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ABSTRACT

The partial differential equation for vertical, one-phase, unsaturated
flow of water in soils is used as a mathematical model governing infiltra-
tion. A nonlinear Crank-Nicolson implicit finite-difference scheme is
used to obtain solutions to this equation for realistic initial and upper
boundary conditions. The kinematic wave approximation to the equations of
unsteady overland flow on cascaded planes is used for the mathemztical model
of surface runoff. The difference equations of infiltration and overland
flow are combined into a model for a simple watershed, employing computa-
tional logic so that boundary conditions match at the soil surface. The
mathematical model is tested by comparison with data from a laboratory soil

flume and with data from a small experimental watershed.
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MATHEMATICAL SIMULATION OF INFILTRATING WATERSHEDS *

by

Roger E. Smith*#* and David A. Woolhiserk##*

CHAPTER 1

INTRODUCTION

The Watershed. Starting from a peint P on a
stream, of any size, one may define a topographic
unit from which the stream gathers its water. Moving
laterally from this point on the stream, one may
trace a line which will describe the outermost point
from which water will move into a tributary of the
stream above P. All points outside this line will
drain either downstream of point P, or into a differ-
ent stream. The area enclosed by this topographic
line is called a watershed. It may also be called a
drainage basin, or a catchment. The Continental
Divide, on a grand scale, is the line where all water-
sheds of North America that flow intc the Atlantic
meet those flowing into the Pacific.

As one moves the point P upstream, the water-
shed corresponding to P becomes successively smaller.
At the point where the defined stream disappears, the
contributing area may be called a watershed element,
or an overland flow area. The lateral boundaries of
this unit are streamlines of surface water flow, and
the upper boundary is a topographic divide. Still,
we may refer to such an area as a watershed.

Considering the surface contribution only, all
large watersheds are made up of a complex arrangement
of small overland flow units and stream channels. By
reducing the watershed to its simplest form, the over-
land flow area, we have a natural system with compara-
tively simple boundary conditions. The major variables
involved in this system are rainfall, evapotranspira-
tion, and groundwater flow. The watershed system may
vary in terms of moisture stored in both the unsatu-
rated and saturated soil regions, in the state of
vegetative cover, the surface conditions such as occur
on plowed land, and changes due to seasonal effects.
Assuming that the groundwater surface reflects the
topography, there is negligible flow through the
vertical surfaces defining the lateral and upstream
boundaries of the system. Rainfall enters the system
as lateral inflow and water emerges from the down-
stream boundary either as subsurface flow, or as
surface runoff.

The process by which rainfall enters the soil
through the surface is called infiltration. Many

factors affect infiltration by changing the soil
structure, such as compaction of the soil by man and
animals, subsurface modifications by insects, chang=-
ing root patterns, and seasonal freeze and thaw. For
any given state of the soil structure, the infiltra-
tion rate is largely governed by the amount and dis-
tribution of moisture in the soil. This study will
assume the soil structure to be constant and will
consider infiltration rate to be a function of
moisture content and distribution.

Given this restriction, that the soil in the
elementary watershed is physically constant, one may
treat the watershed as a system that will receive
rainfall, accept some of it as soil moisture, eliminate
some as overland flow, and divide the accepted water
among groundwater storage, subsurface flow, and evapo-
transpiration. The problem treated in this work is
the description of the process whereby surface runoff
is produced from rainfall on the watershed. For this
purpose the system will be studied by means of a
model.

Strategy of Models. Models are useful tocls in
the study of matural processes. All natural processes
are more or less complex. The most complex ones, such
as next week's weather, involve so many inputs and
variables that either they cannot be enumerated, or
all variables cannot be measured. For this case, a
statistical model is most often used to describe the
output (or a selected variable) in terms of the
statistical properties of the historical data con-
cerning the process. One may correlate all con-
ceptually related, measured variables with the
variable of interest, by statistical methods, to
obtain a statistical regression model for the process.
Where the relationship between a number of variables
adequately describes the "output" variable, the
relation so developed from observation is called an
empirical model.

When the process is sufficiently understood on
the basis of physical laws or physical theory, then
the process may be described by a theoretical model.
If the process is not understood in terms of theory,
but can be isolated, a physical model, which is

* Contribution from the Colorado Agricultural Experiment Station and the Northern Plains Branch, Soil and
Water Conservation Research Division, Agricultural Research Service, USDA, Fort Collins, Colorado.

** Research Hydraulic Engineer, USDA, Tucson, Arizona (formerly Graduate Research Assistant, Colorado State

University. )

***Research Hydraulic Engineer, USDA, Fort Collins, Colorado.



actually a material representation, may be used. A
laboratory flume is a material model,

Models of any of these forms are means by which
the complex natural processes may be isolated and
studied, to better understand their function. The
description given above of the watershed as a system
is a conceptual model in itself. If the model is
physically based, then it may also be used to predict
the function of the system for conditions not observed
in historical data, or to show how the system will

[

function if the system properties are changed.

Objective. The purpose of this study is to (a)
develop a mathematical model for an elementary water-
shed, combining physically derived differential equa-
tions for overland flow and soil infiltration from a
rainfall source; (b) obtain numerical solutions to
these equations; and (c) investigate the applicability
of this model by comparison with the performance of a
laboratory-scale prototype watershed, and data from
a field plot watershed.



CHAPTER II

EVOLUTION OF MATHEMATICAL MODELS OF INFILTRATION

Algebraic Infiltration Equations

The first mathematical descriptions of infiltra-
tion were empirical formulas developed to describe the
results of infiltrometer tests. The earliest infil-
trometer was basically a ring driven into the ground,
and infiltration rate was measured as the rate of
application needed to maintain a constant level of
ponded water within the ring. This method has now
been largely replaced by a sprinkling application,
using a larger bounded area. In either case, the
resulting empirical equations describe a rate of
infiltration decreasing from an initial maximum rate
to a final minimum rate, The most common of these
have been discussed by Amorocho [1967] and Philip
[1957].

A few of these formulas will be presented as
examples. The following algebraic equation is a
popular one developed by Horton [1940]:

-kt
f = fe + (fo - fe)e (2.1)

Here f = infiltration rate at time t. f. and
Eo are infiltration rates at t == and t = 0,

respectively. The constant k is a best fit para-
meter, and has little or no physical significance.

A somewhat more general formula was proposed by
Holtan [1961) to describe infiltration and redistribu-
tion:

£uf +afs~ " : (2.2)

f,»a,and n are experimentally determined con-
stants. S-F represents the hypothetical available

t
soil moisture storage where F(t) = Df f(s)ds. The

maximum value of S d1s the soil porosity above some
impeding layer. This is a nonlinear storage type of
time-dependent formula, fitted empirically to infil-
trometer or watershed data. In a later paper [Holtan,
et.al., 1967], Holtan expands this formula to make a
precipitation routing model, where § is subdivided
into a portion called capillary storage (AWC), and
another termed free-water storage (G). AWC is filled
by f , and when F becomes > AWC , water goes into
free-water storage and can drain downward at a rate
not exceeding fe' Another empirical model describes

evapotranspiration from storage AWC between rains.
This is a commendable algebraic model in that it does
attempt to account for recovery of infiltration
capacity.

Perhaps the most complex precipitation routing
model to date is one developed by Crawford and Linsley
[1966], called the Stanford Watershed Model. The
model fits parameters from historical data for

processes of infiltration, evaporation, surface runoff
and streamflow for large watersheds. Although it is
essentially a "lumped" model, it does presume a uni=-
form distribution of properties, including infiltra-
tion rates, over the watershed. Again, the fitted
parameters have doubtful physical significance, if
any.

These few examples should be sufficient to demon-
strate the limitations of algebraic-empirical infiltra-
tion models., Firstly, many of them consider only
infiltration from a ponded surface, which is a poor
model for rainfall. Even when sprinklers are used,
the data are good for only that rate of application,
and assumptions must be made for other rainfall rates.
Rainfall seldom falls at a given rate for very long.
Secondly, as pointed out, the parameters developed
have little or no physical meaning, in that they can-
not be determined or estimated from knowledge of the
soil, surface cover, etc. Finally, most equations
cannot account for changes in initial soil water
content and therefore cannot accurately predict the
time of beginning of runoff and are not applicable
for intermittent rainfall. The Stanford model and
the Holtan equation are exceptions to this statement.

Infiltration Rates from Soil Water Flow Equatioms

Progress in knowledge of the flow of water in
soils, along with the mathematical tools for its
description, has led to another approach to describing
infiltration. Let us presume that we can determine
the appropriate hydraulic properties of a given soil,
and write equations that describe movement of water
through the soil. Then if we supply rainfall at a
given rate at the surface, the infiltration of water
into the soill is a dependent boundary condition with
a rate determined at a given time by the state of the
soil itself.

Water Flow Equations. The equations appropriate for
this case are those of two-phase fluid flow in porous
media. The two fluid phases are air and water, and
soil is the porous medium. Although equations may be
written for three-dimensional flow, only vertical flow
of each fluid will be considered here. The vertical
dimension Z will be measured downward from the soil
surface; h will represent distance to a point above
an arbitrary datum, measured positive upward. Sub-
script a refers to air, and subscript w refers to
water. Thus for a point within the soil, we have the
following equations:

A. Continuity equations

] 9
air: 2% Pa%a + g (¢sap‘) =0 (2. 3)



9

9
water: — e = 2.4
: 57 % t 3 (#5,) = 0 (2.4)
B. Darcy equations for flow
=-kk.
. it Bl G G}
air: q ", 2z B TPl (2.5)
rw 2
. = i + h
water: 9, vy 2z (Pt P8 ) (2.6)
C. Fluid conservation
+ =
24 =1 2.7
D. Definition of capillary pressure
P, =P, "7, (2.8)
In which p = density HL-3
-1
q = velocity (volume flux) LT

¢ = porosity

S = volumetric saturation - the
ratio of the volume of wet-
ting fluid to the volume of
the interconnected pore
space in a bulk element of

the medium.
g = gravitational acceleration L2
k = permeability I..:a
kr= relative permeability

or relative conductivity
p = dynamic viscosity Y A
P = pressure —1‘1'—2
h = elevation potential L
p = capillary pressure HI.“]'T“2

We can immediately combine the Darcy equations
with the continuity equations to form the following
basic equations:

kk
ra

) —; 2, 1 I 2
s 82[_"; My 0z {pa ¥ Pagh)] 4 ot N’snpa} o
(2.9)

.8 [-xw 3 ; 3
water: 37 [__"w 37 (pw + pwgh] ] + 7 (¢Sw} =0 .

(2.10)

To solve this system of equations, it is neces-
sary to utilize equation (2.8) to replace either Pa

or p_ by the expression for capillary pressure.

w

Sa ' sw ' kra

and the equations then become equations in B and
Pe o By
follows:

and k are all functions of p_ ,
™ c

and P.- This may be accomplished as

ap ap

C a w

From equation (2. 3), 3z "3z - Tz

- it W e
9Z = 9Z 07
(2.11)

Thus equation (2.9) may be rewritten

2l ra apc Bpw F G{pah} s 9
2z Papn |2z %z T ¥z o5t e, )¢
95
*pa-ét" 0 (2.12)
from equation (2.7)
25 as
-——5 + —_‘". = 0
ot at (2.13)

2
and using the fact that 37 {pwgh] =g R equation
(2.10) may be rewritten

kk op as
9 |- rw w b w
a——— PR | (. S —_=0.
aZ[y (aZ pwg):|+swat+¢3t

(2. 14)

Now using (2.13), equations (2.14) and (2.12) may be
combined thus:

kk a 9
a ra (“P¢ Py ] ]
EY [“‘a,. (az t3z teazle ) ]*“ =8 )% (o))
-kk ap
B[ (P o,
*PlBZ[ b, (az -pw!) ]+Swp‘ at 4 (2-15)

to eliminate specific reference to pa.



Thus equations (2.14) and (2.15) form a pair of
simultaneous, nonlinear, parabolic partial differential
equations in P, P and t,

In a great many cases in soil physics, these
equations are simplified considerably by the assump=-
tion that air moves under negligible pressure gradi-
ents, i.8,, My is very small, and B is practically

constant. In this case, equation (2.10) may be used
to describe soil moisture movement, and may be simpli-

fied by noting that if T, ™ 0, Py ™ B, s B0 that

Kk
.8 rww 3y
ot #5) =3z [ by (az & l)]

where ¢ = Pw/Yw is capillary potential, and Y is

kY

the specific weight of water. is the conduct-
w
ivity K of the medium to water, in units of L/T,

and we may write

ok

) el fh &) _gI
_aT(*Sw)'KaZ (kraz) Kaz - (2.16)

This commonly used equation is often referred to
as "Richards equation" after L.. A. Richards [1931].
Its solution depends on knowing the functional rela-
tionships among ¢ , SIw , and kr , for the

particular soil in question,
Equation (2.16) may be applied to many types of
unsaturated flow problems, depending on the particular

boundary conditions chosen. For rainfall infiltrationm,
for example, the upper boundary conditions are:

a) B X RS tP f(0,t) = rainfall rate

where tp = time at which 6(0,t) = 6 saturated,

or (0,t)
rate,

b) t

0; 8§ = ¢Sw; and f is the infiltration

v

tp, y(0,t) = 0.

The initial conditions may be any physically
realizable array of pressures

¥(Z,0) = ¢ initial, 0<Z <L .

The lower boundary conditions may be a water
table at some depth L, such that

P(L,t) =0, O <t <>,

The solution surface for such a problem is illus-
trated in Fig. 2.1, showing & as a function of Z,t.
The equation is actually solved in terms of ¢ ,
although the variable @ is often of greater interest.
This is due to the fact that, for transformation to a

8 based equation, the term B*!aa appears, which
becomes large without limit near saturation (see

Fig. 2.2). Richard's equation was developed in some-
what different forms by various other investigators,
including Gardner and Widtsoe [1921], and Childs and
Collis-George [1950] who were among the first to
recognize that (Kkr) is a nonlinear, saturation-

dependent variable. The history of this equation is
well summarized by Gardner [1967].

Fig. 2.1. Solution surface 1n(Sw,z,t) for equation

(2.16).

Important Assumptions. Infiltration is a de-
pendent boundary condition of the soil water move-

ment equations, and this mathematical model cannot
describe infiltration accurately if it cannot model
soil water movement accurately. It is important that
the assumptions behind this mathematical model
(equation (2.16)) be recognized.

(a) It is a one~dimensional model which assumes
the soil surface to be a plane, although
similar two- and three-dimensional equa-
tions can easily be written

(b) Capillary suction ¢ and unsaturated con-
ductivity kr are unique, time invarient

functions of saturation €. This model
therefore neglects seasonal variationm,
effects of raindrop impact, and other
structural changes.

(¢) Darcy's law is valid for unsaturated flow,
provided assumption (b) holds.

(d) The relations referred to in (b), which
can be evaluated in steady state soil tests,
are true as well for a dynamic or unsteady
flow situation.



It is reasonable to accept a one—dimensional
model for rainfall entering soil, where variations of
conditions are relatively uniform over a substantial
area, and the water table is sufficiently deep. For
a given soil structure, assumption (b) is supported by
experimental evidence. Verification of assumptions (c)
and (d) is more difficult, yet no known evidence exists
to show that these assumptions are far in error.

Importance of Hydraulic Properties of the Soil. Equa-
tion (2.16), without severely simplifying assumptions,
cannot be solved analytically, and it is commonly
solved by numerical methods. The solution depends on
a knowledge of two basic hydraulic relatiomships for
the soil involved. These describe the relationships
among 8, ¥, and kr, expressed as kr(B) and $(8) ,

or k.(4) and a(y).

It has been known for some time that during mois-
ture uptake each soil exhibits a unique relation
between 6 and ¢ [16]. Unfortunately, this curve is
not generally determined as a basic soil property.
Several investigators have attempted to describe this
relation by empirical equations, but the parameters
involved generally have no relation to physical,
measurable soil properties. This relationship is
complicated by the fact that soils exhibit a varying
amount of hysteresis between wetting (imbibition) and
drying (desaturation) processes. If only one or the
other process is concerned, this hysteresis can be
neglected. Partly due to the experimental difficul-
ties involved in determining imbibition curves, many
more analyses of desaturation curves for soils are
available in literature,

White [1968] presented a quite complex empirical
equation for describing the desaturation curves, along
with some physical justification for the forms of the
equations. The equation of Brooks and Corey [1964] is
much simpler, but neglects the region near saturationm,
which is very important in infiltration studies (see
Chapter V).

Rubin [1966] developed an empirical equation for
a particular sand, using nine parameters to describe
both wetting and drying curves. Other writers who
have proposed empirical formulations include Rubin and
Steinhardt [1963], King [1964] and Phuc [1969]. Brut-
saert [1966] developed a simplified surface tension
model ta transform pore radius distribution to a
capillary suction relation. With the present state of
knowledge of soil physics, this &=y relation should
be considered a basic soil property to be determined
for each soil by experiment.

The relation of conductivity to moisture content
of soils (or to capillary suction) has received con-
siderable attention from soil physicists. Childs and
Collis-George [op.cit.], in an attempt to derive a
theoretical equation, proposed a relation describing
saturated conductivity based on the theoretical distri-
bution and interaction of pore sizes. Following this
type of statistical analysis of pore size distribu-
tions, Marshall [1958)] derived an expression for
"effective" pore size and, like Brutsaert [op.cit.],
related this to a distribution of ¢ . To describe
the unsaturated conductivity of a soil as a function of
Se , Irmay [1954) derived the relatiom

(2.17)

where e 1is 3.

Brooks and Corey [op.cit.], on the basis of certain
theoretical assumptions and extensive experimental
data, have generalized this relationship to make e
a parameter, related to the parameter X in the
empirical relation between capillary pressure and
saturation:

(2.18)

(2.19)

and E = ——

Several investigators have used the product
kp(8)3¥ , known as the diffusivity, D(8), and have
38
derived empirical relations for this rather than kr

(Jackson, [1963]). Example curves for the above soil
relationships are shown in Fig. 2.2.
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Fig. 2.2. Typical relationships between unsaturated

hydraulic properties of soils.

The complexity of the physics involved in these
relationships should be emphasized. Soils that may
be quite similar in terms of agricultural properties
may be guite different as porous media. Factors such
as concentration of ions, chemical interactiom of
water with the clay fraction of the soil and nonhomo=-
geneity complicate the picture in the field situation.
Swelling soils also change the simple relationships
(See Chapter IV).

Melrose [1965] has studied the thermodynamics and
physics involved in some detail. Paulovassilis [1962]



and Philip [1964] have published mathematical models
that attempt to describe hysteresis in particular
soils. Melrose [op.cit] and Miller and Miller [1955]
have given very plausible microscopic explanations
for the cause of hysteresis. These and other studies
can only scratch the surface of the complex physical
system involved.

Numerical Solutions to Soil Water Equations

The equation for horizontal, unsaturated flow in
porous media, neglecting air pressure, is of the same
form as equation (2.16) with the rightmost term
removed. Klute [1952] solved this equation numeri-
cally, using a transformation of variables and a
constant upper boundary saturation. Later, Philip
[1957] showed a method for applying similar solution
techniques to the vertical case, using a series of
successive approximations. With a hand calculator,
this method was quite laborious. Again, a given
saturation at the surface for t > 0 was used as
the upper boundary condition.

With the development of high-speed digital com-
puters, the method of finite differences was applied
to this equation, and researchers have developed
methods to solve equation (2.16) for boundary condi-
tions better approximating real situations for a
variety of applications. Several of the most impor-
tant contributors to solution techniques for the
problem of vertical downward flow of moisture from
surface input and the major features of their numeri-
cal methods are listed in Table 2.1. All of the more
recent investigators have employed finite difference
techniques, which essentially consist of rewriting
equation (2.16) as a finite difference equation rather
than a partial differential equation, and proceeding
numerically with small increments of time, solwving
for the pressures at each point in the vertical. Most
of the authors employed a linearized form of the
equation--i.e., the coefficients such as kr(w,t),

instead of being variables as is y(t), are taken as
constants over a time increment, using values of
at t - At. This creates serious variations im the
computed infiltration rates as compared with a truly
nonlinear solution, as will be discussed in Chapter IV.

TABLE 2. 1. Nature of Pablished Numerical Solutions to Vertically Downward Moistire Flow Equation

UEdition ™ PUMEE  matix

Basic Numerical uced
T 5 S

Source Date Remarks
Klute 1952 ‘i = constant Y wiform  @vs Z analytical
approximation no early numerical work
Philip 1956 ’i = constant Boltzmmann  uniform Bvs Z analytic series
transform approximation yes unwieldy
Hanks & 1962 ¢i = 9‘“ -] layered Bvs Z linearired yes
Bowers finite-diff,
implicit
Rubin & 1963 Rainfall = K L uniform Bvs Z linearized no solution good up to ponding
Steinhardt constant finite-diff, only
implicit
Liakapolows 1965 Saturated [\ miform Ovs Z linearized for satu-
finite rated case
difference only
Whisler & 1965 Rainfall & [\ uniform Ovs Z nonlinear approximate
Klute Ponding implicit estimate
finite-diff.
Rubin 1966 Rainfall & viyy= & - uniform Bvs 2 quasi-linear yes estimates coefficients
Ponding transform implicit with an explicit equation
finite for each time step
difference
Ibrahim 1968 Ponded Y uniform Bvs Z explicit empirical explicit scheme:
=8 finite accumulated mass balance
o difference errors with time
Freeze 1969 Rainfall g Y uniform Bvs Z linearized rough
ponding implicit pproximate
finite
difference



With a few exceptions, these investigators have
been concerned with determining moisture profiles at
various points in time, rather than obtaining an
infiltration model, and the assumptions used reflect
this objective. The effect on the accuracy of the
solution of such things as size of At and Az
increment used, method of linearization or estimation
of coefficients, etc., cannot be known if no truly
nonlinear solution is available as a comparison.
Given a saturated upper boundary condition, there is
no way to assess the accuracy of a solution in terms
of continuity by summation of change in moisture
content, The explicit scheme used by Ibrahim [1967]
is an example of this problem. His finite-difference
equations were modified to allow a specified rainfall
at the surface. Solutions to his equations included
a continuity error as shown in Fig. 2,3. The cause is
the use of an explicit scheme, which uses values of
pressure from the previous time to calculate moisture
flow into the 2z increment ahead, as shown in
Fig. 2.4. The solution moves down the column of soil,
so that the pressure used for the forward node point
at level i is not the same as the pressure used for
the same node when the level i + 1 is being calcu-
lated. This violates continuity.,
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Fig. 2.3. Nature of accumulated error in explicit

numerical approximation to equation (2.16).

The linearized implicit schemes do not violate
continuity, since a matrix is solved to evaluate
pressures at the new time step t + At . The pattern
of infiltration and shape of the moisture profile may
be affected by the linearization, however, especially
near the highly sensitive upper boundary, where small
changes greatly affect infiltration rates.

In calculation of infiltration rates from their
numerical schemes, most of the investigators cited
above encountered difficulty in either point scatter
or physical credibility of their curves. Hanks and
Bowers [1962] and Whisler [1964], for example, en-
countered difficulty in scatter of podnts about an
infiltration curve, as in Fig. 2.5. The results of
Phuc [1969] are much more widely scattered.
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] o ) il p: ;
- all i for each step of i
il I
o o o
-] o -]
-] -] [+]

z Boundory
Condifion = §

t Beundery Conditicn

Fig. 2.4, Explicit finite-difference method on the
(z,t) grid network.
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Fig. 2.5. Examples of scatter in the numerical resu1t§
of Whisler [1964] and Hanks and Bowers [1962].



Field experiments using sprinkling infiltrometers
uniformly produce infiltration curves of a general
shape, as illustrated in Fig. 2.6. After an initial
time in which all applied water is taken into the
sofl, infiltration rate begins to drop in an exponen-
tial- or hyperbolic-type curve, asymptotic to a
minimm infiltration rate, which corresponds to the
saturated conductivity of the total soil column.

When mathematical simulations produce results such as
shown in Fig. 2.7, one should conclude that the
numerical method of calculating infiltration rates
from the soil column is being biased by the numerical
scheme. This appears to be the case in the published
results of Freeze [1969) and, to some extent, of
Whisler and Klute [1965].

None of the investigators discussed herein have
reported the effect on the solution of changes in
the size of Az increment used. From experiments
discussed in Chapter IV, it appears this is an impor-
tant factor, especially for the zones where the
moisture front is steep. (See Fig. 4.10)
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Fig. 2.6. Typical results from sprinkling infiltro-

meters in field tests.

Many of the methods of solution described in the
]iterature and listed in part in Table 2.1 cannot
model a rainfall infiltration boundary condition.
Others use a linearized solution method which inade-
quately models the infiltration rate, or results 1n.
severe scatter of the computed values for infiltration
rate.

The first objective of this investigation is to
develop a finite-difference solution to equation
(2.16) which will act as a realistic model of infil-
tration for physically realizable boundary conditions.
It should provide for layered soils, and allow a
variation in increment sizes so that a maximum effi-
ciency can be obtained in the solution process. The
solution should be obtained in a manner which mini-
mizes the scatter of the computed values of infiltra-
tion, and thereby provide a dependable model for use
in connection with surface runoff models. The
development of the solution method is described in
Chapter IV.
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simulation of Freeze [1969].



CHAPTER IIIL

MATHEMATICAL DESCRIPTION OF WATERSHED RESPONSE

Introduction

Water appears on the surface of an infiltrating
watershed when the rainfall rate exceeds the infiltra-
tion rate. This time varying-difference between rain-
fall and infiltration may be termed rainfall excess.
Water on the soil surface flows under the influence
of gravity toward the lower edge of the catchment,
and appears as input toc a stream or channel. The time
variation of this channel input may be termed the
catchment hydrograph. This chapter will deal briefly
with methods used to mathematically describe the
catchment hydrograph from a knowledge of the rainfall
excess pattern.

Linear System Approach

The simplest and most common method of watershed
response modeling assumes the overland flow process
to be a linear system problem, with rainfall excess
as input and the watershed hydrecgraph as the system
output., The system behavior is described by the
impulse response function or the instantaneous unit
hydrograph. Mathematically, this function is the
response of the watershed to an instantaneous pulse
input. In practice, it must be obtained by using
system identification techniques, using measured
values of the time series of input (rainfall) and
output (runoff) functions.

Nonlinear Fluid Dynamics Description

In fact, the response of a watershed is not
linear, and watershed hydraulics can be described
more accurately by writing the equations of energy
and continuity from fluid mechanics principles. This
is a case of nonuniform, unsteady flow, and the
governing equations may be stated without derivation
as follows:

A, Continuity:

8h | 3(uh) _ 3]
st T oA T At (3.1)
B. Energy:
du au oh _ {>ju -
at+u8x+gax-g(sﬂ-sf}- n (3.3

where So = glope of the ground surface

Sf = energy gradient

and u(x,t}) = local velocity
h(x,t) = local depth -1
a(x) = local inflow per unit area [LT 7]
B = gravitational acceleration .

Either the Manning equation or the Chézy equation
may be used to define § Ir this work, a Chézy

£ -
form will be used, so that
m+ ]
m o ——
= i < "
Vo Cho g, & (3. 3)

where VO velocity at normal depth Ho

S = bed slope, and

C = Chézy resistance coefficient or laminar
resistance coefficient (Cl) i

This formulation allews a turbulent Chézy
relationship when m = 1/2, and provides a laminar
flow relationship when m = 2 ,

The Kinematic Wave Approximation. The system of
equations (3.1), (3.2), and (3.3) can be simplified
into the kinematic wave equations for flows whexe So

is neither flat nor excessively steep, so that it may
be shown that the terms in the left side of equation
(3.2) are of the same order of magnitude. Henderson
[1963] did this for the case of wide channel flows.
By writing equation (3.2) in nondimensional form,
Woolhiser and Liggett [1967] showed that the first
term on the right side becomes

5 1/m
=
ko)

in which the starred quantities are nondimensional,
and

Lo = length of the plane
H = normal depth

F v

F = Froude No.= o

[¢] hg Hj .



From the order of magnitude analysis of Henderson,

all terms in the equation have a certain maximum
order of magnitude, so that dividing through by k, ,

as k, becomes large, implies u, 1/m + h, . This
means we may use, for large Ky »
m+]
u= CSO h" . (3.4)

This approximation, combined with equation (3.1),
allows solution of the system of equations by a

single equation. Define
m+ ]
a = CSo ’ (3.5)
so that
Q= ahtn .

Combining this expression with equation (3.1) produces

dh

ot

oh
x q(x, t),

+ alm+)h™ (3. 6)

which is the kinematic wave equation to be used in
this study.

The Kinematic Wave Equation for Cascading Planes.
The general watershed considered in this study is made
up of a cascade of planes, of different slope, rough-
ness, width, and length, as shown in Fig. 4.1. 1In
this section the kinematic wave equation will be
transformed into a nondimensional form applicable to
the case of a multiple-plane watershed.

Consider a watershed of n cascading planes,
th
.the k

ness coefficient

plane having width W, , length Lk y rough-
Ck , and slope Sk + The normaliz-

ing flow will be based on the maximum rainfall excess
rate qmax(t) as follows:

(3.7)
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FE), T Rl

Therefore let

m
Vo) * o) (3.8)
and
_m#]
Qo(k) L.
or
o
Qo +1
H ===
(5 )k : e
Then define
T : : i
=% E 3 = 3. 10
o(k) Va(k} i 8 ( )
Using (3.9) and (3.10), the variables x , h ,

and t may be written in nondimensional form as
follows:
k-1 k-1
_E Li+xk . L1+xk
L =1 Lo |
x*(k) n - L (3.11)
s L, :
" 1
i=1
n
where L = T L.
4 f 3 3
i=]
e 2
b T
h ='——‘=h("'5n v(3.12)
k)T H o0 k\ Q) (
; E vo
t*{k}=-,r—{-;']=—-k—'—' # (3.13)
. 2L
I i
i=1

Now equation (3.6) may be written in nondimen-
sional form:

: T ’
e, Q m ,ah

i), (),

=q.9,



By dividing to simplify, one can assign

1
m
w3, 6,
o olk)\ « k To Kk Wk

i
m+ 1
et = (mi, 72 o - A2
-

k
= Li .
i=1

(3.16)

From these relations, equation (3.14) becomes

oh oh
(52) +erm, (52
'k (k) \dx,

) =q.(t) . (3.17)
k

Useful insight into the solution of this equa-
tion may be obtained by using a technique known as

the method of characteristics (Kibler, 1968).
clarity, the (*) subscripts will be omitted.

the total derivative of h(x,t) ,

dh _9h dh dx
dt ~ 8t  9x dt )

Equation (3.17) may be rewritten as

m 2h

dh
q(t) = ot +ph S "

Comparing like terms from equations (3.18) and (3.19),

two ordinary differential equations in
be obtained:

dh
e

For
Taking

(3.18)

(3. 19)

h,x,t may

(3. 20)

(3.21)

These are known as the characteristic equations

for equation (3.17).

Equation (3.21) describes the

movement of any initial disturbance, imcluding the
boundary conditions, in the x = t plane, as shown

in Fig. 3.1, Within region A of this
is uniform unsteady.

figure, flow

Outside of the region, flow

is nonuniform steady for a step function lateral

inflow. Equations (3.20) and (3.21) may be solved to
define the characteristic time tc if q(r) is
known. Thus h(t) may be calculated
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t

h(t) = S albidt, <t (3.22)
o
and from this
t m
x(t) = S <] [h{t} dt, tf_tc - (3.23)
o -
t
'e
Steody Flow
Forward Charocteristic
g Zone A
= Uniform , Unsteady Flow
0 \
0 Lk
Distance Xy —&=
Fig. 3.1. Solution of equation (3.17) in the (x,t)

plane.
This expression is analytic when gq(t) is an analytic

function, but may still be evaluated by numerical
integration for any known q(t) .

Applications of the Kinematic Wave Equation

Wooding [1965] solved equation (3.17) for
certain cases of surface and channel flow where an
analytical solution was possible, then extended his
work by obtaining numerical solutions for several
cases, including the case of a constant value of
infiltration rate.

Woolhiser [1967] has obtained a kinematic solu-
tion for overland flow on conic sections, a basic
geometrical shape in small watersheds. Kibler [1968]
treated the problem of the formation of kinematic
shocks arising when planes of different slope are
cascaded, and the optimization of a single plane to
approximate two cascading planes. Foster, Huggins,
and Meyer [1968] applied the kinematic wave equations
to short field plots with "constant" infiltration
rates and demonstrated good comparison with experimen-
tal data. Foster [1968] applied the kinematic equa-
tions to data from field plots to derive the infiltra-
tion rate pattern from knowledge of the plot outflow
hydrograph and hydraulic roughness. Burman [1969]
utilized the kinematic overland flow equations plus a



Horton infiltration formula to simulate experimental
results from several 185' x 200' plots on an experi-
mental farm at Cornmell University. He obtained
critical parameters for roughness and infiltration
by optimization. Then after obtaining the best fit
parameters, his simulated hydrographs for selected
storms fit the observed data reasonably well.

It is the purpose of this investigation to

13

utilize the kinematic wave equation as a mathematical
model of surface hydraulics, with lateral inflow
determined by matching the boundary conditions with
the equation of soil moisture flow (equation 2.16),
such that the difference between rainfall and soil
water infiltration becomes lateral input to the
surface flow equation. The numerical techniques and
theoretical and experimental results will be dis-
cussed in the following chapters.



CHAPTER IV

A MATHEMATICAL MODEL OF AN INFILTRATING WATERSHED

Introduction. This chapter describes the develop-
ment of a mathematical model for the simulation of
infiltrating watersheds, from simultaneous solution of
the partial differential equations (2.16) and (3.6),
subject to compatible boundary conditions. These
equations are first written in finite difference form,
and then combined for efficient and accurate solution
on a digital computer. A discussion of the results of
this numerical solution, compared with other finite
difference formulations, is given at the end of the
chapter.

The scolution of each equation proceeds in time
and one dimension of distance. For the soil equation,
the distance is Z, depth measured from the surface,
and the solution is a vector of soill water pressure as
a function of (Z,t) and f£(t) at the surface. For
the surface water flow equation, the distance is x ,
measured along the surface from the upper edge of each
plane, and the solution is a vector of surface water

depths as a function of (x,t) . This notation is
illustrated in Fig. 4.1.
q
! T N A A A A
I--___E; L H_S__\
soil | “Lg
: e, T
Soil 2 I a ; -E"‘?',‘;:‘::—-—-______ L3 —
//////’k~ J e o S |
.Az \\\
.- s e s
Lax |
Fig. 4.1. Schematic representation of the mathematical

watershed model.

Finite difference notation is illustrated in
Fig. 4.2. The Z,t plane (and the x,t plane) is
divided into small finite difference segments. Each
node is numbered, with i representing points in the
Z(or x) dimension and j representing points in the

t dimension. Thus wi represents the value of

w(zZ,t) z2=12
discussion, superscripts will be used, as above, for

time location, and subscripts for distance location.

at = and t = t,. In the following
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Fig. 4.2. Finite difference solution grid in (z,t)

showing notation used.

Numerical Solution of the Unsaturated Soil Moisture

Flow Equation

If equation (2.16) is multiplied by dz , we

obtain

)
3¢ (Vp#S,) = K

v

where b

9 f

0z \ roz

)dz-

3kr
¥ 2]

z

dz (4. 1)

is incremental bulk volume, and for this

one~dimensional case 1is simply dz .

Normally the soil pore volume

¢V, is assumed

b

£}



constant for solution of this equation. For soils with
abundant clay-sized particles, soil swelling may be
significant in the change in stored moisture repre-
sented by the left-hand side of equation (4.1). A
means to account for this swelling may be derived from
current theory and experimental observation of the
nature of swelling soils.

Swelling Soils. Philip [1969] in a theoretical
study of swelling in soils, stated that over a sub-
stantial range of moisture contents, as supported by
experiment,

de d

De 88 .. (4.2)

g5 do
where e = voids ratio = i%; , & is a constant,

. 8
and g = moisture ratioc = —- "
1-¢
Integrating equation (4.2),
e= oo+ Cl
into which one may substitute definitions of e and g,
and obtain
¢=rx9+{l—¢lcl (4. 3)
At 8 =0, ¢ = ¢ so that C, = _fkﬁi_
. lim 1 1=-9. .
1im

¢lim is the porosity obtained for oven-dry soil if

the relation of (4.3) were true over all ranges of
moisture. ¢min will be taken as the lower limit of

¢ for which (4.3) holds.

Letting 8 = a(l - ¢lim)’ (4.3) may be written

¢ POty (¢ o) (4.4

Soil bulk density p, is a function of porosity 9¢:

b

pPp=(l-@p,
and define

pb max =(1- q:’l'irn]ps’

where P is the density of solid grains of soil.

Moisture content w(in volume of water per weight of
soil) is a function of © and bulk density:
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Using these two relations, equation (4.4) may be
transformed into the following form:

ﬁps J w + :
Pb max °

—

Py

(4. 5)

Sl is known as the specific porosity, and this

b

equation has the form of the experimental results of
Lauritzen [1948] and Lauritzen and Stewart [1941] .
It also agrees well with experimental data of Gill
[1959], who plotted oy ¥S. W .

To use equation (4.4) in equation (4.1) as a
swelling relationship, & 1is replaced by an equiva-
lent statement in terms of saturation:

G:Sw¢ [4.6]
Thus equation (4.4) becomes
[
lim
¢=—--—' {4.?)
l-ﬁsw
The left side of equation (4.,1) may be expanded
as
av
2 b 0
— (V. ¢S ) =¢S5 —+ V. — " 3
gt PR = 8, T Yy 5 WS 4:8)
avb
Because should be an order of magnitude smaller
S )
than W', the derivative may be approximated by
at
2(v 45 )=V 2iss 4
at ' b w_bat(d)w) . -9
Equation (4.1) will be solved in terms of ¢ , so

the chain rule of calculus is applied to equation
(4.9):

s
2 ey w oy
vb 3t (¢SW) = vb asw{¢sw} 30 ot (4. 10)
Using equation (4.7),
old ~d,. ) 2
9 lim [

e (4SS ) =¢ + = ‘ (4.11)

asw w ¢1im ‘blim

Combining equations (4.11), (4.10), and (4.9) we
obtain

2. B8
A - 4\ _ w3y 4.12
B V) = Vg (q;lim) ay ot ' ( !

which is valid in the range of Sw for which equation

(4.7) holds. Otherwise, ¢ is constant, and
2(6S,,) .
85 .
w



Finite Difference Formulation.
may then be written

Equation (4.1)

Bk

_§_££53 woy_ 9 3y - K—F
Vbas o ot o [kr az] S S
(4.13)

The initial conditions must be specified in

terms of {(x,t), and may be any reasonable value
as desired:
o
att=0, L= =
4’1 ll‘l (initial)

The boundary conditions, for rainfall infiltra-

tion, may be specified as follows; for t > 0 ,
i j j
at Z = 0, for nbj < 0, rainfall = - 2 Kk +Kk
1 a9z r T
1 1 1
at Z =0, for q.njl >0, anl = h(x, t) = surface depth
at Z = L = water table, "I"gq =0 .
z

From these equations, a finite difference form
based on time and distance averaged quantities can be
written, a form known as the Crank-Nicolsen finite
difference scheme.

V. _A¢S

b
|

where, from equation (4.11),

w
AS
w

] = STOR

AbS 2
. ’

T T i— for ¢ >¢min: otherwise = ¢ ,
w lirn

then from equation (4.13),

Ak
. Kl A *
[sroa]—— P e vl LI e I
Let (4..14)
J 3.1 I i L 1-1
[¢1+1 it "ptH J
and N i 1 = 3 1
j-4_11.3 j-
N R L ] s
where 1i = 21..2,3...1.«1z and 1 = 1,2,3,... Mt .

is

selected as the relative permeability at the node from
which flow is originating at time t . Thus for 2
positive downward, and flow downward we have

As proposed by Breitenbach, et al, [1968] , k.
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which are time averages only.

Referring to Fig. 4.2, we define the following
quantities:

A7 = b
+ 7 Hi+))

(e

Az g 3
- i) T Ei-1)

In accordance with saturated porous media flow

theory, saturated conductivity between adjacent
layers will be taken as the harmonic mean:

2A_z+
K =K. = A
+ i+l zil'l'l! azi
Kasny Xy
za z
K =K, ,=2Az i
- Tied (@ , B 1)
AK. AK, .
i K(!-I}

Utilizing these definitions, (4.14) may be expanded,
reversing sides:

k +A¢ Kok oab o .i-§+ -
[+Az = Bk " A% w5 r]. i
+ + - =k

4 as, 4 3 g
-yl . (4.16
[STOR] [M ] [wi G uae
Where Qpi is input to that node from outside, used

only at the surface to provide rainfall input up to
ponding: Qpi =0 fori> 1.

Substituting expressions (4.15) into (4.16),

i i1 -1 j=1 j=1
W ¥ o Y ] J}[‘b ¢1 o i

A L e~
zaz, i- -

J
W
j.i it 1
+-}kr [

+

k= [s‘:‘on]f'* lsr..]i"'i [.p’l - wf'l]- Qp, -

(4.17)

AS j
Where &L 1is defined at 1, j as [—i"'-] -
Ay

i
Equation (4.17) is now rearranged so that only terms

of tl'J are on the left side:



K ,k < K, ,k -+ -3 .
il g j i-4 v, [ j ]_ i
F?L [ 1" Y ] 'R'E_ ¥ - 4., |- [sTOR] [sL) ¢
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i- i-4 Bakran k=
j-1 itg "+ ) j-1
- [STOR]L (SL]A "l - Qpi N —Iii_;;— [¢i+l = 4-‘ ¢ x+]
[J Vot ] (4.18)
Zﬂl i I. 1 &

=i
Let RHSi represent the right-hand side of equa-
tion (4.18), and separate the | terms of the left

side:
IR
i
[s‘»L]i }wi

(4. 19)
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{Ki-ﬁk’—}“_i { 1+i
i

—'=— +[5'ron]

K
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j i3
3 m’i Yiey = RHS;

This represents a set of
N variables, of the form

N 1linear equations in

Ab  FDOW T S S RES s 1cdcw , (4.20)
or as a matrix equation
- —
[A)y=RHS (4.21)

It remains to apply the appropriate boundary
conditions to form equations of the form (4.20), so
that the N » N matrix [A] and the N-dimensional
vector RHS may be completed.

Upper Boundary Conditions. For the upper bounda-
ry, equation (4.20) becomes

b+ € ¥, = RES "

The rainfall upper boundary condition refers to
node 1, which is at the surface. We may write an
expression for flow at this point, including the
change in storage in the upper layer (see Fig. 4.2),
analagous to equation (4.18);

K
,_M [-Jr -q-j] B {sron] i[51..]

-4

ll'l‘

-} -4 i1 K kerej-1 j-1
- +["'z -4, -m?+]. 4.22

-[STOR], "(sL], v, O, - 34z

17

The ponded upper boundary condition simply speci-
fies that w{ = h(x) which is the depth of water at
the surface. 1In this case the first equation in the
set (4.20) is for layer i = 2 , and terms in wi
are placed on the right side of the equation as
known values.

For the case where saturation has proceeded below
the surface, the relationship for ¢ vs. Sw is con-

stant, that is,
kr(¢ > 0)
used in equation (4.13), it reduces to an expression

of Darcy's law. Below some point n near the surface,

the soil will be unsaturated, and as long as the
curves of 4 vs. Sw vs. kr are extended to include

positive pressures of | , the trans;tion from unsatu-
rated to saturated may be described by equation (4.13)

S, (¢ 2 0) = constant, and likewise,

= constant. When these relationships are

and, in finite difference form, equation (4.19). The
upper boundary condition will be ¢i = h(x), and
35
3?‘3 , for 1 <n will be 0. From Fig. 4.3, by
Darcy's law,
J_ ()
b, = z(n) [l - K + h(x) . (4.23)

h(x)= Depth of Ponding

Oi[l-g-;k]l(' ke,

[&q]i = n= I‘w’a'

I€n<N

- V¥ Potential  +

Fig. 4.3. Pressure relations when water is ponded

on the soil surface.

The finite difference upper boundary condition
may then be written as equation (4.19), with all

wi_l = lp'tj‘ terms moved to the right side, and
wi = wi_l determined by equation (4.23). The first
equation in the set (4.20) is for i = n+l .

Lower Boundary Conditions. For all cases where
the influence of the upper boundary perturbation has
reached only part way down the soil column, a trun-

cated matrix is solved. A point m is chosen such
) j=1 0
that for i>m, l.IJi 5 q,;i < €, where € is a very




e —

small error value. Thus an equation of the form
(4.18) is written for i = m, and all terms in m+l
are known and set on the right side of the equation.
When moisture reaches the water table, the same lower

boundary equation applies, except that w;+1 = 0.

Inversion of the Matrix [A]. Matrix [A] in equa-

tion (4.21) is a diagonally dominant tri-diagonal
matrix as shown below:

o - 4
161 O Y R
b
%25 Y2 e
By °3\ Y .
\\\\\\ \ : -
m-lbm-lcm-l - n
b
_O m °m | l’l"m_ _rhsm— (4. 24)

This is a case which allows solution for the
column vector ¢ by a simple recursion algorithm for
Gauss elimination as given by Varga [53]:

Cl c,
i - 1
wl-b 'wlnb-a_w_ ’ 2<i <m-1
1 i-1
h =
. o ths, - i rhsi 2.8 4
1 b, E By b, - a,w, L 2<i<m

(4. 25)

Solution of Equation (4.14) for a Given Time
Step. The following items summarize the main
features of the solution process.

1. Soil Data Input.

For calculation of wvalues of kr,

AS/AY , and all other coefficients in equation (4.18),
the hydraulic properties of the soil must be known.
Curwves of 1 wvs. Sw vs. kr are used in the form of

empirical curves defined by specific data points. As
many points as desired may be used to define the
curve, and the data are used in the form of a three-
column table. Intermediate points are found by
linear interpolation, and any one of the three
variables may be used to find a corresponding value
for either of the other two. A computer subroutine
is used for this calculation; a separate subroutine
allows calculation of the slope of the y vs. §

curve at any point, using parabolic interpolatiecn.
Where A¢ over a time step becomes greater than a
given lower limit, AY/AS 1is found by using chord
approximation, as shown in Fig. 4.4.
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0 v y 2

Fig. 4.4. Slope determined by the chord method

from moisture tension data.
2. Iteration

It is important to note that the quan-

tities (STOR)i 5 (SL)i , and krj are dependent on
" i
the value of wi —— that is, the equation (4.14) is

highly nonlinear. The quantities listed above must
each be evaluated by the hydraulic properties of the
soil, namely, relations among k_,$S , and ¢ , as
discussed in Chapter II. R

To properly treat this nonlinearity an iterative
procedure must be used as follows:

a. An initial estimate of wi 1 =1, mis
made, and values of er {STUR)i , and (SL)i are
!

found from soil hydraulic relations.

b. The coefficients a, b, and ¢
and matrix equation (4.24) is solved.

b}

c¢. The values of wi

are computed

from step (b) are compared

with the estimated values used in step (a) for coef~
ficients ai N bi , and ey and if each agrees

within a given error criterion, equation (4.24) is
considered solved.

d. If the estimated E% are sufficiently differ-
ent from the solved 4& from step (b), the new values

of E
i

and step (b) is repeated.

are used to calculate new a; bi , and ¢

i ?

There is no known mathematical proof that the
iteration procedure given above is generally conver-
gent. Formal proof of the convergence of iteration
of such systems of nonlinear equations is beyond the
scope of this work (see Smith, 1970). Considerable
study was made to determine the empirical nature of
this convergence, with the purpose of minimizing the
nusber of iterations necessary to achieve agreement
between assumed and caleculated values of ¢i . The
nature ¢f the convergence or divergence of such a
schome zppears to be dependent on the type of differ-
enis ejuation used (see end of this chapter), the
tinit. grid dimensions, and the local shape of the
g -y - kr properties of the soil. For the Crank-

Nicolsen difference scheme, iteration seems to



generally converge in a manner shown in Fig. 4.5.
From these results, two modifications were made in
the iteration procedure outlined above. First, after
three iterations, the estimated wj s "damped" by
a weighted average with the last wj . Secondly,

convergence was tested by comparison with both the
results of the last iteration and the results of the
next-to-last iteration, to detect small order cycling

convergence, which was common. In case azwi =
shown in Fig. 4.5, becomes sufficiently small, wi
(estimate) is taken as the mean of the ¢ from the

last two interations.

1»-—msiannmui¢g

n=l
Iteration  No.

Fig. 4.5. General manner of convergence for the
iterated Crank-Nicolsen difference

solution to equation (4.13).

3.
Increments.

Selection of Size of Depth and Time

The difference equation (4.13) becomes
the differential equation as Az + dz and At -+ dt .
Thus the quality of the difference solution is a
function of the fineness of the grid used in the
solution. Selection of both At and Az is a process
of optimizing, since smaller increments will
considerably increase computation time, and too
large increments will cause inaccuracies in the
results or divergence in diteration. Given a
reasonably small 4z , At can be chosen arbitrarily
small, but beyond a certain lower limit, the solution
cannot be improved without changing 4z as well.

Depth Increments. Computations using different
4z sizes demonstrated clearly the importance of mak-
ing the Az network as small as practical. The
results are presented and discussed at the end of
this chapter., For purposes of an infiltration model,
the Az mesh is made smaller toward the surface both
to define accurately the time of ponding and inceptiom
of runoff, and to define properly the steeply varying
pressures which are encountered in this zone as the
moisture begins to disperse into the soil column.

Time Increment. If kr

stant in equation (4.13), it would be a linear partial
differential equation, and there would be no restric-
tions on the time step in the Crank-Nicolsen differ-
ence scheme. In nonlinear difference schemes, such
as used here, such coefficients are assumed to have
linearly averaged values over the time step chosen.
Neither of these values actually varies in a linear

and 9S/8y were con-
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fashion over a At increment, so that the At used
will affect the solution accuracy. Experimentation
with the numerical scolution demonstrated that the
nonlinear changes of kr affect the computed accuracy

of the resulting distribution of moisture over the
soil column, while nonlinear changes of AS/Ay are
most noticeable in the accuracy of integrated moisture
change over the time step, e.g., continuity errors.

On this basis, the limiting criterion used for
time step selection was the change in AS/Ay over the
time step. This was estimated from the change during
the previous time step and the local change in curva-

ture (azsfawz)i of the soil moisture tension rela-

tion. Use of such a criterion allows longer time steps
when rainfall is low and saturation changes are slow,
or when the moisture-tension curve changes slope more
gradually. This minimizing of the local curvature of
the Sw- ¥ relationship also insures the goodness of

the approximations upon which the Crank-Nicolsen
averaging scheme is based.

4. Calculation of Infiltration

Infiltration rates may be calculated by equation
(4.23) when n becomes 1 , that is, when the surface
becomes saturated. The value obtained should corres-
pond within a reasonable criterion of accuracy to the
moisture change in the soil column over the current
time step, calculated by

(4. 26)

The Crank-Nicolsen finite difference scheme was
chosen as a result of extensive comparisons of the
infiltration rate calculated by the above two methods
for the schemes tested. This comparison, for ¢t <
time of ponding, serves as a continuity test on the
performance of the numerical scheme.

Numerical Solution of the Surface Water Flow Equation

Finite Difference Equation. Equation (3.17) is
solved by an explicit finite difference method known

as the single-step Lax-Wendroff scheme. Using the
notation presented at the beginning of this chapter,
and illustrated in Figs. 4.1 and 4.2, equation (3.17)
is written as a second-order explicit finite difference
scheme. First h(x,t) is expanded in a Taylor series:

h(x,t + At) = h(x,t) + At5 ah Azt azh —_% o[m ]
(4.27)
From equation (3.17)
+1
8h moh ., 9 [-pn™
rrge Ll q_ax[mH ]+q ’

and from this
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Thus, from (4.27),
m+]

h(x,t + At) = h(x, t) - At[a—i' (—r%hi-i )-Q_]

LAt s [phm_a_(_e_ it q)] Lol

2 |ox ax | m+1 at

(4. 28)

Now an explicit finite difference form of equation
(4.28) is written:

m+ | -
j_ -1 B "‘{;:’ '“‘]i::’ 1(§-1, j-1
Rl TS v 28% _E(qi+l+qi-l)
+

m m ., m+l , . m+]
j-1 j-1 i et -
ga_g[lhi ) +“"in] ] mHIhHl} mnh: }
¥ |2 Bx ax
m 2 m
j-1 j=1
1("‘—'* §- g["‘.-:' +(h ) ]
“20a'Y )2 Ax
+1 m+]
L)) b i) _ _
m+él' i m+l " i-1 1[.j-1 j=1
[ 4o
4 211 1=
j j=1
+{f*——'1‘-—-]} . (4. 29)
At

This formulation has been shown by Kibler and
Woolhiser [1970] to be stable for

L <"l'fﬁ 4, 30
Ax ph (4. 30)

Boundary Conditions. For the upper boundary,

the conditions are, for the kth plane,

k=1, 2 =
1 h“: 1 0 for all t
k>1, h =h
i=]1)k = -1, =
(i=1) (i=Nk-1, for wk wk-l
If - B wk-l ’ h(i—l)k is specified to preserve

continuity of flow, based on %p-1) ° The solution

proceeds by planes from the upper end, and results

from the (k—l)EE plane are stored as upper boundary
conditions for the kl:-g plane. For the lower bounda-

ry, a first-order difference approximation is used,
whereby
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j=1 j=1
hj =h-1.‘mg[‘hN) “‘Nl’ ]
i=N i=N —y 2 Ax
O
” 2 (4. 31)

At the start, of course, the watershed is dry, and
the initial conditions are hi'l =0 for 1< i < Nx

Combination of the Numerical Models of Soil Moisture
Flow and Surface Water Movement

General Structure of the Numerical Solution. The
watershed modeled has been described schematically in
Fig. 4.1. The finite difference approximation to
this scheme is illustrated in Fig. 4.6. Soil condi-
tions as well as initial moisture conditions may vary
along the plane, so that although soil moisture move-
ment is described only in the vertical direction,
horizontal variations are modeled by a discrete dis-
tribution of points along the plane. These points
are equally spaced, and in Fig. 4.6 are represented
by Hk points, where Hk may vary from 1 to any

number, dependent on the scale of horizontal wvaria-
tions, as well as available computer memory and
efficiency of computer time desired.

ar {=

v

Plone K
Plone K+l

Fig. 4.6. Finite difference grid approximation for
the infiltrating watershed.

Each of the Mk points provides a value of

q(x,t) for input to the overland flow model. The

overland flow model for plan k will require Nk

divisions for the finite difference approximationm,

where N . &x = L(k) . For efficiency, it is

desirable that Nk not be restricted to equal Hk 5

Thus the two numerical solutions are matched by
interpolation at the surface. If Hk =1, for

example, q(1) = q(2) = ... q(Nk) =q . For !ik =2,
the soil model is solved at the ends of each plane,



and q(n) 1is found by linear interpolation. A sub-
routine is used for this interpolation and provides
for any value of Nk and Hk such that Mk g

and Nk > 3.

The matrix equation (4.21) is solved at each
time step for each point on the plane, after which
the explicit equation (4.29) for surface flow is
solved, using the same time step. Each time step is
chosen considering both condition (4.30) and the
criteria for the moisture flow time step discussed
above.

Operational Logic: 1. BSaturation. For a rain-
fall (RF), either constant or varied such that
RF > Ks , some time ts will be reached at which the
surface becomes saturated, that is wi =0 . After
this point, runoff will begin, and infiltration is
calculated by equation (4.23) and by equation (4.26).
Water will begin to "pond" (h(x) > 0) , and wi
will be calculated by equation (4.29). Rainfall
excesses are distributed along the plane as described
above. When a depth of water exists on the surface,
it is also considered as available moisture, in addi-
tion to rainfall; thus if the lower watershed soil
does not saturate as soon as the upper area, for
example, the surface water equations will predict a
flow of water onto the lower area, and potential
inflow rate to the soil model will be RF + h(x)/at.
This is only a crude method for dealing with the
advancing front problem, well-known in irrigation
studies.

2. Recession. When, after runoff has begun, the
rainfall rate drops below infiltration rate, h(x,t)
will be decreased both by drainage predicted from the
surface flow equation and by infiltration of the sur-
face storage into the soil. Infiltration decreases
surface storage at the potential rate, (when after
rainfall is less than Ks(ﬂwfﬁz}i} until the depth

at that point on the surface reaches 0 . 1In this
case, q(x,t) in the surface flow equation will be
negative until h(x,t) becomes < 0 . Conversely,
the soil equation is solved for the saturated upper
boundary condition until h(x,t) reaches 0 , after
which the soil surface desaturates. A Qpl = RF

upper boundary condition (drainage) is then used, as
long as RF remains less than potential f , and
¥y £ 0.

A logical network, shown in a general schematic
in Fig. 4.7, is used to detect the current condition
of the surface for proper assignment of boundary con-
ditions at the start of a new time step. When w{-l
is sufficiently near 0 , it is necessary to know
whether the soil is saturating or desaturating. It is
also necessary to know when the time step should be
changed prior to ponding to insure that the point in

time when wi = 0 4is not overshot by the time step,

and a smooth transition of boundary conditions can
occur. If the watershed is undergoing recession,
conditions must be investigated to see if the availa-
ble surface water 16 less than the potential infiltra-
tion at that time, so that the upper boundary condi-
tion may be reset to unsaturated for the new time step.
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]
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nix) o INFIL. 9

i
RF *at CAPCY. -
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UNTIL

CALCULATE §

[

CALCULATE SURFACE DEPTHS H(x)
AND OUTFLOW HYDROGRAPH Q(t)

1

REPEAT FOR ALL
. ,RMNFALL INPUT_SEGMENTS
e
[REPEAT FOR ALL PLANES }——
PRINT RESULTS

Fig. 4.7. General logical network for computer

solution of equations (4.18) and (4.30).

Experiments on Numerical Methods and Solution
Sensitivity.

The numerical procedure presented previously is
the most satisfactory of several finite-difference
formulations of equation (2.16) that were tested.
investigation of methods of numerical solution of
equation (2.16) constituted the first part of this
study.

The

Finite-difference Formulations. The first method
used was an explicit scheme similar to that used by
Ibrahim [1967] , but allowed for rainfall as the
upper boundary condition. The rainfall boundary
condition was described by a difference equation with
pressures at the upper two nodes as unknowns. This
was solved simultaneously with a difference equation
for nodes 1, 2, and 3, similar to equation (4.18), in

; o lj—l
which w3 LB ;

Solution for the remaining nodes

- --j-l
proceeded sequnntiaily with wi+1 assumed Ji+l
when solving for wi . As shown in Fig. 2.2, the

solution diverges with time because of the assumption
stated above. Such divergence can be minimized by
taking At sufficiently small, but availability of



the rapid matrix solution algorithm (4.25) allows
equal or better speed by means of an implicit
formulation.

Several implicit methods were tested empirically
to determine which appears to be the best method.
One way to write a finite-difference form of equation
(4.1) is to use coefficients evaluated at the end of
the time step. This method is referred to as a fully
implicit formulation. In this case, the coefficients

(SL]; , [STOR], would be evaluated using V] rather
-1
3 h .

such a scheme in terms of integrated infiltration
rates is shown in Fig. 4.8. The use of coefficients
evaluated at the new time step causes the bias in the
infiltration, which would not be detected if only
moisture profiles were computed. Similarly, the
linearized formulations, used by several previous
investigators (Chapter II), where coefficients are
calculated at the beginning of the time step (from
the previous values of 1) causes an opposite bias

in the infiltration rate.

than %(wi + An example of the results of

AP LT i _l._.L_":.;F — Boifoil ot T T
. ] =1
2 B L ot -L' -
CES .
v . T | I
H| fe

Infiliration Fole, Inches per Hour

A i 1 L i I i B PR T
13 ] [[= T - 14 6 18 20 22 24 26
Time from Stort of Roinfoll , Minutes

W —
28 30

Fig. 4.8. Example of computed infiltration rates
using a fully implicit difference
formulation.

Because the saturation-depth curve becomes very
steep for infiltration into dry soils, it is reasonable
that a second-order finite-difference formulation
might better approximate the partial differential
equation (4.1). Such a method was derived in a manner
similar to the second-order Lax-Wendroff difference
method in Chapter I1I, starting with a Taylor series
expansion. Iterative solution of this implicit formu-
lation proved somewhat difficult, as the iteration was
generally not naturally convergent. Furthermore, the
scheme proved unstable, as illustrated by the sample
results of Fig. 4.9. Unfortunately, the stability and
convergence properties of the nonlinear finite-differ-
ence formulas are difficult if not impossible to deter-
mine analytically, and such trial and error methods
are unavoidable.

Sensitivity of the Numerical Solution. Given a
watershed model system, with rainfall rate as the input
and infiltration rates and runoff rates as output, it
is of interest to determine the sensitivity of the
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Fig. 4.9. Example of computed infiltration rates using

a second order difference formulation.

system to small variations in the system parameters.
The important system parameters in this model are the
size of the time step, the size of the depth and
length increments, the saturated conductivity of the
soil, and the hydraulic properties of the unsaturated
soil, i.e., the kr - sr - § relations.

The role of the size of the time step has been
discussed previously in this chapter. In some cases,
the iterative process will converge for quite large
time steps, but they must be limited to accurately
reflect the nature and degree of nonlinearity and the
scale of time and space variations modeled.

The effect of the size of the depth increment on
the numerical solution of equation (2.16) has received
scant attention in literature. From the results of
this study, it appears to play a critical role. Fig.
4,10 shows the effect on the soil moisture profile of
three different sizes of AZ in the solution of
equation (4.17). The moisture front becomes progress-
ively steeper as the Z increment size is reduced.
The corresponding effect on infiltration rates is
shown in Fig. 4.11. The time of inception of runoff
is markedly affected by the choice of AZ size, and
the difference in infiltration rates is even more
marked than the saturation profiles.

The general effect of changes in Ks , the satu-

rated conductivity, on the infiltration rate is
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Fig. 4.11., Example of the effect of AZ size on

computed infiltration rate.

illustrated in Fig. 4.12.

the infiltration curve is shifted in a negative
direction in both the f dimension and the t dimen-
sion. This appears to be an important property in
terms of the sensitivity of the overall infiltration
curves. A lower Ks results in a steeper saturation-

depth curve, at least at the early stages of infiltra-
tion, as a noticeable front is moving down the soil
profile. This is associated with the earlier incep-
tion of runoff.

For an increase in Ks =
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Fig. 4.12. Example of the effect of Ks on

infiltration rate.

It is beyond the scope of this study to investi-
gate in detail the sensitivity of the numerical
solution to various changes in the hydraulic relations
of unsaturated porous media. Some observations on
sensitivity gathered in the experimentation of this
work will be presented here briefly. 1In general, the
numerical results in this work concur with those pub-
lished by Hanks and Bowers [1963]. Unquestionably,
considerable work is needed to investigate solution
sensitivity.

In describing the effect of changes in the
assumed S - kr - ¢ relations, one should keep in

mind the interdependence of those relations. That is,
in an actual soil, if the S - ¢ curve is somehow
changed, the physical means used to effect the change
will also necessarily change the kr - ¢ relation-

ship. Therefore, the effect of a shift in the § - ¢
curve shown in Figs. 4.13, 4.14 and 4.15 comes from
changes in both the § - ¢ and kr - |y relations.

For Curve A less moisture is stored in the profile

in the time ti from start of rain to when surface

saturation (w1= 0) occurs, and thus t, is less

: 4
In addition, the permeability
A will be shifted to the
B, and the result is a
In effect, a lower kr for

than for curve B .
curve for saturation curve
left with respect to curve
steeper moisture front.

a given ¢ causes more of the moisture entering a



finite element to be allotted to increased storage,
and less to be passed through as moisture flow. This
results in a steeper saturation profile at a given
time (Fig. 4.15).

Modification of the ¢ ve. § curve A to C
in Fig. 4.13 will have a minor effect, if the krvs. Y

curve is unchanged. For actual soil, of course, this
would not be the case. As reported by Hanks and
Bowers [1963] , effects of such modifications seem to
be more pronounced for changes in the region of the
curves near saturation. The results from the numeri-
cal model confirm this, especially when infiltration
curves are the object.

In using the relations of Brooks and Corey [1964]
to describe unsaturated hydraulic properties of the
soil, it is important to recognize the sensitivity of

the scil curves to errors in the parameters. In
Capiliory Pressure Potential, =, cm. of water
R=I5 ;.-25
10 ~ 100 1000
0.9
A=0.133 A=0.144
)
0.8
a »
§
E Hastings Colby Silt Loam
8 \
0.7
: \
g X
0.6}
0.5
Fig. 4.13. Saturation - capillary pressure relations

for two similar soils.
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measuring the moisture-tension curves for the Poudre
sand, it appeared that an error in the estimation of
Sr was counterbalanced by the accompanying displace-

ment of the Se ve. ¥ curve, so that the intercept
Py The
exponents A and € , however, are functions of Sr

was not very sensitive to this estimate.

because they are functions of the slope of the loga-
rithmic plot, and when kr is evaluated by use of

equation (2.17), these small errors can be significant.
1t is fortuitous that such errors will be greatest in
the regions where kr is smallest, and least effec-~

tive in the solution for infiltration rates. When a
soil exhibits a very steep slope in the saturation-
tension relationship, however, the exponent e
becomes quite large, and the error im k_ can be
significant. 2

Saturation by Volume, S,

0.6 0.7 o8

0.5 09
]

=T T

Initial Moisture

Condition ~____|

Z
w
T

Depth from Surfoce in inches

Fig. 4.14. Effect of shift in the saturation-capil-
lary pressure relation on the moisture

saturation profile.
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CHAPTER V

LABORATORY AND FI1ELD EXPERIMENTS

No matter how sound the physical basis for a
mathematical model, one always wishes to compare its Constant Heed
performance with careful observations of the process A Corrioge K_“'“‘
being modelled. Considering the threat of the many .]/_

types of experimental error, as well as the simplifi- . [ /_ Cortecior Lo
cations involved in formulating the model, this is SE==SmSEEC =i | Recelving
admittedly a hazardous undertaking. Nevertheless, one

may gain useful insight into the semnsitivity of the - Trantdocar
model to measured input parameters, as well as its

general efficiency and applicability as a research

tool.

Simulation of a Laboratory-Scale Infiltrating Watershed

In order to determine concurrently the performance
of the numerical model in predicting soil water move-

Pinion Digital
ment and surface runoff processes, a laboratory scale Supply Tube vei“lm:u'
soil flume was modified to create a prototype scale
infiltrating slope. Carrioge - Rzi‘g‘i::l“

Description of the Soil Flume. The soil flume, Manifold
shown schematically in Fig. 5.1, consists of two paral- ) Copillory
lel reinforced plates, 4 feet high by 40 feet long, Roils ke
containing a 2-inch thickness of soil. The side plates 47 Plexiglass Walls
are made of 4- x 4-foot, 3/4 inch thick panels, held
by reinforcing angles. The central four panels are of ot

rY-Delactor
plexiglass, and three on each end are of aluminum. vBouste
i ’—‘j - S s

The ends of the flume are porous and consist of a g k_{
fiberglass filter supported by a copper screen, all v

encased in a channeled end plate to collect seepage Section Ak

flow. The bottom is of heavy steel to insure rigidity.

The slope of the flume may be changed by raising one Fig. 5.1. General schematic of the laboratory soil
end with a permanently mounted hydraulie lift. flume and instrumentation for studying

watershed response.
The flume was originally designed for studies of
saturated groundwater flow, employing point sources of

fluid. To prevent algal growth, the fluid used is a For use in studies of flow in porous media, the

light oil resembling refined kerosene, used in the remaining important property of this fluid is its

petroleum industry for testing the hydraulic properties surface tension, or its capillary properties. This

of test cores. It is sold by the Phillips Petroleum was determined by a laboratory measurement of satura-
1/ tion vs. fluid tension for the soil used in the flume.

Company and is referred to as "Soltrol"= or "Phillips

Core Test Fluid." The fluid properties are listed in [See Smith (1970)).

Table 5.1. The soil used is a locally obtained river-

PablE S | deposited sand, known as Poudre fine sand. Previous

P investigators placed the soil in the flume in thin
‘ Fluid Properties of "Soltrol" layers. Although care was taken in placing the sand,

uniform density was not achieved.
Temperature, De

The Rainfall Simulation Apparatus. To allow the

2] 22 23 24 25 flume to be used to study the effectiveness of the
Density mathematical model, equipment was added to (a) gener-
gm./cc. . 7576 .7569 .7562 .7556 .7549 ate uniform £luid inputs at the surface, (b) measure

f;:::::;c the vertical movement of moisture through the soil,

em. 2/sec. x 102 2.047  2.011 1.97% 1.941  1.907 and (c) measure the rate of surface runoff, or the
watershed hydrograph.

1/ Manufactured by Phillips Petroleum Company, Bartlesville, Oklahoma. Trade names and company names used in
this paper are included for information only and do not constitute endorsement by the U. S. Department of
Agriculture.



To provide a simulated source of rainfall, drop-
producing manifolds were constructed similar to those
used by Chow and Harbaugh [1965] at the University
of Illinois. A diagram of one of these 20 units con-
structed is shown in Fig. 5.2, and an installed unit
is shown in Fig. 5.3. The entire 40-foot surface was
covered with these units, which were supplied with
fluid from a constant head tank. The supply line was
split sequentially so that pressure was nearly uniform
in the manifolds. Drops were produced through the
capillary tubes on the lower face of the manifold at
a rate determined by the pressure in the manifold,
from zero up to a maximum pressure. Above this
pressure, depending upon the size of capillary tube,
the drops become a continuous stream.

= Air relecse

~0009" 1.0
for filting

nflos hubes

J_“._,l'-————-—-—-———————::-_;— ———————————— |
= I_j:+—+ [ e e o S o o S O Py e =t |
—[ Tk T —F T T LI LI I U | SN T A L 1 I
Sige  View
Fig. 5.2, Plan of a raindrop producing manifold unit.

Fig. 5.3.

The soil surface was covered with 2-inch medical
bandage gauze to prevent raindrop erosion. A surface
runoff collector, with a sill flush with the soil
surface, was mounted at the lower end of the flume.
The runoff volume at any time was measured by collect-
ing all runoff in a calibrated tamnk and sensing the
fluid level with a pressure transducer. Pressures
were converted to voltages, which were read at 5-
second intervals and printed by a paper tape printer.
Voltages were converted to volume of fluid by use of
the known calibration of the collecting tank, and the
differential of the volume over each 5-second interval
was the rate of flow for that interval. The runoff
measuring equipment and constant head tank are pic-
tured in Fig. 5.4.

Drop producing unit mounted on top of flume.
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A-Soltrol
barrel

B=Pump

C-Constant
head tank

D~Collector for
surface flow

E-Surface flow
measuring
tank

F-Pressure
transducer

G~Transducer
power supply

H-Digital
voltmeter

I-Paper tape
printout

Fig. 5.4.

Lower end of flume, showing equipment
for measuring surface runoff.

The Measurement of Soil Moisture Movement. To
follow the movement of the infiltrating fluid dowm
into the flume, a carriage assembly was designed and
constructed, which would allow use of y-ray attenu-
ation to measure local saturation of the soil. This
carriage is depicted in Fig. 5.1, and the source side
and detector side of the unit are pictured in Figs.
5.5 and 5.6, respectively. The theory by which soil
moisture is determined from gamma-attenuation theory
is presented briefly in Appendix A.

The carriage assembly was mounted on rails over
the section of the flume with plexiglass walls. The
source and detector were mounted colinearly (or nearly
go) on individual racks that moved vertically in
square machined sleeves. The racks were moved by
pinions on a common shaft, turned by a hand crank,
as shown in Fig. 5.1. A friction clamp held the units
at any vertical position.

Experimental Procedure. The first step in simu-
lating the watershed response of this laboratory soil
flume was to determine the relation between the pres-
sure at the constant head tank and the rate of rain-
fall on the surface. This was accomplished by install-
ing a collector channel with a semi-circular cross
section in the flume over the soil to collect all the
rainfall, Rainfall rates computed by means of steady
runoff rates were measured for several elevations of
the constant-level tank. The relation of rainfall
rate to fluid level is shown in Fig. 5.7.

Experiments were performed using a rainfall rate
roughly two to three times the saturated conductivity
of the soil. Rainfalls of 15 minutes were used, and
both dry and moist initial conditions were used.
Because a minimum of 30 seconds was necessary to
count the gamma rays through the soil, instantaneous



Fig. 5.5.

Fig. 5.6.

Gamma-ray source and
carriage on soil flume.

Gamma-ray counter unit.
Picture shows opposite
side from Fig. 5.5.
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Fig. 5.7, Relation between rainfall rate and fluid
head at the constant level tank.

soil profiles during rainfall could not be obtained.
However, the location of the steep part of the satu-
ration profile was obtained quite accurately at
several stages for each experimental "event."

Numerical Simulation. Laboratory measurement of
the unsaturated hydraulic properties of the soil and
the saturated conductivity and porosity provided the
necessary input to the mathematical model for soil
moisture movement. These properties were determined
for the two extreme bulk densities found in the flume,
and the properties of an intermediate density were
interpolated from the other data. The map of bulk
densities determined by gamma-counting as described
above was then interpreted in terms of gross layers
corresponding to these three densities, and these
layers were used in the numerical model. For the
surface flow portion of the model, the slope and length
were measurable, and roughness was a fitted parameter.
The exponent m was determined by use of equations
(3.4) and (3.22) since Q(t) was measured at the end
of the flume.

Simulation of a Field Plot Watershed

Modeling a field plot watershed provides an
experimenc significantly different from the labora-
tory prototype scale simulation. The watershed
slope, surface roughness, and soil properties are
not the same at each point, and the rainfall and
runoff data available are not as accurate as labora-
tory measurements.



The purpose of simulating the runoff response of
a field plot watershed to rainfall is to determine the
sensitivity of the simulation model to the above-
mentioned inhomogeneities, and to see if approximate
information concerning the unsaturated hydraulic pro-
perties of the soil may be used to predict the obser-
ved runoff within acceptable limits of error.

Selection of a Field Plot. The data available on
hydraulic properties of the soils came from an Agri-
cultural Research Service publication listing results
of extensive sampling of ARS watersheds [Holtan, et.
al,, 1968)., From these watersheds, it was desired to
select a field plot with soil as uniform as possible.
Furthermore, the plot should be as near as possible
to a point from which sampled soil data were available.
It was also desirable to avoid clay soils which would
be subject to cracking.

The site chosen was field plot 56-H in the
Hastings, Nebraska, Watershed. The soil type is Colby
gilt loam and the plet is unfurrowed natural pasture
covered with native grasses. Plot 56-H is next to a
continuously recording rain gauge, and the contour
maps available for this area indicate quite uniform
overall slope. A map of the watershed site is given
in Fig. 5.8. Data were taken at this site from 1939
to 1945,

Approwimate  Scale in feet

b 100 200 400

Recording -
Rain
Gage
Soil o)
Sampling
Location
ARS [20]

A

/e

Shaded Arec is Unfurrowed Posture '

Fig. 5.8. Map of & portion of the Hastings, Nebraska

experimental watershed, showing pasture
plot 56-H.

o
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Derivation of Soil Properties. The data from
the ARS on the watershed soils include tension plate
desaturation moisture-tension data for each soil
layer in the profile, at 0.10, 0.30, 0.6, 1.0, 3.0
and 15.0 bars tension, porosities at 0.30 bars and
oven-dry condition, and saturated conductivity.
These data were taken on undisturbed "clods" of the
material in most cases.

To obtain useful curves from these
data points for S were used to derive
tion (2.18), by logarithmic plotting of SE vs. .

In most cases a straight line fit could be obtained.
The region near saturation where the curvature is
negative, neglected by the Brooks and Corey formula,
had to be fitted by eye. Furthermore, an imbibition
curve had to be extrapolated from the desaturation
curve by using a logarithmically parallel line. The
process proceeds as follows: the moisture percentages
by weight given in the data for each soil layer are
converted to saturation by volume. This employs the
porosity relation, equation (4.7), developed from the
two porosities given. In several cases, the data
were in error, since volume saturation at 0.1 bar
tension was considerably greater than the porosity

at 0.3 bar. Some judgment is necessary in conversion
of these data, because values given are certainly not
as accurate as the number of decimal places given.
The point ¢min must be chosen arbitrarily, and was

taken to be ¢ at 2.0 bars tension.

data, the few
A in equa-

The volume saturation is computed as

W

S & —

100 P - ®

(5.1)

where W = water content in 7% dry weight
P - solid density of soil = 2.65 .
Relative saturation is then computed by the relation
§ =8
T

e 1= 5
r

s

where Sr is residual saturation, a value chosen

to make the S_vs. ¢ curve linear on a logarithmic

plot. This parameter was proposed by Brooks and
Corey [1964] simply as a fitting parameter.

Having estimated )2 from the log S vs. log ¢ ,
curve, the exponent describing the relative permeabi-
lity curve is derived from equation (2.19):

n = eA=2+3)
where n = slope of the permeability-tension curve in

logarithmic plotting. Relative permeability is then

P n
given by k_ = { bl .
’ v

S0il curves for Colby silt loam derived in this
manner are given in Figs. 5.9 and 5.10.
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Fig. 5.9. Saturation-capillary pressure relation

derived for Colby silt loam.

Selection of a Storm for Simulation. Detailed
rainfall and runoff data on a l-minute incremental
basis were obtained for most of the storms producing
runoff on each subwatershed. Soil moisture at l-foot
increments to a depth of 4 feet was measured by
volumetric sampling twice each year.

Storms were selected from these data on the basis
of closeness in time to the date of soil moisture
sampling, and simplicity of the rainfall pattern.
Unfortunately, no storm met both criteria well.
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Fig. 5.10. Relative permeability-capillary pressure

relation derived for Colby silt loam.

Either initial moisture was estimated from descrip-
tions such as "dry" or "moist", or the storm was
double peaked, and sufficient moisture redistribution
took place during the storm to make the use of the
imbibition soil relations invalid, due to hysteresis
(Chapter II).

Storms were selected as a compromise between
desired knowledge of initial conditions, and simplici-
ty of rainfall pattern. It appears, however, that no
simple storms occur in southern Nebraska.



CHAPTER VI

RESULTS AND DISCUSSION

Results of Numerical Simulation of the Laboratory
Soil Flume

To model the soil in the laboratory flume, it was
first necessary to obtain a map of the variations in
soil demsity, to identify layers of soil for the
mathematical model. The method used was described in
Chapter V. Results of density measurements are pre-
sented in Fig. 6.1. These data show that the density
scatters considerably, as would be expected consider-
ing the method used to fill the flume. In general,
the density increases with depth, as would also be
expected, probably as a result of overburden pressure.

Soil Burk Density in gm /em?

nei2Aft v ITE x*i83f N"2T3 M
120130 \4C S0 120 130 140 180 B0 130 140 15O [0 i
Ty . Uity
.. - .. I.
0= .o - . o - ..0.
a L] ..ﬂ- » L] :
i - - -
o . - . - .
; -
& - Ll .
bid L] - L]
52 30 L] - - g . b : -
o - - - -
- : : -
40 b . |- -
- - - -
Fig. 6.1. Soil bulk densities at four sections of 'the

soil flume as determined by gamma-
attenuation.

Experimental Results. Five experimental rums
were made on the laboratory flume. Two types of
initial condition were used: the first was a relative-
ly dry condition where the flume had been unused for
several weeks, and the water table was at about the
42-inch depth. The second condition was found by
repeating a rainfall only a few hours after the dry
condition rainfall experiment had been run. Initial
conditions as recorded by the gamma-attenuation equip-
ment for a typical dry and wet run are shown in
Fig. 6.2, taken at the section X - 18.3 feet,
measured from the lower end of the flume.

The results of laboratory determination of the
unsaturated hydraulic properties of the soil are
shown in Figs. 6.3 and 6.4. Due to repeated failures
of laboratory equipment, the curve for kr vs. § at Py

= 1.25 was not completely determined in the labora-
tory. Good values for kr at § = 0 were found for

this scil, however, which is a most important value
for infiltration studies. The missing part of the
curve was determined from the laboratory results of
the S vs. y relation, equation (2.17), and analogy

31

Volumetric Soturation of Seil

0O 0l 02 03 04 05 06 07 OB 09 IO
o] T % T T T T T
- ) ) . -
[ : Qh -n..._q.(wm Run 4 ]
- CRN 2 ol
L %o n B A
0 -] 7~ 'Df}‘" Run 3 ,,;’ o
- /o o 7 —
o
- -] -{-{ ‘/ -] =
3 \ % x/"/ =
2 - \\ op -
€20 | oy [ .
a [ N g
B ~
§ T g 7
Y 30 - ° i .
£ b ““‘U"‘ — — =
Bl ]
- =
40 b =
- Bottom of Flume ]
48 L 1 1 i TR R | 1 1 i
Fig. 6.2. 1Initial moisture conditions for the wet and

dry runs as determined by gamma-
attenuation.

with other laboratory data. Curves for the sand at
the intermediate bulk density (pb) were determined

by interpolation between the experimentally determined
curves. The work of Laliberte [1966] on properties

of unconsclidated media indicates that Ks is a non-
linear function of Py with Ks for an intermediate
b oy This

was used as a guide in estimating Ks for Py = 1.36.
b vs.

interpolation, in the absence of evidence to show the
relationship of these values to Py

p, being nearer the value of the higher

Curves for § vs. k_ were obtained by linear

The soil density variation as shown in Fig. 6.1
was approximated by using layers composed of the
three bulk densities for which the properties had been
derived as described above. The initial saturation
profile was approximated from the data shown in
Fig. 6.2. These soil and saturation conditions
derived for the mathematical simulation are shown in
Fig. 6.5.
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Fig. 6.3.

Saturation-capillary pressure imbibition
relations for three bulk densities of
Poudre fine sand.

Watershed hydrographs resulting from laboratory
experiments and from the numerical simulations are
shown in Figs. 6.6 and 6.7. The corresponding data
for moisture profiles in the soil are presented in
Figs. 6.8 and 6.9.

Due to the construction of the soil flume, data
for density and saturation of the upper 1 1/2 inches
of the soil could not be obtained with the y-attenua-
tion equipment. As a result, it was necessary to
estimate soil density and saturation at the surface
layer. The scatter of values in the data for initial
conditions also left some room for interpretationm.
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Fig. 6.4. Relative permeability-capillary pressure

imbibition relations for three bulk
densities of Poudre fine sand.

The relationship between surface depth and quantity of
surface flow involves determination of two other impor-
tant parameters. The exponent m and coefficlient C
in equation (3.4) can be estimated from equation (3.4)
and (3.22) using the experimental surface hydrograph,
and the rainfall excess curve. Using the simulated
excess curve and the experimental runoff hydrograph

in equation (3.4) yields a value of m very close to

2 and a value of 4 x 10° for C' , as in Fig. 6.10.
Thus a laminar flow relation was assumed, and used in
the simulation shown in Figs. 6.6 and 6.7. The rough-
ness coefficient indicated by Fig. 6.10 can be com-
pared with a theoretical value as shown below.
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For a laminar flow relationship,
q= C'b'l‘:"'
where C' is analogous to, but quite different from

the CheZy resistance coefficicnt. The Darcy-Weisbach
friction factor f 1is theoretically inversely propor-
tional to Reynolds number Rn in the laminar flow

range :
k
f
f= T (6.1)
n
where kf is 24 for the theoretical smooth case. It
can be shown that €' is related to kf as follows:
8
c' = E‘;ﬁ“ (6.2)

where g = 32.2 = gravitational constant, (ftfsecz)

v = kinematic viscosity in ftzfsec v

When k_= 24, C' =5 x 105 i

£

found to fit the labora=-
infiltrating points, at

A value of 4 x 105 was
tory results well, when two
each end of the flume, were used in the numerical
model. Soil densities were sufficiently variable from
point to point and data were not available at a
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Fig. 6.10. Plotting of compurted depth vs. measured

outflow Q(t) to estimate m and C' for
equation (3.4).

sufficient number of points along the flume to justify
attempting to model the flume by taking a greater
number of infiltrating points.

Comparison between measured and simulated hydro-
graphs consistently showed a more extended recession
for the flume data than for the simulation. This
disagreement could be caused by either a failure of
the surface flow equations to describe surface flow,
or failure of the infiltration model to describe
infiltration, or perhaps both. For run 4, with wet
initial conditions, air compression is a likely cause
of the rapid jump in runoff near the end of the rain-
fall. This model does not account for such air
counterflow. A reduction in infiltration due to air
pressure gradients could perhaps account for some of
the difference in recession characteristics. Bubbles
were noticed escaping from the surface during the
latter part of the laboratory runs.

The soil moisture profiles from the flume
measurements and the corresponding results from the
mathematical model, in Figs. 6.8 and 6.9 show a
reasonable agreement. The gamma-attenuation method,
under the conditions of this experiment, could not be
expected to yield data with better accuracy than 5 to
10%. It appears that the mathematical model over-
estimates the speed of the moisture "front" by
approximately 10%.
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It should be kept in mind that the simulation
assumed a soil varying abruptly at a few layers, and
nearly uniform along the plane, whereas in fact
changes in the soil density occurred smoothly and on
a scale of inches. This fact, along with the uncer=
tainty concerning the true properties of the upper
1 1/2 inches of soil, results in some uncertainty
concerning the effective gross soil properties to be
used in the simulation model. The recession and the
gamma-attenuation data indicate a possibility that
runoff is occurring sooner, with the rainfall excess
curve rising somewhat more slowly than is predicted by
the mathematical model. The surface hydraulic rough-
ness would then be greater, which is reasonable. With
the data used, however, the overall agreement of exper—
imental results and mathematical simulation is still
quite acceptable.

Results of Experimental Simulation of a Small Water-
shed Plot

Simulation of experimental watershed plots from
Hastings, Nebraska, presented a considerably different
problem. For one thing, all soil and hydraulic infor-
mation was less detailed and accurate than for the
laboratory model. Soil imbibition curves had to be
estimated from desaturation curves, for which only a
few points were available. Two values for saturated
conductivity were given by the data source, with a
wide difference between them (.18 to .81 inches/hour).
Thus saturated conductivity could not be taken as a
known parameter. The roughness of the surface was
unknown, and the slightly undulating surface was
necessarily assumed to be a plane. Furthermore, the
initial moisture condition of the storms could only
be estimated.

With these limitations, attempts at simulation of
plot watershed data are best considered as an exercise
in fitting of physical parameters into a theoretical
framework. The results were, however, quite encourag-
ing. Fig. 6.1l shows the rainfall pattern for the
storm of June 29, 1944, along with the measured and
simulated hydrographs. Values for c' , and
initial saturation profiles were fittad by trial. The
roughness used for simulation was C' = 900 , which
corresponds to the value for turfed surfaces reported
by Morgali [op.cit.]. The soil was modelled as a
layered system to correspond with the ARS soil sampling
data, with layers of 5", 6", and 30", corresponding
to the curves shown in Figs. 5.9 and 5.10. Satura-
ted conductivities used for these soils were 0.20,
0.18, and 0.30 inches per hour, respectively. These
are also quite reasonable values.

By comparison with the laboratory flume, runoff
rates for the storms simulated on the Hastings,
Nebraska field plots never came near the equilibrium
rate for any of the rainfall pulse rates in the storm.
Runoff from the flume was, on the other hand, very
close to the rainfall rate minus infiltration rate by
the end of the rainfall pulse. As a result, for simu-
lating the plot watershed response, surface roughness
becomes a very important parameter in matching peak
rates of runoff.

Foster [op.cit], in work on field plots using an
algebraic infiltration formula, found that actual
recessions were more extended than the prediction.

He hypothesized that this may be explained by a limi-
tation of infiltration ability due to confining of
the surface water to rivulets. His method was to
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Fig. 6.11. Rainfall pattern, measured and simulated
hydrographs for June 29, 1944 storm on
Hastings pasture plot 56-H.

reduce the infiltration rate by 75%. It seems reason-
able that the microtopography on a field plot would
result in a confined area with infiltration opportun-
ity. A very simple formula was used to simulate such
effects in this model. Microrelief was assumed to be
distributed in elevation such that infiltrating area
was linearly distributed between a minimum area when
depth of water was near zero, to the complete covering
of the watershed when the surface water depth became
greater than some maximum value. No doubt, a much
more physically based model could be derived to
simulate this and other surface effects. Use of this
simple surface relief model improved the agreement

of recessions for this watershed.

To test the validity of parameters C' and Ks

fitted for this storm, the same values were applied

to another storm, for June 5, 1945, with initial soil
moisture distribution as the only fitting parameter.
The results for this storm, compared with the recorded
hydrograph are shown in Fig. 6.12.

Each of these storms was described as occurring
on a "moist" soil ccadition, and indeed the fitted
soil saturations used for the results of Figs. 6.11
and 6.12 are quite similar. It should be pointed out
that for the measured hydrographs, the coincidence of
timing of the rainfall rates and runoff data could be
as much as five minutes in error, from experience
with the clocks used in such instrumentation.

The parameters developed for the two storms
above were alsc applied to a storm for which initial
soil saturation data was measured a few days prior to
the storm. This storm, shown in Fig. 6.13, has a
double peak, and the soil curves used which only des-
cribe imbibition should not be able to model well
the redistribution of moisture between the two rainfall
peaks. The excellent agreement for this storm is in
part due to a fortuitous estimation of initial soil
moisture, based on data from five days previous.
Also, it appears from these three storms that reces-
sions are modelled most accurately for storms with
little runoff, and least accurately when runoff is
high. This could be connected with misestimation of
long period infiltration, and effects of air counter-
flow. It could also be connected with the actual
hydraulic effect of the grass as a roughness element,
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Fig. 6.12. Rainfall pattern, measured and simulated
hydrographs for June 5, 1945 storm on
Hastings pasture plot 56-H.

or surface seal development when fine material is
being transported in the infiltrating surface water.

Computer running time for these simulations is
dependent on the curvature of the soil moisture-
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Fig. 6.13. Rainfall pattern, measured and simulated
hydrographs for June 17, 1944 storm on
Hastings pasture plot 56-Kh.

tension curves, the rate of imposed rainfall, and the
size of Az increments. For these simulations, the
CDC 6400 computer used approximately one second for
each minute of simulated storm, and required approxi-
mately 70,000B core storage.
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CHAPTER VIIL

CONCLUSIONS AND RECOMMENDATIONS

The response of a watershed to rainfall is a
very complex natural process. No theoretical model
of a natural watershed can conceivably be made which
could account for all the variables and their inter-
relationships that affect the runoff process. On the
other hand, no model which is sufficiently simple to
be a general engineering tool can hope to model well
the result of all these complexities. The objective
of model formulation is to make simplifying assump-
tions so the model is not unwieldy and yet retains
the most important characteristics of the physical
system.

This study has adopted sufficient simplifying
assumptions so that current theories of soil water
movement and watershed hydraulics could be combined
into a mathematical model of the rainfall-runoff
process on small elementary watersheds.

Conclusions. The partial differential equation
of one-phase s0il moisture movement was solved numer-
ically with the purpose of describing the dependent
upper boundary conditions governing infiltration. It
was shown that this solution may be obtained with
sufficient efficiency and preservation of material
continuity to provide a description of infiltration
rate as a smoothly varying function of time in agree-
ment with the shape and asymptotic nature of the
results of infiltrometer studies. The solutions were
found to be sensitive to the size of finite difference
elements and to other solution parameters. The results
agree in general with previous studies of numerical
sensitivity.

It was then demonstrated that this infiltration
model may be combined with the kinematic equation of
overland flow, with interacting boundary conditions
at the soil surface, to provide a mathematical model
of the generation of overland flow from rainfall on an
infiltrating surface.

For the case where the necessary hydraulic
relationships for the unsaturated porous media can be
obtained, this model can accurately describe the
performance of a relatively simple infiltrating
watershed when rainfall occurs. The accuracy of
such a prediction for more complex watersheds will
necessarily depend on obtaining reliable data for
the effective average hydraulic properties of the
soil and watershed surface for definable regions
within the watershed.

For the case where soil properties are subject
to large errors or must be estimated, such a model
can provide a theoretical framework for a good des-
cription of the watershed response, in which system
parameters with physical significance, such as effec-
tive saturated conductivity and surface roughness,
may be obtained by comparison with experimental data.

Recommendations. The ideal experimental pro-
cedure for evaluatiom of the model developed in this
study would be to first test its performance in com-
parison with the simplest case. As data were obtained

from the soil flume used in this work, it became
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apparent that the soil section in the laboratory flume
was a2 complex rather than a simple case, where soil
properties varied significantly in both horizontal

and vertical directions. A soil flume in which soil
has been placed in a controlled and uniform manner
should be used to test this mathematical model.

Many improvements could be made in the facilities
for measuring soil moisture movement, which could
better evaluate the agreement between theory and
experiment. A flume for this purpose should have
facilities which allow measurement of conditions near
the surface, which appear to be very important in
infiltration. Other improvements in laboratory equip-
ment should be made to allow faster determination of
point saturation by using a more active or stronger
radicactive source, and designing equipment to move
more quickly in a vertical direction. The flume
should be more uniform in thickness, and should have
better facilities for studying unsaturated flow speci-
fically, including control and measurement of air
escape, or air compression.

It is not at all certain that the relationship
of equation (6.1) describes the true hydraulic resist-
ance of the surface, especially in view of the energy
input of the raindrops. To adequately study the role
of infiltration, the surface should be made impervious,
and the surface hydraulics studied independently. In
many cases, the watershed hydraulics may follow a
laminar flow relation for part of the hydrograph, a
turbulent relation for another, and exhibit transi-
tional characteristics between these periods. Study
of this type is currently in progress at Colorado
State University, employing a prototype scale water-
shed, and a mathematical model for runoff on an
impervious watershed [Kibler and Woolhiser, 1970].

A mathematical infiltration model could be based
on equations (2.14) and (2.15) which would include a
model for flow of the air phase. Although this should
improve the accuracy of the theoretical model, it
would also make the numerical solution more lengthy,
and in terms of computer time, much more expensive.
To employ the complete two-phase equations would
require data for the relation between air conductivity
and water saturation. At present, very little soil
data are available which include this information, and
far less such data for soils in place on watersheds.

To employ a model such as developed in this study,
data collection on experimental watersheds should be
oriented toward the hydraulic soil properties important
in infiltration, rather than the traditional descrip-
tions of soil chemists and agronomists. The soil
analyses should obtain such things as imbibition rela-
tions between moisture tension, saturation, and unsat-
urated conductivity. Field measurements of saturated
conductivity are also very important, and progress in
remote sensing offers hope that in the future, surface
and near surface saturations may be obtainable on a
large scale basis. With such physically meaningful
data, models employing current knowledge of the
physical processes involved may be applied to study
the watershed surface response.



LIST OF SYMBOLS

S ol Description Dimension Symbol
A Nonlinear operator matrix - k
a as subscript - refers to air -
phase, or locally defined
constant k,
a; off-diagonal element in matrix A --
hi diagonal element in matrix A — kf
o Chézy roughness coefficient, e
turbulent flow s k
c' laminar roughness coefficient L °T r
Cl constant of integration = L
¢y off-diagonal element in matrix A -- Lk
D(8) diffusivity 121 ”
X
d subscripted; thickness of L
material
di element of a diagonal matrix - Nz
e base of natural logarithms, -
or voids ratio = ¢/(1 - ¢) .
F accumulated infiltration L o
F Froude number —_—
o pb
£ infiltration rate LT“1
1 P
fc minimum f LT
£ fatt=w vt Q,
@
£ fatt=0 it
[+]
g gravitational acceleration 1t Qp
H normal depth of flow based - q(x,t)
L on Q
o Rn
h depth of water on the surface L
RF
L count rate in attenuation T—l
measurement RHS
I base count rate in air T'1
i rhsi,r
i subscript, refers to node number -~
for finite difference grid in 5
length dimension
j superscript, refers to node - S
number for finite difference e
grid in time dimension
. S
K or K conductivity of saturated prt £

porous media
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Description

indicates plane number for cas-
caded planes, or permeability
of porous medium
kinematic parameter =

2
soLk!HQFD

coefficient in roughness rela~
tionship for laminar flow

relative permeability or
relative conductivity

depth to water table

length of plane k

number of grid points used to
divide plane k for a finite
difference approximation
number of grid points used to
divide the soil column for a
finite difference approximation
locally defined constant

pressure

bubbling pressure

capillary pressure = Pa = ¥y

normalizing flow rate per unit
width of plane with maximum
possible q(x,t)

inflow rate at soil surface
local rainfall excess rate
Reynolds number

rainfall rate

abbreviation of right side of
equation (4.20)

element in vector RHS

saturation, in general, or
locally used constant

relative saturation =
(s - Srfl - Sr)

slope of energy gradient in
surface flow

Dimension

o A B

=1 .~2

w2



Symbol

Description

slope of ground surface

residual saturation

represents 3s/dy

abbreviation for part of
equation (4.13)

time
velocity

bulk volume; volume per
unit area

velocity at normal depth I-lo

subscript - refers to water

or fluid phase

width of plane k

length, usually horizontal

depth, measured downward
from surface

locally defined constant

coefficient in u-h relation-
ship on plane k

locally defined constant
unit weight

exponent in empirical relation
between S and kr’ or infini-

tesimal error value

LIST OF SYMBOLS (continued)

Dimension Symbol
- n
23 6
= by
Lrt
T
e i H
L Yb
LT_l v
£
p
L
b
L
(o]
s
L
o(B)
o a
- ¢
. $( )
T v
W
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Description

expeonent in empirical relation
between ¥ and kr
volumetric water content = S¢

exponent in empirical relation
between Yy and §

dynamic viscosity

attenuation coefficient for
material b

kinematic viscosity

Lipschitz convergence
parameter, £ < 1

density
bulk density of porous material

solid density of porous
material

spectral radius of matrix B
moisture ratio = 8/(1 - ¢)
porosity

vector operator

soil water pressure potential =
pafYa - pwiTw

locally defined parameter

Dimension
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APPENDIX A

Theory of Gamma-Attenuation for Soil Moisture
Measurement.

According to Beer's law, attenuation of a
parallel beam of gamma rays by a given material is an
exponential function of the thickness of the material:

» (A.1)

is the attenuation coefficient for material
a

d_ is the thickness of material a

is the intensity of gamma radiation in
counts per minute in the absence of
material a

I is the count rate after the beam has
passed through the material.

For the case where the beam passes through
several materials between source and detector, the
attenuation is exponentially additive, that is

- d

=ud =-ud
% - Io o aa b'b

cc

for three materials a, b, and c.

To use this relation to measure soil moisture
saturation, the attenuation coefficients for all
the materials must be known. If the soil thickness
through which the beam passes is known, the porosity
will measure the proportion of this thickness which
is pore space--either air or fluid. Thus a given
count rate will indicate the thickness of fluid if
all other thicknesses and all attenuation coefficients
are known. This may be expressed as

-“wdw - us(l = ¢}ds - uf¢d35
I e

L=l (A.2)

where

S dis fluid saturatiom,
d represents thickness,
VU represents attenuation coefficient

and subscript

w refers to the wall material
s refers to the soil sample,
f refers to the fluid.

This equation may be solved for §
variables are known.

if all other
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Values for uw i were obtained

s * M
directly by use of test samples. A test stand was
constructed in which the source and detector were
held in the same relative positions as when mounted
on the flume. The source used was 100 millicuries
of Americium, with collimation to a 3/16" diameter
beam. A sample container made of plexiglass, whose
walls duplicated the soil flume in thickness and
spacing, was placed between the source and detector,
and yu  was calculated by the attenuation with the

box empty. Using this same container filler with the
fluid provided a means to calculate e o Similarly,

filling the container with dry soil at a known
porosity, and taking attenuation measurements at
several different points through the sample section
allowed calculation of us as follows:

'Us(l - ¢)ds = usdw

Use I=1Te
o

solving for us i

(4.3)

@ - o),

For computations at selected points on the
flume, it was necessary to determine the local value
of ¢(x,2z) . This was accomplished by saturating
the flume, taking attenuation readings, and then
solving equation (A.2) for ¢ . Some error was intro-
duced here because at many points S was less than
1.0, due to air trapped during imbibition.

With the necessary attenuation coefficients and
other constants thus determined, equation (A.2) may
be solved for S:

Y L Hgdy (=9 (A.4)

§=
@ufds

From such computations with experimental data,
some inferences could be made regarding the sensitivity
of the computed § to errors in parameters in equation
(A.4). The most sensitive parameter appears to be
ds » followed in an uncertain order by I , us , and
Io . It is assumed that He and u, were well
determined by the sample test procedure.
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For the experiments described in this paper,
slight mechanical play and eccentric weighting of the
support racks caused small variations in relative
orientation of the y-source and detector. Thus Io

was a function of vertical position relative to the
top of the flume, Similarly, d’ was slightly

variable along the vertical section due to soil
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pressure bulging. These variations were determined
and applied in the solution of equation (A.4).

From laboratory experience and calculations with
data collected, it is estimated that measured satura-
tions are reliable within + 10%. This figure could
be improved markedly by use of better counting equip-
ment which is currently available, and a better
designed flume arrangement.
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