the extensive (∼200 km) dispersal of Serengeti

migrants from the area (Fig. 3.2). Resident wildebeest were remarkably stationary in the

north-south direction. In the east-west direction, Mara migrants exhibited greater movement

than Mara residents (Appendix B.5).

3.4.2. Comparison to Serengeti Migrants. Serengeti migrants moved more than

double the daily movement rate (mean velocity) of Mara residents at 4.0 km/day (95% credi-

ble interval: 3.3 - 4.7), which exceeded the daily movement rate of Mara migrants (Fig. 3.3).

The probability that the movement rate of Serengeti migrants was greater than the move-

ment rates of Mara residents and migrants was 1.00 and 0.94, respectively. Mara migrants,

however, had a maximum daily movement rate (posterior median: 28.1 km/day; 95% cred-

ible interval: 18.1 - 38.0) that was greater than Serengeti migrants (posterior median: 23.1

km/day; 95% credible interval: 16.1 - 30.2). The probability that the maximum movement

rate of Serengeti migrants exceeded that of Mara migrants was 0.19. The pairwise MCI of

Serengeti migrants (W07 and W08) monitored in the year 2000 was 0.29. The MCI for the
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Figure 3.2. Mean position in the Northing direction for Mara residents
(dashed line), Mara migrants (black solid line), and Serengeti migrants (gray
solid line). Data plotted against month. Horizontal black lines represent
dry season periods in 2010, delineated by incorporating MODIS NDVI data
(MOD13Q1) into the TIMESAT software package with a Savitsky-Golay func-
tion (Jonsson and Eklundh, 2002, 2004; Eklundh and Jonsson, 2011). Note
that the Serengeti migrant data is representative of GPS data from years 1999,
2000, and 2003. The graph highlights the northerly movement of Serengeti
migrants towards the Mara wildebeest from June to August, where animals
resided during the dry season (August - October). The graph also highlights
the departure of Serengeti migrants from the area, pre-dating the southerly
movement of Mara migrants by approximately 2-months.

two animals (W09 and W10) monitored in 2003 was 0.27, indicating that Serengeti migrants

were more coordinated than Mara migrants/residents, but still at a low level of coordination.

3.5. Discussion

The Mara-Serengeti migration represents the second longest terrestrial mammalian mi-

gration remaining in Africa today (the migration of Burchells zebra (Equus quagga) across
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Figure 3.3. Daily movement rate posterior distributions of Mara residents,
Mara migrants, and Serengeti migrants.

parts of Namibia and Botswana is the longest (Naidoo et al., 2014)). Surprisingly little is

known about the movements of wildebeest across this ecosystem, and even less about the

space use of the resident population, despite wide recognition of its rapid decline. Only three

studies to date have monitored the movements of individual animals (Inglis, 1976; Thirgood

et al., 2004; Hopcraft et al., 2014) and each of these studies focused on the larger Serengeti

sub-population that calves in the southern Serengeti of Tanzania. Our study is the first

to track the threatened sub-population of ’resident’ wildebeest that calves in the Mara of

Kenya, providing detailed information about the movements of individual wildebeest within

this population and a direct comparison with results presented by Thirgood et al. (2004)

and Hopcraft et al. (2014).
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The approach developed and implemented to distinguish movement strategies (relying

on k -means clustering) across individuals in the ecosystem identified two movement strate-

gies employed in the Mara sub-population. It is notable that this straightforward approach

can be used to determine the number of distinct groups (e.g., Charrad et al., 2014), though

I focused simply on distinguishing migratory from non-migratory due to its conservation

relevance. Our results highlight that Mara migrants moved at least twice the amount as

their resident counterparts in nearly every movement category, were more coordinated in

their movements, and dispersed greater distances in the north-south and east-west direc-

tions. These traits provide descriptive evidence and an improved understanding of the move-

ment structure distinguishing migratory from non-migratory individuals. Interestingly, the

movements of Mara migrants were consistently less than Serengeti migrants in all assessed

categories except for the maximum daily movement rate. The timing of the initiation of lon-

gitudinal movements also differed between the Mara migrants and the Serengeti migrants.

It is possible that these findings are an artefact of the compared sampling periods, since

grass quality is the main driver governing individual wildebeest movements and can vary

considerably from year to year (Hopcraft et al., 2014). While further analyses comparing

individuals over the same time period are necessary, cumulative rainfall (Appendix B.3) was

similar between years compared, providing support for our findings. Our results demonstrate

at least three different movement strategies exist among individuals using this area.

The Mara herd is much smaller (∼20 000 individuals (Ottichilo et al., 2001)) than the

Serengeti herd (∼1.3 million individuals (Thirgood et al., 2004)), with wildebeest rarely

observed in groups > 150 individuals. Serengeti wildebeest are often observed traveling

in herds of 20,000 - 100,000 individuals. The Mara migrants, therefore, likely face greater
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predation risk when moving through densely wooded areas, which may account for the

observed increase in the daily maximum movement rate relative to the Serengeti population.

Alternatively, the increased movement rate could be entirely due to increased human densities

found to the north of the MMNR. Animal 2834, for instance, moved further per day than

any animal monitored (36.9 km/day). This increased rate of movement occurred when the

animal moved south from its initial collaring location in the Loita Plains through a relatively

narrow, heavily populated area along the Bardamat Hills (Fig. 3.1). This area forms a pinch

point to dispersal between the Loita Plains and the MMNR. Our data show that Mara

wildebeest use this area heavily and increase their movement rate when doing so.

Determining why individuals adhere to certain strategies was beyond the capacity of

this study. However, other migratory systems have identified a genetic component to the

migratory strategy taken by an individual (Northrup et al., 2014). It’s possible that Mara

wildebeest switch between movement strategies in successive years, which may be related to

an animal’s reproductive status. All three animals categorized as Mara migrants, for exam-

ple, were female. Female wildebeest have the potential to be both lactating and pregnant for

a 5-month period between June and October (Hopcraft et al., 2013), with lactating females

requiring 30% more energy than females in early pregnancy (Murray, 1995). I did not assess

the reproductive status of collared animals, but the increased movement observed in these

animals could be due to the necessity to meet energy demands or locate areas that provide

specific resources. Of the remaining animals categorized as Mara residents, the sex ratio

was nearly 50:50, with one female (ID 2844) moving the least (Table 3.2 ) of any of the

animals that were collared. Collecting ancillary data on the reproductive status of collared
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animals may help explain the patterns that I observed and provide valuable information to

investigate changes in movement strategies across years.

In order to make comparisons between animals, I analyzed movements only during a

1-year study period. While logistically necessary, this simplifies our inference on movement

strategies. Analyses of net squared displacement, often used to determine resident, nomadic,

or migratory behaviour (Bunnefeld et al., 2011; Singh et al., 2012), may provide different

inference depending on the length of time that movements are analyzed. Over the 1-year

study period, for example, Animal 2845 displaced 138.1 km from its initial collaring location

and moved in a nomadic fashion (Appendix B.6). When extending the monitoring period

to 2-years, this same individual is observed to return to within 5.9 m of its initial collaring

location. This suggests that residents probably move between different patches in a similar

way as Serengeti migrants, but at a much finer scale.

This study highlights three distinct movement strategies employed by wildebeest across

the Mara-Serengeti ecosystem. Mara wildebeest spent > 75% of time outside of formally pro-

tected boundaries regardless of strategy, emphasizing the importance of conservancies and

areas of lesser degrees of protection that are adjacent to the Maasai Mara National Reserve

and Serengeti National Park. While additional research (i.e., genetic analysis) is needed

to determine the degree of mixing between resident and migratory wildebeest populations,

this work defines the mechanistic differences in movement patterns between the Mara and

Serengeti wildebeest herds, as well as offering a simple framework for partitioning movement

strategies along the continuum of resident to migratory categorization. Such inference pro-

vides detailed specification about individual movement strategies to aid conservation and

management planning across the region.
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CHAPTER 4

Habitat disturbance effects on the physiological

stress response in resident Kenyan white-bearded

wildebeest (Connochaetes taurinus)

4.1. Summary

1 Regarded as a keystone species, white-bearded wildebeest (Connochaetes taurinus) are

found across the grassland savannahs of eastern Africa. Over the past 40 years, however,

many local populations have become threatened with extinction. This is the first study con-

necting fecal glucocorticoid metabolites (i.e., stress hormones) in wildebeest with landscape

variables of natural and anthropogenic disturbance. Using a validated technique, fecal sam-

ples (n = 168) were collected from wildebeest over a 3-month study period and across three

different study areas in Kenya with varying degrees of disturbance. The stress of sampled

populations was similar between study areas, with a seasonal decline in stress hormones

found between dry and wet season data collection periods. I used an information-theoretic

approach to rank models of fecal glucocorticoid metabolites. My highest ranking model in-

cluded an interaction between locally collected plant biomass and disturbance, the number of

calves in a group, and ∆NDVI (change in Normalized Difference Vegetation Index). A strong

positive effect related to biomass and disturbance suggested that tall/standing biomass and

high levels of disturbance contribute to elevated levels of stress in wildebeest. A strong neg-

ative effect related to ∆NDVI was also observed, suggestive that new growth lowers average

1A version of this chapter has been published in Biological Conservation 182:177-186: Stabach JA, Boone
RB, Worden JS, and Florant G. (2015). Habitat disturbance effects on the physiological stress response in
resident Kenyan white-bearded wildebeest (Connochaetes taurinus).
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stress levels. This research suggests that increased levels of habitat disturbance may have an

adverse effect on wildebeest populations across the region when habitat conditions deterio-

rate. Wildebeest likely avoid areas of high anthropogenic disturbance which may indirectly

lead to lowered fitness.

4.2. Introduction

White-bearded wildebeest (Connochaetes taurinus) are dominant herbivores found across

the grassland savannahs of eastern and southern Africa. Perhaps best known for their long-

distance seasonal migrations, wildebeest are often required to travel great distances to locate

areas of suitable forage, especially during the driest parts of the year when resources are

limited. The International Union for the Conservation of Nature (IUCN) currently lists

the population as stable (IUCN, 2013). However, this designation relates mostly to the

approximate 1.3 million wildebeest found across the Serengeti ecosystem (Thirgood et al.,

2004). In other parts of the species range and most specifically in Kenya where research

is focused, widespread and precipitous declines have been recorded (Estes and East, 2009;

Ogutu et al., 2011, 2013; Ottichilo et al., 2001; Reid et al., 2008). Directly related to these

population declines is the pervasive expansion of mechanized agriculture and large-scale

ranching that have occurred across the region (Serneels and Lambin, 2001). These processes

fragment the landscape, forming habitat discontinuities and imposing barriers (e.g., roads,

fences) to daily and seasonal movement.

Over the past 3 years, the movements of GPS collared wildebeest have been monitored

across three protected areas in Kenya to understand the effects of habitat fragmentation

and disturbance on movement (Boone et al., 2009). These areas, renowned for their rich

biologic diversity and known as Amboseli National Park, Nairobi National Park, and the
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Maasai Mara National Reserve, have experienced varying degrees of anthropogenic distur-

bance over the past half century. Results highlight that the movements of collared wildebeest

are markedly dissimilar between each study area (Boone et al., 2009). For example, in and

around Amboseli National Park, a study area where levels of anthropogenic habitat dis-

turbance are low, resident wildebeest move approximately 3.7 km/day (SD ± 3.6). Across

Nairobi National Park and the surrounding Athi-Kaputiei Plains, an area where levels of

anthropogenic disturbance are high, wildebeest move less than half as much (1.5 km/day,

SD ± 1.7). Unknown, however, is the effect that this observed reduction in movement has on

the internal state of the animal. That is, do restrictions on movement due to anthropogenic

habitat fragmentation and disturbance result in elevated levels of stress?

Originally termed general adaptive syndrome (Selye, 1936), stress is the adaptive physio-

logical response of an organism to cope with an external stimulus (a ‘stressor’) and maintain

homeostasis (Dantzer et al., 2014). Stress, therefore, is not inherently negative, but instead

an evolved response to cope with local environmental changes. If the stressor is acute or

short-term (minutes or hours), such as pursuit by a predator, the body reacts by allocating

resources to essential functions (i.e., the brain and muscles) to avoid the attack. Non-essential

functions from which resources are temporarily curtailed, such as reproduction or growth,

have little long-lasting effect on the individual (Moberg, 2000). If the stress is chronic or

long-term (days or weeks), however, the individual may reach allostatic overload (McEwen

and Wingfield, 2003), a condition of distress where the energy required to meet metabolic

needs is greater than the energy available. Here, an individual may have exhausted energy

stores and be unable to mount a suitable response to a subsequent new stressor, such as
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a predatory attack (Moberg, 2000). Characteristic effects of chronic stress include a sup-

pressed immune system, inhibition of reproductive behavior, and decreased growth (Keay

et al., 2006; Moberg, 2000; Sapolsky et al., 2000), factors which may lead to an increased sus-

ceptibility to disease, lowered reproductive output, and would be expected to be detrimental

to the fitness of the individual or population (although debate exists in wild populations (see

Boonstra, 2013)).

Evaluating stress generally consists of measuring the amount of circulating glucocorticoid

hormones (corticosterone or cortisol) in the blood or excrement of a species (Keay et al., 2006;

Palme et al., 2005); the proportion and composition varying among species (Millspaugh and

Washburn, 2004). Fecal samples are often advantageous in comparison to collecting blood

samples for analyses on free-ranging animals, since they can be collected at regular intervals

with minimal disturbance to the animal, thus reducing bias of capture induced stress (Harper

and Austad, 2000).

Assays of fecal glucocorticoid metabolites also reflect the average level of circulating

glucocorticoids in the body of an animal, rather than a specific point in time like a blood

sample, which may make them a better representation of the overall stress to an animal

over a species-specific time period (Millspaugh and Washburn, 2004; Sheriff et al., 2011;

Wasser et al., 2000). The analysis of fecal glucocorticoid metabolites has been shown to

more consistently show the effects of anthropogenic disturbance when compared to a blood

sample (Dantzer et al., 2014) and are becoming increasingly applied across various taxa to

investigate this issue (e.g., common vole (Microtus arvalis), Navarro-Castilla et al., 2014;

elephant (Loxodonta africana cyclotis), Munshi-South et al., 2008; northern spotted owl

(Strix occidentalis caurina), Wasser et al., 1997).
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Understanding the physiological effects of stress, in concert with an analysis of animal

movement, may provide a more integrated assessment of how animals cope with local envi-

ronmental changes. I collected fecal samples from free-ranging wildebeest across three study

areas in Kenya that varied in relation to severity of drought and level of anthropogenic dis-

turbance. I quantified fecal glucocorticoid (hereafter, fGC) metabolites from these samples

to (1) compare baseline fGC metabolite levels across these study areas, and (2) investigate

the factors that may be contributing to observed fGC levels. First, I predicted (P1 ) that

quantified fGC metabolites would be highest across the Athi-Kaputiei Plains, where levels of

human disturbance and habitat fragmentation are greatest amongst my study areas. Second,

I predicted (P2 ) that fGC stress levels would decline with the onset of the wet season across

all three study areas, a concomitant response to better resources being available.

4.3. Methodology

4.3.1. Study Area. Wildebeest fecal samples were collected across three study areas

located in the Kajiado and Narok counties in Kenya (Fig. 4.1). These areas, referred to in the

text as the Amboseli Basin, Athi-Kaputiei Plains, and Mara, represent the wildlife dispersal

areas in and around Amboseli National Park (2◦39′ S, 37◦14′ E), Nairobi National Park

(1◦28′ S, 36◦52′ E), and the Maasai Mara National Reserve (1◦28′ S, 35◦6′ E), respectively.

Each area is considerably larger than its respective protected area (Amboseli Basin: 3,907

km2; Athi-Kaputiei Plains: 2,144 km2; Mara: 4,952 km2) and include large pastoral areas.

Areal boundaries were defined by wildebeest movement data collected from GPS collaring

efforts across the region over the past 3 years (Boone et al., 2009). I restricted the study

area boundaries to the Kenyan portion of each area even though wildebeest move freely

across the international boundary between Kenya and Tanzania in the Amboseli Basin and
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Figure 4.1. Study area map highlighting sampling locations across three
study areas in the Narok and Kajiado counties, Kenya.

Mara. As a comparison, Amboseli National Park (400 km2) encompasses only 10% of the

subpopulations Kenyan range, Nairobi National Park (112 km2) just 5%, and Maasai Mara

National Reserve (1,505 km2) 30%.

Dominant species of vegetation, common across each study area but occurring in differ-

ent concentrations include drought tolerant bamboo grass (Pennisetum mezianum), Maasai

grass (Pennisetum stamineum), Naivasha star grass (Cynodon plechtostachyus), red oat grass

(Themeda triandra), and whistling thorn (Acacia drepanolobium). Additional vegetation

species exist that are unique to each area. A more thorough description of the vegetation
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across each study area can be found in Dublin (1995), Gichohi (1990), Talbot and Talbot

(1963), and Western (1973).

Rainfall and anthropogenic disturbance vary widely across each study area. The Amboseli

Basin is the driest of the three study areas, with average precipitation ranging from 450 to 750

mm yr−1 (Xie and Arkin, 1997). This area has the lowest levels of human disturbance, due in

part to the low productivity of the system, with an average human population density of 13

people km−2 (LandScan, 2008). The Mara is the most productive of the three systems, with

average precipitation ranging from 775 to 1,350 mm yr−1 (Xie and Arkin, 1997). Moderate

levels of disturbance characterize this study area. Human population density is 16 people

km−2 (LandScan, 2008). Concern exists, however, due to the encroachment that has occurred

along the boundaries of this protected area over the past 40 years, resulting in precipitous

declines in wildlife, including wildebeest (Ogutu et al., 2009, 2011; Ottichilo et al., 2001;

Serneels and Lambin, 2001). Across the Athi-Kaputiei Plains, human activities are pervasive,

with human population averaging 44 people km−2 (LandScan, 2008). Extensive fencing

and development have occurred across this region, adversely fragmenting the landscape and

disrupting migratory pathways (Reid et al., 2008). Readers are directed to Reid et al. (2008)

for images depicting the extent of fencing and development that have occurred across this

region over the past few decades. Average precipitation across the Athi-Kaputiei Plains

ranges from 400 to 900 mm yr−1 (Xie and Arkin, 1997).

To assess the validity of the remotely sensed derived estimates of precipitation, I com-

pared the Xie and Arkin (1997) dataset with rainfall data from the Amboseli Elephant Re-

search Project (AERP) and the Amboseli Trust for Elephants (AERP, unpublished data).

The AERP data are recorded daily. The correlation between the current rainfall estimates
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Figure 4.2. Comparison of data sources measuring precipitation (mm) across
the Amboseli Basin. Graph compares precipitation measured by the Amboseli
Elephant Research Project and the Amboseli Trust for Elephants (AERP)
with current estimates of rainfall (RFE) from satellite imagery (Xie and Arkin,
1997). Data are summarized in 10-day increments (Dekads) with the AERP
results represented as vertical lines.

across the Amboseli Basin and the AERP data was 92% when summarized in 10-day incre-

ments (Dekads) to match the Xie and Arkin (1997) dataset, highlighting a strong relationship

(Fig. 4.2).

4.3.2. Field Methods. I generated 200 sampling points across each study area to guide

field efforts. Recognizing that wildebeest are not randomly distributed across the landscape,
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I used the sampling points to search for the visual presence of wildebeest within an ap-

proximate 1 km radius at each point. If a wildebeest was sighted, I navigated towards the

animal/group and waited for the animal(s) to defecate so that a sample(s) could be col-

lected. If a wildebeest was not sighted, I moved to the next closest sampling point and

repeated the process. Samples were collected only from a single animal group if multiple

groups shared the same habitat covariates. In general, this provided for an unbiased sample

across each study area over a 3-month study period (February-April 2013). In the Amboseli

Basin, however, many of the fecal samples were collected in close proximity to the national

park boundary (Fig. 4.1). This was due to the lack of available surface water across most of

this arid landscape. Wildebeest are water dependent, able to survive without water for no

longer than 2-3 days (Talbot and Talbot, 1963). As a result, the majority of the landscape

was devoid of wildebeest, except near the park boundary where wildlife could access the

perennial swamps for water. The eastern portion of the Mara was also not sampled due to

logistic difficulties associated with trying to cover this expansive study area (Fig. 4.1).

I revisited each study area twice within the 3-month study period, once prior to the onset

of wet season rains and once after the rains had started (Fig. 4.3). The Amboseli Basin was

sampled from 05-08 March 2013 and 16-19 March 2013, the Mara from 21-25 February 2013

and 22-25 March 2013, and the Athi-Kaputiei Plains from 11-18 February 2013 and 27-30

March 2013. Only moist fecal samples were collected and no samples were collected with

visible signs of urine contamination.

Multiple samples were collected from contiguous groups of wildebeest, defined as individ-

uals within < 50 m from each other, to assess group-wise variation. Group size ranged from

3 to 130 individuals. A maximum of 5 samples were collected per group, with a total of 168
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Figure 4.3. Sampling periods, sampling locations (n), and estimated rain-
fall across three study areas in southern Kenya, January-April 2013. Means
and standard deviations calculated from data for the time period 1996-2011.
Dekadal (10-day) rainfall estimates from Xie and Arkin (1997).

samples (indicated by ns) (Amboseli Basin: ns = 46; Athi-Kaputiei Plain: ns = 60; Mara:

ns = 62) collected across 81 sampling locations (nl) (Amboseli Basin: nl = 26; Athi-Kaputiei

Plain: nl = 27; Mara: nl = 28). Samples (∼10 g subsample) were homogenized by hand to

more evenly distribute hormones and decrease sample variability (Millspaugh and Washburn,

2003). Collected samples were frozen immediately at -20◦C in an on-board vehicle freezer

and stored for analysis at the International Livestock Research Institute (ILRI) in Nairobi,

Kenya.
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4.3.3. Fecal Sample Preparation. Frozen fecal samples were thawed, chopped with

a sterile razor blade (to increase surface area), and placed in a lyophilizer for 3 days. Samples

were then ground using a mortar and pestle, large particles removed, and the remainder thor-

oughly mixed. Freeze-drying is known to preserve fecal glucocorticoids while grinding/mixing

the sample is known to control for dietary changes in steroid excretion (Wasser et al., 1993,

1994), thus further homogenizing the sample and reducing sample variation (Millspaugh

and Washburn, 2003). Glucocorticoids were extracted from feces following Millspaugh et al.

(2001), a modification of Schwarzenberger et al. (1991). Dried feces (∼0.2-g) were placed in a

test tube with 2.0-mL of 90% methanol and vortexed at high speed for 30 minutes. Samples

were centrifuged at 2,500 rpm for 20 minutes; the supernatant pipetted and stored at -20◦C

until assayed (Wasser et al., 2000). All laboratory analyses, including the quantification of

fecal glucocorticoid metabolites, were conducted at ILRI.

4.3.4. Fecal Glucocorticoid Analysis. I used a 125-I corticosterone radioimmunoas-

say (RIA) kit (MP Biomedicals, Cat. No. 07-120103, Solon, Ohio, USA) to extract fecal

glucocorticoids from collected samples. The technique was previously validated using stan-

dard biochemical validations (e.g., recovery of exogenous corticosterone, parallelism) on non-

captive wildebeest fecal samples collected across two protected areas in South Africa (Chin-

nadurai et al., 2009). I analyzed collected fecal samples in 6 assays, with samples randomly

allocated to each assay. I followed the manufacturers assay protocol, except that I halved

the volume of all reagents (Wasser et al., 2000) and used an incubator shaker (Series 25, New

Brunswick Scientific Co., Inc.) instead of a vortex mixer to thoroughly mix samples prior

to centrifuging. Samples were shaken at top speed (i.e., 400 rpm) for 2.5 hours to ensure
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thorough mixing. The manufacturers reported cross-reactivity of the antisera was 100% with

corticosterone and < 0.5% for other steroids.

Samples analyzed in the 2nd assay (n = 34) were excluded from further statistical analyses

due to overall inter-assay variation of 42.0% when included. Box plots confirmed a problem

with this assay, which was likely due to a short-term problem with the heating/cooling

system that elevated the ambient temperature (> 30◦C) throughout the room where the

shaker was located, potentially denaturing the metabolites and inhibiting antibody/antigen

binding (Fig. 4.4). The average intra-assay variation was 10.5% and inter-assay variation

was 14.0% for the remaining assays.

4.3.5. Data Layers. Data layers potentially related to observed fecal glucocorticoid

metabolite levels were collected in the field and amassed from spatial data within a Geo-

graphic Information System (GIS). These included local- and broad-scale biologic and an-

thropogenic disturbance factors that were thought a priori to influence fGC metabolite levels.

I made the assumption that the stresses experienced by the animal over the past 24-48 h (i.e.,

the approximate gut passage time of wildebeest based on artiodactyla estimates (Warner,

1981)) were the same as those collected at the fecal sample collection point. This was a

reasonable assumption since I aimed to assess general baseline stress levels and not specific

acute responses, and because the median net daily displacement (i.e., the straight line dis-

tance moved between the first and last daily position collected) of GPS collared wildebeest

was low (0.7 km/day across all three study areas).

4.3.5.1. Field Data. I collected the group composition (adults vs calves), vegetation

height, date/time, and a visual assessment of local disturbance at each sampling location

(Table 4.1). Group size is theorized to be one of the main mechanisms for reducing an
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Figure 4.4. Fecal glucocorticoid (fGC) metabolite assay variation. Fecal
samples were randomly allocated to each assay. Figure highlights intra- and
inter-assay variation amongst assays and an issue with Assay 2.

individuals vulnerability to predation (Caro, 2005), with anti-predator vigilance increasing

in groups with calves (Childress and Lung, 2003). Wildebeest are also known carriers of

pathogen causing bovine malignant catarrhal fever (MCF), a disease which is passed from

mother to offspring and shed mostly through nasal secretions of newborns (Baxter et al.,

2014; Mushi and Rurangirwa, 1981). The disease, caused by the Alcelaphine Herpes Virus 1

(AIHV-1), is deadly to cattle. Pastoralists actively manage their cattle by keeping the two

sympatric species separate to minimize transmission. Lactation, which peaks between Feb-

ruary and May, is also the most energetically demanding time period for females, requiring
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30% more energy per day than females in early pregnancy (Hopcraft et al., 2013; Murray,

1995). I therefore expected an inverse relationship between fGC levels and wildebeest groups

without calves and a direct linear relationship when wildebeest groups contained calves.

Wildebeest are also known to avoid grass longer than four inches (∼10 cm) in length

(Talbot and Talbot, 1963), preferring new shoots to maximize nutrient content and mini-

mize lignin intake (i.e., low C:N ratio) (Wilmshurst et al., 1999). Tall grass or dense thickets

also have the potential to conceal predators (Hopcraft et al., 2014) and are thus expected to

contribute to increased fGC levels. Fecal glucocorticoid levels may be exacerbated when veg-

etative conditions deteriorate, especially if animals are required to take additional predation

risk to access them or if animal dispersal is limited by anthropogenic disturbance.

Biomass height was measured using a disc pasture meter (DPM) (Hardy and Mentis,

1985), with measurements collected every 25 m up to a distance of 150 m from the fecal

sample collection point in each of the 4 cardinal directions (25 measurements total per sam-

pling location). If multiple fecal samples were collected from the same group of wildebeest,

I used the approximate center of the collected samples as the plot center point. Collected

biomass heights were averaged, providing 1 measure of vegetation height for each sampling

location. Mean vegetation height was converted to above-ground biomass (kg ha−1) using

an equation (kg ha−1 = [31.7176 (0.32181/z) x 0.2834]2, where z is the mean DPM height in

cm) from Zambatis et al. (2006). I refer to this variable as ‘Biomass’.

Local disturbance factors collected across each study area included the number of humans,

dogs, vehicles, shoats (i.e., sheep and goats combined), cattle, dwellings, and fences within

sight of the sample collection point (∼1-2 km distance). I recognize that many of these

factors change daily, but are likely representative of the general stressors experienced by
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the animal across its daily movement range. To minimize the effect of any one factor and

standardize the result across study areas, I combined the factors into an index of disturbance

(D) at each sampling location:

Dj =

∑n
i=1

xij/max xi

n

where xij is the ith disturbance factor count for the jth sampling location and n is the

total number of disturbance factors. Additional details of calculating this Index are provided

in Appendix C.1.

4.3.5.2. Remotely sensed data. Plasma glucocorticoid levels have been shown to increase

due to lower-than-average food supply (reviewed in Busch and Hayward, 2009). I included

broad-scale patterns of vegetation productivity, in the form of the Normalized Difference

Vegetation Index (NDVI) (Carroll et al., 2004), to assess forage availability and as a potential

predictor of fGC stress. NDVI is a ratio of the near-infrared and red reflectance spectral

bands on-board NASAs Moderate Resolution Imaging Spectroradiometer (MODIS) and is

known to be a direct measure of an areas vegetation productivity/greenness (Goward and

Prince, 1995; Tucker, 1979). Delivered as a 16-day/cloud-free data product, NDVI values

approaching 1 indicate green vegetation and those approaching -1 indicate dry or dead

vegetation.

Wilmshurst et al. (1999) predict that wildebeest maximize energy intake on grass swards

3 cm (∼1.2 inches) in height. I calculated the NDVI difference (∆NDVIt: NDVIt-NDVIt−1)

between the current and previous NDVI image to capture flushes in new growth. Positive

values indicate that an area is greening while negative values indicate drying. Areas that are
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near zero, indicate that an area is stable or has not changed. I predicted that fecal samples

collected from areas that were greening (i.e., positive ∆NDVI) would contribute to lowered

fGC levels.

To estimate broad-scale patterns of anthropogenic risk, such as illegal hunting or ha-

rassment, I calculated the distance to individual structures digitized from available satellite

imagery (ESRI, 2011; GoogleEarth, 2013) and weighted by the estimated density of human

population (LandScan, 2008). Described by Hopcraft et al. (2014), locations near densely

populated areas have the highest values (i.e., high risk) while locations furthest from densely

populated areas have the lowest values (i.e., low risk).

All layers were projected to Albers Equal Area projection (WGS84). The native res-

olution (250 m) was retained for NDVI and ∆NDVI. The resolution of the anthropogenic

risk layer was 50 m. Raster values were extracted at each sampling point in the statistical

program R (Version 2.13.1, R Development Core Team, 2013). All parameters collected to

relate to quantified fGC metabolite concentrations are summarized in Table 4.1.

65



Table 4.1. Data layers derived from observations in the field (February-April
2013) and from Geographic Information System (GIS) analyses to relate to
quantified fecal glucocortioid (fGC) metabolites in white-bearded wildebeest
(Connochaetes taurinus).

Parameter Description

Field Data
Adults Count of the number of adult wildebeest within fecal sampling

group.
Biomass Biomass height collected using a disc pasture meter and

converted to Above-Ground Biomass following Zambatis et al. 2006.
Units: kg ha−1. Parameter representative of local biomass at sample
collection point. Parameter scaled and centered for mixed model
analysis.

Calves Count of the total number of wildebeest calves within fecal sample
collection group.

Disturbance Index Index of disturbance, inclusive of the number of fences, livestock,
roads, humans present at the time of sample collection.

Visit Date sample collected, converted to a factor of 2 categories for each
study area.

Remotely Sensed Data
NDVI Normalized Difference Vegetation Index representing vegetation

greenness and derived from bands 1 and 2 aboard the Moderate
Resolution Imaging Spectroradiometer (MODIS).
16-day repeat period; 250-m spatial resolution (Carroll et al., 2004).

∆NDVI NDVI difference between the current and previous NDVI image
(NDVIt-NDVIt−1) throughout the study period.

Anthropogenic Risk The distance to individual structures (50-m spatial resolution),
weighted by estimated human population density (LandScan, 2008).
Structures digitized from available satellite imagery (ESRI2011,
GoogleEarth2013). Parameter adopted from Hopcraft et al. (2014).

4.3.6. Statistical Analyses. Since multiple fecal samples were collected within the

same animal group to assess group-wise variation, I used a linear mixed-effects model with

fGC metabolite concentration as the response variable (Pinheiro and Bates, 2000) to appro-

priately deal with the spatial pseudoreplication that existed (Crawley, 2012). The sample

ID, unique to the sample but linked to the sampling location with its cohort, was assigned

as the random effect. None of the input variables had collinearity issues, assessed via a
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variance inflation factor analysis (Hair et al., 1995). The variable Biomass was not collected

at 23 sampling locations. This reduced the total number of samples included for statistical

analyses to n = 117 (Amboseli Basin: ns = 23; Athi-Kaputiei Plains: ns = 39; Mara: ns =

49) from 61 sampling locations (Amboseli Basin: nl = 16; Athi-Kaputiei Plains: nl = 20;

Mara: nl = 25).

To assess the contribution of variables to explain the variability in observed fGC metabo-

lite concentrations, I used an information-theoretic approach (Burnham and Anderson,

2002). All possible variable combinations were assessed. Results were model averaged

because no single model explained > 0.90 of the variation in quantified fGC metabolite

concentration (Burnham and Anderson, 2002). I used Akaike’s Information Criterion cor-

rected for small sample size (AICc) and Akaike weights to rank models. All models within

≤ 2 AICc from the top-ranking model were considered informative (Burnham and Anderson,

2002) (Table 4.2). I log transformed the dependent variable (fGC metabolite concentration)

and scaled and centered the fixed effect Biomass (Table 4.1). Visual inspection of residual

plots did not reveal any obvious deviations from homoscedasticity or normality. I calculated

Conditional R2 to assess goodness-of-fit of the top-ranked model (Table 4.3), incorporat-

ing both fixed and random effects (Nakagawa and Schielzeth, 2013). To make comparisons

among study areas and between data collection periods (dry season vs wet season), I used

one-way analysis of variance (ANOVA) (Zar, 2010).

4.4. Results

The highest ranked study area model for ln(fGC) included an interaction between Biomass

and Disturbance Index, and the parameters Calves (number of calves) and ∆NDVI (Cond. R2
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Table 4.2. Candidate model rankings for predicting fecal glucocorticoid (fGC) metabolites in resident white-
bearded wildebeest, Kenya, February-April 2013. Parameter descriptions provided in Table 4.1. Models within
∆2 AICc of the best candidate model displayed.

Model ka AICc ∆AICb
c wc

i

Biomass*Disturbance Index + Biomass + Disturbance Index + ∆NDVI + Calves 8 0.69 0 0.34
Biomass*Disturbance Index + Biomass + Disturbance Index + ∆NDVI 7 1.67 0.98 0.21
Biomass*Disturbance Index + Biomass + Disturbance Index + ∆NDVI + Calves + NDVI 9 2.21 1.52 0.16
Biomass*Disturbance Index + Biomass + Disturbance Index + ∆NDVI + Calves + Anth.Riskd 9 2.35 1.66 0.15
Biomass*Disturbance Index + Biomass + Disturbance Index + ∆NDVI + Calves + Visit 9 2.52 1.82 0.14

aNumber of estimable model parameters
bDifference in value between Akaike’s Information Criterion for small sample sizes (AICc) of the current and best model
cAkaike weight: the probability that the current model is the best model
dAnthropogenic Risk
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Table 4.3. Top-ranking linear mixed models for predicting fecal glucocorti-
coid (fGC) metabolites. Parameter descriptions provided in Table 4.1. Pa-
rameters whoe 95% Confidence Interval (CI) do not overlap 0 in bold font.

Estimate SE 95% CI Cond. R2b

Intercept 2.95 0.04 (2.88, 3.02) 0.24
Biomass*Disturbance Index 2.17 0.48 (1.24, 3.10)
Disturbance Index 0.83 0.39 (0.07, 1.58)
Calves 0.01 0.00 (0.00, 0.01)
Biomass -0.04 0.03 (-0.10, 0.01)
∆NDVIa -1.07 0.26 (-1.57, -0.56)

a∆NDVI: Change in Normalized Difference Vegetation Index.
bCond. R2: Conditional R2, describing the proportion of variance explained by

both the fixed and random factors (Nakagawa and Schielzeth, 2013).

= 0.24; Table 4.3). Competing models (∆AICc ≤ 2) included the parameters NDVI, An-

thropogenic Risk, and Visit (collection date). The interaction term (Biomass*Disturbance

Index) and ∆NDVI were consistently included in all of the highest ranking models (Table

4.2). Akaike weights were low, however, indicating that a considerable amount of variation

was unaccounted for.

I found a strong positive relationship between ln(fGC) and the interaction term (Biomass

* Disturbance Index) (Estimate = 2.17, SE = 0.48; Table 4.3, Fig. 4.5). A negative rela-

tionship was identified for ∆NDVI (Estimate = -1.07, SE = 0.26; Table 4.3, Fig. 4.6).

A positive relationship was also identified for Calves (Estimate = 0.01, SE = 0.00; Table

4.3), although the 95% confidence intervals for this parameter included zero (Table 4.3).

Model averaged coefficients and associated confidence intervals (provided in Table 4.4) high-

light the effect that each additional parameter had on ln(fGC), with parameters other than

Biomass*Disturbance Index and ∆NDVI having only minor effects.

No statistical difference was discovered (F2,131 = 0.07, p = 0.94) between average fGC

metabolite concentrations between study areas (x̄ = 21.25 ng/g, SE = 0.47), rejecting my
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Table 4.4. Model averaged parameter estimates for predicting fecal glu-
cocorticoid (fGC) metabolites in resident white-bearded wildebeest, Kenya,
February-April 2013. Coefficients derived from parameters with a cumulative
weight of ≤ 0.90 of the best model. Parameter descriptions provided in Table
4.1. Parameters whose 95% Confidence Interval (CI) do not overlap 0 in bold
font.

Parameter Estimate SE 95% CI

Intercept 2.97 0.08 (2.80, 3.14)
Biomass*Disturbance Index 2.13 0.51 (1.12, 3.13)
Disturbance Index 0.74 0.41 (-0.06, 1.55)
NDVI 0.04 0.14 (-0.33, 0.62)
Calves 0.00 0.00 (0.00, 0.01)
Anthropogenic Risk 0.00 0.00 (-0.01, 0.02)
Site (Mara) 0.00 0.06 (-0.28, 0.18)
Adults 0.00 0.00 (0.00, 0.00)
Visit -0.03 0.07 (-0.26, 0.08)
Biomass -0.04 0.03 (-0.10, 0.02)
Site (Athi-Kaputiei Plains) -0.02 0.06 (-0.28, 0.08)
∆NDVI -0.88 0.44 (-1.65, -0.30)

first prediction (P1 ) that fGC metabolite concentrations would be highest in wildebeest

inhabiting the Athi-Kaputiei Plains. Quantified fGC metabolite concentrations were similar

to those reported by Chinnadurai et al. (2009) and ranged from 11.04 ng/g to 39.49 ng/g.

Chinnadurai et al. (2009), however, report a near 10 ng/g difference between quantified fGC

metabolite concentrations from the dry to wet season. I identified a smaller change (2.05

ng/g), with mean fGC metabolite concentrations decreasing from 22.28 ng/g (SE=0.56)

during my first data collection period (dry season) to 20.23 ng/g (SE = 0.73) after the

start of the wet season. This decrease was significant (F1,132 = 7.35, p <0.01) (Table 4.5),

providing support for expected outcomes (P2 ).

The decline in fGC metabolite concentrations was not consistent across study areas,

however. Across the Amboseli Basin, for example, fGC metabolite concentrations decreased

from 23.42 ng/g (SE = 1.65) to 20.05 ng/g (SE = 0.86), a non-significant decrease between
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Table 4.5. Fecal glucocorticoid (fGC) metabolites compared across dry and
wet season collection periods. Data collection periods defined in the text. Stan-
dard error provided in parentheses. Asterisks indicate significant differences
(*p < 0.10, **p < 0.01).

Dry Season Wet Season

Study Area n mean (ng/g) n mean (ng/g) Difference

Amboseli Basin 13 23.42 (1.65) 19 20.05 (0.86) -3.37*
Athi-Kaputiei Plains 24 21.03 (0.89) 24 21.26 (1.35) +0.23
Mara 30 22.78 (0.72) 24 19.34 (1.40) -3.44**

67 22.28 (0.56) 67 20.23 (0.73) -2.05**

sampling periods (F1,30 = 3.15, p < 0.09). Across the Mara, a similar trend was observed

with fGC metabolite concentrations decreasing from 22.78 ng/g (SE = 0.72) to 19.34 ng/g

(SE = 1.40). The quantified decline over this short period was significant (F1,52 = 8.93, p <

0.01). Across the Athi-Kaputiei Plains, no such decline was observed, with fGC metabolite

concentrations increasing slightly from 21.03 ng/g (SE = 0.89) to 21.26 ng/g (SE = 1.35);

a non-significant increase between sample collection periods (F1,46 = 0.02, p = 0.89) (Table

4.5).

The average variation of sampled groups was large (s2 = 26.1), with animals sampled

across the Mara having the largest variation (s2 = 40.4) and Amboseli Basin the smallest (s2

= 10.7). The variance of samples collected across the Athi-Kaputiei Plains was 22.7. I found

no statistical difference between solitary individuals (males) and groups without calves (F1,78

= 0.24, p = 0.63), or between groups with and without calves (F1,104 = 0.05, p = 0.83). The

calf-to-adult (C:A) ratio was lowest for wildebeest groups sampled across the Athi-Kaputiei

Plains (C:A = 0.21, SD ± 0.06), with the Amboseli Basin having the highest C:A ratio (C:A

= 0.46, SD ± 0.22). The C:A ratio for sampled wildebeest groups across the Mara was 0.32

(SD ± 0.29).
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Summary statistics, highlighting means and standard deviations, emphasize the variabil-

ity amongst collected parameters between study areas and sample collection periods. The

amount of biomass (kg ha−1) was highest where samples were collected in the Athi-Kaputiei

Plains, with lowest levels measured across the Mara. As expected, levels of local distur-

bance (Disturbance Index) were highest across the Athi-Kaputiei Plains and lowest across

the Amboseli Basin (Table 4.6).

Figure 4.5. Effect of the parameters Biomass and Disturbance Index (Dis-
turbInd) on quantified fecal glucocorticoid (fGC) metabolites. The parame-
ter Biomass has been scaled and centered. Low, medium, and high levels of
DisturbInd (left to right) are provided. Gray polygons are 95% Confidence
Intervals. See Table 4.1 for parameter descriptions.

Dissecting the values that were inputs to the Disturbance Index highlight that the number

of shoats (sheep and goats) and cattle were highest in areas sampled across the Mara. The

average shoats counted per sample collection period across the Mara was 214 (SD ± 354).

The average number of cattle sighted at sample collection periods was 83 (SD ± 228). Across

the Amboseli Basin and the Athi-Kaputiei Plains, the average number of shoats counted at

sample collection periods was 14 (SD ± 70) and 159 (SD ± 220), respectively. The average

number of cattle at sample collection periods was 39 (SD ± 76) across the Amboseli Basin
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and 30 (SD ± 52) across the Athi-Kaputiei Plains. Other measures of disturbance, such as

the number of structures, fences, humans, or cars were all highest across the Athi-Kaputiei

Plains. Fences were never observed across the Amboseli Basin or the Mara where samples

were collected. Factors counted at each sampling location and included in the Disturbance

Index are provided in Appendix C.1.

Figure 4.6. Effect of the parameter ∆NDVI (change in Normalized Differ-
ence Vegetation Index) on fecal glucocorticoid (fGC) metabolites. Gray poly-
gon is the 95% Confidence Interval. See Table 4.1 for parameter descriptions.

4.5. Discussion

The parameters ∆NDVI and the interaction between local biomass and disturbance had

strong effects on quantified fGC metabolite concentrations. The effects of these parameters

confirmed expected outcomes with fGC metabolite concentrations decreasing in response to

positive ∆NDVI values (i.e., new growth) and increasing as levels of disturbance increased
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across a gradient of biomass. The parameter ∆NDVI is capturing the flushes of vegetation

that are advantageous to wildebeest in relation to nutrient content (new shoots ∼ 3 cm in

height (Wilmshurst et al., 1999)). Grass that is dry and/or senescent (∆NDVI values that

are either negative or near zero (i.e., non-changing)) represent grass that is poor in nutrient

content and that wildebeest may select only when no better option is available, such as during

dry season periods. This is likely why I observed a small but significant decrease in fGC

metabolite concentrations between my first (end of the dry season) and second (start of the

wet season) data collection periods (P2 ). These results could also be due to how hormones

under different diets were metabolized or excreted (Dantzer et al., 2011) and deserves further

investigation, but seem to confirm findings from other studies related to food abundance in

non-starvation conditions (e.g., Jenni-Eiermann et al., 2008; Kitaysky et al., 1999). During

starvation, results from field studies are unclear (see Busch and Hayward, 2009). Other

confounding factors, such as calving, could also be attributed to the changes I observed in

fGC levels between sampling periods. Across the Amboseli Basin and Mara, wildebeest had

already calved prior to my first data collection period but across the Athi-Kaputiei Plains,

calves were not observed until my second data collection period. This study area is the only

location where observed fGC levels increased between the first and second data collection

periods.

The interaction between biomass and disturbance is an interesting result because it high-

lights that when disturbance is low, biomass has little to no effect on fGC metabolite concen-

trations. This is presumably because animals are able to disperse to areas with suitable forage

to meet metabolic needs if local conditions are of poor quality. As disturbance increases to

high levels, however, I observed a strong effect related to locally measured biomass, with the
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Table 4.6. Mean (± SD) of variables collected in relation to quantified fecal glucocorticoid (fGC) metabo-
lites. Visit 1 and Visit 2 are representative of two different data collection periods and not of the same loca-
tion/individual. Parameter descriptions provided in Table 4.1.

Athi-Kaputiei Plains Amboseli Basin Mara

Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2
Variable n=24 n=24 n=13 n=19 n=30 n=24

fGC 21.03 (4.35) 21.26 (6.62) 23.42 (5.96) 20.05 (3.73) 22.78 (3.92) 19.34 (6.85)
Adults 23 (14) 19 (12) 22 (20) 21 (19) 43 (47) 38 (44)
Biomass (kg ha−1)a 1006.07 (259.29) 1590.78 (372.78) 675.39 (680.39) 1525.48 (929.51) 939.71 (334.15) 786.04 (403.97)
Calves 0 - 3 (3) 8 (9) 5 (4) 3 (5) 6 (9)
Disturbance Index 0.15 (0.20) 0.11 (0.08) 0.01 (0.02) 0.00 (0.01) 0.04 (0.07) 0.07 (0.03)
NDVI 0.33 (0.09) 0.47 (0.03) 0.24 (0.08) 0.30 (0.14) 0.52 (0.04) 0.56 (0.05)
∆NDVIb -0.04 (0.04) 0.17 (0.04) -0.04 (0.05) -0.06 (0.04) -0.10 (0.03) 0.09 (0.05)
Anthropogenic Risk 8.98 (8.56) 5.47 (0.91) 1.85 (1.22) 1.96 (1.77) 1.35 (1.00) 5.16 (7.08)

aBiomass not collected at every location. Sample sizes (Visit 1, Visit 2): Athi-Kaputiei Plains (17,22); Amboseli Basin (11,12); Mara
(28,21)
b∆NDVI: Change in Normalized Difference Vegetation Index
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potential to nearly double the average fGC metabolites measured when forage conditions are

of poor quality. This has important implications for wildebeest across the region, especially

across the Athi-Kaputiei Plains where levels of human disturbance and fragmentation are

growing at alarming rates (Reid et al., 2008). The partial regression coefficients (displayed

in Fig. 4.5) and summary statistics (Table 4.6), also highlight that the majority of samples

were collected from areas in which local measures of disturbance were low. Thus, while I did

not observe elevated fGC metabolite concentration across the Athi-Kaputiei Plains (P1 ), it

is likely that wildebeest avoid areas with high levels of disturbance, altering the distribution

of wildebeest across the region and lowering the carrying capacity. As such, the effects of

stress on reproduction and resulting population dynamics need not be a direct pathological

effect like those observed in biomedical research and which have received considerable debate

(Boonstra, 2013).

Table 4.7. Summary table (Mean (± SD)) of variables collected in relation
to quantified fecal glucocorticoid (fGC) metabolites. Results are representative
of data collected across all three study areas (Athi-Kaputiei Plains, Amboseli
Basin, and Mara). Parameter descriptions provided in Table 4.1.

Visit 1 Visit 2
Variable n=67 n=67

fGC 22.28 (4.56) 20.23 (6.01)
Adults 32 (35) 27 (31)
Biomass (kg ha−1)a 907.94 (415.75) 1269.27 (661.81)
Calves 3 (6) 5 (6)
Disturbance Index 0.07 (0.14) 0.07 (0.07)
NDVI 0.40 (0.13) 0.45 (0.13)
∆NDVIb -0.06 (0.05) 0.08 (0.10)
Anthropogenic Risk 4.18 (6.27) 4.36 (4.58)

a Biomass not collected at every location.
Sample size (Visit 1:56, Visit 2:55)
b∆NDVI: Change in Normalized Difference Vegetation Index
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Among the other variables included in my analysis, none had a significant effect on

quantified fGC metabolite levels. This was not altogether surprising considering: (1) the

coarse scale that some of the parameters were measured (e.g., human population density

(LandScan, 2008), included in the parameter Anthropogenic Risk, was measured at 1 km

resolution), (2) the limited number of samples and short length of my study period, and (3)

the lack of ancillary data collected with individual samples, such as age, sex, reproductive

status, and social status. Each of these ancillary factors has been identified by a number

of studies as key components to explaining variation amongst glucocorticoid levels (Busch

and Hayward, 2009; Creel et al., 2013; Dantzer et al., 2014; Millspaugh et al., 2001). Wasser

et al. (1997), for example, found that males respond more strongly to human disturbance than

females, although various other studies (e.g., Navarro-Castilla et al., 2014) have found the

opposite effect or no effect at all (e.g., Munshi-South et al., 2008). Creel et al. (2013) note that

glucocorticoid levels vary among populations and years, and depend on a variety of factors

including the stability of a species’ social hierarchy, the local environmental conditions, and

the manner in which social rank is obtained (or maintained). Subordinate male olive baboons

(Papio anubis), for instance, have been shown to have higher glucocorticoid levels than higher

ranking baboons, but only when the social hierarchy was stable (Sapolsky, 1992). Clearly,

manly factors can influence glucocorticoid metabolites. My results show that within group

variation was high, confirming these results and indicating that further research is necessary

before making any steadfast conclusions.

I had intended to collect samples from marked individuals, but this became increasingly

difficult when animals were within groups, even if an individual was observed defecating.

While sex and reproductive status can be determined using standard laboratory analyses,
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these tests were not conducted on collected samples. Fecal glucocorticoid metabolite levels

were predicted to be higher for groups with calves than those without, but this was not

observed. Nor was there an observed difference between samples collected from groups and

those collected from single animals (i.e., males). The size of the wildebeest group at calving

has been shown to drastically decrease mortality among newborn calves (Hopcraft et al.,

2013). Thus, although I observed no effect, there is likely a hormonal stress response in

relation to group size that could be identified during this period. During a four month period

from June to October, reproductive females have the potential to be both lactating and

pregnant. This period of time makes females more susceptible to predation and starvation

than non-reproductive individuals (Hopcraft et al., 2013). In addition, reproductive males

compete for dominance and establish breeding territories during the rut (May-June), a period

in which individuals are known to lose up to 80% of their kidney fat (Hopcraft et al., 2013).

I did not collect samples over the entirety of any of these life stages. Doing so may elucidate

fGC metabolite fluctuations that were unobserved but likely exist.

Other factors, namely predation or distance to ephemeral water sources, were not in-

cluded in my model and could aid in improving model fit. Wildebeest have evolved in the

presence of predators and although a predatory attack assuredly promotes an acute stress

response, a chronic stress response would seem to be maladaptive. Boonstra (2013) argue

this point for all ungulates that have evolved in the presence of wolves (Canis lupus), such

as elk (Cervus canadensis). Similar conclusions may be inferred for other ungulates with

multi-annual reproductive cycles, such as wildebeest. My results show that surveyed wilde-

beest groups across the Athi-Kaputiei Plains had the lowest calf-to-adult ratio of my three

study areas. Although speculative at this time, indirect effects of predation or anthropogenic
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disturbance may force wildebeest into lower quality habitat, resulting in decreased fitness

and reproductive output, but not necessary increased fGC metabolite levels (a similar result

as observed in elk (Creel et al., 2009)).

Here I provide detailed information about the average fGC levels of three populations

of wildebeest. While quantified fGC metabolite concentrations showed no statistical dif-

ferences between study areas and further research is necessary, the strong effect related to

the interaction between biomass and disturbance should be of concern for conservationists

and land-planners across the region. Wildebeest are considered keystone species throughout

these ecosystems (Sinclair and Byrom, 2006), the loss or severe reduction of which could

have both important negative implications for biodiversity and local economies throughout

the region.

4.6. Conclusions

I used a validated laboratory technique to assess fGC metabolite concentrations in free-

ranging wildebeest across three study areas in Kenya with varying degrees of anthropogenic

and natural disturbance. My results did not identify statistically significant differences in

fGC metabolite levels between study areas. I did, however, observe a significant decline in

fGC concentrations between dry and wet season sampling periods. Although the explana-

tory power of my model was low, I identified a strong positive effect related to the interac-

tion between biomass and anthropogenic disturbance and a strong negative effect related to

changes in vegetation greenness (∆NDVI), both of which could have important implications

for wildebeest. Importantly, it seems likely that wildebeest avoid areas with high levels of

anthropogenic disturbance, which may be altering the distribution of the species across the

landscape and indirectly affecting fitness.
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This research could be further improved by collecting samples from marked individuals

over a longer study period in which ancillary information such as age, sex, and reproductive

status are known. Used together with ongoing radio-collaring efforts throughout the region,

these data provide a greater understanding of the effects of natural and anthropogenic habitat

disturbance on a dominant herbivore that has experienced recent and pervasive population

declines.
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CHAPTER 5

Seasonal habitat selection of white-bearded

wildebeest

5.1. Summary

1Resident white-bearded wildebeest (Connochaetes taurinus) have experienced wide-

spread declines across much of their range over the past few decades, attributed to landscape

changes. Despite the ecological significance of this decline and its links to spatial factors,

surprisingly little is known about the resource needs and habitat use of these animals. Using

GPS data collected from 2010-2013, I assessed resource selection of wildebeest inhabiting

three study areas in Kenya with varying degrees of natural and anthropogenic disturbance.

Wildebeest were observed to consistently avoid anthropogenic features and dense woody

cover across study areas irrespective of season, suggesting avoidance of landscape features

perceived with being associated with increased predation risk. Wildebeest were also ob-

served to avoid primary roads, most especially across the Athi-Kaputiei Plains where human

density and disturbance was highest. Wildebeest demonstrated the strongest response to

NDVI across the Amboseli ecosystem, likely driving the pronounced spatial shifts that were

observed. Selection of natural and anthropogenic features were similar across the Mara and

Athi-Kaputiei Plains, with the exception of distance to primary and secondary roads that

most likely relates to differences in traffic volumes across these sites. I also observed strong

shifts in space use between day and nighttime temporal periods, especially in relation to

1This chapter is in preparation for submission to Ecological Applications with co-authors George Wittemyer,
Randall B. Boone, Robin S. Reid, and Jeffrey S. Worden.
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anthropogenic risks, highlighting complex patterns of space use. The variability in selec-

tion provides detailed information as to how wildebeest react to local environmental factors

across landscapes, and provides mechanistic insight to how fragmentation can drive popula-

tion declines. Furthermore, the quantified responses of wildebeest to landscape features can

aid future conservation management efforts and planning to sustain imperiled wildebeest

populations.

5.2. Introduction

The loss and fragmentation of habitat is recognized as one of the leading causes of species

loss and extinction worldwide (Dobson, 1997). While the effects of habitat loss are straight-

forward, fragmentation (or the loss and isolation of remaining habitat) related to anthro-

pogenic disturbance can have indirect effects on wildlife populations that are more difficult

to measure. For instance, fragmentation is known to impose restrictions on movement and

force individuals into areas of poor habitat quality (Hobbs et al., 2008), potentially leading

to lowered fitness. In dynamic environments, predicting the effects of habitat fragmentation

can be more difficult because resource selection may also change during seasonal periods

(Boyce et al., 2002; Wiens et al., 2008). As such, comparative frameworks across ecosystems

experiencing differing degrees of fragmentation can offer more robust insight into the impact

that fragmentation may have on animal populations.

Losses of connectivity or reductions in the size of seasonal ranges of white-bearded wilde-

beest (Connochaetes taurinus) in East Africa have been shown to have pronounced effects

on landscape carrying capacities (e.g., Mbaiwa and Mbaiwa 2006). Across the Mara Plains

in Kenya, for example, resident wildebeest have declined by 81% over a 20-year time period

(1977-1997), a result of wet season range restrictions stemming from land-cover development
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along the regions western border (Ottichilo et al., 2001; Serneels and Lambin, 2001). A simi-

lar result has been observed across the Athi-Kaputiei Plains, a neighboring ecosystem where

resident populations have declined 93% over a similar time period (1977-2011) due to rapid

land-cover development and a severing of the populations seasonal habitat ranges (Reid et al.,

2008). Thus, although wildebeest are currently listed as a species of least concern (IUCN,

2013), many local populations are threatened with extinction. Despite the known threats

from land-use change, no study has investigated the effect of human impacts and seasonal

periods on wildebeest resource selection. Such information is critical to understanding the

response of wildebeest to increasing degrees of landscape change, particularly with respect

to land-use planning interventions to ameliorate these impacts.

Previous studies of hormonal stress levels in wildebeest did not identify differences related

to varying degrees of anthropogenic disturbance at the landscape scale (Stabach et al., 2015).

The authors theorized, however, that wildebeest likely move away from heavily disturbed

areas which alters the distribution of animals, but does not necessarily lead to elevated levels

of stress. A similar response was observed by Creel et al. (2009), with elk (Cervus canadensis)

forced into sub-optimal habitat due to increased predation risk from reintroduced of gray

wolf (Canis lupus). Thus, disturbance has the potential to indirectly lead to lowered fitness

by altering the distribution of a species and forcing animals to select areas of poor habitat

quality. Investigating habitat use under variable degrees of human disturbance may help

elucidate these links.

Resource selection functions (RSFs) are commonly used to examine species-habitat re-

lationships (e.g., Hebblewhite and Merrill 2008; Matthiopoulos et al. 2011; Roever et al.
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2012), providing information about the habitat use of organisms that can inform conser-

vation management plans. Most often conducted in a logistic regression-based framework,

RSFs evaluate the amount of habitat ‘used’ by a species in relation to what is available

(as defined by the investigator) (Manly et al., 2002). Thus, if a resource is used in greater

proportion to what is available, the resource is assumed to be selected by the individual.

RSFs are ideally suited for studies using global positioning system (GPS) collars, especially

in combination with remotely sensed data sources tracking resource dynamics. Important

considerations in a RSF include accounting for statistical independence between data points

and appropriately evaluating availability, both of which can effect coefficient estimates and

statistical inference (Gillies et al., 2006; Northrup et al., 2013).

I evaluated the resource selection of GPS tracked resident white-bearded wildebeest across

three study areas in Kenya, each with differing levels of natural and anthropogenic distur-

bance. I used a hierarchical approach to account for the lack of independence associated

with repeatedly sampling individual movements. I fit separate models to wet and dry season

periods and test the predictions that: (P1 ) wildebeest select areas with greater primary

productivity during dry season periods; (P2 ) wildebeest take greater risks during dry season

periods, resulting in greater use of areas in close proximity to dense forage cover and human

uses (i.e., areas with higher predation risk); and (P3 ) wildebeest avoid areas with high levels

of anthropogenic disturbance. I separated the data further between day (06:00-17:59) and

nighttime (18:00-05:59) sampling periods to test an additional prediction (P4 ), formulated

by Reid (2012), that wildebeest are attracted to local settlements at night due to the extra

predator security and resources that these areas provide.

84



5.3. Methods

5.3.1. Study Area. The study area encompassed three landscapes in southern Kenya

and northern Tanzania, broadly defined by the movements of resident wildebeest fitted

with GPS collars over a 3-year study period (2010-2013). I refer to these areas as the

Amboseli Basin, the Athi-Kaputiei Plains, and the Mara (Fig. 5.1). Note, however, that the

movements of collared animals extend well beyond the geographic region normally described

as the Mara. As such, the Mara is meant as a simplification to refer to this population

and not necessarily where collared animals were located for the entirety of the study period.

The Amboseli Basin extends from 36◦43’E, 2◦17’S to 37◦42’E, 2◦57’S and includes Amboseli

National Park. Average human population density is 14 people km−2 (LandScan, 2008).

The Mara is the largest of the three study areas (26,000 km2), extending from 34◦44’E, 1◦4’S

to 35◦50’E, 2◦58’S, covering portions of the Serengeti-Mara ecosystem and including the

Maasai Mara National Reserve (MMNR) in Kenya and portions of Serengeti National Park

(SNP) in Tanzania. Average human population density is 13 people km−2 (LandScan, 2008),

with dense settlement and mechanized agriculture occurring along the western boundary

of the MMNR and the northwestern corner of SNP. The Athi-Kaputiei Plains (36◦43’E,

1◦18’S to 37◦9’E, 1◦55’S) is located directly south of Kenya’s capital city, Nairobi, and

is the most anthropogenically disturbed of the three study areas, with an average human

population density of 43 people km−2 (LandScan, 2008). Nairobi National Park is located at

the northernmost section of this landscape and is fenced along its northern boundary. The

remainder of the system has otherwise been subject to rapid development and growth over

the past few decades (Reid et al., 2008).
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A pronounced southeast to northwest rainfall gradient exists across the region, with the

majority of rainfall falling during two rainy seasons (broadly April-June and November-

December). The Mara is the most productive of the three systems, receiving ∼665 mm of

rainfall annually (range [1998-2013]: 350-1425 mm; Xie and Arkin 1997, and the Amboseli

Basin the least productive (∼370 mm rainfall annually; range [1998-2013]: 300-525 mm; Xie

and Arkin 1997. Rainfall across the Athi-Kaputiei Plains is moderate, averaging 475 mm

annually (range [1998-2013]: 415-570 mm; Xie and Arkin 1997. Each area is comprised of

semiarid grassland, dominated by mixed Acacia and Commiphora woodlands.

5.3.2. Relocation (Use) Data. Thirty-six adult wildebeest (22 female and 14 male)

were opportunistically captured and fitted with Lotek WildCell R© GPS collars (Lotek Wire-

less Incorporated, Canada) between May and October 2010 (National Council for Science

and Technology research permit no. NCST/RR1/12/1/MAS/39/4). Nine (9) animals were

collared across the Amboseli Basin, 12 animals across the Athi-Kaputiei Plains, and 15 ani-

mals across the Mara (Table 5.1). All collared individuals were assumed to be from distinct

groups, with a mean pairwise distance between initial locations of 12.7 km across the Am-

boseli Basin, 26.5 km across the Athi-Kaputiei Plains, and 21.8 km across the Mara. All

aspects of animal handling were administered by Kenya Wildlife Service field veterinarians

and approved by the International Animal Care and Use Committee (IACUC) at Colorado

State University, Fort Collins, Colorado, USA (Approval No. 09-214A-02).

Collars were programmed to collect the location of animals 16 times per day, every hour

from 6 AM - 6 PM and every three hours from 6 PM - 6 AM (local time). I removed 2-

dimensional data points with a Dilution of Precision (DOP) > 5.0 and 3-dimensional points

with a DOP > 10.0 to avoid using data that may have large spatial errors (Lewis et al.,
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Figure 5.1. Study areas (labeled) and protected areas (1 Amboseli National
Park, 2 Athi-Kaputiei Plains, 3 Maasai Mara National Reserve, 4 Serengeti
National Park) across southern Kenya and northern Tanzania. Main roads
displayed in light grey. Large rectangles represent general areas where resource
selection assessed, based on wildebeest GPS data.

2007). Data were rarified to a 3-hour time interval. Mean fix success was 94.2% and ranged

from 73.1% to 100.0%. The duration that wildebeest were collared ranged from 16 to 964

days (median = 538). A total of 139,634 fixes across the thirty-six individuals were collected,

ranging from 119 to 7,427 records of use per animal (Table 5.1).

Data were separated into dry and wet season periods and combined across years. Seasonal

start/end dates were defined using MODIS Normalized Difference Vegetation Index (NDVI)
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(MOD13Q1) data (Carroll et al., 2004) and the TIMESAT software package with a Savitsky-

Golay function (Jonsson and Eklundh, 2002, 2004). Transitional periods (i.e., ± 10 days

of seasonal start/end dates) were removed from analyses. The total number of locations

used for each time period were 41,330 among 35 individuals for the dry season (Amboseli

Basin: 15,018 locations, n = 9; Athi-Kaputiei Plains: 12,215 locations, n = 12; Mara:

14,097 locations, n = 14) and 66,461 among 36 individuals for the wet season (Amboseli

Basin: 8,813 locations, n = 9; Athi-Kaputiei Plains: 27,150 locations, n = 12; Mara: 30,498

locations, n = 15). Data were further separated within each season into day (06:00-17:59)

and nighttime (18:00-05:59) temporal periods. Data were projected to Albers Equal Area

projection, WGS84 datum.

Table 5.1. Summary of GPS collared white-bearded wildebeest (Connochaetes taurinus).
Data were filtered to a 3-Hour time interval.

Duration Fixes Pct
ID Sex Start Date End Date (Days) Received Complete

Amboseli Basin
2837 M 11-Oct-2010 8-Jul-2011 270 2,060 95.4
30069 F 12-Oct-2010 8-Oct-2012 727 5,546 953
30073 F 10-Oct-2010 15-Jan-2013 828 6,324 95.5
30075 F 10-Oct-2010 19-Apr-2012 557 3,992 89.6
30076 F 11-Oct-2010 29-Oct-2012 749 5,758 96.2
30078 F 11-Oct-2010 16-Feb-2011 128 976 95.7
30081 M 10-Oct-2010 12-Dec-2010 63 501 99.8
30083 M 12-Oct-2010 1-Jun-2011 232 1,765 95.1
30085 M 11-Oct-2010 10-Jun-2012 608 4,231 87.0

Athi-Kaputiei Plains
2840 M 15-Oct-2010 13-Sep-2011 333 2,367 89.0
2842 M 15-Oct-2010 17-Mar-2012 519 3,901 94.0
30068 F 16-Oct-2010 25-Dec-2010 70 554 99.8
30070 F 20-Oct-2010 14-Jun-2011 237 1,782 94.2
30071 F 19-Oct-2010 11-Jan-2013 815 6,182 94.9
30072 F 18-Oct-2010 19-Oct-2012 732 5,534 94.5

Continued on next page
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Table 5.1 – continued from previous page
Duration Fixes Pct

ID Sex Start Date End Date (Days) Received Complete

30074 F 16-Oct-2010 15-Jan-2013 822 5,834 88.7
30077 F 19-Oct-2010 20-Nov-2012 763 5,887 96.4
30079 F 21-Oct-2010 17-Oct-2012 727 5,496 94.4
30082 M 17-Oct-2010 15-Jan-2013 821 6,279 95.6
30084 M 19-Oct-2010 8-Dec-2011 415 3,028 91.2
30086 M 16-Oct-2010 5-Feb-2012 477 3,673 96.2

Mara
2829 F 28-May-2010 21-Jun-2012 755 5,722 95.5
2830 F 28-May-2010 18-Aug-2010 82 655 100.0
2831 M 26-May-2010 13-Jun-2012 749 5,709 95.2
2832 F 27-May-2010 15-Jan-2013 964 7,386 95.8
2833 F 28-May-2010 18-Mar-2011 294 2,205 93.6
2834 F 30-May-2010 18-Dec-2011 567 4,356 96.0
2835 F 26-May-2010 24-Nov-2010 182 1,434 98.4
2836 M 30-May-2010 10-Dec-2012 925 5,858 79.1
2838 F 29-May-2010 12-Mar-2011 287 2,167 94.2
2839 M 26-May-2010 26-Sep-2011 488 3,591 91.8
2841 M 29-May-2010 14-Jun-2010 16 119 90.2
2843 F 27-May-2010 28-Mar-2011 305 2,312 94.6
2844 F 27-May-2010 15-Jan-2013 964 7,427 96.3
2845 F 29-May-2010 24-May-2012 726 5,545 95.4
2846 M 25-May-2010 16-Aug-2011 448 3,428 95.7

Mean: 518 3,879 94.2
Std Dev: 287 2,142 3.94

5.3.3. Habitat Covariates. Wildebeest are variable grazers (Gagnon and Chew, 2000),

preferring grass shoots < 3 cm in height to maximize energy intake (Wilmshurst et al., 1999),

and are restricted to areas with available surface water (Talbot and Talbot, 1963). The dis-

tribution of wildebeest is also limited to open areas, based more on an aversion to woody

habitats that may conceal predators than by geographic relief (Georgiadis, 1995). To assess

resource selection across study areas, I amassed 8 data layers in a GIS based on the known or

suspected space use of the species. I included only those variables that could be constructed
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across all three study areas to facilitate population-level comparisons. An additional analy-

sis was conducted on the Athi-Kaputiei Plains study area, due to additional fine-scale data

being available (described below).

To assess vegetation quality, I extracted (1) the 16-day mean NDVI value at the time

and location of each wildebeest observation (i.e., each ‘use’ location) and (2) the difference

between the current mean NDVI value and the previous NDVI value (∆NDVIt = NDVIt

NDVIt−1). NDVI is known to be strongly correlated with a location’s vegetation vegetation

productivity/greenness (Goward and Prince, 1995; Tucker, 1979) and has been shown to

be an important parameter in models predicting animal movement (Boone et al., 2006;

Hopcraft et al., 2014; Pettorelli et al., 2005). Vegetation quantity (Biomass) is also thought

to strongly influence wildebeest space use, with wildebeest preferring the short grass plains

while avoiding wooded areas (high biomass) due to the inherent predation risk. I used the

topographic wetness index (TWI) (Sø rensen et al., 2006) as a proxy for biomass, as this

metric captures the landscape’s capacity to hold water (Hopcraft et al., 2014).

To capture the response of wildebeest to measures of anthropogenic disturbance, I digi-

tized roads and visible structures from available satellite imagery (ESRI, 2011; GoogleEarth,

2013). To maintain consistency across each study area I created a vector grid and digitized

all features at a scale of 1:7000. I separated roads into two distinct categories (primary, sec-

ondary) based on attributes associated with the satellite imagery (ESRI, 2011) and reflective

of the road type. Distances to primary (tarmac/main roads) and secondary (dirt/all other

roads) roads were calculated across each study area at a resolution of 50 m.

Wildebeest are also known to be particularly sensitive to anthropogenic fragmentation

(e.g., Kahurananga and Silkiluwasha 1997). Adopted from Hopcraft et al. (2014) and termed
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Anthropogenic Risk, I calculated the distance to 86,565 digitized structures across the three

study areas weighted by the estimated human population density (LandScan, 2008). Densely

populated areas have the highest values while areas furthest from small or sparsely populated

villages have the lowest values. This method allowed us to incorporate small-scale distur-

bances that would have otherwise been missed due to the coarse resolution of the population

dataset (1 km2). Additional details of this data layer are provided in Appendix D.1.

Landscape features such as dense woodland, embankments, or river confluences are known

to form natural traps for wildebeest (Balme et al., 2007; Hopcraft et al., 2005). To capture

these features, I edited rivers digitized by the World Research Institute (WRI, 2007) using

the same grid scale and procedure described above. I ignored small or ephemeral rivers,

visible in the satellite imagery, but not included in the WRI dataset. Across the Amboseli

Basin, perennial swamps within the national park were also digitized and incorporated as

features within this layer. I assumed that water was abundantly available during the wet

season and that the distance to permanent rivers and swamps captured water sources that

wildebeest relied on during the dry season. Woody vegetation, defined as shrubs, woodland,

or trees with > 40% cover, were selected from the Africover Global Land Cover dataset

(FAO, 2014). Distances to each feature were calculated at a resolution of 50 m.

Two additional layers, the distance to water use points and fence boundaries, were avail-

able only for the Athi-Kaputiei Plains and incorporated into an additional/separate model

for this study area. These layers, digitized by staff at the International Livestock Research

Institute (ILRI) from 2004-2010 (Reid et al., 2008), describe fine-scale factors that were ex-

pected (positively and negatively, respectively) to effect the distribution of wildebeest across

the region. I restricted the study area boundary to the extent of these data layers for models
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Table 5.2. Candidate models considered to assess habitat selection by wildebeest across three study areas in
southern Kenya. NDVI is Normalized Difference Vegetation Index. TWI is the Topographic Wetness Index.
Parameters defined in the text. K is the number of fixed and random parameters included in the model.

Model Structure K

1. Null 2
2. Vegetation NDVI + ∆NDVI + TWI 5
3. Predation Distance to Woody Vegetation + (Distance to Woody Vegetation)2 + Distance to Rivers + 8

(Distance to Rivers)2

4. Human Disturbance Anthropogenic Risk + Distance to Primary Road + (Distance to Primary Road)2 + 7
Distance to Secondary Road + (Distance to Secondary Road)2

5. Vegetation and NDVI + ∆NDVI + TWI + Anthropogenic Risk 6
Human Risk

6. Full NDVI + ∆NDVI + TWI + Distance to Woody Vegetation + 14
(Distance to Woody Vegetation)2 + Distance to Rivers + (Distance to Rivers)2 +
Anthropogenic Risk + Distance to Primary Road + (Distance to Primary Road)2 +
Distance to Secondary Road + (Distance to Secondary Road)2
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specific to this region. All predictor variables for every used and available location (described

below) were extracted using tools from the raster package (Hijmans and van Etten, 2012) in

the R statistical program (R Development Core Team, 2013). All geospatial analyses were

completed using the Spatial Analyst extension in ArcGIS 10.1 (ESRI, 2012).

5.3.4. Availability Data. The most common method for characterizing third/fourth-

order selection (Johnson, 1980) entails generating a random sample of points within a buffer

around each ‘use’ location (Northrup et al., 2013). I employed this method, using the max-

imum distance displaced over a 3-hour period (the resolution of our dataset) for each indi-

vidual and season as the radius of the buffer. Following Northrup et al. (2013), I performed

sensitivity analyses on one randomly selected animal across each study area to determine the

appropriate number of available points to sample within each buffer. One hundred randomly

sampled data points were generated within each buffer. From these points, I randomly drew

a number of points ranging from 1 to 100 (1, 3, 5, 10, 20, 30, 50, 100) per buffer and fit

resource selection functions using logistic regression to each of these sample sizes. I repeated

this process 100 times and calculated the expectation of the coefficient estimates and the

95% simulation envelopes. In doing so, I determined a sample of 50 availability points within

each buffer provided stable coefficient estimates. Resulting sensitivity plots are provided in

Appendix D.2, with R-code to conduct the analysis in Appendix D.3.

5.3.5. Resource Selection Models. I modeled resource selection for each study pop-

ulation and season using generalized linear mixed-effects logistic regression. Wildebeest ‘use’

locations (1) were compared to ‘availability’ locations (0) for each individual i, taking the
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form:

w(xi) = exp(β + β1x1i + . . .+ βnxni + γi)

where w(xi) is the resource selection function, βn is the coefficient for the n-th predictor

variable xn, and γ is the random intercept for animal i (Gillies et al., 2006; Manly et al., 2002).

Incorporating random effects into the model structure has been shown to better account for

inherent differences between individuals and allows for the inclusion of unbalanced sampling

designs (Gillies et al., 2006). I standardized ([x − x̄]/σx) all predictor variables for every

used and available location to facilitate cross-seasonal and cross-study area comparisons.

Quadratic terms were included on all distance parameters.

Seven a priori candidate models (Table 5.2) were created and ranked using Akaikes

Information Criterion (AIC) (Burnham and Anderson, 2002). No variables were observed

to be highly correlated (Pearson’s r > 0.6). Model fit of each top-ranked model (study

area/season), exclusive of the parameters NDVI and ∆NDVI, was evaluated using Spear-

man rank correlations between area-adjusted frequencies using presence-only validation pre-

dictions and RSF bins (Boyce et al., 2002). I randomly withheld twenty percent of the

presence-only data for prediction. NDVI and ∆NDVI were excluded because each parame-

ter changed temporally and were more difficult to include than other static parameter values.

The fit of each model is therefore at least as good, but likely better, than the reported value.

Additional models, separated into day and nighttime temporal periods and (for the Athi-

Kaputiei Plains) inclusive of the parameters ‘Distance to water use points’ and the ‘Distance

to fences’, were fit using the same methodology described above. All statistical analyses
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were conducted in R (R Development Core Team, 2013) using the lme4 package (Bates

et al., 2014).

5.4. Results

5.4.1. Dry Season Models. The full model was the top ranked model across all study

areas (model 6, Table 5.3). The inclusion of all parameters in study area models indicates

that each parameter was important in predicting wildebeest resource selection. Cross valida-

tion results highlight a good fit to the data across the Mara. Poorer fit was observed across

the Amboseli Basin and the Athi-Kaputiei Plains (Table 5.3). Strongest effect sizes (-2.78

and -2.35) were observed across the Athi-Kaputiei Plains for the parameters ‘Distance to

Rivers’ and the ‘Distance to Primary Roads’, respectively. A list of model selection results,

ranked by AIC, is provided in Appendix D.4.

Wildebeest consistently selected areas further from anthropogenic features and of an

intermediate distance (i.e., depicted by a hump-shaped response curve) to dense woody veg-

etation across study areas (Table 5.4, Fig. 5.2). The effect of distance from anthropogenic

Table 5.3. Top ranking models across three study areas in Kenya using
Akaike information criteria (AIC). Results provided for models across dry
and wet season periods. Model weight (w) and Spearman rank correlation
coefficient (rs) provided. Model structure provided in Table 5.2.

Top model w rs

Dry Season
Amboseli Basin 6. Full 1.0 0.39
Athi-Kaputiei Plains 6. Full 1.0 0.48
Mara 6. Full 1.0 0.96**

Wet Season
Amboseli Basin 6. Full 1.0 0.43
Athi-Kaputiei Plains 6. Full 1.0 0.94*
Mara 6. Full 1.0 0.94*

p < 0.05, **p < 0.01
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Figure 5.2. Relative probability of selection for the parameters anthro-
pogenic risk and distance to woody cover. Parameters defined in the text.
Dry and wet season response curves only displayed across the range of values
observed within each study area. 95% confidence intervals for each parameter
are provided in Appendix D.5, D.6, and D.7.

features was strongest across the Athi-Kaputiei Plains where levels of anthropogenic distur-

bance are highest. Responses to other parameters, namely distance to rivers, distance to

roads (primary and secondary), and the distance to park boundaries, were less consistent

across study area. For example, across the Amboseli Basin, wildebeest showed no prefer-

ence of selection to rivers across all distances. Across the Athi-Kaputiei Plains and Mara,

however, strong selection was observed at intermediate distances (Table 5.4, Fig. 5.3). The
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relative probability of selection to primary roads also increased sharply at intermediate dis-

tances across the Athi-Kaputiei Plains, with a decline in selection at short distances (Fig.

5.3). Across the Mara, selection was highest at intermediate distances and declined as the

distance to primary roads increased. An opposite effect was observed across the Amboseli

Basin, with the relative probability of selection increasing with an increase in distance to

primary roads.

For each of the biomass parameters included in our models (NDVI, ∆NDVI, and TWI),

wildebeest selection did not differ across the range of these parameters in the Athi-Kaputiei

Plains (Fig. 5.4). Across the Amboseli Basin, wildebeest selection increased as NDVI in-

creased. The opposite effect was observed in the Mara (Table 5.4, Fig. 5.4). Effect sizes,

however, were generally small for these parameters (Table 5.4). Response curves for each

parameter, inclusive of bootstrapped 95% confidence intervals, are provided in Appendix

D.5, D.6, and D.7.

5.4.2. Wet Season Models. In wet season periods, the top-ranked models remained

the same as those observed in the dry season (Table 5.3). Cross validation results highlight

a good fit to the data across the Athi-Kaputiei Plains and the Mara. Poorer fit was observed

across the Amboseli Basin (Table 5.3). The spatial avoidance of anthropogenic features

woody vegetation remained consistent across dry season and wet season models, although

effect sizes increased appreciably across the Amboseli Basin for both variables and decreased

across the Athi-Kaputiei Plains in relation to woody vegetation. Effect sizes for these two

variables remained relatively consistent across the Mara (Table 5.4, Fig. 5.2).

A shift in space use was observed in relation to the distance to rivers and primary

roads between dry and wet season periods across the Amboseli Basin and Mara. Across
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the Amboseli Basin, wildebeest selected areas that were at intermediate distances to rivers

and were found with a high probability of presence across all distances from primary roads.

Across the Mara, the distance to rivers remained relatively unchanged between seasonal

Table 5.4. Parameter estimates of the top-ranked AIC model for each study
area across dry and wet season periods. Standard errors provided in parenthe-
ses. See text for parameter descriptions. All model parameters were standard-
ized to facilitate study area comparisons. Distances measured in Kilometers.

Dry Season

Amboseli Basin Athi-Kaputiei Plains Mara

Anthropogenic Risk -0.15 (0.02) -0.42 (0.02) -0.80 (0.03)
NDVI 0.26 (0.02) -0.04 (0.02) -0.32 (0.02)
∆NDVI -0.05 (0.02) -0.03 (0.01) -0.12 (0.01)
TWI -0.14 (0.01) -0.13 (0.01) 0.03 (0.01)
Distance to Woody Vegetation 0.63 (0.04) 0.85 (0.05) 0.68 (0.05)
(Distance to Woody Vegetation)2 -0.50 (0.04) -0.71 (0.05) -0.98 (0.05)
Distance to Rivers -0.20 (0.02) 0.40 (0.07) 0.50 (0.06)
(Distance to Rivers)2 -0.08 (0.01) -2.78 (0.22) -1.57 (0.17)
Distance to Primary Road -0.13 (0.03) 1.49 (0.06) 0.17 (0.04)
(Distance to Primary Road)2 0.18 (0.03) -2.35 (0.09) -0.17 (0.04)
Distance to Secondary Road -0.73 (0.03) -1.33 (0.11) -0.74 (0.03)
(Distance to Secondary Road)2 0.41 (0.02) -0.29 (0.40) 0.59 (0.03)

Wet Season

Amboseli Basin Athi-Kaputiei Plains Mara

Anthropogenic Risk -0.43 (0.03) -0.47 (0.01) -0.47 (0.02)
NDVI -0.28 (0.02) -0.19 (0.01) -0.11 (0.01)
∆NDVI -0.25 (0.02) -0.08 (0.01) -0.11 (0.01)
TWI -0.03 (0.02) -0.18 (0.01) 0.02 (0.01)
Distance to Woody Vegetation 0.99 (0.05) 0.23 (0.04) 0.61 (0.03)
(Distance to Woody Vegetation)2 -0.92 (0.03) -0.42 (0.03) -0.65 (0.03)
Distance to Rivers 0.47 (0.03) 2.48 (0.06) 0.19 (0.02)
(Distance to Rivers)2 -0.47 (0.03) -9.59 (0.21) -0.28 (0.05)
Distance to Primary Road -0.52 (0.04) 1.60 (0.04) 0.02 (0.01)*
(Distance to Primary Road)2 0.50 (0.03) -2.05 (0.06) -0.00 (0.01)*
Distance to Secondary Road 0.32 (0.03) -1.13 (0.07) -0.52 (0.02)
(Distance to Secondary Road)2 0.28 (0.02) -1.74 (0.26) 0.41 (0.02)

*Confidence interval crosses zero
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periods, with no selection observed across all distances to primary roads. Selection across

the Athi-Kaputiei Plains was similar to dry season results (Table 5.4, Fig. 5.3).

Similar trends to dry season periods were observed across the Athi-Kaputiei Plains and

the Mara regarding the parameters NDVI, ∆NDVI, and TWI. Across the Amboseli Basin,

I observed a shift in the response of wildebeest to NDVI, with the relative probability of

selection being highest at low NDVI values and decreasing as NDVI increased during the

wet season. The relative probability of selection also decreased as ∆NDVI increased (Table

5.4, Fig. 5.4). Confidence intervals for each parameter are displayed in Appendix D.5, D.6,

and D.7.

5.4.3. Day/Night Models. Wildebeest space use remained generally consistent be-

tween day and nighttime periods, shifting in relation to anthropogenic features across each

study area and in relation to NDVI across the Amboseli Basin (Table ??, Fig. 5.5). During

daytime periods, wildebeest continued to select areas further from anthropogenic features.

During nighttime periods, however, I observed a shift in space use, with wildebeest select-

ing areas in closer proximity to anthropogenic features. These results were strongest across

the Amboseli Basin and the Athi-Kaputiei Plains and consistent across seasonal periods.

Response curves for each parameter, separated between dry and wet season periods, are

provided in Appendix D.8, D.9, and D.10.

5.4.4. Athi-Kaputiei Plains Sub-model. Models inclusive of the parameters ‘Dis-

tance to Fences’ and ‘Distance to Water Use Points’ were more highly ranked (based on

AIC) than models that did not contain these parameters (Appendix D.11). In addition to

parameters already discussed, selection for water use points in the dry season, with avoidance

of areas directly adjacent to water use points in the wet season. Wildebeest were observed to
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rarely select areas greater than 6 km from identified water use points in either season (Table

5.6, Fig. 5.6). Observed selection was greatest for areas within 1 km of fences during the

wet season, although this relationship was non-linear with reduced selection at the shortest

distances. During dry season periods, wildebeest demonstrated selection for a larger area

around water points and fences during the wet season, suggesting tighter aggregation during

the wet season (Table 5.6, Fig. 5.6).

Figure 5.3. Relative probability of selection for the parameters distance to
rivers and distances to primary/secondary roads. Dry and wet season response
curves displayed only across the range of values observed within each study
area (Amboseli Basin (grey line), Athi-Kaputiei Plains (dashed black line),
Mara (crossed black line)). 95% confidence intervals for each parameter are
provided in Appendix D.5, D.6, and D.7.
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5.5. Discussion

Stabach et al. (2015) theorized that increased human disturbance may alter the dis-

tribution of wildebeest, even if hormonal stress levels were not elevated in comparison to

less disturbed areas. Our results provide empirical support for this prediction (P3 ), with

wildebeest selecting areas further away from anthropogenic features and declining sharply

(especially across the Athi-Kaputiei Plains) as anthropogenic risks increased. This is of

Figure 5.4. Relative probability of selection for the parameters NDVI,
∆NDVI, and TWI. Parameters defined in the text. Dry and wet season re-
sponse curves displayed only across the range of values observed within each
study area (Amboseli Basin (grey line), Athi-Kaputiei Plains (dashed black
line), Mara (crossed black line)). 95% confidence intervals for each parameter
are provided in Appendix D.5, D.6, and D.7.
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particular importance for wildebeest and for conservation efforts across the region, as it

highlights that these features can alter the distribution of wildebeest and potentially force

animals into lower quality habitat.

Surprisingly, however, wildebeest did not respond to NDVI and ∆NDVI as expected (lack

of support for P1 ). Boone et al. (2006) and Hopcraft et al. (2014) identified and empirically

showed NDVI to be a major driver related to the movements of Serengeti wildebeest. Boone

et al. (2006), however, used NDVI data derived from the SPOT Earth Observation System,

which has an improved temporal resolution (10-day) to the data I incorporated (16-day).

I rarified the wildebeest ‘use’ data to a 3-hour time interval, linking all data points within

a 16-day time period to the same NDVI values. Matching the temporal scale of these two

datasets and performing a moderate-scale resource selection analysis may help to elucidate

patterns that were likely missed. The fit of models across the Amboseli Basin and for dry

season periods across the Athi-Kaputiei Plains was also low. This could be due to the spatial

resolution of the NDVI data or indicate that other variables not considered in our models

may have an influence on resource selection across these study areas.

I had expected space use to change in relation to woody vegetation between seasons (P2 ),

with wildebeest taking additional risks and being located in closer proximity to woodlands

during dry season periods [i.e., predator-sensitive foraging hypothesis (Sinclair and Arcese,

1995)]. Instead, however, wildebeest space use was relatively consistent across seasonal

periods, with space use declining at short distances, except across the Athi-Kaputiei Plains

where space use remained high at short distances. This anomaly disappeared in models

inclusive of water use points and fences across this region, with the relative probability of

use declining at short distances, indicating an interactive effect between one (or both) of
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these parameters. These results match those of Georgiadis (1995) related to restrictions on

the distribution of wildebeest across the region and indicate that wildebeest avoid woody

vegetation either due to a lack of quality forage or because of increased predation risk.

Hopcraft et al. (2014) did not find a shift in movement between seasonal periods related

to woody cover or other predator traps (e.g., river drainages). These data, however, were

based on Serengeti migratory wildebeest, which are most often observed in groups of 10-3000

individuals (Hopcraft et al., 2014). Resident wildebeest congregate in much smaller groups,

never observed to exceed 200 individuals, and likely take less risks than groups of larger size.

Table 5.5. Parameter estimates of day/nighttime models for each study area across dry
and wet season periods. Standard errors provided in parentheses. Coefficient estimates with
confidence intervals that do not cross zero are indicated by (*). See text for parameter
descriptions. All model parameters were standardized to facilitate study area comparisons.
Distances measured in Kilometers.

Dry Season Wet Season

Day Night Day Night

Amboseli Basin

Anthropogenic Risk -0.45 (0.04) 0.03 (0.02)* -1.05 (0.05) -0.11 (0.03)
NDVI 0.48 (0.02) -0.13 (0.03) -0.19 (0.03) -0.36 (0.03)
∆NDVI 0.01 (0.02)* -0.12 (0.03) -0.23 (0.03) -0.27 (0.03)
TWI -0.10 (0.02) -0.19 (0.02) 0.03 (0.02)* -0.10 (0.02)
Distance to Woody Vegetation 0.67 (0.05) 0.50 (0.05) 0.95 (0.07) 1.03 (0.07)
(Distance to Woody Vegetation)2 -0.53 (0.06) -0.38 (0.06) -0.88 (0.06) -0.97 (0.07)
Distance to Rivers -0.28 (0.02) -0.11 (0.02) 0.39 (0.04) 0.55 (0.04)
(Distance to Rivers)2 0.11 (0.02) 0.04 (0.01) -0.39 (0.04) -0.54 (0.05)
Distance to Primary Roads -0.02 (0.04)* -0.24 (0.04) -0.57 (0.05) -0.49 (0.05)
(Distance to Primary Roads)2 0.13 (0.04) 0.22 (0.04) 0.54 (0.05) 0.49 (0.04)
Distance to Secondary Roads -0.60 (0.04) -0.85 (0.04) 0.42 (0.04) 0.24 (0.04)
(Distance to Secondary Roads)2 0.30 (0.03) 0.52 (0.03) -0.34 (0.03) -0.22 (0.03)

Athi-Kaputiei Plains

Anthropogenic Risk -0.78 (0.03) -0.16 (0.02) -0.88 (0.02) -0.18 (0.01)
Continued on next page
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Table 5.5 – continued from previous page
Dry Season Wet Season

Day Night Day Night

NDVI -0.07 (0.03) -0.00 (0.02)* -0.21 (0.01) -0.18 (0.01)
∆NDVI -0.04 (0.01) -0.01 (0.01)* -0.09 (0.01) -0.08 (0.01)
TWI -0.11 (0.02) -0.18 (0.02) -0.13 (0.01) -0.22 (0.01)
Distance to Woody Vegetation 0.71 (0.07) 0.85 (0.07) 0.30 (0.05) 0.28 (0.05)
(Distance to Woody Vegetation)2 -0.53 (0.06) -0.73 (0.06) -0.41 (0.04) -0.47 (0.04)
Distance to Rivers 0.60 (0.09) 0.58 (0.10) 2.60 (0.08) 2.27 (0.08)
(Distance to Rivers)2 -2.94 (0.29) -2.82 (0.30) -9.67 (0.29) -8.49 (0.29)
Distance to Primary Roads 1.30 (0.08) 1.60 (0.08) 1.48 (0.06) 1.77 (0.06)
(Distance to Primary Roads)2 -2.22 (0.12) -2.59 (0.13) -2.00 (0.09) -2.28 (0.09)
Distance to Secondary Roads -0.54 (0.15) -0.92 (0.14) -0.56 (0.11) 1.34 (0.10)
(Distance to Secondary Roads)2 -2.75 (0.61) -1.32 (0.56) -3.65 (0.43) -0.95 (0.35)

Mara

Anthropogenic Risk -1.29 (0.05) -0.46 (0.04) -0.81 (0.03) -0.22 (0.02)
NDVI -0.28 (0.03) -0.35 (0.03) -0.10 (0.01) -0.12 (0.02)
∆NDVI -0.11 (0.02) -0.12 (0.02) -0.11 (0.01) -0.11 (0.01)
TWI 0.03 (0.01) 0.03 (0.01) 0.01 (0.01)* 0.02 (0.01)
Distance to Woody Vegetation 0.70 (0.07) 0.66 (0.07) 0.56 (0.04) 0.65 (0.04)
(Distance to Woody Vegetation)2 -1.02 (0.08) -0.93 (0.08) -0.63 (0.04) -0.66 (0.04)
Distance to Rivers 0.18 (0.08) 0.81 (0.08) 0.10 (0.03) 0.27 (0.03)
(Distance to Rivers)2 -0.73 (0.24) -2.44 (0.26) -0.17 (0.06) -0.40 (0.07)
Distance to Primary Roads 0.22 (0.05) 0.10 (0.05) 0.01 (0.02)* 0.02 (0.02)*
(Distance to Primary Roads)2 -0.25 (0.06) -0.07 (0.06)* -0.01 (0.02)* 0.01 (0.02)*
Distance to Secondary Roads -0.72 (0.04) -0.76 (0.04) -0.52 (0.03) -0.51 (0.03)
(Distance to Secondary Roads)2 0.57 (0.04) 0.61 (0.04) 0.42 (0.03) 0.39 (0.03)

Resident wildebeest space use was also relatively consistent to water sources (rivers and

swamps) during seasonal periods, except across the Amboseli Basin where wildebeest were

observed to avoid areas in close proximity to water sources during the dry season. Across the

Amboseli Basin, rivers are devoid of water during dry seasons, accounting for why I observed

reduced selection at short distances during this time period. Wildebeest across this region

are restricted to the swamps within the park boundary to access available water, and likely
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face increased predation risk in doing so. Thus, our results related to our second prediction

(P2 ) are inconclusive, with wildebeest taking greater risks in the dry season related to the

distance to rivers but no change in selection related to dense woody cover.

The effect of primary roads provides empirical results related to the response of wilde-

beest to current and/or future road building, an issue that has received considerable attention

Figure 5.5. Relative probability of selection for the parameter ’Anthro-
pogenic Risk’. Day (black lines) and nighttime (gray lines) model response
displayed across (A) the Amboseli Basin, (B) the Athi-Kaputiei Plains, and
(C) the Mara. Dry and wet season response curves displayed only across the
range of values observed within each study area. 95% confidence intervals
(dotted and dashed lines, respectively) provided for reference.
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across the region (Dobson et al., 2010; Holdo et al., 2011b). It is important to note, how-

ever, that I separated roads into two distinct categories (primary and secondary) based on

attributes associated with the satellite imagery (ESRI, 2011), but not necessarily reflective

of traffic volumes. That is, the primary road extending from Kenyas capital city, Nairobi,

has considerably more traffic across the adjacent Athi-Kaputiei Plains than it does across the

more distant Amboseli Basin (i.e., a distance decay function). As such, our results related

to primary roads (i.e., a repulsive effect at short distances) are likely more reliable across

the Athi-Kaputiei Plains than the Amboseli Basin or Mara where traffic volumes are lower,

but represent a scenario to be avoided if wildebeest are to move freely across the landscape.

Line transects transects conducted at 500-m intervals and perpendicular to the primary road

Table 5.6. Parameter estimates of the top-ranked AIC model for the Athi-
Kaputiei Plains across dry and wet season periods. Two parameters (Distance
to Fences and Distance to Water Ponts) included that were not available for
other study areas. See text for parameter descriptions. Standard errors pro-
vided in parentheses. Distances measured in Kilometers.

Dry Season Wet Season

Anthropogenic Risk -0.42 (0.02) -0.41 (0.01)
Distance to Water Points -0.38 (0.04) 0.17 (0.04)
(Distance to Water Points)2 -0.25 (0.06) -1.13 (0.06)
Distance to Fences 0.85 (0.04) 1.23 (0.03)
(Distance to Fences)2 -0.68 (0.04) -2.19 (0.07)
NDVI -0.01 (0.02)* -0.13 (0.01)
∆NDVI -0.03 (0.01) -0.05 (0.01)
TWI -0.18 (0.01) -0.23 (0.01)
Distance to Woody Vegetation 1.05 (0.07) 0.23 (0.04)
(Distance to Woody Vegetation)2 -1.29 (0.06) -0.71 (0.04)
Distance to Rivers 1.78 (0.09) 2.95 (0.06)
(Distance to Rivers)2 -7.22 (0.32) -10.71 (0.22)
Distance to Primary Road 2.10 (0.07) 0.99 (0.05)
(Distance to Primary Road)2 -3.17 (0.11) -1.40 (0.07)
Distance to Secondary Road -2.43 (0.15) -2.43 (0.09)
(Distance to Secondary Road)2 3.69 (0.72) 5.84 (0.41)

*Confidence interval crosses zero
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connecting Kitengela with Kajiado across the Athi-Kaputiei Plains (Fig. 5.1) support this

result, as wildebeest were never observed (direct sighting, print, or scat) within 500 meters

of this feature (unpublished data). Additional research, providing empirical results on traffic

volumes, could help to provide further support for these findings.

I created additional models for the Athi-Kaputiei Plains, inclusive of fine-scale data

that were unavailable across the Amboseli Basin or the Mara. These data, the distance to

fences and water use points, proved to be important in predicting wildebeest space use and

improved the fit of modeled results. Results of the distance to water use points provided

support for expected outcomes, with wildebeest selecting areas that were in close proximity

to this important resource, most especially during dry season periods. These water use

points provide a valuable resource for livestock across the region and are likely avoided by

wildebeest if other sources of water are available. Less dependence on these water use points

Figure 5.6. Relative probability of selection for the parameters distance to
water use points and distance to fences across the Athi-Kaputiei Plains study
area. 95% confidence intervals (dotted lines) provided for reference. Dry and
wet season response curves displayed.
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during wet season periods is supported by the decline in use at short distances. In addition,

our results show that wildebeest across this region rarely move to areas > 6 km from water

use points, a distance easily dispersed by a wildebeest over a 24-hour period (Stabach et al.,

in prep). While I did not include these parameters in day and nighttime models, there is

likely a shift in space use between temporal periods, with wildebeest space use increasing

nocturnally when livestock are absent.

Results observed related to the distance to fence boundaries, however, were contrary

to expected outcomes. Wildebeest space use peaked at intermediate distance during both

seasonal periods and remained high at short distance during the dry season. It is possi-

ble that settlements and resulting fences are built in areas that maximize livestock survival

and production (i.e., areas that have the best resources, especially in dry season periods).

Wildebeest could be keying in on the same factors that make these areas attractive as set-

tlement locations, taking additional risk by moving to areas in close proximity to fences in

dry season periods to meet resource demands. Results of day and nighttime models provide

support for these assertions, with space use increasing in close proximity to anthropogenic

features during nighttime periods (P4 ). Reid (2012) has observed these shifts in the Mara

and hypothesized that settlements likely provide protection from nighttime predators and

increased vegetation quality as a result of nutrient inputs from livestock. During daytime

periods, wildebeest are pushed away from settlements by pastoralists to keep their livestock

separated from wildlife, especially wildebeest, and minimize disease transmission (i.e., bovine

malignant catarrhal fever). I commonly observed this phenomenon across the Athi-Kaputiei

Plains (by pastoralists and their dogs). In wet season periods, the relative probability of se-

lection peaks (0.83 relative probability of selection) at 580-m from fence boundaries, meaning
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that wildebeest do not take the additional risk of being located in the immediate vicinity

of fences in order to meet energy requirements (as observed during the dry season), most

likely because of greater resource availability during this season. Fences also unlikely act, by

themselves, as a repulsive force to wildebeest (although they do inhibit movement). Instead

and more likely (importantly), is that it is the combination of fencing and the density of

human settlements (i.e., anthropogenic risk) that leads to decreased space use.

5.6. Conclusion

Our results highlight a strong negative effect related to anthropogenic risk (P3 ), indicat-

ing a shift in space use of wildebeest towards areas with low levels of disturbance, regardless of

season. In addition, wildebeest showed avoidance of primary roads across the Athi-Kaputiei

Plains, providing empirical support to the expected effect of roads on the space use of extant

populations. Results related to predictions P1 and P2, however, were inconclusive. Wilde-

beest space use increased in close proximity to rivers and water use points in dry season

periods, representative of a functional response between seasonal periods to this valuable

resource, while no change was observed in the distance to areas of dense woody cover during

seasonal periods. I did not observe a strong link to vegetation dynamics, which may be a

result of a mismatch between the spatial and temporal resolution of the satellite imagery and

the time-scale of our ‘use’ data points. I did, however, observe a shift in space use between

different temporal periods (P4 ), with wildebeest space use increasing in relation to anthro-

pogenic features during nighttime periods. Taken together, these results related to factors

of predation risk and potential limiting factors provide detailed information on the space

use of resident wildebeest, a species that has experienced widespread declines over the past
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few decades, and offers insight into the likely response of wildebeest to future environmental

changes.
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CHAPTER 6

Assessment of habitat corridor use across a human

dominated landscape: An agent-based modeling

perspective

6.1. Summary

1The Athi-Kaputiei Plains was once regarded for supporting some of the most spectacu-

lar concentrations of wildlife in all of East Africa. Rapid land-use development has occurred

across this region over the past few decades, leading to widespread wildlife population de-

clines, particularly in wildebeest. Using data from GPS collared wildebeest and results of

a resource selection function analysis, I parameterized the movements and associated space

use of simulated wildebeest in an agent-based modeling framework, evaluating the use of a

hypothetical habitat corridor designed to connect the seasonal habitat ranges of the species.

My analyses examines four mitigation scenarios, which differ in the amount of fencing that is

removed to facilitate corridor use. I observed no statistical difference in use across mitigation

scenarios, with simulated wildebeest using the hypothetical corridor a maximum of 57 times

over a 10-year simulation period. My methodology provides a flexible modeling environment

that could be adapted to other systems, allowing for an evaluation of the potential use of

a habitat corridor prior to construction and a realistic depiction of the movements of ani-

mals in relation to structures or passages designed to facilitate connectivity in increasingly

anthropogenically disturbed landscapes.

1This chapter is in preparation for submission to Ecological Applications with co-authors Randall B. Boone,
Robin S. Reid, and Jeffrey S. Worden.
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6.2. Introduction

Landscapes dominated by human land-uses often pose significant barriers to animal move-

ment (Clevenger et al., 2001). These barriers, which include roads, railways, and fences, are

known to result in an increase in vehicle collision-related mortalities (Kleist et al., 2007),

declines in genetic diversity from population isolation (Epps et al., 2005; Jackson and Fahrig,

2011), and reductions in population abundance (Bolger et al., 2008). Migratory species are

often the most severely impacted as a result of the need to move between equally important

seasonal habitat ranges. Across the Okavango Delta in Botswana, for example, veterinary

fences constructed over the past half-century to control disease transmission have separated

wildlife from dry season water sources, leading to a disruption in traditional migratory path-

ways (Bartlam-Brooks et al., 2011, 2013) and extensive population declines, especially in

wildebeest (Connochaetes taurinus), hartebeest (Alcelaphus buselaphus), and zebra (Equus

quagga) (Mbaiwa and Mbaiwa, 2006).

Several forms of wildlife passages (e.g., overpass/underpass) have been constructed to

facilitate animal movement between isolated patches and increase habitat connectivity (Cle-

venger and Waltho, 2005). The effectiveness of these passages is often species-dependent,

and affected by the passage-type, dimensions, and habitat suitability of the area surrounding

the structure (Clevenger and Waltho, 2005; Kleist et al., 2007; Ng et al., 2004). Identifica-

tion of corridor placement is a non-trivial process and generally consists of collecting detailed

information about the movements, home range, and space use of a species, and culminating

with a prediction of areas that are most likely to facilitate movement between separated

patches (such as a least cost path analysis, as in Beier et al. (2009)). Post facto, corridor

usage is assessed by quantifying the type and count of species using the structure over time
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from track surveys, camera traps, or VHF/GPS telemetry. Surprisingly, given the signifi-

cant monetary costs of constructing a corridor, ecologists have rarely used existing data in

modeling frameworks (although see Driezen et al. (2007); LaPoint et al. (2013); Poor et al.

(2012)) to assess the use of proposed corridors prior to construction, the aim of this research.

The Athi-Kaputiei Plains in southwest Kenya (Fig. 6.1) was once regarded for supporting

some of the most spectacular concentrations of wildlife in all of East Africa (Simon, 1962).

Progressively over the past century, however, settlement and farmland have expanded across

this ecosystem, reducing and fragmenting the remaining habitat, and resulting in precipitous

wildlife population declines (Ogutu et al., 2013; Reid et al., 2008). Wildebeest were once

the dominant herbivore across this ecosystem (livestock now outnumber wildlife by approx-

imately 4:1 (Reid et al., 2008)) and are often regarded as keystone species across grassland

savannas in East Africa (Sinclair, 2003). Since the 1970s, however, wildebeest have de-

clined by 93% (Ogutu et al., 2013), with fewer than 2000 individuals remaining across this

ecosystem.

Wildebeest formerly moved seasonally across this ecosystem between perennial water

sources located in the northern part of the system (dry season range) to areas in the south

when conditions were more favorable (wet season range)(Hillman and Hillman, 1977) (Fig.

6.1). This southern range, known as the Kaputiei Plains, provided a larger extent in which to

graze and calve (Hillman and Hillman, 1977). A two-lane highway, fenced extensively along

both sides of the road and with varying degrees of quality, now bisects the seasonal habitat

ranges of the species (Fig. 6.1). Wildebeest are known to be extremely sensitive to habitat

fragmentation (Kahurananga and Silkiluwasha, 1997) and have rarely been observed to jump

fences (pers. obs., Reid). It seems likely that a combination of factors (i.e., fencing and
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road traffic volume) have led to a collapse of this historic migration, with no road crossings

recorded from a (albeit limited) sample of GPS collared wildebeest over a 3-year study period

(2010-2013) (Boone et al., 2009; Stabach et al., 2015). Currently, no management plan exists

to connect the seasonal habitat ranges of this species, although mitigation is necessary if this

population is to remain viable over time.

With the advent of satellite remote sensing sources to track landscape dynamics, it is

now possible to create complex models simulating the movements of animals with high

degrees of biologic realism (Boone et al., 2006; Holdo et al., 2009b; Hopcraft et al., 2014).

In addition, flexible agent-based programming environments, such as NetLogo (Wilensky,

1999), allow for the incorporation of spatial data to evaluate research hypotheses that would

be difficult or otherwise impossible to do so. Here, I aim to assess the use of a proposed

habitat corridor to re-connect the historic seasonal habitat range of wildebeest across the

Athi-Kaputiei Plains. I validate the movements of simulated animals with data from GPS

collared wildebeest (Boone et al. 2009, Stabach et al., in prep) and incorporate information

about the space use of wildebeest from a resource selection analysis (Stabach et al. in prep).

I examine four (4) scenarios of habitat mitigation, ranging from limited mitigation (i.e., a

road crossing with fence removal only along corridor entrance points) to large-scale fence

removal (i.e., removal of fences within 4 km of the road crossing). This research extends

previous work on corridor use by providing a flexible framework in which to simulate the

movements of animals, evaluating corridor use prior to construction.

6.3. Methods

6.3.1. Study Area. The Athi-Kaputiei Plains (1◦18’S, 36◦36’E to 1◦55’S, 37◦9’E) is

located primarily in Kajiado county, directly south of Kenya’s capital city, Nairobi. The city
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forms the boundary of the ecosystem in the north, which includes Nairobi National Park. The

eastern portion of the ecosystem is bounded by the Lukenya Hills, with the rift escarpment

forming the boundary to the west. The area is sometimes referred to as the three ‘triangles’,

due to how main roads bisect the system (Fig. 6.1). Vegetation consists principally of

wooded Acacia drepanolobium, Themeda triandra, and Pennisetum mezianum/stamineum

grassland, with gallery forests along rivers supporting A. xanthophloea. In addition to the

Athi-Namanga highway which bisects the seasonal habitat ranges of wildebeest, fencing

presents further barriers to daily and seasonal movement (Fig. 6.1).

6.3.2. Wildebeest Movement Data. Lotek Wildcell R© GPS collars (Lotek Wireless

Incorporated, Canada) were placed on twelve (n = 12) adult wildebeest (7 female, 5 male)

in October 2010. Devices, programmed to collect the location of animals 16 times per day

(every hour from 6 AM - 6 PM and every three hours from 6 PM - 6 AM), were rarified to

a 1-day temporal interval. From these data, I calculated the average, standard deviation,

and variance in daily movement rate to parameterize and compare with the movements of

simulated wildebeest (i.e., agents). I did not explicitly model turning angles. Instead, I

allowed this parameter to emerge in response to landscape features.

6.3.3. Analysis of Space Use. To define the movement decisions of simulated wilde-

beest, I incorporated results from a resource selection analysis conducted on the above-

mentioned GPS collaring data (Stabach et al. in prep). These data consisted of a series of

landscape variables thought a priori to effect the space use of wildebeest and inclusive of the

distance to anthropogenic disturbance, water points, fence boundaries, primary/secondary

roads, rivers, and woody vegetation. Anthropogenic disturbance, described by Hopcraft

et al. (2014), consisted of digitized structures identified in available satellite imagery (ESRI,
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Figure 6.1. Study area displaying seasonal habitat ranges of resident wilde-
beest (arrows). Arrows are meant to describe the general pattern of movement
only. Data overlayed on a hillshade generated from Shuttle Radar Topogra-
phy Mission data (SRTM, 2004). Note the Athi-Namanga road that bisects
the seasonal ranges. Fencing boundaries (2010)* from the International Live-
stock Research Institute (ILRI) (Reid et al., 2008), used with kind permission
from Springer Science and Business Media.

2011) and weighted by the estimated human population density (LandScan, 2008). Water

points and fence boundaries were digitized by staff from the International Livestock Research

Institute in Nairobi and are current, as of 2010 (Reid et al., 2008). Roads and rivers were

based on base layer data from the World Research Institute (WRI, 2007) and edited with

available satellite imagery (ESRI, 2011). Roads were separated into two categories (primary,
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secondary) based on attributes associated with the satellite imagery. Woody vegetation was

defined as shrubs, woodland, or trees with > 40% cover, selected from the Africover Global

Land Cover dataset (FAO, 2014). The topographic wetness index (TWI) was also calcu-

lated to estimate the ability of the landscape to hold water, a proxy for biomass quantity

(Hopcraft et al., 2014). Data layers were generated at a resolution of 50-m and imported into

NetLogo (Wilensky, 1999) after downscaling to 125-m to reduce file size and increase model

performance. Additional details on each layer can be found in Stabach et al. (in prep).

To incorporate vegetation dynamics, I included Normalized Difference Vegetation Index

(NDVI) and ∆NDVI (the change in NDVI between time t and time t-1 ) data to simulate

changes in vegetation productivity over time. NDVI is a measure of vegetation greenness

and has been shown to be an important predictor of animal movement (Boone et al., 2006;

Hopcraft et al., 2014; Pettorelli et al., 2005). Positive values in ∆NDVI indicate greening,

whereas negative values indicate drying. I downloaded 10-years of NDVI data (2004-2013)

and randomly selected a year of data to use at the start of each cycle (year) in a simula-

tion. This allowed me to simulate the analysis for any number of years, while incorporating

variation in vegetation based on this 10-year envelope. All data were incorporated into Net-

Logo and summed at each time step (1-day), functioning as a decision-making surface for

simulated wildebeest in the model.

6.3.4. Simulated Movements. The steplengths of simulated wildebeest (i.e., agents)

were generated from a gamma distribution, incorporating the mean daily movement and

variance from observed wildebeest movements. At each time step in the model (i.e., 1-day),

agents reacted to the underlying decision-making surface, moving towards the patch within

an 8-pixel neighborhood with the best score (inclusive of random variation). I included a
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correlated walk component so that agents tended to move in the direction they were facing.

I assessed the value of the random and correlated movement component via model simula-

tion/sensitivity analysis (Appendix E.1). Because pixel sizes (patch size) were less than the

observed daily movements of animals, I allowed agents to move multiple times at each time

step until they reached the daily movement rate defined by the gamma distribution. An

example simulated animal, including metrics of daily movement velocity, net displacement,

and circular statistics, is provided in Appendix E.2.

I assessed the fit of the model by comparing the movements of simulated wildebeest with

those of observed animals. In each of the two triangles where wildebeest were collared, I

generated 1 random agent and initiated the model for ten (10), 1-year simulations (matching

the October start date of collaring activities), resulting in 20 simulated animals to compare

with observed wildebeest movements. The ‘null’ model consisted of the same local conditions

observed during the actual collaring period (i.e., wildebeest were restricted from crossing

the Athi-Namanga highway). Results were imported into R (R Development Core Team,

2013) for statistical analysis, with simulated movements assessed via Kruskal-Wallis one-

way analysis of variance. Simulated movement pathways were also visually compared with

observed pathways of individual wildebeest (Fig. 6.2).

6.3.5. Corridor Placement. To identify the location for a potential corridor in model

simulations, I coded all pixels containing fences to a value of ‘1’ and calculated the zonal

summary of fences within a 2.5-km radius across the landscape using ArcGIS (ESRI, 2012)

(Fig. 6.3). While less rigorous than a least cost path analysis, this method provided a simple

means for identifying an area along the main highway with the least amount of fencing and

therefore, the greatest probability of establishment (i.e., resulting in the least monetary cost
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associated with mitigation per unit of fence). I placed a 350-m passage (equivalent to the

diagonal of two 125-m2 pixels) across the Athi-Namanga highway at this location, allowing

for simulated wildebeest to cross the road barrier and disperse between seasonal habitat

ranges.

Figure 6.2. Comparison of (A) two observed movement trajectories from
GPS-collared wildebeest (blue) and (B) two simulated movement trajectories
(red). Lines connect observations that are 1-day apart.
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6.3.6. Scenario Assessment. To assess the effectiveness of different mitigation strate-

gies on corridor use, I created four (4) scenarios (Fig. 6.3) to evaluate the number of times

simulated wildebeest used the corridor over a 10-year study period. These scenarios included:

(1) Limited mitigation: Only fences blocking the entrance and within 1-km of the corri-

dor would be removed, amounting to 1 km2 of fencing to be compensated for removal

Figure 6.3. Fencing density and corridor location (A), including four miti-
gation scenarios of fence removal (B - Scenario 1, C - Scenario 2, D - Scenario
3, E - Scenario 4). See text for description of fencing density and mitigation
scenarios. ‘A’ overlayed on a hillshade derived from Shuttle Radar Topogra-
phy Mission Data (SRTM, 2004). Fencing data (2010) from the International
Livestock Research Institute (ILRI) (Reid et al., 2008).
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annually. Existing fences along the main road would act to channel wildebeest to

the entrance, but no mitigation of additional fences would be conducted.

(2) Small-scale mitigation: Fences within 2-km of the corridor would be mitigated,

amounting to 2.2 km2 of fencing to be compensated for removal annually.

(3) Medium-scale mitigation: Fences within 4-km of the corridor would be mitigated,

amounting to 7.5 km2 of fencing to be compensated for removal annually.

(4) Large-scale mitigation: Fences within 8-km of the corridor would be mitigated,

amounting to 15.5 km2 of fencing to be compensated for removal annually.

Results were compared to a ’null’ model representing current conditions (i.e., no corridor

with limited permeability of the Athi-Namanga highway). I calculated the cost associated to

pay landowners to remove their fences in each scenario (Table 6.1), based on a 2006 estimate

of $4.25 per acre per year (Galvin et al., 2008). The cost per acre per year was not pro-rated.

In each simulation, I generated 100 wildebeest, equally distributed across the two triangles

where wildebeest were initially collared and ran 50, 10-year simulations for each scenario.

The results of each scenario were compared with a one-way ANOVA. All code, programmed

in NetLogo (version 5.1.0), is provided in Appendix E.3. Raster data layers were prepared

in ArcGIS 10.1 (ESRI, 2012).

6.4. Results

Observed wildebeest moved 0.80 km day−1 and displaced 3.25 km (on average) from

their initial starting locations. Annually, observed wildebeest moved 289.7 ± 118.5 km.

The maximum distance displaced by a wildebeest was 32.8 km, with an average maximum

displacement of 13.5 km (Appendix E.1). Simulated wildebeest moved 0.35 km day−1 and

126.8 ± 16.8 km annually, significantly less than observed wildebeest (χ2(1) = 13.62, p <
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0.001 and χ2(1) = 11.76, p < 0.001, respectively). Average net displacement was 5.46 km

from initial randomly generated positions, with a maximum distance displaced of 19.2 km

(Appendix E.1). The average distance displaced was significantly different than observed

wildebeest (χ2(1) = 5.05, p < 0.05). The maximum distance displaced was not significantly

different than observed wildebeest (χ2(1) = 0, p = 1). Observed wildebeest displayed resident

movement behavior (Bunnefeld et al., 2011; Mueller et al., 2011; Singh et al., 2012), remaining

in a mostly defined home range around a specific point over the year study period and

making daily forays from this location (Fig. 6.2). Simulated wildebeest were observed to

move nomadically across the landscape (Bunnefeld et al., 2011; Mueller et al., 2011; Singh

et al., 2012), staying within the approximate displacement distance of observed wildebeest,

but wandering randomly throughout their associated home range (Fig. 6.2, Appendix E.2).

Simulated wildebeest made use of the habitat corridor in all scenarios, peaking in scenario

4 with a median of 33 crossings over a 10-year simulation period (Fig. 6.4, Table 6.1). Results

were not significantly different between scenarios (F3,196 = 0.72 , p = 0.54). All scenarios

were significantly different than the null (p < 0.001). The minimum number of crossings

was 10 (Scenario 1) within a 10-year period. The maximum number of crossings was 57

(Scenario 2). Scenarios 1-4 ranged in size from 1.7 km2 in scenario 1 to > 65 km2 in scenario

4. The cost of mitigating each area, based on a cost per acre per year of $4.25 (Galvin et al.,

2008), ranged from $1,015 per year in scenario 1 to $16,256 per year in scenario 4. The cost

of mitigation in scenario 2 was $2,308 per year.

6.5. Discussion

This research demonstrates the utility of incorporating animal movement data with an

analysis of space use into an agent-based modeling framework to assess the use of a potential
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Table 6.1. Summary of corridor mitigation scenarios. Median number of
road crossings (No. of Crossings) based on 100 individuals, simulated for a
10-year period. Range of corridor crossings, based on 50 simulations, provided
within parentheses . Scenarios defined in the text.

Area
Mitigated Fenced Area No. of

Scenario (km2) (km2) Crossings Cost (yr−1)*

Null – – 1 (0,4) –
1 1.7 1.0 28 (10,49) $1,015
2 5.5 2.2 30 (16,57) $2,308
3 17.6 7.5 29 (15,53) $7,850
4 65.3 15.5 33 (19,52) $16,256

*Based on $4.25/acre/year (Galvin et al., 2008) in 2006.

habitat corridor to connect the seasonal habitat ranges of wildebeest across the Athi-Kaputiei

Plains. My results illustrate that simulated wildebeest used the corridor, irrespective of

the amount of area mitigated, improving connectivity across this landscape. The fourth

scenario (fence mitigation within 8 km of the corridor) resulted in the greatest level of

use across simulations, although no significant difference was distinguished between any of

the mitigation scenarios. Generally, these scenarios would entail a minimal yearly financial

investment and would provide an economic benefit to local people for removing their fences

within the mitigation area. This would likely help to improve local livelihoods across the

region and provide a greater value to wildlife. Each scenario, however, would require a

significant initial investment, dependent on the corridor type (i.e., simple crossing, underpass,

overpass), and would need to be policed to assure compliance; activities that could be costly.

Surprisingly, the most aggressive mitigation scenario (scenario 4) did not lead to sig-

nificantly greater corridor use. Of all scenarios, this scenario would require a substantial

investment to mitigate approximately 15.5 km2 of fence within 8 km of the corridor en-

trance. Our model scenario incorporates changing resource dynamics, but does not integrate
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Figure 6.4. Summary of road crossings across 4 different mitigation scenar-
ios. Results are based on simulating 100 wildebeest for a 10-year study period.
Simulation was run 50 times for each scenario. See text for scenario descrip-
tions. Red (dashed) horizontal line is the null, representative of simulations
without a habitat corridor to connect seasonal habitat ranges.

competition between sympatrics, perhaps explaining why corridor use did not increase in

this scenario. Thus, this larger mitigation area may function as sink habitat and not nec-

essarily require simulated animals to use the corridor in search of better quality habitat.

Incorporating competition into the model may therefore require simulated animals to move

from this area when the density of animals reached a certain level, which would be similar

to the increase in movement rates observed in Serengeti migratory wildebeest when habitat

quality improved (Hopcraft et al., 2014).
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The movements of simulated wildebeest were shown to displace across the approximate

displacement distance of observed animals, but moved less daily/annually and in more of

a nomadic fashion than expected. Nomadic/random movement is known to evolve across

landscape that vary unpredictably both spatially and temporarily (Mueller et al., 2011),

such that animals wander across the landscape in search of resources. This generally results

in net squared displacement that increases linearly over time (e.g., Bunnefeld et al. 2011;

Singh et al. 2012), with animals having no affinity to defined home ranges. Throughout test

simulations, animals did not roam across the entire landscape (due in part to limiting the

correlated movement component), but were also not constrained to a defined home range

(Appendix E.2). In GPS collared animals, I observed residential movement patterns, where

animals are constrained to a specific and often small home range, but make periodic (daily

or seasonal) forays away from this location. Adding a homing tendency could considerably

improve the model and provide a better match between observed and simulated movements

e.g., Ornstein and Uhlenbeck 1930).

Interestingly, simulated wildebeest moved and were distributed across the landscape in

areas where they would be expected to be located, based on GPS collared animals. For in-

stance, few wildebeest per simulation (10-years) moved from the 1st triangle, where they were

randomly placed, to the 3rd triangle to the south. This perhaps indicates that significant

barriers to movement (anthropogenic or otherwise) exist. Additionally, simulated wilde-

beest seldom remained within the boundary of the national park for an entire simulation,

nor did the national park act as an attractant to simulated animals, even though anthro-

pogenic disturbance is most certainly lower within the park. These results are consistent

with observations made across this region, which indicate that other factors (i.e., biomass
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quantity/quality) likely limit the distribution of wildebeest and reduce use of habitat within

the national park. Performing a kappa analysis (Cohen, 1960) to compare the observed

and simulated distributions, a common approach in remote sensing analyses, would help in

further assessing if simulated animals moved into areas in which they would be expected to

be.

My analysis does not evaluate every scenario related to corridor use, with many different

factors acknowledged as having an effect on use (Clevenger and Waltho, 2005). Many of

these factors, however, could be evaluated using a similar methodology within this modeling

framework. For instance, I placed the wildlife corridor across a location that minimized

the amount of mitigation required, while also being located where animals would have likely

moved between seasonal ranges. I could have easily created additional corridors and assessed

the difference in use across these locations, an analysis that would surely be attractive to

managers tasked with identifying the best location for corridor construction. I also only

tested a singular corridor width, based on the pixel resolution of GIS data layers of resource

use. Varying this width could have profound effects on the number of animals using the

corridor. Research into the size and type of corridor (e.g., overpass/underpass) would surely

need to be conducted, although use of an underpass would seem unlikely due to the recognized

sensitivity of wildebeest to habitat fragmentation (Kahurananga and Silkiluwasha, 1997).

The threat of road construction is an increasing concern across the Athi-Kaputiei Plains,

with a recent proposal to build a bypass road around Nairobi and along the southern bound-

ary of the national park, further limiting connectivity between the park and the larger dis-

persal area. These threats are consistent across neighboring ecosystems, including Serengeti

National Park in Tanzania (Dobson et al., 2010). My results suggest that wildebeest would
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likely use a habitat corridor constructed to connect the dry and wet season range of the

species, providing improved connectivity across this threatened landscape. It is important

to note, however, that corridors are designed as mitigation strategies in which to facilitate

connectivity across disturbed landscapes and could never provide the level of connectivity

that may have once existed. In doing so, I provide a method which can be tailored and

expanded to other species and ecosystems, providing a simulation environment for testing

mitigation scenarios and a means in which to improve biologic diversity across increasingly

human dominated landscapes.
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CHAPTER 7

Conclusions

In 1902, just 11 years after rinderpest (‘cattle plague’) appeared across the Athi-Kaputiei

Plains and killed 90-95% of all grazing animals (domestic cattle included), wildlife were es-

timated to still be in higher abundance than they are observed today (Reid et al., 2008).

This is an interesting and sobering anecdote, as it is hard to truly appreciate the rich bi-

ologic diversity that this ecosystem once supported. More sobering is the recognition that

similar wildlife declines unite most ecosystems across the globe, with terrestrial vertebrate

populations experiencing 25% average declines in abundance since the 1500s (Dirzo et al.,

2014).

This dissertation does not seek to answer every question related to species declines (none

could), but does aim to investigate the effects of disturbance factors (both climatic and

anthropogenic) on the movements, space use, and physiological stress response of resident

wildebeest, the dominant herbivore found across East African grassland savannas. Past

research recognized the importance of wildebeest to ecosystem function (Sinclair, 2003;

Hopcraft et al., 2013), while also providing detailed information related to the causes of

recent and widespread population declines (Serneels and Lambin, 2001). Surprisingly little,

however, was known about the movements of resident wildebeest or how the movements of

individual wildebeest respond to these changes.

By collecting data across three study areas, this research provides a means in which to

make comparisons of the effects of varying degrees of disturbance on movement and hormonal

stress levels in resident wildebeest. In chapter 2, wildebeest across the Amboseli Basin were

observed to move further daily/annually than wildebeest across the Athi-Kaputiei Plains
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or the Mara. This was an expected response due to the low levels of productivity across

this arid landscape. These results also highlight the need for protection of wildlife dispersal

areas in order to facilitate movement between daily and seasonal habitat ranges. Across

the Athi-Kaputiei Plains, movements decreased more steeply than wildebeest across the

Amboseli Basin or the Mara when measured across longer temporal periods. These results

indicate that the movements of Athi-Kaputiei Plains were more tortuous (less directed) than

wildebeest across the Amboseli Basin or the Mara, which is most likely due to the increased

levels of anthropogenic habitat fragmentation observed across this landscape.

In chapter 3, the movement strategies of Mara wildebeest were compared with those

of Serengeti migrants, using an external GPS dataset of wildebeest movements from 1999-

2003 (Thirgood et al., 2004; Hopcraft et al., 2014). Results highlight alternative movement

strategies between individuals within the same population, with some animals remaining

locally resident over the entire study period while others displaced extensively across the

ecosystem. It is possible that these differing movement strategies relate to increased energy

requirements of reproductive females, although additional research is necessary. Serengeti

migrants moved further afield than either Mara movement category. Long-range movements

characterize this population, a factor that is attributed to being one of the mains reasons

why wildebeest are the most abundant large mammal across this ecosystem (Hopcraft et al.,

2013).

Analyses of fecal glucocorticoid (fGC) metabolites (chapter 4) highlight strong interactive

effects between biomass and local measures of disturbance, with fGC metabolites increasing

across areas of poor biomass quality when levels of anthropogenic disturbance increased.

Across study areas, however, I did not observe elevated fGC metabolite levels across the
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Athi-Kaputiei Plains, a result contrary to research expectations. Wildebeest likely become

accustomed to common stressors, similar to results found by Smith et al. (2012) in yellow-

bellied marmots (Marmota flaviventris), and shift their space use away from areas that are

highly disturbed, a result supported by analyses in chapter 5. Thus, although I did not

observe marked increases in fGC metabolite levels across the Athi-Kaputiei Plains, there is

cause for concern due to the strong interactive effect of anthropogenic disturbance on fGC

metabolite levels and the reduction in habitat available to the species, especially as it relates

to the resilience of the population in dry season periods.

Analyses in chapter 5 provided detailed information related to space use between dry and

wet season periods. Space use remained relatively constant in relation to woody vegetation

across seasonal periods, supporting results of Georgiadis (1995). Wildebeest were located in

closer proximity to river boundaries during dry season periods. Thus, wildebeest likely take

additional risks during dry season periods to access limited water sources, with dense woody

areas providing barriers to movement and connectivity. Results related to the distance to

primary roads provide the first empirical evidence of the repulsive effect of increased traffic

volumes on wildebeest space use, confirming observations of line transects conducted across

the Athi-Kaputiei Plains in 2012 and potentially providing policymakers with important

information to the likely effects of proposed road building across the region (Dobson et al.,

2010).

Results from chapters 2 and 5 proved to be integral inputs to an agent-based movement

model (chapter 6) to evaluate the potential use of a man-made habitat corridor connecting

seasonal habitat ranges across the Athi-Kaputiei Plains, allowing for a realistic depiction of

how animals move across the landscape in relation to landscape factors of disturbance. These
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results are particularly interesting because they provide a means by which to evaluate the use

of a potential corridor proactively, analyses that are seldom performed, while also providing

information to policymakers about the potential costs associated with fence removal.

In addition and although this dissertation is focused exclusively on wildebeest, there are

important implications for pastoralist people across the region who have voiced concern about

the decreased connectivity and lack of community areas in which to graze livestock. Across

the Athi-Kaputiei Plains, for example, the establishment and protection of a wildlife corridor

would most certainly be used by pastoralists to move livestock between seasonal grazing

areas, with monies to remove fences directly benefiting local people and improving local

attitudes towards wildlife (Galvin et al., 2008). If wildlife are to persist across increasingly

human-dominated landscapes, it will be because of smart growth scenarios that balance the

needs of a developing nation with those that recognize the importance of open areas for

grazing.

Tourism in Kenya accounts for approximately 12% of the gross domestic product (GDP),

with foreign visitors from across the globe traveling to the Maasai Mara National Reserve

and Amboseli National Park to view the rich diversity of wildlife. Nairobi National Park

is Kenya’s first national park (established in 1946), providing easy access to foreign and

domestic visitors alike to view wildlife. Wildlife populations are in sharp decline across

Kenya (Ogutu et al., 2011, 2013; Ottichilo et al., 2001; Reid et al., 2008), irrelevant of the

protective status of areas monitored (Western et al., 2009). Wildebeest are known to be

important species to ecosystem function, with grassland savannas across the region expe-

riencing cascading negative effects in their absence (Sinclair, 2003). We, therefore, need
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innovative approaches to understand how current conditions are affecting wildlife popula-

tions, especially related to animal movement, if we expect these ecosystems to support rich

abundances of wildlife and corresponding local economies. This dissertation provides a step

in that regard, presenting detailed information about the movements of individual wildebeest

across three study areas, an analysis of the effects of local habitat variables on wildebeest

space use and physiological stress, and an applied animal movement simulation to test the

efficacy of a habitat corridor to connect bisected habitat ranges of the species.
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Jenni-Eiermann, S., Glaus, E., Grüebler, M., Schwabl, H., and Jenni, L. (2008). Glucocor-

ticoid response to food availability in breeding barn swallows (Hirundo rustica). General

and comparative endocrinology, 155(3):558–65.

Johnson, D. D. H. (1980). The Comparison of Usage and Availability Measurements for

Evaluating Resource Preference. Ecology, 61(1):65.

Jonsson, P. and Eklundh, L. (2002). Seasonality extraction by function fitting to time-

series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing,

40(8):1824–1832.

142



Jonsson, P. and Eklundh, L. (2004). TIMESAT - A program for analyzing time-series of

satellite sensor data. Computers and Geosciences, 30:833–845.

Kahurananga, J. and Silkiluwasha, F. (1997). The migration of zebra and wildebeest between

Tarangire National Park and Simanjiro Plains, northern Tanzania, in 1972 and recent

trends. African Journal of Ecology, 35(3):179–185.

Keay, J. M., Singh, J., Gaunt, M. C., and Kaur, T. (2006). Fecal glucocorticoids and their

metabolites as indicators of stress in various mammalian species: A literature review.

Journal of Zoo and Wildlife Medicine, 37(3):234–244.

Kery, M. (2010). Introduction to WinBUGS for Ecologists: A Bayesian approach to regres-

sion, ANOVA, mixed models and related analyses. Academic Press, first edit edition.

Kitaysky, A. S., Wingfield, J. C., and Piatt, J. F. (1999). Dynamics of food availability, body

condition and physiological stress response in breeding Black-legged Kittiwakes. Functional

Ecology, 13(5):577–584.

Kleist, A. M., Lancia, R. A., and Doerr, P. D. (2007). Using video surveillance to estimate

wildlife use of a highway underpass. Journal of Wildlife Management, 71(8):2792–2800.

LandScan (2008). High Resolution Global Population Data Set.

LaPoint, S., Gallery, P., Wikelski, M., and Kays, R. (2013). Animal behavior, cost-based

corridor models, and real corridors. Landscape Ecology, 28(8):1615–1630.

Lewis, J. S., Rachlow, J. L., Garton, E. O., and Vierling, L. a. (2007). Effects of habitat on

GPS collar performance: using data screening to reduce location error. Journal of Applied

Ecology, 44(3):663–671.

143



MacQueen, J. (1967). Some methods for classification and analysis of multivariate observa-

tions. In Le Cam, L. and Neyman, J., editors, Proceedings of the Fifth Berkeley Symposium

on Mathematical Statistics and Probability, pages 281–297. University of California Press,

Berkeley.

Manly, B. F. J., McDonald, L. L., Thomas, D., McDonald, T. L., and Erickson, W. P. (2002).

Resource Selection by Animals: Statistical Analysis and Design for Field Studies. Kluwer,

Boston, 2nd edition.

Matthiopoulos, J., Hebblewhite, M., Aarts, G., and Fieberg, J. (2011). Generalized func-

tional responses for species distributions. Ecology, 92(3):583–589.

Mbaiwa, B. Y. J. E. and Mbaiwa, O. I. (2006). The Effects of Veterinary Fences on Wildlife

Populations in Okavango Delta, Botswana. International Journal of Wilderness, 12(3):17–

24.

McCarthy, M. A. (2007). Bayesian Methods for Ecology. Cambridge University Press, Cam-

bridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sau Paulo.

McEwen, B. S. and Wingfield, J. C. (2003). The concept of allostasis in biology and

biomedicine. Hormones and behavior, 43(1):2–15.

Mduma, S., Sinclair, A., and Hilborn, R. (1999). Food regulates the Serengeti wildebeest:

A 40-year record. Journal of Animal . . . , 68(6):1101–1122.

Millspaugh, J. and Washburn, B. (2003). Effects of heat and chemical treatments on fecal

glucocorticoid measurements: implications for sample transport. Wildlife Society Bulletin,

31(2):399–406.

144



Millspaugh, J. and Washburn, B. (2004). Use of fecal glucocorticoid metabolite measures in

conservation biology research: considerations for application and interpretation. General

and Comparative Endocrinology, 138:159–199.

Millspaugh, J. J., Woods, R. J., Hunt, K. E., Raedeke, K. J., Brundige, C., Washburn, B. E.,

Wasser, S. K., Kenneth, J., and Brundige, G. C. (2001). Fecal glucocorticoid assays and

the physiological stress response in elk. Wildlife Society Bulletin, 29(3):899–907.

Milner-Gulland, E., Fryxell, J. M., and Sinclair, A. R. (2011). Conclusions. In Milner-

Gulland, E., Fryxell, J. M., and Sinclair, A. R. E., editors, Animal Migration: a synthesis,

chapter 12, pages 207–215. Oxford University Press, Oxford.

Moberg, G. (2000). Biological response to stress: Implications for animal welfare. In Moberg,

G. P. and Mench, J. A., editors, The Biology of animal stress: Basic principles and

implications for animal welfare, chapter 1. CABI, Wallingford.

Mohr, C. (1947). Table of equivalent populations of North American small mammals. Amer-

ican Midland Naturalist, 37:223–249.

Morales, J. M., Moorcroft, P. R., Matthiopoulos, J., Frair, J. L., Kie, J. G., Powell, R. a.,

Merrill, E. H., and Haydon, D. T. (2010). Building the bridge between animal movement

and population dynamics. Philosophical transactions of the Royal Society of London.

Series B, Biological sciences, 365(1550):2289–301.

Mueller, T. and Fagan, W. (2008). Search and navigation in dynamic environmentsfrom

individual behaviors to population distributions. Oikos, 117(December 2007):64–664.

Mueller, T., Olson, K. a., Dressler, G., Leimgruber, P., Fuller, T. K., Nicolson, C., Novaro,

A. J., Bolgeri, M. J., Wattles, D., DeStefano, S., Calabrese, J. M., and Fagan, W. F.

(2011). How landscape dynamics link individual- to population-level movement patterns:

145



a multispecies comparison of ungulate relocation data. Global Ecology and Biogeography,

20(5):683–694.

Munshi-South, J., Tchignoumba, L., Brown, J., Abbondanza, N., Maldonado, J. E., Hen-

derson, A., and Alonso, A. (2008). Physiological indicators of stress in African forest

elephants (Loxodonta africana cyclotis) in relation to petroleum operations in Gabon,

Central Africa. Diversity and Distributions, 14(6):995–1003.

Murray, M. G. (1995). Specific nutrient requirements and migration of wildebeest. In Sinclair,

A. and Arcese, P., editors, Serengeti II: Dynamics, Management, and Conservation of an

Ecosystem. University of Chicago Press, Chicago.

Mushi, E. and Rurangirwa, F. (1981). Malignant catarrhal fever virus shedding by infected

cattle. Bulletin of Animal Health and Production in Africa, 29(1):111–112.

Naidoo, R., Chase, M., Beytell, P., Du Preez, P., Landen, K., Stuart-Hill, G., and Taylor,

R. (2014). A newly discovered wildlife migration in Namibia and Botswana is the longest

in Africa. Oryx, pages 1–9.

Nakagawa, S. and Schielzeth, H. (2013). A general and simple method for obtaining R 2 from

generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2):133–142.

Navarro-Castilla, A., Barja, I., Olea, P. P., Piñeiro, A., Mateo-Tomás, P., Silván, G., and
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APPENDIX A

Analysis of movement of resident wildebeest across

three landscapes in southern Kenya

A.1. Data Filtering of GPS Dataset

Two-dimensional (2D) and 3-dimensional (3D) data points recorded by Lotek WildCell R©

GPS collars prior to data filtering. 3D data points with a Dilution of Precision (DOP) >

10.0 and 2D data points with a DOP > 5.0 removed/excluded from statistical analyses.
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A.2. Summary of GPS Monitored Wildebeest

Summary of GPS collared white-bearded wildebeest (Connochaetes taurinus) monitored

across three study areas in southern Kenyan. Results are representative of the entire study

period. Fate assessed based on collar condition and from interviews of those who discovered

the collar. ‘Drop’ indicates that the collar functioned properly, released from the animal,

and was recovered.

Fix Activity
Days Fixes Success Device Data

ID Sex Age Tracked Received (%) Recovered Collected Fate

Amboseli Basin
2837 M 9 270 4,119 95.4 No No UNK
30069 F 10 728 11,102 95.3 No No UNK
30073 F 7 828 12,665 95.6 Yes Yes Predated
30075 F 6 545 7,992 91.7 No No UNK
30076 F 10 748 11,525 96.2 Yes Yes Drop
30078 F 10 127 1,937 95.1 No No UNK
30081 M 8 63 1,001 99.9 No No UNK
30083 M 9 232 3,536 95.3 Yes Yes Poached
30085 M 8 608 8,515 87.5 Yes Yes Dead

Athi-Kaputiei Plains
2840 M 6 333 4,802 90.3 Yes Yes Drop
2842 M 5 519 7,804 94.0 No No UNK
30068 F 9 69 1,107 99.9 Yes Yes Predated
30070 F 8 236 3,568 94.4 Yes Yes Poached
30071 F 9 815 12,373 94.9 No No UNK
30072 F 9 732 11,081 94.6 Yes Yes Drop
30074 F 9 822 11,763 89.4 No No UNK
30077 F 10 763 11,790 96.5 Yes No Drop
30079 F 9 727 10,982 94.4 Yes No Drop
30082 M 10 821 12,583 95.8 No No UNK
30084 M 8 415 6,070 91.3 No No UNK
30086 M 10 477 7,342 96.1 Yes Yes Drop

Mara
2829 F 9 755 11,543 95.5 No No UNK
2830 F 10 82 1,311 100.0 Yes Yes Predated
2831 M 5 750 11,437 95.3 No No UNK

Continued on next page
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Table A.2 – continued from previous page
Fix Activity

Days Fixes Success Device Data
ID Sex Age Tracked Received (%) Recovered Collected Fate

2832 F 8 964 14,792 95.9 No No UNK
2833 F 7 294 4,422 93.8 No No UNK
2834 F 7 567 8,718 96.0 No No UNK
2835 F 10 182 2,863 98.3 Yes Yes Predated
2836 M 9 925 11,744 79.3 No No UNK
2838 F 12 288 4,337 94.2 No No UNK
2839 M 10 490 7,203 91.9 No No UNK
2841 M 8 16 243 91.7 No No UNK
2843 F 12 305 4,625 94.6 No No UNK
2844 F 7 964 14,872 96.4 No No UNK
2845 F 8 727 11,096 95.4 No No UNK
2846 M 10 443 6,855 96.8 No No UNK

Mean: 518 7,770 94.4
Std Dev: 287 4,290 3.7
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A.3. Results of Collared Wildebeest that Completed 1-year Study Period

(21-Oct-2010 - 20-Oct-2011)

Results of GPS collared wildebeest that completed a 1-year study period (21-Oct-2010 -

20-Oct-2011) and monitored across three study areas in Kenya. Mean/Maximum Displace-

ment is the average/maximum net squared displacement from the start date of the monitor-

ing period (21-Oct-2010). The Athi-Kaputiei Plains population was split into two separate

populations (western/eastern). Rayleigh statistic (ρ) is a measure of how concentrated the

data are around the circular mean, with values closer to 1 being highly concentrated.
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Total Mean Maximum
Movement Displacement Displacement Circular

ID Sex Age Study Area Population (km) (km) (km) mean ρ

30069 F 10 Amboseli Basin NA 3,305.2 (16.4 ± 0.22) 61.7 1.18 0.28
30073 F 7 Amboseli Basin NA 2,416.3 (6.7 ± 0.03) 15.0 -3.99 0.25
30075 F 6 Amboseli Basin NA 2,107.2 (19.8 ± 0.20) 39.3 -5.35 0.20
30076 F 10 Amboseli Basin NA 2,750.8 (20.8 ± 0.18) 51.5 0.63 0.24
30085 M 8 Amboseli Basin NA 3,556.4 (22.6 ± 0.23) 53.4 -5.75 0.24
2842 M 5 Athi-Kaputiei Plains western 1,822.7 (3.2 ± 0.02) 13.1 -6.28 0.11
30071 F 9 Athi-Kaputiei Plains eastern 1,152.7 (1.9 ± 0.02) 7.0 -10.27 0.16
30072 F 9 Athi-Kaputiei Plains eastern 1,182.9 (1.4 ± 0.01) 8.2 21.46 0.09
30074 F 9 Athi-Kaputiei Plains western 1,401.4 (4.4 ± 0.03) 13.3 1.25 0.30
30077 F 10 Athi-Kaputiei Plains eastern 1,511.9 (7.1 ± 0.14) 34.3 -4.46 0.11
30079 F 9 Athi-Kaputiei Plains eastern 1,413.0 (4.4 ± 0.02) 21.8 4.78 0.09
30082 M 10 Athi-Kaputiei Plains eastern 1,011.0 (1.5 ± 0.05) 22.1 154.42 0.07
30084 M 8 Athi-Kaputiei Plains eastern 1,709.9 (3.9 ± 0.02) 7.4 -17.05 0.08
30086 M 10 Athi-Kaputiei Plains western 1,261.4 (0.6 ± 0.01) 8.4 27.05 0.03
2829 F 9 Mara NA 2,168.7 (26.4 ± 0.20) 63.9 2.82 0.33
2831 M 5 Mara NA 1,295.3 (1.4 ± 0.01) 7.3 0.79 0.07
2832 F 8 Mara NA 2,184.8 (9.5 ± 0.13) 24.8 -2.62 0.15
2834 F 7 Mara NA 2,787.3 (34.1 ± 0.16) 61.4 -0.48 0.28
2836 M 9 Mara NA 2,660.1 (20.7 ± 0.14) 38.0 0.34 0.29
2844 F 7 Mara NA 1,429.1 (0.74 ± 0.01) 4.6 2.05 0.06
2845 F 8 Mara NA 2,370.0 (66.7 ± 0.53) 133.0 0.08 0.30
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A.4. Individual Movement Trajectories

Individual movement trajectories of GPS collared wildebeest across the Amboseli Basin,

Athi-Kaputiei Plains, and the Mara. Movement velocity and net squared displacement

also displayed. Protected areas (green polygons) and Mara conservancies (grey polygons)

displayed for reference, if applicable. Orange triangle marks the animal’s collaring location;

red square marks the animal’s last known position.
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A.5. Study Area Summary of Hourly Movements

Summary of hourly movements of GPS collared white-bearded wildebeest (2010-2013)

across three study areas in Kenya. Hourly mean (± SE) and median movement (m), quantiles

(0.025, 0.075), circular mean (degrees), and Rayleigh statistic (ρ) provided. ρ is a measure

of how concentrated the data are around the mean, with values closer to 1 being highly

concentrated.

Hour Mean Median Quantiles Circular Mean ρ

Amboseli Basin
0 160.2 (4.1) 71.8 (29.3, 173.2) 76.8 0.00
3 147.1 (3.8) 68.3 (26.4, 159.7) -87.3 0.03
6 818.8 (11.9) 556.8 (292.3, 1096.3) -7.3 0.27
7 655.2 (12.0) 377.7 (178.6, 794.8) -0.8 0.44
8 585.4 (13.3) 235.0 (86.3, 638.9) -2.0 0.38
9 565.6 (13.4) 188.7 (53.0, 628.4) -0.5 0.31
10 508.8 (12.4) 180.6 (52.0, 533.6) -5.6 0.24
11 408.6 (10.7) 139.5 (39.2, 401.4) 5.7 0.17
12 324.3 (9.5) 109.6 (27.8, 289.8) 0.1 0.13
13 248.1 (7.8) 84.3 (15.8, 243.8) -0.3 0.11
14 213.2 (6.6) 68.1 (11.4, 218.2) -10.9 0.10
15 238.5 (6.9) 95..0 (16.0, 263.3) -9.4 0.15
16 382.5 (9.2) 187.2 (67.6, 405.9) 0.1 0.21
17 595.5 (11.9) 309.8 (143.7, 662.4) 0.4 0.35
18 500.9 (8.5) 309.0 (131.5, 650.3) -0.5 0.41
21 168.4 (4.1) 77.1 (30.5, 186.4) -11.1 0.20

Athi-Kaputiei Plains
0 130.7 (2.6) 68.8 (35.6, 143.2) -179.3 0.18
3 105.9 (2.7) 48.8 (19.7, 109.3) 173.2 0.06
6 469.6 (6.6) 300.8 (163.0, 553.7) 6.5 0.20
7 313.2 (5.2) 183.5 (103.2, 342.3) 1.0 0.27
8 239.1 (4.4) 134.1 (66.9, 263.7) 3.4 0.16
9 186.4 (4.0) 90.3 (29.8, 198.3) -12.4 0.13
10 168.6 (3.8) 74.6 (17.2, 182.6) -12.6 0.07
11 160.2 (3.8) 72.2 (16.2, 173.0) -35.2 0.03
12 147.5 (3.6) 66.0 (13.9, 154.9) 156.3 0.03
13 121.7 (3.2) 52.9 (9.0, 135.6) 177.4 0.04
14 110.8 (3.2) 38.9 (6.8, 112.9) 176.8 0.06
15 110.4 (3.2) 31.9 (5.6, 114.5) 177.9 0.04

Continued on next page
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Table A.5 – continued from previous page
Hour Mean Median Quantiles Circular Mean ρ

16 136.6 (3.2) 57.7 (8.7, 157.6) -150.8 0.02
17 205.0 (3.6) 126.5 (56.2, 234.1) -12.7 0.06
18 200.9 (3.0 121.8 (63.2, 247.4) 4.1 0.06
21 150.6 (2.6) 89.9 (45.8, 173.0) -5.8 0.19

Mara
0 136.4 (2.4) 64.7 (159.6, 209.9) 178.7 0.04
3 103.2 (2.2) 39.3 (117.7, 192.1) 13.4 0.01
6 595.8 (7.1) 383.4 (815.0, 622.4) 0.2 0.13
7 481.3 (6.7) 278.0 (594.3, 590.4) -3.5 0.37
8 314.4 (5.5) 150.4 (344.5, 483.8) -4.0 0.23
9 226.3 (4.9) 80.3 (231.2, 435.3) 1.8 0.19
10 225.1 (4.4) 88.8 (252.8, 384.8 -1.3 0.14
11 239.3 (4.3) 112.0 (276.5, 378.5) 1.3 0.13
12 224.6 (4.1) 108.2 (256.4, 358.7) -3.5 0.13
13 191.1 (3.7 86.2 (221.9, 321.4) 2.0 0.08
14 173.5 (3.5) 74.7 (193.5, 305.9) 11.8 0.07
15 188.4 (3.5) 90.1 (224.9, 305.9) -3.4 0.09
16 246.0 (3.8) 145.7 (294.1, 331.9) -2.8 0.12
17 323.4 (5.0) 201.4 (380.2, 435.4) -2.8 0.22
18 296.9 (3.7) 194.0 (398.4, 327.7) 0.8 0.25
21 163.1 (2.6) 83.8 (195.0, 230.1) -4.78 0.12
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Study area summary of hourly movements of GPS collared white-beared wildebeest

(2010-2013). Hourly medians ± SE.
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A.6. Summary of Hourly Movements

Summary of hourly movements of GPS collared white-bearded wildebeest (2010-2013).

Hourly mean ± SE and median movement (m), quantiles (0.25, 0.75), circular mean (de-

grees), and Rayleigh statistic (ρ) provided. ρ is a measure of how concentrated the data are

around the mean, with values closer to 1 being highly concentrated.

Hour Mean Median Quantiles Circular Mean ρ

0 139.7 ± 1.6 67.7 (30.2, 155.1) 179.9 0.08
3 114.0 ± 1.6 48.1 (17.6, 121.5) -170.6 0.02
6 600.3 ± 4.7 379.8 (183.4, 777.9 ) 0.2 0.19
7 459.9 ± 4.4 249.9 (121.0, 536.7) -1.5 0.35
8 348.0 ± 4.2 154.0 (69.3, 355.6) -1.5 0.24
9 288.0 ± 4.1 99.1 (30.1, 267.8) -2.4 0.19
10 268.0 ± 3.7 95.8 (23.7, 266.0) -5.1 0.14
11 248.3 ± 3.4 99.5 (28.4, 250.6) -0.5 0.10
12 218.8 ± 3.1 89.6 (24.9, 222.6) 0.4 0.07
13 178.6 ± 2.6 71.9 (15.6, 187.4) 2.3 0.04
14 159.6 ± 2.4 59.6 (10.8, 166.2) 6.0 0.03
15 171.2 ± 2.4 68.7 (10.6, 187.3) -7.3 0.06
16 236.6 ± 2.9 116.4 (35.4, 267.9) -4.3 0.09
17 340.8 ± 3.7 183.2 (86.8, 368.5) -2.6 0.19
18 307.6 ± 2.8 177.1 (77.9, 389.1) 0.6 0.22
21 159.8 ± 1.7 84.8 (38.3, 185.5) -7.0 0.16
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Summary of hourly movements of GPS collared white-beared wildebeest (2010-2013).

Hourly medians ± SE.
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A.7. Daily Movement Statistics

Daily Movement statistics (± SE) of GPS collared white-bearded wildebeest (Connochaetes

taurinus). Results are representative of the entire study period. Tortuosity is defined as the

daily distance moved / daily net squared displacement. See text for details.

Mean Daily Max. Daily Mean Daily Max. Daily
Movement Movement Displacement Displacement

ID Sex Age (km) (km) (km (km) Tortuosity

Amboseli Basin
2837 M 9 7.0 ± 0.3 39.1 3.7 ± 0.3 33.9 0.44 ± 0.01
30069 F 10 8.1 ± 0.2 38.6 4.0 ± 0.1 27.9 0.45 ± 0.01
30073 F 7 6.4 ± 0.2 23.8 3.1 ± 0.1 19.5 0.44 ± 0.01
30075 F 6 5.1 ± 0.2 32.1 2.6 ± 0.1 26.7 0.41 ± 0.01
30076 F 10 7.3 ± 0.2 40.4 3.6 ± 0.1 25.2 0.44 ± 0.01
30078 F 10 8.4 ± 0.5 32.1 4.9 ± 0.5 27.1 0.48 ± 0.02
30081 M 8 12.9 ± 1.0 30.4 7.6 ± 0.6 27.0 0.55 ± 0.02
30083 M 9 10.1 ± 0.4 34.4 5.2 ± 0.3 23.9 0.48 ± 0.01
30085 M 8 8.7 ± 0.3 37.1 4.9 ± 0.2 28.6 0.45 ± 0.01

Athi-Kaputiei Plains
2840 M 6 4.4 ± 0.2 23.8 2.3 ± 0.1 18.6 0.45 ± 0.01
2842 M 5 4.3 ± 0.1 23.5 2.0 ± 0.1 10.1 0.43 ± 0.01
30068 F 9 4.2 ± 0.2 12.0 1.7 ± 0.1 4.4 0.40 ± 0.02
30070 F 8 3.9 ± 0.3 28.2 2.0 ± 0.2 22.8 0.41 ± 0.01
30071 F 9 3.0 ± 0.1 21.8 1.4 ± 0.1 16.1 0.41 ± 0.01
30072 F 9 2.9 ± 0.1 11.4 1.2 ± 0.0 6.2 0.40 ± 0.01
30074 F 9 3.1 ± 0.1 16.9 1.8 ± 0.1 14.2 0.47 ± 0.01
30077 F 10 3.7 ± 0.1 33.9 1.9 ± 0.1 24.0 0.44 ± 0.01
30079 F 9 4.0 ± 0.1 21.4 1.6 ± 0.1 10.8 0.37 ± 0.01
30082 M 10 2.7 ± 0.1 36.1 0.9 ± 0.1 21.5 0.30 ± 0.01
30084 M 8 3.8 ± 0.1 13.4 1.7 ± 0.1 7.9 0.39 ± 0.01
30086 M 10 3.1 ± 0.1 10.5 1.1 ± 0.0 7.9 0.31 ± 0.01

Mara
2829 F 9 5.0 ± 0.1 34.1 2.9 ± 0.1 23.2 0.50 ± 0.01
2830 F 10 3.7 ± 0.2 9.2 1.5 ± 0.1 4.9 0.40 ± 0.02
2831 M 5 3.7 ± 0.1 19.3 1.6 ± 0.1 15.6 0.38 ± 0.01
2832 F 8 5.1 ± 0.1 27.4 2.3 ± 0.1 15.9 0.40 ± 0.01
2833 F 7 4.3 ± 0.2 15.5 1.9 ± 0.1 7.7 0.39 ± 0.01
2834 F 7 6.8 ± 0.2 47.6 4.4 ± 0.2 39.9 0.56 ± 0.01
2835 F 10 3.0 ± 0.1 7.1 1.3 ± 0.1 4.8 0.43 ± 0.01

Continued on next page
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Table A.7 – continued from previous page
Mean Daily Max. Daily Mean Daily Max. Daily
Movement Movement Displacement Displacement

ID Sex Age (km) (km) (km (km) Tortuosity

2836 M 9 4.6 ± 0.2 38.4 3.4 ± 0.2 30.8 0.46 ± 0.01
2838 F 12 5.4 ± 0.3 34.3 3.4 ± 0.2 28.6 0.55 ± 0.01
2839 M 10 4.3 ± 0.2 21.2 2.2 ± 0.1 14.4 0.38 ± 0.01
2841 M 8 4.7 ± 0.6 10.9 1.6 ± 0.2 3.6 0.29 ± 0.02
2843 F 12 4.7 ± 0.2 22.3 2.4 ± 0.1 13.3 0.46 ± 0.01
2844 F 7 3.7 ± 0.1 14.4 1.5 ± 0.1 11.5 0.37 ± 0.01
2845 F 8 5.3 ± 0.2 40.1 3.0 ± 0.1 24.7 0.49 ± 0.01
2846 M 10 4.5 ± 0.1 16.6 2.2 ± 0.1 13.7 0.39 ± 0.01

Mean: 5.2 25.5 2.6 18.3 0.43
Std Dev: 2.2 10.9 1.4 9.4 0.06
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APPENDIX B

Mixed movement strategies in resident

white-bearded wildebeest

B.1. Animal Movements

Results of linear and home range movement metrics for each version of the data, filtered

by different (1, 2, 4, 8, 16-day) temporal periods. Grey triangles represent Mara migrants;

grey squares represent Mara residents. Data points have been jittered.

203



B.2. Movement Trajectories

Movement trajectories of individual wildebeest. Blue dots are individual GPS collar

locations. Orange triangle denotes the initial collaring location and the red square the last

known location. The Maasai Mara National Reserve and Serengeti National Park (Green

polygon) provided for reference, if applicable. Movement trajectory, Local Convex Hull

(LoCoH) homerange, fixed kernel (50% and 90% kernel), and the Minimum Convex Polygon

(MCP) displayed. 50% (dashed black line) and 90% (solid black line) fixed kernel illustrated

in the same graph with the MCP, displayed as the grey polygon. Daily movement velocity

(km/day) and total net displacement (km) also provided.
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B.3. Dekadal Rainfall Estimates

Comparison of the dekadal (10-day) rainfall estimated in 2010 with estimates from 1999,

2000, 2003 (Xie and Arkin, 1997).
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B.4. Sample R-code - Bayesian ANOVA

# ******************************************

# ******************************************

# Project: Gnu Landscapes

# Description: Script to calculate posterior means and Bayesian credible intervals,

comparing the difference between groups. Here, groups are defined as Residents (1) and

migrants (2).

Analysis based on:

Kery, M. 2010. Introduction to WinBUGS for Ecologists: A Bayesian approach to

regression, ANOVA, mixed models and related analyses. First Edition.

Academic Press

and

McCarthy, M.A. 2007. Bayesian Methods for Ecology. Cambridge, New York, Melbourne,

Madrid, Cape Town, Singapore, Sau Paulo: Cambridge University Press

# Author: Jared Stabach

# Date: 01-March-2015

# ******************************************

# ******************************************

# Load libraries

library(rjags)

library(coda)

# Set working directory where source code is located

setwd("C:/whatever/")

# ******************************************

# Calculate average daily movement between groups and compare distributions

# Load Data:

# Alternatively, this could (should) be set by loading the vector or dataframe

# This loads the mean velocity from Table 2, along with categorizing animals as

# Resident or Migrant (Group)

Move.Stat <- c(2.53,1.34,1.78,1.18,3.61,3.25,3.04,1.58,1.74,0.7,2.74,1.57)

Group <- c(1,1,1,1,2,1,2,1,1,1,2,1)

# Test to make sure Move.Stat is normally distributed

Shapiro.test(Move.Stat)

# Define n

n <- length(Move.Stat)

# Set-up burn-in/iterations for JAGS

n.update=20000 # burn-in iterations (0.20 percent) = 20000

n.iter=100000 # Number of iterations

n.adapt=5000 # adaptation iterations

# Set up 3 chains with initial values

inits=list(

list(alpha=c(1,1),sigma=1), # Chain 1

list(alpha=c(2,2),sigma=2), # Chain 2

list(alpha=c(3,3),sigma=3) # Chain 3

)

# Set up blank list

data.list <- vector("list")

# Define the data, place into the above created list

data.list=list(
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Y=Move.Stat,

x=Group,

n=n

)

# Run the jags.model, source the ANOVA

jm2=jags.model("3tb_Anova_AvgMove.R", data=data.list, inits=inits, n.chains=length(inits),

n.adapt=n.adapt)

update(jm2, n.iter=n.update) #Burn in the chain

zm2=coda.samples(jm2,variable.names=c("alpha","sigma","delta"), # generate the coda object

n.iter=n.iter, n.thin=1)

# Deviance Information Criteria

zdic=dic.samples(jm2,n.iter=n.iter)

# Return DIC and devicance

zdic

# Summarize object. Will provide means, SD and Credible Intervals

summary(zm2)

# Visual checks of distributions and exploration of parameter space

plot(zm2)

# Run convergence diagnostics

gelman.diag(zm2, multivariate=FALSE)

# Assess the difference between the 2 groups

# Place all three results from chains into 1 data.frame

compare=as.data.frame(rbind(zm2[[1]],zm2[[2]],zm2[[3]]))

# Now calculate median and credible interval

(median(compare[,1]))

(median(compare[,2]))

(quantile(compare[,1], probs=c(0.025,0.975)))

(quantile(compare[,2], probs=c(0.025,0.975)))

# Can do two ways:

# Calculate the probability that the distributions are different

1-ecdf(compare$delta)(0)

# OR, Calculate the Bayesian equivalent of a p-value. Sample from the distributions and compare

# Set p to zero

p = 0

for (i in 1:nrow(compare)){

alph.1 <- sample(compare[,1],1,replace=TRUE)

alph.2 <- sample(compare[,2],1,replace=TRUE)

if(alph.2 > alph.1) # If the migrant mean is greater than the resident mean

{p = p + 1}

}

# Calculate the probability that migrant mean is greater than the resident mean

(p = p / nrow(compare))

# ******************************************

# ******************************************

# JAGS MODEL

# Place this code as a separate .R file in the working directory set above

# Name this file 3tb_Anova_AvgMove.R,
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# This is called in the main section of the .R code (above)

# JAGS model

# Anova

# Test for movement differences

model

{

# Priors

for (i in 1:2){

alpha[i] ~ dnorm(0,0.000001)

}

sigma ~ dgamma(0.001, 0.001)

# Likelihood

for (i in 1:n){

mean[i] <- alpha[x[i]]

Y[i] ~ dnorm(mean[i], sigma)

}

# Derived quantities

# Necessary if comparing groups using ecdf function

delta <- alpha[2] - alpha[1]

}

# ******************************************

# ******************************************
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B.5. Mean Position in the Easting and Northing Direction

Mean position in the Easting (a) and Northing (b) direction for Mara residents (dashed

line) and Mara migrants (solid line), plotted against month. Horizontal black line repre-

sents dry season periods, determined by incorporating MODIS NDVI data (MOD13Q1) and

using a Savitsky-Golay function in the TIMESAT software package (Jonsson and Eklundh,

2002, 2004; Eklundh and Jonsson, 2011). Horizontal grey line denotes the time period that

Serengeti migrants are located in and around the Maasai Mara National Reserve (Hopcraft

et al., 2014).
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B.6. Net Squared Displacement of Animal 2845

Net squared displacement of Mara migrant (ID = 2845) over a 2-year study period (30-

May-2010 29-May-2012). Graph highlights a mixture of nomadic, encamped, and migratory

movement. Here, I extend the time period of display to highlight that the animal returned

to its initial collaring location.
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APPENDIX C

Habitat disturbance effects on the physiological

stress response in resident Kenyan white-bearded

wildebeest (Connochaetes taurinus)

C.1. Details of the Disturbance Index

Disturbance Index (D):

Dj =

∑n
i=1

xij/max xi

n

was calculated by summarizing the number of shoats (sheep and goats), cattle, cars, humans,

dogs, bomas (local settlements), fences, and structures at each sampling location. Each

of these factors were standardized by dividing by the column maximum. To reduce the

influence of any one factor, I divided by the total number of disturbance factors (i.e., 8).

The ’DisturbanceIndex’ column is the result of this calculation. I conducted a 5-minute

point count, counting all of these factors within a ∼1-2 km buffer at each sampling location.

NA indicates that a factor was not collected. To re-calculate the Disturbance Index, use the

following syntax in R:

# Load Dataset

Data.Disturb <- read.csv("C:/YourLocation/AppendixA_DisturbanceFile.csv",

header=TRUE, sep = ",")

# Verify Load

head(Data.Disturb)

# Create a blank matrix

hold.all <- matrix(NA,nrow(Data.Disturb),8)

# Loop through rows a columns

for (i in 1:nrow(Data.Disturb)){

for (j in 7:14){

hold.temp <- Data.Disturb[i,j]/max(Data.Disturb[,j],na.rm=TRUE)

hold.all[i,j-6] <- hold.temp

}}

# Summarize all columns in the matrix

hold.sum <- apply(hold.all,1,sum)

# Standardize by the total number of disturbance factors

# Append to Data.Disturb data.frame

Data.Disturb$DisturbanceIndex <- round(hold.sum/ncol(hold.all),digits=2)
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A .csv file with all disturbance factors can be downloaded in the supplementary informa-

tion published with this article.

See Stabach JA, Boone RB, Worden JS, and Forant G. 2015. Habitat disturbance ef-

fects on the physiological stress response in resident Kenya white-bearded wildebeest (Con-

nochaetes taurinus). Biological Conservation 182: 177-186.
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APPENDIX D

Seasonal habitat selection of white-bearded

wildebeest

D.1. Details of the Anthropogenic Risk data layer

Following Hopcraft et al. (2013), I digitized 86,565 settlements from available satellite im-

agery (ESRI, 2011; GoogleEarth, 2013) to estimate risks imposed on wildebeest by humans.

From the digitized settlements, I created a distance grid with 50 meter spatial resolution

using ArcGIS 10.1 (ESRI, 2012). I multiplied the resulting distance grid by 0.001 to scale

values to kilometers and added 0.1 to the result to account for settlements that were very

close together and would otherwise have a calculated distance of 0 meters. Human popula-

tion, derived from LandScan (2008), were log transformed since most cells had low density

estimates with a few cells with very high estimates. The resulting data layer highlights that

locations near densely populated villages/cities have the highest values and therefore, high

risk, while locations furthest from human population settlements have the lowest values (low

risk).

AnthropogenicRisk =
(Log [HumanPopulation+ 1])

([Distance to Settlements ∗ 0.001] + 0.1)
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D.2. Sensitivity plots

Fifty (50) points per use point generated for availability, based on simulation results.

Parameters ‘Anthropogenic Risk (Anth Risk)’, ‘NDVI’, ‘Distance to Woody Cover (Woody)’,

and ‘Distance to Rivers (River)’ displayed.
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D.3. R-Code for Conducting Sensitivity Analysis

Code based on Northrup et al. (2013)

# *************************************************************************************************

# *************************************************************************************************

# Code written for R version x64 3.1.1

# Author: Jared Stabach

# Date: 08-December-2014

# Purpose: Sensitivity analysis to determine how many Available samples to use in relation to

Use points

# Note: To run the function, load the Sensitivity.RSF and Sensitivity.Plot.RSF function into your

R workspace.

# The main inputs are your Use Dataset, your Availability Dataset, the Total Number of Samples

that you want to iterate through, and the output directory.

# This code will only work after your Use/Available datasets have been built (i.e., the raster

values must already be extracted at each data point.

# The code will need to be edited based on the raster values that have been extracted at each

data point.

# Asterisks have been placed in the code where editing is likely necessary

# Your dataset MUST have an ID field, a Presence field (0,1), and habitat covariates

# Create a folder in your output directory named SensitivityAnalysis

# *************************************************************************************************

# Set the Availability Sample that want to sample from and the output directory

Total.Avail.Samples <- c(1,2,3,5,10,20,30,50,100)

# Set output directory

dir <- "C:/Whatever" #*** Edit workspace ***

# See the Sensitivity.RSF function if decide to change any of the parameters that are included

in the model

# Sensitivity analysis uses a glm and iterates 100x’s

# Function syntax:

# Sensitivity.Plot.RSF(UseDataset, AvailableDataset, Total.Avail.Samples (Set Above),

OutputDirectory)

# This is a function within a function (See Sensitivity.RSF)

# Run function

# Change Mara.Use and Mara.Avail to the name of your Use and Available dataset, respectively

# Function runs on an Availability sample of 100 points per use point, regularly generated.

Sensitivity.Plot.RSF(Mara.Use,Mara.Avail,Total.Avail.Samples,dir)

# Sensitivity analysis function

Sensitivity.RSF <- function(Data.Use,Data.Avail,SampleMultiplier){

# Number of Iterations

n.iter=100

# Create matrix to hold everything

beta.1 <- matrix(NA,n.iter,14) # *** Edit number of columns to create..based on the number of

covariates (below) **

if(SampleMultiplier == 100){

for(i in 1:n.iter){

# Bind together

x.glm <-rbind(Data.Use, Data.Avail)
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# Run GLM # *******Edit covariates ********

out <- glm(Presence ~ NDVI + dndvi + TWI + Woody_Dist + River_Dist + Rd13_Dist + Rd5_Dist +

Anth_Risk + Elevation + Woody2 + River2 + Rd132 + Rd52, data=x.glm, family=

binomial(link="logit"))

# Output coefficients # *** Remove beta.t values as appropriate.should match columns in matrix

beta.1[i,1] <-out$coeff[1]

beta.1[i,2] <-out$coeff[2]

beta.1[i,3] <-out$coeff[3]

beta.1[i,4] <-out$coeff[4]

beta.1[i,5] <-out$coeff[5]

beta.1[i,6] <-out$coeff[6]

beta.1[i,7] <-out$coeff[7]

beta.1[i,8] <-out$coeff[8]

beta.1[i,9] <-out$coeff[9]

beta.1[i,10] <-out$coeff[10]

beta.1[i,11] <-out$coeff[11]

beta.1[i,12] <-out$coeff[12]

beta.1[i,13] <-out$coeff[13]

beta.1[i,14] <-out$coeff[14]

}

} else {

# Run simulations. Records are < 100...want to sample and create a subset.

for(i in 1:n.iter){

# Sample from the number of generated points

s.index <- sample(nrow(Data.Avail),nrow(Data.Use)*SampleMultiplier,replace=FALSE)

x.a <- Data.Avail[s.index,]

# Bind together

x.glm <-rbind(Data.Use, x.a)

# Run GLM # *******Edit covariates ********

out <- glm(Presence~ NDVI + dndvi + TWI + Woody_Dist + River_Dist + Rd13_Dist + Rd5_Dist +

Anth_Risk + Elevation + Woody2 + River2 + Rd132 + Rd52, data=x.glm, family=

binomial(link="logit"))

# Output coefficients # *** Remove beta.t values as appropriate.should match columns in matrix

beta.1[i,1] <-out$coeff[1]

beta.1[i,2] <-out$coeff[2]

beta.1[i,3] <-out$coeff[3]

beta.1[i,4] <-out$coeff[4]

beta.1[i,5] <-out$coeff[5]

beta.1[i,6] <-out$coeff[6]

beta.1[i,7] <-out$coeff[7]

beta.1[i,8] <-out$coeff[8]

beta.1[i,9] <-out$coeff[9]

beta.1[i,10] <-out$coeff[10]

beta.1[i,11] <-out$coeff[11]

beta.1[i,12] <-out$coeff[12]

beta.1[i,13] <-out$coeff[13]

beta.1[i,14] <-out$coeff[14]

}

}

# Return the results

return(beta.1)

}
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# Plot incorporates the sensitivity analysis, but also plots the results

Sensitivity.Plot.RSF <- function(UseDataset,AvailDataset,Total.Avail.Samples,dir){

# Create list to store data

Sens.List <- vector("list")

# Run loop to create samples availability and model for use in Sensitivity analysis

for (i in 1:length(Total.Avail.Samples)){

Sens.1Sample <- Sensitivity.RSF(UseDataset,AvailDataset,Total.Avail.Samples[i])

Sens.List[[i]] <- Sens.1Sample

}

# Plot results for each Beta Coefficient

beta.1.up <- rep(0,length(Total.Avail.Samples))

beta.1.low <- rep(0,length(Total.Avail.Samples))

beta.1.mean <- rep(0,length(Total.Avail.Samples))

# Set the availability

Availability <- Total.Avail.Samples

# Manually input variables that are monitoring # *******Edit covariates ********

Variables < c("Beta","NDVI","dNDVI","TWI","Woody","River","Rd13","Rd5","Anthr_Risk",

"Elev","Woody2","Rivers","Rd132","Rd52")

# X-Labels

XLab <- NULL

for (i in 1:length(Availability)){

Lab.Holder <- paste(Availability[i],"x",sep="")

XLab <- c(XLab,Lab.Holder)

}

# ID as part of the filename

File.ID <- unique(UseDataset$ID)

# Set Par window Size

par(mfrow=c(1,1))

for (j in 1:ncol(Sens.List[[1]])){

for (i in 1:length(Availability)){

# Calculate values to plot

beta.1.up[i] <-quantile(Sens.List[[i]][,j], prob=0.975, na.rm=TRUE)

beta.1.low[i] <-quantile(Sens.List[[i]][,j], prob=0.025, na.rm=TRUE)

beta.1.mean[i] <-mean(Sens.List[[i]][,j],na.rm=TRUE)

}

# Plot the Results

plot(Availability, beta.1.up, typ="l", xaxt="n", ylim=c(min(beta.1.low),

max(beta.1.up)), lty=2, ylab=paste("Coefficient ",Variables[j],sep=""),

xlab="Availability Sample Size")

axis(side=1, at=Availability, label=XLab) #c("1x","2x","3x"))

lines(Availability, beta.1.low, lty=2)

lines(Availability, beta.1.mean)

# Save plot

outfile = paste(dir,"/SensitivityAnalysis/",File.ID,"_",Variables[j],

"_Sensitivity",sep="")

savePlot(filename = outfile,type = c("png"), device = dev.cur(),

restoreConsole = TRUE)

}

}
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D.4. Summary of model selection results

Summary of model selection results for dry and wet season mixed-effects resource selection

models. Results provided for each study area. Likelihood ratio test (χ2), AIC, ∆AIC and

model weight (w) displayed. Model structure provided in Table 5.2. The top model, based

on AIC, highlighted in bold.
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Dry Season
Amboseli Basin Athi-Kaputiei Plains Mara

Model K AIC ∆AIC χ2 w AIC ∆AIC χ2 w AIC ∆AIC χ2 w

1. Null 2 118115.8 1978.4 0 85813.0 3461.4 0 111702.1 3161.8 0
2. Vegetation 5 117596.1 1458.7 525.7* 0 85701.1 3349.5 117.9* 0 111393.3 2853.0 318.8* 0
3. Predation 6 117377.1 1239.7 746.7* 0 85410.5 3058.9 410.5* 0 110966.8 2426.5 743.3* 0
4. Human Disturbance 7 117020.0 882.6 1105.8* 0 83182.9 831.3 2640.1* 0 109493.9 953.6 2218.2* 0
5. Vegetation and 6 117458.9 1321.5 664.9* 0 84731.5 2379.9 1089.5* 0 109950.1 1409.8 1760.0* 0
Anthropogenic Risk
6. Full 14 116137.4 0.0 2002.4* 1 82351.5 0.0 3485.4* 1 108540.3 0.0 3185.8* 1

Wet Season
Amboseli Basin Athi-Kaputiei Plains Mara

Model K AIC ∆AIC χ2 w AIC ∆AIC χ2 w AIC ∆AIC χ2 w

1. Null 2 69574.7 2136.3 0 202100.5 9559.0 0 239497.3 3021.2 0
2. Vegetation 5 69099.2 1660.7 481.6* 0 201223.6 8682.1 882.9* 0 239362.5 2886.4 140.8* 0
3. Predation 6 68555.0 1116.6 1027.7* 0 199908.9 7367.4 2199.6* 0 238677.8 2201.7 827.6* 0
4. Human Disturbance 7 68754.8 1316.3 830.0* 0 196563.8 4022.3 5546.7* 0 237200.6 724.5 2306.7* 0
5. Vegetation and 6 68915.0 1476.5 667.8* 0 198851.3 6309.8 3257.2* 0 237899.6 1423.5 1605.7* 0
Anthropogenic Risk
6. Full 14 67438.4 0.0 2160.3* 1 192541.5 0.0 9583.0* 1 236473.1 0.0 3045.2* 1

*p < 0.001
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D.5. Amboseli Basin: Parameter confidence intervals

Parameter response values for dry (blue solid line) and wet (green solid line) season peri-

ods across the Amboseli Basin. 95% confidence intervals (dotted/dashed lines, respectively)

provided for reference.
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D.6. Athi-Kaputiei Plains: Parameter confidence intervals

Parameter response values for dry (blue solid line) and wet (green solid line) season

periods across the Athi-Kaputiei Plains. 95% confidence intervals (dotted/dashed lines,

respectively) provided for reference.
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D.7. Mara: Parameter confidence intervals

Parameter response values for dry (blue solid line) and wet (green solid line) season peri-

ods across the Mara. 95% confidence intervals (dotted/dashed lines, respectively) provided

for reference.
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D.8. Amboseli Basin: Day/Night parameter responses

Parameter response values for day (black lines) and nighttime (gray lines) models for dry

and wet season periods across the Amboseli Basin. 95% confidence intervals (dotted/dashed

lines, respectively) provided for reference.
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D.9. Athi-Kaputiei Plains: Day/Night parameter responses

Parameter response values for day (black lines) and nighttime (gray lines) models for

dry and wet season periods across the Athi-Kaputiei Plains. 95% confidence intervals (dot-

ted/dashed lines, respectively) provided for reference.

235



D.10. Mara: Day/Night parameter responses

Parameter response values for day (black lines) and nighttime (gray lines) models for

dry and wet season periods across the Mara. 95% confidence intervals (dotted/dashed lines,

respectively) provided for reference.
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D.11. Summary of model selection results - Athi-Kaputiei Plains

Summary of model selection results across the Athi-Kaputiei Plains for dry and wet

season mixed-effects resource selection models. Likelihood ratio test (χ2), AIC, ∆AIC and

model weight (w) displayed. The Full model, inclusive of fences and water use points, was

the top selected model, based on AIC, across both seasons (bold). Model structure provided

in Table 5.2. Model 7 has the same structure as model 6, except the parameters ‘Distance

to fencing’ and ‘Distance to water use points’ (and their quadratics) have been included.

Model K AIC ∆AIC χ2 w

Dry Season
1. Null 2 72734.3 56654.0 0
2. Vegetation 5 72551.0 5470.7 189.3* 0
3. Predation 6 71873.4 4793.0 868.9* 0
4. Human Disturbance 9 67748.0 2667.6 3000.3* 0
5. Vegetation and 8 71097.6 4017.2 1648.8* 0
Anthropogenic Risk
6. Full (1) 14 68832.8 1752.4 3925.5* 0
7. Full (2) 18 67080.4 0.0 5686.0* 1

Wet Season
1. Null 2 187263.0 13406.5 0
2. Vegetation 5 186290.2 12433.7 978.8* 0
3. Predation 6 184180.4 10323.9 3090.6* 0
4. Human Disturbance 9 181482.2 7625.7 5794.8* 0
5. Vegetation and 8 182244.8 8388.3 5030.2* 0
Anthropogenic Risk
6. Full (1) 14 179068.0 5211.5 8219.1* 0
7. Full (2) 18 173856.5 0.0 13439.0* 1

*p < 0.001
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APPENDIX E

Assessment of habitat corridor use across a human

dominated landscape: An agent-based modeling

perspective

E.1. Simulation Results

Results of ten (10), 1-year simulations comparing the movements of simulated wildebeest

across a range of random movement component values. The correlated movement component

was held constant at value of ‘4’. OBS is the summary of observed wildebeest movements

over a 1-year study period. I selected a random movement component value of ‘6’ based on

these simulations.
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E.2. Animal Movement Simulation

Example of a simulated wildebeest, inclusive of plots of the velocity per day (Distance

Moved), circular statistics, and net squared displacement (Net Displacement). The red arrow

is the mean relative angle of movement.
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E.3. NetLogo Code

Code to simulate agents (wildebeest) and assess the use of different corridor scenarios.

GIS data, including MODIS NDVI data, resource selection function analysis raster layers,

and ArcGIS shapefiles available upon request.

extensions [ gis ]

globals [ ndvi-dataset main-road main-road-vector main-zones

fences fences-all fence-dist-layer woody-dist-layer

river-dist-layer park-dist-layer prim-rd-dist-layer sec-rd-dist-layer

wtr-pt-dist-layer anth-risk-layer twi-layer road-cnt

nnp corr filenum samp_yr

file-name file-in-name file-path Current-directory

year day counter cell-size

file-out sim-string rsave

; RSF data to load and for agents to react to

dry-anth-rsf dry-anth-val wet-anth-rsf wet-anth-val

dry-fence-rsf dry-fence-val wet-fence-rsf wet-fence-val

dry-ndvi-rsf dry-ndvi-val wet-ndvi-rsf wet-ndvi-val

dry-dndvi-rsf dry-dndvi-val wet-dndvi-rsf wet-dndvi-val

dry-rivers-rsf dry-rivers-val wet-rivers-rsf wet-rivers-val

dry-proads-rsf dry-proads-val wet-proads-rsf wet-proads-val

dry-sroads-rsf dry-sroads-val wet-sroads-rsf wet-sroads-val

dry-twi-rsf dry-twi-val wet-twi-rsf wet-twi-val

dry-woody-rsf dry-woody-val wet-woody-rsf wet-woody-val

dry-water-rsf dry-water-val wet-water-rsf wet-water-val

wet-season? ; A flag storing whether in wet or dry season

old-layer ; A holder variable to determine if the ndvi data should be loaded

avg-npp ; Measure to determine if wet or dry season

; These are the parameters from the observed wildebeest movement data

; These dictate the movements

mvmt-mn

mvmt-sd

mvmt-var

alpha

lambda

movement

t2

perm

]

breed [ wildebeest one-wildebeest ]

wildebeest-own [ zone-number ]

patches-own [ ndvi dndvi ndvi-old road zone fence rd-counter fence-dist woody-dist

river-dist park-dist prim-rds-dist sec-rds-dist wtr-pt-dist anth-risk twi

static-wet-score static-dry-score temp-score rsf-score perm2]

; **************************

; *** SETUP

; **************************
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to setup

clear-all

file-close

; Set the working directory where GIS layers are located

set Current-directory "C:/Jared/Projects/Wildebeest/Dissertation/Chapters/ABM/GIS_Data/UTM/"

set-current-directory Current-directory

setup-landscape

setup-wildebeest

setup-parms

setup-curves

setup-static-scores

;do-plots

;set old-layer file-name

reset-ticks

end

; *** End SETUP

; ********************

; *** SETUP-PARMS

; ********************

to setup-parms

;set Sim-Num 1

set rsave random 10000

set year 1

set Years-to-model 10

set Wildebeest-Number 50

; !!!!

set cell-size 125

; Create info box on interface?

set file-out Output-file

;set file-out "K:/Jared/Tester_1c.txt"

set sim-string Sim-Value ;(word " Sim-Value " );Sim-Value

;set sim-string "Testing_only1"

file-open file-out

file-print "Sim_String RString Simulation WETDRY

RndmMove CorrMove Year Day Wildb-ID XPos YPos"

; Animal movement parameters

; **************************

; Parameters (km) from daily animal movements (mean: 0.7960079, max: 27.5193, sd: 1.580263,

var: 2497.231)

set mvmt-mn 796.0079 ; This is the average daily displacement (meters) across animals from

GPS collar data

set mvmt-sd 1580.263 ; This is the sd daily displacement (meters)

set mvmt-var 2497231.0 ; This is the variance (meters)

; Set alpha and lambda parameters for a gamma distribution

set alpha ((mvmt-mn * mvmt-mn) / mvmt-var)

set lambda ( 1 / (mvmt-var / mvmt-mn))

;set counter 0 ; Not necessary, as clear-all resets the counter

end

; *** End SETUP-PARAMS

; ********************

; *** SETUP-WILDEBEEST

; ********************

to setup-wildebeest

; This part of the script restricts where random agents (wildebeest) are generated

; I create a zone dataset in ArcGIS to use as my zones
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; Wildebeest-Number is defined in the Interface and coded in SETUP-PARAMS

create-wildebeest Wildebeest-Number [

while [ zone = 0 or zone = 2]

[

setxy random-xcor random-ycor

]

set color white

set size 6.5

ask wildebeest

[ set zone-number rd-counter ]

]

; Do the same for zone 2

create-wildebeest Wildebeest-Number [

while [ zone = 0 or zone = 1]

[

setxy random-xcor random-ycor

]

set color white

set size 6.5

ask wildebeest

[ set zone-number rd-counter ]

]

end

; End SETUP-WILDEBEEST

; **************************

; *** SETUP-GIS layers

; **************************

to setup-landscape

; set up an initial NDVI image

; I link to a different location, as all NDVI were processed in ArcGIS (python)

; Because there are many images (10 years of data, 23 images per year),

;I’ve placed them on an external hard-drive

; ****************

set ndvi-dataset gis:load-dataset "K:/Jared/Data/MODIS/MOD13Q1_250m_Out/ABM_Clip/ascii/

mod_4_1.asc"

; Set the file-path for additional images (This is used below to cycle through images)

set file-path "K:/Jared/Data/MODIS/MOD13Q1_250m_Out/ABM_Clip/ascii/"

; MAIN ROAD

; ****************

; *** Raster layer

set file-in-name (word Current-directory "roads8c.asc")

set main-road gis:load-dataset file-in-name

gis:apply-raster main-road road

; *** Vector layer for visualization

set file-in-name (word Current-directory "MainRoad2.shp")

set main-road-vector gis:load-dataset file-in-name

; *** Raster layer for using as a permeability layer

; ...allows animals to cross the road, but at a restricted rate

; Only aras where the main road is located is affected

set perm main-road

gis:apply-raster perm perm2

; ROAD COUNTER

; ****************

; *** Raster layer

set file-in-name (word Current-directory "zone_split2.asc")
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set road-cnt gis:load-dataset file-in-name

gis:apply-raster road-cnt rd-counter

; FENCING

; ****************

; *** Raster layer

set file-in-name (word Current-directory "fences_all3d.asc")

set fences-all gis:load-dataset file-in-name

gis:apply-raster fences-all fence

; ZONES

; ****************

; This is for initial placement of wildebeest (referenced in SETUP-WILDEBEEST)

set file-in-name (word Current-directory "zones7.asc")

set main-zones gis:load-dataset file-in-name

gis:apply-raster main-zones zone

; NP Boundary

; ****************

set file-in-name (word Current-directory "NNP.shp")

set nnp gis:load-dataset file-in-name

; Corridor

; ****************

set file-in-name (word Current-directory "Corridor.shp")

set corr gis:load-dataset file-in-name

; RSF SURFACES

; *************************************************************

; *************************************************************

; WOODY COVER DISTANCE

; ****************

set file-in-name (word Current-directory "RSF/woody_dist.asc")

set woody-dist-layer gis:load-dataset file-in-name

gis:apply-raster woody-dist-layer woody-dist

; RIVER DISTANCE

; ****************

set file-in-name (word Current-directory "RSF/river_dist.asc")

set river-dist-layer gis:load-dataset file-in-name

gis:apply-raster river-dist-layer river-dist

; PARK DISTANCE

; ****************

set file-in-name (word Current-directory "RSF/park_dist.asc")

set park-dist-layer gis:load-dataset file-in-name

gis:apply-raster park-dist-layer park-dist

; SECONDARY RD DISTANCE

; ****************

set file-in-name (word Current-directory "RSF/secrd_dist.asc")

set sec-rd-dist-layer gis:load-dataset file-in-name

gis:apply-raster sec-rd-dist-layer sec-rds-dist

; WATER PT DISTANCE

; ****************

set file-in-name (word Current-directory "RSF/wtrpts_dist.asc")

set wtr-pt-dist-layer gis:load-dataset file-in-name

gis:apply-raster wtr-pt-dist-layer wtr-pt-dist
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; ANTHROPOGENIC RISK

; ****************

set file-in-name (word Current-directory "RSF/anth_risk.asc")

set anth-risk-layer gis:load-dataset file-in-name

gis:apply-raster anth-risk-layer anth-risk

; TWI

; ****************

set file-in-name (word Current-directory "RSF/twi.asc")

set twi-layer gis:load-dataset file-in-name

gis:apply-raster twi-layer twi

; Fencing data and Primary Rd distance layers are entered below

; Because these change based on the scenario

; ****************

; End Adding RSF Layers

; *************************************************************

; *************************************************************

; **************************

; *** Simulations

; **************************

; *** Null Model: Testing if animals move as expected. Animals not allowed to cross road.

; **************************

if (Simulation = "Null") [

set file-in-name (word Current-directory "RSF/primrd_dist.asc")

set prim-rd-dist-layer gis:load-dataset file-in-name

gis:apply-raster prim-rd-dist-layer prim-rds-dist

set file-in-name (word Current-directory "RSF/fence_dist.asc")

set fence-dist-layer gis:load-dataset file-in-name

; Setting the world envelope here based on the fence distance layer (125-m cell size)

gis:apply-raster fence-dist-layer fence-dist

gis:set-world-envelope (gis:envelope-of fence-dist-layer)

; Fencing - Null

; ****************

set file-in-name (word Current-directory "Fences2004plus2010_reproj.shp")

set fences gis:load-dataset file-in-name

; In this scenario, the main road and all the fences or initiated

; This is so that when animals move, they cannot move to these areas

ask patches [

if (road > 0)

[ set road 1.0 ]

if (fence > 0)

[set fence 1.0 ]

ifelse (perm2 = 0)

[set perm2 1]

[set perm2 Road-Permeability]

]

]

; *** Corridor 1 Simulation: Testing the Size of the Corridor

if (Simulation = "Corridor1a") [

; Load the primary distance layer

; This is different from above....there is a small (2 pixel diagonal) cut
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; Other than the files loaded, process is the same

set file-in-name (word Current-directory "RSF/primrd_dist1.asc")

set prim-rd-dist-layer gis:load-dataset file-in-name

gis:apply-raster prim-rd-dist-layer prim-rds-dist

set file-in-name (word Current-directory "RSF/fence_dist1.asc")

set fence-dist-layer gis:load-dataset file-in-name

gis:apply-raster fence-dist-layer fence-dist

gis:set-world-envelope (gis:envelope-of fence-dist-layer)

; Fencing - Scenario 1

; ****************

set file-in-name (word Current-directory "FenceDist_Sc1.shp")

set fences gis:load-dataset file-in-name

; Sets roads with a value of 2 to zero (road values = 1 remain)

; This leaves a gap in the road

; Set only the fences with a value of 5 to zero

ask patches [

if (road = 2)

[ set road 0.0 ]

if (fence > 4)

[ set fence 0.0 ]

ifelse (perm2 = 0) or (perm2 = 2)

[set perm2 1]

[set perm2 Road-Permeability]

]

]

; *** Corridor 2 Simulation: Same as above, except mitigation area around corridor is

larger

if (Simulation = "Corridor2a") [

set file-in-name (word Current-directory "RSF/primrd_dist1.asc")

set prim-rd-dist-layer gis:load-dataset file-in-name

gis:apply-raster prim-rd-dist-layer prim-rds-dist

set file-in-name (word Current-directory "RSF/fence_dist2.asc")

set fence-dist-layer gis:load-dataset file-in-name

gis:apply-raster fence-dist-layer fence-dist

gis:set-world-envelope (gis:envelope-of fence-dist-layer)

; Fencing - Scenario 2

; ****************

set file-in-name (word Current-directory "FenceDist_Sc2.shp")

set fences gis:load-dataset file-in-name

; Set appropriate road/fence values to 0

ask patches [

if (road = 2)

[ set road 0.0 ]

if (fence > 3)

[ set fence 0.0 ]

ifelse (perm2 = 0) or (perm2 = 2)

[set perm2 1]

[set perm2 Road-Permeability]

]

]

; *** Corridor 3 Simulation: Same concept, corridor mitigation area is larger

if (Simulation = "Corridor3a") [

set file-in-name (word Current-directory "RSF/primrd_dist1.asc")
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set prim-rd-dist-layer gis:load-dataset file-in-name

gis:apply-raster prim-rd-dist-layer prim-rds-dist

set file-in-name (word Current-directory "RSF/fence_dist3.asc")

set fence-dist-layer gis:load-dataset file-in-name

gis:apply-raster fence-dist-layer fence-dist

gis:set-world-envelope (gis:envelope-of fence-dist-layer)

; Fencing - Scenario 3

; ****************

set file-in-name (word Current-directory "FenceDist_Sc3.shp")

set fences gis:load-dataset file-in-name

; Set appropriate road/fence values to 0

ask patches [

if (road = 2)

[ set road 0.0 ]

if (fence > 2)

[ set fence 0.0 ]

ifelse (perm2 = 0) or (perm2 = 2)

[set perm2 1]

[set perm2 Road-Permeability]

]

]

; *** Corridor 4 Simulation: Largest corridor mitigation area

if (Simulation = "Corridor4a") [

set file-in-name (word Current-directory "RSF/primrd_dist1.asc")

set prim-rd-dist-layer gis:load-dataset file-in-name

gis:apply-raster prim-rd-dist-layer prim-rds-dist

set file-in-name (word Current-directory "RSF/fence_dist4.asc")

set fence-dist-layer gis:load-dataset file-in-name

gis:apply-raster fence-dist-layer fence-dist

gis:set-world-envelope (gis:envelope-of fence-dist-layer)

; Fencing - Scenario 4

; ****************

set file-in-name (word Current-directory "FenceDist_Sc4.shp")

set fences gis:load-dataset file-in-name

; Set appropriate road/fence values to 0

ask patches [

if (road = 2)

[ set road 0.0 ]

if (fence > 1)

[ set fence 0.0 ]

ifelse (perm2 = 0) or (perm2 = 2)

[set perm2 1]

[set perm2 Road-Permeability]

]

]

; Other scenarios could be loaded to evaluate other questions

; Ex., What effect does the corridor width on road crossings?

; **************************

; *** Layer Visualization

; **************************
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; These commands interact with Interface to draw underlying data layer

if Visualize-layers = "Fences" [

draw-fences

]

if Visualize-layers = "Roads" [

draw-roads

]

if Visualize-layers = "Counter" [

draw-counter

]

if Visualize-layers = "Fence Distance" [

draw-fence-dist

]

if Visualize-layers = "Woody Distance" [

draw-woody-dist

]

if Visualize-layers = "River Distance" [

draw-river-dist

]

if Visualize-layers = "Park Distance" [

draw-park-dist

]

if Visualize-layers = "Prim. Rds Distance" [

draw-prim-rds-dist

]

if Visualize-layers = "Sec. Rds Distance" [

draw-sec-rds-dist

]

if Visualize-layers = "WtrPt Distance" [

draw-water-pt-dist

]

if Visualize-layers = "Anth. Risk" [

draw-anthro-risk

]

if Visualize-layers = "TWI" [

draw-twi

]

if Visualize-layers = "Zones" [

draw-zones

]

end

; End SETUP-GIS layers

; **************************

; *** SETUP-RESPONSE CURVES

; **************************

to setup-curves

print "Reading in response curves."

; This part reads the response curves from the RSF analysis in.

; These files were saved in .csv file format and exported as .txt files

; Setup creates a series of lists (wet-fence-val) to hold the column values in the .txt files

; The "dummy" variable simply holds the header information

; There are 100 lines in each file, thus the process is repeated ("repeat") for each line/

column

; The distance values are converted from km to m (val * 1000)

; Wet and Dry Fences

; **************************
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set wet-fence-val [ ]

set wet-fence-rsf [ ]

set dry-fence-val [ ]

set dry-fence-rsf [ ]

file-open (word Current-directory "ResponseCurves/TextFiles/WetVal_fence_dist.txt")

let dummy file-read-line ; Discard header

repeat 100 [

let d1 file-read

let rsf file-read

let d2 file-read

let val file-read

set wet-fence-rsf lput rsf wet-fence-rsf

set wet-fence-val lput ( val * 1000. ) wet-fence-val

]

;show wet-fence-rsf

;show wet-fence-val

file-close

file-open (word Current-directory "ResponseCurves/TextFiles/DryVal_fence_dist.txt")

set dummy file-read-line ; Discard header

repeat 100 [

let d1 file-read

let rsf file-read

let d2 file-read

let val file-read

set dry-fence-rsf lput rsf dry-fence-rsf

set dry-fence-val lput ( val * 1000. ) dry-fence-val

]

;show dry-fence-rsf

;show dry-fence-val

file-close

; Wet and Dry Anth Risk

; **************************

set wet-anth-val [] set wet-anth-rsf [] set dry-anth-val [] set dry-anth-rsf []

file-open (word Current-directory "ResponseCurves/TextFiles/WetVal_anth_risk.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read let d2 file-read let val file-read

set wet-anth-rsf lput rsf wet-anth-rsf set wet-anth-val lput val wet-anth-val ]

file-close

file-open (word Current-directory "ResponseCurves/TextFiles/DryVal_anth_risk.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read let d2 file-read let val file-read

set dry-anth-rsf lput rsf dry-anth-rsf set dry-anth-val lput val dry-anth-val ]

file-close

; Wet and Dry NDVI

; **************************

set wet-ndvi-val [] set wet-ndvi-rsf [] set dry-ndvi-val [] set dry-ndvi-rsf []

file-open (word Current-directory "ResponseCurves/TextFiles/WetVal_ndvi.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read let d2 file-read let val file-read

set wet-ndvi-rsf lput rsf wet-ndvi-rsf set wet-ndvi-val lput val wet-ndvi-val ]

file-close

file-open (word Current-directory "ResponseCurves/TextFiles/DryVal_ndvi.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read let d2 file-read let val file-read

set dry-ndvi-rsf lput rsf dry-ndvi-rsf set dry-ndvi-val lput val dry-ndvi-val ]

file-close

248



; Wet and Dry DNDVI

; **************************

set wet-dndvi-val [] set wet-dndvi-rsf [] set dry-dndvi-val [] set dry-dndvi-rsf []

file-open (word Current-directory "ResponseCurves/TextFiles/WetVal_dndvi.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read let d2 file-read let val file-read

set wet-dndvi-rsf lput rsf wet-dndvi-rsf set wet-dndvi-val lput val wet-dndvi-val ]

file-close

file-open (word Current-directory "ResponseCurves/TextFiles/DryVal_dndvi.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read let d2 file-read let val file-read

set dry-dndvi-rsf lput rsf dry-dndvi-rsf set dry-dndvi-val lput val dry-dndvi-val ]

file-close

; Wet and Dry Rivers

; **************************

set wet-rivers-val [] set wet-rivers-rsf [] set dry-rivers-val [] set dry-rivers-rsf []

file-open (word Current-directory "ResponseCurves/TextFiles/WetVal_rivers.txt")

set dummy file-read-line

repeat 100 [let d1 file-read let rsf file-read

let d2 file-read let val file-read

set wet-rivers-rsf lput rsf wet-rivers-rsf

set wet-rivers-val lput (val * 1000.) wet-rivers-val]

file-close

file-open (word Current-directory "ResponseCurves/TextFiles/DryVal_rivers.txt")

set dummy file-read-line

repeat 100 [let d1 file-read let rsf file-read

let d2 file-read let val file-read

set dry-rivers-rsf lput rsf dry-rivers-rsf

set dry-rivers-val lput (val * 1000.) dry-rivers-val]

file-close

; Wet and Dry PRoads

; **************************

set wet-proads-val [] set wet-proads-rsf [] set dry-proads-val [] set dry-proads-rsf []

file-open (word Current-directory "ResponseCurves/TextFiles/WetVal_Road1.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read

let d2 file-read let val file-read

set wet-proads-rsf lput rsf wet-proads-rsf

set wet-proads-val lput ( val * 1000. ) wet-proads-val ]

file-close

file-open (word Current-directory "ResponseCurves/TextFiles/DryVal_Road1.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read

let d2 file-read let val file-read

set dry-proads-rsf lput rsf dry-proads-rsf

set dry-proads-val lput ( val * 1000. ) dry-proads-val ]

file-close

; Wet and Dry SRoads

; **************************

set wet-sroads-val [] set wet-sroads-rsf []

set dry-sroads-val [] set dry-sroads-rsf []

file-open (word Current-directory "ResponseCurves/TextFiles/WetVal_Road2.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read

let d2 file-read let val file-read

set wet-sroads-rsf lput rsf wet-sroads-rsf
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set wet-sroads-val lput ( val * 1000. ) wet-sroads-val ]

file-close

file-open (word Current-directory "ResponseCurves/TextFiles/DryVal_Road2.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read

let d2 file-read let val file-read

set dry-sroads-rsf lput rsf dry-sroads-rsf

set dry-sroads-val lput ( val * 1000. ) dry-sroads-val ]

file-close

; Wet and Dry TWI

; **************************

set wet-twi-val [] set wet-twi-rsf []

set dry-twi-val [] set dry-twi-rsf []

file-open (word Current-directory "ResponseCurves/TextFiles/WetVal_TWI.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read

let d2 file-read let val file-read

set wet-twi-rsf lput rsf wet-twi-rsf

set wet-twi-val lput val wet-twi-val ]

file-close

file-open (word Current-directory "ResponseCurves/TextFiles/DryVal_TWI.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read

let d2 file-read let val file-read

set dry-twi-rsf lput rsf dry-twi-rsf

set dry-twi-val lput val dry-twi-val ]

file-close

; Wet and Dry Woody

; **************************

set wet-woody-val [] set wet-woody-rsf []

set dry-woody-val [] set dry-woody-rsf []

file-open (word Current-directory "ResponseCurves/TextFiles/WetVal_Woody.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read

let d2 file-read let val file-read

set wet-woody-rsf lput rsf wet-woody-rsf

set wet-woody-val lput ( val * 1000. ) wet-woody-val ]

file-close

file-open (word Current-directory "ResponseCurves/TextFiles/DryVal_Woody.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read

let d2 file-read let val file-read

set dry-woody-rsf lput rsf dry-woody-rsf

set dry-woody-val lput ( val * 1000. ) dry-woody-val ]

file-close

; Wet and Dry Water

; **************************

set wet-water-val [] set wet-water-rsf []

set dry-water-val [] set dry-water-rsf []

file-open (word Current-directory "ResponseCurves/TextFiles/WetVal_Wtr_Dist.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read

let d2 file-read let val file-read

set wet-water-rsf lput rsf wet-water-rsf

set wet-water-val lput ( val * 1000. ) wet-water-val ]

file-close
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file-open (word Current-directory "ResponseCurves/TextFiles/DryVal_Wtr_Dist.txt")

set dummy file-read-line

repeat 100 [ let d1 file-read let rsf file-read

let d2 file-read let val file-read

set dry-water-rsf lput rsf dry-water-rsf

set dry-water-val lput ( val * 1000. ) dry-water-val ]

file-close

print "Response curves read in. Process completed."

end

; End Setup-Curves

; *****************

; *** GET-RSF-VALUE

; *****************

; *** This is going to use a passed pair of lists.

; Used in the setup-static-score below

to-report get-rsf-value [ list-rsf list-val x calling ]

;type "RSF Value was called for: " type calling type " for value " print x

;print list-rsf

;print list-val

let i 0

while [ item i list-val < x and i < 99 ]

[

set i i + 1

]

;type "The RSF value for that was: " print item i list-rsf

report item i list-rsf

end

; End get-RSF-Value

; **************************

; *** SETUP-STATIC-SCORE

; **************************

to setup-static-scores

; Sets the RSF Score at each patch. Does not include NDVI/dNDVI since these are dynamic

print "Calculating wet and dry season rsf scores. All values included except for NDVI/dNDVI."

ask patches with [ rd-counter > 0 and fence = 0 ]

[

let anth-rsf get-rsf-value wet-anth-rsf wet-anth-val anth-risk "ANTH"

let fence-rsf get-rsf-value wet-fence-rsf wet-fence-val fence-dist "FENCE"

let rivers-rsf get-rsf-value wet-rivers-rsf wet-rivers-val river-dist "RIVERS"

let proads-rsf get-rsf-value wet-proads-rsf wet-proads-val prim-rds-dist "PROADS"

let sroads-rsf get-rsf-value wet-sroads-rsf wet-sroads-val sec-rds-dist "SROADS"

let twi-rsf get-rsf-value wet-twi-rsf wet-twi-val twi "TWI"

let woody-rsf get-rsf-value wet-woody-rsf wet-woody-val woody-dist "WOODY"

let water-rsf get-rsf-value wet-water-rsf wet-water-val wtr-pt-dist "WATER"

; Using a linear summation of the coefficients right now.

set static-wet-score anth-rsf + fence-rsf + rivers-rsf + proads-rsf + sroads-rsf +

twi-rsf + woody-rsf + water-rsf

]

ask patches with [ rd-counter > 0 and fence = 0 ]

[

let anth-rsf get-rsf-value dry-anth-rsf dry-anth-val anth-risk "ANTH"

let fence-rsf get-rsf-value dry-fence-rsf dry-fence-val fence-dist "FENCE"

let rivers-rsf get-rsf-value dry-rivers-rsf dry-rivers-val river-dist "RIVERS"

let proads-rsf get-rsf-value dry-proads-rsf dry-proads-val prim-rds-dist "PROADS"

let sroads-rsf get-rsf-value dry-sroads-rsf dry-sroads-val sec-rds-dist "SROADS"

let twi-rsf get-rsf-value dry-twi-rsf dry-twi-val twi "TWI"

let woody-rsf get-rsf-value dry-woody-rsf dry-woody-val woody-dist "WOODY"
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let water-rsf get-rsf-value dry-water-rsf dry-water-val wtr-pt-dist "WATER"

; Using a linear summation of the coefficients right now.

set static-dry-score anth-rsf + fence-rsf + rivers-rsf + proads-rsf + sroads-rsf +

twi-rsf + woody-rsf + water-rsf

]

end

; End Setup-Static-Score

; **************************

; **************************

; Drawing Procedures

; **************************

; **************************

; **************************

; *** DRAW-FENCES

; **************************

to draw-fences

ask patches [

if (fence > 0)

[set pcolor 15]

]

end

; **************************

; *** DRAW-ROADS

; **************************

to draw-roads

ask patches [

if (road > 0)

[set pcolor 15]

]

end

; **************************

; *** DRAW-Zones

; **************************

to draw-zones

ask patches [

if (zone = 1)

[set pcolor 15]

if (zone = 2)

[set pcolor 25]

]

end

; **************************

; *** DRAW-ROAD COUNTER

; **************************

to draw-counter

ask patches [

if (rd-counter = 1)

[set pcolor 15]

if (rd-counter = 2)

[set pcolor 25]

]

end

; **************************

; *** DRAW-Perm

; **************************

to draw-counter
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ask patches [

ifelse (perm2 = Road-Permeability)

[set pcolor 15]

[set pcolor 35]

]

end

; **************************

; *** DRAW-FENCE-DIST

; **************************

; These read in the distance RSF files so that they can be drawn in the Interface.

; Code is a bit more complicated because of the NA values

to draw-fence-dist

; Fix NaN problem. Input all values >= 0 (all values) into a-list.

Get’s rid of the NaN values.

; Otherwise, will cause problems when calculating the mean and standard deviation

; ***************************************

let a-list [ ]

ask patches [

if (fence-dist >= 0) [

set a-list lput fence-dist a-list ]

]

; Calculate the mean and standard deviation to be used to color image

; ***************************************

let xbar mean a-list

let sd standard-deviation a-list

let mn ( xbar - ( sd * 2.0 ) )

let mx ( xbar + ( sd * 2.0 ) )

ask patches [

; Now color values, using an if statement and the mn and mx (range) values calculated

above.

if (fence-dist >= 0)

[ set pcolor scale-color blue fence-dist mn mx ]

]

end

; **************************

; *** DRAW-WOODY-DIST

; **************************

to draw-woody-dist

; Fix NaN problem. Input all values >= 0 (all values) into a-list.

Get’s rid of the NaN values.

; Otherwise, will cause problems when calculating the mean and standard deviation

; ***************************************

let a-list [ ]

ask patches [

if (woody-dist >= 0) [

set a-list lput woody-dist a-list ]

]

; Calculate the mean and standard deviation to be used to color image

; ***************************************

let xbar mean a-list

let sd standard-deviation a-list

let mn ( xbar - ( sd * 2.0 ) )

let mx ( xbar + ( sd * 2.0 ) )

ask patches [

; Now color values, using an if statement and the mn and mx (range) values calculated

above.
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if (woody-dist >= 0)

[ set pcolor scale-color blue woody-dist mn mx ]

]

end

; **************************

; *** DRAW-RIVER-DIST

; **************************

to draw-river-dist

; Fix NaN problem. Input all values >= 0 (all values) into a-list. Get’s rid of the NaN

values.

; Otherwise, will cause problems when calculating the mean and standard deviation

; ***************************************

let a-list [ ]

ask patches [

if (river-dist >= 0) [

set a-list lput river-dist a-list ]

]

; Calculate the mean and standard deviation to be used to color image

; ***************************************

let xbar mean a-list

let sd standard-deviation a-list

let mn ( xbar - ( sd * 2.0 ) )

let mx ( xbar + ( sd * 2.0 ) )

ask patches [

; Now color values, using an if statement and the mn and mx (range) values calculated

above.

if (river-dist >= 0)

[ set pcolor scale-color blue river-dist mn mx ]

]

end

; **************************

; *** DRAW-PARK-DIST

; **************************

to draw-park-dist

;Input all values >= 0 (all values) into a-list. Get’s rid of the NaN values.

; Otherwise, will cause problems when calculating the mean and standard deviation

; ***************************************

let a-list [ ]

ask patches [

if (park-dist >= 0) [

set a-list lput park-dist a-list ]

]

; Calculate the mean and standard deviation to be used to color image

; ***************************************

let xbar mean a-list

let sd standard-deviation a-list

let mn ( xbar - ( sd * 2.0 ) )

let mx ( xbar + ( sd * 2.0 ) )

ask patches [

; Now color values, using an if statement and the mn and mx (range) values calculated

above.

if (park-dist >= 0)

[ set pcolor scale-color blue park-dist mn mx ]

]

end

; **************************
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; *** DRAW-PRIM-RDS-DIST

; **************************

to draw-prim-rds-dist

; Input all values >= 0 (all values) into a-list. Get’s rid of the NaN values.

; Otherwise, will cause problems when calculating the mean and standard deviation

; ***************************************

let a-list [ ]

ask patches [

if (prim-rds-dist >= 0) [

set a-list lput prim-rds-dist a-list ]

]

; Calculate the mean and standard deviation to be used to color image

; ***************************************

let xbar mean a-list

let sd standard-deviation a-list

let mn ( xbar - ( sd * 2.0 ) )

let mx ( xbar + ( sd * 2.0 ) )

ask patches [

; Now color values, using an if statement and the mn and mx (range) values calculated

above.

if (prim-rds-dist >= 0)

[ set pcolor scale-color blue prim-rds-dist mn mx ]

]

end

; **************************

; *** DRAW-SEC-RDS-DIST

; **************************

to draw-sec-rds-dist

; Fix NaN problem. Input all values >= 0 (all values) into a-list. Get’s rid of the NaN

values.

; Otherwise, will cause problems when calculating the mean and standard deviation

; ***************************************

let a-list [ ]

ask patches [

if (sec-rds-dist >= 0) [

set a-list lput sec-rds-dist a-list ]

]

; Calculate the mean and standard deviation to be used to color image

; ***************************************

let xbar mean a-list

let sd standard-deviation a-list

let mn ( xbar - ( sd * 2.0 ) )

let mx ( xbar + ( sd * 2.0 ) )

ask patches [

; Now color values, using an if statement and the mn and mx (range) values calculated

above.

if (sec-rds-dist >= 0)

[ set pcolor scale-color blue sec-rds-dist mn mx ]

]

end

; **************************

; *** DRAW-WATER-PT-DIST

; **************************

to draw-water-pt-dist

; Fix NaN problem. Input all values >= 0 (all values) into a-list. Get’s rid of the NaN

values.

; Otherwise, will cause problems when calculating the mean and standard deviation
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; ***************************************

let a-list [ ]

ask patches [

if (wtr-pt-dist >= 0) [

set a-list lput wtr-pt-dist a-list ]

]

; Calculate the mean and standard deviation to be used to color image

; ***************************************

let xbar mean a-list

let sd standard-deviation a-list

let mn ( xbar - ( sd * 2.0 ) )

let mx ( xbar + ( sd * 2.0 ) )

ask patches [

; Now color values, using an if statement and the mn and mx (range) values calculated

above.

if (wtr-pt-dist >= 0)

[ set pcolor scale-color blue wtr-pt-dist mn mx ]

]

end

; *********************

; ** DRAW-ANTHRO-RISK

; *********************

to draw-anthro-risk

; NaN causing problems. Create a list of values

let a-list [ ]

ask patches [

if (anth-risk >= 0) [

set a-list lput anth-risk a-list ]

]

let xbar mean a-list

let sd standard-deviation a-list

let mn ( xbar - ( sd * 2.0 ) )

let mx ( xbar + ( sd * 2.0 ) )

ask patches [

if (anth-risk >= 0)

[ set pcolor scale-color blue anth-risk mn mx ]

]

end

; *********************

; ** DRAW-TWI

; *********************

to draw-twi

; NaN causing problems. Create a list of values

let a-list [ ]

ask patches [

if (twi >= 0) [

set a-list lput twi a-list ]

]

let xbar mean a-list

let sd standard-deviation a-list

let mn ( xbar - ( sd * 2.0 ) )

let mx ( xbar + ( sd * 2.0 ) )

ask patches [

if (twi >= 0)

[ set pcolor scale-color blue twi mn mx ]

]

end
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; **************************

; *** DISPLAY Vector Layers

; **************************

to display-road

gis:set-drawing-color red

gis:draw main-road-vector 3

end

to display-nnp

gis:set-drawing-color orange

gis:draw nnp 1

end

to display-corr

gis:set-drawing-color blue

gis:draw corr 3

end

to display-fences

gis:set-drawing-color yellow

gis:draw fences 1

end

; *** End Display Vector Layers

; **************************

; *** GO

; **************************

; This is what happens at each step

; Reset the year after 365 days.

; Stop simulation when the specified number of years (Years-to-model -> set above) is reached

;

to go

if ticks >= 365

[ reset-ticks

set year year + 1

]

if year = Years-to-model

[

file-flush

file-close

stop

]

set day ticks + 1

move-wildebeest

tick

NDVI-File

; Get the average NDVI, and relate that as to whether or not wet season or

dry season relationships will be used.

set avg-npp mean [ ndvi * 0.0001 ] of patches with [ ndvi * 0.0001 >= 0 ]

;show avg-npp

; Set whether to use wet season or dry season selection responses.

; These will hold regardless of the calendar date, but will mostly be as one would

predict by the calendar.

; A simple switch and threshold is used here.

ifelse avg-npp > Wet-dry-NDVI-threshold

[ set wet-season? TRUE

;print "Wet Season"
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]

[ set wet-season? FALSE

;print "Dry Season"

]

; See Write-to-File routine.

; Writes the x and y coordinates of wildebeest at each step to a file so that statistic

external to

program can be conducted.

if Output-xy? = TRUE

[ write-to-file ]

end

; *** End GO

; **************************

; *** CALC-RSF-SCORE

; **************************

; Procedure for calculating the RSF Score, inclusive of the NDVI data

; Update the RSF Score inclusive of the NDVI (dynamic) data

; Calculates different score based on wet or dry season.

; RSF values are season dependent

; Multiply the rsf scores with the permeability layer:

; If no road, value of pixel will remain unchanged (value of 1, no change to rsf score)

; If road pixel, value defined by permeability layer, such that rsf score is reduced.

to CALC-rsf-score

ifelse wet-season? = TRUE

; Wet season

[ ask patches with [ rd-counter > 0 and fence = 0 ]

[

let ndvi-rsf get-rsf-value wet-ndvi-rsf wet-ndvi-val (ndvi * 0.0001) "NDVI"

let dndvi-rsf get-rsf-value wet-dndvi-rsf wet-dndvi-val (dndvi * 0.0001) "DNDVI"

set rsf-score (ndvi-rsf + dndvi-rsf + static-wet-score) * perm2

]

]

; Dry Season

[ ask patches with [ rd-counter > 0 and fence = 0 ]

[

let ndvi-rsf get-rsf-value dry-ndvi-rsf dry-ndvi-val (ndvi * 0.0001) "NDVI"

let dndvi-rsf get-rsf-value dry-dndvi-rsf dry-dndvi-val (dndvi * 0.0001) "DNDVI"

set rsf-score (ndvi-rsf + dndvi-rsf + static-dry-score) * perm2

]

]

end

; **************************

; *** NDVI-File

; **************************

; Procedure for randomly selecting year and NDVI images

; This allows for the use of the NDVI as a climate envelope in which to run simulation

; Means that the simulation can be run for any number of years

; Procedure creates a random number (0-9) and add 4 to it......

; This is because the NDVI included in the model is (2004 - 2013).

; Can then randomly generate the NDVI year at the start of each year.

; Cycles through each NDVI image, every 16 ticks (days)

; Similar to a "String" command, specifying the filename of the NDVI data (ascii format).

; Only randomly generate at day 1 (ticks = 1)

to NDVI-File

if ticks = 1

[ set samp_yr (random 10 + 4) ]
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set filenum int(ticks / 16 + 1)

set file-name (word file-path "mod_" samp_yr "_" filenum ".asc" )

if (year = 1) and (ticks < 5)

[ set old-layer (word file-path "mod_" samp_yr "_" filenum ".asc" ) ]

;type "OLD: " type old-layer type " NEW: " print file-name

; Add an if statement, so that the file-name is only updated when the file-name changes.

; This speeds up the model because the raster NDVI is not loaded after every time step....

;only every 16.

; old-layer is required to calculate dNDVI

; Only for the first 16 days, since there is no NDVI image prior

if old-layer != file-name or ( ticks = 1 and year = 1 )

[

ask patches [ set ndvi-old ndvi ]

set ndvi-dataset gis:load-dataset file-name

;type "Loading " print file-name

; Display the ndvi in patches (see below)

; Calculate dndvi (see below)

; Calculate the RSF Score inclusive of the ndvi and dndvi data (see below)

display-ndvi-in-patches

CALC-dndvi

CALC-rsf-score

set old-layer file-name

]

end

; **************************

; *** display-ndvi-in-patches

; **************************

; Color the NDVI pixels as patch variables

; Just for visualization. Separate into different groupings (colors)

; The * 0.0001 is just a scale multiplier for the NDVI data

to display-ndvi-in-patches

gis:apply-raster ndvi-dataset ndvi

ask patches

[

if (ndvi * 0.0001 < 0)

[ set pcolor 50 ]

if (ndvi * 0.0001 >= 0) and (ndvi * 0.0001 < 0.10)

[ set pcolor 51 ]

if (ndvi * 0.0001 >= 0.10) and (ndvi * 0.0001 < 0.20)

[ set pcolor 52 ]

if (ndvi * 0.0001 >= 0.20) and (ndvi * 0.0001 < 0.30)

[ set pcolor 53 ]

if (ndvi * 0.0001 >= 0.30) and (ndvi * 0.0001 < 0.40)

[ set pcolor 54 ]

if (ndvi * 0.0001 >= 0.40) and (ndvi * 0.0001 < 0.50)

[ set pcolor 55 ]

if (ndvi * 0.0001 >= 0.50) and (ndvi * 0.0001 < 0.60)

[ set pcolor 56 ]

if (ndvi * 0.0001 >= 0.60) and (ndvi * 0.0001 < 0.70)

[ set pcolor 57 ]

if (ndvi * 0.0001 >= 0.70) and (ndvi * 0.0001 < 0.80)

[ set pcolor 58 ]

if (ndvi * 0.0001 >= 0.80) and (ndvi * 0.0001 < 0.90)

[ set pcolor 59 ]

if (ndvi * 0.0001 >= 0.90) and (ndvi * 0.0001 < 1.0)

[ set pcolor 69 ]
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if (ndvi * 0.0001 >= 1.0)

[ set pcolor 79 ]

]

end

; **************************

; *** CALC-DNDVI

; **************************

; Procedure for calculating tchange in NDVI at each time step (Delta NDVI_{t} =

NDVI_{t} - NDVI_{t-1}

; There is no initial ndvi value to display....so code dNDVI as 0 (burn-in)

to CALC-dndvi

ask patches

[ ifelse (year = 1) and (ticks < 17)

[ set dndvi 0 ]

[ set dndvi (ndvi - ndvi-old)]

]

end

; **************************

; *** MOVE-WILDEBEEST

; **************************

; Commands of how wildebeest across the landscape

to move-wildebeest

ask wildebeest [

; Determine the distribution you want to use. Gamma distribution must be positive.

; Mean, sd, and var of daily movements set initially (above)

; Could also use a normal distribution, but need to set negative values to 0

; Set value to 0 with normal distribution, if value < 0 (Truncated Normal Distribution)

ifelse Gamma-Distribution? = TRUE

[ set movement random-gamma alpha lambda ]

[ set movement random-normal mvmt-mn mvmt-sd

if movement < 0

[ set movement 0 ]

]

;type "Agent Movement: " print movement

; Based on cell-size, how many movements are required to reach total movement for each

animal

; That is, wildebeest should have multiple decisions and react to the patches

; Wildebeest make multiple moves within each day to meet the defined movement

;(defined by distribution above)

let move-chunks int (movement / cell-size)

;show move-chunks

let move-remainder abs ( movement - ( move-chunks * cell-size ))

;show move-remainder

; Movement procedure, related to rsf-scores

repeat move-chunks

[

make-move 1.0

]

make-move move-remainder / cell-size

ifelse Movement-Paths? = TRUE

[ pen-down ]

[ pen-up ]

; This is the procedure for counting the number of times a wildebeest crossed the road

; Updates the counter variable
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; Requires a zone raster layer

if ( rd-counter > 0 ) [

if ( zone-number != rd-counter ) [

set counter ( counter + 1 )

set zone-number rd-counter ]

]

]

end

; **************************

; *** MAKE-MOVE

; **************************

to make-move [ distance-moved ]

let move-set neighbors

; Sets move-set as the patch neighbors (8 nearest neighbors) to each agent (wildebeest)

; Sets a temporary score based on the rsf score values within the move-set (neighborhood)

ask move-set [ set temp-score rsf-score ]

; Add correlated walk component

; Update the temp-score with the correlated walk component

; This means that the patch ahead will have a boosted score related to neighboring patches

; This ifelse statement is just included if the agent reaches a patch where the

;patch-ahead is the end of the universe

; This would cause an error. Patch-here allows the agents to turn and move in that case.

ifelse is-patch? patch-ahead 1

[ ask patch-ahead 1 [ set temp-score temp-score + Correlated-movement-component ] ]

[ ask patch-here [ set temp-score temp-score + Correlated-movement-component ] ]

; Restrict movement only to study area and to areas that are not fenced...agents can only

move

set move-set neighbors with [ rd-counter > 0 and fence = 0]

; Add random component to scores

ask move-set [

set temp-score temp-score + random-float Random-movement-component

]

set t2 max-one-of move-set [ temp-score ]

if is-patch? t2

[

face t2

forward distance-moved

]

end

; **************************

; *** WRITE-TO-FILE

; **************************

to write-to-file

file-open file-out

; Need to convert the patch x/y values to actual locations

; Find values from GIS layer

let xbase 235317.952

let ybase 9788309.019

; This identifies which values to write to file

ask wildebeest [

let xer xcor * cell-size + xbase

let yer ycor * cell-size + ybase
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file-type sim-string file-type " " file-type rsave file-type " " file-type Simulation

file-type " "

file-type wet-dry-NDVI-threshold file-type " " file-type Random-movement-component

file-type " "

file-type Correlated-movement-component file-type " " file-type year file-type " "

file-type day file-type " "

file-type who file-type " " file-type xer file-type " " file-print yer

]

end

; End Code

; ************************************************************************

; ************************************************************************
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