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ABSTRACT  

 

 

A SCENARIO-BASED TECHNIQUE TO ANALYZE UML DESIGN CLASS MODELS 

 

Identifying and resolving design problems in the early design phases can help reduce the 

number of design errors in implementations. In this dissertation a tool-supported lightweight 

static analysis technique is proposed to rigorously analyze UML design class models that include 

operations specified using the Object Constraint Language (OCL). A UML design class model is 

analyzed against a given set of scenarios that describe desired or undesired behaviors. The 

technique can leverage existing class model analysis tools such as USE and OCLE. The analysis 

technique is lightweight in that it analyzes functionality specified in a UML design class model 

within the scope of a given set of scenarios. It is static because it does not require that the UML 

design class model be executable.  

The technique is used to (1) transform a UML design class model to a snapshot transition 

model that captures valid state transitions, (2) transform given scenarios to snapshot transitions 

and (3) determine if the snapshot transitions conform or not to the snapshot transition model. A 

design inconsistency exists if snapshot transitions that represent desired behaviors do not 

conform to the snapshot transition model, or if snapshot transitions representing undesired 

behaviors conform to the snapshot transition model.  

A Scenario-based UML Design Analysis tool was developed using Kermeta and the Eclipse 

Modeling Framework. The tool can be used to transform an Ecore design class model to a 

snapshot transition model and transform scenarios to snapshot transitions. The tool is integrated 

with the USE analysis tool.  
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We used the Scenario-based UML Design Analysis technique to analyze two design class 

models: a Train Management System model and a Generalized Spatio-Temporal RBAC model. 

The two demonstration case studies show how the technique can be used to analyze the 

inconsistencies between UML design class models and scenarios.  

We performed a pilot study to evaluate the effectiveness of the Scenario-based UML Design 

Analysis technique. In the pilot study the technique uncovered at least as many design 

inconsistencies as manual inspection techniques uncovered, and the technique did not uncover 

false inconsistencies. The pilot study provides some evidence that the Scenario-based UML 

Design Analysis technique is effective.  

The dissertation also proposes two scenario generation techniques. These techniques can be 

used to ease the manual effort needed to produce scenarios. The scenario generation techniques 

can be used to automatically generate a family of scenarios that conform to specified scenario 

generation criteria.  
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Chapter 1 

Introduction 

1.1 Problem Statement 

The Unified Modeling Language (UML) is the de-facto standard object-oriented modeling 

language [UML]. UML class models are often used by developers to describe object-oriented 

software designs [Whittle03]. Software design is a creative and labor-intensive process and thus 

there are opportunities for introducing errors into UML design class models. Design errors 

should be identified and resolved as early as possible because these errors may be much more 

costly to fix in later software development phases [Blum92] [Boehm81]. There is a need for 

analysis tools and techniques that uncover errors in UML design class models.  

A UML design class model can be used to describe two aspects of a software design: 

structure and functionality. The structural aspect of a software design is described in terms of 

classes, relationships between classes, and class invariants. Functionality is described using 

operation specifications. Operation specifications and class invariants can be expressed in the 

Object Constraint Language (OCL) [OCL].  

Existing UML structural analysis tools such as OCLE [OCLE] and USE [USE] can be used 

to check if an object configuration, called a snapshot, conforms to a class model. However, 

OCLE does not provide any support for analyzing operation specifications and USE can only be 

used to analyze operation specifications by simulating behavior of operations in an interactive 

mode.  
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Formal analysis tools such as the Alloy [Alloy] can be used to find counter-examples that 

violate certain constraints within the scope of a limited number of objects. Formal model 

checking tools [Clark99] do exhaustive search in a constrained state space to check whether a 

given property is satisfied or not. However, to analyze UML design class models using Alloy or 

model checking tools, we need to transform UML design models to the Alloy or the notation of 

model checking tools. The verifier should be familiar with the Alloy language and the notation of 

a model checking tool. Furthermore, one has to prove the correctness of the transformations in 

order to trust the analysis results. This can be difficult in practice.   

Formal theorem proving tools such as Isabelle can be used to formally reason about modeled 

properties in an interactive manner [Brucker08]. However, to analyze UML design class models 

using theorem proving tools the verifier must be familiar with formal notations and proof 

strategies used by the tools.  

Analyzing all behaviors specified in UML design class models can be expensive. Sometimes 

all that is desired is to check a subset of behaviors. This dissertation proposes a lightweight 

analysis technique called Scenario-based UML Design Analysis that allows modelers to analyze 

UML design class models against functionality described by a set of scenarios, where a scenario 

is an execution trace that consists of an initial system state and a sequence of operation calls and 

system states after each operation call.  

The research aims at answering the following questions: 

1. How can a scenario be checked against a UML design class model? Some scenarios describe 

desired functionalities, others describe undesired functionalities. The technique should be 

able to check that the UML design class model is consistent with the former and inconsistent 

with the latter.  
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2. Can existing structural analysis tools such as USE be leveraged to support scenario-based 

analysis of UML design class models? Existing structural analysis tools can be used to check 

the consistency between a UML class model and a snapshot. It will save a lot of effort if we 

can leverage existing UML analysis tools in building support for scenario-based analysis.  

3. How effective is the Scenario-based UML Design Analysis technique in terms of the number 

of design inconsistencies that can be uncovered? The technique should be at least as effective 

as human beings in identifying design inconsistencies.  

This research work starts to explore answers to the following two questions, but more work 

is needed:  

4. Can useful scenarios be automatically generated? Scenario creation is time consuming. An 

automatic scenario generation technique can ease the scenario creation task.  

5. Can the Scenario-based UML Design Analysis technique be scaled to analyze large industrial 

models?  

The technique is lightweight because it aims to uncover design errors within the scope of a 

set of scenarios. It does not attempt to explore all possible scenarios covered by a UML design. 

The technique is static because it does not require that the UML design class model be 

executable. The technique provides a less expensive and less exhaustive alternative to more 

heavyweight analysis techniques. It is less expensive in that modelers need only be familiar with 

UML and do not have to put effort into learning and using sophisticated formal languages and 

proof techniques.  
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1.2 Outline of Solution 

An overview of the Scenario-based UML Design Analysis technique is shown in Fig. 1.1. 

There are two roles involved in the Scenario-based UML Design Analysis process: designer and 

verifier. The designer creates a UML design class model that includes OCL operation 

specifications, and operation scope specifications which specify the set of classes, attributes and 

links that are changed by each operation. The verifier creates a set of scenarios that will be used 

to analyze the UML design.  

In this dissertation a scenario describes an execution trace. It consists of an initial system 

state (snapshot) and a sequence of operation calls. Formally, a scenario is a sequence 

 nn110 SOPSOPS ,,...,,,  where n21 OPOPOP ,...,,  is a sequence of operation calls with actual 

parameters, iS  is the system state before operation iOP  is executed and 1iS   is system state 

after the operation iOP  is executed.  

A scenario can be legal or illegal: a legal scenario describes functionality that is desired, 

while an illegal scenario describes functionality that is not desired.  

UML Design Class Model

Class diagrams

OCL Operation 

specifications and 

invariants
Snapshot 

Transition 

Model

Snapshot 

Transitions

Model Transformation

Consistency Analysis Inconsistencies 

Legal/illegal 

Scenarios Snapshot Generation

Step 1

Step 2

Step 3

Verifier

Designer
Operation scope 

specifications

 

Figure 1.1: Scenario-based UML design analysis technique 
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The technique consists of three major automated steps.  

 In the first step, the UML design class model is automatically transformed to a snapshot 

transition model. A snapshot transition model is a UML class model that specifies valid 

snapshot transitions, that is, all valid changes to object configurations (snapshots) 

triggered by the execution of operations. A snapshot transition describes the effects of an 

operation invocation on a system state. A snapshot transition consists of (1) the name and 

parameter values of the operation that triggers the transition, (2) a before-snapshot 

describing the state of the system before the operation is executed, and (3) an 

after-snapshot describing the state of the system after the operation has been executed.  

 In the second step, scenarios created by a verifier are used to generate a sequence of 

snapshot transitions that describe desired or undesired functionality from the perspective 

of the verifier. The verifier marks scenarios as legal or illegal.  

 In the third step, the snapshot transitions produced in the second step are checked against 

the snapshot transition model to determine whether the snapshot transitions are consistent 

with the snapshot transition model. This check can be done by the UML structural 

analysis tool, USE. The output of the scenario-based UML design analysis technique is a 

set of inconsistencies. These inconsistencies are reported in the form of class invariant 

violations. An inconsistency between the UML design class model and scenarios implies 

defects in the UML design class model or defects in the scenarios.  

In addition to the Scenario-based UML Design Analysis technique, this dissertation 

discusses two scenario generation techniques that automatically generate scenarios from 

operation invocation patterns and operation definitions. Each pattern describes all possible 

operation sequences and operation definitions describe effects of operations in the scenarios.  
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1.3 Scope of Research 

The Scenario-based UML Design Analysis technique assumes that operations are invoked 

sequentially and thus it cannot be used to analyze parallel and concurrent behaviors. The analysis 

of such behaviors is not in the scope of this research.  

The analysis technique is a consistency checking technique. It is up to the verifier and 

developer to determine the source of inconsistencies. It is also up to the verifier and developer to 

change the UML design or scenarios based on the inconsistencies found by the technique.  

The Scenario-based UML Design Analysis technique cannot be used to determine whether a 

scenario is effective or not to identify defects in the UML design. The verifier is responsible for 

creating scenarios of interest to analyze the design.  

The scenario generation techniques cannot be used to determine whether enough scenarios 

have been generated. It is a hard problem to generate enough scenarios for scenario-based 

analysis, because the technique has to select a small number of scenarios that can effectively 

uncover design defects from a huge state space of all possible scenarios of the UML design class 

model. The scenario generation techniques discussed in this dissertation are an initial attempt to 

automating the generation of scenarios.  

1.4 Dissertation Organization 

The rest of the dissertation is organized as follows:  

 Chapter 2 presents the background needed to understand the analysis technique. 

 Chapter 3 surveys related work in analysis and testing of UML design models. 

 Chapter 4 describes the Scenario-based UML Design Analysis technique. 
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 Chapter 5 describes the implementation of the Scenario-based UML Design Analysis 

tool. 

 Chapter 6 describes two demonstration case studies of the Scenario-based UML Design 

Analysis technique. 

 Chapter 7 discusses pilot study for evaluating the technique. 

 Chapter 8 and 9 discuss two scenario generation techniques. 

 Chapter 10 concludes the dissertation and discusses future work. 
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Chapter 2 

Background 

This chapter provides background information needed to understand the research presented 

in this dissertation. Section 2.1 gives an overview of UML design class diagrams, the Object 

Constraints Language and UML sequence diagrams. Section 2.2 describes the Meta-Object 

Facility. Section 2.3 describes the Eclipse Modeling Framework and the Ecore metamodel. 

Section 2.4 discusses the Kermeta model transformation language.  

2.1 The Unified Modeling Language 

The Unified Modeling Language (UML) is the de-facto standard object-oriented modeling 

language for modeling software systems [UML]. UML specifications are developed and 

maintained by the Object Management Group (OMG). UML is a set of modeling notations for 

describing static structures and behaviors of software systems. This dissertation uses UML v2.4. 

The UML 2.4 specification defines seven structural diagrams: class, object, composite 

structure, profile, package, component and deployment diagrams. It also defines four kinds of 

behavioral diagrams: user case, activity, state machine and interaction diagrams.  

In this research, we use UML class models, UML object diagrams and UML sequence 

diagrams. A UML design class model consists of (1) a UML design class diagram that describes 

the structure of software systems, and (2) class constraints including class invariants and 

operation constraints specified using the Object Constraint Language. An object diagram 

describes a configuration of objects. It is also called instance diagram because it is often intended 
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to be an instance of a class diagram. In this research, object diagrams are used to represent 

system states and are called snapshots.  

2.1.1 UML Design Class Diagram 

A UML design class diagram describes classes of the object-oriented software systems, class 

properties and class operations, and relationships between classes. Fig. 2.1 shows an example of 

a UML design class diagram of a car inventory application. 

A class describes a family of objects that have common attributes, operations and constraints. 

An attribute has a name and a type. Properties relate an instance of the class to a value or 

collection of values. An operation defines a service that can be executed on each instance of a 

class. An operation has a name, return type and a list of parameters.  

+Add(in v : Vehicle)

+Delete(in v : Vehicle)

Inventory
-numSeats : int

-numDoors : int

-VIN : string

Vehicle

Car Truck

-vehicles

*1

 
Figure 2.1. A car inventory application design class diagram 

 
The generalization relationship indicates that a subclass is a specialization of another general 

super-class. For instance, the car class is specialization of a vehicle class. A subclass inherits 

properties of its super-class. The objects of a subclass are a subset of objects of its super-class. In 

Fig. 2.1, Car and Truck are subclasses of the Vehicle class.  

An association specifies links between objects. An association can have a name. The ends of 

an association, called association-ends, have optional properties such as a name and multiplicity. 

A binary association connects two classes. An association can be bi-directional or uni-directional. 



10 

 

A bi-directional association allows us to navigate from any one of the two classes to another. For 

instance, the association between student and course is bi-directional, we can navigate from a 

student object to courses or navigate from a course object to students. A uni-directional 

association only allows us to navigate from only one class to another. For instance, the 

association between an employee and address class is uni-directional, we can only navigate from 

an employee object to an address object.  

An aggregation is a special type of association. It represents part-whole relationship between 

two classes. For example, in Fig. 2.1 the Inventory class aggregates a Vehicle class. An inventory 

object contains a number of vehicle objects. 

A composition is a special type of aggregation. In a composition relationship the lifecycle of 

the part class objects is dependent on the whole class objects. For example, the relationship 

between a car class and an engine class is composition. A car object owns an engine object and 

it will destroy the engine object when its lifecycle ends.  

2.1.2 The Object Constraint Language 

The Object Constraint Language (OCL) is a declarative formal constraint language for UML 

[OCL]. An OCL expression queries objects. OCL describes the effects of an operation in terms 

of conditions on the states before and after execution of the operation instead of how an 

operation is executed to produce the effects. OCL is a typed language. OCL has basic built-in 

types such as Boolean, Integer, String and Real, and it supports collection types such as Set, Bag, 

Sequence and OrderedSet. OCL has operations to query collections. For example, there are two 

boolean operations on collections: forAll and exists. The forAll operation return true if the 

boolean expression specified by the operation is satisfied by all objects in the collection. The 
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exists operation returns true if the boolean expression specified by the operation is satisfied by at 

least one object in the collection.  

In this research OCL is used to specify class invariants and operations. OCL class invariants 

are predicates that constrain all the objects of the class. The class invariants must be satisfied 

after an object is constructed and after any public operation is executed.  

For example, in the vehicle inventory model shown in Fig. 2.1, the invariants for the 

Inventory class can be stated as below:  

context Inventory  

inv: self.vehicles->forAll( numSeats >= 2 and numSeats <= 5 )  

inv: self.vehicles->forAll( numDoors >= 2 and numDoors <= 4 )  

The invariants states that any vehicle object added to the inventory object should have at 

least two seats and two doors, and at most five seats and four doors.  

OCL operation specifications define the behavior of an operation by specifying the 

conditions that must be satisfied before an operation is executed (pre-condition) and after the 

operation is executed (post-condition).  

For example, the Inventory::Add operation specification is given below: 

context Inventory::Add (v: Vehicle)  

pre: not self.vehicles@pre->includes(v) 

post: self.vehicles->includes(v) 

The operation specification states that before the vehicle is added to the inventory, it should 

not exist at the start of the operation, and after the operation is called the vehicle must be 

included in the inventory.  

2.1.3 UML Sequence Diagram 

A UML sequence diagram is used to describe a sequence of interactions between roles and 

objects. An object is a specific instance of a class. For example, Bob is an object of the Student 



12 

 

class. A role is a kind of object. For example, freshman is a role of the Student class. Each role or 

object in the UML sequence diagram is represented as a lifeline. A role or an object interacts 

with other objects by sending messages. A message sent to a receiving object represents an 

invocation of an operation in the receiving object. A message can be synchronous or 

asynchronous. The sender of a synchronous message is blocked from sending out another 

message before it receives the response while the sender of an asynchronous message does not 

have such a limitation. In this research we use synchronous messages only because the messages 

that are covered by the analysis technique are public operation calls in primarily synchronous 

programming languages such as Java. Combined fragments such as alternatives, options and 

loops also give and describe an example of a sequence diagram that describes a scenario will not 

appear in the analysis sequence diagrams.  

Fig. 2.2 shows an example of a UML sequence diagram. In the diagram the AssignRole 

operation is called to assign cashier Role to Bob. Bob activates the cashier role and finally calls 

CheckAccess on the Session object and gets Denied response.  

Bob:User cashier:Role:Session

AssignRole(cashier)

ActivateRole(cashier)

CheckAccess

Denied

 

Figure 2.2. UML sequence diagram 



13 

 

2.2 The Meta-Object Facility 

UML is a language that is used by developers to describe models of a system or software. A 

user model is an abstraction of real-world objects (e.g., objects in the running software) and the 

real-world objects are realizations of the model. The metamodel of UML describes the UML 

syntax and well-formedness rules. The language used to describe the metamodel is a subset of 

the UML called the Meta-Object Facility (MOF). The four layers described above form the 

four-layer metamodeling architecture as shown in Fig. 2.3. The MOF layer is at the M3 layer, the 

UML is at the M2 layer, the UML user model is at the M1 layer and the real-world objects are at 

the M0 layer.  

MOF

UML 

metamodel

UML User 

Model

real-world 

objects

Class Operation Association

Class

<<instanceOf>><<instanceOf>><<instanceOf>>

+Add(in v : Vehicle)

+Delete(in v : Vehicle)

Inventory

-name : string

Vehicle

Attribute

<<instanceOf>>

<<instanceOf>> <<instanceOf>> <<instanceOf>>

<<instanceOf>>

name : string = aVehicle

:Vehicle : Vehicle:Inventory

<<instanceOf>><<instanceOf>>

 
 

Figure 2.3. UML four-layer metamodeling architecture 
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The MOF consists of two main packages: the Essential MOF (EMOF) package and the 

Complete MOF (CMOF) package. The EMOF is a subset of MOF that models classes with 

attributes and operations.  

2.3 The Eclipse Modeling Framework and Ecore 

The Eclipse Modeling Framework (EMF) is a modeling framework for the Eclipse platform 

[Steinberg09][EMF]. EMF is used to create, manipulate and validate models and to generate 

source code from models.  

-name : String

EClass

-name : String

EAttribute

-name : String

EDataType

-name : String

-containment : boolean

-lowerBound : int

-upperBound : int

EReference

-eAttributes0..*-eReferenceType1

-eReferences0..*

-eSuperTypes

0..*

-eOpposite

0..1

EClassifier

EOperation EParameter

-eAttributeType

1

-eAllOperations

0..*

1

-eOperations 0..*

-eExceptions

0..*

1

-eParameters

0..*

 
Figure 2.4. Partial Ecore metamodel 

 
The metamodel of EMF is called Ecore. Fig. 2.4 shows part of the Ecore metamodel. There 

are four major entities in Ecore: EClass, EReference, EOperation and EAttribute: 

 EClass models an EMF class. An EClass can inherit from multiple super classes.  
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 EAttribute models an attribute of an Ecore class. An Ecore attribute has a name and data 

type. An EClass object may have a number of attributes.  

 EOperation models an operation of an Ecore class. An Ecore operation has a optional list 

of parameters and exceptions. An EClass object may have an eOperations reference 

representing operations of the class, and eAllOperations reference representing all 

operations of the class and its super classes.  

 EReference models an association end of an Ecore class. The containment attribute of an 

EReference indicates whether the reference is a whole-part containment relationship or 

not. A containment reference in Ecore is comparable to a composition relationship in 

UML.  

Ecore is self-describing: The metamodel of Ecore is Ecore, Ecore is meta-model and a 

meta-metamodel. Ecore is comparable to EMOF package of MOF.  

This research uses the Ecore metamodel to implement the Scenario-based UML Design 

Analysis tool on EMF platform.  

2.4 The Kermeta Metamodeling Language 

Kermeta is a metamodeling language that can be used to describe both structure and 

behavior of metamodels [Muller05] [Kermeta]. It is designed to be compliant with EMOF and 

Ecore. EMOF only defines structures. Kermeta adds an action meta-language to EMOF that can 

be used to define behavior of operations in metamodels. By weaving the executability into the 

metamodels, Kermeta can be used to implement domain-specific meta-languages, constraint 

languages and transformation languages. In this research, the language is used to implement a 
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transformation algorithm used to produce a snapshot transition model from a design class model, 

and the snapshot generation algorithm.  
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Chapter 3 

Related Work 

This chapter describes related work in the areas of analysis and testing of UML design 

models, and UML test scenario generation. Section 3.1 describes related work in analyzing UML 

design models using formal analysis techniques. Section 3.2 describes related work in UML 

animation and testing. Section 3.3 describes related work in UML static analysis tools such as 

USE and OCLE. Section 3.4 describes related work in UML test input generation and scenario 

generation.  

3.1 Formal analysis techniques 

This section surveys related work on formal analysis of UML models. Section 3.1.1 

describes formal analysis of UML models using Alloy. Section 3.1.2 describes analysis of UML 

models using model checking techniques. Section 3.1.3 describes analysis of UML models using 

formal theorem proving techniques.  

3.1.1 Alloy 

Alloy is a formal notation based on set theory and first-order relational logic [Alloy]. Alloy 

models structures of software systems using signatures. A signature can have fields and it can 

inherit from a parent signature. A fact is a logical constraint that must be satisfied by the system. 

An assertion is a constraint that is not necessarily true. Operations of the model are defined using 

functions and predicates in a declarative manner. A function is an expression that maps a list of 

parameters to output. A predicate is a parameterized constraint. A predicate can be used to define 

an operation as a relation between before and after states.  
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Alloy can be used to automatically find a model that satisfies specified properties within a 

bounded search space. To check a property, Alloy either generates a model to show that the 

property is satisfiable, or finds a counter-example that violates the property.  

Analyzing UML models using Alloy requires the transformation of UML models to Alloy 

models. Existing work on UML2Alloy tool can be used to transform a UML class model to 

Alloy [UML2Alloy]. However, the analysis of UML models in Alloy requires that the analyzer 

be familiar with Alloy notation because the analysis results are shown in Alloy. Shah et. al. 

extended the UML2Alloy work to transform analysis results back to UML [Shah09].  

It is a challenging problem to prove the correctness of transformation from UML design 

class model to Alloy and the transformations that exist do not cover all UML class modeling 

concepts. As Shah et al. admitted, UML and Alloy have different approaches to object-oriented 

concepts including inheritance, overriding and pre-defined types. Some UML and OCL concepts 

such as redefinition, multiple inheritance and OCL bags cannot be represented directly in Alloy. 

OCL nested collections cannot be transformed to Alloy because it is impossible to express 

higher-order relations in Alloy.  

3.1.2 Model checking techniques 

Model checking is used to verify the design of a hardware or software system against a set of 

temporal properties [Clark99]. Given a system model, a model checking technique decides 

whether a desired property, expressed as a temporal logic formula, is satisfied or not in the model. 

Propositional temporal logic is a branch of symbolic logic used to express propositions whose 

values are dependent on time. There are two basic temporal operators in temporal logic: always 

and eventually. There are two major types of properties that can be expressed using temporal 
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logic: a safety property is a property that is always true during any execution of the system, and a 

liveness property is a property that is eventually true during execution.  

To check a desired safety or liveness property, the model checker exhaustively searches the 

state space of the structure. If the desired property is satisfied, it returns true, otherwise, it returns 

a counter-example that shows how the desired property is violated.  

Model checking has been applied to automate the verification of the safety and correctness 

of finite state-based systems [Clark99]. There is work that aims to support model-checking of 

UML behavioral models. vUML [Lilius99] is a tool that is used to automatically convert UML 

statecharts to PROMELA specifications and then invoke SPIN to verify the desired properties 

and check inconsistencies. Eshuis [Eshuis06] applied symbolic model checking to UML activity 

models. The activity models are formalized and transformed to the input language of NuSMV 

[NuSMV99]. The translations are used to check the data integrity constraints expressed in the 

workflow described by the activity models. A transformation process is needed to convert the 

UML specifications into the input language of the model checker.  

The limitation of model checking techniques is that they suffer from state explosion problem 

[Valmari98] [Clarke01]. Since model checkers exhaustively search the state space of a model to 

verify temporal property, the state explosion can occur when the model contains many 

components that make parallel state transitions [Clarke01]. There is ongoing work in the model 

checking research community to alleviate the state explosion problem but it remains a major 

problem in analyzing large industrial software systems.  

In order to use model checking techniques to analyze UML class models, the models must 

be transformed to the input languages of the model checkers. Thus the verifier must be familiar 

with these notations to do formal analysis. Compared with these formal analysis tools, the 
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Scenario-based UML Design Analysis technique does not require that the verifier be familiar 

with notations other than UML and OCL. Instead of doing heavyweight exhaustive analysis the 

technique is lightweight because it analyzes UML design class models in the scope of a set of 

scenarios. On the other hand, the technique presented in this dissertation cannot be used to 

analyze temporal properties of UML design class model. There is ongoing research ay Al-lail et 

al. on using snapshot transition models to support analysis of temporal properties [Al-Lail13].  

3.1.3 Formal theorem proving technique 

Formal theorem provers such as Isabelle can be used to reason about properties described in 

UML models [Brucker08]. In the work of Brucker, et, al., an interactive proof environment for 

UML/OCL models called HOL-OCL is developed on top of Isabelle, an interactive theorem 

prover for Higher-Order Logic (HOL) [Isabelle02]. HOL-OCL can be used to formally analyze 

UML models, for example, it can be used to check consistency between UML models, prove 

temporal properties of UML models and prove a UML class model is refinement of another class 

model.  

In order to use formal theorem proving techniques to analyze UML class models, the verifier 

must be familiar with the formal notations. Compared with the formal theorem proving 

techniques, the Scenario-based UML Design Analysis technique does not require that the verifier 

be familiar with the notations such as Isabelle in the analysis process.  

3.2 UML animation and testing 

The UML animation and testing approach (UMLAnT) is used to systematically test 

executable design UML design class models, that is, class models with executable method 

descriptions. [Trung05]. In UMLAnT a UML design under test (DUT) is a detailed platform 
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independent model (PIM) described by UML design class diagrams, UML sequence diagrams 

and method descriptions expressed in an action language called the Java Action Language (JAL). 

The UML design also contains OCL specifications of operation behaviors. Test inputs are 

exercised by the executable UML design model. A USE tool plugin is used to maintain object 

configurations during the test and to check OCL constraints against the object configurations 

generated during model execution. In UMLAnT a sequence model must be provided in the 

design to describe a test scenario. The sequence diagram is also used to define test criteria; i.e., 

to determine when enough test cases have been generated. Each scenario is triggered by a single 

operation call referred to as a system operation.  

The Scenario-based UML Design Analysis technique and UMLAnT are both UML 

consistency checking techniques. The Scenario-based UML Design Analysis checks consistency 

between UML design class model and scenarios, while UMLAnT checks consistency between 

UML operation specifications described in a design class model and UML operations described 

using JAL. The Scenario-based UML Design Analysis is a static technique because it does not 

execute the UML design model, while UMLAnT executes test input sequences and operation 

actions and check operation pre and post conditions before and after an operation is executed.  

The Scenario-based UML Design Analysis technique complements UMLAnT in analyzing 

UML design class models. Before detailed operation actions are specified for a UML design, the 

verifier can create scenarios to analyze the UML design. After detailed operation actions are 

specified, UMLAnT can be used to test the UML design against a sequence model.  
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3.3 USE and OCLE 

Existing UML modeling tools like OCLE [OCLE] and USE [USE] provide support for 

validating syntactic and structural properties. OCLE for example can detect syntactic errors in 

models and syntax errors in OCL specifications. USE and OCLE can be used to check the 

consistency between a UML design class model and an object model.  

Neither of these tools can be directly used to analyze functionality in scenarios. OCLE does 

not support analysis of operation specifications in class models against snapshots. The USE tool 

can be used to validate pre and post-conditions of operations against snapshots in interactive 

command mode, however, the verifier has to manually enter USE commands to build all 

snapshots of a scenario. The process to manually build snapshots in USE is time-consuming and 

error-prone.  

3.4 UML test input and scenario generation 

This section discusses related work in UML test input and scenario generation. Section 3.4.1 

discusses UML animation techniques. Section 3.4.2 discusses UML test input generation 

techniques.  

3.4.1 UML animation techniques 

Scenarios can be obtained by executing models to produce traces or by using constraint 

solving techniques.  

Oliver and Kent propose a technique to animate a UML design [Oliver99]. In their work 

UML design class diagrams are animated by performing a sequence of actions on an initial 

snapshot. An action is an operation call on an object with arguments. All possible execution 

paths of the OCL post-condition of the operation is calculated. Each execution path is mapped to 
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operations on snapshots. After applying all execution paths on the snapshot a set of possible 

after-states are generated. The after-states that violate the multiplicity constraints are discarded. 

The final after-states are possible snapshots of the animation of the action.  

In another piece of work Krieger and Knapp use a SAT solver to find new system state that 

satisfies operation post-conditions [Krieger08]. In their work OCL post-conditions and class 

invariants are translated to arithmetic formulas. A SAT solver Kodkod [Torlak07] is used to find 

models that satisfy the arithmetic formulas.  

In this research work scenarios are generated by either executing the verifier’s operational 

definitions of operations using JAL or solving constraints based on the verifier’s OCL operation 

definitions. None of the research work above can be used to execute JAL or UML actions to 

generate scenarios. The work in [Krieger08] can be used to generate a next system state that 

satisfies the verifier’s OCL object definitions but it does not generate complete scenarios.  

3.4.2 UML test input generation techniques 

There are a few research works that generate test sequences or scenarios from UML 

requirements use cases. 

Briand and Labiche proposed an approach to generate test data and test oracles from UML 

analysis model for system testing [Briand02]. In their work, system test requirements are 

automatically derived from UML analysis artifacts. Valid use case sequences are generated 

based on use case sequential constraints described using activity diagrams. Use case sequences 

can be interleaved and each use case may have use case variances which are described using a 

decision table. The method depends on the verifier’s knowledge to select test cases from a large 

number of interleaved use case sequences and use case variances. Also not all the use case and 

use case variance sequences are feasible. In this work, a constraint solving technique is used to 
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find initial system state and system operation parameters for all feasible paths in the activity 

model.  

Nebut et. al. proposed a use-case driven approach to generate system test inputs [Nebut06]. 

In their work use cases are fully specified with pre and post conditions. Use cases are built into a 

Use Case simulation and Transition System (UCTS). Valid instantiated use case sequences are 

generated by exhaustively simulating the system. The limitation of the approach is that the space 

of UCTS may be huge when many use cases can be applied at each step of simulation.  

Kundu and Samanta use UML activity diagram that describes activity sequences inside one 

use case to generate system test cases [Kundu09]. In their work the activity diagram is converted 

to an activity graph and test sequences are generated from the graph based on different coverage 

criteria.  

The approaches describe above generate test sequences for testing code that implements 

UML models. The approaches cannot be used to generate scenarios because the scenarios in this 

research work include not only test operation sequences, but also states after each operation is 

called.  
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Chapter 4 

Scenario-based UML Design Analysis Technique 

This chapter gives a description of the Scenario-based UML Design Analysis technique. An 

overview of the Scenario-based UML Design Analysis technique is shown in Fig. 4.1. There are 

two roles involved in the Scenario-based UML Design Analysis process: designer and verifier. 

The designer creates a UML design class model that includes OCL operation specifications, and 

operation scope specifications which specify the set of classes, attributes and links that are 

changed by each operation. The verifier creates a set of scenarios that will be used to analyze the 

UML design. A scenario describes functionality from the perspective of the verifier. It consists 

of an initial system state, a sequence of operation calls, and system states after each operation 

call. A legal scenario describes functionality that is desired and an illegal scenario describes 

functionality that is not desired. The technique consists of three major steps as shown in Fig. 4.1.  

UML Design Class Model

Class diagrams

OCL Operation 

specifications and 

invariants
Snapshot 

Transition 

Model

Snapshot 

Transitions

Model Transformation

Consistency Analysis Inconsistencies 

Legal/illegal 

Scenarios Snapshot Generation

Step 1

Step 2

Step 3

Verifier

Designer
Operation scope 

specifications

 

Figure 4.1: Scenario-based UML design analysis technique 
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In the first step, the UML design class model is automatically transformed to a snapshot 

transition model, a UML class model that specifies valid snapshot transitions. A snapshot 

transition describes system state changes triggered by an operation call, it consists of (1) 

parameter values of the operation that triggers the transition, (2) a before-snapshot describing the 

system state before the operation is executed, and (3) an after-snapshot describing the system 

state after the operation has been executed.  

In the second step, scenarios created by a verifier are used to generate a sequence of 

snapshot transitions.  

In the third step, the snapshot transitions produced in the second step are checked against the 

snapshot transition model using the UML structural analysis tool, USE. USE reports a set of 

inconsistencies in the form of class invariant violations. An inconsistency between the UML 

design class model and scenarios implies defects in the UML design class model, or defects in 

the scenarios, or defects in both the design class model and scenarios.  

The rest of the chapter is organized as follows: Section 4.1 describes a partial RBAC design 

class model that is used to illustrate the technique. Section 4.2 presents an algorithm for 

transforming a UML design class model to a snapshot transition model. Section 4.3 describes 

how scenarios are transformed to snapshot transitions. Section 4.4 describes how the USE tool is 

used to check the consistency between the UML design model and the scenarios. Section 4.5 

analyzes the complexity of the transformation algorithms.  

4.1 A simple Role-Based Access Control example 

Role-based access control (RBAC) is the de facto access control model used in commercial 

organizations [Ferraiolo01]. In RBAC, users are assigned to roles, and roles are associated with 
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permissions that determine what operations and data a user playing the role can access. The users 

initiate sessions in which they activate a subset of roles assigned to them. The operations that a 

user can perform in a session depend on the permissions associated with the activated roles. 

Constraints can be specified on the RBAC model to prevent conflict of interest situations in an 

organization. Specifically, there are two types of constraints: Static Separation of Duties (SSD) 

and Dynamic Separation of Duties (DSD). These are defined as relationships between roles. SSD 

requires that conflicting roles not be assigned to the same user. DSD imposes a more relaxed 

requirement: It allows conflicting roles to be assigned to the same user, but does not allow 

conflicting roles to be activated in the same session. 

The part of the RBAC model used to illustrate the approach is shown in Fig. 4.2. This partial 

RBAC model shows only the relationships between roles, users and sessions. The figure shows 

only the elements used to illustrate the approach in this chapter.  

+Assign(in role : Role)

User

+Activate(in role : Role)

+CheckAccess(in role : Role) : Boolean

Session

Role

-activeRoles

*

-sessions *

-assignedRoles

*

-users *

-user

1

-sessions

*

 

Figure. 4.2. Partial RBAC design class model 

The operation specifications of the RBAC model are given below:  

context User::Assign(role:Role) 

// pre-condition: role is not included in assigned roles of the user 

pre: self.assignedRoles->forAll(r | r <> role) 

// post-condition:  

// role is included in assigned roles of the user 
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// and all other assigned roles remain assigned to the user 

post: self.assignedRoles->exists(r | r = role) 

and self.assignedRoles@pre->forAll(r1 | 

self.assignedRoles->exists(r2 | r1 = r2)) 

and (self.assignedRoles->size() = self. 

assignedRoles@pre->size() + 1) 

 

context Session::Activate(role:Role) 

// pre-condition: role is not activated in active roles of the user 

pre: self.activeRoles->forAll(r | r <> role) 

// post-condition:  

// role is included in active roles of the user 

// and all other activated roles remain active in the session 

post: self.activeRoles->exists(r | r = role) 

and self.activeRoles@pre->forAll(r1 | 

self.activeRoles->exists(r2 | r1 = r2)) 

and (self.activeRoles ->size() =  

  self.activeRoles@pre->size()+ 1) 

 

context Session::CheckAccess(role:Role) 

// pre-condition: true 

// post-condition: return true if role is includes in active roles 

// of current session 

post: result = self.activeRoles()->exists (r| r = role) 

The static separation of duty (SSD) property of RBAC restricts the assignment of conflicting 

roles to one user. This property is expressed as an invariant on the User class. The SSD property 

is one of the properties that we verify an example scenario against. The example scenario 

involves two users, Alice and Bob, and the following roles: Cashier, Accountant and Teller. The 

SSD property in this example is the following: The role Accountant and Cashier cannot be 

assigned to the same user. The specification of this SSD property is given below:  
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context User 

//Static separation of duty constraint 

inv SSD: not (self.assignedRoles->exists(r | r = Accountant)  

and self.assignedRoles->exists(r | r = Cashier)) 

The example scenario that will be analyzed describes an illegal situation in which a user is 

assigned to two roles that violate the above SSD property. The scenario starts in an initial state 

consisting of a User object Bob, an Accountant role and a Cashier role. The scenario consists of 

the following steps: 

(1) Bob is assigned Accountant role through a call to the Assign() operation. After the 

operation is called, the Accountant role is included in assignedRoles collection of Bob.  

(2) Bob is assigned the Cashier role through a call to the Assign() operation. After the 

operation is called, the Cashier and Accountant roles are included in assignedRoles 

collection of Bob. 

This scenario is classified as an illegal scenario, because the last system state in the scenario 

violates the SSD constraint associated with associated with the User class.  

4.2 Generating the Snapshot Transition Model 

In order to use tools such as USE and OCLE to support scenario-based analysis, a class 

model that characterizes valid snapshot transitions is generated from a UML design class model. 

The generated class model is called a snapshot transition model (STM). A snapshot transition 

model consists of (1) a Snapshot class representing states of the system before and after 

execution of operations, (2) a hierarchy of Transition classes representing specified operations, 

and (3) invariants defined in the Transition classes that constrain the before and after states 

(snapshots) associated with transitions caused by the execution of operations.  
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In the following we present the steps for creating an STM. An overview of the steps is given 

below, and the following subsections elaborate on each step. 

 Step 1: Create a Snapshot class that represents valid states (object configurations). 

 Step 2: Create a Transition subclass for each operation in the design class model. 

 Step 3: Generate initial Transition invariants for operation specifications. 

 Step 4: Add frame constraints to the Transition invariants. Frame constraints specify that 

objects and links that are not affected by the operation are the same in the before and 

after snapshots.  

The RBAC application class model is used to illustrate the steps described in the following 

sub-sections.  

4.2.1 Create a Snapshot class 

The Snapshot class represents a set of system states (snapshots), where a state consists of a 

configuration of object states. An object state is an assignment of values to the attributes of the 

object's class. A Snapshot class is thus modeled as a structured class that consists of a 

configuration of UML parts representing object states. Each part represents a set of object states 

and is thus associated with a class in the design class model. For example, the Snapshot class in 

Fig. 4.3 for the partial RBAC design model in Fig. 4.3 consists of a configuration of parts, where 

the users part represents states of User objects, the roles part represents states of Role objects, 

and the session part represents states of Session objects. The states are defined by classes in the 

snapshot transition model that have the same name as the corresponding classes in the design 

class model.  
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Figure 4.3. Partial RBAC class model and its snapshot transition model  

Each part has an objectID attribute that relates object states across different snapshots. For 

example, the bob User object in different snapshots have the same objectID. Note that instances 

of these classes represent immutable object states, not mutable objects; for example, instances of 

the User class in the STM represent immutable object states, while User class in the originating 
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design model represent mutable User objects. This subtle difference is important in 

understanding how transition systems are characterized by a STM: the snapshots in a transition 

system are (immutable) values that are related by transitions (execution instances of operations), 

thus an STM characterizes instances of behaviors (i.e., scenarios). 

4.2.2 Create a Transition class hierarchy 

A superclass called Transition that has before and after associations to the Snapshot class is 

created (see the Transition class in Fig. 4.3). A transition object is a representation of the effect 

of an operation's execution, where the effect is defined by a before-state and after-state pair. The 

Transition superclass is specialized by Transition subclasses that each describes the effects of an 

operation specified in the design class model. A Transition subclass is created for each operation 

in the design class model. Given an operation ClassName::operationName, a Transition subclass 

is created as follows: 

 Create an empty subclass of Transition with the name 

ClassName_operationName_Transition. For example, User_Assign_Transition class is 

created for operation User::Assign.  

 Create a class property that references the before state of the operation’s target object and 

another that references the after state of the target object. The property referencing the before 

state is named classNamePre, and the other property is named classNamePost. For example, 

in Fig. 4.3, the User_Assign_Transition class has attributes userPre and userPost, which are 

references to before and after states for the target User object of the Assign() operation. 

 For each value (i.e., non-object) parameter in the operation, create a class property (attribute) 

with the same name and type in the Transition class.  
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 For each parameter that is an object reference, create two class properties with the same type 

as the object reference. One of the properties represents the before state of the object and is 

thus named parameterNamePre, and the other represents the after state of the object and is 

named parameterNamePost. For example, the operation CheckAccess in the Session class has 

a reference to parameter role, and this parameter is transformed to the attributes rolePre and 

rolePost in the Session_CheckAccess_Transition class shown in Fig. 4.3. The parameters that 

represent before and after object states are collectively referred to as preState and postState 

attributes. 

 If there is a return parameter, create a property ret with the same type as the return parameter. 

For example, the CheckAccess() operator in the Session class returns a boolean value, and 

this return value is represented by the attribute ret in Session_CheckAccess_Transition class 

shown in Fig. 4.3.  

The Transition class hierarchy shown in Fig. 4.3 (b) was produced using the above steps. 

4.2.3 Generate Transition invariants from operation specifications 

We use the Assign() operator defined in the User class to illustrate how invariants that relate 

before and after states are generated from operation specifications. The definition of the 

User::Assign operation in is repeated below:  

//pre- and post- conditions of the Assign method 

context User::Assign(role:Role) 

pre: self.assignedRoles->forAll(r | r <> role) 

post: self.assignedRoles->exists(r | r = role) 

and self.assignedRoles@pre->forAll(r1 | 

self.assignedRoles->exists(r2 | r1 = r2)) 

and (self.assignedRoles->size() = 

self.assignedRoles@pre->size() + 1) 
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For each operation specification in the design class model, an invariant is produced as 

follows: 

 Replace all references to self in the pre-condition by the name of the Transition class 

attribute representing the target object before state (all references to self must be explicit in 

the operation specification for this to work). Also, replace all references to an object 

parameter in the pre-condition by the name of the attribute representing the before state of 

the object, and replace all references to the object in the post-condition by the name of the 

attribute representing the object’s after state. 

For example, the precondition of the Assign() operation,  

self.assignedRoles->forAll(r|r <> role) 

is transformed to (changes are in bold print) 

userPre.assignedRoles->forAll(r | r <> rolePre) 

 Replace all references to self in an expression involving @pre by the name of the attribute 

representing the before state of the object.  

For example, the Assign() post-condition clause 

self.assignedRoles@pre-> 

is transformed to 

userPre.assignedRoles-> 

 Replace all references to self in the post-condition that are not part of a @pre expression by 

the name of the attribute representing the after state of the target object. 

For example, the Assign() post-condition clause 

self.assignedRoles->exists 

is transformed to 

userPost.assignedRoles->exists 

 Replace all references to objects by references to objectID attributes. 

For example, the clause 

userPre.assignedRoles->forAll(r| r <> rolePre) 

is further transformed to 

userPre.assignedRoles->forAll(r| r.objectID <> rolePre.objectID) 
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4.2.4 Add frame constraints to the Transition subclass 

One challenging aspect of transforming OCL operation specifications is to generate frame 

constraints for an operation. The frame constraints ensure that objects and links that are not 

affected by the operation remain unchanged in the before and after snapshots.  

In order to simplify the generation of frame constraints, we require that the designer creates 

operation scope specifications which specifies the set of classes, attributes and links that are 

changed by each operation. For example: the scope specification of operation User::AssignRole 

is specified below: 

Operation: User::AssignRole 

Modifier_Class: User, Role 

Modifier_Attribute: 

Modifier_Link: User.UserAssign, Role.UserAssign 

The scope specification states that only the UserAssign association between User and Role 

classes are changed after the operation is invoked. 

Based on the operation scope specification, the frame constraints are generated for objects 

and associations that are not changed by the operation as follows:  

 Add constraints that assert the existence of the object states referenced by preState attributes 

in the before states. The constraint has the form before.partName -> includes(namePre). 

Similarly, add constraints that assert the existence of the object states referenced by postState 

attributes. 

For example, the following clauses assert the existence of the target user states in the before 

and after states of the snapshot respectively: 

before.users:User.objectID->includes(userPre.objectID) 

after.users:User.objectID->includes(userPost.objectID) 

 Add frame constraints that state that objects and relationships that have not had their state 

changed in an operation have the same before and after state. These constraints can take two 

forms as illustrated in the examples given below: 

For example, the constraint stating that the set of session objects is unchanged by the 
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Assign() operation is stated below: 

after.sessions:Session.objectID= 

before.sessions:Session.objectID 

The constraint stating that the user objects not affected by the operation have the same before 

and after states is stated below: 

after.users:User.objectID->excluding(userPost.objectID)=  

before.users:User.objectID->excluding(userPre.objectID) 

 

The full invariants for the User_Assign_Transition, Session_Activate_Transition and 

Session_CheckAccess_Transition classes are given below: 

context User_Assign_Transition 

//From Assign() pre-condition 

userPre.assignedRoles->forAll(r | r.objectID <> rolePre.objectID) 

and 

//From Assign() post-condition 

userPost.assignedRoles->exists(r | r.objectID = rolePost.objectID) 

and  

userPre.assignedRoles->forAll(r1 | userPost.assignedRoles-> 

exists(r2 | r1.objectID = r2.objectID)) and 

  userPost.assignedRoles->size() = 

userPre.assignedRoles->size() + 1 and 

//Frame constraints 

//userPre is included in before snapshot 

before.users:User.objectID->includes(userPre.objectID) and 

//userPost is included in after snapshot 

after.users:User.objectID->includes(userPost.objectID) and 

//The rest of users in before and after snapshots are the same 

after.users:User.objectID->excluding(userPost.objectID) =  

before.users:User.objectID->excluding(userPre.objectID) and 

//rolePre is included in before snapshot 

before.roles:Role.objectID->includes(rolePre.objectID) and 
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//rolePost is included in after snapshot 

after.roles:Role.objectID->includes(rolePost.objectID) and 

//The rest of roles in before and after snapshots are the same 

after.roles:Role.objectID->excluding(rolePost.objectID) =   

  before.roles:Role.objectID->excluding(rolePre.objectID) and 

//All sessions in before and after snapshots are the same 

after.sessions:Session.objectID = before.sessions:Session.objectID 

//All associations between the user and session classes in before 

//and after snapshots are the same 

and before.users:User->forAll(u1 | after.users:User->exists(u2 | 

u1.objectID = u2.objectID and u1.sessions:Session.objectID = 

u2.sessions:Session.objectID)) 

//All associations between the role and session classes in before 

//and after snapshots are the same 

and before.roles:Role->forAll(r1 | after.roles:Role->exists(r2 | 

r1.objectID = r2.objectID and r1.sessions:Session.objectID = 

r2.sessions:Session.objectID)) 

 

context Session_Activate_Transition 

//From Activate() pre-condition 

sessionPre.activeRoles->forAll(r| r.objectID <> rolePre.objectID) 

and 

//From Activate() post-condition 

sessionPost.activeRoles->exists(r| r.objectID = rolePost.objectID) 

and 

sessionPre.activeRoles->forAll(r1 | sessionPost.activeRoles-> 

exists(r2 | r1.objectID = r2.objectID)) and 

  sessionPost.activeRoles->size() = 

sessionPre.activeRoles->size() + 1 and 

//Frame constraints 

//sessionPre is included in before snapshot 

before.sessions:Session.objectID->includes(sessionPre.objectID)  
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//sessionPost is included in after snapshot 

after.sessions:Session.objectID->includes(sessionPost.objectID)  

//The rest of sessions are the same in before and after snapshots 

after.sessions:Session.objectID->excluding(sessionPost.objectID) 

= 

before.sessions:Session.objectID->excluding(sessionPre.objectID) 

//rolePre is included in before snapshot 

and before.roles:Role.objectID->includes(rolePre.objectID) and 

//rolePost is included in after snapshot 

and after.roles.objectID->includes(rolePost.objectID) and 

//The rest of roles are the same in before and after snapshots 

after.roles:Role.objectID->excluding(rolePost.objectID) = 

before.roles:Role.objectID->excluding(rolePre.objectID) and 

//All users are the same in before and after snapshots 

and after.users:User.objectID = before.users:User.objectID 

//All associations between the user and session classes in before 

//and after snapshots are the same 

and before.users:User->forAll(u1 | after.users:User->exists(u2 | 

u1.objectID = u2.objectID and u1.sessions:Session.objectID = 

u2.sessions:Session.objectID)) 

//All associations between the user and role classes in before  

//and after snapshots are the same 

and before.users:User->forAll(u1 | after.users:User->exists(u2 | 

u1.objectID = u2.objectID and u1.assignedRoles:Role.objectID = 

u2.assignedRoles:Role.objectID)) 

 

context Session_CheckAccess_Transition 

//From CheckAccess() pre-condition 

true and 

//From CheckAccess() post-condition 

ret = sessionPost.activeRoles->exists(r| r.objectID = 

rolePost.objectID) and 
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//Frame constraints 

//sessionPre is included in before snapshot 

before.sessions:Session.objectID->includes(sessionPre.objectID)  

//sessionPost is included in after snapshot 

after.sessions:Session.objectID->includes(sessionPost.objectID)  

//The rest of sessions are the same in before and after snapshots 

after.sessions:Session.objectID->excluding(sessionPost.objectID) 

= 

before.sessions:Session.objectID->excluding(sessionPre.objectID) 

//rolePre is included in before snapshot 

and before.roles:Role.objectID->includes(rolePre.objectID) and 

//rolePost is included in after snapshot 

and after.roles.objectID->includes(rolePost.objectID) and 

//The rest of roles are the same in before and after snapshots 

after.roles:Role.objectID->excluding(rolePost.objectID) = 

before.roles:Role.objectID->excluding(rolePre.objectID) and 

//All users are the same in before and after snapshots 

and after.users:User.objectID = before.users:User.objectID 

//All associations between the user and session classes in before 

//and after snapshots are the same 

and before.users:User->forAll(u1 | after.users:User->exists(u2 | 

u1.objectID = u2.objectID and u1.sessions:Session.objectID = 

u2.sessions:Session.objectID)) 

//All associations between the user and role classes in before  

//and after snapshots are the same 

and before.users:User->forAll(u1 | after.users:User->exists(u2 | 

u1.objectID = u2.objectID and u1.assignedRoles:Role.objectID = 

u2.assignedRoles:Role.objectID)) 

//All associations between the role and session classes in before 

//and after snapshots are the same 
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and before.roles:Role->forAll(r1 | after.roles:Role->exists(r2 | 

r1.objectID = r2.objectID and r1.sessions:Session.objectID = 

r2.sessions:Session.objectID)) 

4.3 Generating Scenario Snapshot Transitions 

Scenario snapshot transitions can be automatically generated from the sequence diagrams 

describing scenarios created by the verifier. The generation process is described below: 

For each operation op invoked on object obj in the scenario:  

 Find the corresponding Transition subclass for operation op.  

(1) Get the class c of object obj. 

(2) If c has an operation that overrides operation op, the return transition subclass is 

c_op_Transition. The UML operation overriding rule is described in [Büttner04] and 

[UML]. According to UML 2.0, an operation of a subclass overrides the operation of its 

parent class if the name of the two operations match and the type of every formal 

parameter (and result value) of the operation matches or specializes a corresponding 

parameter (result value) of the parent operation. It is assumed that the overriding 

operation in the subclass redefines all pre and post conditions.  

(3) Repeat step 2 on the parent class of c until no operation is found. 

 Create an instance of the corresponding Transition subclass for operation op. 

 Create an instance of snapshot class for the snapshot before the operation call if the operation 

is the first one in the scenario. 

 Create an instance of snapshot class for the snapshot after the operation class. 

 Link the two snapshot instances to before and after snapshot of the Transition subclass. 

 Fill attributes of the Transition subclass with parameters of the operation call. 
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Fig. 4.4 shows a snapshot transition in which user Bob is assigned Accountant role. In this 

transition, the before and after snapshots both connect to three objects: the Cashier role, the 

Accountant role and the Bob user. After the User::Assign operation on Bob user Account role is 

invoked, the Accountant role is added to assignedRole link of Bob user.  

userPre : User = Bob1

userPost : User = Bob2

rolePre : Role = Accountant1

rolePost : Role = Accountant2

transition1 : User_Assign_Transition

objectID : int = 2

Bob1 : User

objectID : int = 2

Bob2 : User
objectID : int = 1

Cashier1 : Role

objectID : int = 3

Accountant1 : Role

objectID : int = 1

Cashier2 : Role

objectID : int = 3

Accountant2 : Role

snapshot1 : Snapshot snapshot2 : Snapshot

 
Figure 4.4. Assign Accountant role snapshot transition 

4.4 Checking consistency in USE 

Design errors are uncovered by checking for inconsistencies between the snapshot transition 

model and the scenario snapshot transitions. This is done using the USE tool which checks 

whether scenario snapshot transitions conform to the snapshot transition model. Scenario 

snapshot transitions are instances of the snapshot transition model so that we can feed the 

snapshot transition model and scenario snapshot transitions to USE and check whether they are 

consistent. Inconsistencies imply errors in either the UML design class model or the scenarios. It 

is up to the modeler and verifier to analyze the inconsistencies, find the root cause of the 

inconsistencies and resolve the inconsistencies.  
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For the RBAC example we analyzed a scenario against the snapshot transition model shown 

in Fig. 4.3. The scenario consists of two operations: Bob.assign(Accountant) and 

Bob.assign(Cashier). We used the USE tool. The USE tool reported an error arising after the 

assignment of two conflicting roles Accountant and Cashier to the same user Bob.  

We also performed a second analysis involving a dynamic separation of duty (DSD) 

property which prohibits some roles assigned to a user to be activated at the same time in a 

session. As we expected USE reported an error arising from the activation of two conflicting 

roles in the same session created by Bob. 

4.5 Algorithm complexity analysis 

This section analyzes complexity of the major procedure used in the technique. Section 4.5.1 

analyzes complexity of the snapshot transition model generation procedure. Section 4.5.2 

analyzes complexity of the snapshot transitions generation procedure. Section 4.5.3 analyzes 

complexity of USE consistency check. Section 4.5.4 summarizes the analysis.  

4.5.1 Snapshot transition model generation algorithm analysis 

Let the total number of class in the UML design class model be C, the average number of 

properties including attributes and associations of each class be A, the total number of operations 

be P, the average number of reference parameters of each operation be Q1 and the average 

number of value parameters of each operation be Q2. The average size of the syntax tree of pre 

and post-conditions of an operation is denoted by T. 

The time complexity of generating the Snapshot class is O(C) because the Snapshot class is 

associated to every class in the UML design. 
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The time complexity of generating the Transition subclasses for each operation is O(P) * (2 

* O(Q1) + O(Q2) + 1). Every reference parameter of the operation is added as two attributes of 

the Transition subclass, one prefixed with pre and another prefixed with post. Every value 

parameter of the operation and an optional return value are added as attributes of the Transition 

subclass.  

The time complexity of transforming the OCL operation specifications depends on: 

(1) The time complexity of parsing all OCL expressions of each operation and transforming 

them to invariants, which is O(P) * O(T), and 

(2) The time complexity of adding frame constraints for each operation, in the worse case we 

need to add frame constraints for all classes and properties, the time complexity is O(P) * 

O(C) * O(A).  

Total time complexity of generating the snapshot transition model is  

O(C) + O(P) * (2 * O(Q1) + O(Q2) + 1) + O(P) * O(T) + O(P) * O(C) * O(A)  

= O(C) + O(P) * (2 * O(Q1) + O(Q2) + 1 + O(T) + O(C) * O(A)) 

4.5.2 Snapshot transitions generation algorithm analysis 

The time complexity of generating snapshot transitions depends on the number of objects in 

the snapshot transitions. Let the number of snapshots in the scenario be S and the average 

number of objects in a snapshot be B. The time complexity of generating the snapshot transitions 

is O(S) * O(B). The time complexity is proportional to the number of instances in the scenario.  

4.5.3 USE consistency check complexity analysis 

USE is used to check consistency between each snapshot transition instance and invariants 

of the corresponding snapshot transition subclass. The complexity of checking consistency 
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between a class model and a snapshot depends on the complexity of the class invariants and the 

number of instances in the snapshot.  

The invariants in the snapshot transition model are checked against each snapshot transition 

in the snapshot transitions, so the complexity of USE consistency checking depends on three 

factors: the number of snapshot transitions (operations) in the scenario, the average number of 

objects in the before and after snapshots, and the complexity of invariants in the snapshot 

transition model.   

4.5.4 Summary 

To sum up the algorithm complexity analysis, the complexity of snapshot transition model 

generation algorithm depends on the complexity of the UML design class model, including 

number of classes, class properties, operations, number of parameters of operations and the 

complexity of operation constraints. The complexity of snapshot transitions generation is 

proportional to the number of instances of the scenarios. The complexity to check consistency in 

USE depends on the number of snapshot transitions in the scenario, the number of objects in the 

before and after snapshots, and the complexity of invariants in the snapshot transition model.  
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Chapter 5 

Implementation 

This chapter describes the tool we developed to support the Scenario-based UML Design 

Analysis technique. The tool was developed using the Eclipse Modeling Framework and 

Kermeta, a metamodeling programming language.  

Section 5.1 describes the tool's architecture. Section 5.2 describes the components that 

implement the snapshot transition model (STM) generation procedure. Section 5.3 describes the 

component that implements the scenario generation procedure. Section 5.4 describes component 

that implements how the USE tool is used to check consistency between the snapshot transition 

model and snapshot transitions.  

5.1 Tool architecture 

The architecture of the tool is shown in Fig. 5.1. The architecture consists of three layers:  

 The EMF layer: This layer includes Ecore Metamodel and Ecore Model Editor that 

allows editing Ecore models in Eclipse.  

 The Kermeta layer: This layer includes Kermeta package and an OCL Metamodel called 

OCLCST [Garcia07]. The OCL Metamodel is used to load and transform OCL operation 

specifications.  

 The tool layer: This layer includes all components we implemented in the Scenario-based 

UML Design Analysis tool package.  
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Eclipse Modeling Framework

Action Language Metamodel

Ecore Metamodel

Ecore Scenario GeneratorEcore STM GeneratorSTM Invariant Generator

OCL Metamodel (OCLCST)
Kermeta

Scenario-based UML Design Analysis Tool

Ecore Model Editor

USE STM Generator USE Command Generator

Tool layer

Kermeta layer

EMF layer

 

Figure 5.1. Overview of the Scenario-based UML Design Analysis tool 
 

The Scenario-based UML Design Analysis tool package uses existing platforms and 

metamodels including Kermeta, EMF and an OCL metamodel, OCLCST, which are all grayed 

out in Fig. 5.1. The tool contains the following components:  

 Ecore STM Generator: This is an Eclipse plugin that generates snapshot transition model 

in Ecore.  

 STM Invariant Generator: This is an Eclipse plugin that transforms OCL operation 

specifications to invariants of the snapshot transition model.  
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 Ecore Scenario Generator: This is an Eclipse plugin that generates scenario snapshot 

transitions in Ecore.  

 Action language Metamodel: This defines a language used to specify scenarios using 

actions. The metamodel is used by the Ecore Scenario Generator.  

 USE STM Generator: This is an Eclipse plugin that transforms Ecore snapshot transition 

model to USE.  

 USE Command Generator: This is an Eclipse plugin that transforms Ecore scenario 

snapshot transitions to USE commands.  

To use the tool, the designer creates Ecore design class diagram using Ecore Model Editor 

and OCL operation specifications using a text editor. The verifier either creates scenario 

specifications using an action language defined by the Action Language Metamodel, or explicitly 

specifies a scenario. The explicit scenario specification includes a sequence of snapshots created 

using Ecore model editor, and a sequence of operations using a text editor.  

The Ecore design class diagram is transformed to an Ecore snapshot transition model using 

the Ecore STM Generator, and OCL operation specifications are transformed to invariants of the 

Ecore snapshot transition model using the Ecore STM invariants Generator. The USE STM 

Generator is then used to transform the Ecore snapshot transition model and invariants to USE. 

The Ecore Scenario Generator is used to generate Ecore snapshot transitions from the 

verifier’s scenario specifications. And the USE Command Generator is used to generate USE 

commands to construct USE snapshot transitions from the Ecore snapshot transitions.  

Finally the USE tool is used to load the USE STM, run USE commands to construct USE 

snapshot transitions, and check consistency between the USE STM and snapshot transitions.  
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5.2 The STM Generator and STM Invariant Generator 

The input to the Ecore STM generator is an Ecore design class diagram created by the 

designer. Fig. 5.2 shows an example RBAC Ecore design class diagram. And Fig. 5.3 shows the 

design class diagram in the Ecore Model Editor.  

All OCL operation specifications are created using a text editor. For example, the following 

is OCL specification of operation User::AssignRole.  

context User::AssignRole(r : Role) : Void 

pre: self.UserAssign->excludes(r) 

post: self.UserAssign = self.UserAssign@pre->including(r) and  

self.UUID = self@pre.UUID 

 

 
 

Figure 5.2. RBAC Ecore design class diagram (diagram view) 
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Figure 5.3. RBAC Ecore design class diagram (tree view) 

 

5.2.1 Generating Ecore snapshot transition diagram 

The Ecore STM Generator first generates an Ecore snapshot diagram from the input Ecore 

design class diagram. Based on the Ecore metamdel, the Ecore STM Generator loads the Ecore 

design class diagram, applies model transformation rules and generates an Ecore snapshot 

transition diagram. Fig. 5.4 shows the snapshot transition diagram of the RBAC model. In the 

Ecore snapshot transition diagram the Snapshot class is linked to all classes in the input Ecore 

design class diagram using composition. The Snapshot class is not a composite structure as 

described in Fig. 4.3 because composite structure is not supported in Ecore metamodel, we use 

Ecore composition reference to simulate UML composite structure.  
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Figure 5.4. RBAC Ecore snapshot transition diagram 
 

Fig. 5.5 shows the Kermeta-based algorithm used to generate the snapshot transition 

diagram (STM). The algorithm creates a snapshot class and links the snapshot class to all other 

classes in the design class model, creates a transition class that refers to a before and after 

snapshot, creates transition classes for each operation and finally returns the transformed model.  
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Snapshot Transition Model generation algorithm  

Input: inputModel : EPackage 

Output: EPackage 

Steps: 

1. Create a snapshot class 

snapshot = EClass.new 

2. Add composition reference between each class and the snapshot class 

foreach EClass cls in inputModel do 

a) Create a composition reference that points to the cls class 

    composition = EReference.new 

composition.eType = cls 

b) Create a clsref reference that points to the snapshot class  

    clsref = EReference.new 

    clsref.eType = snapshot 

c) Set eOpposite attribute for the clsref and composition classes 

    clsref.eOpposite = composition 

composition.eOpposite = clsref 

3. Create a transition class 

transition = EClass.new 

4. Setup the before reference between the transition and snapshot classes 

before = EReference.new 

before.eType = snapshot 

beforeTrans = EReference.new 

beforeTrans.eType = transition 

before.eOpposite = beforeTrans; beforeTrans.eOpposite = before 

5. Setup the after reference between the transition and snapshot classes 

    after = EReference.new 

after.eType = snapshot 

afterTrans = EReference.new 

afterTrans.eType = transition 

after.eOpposite = afterTrans; afterTrans.eOpposite = after 

6. Create snapshot transition classes for each operation 

foreach EClass cls in inputModel do 

    foreach EOperation op in cls do 

    // Create a transition class for the operation 

    a) opcls = EClass.new  

        opcls.name = cls.name + "_" + op.name  

    // Add paramaters of the op operation as attributes of the snapshot transition class 

    b) For each EParameter param do 

 attrPre = EAttribute.new 

 attrPre.name = param.name + "Pre" 

 attrPre.eType = param.eType 

             attrPost = EAttribute.new 

 attrPost.name = param.name + "Post"  

 attrPost.eType = param.eType 

7. return inputModel 

 

Figure 5.5. Snapshot transition model generation algorithm 
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5.2.2 Transforming OCL operation specifications 

The STM Invariant Generator uses an OCL metamodel to parse the OCL operation 

specifications and transform them to invariants of snapshot transition subclasses.  

The STM Invariant Generator transforms the original OCL operation specifications to 

invariants. For example, the following invariants are transformed from User::AssignRole 

operation:  

context User_AssignRole 

inv frompre: (userPre.UserAssign.ID->excludes(rPre.ID)) 

inv frompost: ((userPost.UserAssign.ID = 

(userPre.UserAssign.ID->including(rPost.ID))) and (userPost.UUID = 

userPre.UUID)) 

The ID is an internal attribute that is added by the tool to each class in the Ecore class 

diagram. It is used to identify the same object across multiple snapshots in a scenario. For 

example, in an RBAC role assignment and activation snapshot transitions, each snapshot 

contains a copy cashier role instance with the same ID.  

In order to generate frame constraints, the scope specification of operation User::AssignRole 

is specified below: 

Operation: User::AssignRole 

Modifier_Class: User, Role 

Modifier_Attribute: 

Modifier_Link: User.UserAssign, Role.UserAssign 

The scope specification restricts that only the UserAssign references between User and Role 

classes are changed after the operation is invoked. 

Based on the operation scope specification, the STM Invariant Generator generates the 

following frame constraints for User::AssignRole operations. The frame constraints are part of 

the invariants of User_AssignRole class: 
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before.sessions->forAll(o1 | after.sessions->exists(o2 | o1.ID = 

o2.ID)) 

and before.sessions->forAll(o1 | after.sessions->exists(o2 | o1.ID 

= o2.ID and o1.UserSes.ID = o2.UserSes.ID and o1.SesRole.ID = 

o2.SesRole.ID and o1.snapshot.ID = o2.snapshot.ID)) 

and before.users->forAll(o1 | after.users->exists(o2 | o1.ID = o2.ID 

and o1.UUID = o2.UUID)) 

and before.users->forAll(o1 | after.users->exists(o2 | o1.ID = o2.ID 

and o1.UserSes.ID = o2.UserSes.ID and o1.snapshot.ID = 

o2.snapshot.ID)) 

and before.roles->forAll(o1 | after.roles->exists(o2 | o1.ID = 

o2.ID)) 

and before.roles->forAll(o1 | after.roles->exists(o2 | o1.ID = o2.ID 

and o1.SesRole.ID = o2.SesRole.ID and o1.snapshot.ID = 

o2.snapshot.ID)) 

Fig. 5.6 shows the main Kermeta-based algorithm for transforming OCL specifications. The 

algorithm takes an Ecore design class model and parsed OCL operation specifications as input. 

The top-level package declaration of the parsed OCL specifications includes a set of class 

invariants and operation specifications. The algorithm recursively visits each OCL class invariant, 

operation pre and post condition specification body, transforms the OCL specifications to 

invariants and writes the transformed OCL to an output file.  
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OCL operation specification transformation algorithm  

Input:    ecoreModel : EPackage  // Ecore class model 

              parsedOcl: Resource  // Parsed OCL 

Output: outputfile: File   // Transformed OCL file 

Steps: 

1. Create a PrePost2InvVisitor instance 

PrePost2InvVisitor visitor = PrePost2InvVisitor.new  

2. Visit top-level package declaration of the parsed OCL instances 

PackageDeclarationCS pkg =  getPackageDeclaration(parsedOcl.instances) 

foreach ContextDeclCS contextDecl in pkg.contextDecls do 

a) Visit class invariants 

if contextDecl isInstanceOf ClassifierContextDeclCS 

    contextDecl.accept(visitor) 

endif 

b) Visit operation specifications 

if contextDecl isInstanceOf OperationContextDeclCS 

    i) Visit operationCS, including operation name, parameters and return type 

    OperationCS opCS = contextDecl.operationCS 

    opCS.accept(visitor) 

    ii) Visit each operation pre and post condition specification body 

    foreach PrePostOrBodyDeclCS ppbd in contextDecl.prePostOrBodyDecls do 

        // Transform the ppbd to invariant 

        write("inv from" + ppbd.kind.name.toString + ": ") 

        // Visit OperationCallExpCS 

        OperationCallExpCS opCallExpCS = ppbd. expressionCS 

        opCallExpCS.accept(visitor) 

        // Write new line 

        writeln("") 

endif 

3. Write the visited OCL to output file 

WriteOutputFile(outputfile, visitor) 
 

 
Figure 5.6. OCL operation specification transformation main algorithm 

 

5.2.3 Generating USE snapshot transition model 

After the Ecore snapshot transition model and OCL operation specifications are generated, 

the USE STM Generator visits the Ecore snapshot transition model and mechanically transforms 

it to a USE snapshot transition model based on USE grammar.  
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The USE grammar is close to UML and Ecore. For example, below is USE specifications of 

the User class and the UserAssign association between the User class and the Role class:  

class User 

attributes 

 UUID : Integer 

 ID : Integer 

operations 

 AssignRole(r : Role) 

 CreateSession(s : Session) 

 DeassignRole(r : Role) 

end 

 

association UserAssignUserAssign4 between 

 Role[0..*] role UserAssign 

 User[0..*] role UserAssign 

end 

 

Figure 5.7. USE snapshot transition model 
 

Fig. 5.7 shows the USE snapshot transition model of the RBAC application. It contains four 

transitions for the operations defined in the original RBAC design class model. 
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5.3 The Scenario Generator 

The input of the Ecore Scenario Generator is the verifier’s scenario specifications. The 

generator allows the verifier to create two types of scenario specifications: explicit scenario 

specification which includes a sequence of snapshots and operation calls; action language 

specification which specifies a sequence of actions to construct each snapshot in the scenario.  

5.3.1 Explicit specification of scenarios 

The verifier can explicitly specify a scenario as a sequence of snapshots and operation calls. 

A snapshot is an instance of the design class diagram. An operation call is defined by the 

operation name and parameter values.  

Fig. 5.8 shows an example of explicit specification of an RBAC scenario. The scenario starts 

with an initial snapshot which contains a user instance bob and a role instance cashier. Operation 

1 assigns cashier role to bob. After operation 1 is called in snapshot 1 the cashier role and bob is 

associated. Operation 2 creates a session instance s1 from bob. After operation 2 is called in 

snapshot 2 session s1 is linked to bob. Operation 3 activates the cashier role in session s1. After 

operation 3 is called in snapshot 3 the cashier role is linked to session s1. Operation 4 deactivates 

the cashier role. After operation 4 is called in snapshot 4 the link between cashier and s1 is 

removed.  
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Operation 4: s1.DeactivateRole(cashier)

Operation 1: bob.AssignRole(cashier)

Operation 3: s1.ActivateRole(cashier)

Initial snapshot

Snapshot 1

Snapshot 4

Operation 2: bob.CreateSession(s1)

Snapshot 2

Snapshot 3

 

Figure 5.8. Explicit specification of an RBAC scenario 
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5.3.2 Action language specification of scenarios 

The action specification language is used to specify a scenario as a sequence of actions. The 

language is defined using a metamodel as described in Fig. 5.9.  

 

Figure 5.9. Metalmodel of the action specification language 
 

In the metamodel a scenario is defined as a sequence of actions. An action contains the 

following subclasses: 

 instance specification action: creates an object of a class 

 delete instance action: destroys an object 

 set attribute action: sets an attribute for an object 
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 clear attribute action: clears an attribute for an object 

 instance specification link action: creates a links between two objects 

 delete link action: removes an link 

 operation action: specifies an operation call, including the operation name, target object 

and parameters 

Fig. 5.10 shows an example of an RBAC scenario specified using the action specification 

language. The RBAC scenario is described in natural English as below: 

1) Snapshot: User bob, Role cashier and Session s1 

2) Operation: assign cashier role to bob 

3) Snapshot: bob and cashier are linked 

4) Operation: bob creates session s1 

5) Snapshot: bob and s1 are linked 

6) Operation: cashier is activated in session s1  

7) Snapshot: s1 and cashier are linked 

8) Operation: bob de-assigns role cashier 

9) Snapshot: bob and cashier are de-linked, s1 and cashier are de-linked 

 

Figure 5.10. Action specification of an RBAC scenario 
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5.3.3 Generating snapshot transitions 

For each operation call in the scenario, the Ecore Scenario Generator finds the operation that 

matches it in the Ecore design class model, creates a corresponding snapshot transition object 

and links the snapshot transition object to two snapshots. The output is a sequence of snapshot 

transition instances.  

Objects and links in each snapshot are generated from the scenarios. If the scenario is 

specified directly, the Ecore Scenario Generator clones objects and links from the snapshots in 

the scenario. Objects with the same name are assigned the same ID. If the scenario is specified 

using the action language, the tool first interprets the actions to generate the initial snapshot. A 

unique ID is assigned for each object created by the action language. To generate a snapshot 

after an operation call, the tool clones all the objects and links from the before snapshot, and then 

applies the actions to the after-snapshot.  

5.3.4 Generating USE commands 

The USE Command Generator processes the snapshot transitions and generates a sequence 

of USE commands. USE commands are actions that are used to create and manipulate an 

instance model in USE. Basic actions include creating an object, setting an attribute of an object 

and linking two objects. The generated USE commands are used to create snapshot transitions in 

USE.  

For example, the following USE commands create a snapshot object snapshot_1, create a 

user object bob_1, set object ID of bob_1 as 0, and finally create a role object cashier_1 and set 

object ID as 1.  

!create snapshot_1 : Snapshot 

!create bob_1 : User 

!set bob_1.ID := 0 
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!create cashier_1 : Role 

!set cashier_1.ID := 1 

5.4 USE consistency check 

In this step, the USE snapshot transition model and OCL specifications and the USE 

commands are input to USE. The USE commands are used to generate USE snapshot transitions.  

Fig. 5.11 shows the USE snapshot transitions generated by the USE commands. There are 

four operations and five snapshots in the USE snapshot transitions model. The initial snapshot 

contains role cashier, user bob and session s1. The first operation User_AssignRole adds a link 

between bob and cashier. The second operation User_CreateSession adds a link between s1 and 

bob. The third operation Session_ActivateRole adds a link between s1 and cashier. The last 

operation User_DeassignRole deletes the link between cashier and bob and the link between 

cashier and s1.  

 

Figure 5.11. USE snapshot transitions 
 

After checking consistency between the USE snapshot transition model in Fig. 5.7 and USE 

snapshot transitions in Fig. 5.11, USE shows the pre and post conditions of User_DeassignRole 

are violated in the snapshot transitions (Fig. 5.12). Take the pre-condition for example, the 
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pre-condition contains two sub-expressions:self.UserAssign->includes(r) and 

self.UserSes.SesRole->excludes(r). The first sub-expression requires that the role is assigned to 

the user before de-assigned which is evaluated as true. The second sub-expression requires that 

the role is not activated in any user sessions before de-assigned which is false.  

 

Figure 5.12. USE consistency checking 
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Chapter 6 

Demonstration Case Studies 

This chapter presents exemplar applications of the Scenario-based UML Design Analysis 

technique on design class models for two systems: a Train Management System model and a 

Generalized Spatio-Temporal RBAC model. The two demonstration case studies will illustrate 

how design inconsistencies can be uncovered using the Scenario-based UML Design Analysis 

technique.  

6.1 The Train Management System model  

The Train Management System (TMS) is used to monitor train traffic in a train network. The 

train network consists of trains and stations. There can be zero or more one-way routes between 

any two stations. Each route is divided into segments. Each segment has two sensors: an entry 

sensor which detects trains as they enter the segment and an exit sensor which detects trains as 

they leave the segment. Each segment has a traffic light at the end. The train can only enter the 

next segment when this traffic light of current segment is green. A train may have a journey. A 

journey consists of a sequence of routes and stations at which the train will stop. A journey is 

valid if it does not traverse any closed routes or closed stations and it does not stop at stations 

that are not on the routes of the journey.  

The length and speed of trains is ignored in this system. It is also important to note that the 

segments are not contiguous; between any two segments in a route there is an non-monitored 

section, that is a section that does not have input and output sensors. Thus one cannot assume 
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that a train leaving a segment (a monitored section) in one time instance is in the next segment 

(next monitored section) in the next time instance.  

In the following subsections we describe design class model of the TMS, scenarios and 

inconsistencies between the design class model and scenarios identified using the Scenario-based 

UML Design Analysis technique.  

6.1.1 The TMS design class model 

Fig. 6.1 shows the design class diagram of the Train Management System. The Train class 

has two association ends with the Segment class: currentSeg refers to the current segment of the 

train and lastExitedSegment refers to the last segment that the train has exited. The Segment class 

has two association ends with the SensorHandler class: the entrySensor refers to the 

SensorHandler at the entry of the segment and the exitSensor refer to the SensorHandler at the 

exiti of the segment. Each Segment can have a previous Segment and a next Segment. The 

TrainManager class links to all SensorHandler and Train objects. The Train has multiple 

Journeys and each Journey has multiple Routes. The Journey has multiple stopStations. Each 

Route has a beginStation and an endStation. Each Station has multiple segments.  

Below are OCL specifications of four major operations: Train::OnSegmentEnter, 

Train::OnSegmentExit, Segment::OnTrainExit and Segment::OnTrainExit. The 

Train::OnSegmentEnter operation requires, as a postcondition that currentSeg of the train equals 

the segment it is entering. The Train::OnSegmentExit operation requires that if the traffic light of 

the current segment is not green then the train becomes runaway train and that the route of the 

current segment becomes closed.  
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Figure 6.1. TMS design class diagram 
 

context Train::OnSegmentEnter(currentTime:Time, segment:Segment, 

train:Train) 

pre pre1: train = self 

// After the train enters the segment 

// (1) The segment becomes current segment of the train. 

post post1: self.currentSeg = segment 

// (2) Last enter time of the train is equal to currentTime  

post post2: self.lastEnterTime = currentTime 

 

context Train::OnSegmentExit(currentTime:Time, segment:Segment, 

train:Train) 

pre pre1: self = train 
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// After the train exits the segment 

// (1) If the traffic light of current segment is not green before the train 

// exits the segment, the train becomes a runaway train and the route that 

// contains the train will be closed. 

post post1:(not self.currentSeg.trafficLightIsGreen@pre) 

implies (self.isRunaway and  not self.currentSeg.route.isOpen) 

// (2) Last enter time of the train is equal to currentTime. 

post post2: self.lastExitTime = currentTime 

// (3) Previous segment becomes last exited segment of the train. 

post post3: self.lastExitedSegment = self.currentSeg@pre 

 

context Segment::OnTrainEnter(train:Train) 

// Before the train enters the segment, the segment must be current segment 

// of the train. 

pre pre1: train.currentSeg = self 

// After the train enters the segment, the train will be one of the passing 

// trains of the segment. 

post post1: self.passingTrains->includes(train) 

 

context Segment::OnTrainExit(train:Train) 

// Before the train exits the segment, the train must be one of the passing 

// trains of the segment. 

pre pre1: self.passingTrains->includes(train) 

// After the train exits the segment 

// (1) The train should not be one of the passing trains of the segment. 

post post1: self.passingTrains->excludes(train) 

// (2) The traffic light of the segment should not be green. 

post post2: not self.trafficLightIsGreen 

// (3) If the previous segment exists, also the route of the segment is 

// open, and there are no passing trains on the segment, then the traffic 

// light of previous segment must be green, otherwise it is not green.  

post post3: if (self.previous->notEmpty() and self.route.isOpen and 

self.passingTrains->isEmpty() ) then (self.previous.trafficLightIsGreen) 

else (not self.previous.trafficLightIsGreen) endif 
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// (4) If the previous and next segment exists, also the route of the segment 

// is open, and there are no passing trains on the segment, then the traffic 

// light of previous segment must be green, otherwise it is not green.  

post post4: if (self.previous->notEmpty() and self.next->notEmpty() and 

self.route.isOpen and self.passingTrains->isEmpty()) then 

(self.previous.trafficLightIsGreen) else 

(not self.previous.trafficLightIsGreen endif 

// (5) If the previous segment exists but the next segment does not exist, 

// then each segment at the station of the segment should not have next 

// segment or have green traffic light 

post post5: (self.previous->notEmpty() and self.next->isEmpty()) 

implies self.station.segments->forAll(st: Segment | st.next->isEmpty() 

and not st.trafficLightIsGreen) 

// (6) If the previous segment does not exist but the next segment exists, 

// then for each segment at the station of the segment, if it has no previous 

// segment or passing trains, then for each segment at the station of this 

// segment, if the route of the segment is open and the segment has no next 

// segment, then tranffic light of the segment is green 

post post6: (self.previous->isEmpty() and self.next->notEmpty()) 

implies (self.station.segments->forAll(st: Segment| 

st.previous->isEmpty() and st.passingTrains->isEmpty()) implies 

(self.station.segments->forAll(st1: Segment | st1.route.isOpen and 

st1.next->isEmpty() implies st1.trafficLightIsGreen))) 

 

6.1.2 TMS Scenario one 

In this scenario a train t1 is on segment seg1 initially, firstly it exits seg1 so that seg1 

becomes last exited segment of the train, then it enters next segment seg2 so that seg2 becomes 

current segment of the train and the traffic light of seg1 is no longer green. The scenario contains 

three snapshots: snapshot 1.1 shown in Fig. 6.2, snapshot 1.2 shown in Fig. 6.3 and snapshot 1.3 

shown in Fig. 6.4. Operation t1:onSegmentExit(time,seg1,t1) is called between snapshot 1.1 and 
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snapshot 1.2, operation  t1:onSegmentEnter(time,seg2,t1) is called between snapshot 1.2 and 

snapshot 1.3.  

 
 

Figure 6.2. TMS snapshot 1.1 
 

Snapshot 1.1 in Fig. 6.2 contains one Train object t1. t1 has a journey j1 and j1 has a route 

r1. r1 has three segments seg1, seg2, seg3. currentSeg of t1 is seg1. Traffic lights of three 

segments are all green.  
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Figure 6.3. TMS snapshot 1.2 
 

After operation t1:onSegmentExit(time,seg1,t1) is called, in snapshot 1.2 (Fig. 6.3) the 

association end from train t1 to segment seg1 becomes lastExitedSeg. The change in association 

end lastExitedSeg is circled in Fig 6.3. Before the operation is called, the association end is 

currentSeg.  
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Figure 6.4. TMS snapshot 1.3 
 

After operation t1:onSegmentEnter(time,seg2,t1) is called, in snapshot 1.3 (Fig. 6.4) a new 

association between train t1 and segment seg2 is added, seg2 is now currentSeg of t1. Also 

trafficLightIsGreen attribute of seg1 becomes false. The changes are circled in Fig 6.4.  

We analyze the scenario using the Scenario-based UML Design Analysis tool. The analysis 

result shows an inconsistency that the trafficLightIsGreen attribute should not be false in 

snapshot 1.3, operation Train::OnSegmentExit does not explicitly specify that the 

trafficLightIsGreen should be changed or not, so we added frame constraints to ensure the 

attribute should not be changed after the operation is called.  



71 

 

6.1.3 TMS Scenario two 

In this scenario a train t1 is on segment seg1 initially and the traffic light of seg1 is not green, 

firstly it exits seg1 so that seg1 becomes last exited segment of the train and the train becomes a 

runaway train, then it enters next segment seg2 so that seg2 becomes current segment of the train. 

The scenario contains three snapshots, snapshot 2.1 shown in Fig. 6.5, snapshot 2.2 shown in Fig. 

6.6 and snapshot 2.3 shown in Fig. 6.7. Operation t1:onSegmentExit(time,seg1,t1) is called 

between snapshot 2.1 and snapshot 2, operation  t1:onSegmentEnter(time,seg2,t1) is called 

between snapshot 2.2 and snapshot 3.  

 
 

Figure 6.5. TMS snapshot 2.1 
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Snapshot 2.1 in Fig. 6.5 contains one Train object t1. t1 has a journey j1 and j1 has a route 

r1. r1 has three segments seg1, seg2, seg3. currentSeg of t1 is seg1. Traffic lights of segments 

are all green except for segment seg1.  

After operation t1:onSegmentExit(time,seg1,t1) is called, in snapshot 2.2 (Fig. 6.6) the 

association end from train t1 to segment s1 becomes lastExitedSeg. Before the operation is called, 

the association end is currentSeg. Also isRunaway attribute of t1 becomes true. The two changes 

are circled in Fig. 6.6.  

 
 

Figure 6.6. TMS snapshot 2.2 
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After operation t1:onSegmentEnter(time,seg2,t1) is called, in snapshot 2.3 (Fig. 6.7) a new 

association between train t1 and segment seg2 is added, seg2 is now currentSeg of t1 and t1 is in 

passingTrains collection of seg2, the traffic light of seg1 remains green. The newly added 

association between t1 and seg2 is circled in Fig. 6.7.  

 
 

Figure 6.7. TMS snapshot 2.3 
 

Analysis of this scenario shows that the isOpen attribute of Route object r1 in snapshot 2.2 is 

true which is not consistent with operation Train::OnSegmentExit. In snapshot 2.1 

trafficLightIsGreen attribute of t1.currentSeg is false, according to operation constraint post1 in 

operation Train::OnSegmentExit, the train t1 should be a runaway train and the route associated 

with segment s1 should be closed, i.e., isOpen attribute of r1 should be false.  
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6.2 The Generalized Spatio-Temporal RBAC model 

The Generalized Spatio-Temporal RBAC model (GSTRBAC) is an extension to Role-Based 

Access Control model [Ray07]. It allows specifying location-aware and time-based access 

control constraints. In GTSRBAC location and time are associated with various entities in 

standard RBAC model, including user, role, permission, user assignment, role assignment, 

permission assignment and separation of duty. For example, location and time associated with 

role can be used to specify that the role can only be activated at the certain location and time. 

Location and time associated with permission can be used to specify that the permission can only 

be operated at the certain location and time.  

A UML GSTRBAC model was analyzed in [Abdunabi13] using the USE. This section 

analyzes an adapted UML GSTRBAC model using the Scenario-based UML Design Analysis 

technique.  

6.2.1 The GSTRBAC design class model 

In the main view of GSTRBAC UML design class model (Fig. 6.8) time and location are 

encapsulated in a generalized STZone class. RBAC entities User, Role and Permission are 

modeled as User, Role and Permission class. Object and Activity classes model the object and 

operation entities in RBAC. Classes UserRoleAssignment, UserRoleActivation and 

PermissionAssignment describe user role assignment relation, user role activation relation and 

role permission assignment relation in RBAC. The STZone class is associated with User, Role, 

Permission, Object, UserRoleAssignment, UserRoleActivation and PermissionAssignment. 
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Figure 6.8. GSTRBAC design class diagram – main view 

 

Fig. 6.9 shows the separation of duty classes of the GSTRBAC UML design class model. 

RSSOD class models static separation of duty constraint: conflicting roles under RSSOD cannot 

be assigned to the same user in certain STZone. DSSOD class models dynamic separation of duty 

constraint: conflicting roles under DSSOD cannot be activated in certain STZone by the same 

user. PSSOD class models permission-based separation of duty constraint: conflicting 

permissions cannot be assigned to the same role in certain STZone.  
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Figure 6.9. GSTRBAC design class diagram – SOD view 
 

Below are OCL operation specifications of major operations User::UpdateZone, 

User::assignRole, User::deassignRole, User::activateRole and User::deactivateRole: 

context  

User::updateZone(z:STZone) 

pre: true 

// After the user updates zone, the zone is included in current zones 

// of the user. 

post: (self.currentzones->includes(z)) 

 

context  

User::assignRole(r:Role,z:STZone):UserRoleAssignment 

// Before the user is assigned role r at STZone z, 

// (1) role r and STZone z must be defined. 

pre assignRolePreCond1_definedObjects:  
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r.isDefined and z.isDefined 

// (2) STZone z must be included in current zones of the user and 

allowed zones of the role.  

pre assignRolePreCond2_ZoneIncluded: self.currentzones->includes(z) 

and r.allowedzones->includes(z) 

// (3) Role r should not be assigned to the user.  

pre assignRolePreCond3_RoleNotAssigned: 

self.getAssignedRoles(z)->excludes(r) 

// (4) Role r should not belong to any static separation of duty roles 

// of any roles assigned to the user.  

pre assignRolePreCond4_RoleNotSSoD:  

self.getAssignedRoles(z)->collect(r |  

    r.getSSoDRoles(z))->excludes(r) 

// After the user is assigned role r at STZone z, 

// (1) The number of assignments of the user is one greater than  

// previous assignments.  

post AssignSTRolePostCond1_NewUserRoleRelation:  

(self.assignments - self.assignments@pre)->size()=1 

// (2) The new assignment should include role r at zone z 

post AssignSTRolePostCond2_NewRoleAssignment: (self.assignments - 

self.assignments@pre)->forAll( rl |  

    rl.oclIsNew() and rl.zone=z and rl.role->includes(r)) 

// (3) The assigned roles of the user should include role r 

post AssignSTRolePostCond3_RoleIsAssigned: 

self.getAssignedRoles(z)->includes(r) 

 

context  

User::deassignRole(r:Role,z:STZone) 

// The pre and post conditions are close to User::assignRole 

pre deassignRolePreCond1_RoleIsAssigned: 

self.getAssignedRoles(z)->includes(r) 
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post deassignRolePostCond1_RoleDeassigned: 

self.getAssignedRoles(z)->excludes(r) 

post deassignRolePostCond2_RoleAssignmentObjectDeleted: 

(self.assignments@pre - self.assignments)->size()=1 and 

(UserRoleAssignment.allInstances@pre - 

UserRoleAssignment.allInstances)->size()=1 

 

context User::activateRole(r:Role,z:STZone):UserRoleActivation 

// Before the role r is activated at STZone z, 

// (1) role r and STZone z must be defined. 

pre activateRolePreCond1_denfinedObject:  

r.isDefined and z.isDefined 

// (2) STZone z must be included in current zones of the user and 

allowed zones of the role.  

pre activateRolePreCond2_ZoneIncluded:  

self.currentzones->includes(z) and r.allowedzones->includes(z) 

// (3) Role r should not be activated by the user.  

pre activateRolePreCond3_RoleNot: 

self.getActivatedRoles(z)->excludes(r) 

// (4) Role r is assigned to the user.  

pre activateRolePreCond4_RoleIsAssigned: 

getAssignedRoles(z)->includes(r) 

// After the user activates role r at STZone z, 

// (1) The number of activations of the user is one greater than  

// previous activations. 

post activateRolePostCond1_NewUserRoleRelation: (self.activations 

- self.activations@pre)->size()=1 

// (2) The new activation should include role r at zone z 

post activateRolePostCond2_NewRoleActivation: (self.activations - 

self.activations@pre)->forAll( rl | rl.oclIsNew() and rl.zone=z and 

rl.role->includes(r)) 

// (3) The activated roles of the user should include role r 
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post activateRolePostCond3_RoleIsAssigned: 

self.getActivatedRoles(z)->includes(r) 

 

context  

User::deactivateRole(r:Role,z:STZone) 

// The pre and post conditions are close to User::activateRole 

pre deactivateRolePreCond1_RoleIsActivated: 

self.getActivatedRoles(z)->includes(r) 

post deactivateRolePostCond1_RoleDeactivated: 

self.getActivatedRoles(z)->excludes(r) 

post deactivateRolePostCond2_RoleActivationDeleted: 

(self.activations@pre - self.activations)->size()=1 and 

(UserRoleActivation.allInstances@pre - 

UserRoleActivation.allInstances)->size()=1 

6.2.2 GSTRBAC scenario one 

In this scenario user Ben and two roles SP and TE are located in the same STZone z0. Ben is 

assigned SP role first, then Ben activates TE role (note TE role is not assigned to Ben).  

The initial snapshot of the scenario (Fig. 6.10) contains user Ben and two roles: SP and TE. 

SP is assigned permission p0 and TE is assigned permission p1. The two roles and two 

permission assignments are all at STZone z0.  
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Figure 6.10. GSTRBAC snapshot 1.1 
 

Operation Ben.assignRole(SP, z0) is called to assign Ben SP role at STZone z0. In the next 

snapshot (Fig. 6.11), UserRoleAssignment instance uras0 is created between Ben, SP and z0. 

Transition from snapshot 1.1 to snapshot 1.2 is consistent with the design. The new uras0 

instance and three associations are circled in Fig. 6.11. 
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Figure 6.11. GSTRBAC snapshot 1.2 
 

Operation Ben.activateRole(TE, z0) is called to activate TE role at STZone z0. In snapshot 

1.3 (Fig. 6.12), UserRoleActivation instance urac0 is created between Ben, TE and z0. The new 

urac0 instance and three new associations are circled in Fig. 6.12.  

Transition from snapshot 1.2 to snapshot 1.3 is not consistent with the design. One 

precondition of User::activateRole requires that the role must be assigned to the user before it is 
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activated. This pre-condition is not satisfied because TE role is not assigned to Ben before 

activation. 

pre activateRolePreCond4_RoleIsAssigned: 

getAssignedRoles(z)->includes(r) 

 
Figure 6.12. GSTRBAC snapshot 1.3 

 

6.2.3 GSTRBAC scenario two 

In this scenario user Ben and two roles SP and TE are initially located in the same STZone 

z0. Ben is assigned SP role at z0 first, then Ben moves to STZone z1, Ben is assigned TE role, 
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and finally Ben activates TE role at STZone z1 (note allowed zone of TE role is z0). The initial 

snapshot of the scenario (Fig. 6.13) contains user Ben and two roles: SP and TE. SP is assigned 

permission p0 and TE is assigned permission p1. The two roles and two permission assignments 

are all at STZone z0. STZone z0 is at location DevelopmentOffice, another STZone z0 is at 

location TestingOffice.  

 
Figure 6.13. GSTRBAC snapshot 2.1 

 

Operation Ben.assignRole(SP, z0) is called to assign Ben SP role at STZone z0. In snapshot 

2.2 (Fig. 6.11), UserRoleAssignment instance uras0 is created between Ben, SP and z0. The new 
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uras0 instance and its associations are circled in Fig. 6.11. Transition from snapshot 2.1 to 

snapshot 2.2 is consistent with the design.  

 

Figure 6.14. GSTRBAC snapshot 2.2 
 

Operation Ben.updateZone(z1) is called to update STZone of Ben to z1. In snapshot 2.3 (Fig. 

6.15) Ben is associated to STZone z1 (as circled in Fig. 6.15), and UserRoleAssignment instance 



85 

 

uras0 is removed. From the verifier’s perspective, the user role assignment becomes invalid after 

Ben moves to STZone z1 since UserRoleAssignment uras0 is associated with STZone z0.  

 

Figure 6.15. GSTRBAC snapshot 2.3 
 

The transition from snapshot 2.2 to 2.3 is not consistent with operation User::updateZone. 

The frame constraints of the operation do not allow UserRoleAssignment instances be changed 

after the operation is called. 
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Figure 6.16. GSTRBAC snapshot 2.4 
 

Operation Ben.assignRole(TE, z1) is called to assign TE role to Ben at STZone z1. In 

snapshot 2.4 (Fig. 6.16) UserRoleAssignment instance uras1 is created between Ben, TE and z1. 

The new uras1 instance and its associations are circled in Fig. 6.16. 
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The transition from snapshot 2.3 to 2.4 is not consistent with operation User::assignRole. 

Precondition assignRolePreCond2_ZoneIncluded is not satisfied because allowedzones of role 

TE is z0 which does not include STZone z1: 

pre assignRolePreCond2_ZoneIncluded: self.currentzones->includes(z) 

and r.allowedzones->includes(z) 

 

Figure 6.17. GSTRBAC snapshot 2.5 
 

The last operation Ben.activateRole(TE, z0) is called to activate TE at z0. In Fig 6.17 the 

new urac0 instance and its associations are circled.  
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The transition from snapshot 2.4 to 2.5 is not consistent with operation User::activateRole. 

Precondition activateRolePreCond2_ZoneIncluded is not satisfied because currentzones of Ben 

is z1 which does not include STZone z0: 

pre activateRolePreCond2_ZoneIncluded: 

self.currentzones->includes(z) and r.allowedzones->includes(z) 

 

Precondition activateRolePreCond4_RoleIsAssigned is not satisfied. The only assigned role 

TE is at STZone z1 and Ben’s assigned roles at STZone z0 is empty: 

pre activateRolePreCond4_RoleIsAssigned: 

getAssignedRoles(z)->includes(r) 

 

class User  

operations 

getAssignedRoles(z:STZone):Set(Role)=self.assignments-> 

select(r|r.zone=z)->collect( r| r.role)->asSet() 

 

Figure 6.18. GSTRBAC inconsistencies in snapshot 2.5 
 

Fig. 6.18 shows violations of precondition activateRolePreCond2_ZoneIncluded and 

activateRolePreCond4_RoleIsAssigned. 
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6.2.4 GSTRBAC scenario three 

In this scenario user Ben is initially assigned two roles SP and TE at STZone z0. SP and TE 

are dynamic separation of duty roles at STZone z0. Ben activates TE role first then activates SP 

role at STZone z0.  

The initial snapshot of the scenario (Fig. 6.19) contains user Ben and two roles: SP and TE. 

SP and TE are both assigned to Ben at STZone z0. DSSOD (dynamic separation of duty) instance 

dssod1 is created to forbid role SP and TE be activated simultaneously at STZone z0.  

 

Figure 6.19. GSTRBAC snapshot 3.1 
 

Operation Ben.activateRole(TE, z0) and Ben.activateRole(SP, z0) are called to activate TE 

and SP roles at STZone z0. In snapshot 3.2 (Fig. 6.20) the TE role is activated. In Fig 6.20 the 
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new urac0 instance and its associations are circled. In snapshot 3.3 (Fig. 6.21) the SP role is 

activated. In Fig 6.21 the new urac1 instance and its associations are circled.  

The transition from snapshot 3.1 to 3.2 and 3.2 to 3.3 are both consistent with operation 

User::activateRole.  

 

Figure 6.20. GSTRBAC snapshot 3.2 
 

However, the scenario is invalid from the verifier’s perspective. The two conflicting roles 

are not supposed to be activated by the same user at the same STZone. It implies design error in 

precondition of operation User::activateRole. It should check whether a conflicting role is being 

activated.  
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Figure 6.21. GSTRBAC snapshot 3.3 

6.3 Conclusion 

This chapter discusses case studies of two application designs. The case studies show how 

the Scenario-based UML Design Analysis technique can be used to find inconsistencies between 

UML designs and scenarios.  

During the analysis process, the verifier reads the UML designs and manually creates 

scenarios from his/her perspective. The scenarios and UML designs are input to the 

Scenario-based UML Design Analysis tool and then the consistencies between the transformed 

snapshot transition models and snapshot transitions are checked in USE. Without using the 

technique the verifier has to manually check OCL specifications against the scenarios which is 

time-consuming and error-prone.  
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Chapter 7 

Pilot Study 

The Scenario-based UML Design Analysis technique is further evaluated by a pilot study. In 

the pilot study a group of graduate students are invited to manually inspect the UML design class 

model and scenarios to find inconsistencies. At the same time the Scenario-based UML Design 

Analysis tool is used to find inconsistencies between the UML design class model and scenarios. 

We compare inconsistencies found by the group of students and the tool and decide whether the 

Scenario-based UML Design Analysis technique is effective or not.  

The rest of this chapter is organized as follows: Section 7.1 discusses experiment planning, 

including the experiment definition, context selection, hypotheses formulation, experiment 

design and measurements and data collection. Section 7.2 discusses experiment results and 

analysis. Section 7.3 discusses threats to validity. Section 7.4 concludes the pilot study.  

7.1. Experiment planning 

7.1.1 Experiment goal, research question and hypothesis 

The experiment objective is formulated in the form of Goal-Question-Metric (GQM) goals 

in table 7.1. 

The experiment of the goal has one independent variable design verification method and two 

dependent variables number of inconsistencies detected (NID) which is the number of 

inconsistencies detected between the UML design class model and scenarios, and number of 

false inconsistencies detected (NFID) which is the number of falsely detected inconsistencies. 
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There are two treatments: the Scenario-based UML Design Analysis technique and manual 

design inspection technique.  

Table 7.1. Formulation of the experiment objective 
 

Analyze the Scenario-based UML Design Analysis technique 

for the purpose of Evaluating 

with respect to the effectiveness of identifying inconsistencies between UML class model 

and scenarios when comparing with a traditional manual inspection 

process 

from the point of view of the design verification engineer 

In the context of graduate computer science students 

 
The Scenario-based UML Design Analysis technique is considered effective if it leads to 

equal or higher number of inconsistencies and equal or lower number of false inconsistencies 

than a manual design inspection technique will uncover.  

7.1.2 Context selection and subjects 

The context of the experiment is Software Specification & Design, a graduate level software 

engineering course at Colorado State University. The subjects are a number of graduate or senior 

Computer Science students that are enrolled in the course. The students enrolled in the course are 

familiar with UML and OCL notations, and they were trained on how to manually find design 

inconsistencies between a UML design class model and scenarios.  

7.1.3 Experiment design 

The UML design class models used in the experiment were produced by students at the 

Software Specification & Design course or created in our previous research projects.  

A group of students who are familiar with the Scenario-based UML Design Analysis 

technique create scenarios. These students are given the UML design class diagram only. OCL 
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operation specifications are not given to these students. The students who create scenarios do not 

participate in finding design inconsistencies using manual inspection techniques.  

Another group of students who are familiar with UML, OCL and design inspection 

technique individually review the UML design model and scenarios to find inconsistencies. This 

group of students is trained on how to manually inspect design inconsistencies between the UML 

design model and scenarios.  

The Scenario-based UML Design Analysis tool is used to find inconsistencies between the 

scenarios and the UML design.  

We record inconsistencies found by each student and the tool. We repeat the experiment on 

a number of UML design models. The results of experiments are consistent if they both show 

that the Scenario-based UML Design Analysis technique is more effective than design review, or 

vice versa. If the results are not consistent, we will analyze the data and find the reason of the 

inconsistency, modify the process and study more applications if necessary.  

7.1.4 Measurements and data collection 

During the experiment, we will measure total number of inconsistencies uncovered by SDA 

and MDI, total number of false inconsistencies uncovered by SDA and MDI, and total time spent 

by each student in manual inspection. The students in the manual inspection group can also give 

feedback on the manual inspection process.  

7.2. Experiment results and analysis 

We performed pilot study on two design models, the TMS design class model (Fig. 6.1) and 

GSTRBAC design class model (Fig. 6.8 and Fig. 6.9). Two graduate students were asked to 
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manually inspect inconsistencies between the UML design class models and scenarios. The 

Scenario-based UML Design Analysis tool was used to check inconsistencies.  

Table 7.2. TMS experiment results 
 

TMS 

scenarios 

NID 

(Tool) 

NFID 

(Tool) 

NID 

(HumanA) 

NFID 

(HumanA) 

NID 

(HumanB) 

NFID 

(HumanB) 

Scenario 1 6 0 2 1 6 1 

Total 6 0 2 1 6 1 

 
Table 7.3. GSTRBAC experiment results 

 

GSTRBAC 

scenarios 

NID 

(Tool) 

NFID 

(Tool) 

NID 

(HumanA) 

NFID 

(HumanA) 

NID 

(HumanB) 

NFID 

(HumanB) 

Scenario 1 0 0 0 0 0 0 

Scenario 2 1 0 1 0 1 0 

Scenario 3 1 0 1 0 1 0 

Scenario 4 1 0 1 0 1 0 

Scenario 5 0 0 0 1 0 0 

Scenario 6 3 0 2 0 2 0 

Scenario 7 2 0 1 0 0 0 

Scenario 8 2 0 2 0 2 0 

Scenario 9 2 0 2 2 2 0 

Scenario 10 0 0 0 0 0 0 

Scenario 11 3 0 1 0 1 0 

Scenario 12 3 0 0 2 2 0 

Total 17 0 11 6 12 0 

 
Table 7.2 and table 7.3 shows number of inconsistencies found by the tool and two graduate 

students of the TMS and GSTRBAC design class model. The first column shows the scenario ID. 

The second column NID shows the number of inconsistencies identified by the tool. The third 

column NFID shows the number of inconsistencies falsely identified by the tool. NID (HumanA) 

and NFID (HumanA) columns show the number of inconsistencies and number of false 
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inconsistencies found by the first graduate student. NID (HumanB) and NFID (HumanB) 

columns show the number of inconsistencies and number of false inconsistencies found by the 

second graduate student.  

The tool did not identify false inconsistencies in the pilot study of the two design class 

models. Fig. 7.1 shows a histogram of the number of inconsistencies identified by the tool and 

two graduate students in the thirteen scenarios. In scenario 1, 7, 8, 12 and 13, the tool identified 

more design inconsistencies than the two graduate students. In scenario 3, 4, 5, 9 and 10, the tool 

identified the same number of design inconsistencies as the two graduate students. In scenario 2, 

6 and 11, neither the tool nor the two graduate students found any design inconsistencies, but the 

graduate students may find false design inconsistencies. To sum up, the tool identified equal or 

more number of inconsistencies in all the scenarios than the two students.  
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Figure 7.1. Histogram of experiment results 
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7.3. Conclusion and discussions  

The pilot study shows that the Scenario-based UML Design Analysis tool seems to be 

effective because it uncovered at least as many design inconsistencies as manual inspection 

techniques uncovered and the technique did not uncover false inconsistencies. Actually the 

inconsistencies uncovered by the two graduate students are subset of the inconsistencies 

uncovered by the tool.  

As to the cost of finding inconsistency, the tool can be used to analyze a design class model 

and scenarios automatically which takes a few minutes to generate necessary models and 

scenarios and check them in USE. To manually inspect inconsistencies, the human beings must 

be trained with domain knowledge and the manual inspection techniques. It is also 

time-consuming and error-prone for the human being to manually inspect each scenario. 

According to the feedback of the two graduate students, it took them about two hours reading the 

GSTRBAC design class diagram and constraints, it took them about 30 to 45 minutes on average 

to check one GSTRBAC scenario and 15-20 minutes to review the TMS scenario.  

The main threat to validity of the pilot study is statistical conclusion validity [Wohlin12]. 

Due to the unavailability of graduate students, we were not able to control the number of 

students and the number of design class models (scenarios). In the formal experiment, we should 

invite more students to do manual inspection and study more design class models and scenarios. 

It is also desirable to seed more inconsistencies into the UML designs and scenarios. Both of the 

measures are helpful to mitigate the threat to statistical conclusion validity of the experiment.  
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Chapter 8 

Generating Scenarios using JAL Operation Definitions 

The Scenario-based UML Design Analysis technique requires that the verifier creates 

scenarios to analyze UML design class models. This chapter presents a scenario generation 

technique that automates the generation of scenarios using operational operation definitions 

[Yu09]. The operation definitions are specified using Jave-like Action Language (JAL). 

Java-like Action Language (JAL) is an imperative action language developed in our research 

group that is used to describe effects of operations [Trung05A]. Scenario snapshot transitions are 

generated by executing the JAL operation definitions using the UMLAnT (UML Animation and 

Testing) tool [Trung05A].  

The rest of this section is organized as follows: section 8.1 discusses the scenario generation 

technique, section 8.2 discusses UML design class model of an RBAC example and RBAC 

constraints modeled as OCL invariants, section 8.3 discuss analysis of RBAC constraints using 

the scenario generation technique.  

8.1 The scenario generation technique 

This scenario generation technique automatically generates a set of scenarios based on the 

verifier’s JAL operation definitions and operation invocation patterns [Yu09]. The operation 

invocation pattern describes sequence of operations as regular expressions. The scenario 

generation technique allows a verifier to produce a set of scenarios describing legal and illegal 

functionality. The scenario generation technique takes into consideration domain-specific 

knowledge about sequences of operation calls that reflect typical usages and sequences. This 
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knowledge is encoded in operation call sequence patterns that are used by the verifier to generate 

scenarios.  

The scenario generation technique is based upon a naïve scenario generation algorithm. The 

naïve algorithm generates too many scenarios, and thus we extend it by allowing the verifier to 

target specific families of scenarios by specifying patterns.  

The naïve scenario generation algorithm does the following:  

 Builds an operation invocation tree from a set of operations and parameter values. 

 Traverses the operation invocation tree to produce all possible sequences of operation 

invocations, and  

 Animates each sequence of operation invocations to produce a sequence of snapshot 

transitions. The verifier must then label each of the generated snapshot transition 

sequences as legal or illegal. 

Each node in an operation invocation tree represents a particular invocation of a system 

operation on an object. The invocation is referred to as an operation instance. Each node contains 

an object identifier (the receiver of the operation call), an operation name and a value for each 

operation parameter. The root of the tree represents the system initialization point and it contains 

information about the start state. Child nodes represent operation invocations that can occur after 

the invocation represented by the parent node. A scenario is a path that starts at the root and ends 

at any node in the tree. 

To reduce the number of scenarios produced by the above algorithm, the technique allows a 

verifier to  

 limit the depth of the tree.  

 limit the number of objects of a class that can be in a start state, and 
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 explicitly define a small domain for each input parameter of the operation.  

For example, given an operation User::AssignRole(r:Role), the verifier can restrict the User 

domain size to 2 users objects, and define a small domain for the Role parameter as follows: 

Domain(Role) = {clerk, seniorClerk}. 

The extended generation technique allows a verifier to specify patterns of operation 

sequences that restrict  

 the operation calls that are used to build the operation invocation tree. 

 the order in which operations can be invoked.  

These patterns are called operation invocation patterns. An operation invocation pattern is a 

characterization of particular sequences of operation invocations that the verifier feels typifies 

good and problematic usages of the system. The patterns are manually created using the best 

available domain expertise and experience related to the sequences of operations that are likely 

to uncover policy violations. The patterns are described in terms of constraints on initial states 

and on the sequencing of operation calls. The use of these patterns allows the verifier to focus the 

analysis on particular sequences of invocation calls.  

For example, a verifier can create the following pattern of operation calls for analyzing role 

activation functionality: 

Initial State Constraint 

u in Domain(User) // There is at least one user 

#Role>3 //At least 4 roles are in the start state 

Call Pattern 

u.CreateSession(.)return(s:Session){1,2} u.AssignRole(.){2,4} 

u->s.ActivateRole(.){1..4} 
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The first part of the pattern description constrains the initial state. In this case the initial state 

must consist of a User object, u, and at least four roles.  

The second part is the pattern of operation calls. The expression caller->callee.Op() (e.g., 

see last line of the above Call Pattern) identifies the sender (caller) and receiver (callee) of an 

operation call message. If the caller is omitted then it is assumed that the message is coming 

from an external actor. The analysis we perform using the Snapshot transition model does not 

require that the sender of an operation call be known; this information is currently used only to 

visualize the operation sequence as a sequence diagram that shows both senders and receivers of 

messages. 

The pattern describes the following sequences of operation calls: 

 Start with 1 or 2 calls to the CreateSession() operation for a user, u using any parameters 

(as indicated by the "." in the parameter list of the operation), and each successfully 

returning a new session, s, (indicated by return(s:Session)), 

 followed by 2 to 4 operation calls to the AssignRole() for user u, and 

 end with 1 to 4 calls made by the user u to activate roles in the sessions previously 

created by calls to CreateSession().  

In order to generate snapshot transitions, a verifier must provide descriptions of operation 

functionality to the snapshot generation algorithm using JAL. The verifier can use the technique 

to generate legal scenarios by using correct JAL operation definitions (or more precisely, correct 

JAL operation definitions in his/her perspective), and generate illegal scenarios by injecting 

errors in the JAL so that it produces illegal snapshot transitions. 
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For example, a verifier can define the legal effects of the operation User::AssignRole as 

follows: 

JAL_User_AssignRole 

if (!this.userRoles._exists(role)) { 

    this.userRoles._add(role); 

} 

 

Scenario generation algorithm  
Inputs. UML design class model, maximum number of operations 

Max, parameter domain definitions, operation JAL definitions, tree 

node r. Operation invocation patterns. 

Outputs. Set of scenarios. 

Algorithm steps 

For each operation call do:  

If operations from root to current tree node r and op match an 

operation invocation pattern: 

1. Create one tree node n and add it as child of r. 

2. Store information about the operation call (e.g., operation 

name, parameters, receiving object identifier) in tree node n. 

3. Execute desired JAL description associated with the operation 

using the start state stored in r to get the next system state. Store 

the next system state in tree node n. 

4. Print the sequence of operation calls from the tree root to tree 

node n as an output scenario. 

5. If Max > 1 

a) Call the scenario generation algorithm recursively with 

tree node n and Max - 1 as maximum number of 

operations. 
 

Figure 8.1. Scenario generation algorithm 
 

The scenario generation algorithm is described in Fig. 8.1. Snapshot transitions are 

generated by traversing the operation invocation tree and interpreting the associated JAL 

descriptions of behavior using UMLAnT. The verifier then needs to determine whether the 

generated scenarios describe legal or illegal behaviors. 
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8.2 An hierarchical RBAC example 

In this section we present a hierarchical RBAC (HRBAC) policy model in two parts: in the 

first part we give a UML design class model that describes HRBAC classes and operations, in 

the second part we describe HRBAC constraints using OCL invariants.  

8.2.1. HRBAC design class model 

+AssignRole(in r : Role)

+DeassignRole(in r : Role)

+CreateSession() : Session

+DeleteSession() : Session

+GetAuthorizedRoles() : Set of Role

User

+ActivateRole(in r : Role)

+DeactivateRole(in r : Role)

+GetActiveRoles() : Set of Role

+CheckAccess(in t : Target, in o : Operation) : Boolean

Session

+AddSeniorRole(in r : Role)

+DeleteSeniorRole(in r : Role)

+GrantPermission(in p : Permission)

+RevokePermission(in p : Permission)

+GetAuthorizedPermissions() : Set of Permission

+GetAuthorizedUsers() : Set of User

+GetSODRoles() : Set of Role

Role

Target

Operation

Permission

-roles*

-permissions*

-activeRoles
*

-sessions
*

-assignedRoles

*

-users

*

-user

1

-sessions

*

*

-target

1

-operation

1

*

-juniorRoles*

-seniorRoles

*

*

+DSDRoles

*

*

+SSDRoles

*

 
Figure 8.2. Hierarchical RBAC design class model 
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In the hierarchical RBAC design class model shown in Fig. 8.2, the User, Role and Session 

classes model users, roles and sessions entities in RBAC. The Permission class describes RBAC 

permissions in terms of operations that can be performed on targets. The assignedRoles 

association end determines the set of roles directly assigned to a user. The operation 

GetAuthorizedRoles() returns all roles directly and indirectly assigned to a user. The activeRoles 

association end determines the set of roles directly activated in a session, and the operation 

GetActiveRoles() returns all roles directly activated in a session. The association end permissions 

is the set of all permissions directly associated with a role, and the operation 

GetAuthorizedPermissions() returns all permissions directly and indirectly associated with a role. 

The seniorRoles and juniorRoles association ends define the role hierarchy relationships. The 

SSDRoles association end defines the set of role pairs that are constrained by SSD. The 

DSDRoles association end defines the set of role pairs that are constrained by DSD.  

Operations are specified using the OCL. For example, the operation GetAuthorizedRoles() in 

User is defined using a query operation GetDominatedRoles() as follows:  

// Get set of authorized roles to the user. 

context User::GetAuthorizedRoles():Set(Role)  

post: result = self.assignedRoles.GetDominatedRoles()->asSet() 

 

// Get set of dominated roles to the role.  

context Role::GetDominatedRoles():Set(Role)  

body:  

let oneStep:Set(Role)= Set{self} in 

result = if oneStep.juniorRoles->isEmpty() then  

   oneStep  

else     

oneStep->union(oneStep.juniorRoles.GetDominatedRoles())->asSet()  

endif 
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The operations that are involved in the analysis are given below: 

 
context User::AssignRole(r:Role)  

// Assign a role to the user.  

pre: not self.GetAuthorizedRoles()->includes(r)  

post: self.GetAuthorizedRoles()->includes(r)  

 

context Session::ActivateRole(r:Role)  

// Activate a role in the session.  

pre: not self.GetActiveRoles()->includes(r)  

post: self.GetActiveRoles()->includes(r)  

 

context Session::GetActivateRoles:Set(Role)  

// Return activated roles in the session.  

pre: true 

post: result = self.activeRole 

 

context Role::AddSeniorRole(r:Role)  

// Add a senior role to current role.  

pre: true  

post: self.seniorRoles->includes(r) and 

r.juniorRoles->includes(self) 

 

context Role::CheckAccess(t:Target, o:Operation):Boolean  

// Query operation that checks permissions  

// of all active roles to see whether there  

// is a match for the target and operation.  

pre true  

post: result = 

self.GetActiveRoles().GetAuthorizedPermissions()->exists (p | 

p.target = t and p.operation = o) 
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8.2.2. HRBAC constraints 

8.2.2.1. Role activation constraint 

A fundamental constraint in role activation is that a role can be activated by a user only if it 

has been assigned to the user. We express this constraint as an OCL invariant named 

RBAC_Policy_1:  

RBAC_Policy_1: A user can only activate roles that are assigned to 

him.  

context Session  

inv RBAC_Policy_1:  

self.user.authorizedRoles-> 

includesAll(self.activeRoles) 

 

8.2.2.2. Role hierarchy constraints 

According to the definition of role hierarchy in the NIST RBAC standard [Ferraiolo01], a 

senior role dominating its junior roles implies that the senior role inherits all the permissions of 

its junior roles, and a junior role inherits all the assigned users of the senior role. 

RBAC_Policy_2 expresses this constraint: 

RBAC_Policy_2: A senior role inherits all permissions from junior 

roles, and a junior role inherits all the users of its senior roles.  

context Role 

inv RBAC_Policy_2:  

seniorRoles->forAll(s | s.authorizedPermissions->  

intersection(self.authorizedPermissions) = 

self.authorizedPermissions) and 

self.seniorRoles->forAll(s | s.authorizedUsers->  

intersection(self.authorizedUsers) = s.authorizedUsers) 
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The role hierarchy is a partial order on roles and there should not be any cycles in the role 

hierarchy. We use an OCL query operation on roles called Dominates in the policy statement. 

The expression r1.Dominates(r2), where r1 and r2 are roles, returns true if r2 is a descendant of 

r1 in a senior-junior role structure. The constraint is expressed by RBAC_Policy_3: 

context Role::Dominates(r:Role):Boolean  

pre true  

post:  

if (self.juniorRoles->includes(r)) then  

result = true  

else  

result = self.juniorRoles->exists(j | j.Dominates(r))  

endif  

 

RBAC_Policy_3: There must be no cycles in senior-junior role 

relationships.  

context Role 

inv RBAC_Policy_3:  

not self.Dominates(self) 

 

8.2.2.3. Separation of duty constraints.  

RBAC_Policy_4 expresses the static separation of duty constraint, and RBAC_Policy_5 

expresses the dynamic separation of duty constraint: 

RBAC_Policy_4: Conflict of interest roles cannot be assigned to the 

same user (SSD). 

context User 

inv RBAC_Policy_4:  

not self.GetAuthorizedRoles()->exists(r1, r2 | 

r1.SSDRoles->includes(r2)) 

 



108 

 

RBAC_Policy_5: Conflict of interest roles can not be activated by 

the same user simultaneously (DSD). 

context User 

inv RBAC_Policy_5:  

not self.sessions.GetActiveRoles()->exists(r1, r2 | r1.DSDRoles-> 

includes(r2)) 

8.3. Analyze HRBAC constraints 

In this sub-section we show how some of the HRBAC constraints given in Section 8.2 can 

be analyzed using the method. 

8.3.1. Analyze role activation constraint.  

To analyze the role activation constraint (RBAC_Policy_1), we use the following operation 

invocation pattern: 

Initial State Constraint 

Domain(User) = {Bob} 

Domain(Role)={clerk, seniorClerk} 

Call Pattern 

[no Bob.AssignRole(r)]{0..2} 

Bob.CreateSession(.)return(s:Session) Bob->s.ActivateRole(r){1..2}. 

 

The expression [no Bob.AssignRole(r)] is used to match all operation calls except calls of 

the form Bob.AssignRole(r).  

The above pattern describes sequences of operations which end with 1 or 2 invocations of 

the ActivateRole() operation, and start with 0 to 2 operation invocations that do not include 

operation calls that assign the activated roles to the user Bob.  
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The verifier describes the effect of the ActivateRole operation using JAL – The JAL 

description simply activates the role. Scenarios generated from this pattern would allow roles to 

be activated even though they are not assigned to the user. For this reason, the verifier knows 

that the pattern would produce illegal scenarios. 

An example of an illegal scenario generated from the above pattern is described as below: 

 The scenario starts from an initial system state with one user instance Bob and one Role 

instance clerk.  

 The user Bob creates one session. After the operation is called, a new Session instance 

session is created.  

 The user Bob activates the clerk role. After the Session::ActivateRole operation is called, 

the activation succeeds and clerk is added to the activeRoles association of the session. 

The HRBAC design model should reject the illegal behavior described by the scenario. 

Analysis with USE revealed that the HRBAC design model is consistent with the scenario. The 

defect in the design class model is that the operation Session::ActivateRole activates any role that 

is not activated. The pre-condition should check whether the role is assigned or not.  

8.3.2. Analyze separation of duty constraints.  

We use the following operation invocation pattern to check enforcement of the SOD 

constraints: 

Initial State Constraint 

Domain(User) = Bob 

cashier in Domain(Role) 

accountant in Domain(Role) 

cashier in accountant.SSDRoles // the roles conflict 

Call Pattern 

[ 
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[.]* 

Bob.AssignRole(cashier) 

Bob.AssignRole(accountant) 

]{1} 

[ 

Bob.CreateSession(.)return(s:Session) 

s.ActivateRole(r){2..4} where( r = accountant and r = cashier) 

]{0..1} 

 

The expression [.] matches any operation call and "*" represents the multiplicity "0 or more". 

The where clause stipulates that at least one of the Activate() calls must activate the accountant 

role, and at least one of the Activate() calls must activate the cashier role.  

The illegal scenario below is generated from the pattern:  

 The scenario starts in a state consisting of two conflict of interest roles, cashier and 

accountant, and a user Bob.  

 User::AssignRole operation is called to assign the cashier role to user Bob. After the 

operation is called, Bob is assigned the cashier role.  

 User::AssignRole operation is called to assign the accountant role to user Bob. After the 

operation is called, Bob is assigned the accountant role.  

The scenario violates the static separation of duty constraint defined as RBAC_Policy_4 and 

thus it should be rejected by the HRBAC design. In the design model, the User::AssignRole 

operation specified in Section 2 only checks whether the role is assigned to the user or not before 

it assigns the role, so that the illegal scenario is consistent with the HRBAC design. To enforce 

the static separation of duty constraint in an HRBAC design, the operation should also check 

whether the role to be assigned is in conflict of interest with roles that have been assigned to the 

user.  



111 

 

The illegal scenario below was used to analyze the dynamic separation of duty constraint: 

 The scenario starts in a state consisting of two conflict of interest roles, cashier and 

accountant, and a user Bob.  

 Bob creates a new Session instance session.  

 User::AssignRole operation is called to assign the cashier role to user Bob. After the 

operation is called, Bob is assigned the cashier role.  

 User::AssignRole operation is called to assign the accountant role to user Bob. After the 

operation is called, Bob is assigned the accountant role.  

 Session::ActivateRole operation is called to activate the cashier role in the Session 

instance. After the operation is called, the cashier role is activated.  

 Session::ActivateRole operation is called to activate the accountant role in the Session 

instance. After the operation is called, the accountant role is activated.  

In the illegal scenario the user Bob is assigned two conflict of interest roles cashier and 

accountant, and Bob activates both roles in one session. Again, the Session::ActivateRole() 

operation does not check that the role to be activated is in a conflict of interest with a role in a 

session created by the user.  
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Chapter 9 

Generating Scenarios using OCL Operation Definitions 

This chapter presents another scenario generation technique using OCL operation definitions 

[Yu12]. To generate snapshot transitions, the UML class diagram and OCL operation definitions 

are transformed to Alloy to generate scenarios.  

The rest of this section is organized as follows: section 9.1 discusses the Location-aware 

Role-Based Access Control example UML model. Section 9.2 discusses the scenario generation 

technique and applies the technique to analyze the example model.  

9.1 The Location-aware Role-Based Access Control model  

The Location-aware Role-Based Access Control (LRBAC) is an extension to the standard 

RBAC model [Ray05] [Ray06] [Ray07]. LRBAC uses spatial information of the user and object 

to enhance the security of location-sensitive applications. In LRBAC, user and object are both 

associated with locations. The location information of the user and object is taken into 

consideration in determining whether the user can access the object. The role is associated with 

assign location and activation location. A role can only be assigned (activated) by a user when 

the user location is in the assign (activation) location of the role. The permission is also 

associated with role location and object location. A user acquires certain permission to operate 

an object only if the user activates the role that is granted the permission and the user location is 

in role location of the permission and the object location is in object location of the permission.  

http://www.springerlink.com/index/C3T50338535HX115.pdf
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Figure 9.1. The LRBAC UML design class diagram 
 

In the LRBAC design class model (Fig. 9.1), the User, Role, Session and Permission classes 

model users, roles, sessions and permissions entities in standard RBAC. The Permission class 

describes RBAC permissions in terms of operations that can be performed on objects. The 

assignedRoles association end of the Role class determines the set of roles directly assigned to a 

user. The operation GetAuthorizedRoles() returns all assigned roles and their dominated roles 

indirectly assigned to the user. The activeRoles association end determines the set of roles 
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activated in a session, and the operation GetActiveRoles() returns all roles activated in a session. 

The association end permissions is the set of all permissions directly associated with a role, and 

the operation GetAuthorizedPermissions() returns all permissions associated with a role and its 

dominated roles. The seniorRoles and juniorRoles association ends define the role hierarchy 

relationships. The SODRoles association end defines the set of separation of duty role pairs.  

The Location class describes the new location entity in LRBAC. In location-aware 

applications the location of the users and objects can be updated and queried. The 

UpdateLocation operation sets the new locations of the user or object. The loc association ends 

in User-Location and Object-Location associations return the updated location of the user or 

object. The method Location::In checks whether the location is contained by a set of locations. 

The assignLocs and actLocs describes the set of assign locations and activation locations of the 

role. The roleLocs and objLocs association ends describe the set of role locations and object 

locations of the permission.  

Operations are specified using the OCL. The operations that are involved in the analysis are 

given below: 

context User::AssignRole(r:Role)  

// Assign a role to the user.  

pre: not self.GetAuthorizedRoles()->includes(r) and 

self.loc.In(r.assignLocs) 

post: self.GetAuthorizedRoles()->includes(r)  

 

context Session::ActivateRole(r:Role)  

// Activate a role in the session.  

pre: not self.GetActiveRoles()->includes(r) and 

self.user.loc.In(r.assignLocs) and  

self.user.loc.In(r.actLocs) 
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post: self.GetActiveRoles()->includes(r)  

 

context Session::CheckAccess(t:Object, o:Operation):Boolean  

pre: true 

post: result = 

self.GetActiveRoles().GetAuthorizedPermissions()->exists (p |  

p.object = t and p.operation = o and self.user.loc.In(p.roleLocs) 

and o.loc.In(p.objLocs))) 

 

9.2 The scenario generation technique 

The scenario generation technique (see Fig. 9.2) requires the verifier to create scenario 

generation criteria and OCL operation definitions for operations that will be used in generated 

scenarios. The technique uses the static aspects of the UML design class model (i.e., the classes 

and associations, but not the operation specifications), and the verifier’s OCL operation 

definitions to generate an Alloy model. The scenario generation criteria are used to produce 

Alloy predicates that are included in the Alloy model. These predicates are run using the Alloy 

Analyzer to generate snapshot transition sequences expressed as Alloy instance models. The 

Alloy instance models are then transformed to snapshot transition sequences that can be input to 

USE for analysis.  
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Figure 9.2. Generating transition sequences 
 

The rest of the sections are organized as follows: In section 9.2.1 we describe the types of 

scenario generation criteria that verifiers can define. In section 9.2.2 we give examples of 

scenario operation definitions and in section 9.2.3 we describe how scenarios are generated.  

9.2.1. Defining scenario generation criteria 

In the extended Scenario-based UML Design Analysis technique, a verifier can define the 

following types of scenario generation criteria: 
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 Operation sequence criteria: an operation sequence criterion characterizes a family of 

operation sequences. Scenarios that satisfy this type of criteria must include operation 

calls that abide by the relative ordering of calls defined by the criterion.  

 Structural coverage criteria: a structural coverage criterion specifies properties of 

objects and associations that must hold in snapshots before and after each operation. 

These properties are expressed as OCL constraints.  

 Operation coverage criteria: an operation coverage criterion specifies operation 

behaviors that must be covered in the generated scenarios. These criteria are specified 

using OCL constraints.  

A scenario generation criterion consists of an initial state constraint part in which the verifier 

specifies structural constraints, a call pattern part in which the verifier specifies an operation 

sequence criterion, an optional structural coverage criterion, and an operation constraint part in 

which the verifier specifies optional operation coverage criteria. This form builds upon our early 

work on operation invocation patterns [Yu09]. 

The following describes the criteria that will be used to generate scenarios for analyzing the 

LRBAC model. The criteria we use characterize scenarios that will be used to analyze check 

access behaviors involving users updating their locations after activating assigned roles. The 

intent is to check that the design model properly handles access control when a user changes 

location. 

Operation sequence criteria. The verifier defines an operation sequence criterion in the 

form of an operation invocation pattern. In the pattern, a user creates a session, and some time 

after the user is assigned a role that is later activated; after, the user updates its location and then 

a request is made to access a resource which triggers an invocation of the CheckAccess() 
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operation. The operation sequence criterion is expressed as a pattern as shown below (the 

numbers in brackets restrict the number of occurrences of the operation calls that can be made):  

User::CreateSession(){1} 

User::AssignRole(){1} 

Session::ActivateRole(){1} 

User::UpdateLocation(){1} 

Session::CheckAccess(){1} 

An operation sequence that satisfies this criterion is shown in Fig. 9.3. 

:User

session:Session

CreateSession

:Role

create

AssignRole

ActivateRole

CheckAccess

UpdateLocation

 
Figure 9.3. The analysis operation sequence 

 

Structural coverage criteria. The verifier defines a criterion stating that the snapshot 

before the CheckAccess() operation in Fig. 9.3 must satisfy the following property (# is the set 

cardinality operator):  

#User = 1 and #Location = 2 and #Role = 1 and #Role.permissions = 

1 and User.Loc  <> Permission.roleLocs  
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The property states that the snapshot should contain one user, two locations, one role with a 

granted permission, and that the set of user locations is not equal to the role set of permission 

role locations. 

Operation coverage criteria. The verifier is interested in generating scenarios in which the 

user location is included in role assignment locations. Thus the following operation coverage 

criterion is defined for User::AssignRole and Session::ActivateRole operations. The criterion 

ensures that the user location is included in role assignment locations before the two operations 

are called.  

behavior context:  User::AssignRole(r:Role)  

precondition includes: self.loc.In(r.assignLocs) 

 

behavior context: Session::ActivateRole(r:Role)  

precondition includes: self.user.loc.In(r.assignLocs) and self.user.loc.In(r.actLocs) 

 

All of the above criteria are bundled into the single scenario generation criterion shown 

below:  

Initial State Constraint 

{} 

Call Pattern 

[ 

User::CreateSession(){1} 

User::AssignRole(){1} 

Session::ActivateRole(){1} 

User::UpdateLocation(){1} where (#User = 1 and #Location = 2 and #Role 

= 1 and #Role.permissions = 1 and User.Loc  <> Permission.roleLocs ) 

Session::CheckAccess(){1} 

] 

Operation Constraint 
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{ 

behavior context:  User::AssignRole(r:Role)  

precondition includes: self.loc.In(r.assignLocs) 

 

behavior context: Session::ActivateRole(r:Role)  

precondition includes: self.user.loc.In(r.assignLocs) and 

self.user.loc.In(r.actLocs) 

} 

9.2.2. Defining scenario operations 

An OCL operation specification in a design class model should be complete in the sense that 

it defines effects for all scenarios involving calls to the operations. A verifier’s scenario 

operation definition does not need to be as encompassing; it should define only the effects 

produced in the scenarios defined by the verifier.  

For example, consider a case in which a verifier analyzes an LRBAC design model using the 

following scenario:  

 A user is in a location in which he cannot activate any roles, and  

 The user attempts to retrieve information that he is not allowed to access.  

In this scenario the CheckAccess() operation should return false, indicating that the user is 

denied access. The verifier thus defines the Session::CheckAccess() operation as follows: 

context Session::CheckAccess(t:Object, o:Operation):Boolean  

pre: not self.user.loc.In(self.activeRoles.assignLocs)  

post: result = false 

 

Similarly, the verifier defines User::AssignRole and User::UpdateLocation operations as: 

context User::AssignRole(r:Role)  

pre: not self.assignedRoles->includes(r) 

post: self.assignedRoles ()->includes(r)  
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context User::UpdateLocation(loc:Location)  

pre: true 

post: not loc = loc@pre 

9.2.3. Generating scenarios 

This section discusses four major steps in the scenario generation process: the first step 

generates the Alloy snapshot transition model, the second step generates the snapshot sequence 

constraint, the third step generates Alloy predicates for criteria, and the last step generates Alloy 

snapshot transitions.  

9.2.3.1 Generating the Alloy snapshot transition model.  

The verifier’s scenario operation definitions and the designer’s design class models are 

transformed to a snapshot transition model, which is then transformed to an Alloy model. In this 

step we use the design class diagram created by the designer and the OCL operation definitions 

created by the verifier to generate a snapshot transition model. Details of the snapshot transition 

model transformation algorithm are described in [Yu08]. The Alloy snapshot transition model 

includes the following elements: 

1. A signature for each class in the UML class diagram: All attributes in the UML class are 

transformed to fields of the signature, and class invariants are expressed as predicates in the 

Alloy. Rules on how to transform a UML class model to Alloy are discussed in 

[Anastasakis10]. For example, in the LRBAC example, the following signatures are 

generated: 

sig User{} 

sig Role{} 

sig Session{} 

 

2. A snapshot signature that includes: 

 Set of objects for each signature generated in the above step. 
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 All associations in the design class diagram are specified as fields, and additional 

constraints that force the associations to link objects in the snapshot only are added to 

the Alloy model. 

Part of the Snapshot signature for the LRBAC example is shown below: 

sig Snapshot { 

    // LRBAC Objects 

    users:some User, 

    roles:some Role, 

    sessions:some Session, 

    permissions:some Permission, 

    operations: some Operation, 

    objects: some Object, 

    locations: some Location, 

    // LRBAC associations 

    userrole: User set ->set Role, 

    sessionrole:Session set->set Role 

    … 

} 

 

3. A transition signature that includes a before and after snapshot: An example is given below. 

abstract sig Transition  

{ 

    before: one Snapshot, 

    after: one Snapshot 

} 

 

4. A specialized signature (sub-signature) of the Transition signature for each operation in the 

design class model: The sub-signature contains fields representing pre- and post-forms of 

parameters as defined in the snapshot transition model. The OCL specification of the 
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operation is transformed to constraints of the sub-signature. We finally add frame constraints 

to the sub-signature to make that objects and associations not affected by the operation 

remain the same in before and after snapshots. For example, we generate the following 

User_UpdateLocation_Transition signature for User::UpdateLocation() operation: 

sig User_UpdateLocation_Transition   

extends Transition  

{ 

    uPre:User, 

    uPost:User, 

    locPre:Location, 

    locPost:Location, 

}{ 

    // Postcondition 

    uPre.(before.userlocation) = locPre 

    uPost.(after.userlocation) = locPost   

    locPre != locPost 

 

    // Frame conditions 

    uPre = uPost 

    uPre in before.users 

    locPre in before.locations 

    uPost in after.users 

    locPost in after.locations 

    … 

} 

 

9.2.3.2 Generating the snapshot sequence constraint.  

In this step, a snapshot sequence constraint is generated in order to associate two consecutive 

snapshots with a transition. First, an Alloy ordering type is used to cast a set of states into a 
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sequence of states (e.g., open util/ordering[Snapshot] as SO). Second, an Alloy fact, traces, is 

defined to relate a snapshot to its next snapshot through a transition as shown below: 

open util/ordering[Snapshot] as SO 

fact traces { 

all s: Snapshot - SO/last |  

let s' = s.next | one t : Transition | 

t.before = s and t.after = s'} 

 

9.2.3.3 Generating Alloy predicates for criteria.  

In this step, the scenario coverage criteria are translated to Alloy predicates. Each operation 

sequence criterion is translated to an Alloy predicate. In the example, the scenario operation 

sequence pattern contains five operations: User::CreateSession(), User::AssignRole(), 

Session::ActivateRole(), User::UpdateLocation() and Session::CheckAccess().  

The pattern is transformed to an Alloy predicate as below:  

pred operation_pattern1 {  

one s: Snapshot - SO/last | let s0 = s | let s1 = SO/next[s0] |  

let s2 = SO/next[s1] | let s3 = SO/next[s2] |  

    let s4 = SO/next[s3] | let s5 = SO/next[s4] | 

one t1: User_CreateSession_Transition,  

    t2 : User_AssignRole_Transition,  

t3 : Session_ActivateRole_Transition,  

t4 : User_UpdateLocation_Transition,  

t5: Session_CheckAccess_Transition |     

 t1.before = s0 and t1.after = s1 and 

 t2.before = s1 and t2.after = s2 and  

 t3.before = s2 and t3.after = s3 and  

 t4.before = s3 and t4.after = s4 and  

 t5.before = s4 and t5.after = s5} 
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Each structural coverage criterion is translated to a predicate in the operation pattern 

generated above. For example the following structural coverage criterion: 

#User = 1 and #Location = 2 and #Role = 1 and 

#Role.permissions = 1 and 

User.Loc  <> Permission.roleLocs  

is translated to predicates on s4 in operation_pattern1: 

#s4.users = 1 and #s4.locations = 2 and #s4.role = 1 and  

#s4.rolepermission = 1 and  

(s4.users).(s4.userlocation)  

!= (s4.permissions).(s4.permrolelocation) 

 

Each operation coverage criterion is translated to a predicate in its corresponding Transition 

signature. For example, the following operation coverage criterion: 

behavior context:  User::AssignRole(r:Role)  

precondition includes: self.loc.In(r.assignLocs)  

is translated to the following predicate in User_AssignRole_Transition: 

uPre.(before.userlocation) in rPre.(before.roleassignlocation) 

 

9.2.3.4 Generating Alloy snapshot transitions.  

By running the alloy predicates, we will get a set of snapshot transitions. For example, one 

possible snapshot before and after the transition specified by User_UpdateLocation_Transition is 

shown in Fig. 9.4 and Fig. 9.5. In the before snapshot, the user is at Location0, and the user 

location is included in role assign location and role activation locations of the role, thus the user 

has permission of operation on the object. In the after snapshot, the user location is updated to 

Location1, and Location1 is not included in role assign and activation locations, so that 

Session::CheckAccess() should return false after this user location update.  
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If we check the Session_CheckAccess_Transition snapshot transition against the original 

snapshot transition model, we will find that it is not consistent with the snapshot transition 

model. The reason is that the Session::CheckAccess() operation specification in the design model 

does not check whether the role is still enabled after the user changes location. If we add the 

conditions below (shown in bold text) to the specification, it will resolve the inconsistency: 

 
 

Figure 9.4. Snapshots before User_UpdateLocation_Transition 
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Figure 9.5. Snapshots after User_UpdateLocation_Transition 
 

context Session::CheckAccess(t:Object, o:Operation):Boolean  

pre: true  

post: result = self.GetActiveRoles() 

->exists( r | self.user.loc.In(r.assignLocs) and  

self.user.loc.In(r.actLocs) and  

r.GetAuthorizedPermissions()->exists (p | p.object = t and 

p.operation = o and  

self.user.loc.In(p.roleLocs) and o.loc.In(p.objLocs))) 
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Chapter 10 

Conclusions and Future Work 

This chapter summarizes the dissertation. Section 10.1 describes contributions of the 

dissertation. Section 10.2 reviews and answers research questions. Section 10.3 discusses future 

work.  

10.1 Contributions 

This main contribution of the dissertation is a lightweight and static technique for analyzing 

UML design class models. A UML design class model is analyzed against a set of scenarios that 

describe desired or undesired behaviors created from the verifier’s perspective. The analysis 

technique is lightweight because it analyzes functionality specified in a UML design class model 

within the scope of a set of scenarios. It is static because it does not require that the UML design 

class model be executable. The technique does not transform UML design models to other 

formal notations such as Alloy, the analysis is done by leveraging existing UML structural 

analysis tool USE.  

The technique is a consistency checking technique. Inconsistencies imply errors in the UML 

design class model, errors in the scenarios or errors in both the UML design and scenarios. It is 

up to the modeler and the verifier to analyze the inconsistencies, find the cause of the 

inconsistencies and resolve the inconsistencies. After the design error is identified and fixed, the 

technique can be used to check whether the inconsistencies have been resolved in the updated 

UML design and scenarios.  
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The dissertation presents a Scenario-based UML Design Analysis tool developed using 

Kermeta and Eclipse Modeling Framework. The tool can be used to transform Ecore design class 

model to a USE snapshot transition model, and transform scenarios to snapshot transitions that 

can be input to USE.  

We used the Scenario-based UML Design Analysis technique to analyze two UML design 

class models: a Train Management System model and a Generalized Spatio-Temporal RBAC 

model. The case studies show how the technique can be used to check inconsistencies between 

the UML design class models and scenarios.  

We performed a pilot study of two design class models to evaluate the effectiveness of the 

Scenario-based UML Design Analysis technique. In the pilot study of two UML designs, the 

technique uncovered at least as many design inconsistencies as manual inspection techniques 

uncovered, and the technique did not uncover false inconsistencies. The pilot study shows the 

technique seems to be effective.  

The dissertation presents two scenario generation techniques. These techniques can be used 

to ease the manual effort needed to produce scenarios. Based on the verifier’s operation 

definitions the scenario generation techniques can be used to automatically generate a family of 

scenarios that conform to patterns of operation sequences.  

10.2 Discussions of research questions 

This section reviews and answers five research questions and discusses open issues of the 

research.  

Research question 1: How can a scenario be checked against a UML design class model?  
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The technique is used to (1) transform a UML design class model to a snapshot transition 

model that captures valid state transitions, (2) transform scenarios to snapshot transitions and (3) 

check whether the snapshot transitions are instances of the snapshot transition model using USE.  

Research question 2: Can existing structural analysis tools such as USE be leveraged to 

support scenario-based analysis of class models?  

Existing UML analysis tools such as USE can be used to check whether a snapshot is an 

instance of a UML design class model. The technique leverages existing USE tool to check 

whether the snapshot transitions transformed from scenarios are instances of the snapshot 

transition model.   

Research question 3: How effective is the Scenario-based UML Design Analysis technique 

in terms of the number of design inconsistencies that can be uncovered?  

The pilot study of two design class models shows that the Scenario-based UML Design 

Analysis technique seems to be effective, as it uncovered at least as many design inconsistencies 

as manual inspection techniques uncovered and it did not uncover any false inconsistencies. Due 

to the lack of graduate students to create scenarios and manually inspect design inconsistencies, 

we cannot control the number of students and number of UML designs in the pilot study. A 

formal controlled experiment is desired to further evaluate the technique.  

Research question 4: Can scenarios be automatically generated?  

Scenarios can be automatically generated. Chapter 8 and 9 presents two scenario generation 

techniques. The verifier needs to define operation definitions that specify effects of operations 

and operation sequence patterns. The scenario generation techniques can be used to 

automatically generate a family of scenarios that conform to the scenario coverage criteria. The 

criteria are defined by the verifier based on his or her domain knowledge and experience.  
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However, it is a challenging problem to generate just enough number of scenarios that cover 

a UML design. The scenario generation techniques discussed in this dissertation are an initial 

attempt to solve this issue.  

Research question 5: Can the technique be scaled to analyze large industrial design models? 

Based on the algorithm complexity analysis in section 4.5, the complexity of snapshot 

transition model generation algorithm depends on the size of the UML design class model and 

the complexity of OCL operation constraints, and the complexity of snapshot transitions 

generation is proportional to the number of instances in a scenario. The complexity to check 

consistency between snapshot transitions and the snapshot transition model in USE depends on 

the number of operations in a scenario, number of instances in the before and after snapshot and 

complexity of invariants in the snapshot transition model.  

Table 10.1. Time analysis of model transformation 
 

Scenario Time (seconds) 

Scenario 1 (TMS) 71 

Scenario 1 (GSTRBAC) 39 

Scenario 2 (GSTRBAC) 50 

Scenario 3 (GSTRBAC) 78 

Scenario 4 (GSTRBAC) 78 

Scenario 5 (GSTRBAC) 54 

Scenario 6 (GSTRBAC) 84 

Scenario 7 (GSTRBAC) 64 

Scenario 8 (GSTRBAC) 53 

Scenario 9 (GSTRBAC) 70 

Scenario 10 (GSTRBAC) 69 

Scenario 11 (GSTRBAC) 119 

Scenario 12 (GSTRBAC) 72 
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Table 10.1 shows time taken to transform the UML design class model to snapshot transition 

model and to transform each scenario in the pilot study to snapshot transitions. The time taken to 

run USE commands to build the snapshot transitions in USE of these scenarios is about 2-3 

seconds. The time was measured on a laptop with Intel ® Core ™ 2 Duo CPU T6600 2.20GHz 

processor and 4GB physical memory. The laptop ran Windows 7 Home Premium operating 

system, Eclipse SDK Version 3.5.0, KerMeta Version: 1.3.2 and USE 3.0.1.  

The complexity analysis and time analysis shows that the technique can possibly be used to 

analyze larger UML designs and scenarios. Future work is required to analyze and optimize the 

analysis of large industrial models.  

Open issue 1: What kinds of design errors can be uncovered using legal/illegal scenarios?  

The technique is a consistency checking technique. A legal scenario is supposed to be 

consistent with the UML design, and an illegal scenario is supposed to be inconsistent with the 

UML design.  

Based on our study, illegal scenarios are typically used to identify weak pre-condition error 

and weak post-condition error. These two types of design errors can not be identified by legal 

scenarios, because the weak pre/post conditions are still consistent with the legal scenarios. For 

other types of design errors such as strong pre-condition (i.e., the pre-condition is too strong so 

that some valid inputs are treated as invalid) and unsatisfiable post-condition (i.e., the 

post-condition is too strong so that it can not be satified), the verifier can create illegal scenarios 

to identify such errors, but it seems more straightforward to create legal scenarios to identify 

such design errors.  

Future work is required to study how different types of design errors can be uncovered by 

inconsistencies identified using legal and illegal scenarios.  
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Open issue 2: Should the verifier mark which part of an illegal scenario is illegal? 

It is not required for the verifier to mark which part of an illegal scenario is not legal for 

consistency checking purpose. However, to help identifying design errors from inconsistencies 

between an illegal scenario and a UML design, it is recommended that the verifier specifies 

which part of an illegal scenario is not legal.  

10.3 Future work 

We studied two demonstration UML designs. Future work should study more complicated 

industrial UML designs. We need to optimize the snapshot transition model in case the 

generation of snapshot transition model or USE consistency check becomes a bottleneck in 

analyzing large industrial models.  

We need to further study how different types of design errors are identified from 

inconsistencies uncovered using legal and illegal scenarios.  

In the pilot study two graduate students manually reviewed the UML designs and scenarios. 

And we studied 13 scenarios of two UML designs. In the future work of formal controlled 

experiment, larger number of graduate students should be invited and trained to do manual 

inspection. The controlled experiment should study more scenarios and UML designs, and more 

design inconsistencies should be seeded.  

An effective scenario generation strategy is still open for future research. One future 

direction is to study how to produce legal and illegal scenarios to cover every branch of OCL 

operation constraints.  
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