

DISSERTATION

A SCENARIO-BASED TECHNIQUE TO ANALYZE UML DESIGN CLASS MODELS

Submitted by

Lijun Yu

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2014

Doctoral Committee:

Advisor: Robert B. France

Indrakshi Ray

Sudipto Ghosh

Yashwant Malaiya

Dan Turk

Copyright by Lijun Yu 2014

All Rights Reserved

ii

ABSTRACT

A SCENARIO-BASED TECHNIQUE TO ANALYZE UML DESIGN CLASS MODELS

Identifying and resolving design problems in the early design phases can help reduce the

number of design errors in implementations. In this dissertation a tool-supported lightweight

static analysis technique is proposed to rigorously analyze UML design class models that include

operations specified using the Object Constraint Language (OCL). A UML design class model is

analyzed against a given set of scenarios that describe desired or undesired behaviors. The

technique can leverage existing class model analysis tools such as USE and OCLE. The analysis

technique is lightweight in that it analyzes functionality specified in a UML design class model

within the scope of a given set of scenarios. It is static because it does not require that the UML

design class model be executable.

The technique is used to (1) transform a UML design class model to a snapshot transition

model that captures valid state transitions, (2) transform given scenarios to snapshot transitions

and (3) determine if the snapshot transitions conform or not to the snapshot transition model. A

design inconsistency exists if snapshot transitions that represent desired behaviors do not

conform to the snapshot transition model, or if snapshot transitions representing undesired

behaviors conform to the snapshot transition model.

A Scenario-based UML Design Analysis tool was developed using Kermeta and the Eclipse

Modeling Framework. The tool can be used to transform an Ecore design class model to a

snapshot transition model and transform scenarios to snapshot transitions. The tool is integrated

with the USE analysis tool.

iii

We used the Scenario-based UML Design Analysis technique to analyze two design class

models: a Train Management System model and a Generalized Spatio-Temporal RBAC model.

The two demonstration case studies show how the technique can be used to analyze the

inconsistencies between UML design class models and scenarios.

We performed a pilot study to evaluate the effectiveness of the Scenario-based UML Design

Analysis technique. In the pilot study the technique uncovered at least as many design

inconsistencies as manual inspection techniques uncovered, and the technique did not uncover

false inconsistencies. The pilot study provides some evidence that the Scenario-based UML

Design Analysis technique is effective.

The dissertation also proposes two scenario generation techniques. These techniques can be

used to ease the manual effort needed to produce scenarios. The scenario generation techniques

can be used to automatically generate a family of scenarios that conform to specified scenario

generation criteria.

iv

ACKNOWLEDGEMENTS

I am thankful to a lot of people who are helpful to me in my life and Ph.D. study. Without

their patient help and support, I would not have been able to complete my dissertation.

First of all, I owe special thank to my advisor, Dr. Robert B. France for his guidance,

inspiration and patience. I am very grateful to his dedication and flexibility when I have to work

part-time and later remotely on my research. I would like to thank Dr. Indrakshi Ray for always

supporting and advising me. I’d like to thank my research committee members Dr. Sudipto

Ghosh, Dr. Yashwant Malaiya and Dr. Dan Turk for their advice. I’d like to thank Dr. Phillip

Chapman from the Department of Statistics and Dr. Tao Yue from Simula Research Laboratory

for advising me in the pilot study.

I would like to thank the National Science Foundation for sponsoring research project "SHF:

Small: Scenario-Based Validation of Design Models" under grant #1018711. I’d like to thank

Wuliang Sun and Kayle Hoehn for their excellent work in implementing the tool and resolving

major issues in implementation. I’d like to thank Mustafa Al-Lail, Mohammed Al-refai and Sai

Mandalaparty for their help in the pilot study.

I would like to thank the graduate committee and Dr. Dale Grit who accepted me to the Ph.D.

program and granted me assistantship. I’d like to thank Carol Calliham for helping me apply to

the program. I would like to thank Sharon Van Gorder and all other people in the department

who have helped me in my study.

Finally, I am grateful to my wife, Li Huang, for her love and support. I thank her for

accompanying and encouraging me during my hard time. I’d like to thank our daughter Annie

and Emily for giving us a lot of happiness. I’d like to thank my parents for their unselfish love,

and my brother and sister for their love and support.

v

DEDICATION

This dissertation is dedicated to my wife.

vi

TABLE OF CONTENTS

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Problem Statement ... 1

1.2 Outline of Solution ... 4

1.3 Scope of Research .. 6

1.4 Dissertation Organization ... 6

CHAPTER 2 ... 8

BACKGROUND .. 8

2.1 The Unified Modeling Language ... 8

2.2 The Meta-Object Facility ... 13

2.3 The Eclipse Modeling Framework and Ecore ... 14

2.4 The Kermeta Metamodeling Language ... 15

CHAPTER 3 ... 17

RELATED WORK .. 17

3.1 Formal analysis techniques .. 17

3.2 UML animation and testing .. 20

3.3 USE and OCLE ... 22

3.4 UML test input and scenario generation .. 22

CHAPTER 4 ... 25

SCENARIO-BASED UML DESIGN ANALYSIS TECHNIQUE ... 25

4.1 A simple Role-Based Access Control example .. 26

4.2 Generating the Snapshot Transition Model ... 29

4.3 Generating Scenario Snapshot Transitions .. 40

4.4 Checking consistency in USE ... 41

4.5 Algorithm complexity analysis ... 42

CHAPTER 5 ... 45

IMPLEMENTATION .. 45

5.1 Tool architecture .. 45

5.2 The STM Generator and STM Invariant Generator .. 48

5.3 The Scenario Generator ... 56

5.4 USE consistency check ... 61

CHAPTER 6 ... 63

DEMONSTRATION CASE STUDIES ... 63

6.1 The Train Management System model ... 63

6.2 The Generalized Spatio-Temporal RBAC model .. 74

6.3 Conclusion ... 91

CHAPTER 7 ... 92

PILOT STUDY ... 92

7.1. Experiment planning .. 92

7.2. Experiment results and analysis ... 94

7.3. Conclusion and discussions ... 97

CHAPTER 8 ... 98

GENERATING SCENARIOS USING JAL OPERATION DEFINITIONS .. 98

vii

8.1 The scenario generation technique ... 98

8.2 An hierarchical RBAC example ... 103

8.3. Analyze HRBAC constraints .. 108

CHAPTER 9 ... 112

GENERATING SCENARIOS USING OCL OPERATION DEFINITIONS ... 112

9.1 The Location-aware Role-Based Access Control model .. 112

9.2 The scenario generation technique ... 115

CHAPTER 10 ... 128

CONCLUSIONS AND FUTURE WORK ... 128

10.1 Contributions .. 128

10.2 Discussions of research questions .. 129

10.3 Future work ... 133

REFERENCES .. 134

viii

LIST OF TABLES

Table 7.1. Formulation of the experiment objective ... 93

Table 7.2. TMS experiment results ... 95

Table 7.3. GSTRBAC experiment results .. 95

Table 10.1. Time analysis of model transformation ... 131

ix

LIST OF FIGURES

Figure 1.1: Scenario-based UML design analysis technique ... 4

Figure 2.1. A car inventory application design class diagram... 9

Figure 2.2. UML sequence diagram ... 12

Figure 2.3. UML four-layer metamodeling architecture .. 13

Figure 2.4. Partial Ecore metamodel ... 14

Figure 4.1: Scenario-based UML design analysis technique ... 25

Figure. 4.2. Partial RBAC design class model ... 27

Figure 4.3. Partial RBAC class model and its snapshot transition model 31

Figure 4.4. Assign Accountant role snapshot transition... 41

Figure 5.1. Overview of the Scenario-based UML Design Analysis tool 46

Figure 5.2. RBAC Ecore design class diagram (diagram view)... 48

Figure 5.3. RBAC Ecore design class diagram (tree view) .. 49

Figure 5.4. RBAC Ecore snapshot transition diagram ... 50

Figure 5.5. Snapshot transition model generation algorithm .. 51

Figure 5.6. OCL operation specification transformation main algorithm 54

Figure 5.7. USE snapshot transition model .. 55

Figure 5.8. Explicit specification of an RBAC scenario ... 57

Figure 5.9. Metalmodel of the action specification language .. 58

Figure 5.10. Action specification of an RBAC scenario ... 59

Figure 5.11. USE snapshot transitions ... 61

Figure 5.12. USE consistency checking .. 62

Figure 6.1. TMS design class diagram ... 65

Figure 6.2. TMS snapshot 1.1 ... 68

Figure 6.3. TMS snapshot 1.2 ... 69

Figure 6.4. TMS snapshot 1.3 ... 70

Figure 6.5. TMS snapshot 2.1 ... 71

Figure 6.6. TMS snapshot 2.2 ... 72

Figure 6.7. TMS snapshot 2.3 ... 73

Figure 6.8. GSTRBAC design class diagram – main view ... 75

Figure 6.9. GSTRBAC design class diagram – SOD view ... 76

Figure 6.10. GSTRBAC snapshot 1.1 ... 80

Figure 6.11. GSTRBAC snapshot 1.2 ... 81

Figure 6.12. GSTRBAC snapshot 1.3 ... 82

Figure 6.13. GSTRBAC snapshot 2.1 ... 83

Figure 6.14. GSTRBAC snapshot 2.2 ... 84

Figure 6.15. GSTRBAC snapshot 2.3 ... 85

Figure 6.16. GSTRBAC snapshot 2.4 ... 86

Figure 6.17. GSTRBAC snapshot 2.5 ... 87

Figure 6.18. GSTRBAC inconsistencies in snapshot 2.5 .. 88

Figure 6.19. GSTRBAC snapshot 3.1 ... 89

Figure 6.20. GSTRBAC snapshot 3.2 ... 90

Figure 6.21. GSTRBAC snapshot 3.3 ... 91

Figure 7.1. Histogram of experiment results .. 96

x

Figure 8.1. Scenario generation algorithm .. 102

Figure 8.2. Hierarchical RBAC design class model ... 103

Figure 9.1. The LRBAC UML design class diagram .. 113

Figure 9.2. Generating transition sequences .. 116

Figure 9.3. The analysis operation sequence ... 118

Figure 9.4. Snapshots before User_UpdateLocation_Transition ... 126

Figure 9.5. Snapshots after User_UpdateLocation_Transition ... 127

1

Chapter 1

Introduction

1.1 Problem Statement

The Unified Modeling Language (UML) is the de-facto standard object-oriented modeling

language [UML]. UML class models are often used by developers to describe object-oriented

software designs [Whittle03]. Software design is a creative and labor-intensive process and thus

there are opportunities for introducing errors into UML design class models. Design errors

should be identified and resolved as early as possible because these errors may be much more

costly to fix in later software development phases [Blum92] [Boehm81]. There is a need for

analysis tools and techniques that uncover errors in UML design class models.

A UML design class model can be used to describe two aspects of a software design:

structure and functionality. The structural aspect of a software design is described in terms of

classes, relationships between classes, and class invariants. Functionality is described using

operation specifications. Operation specifications and class invariants can be expressed in the

Object Constraint Language (OCL) [OCL].

Existing UML structural analysis tools such as OCLE [OCLE] and USE [USE] can be used

to check if an object configuration, called a snapshot, conforms to a class model. However,

OCLE does not provide any support for analyzing operation specifications and USE can only be

used to analyze operation specifications by simulating behavior of operations in an interactive

mode.

2

Formal analysis tools such as the Alloy [Alloy] can be used to find counter-examples that

violate certain constraints within the scope of a limited number of objects. Formal model

checking tools [Clark99] do exhaustive search in a constrained state space to check whether a

given property is satisfied or not. However, to analyze UML design class models using Alloy or

model checking tools, we need to transform UML design models to the Alloy or the notation of

model checking tools. The verifier should be familiar with the Alloy language and the notation of

a model checking tool. Furthermore, one has to prove the correctness of the transformations in

order to trust the analysis results. This can be difficult in practice.

Formal theorem proving tools such as Isabelle can be used to formally reason about modeled

properties in an interactive manner [Brucker08]. However, to analyze UML design class models

using theorem proving tools the verifier must be familiar with formal notations and proof

strategies used by the tools.

Analyzing all behaviors specified in UML design class models can be expensive. Sometimes

all that is desired is to check a subset of behaviors. This dissertation proposes a lightweight

analysis technique called Scenario-based UML Design Analysis that allows modelers to analyze

UML design class models against functionality described by a set of scenarios, where a scenario

is an execution trace that consists of an initial system state and a sequence of operation calls and

system states after each operation call.

The research aims at answering the following questions:

1. How can a scenario be checked against a UML design class model? Some scenarios describe

desired functionalities, others describe undesired functionalities. The technique should be

able to check that the UML design class model is consistent with the former and inconsistent

with the latter.

3

2. Can existing structural analysis tools such as USE be leveraged to support scenario-based

analysis of UML design class models? Existing structural analysis tools can be used to check

the consistency between a UML class model and a snapshot. It will save a lot of effort if we

can leverage existing UML analysis tools in building support for scenario-based analysis.

3. How effective is the Scenario-based UML Design Analysis technique in terms of the number

of design inconsistencies that can be uncovered? The technique should be at least as effective

as human beings in identifying design inconsistencies.

This research work starts to explore answers to the following two questions, but more work

is needed:

4. Can useful scenarios be automatically generated? Scenario creation is time consuming. An

automatic scenario generation technique can ease the scenario creation task.

5. Can the Scenario-based UML Design Analysis technique be scaled to analyze large industrial

models?

The technique is lightweight because it aims to uncover design errors within the scope of a

set of scenarios. It does not attempt to explore all possible scenarios covered by a UML design.

The technique is static because it does not require that the UML design class model be

executable. The technique provides a less expensive and less exhaustive alternative to more

heavyweight analysis techniques. It is less expensive in that modelers need only be familiar with

UML and do not have to put effort into learning and using sophisticated formal languages and

proof techniques.

4

1.2 Outline of Solution

An overview of the Scenario-based UML Design Analysis technique is shown in Fig. 1.1.

There are two roles involved in the Scenario-based UML Design Analysis process: designer and

verifier. The designer creates a UML design class model that includes OCL operation

specifications, and operation scope specifications which specify the set of classes, attributes and

links that are changed by each operation. The verifier creates a set of scenarios that will be used

to analyze the UML design.

In this dissertation a scenario describes an execution trace. It consists of an initial system

state (snapshot) and a sequence of operation calls. Formally, a scenario is a sequence

 nn110 SOPSOPS ,,...,,, where n21 OPOPOP ,...,, is a sequence of operation calls with actual

parameters, iS is the system state before operation iOP is executed and 1iS  is system state

after the operation iOP is executed.

A scenario can be legal or illegal: a legal scenario describes functionality that is desired,

while an illegal scenario describes functionality that is not desired.

UML Design Class Model

Class diagrams

OCL Operation

specifications and

invariants
Snapshot

Transition

Model

Snapshot

Transitions

Model Transformation

Consistency Analysis Inconsistencies

Legal/illegal

Scenarios Snapshot Generation

Step 1

Step 2

Step 3

Verifier

Designer
Operation scope

specifications

Figure 1.1: Scenario-based UML design analysis technique

5

The technique consists of three major automated steps.

 In the first step, the UML design class model is automatically transformed to a snapshot

transition model. A snapshot transition model is a UML class model that specifies valid

snapshot transitions, that is, all valid changes to object configurations (snapshots)

triggered by the execution of operations. A snapshot transition describes the effects of an

operation invocation on a system state. A snapshot transition consists of (1) the name and

parameter values of the operation that triggers the transition, (2) a before-snapshot

describing the state of the system before the operation is executed, and (3) an

after-snapshot describing the state of the system after the operation has been executed.

 In the second step, scenarios created by a verifier are used to generate a sequence of

snapshot transitions that describe desired or undesired functionality from the perspective

of the verifier. The verifier marks scenarios as legal or illegal.

 In the third step, the snapshot transitions produced in the second step are checked against

the snapshot transition model to determine whether the snapshot transitions are consistent

with the snapshot transition model. This check can be done by the UML structural

analysis tool, USE. The output of the scenario-based UML design analysis technique is a

set of inconsistencies. These inconsistencies are reported in the form of class invariant

violations. An inconsistency between the UML design class model and scenarios implies

defects in the UML design class model or defects in the scenarios.

In addition to the Scenario-based UML Design Analysis technique, this dissertation

discusses two scenario generation techniques that automatically generate scenarios from

operation invocation patterns and operation definitions. Each pattern describes all possible

operation sequences and operation definitions describe effects of operations in the scenarios.

6

1.3 Scope of Research

The Scenario-based UML Design Analysis technique assumes that operations are invoked

sequentially and thus it cannot be used to analyze parallel and concurrent behaviors. The analysis

of such behaviors is not in the scope of this research.

The analysis technique is a consistency checking technique. It is up to the verifier and

developer to determine the source of inconsistencies. It is also up to the verifier and developer to

change the UML design or scenarios based on the inconsistencies found by the technique.

The Scenario-based UML Design Analysis technique cannot be used to determine whether a

scenario is effective or not to identify defects in the UML design. The verifier is responsible for

creating scenarios of interest to analyze the design.

The scenario generation techniques cannot be used to determine whether enough scenarios

have been generated. It is a hard problem to generate enough scenarios for scenario-based

analysis, because the technique has to select a small number of scenarios that can effectively

uncover design defects from a huge state space of all possible scenarios of the UML design class

model. The scenario generation techniques discussed in this dissertation are an initial attempt to

automating the generation of scenarios.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows:

 Chapter 2 presents the background needed to understand the analysis technique.

 Chapter 3 surveys related work in analysis and testing of UML design models.

 Chapter 4 describes the Scenario-based UML Design Analysis technique.

7

 Chapter 5 describes the implementation of the Scenario-based UML Design Analysis

tool.

 Chapter 6 describes two demonstration case studies of the Scenario-based UML Design

Analysis technique.

 Chapter 7 discusses pilot study for evaluating the technique.

 Chapter 8 and 9 discuss two scenario generation techniques.

 Chapter 10 concludes the dissertation and discusses future work.

8

Chapter 2

Background

This chapter provides background information needed to understand the research presented

in this dissertation. Section 2.1 gives an overview of UML design class diagrams, the Object

Constraints Language and UML sequence diagrams. Section 2.2 describes the Meta-Object

Facility. Section 2.3 describes the Eclipse Modeling Framework and the Ecore metamodel.

Section 2.4 discusses the Kermeta model transformation language.

2.1 The Unified Modeling Language

The Unified Modeling Language (UML) is the de-facto standard object-oriented modeling

language for modeling software systems [UML]. UML specifications are developed and

maintained by the Object Management Group (OMG). UML is a set of modeling notations for

describing static structures and behaviors of software systems. This dissertation uses UML v2.4.

The UML 2.4 specification defines seven structural diagrams: class, object, composite

structure, profile, package, component and deployment diagrams. It also defines four kinds of

behavioral diagrams: user case, activity, state machine and interaction diagrams.

In this research, we use UML class models, UML object diagrams and UML sequence

diagrams. A UML design class model consists of (1) a UML design class diagram that describes

the structure of software systems, and (2) class constraints including class invariants and

operation constraints specified using the Object Constraint Language. An object diagram

describes a configuration of objects. It is also called instance diagram because it is often intended

9

to be an instance of a class diagram. In this research, object diagrams are used to represent

system states and are called snapshots.

2.1.1 UML Design Class Diagram

A UML design class diagram describes classes of the object-oriented software systems, class

properties and class operations, and relationships between classes. Fig. 2.1 shows an example of

a UML design class diagram of a car inventory application.

A class describes a family of objects that have common attributes, operations and constraints.

An attribute has a name and a type. Properties relate an instance of the class to a value or

collection of values. An operation defines a service that can be executed on each instance of a

class. An operation has a name, return type and a list of parameters.

+Add(in v : Vehicle)

+Delete(in v : Vehicle)

Inventory
-numSeats : int

-numDoors : int

-VIN : string

Vehicle

Car Truck

-vehicles

*1

Figure 2.1. A car inventory application design class diagram

The generalization relationship indicates that a subclass is a specialization of another general

super-class. For instance, the car class is specialization of a vehicle class. A subclass inherits

properties of its super-class. The objects of a subclass are a subset of objects of its super-class. In

Fig. 2.1, Car and Truck are subclasses of the Vehicle class.

An association specifies links between objects. An association can have a name. The ends of

an association, called association-ends, have optional properties such as a name and multiplicity.

A binary association connects two classes. An association can be bi-directional or uni-directional.

10

A bi-directional association allows us to navigate from any one of the two classes to another. For

instance, the association between student and course is bi-directional, we can navigate from a

student object to courses or navigate from a course object to students. A uni-directional

association only allows us to navigate from only one class to another. For instance, the

association between an employee and address class is uni-directional, we can only navigate from

an employee object to an address object.

An aggregation is a special type of association. It represents part-whole relationship between

two classes. For example, in Fig. 2.1 the Inventory class aggregates a Vehicle class. An inventory

object contains a number of vehicle objects.

A composition is a special type of aggregation. In a composition relationship the lifecycle of

the part class objects is dependent on the whole class objects. For example, the relationship

between a car class and an engine class is composition. A car object owns an engine object and

it will destroy the engine object when its lifecycle ends.

2.1.2 The Object Constraint Language

The Object Constraint Language (OCL) is a declarative formal constraint language for UML

[OCL]. An OCL expression queries objects. OCL describes the effects of an operation in terms

of conditions on the states before and after execution of the operation instead of how an

operation is executed to produce the effects. OCL is a typed language. OCL has basic built-in

types such as Boolean, Integer, String and Real, and it supports collection types such as Set, Bag,

Sequence and OrderedSet. OCL has operations to query collections. For example, there are two

boolean operations on collections: forAll and exists. The forAll operation return true if the

boolean expression specified by the operation is satisfied by all objects in the collection. The

11

exists operation returns true if the boolean expression specified by the operation is satisfied by at

least one object in the collection.

In this research OCL is used to specify class invariants and operations. OCL class invariants

are predicates that constrain all the objects of the class. The class invariants must be satisfied

after an object is constructed and after any public operation is executed.

For example, in the vehicle inventory model shown in Fig. 2.1, the invariants for the

Inventory class can be stated as below:

context Inventory

inv: self.vehicles->forAll(numSeats >= 2 and numSeats <= 5)

inv: self.vehicles->forAll(numDoors >= 2 and numDoors <= 4)

The invariants states that any vehicle object added to the inventory object should have at

least two seats and two doors, and at most five seats and four doors.

OCL operation specifications define the behavior of an operation by specifying the

conditions that must be satisfied before an operation is executed (pre-condition) and after the

operation is executed (post-condition).

For example, the Inventory::Add operation specification is given below:

context Inventory::Add (v: Vehicle)

pre: not self.vehicles@pre->includes(v)

post: self.vehicles->includes(v)

The operation specification states that before the vehicle is added to the inventory, it should

not exist at the start of the operation, and after the operation is called the vehicle must be

included in the inventory.

2.1.3 UML Sequence Diagram

A UML sequence diagram is used to describe a sequence of interactions between roles and

objects. An object is a specific instance of a class. For example, Bob is an object of the Student

12

class. A role is a kind of object. For example, freshman is a role of the Student class. Each role or

object in the UML sequence diagram is represented as a lifeline. A role or an object interacts

with other objects by sending messages. A message sent to a receiving object represents an

invocation of an operation in the receiving object. A message can be synchronous or

asynchronous. The sender of a synchronous message is blocked from sending out another

message before it receives the response while the sender of an asynchronous message does not

have such a limitation. In this research we use synchronous messages only because the messages

that are covered by the analysis technique are public operation calls in primarily synchronous

programming languages such as Java. Combined fragments such as alternatives, options and

loops also give and describe an example of a sequence diagram that describes a scenario will not

appear in the analysis sequence diagrams.

Fig. 2.2 shows an example of a UML sequence diagram. In the diagram the AssignRole

operation is called to assign cashier Role to Bob. Bob activates the cashier role and finally calls

CheckAccess on the Session object and gets Denied response.

Bob:User cashier:Role:Session

AssignRole(cashier)

ActivateRole(cashier)

CheckAccess

Denied

Figure 2.2. UML sequence diagram

13

2.2 The Meta-Object Facility

UML is a language that is used by developers to describe models of a system or software. A

user model is an abstraction of real-world objects (e.g., objects in the running software) and the

real-world objects are realizations of the model. The metamodel of UML describes the UML

syntax and well-formedness rules. The language used to describe the metamodel is a subset of

the UML called the Meta-Object Facility (MOF). The four layers described above form the

four-layer metamodeling architecture as shown in Fig. 2.3. The MOF layer is at the M3 layer, the

UML is at the M2 layer, the UML user model is at the M1 layer and the real-world objects are at

the M0 layer.

MOF

UML

metamodel

UML User

Model

real-world

objects

Class Operation Association

Class

<<instanceOf>><<instanceOf>><<instanceOf>>

+Add(in v : Vehicle)

+Delete(in v : Vehicle)

Inventory

-name : string

Vehicle

Attribute

<<instanceOf>>

<<instanceOf>> <<instanceOf>> <<instanceOf>>

<<instanceOf>>

name : string = aVehicle

:Vehicle : Vehicle:Inventory

<<instanceOf>><<instanceOf>>

Figure 2.3. UML four-layer metamodeling architecture

14

The MOF consists of two main packages: the Essential MOF (EMOF) package and the

Complete MOF (CMOF) package. The EMOF is a subset of MOF that models classes with

attributes and operations.

2.3 The Eclipse Modeling Framework and Ecore

The Eclipse Modeling Framework (EMF) is a modeling framework for the Eclipse platform

[Steinberg09][EMF]. EMF is used to create, manipulate and validate models and to generate

source code from models.

-name : String

EClass

-name : String

EAttribute

-name : String

EDataType

-name : String

-containment : boolean

-lowerBound : int

-upperBound : int

EReference

-eAttributes0..*-eReferenceType1

-eReferences0..*

-eSuperTypes

0..*

-eOpposite

0..1

EClassifier

EOperation EParameter

-eAttributeType

1

-eAllOperations

0..*

1

-eOperations 0..*

-eExceptions

0..*

1

-eParameters

0..*

Figure 2.4. Partial Ecore metamodel

The metamodel of EMF is called Ecore. Fig. 2.4 shows part of the Ecore metamodel. There

are four major entities in Ecore: EClass, EReference, EOperation and EAttribute:

 EClass models an EMF class. An EClass can inherit from multiple super classes.

15

 EAttribute models an attribute of an Ecore class. An Ecore attribute has a name and data

type. An EClass object may have a number of attributes.

 EOperation models an operation of an Ecore class. An Ecore operation has a optional list

of parameters and exceptions. An EClass object may have an eOperations reference

representing operations of the class, and eAllOperations reference representing all

operations of the class and its super classes.

 EReference models an association end of an Ecore class. The containment attribute of an

EReference indicates whether the reference is a whole-part containment relationship or

not. A containment reference in Ecore is comparable to a composition relationship in

UML.

Ecore is self-describing: The metamodel of Ecore is Ecore, Ecore is meta-model and a

meta-metamodel. Ecore is comparable to EMOF package of MOF.

This research uses the Ecore metamodel to implement the Scenario-based UML Design

Analysis tool on EMF platform.

2.4 The Kermeta Metamodeling Language

Kermeta is a metamodeling language that can be used to describe both structure and

behavior of metamodels [Muller05] [Kermeta]. It is designed to be compliant with EMOF and

Ecore. EMOF only defines structures. Kermeta adds an action meta-language to EMOF that can

be used to define behavior of operations in metamodels. By weaving the executability into the

metamodels, Kermeta can be used to implement domain-specific meta-languages, constraint

languages and transformation languages. In this research, the language is used to implement a

16

transformation algorithm used to produce a snapshot transition model from a design class model,

and the snapshot generation algorithm.

17

Chapter 3

Related Work

This chapter describes related work in the areas of analysis and testing of UML design

models, and UML test scenario generation. Section 3.1 describes related work in analyzing UML

design models using formal analysis techniques. Section 3.2 describes related work in UML

animation and testing. Section 3.3 describes related work in UML static analysis tools such as

USE and OCLE. Section 3.4 describes related work in UML test input generation and scenario

generation.

3.1 Formal analysis techniques

This section surveys related work on formal analysis of UML models. Section 3.1.1

describes formal analysis of UML models using Alloy. Section 3.1.2 describes analysis of UML

models using model checking techniques. Section 3.1.3 describes analysis of UML models using

formal theorem proving techniques.

3.1.1 Alloy

Alloy is a formal notation based on set theory and first-order relational logic [Alloy]. Alloy

models structures of software systems using signatures. A signature can have fields and it can

inherit from a parent signature. A fact is a logical constraint that must be satisfied by the system.

An assertion is a constraint that is not necessarily true. Operations of the model are defined using

functions and predicates in a declarative manner. A function is an expression that maps a list of

parameters to output. A predicate is a parameterized constraint. A predicate can be used to define

an operation as a relation between before and after states.

18

Alloy can be used to automatically find a model that satisfies specified properties within a

bounded search space. To check a property, Alloy either generates a model to show that the

property is satisfiable, or finds a counter-example that violates the property.

Analyzing UML models using Alloy requires the transformation of UML models to Alloy

models. Existing work on UML2Alloy tool can be used to transform a UML class model to

Alloy [UML2Alloy]. However, the analysis of UML models in Alloy requires that the analyzer

be familiar with Alloy notation because the analysis results are shown in Alloy. Shah et. al.

extended the UML2Alloy work to transform analysis results back to UML [Shah09].

It is a challenging problem to prove the correctness of transformation from UML design

class model to Alloy and the transformations that exist do not cover all UML class modeling

concepts. As Shah et al. admitted, UML and Alloy have different approaches to object-oriented

concepts including inheritance, overriding and pre-defined types. Some UML and OCL concepts

such as redefinition, multiple inheritance and OCL bags cannot be represented directly in Alloy.

OCL nested collections cannot be transformed to Alloy because it is impossible to express

higher-order relations in Alloy.

3.1.2 Model checking techniques

Model checking is used to verify the design of a hardware or software system against a set of

temporal properties [Clark99]. Given a system model, a model checking technique decides

whether a desired property, expressed as a temporal logic formula, is satisfied or not in the model.

Propositional temporal logic is a branch of symbolic logic used to express propositions whose

values are dependent on time. There are two basic temporal operators in temporal logic: always

and eventually. There are two major types of properties that can be expressed using temporal

19

logic: a safety property is a property that is always true during any execution of the system, and a

liveness property is a property that is eventually true during execution.

To check a desired safety or liveness property, the model checker exhaustively searches the

state space of the structure. If the desired property is satisfied, it returns true, otherwise, it returns

a counter-example that shows how the desired property is violated.

Model checking has been applied to automate the verification of the safety and correctness

of finite state-based systems [Clark99]. There is work that aims to support model-checking of

UML behavioral models. vUML [Lilius99] is a tool that is used to automatically convert UML

statecharts to PROMELA specifications and then invoke SPIN to verify the desired properties

and check inconsistencies. Eshuis [Eshuis06] applied symbolic model checking to UML activity

models. The activity models are formalized and transformed to the input language of NuSMV

[NuSMV99]. The translations are used to check the data integrity constraints expressed in the

workflow described by the activity models. A transformation process is needed to convert the

UML specifications into the input language of the model checker.

The limitation of model checking techniques is that they suffer from state explosion problem

[Valmari98] [Clarke01]. Since model checkers exhaustively search the state space of a model to

verify temporal property, the state explosion can occur when the model contains many

components that make parallel state transitions [Clarke01]. There is ongoing work in the model

checking research community to alleviate the state explosion problem but it remains a major

problem in analyzing large industrial software systems.

In order to use model checking techniques to analyze UML class models, the models must

be transformed to the input languages of the model checkers. Thus the verifier must be familiar

with these notations to do formal analysis. Compared with these formal analysis tools, the

20

Scenario-based UML Design Analysis technique does not require that the verifier be familiar

with notations other than UML and OCL. Instead of doing heavyweight exhaustive analysis the

technique is lightweight because it analyzes UML design class models in the scope of a set of

scenarios. On the other hand, the technique presented in this dissertation cannot be used to

analyze temporal properties of UML design class model. There is ongoing research ay Al-lail et

al. on using snapshot transition models to support analysis of temporal properties [Al-Lail13].

3.1.3 Formal theorem proving technique

Formal theorem provers such as Isabelle can be used to reason about properties described in

UML models [Brucker08]. In the work of Brucker, et, al., an interactive proof environment for

UML/OCL models called HOL-OCL is developed on top of Isabelle, an interactive theorem

prover for Higher-Order Logic (HOL) [Isabelle02]. HOL-OCL can be used to formally analyze

UML models, for example, it can be used to check consistency between UML models, prove

temporal properties of UML models and prove a UML class model is refinement of another class

model.

In order to use formal theorem proving techniques to analyze UML class models, the verifier

must be familiar with the formal notations. Compared with the formal theorem proving

techniques, the Scenario-based UML Design Analysis technique does not require that the verifier

be familiar with the notations such as Isabelle in the analysis process.

3.2 UML animation and testing

The UML animation and testing approach (UMLAnT) is used to systematically test

executable design UML design class models, that is, class models with executable method

descriptions. [Trung05]. In UMLAnT a UML design under test (DUT) is a detailed platform

21

independent model (PIM) described by UML design class diagrams, UML sequence diagrams

and method descriptions expressed in an action language called the Java Action Language (JAL).

The UML design also contains OCL specifications of operation behaviors. Test inputs are

exercised by the executable UML design model. A USE tool plugin is used to maintain object

configurations during the test and to check OCL constraints against the object configurations

generated during model execution. In UMLAnT a sequence model must be provided in the

design to describe a test scenario. The sequence diagram is also used to define test criteria; i.e.,

to determine when enough test cases have been generated. Each scenario is triggered by a single

operation call referred to as a system operation.

The Scenario-based UML Design Analysis technique and UMLAnT are both UML

consistency checking techniques. The Scenario-based UML Design Analysis checks consistency

between UML design class model and scenarios, while UMLAnT checks consistency between

UML operation specifications described in a design class model and UML operations described

using JAL. The Scenario-based UML Design Analysis is a static technique because it does not

execute the UML design model, while UMLAnT executes test input sequences and operation

actions and check operation pre and post conditions before and after an operation is executed.

The Scenario-based UML Design Analysis technique complements UMLAnT in analyzing

UML design class models. Before detailed operation actions are specified for a UML design, the

verifier can create scenarios to analyze the UML design. After detailed operation actions are

specified, UMLAnT can be used to test the UML design against a sequence model.

22

3.3 USE and OCLE

Existing UML modeling tools like OCLE [OCLE] and USE [USE] provide support for

validating syntactic and structural properties. OCLE for example can detect syntactic errors in

models and syntax errors in OCL specifications. USE and OCLE can be used to check the

consistency between a UML design class model and an object model.

Neither of these tools can be directly used to analyze functionality in scenarios. OCLE does

not support analysis of operation specifications in class models against snapshots. The USE tool

can be used to validate pre and post-conditions of operations against snapshots in interactive

command mode, however, the verifier has to manually enter USE commands to build all

snapshots of a scenario. The process to manually build snapshots in USE is time-consuming and

error-prone.

3.4 UML test input and scenario generation

This section discusses related work in UML test input and scenario generation. Section 3.4.1

discusses UML animation techniques. Section 3.4.2 discusses UML test input generation

techniques.

3.4.1 UML animation techniques

Scenarios can be obtained by executing models to produce traces or by using constraint

solving techniques.

Oliver and Kent propose a technique to animate a UML design [Oliver99]. In their work

UML design class diagrams are animated by performing a sequence of actions on an initial

snapshot. An action is an operation call on an object with arguments. All possible execution

paths of the OCL post-condition of the operation is calculated. Each execution path is mapped to

23

operations on snapshots. After applying all execution paths on the snapshot a set of possible

after-states are generated. The after-states that violate the multiplicity constraints are discarded.

The final after-states are possible snapshots of the animation of the action.

In another piece of work Krieger and Knapp use a SAT solver to find new system state that

satisfies operation post-conditions [Krieger08]. In their work OCL post-conditions and class

invariants are translated to arithmetic formulas. A SAT solver Kodkod [Torlak07] is used to find

models that satisfy the arithmetic formulas.

In this research work scenarios are generated by either executing the verifier’s operational

definitions of operations using JAL or solving constraints based on the verifier’s OCL operation

definitions. None of the research work above can be used to execute JAL or UML actions to

generate scenarios. The work in [Krieger08] can be used to generate a next system state that

satisfies the verifier’s OCL object definitions but it does not generate complete scenarios.

3.4.2 UML test input generation techniques

There are a few research works that generate test sequences or scenarios from UML

requirements use cases.

Briand and Labiche proposed an approach to generate test data and test oracles from UML

analysis model for system testing [Briand02]. In their work, system test requirements are

automatically derived from UML analysis artifacts. Valid use case sequences are generated

based on use case sequential constraints described using activity diagrams. Use case sequences

can be interleaved and each use case may have use case variances which are described using a

decision table. The method depends on the verifier’s knowledge to select test cases from a large

number of interleaved use case sequences and use case variances. Also not all the use case and

use case variance sequences are feasible. In this work, a constraint solving technique is used to

24

find initial system state and system operation parameters for all feasible paths in the activity

model.

Nebut et. al. proposed a use-case driven approach to generate system test inputs [Nebut06].

In their work use cases are fully specified with pre and post conditions. Use cases are built into a

Use Case simulation and Transition System (UCTS). Valid instantiated use case sequences are

generated by exhaustively simulating the system. The limitation of the approach is that the space

of UCTS may be huge when many use cases can be applied at each step of simulation.

Kundu and Samanta use UML activity diagram that describes activity sequences inside one

use case to generate system test cases [Kundu09]. In their work the activity diagram is converted

to an activity graph and test sequences are generated from the graph based on different coverage

criteria.

The approaches describe above generate test sequences for testing code that implements

UML models. The approaches cannot be used to generate scenarios because the scenarios in this

research work include not only test operation sequences, but also states after each operation is

called.

25

Chapter 4

Scenario-based UML Design Analysis Technique

This chapter gives a description of the Scenario-based UML Design Analysis technique. An

overview of the Scenario-based UML Design Analysis technique is shown in Fig. 4.1. There are

two roles involved in the Scenario-based UML Design Analysis process: designer and verifier.

The designer creates a UML design class model that includes OCL operation specifications, and

operation scope specifications which specify the set of classes, attributes and links that are

changed by each operation. The verifier creates a set of scenarios that will be used to analyze the

UML design. A scenario describes functionality from the perspective of the verifier. It consists

of an initial system state, a sequence of operation calls, and system states after each operation

call. A legal scenario describes functionality that is desired and an illegal scenario describes

functionality that is not desired. The technique consists of three major steps as shown in Fig. 4.1.

UML Design Class Model

Class diagrams

OCL Operation

specifications and

invariants
Snapshot

Transition

Model

Snapshot

Transitions

Model Transformation

Consistency Analysis Inconsistencies

Legal/illegal

Scenarios Snapshot Generation

Step 1

Step 2

Step 3

Verifier

Designer
Operation scope

specifications

Figure 4.1: Scenario-based UML design analysis technique

26

In the first step, the UML design class model is automatically transformed to a snapshot

transition model, a UML class model that specifies valid snapshot transitions. A snapshot

transition describes system state changes triggered by an operation call, it consists of (1)

parameter values of the operation that triggers the transition, (2) a before-snapshot describing the

system state before the operation is executed, and (3) an after-snapshot describing the system

state after the operation has been executed.

In the second step, scenarios created by a verifier are used to generate a sequence of

snapshot transitions.

In the third step, the snapshot transitions produced in the second step are checked against the

snapshot transition model using the UML structural analysis tool, USE. USE reports a set of

inconsistencies in the form of class invariant violations. An inconsistency between the UML

design class model and scenarios implies defects in the UML design class model, or defects in

the scenarios, or defects in both the design class model and scenarios.

The rest of the chapter is organized as follows: Section 4.1 describes a partial RBAC design

class model that is used to illustrate the technique. Section 4.2 presents an algorithm for

transforming a UML design class model to a snapshot transition model. Section 4.3 describes

how scenarios are transformed to snapshot transitions. Section 4.4 describes how the USE tool is

used to check the consistency between the UML design model and the scenarios. Section 4.5

analyzes the complexity of the transformation algorithms.

4.1 A simple Role-Based Access Control example

Role-based access control (RBAC) is the de facto access control model used in commercial

organizations [Ferraiolo01]. In RBAC, users are assigned to roles, and roles are associated with

27

permissions that determine what operations and data a user playing the role can access. The users

initiate sessions in which they activate a subset of roles assigned to them. The operations that a

user can perform in a session depend on the permissions associated with the activated roles.

Constraints can be specified on the RBAC model to prevent conflict of interest situations in an

organization. Specifically, there are two types of constraints: Static Separation of Duties (SSD)

and Dynamic Separation of Duties (DSD). These are defined as relationships between roles. SSD

requires that conflicting roles not be assigned to the same user. DSD imposes a more relaxed

requirement: It allows conflicting roles to be assigned to the same user, but does not allow

conflicting roles to be activated in the same session.

The part of the RBAC model used to illustrate the approach is shown in Fig. 4.2. This partial

RBAC model shows only the relationships between roles, users and sessions. The figure shows

only the elements used to illustrate the approach in this chapter.

+Assign(in role : Role)

User

+Activate(in role : Role)

+CheckAccess(in role : Role) : Boolean

Session

Role

-activeRoles

*

-sessions *

-assignedRoles

*

-users *

-user

1

-sessions

*

Figure. 4.2. Partial RBAC design class model

The operation specifications of the RBAC model are given below:

context User::Assign(role:Role)

// pre-condition: role is not included in assigned roles of the user

pre: self.assignedRoles->forAll(r | r <> role)

// post-condition:

// role is included in assigned roles of the user

28

// and all other assigned roles remain assigned to the user

post: self.assignedRoles->exists(r | r = role)

and self.assignedRoles@pre->forAll(r1 |

self.assignedRoles->exists(r2 | r1 = r2))

and (self.assignedRoles->size() = self.

assignedRoles@pre->size() + 1)

context Session::Activate(role:Role)

// pre-condition: role is not activated in active roles of the user

pre: self.activeRoles->forAll(r | r <> role)

// post-condition:

// role is included in active roles of the user

// and all other activated roles remain active in the session

post: self.activeRoles->exists(r | r = role)

and self.activeRoles@pre->forAll(r1 |

self.activeRoles->exists(r2 | r1 = r2))

and (self.activeRoles ->size() =

 self.activeRoles@pre->size()+ 1)

context Session::CheckAccess(role:Role)

// pre-condition: true

// post-condition: return true if role is includes in active roles

// of current session

post: result = self.activeRoles()->exists (r| r = role)

The static separation of duty (SSD) property of RBAC restricts the assignment of conflicting

roles to one user. This property is expressed as an invariant on the User class. The SSD property

is one of the properties that we verify an example scenario against. The example scenario

involves two users, Alice and Bob, and the following roles: Cashier, Accountant and Teller. The

SSD property in this example is the following: The role Accountant and Cashier cannot be

assigned to the same user. The specification of this SSD property is given below:

29

context User

//Static separation of duty constraint

inv SSD: not (self.assignedRoles->exists(r | r = Accountant)

and self.assignedRoles->exists(r | r = Cashier))

The example scenario that will be analyzed describes an illegal situation in which a user is

assigned to two roles that violate the above SSD property. The scenario starts in an initial state

consisting of a User object Bob, an Accountant role and a Cashier role. The scenario consists of

the following steps:

(1) Bob is assigned Accountant role through a call to the Assign() operation. After the

operation is called, the Accountant role is included in assignedRoles collection of Bob.

(2) Bob is assigned the Cashier role through a call to the Assign() operation. After the

operation is called, the Cashier and Accountant roles are included in assignedRoles

collection of Bob.

This scenario is classified as an illegal scenario, because the last system state in the scenario

violates the SSD constraint associated with associated with the User class.

4.2 Generating the Snapshot Transition Model

In order to use tools such as USE and OCLE to support scenario-based analysis, a class

model that characterizes valid snapshot transitions is generated from a UML design class model.

The generated class model is called a snapshot transition model (STM). A snapshot transition

model consists of (1) a Snapshot class representing states of the system before and after

execution of operations, (2) a hierarchy of Transition classes representing specified operations,

and (3) invariants defined in the Transition classes that constrain the before and after states

(snapshots) associated with transitions caused by the execution of operations.

30

In the following we present the steps for creating an STM. An overview of the steps is given

below, and the following subsections elaborate on each step.

 Step 1: Create a Snapshot class that represents valid states (object configurations).

 Step 2: Create a Transition subclass for each operation in the design class model.

 Step 3: Generate initial Transition invariants for operation specifications.

 Step 4: Add frame constraints to the Transition invariants. Frame constraints specify that

objects and links that are not affected by the operation are the same in the before and

after snapshots.

The RBAC application class model is used to illustrate the steps described in the following

sub-sections.

4.2.1 Create a Snapshot class

The Snapshot class represents a set of system states (snapshots), where a state consists of a

configuration of object states. An object state is an assignment of values to the attributes of the

object's class. A Snapshot class is thus modeled as a structured class that consists of a

configuration of UML parts representing object states. Each part represents a set of object states

and is thus associated with a class in the design class model. For example, the Snapshot class in

Fig. 4.3 for the partial RBAC design model in Fig. 4.3 consists of a configuration of parts, where

the users part represents states of User objects, the roles part represents states of Role objects,

and the session part represents states of Session objects. The states are defined by classes in the

snapshot transition model that have the same name as the corresponding classes in the design

class model.

31

+Assign(in role : Role)

User

+Activate(in role : Role)

+CheckAccess(in role : Role) : Boolean

Session

Role

-activeRoles

*

-sessions *

-assignedRoles

*

-users *

-user

1

-sessions

*

-objectID : int

users:User

-objectID : int

sessions:Session

-objectID : int

roles:Role

-activeRoles

*

-sessions *

-assignedRoles

*

-users *

-user

1

-sessions

*

User

Session

Role

Snapshot

Transition

+userPre, userPost : User

+rolePre, rolePost : Role

User_Assign_Transition

+before

1

*

+after

1

*

+sessionPre, sessionPost : Session

+rolePre, rolePost : Role

Session_Activate_Transition

(a) RBAC design class model

(b) RBAC snapshot transition model

+sessionPre, sessionPost : Session

+rolePre, rolePost : Operation

-ret : Boolean

Session_CheckAccess_Transition

Figure 4.3. Partial RBAC class model and its snapshot transition model

Each part has an objectID attribute that relates object states across different snapshots. For

example, the bob User object in different snapshots have the same objectID. Note that instances

of these classes represent immutable object states, not mutable objects; for example, instances of

the User class in the STM represent immutable object states, while User class in the originating

32

design model represent mutable User objects. This subtle difference is important in

understanding how transition systems are characterized by a STM: the snapshots in a transition

system are (immutable) values that are related by transitions (execution instances of operations),

thus an STM characterizes instances of behaviors (i.e., scenarios).

4.2.2 Create a Transition class hierarchy

A superclass called Transition that has before and after associations to the Snapshot class is

created (see the Transition class in Fig. 4.3). A transition object is a representation of the effect

of an operation's execution, where the effect is defined by a before-state and after-state pair. The

Transition superclass is specialized by Transition subclasses that each describes the effects of an

operation specified in the design class model. A Transition subclass is created for each operation

in the design class model. Given an operation ClassName::operationName, a Transition subclass

is created as follows:

 Create an empty subclass of Transition with the name

ClassName_operationName_Transition. For example, User_Assign_Transition class is

created for operation User::Assign.

 Create a class property that references the before state of the operation’s target object and

another that references the after state of the target object. The property referencing the before

state is named classNamePre, and the other property is named classNamePost. For example,

in Fig. 4.3, the User_Assign_Transition class has attributes userPre and userPost, which are

references to before and after states for the target User object of the Assign() operation.

 For each value (i.e., non-object) parameter in the operation, create a class property (attribute)

with the same name and type in the Transition class.

33

 For each parameter that is an object reference, create two class properties with the same type

as the object reference. One of the properties represents the before state of the object and is

thus named parameterNamePre, and the other represents the after state of the object and is

named parameterNamePost. For example, the operation CheckAccess in the Session class has

a reference to parameter role, and this parameter is transformed to the attributes rolePre and

rolePost in the Session_CheckAccess_Transition class shown in Fig. 4.3. The parameters that

represent before and after object states are collectively referred to as preState and postState

attributes.

 If there is a return parameter, create a property ret with the same type as the return parameter.

For example, the CheckAccess() operator in the Session class returns a boolean value, and

this return value is represented by the attribute ret in Session_CheckAccess_Transition class

shown in Fig. 4.3.

The Transition class hierarchy shown in Fig. 4.3 (b) was produced using the above steps.

4.2.3 Generate Transition invariants from operation specifications

We use the Assign() operator defined in the User class to illustrate how invariants that relate

before and after states are generated from operation specifications. The definition of the

User::Assign operation in is repeated below:

//pre- and post- conditions of the Assign method

context User::Assign(role:Role)

pre: self.assignedRoles->forAll(r | r <> role)

post: self.assignedRoles->exists(r | r = role)

and self.assignedRoles@pre->forAll(r1 |

self.assignedRoles->exists(r2 | r1 = r2))

and (self.assignedRoles->size() =

self.assignedRoles@pre->size() + 1)

34

For each operation specification in the design class model, an invariant is produced as

follows:

 Replace all references to self in the pre-condition by the name of the Transition class

attribute representing the target object before state (all references to self must be explicit in

the operation specification for this to work). Also, replace all references to an object

parameter in the pre-condition by the name of the attribute representing the before state of

the object, and replace all references to the object in the post-condition by the name of the

attribute representing the object’s after state.

For example, the precondition of the Assign() operation,

self.assignedRoles->forAll(r|r <> role)

is transformed to (changes are in bold print)

userPre.assignedRoles->forAll(r | r <> rolePre)

 Replace all references to self in an expression involving @pre by the name of the attribute

representing the before state of the object.

For example, the Assign() post-condition clause

self.assignedRoles@pre->

is transformed to

userPre.assignedRoles->

 Replace all references to self in the post-condition that are not part of a @pre expression by

the name of the attribute representing the after state of the target object.

For example, the Assign() post-condition clause

self.assignedRoles->exists

is transformed to

userPost.assignedRoles->exists

 Replace all references to objects by references to objectID attributes.

For example, the clause

userPre.assignedRoles->forAll(r| r <> rolePre)

is further transformed to

userPre.assignedRoles->forAll(r| r.objectID <> rolePre.objectID)

35

4.2.4 Add frame constraints to the Transition subclass

One challenging aspect of transforming OCL operation specifications is to generate frame

constraints for an operation. The frame constraints ensure that objects and links that are not

affected by the operation remain unchanged in the before and after snapshots.

In order to simplify the generation of frame constraints, we require that the designer creates

operation scope specifications which specifies the set of classes, attributes and links that are

changed by each operation. For example: the scope specification of operation User::AssignRole

is specified below:

Operation: User::AssignRole

Modifier_Class: User, Role

Modifier_Attribute:

Modifier_Link: User.UserAssign, Role.UserAssign

The scope specification states that only the UserAssign association between User and Role

classes are changed after the operation is invoked.

Based on the operation scope specification, the frame constraints are generated for objects

and associations that are not changed by the operation as follows:

 Add constraints that assert the existence of the object states referenced by preState attributes

in the before states. The constraint has the form before.partName -> includes(namePre).

Similarly, add constraints that assert the existence of the object states referenced by postState

attributes.

For example, the following clauses assert the existence of the target user states in the before

and after states of the snapshot respectively:

before.users:User.objectID->includes(userPre.objectID)

after.users:User.objectID->includes(userPost.objectID)

 Add frame constraints that state that objects and relationships that have not had their state

changed in an operation have the same before and after state. These constraints can take two

forms as illustrated in the examples given below:

For example, the constraint stating that the set of session objects is unchanged by the

36

Assign() operation is stated below:

after.sessions:Session.objectID=

before.sessions:Session.objectID

The constraint stating that the user objects not affected by the operation have the same before

and after states is stated below:

after.users:User.objectID->excluding(userPost.objectID)=

before.users:User.objectID->excluding(userPre.objectID)

The full invariants for the User_Assign_Transition, Session_Activate_Transition and

Session_CheckAccess_Transition classes are given below:

context User_Assign_Transition

//From Assign() pre-condition

userPre.assignedRoles->forAll(r | r.objectID <> rolePre.objectID)

and

//From Assign() post-condition

userPost.assignedRoles->exists(r | r.objectID = rolePost.objectID)

and

userPre.assignedRoles->forAll(r1 | userPost.assignedRoles->

exists(r2 | r1.objectID = r2.objectID)) and

 userPost.assignedRoles->size() =

userPre.assignedRoles->size() + 1 and

//Frame constraints

//userPre is included in before snapshot

before.users:User.objectID->includes(userPre.objectID) and

//userPost is included in after snapshot

after.users:User.objectID->includes(userPost.objectID) and

//The rest of users in before and after snapshots are the same

after.users:User.objectID->excluding(userPost.objectID) =

before.users:User.objectID->excluding(userPre.objectID) and

//rolePre is included in before snapshot

before.roles:Role.objectID->includes(rolePre.objectID) and

37

//rolePost is included in after snapshot

after.roles:Role.objectID->includes(rolePost.objectID) and

//The rest of roles in before and after snapshots are the same

after.roles:Role.objectID->excluding(rolePost.objectID) =

 before.roles:Role.objectID->excluding(rolePre.objectID) and

//All sessions in before and after snapshots are the same

after.sessions:Session.objectID = before.sessions:Session.objectID

//All associations between the user and session classes in before

//and after snapshots are the same

and before.users:User->forAll(u1 | after.users:User->exists(u2 |

u1.objectID = u2.objectID and u1.sessions:Session.objectID =

u2.sessions:Session.objectID))

//All associations between the role and session classes in before

//and after snapshots are the same

and before.roles:Role->forAll(r1 | after.roles:Role->exists(r2 |

r1.objectID = r2.objectID and r1.sessions:Session.objectID =

r2.sessions:Session.objectID))

context Session_Activate_Transition

//From Activate() pre-condition

sessionPre.activeRoles->forAll(r| r.objectID <> rolePre.objectID)

and

//From Activate() post-condition

sessionPost.activeRoles->exists(r| r.objectID = rolePost.objectID)

and

sessionPre.activeRoles->forAll(r1 | sessionPost.activeRoles->

exists(r2 | r1.objectID = r2.objectID)) and

 sessionPost.activeRoles->size() =

sessionPre.activeRoles->size() + 1 and

//Frame constraints

//sessionPre is included in before snapshot

before.sessions:Session.objectID->includes(sessionPre.objectID)

38

//sessionPost is included in after snapshot

after.sessions:Session.objectID->includes(sessionPost.objectID)

//The rest of sessions are the same in before and after snapshots

after.sessions:Session.objectID->excluding(sessionPost.objectID)

=

before.sessions:Session.objectID->excluding(sessionPre.objectID)

//rolePre is included in before snapshot

and before.roles:Role.objectID->includes(rolePre.objectID) and

//rolePost is included in after snapshot

and after.roles.objectID->includes(rolePost.objectID) and

//The rest of roles are the same in before and after snapshots

after.roles:Role.objectID->excluding(rolePost.objectID) =

before.roles:Role.objectID->excluding(rolePre.objectID) and

//All users are the same in before and after snapshots

and after.users:User.objectID = before.users:User.objectID

//All associations between the user and session classes in before

//and after snapshots are the same

and before.users:User->forAll(u1 | after.users:User->exists(u2 |

u1.objectID = u2.objectID and u1.sessions:Session.objectID =

u2.sessions:Session.objectID))

//All associations between the user and role classes in before

//and after snapshots are the same

and before.users:User->forAll(u1 | after.users:User->exists(u2 |

u1.objectID = u2.objectID and u1.assignedRoles:Role.objectID =

u2.assignedRoles:Role.objectID))

context Session_CheckAccess_Transition

//From CheckAccess() pre-condition

true and

//From CheckAccess() post-condition

ret = sessionPost.activeRoles->exists(r| r.objectID =

rolePost.objectID) and

39

//Frame constraints

//sessionPre is included in before snapshot

before.sessions:Session.objectID->includes(sessionPre.objectID)

//sessionPost is included in after snapshot

after.sessions:Session.objectID->includes(sessionPost.objectID)

//The rest of sessions are the same in before and after snapshots

after.sessions:Session.objectID->excluding(sessionPost.objectID)

=

before.sessions:Session.objectID->excluding(sessionPre.objectID)

//rolePre is included in before snapshot

and before.roles:Role.objectID->includes(rolePre.objectID) and

//rolePost is included in after snapshot

and after.roles.objectID->includes(rolePost.objectID) and

//The rest of roles are the same in before and after snapshots

after.roles:Role.objectID->excluding(rolePost.objectID) =

before.roles:Role.objectID->excluding(rolePre.objectID) and

//All users are the same in before and after snapshots

and after.users:User.objectID = before.users:User.objectID

//All associations between the user and session classes in before

//and after snapshots are the same

and before.users:User->forAll(u1 | after.users:User->exists(u2 |

u1.objectID = u2.objectID and u1.sessions:Session.objectID =

u2.sessions:Session.objectID))

//All associations between the user and role classes in before

//and after snapshots are the same

and before.users:User->forAll(u1 | after.users:User->exists(u2 |

u1.objectID = u2.objectID and u1.assignedRoles:Role.objectID =

u2.assignedRoles:Role.objectID))

//All associations between the role and session classes in before

//and after snapshots are the same

40

and before.roles:Role->forAll(r1 | after.roles:Role->exists(r2 |

r1.objectID = r2.objectID and r1.sessions:Session.objectID =

r2.sessions:Session.objectID))

4.3 Generating Scenario Snapshot Transitions

Scenario snapshot transitions can be automatically generated from the sequence diagrams

describing scenarios created by the verifier. The generation process is described below:

For each operation op invoked on object obj in the scenario:

 Find the corresponding Transition subclass for operation op.

(1) Get the class c of object obj.

(2) If c has an operation that overrides operation op, the return transition subclass is

c_op_Transition. The UML operation overriding rule is described in [Büttner04] and

[UML]. According to UML 2.0, an operation of a subclass overrides the operation of its

parent class if the name of the two operations match and the type of every formal

parameter (and result value) of the operation matches or specializes a corresponding

parameter (result value) of the parent operation. It is assumed that the overriding

operation in the subclass redefines all pre and post conditions.

(3) Repeat step 2 on the parent class of c until no operation is found.

 Create an instance of the corresponding Transition subclass for operation op.

 Create an instance of snapshot class for the snapshot before the operation call if the operation

is the first one in the scenario.

 Create an instance of snapshot class for the snapshot after the operation class.

 Link the two snapshot instances to before and after snapshot of the Transition subclass.

 Fill attributes of the Transition subclass with parameters of the operation call.

41

Fig. 4.4 shows a snapshot transition in which user Bob is assigned Accountant role. In this

transition, the before and after snapshots both connect to three objects: the Cashier role, the

Accountant role and the Bob user. After the User::Assign operation on Bob user Account role is

invoked, the Accountant role is added to assignedRole link of Bob user.

userPre : User = Bob1

userPost : User = Bob2

rolePre : Role = Accountant1

rolePost : Role = Accountant2

transition1 : User_Assign_Transition

objectID : int = 2

Bob1 : User

objectID : int = 2

Bob2 : User
objectID : int = 1

Cashier1 : Role

objectID : int = 3

Accountant1 : Role

objectID : int = 1

Cashier2 : Role

objectID : int = 3

Accountant2 : Role

snapshot1 : Snapshot snapshot2 : Snapshot

Figure 4.4. Assign Accountant role snapshot transition

4.4 Checking consistency in USE

Design errors are uncovered by checking for inconsistencies between the snapshot transition

model and the scenario snapshot transitions. This is done using the USE tool which checks

whether scenario snapshot transitions conform to the snapshot transition model. Scenario

snapshot transitions are instances of the snapshot transition model so that we can feed the

snapshot transition model and scenario snapshot transitions to USE and check whether they are

consistent. Inconsistencies imply errors in either the UML design class model or the scenarios. It

is up to the modeler and verifier to analyze the inconsistencies, find the root cause of the

inconsistencies and resolve the inconsistencies.

42

For the RBAC example we analyzed a scenario against the snapshot transition model shown

in Fig. 4.3. The scenario consists of two operations: Bob.assign(Accountant) and

Bob.assign(Cashier). We used the USE tool. The USE tool reported an error arising after the

assignment of two conflicting roles Accountant and Cashier to the same user Bob.

We also performed a second analysis involving a dynamic separation of duty (DSD)

property which prohibits some roles assigned to a user to be activated at the same time in a

session. As we expected USE reported an error arising from the activation of two conflicting

roles in the same session created by Bob.

4.5 Algorithm complexity analysis

This section analyzes complexity of the major procedure used in the technique. Section 4.5.1

analyzes complexity of the snapshot transition model generation procedure. Section 4.5.2

analyzes complexity of the snapshot transitions generation procedure. Section 4.5.3 analyzes

complexity of USE consistency check. Section 4.5.4 summarizes the analysis.

4.5.1 Snapshot transition model generation algorithm analysis

Let the total number of class in the UML design class model be C, the average number of

properties including attributes and associations of each class be A, the total number of operations

be P, the average number of reference parameters of each operation be Q1 and the average

number of value parameters of each operation be Q2. The average size of the syntax tree of pre

and post-conditions of an operation is denoted by T.

The time complexity of generating the Snapshot class is O(C) because the Snapshot class is

associated to every class in the UML design.

43

The time complexity of generating the Transition subclasses for each operation is O(P) * (2

* O(Q1) + O(Q2) + 1). Every reference parameter of the operation is added as two attributes of

the Transition subclass, one prefixed with pre and another prefixed with post. Every value

parameter of the operation and an optional return value are added as attributes of the Transition

subclass.

The time complexity of transforming the OCL operation specifications depends on:

(1) The time complexity of parsing all OCL expressions of each operation and transforming

them to invariants, which is O(P) * O(T), and

(2) The time complexity of adding frame constraints for each operation, in the worse case we

need to add frame constraints for all classes and properties, the time complexity is O(P) *

O(C) * O(A).

Total time complexity of generating the snapshot transition model is

O(C) + O(P) * (2 * O(Q1) + O(Q2) + 1) + O(P) * O(T) + O(P) * O(C) * O(A)

= O(C) + O(P) * (2 * O(Q1) + O(Q2) + 1 + O(T) + O(C) * O(A))

4.5.2 Snapshot transitions generation algorithm analysis

The time complexity of generating snapshot transitions depends on the number of objects in

the snapshot transitions. Let the number of snapshots in the scenario be S and the average

number of objects in a snapshot be B. The time complexity of generating the snapshot transitions

is O(S) * O(B). The time complexity is proportional to the number of instances in the scenario.

4.5.3 USE consistency check complexity analysis

USE is used to check consistency between each snapshot transition instance and invariants

of the corresponding snapshot transition subclass. The complexity of checking consistency

44

between a class model and a snapshot depends on the complexity of the class invariants and the

number of instances in the snapshot.

The invariants in the snapshot transition model are checked against each snapshot transition

in the snapshot transitions, so the complexity of USE consistency checking depends on three

factors: the number of snapshot transitions (operations) in the scenario, the average number of

objects in the before and after snapshots, and the complexity of invariants in the snapshot

transition model.

4.5.4 Summary

To sum up the algorithm complexity analysis, the complexity of snapshot transition model

generation algorithm depends on the complexity of the UML design class model, including

number of classes, class properties, operations, number of parameters of operations and the

complexity of operation constraints. The complexity of snapshot transitions generation is

proportional to the number of instances of the scenarios. The complexity to check consistency in

USE depends on the number of snapshot transitions in the scenario, the number of objects in the

before and after snapshots, and the complexity of invariants in the snapshot transition model.

45

Chapter 5

Implementation

This chapter describes the tool we developed to support the Scenario-based UML Design

Analysis technique. The tool was developed using the Eclipse Modeling Framework and

Kermeta, a metamodeling programming language.

Section 5.1 describes the tool's architecture. Section 5.2 describes the components that

implement the snapshot transition model (STM) generation procedure. Section 5.3 describes the

component that implements the scenario generation procedure. Section 5.4 describes component

that implements how the USE tool is used to check consistency between the snapshot transition

model and snapshot transitions.

5.1 Tool architecture

The architecture of the tool is shown in Fig. 5.1. The architecture consists of three layers:

 The EMF layer: This layer includes Ecore Metamodel and Ecore Model Editor that

allows editing Ecore models in Eclipse.

 The Kermeta layer: This layer includes Kermeta package and an OCL Metamodel called

OCLCST [Garcia07]. The OCL Metamodel is used to load and transform OCL operation

specifications.

 The tool layer: This layer includes all components we implemented in the Scenario-based

UML Design Analysis tool package.

46

Eclipse Modeling Framework

Action Language Metamodel

Ecore Metamodel

Ecore Scenario GeneratorEcore STM GeneratorSTM Invariant Generator

OCL Metamodel (OCLCST)
Kermeta

Scenario-based UML Design Analysis Tool

Ecore Model Editor

USE STM Generator USE Command Generator

Tool layer

Kermeta layer

EMF layer

Figure 5.1. Overview of the Scenario-based UML Design Analysis tool

The Scenario-based UML Design Analysis tool package uses existing platforms and

metamodels including Kermeta, EMF and an OCL metamodel, OCLCST, which are all grayed

out in Fig. 5.1. The tool contains the following components:

 Ecore STM Generator: This is an Eclipse plugin that generates snapshot transition model

in Ecore.

 STM Invariant Generator: This is an Eclipse plugin that transforms OCL operation

specifications to invariants of the snapshot transition model.

47

 Ecore Scenario Generator: This is an Eclipse plugin that generates scenario snapshot

transitions in Ecore.

 Action language Metamodel: This defines a language used to specify scenarios using

actions. The metamodel is used by the Ecore Scenario Generator.

 USE STM Generator: This is an Eclipse plugin that transforms Ecore snapshot transition

model to USE.

 USE Command Generator: This is an Eclipse plugin that transforms Ecore scenario

snapshot transitions to USE commands.

To use the tool, the designer creates Ecore design class diagram using Ecore Model Editor

and OCL operation specifications using a text editor. The verifier either creates scenario

specifications using an action language defined by the Action Language Metamodel, or explicitly

specifies a scenario. The explicit scenario specification includes a sequence of snapshots created

using Ecore model editor, and a sequence of operations using a text editor.

The Ecore design class diagram is transformed to an Ecore snapshot transition model using

the Ecore STM Generator, and OCL operation specifications are transformed to invariants of the

Ecore snapshot transition model using the Ecore STM invariants Generator. The USE STM

Generator is then used to transform the Ecore snapshot transition model and invariants to USE.

The Ecore Scenario Generator is used to generate Ecore snapshot transitions from the

verifier’s scenario specifications. And the USE Command Generator is used to generate USE

commands to construct USE snapshot transitions from the Ecore snapshot transitions.

Finally the USE tool is used to load the USE STM, run USE commands to construct USE

snapshot transitions, and check consistency between the USE STM and snapshot transitions.

48

5.2 The STM Generator and STM Invariant Generator

The input to the Ecore STM generator is an Ecore design class diagram created by the

designer. Fig. 5.2 shows an example RBAC Ecore design class diagram. And Fig. 5.3 shows the

design class diagram in the Ecore Model Editor.

All OCL operation specifications are created using a text editor. For example, the following

is OCL specification of operation User::AssignRole.

context User::AssignRole(r : Role) : Void

pre: self.UserAssign->excludes(r)

post: self.UserAssign = self.UserAssign@pre->including(r) and

self.UUID = self@pre.UUID

Figure 5.2. RBAC Ecore design class diagram (diagram view)

49

Figure 5.3. RBAC Ecore design class diagram (tree view)

5.2.1 Generating Ecore snapshot transition diagram

The Ecore STM Generator first generates an Ecore snapshot diagram from the input Ecore

design class diagram. Based on the Ecore metamdel, the Ecore STM Generator loads the Ecore

design class diagram, applies model transformation rules and generates an Ecore snapshot

transition diagram. Fig. 5.4 shows the snapshot transition diagram of the RBAC model. In the

Ecore snapshot transition diagram the Snapshot class is linked to all classes in the input Ecore

design class diagram using composition. The Snapshot class is not a composite structure as

described in Fig. 4.3 because composite structure is not supported in Ecore metamodel, we use

Ecore composition reference to simulate UML composite structure.

50

Figure 5.4. RBAC Ecore snapshot transition diagram

Fig. 5.5 shows the Kermeta-based algorithm used to generate the snapshot transition

diagram (STM). The algorithm creates a snapshot class and links the snapshot class to all other

classes in the design class model, creates a transition class that refers to a before and after

snapshot, creates transition classes for each operation and finally returns the transformed model.

51

Snapshot Transition Model generation algorithm

Input: inputModel : EPackage

Output: EPackage

Steps:

1. Create a snapshot class

snapshot = EClass.new

2. Add composition reference between each class and the snapshot class

foreach EClass cls in inputModel do

a) Create a composition reference that points to the cls class

 composition = EReference.new

composition.eType = cls

b) Create a clsref reference that points to the snapshot class

 clsref = EReference.new

 clsref.eType = snapshot

c) Set eOpposite attribute for the clsref and composition classes

 clsref.eOpposite = composition

composition.eOpposite = clsref

3. Create a transition class

transition = EClass.new

4. Setup the before reference between the transition and snapshot classes

before = EReference.new

before.eType = snapshot

beforeTrans = EReference.new

beforeTrans.eType = transition

before.eOpposite = beforeTrans; beforeTrans.eOpposite = before

5. Setup the after reference between the transition and snapshot classes

 after = EReference.new

after.eType = snapshot

afterTrans = EReference.new

afterTrans.eType = transition

after.eOpposite = afterTrans; afterTrans.eOpposite = after

6. Create snapshot transition classes for each operation

foreach EClass cls in inputModel do

 foreach EOperation op in cls do

 // Create a transition class for the operation

 a) opcls = EClass.new

 opcls.name = cls.name + "_" + op.name

 // Add paramaters of the op operation as attributes of the snapshot transition class

 b) For each EParameter param do

 attrPre = EAttribute.new

 attrPre.name = param.name + "Pre"

 attrPre.eType = param.eType

 attrPost = EAttribute.new

 attrPost.name = param.name + "Post"

 attrPost.eType = param.eType

7. return inputModel

Figure 5.5. Snapshot transition model generation algorithm

52

5.2.2 Transforming OCL operation specifications

The STM Invariant Generator uses an OCL metamodel to parse the OCL operation

specifications and transform them to invariants of snapshot transition subclasses.

The STM Invariant Generator transforms the original OCL operation specifications to

invariants. For example, the following invariants are transformed from User::AssignRole

operation:

context User_AssignRole

inv frompre: (userPre.UserAssign.ID->excludes(rPre.ID))

inv frompost: ((userPost.UserAssign.ID =

(userPre.UserAssign.ID->including(rPost.ID))) and (userPost.UUID =

userPre.UUID))

The ID is an internal attribute that is added by the tool to each class in the Ecore class

diagram. It is used to identify the same object across multiple snapshots in a scenario. For

example, in an RBAC role assignment and activation snapshot transitions, each snapshot

contains a copy cashier role instance with the same ID.

In order to generate frame constraints, the scope specification of operation User::AssignRole

is specified below:

Operation: User::AssignRole

Modifier_Class: User, Role

Modifier_Attribute:

Modifier_Link: User.UserAssign, Role.UserAssign

The scope specification restricts that only the UserAssign references between User and Role

classes are changed after the operation is invoked.

Based on the operation scope specification, the STM Invariant Generator generates the

following frame constraints for User::AssignRole operations. The frame constraints are part of

the invariants of User_AssignRole class:

53

before.sessions->forAll(o1 | after.sessions->exists(o2 | o1.ID =

o2.ID))

and before.sessions->forAll(o1 | after.sessions->exists(o2 | o1.ID

= o2.ID and o1.UserSes.ID = o2.UserSes.ID and o1.SesRole.ID =

o2.SesRole.ID and o1.snapshot.ID = o2.snapshot.ID))

and before.users->forAll(o1 | after.users->exists(o2 | o1.ID = o2.ID

and o1.UUID = o2.UUID))

and before.users->forAll(o1 | after.users->exists(o2 | o1.ID = o2.ID

and o1.UserSes.ID = o2.UserSes.ID and o1.snapshot.ID =

o2.snapshot.ID))

and before.roles->forAll(o1 | after.roles->exists(o2 | o1.ID =

o2.ID))

and before.roles->forAll(o1 | after.roles->exists(o2 | o1.ID = o2.ID

and o1.SesRole.ID = o2.SesRole.ID and o1.snapshot.ID =

o2.snapshot.ID))

Fig. 5.6 shows the main Kermeta-based algorithm for transforming OCL specifications. The

algorithm takes an Ecore design class model and parsed OCL operation specifications as input.

The top-level package declaration of the parsed OCL specifications includes a set of class

invariants and operation specifications. The algorithm recursively visits each OCL class invariant,

operation pre and post condition specification body, transforms the OCL specifications to

invariants and writes the transformed OCL to an output file.

54

OCL operation specification transformation algorithm

Input: ecoreModel : EPackage // Ecore class model

 parsedOcl: Resource // Parsed OCL

Output: outputfile: File // Transformed OCL file

Steps:

1. Create a PrePost2InvVisitor instance

PrePost2InvVisitor visitor = PrePost2InvVisitor.new

2. Visit top-level package declaration of the parsed OCL instances

PackageDeclarationCS pkg = getPackageDeclaration(parsedOcl.instances)

foreach ContextDeclCS contextDecl in pkg.contextDecls do

a) Visit class invariants

if contextDecl isInstanceOf ClassifierContextDeclCS

 contextDecl.accept(visitor)

endif

b) Visit operation specifications

if contextDecl isInstanceOf OperationContextDeclCS

 i) Visit operationCS, including operation name, parameters and return type

 OperationCS opCS = contextDecl.operationCS

 opCS.accept(visitor)

 ii) Visit each operation pre and post condition specification body

 foreach PrePostOrBodyDeclCS ppbd in contextDecl.prePostOrBodyDecls do

 // Transform the ppbd to invariant

 write("inv from" + ppbd.kind.name.toString + ": ")

 // Visit OperationCallExpCS

 OperationCallExpCS opCallExpCS = ppbd. expressionCS

 opCallExpCS.accept(visitor)

 // Write new line

 writeln("")

endif

3. Write the visited OCL to output file

WriteOutputFile(outputfile, visitor)

Figure 5.6. OCL operation specification transformation main algorithm

5.2.3 Generating USE snapshot transition model

After the Ecore snapshot transition model and OCL operation specifications are generated,

the USE STM Generator visits the Ecore snapshot transition model and mechanically transforms

it to a USE snapshot transition model based on USE grammar.

55

The USE grammar is close to UML and Ecore. For example, below is USE specifications of

the User class and the UserAssign association between the User class and the Role class:

class User

attributes

 UUID : Integer

 ID : Integer

operations

 AssignRole(r : Role)

 CreateSession(s : Session)

 DeassignRole(r : Role)

end

association UserAssignUserAssign4 between

 Role[0..*] role UserAssign

 User[0..*] role UserAssign

end

Figure 5.7. USE snapshot transition model

Fig. 5.7 shows the USE snapshot transition model of the RBAC application. It contains four

transitions for the operations defined in the original RBAC design class model.

56

5.3 The Scenario Generator

The input of the Ecore Scenario Generator is the verifier’s scenario specifications. The

generator allows the verifier to create two types of scenario specifications: explicit scenario

specification which includes a sequence of snapshots and operation calls; action language

specification which specifies a sequence of actions to construct each snapshot in the scenario.

5.3.1 Explicit specification of scenarios

The verifier can explicitly specify a scenario as a sequence of snapshots and operation calls.

A snapshot is an instance of the design class diagram. An operation call is defined by the

operation name and parameter values.

Fig. 5.8 shows an example of explicit specification of an RBAC scenario. The scenario starts

with an initial snapshot which contains a user instance bob and a role instance cashier. Operation

1 assigns cashier role to bob. After operation 1 is called in snapshot 1 the cashier role and bob is

associated. Operation 2 creates a session instance s1 from bob. After operation 2 is called in

snapshot 2 session s1 is linked to bob. Operation 3 activates the cashier role in session s1. After

operation 3 is called in snapshot 3 the cashier role is linked to session s1. Operation 4 deactivates

the cashier role. After operation 4 is called in snapshot 4 the link between cashier and s1 is

removed.

57

Operation 4: s1.DeactivateRole(cashier)

Operation 1: bob.AssignRole(cashier)

Operation 3: s1.ActivateRole(cashier)

Initial snapshot

Snapshot 1

Snapshot 4

Operation 2: bob.CreateSession(s1)

Snapshot 2

Snapshot 3

Figure 5.8. Explicit specification of an RBAC scenario

58

5.3.2 Action language specification of scenarios

The action specification language is used to specify a scenario as a sequence of actions. The

language is defined using a metamodel as described in Fig. 5.9.

Figure 5.9. Metalmodel of the action specification language

In the metamodel a scenario is defined as a sequence of actions. An action contains the

following subclasses:

 instance specification action: creates an object of a class

 delete instance action: destroys an object

 set attribute action: sets an attribute for an object

59

 clear attribute action: clears an attribute for an object

 instance specification link action: creates a links between two objects

 delete link action: removes an link

 operation action: specifies an operation call, including the operation name, target object

and parameters

Fig. 5.10 shows an example of an RBAC scenario specified using the action specification

language. The RBAC scenario is described in natural English as below:

1) Snapshot: User bob, Role cashier and Session s1

2) Operation: assign cashier role to bob

3) Snapshot: bob and cashier are linked

4) Operation: bob creates session s1

5) Snapshot: bob and s1 are linked

6) Operation: cashier is activated in session s1

7) Snapshot: s1 and cashier are linked

8) Operation: bob de-assigns role cashier

9) Snapshot: bob and cashier are de-linked, s1 and cashier are de-linked

Figure 5.10. Action specification of an RBAC scenario

60

5.3.3 Generating snapshot transitions

For each operation call in the scenario, the Ecore Scenario Generator finds the operation that

matches it in the Ecore design class model, creates a corresponding snapshot transition object

and links the snapshot transition object to two snapshots. The output is a sequence of snapshot

transition instances.

Objects and links in each snapshot are generated from the scenarios. If the scenario is

specified directly, the Ecore Scenario Generator clones objects and links from the snapshots in

the scenario. Objects with the same name are assigned the same ID. If the scenario is specified

using the action language, the tool first interprets the actions to generate the initial snapshot. A

unique ID is assigned for each object created by the action language. To generate a snapshot

after an operation call, the tool clones all the objects and links from the before snapshot, and then

applies the actions to the after-snapshot.

5.3.4 Generating USE commands

The USE Command Generator processes the snapshot transitions and generates a sequence

of USE commands. USE commands are actions that are used to create and manipulate an

instance model in USE. Basic actions include creating an object, setting an attribute of an object

and linking two objects. The generated USE commands are used to create snapshot transitions in

USE.

For example, the following USE commands create a snapshot object snapshot_1, create a

user object bob_1, set object ID of bob_1 as 0, and finally create a role object cashier_1 and set

object ID as 1.

!create snapshot_1 : Snapshot

!create bob_1 : User

!set bob_1.ID := 0

61

!create cashier_1 : Role

!set cashier_1.ID := 1

5.4 USE consistency check

In this step, the USE snapshot transition model and OCL specifications and the USE

commands are input to USE. The USE commands are used to generate USE snapshot transitions.

Fig. 5.11 shows the USE snapshot transitions generated by the USE commands. There are

four operations and five snapshots in the USE snapshot transitions model. The initial snapshot

contains role cashier, user bob and session s1. The first operation User_AssignRole adds a link

between bob and cashier. The second operation User_CreateSession adds a link between s1 and

bob. The third operation Session_ActivateRole adds a link between s1 and cashier. The last

operation User_DeassignRole deletes the link between cashier and bob and the link between

cashier and s1.

Figure 5.11. USE snapshot transitions

After checking consistency between the USE snapshot transition model in Fig. 5.7 and USE

snapshot transitions in Fig. 5.11, USE shows the pre and post conditions of User_DeassignRole

are violated in the snapshot transitions (Fig. 5.12). Take the pre-condition for example, the

62

pre-condition contains two sub-expressions:self.UserAssign->includes(r) and

self.UserSes.SesRole->excludes(r). The first sub-expression requires that the role is assigned to

the user before de-assigned which is evaluated as true. The second sub-expression requires that

the role is not activated in any user sessions before de-assigned which is false.

Figure 5.12. USE consistency checking

63

Chapter 6

Demonstration Case Studies

This chapter presents exemplar applications of the Scenario-based UML Design Analysis

technique on design class models for two systems: a Train Management System model and a

Generalized Spatio-Temporal RBAC model. The two demonstration case studies will illustrate

how design inconsistencies can be uncovered using the Scenario-based UML Design Analysis

technique.

6.1 The Train Management System model

The Train Management System (TMS) is used to monitor train traffic in a train network. The

train network consists of trains and stations. There can be zero or more one-way routes between

any two stations. Each route is divided into segments. Each segment has two sensors: an entry

sensor which detects trains as they enter the segment and an exit sensor which detects trains as

they leave the segment. Each segment has a traffic light at the end. The train can only enter the

next segment when this traffic light of current segment is green. A train may have a journey. A

journey consists of a sequence of routes and stations at which the train will stop. A journey is

valid if it does not traverse any closed routes or closed stations and it does not stop at stations

that are not on the routes of the journey.

The length and speed of trains is ignored in this system. It is also important to note that the

segments are not contiguous; between any two segments in a route there is an non-monitored

section, that is a section that does not have input and output sensors. Thus one cannot assume

64

that a train leaving a segment (a monitored section) in one time instance is in the next segment

(next monitored section) in the next time instance.

In the following subsections we describe design class model of the TMS, scenarios and

inconsistencies between the design class model and scenarios identified using the Scenario-based

UML Design Analysis technique.

6.1.1 The TMS design class model

Fig. 6.1 shows the design class diagram of the Train Management System. The Train class

has two association ends with the Segment class: currentSeg refers to the current segment of the

train and lastExitedSegment refers to the last segment that the train has exited. The Segment class

has two association ends with the SensorHandler class: the entrySensor refers to the

SensorHandler at the entry of the segment and the exitSensor refer to the SensorHandler at the

exiti of the segment. Each Segment can have a previous Segment and a next Segment. The

TrainManager class links to all SensorHandler and Train objects. The Train has multiple

Journeys and each Journey has multiple Routes. The Journey has multiple stopStations. Each

Route has a beginStation and an endStation. Each Station has multiple segments.

Below are OCL specifications of four major operations: Train::OnSegmentEnter,

Train::OnSegmentExit, Segment::OnTrainExit and Segment::OnTrainExit. The

Train::OnSegmentEnter operation requires, as a postcondition that currentSeg of the train equals

the segment it is entering. The Train::OnSegmentExit operation requires that if the traffic light of

the current segment is not green then the train becomes runaway train and that the route of the

current segment becomes closed.

65

Figure 6.1. TMS design class diagram

context Train::OnSegmentEnter(currentTime:Time, segment:Segment,

train:Train)

pre pre1: train = self

// After the train enters the segment

// (1) The segment becomes current segment of the train.

post post1: self.currentSeg = segment

// (2) Last enter time of the train is equal to currentTime

post post2: self.lastEnterTime = currentTime

context Train::OnSegmentExit(currentTime:Time, segment:Segment,

train:Train)

pre pre1: self = train

66

// After the train exits the segment

// (1) If the traffic light of current segment is not green before the train

// exits the segment, the train becomes a runaway train and the route that

// contains the train will be closed.

post post1:(not self.currentSeg.trafficLightIsGreen@pre)

implies (self.isRunaway and not self.currentSeg.route.isOpen)

// (2) Last enter time of the train is equal to currentTime.

post post2: self.lastExitTime = currentTime

// (3) Previous segment becomes last exited segment of the train.

post post3: self.lastExitedSegment = self.currentSeg@pre

context Segment::OnTrainEnter(train:Train)

// Before the train enters the segment, the segment must be current segment

// of the train.

pre pre1: train.currentSeg = self

// After the train enters the segment, the train will be one of the passing

// trains of the segment.

post post1: self.passingTrains->includes(train)

context Segment::OnTrainExit(train:Train)

// Before the train exits the segment, the train must be one of the passing

// trains of the segment.

pre pre1: self.passingTrains->includes(train)

// After the train exits the segment

// (1) The train should not be one of the passing trains of the segment.

post post1: self.passingTrains->excludes(train)

// (2) The traffic light of the segment should not be green.

post post2: not self.trafficLightIsGreen

// (3) If the previous segment exists, also the route of the segment is

// open, and there are no passing trains on the segment, then the traffic

// light of previous segment must be green, otherwise it is not green.

post post3: if (self.previous->notEmpty() and self.route.isOpen and

self.passingTrains->isEmpty()) then (self.previous.trafficLightIsGreen)

else (not self.previous.trafficLightIsGreen) endif

67

// (4) If the previous and next segment exists, also the route of the segment

// is open, and there are no passing trains on the segment, then the traffic

// light of previous segment must be green, otherwise it is not green.

post post4: if (self.previous->notEmpty() and self.next->notEmpty() and

self.route.isOpen and self.passingTrains->isEmpty()) then

(self.previous.trafficLightIsGreen) else

(not self.previous.trafficLightIsGreen endif

// (5) If the previous segment exists but the next segment does not exist,

// then each segment at the station of the segment should not have next

// segment or have green traffic light

post post5: (self.previous->notEmpty() and self.next->isEmpty())

implies self.station.segments->forAll(st: Segment | st.next->isEmpty()

and not st.trafficLightIsGreen)

// (6) If the previous segment does not exist but the next segment exists,

// then for each segment at the station of the segment, if it has no previous

// segment or passing trains, then for each segment at the station of this

// segment, if the route of the segment is open and the segment has no next

// segment, then tranffic light of the segment is green

post post6: (self.previous->isEmpty() and self.next->notEmpty())

implies (self.station.segments->forAll(st: Segment|

st.previous->isEmpty() and st.passingTrains->isEmpty()) implies

(self.station.segments->forAll(st1: Segment | st1.route.isOpen and

st1.next->isEmpty() implies st1.trafficLightIsGreen)))

6.1.2 TMS Scenario one

In this scenario a train t1 is on segment seg1 initially, firstly it exits seg1 so that seg1

becomes last exited segment of the train, then it enters next segment seg2 so that seg2 becomes

current segment of the train and the traffic light of seg1 is no longer green. The scenario contains

three snapshots: snapshot 1.1 shown in Fig. 6.2, snapshot 1.2 shown in Fig. 6.3 and snapshot 1.3

shown in Fig. 6.4. Operation t1:onSegmentExit(time,seg1,t1) is called between snapshot 1.1 and

68

snapshot 1.2, operation t1:onSegmentEnter(time,seg2,t1) is called between snapshot 1.2 and

snapshot 1.3.

Figure 6.2. TMS snapshot 1.1

Snapshot 1.1 in Fig. 6.2 contains one Train object t1. t1 has a journey j1 and j1 has a route

r1. r1 has three segments seg1, seg2, seg3. currentSeg of t1 is seg1. Traffic lights of three

segments are all green.

69

Figure 6.3. TMS snapshot 1.2

After operation t1:onSegmentExit(time,seg1,t1) is called, in snapshot 1.2 (Fig. 6.3) the

association end from train t1 to segment seg1 becomes lastExitedSeg. The change in association

end lastExitedSeg is circled in Fig 6.3. Before the operation is called, the association end is

currentSeg.

70

Figure 6.4. TMS snapshot 1.3

After operation t1:onSegmentEnter(time,seg2,t1) is called, in snapshot 1.3 (Fig. 6.4) a new

association between train t1 and segment seg2 is added, seg2 is now currentSeg of t1. Also

trafficLightIsGreen attribute of seg1 becomes false. The changes are circled in Fig 6.4.

We analyze the scenario using the Scenario-based UML Design Analysis tool. The analysis

result shows an inconsistency that the trafficLightIsGreen attribute should not be false in

snapshot 1.3, operation Train::OnSegmentExit does not explicitly specify that the

trafficLightIsGreen should be changed or not, so we added frame constraints to ensure the

attribute should not be changed after the operation is called.

71

6.1.3 TMS Scenario two

In this scenario a train t1 is on segment seg1 initially and the traffic light of seg1 is not green,

firstly it exits seg1 so that seg1 becomes last exited segment of the train and the train becomes a

runaway train, then it enters next segment seg2 so that seg2 becomes current segment of the train.

The scenario contains three snapshots, snapshot 2.1 shown in Fig. 6.5, snapshot 2.2 shown in Fig.

6.6 and snapshot 2.3 shown in Fig. 6.7. Operation t1:onSegmentExit(time,seg1,t1) is called

between snapshot 2.1 and snapshot 2, operation t1:onSegmentEnter(time,seg2,t1) is called

between snapshot 2.2 and snapshot 3.

Figure 6.5. TMS snapshot 2.1

72

Snapshot 2.1 in Fig. 6.5 contains one Train object t1. t1 has a journey j1 and j1 has a route

r1. r1 has three segments seg1, seg2, seg3. currentSeg of t1 is seg1. Traffic lights of segments

are all green except for segment seg1.

After operation t1:onSegmentExit(time,seg1,t1) is called, in snapshot 2.2 (Fig. 6.6) the

association end from train t1 to segment s1 becomes lastExitedSeg. Before the operation is called,

the association end is currentSeg. Also isRunaway attribute of t1 becomes true. The two changes

are circled in Fig. 6.6.

Figure 6.6. TMS snapshot 2.2

73

After operation t1:onSegmentEnter(time,seg2,t1) is called, in snapshot 2.3 (Fig. 6.7) a new

association between train t1 and segment seg2 is added, seg2 is now currentSeg of t1 and t1 is in

passingTrains collection of seg2, the traffic light of seg1 remains green. The newly added

association between t1 and seg2 is circled in Fig. 6.7.

Figure 6.7. TMS snapshot 2.3

Analysis of this scenario shows that the isOpen attribute of Route object r1 in snapshot 2.2 is

true which is not consistent with operation Train::OnSegmentExit. In snapshot 2.1

trafficLightIsGreen attribute of t1.currentSeg is false, according to operation constraint post1 in

operation Train::OnSegmentExit, the train t1 should be a runaway train and the route associated

with segment s1 should be closed, i.e., isOpen attribute of r1 should be false.

74

6.2 The Generalized Spatio-Temporal RBAC model

The Generalized Spatio-Temporal RBAC model (GSTRBAC) is an extension to Role-Based

Access Control model [Ray07]. It allows specifying location-aware and time-based access

control constraints. In GTSRBAC location and time are associated with various entities in

standard RBAC model, including user, role, permission, user assignment, role assignment,

permission assignment and separation of duty. For example, location and time associated with

role can be used to specify that the role can only be activated at the certain location and time.

Location and time associated with permission can be used to specify that the permission can only

be operated at the certain location and time.

A UML GSTRBAC model was analyzed in [Abdunabi13] using the USE. This section

analyzes an adapted UML GSTRBAC model using the Scenario-based UML Design Analysis

technique.

6.2.1 The GSTRBAC design class model

In the main view of GSTRBAC UML design class model (Fig. 6.8) time and location are

encapsulated in a generalized STZone class. RBAC entities User, Role and Permission are

modeled as User, Role and Permission class. Object and Activity classes model the object and

operation entities in RBAC. Classes UserRoleAssignment, UserRoleActivation and

PermissionAssignment describe user role assignment relation, user role activation relation and

role permission assignment relation in RBAC. The STZone class is associated with User, Role,

Permission, Object, UserRoleAssignment, UserRoleActivation and PermissionAssignment.

75

Figure 6.8. GSTRBAC design class diagram – main view

Fig. 6.9 shows the separation of duty classes of the GSTRBAC UML design class model.

RSSOD class models static separation of duty constraint: conflicting roles under RSSOD cannot

be assigned to the same user in certain STZone. DSSOD class models dynamic separation of duty

constraint: conflicting roles under DSSOD cannot be activated in certain STZone by the same

user. PSSOD class models permission-based separation of duty constraint: conflicting

permissions cannot be assigned to the same role in certain STZone.

76

Figure 6.9. GSTRBAC design class diagram – SOD view

Below are OCL operation specifications of major operations User::UpdateZone,

User::assignRole, User::deassignRole, User::activateRole and User::deactivateRole:

context

User::updateZone(z:STZone)

pre: true

// After the user updates zone, the zone is included in current zones

// of the user.

post: (self.currentzones->includes(z))

context

User::assignRole(r:Role,z:STZone):UserRoleAssignment

// Before the user is assigned role r at STZone z,

// (1) role r and STZone z must be defined.

pre assignRolePreCond1_definedObjects:

77

r.isDefined and z.isDefined

// (2) STZone z must be included in current zones of the user and

allowed zones of the role.

pre assignRolePreCond2_ZoneIncluded: self.currentzones->includes(z)

and r.allowedzones->includes(z)

// (3) Role r should not be assigned to the user.

pre assignRolePreCond3_RoleNotAssigned:

self.getAssignedRoles(z)->excludes(r)

// (4) Role r should not belong to any static separation of duty roles

// of any roles assigned to the user.

pre assignRolePreCond4_RoleNotSSoD:

self.getAssignedRoles(z)->collect(r |

 r.getSSoDRoles(z))->excludes(r)

// After the user is assigned role r at STZone z,

// (1) The number of assignments of the user is one greater than

// previous assignments.

post AssignSTRolePostCond1_NewUserRoleRelation:

(self.assignments - self.assignments@pre)->size()=1

// (2) The new assignment should include role r at zone z

post AssignSTRolePostCond2_NewRoleAssignment: (self.assignments -

self.assignments@pre)->forAll(rl |

 rl.oclIsNew() and rl.zone=z and rl.role->includes(r))

// (3) The assigned roles of the user should include role r

post AssignSTRolePostCond3_RoleIsAssigned:

self.getAssignedRoles(z)->includes(r)

context

User::deassignRole(r:Role,z:STZone)

// The pre and post conditions are close to User::assignRole

pre deassignRolePreCond1_RoleIsAssigned:

self.getAssignedRoles(z)->includes(r)

78

post deassignRolePostCond1_RoleDeassigned:

self.getAssignedRoles(z)->excludes(r)

post deassignRolePostCond2_RoleAssignmentObjectDeleted:

(self.assignments@pre - self.assignments)->size()=1 and

(UserRoleAssignment.allInstances@pre -

UserRoleAssignment.allInstances)->size()=1

context User::activateRole(r:Role,z:STZone):UserRoleActivation

// Before the role r is activated at STZone z,

// (1) role r and STZone z must be defined.

pre activateRolePreCond1_denfinedObject:

r.isDefined and z.isDefined

// (2) STZone z must be included in current zones of the user and

allowed zones of the role.

pre activateRolePreCond2_ZoneIncluded:

self.currentzones->includes(z) and r.allowedzones->includes(z)

// (3) Role r should not be activated by the user.

pre activateRolePreCond3_RoleNot:

self.getActivatedRoles(z)->excludes(r)

// (4) Role r is assigned to the user.

pre activateRolePreCond4_RoleIsAssigned:

getAssignedRoles(z)->includes(r)

// After the user activates role r at STZone z,

// (1) The number of activations of the user is one greater than

// previous activations.

post activateRolePostCond1_NewUserRoleRelation: (self.activations

- self.activations@pre)->size()=1

// (2) The new activation should include role r at zone z

post activateRolePostCond2_NewRoleActivation: (self.activations -

self.activations@pre)->forAll(rl | rl.oclIsNew() and rl.zone=z and

rl.role->includes(r))

// (3) The activated roles of the user should include role r

79

post activateRolePostCond3_RoleIsAssigned:

self.getActivatedRoles(z)->includes(r)

context

User::deactivateRole(r:Role,z:STZone)

// The pre and post conditions are close to User::activateRole

pre deactivateRolePreCond1_RoleIsActivated:

self.getActivatedRoles(z)->includes(r)

post deactivateRolePostCond1_RoleDeactivated:

self.getActivatedRoles(z)->excludes(r)

post deactivateRolePostCond2_RoleActivationDeleted:

(self.activations@pre - self.activations)->size()=1 and

(UserRoleActivation.allInstances@pre -

UserRoleActivation.allInstances)->size()=1

6.2.2 GSTRBAC scenario one

In this scenario user Ben and two roles SP and TE are located in the same STZone z0. Ben is

assigned SP role first, then Ben activates TE role (note TE role is not assigned to Ben).

The initial snapshot of the scenario (Fig. 6.10) contains user Ben and two roles: SP and TE.

SP is assigned permission p0 and TE is assigned permission p1. The two roles and two

permission assignments are all at STZone z0.

80

Figure 6.10. GSTRBAC snapshot 1.1

Operation Ben.assignRole(SP, z0) is called to assign Ben SP role at STZone z0. In the next

snapshot (Fig. 6.11), UserRoleAssignment instance uras0 is created between Ben, SP and z0.

Transition from snapshot 1.1 to snapshot 1.2 is consistent with the design. The new uras0

instance and three associations are circled in Fig. 6.11.

81

Figure 6.11. GSTRBAC snapshot 1.2

Operation Ben.activateRole(TE, z0) is called to activate TE role at STZone z0. In snapshot

1.3 (Fig. 6.12), UserRoleActivation instance urac0 is created between Ben, TE and z0. The new

urac0 instance and three new associations are circled in Fig. 6.12.

Transition from snapshot 1.2 to snapshot 1.3 is not consistent with the design. One

precondition of User::activateRole requires that the role must be assigned to the user before it is

82

activated. This pre-condition is not satisfied because TE role is not assigned to Ben before

activation.

pre activateRolePreCond4_RoleIsAssigned:

getAssignedRoles(z)->includes(r)

Figure 6.12. GSTRBAC snapshot 1.3

6.2.3 GSTRBAC scenario two

In this scenario user Ben and two roles SP and TE are initially located in the same STZone

z0. Ben is assigned SP role at z0 first, then Ben moves to STZone z1, Ben is assigned TE role,

83

and finally Ben activates TE role at STZone z1 (note allowed zone of TE role is z0). The initial

snapshot of the scenario (Fig. 6.13) contains user Ben and two roles: SP and TE. SP is assigned

permission p0 and TE is assigned permission p1. The two roles and two permission assignments

are all at STZone z0. STZone z0 is at location DevelopmentOffice, another STZone z0 is at

location TestingOffice.

Figure 6.13. GSTRBAC snapshot 2.1

Operation Ben.assignRole(SP, z0) is called to assign Ben SP role at STZone z0. In snapshot

2.2 (Fig. 6.11), UserRoleAssignment instance uras0 is created between Ben, SP and z0. The new

84

uras0 instance and its associations are circled in Fig. 6.11. Transition from snapshot 2.1 to

snapshot 2.2 is consistent with the design.

Figure 6.14. GSTRBAC snapshot 2.2

Operation Ben.updateZone(z1) is called to update STZone of Ben to z1. In snapshot 2.3 (Fig.

6.15) Ben is associated to STZone z1 (as circled in Fig. 6.15), and UserRoleAssignment instance

85

uras0 is removed. From the verifier’s perspective, the user role assignment becomes invalid after

Ben moves to STZone z1 since UserRoleAssignment uras0 is associated with STZone z0.

Figure 6.15. GSTRBAC snapshot 2.3

The transition from snapshot 2.2 to 2.3 is not consistent with operation User::updateZone.

The frame constraints of the operation do not allow UserRoleAssignment instances be changed

after the operation is called.

86

Figure 6.16. GSTRBAC snapshot 2.4

Operation Ben.assignRole(TE, z1) is called to assign TE role to Ben at STZone z1. In

snapshot 2.4 (Fig. 6.16) UserRoleAssignment instance uras1 is created between Ben, TE and z1.

The new uras1 instance and its associations are circled in Fig. 6.16.

87

The transition from snapshot 2.3 to 2.4 is not consistent with operation User::assignRole.

Precondition assignRolePreCond2_ZoneIncluded is not satisfied because allowedzones of role

TE is z0 which does not include STZone z1:

pre assignRolePreCond2_ZoneIncluded: self.currentzones->includes(z)

and r.allowedzones->includes(z)

Figure 6.17. GSTRBAC snapshot 2.5

The last operation Ben.activateRole(TE, z0) is called to activate TE at z0. In Fig 6.17 the

new urac0 instance and its associations are circled.

88

The transition from snapshot 2.4 to 2.5 is not consistent with operation User::activateRole.

Precondition activateRolePreCond2_ZoneIncluded is not satisfied because currentzones of Ben

is z1 which does not include STZone z0:

pre activateRolePreCond2_ZoneIncluded:

self.currentzones->includes(z) and r.allowedzones->includes(z)

Precondition activateRolePreCond4_RoleIsAssigned is not satisfied. The only assigned role

TE is at STZone z1 and Ben’s assigned roles at STZone z0 is empty:

pre activateRolePreCond4_RoleIsAssigned:

getAssignedRoles(z)->includes(r)

class User

operations

getAssignedRoles(z:STZone):Set(Role)=self.assignments->

select(r|r.zone=z)->collect(r| r.role)->asSet()

Figure 6.18. GSTRBAC inconsistencies in snapshot 2.5

Fig. 6.18 shows violations of precondition activateRolePreCond2_ZoneIncluded and

activateRolePreCond4_RoleIsAssigned.

89

6.2.4 GSTRBAC scenario three

In this scenario user Ben is initially assigned two roles SP and TE at STZone z0. SP and TE

are dynamic separation of duty roles at STZone z0. Ben activates TE role first then activates SP

role at STZone z0.

The initial snapshot of the scenario (Fig. 6.19) contains user Ben and two roles: SP and TE.

SP and TE are both assigned to Ben at STZone z0. DSSOD (dynamic separation of duty) instance

dssod1 is created to forbid role SP and TE be activated simultaneously at STZone z0.

Figure 6.19. GSTRBAC snapshot 3.1

Operation Ben.activateRole(TE, z0) and Ben.activateRole(SP, z0) are called to activate TE

and SP roles at STZone z0. In snapshot 3.2 (Fig. 6.20) the TE role is activated. In Fig 6.20 the

90

new urac0 instance and its associations are circled. In snapshot 3.3 (Fig. 6.21) the SP role is

activated. In Fig 6.21 the new urac1 instance and its associations are circled.

The transition from snapshot 3.1 to 3.2 and 3.2 to 3.3 are both consistent with operation

User::activateRole.

Figure 6.20. GSTRBAC snapshot 3.2

However, the scenario is invalid from the verifier’s perspective. The two conflicting roles

are not supposed to be activated by the same user at the same STZone. It implies design error in

precondition of operation User::activateRole. It should check whether a conflicting role is being

activated.

91

Figure 6.21. GSTRBAC snapshot 3.3

6.3 Conclusion

This chapter discusses case studies of two application designs. The case studies show how

the Scenario-based UML Design Analysis technique can be used to find inconsistencies between

UML designs and scenarios.

During the analysis process, the verifier reads the UML designs and manually creates

scenarios from his/her perspective. The scenarios and UML designs are input to the

Scenario-based UML Design Analysis tool and then the consistencies between the transformed

snapshot transition models and snapshot transitions are checked in USE. Without using the

technique the verifier has to manually check OCL specifications against the scenarios which is

time-consuming and error-prone.

92

Chapter 7

Pilot Study

The Scenario-based UML Design Analysis technique is further evaluated by a pilot study. In

the pilot study a group of graduate students are invited to manually inspect the UML design class

model and scenarios to find inconsistencies. At the same time the Scenario-based UML Design

Analysis tool is used to find inconsistencies between the UML design class model and scenarios.

We compare inconsistencies found by the group of students and the tool and decide whether the

Scenario-based UML Design Analysis technique is effective or not.

The rest of this chapter is organized as follows: Section 7.1 discusses experiment planning,

including the experiment definition, context selection, hypotheses formulation, experiment

design and measurements and data collection. Section 7.2 discusses experiment results and

analysis. Section 7.3 discusses threats to validity. Section 7.4 concludes the pilot study.

7.1. Experiment planning

7.1.1 Experiment goal, research question and hypothesis

The experiment objective is formulated in the form of Goal-Question-Metric (GQM) goals

in table 7.1.

The experiment of the goal has one independent variable design verification method and two

dependent variables number of inconsistencies detected (NID) which is the number of

inconsistencies detected between the UML design class model and scenarios, and number of

false inconsistencies detected (NFID) which is the number of falsely detected inconsistencies.

93

There are two treatments: the Scenario-based UML Design Analysis technique and manual

design inspection technique.

Table 7.1. Formulation of the experiment objective

Analyze the Scenario-based UML Design Analysis technique

for the purpose of Evaluating

with respect to the effectiveness of identifying inconsistencies between UML class model

and scenarios when comparing with a traditional manual inspection

process

from the point of view of the design verification engineer

In the context of graduate computer science students

The Scenario-based UML Design Analysis technique is considered effective if it leads to

equal or higher number of inconsistencies and equal or lower number of false inconsistencies

than a manual design inspection technique will uncover.

7.1.2 Context selection and subjects

The context of the experiment is Software Specification & Design, a graduate level software

engineering course at Colorado State University. The subjects are a number of graduate or senior

Computer Science students that are enrolled in the course. The students enrolled in the course are

familiar with UML and OCL notations, and they were trained on how to manually find design

inconsistencies between a UML design class model and scenarios.

7.1.3 Experiment design

The UML design class models used in the experiment were produced by students at the

Software Specification & Design course or created in our previous research projects.

A group of students who are familiar with the Scenario-based UML Design Analysis

technique create scenarios. These students are given the UML design class diagram only. OCL

94

operation specifications are not given to these students. The students who create scenarios do not

participate in finding design inconsistencies using manual inspection techniques.

Another group of students who are familiar with UML, OCL and design inspection

technique individually review the UML design model and scenarios to find inconsistencies. This

group of students is trained on how to manually inspect design inconsistencies between the UML

design model and scenarios.

The Scenario-based UML Design Analysis tool is used to find inconsistencies between the

scenarios and the UML design.

We record inconsistencies found by each student and the tool. We repeat the experiment on

a number of UML design models. The results of experiments are consistent if they both show

that the Scenario-based UML Design Analysis technique is more effective than design review, or

vice versa. If the results are not consistent, we will analyze the data and find the reason of the

inconsistency, modify the process and study more applications if necessary.

7.1.4 Measurements and data collection

During the experiment, we will measure total number of inconsistencies uncovered by SDA

and MDI, total number of false inconsistencies uncovered by SDA and MDI, and total time spent

by each student in manual inspection. The students in the manual inspection group can also give

feedback on the manual inspection process.

7.2. Experiment results and analysis

We performed pilot study on two design models, the TMS design class model (Fig. 6.1) and

GSTRBAC design class model (Fig. 6.8 and Fig. 6.9). Two graduate students were asked to

95

manually inspect inconsistencies between the UML design class models and scenarios. The

Scenario-based UML Design Analysis tool was used to check inconsistencies.

Table 7.2. TMS experiment results

TMS

scenarios

NID

(Tool)

NFID

(Tool)

NID

(HumanA)

NFID

(HumanA)

NID

(HumanB)

NFID

(HumanB)

Scenario 1 6 0 2 1 6 1

Total 6 0 2 1 6 1

Table 7.3. GSTRBAC experiment results

GSTRBAC

scenarios

NID

(Tool)

NFID

(Tool)

NID

(HumanA)

NFID

(HumanA)

NID

(HumanB)

NFID

(HumanB)

Scenario 1 0 0 0 0 0 0

Scenario 2 1 0 1 0 1 0

Scenario 3 1 0 1 0 1 0

Scenario 4 1 0 1 0 1 0

Scenario 5 0 0 0 1 0 0

Scenario 6 3 0 2 0 2 0

Scenario 7 2 0 1 0 0 0

Scenario 8 2 0 2 0 2 0

Scenario 9 2 0 2 2 2 0

Scenario 10 0 0 0 0 0 0

Scenario 11 3 0 1 0 1 0

Scenario 12 3 0 0 2 2 0

Total 17 0 11 6 12 0

Table 7.2 and table 7.3 shows number of inconsistencies found by the tool and two graduate

students of the TMS and GSTRBAC design class model. The first column shows the scenario ID.

The second column NID shows the number of inconsistencies identified by the tool. The third

column NFID shows the number of inconsistencies falsely identified by the tool. NID (HumanA)

and NFID (HumanA) columns show the number of inconsistencies and number of false

96

inconsistencies found by the first graduate student. NID (HumanB) and NFID (HumanB)

columns show the number of inconsistencies and number of false inconsistencies found by the

second graduate student.

The tool did not identify false inconsistencies in the pilot study of the two design class

models. Fig. 7.1 shows a histogram of the number of inconsistencies identified by the tool and

two graduate students in the thirteen scenarios. In scenario 1, 7, 8, 12 and 13, the tool identified

more design inconsistencies than the two graduate students. In scenario 3, 4, 5, 9 and 10, the tool

identified the same number of design inconsistencies as the two graduate students. In scenario 2,

6 and 11, neither the tool nor the two graduate students found any design inconsistencies, but the

graduate students may find false design inconsistencies. To sum up, the tool identified equal or

more number of inconsistencies in all the scenarios than the two students.

0

1

2

3

4

5

6

7

Sce
nar

io
1

Sce
nar

io
2

Sce
nar

io
3

Sce
nar

io
4

Sce
nar

io
5

Sce
nar

io
6

Sce
nar

io
7

Sce
nar

io
8

Sce
nar

io
9

Sce
nar

io
10

Sce
nar

io
11

Sce
nar

io
12

Sce
nar

io
13

Scenarios

N
u

m
b

e
r

o
f

in
c
o

n
s
is

te
n

c
ie

s

Tool

HumanA

HumanB

Figure 7.1. Histogram of experiment results

97

7.3. Conclusion and discussions

The pilot study shows that the Scenario-based UML Design Analysis tool seems to be

effective because it uncovered at least as many design inconsistencies as manual inspection

techniques uncovered and the technique did not uncover false inconsistencies. Actually the

inconsistencies uncovered by the two graduate students are subset of the inconsistencies

uncovered by the tool.

As to the cost of finding inconsistency, the tool can be used to analyze a design class model

and scenarios automatically which takes a few minutes to generate necessary models and

scenarios and check them in USE. To manually inspect inconsistencies, the human beings must

be trained with domain knowledge and the manual inspection techniques. It is also

time-consuming and error-prone for the human being to manually inspect each scenario.

According to the feedback of the two graduate students, it took them about two hours reading the

GSTRBAC design class diagram and constraints, it took them about 30 to 45 minutes on average

to check one GSTRBAC scenario and 15-20 minutes to review the TMS scenario.

The main threat to validity of the pilot study is statistical conclusion validity [Wohlin12].

Due to the unavailability of graduate students, we were not able to control the number of

students and the number of design class models (scenarios). In the formal experiment, we should

invite more students to do manual inspection and study more design class models and scenarios.

It is also desirable to seed more inconsistencies into the UML designs and scenarios. Both of the

measures are helpful to mitigate the threat to statistical conclusion validity of the experiment.

98

Chapter 8

Generating Scenarios using JAL Operation Definitions

The Scenario-based UML Design Analysis technique requires that the verifier creates

scenarios to analyze UML design class models. This chapter presents a scenario generation

technique that automates the generation of scenarios using operational operation definitions

[Yu09]. The operation definitions are specified using Jave-like Action Language (JAL).

Java-like Action Language (JAL) is an imperative action language developed in our research

group that is used to describe effects of operations [Trung05A]. Scenario snapshot transitions are

generated by executing the JAL operation definitions using the UMLAnT (UML Animation and

Testing) tool [Trung05A].

The rest of this section is organized as follows: section 8.1 discusses the scenario generation

technique, section 8.2 discusses UML design class model of an RBAC example and RBAC

constraints modeled as OCL invariants, section 8.3 discuss analysis of RBAC constraints using

the scenario generation technique.

8.1 The scenario generation technique

This scenario generation technique automatically generates a set of scenarios based on the

verifier’s JAL operation definitions and operation invocation patterns [Yu09]. The operation

invocation pattern describes sequence of operations as regular expressions. The scenario

generation technique allows a verifier to produce a set of scenarios describing legal and illegal

functionality. The scenario generation technique takes into consideration domain-specific

knowledge about sequences of operation calls that reflect typical usages and sequences. This

99

knowledge is encoded in operation call sequence patterns that are used by the verifier to generate

scenarios.

The scenario generation technique is based upon a naïve scenario generation algorithm. The

naïve algorithm generates too many scenarios, and thus we extend it by allowing the verifier to

target specific families of scenarios by specifying patterns.

The naïve scenario generation algorithm does the following:

 Builds an operation invocation tree from a set of operations and parameter values.

 Traverses the operation invocation tree to produce all possible sequences of operation

invocations, and

 Animates each sequence of operation invocations to produce a sequence of snapshot

transitions. The verifier must then label each of the generated snapshot transition

sequences as legal or illegal.

Each node in an operation invocation tree represents a particular invocation of a system

operation on an object. The invocation is referred to as an operation instance. Each node contains

an object identifier (the receiver of the operation call), an operation name and a value for each

operation parameter. The root of the tree represents the system initialization point and it contains

information about the start state. Child nodes represent operation invocations that can occur after

the invocation represented by the parent node. A scenario is a path that starts at the root and ends

at any node in the tree.

To reduce the number of scenarios produced by the above algorithm, the technique allows a

verifier to

 limit the depth of the tree.

 limit the number of objects of a class that can be in a start state, and

100

 explicitly define a small domain for each input parameter of the operation.

For example, given an operation User::AssignRole(r:Role), the verifier can restrict the User

domain size to 2 users objects, and define a small domain for the Role parameter as follows:

Domain(Role) = {clerk, seniorClerk}.

The extended generation technique allows a verifier to specify patterns of operation

sequences that restrict

 the operation calls that are used to build the operation invocation tree.

 the order in which operations can be invoked.

These patterns are called operation invocation patterns. An operation invocation pattern is a

characterization of particular sequences of operation invocations that the verifier feels typifies

good and problematic usages of the system. The patterns are manually created using the best

available domain expertise and experience related to the sequences of operations that are likely

to uncover policy violations. The patterns are described in terms of constraints on initial states

and on the sequencing of operation calls. The use of these patterns allows the verifier to focus the

analysis on particular sequences of invocation calls.

For example, a verifier can create the following pattern of operation calls for analyzing role

activation functionality:

Initial State Constraint

u in Domain(User) // There is at least one user

#Role>3 //At least 4 roles are in the start state

Call Pattern

u.CreateSession(.)return(s:Session){1,2} u.AssignRole(.){2,4}

u->s.ActivateRole(.){1..4}

101

The first part of the pattern description constrains the initial state. In this case the initial state

must consist of a User object, u, and at least four roles.

The second part is the pattern of operation calls. The expression caller->callee.Op() (e.g.,

see last line of the above Call Pattern) identifies the sender (caller) and receiver (callee) of an

operation call message. If the caller is omitted then it is assumed that the message is coming

from an external actor. The analysis we perform using the Snapshot transition model does not

require that the sender of an operation call be known; this information is currently used only to

visualize the operation sequence as a sequence diagram that shows both senders and receivers of

messages.

The pattern describes the following sequences of operation calls:

 Start with 1 or 2 calls to the CreateSession() operation for a user, u using any parameters

(as indicated by the "." in the parameter list of the operation), and each successfully

returning a new session, s, (indicated by return(s:Session)),

 followed by 2 to 4 operation calls to the AssignRole() for user u, and

 end with 1 to 4 calls made by the user u to activate roles in the sessions previously

created by calls to CreateSession().

In order to generate snapshot transitions, a verifier must provide descriptions of operation

functionality to the snapshot generation algorithm using JAL. The verifier can use the technique

to generate legal scenarios by using correct JAL operation definitions (or more precisely, correct

JAL operation definitions in his/her perspective), and generate illegal scenarios by injecting

errors in the JAL so that it produces illegal snapshot transitions.

102

For example, a verifier can define the legal effects of the operation User::AssignRole as

follows:

JAL_User_AssignRole

if (!this.userRoles._exists(role)) {

 this.userRoles._add(role);

}

Scenario generation algorithm
Inputs. UML design class model, maximum number of operations

Max, parameter domain definitions, operation JAL definitions, tree

node r. Operation invocation patterns.

Outputs. Set of scenarios.

Algorithm steps

For each operation call do:

If operations from root to current tree node r and op match an

operation invocation pattern:

1. Create one tree node n and add it as child of r.

2. Store information about the operation call (e.g., operation

name, parameters, receiving object identifier) in tree node n.

3. Execute desired JAL description associated with the operation

using the start state stored in r to get the next system state. Store

the next system state in tree node n.

4. Print the sequence of operation calls from the tree root to tree

node n as an output scenario.

5. If Max > 1

a) Call the scenario generation algorithm recursively with

tree node n and Max - 1 as maximum number of

operations.

Figure 8.1. Scenario generation algorithm

The scenario generation algorithm is described in Fig. 8.1. Snapshot transitions are

generated by traversing the operation invocation tree and interpreting the associated JAL

descriptions of behavior using UMLAnT. The verifier then needs to determine whether the

generated scenarios describe legal or illegal behaviors.

103

8.2 An hierarchical RBAC example

In this section we present a hierarchical RBAC (HRBAC) policy model in two parts: in the

first part we give a UML design class model that describes HRBAC classes and operations, in

the second part we describe HRBAC constraints using OCL invariants.

8.2.1. HRBAC design class model

+AssignRole(in r : Role)

+DeassignRole(in r : Role)

+CreateSession() : Session

+DeleteSession() : Session

+GetAuthorizedRoles() : Set of Role

User

+ActivateRole(in r : Role)

+DeactivateRole(in r : Role)

+GetActiveRoles() : Set of Role

+CheckAccess(in t : Target, in o : Operation) : Boolean

Session

+AddSeniorRole(in r : Role)

+DeleteSeniorRole(in r : Role)

+GrantPermission(in p : Permission)

+RevokePermission(in p : Permission)

+GetAuthorizedPermissions() : Set of Permission

+GetAuthorizedUsers() : Set of User

+GetSODRoles() : Set of Role

Role

Target

Operation

Permission

-roles*

-permissions*

-activeRoles
*

-sessions
*

-assignedRoles

*

-users

*

-user

1

-sessions

*

*

-target

1

-operation

1

*

-juniorRoles*

-seniorRoles

*

*

+DSDRoles

*

*

+SSDRoles

*

Figure 8.2. Hierarchical RBAC design class model

104

In the hierarchical RBAC design class model shown in Fig. 8.2, the User, Role and Session

classes model users, roles and sessions entities in RBAC. The Permission class describes RBAC

permissions in terms of operations that can be performed on targets. The assignedRoles

association end determines the set of roles directly assigned to a user. The operation

GetAuthorizedRoles() returns all roles directly and indirectly assigned to a user. The activeRoles

association end determines the set of roles directly activated in a session, and the operation

GetActiveRoles() returns all roles directly activated in a session. The association end permissions

is the set of all permissions directly associated with a role, and the operation

GetAuthorizedPermissions() returns all permissions directly and indirectly associated with a role.

The seniorRoles and juniorRoles association ends define the role hierarchy relationships. The

SSDRoles association end defines the set of role pairs that are constrained by SSD. The

DSDRoles association end defines the set of role pairs that are constrained by DSD.

Operations are specified using the OCL. For example, the operation GetAuthorizedRoles() in

User is defined using a query operation GetDominatedRoles() as follows:

// Get set of authorized roles to the user.

context User::GetAuthorizedRoles():Set(Role)

post: result = self.assignedRoles.GetDominatedRoles()->asSet()

// Get set of dominated roles to the role.

context Role::GetDominatedRoles():Set(Role)

body:

let oneStep:Set(Role)= Set{self} in

result = if oneStep.juniorRoles->isEmpty() then

 oneStep

else

oneStep->union(oneStep.juniorRoles.GetDominatedRoles())->asSet()

endif

105

The operations that are involved in the analysis are given below:

context User::AssignRole(r:Role)

// Assign a role to the user.

pre: not self.GetAuthorizedRoles()->includes(r)

post: self.GetAuthorizedRoles()->includes(r)

context Session::ActivateRole(r:Role)

// Activate a role in the session.

pre: not self.GetActiveRoles()->includes(r)

post: self.GetActiveRoles()->includes(r)

context Session::GetActivateRoles:Set(Role)

// Return activated roles in the session.

pre: true

post: result = self.activeRole

context Role::AddSeniorRole(r:Role)

// Add a senior role to current role.

pre: true

post: self.seniorRoles->includes(r) and

r.juniorRoles->includes(self)

context Role::CheckAccess(t:Target, o:Operation):Boolean

// Query operation that checks permissions

// of all active roles to see whether there

// is a match for the target and operation.

pre true

post: result =

self.GetActiveRoles().GetAuthorizedPermissions()->exists (p |

p.target = t and p.operation = o)

106

8.2.2. HRBAC constraints

8.2.2.1. Role activation constraint

A fundamental constraint in role activation is that a role can be activated by a user only if it

has been assigned to the user. We express this constraint as an OCL invariant named

RBAC_Policy_1:

RBAC_Policy_1: A user can only activate roles that are assigned to

him.

context Session

inv RBAC_Policy_1:

self.user.authorizedRoles->

includesAll(self.activeRoles)

8.2.2.2. Role hierarchy constraints

According to the definition of role hierarchy in the NIST RBAC standard [Ferraiolo01], a

senior role dominating its junior roles implies that the senior role inherits all the permissions of

its junior roles, and a junior role inherits all the assigned users of the senior role.

RBAC_Policy_2 expresses this constraint:

RBAC_Policy_2: A senior role inherits all permissions from junior

roles, and a junior role inherits all the users of its senior roles.

context Role

inv RBAC_Policy_2:

seniorRoles->forAll(s | s.authorizedPermissions->

intersection(self.authorizedPermissions) =

self.authorizedPermissions) and

self.seniorRoles->forAll(s | s.authorizedUsers->

intersection(self.authorizedUsers) = s.authorizedUsers)

107

The role hierarchy is a partial order on roles and there should not be any cycles in the role

hierarchy. We use an OCL query operation on roles called Dominates in the policy statement.

The expression r1.Dominates(r2), where r1 and r2 are roles, returns true if r2 is a descendant of

r1 in a senior-junior role structure. The constraint is expressed by RBAC_Policy_3:

context Role::Dominates(r:Role):Boolean

pre true

post:

if (self.juniorRoles->includes(r)) then

result = true

else

result = self.juniorRoles->exists(j | j.Dominates(r))

endif

RBAC_Policy_3: There must be no cycles in senior-junior role

relationships.

context Role

inv RBAC_Policy_3:

not self.Dominates(self)

8.2.2.3. Separation of duty constraints.

RBAC_Policy_4 expresses the static separation of duty constraint, and RBAC_Policy_5

expresses the dynamic separation of duty constraint:

RBAC_Policy_4: Conflict of interest roles cannot be assigned to the

same user (SSD).

context User

inv RBAC_Policy_4:

not self.GetAuthorizedRoles()->exists(r1, r2 |

r1.SSDRoles->includes(r2))

108

RBAC_Policy_5: Conflict of interest roles can not be activated by

the same user simultaneously (DSD).

context User

inv RBAC_Policy_5:

not self.sessions.GetActiveRoles()->exists(r1, r2 | r1.DSDRoles->

includes(r2))

8.3. Analyze HRBAC constraints

In this sub-section we show how some of the HRBAC constraints given in Section 8.2 can

be analyzed using the method.

8.3.1. Analyze role activation constraint.

To analyze the role activation constraint (RBAC_Policy_1), we use the following operation

invocation pattern:

Initial State Constraint

Domain(User) = {Bob}

Domain(Role)={clerk, seniorClerk}

Call Pattern

[no Bob.AssignRole(r)]{0..2}

Bob.CreateSession(.)return(s:Session) Bob->s.ActivateRole(r){1..2}.

The expression [no Bob.AssignRole(r)] is used to match all operation calls except calls of

the form Bob.AssignRole(r).

The above pattern describes sequences of operations which end with 1 or 2 invocations of

the ActivateRole() operation, and start with 0 to 2 operation invocations that do not include

operation calls that assign the activated roles to the user Bob.

109

The verifier describes the effect of the ActivateRole operation using JAL – The JAL

description simply activates the role. Scenarios generated from this pattern would allow roles to

be activated even though they are not assigned to the user. For this reason, the verifier knows

that the pattern would produce illegal scenarios.

An example of an illegal scenario generated from the above pattern is described as below:

 The scenario starts from an initial system state with one user instance Bob and one Role

instance clerk.

 The user Bob creates one session. After the operation is called, a new Session instance

session is created.

 The user Bob activates the clerk role. After the Session::ActivateRole operation is called,

the activation succeeds and clerk is added to the activeRoles association of the session.

The HRBAC design model should reject the illegal behavior described by the scenario.

Analysis with USE revealed that the HRBAC design model is consistent with the scenario. The

defect in the design class model is that the operation Session::ActivateRole activates any role that

is not activated. The pre-condition should check whether the role is assigned or not.

8.3.2. Analyze separation of duty constraints.

We use the following operation invocation pattern to check enforcement of the SOD

constraints:

Initial State Constraint

Domain(User) = Bob

cashier in Domain(Role)

accountant in Domain(Role)

cashier in accountant.SSDRoles // the roles conflict

Call Pattern

[

110

[.]*

Bob.AssignRole(cashier)

Bob.AssignRole(accountant)

]{1}

[

Bob.CreateSession(.)return(s:Session)

s.ActivateRole(r){2..4} where(r = accountant and r = cashier)

]{0..1}

The expression [.] matches any operation call and "*" represents the multiplicity "0 or more".

The where clause stipulates that at least one of the Activate() calls must activate the accountant

role, and at least one of the Activate() calls must activate the cashier role.

The illegal scenario below is generated from the pattern:

 The scenario starts in a state consisting of two conflict of interest roles, cashier and

accountant, and a user Bob.

 User::AssignRole operation is called to assign the cashier role to user Bob. After the

operation is called, Bob is assigned the cashier role.

 User::AssignRole operation is called to assign the accountant role to user Bob. After the

operation is called, Bob is assigned the accountant role.

The scenario violates the static separation of duty constraint defined as RBAC_Policy_4 and

thus it should be rejected by the HRBAC design. In the design model, the User::AssignRole

operation specified in Section 2 only checks whether the role is assigned to the user or not before

it assigns the role, so that the illegal scenario is consistent with the HRBAC design. To enforce

the static separation of duty constraint in an HRBAC design, the operation should also check

whether the role to be assigned is in conflict of interest with roles that have been assigned to the

user.

111

The illegal scenario below was used to analyze the dynamic separation of duty constraint:

 The scenario starts in a state consisting of two conflict of interest roles, cashier and

accountant, and a user Bob.

 Bob creates a new Session instance session.

 User::AssignRole operation is called to assign the cashier role to user Bob. After the

operation is called, Bob is assigned the cashier role.

 User::AssignRole operation is called to assign the accountant role to user Bob. After the

operation is called, Bob is assigned the accountant role.

 Session::ActivateRole operation is called to activate the cashier role in the Session

instance. After the operation is called, the cashier role is activated.

 Session::ActivateRole operation is called to activate the accountant role in the Session

instance. After the operation is called, the accountant role is activated.

In the illegal scenario the user Bob is assigned two conflict of interest roles cashier and

accountant, and Bob activates both roles in one session. Again, the Session::ActivateRole()

operation does not check that the role to be activated is in a conflict of interest with a role in a

session created by the user.

112

Chapter 9

Generating Scenarios using OCL Operation Definitions

This chapter presents another scenario generation technique using OCL operation definitions

[Yu12]. To generate snapshot transitions, the UML class diagram and OCL operation definitions

are transformed to Alloy to generate scenarios.

The rest of this section is organized as follows: section 9.1 discusses the Location-aware

Role-Based Access Control example UML model. Section 9.2 discusses the scenario generation

technique and applies the technique to analyze the example model.

9.1 The Location-aware Role-Based Access Control model

The Location-aware Role-Based Access Control (LRBAC) is an extension to the standard

RBAC model [Ray05] [Ray06] [Ray07]. LRBAC uses spatial information of the user and object

to enhance the security of location-sensitive applications. In LRBAC, user and object are both

associated with locations. The location information of the user and object is taken into

consideration in determining whether the user can access the object. The role is associated with

assign location and activation location. A role can only be assigned (activated) by a user when

the user location is in the assign (activation) location of the role. The permission is also

associated with role location and object location. A user acquires certain permission to operate

an object only if the user activates the role that is granted the permission and the user location is

in role location of the permission and the object location is in object location of the permission.

http://www.springerlink.com/index/C3T50338535HX115.pdf

113

*

-loc

1

+AssignRole(in r : Role)

+DeassignRole(in r : Role)

+CreateSession() : Session

+DeleteSession() : Session

+GetAuthorizedRoles() : Set of Role

+UpdateLocation(in loc : Location)

User

+ActivateRole(in r : Role)

+DeactivateRole(in r : Role)

+GetActiveRoles() : Set of Role

+CheckAccess(in t : Object, in o : Operation) : Boolean

Session

+AddSeniorRole(in r : Role)

+DeleteSeniorRole(in r : Role)

+GrantPermission(in p : Permission)

+RevokePermission(in p : Permission)

+GetAuthorizedPermissions() : Set of Permission

+GetAuthorizedUsers() : Set of User

+GetSODRoles() : Set of Role

+AddAssignLocation(in loc : Location)

+AddActivationLocation(in loc : Location)

Role

+UpdateLocation(in loc : Location)

Object

Operation

+AddRoleLocation(in loc : Location)

+AddObjectLocation(in loc : Location)

Permission

-roles*

-permissions*

-activeRoles
*

-sessions
*

-assignedRoles

*

-users

*

-user

1

-sessions

*

*
-object

1

-operation

1

*

-SODRoles*

*

-juniorRoles*

-seniorRoles

*

+In(in locs : Set of Location) : Boolean

Location

*

-loc

1

*

-assignLocs*

*

-actLocs

*
*

-roleLocs

*

*

-objLocs *

Figure 9.1. The LRBAC UML design class diagram

In the LRBAC design class model (Fig. 9.1), the User, Role, Session and Permission classes

model users, roles, sessions and permissions entities in standard RBAC. The Permission class

describes RBAC permissions in terms of operations that can be performed on objects. The

assignedRoles association end of the Role class determines the set of roles directly assigned to a

user. The operation GetAuthorizedRoles() returns all assigned roles and their dominated roles

indirectly assigned to the user. The activeRoles association end determines the set of roles

114

activated in a session, and the operation GetActiveRoles() returns all roles activated in a session.

The association end permissions is the set of all permissions directly associated with a role, and

the operation GetAuthorizedPermissions() returns all permissions associated with a role and its

dominated roles. The seniorRoles and juniorRoles association ends define the role hierarchy

relationships. The SODRoles association end defines the set of separation of duty role pairs.

The Location class describes the new location entity in LRBAC. In location-aware

applications the location of the users and objects can be updated and queried. The

UpdateLocation operation sets the new locations of the user or object. The loc association ends

in User-Location and Object-Location associations return the updated location of the user or

object. The method Location::In checks whether the location is contained by a set of locations.

The assignLocs and actLocs describes the set of assign locations and activation locations of the

role. The roleLocs and objLocs association ends describe the set of role locations and object

locations of the permission.

Operations are specified using the OCL. The operations that are involved in the analysis are

given below:

context User::AssignRole(r:Role)

// Assign a role to the user.

pre: not self.GetAuthorizedRoles()->includes(r) and

self.loc.In(r.assignLocs)

post: self.GetAuthorizedRoles()->includes(r)

context Session::ActivateRole(r:Role)

// Activate a role in the session.

pre: not self.GetActiveRoles()->includes(r) and

self.user.loc.In(r.assignLocs) and

self.user.loc.In(r.actLocs)

115

post: self.GetActiveRoles()->includes(r)

context Session::CheckAccess(t:Object, o:Operation):Boolean

pre: true

post: result =

self.GetActiveRoles().GetAuthorizedPermissions()->exists (p |

p.object = t and p.operation = o and self.user.loc.In(p.roleLocs)

and o.loc.In(p.objLocs)))

9.2 The scenario generation technique

The scenario generation technique (see Fig. 9.2) requires the verifier to create scenario

generation criteria and OCL operation definitions for operations that will be used in generated

scenarios. The technique uses the static aspects of the UML design class model (i.e., the classes

and associations, but not the operation specifications), and the verifier’s OCL operation

definitions to generate an Alloy model. The scenario generation criteria are used to produce

Alloy predicates that are included in the Alloy model. These predicates are run using the Alloy

Analyzer to generate snapshot transition sequences expressed as Alloy instance models. The

Alloy instance models are then transformed to snapshot transition sequences that can be input to

USE for analysis.

116

Snapshot

transitions

Scenario

generation

criteria

Scenario

Operation

definitions

(OCL)

TransformationTransformation

Alloy Snapshot

Model

Alloy

predicates

Alloy Constraint

Solving

UML

Design

Class

diagrams

Designer
Independent Verifier

Figure 9.2. Generating transition sequences

The rest of the sections are organized as follows: In section 9.2.1 we describe the types of

scenario generation criteria that verifiers can define. In section 9.2.2 we give examples of

scenario operation definitions and in section 9.2.3 we describe how scenarios are generated.

9.2.1. Defining scenario generation criteria

In the extended Scenario-based UML Design Analysis technique, a verifier can define the

following types of scenario generation criteria:

117

 Operation sequence criteria: an operation sequence criterion characterizes a family of

operation sequences. Scenarios that satisfy this type of criteria must include operation

calls that abide by the relative ordering of calls defined by the criterion.

 Structural coverage criteria: a structural coverage criterion specifies properties of

objects and associations that must hold in snapshots before and after each operation.

These properties are expressed as OCL constraints.

 Operation coverage criteria: an operation coverage criterion specifies operation

behaviors that must be covered in the generated scenarios. These criteria are specified

using OCL constraints.

A scenario generation criterion consists of an initial state constraint part in which the verifier

specifies structural constraints, a call pattern part in which the verifier specifies an operation

sequence criterion, an optional structural coverage criterion, and an operation constraint part in

which the verifier specifies optional operation coverage criteria. This form builds upon our early

work on operation invocation patterns [Yu09].

The following describes the criteria that will be used to generate scenarios for analyzing the

LRBAC model. The criteria we use characterize scenarios that will be used to analyze check

access behaviors involving users updating their locations after activating assigned roles. The

intent is to check that the design model properly handles access control when a user changes

location.

Operation sequence criteria. The verifier defines an operation sequence criterion in the

form of an operation invocation pattern. In the pattern, a user creates a session, and some time

after the user is assigned a role that is later activated; after, the user updates its location and then

a request is made to access a resource which triggers an invocation of the CheckAccess()

118

operation. The operation sequence criterion is expressed as a pattern as shown below (the

numbers in brackets restrict the number of occurrences of the operation calls that can be made):

User::CreateSession(){1}

User::AssignRole(){1}

Session::ActivateRole(){1}

User::UpdateLocation(){1}

Session::CheckAccess(){1}

An operation sequence that satisfies this criterion is shown in Fig. 9.3.

:User

session:Session

CreateSession

:Role

create

AssignRole

ActivateRole

CheckAccess

UpdateLocation

Figure 9.3. The analysis operation sequence

Structural coverage criteria. The verifier defines a criterion stating that the snapshot

before the CheckAccess() operation in Fig. 9.3 must satisfy the following property (# is the set

cardinality operator):

#User = 1 and #Location = 2 and #Role = 1 and #Role.permissions =

1 and User.Loc <> Permission.roleLocs

119

The property states that the snapshot should contain one user, two locations, one role with a

granted permission, and that the set of user locations is not equal to the role set of permission

role locations.

Operation coverage criteria. The verifier is interested in generating scenarios in which the

user location is included in role assignment locations. Thus the following operation coverage

criterion is defined for User::AssignRole and Session::ActivateRole operations. The criterion

ensures that the user location is included in role assignment locations before the two operations

are called.

behavior context: User::AssignRole(r:Role)

precondition includes: self.loc.In(r.assignLocs)

behavior context: Session::ActivateRole(r:Role)

precondition includes: self.user.loc.In(r.assignLocs) and self.user.loc.In(r.actLocs)

All of the above criteria are bundled into the single scenario generation criterion shown

below:

Initial State Constraint

{}

Call Pattern

[

User::CreateSession(){1}

User::AssignRole(){1}

Session::ActivateRole(){1}

User::UpdateLocation(){1} where (#User = 1 and #Location = 2 and #Role

= 1 and #Role.permissions = 1 and User.Loc <> Permission.roleLocs)

Session::CheckAccess(){1}

]

Operation Constraint

120

{

behavior context: User::AssignRole(r:Role)

precondition includes: self.loc.In(r.assignLocs)

behavior context: Session::ActivateRole(r:Role)

precondition includes: self.user.loc.In(r.assignLocs) and

self.user.loc.In(r.actLocs)

}

9.2.2. Defining scenario operations

An OCL operation specification in a design class model should be complete in the sense that

it defines effects for all scenarios involving calls to the operations. A verifier’s scenario

operation definition does not need to be as encompassing; it should define only the effects

produced in the scenarios defined by the verifier.

For example, consider a case in which a verifier analyzes an LRBAC design model using the

following scenario:

 A user is in a location in which he cannot activate any roles, and

 The user attempts to retrieve information that he is not allowed to access.

In this scenario the CheckAccess() operation should return false, indicating that the user is

denied access. The verifier thus defines the Session::CheckAccess() operation as follows:

context Session::CheckAccess(t:Object, o:Operation):Boolean

pre: not self.user.loc.In(self.activeRoles.assignLocs)

post: result = false

Similarly, the verifier defines User::AssignRole and User::UpdateLocation operations as:

context User::AssignRole(r:Role)

pre: not self.assignedRoles->includes(r)

post: self.assignedRoles ()->includes(r)

121

context User::UpdateLocation(loc:Location)

pre: true

post: not loc = loc@pre

9.2.3. Generating scenarios

This section discusses four major steps in the scenario generation process: the first step

generates the Alloy snapshot transition model, the second step generates the snapshot sequence

constraint, the third step generates Alloy predicates for criteria, and the last step generates Alloy

snapshot transitions.

9.2.3.1 Generating the Alloy snapshot transition model.

The verifier’s scenario operation definitions and the designer’s design class models are

transformed to a snapshot transition model, which is then transformed to an Alloy model. In this

step we use the design class diagram created by the designer and the OCL operation definitions

created by the verifier to generate a snapshot transition model. Details of the snapshot transition

model transformation algorithm are described in [Yu08]. The Alloy snapshot transition model

includes the following elements:

1. A signature for each class in the UML class diagram: All attributes in the UML class are

transformed to fields of the signature, and class invariants are expressed as predicates in the

Alloy. Rules on how to transform a UML class model to Alloy are discussed in

[Anastasakis10]. For example, in the LRBAC example, the following signatures are

generated:

sig User{}

sig Role{}

sig Session{}

2. A snapshot signature that includes:

 Set of objects for each signature generated in the above step.

122

 All associations in the design class diagram are specified as fields, and additional

constraints that force the associations to link objects in the snapshot only are added to

the Alloy model.

Part of the Snapshot signature for the LRBAC example is shown below:

sig Snapshot {

 // LRBAC Objects

 users:some User,

 roles:some Role,

 sessions:some Session,

 permissions:some Permission,

 operations: some Operation,

 objects: some Object,

 locations: some Location,

 // LRBAC associations

 userrole: User set ->set Role,

 sessionrole:Session set->set Role

 …

}

3. A transition signature that includes a before and after snapshot: An example is given below.

abstract sig Transition

{

 before: one Snapshot,

 after: one Snapshot

}

4. A specialized signature (sub-signature) of the Transition signature for each operation in the

design class model: The sub-signature contains fields representing pre- and post-forms of

parameters as defined in the snapshot transition model. The OCL specification of the

123

operation is transformed to constraints of the sub-signature. We finally add frame constraints

to the sub-signature to make that objects and associations not affected by the operation

remain the same in before and after snapshots. For example, we generate the following

User_UpdateLocation_Transition signature for User::UpdateLocation() operation:

sig User_UpdateLocation_Transition

extends Transition

{

 uPre:User,

 uPost:User,

 locPre:Location,

 locPost:Location,

}{

 // Postcondition

 uPre.(before.userlocation) = locPre

 uPost.(after.userlocation) = locPost

 locPre != locPost

 // Frame conditions

 uPre = uPost

 uPre in before.users

 locPre in before.locations

 uPost in after.users

 locPost in after.locations

 …

}

9.2.3.2 Generating the snapshot sequence constraint.

In this step, a snapshot sequence constraint is generated in order to associate two consecutive

snapshots with a transition. First, an Alloy ordering type is used to cast a set of states into a

124

sequence of states (e.g., open util/ordering[Snapshot] as SO). Second, an Alloy fact, traces, is

defined to relate a snapshot to its next snapshot through a transition as shown below:

open util/ordering[Snapshot] as SO

fact traces {

all s: Snapshot - SO/last |

let s' = s.next | one t : Transition |

t.before = s and t.after = s'}

9.2.3.3 Generating Alloy predicates for criteria.

In this step, the scenario coverage criteria are translated to Alloy predicates. Each operation

sequence criterion is translated to an Alloy predicate. In the example, the scenario operation

sequence pattern contains five operations: User::CreateSession(), User::AssignRole(),

Session::ActivateRole(), User::UpdateLocation() and Session::CheckAccess().

The pattern is transformed to an Alloy predicate as below:

pred operation_pattern1 {

one s: Snapshot - SO/last | let s0 = s | let s1 = SO/next[s0] |

let s2 = SO/next[s1] | let s3 = SO/next[s2] |

 let s4 = SO/next[s3] | let s5 = SO/next[s4] |

one t1: User_CreateSession_Transition,

 t2 : User_AssignRole_Transition,

t3 : Session_ActivateRole_Transition,

t4 : User_UpdateLocation_Transition,

t5: Session_CheckAccess_Transition |

 t1.before = s0 and t1.after = s1 and

 t2.before = s1 and t2.after = s2 and

 t3.before = s2 and t3.after = s3 and

 t4.before = s3 and t4.after = s4 and

 t5.before = s4 and t5.after = s5}

125

Each structural coverage criterion is translated to a predicate in the operation pattern

generated above. For example the following structural coverage criterion:

#User = 1 and #Location = 2 and #Role = 1 and

#Role.permissions = 1 and

User.Loc <> Permission.roleLocs

is translated to predicates on s4 in operation_pattern1:

#s4.users = 1 and #s4.locations = 2 and #s4.role = 1 and

#s4.rolepermission = 1 and

(s4.users).(s4.userlocation)

!= (s4.permissions).(s4.permrolelocation)

Each operation coverage criterion is translated to a predicate in its corresponding Transition

signature. For example, the following operation coverage criterion:

behavior context: User::AssignRole(r:Role)

precondition includes: self.loc.In(r.assignLocs)

is translated to the following predicate in User_AssignRole_Transition:

uPre.(before.userlocation) in rPre.(before.roleassignlocation)

9.2.3.4 Generating Alloy snapshot transitions.

By running the alloy predicates, we will get a set of snapshot transitions. For example, one

possible snapshot before and after the transition specified by User_UpdateLocation_Transition is

shown in Fig. 9.4 and Fig. 9.5. In the before snapshot, the user is at Location0, and the user

location is included in role assign location and role activation locations of the role, thus the user

has permission of operation on the object. In the after snapshot, the user location is updated to

Location1, and Location1 is not included in role assign and activation locations, so that

Session::CheckAccess() should return false after this user location update.

126

If we check the Session_CheckAccess_Transition snapshot transition against the original

snapshot transition model, we will find that it is not consistent with the snapshot transition

model. The reason is that the Session::CheckAccess() operation specification in the design model

does not check whether the role is still enabled after the user changes location. If we add the

conditions below (shown in bold text) to the specification, it will resolve the inconsistency:

Figure 9.4. Snapshots before User_UpdateLocation_Transition

127

Figure 9.5. Snapshots after User_UpdateLocation_Transition

context Session::CheckAccess(t:Object, o:Operation):Boolean

pre: true

post: result = self.GetActiveRoles()

->exists(r | self.user.loc.In(r.assignLocs) and

self.user.loc.In(r.actLocs) and

r.GetAuthorizedPermissions()->exists (p | p.object = t and

p.operation = o and

self.user.loc.In(p.roleLocs) and o.loc.In(p.objLocs)))

128

Chapter 10

Conclusions and Future Work

This chapter summarizes the dissertation. Section 10.1 describes contributions of the

dissertation. Section 10.2 reviews and answers research questions. Section 10.3 discusses future

work.

10.1 Contributions

This main contribution of the dissertation is a lightweight and static technique for analyzing

UML design class models. A UML design class model is analyzed against a set of scenarios that

describe desired or undesired behaviors created from the verifier’s perspective. The analysis

technique is lightweight because it analyzes functionality specified in a UML design class model

within the scope of a set of scenarios. It is static because it does not require that the UML design

class model be executable. The technique does not transform UML design models to other

formal notations such as Alloy, the analysis is done by leveraging existing UML structural

analysis tool USE.

The technique is a consistency checking technique. Inconsistencies imply errors in the UML

design class model, errors in the scenarios or errors in both the UML design and scenarios. It is

up to the modeler and the verifier to analyze the inconsistencies, find the cause of the

inconsistencies and resolve the inconsistencies. After the design error is identified and fixed, the

technique can be used to check whether the inconsistencies have been resolved in the updated

UML design and scenarios.

129

The dissertation presents a Scenario-based UML Design Analysis tool developed using

Kermeta and Eclipse Modeling Framework. The tool can be used to transform Ecore design class

model to a USE snapshot transition model, and transform scenarios to snapshot transitions that

can be input to USE.

We used the Scenario-based UML Design Analysis technique to analyze two UML design

class models: a Train Management System model and a Generalized Spatio-Temporal RBAC

model. The case studies show how the technique can be used to check inconsistencies between

the UML design class models and scenarios.

We performed a pilot study of two design class models to evaluate the effectiveness of the

Scenario-based UML Design Analysis technique. In the pilot study of two UML designs, the

technique uncovered at least as many design inconsistencies as manual inspection techniques

uncovered, and the technique did not uncover false inconsistencies. The pilot study shows the

technique seems to be effective.

The dissertation presents two scenario generation techniques. These techniques can be used

to ease the manual effort needed to produce scenarios. Based on the verifier’s operation

definitions the scenario generation techniques can be used to automatically generate a family of

scenarios that conform to patterns of operation sequences.

10.2 Discussions of research questions

This section reviews and answers five research questions and discusses open issues of the

research.

Research question 1: How can a scenario be checked against a UML design class model?

130

The technique is used to (1) transform a UML design class model to a snapshot transition

model that captures valid state transitions, (2) transform scenarios to snapshot transitions and (3)

check whether the snapshot transitions are instances of the snapshot transition model using USE.

Research question 2: Can existing structural analysis tools such as USE be leveraged to

support scenario-based analysis of class models?

Existing UML analysis tools such as USE can be used to check whether a snapshot is an

instance of a UML design class model. The technique leverages existing USE tool to check

whether the snapshot transitions transformed from scenarios are instances of the snapshot

transition model.

Research question 3: How effective is the Scenario-based UML Design Analysis technique

in terms of the number of design inconsistencies that can be uncovered?

The pilot study of two design class models shows that the Scenario-based UML Design

Analysis technique seems to be effective, as it uncovered at least as many design inconsistencies

as manual inspection techniques uncovered and it did not uncover any false inconsistencies. Due

to the lack of graduate students to create scenarios and manually inspect design inconsistencies,

we cannot control the number of students and number of UML designs in the pilot study. A

formal controlled experiment is desired to further evaluate the technique.

Research question 4: Can scenarios be automatically generated?

Scenarios can be automatically generated. Chapter 8 and 9 presents two scenario generation

techniques. The verifier needs to define operation definitions that specify effects of operations

and operation sequence patterns. The scenario generation techniques can be used to

automatically generate a family of scenarios that conform to the scenario coverage criteria. The

criteria are defined by the verifier based on his or her domain knowledge and experience.

131

However, it is a challenging problem to generate just enough number of scenarios that cover

a UML design. The scenario generation techniques discussed in this dissertation are an initial

attempt to solve this issue.

Research question 5: Can the technique be scaled to analyze large industrial design models?

Based on the algorithm complexity analysis in section 4.5, the complexity of snapshot

transition model generation algorithm depends on the size of the UML design class model and

the complexity of OCL operation constraints, and the complexity of snapshot transitions

generation is proportional to the number of instances in a scenario. The complexity to check

consistency between snapshot transitions and the snapshot transition model in USE depends on

the number of operations in a scenario, number of instances in the before and after snapshot and

complexity of invariants in the snapshot transition model.

Table 10.1. Time analysis of model transformation

Scenario Time (seconds)

Scenario 1 (TMS) 71

Scenario 1 (GSTRBAC) 39

Scenario 2 (GSTRBAC) 50

Scenario 3 (GSTRBAC) 78

Scenario 4 (GSTRBAC) 78

Scenario 5 (GSTRBAC) 54

Scenario 6 (GSTRBAC) 84

Scenario 7 (GSTRBAC) 64

Scenario 8 (GSTRBAC) 53

Scenario 9 (GSTRBAC) 70

Scenario 10 (GSTRBAC) 69

Scenario 11 (GSTRBAC) 119

Scenario 12 (GSTRBAC) 72

132

Table 10.1 shows time taken to transform the UML design class model to snapshot transition

model and to transform each scenario in the pilot study to snapshot transitions. The time taken to

run USE commands to build the snapshot transitions in USE of these scenarios is about 2-3

seconds. The time was measured on a laptop with Intel ® Core ™ 2 Duo CPU T6600 2.20GHz

processor and 4GB physical memory. The laptop ran Windows 7 Home Premium operating

system, Eclipse SDK Version 3.5.0, KerMeta Version: 1.3.2 and USE 3.0.1.

The complexity analysis and time analysis shows that the technique can possibly be used to

analyze larger UML designs and scenarios. Future work is required to analyze and optimize the

analysis of large industrial models.

Open issue 1: What kinds of design errors can be uncovered using legal/illegal scenarios?

The technique is a consistency checking technique. A legal scenario is supposed to be

consistent with the UML design, and an illegal scenario is supposed to be inconsistent with the

UML design.

Based on our study, illegal scenarios are typically used to identify weak pre-condition error

and weak post-condition error. These two types of design errors can not be identified by legal

scenarios, because the weak pre/post conditions are still consistent with the legal scenarios. For

other types of design errors such as strong pre-condition (i.e., the pre-condition is too strong so

that some valid inputs are treated as invalid) and unsatisfiable post-condition (i.e., the

post-condition is too strong so that it can not be satified), the verifier can create illegal scenarios

to identify such errors, but it seems more straightforward to create legal scenarios to identify

such design errors.

Future work is required to study how different types of design errors can be uncovered by

inconsistencies identified using legal and illegal scenarios.

133

Open issue 2: Should the verifier mark which part of an illegal scenario is illegal?

It is not required for the verifier to mark which part of an illegal scenario is not legal for

consistency checking purpose. However, to help identifying design errors from inconsistencies

between an illegal scenario and a UML design, it is recommended that the verifier specifies

which part of an illegal scenario is not legal.

10.3 Future work

We studied two demonstration UML designs. Future work should study more complicated

industrial UML designs. We need to optimize the snapshot transition model in case the

generation of snapshot transition model or USE consistency check becomes a bottleneck in

analyzing large industrial models.

We need to further study how different types of design errors are identified from

inconsistencies uncovered using legal and illegal scenarios.

In the pilot study two graduate students manually reviewed the UML designs and scenarios.

And we studied 13 scenarios of two UML designs. In the future work of formal controlled

experiment, larger number of graduate students should be invited and trained to do manual

inspection. The controlled experiment should study more scenarios and UML designs, and more

design inconsistencies should be seeded.

An effective scenario generation strategy is still open for future research. One future

direction is to study how to produce legal and illegal scenarios to cover every branch of OCL

operation constraints.

134

References

[Abdunabi13] Ramadan Abdunabi, Mustafa Al-Lail, Indrakshi Ray, Robert B. France: Specification,

Validation, and Enforcement of a Generalized Spatio-Temporal Role-Based Access Control Model. IEEE

Systems Journal 7(3): 501-515 (2013).

[Al-Lail13] Mustafa Al-Lail, Ramadan Abdunabi, Robert B. France, Indrakshi Ray: "An Approach

to Analyzing Temporal Properties in UML Class Models", MoDeVVa@MoDELS 2013: 77-86.

[Alloy] D. Jackson, "Alloy: a lightweight object modeling notation", ACM Transactions on Software

Engineering and Methodology, Volume 11, Issue 2, April 2002, pages 256-290.

[Blum92] Blum, B. I. 1992 Software Engineering: a Holistic View. Oxford University Press, Inc.

[Boehm81] B. W. Boehm, Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ,

1981.

[Briand02] Lionel Briand, Yvan Labiche, “A UML-Based Approach to System Testing”, Software

and Systems Modeling, vol. 1 (1), pp. 10-42, 2002.

[Brucker08] Achim D. Brucker and Burkhart Wolff. HOL-OCL - A Formal Proof Environment for

UML/OCL. In Fundamental Approaches to Software Engineering. Lecture Notes in Computer Science

(4961), pages 97-100.

[Büttner04] Fabian Büttner and Martin Gogolla. On Generalization and Overriding in UML 2.0. In

Jean Bezivin, Thomas Baar, Tracy Gardner, Martin Gogolla, Reiner H?hnle, Heinrich Hu?mann,

Octavian Patrascoiu, Peter H. Schmitt, and Jos Warmer, editors, Proc. UML'2004 Workshop OCL and

Model Driven Engineering, pages 69-69. In: UML - Modeling Languages and Applications.

[Clark99] E. Clark, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.

[Clarke01] Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., and Veith, H. 2001. Progress on the State

Explosion Problem in Model Checking. In informatics - 10 Years Back. 10 Years Ahead.

[Conradi03] Reidar Conradi, Parastoo Mohagheghi, Tayyaba Arif, Lars Christian Hedge, Geir Arne

Bunde, and Anders Pedersen. Object-oriented reading techniques for inspection of UML models – an

135

industrial experiment. In Proceedings of ECOOP’03, volume 2749 of LNCS, pages 483–501. Springer,

July 2003.

[EMF] Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/?project=emf

[Eshuis06] Eshuis, R. 2006. Symbolic model checking of UML activity diagrams. ACM Trans. Softw.

Eng. Methodol. 15, 1 (Jan. 2006), 1-38.

[Fagan76] M.E., Fagan (1976). "Design and Code inspections to reduce errors in program

development". IBM Systems Journal 15 (3): pp. 182–211.

[Ferraiolo01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy

Chandramouli. 2001. Proposed NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur.

4, 3 (August 2001), 224-274.

[Garcia07] Miguel Garcia, "How to process OCL Abstract Syntax Trees", Technische Universität

Hamburg-Harburg (Germany), June 2007.

[IEEE1028] IEEE std 1028-1988, IEEE Standard for Software Reviews and Audits (ANSI).

[Isabelle02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson, "Isabelle/HOL: A Proof

Assistant for Higher-Order Logic", Springer-Verlag, Berlin, Heidelberg, 2002.

[Jacobson92] I. Jacobson, M. Christerson, P. Jonsson, G. .vergaard: Object Oriented Software

Engineering: A Use Case Driven Approach. Amsterdam: Addison-Wesley, 1992.

[Kermeta] Kermeta language reference manual, http://www.kermeta.org/

[Krieger08] Krieger, M. P. & Knapp, A. Executing Underspecified OCL Operation Contracts with a

SAT Solver. ECEASST, 2008, 15.

[Kundu09] Debasish Kundu and Debasis Samanta, “A Novel Approach to Generate Test Cases from

UML Activity Diagrams”, Journal of Object Technology, Volume 8, no. 3 (May 2009), pp. 65-83.

[Lilius99] J. Lilius and I. P. Paltor. Formalising UML State Machines for Model Checking. Proc. of

the International Conference on the Unified Modelling Language: Beyond the Standard (UML'99),

volume 1723 of Lecture Notes in Computer Science, pages 430-445, USA, 1999. Springer-Verlag.

[MOF] Meta Object Facility (MOF) Core Specification, Object Management Group, Version 2.0.

136

[Muller05] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel, "Weaving Executability

into Object-Oriented Meta-Languages", Proceedings of ACM/IEEE 8th International Conference on

Model Driven Engineering Languages and Systems, Jamaica, 2-7 October 2005.

[Nebut06] Cle'mentine Nebut, Franck Fleurey, Yves Le Traon, Jean-Marc Je'ze' quel, "Automatic

Test Generation: A Use Case Driven Approach," IEEE Transactions on Software Engineering, vol. 32, no.

3, pp. 140-155, Mar. 2006, doi:10.1109/TSE.2006.22.

[NuSMV99] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri. In N. Halbwachs and D. Peled,

editors: "NuSMV: a new symbolic model verifier", Proceeding of International Conference on

Computer-Aided Verification (CAV'99), In Lecture Notes in Computer Science, number 1633, pages

495-499, Trento, Italy, July 1999. Springer.

[OCLE] D. Chiorean, M. Pasca, A. Carcu, C. Botiza, S. Moldovan, "Ensuring UML Models

Consistency Using the OCL Environment", Electronic Notes in Theoretical Computer Science, Volume

102, Nov. 2004, pages 99-110.

[OCL] Object Management Group, Object Constraint Language Specification, Version 2.3.

[Oliver99] Iam Oliver, Stuart Kent, "Validation of Object Oriented Models using Animation,"

euromicro, vol. 2, pp.2237, 25th Euromicro Conference (EUROMICRO '99)-Volume 2, 1999.

[Ray05] Indrakshi Ray and Lijun Yu, "Short Paper: Towards a Location-Aware Role-Based Access

Control Model", Proceedings of the 1st IEEE Conference on Security and Privacy for Emerging Areas in

Communication Networks, Athens, Greece, September 2005.

[Ray06] Indrakshi Ray, Mahendra Kumar, and Lijun Yu, "LRBAC: A Location-Aware Role-Based

Access Control Model", Proceedings of the 2nd International Conference on Information Systems

Security, Kolkata, India, December 2006.

[Ray07] Indrakshi Ray, Manachai Toahchoodee: A Spatio-temporal Role-Based Access Control

Model. DBSec 2007: 211-226.

[Shah09] Seyyed M. A. Shah, Kyriakos Anastasakis, and Behzad Bordbar. 2009. From UML to

Alloy and back again. In Proceedings of the 6th International Workshop on Model-Driven Engineering,

137

Verification and Validation (MoDeVVa '09), ACM, New York, NY, USA, , Article 4 , 10 pages.

DOI=10.1145/1656485.1656489 http://doi.acm.org/10.1145/1656485.1656489

[Steinberg09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, Ed Merks, EMF Eclipse

Modeling Framework, Second Edition, Addison-Wesley, 2009.

[Sutcliffe98] Alistair G. Sutcliffe, Neil A.M. Maiden, Shailey Minocha, Darrel Manuel, "Supporting

Scenario-Based Requirements Engineering," IEEE Transactions on Software Engineering, pp. 1072-1088,

December, 1998.

[Torlak07] Emina Torlak, Daniel Jackson: "Kodkod: A Relational Model Finder", in Tools and

Algorithms for the Construction and Analysis of Systems, 13th International Conference, 632-647, March

2007.

[Travassos02] Travassos, G.H., Shull, F., Carver, J., Basili, V.R.: Reading Techniques for OO

Design Inspections. University of Maryland Technical Report CS-TR-4353. April 2002,

http://www.cs.umd.edu/Library/TRs/CS-TR-4353/CS-TR-4353.pdf.

[Travassos99] Guilherme Travassos, Forrest Shull, Michael Fredericks, and Victor R. Basili. 1999.

Detecting defects in object-oriented designs: using reading techniques to increase software quality. In

Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming, systems, languages,

and applications (OOPSLA '99), A. Michael Berman (Ed.). ACM, New York, NY, USA, 47-56.

DOI=10.1145/320384.320389 http://doi.acm.org/10.1145/320384.320389 3.1. Sample selection and

training and grouping.

[Trung05] T. Dinh-Trong, N. Kawane, S. Ghosh, R. B. France, and A. A. Andrews. "A

Tool-Supported Approach to Testing UML Design Models", Proceedings of the 10th IEEE International

Conference on Engineering of Complex Computer Systems, IEEE Computer Society Press, pp.519-528,

Shanghai, China, June 16-20, 2005.

[UML2Alloy] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, Indrakshi Ray: On challenges of

model transformation from UML to Alloy. Software and System Modeling 9(1): 69-86 (2010).

http://www.informatik.uni-trier.de/~ley/pers/hd/j/Jackson:Daniel.html

138

[UML] Object Management Group, Unified Modeling Language: Superstructure, vers 2.4, Final

Adopted Standard.

[USE] Gogolla, M., Büttner, F., and Richters, M. 2007. USE: A UML-based specification

environment for validating UML and OCL. Sci. Comput. Program. 69, 1-3, December 2007.

[Valmari98] Valmari, A. 1998. The State Explosion Problem. In Lectures on Petri Nets I: Basic

Models, Advances in Petri Nets, the Volumes Are Based on the Advanced Course on Petri Nets W.

Reisig and G. Rozenberg, Eds. Lecture Notes In Computer Science, vol. 1491. Springer-Verlag, London,

429-528.

[Whittle03] Jonathan Whittle. 2003. Formal approaches to systems analysis using UML: an overview.

In Advanced topics in database research vol. 1, Keng Siau (Ed.). IGI Publishing, Hershey, PA, USA

324-341.

[Wohlin12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, Anders

Wesslén, Experimentation in Software Engineering, Springer, 2012, ISBN: 978-3642290435.

[Yu07] Lijun Yu, Robert B. France, Indrakshi Ray, and Kevin Lano, "A Light-Weight Static

Approach to Analyzing UML Behavioral Properties", Proceedings of the 12th IEEE International

Conference on Engineering of Complex Computer Systems, Auckland, New Zealand, July 2007.

[Yu08] Lijun Yu, Robert France, Indrakshi Ray, "Scenario-based Static Analysis of UML Class

Models", Proceedings of ACM/IEEE 11th International Conference on Model Driven Engineering

Languages and Systems, Toulouse, France, Sep. 28-Oct.3, 2008.

[Yu09] Lijun Yu, Robert France, Indrakshi Ray, Sudipto Ghosh, "A Rigorous Approach to

Uncovering Security Policy Violations in UML Designs", Proceedings of the 14th International

Conference on Engineering Complex Computer Systems, Potsdam, Germany, June 2009.

[Yu12] lijun Yu, Robert B. France, Indrakshi Ray, Wuliang Sun: "Systematic Scenario-Based

Analysis of UML Design Class Models", Proceedings of the 17th International Conference on

Engineering Complex Computer Systems, Paris, France, July 2012.

	Chapter 1
	Introduction
	1.1 Problem Statement
	1.2 Outline of Solution
	1.3 Scope of Research
	1.4 Dissertation Organization

	Chapter 2
	Background
	2.1 The Unified Modeling Language
	2.1.1 UML Design Class Diagram
	2.1.2 The Object Constraint Language
	2.1.3 UML Sequence Diagram

	2.2 The Meta-Object Facility
	2.3 The Eclipse Modeling Framework and Ecore
	2.4 The Kermeta Metamodeling Language

	Chapter 3
	Related Work
	3.1 Formal analysis techniques
	3.1.1 Alloy
	3.1.2 Model checking techniques
	3.1.3 Formal theorem proving technique

	3.2 UML animation and testing
	3.3 USE and OCLE
	3.4 UML test input and scenario generation
	3.4.1 UML animation techniques
	3.4.2 UML test input generation techniques

	Chapter 4
	Scenario-based UML Design Analysis Technique
	4.1 A simple Role-Based Access Control example
	4.2 Generating the Snapshot Transition Model
	4.2.1 Create a Snapshot class
	4.2.2 Create a Transition class hierarchy
	4.2.3 Generate Transition invariants from operation specifications
	4.2.4 Add frame constraints to the Transition subclass

	4.3 Generating Scenario Snapshot Transitions
	4.4 Checking consistency in USE
	4.5 Algorithm complexity analysis
	4.5.1 Snapshot transition model generation algorithm analysis
	4.5.2 Snapshot transitions generation algorithm analysis
	4.5.3 USE consistency check complexity analysis
	4.5.4 Summary

	Chapter 5
	Implementation
	5.1 Tool architecture
	5.2 The STM Generator and STM Invariant Generator
	5.2.1 Generating Ecore snapshot transition diagram
	5.2.2 Transforming OCL operation specifications
	5.2.3 Generating USE snapshot transition model

	5.3 The Scenario Generator
	5.3.1 Explicit specification of scenarios
	5.3.2 Action language specification of scenarios
	5.3.3 Generating snapshot transitions
	5.3.4 Generating USE commands

	5.4 USE consistency check

	Chapter 6
	Demonstration Case Studies
	6.1 The Train Management System model
	6.1.1 The TMS design class model
	6.1.2 TMS Scenario one
	6.1.3 TMS Scenario two

	6.2 The Generalized Spatio-Temporal RBAC model
	6.2.1 The GSTRBAC design class model
	6.2.2 GSTRBAC scenario one
	6.2.3 GSTRBAC scenario two
	6.2.4 GSTRBAC scenario three

	6.3 Conclusion

	Chapter 7
	Pilot Study
	7.1. Experiment planning
	7.1.1 Experiment goal, research question and hypothesis
	7.1.2 Context selection and subjects
	7.1.3 Experiment design
	7.1.4 Measurements and data collection

	7.2. Experiment results and analysis
	7.3. Conclusion and discussions

	Chapter 8
	Generating Scenarios using JAL Operation Definitions
	8.1 The scenario generation technique
	8.2 An hierarchical RBAC example
	8.2.1. HRBAC design class model
	8.2.2. HRBAC constraints

	8.3. Analyze HRBAC constraints
	8.3.1. Analyze role activation constraint.
	8.3.2. Analyze separation of duty constraints.

	Chapter 9
	Generating Scenarios using OCL Operation Definitions
	9.1 The Location-aware Role-Based Access Control model
	9.2 The scenario generation technique
	9.2.1. Defining scenario generation criteria
	9.2.2. Defining scenario operations
	9.2.3. Generating scenarios

	Chapter 10
	Conclusions and Future Work
	10.1 Contributions
	10.2 Discussions of research questions
	10.3 Future work

	References

