DISSERTATION

A SCENARIO-BASED TECHNIQUE TO ANALYZE UML DESIGN CLASS MODELS

Submitted by
Lijun Yu

Department of Computer Science

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado

Spring 2014

Doctoral Committee:
Advisor: Robert B. France

Indrakshi Ray
Sudipto Ghosh
Yashwant Malaiya
Dan Turk

Copyright by Lijun Yu 2014

All Rights Reserved

ABSTRACT

A SCENARIO-BASED TECHNIQUE TO ANALYZE UML DESIGN CLASS MODELS

Identifying and resolving design problems in the early design phases can help reduce the
number of design errors in implementations. In this dissertation a tool-supported lightweight
static analysis technique is proposed to rigorously analyze UML design class models that include
operations specified using the Object Constraint Language (OCL). A UML design class model is
analyzed against a given set of scenarios that describe desired or undesired behaviors. The
technique can leverage existing class model analysis tools such as USE and OCLE. The analysis
technique is lightweight in that it analyzes functionality specified in a UML design class model
within the scope of a given set of scenarios. It is static because it does not require that the UML
design class model be executable.

The technique is used to (1) transform a UML design class model to a snapshot transition
model that captures valid state transitions, (2) transform given scenarios to snapshot transitions
and (3) determine if the snapshot transitions conform or not to the snapshot transition model. A
design inconsistency exists if snapshot transitions that represent desired behaviors do not
conform to the snapshot transition model, or if snapshot transitions representing undesired
behaviors conform to the snapshot transition model.

A Scenario-based UML Design Analysis tool was developed using Kermeta and the Eclipse
Modeling Framework. The tool can be used to transform an Ecore design class model to a
snapshot transition model and transform scenarios to snapshot transitions. The tool is integrated

with the USE analysis tool.

1

We used the Scenario-based UML Design Analysis technique to analyze two design class
models: a Train Management System model and a Generalized Spatio-Temporal RBAC model.
The two demonstration case studies show how the technique can be used to analyze the
inconsistencies between UML design class models and scenarios.

We performed a pilot study to evaluate the effectiveness of the Scenario-based UML Design
Analysis technique. In the pilot study the technique uncovered at least as many design
inconsistencies as manual inspection techniques uncovered, and the technique did not uncover
false inconsistencies. The pilot study provides some evidence that the Scenario-based UML
Design Analysis technique is effective.

The dissertation also proposes two scenario generation techniques. These techniques can be
used to ease the manual effort needed to produce scenarios. The scenario generation techniques
can be used to automatically generate a family of scenarios that conform to specified scenario

generation criteria.

111

ACKNOWLEDGEMENTS

I am thankful to a lot of people who are helpful to me in my life and Ph.D. study. Without
their patient help and support, I would not have been able to complete my dissertation.

First of all, I owe special thank to my advisor, Dr. Robert B. France for his guidance,
inspiration and patience. | am very grateful to his dedication and flexibility when I have to work
part-time and later remotely on my research. | would like to thank Dr. Indrakshi Ray for always
supporting and advising me. I’d like to thank my research committee members Dr. Sudipto
Ghosh, Dr. Yashwant Malaiya and Dr. Dan Turk for their advice. I’d like to thank Dr. Phillip
Chapman from the Department of Statistics and Dr. Tao Yue from Simula Research Laboratory
for advising me in the pilot study.

I would like to thank the National Science Foundation for sponsoring research project "SHF:
Small: Scenario-Based Validation of Design Models" under grant #1018711. I"d like to thank
Wuliang Sun and Kayle Hoehn for their excellent work in implementing the tool and resolving
major issues in implementation. I’d like to thank Mustafa Al-Lail, Mohammed Al-refai and Sai
Mandalaparty for their help in the pilot study.

I would like to thank the graduate committee and Dr. Dale Grit who accepted me to the Ph.D.
program and granted me assistantship. I’d like to thank Carol Calliham for helping me apply to
the program. | would like to thank Sharon Van Gorder and all other people in the department
who have helped me in my study.

Finally, I am grateful to my wife, Li Huang, for her love and support. I thank her for
accompanying and encouraging me during my hard time. I’d like to thank our daughter Annie
and Emily for giving us a lot of happiness. I’d like to thank my parents for their unselfish love,

and my brother and sister for their love and support.

v

DEDICATION

This dissertation is dedicated to my wife.

TABLE OF CONTENTS

(O8N o = TSP 1
INTRODUGCTION .ttt ittt ettt ettt ettt ettt e ekt e ekt e ekt e ek et e e a ke e e e sk et e am b e e e em b e e e as b e e e e mb e e e nbe e e nneeennes 1
1.1 ProbIem STAEMENT ..o 1
1.2 OULIINE OF SOIULION ... 4
1.3 SCOPE OF RESEAICN ... 6
1.4 DiSSertation OrgaNnIZATION..........ccc.oviriiiriieieiisieiseisees sttt 6
CHAPTER 2.1ttt sttt bbbttt b e bbbt bt bt e bR e b et b e bt e b e e bt e bt e b e st et et e et e b et e nreenes 8
BACKGROUND.......cctittiteiitie ettt ettt ab e ekt e e e kbt e e kbt e e be e e ek b e e e abe e e embe e e asbe e e nnbeeeanbeesbneeaa 8
2.1 The Unified Modeling LAnQUAGE. ..o 8
2.2 The Meta-ODBJECE FACTIITY........cc.oiri s 13
2.3 The Eclipse Modeling Framework and ECOF€............cc.cociveeiiececisieeeeee e 14
2.4 The Kermeta Metamodeling LANQUAGE ..o 15
(O8N o = USROS RO TP 17
RELATED WORK ..ottt ettt ekt e ekt e ekt e ettt e st eenb e e e snb e e e nnb e e e nnbeeenneas 17
3.1 Formal analysiS tECNIQUESccoovuiiiiieicceeeee e 17
3.2 UML animation @nd tESTING ..ottt 20
BB USE QNA OCLE ... 22
3.4 UML test input and SCENArio GENETATIONo.coiiiiriicieeicseesss s 22
CHAPTER 4.ttt sttt h ettt bbbt E e Rt e Rt e st et et e e b bt e bt e bt e Rt e ne et e b e nbenbenbenbeareas 25
SCENARIO-BASED UML DESIGN ANALYSIS TECHNIQUEccciiiivieeeiiieeeeecitreeeesevreeeesenteeeessvseeeeenns 25
4.1 A simple Role-Based Access Control eXxample ..., 26
4.2 Generating the Snapshot Transition MOel ... 29
4.3 Generating Scenario SNapshot TranSItioNS............cccccueiiccicieeeeeee e 40
4.4 Checking CONSISIENCY 1N USE ..ottt 41
4.5 Algorithm complexity @NalYSIS..........cccovioiiiieciiieeeeeeee e 42
CHAPTER Dttt ettt ettt h et e ekt e e at e e e bt e e R bt e b e e e Rt e e ebe e em b e e ebeeenbeenneeenbeenbeeenbeens 45
IIMPLEMENTATION L.ttt ettt ekttt ettt ettt ekt e ke e she £ ekt e e be e ekt e nhe e et e e e be e et e e nbeeenneennneanneens 45
5.1 TOOI AICRITECIUIE ... 45
5.2 The STM Generator and STM Invariant GeNerator ... 48
5.3 The SCENATTO GENEIALON ...t 56
5.4 USE CONSISLENCY CRECK ... 61
CHAPTER B ...ttt ettt ettt ettt ettt h e e ab e et e e st e e e bt e e st e e b e e e Rt e e bt e e mb e e ebeeembeenneeenbeesbeeenbeens 63
DEMONSTRATION CASE STUDIESutiiteeitteeiie sttt aiee et e steessseesseessseasseeasseasseeasneesseesnseesseeanneenneesnns 63
6.1 The Train Management SyStem MOEl ... 63
6.2 The Generalized Spatio-Temporal RBAC MOElccccoooviiiieiiiecceee e 74
6.3 CONCIUSION ..o 91
CHAPTER 7 .ttt etttk ettt ekttt ekt 4 e e bt e oAt e £kt e e Rt e e b et e Rb e e b e e e Rt e e b e e emb e e nbeeenbeenbneanneens 92
PILOT STUDY ettt sttt sttt st et b e et h bt et e bt e e sbe e s b e e et e e e b e e e nteesbeeenbeenbeeenteenneeanes 92
7.1, EXPeriment PLANNINGccoooviiieicieieiesee e 92
7.2. Experiment results and @nalySiS ... 94
7.3. CoNCIUSION AN AISCUSSIONS ..ot 97
CHAPTER 8.ttt ettt ettt ettt s e b e e ab e e bt e e st e e bt e e st e e b e e e Rt e e nbeeen b e e ab e e anbeesbeeanbeenbeeanteeas 98
GENERATING SCENARIOS USING JAL OPERATION DEFINITIONS ...cctviiiieiieiiiesiieeiee e eiee e 98

vi

8.1 The scenario generation tECANIQUE ..o 98

8.2 An hierarchical RBAC eXaMPIE..........ccooviiiiiiiieceiseee s 103
8.3. Analyze HRBAGC CONSLIAINTS..........co.ovuiiiiiieiicsiecees s 108
LOT Y= =1 I T 112
GENERATING SCENARIOS USING OCL OPERATION DEFINITIONScovviiiiieeeisiiriieeee e e e svavnnens 112
9.1 The Location-aware Role-Based Access Control modelcc.ccovvvevvvceeecceeeeceeeeen 112
9.2 The scenario generation tECANIQUE ..o 115
LOT Y= =1 I O 128
CONCLUSIONS AND FUTURE WORK ...vviiiiiiiiiicitiieiee ettt et n e e s s st baae s s s e e s sababnaes 128
IO TR RO 0T 11 o111 [TR 128
10.2 DiscusSions Of reSEArCH QUESTIONS ..ottt 129
FO.3 FULUME WOTK ...ttt sttt ettt 133
=T = L= N[0 =L 134

vil

LIST OF TABLES

Table 7.1. Formulation of the experiment ODJECHIVEcccveveiieiieie e 93
Table 7.2. TMS eXperiment FESUILSooiiiiiiieee s 95
Table 7.3. GSTRBAC eXPeriment FESUITSccveiieieeie ettt 95
Table 10.1. Time analysis of model transformationcccceoeieiinininiieee e 131

viil

LIST OF FIGURES

Figure 1.1: Scenario-based UML design analysis teChNIQUE...........ccevveieeieiiieseeie e 4
Figure 2.1. A car inventory application design class diagram...........ccoceveriririieieienene s 9
Figure 2.2. UML SEQUENCE QHAGIAMcuiiiiiieeieeieiteesie et e e e e e ssa e teeaessaesseenesneesneeneens 12
Figure 2.3. UML four-layer metamodeling architeCture............cccooeveiiiinininiccccc 13
Figure 2.4. Partial Ecore metamodelccoooiiiiiiioiicc e 14
Figure 4.1: Scenario-based UML design analysis teChNIQUE..............ccoeiiriiinieienc e 25
Figure. 4.2. Partial RBAC design class MOdelcccooieiieieie e 27
Figure 4.3. Partial RBAC class model and its snapshot transition modelcccccooevvrennnn. 31
Figure 4.4. Assign Accountant role snapshot tranSition............cccceeveeiveieiieesieeie e 41
Figure 5.1. Overview of the Scenario-based UML Design Analysis toolcccccereniiinnnnnne 46
Figure 5.2. RBAC Ecore design class diagram (diagram VIEW)..........c.ccceveereeieiieeieesesieseennens 48
Figure 5.3. RBAC Ecore design class diagram (tre€ VIEW)cccooererereninienieeiee e 49
Figure 5.4. RBAC Ecore snapshot transition diagram...........ccceceeeeireieiieesieese s see s 50
Figure 5.5. Snapshot transition model generation algorithm ..o 51
Figure 5.6. OCL operation specification transformation main algorithm................c.cccccoeeeens 54
Figure 5.7. USE snapshot transition MOdel.............cccooiiiiiiiiiiiec e 55
Figure 5.8. Explicit specification of an RBAC SCENAII0.........cccecvveieeiiieiiiieie e 57
Figure 5.9. Metalmodel of the action specification Ianguageccocovviiiiieiennen e 58
Figure 5.10. Action specification of an RBAC SCENAIIO.........ccccccveiieiiieieiieie e 59
Figure 5.11. USE SNapshOt tranSitioNScocueiierieiiiiiisieieiee et 61
Figure 5.12. USE consiStenCy CheCKING........ccoveiiiiiiiiecicc et 62
Figure 6.1. TMS design Class diagramccooeiiiiiiiiieeee e 65
Figure 6.2. TMS SNAPSNOt L1cooiiiiieiecie sttt et e ae e ste e sneesae e e 68
Figure 6.3. TMS SNAPSNOT L.2......cuiiiiiiiiiieieeiee ettt 69
Figure 6.4. TMS SNAPSNOL L.3.....c.oiiiiiieie ettt et e e v ste e nesreenre e e 70
Figure 6.5. TMS SNAPSNOT 2.1......c.uiiiiiiiiiiiieeeie bbbttt 71
Figure 6.6. TMS SNAPSNOL 2.2......c..iiiiiieiece sttt et e e steenesreesaeere s 72
Figure 6.7. TMS SNAPSNOT 2.3 ...ttt bbb 73
Figure 6.8. GSTRBAC design class diagram — mMain VIEWcccevveiieiieieere e 75
Figure 6.9. GSTRBAC design class diagram — SOD VIEWcccooceiiiininininieiee e 76
Figure 6.10. GSTRBAC SNAPSNOt 1.1c.oiiiiiieeiece sttt 80
Figure 6.11. GSTRBAC SNAPSNOL 1.2oiuiiiiiieieieiee et 81
Figure 6.12. GSTRBAC SN@PShOt 1.3ooieieiiece ettt 82
Figure 6.13. GSTRBAC SNAPSNOL 2.1oiuiiiiiieieie ittt 83
Figure 6.14. GSTRBAC SNAPSNOL 2.2cviiiiie ettt 84
Figure 6.15. GSTRBAC SNAPSNOL 2.3ouiiiiiiiieie ittt 85
Figure 6.16. GSTRBAC SNAPSNOL 2.4c.vviiiieiie ettt 86
Figure 6.17. GSTRBAC SNAPSNOL 2.5 ..ottt 87
Figure 6.18. GSTRBAC inconsistencies in sSNapshot 2.5ccccoviiieiiiciic e 88
Figure 6.19. GSTRBAC SNAPSNOL 3.1 ..ottt 89
Figure 6.20. GSTRBAC SNAPSNOL 3.2ociiiciie ettt 90
Figure 6.21. GSTRBAC SNAPSNOL 3.3ottt 91
Figure 7.1. Histogram of eXperiment reSUILSccooiiiiieiii e 96

X

Figure 8.1. Scenario generation algorithm ... 102

Figure 8.2. Hierarchical RBAC design class model...........ccccoooiveiiiiiiciie e 103
Figure 9.1. The LRBAC UML design Class diagramccceoverereniiinenisieeeeese e 113
Figure 9.2. Generating tranSition SEQUENCES.ciuviieieeieiiesieesiesee e estesaesreeseesseesreeseesseeses 116
Figure 9.3. The analysis OPeration SEQUENCEccooeiiririeieieiiesie sttt 118
Figure 9.4. Snapshots before User_UpdateLocation_Transition...........ccccceevvevveveieeseeresnene. 126
Figure 9.5. Snapshots after User_UpdateLocation_Transitionccceeveveeieiencnencnennnn 127

Chapter 1

Introduction

1.1 Problem Statement

The Unified Modeling Language (UML) is the de-facto standard object-oriented modeling
language [UML]. UML class models are often used by developers to describe object-oriented
software designs [Whittle03]. Software design is a creative and labor-intensive process and thus
there are opportunities for introducing errors into UML design class models. Design errors
should be identified and resolved as early as possible because these errors may be much more
costly to fix in later software development phases [Blum92] [Boehm81]. There is a need for
analysis tools and techniques that uncover errors in UML design class models.

A UML design class model can be used to describe two aspects of a software design:
structure and functionality. The structural aspect of a software design is described in terms of
classes, relationships between classes, and class invariants. Functionality is described using
operation specifications. Operation specifications and class invariants can be expressed in the
Object Constraint Language (OCL) [OCL].

Existing UML structural analysis tools such as OCLE [OCLE] and USE [USE] can be used
to check if an object configuration, called a snapshot, conforms to a class model. However,
OCLE does not provide any support for analyzing operation specifications and USE can only be
used to analyze operation specifications by simulating behavior of operations in an interactive

mode.

Formal analysis tools such as the Alloy [Alloy] can be used to find counter-examples that
violate certain constraints within the scope of a limited number of objects. Formal model
checking tools [Clark99] do exhaustive search in a constrained state space to check whether a
given property is satisfied or not. However, to analyze UML design class models using Alloy or
model checking tools, we need to transform UML design models to the Alloy or the notation of
model checking tools. The verifier should be familiar with the Alloy language and the notation of
a model checking tool. Furthermore, one has to prove the correctness of the transformations in
order to trust the analysis results. This can be difficult in practice.

Formal theorem proving tools such as Isabelle can be used to formally reason about modeled
properties in an interactive manner [Brucker08]. However, to analyze UML design class models
using theorem proving tools the verifier must be familiar with formal notations and proof
strategies used by the tools.

Analyzing all behaviors specified in UML design class models can be expensive. Sometimes
all that is desired is to check a subset of behaviors. This dissertation proposes a lightweight
analysis technique called Scenario-based UML Design Analysis that allows modelers to analyze
UML design class models against functionality described by a set of scenarios, where a scenario
1s an execution trace that consists of an initial system state and a sequence of operation calls and
system states after each operation call.

The research aims at answering the following questions:

1. How can a scenario be checked against a UML design class model? Some scenarios describe
desired functionalities, others describe undesired functionalities. The technique should be
able to check that the UML design class model is consistent with the former and inconsistent

with the latter.

2. Can existing structural analysis tools such as USE be leveraged to support scenario-based
analysis of UML design class models? Existing structural analysis tools can be used to check
the consistency between a UML class model and a snapshot. It will save a lot of effort if we
can leverage existing UML analysis tools in building support for scenario-based analysis.

3. How effective is the Scenario-based UML Design Analysis technique in terms of the number
of design inconsistencies that can be uncovered? The technique should be at least as effective
as human beings in identifying design inconsistencies.

This research work starts to explore answers to the following two questions, but more work
is needed:

4. Can useful scenarios be automatically generated? Scenario creation is time consuming. An
automatic scenario generation technique can ease the scenario creation task.

5. Can the Scenario-based UML Design Analysis technique be scaled to analyze large industrial
models?

The technique is lightweight because it aims to uncover design errors within the scope of a
set of scenarios. It does not attempt to explore all possible scenarios covered by a UML design.
The technique is static because it does not require that the UML design class model be
executable. The technique provides a less expensive and less exhaustive alternative to more
heavyweight analysis techniques. It is less expensive in that modelers need only be familiar with
UML and do not have to put effort into learning and using sophisticated formal languages and

proof techniques.

1.2 Outline of Solution

An overview of the Scenario-based UML Design Analysis technique is shown in Fig. 1.1.
There are two roles involved in the Scenario-based UML Design Analysis process: designer and
verifier. The designer creates a UML design class model that includes OCL operation
specifications, and operation scope specifications which specify the set of classes, attributes and
links that are changed by each operation. The verifier creates a set of scenarios that will be used
to analyze the UML design.

In this dissertation a scenario describes an execution trace. It consists of an initial system
state (smapshot) and a sequence of operation calls. Formally, a scenario is a sequence

(So0,0P4, Sy,...,0Pn, Sn) where OP1,0Px,...,OPn is a sequence of operation calls with actual

parameters, Si is the system state before operation OPi is executed and Si+1 is system state
after the operation OPi is executed.
A scenario can be legal or illegal: a legal scenario describes functionality that is desired,

while an illegal scenario describes functionality that is not desired.

UML Design Class Model

OCL Operation
specifications and
invariants

Step 1

Snapshot

Model Transformation Transition
Model

Consistency Analysis

Class diagrams

Operation scope
specifications

Step 2

Legalillegal Snapshot
Scenarios Snapshot Generation Transitions

Figure 1.1: Scenario-based UML design analysis technique

Designer

Inconsistencies

Verifier

4

The technique consists of three major automated steps.

e In the first step, the UML design class model is automatically transformed to a snapshot
transition model. A snapshot transition model is a UML class model that specifies valid
snapshot transitions, that is, all valid changes to object configurations (snapshots)
triggered by the execution of operations. A snapshot transition describes the effects of an
operation invocation on a system state. A snapshot transition consists of (1) the name and
parameter values of the operation that triggers the transition, (2) a before-snapshot
describing the state of the system before the operation is executed, and (3) an
after-snapshot describing the state of the system after the operation has been executed.

e In the second step, scenarios created by a verifier are used to generate a sequence of
snapshot transitions that describe desired or undesired functionality from the perspective
of the verifier. The verifier marks scenarios as legal or illegal.

e In the third step, the snapshot transitions produced in the second step are checked against
the snapshot transition model to determine whether the snapshot transitions are consistent
with the snapshot transition model. This check can be done by the UML structural
analysis tool, USE. The output of the scenario-based UML design analysis technique is a
set of inconsistencies. These inconsistencies are reported in the form of class invariant
violations. An inconsistency between the UML design class model and scenarios implies
defects in the UML design class model or defects in the scenarios.

In addition to the Scenario-based UML Design Analysis technique, this dissertation

discusses two scenario generation techniques that automatically generate scenarios from
operation invocation patterns and operation definitions. Each pattern describes all possible

operation sequences and operation definitions describe effects of operations in the scenarios.

1.3 Scope of Research

The Scenario-based UML Design Analysis technique assumes that operations are invoked
sequentially and thus it cannot be used to analyze parallel and concurrent behaviors. The analysis
of such behaviors is not in the scope of this research.

The analysis technique is a consistency checking technique. It is up to the verifier and
developer to determine the source of inconsistencies. It is also up to the verifier and developer to
change the UML design or scenarios based on the inconsistencies found by the technique.

The Scenario-based UML Design Analysis technique cannot be used to determine whether a
scenario is effective or not to identify defects in the UML design. The verifier is responsible for
creating scenarios of interest to analyze the design.

The scenario generation techniques cannot be used to determine whether enough scenarios
have been generated. It is a hard problem to generate enough scenarios for scenario-based
analysis, because the technique has to select a small number of scenarios that can effectively
uncover design defects from a huge state space of all possible scenarios of the UML design class
model. The scenario generation techniques discussed in this dissertation are an initial attempt to

automating the generation of scenarios.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows:
e Chapter 2 presents the background needed to understand the analysis technique.
e Chapter 3 surveys related work in analysis and testing of UML design models.

e Chapter 4 describes the Scenario-based UML Design Analysis technique.

Chapter 5 describes the implementation of the Scenario-based UML Design Analysis
tool.

Chapter 6 describes two demonstration case studies of the Scenario-based UML Design
Analysis technique.

Chapter 7 discusses pilot study for evaluating the technique.

Chapter 8 and 9 discuss two scenario generation techniques.

Chapter 10 concludes the dissertation and discusses future work.

Chapter 2

Background

This chapter provides background information needed to understand the research presented
in this dissertation. Section 2.1 gives an overview of UML design class diagrams, the Object
Constraints Language and UML sequence diagrams. Section 2.2 describes the Meta-Object
Facility. Section 2.3 describes the Eclipse Modeling Framework and the Ecore metamodel.

Section 2.4 discusses the Kermeta model transformation language.

2.1 The Unified Modeling Language

The Unified Modeling Language (UML) is the de-facto standard object-oriented modeling
language for modeling software systems [UML]. UML specifications are developed and
maintained by the Object Management Group (OMG). UML is a set of modeling notations for
describing static structures and behaviors of software systems. This dissertation uses UML v2.4.

The UML 2.4 specification defines seven structural diagrams: class, object, composite
structure, profile, package, component and deployment diagrams. It also defines four kinds of
behavioral diagrams: user case, activity, state machine and interaction diagrams.

In this research, we use UML class models, UML object diagrams and UML sequence
diagrams. A UML design class model consists of (1) a UML design class diagram that describes
the structure of software systems, and (2) class constraints including class invariants and
operation constraints specified using the Object Constraint Language. An object diagram

describes a configuration of objects. It is also called instance diagram because it is often intended

to be an instance of a class diagram. In this research, object diagrams are used to represent

system states and are called snapshots.

2.1.1 UML Design Class Diagram

A UML design class diagram describes classes of the object-oriented software systems, class
properties and class operations, and relationships between classes. Fig. 2.1 shows an example of
a UML design class diagram of a car inventory application.

A class describes a family of objects that have common attributes, operations and constraints.
An attribute has a name and a type. Properties relate an instance of the class to a value or
collection of values. An operation defines a service that can be executed on each instance of a

class. An operation has a name, return type and a list of parameters.

Vehicle
Inventory 1 *

-numSeats : int

K>—————>-numDoors : int

-vehicles ["VIN : string

+Add(in v : Vehicle)
+Delete(in v : Vehicle)

Car Truck

Figure 2.1. A car inventory application design class diagram
The generalization relationship indicates that a subclass is a specialization of another general
super-class. For instance, the car class is specialization of a vehicle class. A subclass inherits
properties of its super-class. The objects of a subclass are a subset of objects of its super-class. In
Fig. 2.1, Car and Truck are subclasses of the Vehicle class.
An association specifies links between objects. An association can have a name. The ends of
an association, called association-ends, have optional properties such as a name and multiplicity.

A binary association connects two classes. An association can be bi-directional or uni-directional.

9

A bi-directional association allows us to navigate from any one of the two classes to another. For
instance, the association between student and course is bi-directional, we can navigate from a
student object to courses or navigate from a course object to students. A uni-directional
association only allows us to navigate from only one class to another. For instance, the
association between an employee and address class is uni-directional, we can only navigate from
an employee object to an address object.

An aggregation is a special type of association. It represents part-whole relationship between
two classes. For example, in Fig. 2.1 the Inventory class aggregates a Vehicle class. An inventory
object contains a number of vehicle objects.

A composition is a special type of aggregation. In a composition relationship the lifecycle of
the part class objects is dependent on the whole class objects. For example, the relationship
between a car class and an engine class is composition. A car object owns an engine object and

it will destroy the engine object when its lifecycle ends.

2.1.2 The Object Constraint Language
The Object Constraint Language (OCL) is a declarative formal constraint language for UML

[OCL]. An OCL expression queries objects. OCL describes the effects of an operation in terms
of conditions on the states before and after execution of the operation instead of how an
operation is executed to produce the effects. OCL is a typed language. OCL has basic built-in
types such as Boolean, Integer, String and Real, and it supports collection types such as Set, Bag,
Sequence and OrderedSet. OCL has operations to query collections. For example, there are two
boolean operations on collections: forAll and exists. The forAll operation return true if the

boolean expression specified by the operation is satisfied by all objects in the collection. The

10

exists operation returns true if the boolean expression specified by the operation is satisfied by at
least one object in the collection.

In this research OCL is used to specify class invariants and operations. OCL class invariants
are predicates that constrain all the objects of the class. The class invariants must be satisfied
after an object is constructed and after any public operation is executed.

For example, in the vehicle inventory model shown in Fig. 2.1, the invariants for the
Inventory class can be stated as below:

context Inventory
inv: self.vehicles->forAll (numSeats >= 2 and numSeats <= 5)
inv: self.vehicles->forAll (numDoors >= 2 and numDoors <= 4)

The invariants states that any vehicle object added to the inventory object should have at
least two seats and two doors, and at most five seats and four doors.

OCL operation specifications define the behavior of an operation by specifying the
conditions that must be satisfied before an operation is executed (pre-condition) and after the
operation is executed (post-condition).

For example, the Inventory.:Add operation specification is given below:

context Inventory::Add (v: Vehicle)
pre: not self.vehicles@pre->includes (v)
post: self.vehicles->includes (v)

The operation specification states that before the vehicle is added to the inventory, it should
not exist at the start of the operation, and after the operation is called the vehicle must be

included in the inventory.

2.1.3 UML Sequence Diagram

A UML sequence diagram is used to describe a sequence of interactions between roles and

objects. An object is a specific instance of a class. For example, Bob is an object of the Student

11

class. A role is a kind of object. For example, freshman is a role of the Student class. Each role or
object in the UML sequence diagram is represented as a lifeline. A role or an object interacts
with other objects by sending messages. A message sent to a receiving object represents an
invocation of an operation in the receiving object. A message can be synchronous or
asynchronous. The sender of a synchronous message is blocked from sending out another
message before it receives the response while the sender of an asynchronous message does not
have such a limitation. In this research we use synchronous messages only because the messages
that are covered by the analysis technique are public operation calls in primarily synchronous
programming languages such as Java. Combined fragments such as alternatives, options and
loops also give and describe an example of a sequence diagram that describes a scenario will not
appear in the analysis sequence diagrams.

Fig. 2.2 shows an example of a UML sequence diagram. In the diagram the AssignRole
operation is called to assign cashier Role to Bob. Bob activates the cashier role and finally calls

CheckAccess on the Session object and gets Denied response.

Bob:User :Session cashier:Role

AssignRole(cashier)

A

' ActivateRole(cashier)

CheckAccess

-

K—mmmmmmm = -

Figure 2.2. UML sequence diagram

12

2.2 The Meta-Object Facility

UML is a language that is used by developers to describe models of a system or software. A
user model is an abstraction of real-world objects (e.g., objects in the running software) and the
real-world objects are realizations of the model. The metamodel of UML describes the UML
syntax and well-formedness rules. The language used to describe the metamodel is a subset of
the UML called the Meta-Object Facility (MOF). The four layers described above form the
four-layer metamodeling architecture as shown in Fig. 2.3. The MOF layer is at the M3 layer, the

UML is at the M2 layer, the UML user model is at the M1 layer and the real-world objects are at

the MO layer.
Class
MOF
//1 /{\\ \\\\
// ! \\\ \\\
<<instanceOf<<instanceO<<instanceOf:<<instanceOf>>
// [AN RN
’ | N >SS
// ; AN \\\ ~
I N ~
// | AN N
’ | N S~
7 I N <
! <
Class Operation Association Attribute
UML P
metamodel
) //1 //1 //7
<<instanceOf>> 7 L s
\ < <instance0f$/> <<instanceOf>> <<instanceOf>>’
\\ 2 L //
\ / / -
\ 4 s e
\\ / // ///
Invehtory 7 :
Vehiele
UML User 7 / hole
del ’ ————<———-name : string
Mode +Add(in v : Vehicle)
+Delete(in Y : Vehicle) o
<<instanceOf>> <<instanceOf>>
I |
| |
| |
T T
i i
] L
real-world :Inventory :Vehicle : Vehicle
objects name : string = aVehicle

Figure 2.3. UML four-layer metamodeling architecture

13

The MOF consists of two main packages: the Essential MOF (EMOF) package and the
Complete MOF (CMOF) package. The EMOF is a subset of MOF that models classes with

attributes and operations.

2.3 The Eclipse Modeling Framework and Ecore

The Eclipse Modeling Framework (EMF) is a modeling framework for the Eclipse platform
[Steinberg09][EMF]. EMF is used to create, manipulate and validate models and to generate

source code from models.

EClassifier -eExceptions
O“*
AN
-eAllOperations EOperation -eParameters | Eparameter
&>
0..* 1 0.*
-eOperations 0.*x
EClass
v -name : String >
1
-eSuperTypes
1 -eReferenceType 0.* -eAttributes
EAttribute -eAttributeType EDataType
-name : String name : String
0..* -eReferences 1
EReference
-name : String -eOpposite

-containment : boolean
-lowerBound : int
-upperBound : int -1

Figure 2.4. Partial Ecore metamodel
The metamodel of EMF is called Ecore. Fig. 2.4 shows part of the Ecore metamodel. There
are four major entities in Ecore: EClass, EReference, EOperation and EAttribute:
e EClass models an EMF class. An EClass can inherit from multiple super classes.

14

e FEAttribute models an attribute of an Ecore class. An Ecore attribute has a name and data
type. An EClass object may have a number of attributes.

e EOperation models an operation of an Ecore class. An Ecore operation has a optional list
of parameters and exceptions. An EClass object may have an eOperations reference
representing operations of the class, and eAllOperations reference representing all
operations of the class and its super classes.

e FEReference models an association end of an Ecore class. The containment attribute of an
EReference indicates whether the reference is a whole-part containment relationship or
not. A containment reference in Ecore is comparable to a composition relationship in
UML.

Ecore is self-describing: The metamodel of Ecore is Ecore, Ecore is meta-model and a

meta-metamodel. Ecore is comparable to EMOF package of MOF.

This research uses the Ecore metamodel to implement the Scenario-based UML Design

Analysis tool on EMF platform.

2.4 The Kermeta Metamodeling Language

Kermeta is a metamodeling language that can be used to describe both structure and
behavior of metamodels [MullerO5] [Kermeta]. It is designed to be compliant with EMOF and
Ecore. EMOF only defines structures. Kermeta adds an action meta-language to EMOF that can
be used to define behavior of operations in metamodels. By weaving the executability into the
metamodels, Kermeta can be used to implement domain-specific meta-languages, constraint

languages and transformation languages. In this research, the language is used to implement a

15

transformation algorithm used to produce a snapshot transition model from a design class model,

and the snapshot generation algorithm.

16

Chapter 3

Related Work

This chapter describes related work in the areas of analysis and testing of UML design
models, and UML test scenario generation. Section 3.1 describes related work in analyzing UML
design models using formal analysis techniques. Section 3.2 describes related work in UML
animation and testing. Section 3.3 describes related work in UML static analysis tools such as
USE and OCLE. Section 3.4 describes related work in UML test input generation and scenario

generation.

3.1 Formal analysis techniques

This section surveys related work on formal analysis of UML models. Section 3.1.1
describes formal analysis of UML models using Alloy. Section 3.1.2 describes analysis of UML
models using model checking techniques. Section 3.1.3 describes analysis of UML models using

formal theorem proving techniques.

3.1.1 Alloy

Alloy is a formal notation based on set theory and first-order relational logic [Alloy]. Alloy
models structures of software systems using signatures. A signature can have fields and it can
inherit from a parent signature. A fact is a logical constraint that must be satisfied by the system.
An assertion is a constraint that is not necessarily true. Operations of the model are defined using
functions and predicates in a declarative manner. A function is an expression that maps a list of
parameters to output. A predicate is a parameterized constraint. A predicate can be used to define

an operation as a relation between before and after states.

17

Alloy can be used to automatically find a model that satisfies specified properties within a
bounded search space. To check a property, Alloy either generates a model to show that the
property is satisfiable, or finds a counter-example that violates the property.

Analyzing UML models using Alloy requires the transformation of UML models to Alloy
models. Existing work on UML2Alloy tool can be used to transform a UML class model to
Alloy [UML2Alloy]. However, the analysis of UML models in Alloy requires that the analyzer
be familiar with Alloy notation because the analysis results are shown in Alloy. Shah et. al.
extended the UML2Alloy work to transform analysis results back to UML [Shah09].

It is a challenging problem to prove the correctness of transformation from UML design
class model to Alloy and the transformations that exist do not cover all UML class modeling
concepts. As Shah et al. admitted, UML and Alloy have different approaches to object-oriented
concepts including inheritance, overriding and pre-defined types. Some UML and OCL concepts
such as redefinition, multiple inheritance and OCL bags cannot be represented directly in Alloy.
OCL nested collections cannot be transformed to Alloy because it is impossible to express

higher-order relations in Alloy.

3.1.2 Model checking techniques

Model checking is used to verify the design of a hardware or software system against a set of
temporal properties [Clark99]. Given a system model, a model checking technique decides
whether a desired property, expressed as a temporal logic formula, is satisfied or not in the model.
Propositional temporal logic is a branch of symbolic logic used to express propositions whose
values are dependent on time. There are two basic temporal operators in temporal logic: always

and eventually. There are two major types of properties that can be expressed using temporal

18

logic: a safety property is a property that is always true during any execution of the system, and a
liveness property is a property that is eventually true during execution.

To check a desired safety or liveness property, the model checker exhaustively searches the
state space of the structure. If the desired property is satisfied, it returns true, otherwise, it returns
a counter-example that shows how the desired property is violated.

Model checking has been applied to automate the verification of the safety and correctness
of finite state-based systems [Clark99]. There is work that aims to support model-checking of
UML behavioral models. vUML [Lilius99] is a tool that is used to automatically convert UML
statecharts to PROMELA specifications and then invoke SPIN to verify the desired properties
and check inconsistencies. Eshuis [Eshuis06] applied symbolic model checking to UML activity
models. The activity models are formalized and transformed to the input language of NuSMV
[NuSMV99]. The translations are used to check the data integrity constraints expressed in the
workflow described by the activity models. A transformation process is needed to convert the
UML specifications into the input language of the model checker.

The limitation of model checking techniques is that they suffer from state explosion problem
[Valmari98] [ClarkeO1]. Since model checkers exhaustively search the state space of a model to
verify temporal property, the state explosion can occur when the model contains many
components that make parallel state transitions [Clarke0O1]. There is ongoing work in the model
checking research community to alleviate the state explosion problem but it remains a major
problem in analyzing large industrial software systems.

In order to use model checking techniques to analyze UML class models, the models must
be transformed to the input languages of the model checkers. Thus the verifier must be familiar

with these notations to do formal analysis. Compared with these formal analysis tools, the

19

Scenario-based UML Design Analysis technique does not require that the verifier be familiar
with notations other than UML and OCL. Instead of doing heavyweight exhaustive analysis the
technique is lightweight because it analyzes UML design class models in the scope of a set of
scenarios. On the other hand, the technique presented in this dissertation cannot be used to
analyze temporal properties of UML design class model. There is ongoing research ay Al-lail et

al. on using snapshot transition models to support analysis of temporal properties [Al-Lail13].

3.1.3 Formal theorem proving technique
Formal theorem provers such as Isabelle can be used to reason about properties described in

UML models [Brucker08]. In the work of Brucker, et, al., an interactive proof environment for
UML/OCL models called HOL-OCL is developed on top of Isabelle, an interactive theorem
prover for Higher-Order Logic (HOL) [Isabelle02]. HOL-OCL can be used to formally analyze
UML models, for example, it can be used to check consistency between UML models, prove
temporal properties of UML models and prove a UML class model is refinement of another class
model.

In order to use formal theorem proving techniques to analyze UML class models, the verifier
must be familiar with the formal notations. Compared with the formal theorem proving
techniques, the Scenario-based UML Design Analysis technique does not require that the verifier

be familiar with the notations such as Isabelle in the analysis process.

3.2 UML animation and testing

The UML animation and testing approach (UMLANT) is used to systematically test
executable design UML design class models, that is, class models with executable method

descriptions. [Trung05]. In UMLAnT a UML design under test (DUT) is a detailed platform

20

independent model (PIM) described by UML design class diagrams, UML sequence diagrams
and method descriptions expressed in an action language called the Java Action Language (JAL).
The UML design also contains OCL specifications of operation behaviors. Test inputs are
exercised by the executable UML design model. A USE tool plugin is used to maintain object
configurations during the test and to check OCL constraints against the object configurations
generated during model execution. In UMLANT a sequence model must be provided in the
design to describe a test scenario. The sequence diagram is also used to define test criteria; i.e.,
to determine when enough test cases have been generated. Each scenario is triggered by a single
operation call referred to as a system operation.

The Scenario-based UML Design Analysis technique and UMLAnT are both UML
consistency checking techniques. The Scenario-based UML Design Analysis checks consistency
between UML design class model and scenarios, while UMLANT checks consistency between
UML operation specifications described in a design class model and UML operations described
using JAL. The Scenario-based UML Design Analysis is a static technique because it does not
execute the UML design model, while UMLANT executes test input sequences and operation
actions and check operation pre and post conditions before and after an operation is executed.

The Scenario-based UML Design Analysis technique complements UMLANT in analyzing
UML design class models. Before detailed operation actions are specified for a UML design, the
verifier can create scenarios to analyze the UML design. After detailed operation actions are

specified, UMLANT can be used to test the UML design against a sequence model.

21

3.3 USE and OCLE

Existing UML modeling tools like OCLE [OCLE] and USE [USE] provide support for
validating syntactic and structural properties. OCLE for example can detect syntactic errors in
models and syntax errors in OCL specifications. USE and OCLE can be used to check the
consistency between a UML design class model and an object model.

Neither of these tools can be directly used to analyze functionality in scenarios. OCLE does
not support analysis of operation specifications in class models against snapshots. The USE tool
can be used to validate pre and post-conditions of operations against snapshots in interactive
command mode, however, the verifier has to manually enter USE commands to build all
snapshots of a scenario. The process to manually build snapshots in USE is time-consuming and

error-prone.

3.4 UML test input and scenario generation

This section discusses related work in UML test input and scenario generation. Section 3.4.1
discusses UML animation techniques. Section 3.4.2 discusses UML test input generation

techniques.

3.4.1 UML animation techniques

Scenarios can be obtained by executing models to produce traces or by using constraint
solving techniques.

Oliver and Kent propose a technique to animate a UML design [Oliver99]. In their work
UML design class diagrams are animated by performing a sequence of actions on an initial
snapshot. An action is an operation call on an object with arguments. All possible execution

paths of the OCL post-condition of the operation is calculated. Each execution path is mapped to

22

operations on snapshots. After applying all execution paths on the snapshot a set of possible
after-states are generated. The after-states that violate the multiplicity constraints are discarded.
The final after-states are possible snapshots of the animation of the action.

In another piece of work Krieger and Knapp use a SAT solver to find new system state that
satisfies operation post-conditions [Krieger08]. In their work OCL post-conditions and class
invariants are translated to arithmetic formulas. A SAT solver Kodkod [Torlak07] is used to find
models that satisfy the arithmetic formulas.

In this research work scenarios are generated by either executing the verifier’s operational
definitions of operations using JAL or solving constraints based on the verifier’s OCL operation
definitions. None of the research work above can be used to execute JAL or UML actions to
generate scenarios. The work in [Krieger08] can be used to generate a next system state that

satisfies the verifier’s OCL object definitions but it does not generate complete scenarios.

3.4.2 UML test input generation techniques

There are a few research works that generate test sequences or scenarios from UML
requirements use cases.

Briand and Labiche proposed an approach to generate test data and test oracles from UML
analysis model for system testing [Briand02]. In their work, system test requirements are
automatically derived from UML analysis artifacts. Valid use case sequences are generated
based on use case sequential constraints described using activity diagrams. Use case sequences
can be interleaved and each use case may have use case variances which are described using a
decision table. The method depends on the verifier’s knowledge to select test cases from a large
number of interleaved use case sequences and use case variances. Also not all the use case and

use case variance sequences are feasible. In this work, a constraint solving technique is used to

23

find initial system state and system operation parameters for all feasible paths in the activity
model.

Nebut et. al. proposed a use-case driven approach to generate system test inputs [Nebut06].
In their work use cases are fully specified with pre and post conditions. Use cases are built into a
Use Case simulation and Transition System (UCTS). Valid instantiated use case sequences are
generated by exhaustively simulating the system. The limitation of the approach is that the space
of UCTS may be huge when many use cases can be applied at each step of simulation.

Kundu and Samanta use UML activity diagram that describes activity sequences inside one
use case to generate system test cases [Kundu09]. In their work the activity diagram is converted
to an activity graph and test sequences are generated from the graph based on different coverage
criteria.

The approaches describe above generate test sequences for testing code that implements
UML models. The approaches cannot be used to generate scenarios because the scenarios in this
research work include not only test operation sequences, but also states after each operation is

called.

24

Chapter 4

Scenario-based UML Design Analysis Technique

This chapter gives a description of the Scenario-based UML Design Analysis technique. An
overview of the Scenario-based UML Design Analysis technique is shown in Fig. 4.1. There are
two roles involved in the Scenario-based UML Design Analysis process: designer and verifier.
The designer creates a UML design class model that includes OCL operation specifications, and
operation scope specifications which specify the set of classes, attributes and links that are
changed by each operation. The verifier creates a set of scenarios that will be used to analyze the
UML design. A scenario describes functionality from the perspective of the verifier. It consists
of an initial system state, a sequence of operation calls, and system states after each operation
call. A legal scenario describes functionality that is desired and an illegal scenario describes

functionality that is not desired. The technique consists of three major steps as shown in Fig. 4.1.

UML Design Class Model

OCL Operation
specifications and
invariants

Step 1

Snapshot

Model Transformation Transition
Model

Consistency Analysis

Class diagrams

Operation scope

Designer specifications

Inconsistencies

Step 2

Snapshot
Snapshot Generation Transitions

Figure 4.1: Scenario-based UML design analysis technique

Legal/illegal
Scenarios

Verifier

25

In the first step, the UML design class model is automatically transformed to a snapshot
transition model, a UML class model that specifies valid snapshot transitions. A snapshot
transition describes system state changes triggered by an operation call, it consists of (1)
parameter values of the operation that triggers the transition, (2) a before-snapshot describing the
system state before the operation is executed, and (3) an after-snapshot describing the system
state after the operation has been executed.

In the second step, scenarios created by a verifier are used to generate a sequence of
snapshot transitions.

In the third step, the snapshot transitions produced in the second step are checked against the
snapshot transition model using the UML structural analysis tool, USE. USE reports a set of
inconsistencies in the form of class invariant violations. An inconsistency between the UML
design class model and scenarios implies defects in the UML design class model, or defects in
the scenarios, or defects in both the design class model and scenarios.

The rest of the chapter is organized as follows: Section 4.1 describes a partial RBAC design
class model that is used to illustrate the technique. Section 4.2 presents an algorithm for
transforming a UML design class model to a snapshot transition model. Section 4.3 describes
how scenarios are transformed to snapshot transitions. Section 4.4 describes how the USE tool is
used to check the consistency between the UML design model and the scenarios. Section 4.5

analyzes the complexity of the transformation algorithms.

4.1 A simple Role-Based Access Control example

Role-based access control (RBAC) is the de facto access control model used in commercial

organizations [FerraioloO1]. In RBAC, users are assigned to roles, and roles are associated with

26

permissions that determine what operations and data a user playing the role can access. The users
initiate sessions in which they activate a subset of roles assigned to them. The operations that a
user can perform in a session depend on the permissions associated with the activated roles.
Constraints can be specified on the RBAC model to prevent conflict of interest situations in an
organization. Specifically, there are two types of constraints: Static Separation of Duties (SSD)
and Dynamic Separation of Duties (DSD). These are defined as relationships between roles. SSD
requires that conflicting roles not be assigned to the same user. DSD imposes a more relaxed
requirement: It allows conflicting roles to be assigned to the same user, but does not allow
conflicting roles to be activated in the same session.

The part of the RBAC model used to illustrate the approach is shown in Fig. 4.2. This partial
RBAC model shows only the relationships between roles, users and sessions. The figure shows

only the elements used to illustrate the approach in this chapter.

User -user -sessions Session
— +Activate(in role : Role)
+Assign(in role : Role 1 * :
an() +CheckAccess(in role : Role) : Boolean
- * .
users -sessions *
* -activeRoles
Role
-assignedRoles *

Figure. 4.2. Partial RBAC design class model

The operation specifications of the RBAC model are given below:

context User::Assign(role:Role)

// pre-condition: role is not included in assigned roles of the user
pre: self.assignedRoles->forAll(r | r <> role)

// post-condition:

// role is included in assigned roles of the user

27

// and all other assigned roles remain assigned to the user
post: self.assignedRoles->exists(r | r = role)
and self.assignedRoles@pre->forAll (rl |
self.assignedRoles->exists(r2 | rl = r2))
and (self.assignedRoles->size() = self.

assignedRoles@pre->size() + 1)

context Session::Activate(role:Role)
// pre-condition: role is not activated in active roles of the user
pre: self.activeRoles->forAll(r | r <> role)
// post-condition:
// role is included in active roles of the user
// and all other activated roles remain active in the session
post: self.activeRoles->exists(r | r = role)
and self.activeRoles@pre->forAll (rl1 |
self.activeRoles->exists(r2 | rl = r2))
and (self.activeRoles ->size () =

self.activeRoles@pre->size()+ 1)

context Session::CheckAccess(role:Role)

// pre-condition: true

// post-condition: return true if role is includes in active roles
// of current session

post: result = self.activeRoles()->exists (r| r = role)

The static separation of duty (SSD) property of RBAC restricts the assignment of conflicting
roles to one user. This property is expressed as an invariant on the User class. The SSD property
is one of the properties that we verify an example scenario against. The example scenario
involves two users, Alice and Bob, and the following roles: Cashier, Accountant and Teller. The
SSD property in this example is the following: The role Accountant and Cashier cannot be
assigned to the same user. The specification of this SSD property is given below:

28

context User

//Static separation of duty constraint

inv SSD: not (self.assignedRoles->exists(r | r = Accountant)
and self.assignedRoles->exists(r | r = Cashier))

The example scenario that will be analyzed describes an illegal situation in which a user is
assigned to two roles that violate the above SSD property. The scenario starts in an initial state
consisting of a User object Bob, an Accountant role and a Cashier role. The scenario consists of
the following steps:

(1) Bob is assigned Accountant role through a call to the Assign() operation. After the

operation is called, the Accountant role is included in assignedRoles collection of Bob.

(2) Bob 1is assigned the Cashier role through a call to the Assign() operation. After the
operation is called, the Cashier and Accountant roles are included in assignedRoles
collection of Bob.

This scenario is classified as an illegal scenario, because the last system state in the scenario

violates the SSD constraint associated with associated with the User class.

4.2 Generating the Snapshot Transition Model

In order to use tools such as USE and OCLE to support scenario-based analysis, a class
model that characterizes valid snapshot transitions is generated from a UML design class model.
The generated class model is called a snapshot transition model (STM). A snapshot transition
model consists of (1) a Snapshot class representing states of the system before and after
execution of operations, (2) a hierarchy of Transition classes representing specified operations,
and (3) invariants defined in the Transition classes that constrain the before and after states

(snapshots) associated with transitions caused by the execution of operations.

29

In the following we present the steps for creating an STM. An overview of the steps is given

below, and the following subsections elaborate on each step.

e Step 1: Create a Snapshot class that represents valid states (object configurations).

e Step 2: Create a Transition subclass for each operation in the design class model.

e Step 3: Generate initial Transition invariants for operation specifications.

e Step 4: Add frame constraints to the Transition invariants. Frame constraints specify that
objects and links that are not affected by the operation are the same in the before and
after snapshots.

The RBAC application class model is used to illustrate the steps described in the following

sub-sections.

4.2.1 Create a Snapshot class
The Snapshot class represents a set of system states (snapshots), where a state consists of a

configuration of object states. An object state is an assignment of values to the attributes of the
object's class. A Snapshot class is thus modeled as a structured class that consists of a
configuration of UML parts representing object states. Each part represents a set of object states
and 1s thus associated with a class in the design class model. For example, the Snapshot class in
Fig. 4.3 for the partial RBAC design model in Fig. 4.3 consists of a configuration of parts, where
the users part represents states of User objects, the roles part represents states of Role objects,
and the session part represents states of Session objects. The states are defined by classes in the
snapshot transition model that have the same name as the corresponding classes in the design

class model.

30

User -user -sessions Session
— +Activate(in role : Role)
+Assign(in role : Role * .
an() 1 +CheckAccess(in role : Role) : Boolean
-users * -sessions *
* -activeRoles
Role
-assignedRoles *
(a) RBAC design class model
Snapshot
User
users:User -user -sessions sessions:Session
-objectID : int -objectID : int
l *
Session
-users * -sessions *
* -activeRole
roles:Role
- — Role
-assignedRoles ["0PiectID : int *
+before
*
1 +after

« Transition

/\

User_Assign_Transition

Session_CheckAccess_Transition

Session_Activate_Transition

+userPre, userPost : User
+rolePre, rolePost : Role

Figure 4.3. Partial RBAC class model and its snapshot transition model

Each part has an objectID attribute that relates object states across different snapshots. For
example, the bob User object in different snapshots have the same objectID. Note that instances
of these classes represent immutable object states, not mutable objects; for example, instances of

the User class in the STM represent immutable object states, while User class in the originating

+sessionPre, sessionPost : Session
+rolePre, rolePost : Operation
-ret : Boolean

+sessionPre, sessionPost : Session
+rolePre, rolePost : Role

(b) RBAC snapshot transition model

31

design model represent mutable User objects. This subtle difference is important in
understanding how transition systems are characterized by a STM: the snapshots in a transition
system are (immutable) values that are related by transitions (execution instances of operations),

thus an STM characterizes instances of behaviors (i.e., scenarios).

4.2.2 Create a Transition class hierarchy
A superclass called Transition that has before and after associations to the Snapshot class is

created (see the Transition class in Fig. 4.3). A transition object is a representation of the effect

of an operation's execution, where the effect is defined by a before-state and after-state pair. The

Transition superclass is specialized by Transition subclasses that each describes the effects of an

operation specified in the design class model. A Transition subclass is created for each operation

in the design class model. Given an operation ClassName::operationName, a Transition subclass
is created as follows:

e C(reate an empty subclass of Transition with the name
ClassName_operationName Transition. For example, User Assign Transition class 1is
created for operation User:.:Assign.

e C(Create a class property that references the before state of the operation’s target object and
another that references the after state of the target object. The property referencing the before
state is named classNamePre, and the other property is named classNamePost. For example,
in Fig. 4.3, the User_Assign_Transition class has attributes userPre and userPost, which are
references to before and after states for the target User object of the Assign() operation.

e For each value (i.e., non-object) parameter in the operation, create a class property (attribute)

with the same name and type in the Transition class.

32

e For each parameter that is an object reference, create two class properties with the same type
as the object reference. One of the properties represents the before state of the object and is
thus named parameterNamePre, and the other represents the after state of the object and is
named parameterNamePost. For example, the operation CheckAccess in the Session class has
a reference to parameter role, and this parameter is transformed to the attributes rolePre and
rolePost in the Session CheckAccess Transition class shown in Fig. 4.3. The parameters that
represent before and after object states are collectively referred to as preState and postState
attributes.

o [If there is a return parameter, create a property ret with the same type as the return parameter.
For example, the CheckAccess() operator in the Session class returns a boolean value, and
this return value is represented by the attribute ret in Session CheckAccess Transition class
shown in Fig. 4.3.

The Transition class hierarchy shown in Fig. 4.3 (b) was produced using the above steps.

4.2.3 Generate Transition invariants from operation specifications
We use the Assign() operator defined in the User class to illustrate how invariants that relate

before and after states are generated from operation specifications. The definition of the
User::Assign operation in is repeated below:

//pre- and post- conditions of the Assign method
context User::Assign(role:Role)
pre: self.assignedRoles->forAll(r | r <> role)
post: self.assignedRoles->exists(r | r = role)
and self.assignedRoles@pre->forAll (rl |
self.assignedRoles->exists(r2 | rl = r2))
and (self.assignedRoles->size() =

self.assignedRolesf@pre->size() + 1)

33

For each operation specification in the design class model, an invariant is produced as
follows:

e Replace all references to self in the pre-condition by the name of the Tranmsition class
attribute representing the target object before state (all references to self must be explicit in
the operation specification for this to work). Also, replace all references to an object
parameter in the pre-condition by the name of the attribute representing the before state of
the object, and replace all references to the object in the post-condition by the name of the
attribute representing the object’s after state.

For example, the precondition of the Assign() operation,
self.assignedRoles->forAll(r|r <> role)

is transformed to (changes are in bold print)
userPre.assignedRoles->forAll(r | r <> rolePre)

e Replace all references to self in an expression involving @pre by the name of the attribute
representing the before state of the object.

For example, the Assign() post-condition clause
self.assignedRoles@pre->

is transformed to
userPre.assignedRoles->

e Replace all references to self in the post-condition that are not part of a @pre expression by
the name of the attribute representing the after state of the target object.
For example, the Assign() post-condition clause
self.assignedRoles->exists
is transformed to
userPost.assignedRoles->exists

e Replace all references to objects by references to objectID attributes.
For example, the clause
userPre.assignedRoles->forAll (r| r <> rolePre)
is further transformed to

userPre.assignedRoles->forAll (r| r.objectID <> rolePre.objectID)

34

4.2.4 Add frame constraints to the Transition subclass
One challenging aspect of transforming OCL operation specifications is to generate frame

constraints for an operation. The frame constraints ensure that objects and links that are not
affected by the operation remain unchanged in the before and after snapshots.

In order to simplify the generation of frame constraints, we require that the designer creates
operation scope specifications which specifies the set of classes, attributes and links that are
changed by each operation. For example: the scope specification of operation User::AssignRole
is specified below:

Operation: User::AssignRole

Modifier Class: User, Role

Modifier Attribute:

Modifier Link: User.UserAssign, Role.UserAssign

The scope specification states that only the UserAssign association between User and Role
classes are changed after the operation is invoked.

Based on the operation scope specification, the frame constraints are generated for objects
and associations that are not changed by the operation as follows:

e Add constraints that assert the existence of the object states referenced by preState attributes
in the before states. The constraint has the form before.partName -> includes(namePre).
Similarly, add constraints that assert the existence of the object states referenced by postState
attributes.

For example, the following clauses assert the existence of the target user states in the before
and after states of the snapshot respectively:
before.users:User.objectID->includes (userPre.objectID)
after.users:User.objectID->includes (userPost.objectID)

e Add frame constraints that state that objects and relationships that have not had their state
changed in an operation have the same before and after state. These constraints can take two
forms as illustrated in the examples given below:

For example, the constraint stating that the set of session objects is unchanged by the

35

Assign() operation is stated below:

after.sessions:Session.objectID=
before.sessions:Session.objectID

The constraint stating that the user objects not affected by the operation have the same before
and after states is stated below:

after.users:User.objectID->excluding (userPost.objectID)=

before.users:User.objectID->excluding (userPre.objectID)

The full invariants for the User Assign Transition, Session_Activate Transition and
Session_CheckAccess Transition classes are given below:

context User Assign Transition
//From Assign () pre-condition
userPre.assignedRoles->forAll(r | r.objectID <> rolePre.objectID)
and
//From Assign () post-condition
userPost.assignedRoles->exists(r | r.objectID = rolePost.objectID)
and
userPre.assignedRoles->forAll (rl | userPost.assignedRoles->
exists(r2 | rl.objectID = r2.objectID)) and
userPost.assignedRoles->size () =

userPre.assignedRoles->size () + 1 and
//Frame constraints
//userPre is included in before snapshot
before.users:User.objectID->includes (userPre.objectID) and
//userPost is included in after snapshot
after.users:User.objectID->includes (userPost.objectID) and
//The rest of users in before and after snapshots are the same
after.users:User.objectID->excluding (userPost.objectID) =

before.users:User.objectID->excluding (userPre.objectID) and
//rolePre 1is included in before snapshot

before.roles:Role.objectID->includes (rolePre.objectID) and

36

//rolePost is included in after snapshot

after.roles:Role.objectID->includes (rolePost.objectID) and

//The rest of roles in before and after snapshots are the same

after.roles:Role.objectID->excluding (rolePost.objectID) =
before.roles:Role.objectID->excluding (rolePre.objectID) and

//All sessions in before and after snapshots are the same

after.sessions:Session.objectID =before.sessions:Session.objectID

//All associations between the user and session classes in before

//and after snapshots are the same

and before.users:User->forAll (ul | after.users:User->exists (u2 |

ul.objectID = u2.0bjectID and ul.sessions:Session.objectID =

u2.sessions:Session.objectID))

//All associations between the role and session classes in before

//and after snapshots are the same

and before.roles:Role->forAll (rl | after.roles:Role->exists (r2 |

rl.objectID = r2.objectID and rl.sessions:Session.objectID =

r2.sessions:Session.objectID))

context Session Activate Transition

//From Activate () pre-condition

sessionPre.activeRoles->forAll (r| r.objectID <> rolePre.objectID)

and

//From Activate () post-condition

sessionPost.activeRoles->exists(r| r.objectID = rolePost.objectID)

and

sessionPre.activeRoles->forAll (rl | sessionPost.activeRoles->

exists(r2 | rl.objectID = r2.objectID)) and
sessionPost.activeRoles->size () =
sessionPre.activeRoles->size() + 1 and
//Frame constraints
//sessionPre is included in before snapshot

before.sessions:Session.objectID->includes (sessionPre.objectID)

37

//sessionPost is included in after snapshot
after.sessions:Session.objectID->includes (sessionPost.objectID)
//The rest of sessions are the same in before and after snapshots

after.sessions:Session.objectID->excluding (sessionPost.objectID)

before.sessions:Session.objectID->excluding (sessionPre.objectID)
//rolePre 1is included in before snapshot

and before.roles:Role.objectID->includes (rolePre.objectID) and
//rolePost is included in after snapshot

and after.roles.objectID->includes (rolePost.objectID) and

//The rest of roles are the same in before and after snapshots
after.roles:Role.objectID->excluding(rolePost.objectID) =
before.roles:Role.objectID->excluding (rolePre.objectID) and
//All users are the same in before and after snapshots

and after.users:User.objectID = before.users:User.objectID
//All associations between the user and session classes in before
//and after snapshots are the same

and before.users:User—->forAll (ul | after.users:User->exists (uz2 |
ul.objectID = u2.objectID and ul.sessions:Session.objectID =
u2.sessions:Session.objectID))

//All associations between the user and role classes in before
//and after snapshots are the same

and before.users:User->forAll (ul | after.users:User->exists(u2 |
ul.objectID = u2.objectID and ul.assignedRoles:Role.objectID =
u2.assignedRoles:Role.objectID))

context Session CheckAccess Transition

//From CheckAccess () pre-condition

true and

//From CheckAccess () post-condition

ret = sessionPost.activeRoles->exists(r| r.objectID =

rolePost.objectID) and

38

//Frame constraints

//sessionPre is included in before snapshot
before.sessions:Session.objectID->includes (sessionPre.objectID)
//sessionPost is included in after snapshot
after.sessions:Session.objectID->includes (sessionPost.objectID)
//The rest of sessions are the same in before and after snapshots

after.sessions:Session.objectID->excluding (sessionPost.objectID)

before.sessions:Session.objectID->excluding(sessionPre.objectID)
//rolePre is included in before snapshot

and before.roles:Role.objectID->includes (rolePre.objectID) and
//rolePost is included in after snapshot

and after.roles.objectID->includes (rolePost.objectID) and

//The rest of roles are the same in before and after snapshots
after.roles:Role.objectID->excluding(rolePost.objectID) =
before.roles:Role.objectID->excluding(rolePre.objectID) and
//All users are the same in before and after snapshots

and after.users:User.objectID = before.users:User.objectID
//All associations between the user and session classes in before
//and after snapshots are the same

and before.users:User->forAll (ul | after.users:User->exists(u2 |
ul.objectID = u2.objectID and ul.sessions:Session.objectID =
u2.sessions:Session.objectID))

//All associations between the user and role classes in before
//and after snapshots are the same

and before.users:User->forAll (ul | after.users:User->exists(u2 |
ul.objectID = u2.objectID and ul.assignedRoles:Role.objectID =
u2.assignedRoles:Role.objectID))

//All associations between the role and session classes in before

//and after snapshots are the same

39

and before.roles:Role->forAll(rl | after.roles:Role->exists(r2 |
rl.objectID = r2.objectID and rl.sessions:Session.objectID =

r2.sessions:Session.objectID))

4.3 Generating Scenario Snapshot Transitions

Scenario snapshot transitions can be automatically generated from the sequence diagrams

describing scenarios created by the verifier. The generation process is described below:

For each operation op invoked on object 0bj in the scenario:

¢ Find the corresponding Transition subclass for operation op.

(1) Get the class c of object obj.

(2) If ¢ has an operation that overrides operation op, the return transition subclass is
c_op_Transition. The UML operation overriding rule is described in [Biittner04] and
[UML]. According to UML 2.0, an operation of a subclass overrides the operation of its
parent class if the name of the two operations match and the type of every formal
parameter (and result value) of the operation matches or specializes a corresponding
parameter (result value) of the parent operation. It is assumed that the overriding
operation in the subclass redefines all pre and post conditions.

(3) Repeat step 2 on the parent class of ¢ until no operation is found.

e Create an instance of the corresponding Transition subclass for operation op.

e Create an instance of snapshot class for the snapshot before the operation call if the operation
is the first one in the scenario.

e Create an instance of snapshot class for the snapshot after the operation class.

¢ Link the two snapshot instances to before and after snapshot of the Transition subclass.

e Fill attributes of the Transition subclass with parameters of the operation call.

40

Fig. 4.4 shows a snapshot transition in which user Bob is assigned Accountant role. In this
transition, the before and after snapshots both connect to three objects: the Cashier role, the
Accountant role and the Bob user. After the User::Assign operation on Bob user Account role is

invoked, the Accountant role is added to assignedRole link of Bob user.

transitionl : User_Assign_Transition

userPre : User = Bobl
userPost : User = Bob2
rolePre : Role = Accountantl
rolePost : Role = Accountant2

snapshotl : Snapshot snapshot2 : Snapshot

Bob1l : User
objectID : int=2

Cashierl : Role
objectiD :int=1

Bob2 : User
objectlD : int=2

Cashier2 : Role
objectID :int=1

Accountantl : Role
objectlD : int=3

Accountant? : Role
objectID :int=3

Figure 4.4. Assign Accountant role snapshot transition

4.4 Checking consistency in USE

Design errors are uncovered by checking for inconsistencies between the snapshot transition
model and the scenario snapshot transitions. This is done using the USE tool which checks
whether scenario snapshot transitions conform to the smapshot tranmsition model. Scenario
snapshot transitions are instances of the snapshot transition model so that we can feed the
snapshot transition model and scenario snapshot transitions to USE and check whether they are
consistent. Inconsistencies imply errors in either the UML design class model or the scenarios. It
is up to the modeler and verifier to analyze the inconsistencies, find the root cause of the

inconsistencies and resolve the inconsistencies.

41

For the RBAC example we analyzed a scenario against the snapshot transition model shown
in Fig. 4.3. The scenario consists of two operations: Bob.assign(Accountant) and
Bob.assign(Cashier). We used the USE tool. The USE tool reported an error arising after the
assignment of two conflicting roles Accountant and Cashier to the same user Bob.

We also performed a second analysis involving a dynamic separation of duty (DSD)
property which prohibits some roles assigned to a user to be activated at the same time in a
session. As we expected USE reported an error arising from the activation of two conflicting

roles in the same session created by Bob.

4.5 Algorithm complexity analysis

This section analyzes complexity of the major procedure used in the technique. Section 4.5.1
analyzes complexity of the snapshot transition model generation procedure. Section 4.5.2
analyzes complexity of the snapshot transitions generation procedure. Section 4.5.3 analyzes

complexity of USE consistency check. Section 4.5.4 summarizes the analysis.

4.5.1 Snapshot transition model generation algorithm analysis
Let the total number of class in the UML design class model be C, the average number of

properties including attributes and associations of each class be 4, the total number of operations
be P, the average number of reference parameters of each operation be Q/ and the average
number of value parameters of each operation be Q2. The average size of the syntax tree of pre
and post-conditions of an operation is denoted by 7.

The time complexity of generating the Snapshot class is O(C) because the Snapshot class is

associated to every class in the UML design.

42

The time complexity of generating the Transition subclasses for each operation is O(P) * (2
*O(Ql1) + O(Q2) + 1). Every reference parameter of the operation is added as two attributes of
the Transition subclass, one prefixed with pre and another prefixed with post. Every value
parameter of the operation and an optional return value are added as attributes of the Transition
subclass.

The time complexity of transforming the OCL operation specifications depends on:

(1) The time complexity of parsing all OCL expressions of each operation and transforming

them to invariants, which is O(P) * O(T), and

(2) The time complexity of adding frame constraints for each operation, in the worse case we

need to add frame constraints for all classes and properties, the time complexity is O(P) *
O(C) * O(A).

Total time complexity of generating the snapshot transition model is

O(C) +O(P) * (2 *0(Q1) + O(Q2) + 1) + O(P) * O(T) + O(P) * O(C) * O(A)

=0(C)+O(P) *(2*0(Q1) + 0(Q2) + 1 + O(T) + O(C) * O(A4))
4.5.2 Snapshot transitions generation algorithm analysis

The time complexity of generating snapshot transitions depends on the number of objects in
the snapshot transitions. Let the number of snapshots in the scenario be S and the average
number of objects in a snapshot be B. The time complexity of generating the snapshot transitions

is O(S) * O(B). The time complexity is proportional to the number of instances in the scenario.

4.5.3 USE consistency check complexity analysis
USE is used to check consistency between each snapshot transition instance and invariants

of the corresponding snapshot transition subclass. The complexity of checking consistency

43

between a class model and a snapshot depends on the complexity of the class invariants and the
number of instances in the snapshot.

The invariants in the snapshot transition model are checked against each snapshot transition
in the snapshot transitions, so the complexity of USE consistency checking depends on three
factors: the number of snapshot transitions (operations) in the scenario, the average number of
objects in the before and after snapshots, and the complexity of invariants in the snapshot

transition model.

4.5.4 Summary

To sum up the algorithm complexity analysis, the complexity of snapshot transition model
generation algorithm depends on the complexity of the UML design class model, including
number of classes, class properties, operations, number of parameters of operations and the
complexity of operation constraints. The complexity of snapshot transitions generation is
proportional to the number of instances of the scenarios. The complexity to check consistency in
USE depends on the number of snapshot transitions in the scenario, the number of objects in the

before and after snapshots, and the complexity of invariants in the snapshot transition model.

44

Chapter 5

Implementation

This chapter describes the tool we developed to support the Scenario-based UML Design
Analysis technique. The tool was developed using the Eclipse Modeling Framework and
Kermeta, a metamodeling programming language.

Section 5.1 describes the tool's architecture. Section 5.2 describes the components that
implement the snapshot transition model (STM) generation procedure. Section 5.3 describes the
component that implements the scenario generation procedure. Section 5.4 describes component
that implements how the USE tool is used to check consistency between the snapshot transition

model and snapshot transitions.

5.1 Tool architecture

The architecture of the tool is shown in Fig. 5.1. The architecture consists of three layers:

e The EMF layer: This layer includes Ecore Metamodel and Ecore Model Editor that
allows editing Ecore models in Eclipse.

e The Kermeta layer: This layer includes Kermeta package and an OCL Metamodel called
OCLCST [Garcia07]. The OCL Metamodel is used to load and transform OCL operation
specifications.

e The tool layer: This layer includes all components we implemented in the Scenario-based

UML Design Analysis tool package.

45

Scenario-based UML Design Analysis Tool |

USE STM Generator
STM Invariant Generator Ecore STM Generator Ecore Scenario Generator

T
|
|
|
|
1
} Action Language Metamodel
|
|
|
|
|
|
|
|

USE Command Generator

Tool layer

Eclipse Modeling Framework |

Ecore Metamodel Ecore Model Editor

Figure 5.1. Overview of the Scenario-based UML Design Analysis tool

EMF layer

The Scenario-based UML Design Analysis tool package uses existing platforms and
metamodels including Kermeta, EMF and an OCL metamodel, OCLCST, which are all grayed
out in Fig. 5.1. The tool contains the following components:

e Ecore STM Generator: This is an Eclipse plugin that generates snapshot transition model

in Ecore.

e STM Invariant Generator: This is an Eclipse plugin that transforms OCL operation

specifications to invariants of the snapshot transition model.

46

e Ecore Scenario Generator: This is an Eclipse plugin that generates scenario snapshot

transitions in Ecore.

e Action language Metamodel: This defines a language used to specify scenarios using

actions. The metamodel is used by the Ecore Scenario Generator.

e USE STM Generator: This is an Eclipse plugin that transforms Ecore snapshot transition

model to USE.

e USE Command Generator: This is an Eclipse plugin that transforms Ecore scenario

snapshot transitions to USE commands.

To use the tool, the designer creates Ecore design class diagram using Ecore Model Editor
and OCL operation specifications using a text editor. The verifier either creates scenario
specifications using an action language defined by the Action Language Metamodel, or explicitly
specifies a scenario. The explicit scenario specification includes a sequence of snapshots created
using Ecore model editor, and a sequence of operations using a text editor.

The Ecore design class diagram is transformed to an Ecore snapshot transition model using
the Ecore STM Generator, and OCL operation specifications are transformed to invariants of the
Ecore snapshot transition model using the Ecore STM invariants Generator. The USE STM
Generator is then used to transform the Ecore snapshot transition model and invariants to USE.

The Ecore Scenario Generator is used to generate Ecore snapshot transitions from the
verifier’s scenario specifications. And the USE Command Generator is used to generate USE
commands to construct USE snapshot transitions from the Ecore snapshot transitions.

Finally the USE tool is used to load the USE STM, run USE commands to construct USE

snapshot transitions, and check consistency between the USE STM and snapshot transitions.

47

5.2 The STM Generator and STM Invariant Generator

The input to the Ecore STM generator is an Ecore design class diagram created by the
designer. Fig. 5.2 shows an example RBAC Ecore design class diagram. And Fig. 5.3 shows the

design class diagram in the Ecore Model Editor.

All OCL operation specifications are created using a text editor. For example, the following
is OCL specification of operation User::AssignRole.

context User::AssignRole(r : Role) : Void
pre: self.UserAssign->excludes (r)
post: self.UserAssign = self.UserAssign@pre->including(r) and

self.UUID = self@pre.UUID

#] RBAC.ecore %:| RBAC.ecorediag &2

¢ 2k Palette
HE e~
(= Objects £
8 EPackage UserSes H Session 0.~
[EClass 0-* ["@ ActvateRole(Role) Sesfole

& EDataType

EEnum
UgerSes
fim EAnnotation 1 SasRole
0..
4% EOperation
H user
= EAttibute = UUID : Elnt H Role

— EEnumLiteral 0.. UserAssign

& AssignRole(Role) — -
(&3 Details Entry @ CreateSession(Session) | USerAssign 0..
& DeassignRole(Role)

(= Connections 40
=+ EReference
"1: Inheritance

== EAnnotation link

Figure 5.2. RBAC Ecore design class diagram (diagram view)

48

f@ REAC.ecore 53 . T:| REAC.ecorediag 1
- C

g = tform: fresource (RBAC fsrc/REAC. ecare
= # RBAC

El E Session
El{? ActivateRole(Role)
: + r:Role
----- 5 Userses ; Lser

b B Sechple : Role
E-H user

El {? AssignRole(Role)
- =€1$ r: Role

=- {? CreateSession(Session)
: + 5 5Session

=- {? Deassignfole(Role)
...... 4?1@' r:Role

----- 3 UserAssign @ Role
----- = UserSes @ Session
""" O UUID : EInt

=~ H Role

----- o2 UserAssign @ User

----- & SesRole : Session

Figure 5.3. RBAC Ecore design class diagram (tree view)

5.2.1 Generating Ecore snapshot transition diagram
The Ecore STM Generator first generates an Ecore snapshot diagram from the input Ecore

design class diagram. Based on the Ecore metamdel, the Ecore STM Generator loads the Ecore
design class diagram, applies model transformation rules and generates an Ecore snapshot
transition diagram. Fig. 5.4 shows the snapshot transition diagram of the RBAC model. In the
Ecore snapshot transition diagram the Snapshot class is linked to all classes in the input Ecore
design class diagram using composition. The Snapshot class is not a composite structure as
described in Fig. 4.3 because composite structure is not supported in Ecore metamodel, we use

Ecore composition reference to simulate UML composite structure.

49

0.* UserAssign
YserAssign q.*
H User
1
= UUID : Elnt Sesiole H Role
- UserSes 0.*
@ AssignRole(Role)
@ CreateSession(Session)
@ DeassignRole(Role) Uderses SdeRole
0.. 0. b=
p..* H Session rolef
userg
@ ActivateRole(Role)
b..™
sessigns
sn@pshot
1
snapshot H Snapshot - 1
1 snapshot
1 1

afte befofe

afterTransition beforelransition

0
H Transition

i

H Session_ActivateRole
o sessionPre : Session

H User_AssignRole
o userPre : User

H User_CreateSession H User_DeassignRole

o userPre @ User

o sessionPost : Session o userPost @ User o userPost @ User o userPost @ User
= rPre : Role = rPre : Role = sPre : Session = rPre : Role
= rPost : Role o rPost : Role = sPost @ Session o rPost : Role

O userPre : User

Figure 5.4. RBAC Ecore snapshot transition diagram

Fig. 5.5 shows the Kermeta-based algorithm used to generate the snapshot transition
diagram (STM). The algorithm creates a snapshot class and links the snapshot class to all other
classes in the design class model, creates a transition class that refers to a before and after

snapshot, creates transition classes for each operation and finally returns the transformed model.

50

Snapshot Transition Model generation algorithm
Input: inputModel : EPackage
Output: EPackage
Steps:
1. Create a snapshot class
snapshot = EClass.new
2. Add composition reference between each class and the snapshot class
foreach EClass cls in inputModel do
a) Create a composition reference that points to the cls class
composition = EReference.new
composition.eType = cls
b) Create a clsref reference that points to the snapshot class
clsref = EReference.new
clsref.eType = snapshot
c) Set eOpposite attribute for the clsref and composition classes
clsref.eOpposite = composition
composition.eOpposite = clsref
3. Create a transition class
transition = EClass.new
4. Setup the before reference between the transition and snapshot classes
before = EReference.new
before.eType = snapshot
beforeTrans = EReference.new
beforeTrans.eType = transition
before.eOpposite = beforeTrans; beforeTrans.eOpposite = before
5. Setup the after reference between the transition and snapshot classes
after = EReference.new
after.eType = snapshot
afterTrans = EReference.new
afterTrans.eType = transition
after.eOpposite = afterTrans; afterTrans.eOpposite = after
6. Create snapshot transition classes for each operation
foreach EClass cls in inputModel do
foreach EOperation op in cls do
/I Create a transition class for the operation
a) opcls = EClass.new
opcls.name = cls.name +"_" + op.name
/I Add paramaters of the op operation as attributes of the shapshot transition class
b) For each EParameter param do
attrPre = EAttribute.new
attrPre.name = param.name + "Pre"
attrPre.eType = param.eType
attrPost = EAttribute.new
attrPost.name = param.name + "Post"
attrPost.eType = param.eType
7. return inputModel

Figure 5.5. Snapshot transition model generation algorithm

51

5.2.2 Transforming OCL operation specifications
The STM Invariant Generator uses an OCL metamodel to parse the OCL operation

specifications and transform them to invariants of snapshot transition subclasses.

The STM Invariant Generator transforms the original OCL operation specifications to
invariants. For example, the following invariants are transformed from User::AssignRole
operation:

context User AssignRole

inv frompre: (userPre.UserAssign.ID->excludes (rPre.ID))

inv frompost: ((userPost.UserAssign.ID =
(userPre.UserAssign.ID->including (rPost.ID))) and (userPost.UUID =
userPre.UUID))

The ID is an internal attribute that is added by the tool to each class in the Ecore class
diagram. It is used to identify the same object across multiple snapshots in a scenario. For
example, in an RBAC role assignment and activation snapshot transitions, each snapshot
contains a copy cashier role instance with the same ID.

In order to generate frame constraints, the scope specification of operation User::AssignRole
is specified below:

Operation: User::AssignRole

Modifier Class: User, Role

Modifier Attribute:

Modifier Link: User.UserAssign, Role.UserAssign

The scope specification restricts that only the UserAssign references between User and Role
classes are changed after the operation is invoked.

Based on the operation scope specification, the STM Invariant Generator generates the
following frame constraints for User.:AssignRole operations. The frame constraints are part of
the invariants of User AssignRole class:

52

before.sessions->forAll (ol | after.sessions->exists (o2 | 0l.ID =
02.1ID))

and before.sessions->forAll (ol | after.sessions->exists (o2 | 0l.ID
= 02.ID and o0l.UserSes.ID = 02.UserSes.ID and ol.SesRole.ID =
02.5esRole.ID and ol.snapshot.ID = o02.snapshot.ID))

and before.users->forAll (ol | after.users->exists (o2 | 01.ID=02.1ID
and o0l.UUID = 02.UUID))

and before.users->forAll (ol | after.users->exists (02 | 01.ID=02.1ID
and ol.UserSes.ID = 02.UserSes.ID and ol.snapshot.ID =

02 .snapshot.ID))

and before.roles->forAll (ol | after.roles->exists (02 | 0l1l.ID =
02.1ID))

and before.roles->forAll (ol | after.roles->exists (02 | 01.ID=02.1ID
and ol.SesRole.ID = o02.SesRole.ID and ol.snapshot.ID =

02 .snapshot.ID))

Fig. 5.6 shows the main Kermeta-based algorithm for transforming OCL specifications. The
algorithm takes an Ecore design class model and parsed OCL operation specifications as input.
The top-level package declaration of the parsed OCL specifications includes a set of class
invariants and operation specifications. The algorithm recursively visits each OCL class invariant,
operation pre and post condition specification body, transforms the OCL specifications to

invariants and writes the transformed OCL to an output file.

53

OCL operation specification transformation algorithm
Input: ecoreModel : EPackage Il Ecore class model
parsedOcl: Resource // Parsed OCL
Output: outputfile: File Il Transformed OCL file
Steps:
1. Create a PrePost2InvVisitor instance
PrePost2InvVisitor visitor = PrePost2InvVisitor.new
2. Visit top-level package declaration of the parsed OCL instances
PackageDeclarationCS pkg = getPackageDeclaration(parsedOcl.instances)
foreach ContextDeclCS contextDecl in pkg.contextDecls do
a) Visit class invariants
if contextDecl isInstanceOf ClassifierContextDeclCS
contextDecl.accept(visitor)
endif
b) Visit operation specifications
if contextDecl isInstanceOf OperationContextDeclCS
1) Visit operationCS, including operation name, parameters and return type
OperationCS opCS = contextDecl.operationCS
opCS.accept(visitor)
il) Visit each operation pre and post condition specification body
foreach PrePostOrBodyDeclCS ppbd in contextDecl.prePostOrBodyDecls do
[l Transform the ppbd to invariant
write("inv from" + ppbd.kind.name.toString + ": ")
/I Visit OperationCallExpCS
OperationCallExpCS opCallExpCS = ppbd. expressionCS
opCallExpCS.accept(visitor)
/[Write new line
writeln("")
endif
3. Write the visited OCL to output file
WriteOutputFile(outputfile, visitor)

Figure 5.6. OCL operation specification transformation main algorithm

5.2.3 Generating USE snapshot transition model
After the Ecore snapshot transition model and OCL operation specifications are generated,

the USE STM Generator visits the Ecore snapshot transition model and mechanically transforms

it to a USE snapshot transition model based on USE grammar.

54

The USE grammar is close to UML and Ecore. For example, below is USE specifications of
the User class and the UserAssign association between the User class and the Role class:

class User

attributes

UUID : Integer

ID : Integer

operations

AssignRole(r : Role)
CreateSession(s : Session)
DeassignRole (r : Role)

end

association UserAssignUserAssign4 between
Role[0..*] role UserAssign
User[0..*] role UserAssign

end

Seszion

User_CresteSession Uzer_fssignRole

ey PEEsaEE Session_ActivateRole

Figure 5.7. USE snapshot transition model

Fig. 5.7 shows the USE snapshot transition model of the RBAC application. It contains four
transitions for the operations defined in the original RBAC design class model.

55

5.3 The Scenario Generator

The input of the Ecore Scenario Generator is the verifier’s scenario specifications. The
generator allows the verifier to create two types of scenario specifications: explicit scenario
specification which includes a sequence of snapshots and operation calls; action language

specification which specifies a sequence of actions to construct each snapshot in the scenario.

5.3.1 Explicit specification of scenarios
The verifier can explicitly specify a scenario as a sequence of snapshots and operation calls.

A snapshot is an instance of the design class diagram. An operation call is defined by the
operation name and parameter values.

Fig. 5.8 shows an example of explicit specification of an RBAC scenario. The scenario starts
with an initial snapshot which contains a user instance bob and a role instance cashier. Operation
1 assigns cashier role to bob. After operation 1 is called in snapshot 1 the cashier role and bob is
associated. Operation 2 creates a session instance s/ from bob. After operation 2 is called in
snapshot 2 session s/ is linked to bob. Operation 3 activates the cashier role in session s/. After
operation 3 is called in snapshot 3 the cashier role is linked to session s/. Operation 4 deactivates
the cashier role. After operation 4 is called in snapshot 4 the link between cashier and s/ is

removed.

56

Initial snapshot

cashier:Role

Operation 1: bob.AssignRole(cashier)

Snapshot 1

cashier:Role

Operation 2: bob.CreateSession(s1)

Snapshot 2

=1:Session

cazhier:Rale

Operation 3: s1.ActivateRole(cashier)

hok:User
Snapshot 3 [aobLise |

Operation 4: s1l.DeactivateRole(cashier)

Snapshot 4

zl:Session

cashier:Role

Figure 5.8. Explicit specification of an RBAC scenario

57

5.3.2 Action language specification of scenarios
The action specification language is used to specify a scenario as a sequence of actions. The

language is defined using a metamodel as described in Fig. 5.9.

f@ SUDA.ecore &3

El E InstanceSpedification - Action
Sy type : EClass

: O name : Estring

= H Scenario

- o Actions : Action

=~ H InstanceSpedficationLink -> Action

----- =+ to ; InstanceSpedfication

----- =+ from : InstanceSpedfication

----- =+ gssocation : EReference

=~ H Operation -= Action

----- =+ pperation : EQperation

----- o=k parameters : InstanceSpecification

----- =t targetinstance : InstanceSpecification

=~ H Deletelink -= Action

e = ik InstanceSpedificationLink

E-H Deletelnstance -> Action

S instance : InstanceSpedfication

Setattribute -> Action

=+ gttribute : EAttribute

= instance : InstanceSpedification

; = value : EString

E-H clearatiribute -> Action
----- =+ instance : InstanceSpedification
b = attribute ; EAttribute

Figure 5.9. Metalmodel of the action specification language

In the metamodel a scenario is defined as a sequence of actions. An action contains the
following subclasses:

e instance specification action: creates an object of a class

e delete instance action: destroys an object

e set attribute action: sets an attribute for an object

58

e clear attribute action: clears an attribute for an object

e instance specification link action: creates a links between two objects

e (delete link action: removes an link

e operation action: specifies an operation call, including the operation name, target object

and parameters

Fig. 5.10 shows an example of an RBAC scenario specified using the action specification

language. The RBAC scenario is described in natural English as below:

1
2)
3)
4)
S)
6)
7)
8)

9)

Snapshot: User bob, Role cashier and Session s/

Operation: assign cashier role to bob

Snapshot: bob and cashier are linked

Operation: bob creates session s/

Snapshot: bob and s/ are linked

Operation: cashier is activated in session s/

Snapshot: s/ and cashier are linked

Operation: bob de-assigns role cashier

Snapshot: bob and cashier are de-linked, s/ and cashier are de-linked

-4 Scenario

----- < Instance Spedfication: bob : User

----- < Instance Spedfication: cashier : Role

----- < Instance Spedfication: s1: Session

----- 4 Operation: bob. AssignRole(cashier)

----- <+ Instance Spedification Link: Role:: UserAssign: bob, cashier
----- <+ Operation: bob,CreateSession{s1)

----- <+ Instance Spedification Link: User:: UserSes: bab, 51

----- 4= Operation: s1. ActivateRole{cashier)

----- <= Instance Specification Link: Session:: SesRole: s1, cashier
----- 4+ Operation: bob DeassignRole{cashier)

----- 4 Delete Link: UserAssign: bob, cashier

----- 4 Delete Link: SesRole: s1, cashier

Figure 5.10. Action specification of an RBAC scenario

59

5.3.3 Generating snapshot transitions
For each operation call in the scenario, the Ecore Scenario Generator finds the operation that

matches it in the Ecore design class model, creates a corresponding snapshot transition object
and links the snapshot transition object to two snapshots. The output is a sequence of snapshot
transition instances.

Objects and links in each snapshot are generated from the scenarios. If the scenario is
specified directly, the Ecore Scenario Generator clones objects and links from the snapshots in
the scenario. Objects with the same name are assigned the same ID. If the scenario is specified
using the action language, the tool first interprets the actions to generate the initial snapshot. A
unique ID is assigned for each object created by the action language. To generate a snapshot
after an operation call, the tool clones all the objects and links from the before snapshot, and then

applies the actions to the after-snapshot.

5.3.4 Generating USE commands

The USE Command Generator processes the snapshot transitions and generates a sequence
of USE commands. USE commands are actions that are used to create and manipulate an
instance model in USE. Basic actions include creating an object, setting an attribute of an object
and linking two objects. The generated USE commands are used to create snapshot transitions in
USE.

For example, the following USE commands create a snapshot object snapshot 1, create a
user object bob 1, set object ID of bob 1 as 0, and finally create a role object cashier I and set

object ID as 1.

!create snapshot 1 : Snapshot
!create bob 1 : User
!set bob 1.ID := 0

60

!create cashier 1 : Role

!set cashier 1.ID :=1

5.4 USE consistency check

In this step, the USE snapshot transition model and OCL specifications and the USE
commands are input to USE. The USE commands are used to generate USE snapshot transitions.

Fig. 5.11 shows the USE snapshot transitions generated by the USE commands. There are
four operations and five snapshots in the USE snapshot transitions model. The initial snapshot
contains role cashier, user bob and session s/. The first operation User AssignRole adds a link
between bob and cashier. The second operation User CreateSession adds a link between s/ and
bob. The third operation Session ActivateRole adds a link between s/ and cashier. The last
operation User DeassignRole deletes the link between cashier and bob and the link between

cashier and s1.

t:User AssignRole t2 User CresteSession t3:5ession ActivateRole tdUser DeagsignRole

snapshot 1:Snapshot snapshot 2 Snapshot snapshot S:Snapshot
LAl o

snapshot 3:Snapshot snapshot 4:Snapshat
- T

\
'

EES"I\EI 4 Role bob_ 5 User

bob 1:User

cashier 1:Rale

|s‘1 S5:Session ‘ |cashiar SRole

bob 2:User

&1 1:Session
bob Zillser

cashier 2Role

cashier 5 Role

Figure 5.11. USE snapshot transitions

After checking consistency between the USE snapshot transition model in Fig. 5.7 and USE
snapshot transitions in Fig. 5.11, USE shows the pre and post conditions of User DeassignRole

are violated in the snapshot transitions (Fig. 5.12). Take the pre-condition for example, the

61

pre-condition contains two sub-expressions:self. UserAssign->includes(r)

self-UserSes.SesRole->excludes(r). The first sub-expression requires that the role is assigned to

the user before de-assigned which is evaluated as true. The second sub-expression requires that

the role is not activated in any user sessions before de-assigned which is false.

& Class invariants

Invariant

Result

Session_ActivateRole:: frompost

true

ISe&siDn_Act'rvateRnle: frompre

true

IUser_Assign Role:: frompost

true

IUser_Assign Role:: frompre

true

IUser_CreateSessinn ::frompost

true

IUser_CreateSessiun :frompre

true

IUser_DeassignRule::frnmpnst

false

User_DeassignRole:: frompre

false

2 constraints failed.

JST=I

context self : User_DeassignRole inv frompre:

(self.userPre UserAssign-=collectNested(3e | Role | 3&.1D}-=includes(=elf rPre.ID) and self. userPre. UserSes-=collectested(Se : Session |

Se.SesRole)->flatten->collectNested(3e : Role | Se.ID)-=excludes(zelf.rPre.ID})

A

User_DeassignRole.alinstances—=forAll(zelf : User_DeassignRole |
(self.userPre.UserAssign-+collectMested(Se : Role | S&.ID)-=includes(self.rPre.ID) and

self.userPre. UserSes-=colectNested(Se : Session | Se.SesRole)-=flatten-»collectiested(Se : Role |
Se. D}-=excludes(zelf rPre.ID))) = false

User_DeassignRole.alinstances = Set{@td}

(zelf.userPre.UserAssign->collectNested($e : Role | Se.ID}-=includes(self.rPre.Il) and
= J self userPre UserSes-=collectNested(Se : Session | 3e.5esRole)-»flatten->collectNested(Ze : Role |
e D}j-=excludes(zelf.rPre.ID}) = false

;| self.userPre.UserAssign-+collectNested(Se : Role | Se.D)-=includes(self.rPre.ID) = true

self : User_DeassignRole = @t4

3 R

self.userPre.UserSes—=collectNested(Se | Session | $e SesRole)--flatten-=collectNested(Se : Role |
$e.D}-rexcludes(self.rPre.ID) = false

i|Bag(zi--excludes(2) = false

| Expand all false

~|| ciose |

Figure 5.12. USE consistency checking

62

and

Chapter 6

Demonstration Case Studies

This chapter presents exemplar applications of the Scenario-based UML Design Analysis
technique on design class models for two systems: a Train Management System model and a
Generalized Spatio-Temporal RBAC model. The two demonstration case studies will illustrate
how design inconsistencies can be uncovered using the Scenario-based UML Design Analysis

technique.

6.1 The Train Management System model

The Train Management System (TMS) is used to monitor train traffic in a train network. The
train network consists of trains and stations. There can be zero or more one-way routes between
any two stations. Each route is divided into segments. Each segment has two sensors: an entry
sensor which detects trains as they enter the segment and an exit sensor which detects trains as
they leave the segment. Each segment has a traffic light at the end. The train can only enter the
next segment when this traffic light of current segment is green. A train may have a journey. A
journey consists of a sequence of routes and stations at which the train will stop. A journey is
valid if it does not traverse any closed routes or closed stations and it does not stop at stations
that are not on the routes of the journey.

The length and speed of trains is ignored in this system. It is also important to note that the
segments are not contiguous; between any two segments in a route there is an non-monitored

section, that is a section that does not have input and output sensors. Thus one cannot assume

63

that a train leaving a segment (a monitored section) in one time instance is in the next segment
(next monitored section) in the next time instance.

In the following subsections we describe design class model of the TMS, scenarios and
inconsistencies between the design class model and scenarios identified using the Scenario-based

UML Design Analysis technique.

6.1.1 The TMS design class model

Fig. 6.1 shows the design class diagram of the Train Management System. The Train class
has two association ends with the Segment class: currentSeg refers to the current segment of the
train and /astExitedSegment refers to the last segment that the train has exited. The Segment class
has two association ends with the SemsorHandler class: the entrySensor refers to the
SensorHandler at the entry of the segment and the exitSensor refer to the SensorHandler at the
exiti of the segment. Each Segment can have a previous Segment and a next Segment. The
TrainManager class links to all SensorHandler and Train objects. The Train has multiple
Journeys and each Journey has multiple Routes. The Journey has multiple stopStations. Each
Route has a beginStation and an endStation. Each Station has multiple segments.

Below are OCL specifications of four major operations: Train::OnSegmentEnter,
Train::OnSegmentEXxit, Segment.:OnTrainExit and Segment::OnTrainExit. The
Train::OnSegmentEnter operation requires, as a postcondition that currentSeg of the train equals
the segment it is entering. The Train::OnSegmentEXxit operation requires that if the traffic light of
the current segment is not green then the train becomes runaway train and that the route of the

current segment becomes closed.

64

Train
isGhost : Boolean Time
isRunéu\fay :. B?olean time : Integer journey 0.1 _
lastExitTime : Time train Journey | Iourneys
lastErterTime : Time
ie\/ali N
ghostThresh : Time 1 is\/alicl()
Update() journeys *
OnSegmertEnter(currentTime : Time, segment : Segment, train : Train)
OnSegmertExit{currentTime : Time, segment : Segment, train : Train) trains
passingTrains | * ‘tl'ains "
0.1 | lastExitedSegment
currentSeq o
04 previous N stopStations
H it
trafficLi r'rllegme Bool = Station
rafficLightlsGreen : Boolean i
g 0.1 station |isopen : Boolean
OnTrainEnter(train : Train)
1.0 0. el
OnTrainExit{train : Train) segments 0033:3
CloseRoLte() B
segments . .
segmert |1 1 beginStation ; endStation
exsegment 1
outgoingRoutes |, .
entrySensor 1 1| exitSensor 4 incomingRoutes
SensorHandler 1 trainfanager Route
isEntrySensor : Boolean " trainManager TrainManager route |is0Open : Boolean | 1.0
1
OnDetectTrainftrain_id : String, currentTime : Time, isErtrySensor : Boolean))) FineTrain(trai_ic : String) Close() routes
sensorHandler Open()
GetSegment()

Figure 6.1. TMS design class diagram

context Train::OnSegmentEnter (currentTime:Time, segment:Segment,
train:Train)

pre prel: train = self

// After the train enters the segment

// (1) The segment becomes current segment of the train.

post postl: self.currentSeg = segment

// (2) Last enter time of the train is equal to currentTime

post post2: self.lastEnterTime = currentTime
context Train::OnSegmentExit (currentTime:Time, segment:Segment,

train:Train)

pre prel: self = train

65

// After the train exits the segment

// (1) If the traffic light of current segment is not green before the train
// exits the segment, the train becomes a runaway train and the route that
// contains the train will be closed.

post postl: (not self.currentSeg.trafficLightIsGreenlpre)

implies (self.isRunaway and not self.currentSeg.route.isOpen)

// (2) Last enter time of the train is equal to currentTime.

post post2: self.lastExitTime = currentTime

// (3) Previous segment becomes last exited segment of the train.

post post3: self.lastExitedSegment = self.currentSeglpre

context Segment::0OnTrainEnter (train:Train)

// Before the train enters the segment, the segment must be current segment
// of the train.

pre prel: train.currentSeg = self

// After the train enters the segment, the train will be one of the passing
// trains of the segment.

post postl: self.passingTrains->includes (train)

context Segment::0nTrainExit (train:Train)

// Before the train exits the segment, the train must be one of the passing
// trains of the segment.

pre prel: self.passingTrains->includes (train)

// After the train exits the segment

// (1) The train should not be one of the passing trains of the segment.
post postl: self.passingTrains->excludes (train)

// (2) The traffic light of the segment should not be green.

post post2: not self.trafficLightIsGreen

// (3) If the previous segment exists, also the route of the segment is
// open, and there are no passing trains on the segment, then the traffic
// light of previous segment must be green, otherwise it is not green.
post post3: if (self.previous->notEmpty() and self.route.isOpen and
self.passingTrains->isEmpty ()) then (self.previous.trafficLightIsGreen)

else (not self.previous.trafficLightIsGreen) endif

66

// (4) If the previous and next segment exists, also the route of the segment
// is open, and there are no passing trains on the segment, then the traffic
// light of previous segment must be green, otherwise it is not green.
post post4d: if (self.previous->notEmpty () and self.next->notEmpty () and
self.route.isOpen and self.passingTrains->isEmpty()) then
(self.previous.trafficLightIsGreen) else

(not self.previous.trafficLightIsGreen endif

// (5) If the previous segment exists but the next segment does not exist,
// then each segment at the station of the segment should not have next
// segment or have green traffic light

post post5: (self.previous->notEmpty () and self.next->isEmpty())
implies self.station.segments->forAll (st: Segment | st.next->isEmpty ()
and not st.trafficLightIsGreen)

// (6) If the previous segment does not exist but the next segment exists,
// then for each segment at the station of the segment, if it has no previous
// segment or passing trains, then for each segment at the station of this
// segment, if the route of the segment is open and the segment has no next
// segment, then tranffic light of the segment is green

post post6: (self.previous->isEmpty() and self.next->notEmpty())
implies (self.station.segments->forAll (st: Segment|
st.previous->isEmpty () and st.passingTrains->isEmpty()) implies
(self.station.segments->forAll (stl: Segment | stl.route.isOpen and

stl.next->isEmpty () implies stl.trafficLightIsGreen)))

6.1.2 TMS Scenario one

In this scenario a train ¢/ is on segment seg/ initially, firstly it exits seg/ so that seg!/
becomes last exited segment of the train, then it enters next segment seg2 so that seg2 becomes
current segment of the train and the traffic light of seg/ is no longer green. The scenario contains
three snapshots: snapshot 1.1 shown in Fig. 6.2, snapshot 1.2 shown in Fig. 6.3 and snapshot 1.3

shown in Fig. 6.4. Operation t/:onSegmentEXxit(time,segl,t1) is called between snapshot 1.1 and

67

snapshot 1.2, operation

snapshot 1.3.

11: Train
isGhost=false

t1:onSegmentEnter(time,seg2,tl) is called between snapshot 1.2 and

trains

isRunaway=false

tm: Trainfianager
lastExit Time=Undefinec

lastErter Time=Undefined
ghostThresh=Undefined

trainManager

currentTime1: Time
time=Undefined
train passingTrains .
\\\
SEHWH
.
sh3: SensorHandler sh4:SensorHandler shi:SensorHandler | | sh2:SensorHandler shi:SensorHandler || shf:SensorHandler
isErtrySensor=true isEntrySensor=false isEntrySensor=true | | isErtrySensor=false isEntrySensor=true | [isEntrySensor=false
T T 7
. / \
entrySensor A BXITSBI'ISDI'J.-' ertrySensor | ex'rtSenso)r/ entl"y'Sensoil / exitSensor
A Y / \ /
\ Ill \) 1
\ [\ / II'l /
\/
Nt/ \ Vo
segman | exsegment segment| ?[segment segment | eySegment
\
/ previous next \ / previous next | 73
currertSeg eql:Segment seq2:Segment seq3 Segment
trafficLightisGreen=truz trafficLightlsGreen=true trafficLightlsGreen=true
segments \segmems segments segments
\ segments
station \ station
£1:Station \\ 2 Station
isOpen=true \ isOpen=true
beginS‘taﬂol?‘\ \ /
-,) endStation
- rojte
\\ mL(E
journey \\n
journeys outgoingRoutes . "
[-loumney dRoute | jncomingRoutes
routes isOpen=true

Figure 6.2. TMS snapshot 1.1
Snapshot 1.1 in Fig. 6.2 contains one Train object 1. t/ has a journey j/ and j/ has a route

rl. rl has three segments segl, seg2, seg3. currentSeg of tI is segl. Traffic lights of three
segments are all green.

68

11 Train

N trains
isGhost=false

isRunaway=falze
lastExitTime=Undefined
lastEnter Time=Unedefined

ghostThresh=Undefined

frain trains

sensorHafdler

sengdrHandler

Sensorﬁandler

tm1:TrainManager

AN

trainManager

currentTime1: Time

time=Uneefined

beginS‘taﬁol?\

N

se|\§0|'HandIer sensorHamgler sensordandler
/ Y :
sh3: SensorHandler sh4:.SensorHandler shl: SensorHandler sh2:SensorHandler shi:SensorHandler shE: SensorHancler
isEntrySensor=true isEntrySensor=false isEntrySensor=true isEntrySensor=false isEntrySensor=true isEntrySensor=false
| 3 |
entrySensor exitSensor | ertrySensor \\\ ex'rtSenso,r”r entl"y'Senso'||' exitSensor
|| \ |
| \ / "
| A \
\
sedment exsegment segmeﬁ‘t ?esegment '||Seg gment
| previous next | previous next !
xﬂedSe;? sedl:Segment sed2 Seqment seq3 Segment
rafficLightlsGreen=true trafficLightlsGreen=true trafficLightlsGreen=true
segments segments segments segments
segments
station station
£1:Station
isOpen=true

s2:Station

isOpen=true

rojte
\\ rolge
journey \\
P — outgoingRoutes 1:Route
routes izOpen=true

incomingRoutes

Figure 6.3. TMS snapshot 1.2

After operation t/:onSegmentExit(time,segl,tl) is called, in snapshot 1.2 (Fig. 6.3) the

association end from train ¢/ to segment seg/ becomes lastExitedSeg. The change in association

end lastExitedSeg is circled in Fig 6.3. Before the operation is called, the association end is

currentSeg.

69

H: Train

N trains
isGhost=false

isRunaway=false
lastExitTime=Undefined
lastEnter Time=Undefined
ghostThresh=Undefined

train trains

sh3:SensorHandler

passingTrains

/
sengdrHandler sensorﬁandler
/

\

Sei"q;orHandler sensorHangler

currentTime1: Time

time=Undefined

Se.l.Wer

shid:SensorHandler shl:SensorHandler

sh2 SensorHandler

shi:SensorHandler

journey
[:Journey

0utg0ingRoute£

routes

11:Route

isOpen=true

incomingRoutes

Figure 6.4. TMS snapshot 1.3

shi: SensorHandler,
isEntrySensor=true isEntrySensor=false isEntrySensor=true isEntrySensor=false isEntrySensor=true isEntrySensor=false
T . ! / 1
entrySensor exitSensor | ~ entrySensor \\\ exitSensof eml"y'Senso'r exitSensor
| \ f.f |
\ / \
| /
| - -.\\ _ff \ Vs
sedient | exsegment \ exsegment | seg gment
1
previous next A ff previous next |
—lastExitedSe seql:Segment seq2:Segment seg3:Segment.
icLightls Green=Tal trafficLightlsGreen=true trafficLightlzGreen=true
segments \\segments segments segments
AN segments
\\ //
\) S/
\, /
N s
N,
N
station N station
N,
N
g1: Station \\ s2:Station
isOpen=true ‘\ / | isOpen=true
S \ /
beginstation ™~ N // /
\x\ \\ / -~ endStation
Ry \, rojte rode o
‘\\ role
AN

After operation t/:onSegmentEnter(time,seg2,tl) is called, in snapshot 1.3 (Fig. 6.4) a new

association between train ¢/ and segment seg? is added, seg? is now currentSeg of t/. Also

trafficLightlsGreen attribute of seg/ becomes false. The changes are circled in Fig 6.4.

We analyze the scenario using the Scenario-based UML Design Analysis tool. The analysis

result shows an inconsistency that the trafficLightlsGreen attribute should not be false in

snapshot 1.3,

operation Train::OnSegmentExit

does

not explicitly

specify that the

trafficLightlsGreen should be changed or not, so we added frame constraints to ensure the

attribute should not be changed after the operation is called.

70

6.1.3 TMS Scenario two

In this scenario a train ¢/ is on segment seg/ initially and the traffic light of seg/ is not green,
firstly it exits seg/ so that seg/ becomes last exited segment of the train and the train becomes a
runaway train, then it enters next segment seg2 so that seg2 becomes current segment of the train.
The scenario contains three snapshots, snapshot 2.1 shown in Fig. 6.5, snapshot 2.2 shown in Fig.

6.6 and snapshot 2.3 shown in Fig. 6.7. Operation t/:onSegmentExit(time,segl,tl) is called

between snapshot 2.1 and snapshot 2, operation ¢/:onSegmentEnter(time,seg2,tl) is called

between snapshot 2.2 and snapshot 3.

- tm1: TrainManager .
t1:Train trainManager - -
- trains = currentTime1: Time
isGhost=false [. |
. / time=Undefined
isRunaway=false P { \ .
lastExitTime=Undlefinec! _ / A
lastEnter Time=Undefined //// / \ \
ghostThresh=Undefined 7 { \
7 |II 4)
. - {
train passingTrains //”/ ! \ \
L / \
- / \ -
sensorbandler sengdriandler Sensorll"iandler SEI\§DI'H3ITU|EI' sensorHangler sensordandler
/ N .
sh3:SensorHandler sh4:SensorHandler shi:SensorHandler sh2:SensorHandler shi:SensorHandler shi:SensorHancller
isEntrySensor=true isEntrySensor=false isEntrySensor=true isEntrySensor=false isErtrySensor=true isEntrySensor=false
| \ |
: . -\ . /
ertrySensor exitSensor | entrySensor ‘\\‘ exitSensoyf entl"y'SenSO'||' exitSensor
\ \
| \ / '
/ |
| \ / '.
\ / l
segent | exsegment segmeﬁ\ efxsegmem I|I seg gment
| previous next ! previous next |

curTentSec seql:Seament seg2 Seament seq3:Seamert

trafficLightlsGreen=false trafficLightlsGreen=true trafficLightlsGreen=true
segments \ﬁegmenm segments segments
segments
\\ ¢
™,
AN
N
station \\ station
™,
51:Station \\ 52 Station
isOpen=true \\ is0pen=true
- N
beginS‘ta{iol?\\ \ /
~ P endStation
\\ N, rolte -
™~ |&:\e
journey \\\ N
outgoingRoutes B
i1 Journey geind | rLRoute | icqmingRoutes

routes isOpen=true
journeys

Figure 6.5. TMS snapshot 2.1

71

Snapshot 2.1 in Fig. 6.5 contains one Train object ¢I. ¢tI has a journey j/ and j/ has a route

rl. r1 has three segments segl, seg2, seg3. currentSeg of t1 is segl. Traffic lights of segments
are all green except for segment seg/.

After operation tI:onSegmentExit(time,segl,tl) is called, in snapshot 2.2 (Fig. 6.6) the

association end from train 7/ to segment s/ becomes lastExitedSeg. Before the operation is called,

the association end is currentSeg. Also isRunaway attribute of ¢/ becomes true. The two changes
are circled in Fig. 6.6.

- tml: TrainManager .
t1:Train trainManager " "
- trains TV = currentTime1: Time
isGhogt=false FERY T —
HsRunaway=tru / \ i (e ndefine
IastExTTime=Undefined - / A
lastEnter Time=Undefined //// | \ \
ghostThresh=Undefined //” f \
- \
. - !
train trains //// \ \
_ / \
sensorHandler sengdrHancller sensorll‘-landler SBI\@_UI'HaHdlEI' sensorHangler sensordancdler
/ A :
sh3: SensorHandler shd:SensorHandler shi:SensorHandler sh2:SensorHandler sh5: SensorHandler shf:SensorHandler
isEntrySensor=true isEntrySensor=false isEntrySensor=true isEntrySensor=false isEntrySensor=true isEntrySensor=false
| \ |
entrySensor exitSensor | entrySensor \‘\\ ex'rtSenso,r"r entl"y'SenSD'r exitSensor
Y / I|
| ‘ / '.
| \ : |
Y \
segment
| exsegment Segmeﬁ\\ e}f‘segmen‘t
| previous next

| seg
1

s1:Station

isOpen=true

\

journey
[1:Journey

begins‘taﬁon\\

\
~C\

\\\ \ rojte
\\j-o\uke

outgoingRoutes

rl:Route

journeys

incomingRoutes

routes isOpen=true

Figure 6.6. TMS snapshot 2.2

72

e

gment
previous next |
seq2 Segment seqd: Seqment
trafficLightlsGreen=false trafficLightlsGreen=true trafficLightlsGreen=true
segments ﬁegmenm segments segments
segments
\\
station \
N

station

52 Station
isOpen=true

After operation t/:onSegmentEnter(time,seg2,t1) is called, in snapshot 2.3 (Fig. 6.7) a new
association between train ¢/ and segment seg? is added, seg?2 is now currentSeg of ¢t/ and ¢/ is in

passingTrains collection of seg2, the traffic light of seg/ remains green. The newly added

association between ¢/ and seg? is circled in Fig. 6.7.

- tm1: TrainManager .
t1:Train trainManager - -
. trains T \ currentTime1:Time
isGhost=false [m
isRunaway=trug P / \ . fme=-ndefine
IastExitTime=Undefined - f A
lastEnter Time=Undefined //,/ / \ \
ghostThresh=Undefinec - f \
- |II 4)
train trains /”// ."l \ \
- / \ h
Sens: Acller sengdrHandler Sensorll"iandler SEI\‘@_UI'HaHd'EI' sensorHangler sensorHandler
/ \ N
sh3:SensorHandler shd: SensorHandler shi:SensorHandler sh2:SensorHandler shi:SensorHandler shi: SensorHandler
isEntrySensor=true isEntrySensor=false isEntrySensor=true isEntrySensor=false isEntrySensor=true isEntrySensor=false
| \ 1
: . . . /
entrySensor exitSensor | entrySensor ‘\\ exitSensoy entl"fSenso'||' exitSensor
\ \
| \ / '
/ \
| \) '.
sedinent | exsegment egmeﬁ‘k\ z?zsegment segment I|I exgegment
| previous next A previous next |
lastExitedSeq seql:Segment seg2: Segmert segd:Seqgment
trafficLightlsGreen=false trafficLightlsGreen=true trafficLightlsGreen=true
segments \Qegments segments segments
segments
\\
\\
N
station \ station
N
=1: Station \\ 52 Station
isOpen=true Ay isOpen=true
- ™,
beginS‘taﬁoﬁ\\\ \ /
- g endStation
~ N rolte
™. |&:\e
journey \\\ A
- outgoingRoutes
1: Journey

| rl:Route | incomingRoutes

routes isOpen=true
journeys

Figure 6.7. TMS snapshot 2.3

Analysis of this scenario shows that the isOpen attribute of Route object 7/ in snapshot 2.2 is
true which is not consistent with operation Train::OnSegmentExit. In snapshot 2.1

trafficLightlsGreen attribute of ¢/.currentSeg is false, according to operation constraint post/ in

operation Train::OnSegmentEXxit, the train ¢/ should be a runaway train and the route associated

with segment s/ should be closed, i.e., isOpen attribute of 7/ should be false.

73

6.2 The Generalized Spatio-Temporal RBAC model

The Generalized Spatio-Temporal RBAC model (GSTRBAC) is an extension to Role-Based
Access Control model [Ray07]. It allows specifying location-aware and time-based access
control constraints. In GTSRBAC location and time are associated with various entities in
standard RBAC model, including user, role, permission, user assignment, role assignment,
permission assignment and separation of duty. For example, location and time associated with
role can be used to specify that the role can only be activated at the certain location and time.
Location and time associated with permission can be used to specify that the permission can only
be operated at the certain location and time.

A UML GSTRBAC model was analyzed in [Abdunabil3] using the USE. This section
analyzes an adapted UML GSTRBAC model using the Scenario-based UML Design Analysis

technique.

6.2.1 The GSTRBAC design class model
In the main view of GSTRBAC UML design class model (Fig. 6.8) time and location are

encapsulated in a generalized S7Zone class. RBAC entities User, Role and Permission are
modeled as User, Role and Permission class. Object and Activity classes model the object and
operation entities in RBAC. Classes UserRoleAssignment, UserRoleActivation and
PermissionAssignment describe user role assignment relation, user role activation relation and
role permission assignment relation in RBAC. The STZone class is associated with User, Role,

Permission, Object, UserRoleAssignment, UserRoleActivation and PermissionAssignment.

74

=5 ts Rl
UserRoleAssignment assignmet e

addAHJuniorRole(r : Role, z: STZone) : A_Hierarchy
assignments |” * assignments Timelnterval deleteAHJuniorRole(r : Role, z : STZone)
1 |interval]

deletelHJuniorRole(r : Role, z : STZone)

addSSoDRole(r : Role, z: STZone) : RSS0D

deleteSSoDRole(r : Role, z: STZone)

addDScDRole(r : Role, z: STZone) : DSS0D

deleteDSoDRole(r : Role, z : STZone)

assignPermission(p : Permission, z : STZone) : PermissionAssignment

location

inclucl

include

1 user deassignPermission(p : Permission, z : STZone)
User getSSoDRoles(z : STZone) : Set(Role)
name ; String roles | getDSoDRoles(z : STZone) : Set(Role)
getJuniorReoles(z : STZone) : Set(Role)
assignRole(r : Role, z : STZone) : UserRoleAssignment : 1. allowedzones getAHJuniorRoles(z : STZone) : Set(Role)

deassignRole(r : Role, z: STZone)

activateRole(r : Role, z: STZone) : UserRoleActivation
deactivateRole(r : Role, z 1 STZone) inherits AH(r : Role, z : STZone) : Boolean
getAssignedRoles(z | STZone) : Set{Role) zone getAllAHInhertedRoles(z : STZone) : Set(Role)
getActivatedRoles(z : STZone) : Set{Role) 1 =one getAssignedPermissions(z : STZone) : Set{Permission)

getAuthorizedRoles(z : STZone) : Set(Role) getAuthorizedPermissions(z : STZone) ; Set(Permission)
checkAccess(o : Object, a: Activity, z: STZone) : Boolean

1.+ getPrerequisiteRoles() | Set(Rale)
inherits(r : Role, z : STZone) : Boolean

role 1 1| role
1 user

permAssig . hermissig

PermissionAssignment

» PermAssig

activglions

activations " | *

1.4

permissions

activations permission

1

- permission
UserRoleActivation

Permission
1 _— .
Aty . addSoDPermission(p : Permission, z : STZone) : PSS0D prerequistePermission
DPermission(p : Permission, z : STZone)
I activity permission| getSoDPermissions(z : STZone) : Set(Permission)
getPrereguisitePermissions() | Set(Permission)

Figure 6.8. GSTRBAC design class diagram — main view

Fig. 6.9 shows the separation of duty classes of the GSTRBAC UML design class model.
RSSOD class models static separation of duty constraint: conflicting roles under RSSOD cannot
be assigned to the same user in certain STZone. DSSOD class models dynamic separation of duty
constraint: conflicting roles under DSSOD cannot be activated in certain STZone by the same
user. PSSOD class models permission-based separation of duty constraint: conflicting

permissions cannot be assigned to the same role in certain STZone.

75

Role

secondD3S0D addAHJuniorRole(r : Role, = : STZone) : A_Hierarchy

L celete AHJuniorRele(r : Rele, z : STZone)

. cleletelHJuniorRole(r : Role, z : STZone)
getinvolvedRoles() : Set(Role) addSSoDRole(r : Role, z: STZone) : RSSOD
N firstDSS00D celeteSSoDRole(r : Role, z : STZone)
addDSoDRole(r : Role, z: STZone) : DSSOD
deleteDSoDRole(r : Role, z : STZone)
assignPermission(p : Permission, z : STZone) : PermissionAssignment
deassignPermission(p : Permission, = : STZone)
getSScDRoles(z : STZone) : Set{Role)
getDSoDRoles(z | STZone) : Set{Role)
getduniorRoles(z : STZone) : Set{Role)
getAHJuniorRoles(z : STZone) : Set{Role)

PSS0OD 1 ,ﬁﬁ B getPrerequisiteRoles() : Set(Role)

getinvolvedPermissions() : Set(Permission) zone [i allowedzones inherits(r : Role, z: STZone) : Boolean
inheritsAH(r : Role, z : STZone) : Boolean
getAlAHInheritedRoles(z | STZone) : Set(Role)
getAssignedPermissions(z : STZone) : Set{Permission)
getAutherizecPermissions(z : STZeone) : Set{Permission)

DSS0D

dssod

1| zone

roles

pssod | * + | PssOD - P

Zones

firstRSRole | 1

secondRSRole

prerequisitePermission

1 |firstPermission | secondPermission

Permission . firstRSS0D . + | secondRSS0D

addSoDPermission(p : Permission, z: STZone) : PSS0OD rssod RS50D
deleteSoDPermission(p : Permission, z : STZone)
getSoDPermissions(z : STZone) : Set{Permission)
getPrereguisitePermissions() - Set{Permission)

1.4 * | getinvolvedRales() | Set(Role)

permissions

Figure 6.9. GSTRBAC design class diagram — SOD view
Below are OCL operation specifications of major operations User::UpdateZone,
User::assignRole, User::deassignRole, User::activateRole and User::deactivateRole:

context

User: :updateZone (z:STZone)

pre: true

// After the user updates zone, the zone is included in current zones
// of the user.

post: (self.currentzones->includes(z))

context
User::assignRole(r:Role, z:STZone) :UserRoleAssignment
// Before the user is assigned role r at STZone z,
// (1) role r and STZone z must be defined.

pre assignRolePreCondl definedObjects:

76

r.isDefined and z.isDefined
// (2) STZone z must be included in current zones of the user and
allowed zones of the role.
pre assignRolePreCond2 ZoneIncluded: self.currentzones->includes (z)
and r.allowedzones->includes (z)
// (3) Role r should not be assigned to the user.
pre assignRolePreCond3 RoleNotAssigned:
self.getAssignedRoles (z)->excludes (1)
// (4) Role r should not belong to any static separation of duty roles
// of any roles assigned to the user.
pre assignRolePreCond4 RoleNotSSoD:
self.getAssignedRoles (z)->collect (r |
r.getSSoDRoles (z)) —>excludes (r)
// After the user 1is assigned role r at STZone z,
// (1) The number of assignments of the user is one greater than
// previous assignments.
post AssignSTRolePostCondl NewUserRoleRelation:
(self.assignments - self.assignments@pre)->size()=1
// (2) The new assignment should include role r at zone z
post AssignSTRolePostCond2 NewRoleAssignment: (self.assignments -
self.assignments@pre)->forAll(rl |
rl.oclIsNew() and rl.zone=z and rl.role->includes(r))
// (3) The assigned roles of the user should include role r
post AssignSTRolePostCond3 RolelsAssigned:

self.getAssignedRoles (z)->includes (r)

context

User::deassignRole(r:Role, z:STZone)

// The pre and post conditions are close to User::assignRole
pre deassignRolePreCondl RolelIsAssigned:

self.getAssignedRoles (z)->includes (r)

77

post deassignRolePostCondl RoleDeassigned:
self.getAssignedRoles (z) ->excludes (r)

post deassignRolePostCond2 RoleAssignmentObjectDeleted:
(self.assignments@pre - self.assignments)->size()=1 and
(UserRoleAssignment.allInstances@pre -

UserRoleAssignment.allInstances)->size ()=1

context User::activateRole (r:Role, z:3TZone) :UserRoleActivation

// Before the role r is activated at STZone z,

// (1) role r and STZone z must be defined.

pre activateRolePreCondl denfinedObject:

r.isDefined and z.isDefined

// (2) STZone z must be included in current zones of the user and
allowed zones of the role.

pre activateRolePreCond2 ZonelIncluded:
self.currentzones->includes(z) and r.allowedzones->includes (z)

// (3) Role r should not be activated by the user.

pre activateRolePreCond3 RoleNot:
self.getActivatedRoles (z) ->excludes (r)

// (4) Role r is assigned to the user.

pre activateRolePreCond4 RolelIsAssigned:

getAssignedRoles (z)->includes (r)

// After the user activates role r at STZone z,

// (1) The number of activations of the user is one greater than
// previous activations.

post activateRolePostCondl NewUserRoleRelation: (self.activations
- self.activations@pre)->size()=1

// (2) The new activation should include role r at zone z

post activateRolePostCond2 NewRoleActivation: (self.activations -
self.activations@pre)->forAll(rl | rl.oclIsNew() and rl.zone=z and
rl.role->includes (r))

// (3) The activated roles of the user should include role r

78

post activateRolePostCond3 RolelsAssigned:

self.getActivatedRoles (z)->includes (r)

context

User: :deactivateRole (r:Role, z:STZone)

// The pre and post conditions are close to User::activateRole
pre deactivateRolePreCondl RolelIsActivated:
self.getActivatedRoles (z)->includes (r)

post deactivateRolePostCondl RoleDeactivated:
self.getActivatedRoles (z)->excludes (r)

post deactivateRolePostCond2 RoleActivationDeleted:
(self.activations@pre - self.activations)->size()=1 and
(UserRoleActivation.allInstances@pre -

UserRoleActivation.allInstances)->size()=1

6.2.2 GSTRBAC scenario one

In this scenario user Ben and two roles SP and TE are located in the same STZone z0. Ben is
assigned SP role first, then Ben activates TE role (note TE role is not assigned to Ben).

The initial snapshot of the scenario (Fig. 6.10) contains user Ben and two roles: SP and TE.
SP 1s assigned permission p0 and TE is assigned permission p/. The two roles and two

permission assignments are all at STZone z0.

79

Ben:Uzer

| DevelopmertOffice:l ocation

i0: Timelrterval

SP:Rale

PerfzdqToRole
Per2sgToRole -1

RolePermone RolePermone

pral: Permizsiond ssignment I ZOSTLane

I pral:PermizsionAssignment

PertzsiToPermission Ohjectfone PerfzsiToPermizsion

—— PermissionObject | ————— PertissionObject —
PO:Permission ProjectFiles: Ohject P1:Permission
Bermizsidnactivy. Permissignictivity

copy: Activity
I:l testing: Activity

Figure 6.10. GSTRBAC snapshot 1.1
Operation Ben.assignRole(SP, z(0) is called to assign Ben SP role at STZone z(0. In the next
snapshot (Fig. 6.11), UserRoleAssignment instance uras(is created between Ben, SP and z0.

Transition from snapshot 1.1 to snapshot 1.2 is consistent with the design. The new uras0

instance and three associations are circled in Fig. 6.11.

80

(Rassionmentiizer)

urazl:UserRolebssignment
P —

LIR:&,==ir]

Eﬁ

PertsgToRole

merrtRDIeZDne
S

RolePermZone

@USBF

| DevelopmentOffice: Location |

Zonelobation ZoneTimelrteral

pral:PermizsionAssignment I

EolePermione

i0: Timelnterval

PertsgToRole

ZO:STZone

I pral:PermissionAssignment

PerAzsiToPermizsion PerAzsiToPermizsion

PermissionChbject PermizsionOhject

PO:Permission ProjectFiles: Ohject P1:Permission
Permissiqn.d ctivity Permizsignactivity
copy. Activity testing: Activity
Figure 6.11. GSTRBAC snapshot 1.2

Operation Ben.activateRole(TE, z() is called to activate TE role at STZone z(. In snapshot
1.3 (Fig. 6.12), UserRoleActivation instance urac(is created between Ben, TE and z(. The new
urac(instance and three new associations are circled in Fig. 6.12.

Transition from snapshot 1.2 to snapshot 1.3 is not consistent with the design. One

precondition of User.:activateRole requires that the role must be assigned to the user before it is

81

activated. This pre-condition is not satisfied because TE role is not assigned to Ben before
activation.

pre activateRolePreCond4 RoleIsAssigned:

getAssignedRoles (z)->includes (r)

UR&ssignmentl)ser | = —r— URA ctivationl)ser
uras:UserRolessignment I Ben:Uzer s — I urach:UserRoled ctivation |

QRActiv%innRole >

UR&ssignmentRaole

DervelopmentCifice: L ocstion il Titmelnterval

ignmentRioleLone

TE:R@

UserFone

ER

ZoneTims

Zonelpcation

PertzaToRol
Per&ssToRole erfz3ToRole

i

0 STZone

RalePermione FolePermlone

pral:PetmizsionAssignment I I pral:PermizsionAssignment

PerAzsiToPermizsion PerAzsiToPermizsion

PermissionObject Pro'edFilm‘ PermissionObject
| ot les hedt |

PO:Permission P1:Permizsion

Permizzignictivity

Permizsigndctivity
copy: Activity
testing: Activity

Figure 6.12. GSTRBAC snapshot 1.3

6.2.3 GSTRBAC scenario two

In this scenario user Ben and two roles SP and TFE are initially located in the same STZone

z(. Ben is assigned SP role at z0 first, then Ben moves to STZone z1, Ben is assigned TE role,

82

and finally Ben activates TFE role at STZone z/ (note allowed zone of TE role is z0). The initial

snapshot of the scenario (Fig. 6.13) contains user Ben and two roles: SP and TE. SP is assigned

permission p0 and TE is assigned permission p/. The two roles and two permission assignments

are all at STZone z0. STZone z0 is at location DevelopmentOffice, another STZone z0 is at

location TestingOlffice.

PertsgToRole

Ben:User

EolePermione

pral:PermizsionAssignment I

PerAzsiToPermizsion

PO:Permission
Wy

Permissiqnactivity

copy: Activity

PermizsionEdne
Zonelogation

Chjec]

DeveloptmentOffice: L ocation

PermitsgionChject

z0:STZone

RolePermione

TE:Role

Pert=dToRole

Perfrigsionfone

| pral:PermizsionAssignment

PertzsiToPermission

ZoneTimelrterval

Permizsioniiect

ProjectFiles: Object

TestingOffice: L ocation

Zorel ocation

()

i0: Titmelrterval

FoneTimelpterval

7

Figure 6.13. GSTRBAC snapshot 2.1

P1:Permission
F

Permizsidnsctivity

testing: Activity

Operation Ben.assignRole(SP, z0) is called to assign Ben SP role at STZone z0. In snapshot

2.2 (Fig. 6.11), UserRoleAssignment instance uras(is created between Ben, SP and z(. The new

83

uras(O instance and its associations are circled in Fig. 6.11. Transition from snapshot 2.1 to

snapshot 2.2 is consistent with the design.

f-___--“'h UR.& zgignmentUizer .
(l_urasD.UsearleAssmnmemy - > Ben:Uszer
-“-'-——_

SP:Role UserFone

ToRale

PerAzgToRole

RolePermione EolePermione T

Z0:5T7one | pral:Permissiondssignment

pralPermizsionAssignment I

PertssiToPermission Permizsio &

igzionione Pert=siToPermission

Zonelogation

PO:Permission

Ohied] P1:Permizzion

DervelopmentOffice: Location

Permizsigndctivity Permizzignctivity

ProjectFiles: Object

testing: &ctivity

copy: Activity

TestingOifice: Location

i0: Titnelrter vl

ZoneTime|pterval

N
15T one

Figure 6.14. GSTRBAC snapshot 2.2

Operation Ben.updateZone(z1) is called to update STZone of Ben to zI. In snapshot 2.3 (Fig.

6.15) Ben is associated to STZone z/ (as circled in Fig. 6.15), and UserRoleAssignment instance

84

uras(0 is removed. From the verifier’s perspective, the user role assignment becomes invalid after

Ben moves to STZone z/ since UserRoleAssignment uras(is associated with STZone z0.

Ben:User
serFone)

z1:STZone

ZoneTmelrterval
Zonelodation

SP:Role

TestingOtfice: Location |

| i0: Titmelrterval

PerfzsToRole

RolePermone

ZOSTLane

RolePermZone

PerAzgToRole

pral:PermissionAssignment I

Pert=siToPermission

Zonel ogation

PO:Permission
Cibjec]

DevelopmentOffice: Location

Permizzignctivity

ProjectFiles: Ohject

copy: Activity

PertigsionZone

pral:PermizsionAssignment

PertssiToPermission

Figure 6.15. GSTRBAC snapshot 2.3

P1:Permission

Permizsigndctivity

testing: &ctivity

The transition from snapshot 2.2 to 2.3 is not consistent with operation User::updateZone.

The frame constraints of the operation do not allow UserRoleAssignment instances be changed

after the operation is called.

85

e

uras]:UserRolesdssignment D

(URASSi%I’mBI‘I’[RDlE)

TE:R@

URAssignmentlser

Ben:User

|IRAssignmentE The
i ———

15T one

ZoneTmelnterwal
Zonelocation

SP:Role

TestinaOffice:Location | | i0: Timelnterval

PerfzsToRole

PerdzaToRaol
erdasgToRole ToneTimelrterysl

RolePermione EolePermione T

| pral:Permissiondssignment

pralPermizsionAssignment I ZO:STZone

PerdssiToPermiszion o i o
Perfigsionone Pert=siToPermission

Zonelogation

PO:Permission

Ohied] P1:Permizzion

DervelopmentOffice: Location

Permizsigndctivity Permizzignctivity
ProjectFiles: Object
testing: &ctivit
copy: Activity

Figure 6.16. GSTRBAC snapshot 2.4

Operation Ben.assignRole(TE, z1) is called to assign TE role to Ben at STZone zI. In
snapshot 2.4 (Fig. 6.16) UserRoleAssignment instance uras! is created between Ben, TE and z1.

The new urasl instance and its associations are circled in Fig. 6.16.

86

The transition from snapshot 2.3 to 2.4 is not consistent with operation User::assignRole.
Precondition assignRolePreCond2 Zonelncluded is not satisfied because allowedzones of role
TE is z0 which does not include STZone z!:
pre assignRolePreCond2 ZonelIncluded: self.currentzones->includes (z)

and r.allowedzones->includes (z)

— IR A clivationllzer, UR &z signmentllser T -
urach:UserRoledctivation [_———————— Ben:Uzer |uras1:UserRDIeASS|qnmerrt
Userfone LRA zsignmentBetelone
F.4ctivationRole URAssigrimentRole

15T ane

"

o ZofeTi
SP:Role Zonelgoation

| TestingOffice: Location |

TE:Rale

Per&saToRole

PertsaToRaole Falefone ToneTime

[

Z0:STZone

RolePermione EolePermione

pral:PermizsionAssignment I I pral:Permissiondssignment

PertssiToPermission) o
’ Pert=siToPermission
Zonelogation

PO:Permis=sion

DOhied] P1:Permission

DevelopthertOffice: Locstion

Permizsignactivity Permissignactivity
ProjectFiles: Ohject
testing: Activit
copy Activity

Figure 6.17. GSTRBAC snapshot 2.5

The last operation Ben.activateRole(TE, z0) is called to activate TE at z0. In Fig 6.17 the

new urac(instance and its associations are circled.

87

The transition from snapshot 2.4 to 2.5 is not consistent with operation User.:activateRole.
Precondition activateRolePreCond2 Zonelncluded is not satisfied because currentzones of Ben
is zI which does not include STZone z0:

pre activateRolePreCond2 ZonelIncluded:

self.currentzones->includes(z) and r.allowedzones->includes (z)

Precondition activateRolePreCond4_RolelsAssigned is not satisfied. The only assigned role
TE is at STZone z/ and Ben’s assigned roles at STZone z0 is empty:

pre activateRolePreCond4 RolelIsAssigned:

getAssignedRoles (z)->includes (r)

class User
operations
getAssignedRoles (z:S3TZone) :Set (Role)=self.assignments->

select(r|r.zone=z)->collect(r| r.role)->asSet ()

=

context self : User_activateRole inv frompre:

({(self.userPre.currentzones-=collectNested(Se ;| STZone | $&.10)-=includes(self.zPre. ID) and self.rPre.alowedzones-=colectNested(3e | STZone | $e.ID)-+includes(self.zPre. D)) and
self.userPre.activations-=zelect(ra : UserRoleActivation | (ra.zone.ID = self zPre.ID)}-=collect(ra : UserRoleActivation | ra.role}-=asSet-=excludes(zelf.rPre)) and
self.userPre.assignments-=select(ra . UserRoleAssignment | (ra.zone.ID = self.zPre.ID}}-=collect(ra . UserRoleAssignment | ra.role}-=asSet-=includes(self.rPre) Double click fo min or max tite. ri

‘J User_activateRole.allnstances-=forAl(self - User_activateRole | (((self userPre.currentzones-=collectNested(Se | STZone | 3e.ID)-=includes(self. zPre.ID) AT ST T T T T D

User_activateRole allnstances = Set{@t4}
= J (({=elf.userPre.currentzones-+collectNested(3e : STZone | 3e.I0}-=includes(self. zPre.ID) and self rPre.allowedzones-=collectNested(Se : STZone | Se.lD)-=includes(self.zPre.ID)) and
=] J ((self.userPre.currentzones-=collectNested(Se : STZone | Se.ID)-=includes(self.zPre.ID) and self.rPre.allowedzones-+collectNested(Se : STZone | 3e.ID}-rincludes(self.zPre.ID}) g
= J (=self.userPre.currentzones-+collectNested(3e : STZone | 3e.10)-=includes(self. zPre.ID) and self.rPre.allowedzones--collectNested(Se : STZone | Se.I0)-=includes(self.zPre.I0)
_| self.userPre.currentzones->collectNested(Se : STZone | Se.ID)-=includes(self.zPre.ID) = false
J self rPre.alowedzones--collectNested(Se : STZone | Se.ID}-=includes(self zPre.ID) = true
;] self.userPre activations-»selectira : UserRoleActivation | (ra.zone.ID = self zPre.ID)}-=collect(ra : UserRoleActivation | ra.role}-=asSet-=excludes(zelf.rPre) = true
;] zelf.userPre.assignments-=select(ra : UserRoleAssignment | (ra.zone.ID = self.zPre.ID)}-=collect(ra : UserRoleAssignment | ra.role }--asSet-=includes(self.rPre) = false

| Display options o | | Close |

Figure 6.18. GSTRBAC inconsistencies in snapshot 2.5

Fig. 6.18 shows violations of precondition activateRolePreCond2 Zonelncluded and

activateRolePreCond4_RolelsAssigned.

88

6.2.4 GSTRBAC scenario three
In this scenario user Ben is initially assigned two roles SP and TE at STZone z0. SP and TE

are dynamic separation of duty roles at STZone z(0. Ben activates TE role first then activates SP
role at STZone z0.

The initial snapshot of the scenario (Fig. 6.19) contains user Ben and two roles: SP and TE.
SP and TE are both assigned to Ben at STZone z0. DSSOD (dynamic separation of duty) instance

dssodl is created to forbid role SP and TE be activated simultaneously at STZone z0.

I_—|SP'R | DSS0D1Rols P — DSS0D2Rol ——
Ale] =] 200 mOlE

URAssignmentRaole URAssignmentRaole

URAzsignmentRolefone

05T Iome.
ZoneTimelrderval Fonel ocation

i0: Titrelriterwal

URAzsignmentRolefone
I uras]:UserRolesdssignment

uras0:UserRoledssignment I

| TestingOtfice:Location

URAssibnmentlzer URAssignpentlzer

Ben:User

Figure 6.19. GSTRBAC snapshot 3.1

Operation Ben.activateRole(TE, z0) and Ben.activateRole(SP, z() are called to activate TE

and SP roles at STZone z0. In snapshot 3.2 (Fig. 6.20) the TE role is activated. In Fig 6.20 the
89

new urac() instance and its associations are circled. In snapshot 3.3 (Fig. 6.21) the SP role is
activated. In Fig 6.21 the new urac! instance and its associations are circled.
The transition from snapshot 3.1 to 3.2 and 3.2 to 3.3 are both consistent with operation

User::activateRole.

DES00IR0lE

SP:Ral LESODTRk dzzod] DESCD [TERal
:Rale zz00] -Rale

URAz=ignmentRale URAzzignmantRole

URAssignmentRolelone URAssignmentRoleZone

1 uras]:UserRoleAssignment |

z0:5TFone

urasl:UserRoled ssignment I

| uracl:UserRoleActivation

Ben:User

Figure 6.20. GSTRBAC snapshot 3.2
However, the scenario is invalid from the verifier’s perspective. The two conflicting roles
are not supposed to be activated by the same user at the same STZone. It implies design error in
precondition of operation User::activateRole. It should check whether a conflicting role is being

activated.

90

LS00 Role | pr—————
SP:Role

DEECD2Role

dszoc] :DES0O0
RoeZone
FAzsignmentRole DES00Ione FoleZorie
- URAssignmertRoleZone URAssignmertRoleZone
uras0:UserRolesssignment Z0:5TZone
710
ZoneTimelnteryval FonielLocation

0 Timelriterval

e - ..~
‘ urac:UserRoled ctivation
e

Fange

Een:User

TestingOrtfice: Location

URAzsignipentl ser

TERole

URAzsigrimentRole

uras:UserRolesssignment

Figure 6.21. GSTRBAC snapshot 3.3

6.3 Conclusion

URACtvEtionRole

urach:UserRolesctivation

This chapter discusses case studies of two application designs. The case studies show how

the Scenario-based UML Design Analysis technique can be used to find inconsistencies between

UML designs and scenarios.

During the analysis process, the verifier reads the UML designs and manually creates

scenarios from his/her perspective. The scenarios and UML designs are input to the

Scenario-based UML Design Analysis tool and then the consistencies between the transformed

snapshot transition models and snapshot transitions are checked in USE. Without using the

technique the verifier has to manually check OCL specifications against the scenarios which is

time-consuming and error-prone.

91

Chapter 7

Pilot Study

The Scenario-based UML Design Analysis technique is further evaluated by a pilot study. In
the pilot study a group of graduate students are invited to manually inspect the UML design class
model and scenarios to find inconsistencies. At the same time the Scenario-based UML Design
Analysis tool is used to find inconsistencies between the UML design class model and scenarios.
We compare inconsistencies found by the group of students and the tool and decide whether the
Scenario-based UML Design Analysis technique is effective or not.

The rest of this chapter is organized as follows: Section 7.1 discusses experiment planning,
including the experiment definition, context selection, hypotheses formulation, experiment
design and measurements and data collection. Section 7.2 discusses experiment results and

analysis. Section 7.3 discusses threats to validity. Section 7.4 concludes the pilot study.

7.1. Experiment planning

7.1.1 Experiment goal, research question and hypothesis
The experiment objective is formulated in the form of Goal-Question-Metric (GQM) goals

in table 7.1.

The experiment of the goal has one independent variable design verification method and two
dependent variables number of inconsistencies detected (NID) which is the number of
inconsistencies detected between the UML design class model and scenarios, and number of

false inconsistencies detected (NFID) which is the number of falsely detected inconsistencies.

92

There are two treatments: the Scenario-based UML Design Analysis technique and manual
design inspection technique.

Table 7.1. Formulation of the experiment objective

Analyze the Scenario-based UML Design Analysis technique
for the purpose of Evaluating
with respect to the effectiveness of identifying inconsistencies between UML class model

and scenarios when comparing with a traditional manual inspection

process

from the point of view of | the design verification engineer

In the context of graduate computer science students

The Scenario-based UML Design Analysis technique is considered effective if it leads to
equal or higher number of inconsistencies and equal or lower number of false inconsistencies

than a manual design inspection technique will uncover.

7.1.2 Context selection and subjects
The context of the experiment is Software Specification & Design, a graduate level software

engineering course at Colorado State University. The subjects are a number of graduate or senior
Computer Science students that are enrolled in the course. The students enrolled in the course are
familiar with UML and OCL notations, and they were trained on how to manually find design

inconsistencies between a UML design class model and scenarios.

7.1.3 Experiment design

The UML design class models used in the experiment were produced by students at the
Software Specification & Design course or created in our previous research projects.
A group of students who are familiar with the Scenario-based UML Design Analysis

technique create scenarios. These students are given the UML design class diagram only. OCL

93

operation specifications are not given to these students. The students who create scenarios do not
participate in finding design inconsistencies using manual inspection techniques.

Another group of students who are familiar with UML, OCL and design inspection
technique individually review the UML design model and scenarios to find inconsistencies. This
group of students is trained on how to manually inspect design inconsistencies between the UML
design model and scenarios.

The Scenario-based UML Design Analysis tool is used to find inconsistencies between the
scenarios and the UML design.

We record inconsistencies found by each student and the tool. We repeat the experiment on
a number of UML design models. The results of experiments are consistent if they both show
that the Scenario-based UML Design Analysis technique is more effective than design review, or
vice versa. If the results are not consistent, we will analyze the data and find the reason of the

inconsistency, modify the process and study more applications if necessary.

7.1.4 Measurements and data collection
During the experiment, we will measure total number of inconsistencies uncovered by SDA

and MDI, total number of false inconsistencies uncovered by SDA and MDI, and total time spent
by each student in manual inspection. The students in the manual inspection group can also give

feedback on the manual inspection process.

7.2. Experiment results and analysis

We performed pilot study on two design models, the TMS design class model (Fig. 6.1) and

GSTRBAC design class model (Fig. 6.8 and Fig. 6.9). Two graduate students were asked to

94

manually inspect inconsistencies between the UML design class models and scenarios. The
Scenario-based UML Design Analysis tool was used to check inconsistencies.

Table 7.2. TMS experiment results

T™MS NID NFID | NID NFID NID NFID
scenarios (Tool) (Tool) | (HumanA) | (HumanA) (HumanB) (HumanB)
Scenario 1 6 0 2 1 6 1

Total 6 0 2 1 6 1

Table 7.3. GSTRBAC experiment results

GSTRBAC | NID NFID | NID NFID NID NFID
scenarios (Tool) (Tool) | (HumanA) | (HumanA) (HumanB) (HumanB)
Scenario 1 0 0 0 0 0 0
Scenario 2 1 0 1 0 1 0
Scenario 3 1 0 1 0 1 0
Scenario 4 1 0 1 0 1 0
Scenario 5 0 0 0 1 0 0
Scenario 6 3 0 2 0 2 0
Scenario 7 2 0 1 0 0 0
Scenario 8 2 0 2 0 2 0
Scenario 9 2 0 2 2 2 0
Scenario 10 | 0 0 0 0 0 0
Scenario 11 | 3 0 1 0 1 0
Scenario 12 | 3 0 0 2 2 0
Total 17 0 11 6 12 0

Table 7.2 and table 7.3 shows number of inconsistencies found by the tool and two graduate
students of the TMS and GSTRBAC design class model. The first column shows the scenario ID.
The second column NID shows the number of inconsistencies identified by the tool. The third
column NFID shows the number of inconsistencies falsely identified by the tool. NID (HumanA)

and NFID (HumanA) columns show the number of inconsistencies and number of false

95

inconsistencies found by the first graduate student. NID (HumanB) and NFID (HumanB)
columns show the number of inconsistencies and number of false inconsistencies found by the
second graduate student.

The tool did not identify false inconsistencies in the pilot study of the two design class
models. Fig. 7.1 shows a histogram of the number of inconsistencies identified by the tool and
two graduate students in the thirteen scenarios. In scenario 1, 7, 8, 12 and 13, the tool identified
more design inconsistencies than the two graduate students. In scenario 3, 4, 5, 9 and 10, the tool
identified the same number of design inconsistencies as the two graduate students. In scenario 2,
6 and 11, neither the tool nor the two graduate students found any design inconsistencies, but the
graduate students may find false design inconsistencies. To sum up, the tool identified equal or

more number of inconsistencies in all the scenarios than the two students.

(%]

o

S 511

c

2

X

) 4

< 4 @ Tool

2 B HumanA
s 3 H - 0 HumanB
@

Ko}

€

=}

z

Scenarios

Figure 7.1. Histogram of experiment results

96

7.3. Conclusion and discussions

The pilot study shows that the Scenario-based UML Design Analysis tool seems to be
effective because it uncovered at least as many design inconsistencies as manual inspection
techniques uncovered and the technique did not uncover false inconsistencies. Actually the
inconsistencies uncovered by the two graduate students are subset of the inconsistencies
uncovered by the tool.

As to the cost of finding inconsistency, the tool can be used to analyze a design class model
and scenarios automatically which takes a few minutes to generate necessary models and
scenarios and check them in USE. To manually inspect inconsistencies, the human beings must
be trained with domain knowledge and the manual inspection techniques. It is also
time-consuming and error-prone for the human being to manually inspect each scenario.
According to the feedback of the two graduate students, it took them about two hours reading the
GSTRBAC design class diagram and constraints, it took them about 30 to 45 minutes on average
to check one GSTRBAC scenario and 15-20 minutes to review the TMS scenario.

The main threat to validity of the pilot study is statistical conclusion validity [Wohlinl2].
Due to the unavailability of graduate students, we were not able to control the number of
students and the number of design class models (scenarios). In the formal experiment, we should
invite more students to do manual inspection and study more design class models and scenarios.
It is also desirable to seed more inconsistencies into the UML designs and scenarios. Both of the

measures are helpful to mitigate the threat to statistical conclusion validity of the experiment.

97

Chapter 8

Generating Scenarios using JAL Operation Definitions

The Scenario-based UML Design Analysis technique requires that the verifier creates
scenarios to analyze UML design class models. This chapter presents a scenario generation
technique that automates the generation of scenarios using operational operation definitions
[Yu09]. The operation definitions are specified using Jave-like Action Language (JAL).
Java-like Action Language (JAL) is an imperative action language developed in our research
group that is used to describe effects of operations [Trung05A]. Scenario snapshot transitions are
generated by executing the JAL operation definitions using the UMLANT (UML Animation and
Testing) tool [Trung05A].

The rest of this section is organized as follows: section 8.1 discusses the scenario generation
technique, section 8.2 discusses UML design class model of an RBAC example and RBAC
constraints modeled as OCL invariants, section 8.3 discuss analysis of RBAC constraints using

the scenario generation technique.

8.1 The scenario generation technique

This scenario generation technique automatically generates a set of scenarios based on the
verifier’s JAL operation definitions and operation invocation patterns [Yu09]. The operation
invocation pattern describes sequence of operations as regular expressions. The scenario
generation technique allows a verifier to produce a set of scenarios describing legal and illegal
functionality. The scenario generation technique takes into consideration domain-specific

knowledge about sequences of operation calls that reflect typical usages and sequences. This

98

knowledge is encoded in operation call sequence patterns that are used by the verifier to generate
scenarios.

The scenario generation technique is based upon a naive scenario generation algorithm. The
naive algorithm generates too many scenarios, and thus we extend it by allowing the verifier to
target specific families of scenarios by specifying patterns.

The naive scenario generation algorithm does the following:

e Builds an operation invocation tree from a set of operations and parameter values.

e Traverses the operation invocation tree to produce all possible sequences of operation

invocations, and

e Animates each sequence of operation invocations to produce a sequence of snapshot

transitions. The verifier must then label each of the generated snapshot transition
sequences as legal or illegal.

Each node in an operation invocation tree represents a particular invocation of a system
operation on an object. The invocation is referred to as an operation instance. Each node contains
an object identifier (the receiver of the operation call), an operation name and a value for each
operation parameter. The root of the tree represents the system initialization point and it contains
information about the start state. Child nodes represent operation invocations that can occur after
the invocation represented by the parent node. A scenario is a path that starts at the root and ends
at any node in the tree.

To reduce the number of scenarios produced by the above algorithm, the technique allows a
verifier to

e limit the depth of the tree.

e limit the number of objects of a class that can be in a start state, and

99

o explicitly define a small domain for each input parameter of the operation.

For example, given an operation User::AssignRole(r:Role), the verifier can restrict the User
domain size to 2 users objects, and define a small domain for the Role parameter as follows:
Domain(Role) = {clerk, seniorClerk}.

The extended generation technique allows a verifier to specify patterns of operation
sequences that restrict

e the operation calls that are used to build the operation invocation tree.

e the order in which operations can be invoked.

These patterns are called operation invocation patterns. An operation invocation pattern is a
characterization of particular sequences of operation invocations that the verifier feels typifies
good and problematic usages of the system. The patterns are manually created using the best
available domain expertise and experience related to the sequences of operations that are likely
to uncover policy violations. The patterns are described in terms of constraints on initial states
and on the sequencing of operation calls. The use of these patterns allows the verifier to focus the
analysis on particular sequences of invocation calls.

For example, a verifier can create the following pattern of operation calls for analyzing role
activation functionality:

Initial State Constraint

u in Domain(User) // There is at least one user

#Role>3 //At least 4 roles are in the start state

Call Pattern

u.CreateSession(.)return(s:Session){1,2} u.AssignRole(.){2,4}
u->s.ActivateRole(.){1..4}

100

The first part of the pattern description constrains the initial state. In this case the initial state
must consist of a User object, u, and at least four roles.

The second part is the pattern of operation calls. The expression caller->callee.Op() (e.g.,
see last line of the above Call Pattern) identifies the sender (caller) and receiver (callee) of an
operation call message. If the caller is omitted then it is assumed that the message is coming
from an external actor. The analysis we perform using the Snapshot transition model does not
require that the sender of an operation call be known; this information is currently used only to
visualize the operation sequence as a sequence diagram that shows both senders and receivers of
messages.

The pattern describes the following sequences of operation calls:

e Start with 1 or 2 calls to the CreateSession() operation for a user, u using any parameters

(as indicated by the "." in the parameter list of the operation), and each successfully
returning a new session, s, (indicated by return(s:Session)),

o followed by 2 to 4 operation calls to the AssignRole() for user u, and

e end with 1 to 4 calls made by the user u to activate roles in the sessions previously

created by calls to CreateSession().

In order to generate snapshot transitions, a verifier must provide descriptions of operation
functionality to the snapshot generation algorithm using JAL. The verifier can use the technique
to generate legal scenarios by using correct JAL operation definitions (or more precisely, correct
JAL operation definitions in his/her perspective), and generate illegal scenarios by injecting

errors in the JAL so that it produces illegal snapshot transitions.

101

For example, a verifier can define the legal effects of the operation User::AssignRole as
follows:

JAL User AssignRole
if (!this.userRoles. exists(role)) {

this.userRoles. add(role);

Scenario generation algorithm

Inputs. UML design class model, maximum number of operations
Max, parameter domain definitions, operation JAL definitions, tree
node r. Operation invocation patterns.

Outputs. Set of scenarios.

Algorithm steps

For each operation call do:

If operations from root to current tree node r and op match an
operation invocation pattern:

1. Create one tree node n and add it as child of r.

2. Store information about the operation call (e.g., operation
name, parameters, receiving object identifier) in tree node n.

3. Execute desired JAL description associated with the operation
using the start state stored in r to get the next system state. Store
the next system state in tree node n.

4. Print the sequence of operation calls from the tree root to tree
node n as an output scenario.

5. If Max>1

a) Call the scenario generation algorithm recursively with
tree node n and Max - 1 as maximum number of
operations.

Figure 8.1. Scenario generation algorithm

The scenario generation algorithm is described in Fig. 8.1. Snapshot transitions are
generated by traversing the operation invocation tree and interpreting the associated JAL
descriptions of behavior using UMLANT. The verifier then needs to determine whether the

generated scenarios describe legal or illegal behaviors.

102

8.2 An hierarchical RBAC example

In this section we present a hierarchical RBAC (HRBAC) policy model in two parts: in the
first part we give a UML design class model that describes HRBAC classes and operations, in

the second part we describe HRBAC constraints using OCL invariants.

8.2.1. HRBAC design class model

User -
Session

-user -sessions

+AssignRole(in r : Role)
+DeassignRole(in r : Role)
+CreateSession() : Session 1 *
+DeleteSession() : Session
+GetAuthorizedRoles() * Set of Role

+ActivateRole(in r : Role)

+DeactivateRole(in r : Role)

+GetActiveRoles() : Set of Role

+CheckAccess(in t : Target, in o : Operation) : Boolean

-sessions .

* -activeRoles

-asgignedRoles Role

+DSDRoles +AddSeniorRole(in r : Role) *
+DeleteSeniorRole(in r : Role)
+GrantPermission(in p : Permission)
+SSDRoles, |, RevokePermission(in p : Permission) -seniorRoles
—{+GetAuthorizedPermissions() : Set of Permission
+GetAuthorizedUsers() : Set of User
+GetSODRoles() : Set of Role

]

* * -roles« -juniorRoles

. -target Target
* -permissions g 9

Permission /

*
*

N Operation

-operation

Figure 8.2. Hierarchical RBAC design class model

103

In the hierarchical RBAC design class model shown in Fig. 8.2, the User, Role and Session
classes model users, roles and sessions entities in RBAC. The Permission class describes RBAC
permissions in terms of operations that can be performed on targets. The assignedRoles
association end determines the set of roles directly assigned to a user. The operation
GetAuthorizedRoles() returns all roles directly and indirectly assigned to a user. The activeRoles
association end determines the set of roles directly activated in a session, and the operation
GetActiveRoles() returns all roles directly activated in a session. The association end permissions
is the set of all permissions directly associated with a role, and the operation
GetAuthorizedPermissions() returns all permissions directly and indirectly associated with a role.
The seniorRoles and juniorRoles association ends define the role hierarchy relationships. The
SSDRoles association end defines the set of role pairs that are constrained by SSD. The
DSDRoles association end defines the set of role pairs that are constrained by DSD.

Operations are specified using the OCL. For example, the operation GetAuthorizedRoles() in
User 1s defined using a query operation GetDominatedRoles() as follows:

// Get set of authorized roles to the user.
context User::GetAuthorizedRoles () :Set (Role)

post: result = self.assignedRoles.GetDominatedRoles () ->asSet ()

// Get set of dominated roles to the role.
context Role::GetDominatedRoles () :Set (Role)
body:

let oneStep:Set (Role)= Set{self} in

result = if oneStep.juniorRoles->isEmpty () then
oneStep
else
oneStep->union (oneStep.juniorRoles.GetDominatedRoles ()) ->asSet ()
endif

104

The operations that are involved in the analysis are given below:

context User::AssignRole(r:Role)
// Assign a role to the user.
pre: not self.GetAuthorizedRoles ()->includes (r)

post: self.GetAuthorizedRoles ()->includes(r)

context Session::ActivateRole (r:Role)
// Activate a role in the session.
pre: not self.GetActiveRoles ()->includes (r)

post: self.GetActiveRoles ()->includes (r)

context Session::GetActivateRoles:Set (Role)
// Return activated roles in the session.
pPre: true

post: result = self.activeRole

context Role::AddSeniorRole(r:Role)

// Add a senior role to current role.
pre: true

post: self.seniorRoles->includes(r) and

r.juniorRoles->includes (self)

context Role: :CheckAccess (t:Target, o:0peration) :Boolean

// Query operation that checks permissions

// of all active roles to see whether there

// 1s a match for the target and operation.

pPre true

post: result =
self.GetActiveRoles () .GetAuthorizedPermissions () ->exists (p |

p.target = t and p.operation = o)

105

8.2.2. HRBAC constraints

8.2.2.1. Role activation constraint

A fundamental constraint in role activation is that a role can be activated by a user only if it
has been assigned to the user. We express this constraint as an OCL invariant named
RBAC Policy 1:

RBAC Policy 1: A user can only activate roles that are assigned to
him.

context Session
inv RBAC Policy 1:
self.user.authorizedRoles->

includesAll (self.activeRoles)

8.2.2.2. Role hierarchy constraints

According to the definition of role hierarchy in the NIST RBAC standard [FerraioloO1], a
senior role dominating its junior roles implies that the senior role inherits all the permissions of
its junior roles, and a junior role inherits all the assigned users of the senior role.
RBAC Policy 2 expresses this constraint:

RBAC Policy 2: A senior role inherits all permissions from junior
roles, and a junior role inherits all the users of its senior roles.

context Role

inv RBAC Policy 2:

seniorRoles->forAll (s | s.authorizedPermissions->
intersection(self.authorizedPermissions) =
self.authorizedPermissions) and
self.seniorRoles->forAll (s | s.authorizedUsers->

intersection(self.authorizedUsers) = s.authorizedUsers)

106

The role hierarchy is a partial order on roles and there should not be any cycles in the role
hierarchy. We use an OCL query operation on roles called Dominates in the policy statement.
The expression r1.Dominates(r2), where rl and r2 are roles, returns true if 2 is a descendant of
rl in a senior-junior role structure. The constraint is expressed by RBAC Policy 3:

context Role::Dominates(r:Role) :Boolean

pre true

post:

if (self.juniorRoles->includes(r)) then

result = true

else

result = self.juniorRoles->exists(j | Jj.Dominates(r))

endif

RBAC Policy 3: There must be no cycles in senior-junior role
relationships.

context Role

inv RBAC Policy 3:

not self.Dominates (self)

8.2.2.3. Separation of duty constraints.

RBAC Policy 4 expresses the static separation of duty constraint, and RBAC Policy 5
expresses the dynamic separation of duty constraint:
RBAC Policy 4: Conflict of interest roles cannot be assigned to the
same user (SSD).

context User
inv RBAC Policy 4:
not self.GetAuthorizedRoles () ->exists(rl, r2 |

rl.SSDRoles->includes (r2))

107

RBAC Policy 5: Conflict of interest roles can not be activated by
the same user simultaneously (DSD).

context User
inv RBAC Policy 5:
not self.sessions.GetActiveRoles () ->exists(rl, r2 | rl.DSDRoles->

includes (r2))

8.3. Analyze HRBAC constraints

In this sub-section we show how some of the HRBAC constraints given in Section 8.2 can

be analyzed using the method.

8.3.1. Analyze role activation constraint.
To analyze the role activation constraint (RBAC Policy 1), we use the following operation

invocation pattern:

Initial State Constraint

Domain(User) = {Bob}

Domain(Role)={clerk, seniorClerk}

Call Pattern

[no Bob.AssignRole(r)]{0..2}

Bob.CreateSession(.)return(s:Session) Bob->s.ActivateRole(r){1..2}.

The expression [no Bob.AssignRole(r)] is used to match all operation calls except calls of
the form Bob.AssignRole(r).

The above pattern describes sequences of operations which end with 1 or 2 invocations of
the ActivateRole() operation, and start with 0 to 2 operation invocations that do not include

operation calls that assign the activated roles to the user Bob.

108

The verifier describes the effect of the ActivateRole operation using JAL — The JAL
description simply activates the role. Scenarios generated from this pattern would allow roles to
be activated even though they are not assigned to the user. For this reason, the verifier knows
that the pattern would produce illegal scenarios.

An example of an illegal scenario generated from the above pattern is described as below:

e The scenario starts from an initial system state with one user instance Bob and one Role

instance clerk.

e The user Bob creates one session. After the operation is called, a new Session instance

session is created.

e The user Bob activates the clerk role. After the Session::ActivateRole operation is called,

the activation succeeds and clerk is added to the activeRoles association of the session.

The HRBAC design model should reject the illegal behavior described by the scenario.
Analysis with USE revealed that the HRBAC design model is consistent with the scenario. The
defect in the design class model is that the operation Session.:ActivateRole activates any role that

is not activated. The pre-condition should check whether the role is assigned or not.

8.3.2. Analyze separation of duty constraints.
We use the following operation invocation pattern to check enforcement of the SOD

constraints:

Initial State Constraint

Domain(User) = Bob

cashier in Domain(Role)

accountant in Domain(Role)

cashier in accountant.SSDRoles // the roles conflict

Call Pattern
[

109

[]*
Bob.AssignRole(cashier)
Bob.AssignRole(accountant)

Iy
[

Bob.CreateSession(.)return(s:Session)

s.ActivateRole(r){2..4} where(r = accountant and r = cashier)

7401}

The expression /./ matches any operation call and "*" represents the multiplicity "0 or more".
The where clause stipulates that at least one of the Activate() calls must activate the accountant
role, and at least one of the Activate() calls must activate the cashier role.

The illegal scenario below is generated from the pattern:

e The scenario starts in a state consisting of two conflict of interest roles, cashier and

accountant, and a user Bob.

o User::AssignRole operation is called to assign the cashier role to user Bob. After the

operation is called, Bob is assigned the cashier role.

o User::AssignRole operation is called to assign the accountant role to user Bob. After the

operation is called, Bob is assigned the accountant role.

The scenario violates the static separation of duty constraint defined as RBAC Policy 4 and
thus it should be rejected by the HRBAC design. In the design model, the User::AssignRole
operation specified in Section 2 only checks whether the role is assigned to the user or not before
it assigns the role, so that the illegal scenario is consistent with the HRBAC design. To enforce
the static separation of duty constraint in an HRBAC design, the operation should also check
whether the role to be assigned is in conflict of interest with roles that have been assigned to the

user.

110

The illegal scenario below was used to analyze the dynamic separation of duty constraint:
e The scenario starts in a state consisting of two conflict of interest roles, cashier and
accountant, and a user Bob.
e Bob creates a new Session instance session.
o User::AssignRole operation is called to assign the cashier role to user Bob. After the
operation is called, Bob is assigned the cashier role.
o User::AssignRole operation is called to assign the accountant role to user Bob. After the
operation is called, Bob is assigned the accountant role.
o Session::ActivateRole operation is called to activate the cashier role in the Session
instance. After the operation is called, the cashier role is activated.
o Session::ActivateRole operation is called to activate the accountant role in the Session
instance. After the operation is called, the accountant role is activated.
In the illegal scenario the user Bob is assigned two conflict of interest roles cashier and
accountant, and Bob activates both roles in one session. Again, the Session.:ActivateRole()
operation does not check that the role to be activated is in a conflict of interest with a role in a

session created by the user.

111

Chapter 9

Generating Scenarios using OCL Operation Definitions

This chapter presents another scenario generation technique using OCL operation definitions
[Yul2]. To generate snapshot transitions, the UML class diagram and OCL operation definitions
are transformed to Alloy to generate scenarios.

The rest of this section is organized as follows: section 9.1 discusses the Location-aware
Role-Based Access Control example UML model. Section 9.2 discusses the scenario generation

technique and applies the technique to analyze the example model.

9.1 The Location-aware Role-Based Access Control model

The Location-aware Role-Based Access Control (LRBAC) is an extension to the standard
RBAC model [Ray05] [Ray06] [Ray07]. LRBAC uses spatial information of the user and object
to enhance the security of location-sensitive applications. In LRBAC, user and object are both
associated with locations. The location information of the user and object is taken into
consideration in determining whether the user can access the object. The role is associated with
assign location and activation location. A role can only be assigned (activated) by a user when
the user location is in the assign (activation) location of the role. The permission is also
associated with role location and object location. A user acquires certain permission to operate
an object only if the user activates the role that is granted the permission and the user location is

in role location of the permission and the object location is in object location of the permission.

112

http://www.springerlink.com/index/C3T50338535HX115.pdf

User

+AssignRole(in r : Role)
+DeassignRole(in r : Role)
+CreateSession() : Session
+DeleteSession() : Session
+GetAuthorizedRoles() ;, Set of Role
+UpdateLocation(in loc : Location)

-user -sessions

Session

-users

+ActivateRole(in r : Role)
+DeactivateRole(in r : Role)
+GetActiveRoles() : Set of Role

+CheckAccess(in t : Object, in o0 : Operation) : Boolean

-sessions %

* -activeRoles "

-assignedRoles

Role

* -assignLocs

-loc 4

L] Location

*

-loc

1 -actLocs|

+AddSeniorRole(in r : Role)
+DeleteSeniorRole(in r : Role)
+GrantPermission(in p : Permission)
+RevokePermission(in p : Permission)
+GetAuthorizedPermissions() : Set of Permission
+GetAuthorizedUsers() : Set of User
+GetSODRoles() : Set of Role
+AddAssignLocation(in loc : Location)
+AddActivationLocation(in loc : Location)

-SODRoles -folesx -juniorRoles

* -permissions
*

*

Permission eration

T+AddRoleLocation(in loc : Location)

+In(in locs : Set of Location) : Boolean

1 -roleLocs

-objLocs *

+AddObjectLocation(in loc : Location)
*

*

1

-seniorRoles

Operation

-object

Object

+UpdateLocation(in loc : Location)

|

Figure 9.1. The LRBAC UML design class diagram

In the LRBAC design class model (Fig. 9.1), the User, Role, Session and Permission classes
model users, roles, sessions and permissions entities in standard RBAC. The Permission class
describes RBAC permissions in terms of operations that can be performed on objects. The
assignedRoles association end of the Role class determines the set of roles directly assigned to a
user. The operation GetAuthorizedRoles() returns all assigned roles and their dominated roles

indirectly assigned to the user. The activeRoles association end determines the set of roles

113

activated in a session, and the operation GetActiveRoles() returns all roles activated in a session.
The association end permissions is the set of all permissions directly associated with a role, and
the operation GetAuthorizedPermissions() returns all permissions associated with a role and its
dominated roles. The seniorRoles and juniorRoles association ends define the role hierarchy
relationships. The SODRoles association end defines the set of separation of duty role pairs.

The Location class describes the new location entity in LRBAC. In location-aware
applications the location of the users and objects can be updated and queried. The
UpdateLocation operation sets the new locations of the user or object. The /oc association ends
in User-Location and Object-Location associations return the updated location of the user or
object. The method Location::In checks whether the location is contained by a set of locations.
The assignLocs and actLocs describes the set of assign locations and activation locations of the
role. The roleLocs and objLocs association ends describe the set of role locations and object
locations of the permission.

Operations are specified using the OCL. The operations that are involved in the analysis are
given below:

context User::AssignRole(r:Role)

// Assign a role to the user.

pre: not self.GetAuthorizedRoles ()->includes (r) and
self.loc.In(r.assignlLocs)

post: self.GetAuthorizedRoles () ->includes (r)

context Session::ActivateRole(r:Role)

// Activate a role in the session.

pre: not self.GetActiveRoles ()->includes(r) and
self.user.loc.In(r.assignlLocs) and

self.user.loc.In(r.actlLocs)

114

post: self.GetActiveRoles ()->includes(r)

context Session::CheckAccess (t:0bject, o:0Operation) :Boolean

pPre: true

post: result =
self.GetActiveRoles () .GetAuthorizedPermissions () ->exists (p |
p.object = t and p.operation = o and self.user.loc.In(p.rolelLocs)

and o.loc.In(p.objLocs)))

9.2 The scenario generation technique

The scenario generation technique (see Fig. 9.2) requires the verifier to create scenario
generation criteria and OCL operation definitions for operations that will be used in generated
scenarios. The technique uses the static aspects of the UML design class model (i.e., the classes
and associations, but not the operation specifications), and the verifier’s OCL operation
definitions to generate an Alloy model. The scenario generation criteria are used to produce
Alloy predicates that are included in the Alloy model. These predicates are run using the Alloy
Analyzer to generate snapshot transition sequences expressed as Alloy instance models. The
Alloy instance models are then transformed to snapshot transition sequences that can be input to

USE for analysis.

115

) Independent Verifier
Designer

UML Scenario Scenario
Design Operation generation
Class definitions criteria
diagrams (OCL)

—

Transformation

Transformation

Alloy
predicates

Alloy Snapshot
Model

Alloy Constraint
Solving
Snapshot
transitions

Figure 9.2. Generating transition sequences

The rest of the sections are organized as follows: In section 9.2.1 we describe the types of
scenario generation criteria that verifiers can define. In section 9.2.2 we give examples of

scenario operation definitions and in section 9.2.3 we describe how scenarios are generated.

9.2.1. Defining scenario generation criteria
In the extended Scenario-based UML Design Analysis technique, a verifier can define the

following types of scenario generation criteria:

116

e Operation sequence criteria: an operation sequence criterion characterizes a family of
operation sequences. Scenarios that satisfy this type of criteria must include operation
calls that abide by the relative ordering of calls defined by the criterion.

e Structural coverage criteria: a structural coverage criterion specifies properties of
objects and associations that must hold in snapshots before and after each operation.
These properties are expressed as OCL constraints.

e Operation coverage criteria: an operation coverage criterion specifies operation
behaviors that must be covered in the generated scenarios. These criteria are specified
using OCL constraints.

A scenario generation criterion consists of an initial state constraint part in which the verifier
specifies structural constraints, a call pattern part in which the verifier specifies an operation
sequence criterion, an optional structural coverage criterion, and an operation constraint part in
which the verifier specifies optional operation coverage criteria. This form builds upon our early
work on operation invocation patterns [Yu09].

The following describes the criteria that will be used to generate scenarios for analyzing the
LRBAC model. The criteria we use characterize scenarios that will be used to analyze check
access behaviors involving users updating their locations after activating assigned roles. The
intent is to check that the design model properly handles access control when a user changes
location.

Operation sequence criteria. The verifier defines an operation sequence criterion in the
form of an operation invocation pattern. In the pattern, a user creates a session, and some time
after the user is assigned a role that is later activated; after, the user updates its location and then

a request is made to access a resource which triggers an invocation of the CheckAccess()

117

operation. The operation sequence criterion is expressed as a pattern as shown below (the
numbers in brackets restrict the number of occurrences of the operation calls that can be made):

User: :CreateSession () {1}
User::AssignRole () {1}
Session::ActivateRole () {1}
User::UpdatelLocation () {1}
Session: :CheckAccess () {1}

An operation sequence that satisfies this criterion is shown in Fig. 9.3.

:User :Role

T
|
CreateSession |
1

create
'L session:Session
P

|
AssignRole !

Figure 9.3. The analysis operation sequence

Structural coverage criteria. The verifier defines a criterion stating that the snapshot
before the CheckAccess() operation in Fig. 9.3 must satisfy the following property (# is the set
cardinality operator):

#User = 1 and #Location = 2 and #Role = 1 and #Role.permissions =

1 and User.Loc <> Permission.rolelocs

118

The property states that the snapshot should contain one user, two locations, one role with a
granted permission, and that the set of user locations is not equal to the role set of permission
role locations.

Operation coverage criteria. The verifier is interested in generating scenarios in which the
user location is included in role assignment locations. Thus the following operation coverage
criterion is defined for User::AssignRole and Session.:ActivateRole operations. The criterion
ensures that the user location is included in role assignment locations before the two operations
are called.

behavior context: User::AssignRole(r:Role)

precondition includes: self.loc.In(r.assignLocs)

behavior context: Session::ActivateRole (r:Role)

precondition includes: self.user.loc.In(r.assignLocs) and self.user.loc.In(r.actLocs)

All of the above criteria are bundled into the single scenario generation criterion shown
below:

Initial State Constraint

{}
Call Pattern

[

User::CreateSession() {1}

User::AssignRole () {1}

Session::ActivateRole () {1}

User::UpdatelLocation () {1} where (#User =1 and #Location =2 and #Role
= 1 and #Role.permissions = 1 and User.Loc <> Permission.rolelocs)
Session: :CheckAccess () {1}

]

Operation Constraint

119

{
behavior context: User::AssignRole(r:Role)

precondition includes: self.loc.In(r.assignLocs)

behavior context: Session::ActivateRole (r:Role)
precondition includes: self.user.loc.In(r.assignLocs) and

self.user.loc.In(r.actlLocs)

}

9.2.2. Defining scenario operations

An OCL operation specification in a design class model should be complete in the sense that
it defines effects for all scenarios involving calls to the operations. A verifier’s scenario
operation definition does not need to be as encompassing; it should define only the effects
produced in the scenarios defined by the verifier.

For example, consider a case in which a verifier analyzes an LRBAC design model using the
following scenario:

e A user is in a location in which he cannot activate any roles, and

e The user attempts to retrieve information that he is not allowed to access.

In this scenario the CheckAccess() operation should return false, indicating that the user is
denied access. The verifier thus defines the Session::CheckAccess() operation as follows:

context Session::CheckAccess(t:0bject, o:0peration) :Boolean
pre: not self.user.loc.In(self.activeRoles.assignLocs)

post: result = false

Similarly, the verifier defines User.:AssignRole and User::UpdateLocation operations as:

context User::AssignRole (r:Role)
pre: not self.assignedRoles->includes (r)

post: self.assignedRoles ()->includes (r)

120

context User::UpdatelLocation (loc:Location)
pPre: true

post: not loc = loc@pre

9.2.3. Generating scenarios
This section discusses four major steps in the scenario generation process: the first step

generates the Alloy snapshot transition model, the second step generates the snapshot sequence
constraint, the third step generates Alloy predicates for criteria, and the last step generates Alloy
snapshot transitions.

9.2.3.1 Generating the Alloy snapshot transition model.

The verifier’s scenario operation definitions and the designer’s design class models are
transformed to a snapshot transition model, which is then transformed to an Alloy model. In this
step we use the design class diagram created by the designer and the OCL operation definitions
created by the verifier to generate a snapshot transition model. Details of the snapshot transition
model transformation algorithm are described in [Yu08]. The Alloy snapshot transition model
includes the following elements:

1. A signature for each class in the UML class diagram: All attributes in the UML class are
transformed to fields of the signature, and class invariants are expressed as predicates in the
Alloy. Rules on how to transform a UML class model to Alloy are discussed in
[Anastasakis10]. For example, in the LRBAC example, the following signatures are
generated:

sig User{}
sig Role({}

sig Session{}

2. A snapshot signature that includes:

= Set of objects for each signature generated in the above step.

121

= All associations in the design class diagram are specified as fields, and additional
constraints that force the associations to link objects in the snapshot only are added to

the Alloy model.

Part of the Snapshot signature for the LRBAC example is shown below:

sig Snapshot {
// LRBAC Objects
users:some User,
roles:some Role,
sessions:some Session,
permissions:some Permission,
operations: some Operation,
objects: some Object,
locations: some Location,
// LRBAC associations
userrole: User set ->set Role,

sessionrole:Session set->set Role

3. A transition signature that includes a before and after snapshot: An example is given below.

abstract sig Transition
{
before: one Snapshot,

after: one Snapshot

4. A specialized signature (sub-signature) of the Transition signature for each operation in the
design class model: The sub-signature contains fields representing pre- and post-forms of

parameters as defined in the snapshot transition model. The OCL specification of the

122

operation is transformed to constraints of the sub-signature. We finally add frame constraints
to the sub-signature to make that objects and associations not affected by the operation
remain the same in before and after snapshots. For example, we generate the following
User _UpdateLocation_Transition signature for User::UpdateLocation() operation:

sig User UpdateLocation Transition
extends Transition
{
uPre:User,
uPost:User,
locPre:Location,
locPost:Location,

H

// Postcondition

uPre. (before.userlocation) = locPre

locPost

uPost. (after.userlocation)

locPre != locPost

// Frame conditions

uPre = uPost

uPre in before.users
locPre in before.locations
uPost in after.users

locPost in after.locations

9.2.3.2 Generating the snapshot sequence constraint.

In this step, a snapshot sequence constraint is generated in order to associate two consecutive

snapshots with a transition. First, an Alloy ordering type is used to cast a set of states into a

123

sequence of states (e.g., open util/ordering[Snapshot] as SO). Second, an Alloy fact, traces, is
defined to relate a snapshot to its next snapshot through a transition as shown below:

open util/ordering[Snapshot] as SO
fact traces {

all s: Snapshot - SO/last |

let s' = s.next | one t : Transition |

t.before = s and t.after = s'}

9.2.3.3 Generating Alloy predicates for criteria.

In this step, the scenario coverage criteria are translated to Alloy predicates. Each operation
sequence criterion is translated to an Alloy predicate. In the example, the scenario operation
sequence pattern contains five operations: User:CreateSession(), User::AssignRole(),
Session::ActivateRole(), User::UpdateLocation() and Session::CheckAccess().

The pattern is transformed to an Alloy predicate as below:

pred operation patternl ({

one s: Snapshot - SO/last | let sO = s | let sl = SO/next[s0] |
let s2 = SO/next[sl] | let s3 = SO/next[s2] |
let s4 = SO/next[s3] | let s5 = SO/next[s4] |

one tl: User CreateSession Transition,

t2 : User AssignRole Transition,
t3 : Session ActivateRole Transition,
t4 : User UpdateLocation Transition,

t5: Session CheckAccess Transition |
tl.before = s0 and tl.after = sl and
t2.before = sl and t2.after = s2 and
t3.before = s2 and t3.after = s3 and
t4.before = s3 and td.after = s4 and
t5.before = s4 and tS.after = s5}

124

Each structural coverage criterion is translated to a predicate in the operation pattern
generated above. For example the following structural coverage criterion:

#User = 1 and #Location = 2 and #Role = 1 and
#Role.permissions = 1 and
User.Loc <> Permission.rolelocs

is translated to predicates on s4 in operation_patternl:

#s4.users = 1 and #s4.locations = 2 and #sd4.role = 1 and
#s4.rolepermission = 1 and
(sd4.users) . (sd4.userlocation)

!= (sd4.permissions) . (s4.permrolelocation)

Each operation coverage criterion is translated to a predicate in its corresponding Transition
signature. For example, the following operation coverage criterion:

behavior context: User::AssignRole(r:Role)
precondition includes: self.loc.In(r.assignlLocs)

is translated to the following predicate in User AssignRole Transition:

uPre. (before.userlocation) in rPre. (before.roleassignlocation)

9.2.3.4 Generating Alloy snapshot transitions.

By running the alloy predicates, we will get a set of snapshot transitions. For example, one
possible snapshot before and after the transition specified by User UpdateLocation Transition is
shown in Fig. 9.4 and Fig. 9.5. In the before snapshot, the user is at Location0, and the user
location is included in role assign location and role activation locations of the role, thus the user
has permission of operation on the object. In the after snapshot, the user location is updated to
Locationl, and Locationl is not included in role assign and activation locations, so that

Session::CheckAccess() should return false after this user location update.

125

If we check the Session CheckAccess Transition snapshot transition against the original
snapshot transition model, we will find that it is not consistent with the snapshot transition
model. The reason is that the Session::CheckAccess() operation specification in the design model
does not check whether the role is still enabled after the user changes location. If we add the

conditions below (shown in bold text) to the specification, it will resolve the inconsistency:

User
(UFost, uPre, users)

Session
(sessions)
\ '.
Role II
(roles) juserlocation
.”
[roleperm
[
.’f |I
[
[Permission
|||-_-IFa-:_tI-_n:ath_-n (permissions)
I 7 -
| Irafeassigniocati \\ L
| [/ permapject
| I| permralel o peigtion "
Hr ¥
Locationd Qperation Qhject .
(locations, IPre) (operations) (objects) permobjlocation
III
"'-\-:-L'-je-:tl-:-:ati-:-n
!
y /
Locationt

{locations, IPost)

Figure 9.4. Snapshots before User_UpdatelLocation_Transition

126

Llser
{UPost, uPre, users)

Session
(5ess5i0ns)

Rale
{roles)

T
f
i/
!
I

|

Permission
f'r-:-l actlocation | (permissions)

I Jroleassignlpgation / . .\

|| / permabject’

[/ perrmrolel g eEiom peigtion
4

roleperm

Yuserlocation

I X '
LocationO Qperation Ohject \
{locations, IPre) (operations) {ohjects) || ermaobjlocation

objectibcation

1

Locationt
{locations, IFost)

Figure 9.5. Snapshots after User_UpdateLocation_Transition

context Session::CheckAccess(t:0bject, o:0peration) :Boolean
pre: true

post: result = self.GetActiveRoles|()

->exists(r | self.user.loc.In(r.assignlLocs) and
self.user.loc.In(r.actlLocs) and
r.GetAuthorizedPermissions () ->exists (p | p.object = t and
p.operation = o and

self . user.loc.In(p.rolelocs) and o.loc.In(p.objLocs)))

127

Chapter 10

Conclusions and Future Work

This chapter summarizes the dissertation. Section 10.1 describes contributions of the
dissertation. Section 10.2 reviews and answers research questions. Section 10.3 discusses future

work.

10.1 Contributions

This main contribution of the dissertation is a lightweight and static technique for analyzing
UML design class models. A UML design class model is analyzed against a set of scenarios that
describe desired or undesired behaviors created from the verifier’s perspective. The analysis
technique is lightweight because it analyzes functionality specified in a UML design class model
within the scope of a set of scenarios. It is static because it does not require that the UML design
class model be executable. The technique does not transform UML design models to other
formal notations such as Alloy, the analysis is done by leveraging existing UML structural
analysis tool USE.

The technique is a consistency checking technique. Inconsistencies imply errors in the UML
design class model, errors in the scenarios or errors in both the UML design and scenarios. It is
up to the modeler and the verifier to analyze the inconsistencies, find the cause of the
inconsistencies and resolve the inconsistencies. After the design error is identified and fixed, the
technique can be used to check whether the inconsistencies have been resolved in the updated

UML design and scenarios.

128

The dissertation presents a Scenario-based UML Design Analysis tool developed using
Kermeta and Eclipse Modeling Framework. The tool can be used to transform Ecore design class
model to a USE snapshot transition model, and transform scenarios to snapshot transitions that
can be input to USE.

We used the Scenario-based UML Design Analysis technique to analyze two UML design
class models: a Train Management System model and a Generalized Spatio-Temporal RBAC
model. The case studies show how the technique can be used to check inconsistencies between
the UML design class models and scenarios.

We performed a pilot study of two design class models to evaluate the effectiveness of the
Scenario-based UML Design Analysis technique. In the pilot study of two UML designs, the
technique uncovered at least as many design inconsistencies as manual inspection techniques
uncovered, and the technique did not uncover false inconsistencies. The pilot study shows the
technique seems to be effective.

The dissertation presents two scenario generation techniques. These techniques can be used
to ease the manual effort needed to produce scenarios. Based on the verifier’s operation
definitions the scenario generation techniques can be used to automatically generate a family of

scenarios that conform to patterns of operation sequences.

10.2 Discussions of research questions

This section reviews and answers five research questions and discusses open issues of the
research.

Research question 1: How can a scenario be checked against a UML design class model?

129

The technique is used to (1) transform a UML design class model to a snapshot transition
model that captures valid state transitions, (2) transform scenarios to snapshot transitions and (3)
check whether the snapshot transitions are instances of the snapshot transition model using USE.

Research question 2: Can existing structural analysis tools such as USE be leveraged to
support scenario-based analysis of class models?

Existing UML analysis tools such as USE can be used to check whether a snapshot is an
instance of a UML design class model. The technique leverages existing USE tool to check
whether the snapshot transitions transformed from scenarios are instances of the snapshot
transition model.

Research question 3: How effective is the Scenario-based UML Design Analysis technique
in terms of the number of design inconsistencies that can be uncovered?

The pilot study of two design class models shows that the Scenario-based UML Design
Analysis technique seems to be effective, as it uncovered at least as many design inconsistencies
as manual inspection techniques uncovered and it did not uncover any false inconsistencies. Due
to the lack of graduate students to create scenarios and manually inspect design inconsistencies,
we cannot control the number of students and number of UML designs in the pilot study. A
formal controlled experiment is desired to further evaluate the technique.

Research question 4: Can scenarios be automatically generated?

Scenarios can be automatically generated. Chapter 8 and 9 presents two scenario generation
techniques. The verifier needs to define operation definitions that specify effects of operations
and operation sequence patterns. The scenario generation techniques can be used to
automatically generate a family of scenarios that conform to the scenario coverage criteria. The

criteria are defined by the verifier based on his or her domain knowledge and experience.

130

However, it is a challenging problem to generate just enough number of scenarios that cover
a UML design. The scenario generation techniques discussed in this dissertation are an initial
attempt to solve this issue.

Research question 5: Can the technique be scaled to analyze large industrial design models?

Based on the algorithm complexity analysis in section 4.5, the complexity of snapshot
transition model generation algorithm depends on the size of the UML design class model and
the complexity of OCL operation constraints, and the complexity of snapshot transitions
generation is proportional to the number of instances in a scenario. The complexity to check
consistency between snapshot transitions and the snapshot transition model in USE depends on
the number of operations in a scenario, number of instances in the before and after snapshot and
complexity of invariants in the snapshot transition model.

Table 10.1. Time analysis of model transformation

Scenario Time (seconds)
Scenario 1 (TMS) 71
Scenario 1 (GSTRBAC) 39
Scenario 2 (GSTRBAC) 50
Scenario 3 (GSTRBAC) 78
Scenario 4 (GSTRBAC) 78
Scenario 5 (GSTRBAC) 54
Scenario 6 (GSTRBAC) 84
Scenario 7 (GSTRBAC) 64
Scenario 8 (GSTRBAC) 53
Scenario 9 (GSTRBAC) 70
Scenario 10 (GSTRBAC) 69
Scenario 11 (GSTRBAC) 119
Scenario 12 (GSTRBAC) 72

131

Table 10.1 shows time taken to transform the UML design class model to snapshot transition
model and to transform each scenario in the pilot study to snapshot transitions. The time taken to
run USE commands to build the snapshot transitions in USE of these scenarios is about 2-3
seconds. The time was measured on a laptop with Intel ® Core ™ 2 Duo CPU T6600 2.20GHz
processor and 4GB physical memory. The laptop ran Windows 7 Home Premium operating
system, Eclipse SDK Version 3.5.0, KerMeta Version: 1.3.2 and USE 3.0.1.

The complexity analysis and time analysis shows that the technique can possibly be used to
analyze larger UML designs and scenarios. Future work is required to analyze and optimize the
analysis of large industrial models.

Open issue 1: What kinds of design errors can be uncovered using legal/illegal scenarios?

The technique is a consistency checking technique. A legal scenario is supposed to be
consistent with the UML design, and an illegal scenario is supposed to be inconsistent with the
UML design.

Based on our study, illegal scenarios are typically used to identify weak pre-condition error
and weak post-condition error. These two types of design errors can not be identified by legal
scenarios, because the weak pre/post conditions are still consistent with the legal scenarios. For
other types of design errors such as strong pre-condition (i.e., the pre-condition is too strong so
that some valid inputs are treated as invalid) and unsatisfiable post-condition (i.e., the
post-condition is too strong so that it can not be satified), the verifier can create illegal scenarios
to identify such errors, but it seems more straightforward to create legal scenarios to identify
such design errors.

Future work is required to study how different types of design errors can be uncovered by

inconsistencies identified using legal and illegal scenarios.

132

Open issue 2: Should the verifier mark which part of an illegal scenario is illegal?

It is not required for the verifier to mark which part of an illegal scenario is not legal for
consistency checking purpose. However, to help identifying design errors from inconsistencies
between an illegal scenario and a UML design, it is recommended that the verifier specifies

which part of an illegal scenario is not legal.

10.3 Future work

We studied two demonstration UML designs. Future work should study more complicated
industrial UML designs. We need to optimize the snapshot transition model in case the
generation of snapshot transition model or USE consistency check becomes a bottleneck in
analyzing large industrial models.

We need to further study how different types of design errors are identified from
inconsistencies uncovered using legal and illegal scenarios.

In the pilot study two graduate students manually reviewed the UML designs and scenarios.
And we studied 13 scenarios of two UML designs. In the future work of formal controlled
experiment, larger number of graduate students should be invited and trained to do manual
inspection. The controlled experiment should study more scenarios and UML designs, and more
design inconsistencies should be seeded.

An effective scenario generation strategy is still open for future research. One future
direction is to study how to produce legal and illegal scenarios to cover every branch of OCL

operation constraints.

133

References

[Abdunabil3] Ramadan Abdunabi, Mustafa Al-Lail, Indrakshi Ray, Robert B. France: Specification,
Validation, and Enforcement of a Generalized Spatio-Temporal Role-Based Access Control Model. /EEE
Systems Journal 7(3): 501-515 (2013).

[Al-Lail13] Mustafa Al-Lail, Ramadan Abdunabi, Robert B. France, Indrakshi Ray: "An Approach
to Analyzing Temporal Properties in UML Class Models", MoDeVVa@MoDELS 2013: 77-86.

[Alloy] D. Jackson, "Alloy: a lightweight object modeling notation”, ACM Transactions on Software
Engineering and Methodology, Volume 11, Issue 2, April 2002, pages 256-290.

[Blum92] Blum, B. I. 1992 Software Engineering: a Holistic View. Oxford University Press, Inc.

[Boehm81] B. W. Boehm, Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ,
1981.

[Briand02] Lionel Briand, Yvan Labiche, “A UML-Based Approach to System Testing”, Software
and Systems Modeling, vol. 1 (1), pp. 10-42, 2002.

[Brucker08] Achim D. Brucker and Burkhart Wolff. HOL-OCL - A Formal Proof Environment for
UML/OCL. In Fundamental Approaches to Software Engineering. Lecture Notes in Computer Science
(4961), pages 97-100.

[Bittner04] Fabian Buttner and Martin Gogolla. On Generalization and Overriding in UML 2.0. In
Jean Bezivin, Thomas Baar, Tracy Gardner, Martin Gogolla, Reiner H?hnle, Heinrich Hu?mann,
Octavian Patrascoiu, Peter H. Schmitt, and Jos Warmer, editors, Proc. UML'2004 Workshop OCL and
Model Driven Engineering, pages 69-69. In: UML - Modeling Languages and Applications.

[Clark99] E. Clark, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.

[Clarke01] Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., and Veith, H. 2001. Progress on the State
Explosion Problem in Model Checking. In informatics - 10 Years Back. 10 Years Ahead.

[Conradi03] Reidar Conradi, Parastoo Mohagheghi, Tayyaba Arif, Lars Christian Hedge, Geir Arne

Bunde, and Anders Pedersen. Object-oriented reading techniques for inspection of UML models — an

134

industrial experiment. In Proceedings of ECOOP 03, volume 2749 of LNCS, pages 483-501. Springer,
July 2003.

[EMF] Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/?project=emf

[Eshuis06] Eshuis, R. 2006. Symbolic model checking of UML activity diagrams. ACM Trans. Softw.
Eng. Methodol. 15, 1 (Jan. 2006), 1-38.

[Fagan76] M.E., Fagan (1976). "Design and Code inspections to reduce errors in program
development”. IBM Systems Journal 15 (3): pp. 182-211.

[Ferraiolo01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy
Chandramouli. 2001. Proposed NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur.
4, 3 (August 2001), 224-274.

[Garcia07] Miguel Garcia, "How to process OCL Abstract Syntax Trees", Technische Universitét
Hamburg-Harburg (Germany), June 2007.

[IEEE1028] IEEE std 1028-1988, IEEE Standard for Software Reviews and Audits (ANSI).

[[sabelle02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson, "Isabelle/HOL: A Proof
Assistant for Higher-Order Logic", Springer-Verlag, Berlin, Heidelberg, 2002.

[Jacobson92] 1. Jacobson, M. Christerson, P. Jonsson, G. .vergaard: Object Oriented Software
Engineering: A Use Case Driven Approach. Amsterdam: Addison-Wesley, 1992.

[Kermeta] Kermeta language reference manual, http://www.kermeta.org/

[Krieger08] Krieger, M. P. & Knapp, A. Executing Underspecified OCL Operation Contracts with a
SAT Solver. ECEASST, 2008, 15.

[Kundu09] Debasish Kundu and Debasis Samanta, “A Novel Approach to Generate Test Cases from
UML Activity Diagrams”, Journal of Object Technology, Volume 8, no. 3 (May 2009), pp. 65-83.

[Lilius99] J. Lilius and I. P. Paltor. Formalising UML State Machines for Model Checking. Proc. of
the International Conference on the Unified Modelling Language: Beyond the Standard (UML'99),
volume 1723 of Lecture Notes in Computer Science, pages 430-445, USA, 1999. Springer-Verlag.

[MOF] Meta Object Facility (MOF) Core Specification, Object Management Group, Version 2.0.

135

[Muller05] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel, "Weaving Executability
into Object-Oriented Meta-Languages"”, Proceedings of ACM/IEEE 8th International Conference on
Model Driven Engineering Languages and Systems, Jamaica, 2-7 October 2005.

[Nebut06] Cle'mentine Nebut, Franck Fleurey, Yves Le Traon, Jean-Marc Je'ze' quel, "Automatic
Test Generation: A Use Case Driven Approach," IEEE Transactions on Software Engineering, vol. 32, no.
3, pp. 140-155, Mar. 2006, doi:10.1109/TSE.2006.22.

[NuSMV99] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri. In N. Halbwachs and D. Peled,
editors: "NuSMV: a new symbolic model verifier", Proceeding of International Conference on
Computer-Aided Verification (CAV'99), In Lecture Notes in Computer Science, number 1633, pages
495-499, Trento, Italy, July 1999. Springer.

[OCLE] D. Chiorean, M. Pasca, A. Carcu, C. Botiza, S. Moldovan, "Ensuring UML Models
Consistency Using the OCL Environment", Electronic Notes in Theoretical Computer Science, Volume
102, Nov. 2004, pages 99-110.

[OCL] Object Management Group, Object Constraint Language Specification, Version 2.3.

[Oliver99] lam Oliver, Stuart Kent, "Validation of Object Oriented Models using Animation,”
euromicro, vol. 2, pp.2237, 25th Euromicro Conference (EUROMICRO '99)-Volume 2, 1999.

[Ray05] Indrakshi Ray and Lijun Yu, "Short Paper: Towards a Location-Aware Role-Based Access
Control Model", Proceedings of the 1st IEEE Conference on Security and Privacy for Emerging Areas in
Communication Networks, Athens, Greece, September 2005.

[Ray06] Indrakshi Ray, Mahendra Kumar, and Lijun Yu, "LRBAC: A Location-Aware Role-Based
Access Control Model”, Proceedings of the 2nd International Conference on Information Systems
Security, Kolkata, India, December 2006.

[Ray07] Indrakshi Ray, Manachai Toahchoodee: A Spatio-temporal Role-Based Access Control
Model. DBSec 2007: 211-226.

[Shah09] Seyyed M. A. Shah, Kyriakos Anastasakis, and Behzad Bordbar. 2009. From UML to
Alloy and back again. In Proceedings of the 6th International Workshop on Model-Driven Engineering,

136

Verification and Validation (MoDeVVa '09), ACM, New York, NY, USA, , Article 4 , 10 pages.
DOI=10.1145/1656485.1656489 http://doi.acm.org/10.1145/1656485.1656489

[Steinberg09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, Ed Merks, EMF Eclipse
Modeling Framework, Second Edition, Addison-Wesley, 20009.

[Sutcliffe98] Alistair G. Sutcliffe, Neil A.M. Maiden, Shailey Minocha, Darrel Manuel, "Supporting
Scenario-Based Requirements Engineering," IEEE Transactions on Software Engineering, pp. 1072-1088,
December, 1998.

[TorlakQ7] Emina Torlak, Daniel Jackson: "Kodkod: A Relational Model Finder", in Tools and
Algorithms for the Construction and Analysis of Systems, 13th International Conference, 632-647, March
2007.

[Travassos02] Travassos, G.H., Shull, F., Carver, J., Basili, V.R.: Reading Techniques for OO
Design Inspections. University of Maryland Technical Report CS-TR-4353. April 2002,
http://www.cs.umd.edu/Library/TRs/CS-TR-4353/CS-TR-4353.pdf.

[Travassos99] Guilherme Travassos, Forrest Shull, Michael Fredericks, and Victor R. Basili. 1999.
Detecting defects in object-oriented designs: using reading techniques to increase software quality. In
Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications (OOPSLA '99), A. Michael Berman (Ed.). ACM, New York, NY, USA, 47-56.
DOI=10.1145/320384.320389 http://doi.acm.org/10.1145/320384.320389 3.1. Sample selection and
training and grouping.

[Trung05] T. Dinh-Trong, N. Kawane, S. Ghosh, R. B. France, and A. A. Andrews. "A
Tool-Supported Approach to Testing UML Design Models", Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer Systems, IEEE Computer Society Press, pp.519-528,
Shanghai, China, June 16-20, 2005.

[UML2AIlloy] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, Indrakshi Ray: On challenges of

model transformation from UML to Alloy. Software and System Modeling 9(1): 69-86 (2010).

137

http://www.informatik.uni-trier.de/~ley/pers/hd/j/Jackson:Daniel.html

[UML] Object Management Group, Unified Modeling Language: Superstructure, vers 2.4, Final
Adopted Standard.

[USE] Gogolla, M., Buttner, F., and Richters, M. 2007. USE: A UML-based specification
environment for validating UML and OCL. Sci. Comput. Program. 69, 1-3, December 2007.

[Valmari98] Valmari, A. 1998. The State Explosion Problem. In Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, the Volumes Are Based on the Advanced Course on Petri Nets W.
Reisig and G. Rozenberg, Eds. Lecture Notes In Computer Science, vol. 1491. Springer-Verlag, London,
429-528.

[Whittle03] Jonathan Whittle. 2003. Formal approaches to systems analysis using UML.: an overview.
In Advanced topics in database research vol. 1, Keng Siau (Ed.). IGI Publishing, Hershey, PA, USA
324-341.

[Wohlin12] Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, Anders
Wesslén, Experimentation in Software Engineering, Springer, 2012, ISBN: 978-3642290435.

[YuO7] Lijun Yu, Robert B. France, Indrakshi Ray, and Kevin Lano, "A Light-Weight Static
Approach to Analyzing UML Behavioral Properties”, Proceedings of the 12th IEEE International
Conference on Engineering of Complex Computer Systems, Auckland, New Zealand, July 2007.

[Yu08] Lijun Yu, Robert France, Indrakshi Ray, "Scenario-based Static Analysis of UML Class
Models", Proceedings of ACM/IEEE 11th International Conference on Model Driven Engineering
Languages and Systems, Toulouse, France, Sep. 28-Oct.3, 2008.

[Yu09] Lijun Yu, Robert France, Indrakshi Ray, Sudipto Ghosh, "A Rigorous Approach to
Uncovering Security Policy Violations in UML Designs”, Proceedings of the 14th International
Conference on Engineering Complex Computer Systems, Potsdam, Germany, June 20009.

[Yul2] lijun Yu, Robert B. France, Indrakshi Ray, Wuliang Sun: "Systematic Scenario-Based
Analysis of UML Design Class Models", Proceedings of the 17th International Conference on

Engineering Complex Computer Systems, Paris, France, July 2012.

138

	Chapter 1
	Introduction
	1.1 Problem Statement
	1.2 Outline of Solution
	1.3 Scope of Research
	1.4 Dissertation Organization

	Chapter 2
	Background
	2.1 The Unified Modeling Language
	2.1.1 UML Design Class Diagram
	2.1.2 The Object Constraint Language
	2.1.3 UML Sequence Diagram

	2.2 The Meta-Object Facility
	2.3 The Eclipse Modeling Framework and Ecore
	2.4 The Kermeta Metamodeling Language

	Chapter 3
	Related Work
	3.1 Formal analysis techniques
	3.1.1 Alloy
	3.1.2 Model checking techniques
	3.1.3 Formal theorem proving technique

	3.2 UML animation and testing
	3.3 USE and OCLE
	3.4 UML test input and scenario generation
	3.4.1 UML animation techniques
	3.4.2 UML test input generation techniques

	Chapter 4
	Scenario-based UML Design Analysis Technique
	4.1 A simple Role-Based Access Control example
	4.2 Generating the Snapshot Transition Model
	4.2.1 Create a Snapshot class
	4.2.2 Create a Transition class hierarchy
	4.2.3 Generate Transition invariants from operation specifications
	4.2.4 Add frame constraints to the Transition subclass

	4.3 Generating Scenario Snapshot Transitions
	4.4 Checking consistency in USE
	4.5 Algorithm complexity analysis
	4.5.1 Snapshot transition model generation algorithm analysis
	4.5.2 Snapshot transitions generation algorithm analysis
	4.5.3 USE consistency check complexity analysis
	4.5.4 Summary

	Chapter 5
	Implementation
	5.1 Tool architecture
	5.2 The STM Generator and STM Invariant Generator
	5.2.1 Generating Ecore snapshot transition diagram
	5.2.2 Transforming OCL operation specifications
	5.2.3 Generating USE snapshot transition model

	5.3 The Scenario Generator
	5.3.1 Explicit specification of scenarios
	5.3.2 Action language specification of scenarios
	5.3.3 Generating snapshot transitions
	5.3.4 Generating USE commands

	5.4 USE consistency check

	Chapter 6
	Demonstration Case Studies
	6.1 The Train Management System model
	6.1.1 The TMS design class model
	6.1.2 TMS Scenario one
	6.1.3 TMS Scenario two

	6.2 The Generalized Spatio-Temporal RBAC model
	6.2.1 The GSTRBAC design class model
	6.2.2 GSTRBAC scenario one
	6.2.3 GSTRBAC scenario two
	6.2.4 GSTRBAC scenario three

	6.3 Conclusion

	Chapter 7
	Pilot Study
	7.1. Experiment planning
	7.1.1 Experiment goal, research question and hypothesis
	7.1.2 Context selection and subjects
	7.1.3 Experiment design
	7.1.4 Measurements and data collection

	7.2. Experiment results and analysis
	7.3. Conclusion and discussions

	Chapter 8
	Generating Scenarios using JAL Operation Definitions
	8.1 The scenario generation technique
	8.2 An hierarchical RBAC example
	8.2.1. HRBAC design class model
	8.2.2. HRBAC constraints

	8.3. Analyze HRBAC constraints
	8.3.1. Analyze role activation constraint.
	8.3.2. Analyze separation of duty constraints.

	Chapter 9
	Generating Scenarios using OCL Operation Definitions
	9.1 The Location-aware Role-Based Access Control model
	9.2 The scenario generation technique
	9.2.1. Defining scenario generation criteria
	9.2.2. Defining scenario operations
	9.2.3. Generating scenarios

	Chapter 10
	Conclusions and Future Work
	10.1 Contributions
	10.2 Discussions of research questions
	10.3 Future work

	References

