DISSERTATION

PART ONE: THE FORMAL TOTAL SYNTHESIS OF DEHYDROGLIOTOXIN AND THE FIRST SYNTHESIS OF AN EPIDISELENODIKETOPIPERAZINE
 AND

PART TWO: TOWARDS THE TOTAL SYNTHESIS OF THE TETRAPETALONES

Submitted by
Travis Chandler McMahon
Department of Chemistry

In partial fulfillment of the requirements For the Degree of Doctor of Philosophy

Colorado State University
Fort Collins, Colorado
Summer 2013

Doctoral Committee:
Advisor: John L. Wood
Alan J. Kennan
Eric M. Ferreira
Travis S. Bailey
Dean C. Crick

Copyright by Travis Chandler McMahon 2013
All Rights Reserved

ABSTRACT
 PART ONE: THE FORMAL TOTAL SYNTHESIS OF DEHYDROGLIOTOXIN AND THE FIRST SYNTHESIS OF AN EPIDISELENODIKETOPIPERAZINE

AND
PART TWO: TOWARDS THE TOTAL SYNTHESIS OF THE TETRAPETALONES

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), affects approximately one third of the global population and is associated with nearly two million deaths annually. Although there are known cures for TB, current treatment plans suffer due to length, usually taking 6-9 months to complete. Additionally, developing countries lack the infrastructure and resources necessary to both efficiently diagnose and treat patients. Of particular concern are an increasing number of strains of TB that are becoming resistant to the current drug regimens, which has been a result of patients beginning, but not completing their treatment. In light of these facts it is clear there is a continuing need to develop simplified and shorter treatments for TB, and with the increasing prevalence of resistant strains, chemically unique targets should be investigated.

As part of a collaborative effort with the Hung group at the Broad Institute, we identified two related epidithiodiketopiperazine (ETP) natural products, gliotoxin and dehydrogliotoxin, as potential candidates for exploration as anti-TB agents. We initially targeted a synthesis of dehydrogliotoxin, as it had also never been tested against MTB, whereas gliotoxin was known to be active. Additionally, as dehydrogliotoxin was the simpler of the two compounds, we believed it could be synthesized more rapidly and also be more amenable to derivatization to form structural analogs. The synthetic studies towards dehydrogliotoxin culminated in a formal total synthesis that featured a key two step amidation-intramolecular ring-closure.

With access to dehydrogliotoxin we were able to test it against MTB and found its activity to be comparable to gliotoxin. We next turned our attention to the synthesis of structural analogs in hopes of identifying a compound that could potentially be used as an anti-TB therapeutic. In that regard, we targeted a compound wherein the disulfide region of the natural product was replaced with a diselenide. As an epidiselenodiketopiperazine (ESeP) had never been synthesized before, we initially explored the installation of this functional group in a model system. These synthetic efforts resulted in the synthesis of an ESeP, both from a simple diketopiperazine and directly from an ETP. Additionally, in these model systems, the ESeP exhibited comparable activity towards MTB as the ETP.

Tetrapetalone A was isolated in 2003 by Hirota and coworkers from a culture filtrate of Streptomyces sp. USF-4727. The related compounds tetrapetalones B, C, and D were isolated from the same Streptomyces strain in 2004. We became interested in this family of natural products due to their interesting structural features and the synthetic challenge they present. Salient features of the tetrapetalones include a tetracyclic core containing a tetramic acid, a seven-membered ring possessing a trisubstituted double bond, a p-quinol, and a fivemembered ring with a pendant β-rhodinose.

Several strategies towards the synthesis of the tetrapetalones have been explored. In our initial approach we hoped to form the seven-membered ring of the natural product through nucleophilic attack of the aromatic ring onto a pendant palladium m-allyl species. While exploring this process, we found that the desired seven-membered product was not formed, instead we isolated a product containing a five-membered ring, the result of attack at the wrong position of the palladium m-allyl species. Attempts to bias the substrate towards formation of the desired seven-membered ring through a transannular palladium m-allyl approach proved unfruitful.

Our current route features a Friedel-Crafts acylation to form the seven-membered ring containing the trisubstituted double bond. The precursor for this approach was built up rapidly
from simple starting materials, and the desired Friedel-Crafts reaction proceeds smoothly. Furthermore, we have implemented a C-H oxidation protocol to install a synthetic handle, which can ultimately be converted to an alkyne that we envision can be transformed into the fivemembered ring bearing the sugar moiety in order to finish the natural product.

Concurrent to the approaches described above, we have also targeted the related natural product, ansaetherone, which was isolated from the same Streptomyces strain as the tetrapetalones and is proposed to be a biosynthetic precursor to the family. The ultimate goal in this approach was to develop a synthesis of ansaetherone and explore methods to convert it to one of the members of the tetrapetalones in a biomimetic fashion. Our proposed synthesis included a key tandem enyne-cross metathesis to form the eleven-membered ring present in the natural product. Although this synthesis is still in its infancy, we have accessed a compound that is a few synthetic steps away from the precursor to explore the key step. We are currently exploring an improved synthesis of this intermediate and ways to elaborate it to the natural product.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor John Wood. I have learned so much from you over the last five years and I cannot thank you enough for giving me the opportunity to work in your group. You have been an incredible mentor and I am grateful for the opportunities you have given me to grow and succeed both in the lab and in the chemistry community.

Dr. Vyvyan, I am forever grateful for the opportunity to perform undergraduate research in your lab. You gave me the foundation and the guidance to become the chemist that I am today. I do not imagine being better prepared for graduate school, and I owe that mostly to you. Thank you for introducing me to the chemistry world.

Eric Ferreira, I have learned so much from you, and I am grateful for the opportunity to seek your advice and talk chemistry over the last five years. We started at CSU at the same time, and I am privileged to have been in your first class here. Although I was not a part of your group, I am thankful for the many invitations Oz and I received to your group parties.

To all my lab mates in the Wood group over the years, it was a pleasure to work with all of you. I cannot imagine a better environment to work in everyday. Matt and Brett, thank you for answering all my "stupid" questions as a first year. Graham, thank you for working mechanisms with me on the board. Sarah, thank you for being "group mom" and being there every time I cut myself (also for the awesome Cars Band-Aids). Ke, you are the best. Jenn, thank you for giving me your project and for being a great friend. Genessa, thank you for being a truly amazing person. Matt and Chris, you two made me into a much better chemist; having the two of you to learn from, joke with, and eat sunflower seeds with was great. Naoto, thank you for being a curious, stubborn, and an amazing guy. Taka, I am so glad to have worked in the hood next to you, I know so much about Japanese baseball because of you. You and Rika are great friends to Sam and I, and one day I hope to visit you in Japan. Jenny, you were only here for a short time, but you are my absolute favorite person in the whole world. I am truly grateful to have
gotten to know you and for the many laughs we enjoyed together, even if they were a result of Aaron and I scaring you. Aaron, "you're a bitch." But seriously, thank you for helping me stay sane, and being one of my best friends. I don't know how l'm going to be able to work in the lab without being able to yell over to you. I seriously will probably have to skype with you guys just to get some yelling in. Monica, thank you for putting up with Aaron and I talking about sports all the time, also the yelling. You are an amazing person, and I'm so glad you joined our lab. I will miss game nights. Mike, you are the worst. In all seriousness I like you quite a bit, listen to Aaron, he will teach you how to be a good chemist. Heemal, please finish tetrapetalone. Also, clean your hood! I have high hopes for you; you are such an awesome and smart person. Just remember, "got to be like Travis." John Enquist, thank you for being an amazing post-doc. I greatly appreciate all the advice you gave me over the last couple years, and I especially thank you for calming me down the last nights before my dissertation was due. Jonas, I left you for last because you are the most important. Working with you on tetrapetalone has been amazing. I want you know how much I appreciate our daily conversations and how much of an honor it was to work with you.

To all my classmates, you guys are awesome. We have had a lot of fun together, and I couldn't think of a better group to share this entire graduate school experience with. Doug, you have been a great friend and brewing partner. Todd, I am sorry I punched you that one time, but you are an amazing person and an exceptional chemist. Oz, you are one of my very best friends. I am forever grateful for everything you have done for me, and my life is better because I know you.

To my family, I am really bad at expressing my emotions, and I do not say it enough, but I love you. To my Mom and Dad, you are the best parents that anyone could ever hope for. I am only successful at life because the two of you raised me. Shanna, although sometimes you were a brat when we were younger, you are a pretty awesome sister. You are an extremely intelligent and caring person and I am happy to be your brother. Nana, you are the best grandmother
period. I don't think there are too many people out there who just call their grandma to talk about baseball. Thank you for being there for me.

Finally, Samantha. You are my best friend and I love you. I can't begin to tell you how grateful I am for you. Thank you for making me "awesome dinners" and being here for me everyday. I love being with you and look forward to spending the rest of my life with you.

AUTOBIOGRAPHY

Travis Chandler McMahon was born on October $31^{\text {st }}, 1985$ to Phil and Lyanna McMahon in Tacoma, WA. He is the older brother to Shanna Rose McMahon. Growing up, Travis enjoyed sports, especially baseball, basketball, and tennis, and is an avid Seattle Mariners fan. He graduated from Spanaway Lake High School in 2004 where he was captain of the tennis team and a member of the varsity baseball team. In high school his favorite subjects were math and science, which ultimately led him to pursue a college degree in the sciences. He began college in 2004 at Western Washington University, where he first fell in love with Organic Chemistry. At Western, Travis was able to perform undergraduate research in the labs of Prof. James Vyvyan. Upon graduating from Western in 2008 with a B.S. in chemistry, Travis pursued a graduate degree in synthetic organic chemistry. In 2008 he began his graduate career at Colorado State University, ultimately ended up in the labs of Prof. John L. Wood. Over the next five years Travis flourished at CSU, contributing as an author on five publications from the Wood lab, and ultimately obtaining his Ph.D. in July of 2013. Travis will begin as a postdoctoral research associate in the labs of Prof. Neil Garg at the University of California, Los Angeles in the fall of 2013.

TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGMENTS v
AUTOBIOGRAPHY viii
TABLE OF CONTENTS ix
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF SCHEMES. xxvi
Part One: The formal total synthesis of dehydrogliotoxin and the first synthesis of an epidiselenodiketopiperazine 1
Chapter One: Introduction 2
1.1 Tuberculosis 2
1.2 Gliotoxin and Dehydrogliotoxin 4
1.3 Biosynthesis 6
Chapter Two: Previous Synthetic Work 8
2.1 Methods to Install the Disulfide Bridge 8
2.2 Kishi's Synthesis of Gliotoxin 11
2.3 Kishi's Synthesis of Dehydrogliotoxin 14
Chapter Three: Towards the Synthesis of Dehydrogliotoxin 17
3.1 Intermolecular Copper Mediated Aryl-Amidation 17
3.2 Intramolecular Copper Mediated Aryl-Amidation 23
3.3 Attempts to Incorporate Sulfur 27
Chapter Four: Synthesis of Dehydrogliotoxin 32
4.1 Revised Route Towards the Synthesis of Dehydrogliotoxin 32
4.2 Biological Activity 34
Chapter Five: Analog Design and the First Synthesis of an Epidiselenodiketopiperazine 36
5.1 Replacing the Disulfide with a Diselenide 36
References for Part One 47
Part Two: Towards the total synthesis of the tetrapetalones 51
Chapter Six: The Tetrapetalones 52
6.1 Isolation and Structure Determination 52
6.2 Biosynthesis 55
Chapter Seven: Previous Synthetic Efforts 57
7.1 Porco's Efforts Towards Tetrapetalone A 58
7.2 Sarpong's Efforts Towards Tetrapetalone A 61
7.3 Hong's Synthetic Studies Towards the Core of Tetrapetalone A 63
Chapter Eight: Previous Approaches in the Wood Group 66
Chapter Nine: Formation of the Seven-Membered Ring Utilizing the Aromatic Ring as a Nucleophile 74
9.1 Cascade Friedel-Crafts Approach 74
9.2 Intramolecular пт-Allyl Approach 79
Chapter Ten: A Transannular m-Allyl Approach 85
10.1 A Transannular m-Allyl Approach 85
10.2 Implementation of Hartwig's Borylation Conditions 88
10.3 A Nozaki-Hiyama-Kishi Approach to the desired Ten-Membered Ring 94
Chapter Eleven: Revisiting the Previous m-Allyl Strategy 99
11.1 Testing a New Palladium m-Allyl Approach 100
11.2 Revisiting the Friedel-Crafts Approach 102
11.3 A New Strategy Towards Tetrapetalone A Utilizing the Fridel-Crafts Acylation 106
11.4 Installation of the Alkyne After the Fridel-Crafts Reaction 109
Chapter Twelve: Exploring the Phenolic Oxidation 111
12.1 Deprotection Problems 111
12.2 Phenolic Oxidation Attempts 113
Chapter Thirteen: Elaboration of the Alkyne 117
13.1 Attempts to Form a Vinyl Stannane 117
13.2 Attempts to Form an Aryl Ketone 119
13.3 Attempts to Reduce the Alkyne to an Olefin 120
13.4 Conclusions and Future Work 121
Chapter Fourteen: Ansaetherone 123
14.1 Proposed Conversion of Ansaetherone to the Tetrapetalones 123
14.2 A Phenolic Oxidation Pathway to Ansaetherone 126
14.3 Turning to a Fries Rearrangement 130
14.4 Forming an Oxy-Michael Precursor Through an Aldol Reaction 133
References for Part Two 136
Appendix One: Experimental 140
Appendix Two: Spectra 238
Appendix Three: Crystallographic Data and Tables 440
List of Abbreviations 459

LIST OF TABLES

Table 3.1. Attempts at using alternate aryl-amidation coupling conditions 20
Table 3.2. Attempted aryl-amidation utilizing aryl iodide 61 21
Table 3.3. Attempted aryl-amidation utilizing aryl iodide 62 22
Table 3.4. Duterium Incorporation of tricycle 84 28
Table 3.5. Attempts at reacting tricycle 84 with a sulfur electrophile 29
Table 4.1. Antitubercular activities 35
Table 5.1. Attempts at reacting dibromide 109 with a diselenide dianion equivalent 40
Table 5.2. Activation of bisthiomethyl ether 116 43
Table 10.1. Attempted formylation of aryl bromide 301 96
Table 11.1. Attempted oxidation of ketone 339 to enone 340 104
Table 13.1. Attempts to form vinyl stannane 390 118
Table 13.2. Attempts to form ketone 396 120

LIST OF FIGURES

Figure 1.1. Typical drugs used to treat tuberculosis 4
Figure 1.2. Initially proposed structure of gliotoxin 5
Figure 1.3. X-ray crystal structure of gliotoxin (9) 5
Figure 1.4. Dehydrogltiotoxin (10) 6
Figure 2.1. Epidithiodiketopiperazine natural products that have recently been synthesized 8
Figure 3.1. Mechanism of the copper mediated aryl-amidation 23
Figure 3.2. Undesired indole byproduct 87 29
Figure 4.1. Graphs showing a) antitubercular activity and b) human cell toxicity 35
Figure 5.1. Regions of dehydrogliotoxin that could be modified in analog generation 36
Figure 5.2. Redox cycling of gliotoxin (9) forming harmful reactive oxygen species 37
Figure 5.3. Activity of compounds tested against MTB 45
Figure 6.1. Initially proposed structure of tetrapetalone A 53
Figure 6.2. Tetrapetalones B (132), C (133), and D (134) 54
Figure 6.3. Structure of Ansaetherone (135) 55
Figure 7.1. (+)-Q-1047H-A-A (140) and (+)-Q-1047H-R-A (141) 57
Figure 12.1. Crystal structure of allylic alcohol 367 114
Figure A2.1. ${ }^{1} \mathrm{H}$-NMR of DKP 72 239
Figure A2.2. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of DKP 72 240
Figure A2.3. FTIR of DKP 72 240
Figure A2.4. ${ }^{1} \mathrm{H}$-NMR of DKP 76 241
Figure A2.5. ${ }^{13} \mathrm{C}$-NMR of DKP 76 242
Figure A2.6. FTIR of DKP 76 242
Figure A2.7. ${ }^{1} \mathrm{H}$-NMR of protected amino acid 82 243
Figure A2.8. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of protected amino acid 82 244
Figure A2.9. FTIR of protected amino acid 82 244
Figure A2.10. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of amino ester 79 245
Figure A2.11. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of amino ester 79 246
Figure A2.12. ${ }^{1} \mathrm{H}$-NMR of dipeptide 83 247
Figure A2.13. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of dipeptide 83 248
Figure A2.14. ${ }^{1} \mathrm{H}$-NMR of DKP 70 249
Figure A2.15. ${ }^{13}$ C-NMR of DKP 70 250
Figure A2.16. ${ }^{1} \mathrm{H}$-NMR of DKP 84 251
Figure A2.17. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of DKP 84 252
Figure A2.18. FTIR of DKP 84 252
Figure A2.19. ${ }^{1} \mathrm{H}$-NMR of indole 87 253
Figure A2.20. ${ }^{1} \mathrm{H}$-NMR of indole 89 254
Figure A2.21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of DKP 90 255
Figure A2.22. ${ }^{1} \mathrm{H}$-NMR of amide 91 256
Figure A2.23. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of amide 91 257
Figure A2.24. FTIR of amide 91 257
Figure A2.25. ${ }^{1} \mathrm{H}$-NMR of bisselenobenzoate 103 258
Figure A2.26. ${ }^{13} \mathrm{C}$-NMR of bisselenobenzoate 103 259
Figure A2.27. FTIR of bisselenobenzoate 103 259
Figure A2.28. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of bisselenobenzoate 104 260
Figure A2.29. ${ }^{13} \mathrm{C}$-NMR of bisselenobenzoate 104 261
Figure A2.30. FTIR of biselenobenzoate 104 261
Figure A2.31. ${ }^{1} \mathrm{H}$-NMR of diselenide 106 262
Figure A2.32. ${ }^{13} \mathrm{C}$-NMR of dislenide 106 263
Figure A2.33. ${ }^{77}$ Se-NMR of diselenide 106 263
Figure A2.34. FTIR of diselenide 106 264
Figure A2.35. ${ }^{1} \mathrm{H}$-NMR of dibromide 109 265
Figure A2.36. ${ }^{13} \mathrm{C}$-NMR of dibromide 109 266
Figure A2.37. ${ }^{1} \mathrm{H}$-NMR of bisselenoether 120 267
Figure A2.38. ${ }^{13} \mathrm{C}$-NMR of biselenoether 120 268
Figure A2.39. ${ }^{77}$ Se-NMR of bisselenoether 120 268
Figure A2.40. FTIR of biselenoether 120 269
Figure A2.41. ${ }^{1} \mathrm{H}$-NMR of dithioacetal 121 270
Figure A2.42. ${ }^{13}$ C-NMR of dithioacetal 121 271
Figure A2.43. FTIR of dithioacetal 121 271
Figure A2.44. ${ }^{1} \mathrm{H}$-NMR of dithioacetal 125 272
Figure A2.45. ${ }^{1} \mathrm{H}$-NMR of disulfide 126 273
Figure A2.46. ${ }^{1} \mathrm{H}$-NMR of bisthiomethyl ether 127 274
Figure $\mathrm{A} 2.47 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ of bisthiomethyl ether 127. 275
Figure A2.48. FTIR of bisthiomethyl ether 127 275
Figure A2.49. ${ }^{1} \mathrm{H}$-NMR of bromoketone 236 276
Figure A2.50. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of bromoketone 236 277
Figure A2.51. FTIR of bromoketone 236 277
Figure A2.52. ${ }^{1} \mathrm{H}$-NMR of aniline 237 278
Figure A2.53. ${ }^{13} \mathrm{C}$-NMR of aniline 237 279
Figure A2.54. FTIR of aniline 237 279
Figure A2.55. ${ }^{1} \mathrm{H}$-NMR of phenol 287 (higher R_{f} diastereomer) 280
Figure A2.56. ${ }^{13} \mathrm{C}$-NMR of phenol $\mathbf{2 8 7}$ (higher R_{f} diastereomer) 281
Figure A2.57. FTIR of phenol 287 (higher R_{f} diastereomer) 281
Figure A2.58. ${ }^{1} \mathrm{H}$-NMR of phenol 287 (lower R_{f} diastereomer) 282
Figure A2.59. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 287 (lower R_{f} diastereomer) 283
Figure A2.60. FTIR of phenol $\mathbf{2 8 7}$ (lower R_{f} diastereomer) 283
Figure A2.61. ${ }^{1} \mathrm{H}$-NMR of ketone 234 (higher R_{f} diastereomer) 284
Figure A2.62. ${ }^{13} \mathrm{C}$-NMR of ketone $\mathbf{2 3 4}$ (higher R_{f} diastereomer) 285
Figure A2.63. FTIR of ketone 234 (higher R_{f} diastereomer) 285
Figure A2.64. ${ }^{1} \mathrm{H}$-NMR of ketone 234 (lower R_{f} diastereomer) 286
Figure A2.65. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of ketone 234 (lower R_{f} diastereomer) 287
Figure A2.66. FTIR of ketone $\mathbf{2 3 4}$ (lower R_{f} diastereomer) 287
Figure A2.67. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of enal 239 288
Figure A2.68. ${ }^{13} \mathrm{C}$-NMR of enal 239 289
Figure A2.69. FTIR of enal 239 289
Figure A2.70. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of carboxylic acid 247 290
Figure A2.71. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of carboxylic acid 247 291
Figure A2.72. FTIR of carboxylic acid 247 291
Figure A2.73. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of ketone 259 292
Figure A2.74. ${ }^{13} \mathrm{C}$-NMR of ketone 259 293
Figure A2.75. FTIR of ketone 259 293
Figure A2.76. ${ }^{1} \mathrm{H}$-NMR of allylic carbonate $\mathbf{2 6 5}$ 294
Figure A2.77. ${ }^{13} \mathrm{C}$-NMR of allylic carbonate $\mathbf{2 6 5}$ 295
Figure A2.78. FTIR of allylic carbonate 265 295
Figure A2.79. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of allylic carbonate 268 296
Figure A2.80. ${ }^{13} \mathrm{C}$-NMR of allylic carbonate 268 297
Figure A2.81. FTIR of allylic carbonate 268 297
Figure A2.82. ${ }^{1} \mathrm{H}$-NMR of fused tricycle 269 298
Figure A2.83. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of fused tricycle 269 299
Figure A2.84. FTIR of fused tricycle 269 299
Figure A2.85. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of allylic carbonate 462 300
Figure A2.86. ${ }^{13} \mathrm{C}$-NMR of allylic carbonate 462 301
Figure A2.87. FTIR of allylic carbonate 462 301
Figure A2.88. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of allylic carbonate 275 302
Figure A2.89. ${ }^{13} \mathrm{C}$-NMR of allylic carbonate $\mathbf{2 7 5}$ 303
Figure A2.90. FTIR of allylic carbonate 275 303
Figure A2.91. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of tricycle 276 304
Figure A2.92. ${ }^{13} \mathrm{C}$-NMR of tricycle 276 305
Figure A2.93. FTIR of tricycle 276 305
Figure A2.94. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of phenol 463 306
Figure A2.95. ${ }^{13} \mathrm{C}$-NMR of phenol 463 307
Figure A2.96. FTIR of phenol 463 307
Figure A2.97. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of tetramic acid $\mathbf{2 8 0}$ 308
Figure A2.98. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of tetramic acid $\mathbf{2 8 0}$ 309
Figure A2.99. FTIR of tetramic acid 280 309
Figure A2.100. ${ }^{1} \mathrm{H}$-NMR of diene 287 310
Figure A2.101. ${ }^{13} \mathrm{C}$-NMR of diene 287 311
Figure A2.102. FTIR of diene 287 311
Figure A2.103. ${ }^{1} \mathrm{H}$-NMR of tetramic acid 295 312
Figure A2.104. ${ }^{13}$ C-NMR of tetramic acid 295 313
Figure A2.105. FTIR of tetramic acid 295 313
Figure A2.106. ${ }^{1} \mathrm{H}$-NMR of aryl boronic ester 296 314
Figure A2.107. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aryl boronic ester 296 315
Figure A2.108. FTIR of aryl boronic ester 296 315
Figure A2.109. ${ }^{1} \mathrm{H}$-NMR of styrene 297 316
Figure A2.110. ${ }^{1} \mathrm{H}$-NMR of ketone 298 317
Figure A2.111. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of aryl bromide 301 318
Figure A2.112. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aryl bromide 301 319
Figure A2.113. FTIR of aryl bromide 301 319
Figure A2.114. ${ }^{1} \mathrm{H}$-NMR of enone $\mathbf{3 0 0}$ 320
Figure A2.115. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of enone $\mathbf{3 0 0}$ 321
Figure A2.116. FTIR of enone $\mathbf{3 0 0}$ 321
Figure A2.117. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of enal 464 322
Figure A2.118. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of enal 464 323
Figure A2.119. FTIR of enal 464 323
Figure A2.120. ${ }^{1} \mathrm{H}$-NMR of triene 303 324
Figure $\mathrm{A} 2.121 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ of triene 303 325
Figure A2.122. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of allylic alcohol 304 326
Figure A2.123. ${ }^{13} \mathrm{C}$-NMR of allylic alcohol 304 327
Figure A2.124. FTIR of allylic alcohol 304 327
Figure A2.125. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of styrene 313 328
Figure A2.126. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of benzaldehyde 312 329
Figure A2.127. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of benzaldehyde 312 330
Figure A2.128. FTIR of benzaldehyde $\mathbf{3 1 2}$ 330
Figure A2.129. ${ }^{1} \mathrm{H}$-NMR of vinyl iodide 314 331
Figure A2.130. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of alkyne 315 332
Figure A2.131. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of alkyne 315 333
Figure A2.132. FTIR of alkyne 315 333
Figure A2.133. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of alkyne 358 334
Figure A2.134. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of alkyne 358 335
Figure A2.135. FTIR of alkyne 358 335
Figure A2.136. ${ }^{1} \mathrm{H}$-NMR of aldehyde 325 336
Figure A2.137. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldehyde 325 337
Figure A2.138. FTIR of aldehyde 325 337
Figure A2.139. ${ }^{1} \mathrm{H}$-NMR of vinyl carbonate 321 338
Figure A2.140. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of vinyl carbonate 321 339
Figure A2.141. FTIR of vinyl carbonate 321 339
Figure A2.142. ${ }^{1} \mathrm{H}$-NMR of bromide $\mathbf{3 3 5}$ 340
Figure A2.143. ${ }^{13} \mathrm{C}$-NMR of bromide 335 341
Figure A2.144. FTIR of bromide 335 341
Figure A2.145. ${ }^{1} \mathrm{H}$-NMR of tosylate $\mathbf{3 3 6}$ 342
Figure A2.146. ${ }^{13} \mathrm{C}$-NMR of tosylate 336 343
Figure A2.147. FTIR of tosylate 336 343
Figure A2.148. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of carboxylic acid 337 344
Figure A2.149. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of carboxylic acid 337 345
Figure A2.150. FTIR of carboxylic acid 337 345
Figure A2.151. ${ }^{1} \mathrm{H}$-NMR of ketone 339 346
Figure A2.152. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of ketone 339 347
Figure A2.153. FTIR of ketone 339 347
Figure A2.154. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of aldehyde 342 348
Figure A2.155. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldehyde 342 349
Figure A2.156. FTIR of aldehyde 342 349
Figure A2.157. ${ }^{1} \mathrm{H}$-NMR of carboxylic acid 343 350
Figure A2.158. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of carboxylic acid 343 351
Figure A2.159. ${ }^{1} \mathrm{H}$-NMR of ketone 344 352
Figure A2.160. ${ }^{1} \mathrm{H}$-NMR of enone 345 (diastereomer A) 353
Figure A2.161. ${ }^{13} \mathrm{C}$-NMR of enone $\mathbf{3 4 5}$ (diastereomer A) 354
Figure A2.162. ${ }^{1} \mathrm{H}$-NMR of enone 345 (diastereomer B) 355
Figure A2.163. ${ }^{13} \mathrm{C}$-NMR of enone 345 (diastereomer B) 356
Figure A2.164. ${ }^{1} \mathrm{H}$-NMR of alcohol 346. 357
Figure A2.165. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of alcohol 346 358
Figure A2.166. FTIR of alcohol 346 358
Figure A2.167. ${ }^{1} \mathrm{H}$-NMR of tetracycle 347. 359
Figure A2.168. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of tetracycle 347 360
Figure A2.169. FTIR of tetracycle 347 360
Figure A2.170. ${ }^{1} \mathrm{H}$-NMR of aldehyde 355 361
Figure A2.171. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldehyde $\mathbf{3 5 5}$ 362
Figure A2.172. FTIR of aldehyde 355 362
Figure A2.173. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of carboxylic acid 356 363
Figure A2.174. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of carboxylic acid 356 364
Figure A2.175. FTIR of carboxylic acid $\mathbf{3 5 6}$ 364
Figure A2.176. ${ }^{1} \mathrm{H}$-NMR of aldehyde 359 365
Figure A2.177. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldehyde 359 366
Figure A2.178. FTIR of aldehyde 359 366
Figure A2.179. ${ }^{1} \mathrm{H}$-NMR of carboxylic acid $\mathbf{3 6 0}$ 367
Figure A2.180. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of carboxylic acid $\mathbf{3 6 0}$ 368
Figure A2.181. FTIR of carboxylic acid 360 368
Figure A2.182. ${ }^{1} \mathrm{H}$-NMR of phenol 365 369
Figure A2.183. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 365 370
Figure A2.184. FTIR of phenol 365 370
Figure A2.185. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of triflate 366 371
Figure A2.186. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of triflate $\mathbf{3 6 6}$ 372
Figure A2.187. ${ }^{19} \mathrm{~F}$-NMR of triflate 366 372
Figure A2.188. FTIR of triflate 366 373
Figure A2.189. ${ }^{1} \mathrm{H}$-NMR of alkyne 351 374
Figure A2.190. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of alkyne 351 375
Figure A2.191. FTIR of alkyne 351 375
Figure A2.192. ${ }^{1} \mathrm{H}$-NMR of allylic alcohol $\mathbf{3 6 7}$ (diastereomer A) 376
Figure A2.193. ${ }^{13}$ C-NMR of allylic alcohol $\mathbf{3 6 7}$ (diastereomer A) 377
Figure A2.194. ${ }^{1} \mathrm{H}$-NMR of allylic alcohol $\mathbf{3 6 7}$ (diastereomer B) 378
Figure A2.195. ${ }^{13}$ C-NMR of allylic alcohol 367 (diastereomer B) 379
Figure A2.196. FTIR of allylic alcohol $\mathbf{3 6 7}$ (diastereomer B) 379
Figure A2.197. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of aldehyde $\mathbf{3 7 0}$ 380
Figure A2.198. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldehyde $\mathbf{3 7 0}$ 381
Figure A2.199. FTIR of aldehyde 370 381
Figure A2.200. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of carboxylic acid 371 382
Figure A2.201. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of carboxylic acid $\mathbf{3 7 1}$ 383
Figure A2.202. FTIR of carboxylic acid 371 383
Figure A2.203. ${ }^{1} \mathrm{H}$-NMR of ketone 372 384
Figure A2.204. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of ketone 372 385
Figure A2.205. FTIR of ketone 372 385
Figure A2.206. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of enone 373 386
Figure A2.207. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of enone 373 387
Figure A2.208. FTIR of enone 373 387
Figure A2.209. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of phenol 374 388
Figure A2.210. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 374 389
Figure A2.211. FTIR of phenol 374 389
Figure A2.212. ${ }^{1} \mathrm{H}$-NMR of triflate 375 390
Figure A2.213. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of triflate 375 391
Figure A2.214. ${ }^{19} \mathrm{~F}$-NMR of triflate 375 391
Figure A2.215. FTIR of triflate $\mathbf{3 7 5}$ 392
Figure A2.216. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of alkyne 376 393
Figure A2.217. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of alkyne 376 394
Figure A2.218. FTIR of alkyne 376 394
Figure A2.219. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of allylic alcohol 377. 395
Figure A2.220. ${ }^{13} \mathrm{C}$-NMR of allylic alcohol 377 396
Figure A2.221. FTIR of allylic alcohol 377 396
Figure A2.222. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of phenol 368 397
Figure A2.223. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 368 398
Figure A2.224. ${ }^{1}$ H-NMR of carbonate 378 399
Figure A2.225. ${ }^{13} \mathrm{C}$-NMR of carbonate 378 400
Figure A2.226. ${ }^{1} \mathrm{H}$-NMR of silyl ether 465 401
Figure A2.227. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of silyl ether 465 402
Figure A2.228. FTIR of silyl ether 465 402
Figure A2.229. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of alcohol 466. 403
Figure A2.230. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of alcohol 466 404
Figure A2.231. FTIR of alcohol 466 404
Figure A2.232. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of aldehyde 425 405
Figure A2.233. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldehyde 425 406
Figure A2.234. FTIR of aldehyde 425 406
Figure A2.235. ${ }^{1} \mathrm{H}$-NMR of alcohol 467. 407
Figure A2.236. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of alcohol 467 408
Figure A2.237. FTIR of alcohol 467 408
Figure A2.238. ${ }^{1} \mathrm{H}$-NMR of phenol 429 409
Figure A2.239. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 429 410
Figure A2.240. FTIR of phenol 429 410
Figure A 2.241 . ${ }^{1} \mathrm{H}$-NMR of β-hydroxy ketone 437. 411
Figure $\mathrm{A} 2.242 .{ }^{13} \mathrm{C}$-NMR of β-hydroxy ketone 437 412
Figure A2.243. FTIR of β-hydroxy ketone 437 412
Figure A2.244. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of diol 438 413
Figure A2.245. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of diol 438 414
Figure A2.246. FTIR of diol 438 414
Figure A2.247. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of acetal 440 415
Figure A2.248. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of acetal 440 416
Figure A2.249. FTIR of acetal 440 416
Figure A2.250. ${ }^{1} \mathrm{H}$-NMR of phenol 468 417
Figure A2.251. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 468 418
Figure A2.252. FTIR of phenol 468 418
Figure A2.253. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of phenol 441 419
Figure A2.254. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 441 420
Figure A2.255. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of spirotetrahydrofuran 443 421
Figure A2.256. ${ }^{13} \mathrm{C}$-NMR of spirotetrahydrofuran 443 422
Figure A2.257. ${ }^{1} \mathrm{H}$-NMR of ester 448 423
Figure A2.258. ${ }^{13} \mathrm{C}$-NMR of ester 448 424
Figure A2.259. FTIR of ester 448 424
Figure A2.260. ${ }^{1} \mathrm{H}$-NMR of enone 445 425
Figure A2.261. ${ }^{1} \mathrm{H}$-NMR of ester 451 426
Figure A2.262. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of ester 451 427
Figure A2.263. FTIR of ester 451 427
Figure A2.264. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of anhydride 452 428
Figure A2.265. ${ }^{13} \mathrm{C}$-NMR of anhydride 452 429
Figure A2.266. FTIR of anhydride 452 429
Figure A2.267. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of enone 449 430
Figure $\mathrm{A} 2.268 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ of enone 449 431
Figure A2.269. FTIR of enone 449 431
Figure A2.270. ${ }^{1} \mathrm{H}$-NMR of ester 453 432
Figure A2.271. ${ }^{13} \mathrm{C}$-NMR of ester 453 433
Figure A2.272. FTIR of ester 453 433
Figure A2.273. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of aldol product 456 434
Figure $\mathrm{A} 2.274 .{ }^{13} \mathrm{C}$-NMR of aldol product 456 435
Figure A2.275. FTIR of aldol product 456 435
Figure A2.276. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of bismesylate 457 436
Figure A2.277. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of bismesylate 457 437
Figure A2.278. FTIR of bismesylate 457 437
Figure A2.279. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of enone 458 438
Figure A2.280. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of enone 458 439
Figure A2.281. FTIR of enone 458 439

LIST OF SCHEMES

Scheme 1.1. Degradation of gliotoxin (9) to dehydrodethiogliotoxin (8) 5
Scheme 1.2. Proposed biosynthesis of gliotoxin (9) 7
Scheme 2.1. Methods to install the disulfide bridge into ETPs 9
Scheme 2.2. Kishi's use of a dithioacetal as a protecting group 10
Scheme 2.3. Alkylation of dithioacetal 30 11
Scheme 2.4. Resonance structures of dithioacetal 30, illustrating its reactivity 11
Scheme 2.5. Kishi's retrosynthetic analysis of gliotoxin (9) 12
Scheme 2.6. Kishi's synthesis of enantiopure dithioacetal 38 13
Scheme 2.7. Kishi's completion of gliotoxin (9) 14
Scheme 2.8. Kishi's retrosynthetic analysis of dehydrogliotoxin (10) 15
Scheme 2.9. Kishi's synthesis of dehydrogliotoxin (10) 16
Scheme 3.1. Synthesis of aryl-amide coupling precursors 39 and 50 18
Scheme 3.2. Attempted aryl-amidation utilizing Kishi's conditions 18
Scheme 3.3. Copper-catalyzed aryl-amidation conditions 19
Scheme 3.4. Palladium-catalyzed aryl-amidation conditions 19
Scheme 3.5. Revised retrosynthetic analysis of dithioacetal 69 24
Scheme 3.6. Attempted synthesis of coupling precursor 77 24
Scheme 3.7. Revised retrosynthetic analysis of coupling precursor 70 25
Scheme 3.8. Alkylation of glycine derivative $\mathbf{8 1}$ 26
Scheme 3.9. Synthesis of tricycle 84 27
Scheme 3.10. Unsuccessful bromination of tricycle 84 27
Scheme 3.11. Attempted formation of bis-silyl enol ether 88 30
Scheme 3.12. Oxidation of DKP 84 30
Scheme 4.1. Modified retrosynthetic analysis of intermediate 49 32
Scheme 4.2. Synthesis of precursors (a) aniline 92 and (b) acid 93 33
Scheme 4.3. Formal total synthesis of dehydrogliotoxin (10) 34
Scheme 5.1. Retrosynthetic analysis of model diselenide 100 38
Scheme 5.2. Attempted synthesis of diselenides 105 and 106 39
Scheme 5.3. Proposed reaction of dibromide $\mathbf{2 2}$ with a diselenide dianion equivalent 39
Scheme 5.4. a) Synthesis of bromide 112. b) Attempted reaction of bromide 112 with thediselenide dianion equivalent derived from Se and superhydride. c) Successful reaction ofbromide 112 with the diselenide dianion equivalent derived from Se and sodium borohydride . 41
Scheme 5.5. Successful synthesis of diselenide 106 from DKP 72 41
Scheme 5.6. Proposed synthesis of diselenide 114 from disulfide 115. 42
Scheme 5.7. Synthesis of diselenide 106 from disulfide 115 43
Scheme 5.8. Synthesis of a) bis-selenomethyl ether 120 and b) dithioacetal 121 44
Scheme 5.9. Attempted synthesis of diselenide 128 46
Scheme 6.1. Revised structure of tetrapetalone A (130) and conversion to tetrapetalone $\mathrm{A}-\mathrm{Me}_{2}$
(131) 53
Scheme 6.2. Proposed biosynthetic pathway of the tetrapetalones 56
Scheme 7.1. Porco's retrosynthetic analysis of tetrapetalone A (130) 58
Scheme 7.2. Porco's attempted ring-closing metathesis of triene 146 59
Scheme 7.3. Porco's revised retrosynthetic analysis of intermediate 145 60
Scheme 7.4. Porco's synthesis of hydroquinone 145 60
Scheme 7.5. Porco's attempted synthesis of tetracycle 157 61
Scheme 7.6. Sarpong's retrosynthetic analysis of tetrapetalone A (130) 61
Scheme 7.7. Sarpong's synthesis of intermediate 166 62
Scheme 7.8. Sarpong's synthesis of tetracycle 173 63
Scheme 7.9. Hong's proposed synthesis of the six-seven-five skeleton of tetrapetalone A 64
Scheme 7.10. Hong's synthesis of tetracycles 183 and 184 64
Scheme 7.11. Hong's synthesis of the barebone skeleton of tetrapetalone A 65
Scheme 8.1. Initial retrosynthetic analysis of tetrapetalone A (130) 66
Scheme 8.2. Retrosynthetic analysis of vinyl halide 189 67
Scheme 8.3. Synthesis of undesired syn diastereomer 199 67
Scheme 8.4. Unsuccessful attempts of the Stetter reaction to form 204 68
Scheme 8.5. Revised strategy for Buchwald-Hartwig coupling 68
Scheme 8.6. Attempted Buchwald-Hartwig coupling to form 212 69
Scheme 8.7. Unsuccessful attempts at ring-closing metathesis 70
Scheme 8.8. Revised retrosynthetic analysis 71
Scheme 8.9. Attempted ring-closing metathesis to form lactone 220 72
Scheme 8.10. Revised retrosynthetic analysis of intermediate 187 72
Scheme 8.11. Synthesis of aryl amine 230 73
Scheme 9.1. Retrosynthetic analysis of tetrapetalone A (130) 75
Scheme 9.2. Attempted synthesis of 1,4-adduct 239 76
Scheme 9.3. Yamamoto's bulky Lewis acid 77
Scheme 9.4. Synthesis of 247 77
Scheme 9.5. Proposed cascade Friedel-Crafts to form tetracycle 253 from acid chloride 233. 78
Scheme 9.6. Literature precedent showing a) an olefin isomerization before conjugate addition
and b) a Fridel-Crafts type acylation forming a seven-membered ring 78
Scheme 9.7. Attempts at a cascade Fridel-Crafts pathway 79
Scheme 9.8. Successful Friedel-Crafts with anisole 79
Scheme 9.9. Proposed m-allyl pathway to form the seven-membered ring (264) 80
Scheme 9.10. Attempted palladium π-allyl reactions 82
Scheme 9.11. Proposed mechanism for the formation of fused tricycle 269. 83
Scheme 9.12. Synthesis of tricycle 276 84
Scheme 10.1 Retrosynthetic analysis of 130 utilizing a transannular m-allyl reaction 86
Scheme 10.2. Proposed transannular palladium m-allyl reaction 87
Scheme 10.3. Synthesis of unreactive ester 287 88
Scheme 10.4. Hartwig's iridium-catalyzed borylation 89
Scheme 10.5. a) Unsuccessful borylation of 234 and b) successful borylation of 295 90
Scheme 10.6. Synthesis of bisketone 298 91
Scheme 10.7. Revised retrosynthetic analysis of enone $\mathbf{3 0 0}$ 91
Scheme 10.8. Successful synthesis of ring-closing metathesis precursors 303 and 304 92
Scheme 10.9. Attempted ring-closing metathesis of enone 303 93
Scheme 10.10. Attempted ring-closing metathesis of allylic alcohol 304 94
Scheme 10.11. Revised retrosynthetic analysis of tetrapetalone A (130) 95
Scheme 10.12. Synthesis of aldehyde 312 96
Scheme 10.13. Attempted synthesis of NHK precursor 311 97
Scheme 10.14. Montgomery's synthesis of Aigalomycin utilizing a reductive alkyne-aldehyde coupling 97
Scheme 10.15. Attempted nickel-catalyzed alkyne-aldehyde coupling 98
Scheme 11.1. Our previous π-allyl attempt that led to five-membered product 276 100
Scheme 11.2. Revised palladium π-allyl strategy 100
Scheme 11.3. Attempted palladium m-allyl reaction on substrate lacking double bond 101
Scheme 11.4. Allylic epoxide palladium π-allyl approach 101
Scheme 11.5. a) Synthesis of epoxide 335 and 336 and b) attempts to form allylicepoxide 327102
Scheme 11.6. Proposed Friedel-Crafts pathway to ketone 339 103
Scheme 11.7. Synthesis of ketone 339 via Friedel-Crafts reaction 103
Scheme 11.8. Formation of α-bromo ketone 344 105
Scheme 11.9. Elimination of α-bromo ketone 344 to form enone 345 and elaboration to tetracycle 347 106
Scheme 11.10. Revised retrosynthetic analysis of tetrapetalone A (130) 107
Scheme 11.11. Alternate retrosynthetic analysis of tetrapetalone A (130) 107
Scheme 11.12. Attempted Friedel-Crafts acylation of aryl bromide 356. 108
Scheme 11.13. Attempted Friedel-Crafts acylation of aryl alkyne 360 109
Scheme 11.14. a) The desired functionalization of enone 345 and b) Dong's selective $\mathrm{C}-\mathrm{H}$ oxidation utilizing ketone as a directing group 110
Scheme 11.15. Synthesis of keto alkyne 351 110
Scheme 12.1. Attempted removal of methyl protecting group 111
Scheme 12.2. Synthesis of TIPS protected ketone 373 112
Scheme 12.3. Synthesis of TIPS protected alkyne 376 113
Scheme 12.4. Attempted phenolic oxidation to form epoxide 369 114
Scheme 12.5. Proposed synthesis of cyclic carbonate 381 115
Scheme 12.6. Sarpong's synthesis of 384 116
Scheme 12.7. Attempted synthesis of phenol 379 116
Scheme 13.1. Proposed synthesis of tetracycle 348 from vinyl stannane 386 118
Scheme 13.2. Proposed synthesis of tetracycle 395 from ketone 391 119
Scheme 13.3. Proposed synthesis of tetracycle 348 from styrene 397 121
Scheme 13.4. Attempted reduction of alkyne 389 121
Scheme 13.5. Proposed reaction to form a) styrene 400 through a Stille coupling and b)
tetracycle 395 through a carbonylative Stille coupling followed by conjugate reduction 122
Scheme 14.1. Relationship between ansaetherone (135) and the tetrapetalones 123
Scheme 14.2. Proposed conversion of ansaetherone (135) to tetrapetalone B (132) 124
Scheme 14.3. Proposed synthesis of tetracycle 409 through a Lewis acidic or basic pathway 125
Scheme 14.4. Proposed alternate synthesis of tetrapetalone B from phenol 408 126
Scheme 14.5. George's Paternó-Büchi/ elimination route to tetracycle 419 126
Scheme 14.6. Retrosynthetic analysis of ansaetherone (135) 127
Scheme 14.7. Attempted phenolic oxidation of 429 128
Scheme 14.8. Kit's synthesis of dihydropyran 433 128
Scheme 14.9. Revised retrosynthetic analysis of dihydropyran 422 129
Scheme 14.10. Attempted synthesis of dihydropyran 439 129
Scheme 14.11. Attempted synthesis of dihydropyran 439 130
Scheme 14.12. Revised retrosynthetic analysis of ansaetherone (135) 131
Scheme 14.13. Attempted synthesis of oxy-Michael product 444 132
Scheme 14.14. Revised retrosynthetic analysis of nitrobenzene 444 132
Scheme 14.15. Synthesis of aryl ketone 449 133
Scheme 14.16. Attempts at Fries of photo Fries rearrangements 133
Scheme 14.17. Aldol attempts to form aryl ketone 449 134
Scheme 14.18. Synthesis of enone 458 135
Scheme 14.19. Proposed future work to obtain nitrobenzene 444 135

Part One

The formal total synthesis of dehydrogliotoxin and the first synthesis of an epidiselenodiketopiperazine.

Chapter One

Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), affects approximately one third of the global population and is associated with nearly two million deaths annually. ${ }^{1}$ Although there are known cures for TB, most of the problems associated with TB exist in developing countries that lack the infrastructure and resources to efficiently diagnose and then treat the illness. This establishes a clear and continuing need for economically accessible treatments, and the growing presence of TB strains resistant to current drug regimens serves to accentuate this need. As part of a collaborative effort with the Hung group at the Broad Institute, we have identified two related natural products, gliotoxin and dehydrogliotoxin, as potential candidates for further exploration as anti-TB agents.

1.1. Tuberculosis

Tuberculosis is a serious infection that is mostly localized in the lungs, and is spread by inhaling droplets in the air containing the bacteria. ${ }^{2}$ Once inhaled the bacteria enters the host cell through phagocytosis by the alveolar macrophages. Although phagocytosis is the normal function of the macrophage, MTB has acquired the ability to survive and replicate within the macrophage. It does this by inhibiting the phagolysomes, which are responsible for digesting unwanted objects consumed by the macrophage. In most healthy individuals the bacteria is contained by isolating the infected macrophage in what is called a tubercle, preventing the bacteria from spreading. The tubercle can become calcified and the bacteria can lay dormant within for many years. If the immune system is weakened (commonly from another disease
such as HIV) the tubercle can liquefy, releasing the bacteria, which can multiply at very high rates and eventually spread throughout the body and ultimately lead to death.

Approximately one third of the global population is infected with MTB, which leads to nearly two million deaths annually. Of particular concern is the fact that most cases of TB reside in developing countries that lack the resources and infrastructure to efficiently treat the disease. Although TB can typically be cured, the drug regimen required usually lasts 6-9 months and consists of a combination of multiple drugs. It is often the case, especially in underdeveloped countries, that a patient begins treatment, starts to feel better, and stops treatment before the disease is fully cured. It is due to this that multi-drug resistant strains of TB are becoming more and more prevalent, with nearly 500,000 cases (4.6% of the global burden) as of $2008 .{ }^{1}$

The typical treatment of TB consists of a combination of drugs. ${ }^{3}$ In most cases the patient is given the so-called $1^{\text {st }}$ line drugs, isoniazid (1), rifampicin (2), and ethambutol (3) as well as any number of the so-called $2^{\text {nd }}$ line drugs such as the fluoroquinolones (4), capreomycin (5), amikacin (6a), kanamycin (6b), and others (Figure 1.1). Multi-drug resistant strains are those that are resistant to isoniazid and rifampicin. Extensively resistant strains are not only resistant to $\mathbf{1}$ and $\mathbf{2}$, but also to the fluoroquinolones and at least one of the other three $2^{\text {nd }}$ line drugs.

Given the above information it is clear that there is a continuing need to develop new therapies for TB. Both more simplified and shorter treatment regimens are needed to encourage patents to finish treatments, which will not only lead to the disease being cured, but also to less instances of multi-drug and extensively resistant strains. Due to the presence of these resistant strains, new targets that are chemically distinct from the existing treatments should be targeted.

Isoniazid (1)

Rifampicin (2)

Ethambutol (3)

$R=$

Fluoroquinolones (4)

R $=\mathrm{H}, \mathrm{OH}$ Capreomycin (5)

$R=H$ Kanamycin (6b)

Figure 1.1. Typical drugs used to treat tuberculosis.

1.2. Gliotoxin and Dehydrogliotoxin

In 1936 Weindling and Emerson reported the isolation of a toxic crystalline solid from the wood fungus Gliocladium fimbriatum, ${ }^{4}$ which has since been isolated from a variety of microorganisms including Aspergillius fumigatus ${ }^{5}$ and Penicillium terlikowsii. ${ }^{6}$ In this initial report the molecular formula was erroneously reported as $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$. In 1943 Johnson and coworkers further investigated the physical properties of this compound, now named gliotoxin, and with the help of elemental analysis, revised the molecular formula to $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$. ${ }^{7}$ The first structure of gliotoxin was proposed 20 years later by Johnson and Buchanan, who after extensive degradation studies, proposed pentacycle 7 as the structure of gliotoxin (Figure 1.2). ${ }^{8}$

7

Figure 1.2. Initially proposed structure of gliotoxin.

Five years later Johnson and Woodward reported further degradation studies that contradicted the previously reported structure of gliotoxin. ${ }^{9}$ Specifically, they noted that upon exposure to alkaline alumina, gliotoxin was converted to diketopiperazine (DKP) 8, which they named dehydrodethiogliotoxin. This among other observations led them to propose the revised structure 9 as the structure of gliotoxin (Scheme 1.1). This was later confirmed in 1966 by x-ray crystallography (Figure 1.3). ${ }^{10}$

Scheme 1.1. Degradation of gliotoxin (9) to dehydrodethiogliotoxin (8).

Figure 1.3. $\quad \mathrm{X}$-ray crystal structure of gliotoxin (9).

In 1966 the related compound, dehydrogliotoxin (10), was isolated from Penicillium terlikowsii (Figure 1.4). ${ }^{10}$ It differs in structure from 9 only by the presence of the aromatic ring in 10 in place of the dihydrobenzene moiety.

10

Figure 1.4. Dehydrogliotoxin (10).

Gliotoxin has been known to inhibit MTB since 1950, where it was found to exhibit minimum inhibitory concentrations (MICs) ranging from 6 to $45 \mathrm{nM} .{ }^{11}$ Unfortunately gliotoxin has also been found to be toxic, with an $L D_{50}$ of 25 to $65 \mathrm{mg} / \mathrm{kg} .{ }^{7,11 \mathrm{~b}}$ When this project was started, dehydrogliotoxin had never been tested against MTB; however, it had been shown to inhibit macrophage phagocytosis in concentrations similar to that of gliotoxin, ${ }^{12}$ suggesting that it could also be relevant to MTB. Given these facts we became interested in gliotoxin, dehydrogliotoxin, and analogs of the two as potential anti-TB therapeutics. In the context of analogs, we would hope to identify a compound that both retains activity against MTB, but also exhibits less toxicity compared to 9 and 10.

1.3. Biosynthesis

Biosynthetically, gliotoxin derives from the condensation of phenylalanine (11) and serine (12), which produces diketopiperazine 13. It is widely believed that after sulfur incorporation the aromatic ring is oxidized to arene oxide 14, which undergoes subsequent intramolecular attack by the DKP amide nitrogen. Methylation of the remaining free amide nitrogen completes the biosynthesis of gliotoxin (Scheme 1.2). ${ }^{13}$

Scheme 1.2. Proposed biosynthesis of gliotoxin (9).

Chapter Two

Previous Synthetic Work

Due to their interesting structural features and considerable biological activity, epidithiodiketopiperazine (ETP) natural products have received considerable attention from the synthetic community. The most well studied class of these ETP natural products is the gliotoxin family, with both dehydrogliotoxin and gliotoxin being synthesized by the Kishi group in 1973 and 1976 respectively. ${ }^{14}$ More recently other ETPs have been synthesized including gliocladine C (17), acetylaranotin (18), chaetocin A (19), and 11,11'-dideoxyverticillin A (20) (Figure 2.1). ${ }^{15}$

gliocladine C (17)

acetylaranotin (18)

Figure 2.1. Epidithiodiketopiperazine natural products that have recently been synthesized.

2.1. Methods to Install the Disulfide Bridge

Along with being the structural feature that defines the ETP natural products, the bridging disulfide is also one of the most significant synthetic challenges one faces when attempting to prepare any member of the family. To date, there have been three basic approaches utilized to install this challenging functional group (Scheme 2.1). The first relies on initial radical bromination followed by attack with a sulfur nucleophile such as potassium thioacetate, which presumably proceeds through an acyl iminium species. Removal of the acetates and oxidation gives bridging disulfide 24 (eq. 1). ${ }^{16}$ The second method utilizes a non-
radical oxidation to give 26, which can undergo a Lewis or Brønsted acid catalyzed acyl iminium formation and trapping with a sulfur nucleophile. The protecting group can be removed to reveal bridging disulfide 28 after oxidation (eq. 2). ${ }^{15 c, 17}$ The last method involves deprotonating DKP 25 with a strong base followed by reacting it with a sulfur electrophile to furnish 27. Bridging disulfide $\mathbf{2 8}$ is obtained after deprotection and oxidation (eq. 3). ${ }^{18}$
Radical Bromination:

Scheme 2.1. Methods to install the disulfide bridge into ETPs.

In the context of the total synthesis of gliotoxin, Kishi and coworkers decided that early incorporation of the disulfide and further functionalization of the DKP was more promising than late stage sulfur incorporation. However, studies on simple substrates revealed the disulfide bridge as being sensitive to oxidative, reductive, and basic conditions. To circumvent the instability of the disulfide and still utilize a strategy that incorporated sulfur in the early stages, they chose to pursue a strategy wherein the requisite sulfur atoms were protected as the corresponding dithioacetal. As a proof of concept, simple dithiol 29 was reacted with $p-$ anisaldehyde to form dithioacetal 30. Importantly this dithioacetal was stable to strongly acidic,
strongly basic, reductive, and some oxidative conditions. Cleavage was realized by first oxidizing to the monosulfoxide then adding acid to give disulfide 32 (Scheme 2.2).

Scheme 2.2. Kishi's use of a dithioacetal as a protecting group.

Given their focus on the early installation of sulfur, the Kishi group needed to develop chemistry that would allow for the introduction of numerous other structural components. Specifically they needed to alkylate at the bridgehead carbon. Although formation of an anion at a bridgehead carbon is normally very difficult, the Kishi group hypothesized that deprotonation of the carbon α to the dithioacetal may be possible due to the extra stabilization from the d orbital of the neighboring sulfur atom. To test the viability of this alkylation, simple dithioacetal 30 was exposed to n-BuLi followed by a variety of electrophiles and the corresponding alkylated products (33) were obtained in good yields. Furthermore, they found that by resubjecting the compound where $R=$ methyl to the reaction conditions, they could get a product (34), where both sides have been alkylated differentially (Scheme 2.3).

Scheme 2.3. Alkylation of dithioacetal 30.

Interestingly, while performing these alkylations, the Kishi group observed that one regioisomeric product would preferentially be obtained depending on which diastereomer of the dithioacetal was subjected to the reaction. They hypothesized that the observed regioselectivity arose from the fact that one of the sulfurs of the dithioacetal could interact with the nearby amide carbonyl to form resonance structure 30' (Scheme 2.4). The proton α to that carbonyl is now much less acidic due to less stabilization from both the sulfur and the carbonyl, leading to preferential deprotonation α to the other carbonyl, which does not interact with the dithioacetal.

Scheme 2.4. Resonance structures of dithioacetal 30, illustrating its reactivity.

2.2. Kishi's Synthesis of Gliotoxin

Based on this body of exploratory research, a synthetic plan for gliotoxin became clear and is illustrated below in retrosynthetic fashion (Scheme 2.5). As illustrated, gliotoxin (9) would be formed from late stage deprotection of dithioacetal 35, which itself would arise from
dialkylation of 36 employing the method they developed for bridgehead anion formation. Alkyl chloride 36 would arise from attack of arene oxide 37 with DKP 38. The latter would derive from 39 after sulfur incorporation and dithioacetal formation.

Scheme 2.5. Kishi's retrosynthetic analysis of gliotoxin (9).

In the forward sense, Kishi commenced by protecting the amide of known DKP 39. Radical bromination and displacement of the bromides with potassium thioacetate gave dithioacetate 40. Removal of the acetate protecting groups followed by dithioacetal formation produced intermediate 41, which was subjected to concentrated HCl in ethanol to furnish racemic DKP 38 as a 1:1 mixture of diastereomers. A subsequent kinetic resolution with benzoyl chloride enhanced the diastereomeric ratio to 10:1. Deprotection of the racemic mixture followed by reaction with a chiral isocyanate furnished urea 43 as a mixture of two diastereomers, which proved to be readily separable via flash chromatography. The urea of the desired enantiomer was then hydrolyzed to produce enantiopure dithioacetal 38 (Scheme 2.6).

Scheme 2.6. Kishi's synthesis of enantiopure dithioacetal 38.

Enantioenriched dithioacetal 38 was reacted with arene oxide 37 in the presence of Triton B to give alcohol 44. The free alcohol was acetylated and the t-butyl ester hydrolyzed to give carboxylic acid 45, which was converted to mixed anhydride 46. After reduction with sodium borohydride, the resultant alcohol was converted to the mesylate and displaced with chloride and the acetate removed to give alkyl chloride 36. Dithioacetal 36 was then alkylated in the presence of 3.2 equivalents of phenyl lithium and BOMCI to give the desired dialkylated product 35. It is important to note that having the alcohol unprotected was crucial in the alkylation step to prevent dehydration-aromatization of the hydrated benzene moiety. Removal of the benzyl protecting group followed by cleavage of the dithioacetal through initial oxidation to the monosulfoxide then exposure to acid revealed the natural product (9) (Scheme 2.7).

45

46

36

Scheme 2.7. Kishi's completion of gliotoxin (9).

2.3. Kishi's Synthesis of Dehydrogliotoxin

Dehydrogliotoxin (10) is structurally related to gliotoxin (9) and contains many of the same synthetic challenges including the disulfide moiety, however it lacks the cyclohexadienol system. In light of this, the late stages of the synthesis were envisioned to be similar as for 9 , however construction of the core would require a different approach (Scheme 2.8). Dehydrogliotoxin would once again be produced from dialkylation and deprotection of a dithioacetal (48), which in this case would be derived from ester 49, the product of an Ullmantype coupling of DKP 39 and aryl iodide 50.

Scheme 2.8. Kishi's retrosynthetic analysis of dehydrogliotoxin (10).

To initiate the synthesis of dehydrogliotoxin (10), aryl iodide 50 was coupled with DKP 39 and the resultant carboxylic acid esterified with diazomethane to give aryl DKP 49. In a sequence analogous to that of gliotoxin, sulfur was incorporated and protected as the dithioacetal and the ester was converted to the alkyl chloride to give 48 over eight steps. A single diastereomer of 48 was obtained through fractional crystallization. Exposure of dithioacetal 48 to phenyl lithium and BOMCI furnished bisalkylated product 47, which was converted to the natural product (10) after deprotection (Scheme 2.9).

50

39

52
1:1 d.r.

$\xrightarrow[\text { 2) } p \text {-anisaldehyde }]{\text { 1) } \mathrm{HCl}, \mathrm{MeOH}, 50{ }^{\circ} \mathrm{C}}$ $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (72\% yield two steps)

49

51

48

47

(48\% yield two steps)

10

10

Scheme 2.9. Kishi's synthesis of dehydrogliotoxin (10).

Chapter Three

Towards the Synthesis of Dehydrogliotoxin

Although we were interested in both gliotoxin (9) and dehydrogliotoxin (10), we choose to begin our synthetic efforts by focusing on the synthesis of dehydrogliotoxin (10). In addition to being the simpler of the two targets, the fact that $\mathbf{1 0}$ had never been tested against MTB helped guide our decision. As well as offering quicker access to a potentially interesting anti-MTB agent, we believed that $\mathbf{1 0}$ might more readily lend itself to derivatization to form structural analogs. Given that the primary objective of our efforts was analog generation, rather than develop a completely new synthetic approach, we initially decided to reproduce the elegant chemistry developed by Kishi and coworkers.

3.1 Intermolecular Copper Mediated Aryl-Amidation

The first task at hand was preparing the precursors for Kishi's copper-mediated Ullmantype coupling. The necessary coupling partners 39^{19} and 50^{20} were synthesized as outlined in Scheme 3.1. Dipeptide 55 was synthesized by an EDCI mediated peptide coupling of acid 53 and amine 54. The Boc protecting group was removed with TFA and DKP 39 formed by refluxing in methanol. The requisite aryl iodide (50) was synthesized in one step from benzoic acid 56 by ortho-lithiation followed by quenching with iodine.

Scheme 3.1. Synthesis of aryl-amide coupling precursors 39 and 50.

With the two coupling partners in hand, we were ready to explore the aryl-amidation under Kishi's conditions. Unfortunately, under these conditions we were unable to obtain the desired coupled product 49 (Scheme 3.2).

Scheme 3.2. Attempted aryl-amidation utilizing Kishi's conditions.

Buchwald and coworkers have studied these aryl-amidation reactions in greater depth in the time since Kishi reported his synthesis. ${ }^{21}$ They have found by combining a diamine ligand such as dimethylethylenediamine (57) or cyclohexyldiamine (58) with the copper catalyst, this reaction can proceed at lower temperatures than classical Ullman-type conditions (Scheme 3.3). Another benefit is the use of the copper in catalytic quantities as opposed to the stoichiometric amounts utilized by Kishi. The aryl-amidation reaction has also been shown to proceed with a palladium catalyst in the presence of a diphosphine ligand such as Xantphos (59) (Scheme 3.4).

Scheme 3.3. Copper-catalyzed aryl-amidation conditions.

Scheme 3.4. Palladium-catalyzed aryl-amidation conditions.

These results prompted us to try alternate coupling conditions in our system (Table 3.1). Standard conditions using catalytic copper iodide in the presence of potassium phosphate and diamine ligand 57 were attempted first without success (entry 2). Buchwald has suggested that the use of a weaker base is advantageous in particularly tough couplings, which led us to try potassium carbonate as the base (entries 3 and 4). The coupling was also attempted with standard palladium conditions (entry 5); however all of these conditions were met with no success.

Table 3.1. Attempts at using alternate aryl-amidation coupling conditions.

Entry	Metal	Base	Ligand	Solvent
1	Cul	$\mathrm{K}_{2} \mathrm{CO}_{3}$	none	Nitrobenzene
2	Cul	$\mathrm{K}_{3} \mathrm{PO}_{4}$	DMEDA	Toluene
3	Cul	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMEDA	Toluene
4	CuCl	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMEDA	Toluene
5	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	Xantphos	Toluene

Reversal of the order of the coupling reaction and ester formation was also attempted (Table 3.2). Use of either copper iodide or copper chloride in toluene with potassium carbonate gave no desired product (entries 1 and 2). A switch to dioxane as a solvent also was attempted without success (entries 3 and 4). Lastly, standard palladium-catalyzed conditions proved unproductive (entry 5).

Table 3.2. Attempted aryl-amidations ultilizing aryl iodide 61.

Entry	Metal	Base	Ligand	Solvent
1	CuI	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMEDA	Toluene
2	CuCl	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMEDA	Toluene
3	Cul	$\mathrm{K}_{3} \mathrm{PO}_{4}$	DMEDA	Dioxane
4	Cul	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMEDA	Dioxane
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	Xantphos	Toluene	

At this point we were attracted to the idea of using benzylic alcohol $\mathbf{6 2}^{22}$ for the synthesis of dehydrogliotoxin, due to the fact it is already in the oxidation state required for the subsequent steps. The coupling between aryl iodide 62 and DKP 39 was the most extensively studied (Table 3.3). We first looked at standard conditions utilizing the three most common bases for this reaction: potassium carbonate, potassium phosphate, and cesium carbonate (entries $1-3$). After these proved unsuccessful, diamine ligand 58 was screened (entries 4 and 5). Replacing the copper source with copper chloride also gave no desired product (entries 6 and 7). Lastly the reaction did not proceed under the standard palladium-catalyzed conditions either (entry 8).

Table 3.3. Attempted aryl-amidation utilizing aryl iodide 62.

To test whether this type of coupling could be carried out with DKP 39, several control experiments were conducted. Gratifyingly couplings with DKP 39 and simple aryl iodides such as iodobenzene and o-iodoanisole were successful under both copper- and palladiumcatalyzed conditions. Furthermore, couplings with benzylic alcohols, methyl esters, and methyl ethers attached to the aryl halide with various substitution patterns are known in the literature; however there are very few examples of couplings where there are two substituents ortho to the halide. ${ }^{21 a-c, 23}$ Such couplings are difficult presumably because formation of the aryl-amide bond is very slow, or cannot happen at all, due to sterics. Looking at the mechanism, the first step is deprotonation and formation of copper amidate 65. Next is the formation of the aryl-amide bond, most likely through an oxidative addition/ reductive elimination sequence. However, if the formation of the aryl-amide bond is especially slow, and the rate of deprotonation of the amide is particularly fast, then the unreactive cuprate complex 68 is formed, which effectively shuts down the catalytic cycle (Figure 3.1). ${ }^{21 \mathrm{c}, 24}$

Figure 3.1. Mechanism of the copper mediated aryl-amidation.

3.2 Intramolecular Copper Mediated Aryl-Amidation

Having explored several unsuccessful options for intermolecular aryl-amidation, we considered a new intramolecular approach (Scheme 3.5). Initially our strategy had been to first form bond \mathbf{a} by an intermolecular aryl-amidation then bond \mathbf{b} by an intramolecular alkylation. It is conceivable the same intermediate (69) could be generated by first forming bond \mathbf{b} by some sort of alkylation then forming bond a through an intramolecular aryl-amidation. We hoped that by making this an intramolecular process, we could overcome the difficult coupling step as the two coupling partners are in close proximity to each other, and generally intramolecular processes are more favorable than the corresponding intermolecular reaction.

Scheme 3.5. Revised retrosynthetic analysis of dithioacetal 69.

In accordance with this new strategy, coupling precursor 70 needed to be constructed. Both p-methoxybenzyl and benzyl protected DKPs were obtained according to known procedures. ${ }^{25}$ In order to access an appropriate aryl-amidation precursor the alkylations of 71 and 74 were examined (Scheme 3.6). Benzyl protected DKP 71 could be benzylated with benzyl bromide to give 72, a product that lacks the necessary iodide, but still shows that the important C-C bond could be formed. Unfortunately, the benzyl protecting groups could not be removed from this compound. Hoping that the p-methoxybenzyl protecting group would be removed more readily, DKP 74 was also tested in this route. This time utilizing the benzyl bromide ${ }^{22}$ needed for the synthesis of dehydrogliotoxin, alkylated product 76 was formed. Unfortunately, the protecting groups once again could not be removed and coupling precursor 77 could not be formed.

Scheme 3.6. Attempted synthesis of coupling precursor 77.

Although we could screen other differentially protected DKPs for this alkylation/ deprotection sequence, we believed a different approach was warranted. Specifically the diketopiperazine ring would be constructed from an amino acid that already contained the essential aryl iodide. To that end, coupling precursor 70 would come from DKP formation between Boc-sarcosine (78) and unnatural amino acid 79, which itself would ultimately arise from alkylation of glycine (80) (Scheme 3.7).

Scheme 3.7. Revised retrosynthetic analysis of coupling precursor 70.

In order to access unnatural amino acid 79, known glycine derivative 81 was prepared. ${ }^{26}$ This doubly protected amino acid is known to undergo alkylation with a variety of electophiles including benzyl halides. Typically these alkylations are performed under phase-transfer conditions; however in our case that proved futile. Conversely, turning to anhydrous conditions utilizing potassium tert-butoxide as a base in THF provided alkylated product 82 in good yield. ${ }^{27}$

81

81

(72\% yield)

Scheme 3.8. Alkylation of glycine derivative 81.

With the alkylation complete, the benzophenone imine was hydrolyzed to give amine 79. Peptide coupling with Boc-sarcosine (78) gave dipeptide 83, which could be deprotected and the ring closed to give coupling precursor 70. Gratifyingly, exposing 70 to standard coppercatalyzed coupling conditions delivered tricycle 84 in good yield (Scheme 3.9). By performing this coupling in an intramolecular fashion we were able to overcome the reactivity issue and readily form the requisite $\mathrm{C}-\mathrm{N}$ bond.

Scheme 3.9. Synthesis of tricycle 84.

3.3 Attempts to Incorporate Sulfur

Having successfully synthesized tricycle 84 , we next sought a method for installing the requisite disulfide. In analogy to Kishi's synthesis, we initially attempted to brominate 84; however none of the desired product was obtained. Bromination under acidic conditions also proved futile (Scheme 3.10).

Scheme 3.10. Unsuccessful bromination of tricycle 84.

As outlined in section 2.1, bromination is initially employed in only one of the three methods that have led to successful incorporation of sulfur into the DKP framework. Given the above results, we next looked at forming an enolate and trapping with a sulfur electrophile. To test the viability of this strategy, we first ran a deuterium quenching study of DKP 84 (Table 3.4). Using LHMDS as a base at $-10^{\circ} \mathrm{C}$ lead to a complex mixture of products (entry 1). Switching to LDA at $-78^{\circ} \mathrm{C}$ gave deuterium incorporation solely at the less hindered position, D_{b} (entry 2). Warming the solution to $0^{\circ} \mathrm{C}$ with LDA as a base not only gave full deuterium incorporation at D_{b}, but also gave approximately 50% incorporation at the more hindered position, D_{a} (entry 3). The same observation was seen using NaH at $0^{\circ} \mathrm{C}$ (entry 4).

Table 3.4. Deuterium incorperation of tricycle 84.

84
84'

			Incorporation (\%)	
Entry	Base	Temperature $\left({ }^{\circ} \mathrm{C}\right)$		D_{a}

Having demonstrated the feasibility of enolate formation, we next examined the reactivity toward various sulfur electrophiles (Table 3.5). Our very first attempt employed the classical conditions of sodium amide and elemental sulfur; however no product was observed (entry 1). We next surveyed a variety of bases using disulfides as the sulfur electrophile (entries $2-5,7$). Concerned that the reactivity of the electrophile might be the issue, we turned to a more active sulfur electrophile. Unfortunately these efferts were also unsuccessful (entries 6 and 8).

Although in most of these reactions we observed starting material or decomposition, we did observe indole 87 as a byproduct in some cases (Figure 3.2).

Table 3.5. Attempts at reacting tricycle 84 with a sulfur electrophile.

Figure 3.2. Undesired indole byproduct 87.

After unsuccessfully attempting to trap an enolate directly with a sulfur electrophile, we explored the use of a silyl enol ether as a nucleophile. However, in our attempts to form bis-silyl enol ether 88, we observed no desired product, instead only undesired indole 89 and starting material (Scheme 3.11).

Scheme 3.11. Attempted formation of bis-silyl enol ether 88.

From here it seemed that trapping an enolate or silyl enol ether with an electrophilic sulfur reagent was not a viable option, however, there remained a potentially viable approach that had not been investigated. This involved oxidizing the DKP with a non-radical oxidant to form a hemi-aminal, which would serve as a precursor to an acyl-iminium intermediate which would, in turn, react with a sulfur nucleophile. Unfortunately, exposing DKP 84 with either $\mathrm{Pb}(\mathrm{OAc})_{4}$ or $\mathrm{Phl}(\mathrm{OAc})_{2}$, while giving a small amount of monoacetate 90 , gave undesired indole 87 as the major product (Scheme 3.12).

Scheme 3.12. Oxidation of DKP 84.

At this point three distinct pathways to incorporate sulfur had been explored unsuccessfully. It is not too surprising in hindsight that there were complications involving the formation of undesired indole side products given the propensity with which the dihydroindole can oxidize to form an aromatic system. Although this route ultimately failed due to the complications in sulfur incorporation, it did provide a valuable solution to the difficult
intermolecular aryl-amidation step. Nevertheless, at this point a new route needed to be investigated towards the synthesis of dehydrogliotoxin (10).

Chapter Four

Synthesis of Dehydrogliotoxin

4.1 Revised Route Towards the Synthesis of Dehydrogliotoxin

Having encountered problems in routes toward the synthesis of dehydrogliotoxin (10) that involved both inter- and intramolecular Ullman-type couplings, we sought a synthetic strategy that avoided this reaction altogether. Because our ultimate goal was to access $\mathbf{1 0}$ in the most expedient fashion, we again decided to focus on variations of Kishi's approach and began to consider an alternate strategy utilizing intermediate 49, the product of the problematic arylamidation. Specifically we envisioned a strategy where the recalcitrant $\mathrm{C}-\mathrm{N}$ bond was preassembled and would serve as a template for construction of the DKP (Scheme 4.1). In the event, key intermediate 49 would arise from intramolecular ring closure of alkyl chloride 91, the bis-amide derived from coupling of aniline 92 and acid 93 . Along with generating the necessary intermediate 49, an additional potential benefit of this approach is the absence of the metalmediated cross coupling that would prohibit the preparation of analogs bearing aryl halides.

Scheme 4.1. Modified retrosynthetic analysis of intermediate 49.

Although simple esterification of the commercially available benzoic acid corresponding to aniline 92 would provide the first of the two coupling partners required for our approach, the extravagant cost of this acid prompted us to consider a more economical starting material. We
were pleased to find that large quantities of aniline 92 could be accessed in high yield in four steps from inexpensive 0 -anisidine (94). ${ }^{28}$ This involved conversion of 94 to the pivaloyl amide followed by ortho-lithiation with n-butyl lithium forming an aryl anion that would be quenched with carbon dioxide to give benzoic acid 96. Removal of the pivaloyl directing group followed by esterification with diazomethane gave aniline 92. Carboxylic acid 93 was synthesized following the procedure of Ciufolini wherein sarcosine (97) was acylated with chloroacetyl chloride (Scheme 4.2). ${ }^{29}$
a.

95

96

b.

Scheme 4.2. Synthesis of precursors (a) aniline 92 and (b) acid 93.

With straightforward methods to both desired coupling partners in hand, we explored their conversion to key intermediate 49. Gratifyingly, the two partners could be joined by first converting acid 93 to the acid chloride and adding aniline 92 to give bis-amide 91 . The ringclosure was accomplished upon heating in methanol in the presence of potassium carbonate and potassium iodide to give key intermediate 49, thus effecting a formal total synthesis of dehydrogliotoxin (10). Given that our purpose was to synthesize the natural product and not just
achieve a formal synthesis, we carried the material through the remaining eleven steps according to Kishi's procedure and obtained dehydrogliotoxin (10) (Scheme 4.3). ${ }^{1 \mathrm{~b}, 14 \mathrm{~d}}$

93

92

(54\% yield)

91
 (83\% yield)

49

10

Scheme 4.3. Formal total synthesis of dehydrogliotoxin (10).

4.2 Biological Activity

With a synthesis of dehydrogliotoxin complete, we next were interested in its biological activity. Four compounds were sent to our collaborator Dr. Deborah Hung at the Broad Institute. Graphs showing the antitubercular activity and human cell toxicity are shown in Figure 4.1, and the IC_{50} values of the antitubercular activity are given in Table 4.1. It was found that synthetic dehydrogliotoxin (10) showed significant activity against MTB with an IC_{50} of $0.13 \mu \mathrm{M},{ }^{30}$ comparing favorably to gliotoxin (9) our collaborators purchased which exhibited an IC_{50} of 0.09 $\mu \mathrm{M}$. Not surprisingly, 10 also proved significantly toxic as seen in Figure 4.1.b. ${ }^{31}$ Compound 84, which contains the carbon skeleton of dehydrogliotoxin, however lacks the bridging disulfide, was not active against MTB and also was the least toxic. Benzyl chloride 48 showed both activity against MTB and human toxicity, however this is most likely due to indiscriminate toxicity of the benzylic chloride. Lastly dithioacetal 98, which contains the entire dehydrogliotoxin core, however has the disulfide tied up in a dithioacetal, exhibited no antitubercular activity,
supporting the theory that the disulfide is the most important site of the molecule for its observed activity.
a)

b)

10

84

48

98

Figure 4.1. Graphs showing a) antitubercular activity and b) human cell toxicity.

Table 4.1. Antitubercular activities.

compound	$\mathrm{IC}_{50}(\mu \mathrm{M})$
gliotoxin $(\mathbf{9})$	0.09
dehydrogliotoxin (10)	0.13
$\mathbf{8 4}$	>62.5
$\mathbf{4 8}$	7.9
98	>62.5

Chapter Five

Analog Design and the First Synthesis of an Epidiselenodiketopiperazine

With a synthesis of dehydrogliotoxin (10) complete, we next turned our attention to the generation of analogs. When examining dehydrogliotoxin we identified three major regions to target in analog synthesis: the hydrophobic (blue), the hydrophilic (red), and the disulfide (yellow) (Figure 5.1). We initially choose to study the disulfide region.

Figure 5.1. Regions of dehydrogliotoxin that could be modified in analog generation.

5.1 Replacing the Disulfide with a Diselenide

Although the mode of action of the ETPs is not known, it is believed that the disulfide plays an important role in both their activity and their toxicity. ${ }^{13 b, 32}$ In fact it has been shown that removal of the disulfide or conversion to a dithioether eliminates antiviral activity in ETPs. ${ }^{16}$ Because our eventual goal is accessing potential drug targets, we are interested in finding analogs that both retain anti-TB activity, and importantly, exhibit lessened human cell toxicity. Toxicity is thought to arise in one of two ways: by forming covalent disulfide bonds with cysteine residues in proteins in an unselective fashion or through a redox cycle that forms harmful reactive oxygen species (ROS). A schematic showing this redox process is outline in Figure 5.2 and is the process we hope to attenuate. ${ }^{13 b}$

Figure 5.2. Redox cycling of gliotoxin (9) forming harmful reactive oxygen species.

To this end we became interested in replacing the disulfide with a diselenide and thus form an epidiselenodiketopiperazine (ESeP). We believed the diselenide would be a good bioisostere of the disulfide due to the proximity of the two atoms on the periodic table. Selenium is the larger of the two (atomic radius of $1.17 \AA$ vs. $1.04 \AA$), however that difference is minor (only $0.13 \AA$). As a result of the size difference, the Se-Se bond length ($2.30 \AA$) is larger than the $S-S$ bond ($2.00 \AA$). Although there are differences in size of the two, the dimension of the unit cell of crystalline hexagonal cystine ${ }^{33}$ and selenocystine ${ }^{34}$ are almost identical, suggesting that at least in that system the two are isomorphous. ${ }^{35}$ The disulfide and diselenide also have some differences. The difference that we are most interested in exploiting is the redox properties of the two. Although the redox properties of ETPs and ESePs have not been investigated, the redox potentials of model peptides containing disulfides ($E_{0}=-180 \mathrm{mV}$), diselenides $\left(E_{0}=-381 \mathrm{mV}\right)$, and mixed selenosulfides $\left(E_{0}=-326 \mathrm{mV}\right)$ have been determined using dithiothreitol (DTT, $\mathrm{E}_{0}=-323 \mathrm{mV}, \mathrm{pH}=7.0$) as a reference. ${ }^{36}$ As can be seen from this data, the disulfide is a much better oxidant than the diselenide, which would have implications in the redox cycling event described in Figure 5.2. Because it is a better oxidant, more of the open dithiol form would be generated, which in turn would lead to a greater production of reactive oxygen species. It has been suggested that ROS can play important roles in both cell proliferation and cell death, and the difference between the two pathways is dependent on the concentration of these ROS. ${ }^{37}$ Furthermore, the redox potential in proliferating cells has been
reported to be -240 mV , while necrotic cells $(-150 \mathrm{mV}$) and apoptotic cells (-170 mV) exhibited much more oxidizing environments. Thus, it appears that switching to a diselenide, which would favor the closed diselenide form due to its more negative reduction potential, would help reduce the presence of ROS in normal cells, which would hopefully lead to lessen toxicity.

In the literature there are very few examples of bridging diselenides, ${ }^{38}$ and no examples containing the [2.2.2] scaffold we required. Without bias we set off to develop a method to form the desired ESeP. To explore this chemistry we first targeted simple ESeP 100 as a model system. Our initial strategy was to mimic the method we had previously utilized to incorporate sulfur. In that regard, diselenide 100 would come from protecting group removal and oxidation of bis-protected selenide 101. Selenium incorporation would arise from a nucleophilic selenium reagent reacting with dibromide 22, which would be derived from simple DKP 21.

Scheme 5.1. Retrosynthetic analysis of model diselenide 100.

To investigate this sequence we looked at DKPs protected with either a methyl (102) or benzyl (72) group (Scheme 5.2). The bromination was carried out as before and when reacted with potassium selenobenzoate, gave diselenides 103 and 104 respectively. Unfortunately, the benzoate protecting groups could not be removed in either case under a variety of different conditions including: basic, acidic, transesterification (KCN), oxidative $\left(\mathrm{I}_{2}\right)$, or reductive (DIBALH). Other differentially protected selenium nucleophiles were not fruitful, mostly due to difficulties in their synthesis.

Scheme 5.2. Attempted synthesis of diselenides 105 and 106.

It seemed that reacting a dibromide with a selenium nucleophile was a viable way to incorporate selenium, however, because we had problems finding a protecting group that could be removed from selenium after incorporation, we sought a method that would incorporate the diselenide directly with no protecting groups. Specifically we were interested in reacting a diselenide dianion equivalent with an acyl iminium (107) derived from dibromide 22 (Scheme 5.3).

Scheme 5.3. Proposed reaction of dibromide $\mathbf{2 2}$ with a diselenide dianion equivalent.

There are a variety of methods known to generate a diselenide dianion equivalent. Initially we tried the classical conditions of combining elemental selenium with either lithium or sodium metal to form $\mathrm{M}_{2} \mathrm{Se}_{2}$, however no desired product was observed (entries 1 and 2, Table 5.1). We next looked at other reductants that have been used in this reaction. Unfortunately, attempted reductions utilizing superhydride (entry 2), hydrazine (entry 3), or samarium iodide (entry 4) did not lead to any desired product.

Table 5.1. Attempts at reacting dibromide 109 with a diselenide dianion equivalent.

At this point we were wondering if having the diketopiperazine ring already in place was a problem. We thought the diselenide could be installed between two linear amino acids, and the DKP could then be formed with the diselenide already in place. To investigate this we synthesized bromide 112 from sarcosine derivative 111 through Boc protection and bromination under radical conditions (Scheme 5.4.a). Our first attempt utilized elemental selenium and superhydride to form the diselenide dianion equivalent. Under these conditions we observed none of the desired product, instead obtaining amino acid 111, presumably from reduction with superhydride of an in situ generated iminium (Scheme 5.4.b). However, we were able to find success by utilizing conditions developed by Krief and Derock to generate a diselenide dianion equivalent with elemental selenium, sodium borohydride, DMF, and ethanol, giving diselenide 113 in moderate yield. ${ }^{39}$ In a single attempt to form the DKP ring with the diselenide already in place, 113 was exposed to TFA, which only led to decomposition (Scheme 5.4.c).
a)

b)

112

113
c)

Scheme 5.4. a) Synthesis of bromide 112. b) Attempted reaction of bromide 112 with the diselenide dianion equivalent derived from Se and superhydride. c) Successful reaction of bromide 112 with the diselenide dianion equivalent derived from Se and sodium borohydride.

Having finally found success forming a diselenide, albeit in a linear system, we decided to reinvestigate the system with the DKP already in place. Gratifyingly, by first converting DKP 72 to the dibromide, diselenide 106 could be formed utilizing the conditions developed by Krief and Derock (Scheme 5.5). This constituted the first synthesis of an epidiselenodiketopiperazine (ESeP).

Scheme 5.5. Successful synthesis of diselenide 106 from DKP 72.

While we were pleased to have successfully synthesized diselenide 106, we ultimately wanted to incorporate the diselenide into more complex structures such as dehydrogliotoxin. Therefore it would be advantageous to develop a route to convert an ETP to an ESeP directly. We decided to investigate this in the same model system as before. Therefore, disulfide 115
would be converted to bis-thiomethyl ether 116 upon reduction with sodium borohydride and capture of the resultant thiolates with iodomethane. The sulfur of bis-thiomethyl ether 116 would be activated with an electrophile, forming acyl iminium ion 118, which would be reacted with the diselenide dianion equivalent to form diselenide 114 (Scheme 5.6).

Scheme 5.6. Proposed synthesis of diselenide 114 from disulfide 115.

Bis-thiomethyl ether 116 was synthesized via a known procedure ${ }^{40}$ and reacted with a variety of electrophiles in hopes of activating the sulfide and promoting acyl iminium ion formation (Table 5.2). Hoping to form dimethyl sulfide as a leaving group, a variety of methylating conditions were attempted with no success (entries $1-3$). Switching to halogenating reagents NBS or NCS also lead to no desired product (entries 4 and 5). Eventually we discovered that simply utilizing bromine as the electrophile resulted in the conversion of bisthiomethyl ether 116 to dibromide 109 quantitatively (entry 6).

Table 5.2. Activation of bisthiomethyl ether 116.

With a method to convert bis-thiomethyl ether 115 to dibromide 109 in place, we had realized all of the steps in a sequence for converting disulfide 115 to diselenide 106 (Scheme 5.7). Overall, this sequence involved conversion of ETP 115 to bis-thiomethyl ether 116 with sodium borohydride and iodomethane. Reaction of 116 with bromine gave dibromide 109, which could be reacted under the same conditions as before to provide ESeP 106 in three steps from ETP 115.

Scheme 5.7. Synthesis of diselenide 106 from disulfide 115.

With the first synthesis of an epidiselenodiketopiperazine accomplished and a method to access this ESeP directly from an ETP, we were excited to look at its biological activity against MTB. Along with the ETP and ESeP, we were interested in the bis-thiomethyl ether and bisselenomethyl ether counterparts due to previous reports that replacing the disulfide with the bisthiomethyl ether resulted in loss of activity. Bis-selenomethyl ether 120 was therefore synthesized by adding sodium borohydride followed by iodomethane to ESeP 106 (Scheme 5.8.a). We were also interested in removing the redox active disulfide, while keeping the bicyclic scaffold intact. In that regard, we synthesized compound 121, which contained a one-carbon linker between the two sulfur atoms, from disulfide 115 (Scheme 5.8.b).
a)

b)

115

121

Scheme 5.8. Synthesis of a) bis-selenomethyl ether 120 and b) dithioacetal 121.

With the compounds of interest in hand we sent them to our collaborators for testing (Figure 5.3). Disulfide 115, which mimics the epidithiodiketopiperazine natural products, exhibited an IC_{50} of $2.3 \mu \mathrm{M}$. This was impressive in itself as 115 is a simplified model of the ETP natural products. To our delight diselenide 106 exhibited an IC_{50} of $2.7 \mu \mathrm{M}$, which is comparable to the disulfide and suggests that the diselenide could be a potential target for further investigation as a drug lead. As expected alkylated disulfides 116 and 121 showed no activity against MTB; ${ }^{16}$ however bis-selenoether 120, although not as potent, was active with an IC_{50} of $16.2 \mu \mathrm{M}$. Interestingly dithioacetate 122 was also active against MTB with an IC_{50} of $2.5 \mu \mathrm{M}$,
however this is most likely a prodrug effect where the acetate is being cleaved in situ and the disulfide is forming in the assay.

115
$2.3 \mu \mathrm{M}$

116
no activity

106
$2.7 \mu \mathrm{M}$

120
$16.2 \mu \mathrm{M}$

122
$2.5 \mu \mathrm{M}$

121
no activity

Figure 5.3. Activity of compounds tested against MTB.

Having successfully found a method to convert an ETP to an ESeP and after demonstrating that an ESeP has comparable activity to an ETP in a model system, we next looked at translating to a more complex system with the eventual goal of trying this sequence on dehydrogliotoxin (Scheme 5.9). Specifically we wanted to see if having substitution on the carbon bearing the disulfide would be tolerated in the sequence. To test this disulfide 126 was formed in seven steps. Commercially available DKP 123 was protected and subjected to the bromination/ nucleophilic sulfur displacement to give bis-thioacetate 124. Removal of the acetate protecting groups and formation of the dithioacetal produced 30. Addition of n-BuLi in the presence of BOMCI gave bis-alkylated product 125, which was deprotected to give disulfide 126. Conversion to bis-thiomethyl ether 127 proceeded uneventfully. Unfortunately, the conversion of bis-thiomethyl ether 127 to diselenide 128 did not proceed. This reaction was only attempted once and warrants further investigation; however at this time I turned my attention to the tetrapetalone project.

102

Scheme 5.9. Attempted synthesis of diselenide 128.

References for Part One

1. Wright, A. Z., M. Anti-Tuberculosis Drug Resistance in the World. World Health Organization, Ed.; Geneva, 2008; Vol. Report No. 4.
2. Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell. Fourth Edition ed.; Garland Science, Ed.; New York, NY, 2002.
3. Sacchettini, J. C.; Rubin, E. J.; Freundlich, J. S. Nat. Rev. Micro. 2008, 6, 41-52.
4. Weindling, R.; Emerson, O. H. Phytopathology 1936, 26, 1068-1070.
5. Glister, G. A.; Williams, T. I. Nature 1944, 153, 1068.
6. Johnson, J. R.; Kidwai, A. R.; Warner, J. S. J. Am. Chem. Soc. 1953, 75, 2110-2112.
7. Johnson, J. R.; Bruce, W. F.; Dutcher, J. D. J. Am. Chem. Soc. 1943, 65, 2005-2009.
8. Johnson, J. R.; Buchanan, J. B. J. Am. Chem. Soc. 1953, 75, 2103-2109.
9. Bell, M. R.; Johnson, J. R.; Wildi, B. S.; Woodward, R. B. J. Am. Chem. Soc. 1958, 80, 1001.
10. Lowe, G.; Taylor, A.; Vining, L. C. J. Chem. Soc. C 1966, 1799.
11. (a) Tompsett, R.; McDermott, W.; Kidd, J. G. J. Immunol. 1950, 65, 59-63; (b) Porter, J. N.; De Mello, G. C. Handbook of Toxicology. W. B. Saunders Company, Ed.; Philadelphia, 1957; Vol. 2; (c) Rightsel, W. A.; Schneider, H. G.; Sloan, B. J.; Graf, P. R.; Miller, F. A.; Bartz, Q. R.; Ehrlich, J.; Dixon, G. J. Nature 1964, 204, 1333; (d) Miller, P. A.; Milstrey, K. P.; Trown, P. W. Science 1968, 159, 431.
12. Müllbacher, A.; Waring, P.; Tiwari-Palni, U.; Eichner, R. D. Mol. Immunol. 1986, 23, 231.
13. (a) Kirby, G. W.; Robins, D. J. The Biosynthesis of Gliotoxin and Related Epipolythiodioxopiperazines. In The Biosynthesis of Mycotoxins. Academic Press, Ed.; San

Francisco, CA, 1980; (b) Gardiner, D. M.; Waring, P.; Howlett, B. J. Microbiology 2005, 151, 1021-1032.
14. (a) Kishi, Y.; Fukuyama, T.; Nakatsuka, S. J. Am. Chem. Soc. 1973, 95, 6490; (b) Kishi, Y.; Fukuyama, T.; Nakatsuka, S. J. Am. Chem. Soc. 1973, 95, 6492; (c) Fukuyama, T.; Kishi, Y. J. Am. Chem. Soc. 1976, 98, 6723; (d) Fukuyama, T.; Nakatsuka, S.-I.; Kishi, Y. Tetrahedron 1981, 37, 2045.
15. (a) Overman, L. E.; Sato, T. Org. Lett. 2007, 9, 5267-5270; (b) Peng, J.; Clive, D. L. J. J. Org. Chem. 2008, 74, 513-519; (c) Kim, J.; Ashenhurst, J. A.; Movassaghi, M. Science 2009, 324, 238-241; (d) Gross, U.; Nieger, M.; Bräse, S. Chem.-Eur. J. 2010, 16, 11624-11631; (e) Iwasa, E.; Hamashima, Y.; Fujishiro, S.; Higuchi, E.; Ito, A.; Yoshida, M.; Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4078-4079; (f) Kim, J.; Movassaghi, M. J. Am. Chem. Soc. 2010, 132, 14376-14378; (g) Codelli, J. A.; Puchlopek, A. L. A.; Reisman, S. E. J. Am. Chem. Soc. 2011, 134, 1930-1933; (h) DeLorbe, J. E.; Jabri, S. Y.; Mennen, S. M.; Overman, L. E.; Zhang, F.-L. J. Am. Chem. Soc. 2011, 133, 6549-6552.
16. Trown, P. W. Biochem. Biophys. Res. Commun. 1968, 33, 402.
17. Öhler, E.; Tatarurh, F.; Schmidt, U. Chem. Ber. 1973, 106, 396-398.
18. (a) Hino, T.; Sato, T. Tetrahedron Lett. 1971, 12, 3127-3129; (b) Öhler, E.; Poisel, H.; Tataruch, F.; Schmidt, U. Chem. Ber. 1972, 105, 635-641.
19. Levene, P. A.; Bass, L. W.; Steiger, R. E. J. Biol. Chem. 1929, 81, 697.
20. (a) Stanley, W. M.; McMahon, E.; Adams, R. J. Am. Chem. Soc. 1933, 55, 706; (b) Nguyen, T.-H.; Chau, N. T. T.; Castanet, A.-S.; Nguyen, K. P. P.; Mortier, J. J. Org. Chem. 2007, 72, 3419.
21. (a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; (b) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727; (c) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421; (d) Strieter, E. R.; Bhayana, B.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 131, 78.
22. Piers, E.; Harrison, C. L.; Zetina-Rocha, C. Org. Lett. 2001, 3, 3245.
23. (a) Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003, 42, 5400-5449; (b) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054-3131.
24. Strieter, E. R.; Bhayana, B.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 131, 78-88.
25. Williams, R. M.; Armstrong, R. W.; Maruyama, L. K.; Dung, J. S.; Anderson, O. P. J. Am. Chem. Soc. 1985, 107, 3246.
26. (a) O'Donnell, M. J.; Boniece, J. M.; Earp, S. E. Tetrahedron Lett. 1978, 19, 26412644; (b) Danner, P.; Bauer, M.; Phukan, P.; Maier, Martin E. Eur. J. Org. Chem. 2005, 2005, 317-325.
27. Pintér, Á.; Haberhauer, G. Eur. J. Org. Chem. 2008, 2008, 2375-2387.
28. Macdonald, S. J. F.; McKenzie, T. C.; Hassen, W. D. J. Chem. Soc., Chem. Commun. 1987, 1528.
29. Ciufolini, M. A.; Valognes, D.; Xi, N. Tetrahedron Lett. 1999, 40, 3693.
30. To assess antitubercular activity, 10, 84, 48, and 98 were inoculated into a 96 well plate containing MTB at a final OD of 0.025 . Cells were allowed to incubate for three days at which point bacterial growth was assessed by reading OD600.
31. For mammalian cell toxicity, J774 macrophages were plated at 50,000 cells per cell well in 96 well plates, and 10, 84, 48, and 98 were added. Cells were incubated for three days at which point macrophages viability was assessed using Cel Titer Glo reagent.
32. Jiang, C.-S.; Guo, Y.-W. Mini-Rev. Med. Chem. 2011, 11, 728-745.
33. Oughton, B. M.; Harrison, P. M. Acta. Cryst. 1959, 12, 396-404.
34. Walkter, R.; Roy, J. Organic Selenium Compounds: Their Chemistry and Biology. Wiley, Ed.; New York, NY, 1973.
35. Quaderer, R. J. Selenocysteine-Mediated Native Chemical Ligation. Swiss Federal Institute of Technology (ETH) Zurich, Zurich, 2002.
36. Besse, D.; Siedler, F.; Diercks, T.; Kessler, H.; Moroder, L. Agnew. Chem. Int. Ed. 1997, 36, 883-885.
37. Sarsour, E. H.; Kumar, M. G.; Chaudhuri, L.; Kalen, A. L.; Goswami, P. C. Antioxid. Redox Signal. 2009, 11, 2985-3011.
38. (a) Tonkikh, N.; Duddeck, H.; Petrova, M.; Neilands, O.; Strakovs, A. Eur. J. Org. Chem. 1999, 1999, 1585; (b) Sureshkumar, D.; Ganesh, V.; Chandrasekaran, S. J. Org. Chem. 2007, 72, 5313.
39. Krief, A.; Derock, M. Synlett 2005, 2005, 1012,1014.
40. Cook, K. M.; Hilton, S. T.; Mecinoviá, J.; Motherwell, W. B.; Figg, W. D.; Schofield, C. J. J. Biol. Chem. 2009, 284, 26831.

Part Two

Towards the total synthesis of the tetrapetalones.

Chapter Six

The Tetrapetalones

Tetrapetalone A was isolated in 2003 by Hirota and coworkers from a culture filtrate of Streptomyces sp. USF-4727. ${ }^{1}$ In 2004 the structurally related tetrapetalones B, C, and D were isolated from the same Streptomyces strain. ${ }^{2}$ The tetrapetalones have shown inhibitory activity against soybean lipoxygenase (SBL), which is similar to human lipoxygenase and cyclooxygenase, which have relevance in a variety of human diseases. We became interested in the tetrapetalones due to their interesting structural features and the synthetic challenge they present.

6.1 Isolation and Structure Determination

During their quest to discover new lipoxygenase inhibitors, Hirota and coworkers, while screening soil Streptomyces sp. strains using a well-known SBL assay, discovered the novel soybean lipoxygenase inhibitor tetrapetalone A from a culture filtrate of Streptomyces sp. USF4727 in 2003. ${ }^{\text {a }}$ This particular soil sample was taken from Yada, Shizuoka City, Japan. Tetrapetalone A was isolated as a pale yellow amorphous powder with a melting point of $190^{\circ} \mathrm{C}$ and a molecular formula of $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{7}$. Through extensive NMR studies including ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, HMBC and 2D-INADEQUATE experiments they proposed structure 129 as the structure of tetrapetalone A (Figure 6.1). The relative stereochemistry of 129 was determined through analogy of the sugar moiety to β-rhodinose and through NOESY correlations. The absolute stereochemistry of 129 was determined by analysis employing the modified Mosher's method to the oxygens attached to $C\left(4^{\prime}\right)$ and $C(9)$. The latter analysis
following hydrolysis of the appended deoxy sugar. The stereochemistry at $C(4)$ and $C(15)$ were not reported in the initial publication.

Figure 6.1. Initially proposed structure of tetrapetalone A.

In 2003, in an attempt to confirm the position and type of nitrogen atom in tetrapetalone A, Hirota and coworkers performed a ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC experiment and found the data was inconsistent with their initially proposed structure. Specifically they noted a long range coupling between the nitrogen and the proton on the ethyl group, which is not possible in structure 129. Therefore they revised the structure of tetrapetalone A to be $\mathbf{1 3 0} .^{1 \mathrm{~b}}$ Additionally they were able to assign the absolute stereochemistry of 130 from the data already reported and extensive NOESY studies of 130 and methylated derivative 131 (Scheme 6.1). This included the previously unassigned $C(4)$ and $C(15)$ and revise the stereochemistry of $C(8)$.

Scheme 6.1. Revised structure of tetrapetalone A (130) and conversion to tetrapetalone $\mathrm{A}-\mathrm{Me}_{2}$ (131).

In 2004, after further investigations of the culture filtrate of Streptomyces sp. USF-4727, Hirota and coworkers isolated three more novel lipoxygenase inhibitors, tetrapetalones B (132),
C (133), and $D(134)$ (Figure 6.2). ${ }^{2}$ These compounds are structurally related to tetrapetalone A and only differ in oxidation of the ethyl group (132), oxidation of the tetramic acid moiety (133), or oxidation at both the ethyl group and the tetramic acid (134). The structures of $132 \mathbf{- 1 3 4}$ were assigned through various NMR studies and through analogy to 130.

tetrapetalone B
(132)

tetrapetalone C
(133)

tetrapetalone D
(134)

Figure 6.2. \quad Tetrapetalones B (132), C (133), and $D(134)$.

In 2008, Hirota and coworkers identified ansaetherone (135) from the same Streptomyces strain as the tetrapetalones while screening with a radical scavenging assay (Figure 6.3). ${ }^{3}$ Ansaetherone was isolated as a colorless amorphous powder and found to have a molecular formula of $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{7}$. The structure was elucidated utilizing ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, and HMBC NMR experiments. The relative stereochemistry of 135 was assigned through NOE correlations and the absolute stereochemistry through analogy to the tetrapetalones, however the stereochemistry at $C(2)$ and $C(17)$ could not be assigned. Given the structural similarities, Hirota and coworkers proposed ansaetherone to be a biosynthetic precursor to the tetrapetalones.

Figure 6.3. Structure of ansaetherone (135).

6.2 Biosynthesis

As noted above the Hirota group proposed that ansaetherone was a biosynthetic precursor to the tetrapetalones. ${ }^{3}$ However, as they had isolated both the tetrapetalones and ansaetherone from the same Streptomyces strain, they were interested in further exploring the biosynthetic origins of these compounds. Through feeding studies of isotopically labeled precursors it was determined that the tetrapetalone core was derived from three molecules of propionate (136), one butyrate (137), one glucose (138), and one 3-amino-5-hydroxybenzoic acid (AHBA, 139). ${ }^{4}$ Thus, it was proposed that tetrapetalone A was biosynthesized by a polyketide synthase using 139 as a starter unit, and proceeding with ansaetherone as an intermediate. Oxidations to tetrapetalone A would lead to tetrapetalones B, C, and D (Scheme 6.2).

Scheme 6.2. Proposed biosynthetic pathway of the tetrapetalones.

Chapter Seven

Previous Synthetic Efforts

Although there have been no completed syntheses of any members of the tetrapetalones, there has been significant interest in the family. There are published reports in the literature from the Porco, ${ }^{5}$ Sarpong, ${ }^{6}$ and Hong ${ }^{7}$ groups that outline progress towards the total synthesis of tetrapetalone A (130). There is also a single report from Yang et al. that outlines the syntheses of (+)-Q-1047H-A-A (140) and (+)-Q-1047H-R-A (141) (Figure 7.1), ${ }^{8}$ which they propose could possibly be converted to tetrapetalone A. However, given the limited similarity to $\mathbf{1 3 0}$, including the presence of a methyl group at $C(4)$ instead of an ethyl and no clear way to form the $C(4)-N$ or $C(7)-C(15)$ bonds, further discussion of this report is omitted. If you search tetrapetalone in SciFinder you can find abstracts of posters presented at ACS meetings from the Frontier, Pettus, and Kobayashi groups. However, as these posters cannot be accessed their work will not be discussed here.

(+)-Q-1047H-A-A (140)

(+)-Q-1047H-R-A (141)

Figure 7.1. (+)-Q-1047H-A-A (140) and (+)-Q-1047H-R-A (141).

7.1 Porco's Efforts Towards Tetrapetalone A

Porco and coworkers envisioned constructing tetrapetalone A(130) through a late stage transannular $[4+3]$ cyclization process (Scheme 7.1). ${ }^{5 a}$ They believed this could proceed via one of two pathways. Utilizing quinone 143 under UV irradiation would form intermediate 142 through an excited-state intramolecular proton transfer, which could undergo a formal [4+3] process. Conversely, hydroquinone 145 could be oxidized to oxonium 144 and undergo a formal [4+3] cycloaddition. Hydroquinone 145 would be formed from triene 146 by a ringclosing metathesis, and 146 would arise from an amidation of amide 148 with acid 147.

Scheme 7.1. Porco's retrosynthetic analysis of tetrapetalone A (130).

To explore this [4+3] cyclization process, Porco and coworkers set out to form protected hydroquinone 146 (Scheme 7.2). To accomplish this aniline 148, available in three steps from known materials, was added to the in situ generated acid chloride of carboxylic acid 147, which was available in three steps from known materials. Unfortunately, subjecting triene 146 under ring-closing metathesis conditions lead to no desired product. The authors believe that the catalyst was able to react with the monosubsitituted olefin, but not the 1,1 -disubstituted olefin. Furthermore, due to the meta relationship of the two pieces and the presence of the orthosubsituted methoxy group, it was speculated that considerable conformational strain prohibited proper overlap of the two double bond containing side chains.

Scheme 7.2. Porco's attempted ring-closing metathesis of triene 146.

Having failed at ring-closing metathesis, the Porco group next explored a pathway where hydroquinone 145 would derive from nitrobenzene 151 via reduction and acyl migration. This macrocycle would be formed from O-acylation followed by ring-closing metathesis, and would ultimately derive from nitrobenzene 152 and acid chloride 153 (Scheme 7.3).

145
151
152
153

Scheme 7.3. Porco's revised retrosynthetic analysis of intermediate 145.

In the event, benzylic alcohol 154, available in three steps from known materials, underwent a silyl migration to form intermediate alkoxide 155, which could be reacted with acid chloride 153 to give ester 156. Ring-closing metathesis followed by deprotection gave macrocycle 151, which could be converted to the desired hydroquinone (145) following reduction of the nitro group and exposure to silica gel. Hydroquinone 145 was unstable and was therefore used directly in the next step.

Scheme 7.4. Porco's synthesis of hydroquinone 145.

With access to hydroquinone 145, the Porco group next explored their key transannular [4+3] cyclization. Upon exposure to iodobenzene diacetate the Porco group, although initially
reporting tetracycle 157 was formed, did not obtain any of the desired product, instead isolating quinone 158 as the only product. This error was disclosed in a revision to the original manuscript (Scheme 7.5). ${ }^{5 b}$

Scheme 7.5. Porco's attempted synthesis of tetracycle 157.

7.2 Sarpong's Efforts Towards Tetrapetalone A

Sarpong and coworkers believed tetrapetalone A (130) could arise from late stage phenolic oxidation and glycosylation of tetracycle 159. ${ }^{\text {6b }}$ The tetramic acid moiety would be assembled from a corresponding pyrrole while the olefin in the seven membered ring would derive from the ketone in 160. Pyrrole 160 would ultimately arrive from aryl bromide 161 in a number of steps including a key Nazarov cyclization.

130

159

160

161

Scheme 7.6. Sarpong's retrosynthetic analysis of tetrapetalone A (130).

Beginning with dibromide 162, Sarpong and coworkers formed aryl ketone 161 after lithium-halogen exchange and addition of Weinreb amide 163. The key Nazarov cyclization
proceded in the presence of AICl_{3}, however gave a 9:1 mixture of the undesired cis-diasteromer of the product. Exposure of the undesired isomer to potassium carbonate in warm dioxane induced epimerization and furnished the desired trans-diastereomer 164 in a 4:1 diastereomeric ratio. Reduction and protection of the ketone followed by conversion of the aryl bromide to an aryl azide provided intermediate 165. This could be converted to the desired aryl pyrrole 166 through reduction of the azide and condensation of the resultant aniline with 2,5dimethoxytetrahydrofuran (167) (Scheme 7.7).

Scheme 7.7. Sarpong's synthesis of intermediate 166.

The seven-membered ring of tetrapetalone A (130) was formed in an interesting two step protocol that began with a hydroboration-oxidation sequence applied to aryl pyrrole 166 to provide primary alcohol 168 and concluded with an oxidation that employed the Dess-Martin periodinane. The seven-membered ketone 160 was formed presumably after initial oxidation produced aldehyde 169, which in turn underwent a Friedel-Crafts type reaction, possibly with the aid of an iodine Lewis Acid or hydronium ion, to give secondary alcohol 170. This alcohol could then be oxidized a second time to generate the observed product. Reduction of the derived pyrrole and installation of the requisite ethyl group to furnish 171 was accomplished via exposure of $\mathbf{1 6 0}$ to dissolving metal conditions followed by ethyl iodide. Oxidation of $\mathbf{1 7 1}$ with
$\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ produced lactam 172, which could be converted to the desired tetramic acid (173) in a four step sequence (Scheme 7.8). Tetracycle 173 is the most elaborated compound reported by Sarpong and coworkers. Major challenges left in their synthesis include conversion of the ketone in the seven-membered ring to an olefin, removal of the TBS group from the benzylic alcohol followed by inversion of that alcohol stereocenter, introduction of the sugar moiety, and phenolic oxidation.

Scheme 7.8. Sarpong's synthesis of tetracycle 173.

7.3 Hong's Synthetic Studies Towards the Core of Tetrapetalone A

In 2009, Hong and coworkers published a report detailing synthetic studies on the tetrapetalones. ${ }^{7}$ In their paper they detail a synthetic strategy for the core of tetrapetalone A
(130). Their strategy includes a key Speckamp cyclization, which involves formation of an N acyl iminium ion (176) that can be trapped with the pendant olefin forming a secondary carbocation (177) that can be quenched with a nucleophile to form the six-seven-five system as seen in 178 (Scheme 7.9).

Scheme 7.9. Hong's proposed synthesis of the six-seven-five skeleton of tetrapetalone A.

Their synthesis began with allylic alcohol 179. Johnson-Claisen rearrangement followed by reduction of the resultant ester to the primary alcohol and protection as the benzyl ether gave 180. Reduction and condensation with succinic anhydride gave imide 181, which could be monoreduced to give hydroxylactam 182. Upon exposure to iron trichloride, hydroxylactam 182 underwent the key Speckamp cyclization giving a mixture of diastereomeric tetracycles 183 and 184 (Scheme 7.10).

Scheme 7.10. Hong's synthesis of tetracycles 183 and 184.

The major diastereomer from the Speckamp cyclization (184) was oxidized to give lactone 185. Exposure to polyphosphoric acid led to a Friedel-Crafts/ dehydration sequence that furnished tetracycle 186. Although tetracycle 186 contains the carboskeleton required for tetrapetalone A, it lacks most of the functionality of the natural product. Although there are several interesting steps in the Hong synthesis, considerable effort remains for conversion of their most advanced intermediate to 130.

Scheme 7.11. Hong's synthesis of the barebone skeleton of tetrapetalone A.

Chapter Eight

Previous Approaches in the Wood Group

Prior to my taking over the tetrapetalone project a previous student, Dr. Jennifer Howell, had explored several strategies for incorporating various requisite functional groups. As my work was inspired by Dr. Howell's effort, it will be summarized here. ${ }^{9}$

The first synthetic route studied in our group is outlined in Scheme 8.1. In that scenario tetrapetalone A (130) was envisioned as arising from late stage glycosylation and deprotection of tetracycle 187. A key disconnect in this route was a ring-closing metathesis to form the seven membered ring employing diene 188 as a substrate. The two required olefin components would be installed via a Buchwald-Hartwig coupling of vinyl halide 189 and amide 190.

Scheme 8.1. Initial retrosynthetic analysis of tetrapetalone A (130).

In order to explore the desired Buchwald-Hartwig coupling, initial efforts focused on the synthesis of vinyl halide 189. To access this intermediate it was envisioned that ketone 191 would be reduced and protected. Ketone 191 would arise from an intramolecular Stetter reaction of lactol 192, which itself would result from reduction and phenolic oxidation of ester
193. Ester 193 was seen as arising via a Claisen rearrangement applied to allylic alcohol 194, the product of a Wittig olefination of benzaldehyde 195 (Scheme 8.2).

Scheme 8.2. Retrosynthetic analysis of vinyl halide 189.

In accord with our retrosynthetic plan the synthesis began with a known two step sequence to form aldehyde 197 from phenol $196 .{ }^{10}$ Aldehyde 197 was then transformed in three steps to allylic alcohol 198. Although subjecting 198 to a Johnson-Claisen rearrangement provided a rearranged product, it preferentially gave the undesired syn-diastereomer 199 in a 20:1 ratio over the desired anti-diastereomer (Scheme 8.3)

Scheme 8.3. Synthesis of undesired syn diastereomer 199.

After extensive research, it was found that allylic ester 201 could be formed in five steps from benzaldehyde 200 and subjected to a lithium enolate variant of the Claisen rearrangement
that furnishes the desired anti-product 202. ${ }^{11}$ The latter was readily transformed into phenolic oxidation product 203 in five steps, however, efforts to employ 203 as a substrate in a Stetter reaction failed, presumably due to the sensitivity of this transformation to subtle changes in sterics (Scheme 8.4)

Scheme 8.4. Unsuccessful attempts of the Stetter reaction to form 204.

Due to the difficulties encountered with the Stetter reaction, a new strategy was devised. Ultimately tetracyclic intermediate 187 would be formed from aryl bromide 206 and tetramic acid 190. The key difference in this route is the aryl-amidation and the Stetter reaction would be performed in reverse order, and therefore the Buchwald-Hartwig coupling would occur between 206 and 190 (Scheme 8.5).

Scheme 8.5. Revised strategy for Buchwald-Hartwig coupling.

In accordance with this strategy, the requisite tetramic acid 210 was prepared from the corresponding amino acid derivative 208, which was in turn available in eight steps from serine methyl ester hydrochloride (207). In the key step for the formation of tetramic acid 210, a Dieckmann cyclization of $\mathbf{2 0 8}$ provided protected tetramic acid 209, which could be converted to the desired tetramic acid 210 in two steps. However, all attempts to couple 210 with aryl bromide $\mathbf{2 1 1}$ or derivatives of $\mathbf{2 1 1}$ were unproductive (Scheme 8.6).

Scheme 8.6. Attempted Buchwald-Hartwig coupling to form 212.

In order to circumvent this unsuccessful Buchwald-Hartwig coupling, the coupling partners were simplified (Scheme 8.7). In that regard, aryl bromide 213 and allyl amine were found to successfully form aryl amine 214 under palladium-catalyzed conditions. Conversion of 214 to allylic ester 216 via a two step sequence set the stage for a lithium enolate Claisen rearrangement analogous to that employed previously. Methylation of the derived product produced the RCM substrate 217. Unfortunately, exhaustive efforts to implement the ringclosure failed to produce any of the desired product.

Scheme 8.7. Unsuccessful attempts at ring-closing metathesis.

After the unsuccessfull attempts to perform a Buchwald-Hartwig coupling and subsequent ring-closing metathesis, Dr. Howell attempted to simply reverse the order of these steps (Scheme 8.8). Specifically, tetracyclic intermediate 187 was now seen as arising from an intramolecular Buchwald-Hartwig coupling of 219, which itself would be the product of saponification of eight-membered lactone 220. Lactone 220 would come from a ring-closing metathesis of ester 221, which is the product of linking aryl bromide 222 with tetramic acid 223.

Scheme 8.8. Revised retrosynthetic analysis.

To explore the viability of this route for delivering tetrapetalone $A(\mathbf{1 3 0})$, carboxylic acid 222 and tetramic acid 223 were coupled together to form lactone 221. Unfortunately, the ring closing metathesis of 221 was unsuccessful and did not lead to any of the desired eightmembered lactone 220 (Scheme 8.9). Many variants of 221 were explored, including compounds bearing other tethers and compounds set up for relay ring-closing metathesis; however none of these variations lead to desired product. Thus a new route was established.

Scheme 8.9. Attempted ring-closing metathesis to form lactone 220.

As outline in Scheme 8.10, a new route for the synthesis of tetrapetalone A (130) was designed wherein intermediate 187 was seen as arising from diene 224 via a sequence that would involve an RCM reaction to construct the seven-membered ring and a Dieckmann condensation to complete the tetramic acid. It was postulated that performing the ring-closing metathesis prior to Dieckmann condensation would be beneficial due to increased conformational flexibility in the substrate. Key intermediate 224 would be formed from a Buchwald-Hartwig coupling of aryl halide 225 and amino acid derivative 226.

Scheme 8.10. Revised retrosynthetic analysis of intermediate 187.

Efforts to implement this latest strategy began with the preparation of aryl chloride 229. To this end, dihalophenol 227 was converted to silyl enol ether 228 over eleven steps.

Subjecting silyl enol ether 228 to an intramolecular Tsuji-Trost allylation furnished 229 in moderate yield. To test the viability of the required aryl-amidation reaction, aryl chloride 229 was reacted with allyl amine to give aniline 230. Although the yield is low, it shows that this route may be viable in a synthesis of tetrapetalone A (130). This however, is where Dr. Jennifer Howell's work towards 130 ended.

$\mathrm{H}_{2} \mathrm{~N}^{\sim}$ $\xrightarrow[\text { dioxane, } 80^{\circ} \mathrm{C}]{\text { 215, 231, LiHMDS }}$

Scheme 8.11. Synthesis of aryl amine 230.

Chapter Nine

Formation of the Seven-Membered Ring Utilizing the Aromatic Ring as a

 NucleophileAlthough Dr. Jennifer Howell left a route in place towards tetrapetalone A (130) that was beginning to show some promise, concern over the limitation in scope of the requisite arylamidation reaction and numerous low yielding steps led us to consider a different approach.

9.1 Cascade Friedel-Crafts Approach

As illustrated in retrosynthetic fashion, our initial efforts to redesign the synthesis focused on a plan wherein a key cascade Friedel-Crafts reaction would furnish the tetracyclic core of 130. Specifically, 130 was seen as arising from tetracycle $\mathbf{2 3 2}$ via a sequence involving phenolic oxidation, glycosylation, and decarboxylation (Scheme 9.1). Tetracycle 232 would, in turn, arise from the key cascade Friedel-Crafts sequence in which both the five- and sevenmembered rings would be formed. To access 233, tetramic acid 234 would be employed in a 1,4-addition followed by a Horner-Wadsworth-Emmons olefination. Tetramic acid 234 would be formed rapidly from simple precusors 235 and 236.

Scheme 9.1. Retrosynthetic analysis of tetrapetalone A (130).

In putting our plan into practice, commercially available 3-aminophenol (233) was alkylated with α-bromo ketone 236 to give aniline 237. Exposure to acetic acid in toluene provided the corresponding lactam, which was subsequently protected to give 234 . Ketone 234 could be successfully deprotonated; however subjecting the derived enolate to aldehyde 238 gave a complex mixture of products including the presence of a 1,2-addition product and the desired 1,4-addition product in small amounts (Scheme 9.2).

235

(51\% yield)

234

237

239

Scheme 9.2. Attempted synthesis of 1,4-adduct 239.

Given the presence of a 1,2-addition product in our previous attempt, we sought a method to eliminate this possibility and favor the desired 1,4-adduct 239. Upon searching the literature we became inspired by a report from Yamamoto and coworkers that detailed the use of a bulky Lewis acid (241) to help favor 1,4- and 1,6-addition to aldehydes such as $\mathbf{2 4 0}$ over the corresponding 1,2-addition product (Scheme 9.3). ${ }^{12}$ They found that by initially forming the bulky Lewis acid-aldehyde complex 242, then adding a nucleophile such as t-butyl magnesium chloride, they could obtain a >99:1 ratio of the desired 1,4-product 243 over 1,2-product 244. Delightfully, applying this bulky Lewis acid led, presumably, to the preformed aldehyde complex (245) which, upon addition of the enolate derived from ketone 234 furnished exclusively the 1,4addition product 239 in good yield. This could be further elaborated to acid 247 through a Horner-Wadsworth-Emmons reaction with phosphonate 246 (Scheme 9.4).

Scheme 9.3. Yamamoto's bulky Lewis acid.

Scheme 9.4. Synthesis of acid 247.

With acid 247 in hand we were next ready to investigate the key cascade Friedel-Crafts reaction. This reaction is imagined to proceed via the pathway outlined in Scheme 9.5. Exposing acid chloride 233 to a Lewis acid would activate the leaving group, forming acylium ion 248. Exposure to light would promote a sequence wherein the undesired E-olefin could isomerize to the requisite Z-olefin (i.e. 248 to 251). Oxonium 251 could be quenched via a Friedel-Crafts 1,4-addition from the electron rich aromatic ring forming ketene 252 and the seven-membered ring of tetrapetalone A. Nucleophilic attack from the aromatic ring towards the electrophilic ketene would eventually lead to tetracycle 253. Although we recognized this was an ambitious sequence to propose, we were inspired by work from Wasserman and coworkers that showed in enone 254 they could effect an olefin isomerization in the presence of light before effecting a conjugate addition to form β-amino ketone 256 (Scheme 9.6.a). ${ }^{13}$ Furthermore we had confidence in forming the seven-membered ring through a Friedel-Crafts type reaction based
on a number of reports including the formation of ketone 258 from carboxylic acid 257 (Scheme 9.6.b). ${ }^{14}$

Scheme 9.5. Proposed cascade Friedel-Crafts to form tetracycle 253 from acid chloride 233.
a)

b)

Scheme 9.6. Literature precedent showing a) an olefin isomerization before conjugate addition and b) a Friedel-Crafts type acylation forming a seven-membered ring.

In accordance with the above strategy carboxylic acid 245 was converted to acid chloride 233 and subjected to various conditions to perform the desired cascade Friedel-Crafts reaction (Scheme 9.7). Unfortunately, under none of the screened conditions was the desired product $\mathbf{2 5 3}$ obtained. To test the reactivity of acid chloride $\mathbf{2 3 3}$ in a Friedel-Crafts reaction, it was reacted with anisole and ketone 259 was obtained (Scheme 9.8). Thus it appeared the isomerization of the double bond was not occurring and a new strategy was devised.

Scheme 9.7. Attempts at cascade Friedel-Crafts pathway.

233

259

Scheme 9.8. Successful Friedel-Crafts with anisole.

9.2 Intramolecular m-Allyl Approach

Given the difficulties that occurred in the isomerization event in the cascade FriedelCrafts strategy, we became interested in other bond forming strategies that could both facilitate the double bond isomerization, and provide a sufficient electrophile to interact with the aromatic
ring. We believed that a palladium π-allyl species offered a nice solution due to the fact that palladium π-allyls can exist in both η^{1} and η^{3} binding modes, and the presence of an η^{1} - π-allyl would allow for bond rotation and olefin isomerization (Scheme 9.9). In that regard previously synthesized aldehyde 239 would be converted to allylic carbonate $\mathbf{2 6 0}$ by Grignard addition and trapping the resultant alkoxide with methyl chloroformate. Exposing allylic carbonate $\mathbf{2 6 0}$ to palladium(0) would form palladium m-allyl 261, which could undergo an olefin isomerization event through an η^{1}-m-allyl intermediate $\mathbf{2 6 2}$ to form π-allyl 263. Attack from the aromatic ring would construct the requisite seven-membered ring giving intermediate 264.

239

262

260

263

261

264

Scheme 9.9. Proposed π-allyl pathway to form the seven-membered ring (264).

To test the viability of the palladium m-allyl reaction, aldehyde 239 was reacted with methyl Grignard followed by methyl chloroformate to give allylic carbonate 265. Subjecting 265 to palladium(0) resulted only in starting material and none of desired product 266. In order to help promote this reaction, specifically to help with the oxidative addition, bisallyl carbonate 268 was synthesized in a similar fashion to $\mathbf{2 6 5}$. Subjecting 268 to palladium(0) at $110^{\circ} \mathrm{C}$ resulted in none of the desired product 270, instead giving fused tricycle 269 (Scheme 9.10). A crystal
structure of 269 was obtained to verify its structure. A potential mechanism for the formation of this interesting compound is depicted in Scheme 9.11. Initial oxidative addition of allylic carbonate 268 forms η^{3}-m-allyl 271. Migration to η^{1}-m-allyl 272 allows for bond rotation and subsequent formation of η^{3}-m-allyl 273. It is important to note that the olefin isomerization observed in this product is precisely what we desired in our planned reaction, and $\eta^{3}-\pi-$ allyl 273 is the intermediate we hoped to access. However at this point the reaction deviates from our plan. Instead of the aromatic ring acting as a nucleophile, we are observing nucleophilic attack from the ketone towards the m-allyl forming oxocarbenium 274. A transannular Prins-type reaction then leads to observed fused tricycle 269, the product of a formal [3+2] cycloaddition.

239

239

269

Scheme 9.10. Attempted palladium m-allyl reactions.

Scheme 9.11. Proposed mechanism for the formation of fused tricycle 269.

In considering the mechanism leading to the production of 269 we became curious as to what effect removing the terminal methyl group would have on the course of the reaction. Elimination of a proton from this methyl group furnishes the exomethylene and was seen as potentially facilitating the observed Prins-type reaction. We hypothesized that removal of this methyl group entirely could potentially eliminate this undesired pathway thereby leading to reformation of palladium π-allyl species 273 and potentially the desired product. Gratifyingly, by utilizing the compound lacking the methyl group (275) none of this undesired formal [3+2] product was obtained. It also however, did not give the desired seven-membered product, instead giving undesired five-membered product 276 (Scheme 9.12). Although this mode of cyclization was a concern, we were uncertain to what extent ring strain and sterics would govern the 5- vs. 7-membered ring formation. Clearly this experiment establishes the regiochemical preference; however, more importantly it demonstrated that a π-allyl species could be formed and trapped with the aromatic nucleophile in our system. Thus we sought a way to bias the system into selectively forming the desired seven-membered ring.

275

Scheme 9.12. Synthesis of tricycle 276.

Chapter Ten

A Transannular m-Allyl Approach

Although in the previous approach we were unable to form our desired product, we established that a palladium π-allyl species could be formed and would undergo E-to- Z isomerization to furnish a m-allyl intermediate capable of undergoing nucleophilic attack by the pendant aromatic ring. Encouraged by these results we initiated an effort to adjust the regiochemical outcome so as to favor the formation of the desired seven-membered ring.

10.1 A Transannular m-Allyl Approach

In order to control the regiochemistry, we envisioned starting with a ten-membered ring and forming the desired 5,7-ring system through a transannular attack from the aromatic ring onto a palladium π-allyl species. In accordance with this strategy tetrapetalone A (130) would ultimately arise from hydroboration, glycosylation, phenolic oxidation, and decarboxylation of 277. Tetracycle 277 would be the product of the key transannular palladium m-allyl reaction, which would utilize allylic carbonate 278 as a starting point. It is important to note that while in this route we are choosing to start with the allylic carbonate shown, this reaction could be initiated from a regioisomeric allylic carbonate, and thus gives us flexibility in our synthetic approach. Nevertheless, allylic carbonate 278 would arise from triene 279 through a ringclosing metathesis. Although previous routes toward 130 employing a ring-closing metathesis have failed, we believed this particular substrate had advantages relative to the other approaches. The monosubstituted olefin is more remote to the fully substituted carbon rather than being neopentyl as in other approaches in our group (cf. Chapter 8). In comparison to Porco's failed ring-closing metathesis, wherein the substrate contained a meta-substituted
aromatic ring, there is only a proton in the ortho position compared to the bulkier methoxy group in their case (cf. 146 to 149, Scheme 7.2). Triene 279 would come from ketone 280 after a 1,4addition/ elimination followed by Wittig sequence and a Grignard addition into the methyl ester, and ketone 280 would be formed from aniline 281 and alkyl bromide 238 (Scheme 10.1).

Scheme 10.1. Retrosynthetic analysis of $\mathbf{1 3 0}$ utilizing a transannular m-allyl reaction.

A more detailed mechanistic pathway for the proposed transannular palladium m-allyl reaction is outlined in Scheme 10.2. As illustrated, it was envisioned that initial oxidative addition to allylic carbonate 278 would provide η^{3} - π-allyl 282. By inspecting molecular models, it does not appear this palladium π-allyl species is accessible by the aromatic ring with the neighboring olefin in the E orientation. However, migration to $\eta^{1}-\pi$-allyl 283 would allow for bond rotation and migration to give $\eta^{1}-\pi$-allyl 285, which now contains the requisite Z-double bond and appears to be conformationally accessible to undergo nucleophilic attack from the aromatic ring to lead to tetracycle 277.

Scheme 10.2. Proposed transannular palladium m-allyl reaction.

To explore the plan outlined above, we initially set out to prepare triene 279. Ester $\mathbf{2 8 1}{ }^{15}$ was chosen as a departure point due to the fact it was a known compound and we believed the presence of the methyl ester would be a good precursor to the allylic alcohol we eventually wanted to synthesize (i.e 279, Scheme 10.1). With that in mind, ester 281 was alkylated with alkyl bromide 238 under the same conditions as used previously (see: $\mathbf{2 3 6}$ to $\mathbf{2 3 7}$ Scheme 9.2). Unfortunately, the presence of the electron withdrawing ester lessened the reactivity of the aniline and 286 was only formed in 17% yield. Efforts to increase this yield by changing the iodide source, adding base, or adding silver did not lead to improvement, only to similar yields in the best case or more decomposition in the worst. Although the yield was low we decided to move forward and explore the subsequent chemistry. Aniline $\mathbf{2 8 6}$ could be converted cleanly to tetramic acid $\mathbf{2 8 0}$ after ring-closure and TIPS protection. The requisite diene was installed with the 1,4-addition/ elimination sequence utilizing the bulky Lewis acid developed by Yamamoto and coworkers, and the resultant aldehyde olefinated under Wittig conditions. At this point the ester needed to be converted to the allylic carbonate, however this ester once again proved problematic, proving unreactive to either Grignard addition or reduction and in the best case
only giving trace product (Scheme 10.3). Given the deleterious influences of the methyl ester, we began to consider alternative routes wherein the ester has been removed.

$\begin{array}{ll}288 & \mathrm{R}=\mathrm{H} \\ 289 \mathrm{R}=3 \\ 2\end{array}$

Scheme 10.3. Synthesis of unreactive ester 287.

10.2 Implementation of Hartwig's Borylation Conditions

Given the difficulties with the ester we decided to return to the original method of building the tetramic acid by employing 3-aminophenol (235) as the aromatic precursor (cf. 235 to 234, Scheme 9.2). Although removing the ester is advantageous for the production of 234, it creates a new problem in that we have an unreactive $\mathrm{C}-\mathrm{H}$ bond in 234 where we eventually need an allylic alcohol (Scheme 10.4.a). Therefore we sought a method to selectively functionalize this position to form an intermediate (290), which contains functionality that could eventually be transformed into allylic alcohol 279. Due to the presence of the electron donating methoxy group, we believed classical electrophilic aromatic substitution would not be compatible with the substitution pattern we required. Instead we became inspired by the work of Hartwig and
coworkers, who described that by employing a catalyst system based on $[\operatorname{lr}(\mathrm{OMe})(\mathrm{cod})]_{2}$ and dtbpy as a ligand in the presence of $\mathrm{B}_{2} \mathrm{Pin}_{2}$, they could functionalize aromatic $\mathrm{C}-\mathrm{H}$ bonds and obtain aryl boronic esters such as 292 as products (Scheme 10.4.b). ${ }^{16}$ Furthermore they found that when the starting arene contained two substituents in a 1,3-orientation (i.e. 291) they could exclusively obtain the $1,3,5$-substituted product 292. They propose that steric effects predominate in determining the observed regioselectivity in this reaction, and in fact they could utilize compounds bearing both electron donating and withdrawing groups successfully.

b)

Scheme 10.4. Hartwig's iridium-catalyzed borylation.

Excited by the possibilities this transformation could provide, TIPS-protected phenol 234 was subjected to the standard borylation conditions developed by Hartwig and coworkers. Unfortunately only starting material was obtained (Scheme 10.5.a). Although the Hartwig group was successful using one bulky group such as -OTIPS, they did not report any substrates possessing two bulky groups such as the -OTIPS and tetramic acid moieties in our substrate (234). In an effort to minimize the steric demand in our substrate, we opted to switch our TIPS protecting group to the sterically less demanding methyl, and therefore 295 was prepared in one
step from phenol 294. Gratifyingly, subjecting methyl-protected phenol 295 to the borylation conditions delivered aryl boronic ester 296 in good yield (Scheme 10.5.b).
a)

234
b)

294

295

293

296

Scheme 10.5. a) Unsuccessful borylation of 234 and b) successful borylation of 295.

With aryl boronic ester 296 in hand, we next explored methods to further elaborate this compound (Scheme 10.6). Our initial thoughts were to utilize boronic ester 296 directly in a Suzuki coupling. In accordance with this, aryl boronic ester 296 was coupled with 2-butenyl bromide to give styrene 297. Exposure to a one-pot dihydroxylation/ oxidative cleavage furnished aryl ketone 298. We hoped that we could selectively functionalize the kinetically more accessible aryl ketone by converting it to silyl enol ether 299 or enone 300. However, this was met with no success.

Scheme 10.6. Synthesis of bisketone 298.

While we were exploring the reactivity of aryl ketone 298, we also were investigating other routes to enone 300. Given the two-step procedure we were utilizing for the production of 298 plus at least one more step for the installation of the exomethylene, we believed a more direct route could be realized. Specifically we imagined enone $\mathbf{3 0 0}$ could be formed directly from aryl bromide 301 through a carbonylative Stille reaction (Scheme 10.7). ${ }^{17}$ Although we would have to access aryl bromide 301 from aryl boronic ester 296, Hartwig and coworkers have shown that their iridium-catalyzed borylation products can be converted to aryl bromides by simply removing the solvent from the first step and, in the same pot, exposing the mixture to copper (II) bromide. ${ }^{18}$

Scheme 10.7. Revised retrosynthetic analysis of enone 300.

Thus protected phenol 295 could be subjected to the previously employed borylation conditions, and after simple removal of solvent, could be subjected to copper (II) bromide to form aryl bromide 301 in good yield and only one purification step. Aryl bromide 301 proved to be a valuable synthetic intermediate, as it was a competent cross-coupling partner. In the presence of vinyl stannane 302 and carbon monoxide carbonylative Stille product 300 was produced from 301 albeit in low and variable yields. Nevertheless, ketone $\mathbf{3 0 0}$ could participate in the 1,4-addition/ elimination followed by Wittig sequence to furnish triene 303. Reduction of the enone under Luche conditions provided allylic alcohol 304. With this synthetic route we were able to access two possible ring-closing metathesis precursors, 303 and 304.

Scheme 10.8. Succesful synthesis of ring-closing metathesis precursors 303 and 304.

With trienes 303 and 304 in hand, we next explored the ring-closing metathesis. ${ }^{19}$ We recognized this was going to be a difficult ring-closing metathesis from the outset. We are attempting to form a ten-membered ring, and while medium sized rings such as this are both enthalpically and entropically unfavored, others have had success forming these ring systems via ring-closing metathesis. ${ }^{20}$ Although ten-membered rings have been formed via ring-closing metathesis, as far as we can tell there are no examples where a meta-substituted aromatic ring
is embedded in that ring. There are, however, examples of forming larger rings embedded with meta-substituted aromatic rings ${ }^{21}$ and thirteen-membered rings containing a para-substituted aromatic ring. ${ }^{22}$ Additionally by inspecting molecular models of our system, it appeared a conformation was accessible where there was significant overlap of the two double bonds. Our system also contained a 1,1-disubstituted double bond, which is known to be less reactive towards ring-closing metathesis. ${ }^{23}$ However, we were hopeful that the process could initiate at the terminal olefin, making the reaction with the 1,1-disubstituted double bond intramolecular, and hopefully more facile. Unfortunately, exposing enone 303 to Grubbs II (150), HoveydaGrubbs II (306), or the less sterically encumbered variant $\mathbf{3 0 7}^{24}$ lead only to recovered starting material (Scheme 10.9). Allylic alcohol 304, while only being subjected to catalyst 307, also displayed no reactivity to the ring-closing metathesis (Scheme 10.10). The fact that only starting material was obtained and no dimeric products were observed suggests that catalyst could not initiate at either olefin. Although there are many catalysts and variants of ring-closing metatheses that we could try, we decided that our time would be best spent exploring other routes to our desired ten-membered ring.

303
305

150

306

Scheme 10.9. Attempted ring-closing metathesis of enone 303.

Scheme 10.10. Attempted ring-closing metathesis of allylic alcohol 304.

10.3 A Nozaki-Hiyama-Kishi Approach to the Desired Ten-Membered Ring

After unsuccessfully attempting to form the desired ten-membered ring needed for the transannular palladium π-allyl reaction through a ring-closing metathesis strategy, we opted to explore other routes. Specifically we believed that tetrapetalone $A(130)$ could still arise from tetracycle 309, which would be the product of the same type of transannular palladium π-allyl reaction as outlined in Scheme 10.2. The precursor in this instance, 310, would be regioisomeric to the allylic carbonate previously targeted (cf. 278 Scheme 10.2). By transposing the allylic carbonate, 310 could be generated from a Nozaki-Hiyama-Kishi (NHK) reaction of vinyl iodide 311, which would be the product of a modified Wittig-olefination and the 1,4addition/ elimination sequence applied to aldehyde 312. Aldehyde 312 would arise from formylation of bromide 301. ${ }^{25}$

Scheme 10.11. Revised retrosynthetic analysis of tetrapetalone A (130).

To access benzaldehyde 312, direct formylation of aryl bromide 301 was explored (Table 10.1). Subjecting 301 to palladium-catalyzed formylation conditions in the presence of carbon monoxide and a reductant unfortunately gave no product (entries 1 - 3). Lithiumhalogen exchange followed by quenching with DMF only led to decomposition (entry 4). Although the direct formylation warrants further exploration, concurrent to these investigations the two-step procedure described in Scheme 10.12 was successfully implemented. In that sequence aryl bromide 301 was first converted to styrene 313 through a Stille coupling and benzaldehyde 312 was formed after a one-pot dihydroxylation/ oxidative cleavage. Although a direct formylation would be a more efficient route, this two step process provided enough material to explore further reactions.

Table 10.1. Attempted formylations of aryl bromide 301.

1	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{DMF}, \mathrm{CO}, 90^{\circ} \mathrm{C}$
2	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{NaCO}_{2} \mathrm{H}, \mathrm{DMF}, \mathrm{CO}, 80^{\circ} \mathrm{C}$
3	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{DMF}, \mathrm{CO}, 80^{\circ} \mathrm{C}$
4	$n \mathrm{BuLi}, \mathrm{THF}-78{ }^{\circ} \mathrm{C}$ then DMF

Scheme 10.12. Synthesis of aldehyde 312.

With benzaldehyde 312 in hand we looked to elaborate this compound to the desired NHK precursor 311. Thus 312 was subjected to modified Wittig conditions to install the desired vinyl iodide giving 314, albeit in low yield. ${ }^{26}$ While attempting to install the α, β-unsaturated aldehyde applying our standard 1,4-addition/ elimination sequence, we observed none of the desired product 311. We instead isolated a product (315) where the desired α, β-unsaturated aldehyde was incorporated, however, the vinyl iodide also eliminated to form an alkyne. Unfortunately we were unable to attempt the Nozaki-Hiyama-Kishi reaction due to inability to form the proper precursor.

312

315

314

Scheme 10.13. Attempted synthesis of NHK precursor 311.

Although we were unable to try the NHK reaction, we were intrigued by this alkyne byproduct. Specifically we became interested in utilizing this intermediate in a nickel-catalyzed reductive alkyne-aldehyde coupling. ${ }^{27}$ We were intrigued by this reaction due to its use both to form medium to large ring systems, and in complex natural products synthesis. Montgomery and coworkers utilized this reaction in the late stages of their aigialoymycin (318) synthesis, forming protected allylic alcohol 317 from ynal 316 (Scheme 10.14). ${ }^{28}$

Scheme 10.14. Montgomery's synthesis of Aigalomycin utilizing a reductive alkynealdehyde coupling.

Before we explored this chemistry we sought a more direct route to ynal 315. To accomplish this, aryl bromide 301 was subjected to a Sonogashira coupling to install the alkyne and the α, β-unsaturated aldehyde was installed in the usual fashion to give 315. Unfortunately, subjecting this ynal to standard nickel catalyzed conditions provided none of the desired product, only giving recovered starting material (Scheme 10.15). This result is most likely due to the aldehyde and the alkyne not being able to adopt a conformation wherein the two reactive species are in close enough proximity to react.

Scheme 10.15. Attempted nickel-catalyzed alkyne-aldehyde coupling.

At this point we had attempted multiple routes towards a transannular palladium m-allyl precursor and although we believed this is still an interesting and potentially useful synthetic transformation, we decided to explore other synthetic strategies towards tetrapetalone A due to the difficulties in accessing the desired meta-substituted ten-membered ring.

Chapter Eleven

Revisiting the Previous m-Allyl Strategy

After unsuccessfully attempting a transannular palladium π-allyl approach to form the tetracyclic core of tetrapetalone $\mathrm{A}(\mathbf{1 3 0})$, we decided to take a step back and devise a new strategy. While we were still interested in forming the seven-membered ring of 130 through attack of the aromatic ring onto a palladium m-allyl species, we needed a way to bias the attack towards formation of the seven-membered ring. Recall that when allylic carbonate 275 was utilized in this reaction, none of the desired product was obtained, instead producing the undesired five-membered ring 276 (Scheme 11.1). This was due to intial formation of palladium m-allyl 320, which we had hoped to access due to the need to isomerize that double bond. In intermediate 320, there are two possible ways the aromatic ring could attack the palladium $\pi-$ allyl species, either by forming the desired seven-membered ring (path a) or the undesired fivemembered ring (path b). If we were to remove the double bond α to the tetramic acid moiety, we now only have access to palladium π-allyl 322, which cannot access a five-membered product, instead the attack can only occur to form an undesired nine-membered ring (path a) or the desired seven-membered ring (path b), which we believed would be more favorable (Scheme 11.2).

Scheme 11.1. Our previous π-allyl attempt that led to five-membered product 276.

Scheme 11.2. Revised palladium т-allyl strategy.

11.1 Testing a New Palladium т-Allyl Approach

To test this new strategy, allylic carbonate 321 was synthesized in two steps. First ketone 295 was subjected to 1,4-addition conditions utilizing precoordinated methacrolein as the electrophile to furnish saturated aldehyde $\mathbf{3 2 5}$. Then 325 was exposed to vinyl magnesium bromide followed by methyl chloroformate to provide allylic carbonate 321. When heated to 80 ${ }^{\circ} \mathrm{C}$ in the presence of palladium(0) 321 only delivered recovered starting material. Raising the temperature did not help, and only led to decomposition of the starting material (Scheme 11.3). The unreactivity of $\mathbf{3 2 1}$ could be due to the removal of the double bond α to the tetramic acid,
given that in our previous system (cf. 275 to 276) a doubly allylic carbonate was required for the oxidative addition to proceed.

Scheme 11.3. Attempted palladium m-allyl reaction on substrate lacking double bond.

Concurrent to our investigations of allylic carbonate 321, we also were interested in an allylic epoxide as the precursor for the palladium m-allyl reaction (Scheme 11.4). This was appealing due to the fact that the product (328) would contain an alcohol that could later be eliminated to form the double bond present in the natural product (i.e. 329).

Scheme 11.4. Allylic epoxide palladium π-allyl approach.

To access the required epoxide 327, acrolein was reacted with known ylide 331^{29} to form ester 332, which was then reduced to give allylic alcohol 333. The allylic double bond was selectively epoxidized in the presence of a vanadium catalyst to furnish $334 .{ }^{30}$ Alcohol 334 was then converted to bromide 335 and tosylate 336 under standard conditions (Scheme 11.5.a). We looked to incorporate this epoxide-containing piece into our system, however subjecting the enolate derived from ketone $\mathbf{2 9 5}$ with either $\mathbf{3 3 5}$ or $\mathbf{3 3 6}$ lead only to decomposition (Scheme 11.5.b).

Scheme 11.5. a) Synthesis of epoxide 335 and 336 and b) attempts to form allylic epoxide 327.

11.2 Revisiting the Friedel-Crafts Approach

While we were encountering difficulties in the palladium m-allyl approach, we began to think about other methods to form the desired seven-membered ring. Given that we already
had aldehyde 325 in hand, we envisioned that ketone 339 could be accessed in quick fashion through a Friedel-Crafts acylation of acid chloride 338 (Scheme 11.6). ${ }^{14}$ Since 338 lacked the olefin α to the tetramic acid moiety, we believed this substrate was better suited for a FriedelCrafts reaction compared to our previous approach (cf. Section 9.1).

Scheme 11.6. Proposed Friedel-Crafts pathway to ketone 339.

Carboxylic acid 337 was thus formed through a Pinnick oxidation of aldehyde 325. We were delighted to find that by first converting 337 to the acid chloride and subjecting the crude material to aluminum trichloride in dichloroethane at $65^{\circ} \mathrm{C}$ the desired seven-membered ketone (339) was obtained in good yield (Scheme 11.7). As we ultimately wanted a double bond in the seven-memebered ring, we next explored oxidizing ketone 339 (Table 11.1). Although various conditions were attempted to form enone 340, none of the desired product was obtained, instead returning recovered starting material in most cases.

Scheme 11.7. Synthesis of ketone 339 via Friedel-Crafts reaction.

Table 11.1. Attempted oxidation of ketone 339 to enone 340.

To circumvent the difficulties encountered in the oxidation to enone 340, we looked to install a synthetic handle that could be eliminated after the Friedel-Crafts reaction. This was realized by subjecting ketone 295 to the same 1,4-addition conditions as before employing methacrolein precoordinated to the bulky Lewis acid developed by Yamamoto and coworkers followed by quenching the intermediate enolate (341) with bromine, to furnish α-bromo aldehyde 342. Gratifyingly 342 could undergo oxidation to carboxylic acid 343 followed by conversion to the acid chloride and Friedel-Crafts acylation to provide seven-membered ketone 344 (Scheme 11.8).

295

341

342

343

(49\% yield, two steps)

Scheme 11.8. Formation of α-bromo ketone 344.

With a-bromo ketone 344 in hand, we next looked to eliminate the bromide to form enone 345, which was realized upon addition of DBU. To test the reactivity of enone 345, isopropenyl magnesium bromide (267) was added and allylic alcohol 346 was formed. Furthermore, exposure of 346 to $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ allowed access to tetracycle 347 , a compound that contains all the carbons present in the tetrapetalone A core. Although we were excited to access 347, this compound would require significant functional group manipulations to access the natural product and thus we sought an alternate strategy to form this five-membered ring, one that would be better suited for the completion of the natural product.

Scheme 11.9. Elimination of α-bromo ketone 344 to form enone 345 and elaboration to tetracycle 347.

11.3 A New Strategy Towards Tetrapetalone A Utilizing the Friedel-Crafts Acylation

At this point we had developed an effective method to form the desired sevenmembered ring, however the product we had obtained thus far (i.e. 345) lacked the functionality necessary to access the natural product. We believed that by targeting tetracycle 348 as a late stage intermediate, we would be in good position to finish the natural product (Scheme 11.10). In the final steps of this scenario, tetracycle 348 would be subjected to a hydroboration/ oxidation sequence followed by decarboxylation to furnish the natural product (130). Tetracycle 348 would in turn be derived from styrene 349 or vinyl stannane 350 through a palladium catalyzed opening of the allylic epoxide, which would both form the five-membered ring and deliver the $C(15)-O$ bond present in the natural product. Both 349 and 350 could be produced from alkyne 351, which would be derived from aldehyde 352 through Friedel-Crafts acylation and Sonogashira coupling.

Scheme 11.10. Revised retrosynthetic analysis of tetrapetalone A (130).

An alternate strategy to tetrapetalone $A(130)$ is outlined in Scheme 11.11 and differs from the approach in Scheme 11.10 in that the tetracyclic core of tetrapetalone (i.e. 353) would be formed from intramolecular nucleophilic attack of ketone 354 onto the pendant epoxide with the aid of a Lewis acid or palladium. Ketone 354 would be derived by hydrolysis of alkyne 351, which would prove to be a valuable departure point to explore the different strategies outlined in both Scheme 11.10 and Scheme 11.11.

Scheme 11.11. Alternate retrosynthetic analysis of tetrapetalone A (130).

With a synthetic plan in place, we first looked to target alkyne 351. As we had bromide 301 in hand from a previous route (cf. Scheme 10.8), we choose to first explore the FriedelCrafts reaction on the compound with the bromide in place. To simplify the Friedel-Crafts reaction in our initial explorations, we choose to leave out the bromine quench and instead target aldehyde 355, which was formed by subjecting aryl bromide 301 to the 1,4 -addition sequence. Oxidation of 355 under Pinnick conditions provided carboxylic acid 356. Unfortunately Friedel-Crafts acylation on the acid chloride derived from 356 only resulted in recovered acid chloride. Thus the Friedel-Crafts acylation was not compatible with the aryl bromide already in place (Scheme 11.12).

Scheme 11.12. Attempted Friedel-Crafts acylation of aryl bromide 356.

To further investigate the Friedel-Crafts reaction with additional functionality, we choose to install the alkyne first. Coupling aryl bromide 301 with propyne proceeded uneventfully to provide aryl alkyne 358, which could react with precoordinated methacrolein (324) to furnish aldehyde 359. Oxidation under Pinnick conditions delivered acid 360, which after being
converted to the acid chloride, was subjected to aluminum trichloride. Unfortunately this also led to no desired product, in this case only giving decomposition (Scheme 11.13).

Scheme 11.13. Attempted Friedel-Crafts acylation of aryl alkyne 360.

11.4 Installation of the Alkyne After the Friedel-Crafts Reaction

It seemed that the presence of an additional substituent on the aromatic ring completely shut down the Friedel-Crafts reaction. Therefore we decided that instead of starting with a substituent in place, we would look to install the desired functionality after the seven-membered ring had been formed (Scheme 11.14.a). However, in that case we would need to find a way to selectively functionalize the $\mathrm{C}-\mathrm{H}$ bond ortho to the ketone. Around the time we were thinking about this transformation a paper by Dong and coworkers was published in the literature which outlined the use of ketones as directing groups in the $\mathrm{C}-\mathrm{H}$ oxidation to form phenols (Scheme
11.14.b). ${ }^{31}$
a)

b)

Scheme 11.14. a) The desired functionalization of enone $\mathbf{3 4 5}$ and b) Dong's selective C H oxidation utilizing a ketone as a directing group.

Gratifyingly we found that by exposing ketone $\mathbf{3 4 5}$ to the conditions developed by Dong and coworkers, we could obtain phenol 365 in good yield (Scheme 11.15). Furthermore the phenol could be elaborated to aryl triflate 366, which proved to be competent in the Sonogashira coupling with propyne to deliver alkyne 351 . By utilizing Dong's $\mathrm{C}-\mathrm{H}$ functionalization procedure we were able to circumvent the problems that arose in the Friedel-Crafts reaction when that position was prefunctionalized.

Scheme 11.15. Synthesis of keto alkyne 351.

Chapter Twelve
 Exploring the Phenolic Oxidation

While we were exploring ways to install the desired alkyne to form intermediate 351, we also were investigating the phenolic oxidation to form the desired allylic epoxide.

12.1 Deprotection Problems

In order to test the viability of the phenolic oxidation to form an allylic alcohol, the sequence starting with ketone 345 was initially explored (Scheme 12.1). To access phenolic oxidation precursor 368 , ketone 345 was reduced under Luche conditions to give allylic alcohol 367. Interestingly it appeared that the ketone was being selectively reduced, which we hypothesized was based on the shape of the molecule, however at this point we were unsure which diastereomer was being favored. Nevertheless, 367 was subjected to conditions to remove the methyl protecting group; however this reaction was met with no success.

Scheme 12.1. Attempted removal of methyl protecting group.

Due to the difficulties encountered in methyl removal, we felt the best course of action was to explore other protecting groups. Recall we were initially utilizing a TIPS protecting group on the phenol and the only reason we had switched to the -OMe ether was to facilitate the iridium catalyzed borylation (cf. 294 to 295, Scheme 10.5). Since our current route no longer
featured that transformation, we believed returning to the TIPS group would be worthwhile. Additionally, as we had previously utilized this protecting group, we were confident it would be compatible with our current chemistry, including the 1,4-addition, and be readily removed. The biggest question mark we had with the TIPS group was how it would fare in the Friedel-Crafts reaction.

In that regard, previously accessed ketone 234 was convered to α-bromo aldehyde 370 under the now standard conditions. Pinnick oxidation and conversion to the acid chloride proceeded smoothly, however exposure to the previously employed Friedel-Crafts conditions only provided 372 in a 25% yield, with a significant amount of TIPS removal observed. After a screen of Lewis acids it was found that tin tetrachloride was competent at promoting this reaction and a 61% yield of α-bromo ketone 372 was obtained. Elimination of the bromide reliably produced enone 373 (Scheme 12.2).

Scheme 12.2. Synthesis of TIPS protected ketone 373.

Although attempts to functionalize alkyne 376 will be discussed in later sections, we wanted to show that the chemistry to install this functionality was compatible in the -OTIPS
series. Therefore, ketone 373 was selectively oxidized to provide phenol 374, which was converted to triflate 375. Coupling with propyne under Sonogashira conditions delivered alkyne 376 in good yield (Scheme 12.3).

Scheme 12.3. Synthesis of TIPS protected alkyne 376.

12.2 Phenolic Oxidation Attempts

With enone 373 in hand, we once again set out to explore the phenolic oxidation pathway to form allylic epoxide 369. To that end, 373 was reduced under Luche conditions, which delivered allylic alcohol 377. Gratifyingly, the TIPS protecting group could be removed upon exposure to TBAF. With a successful synthesis of phenolic oxidation precursor 368, we looked to explore this transformation. Subjecting 368 to hypervalent iodine led to a complex mixture of products, with none of the desired product obtained (Scheme 12.4). ${ }^{32}$ During the time we were exploring this reaction, in an effort to assign the stereochemical outcome of the Luche reduction, we were able to obtain a crystal structure of methyl protected allylic alcohol 367 (Figure 12.1). It is important to note that the crystal structure shown is the enantiomer of the
product shown; however this compound is racemic so the only important sterochemical information that can be obtained from this crystal structure is in the relative sense. Nevertheless, by inspecting the crystal structure, the relative stereochemistry of the newly formed allylic alcohol was found to be in the desired syn orientation to the ethyl group of the tetrasubstituted carbon. However, the allylic alcohol also appeared to be completely in the plane of the aromatic ring. This observation suggested to us that the phenolic oxidation that we were currently exploring was likely unable to proceed due to an inability to have significant overlap with the generated carbocation.

Scheme 12.4. Attempted phenolic oxidation to form epoxide 369.

Figure 12.1. Crystal structure of allylic alcohol 367.

Although spiroepxoide 369 appeared to be inaccessible, we were not deterred. To circumvent this conformational incompatibility, we opted to target cyclic carbonate 381 as a palladium m-allyl precursor instead. We believed that by exposing Boc-protected alcohol 379 to phenolic oxidation conditions we would access carbocation 380. The Boc group should have sufficient flexibility that it can access a conformation (i.e. $\mathbf{3 8 0}$), where the carbonyl can interact with the carbocation to form cyclic carbonate 381 (Scheme 12.5). Although to the best of our knowledge that are no reports of forming cyclic carbonates through this pathway, we were inspired by a recent report by Sarpong and coworkers outlining the synthesis of cyclic carbamate 384, which they formed from phenol 382 through a similar intermediate (383) to the one we are proposing. They utilized intermediate 384 in their synthesis of the core structure (385) of the hetidine natural products. ${ }^{33}$ Although we recognized that carbamates are better nucleophiles than carbonates, we believed this difference was minor and that our proposed transformation was feasible.

381

Scheme 12.5. Proposed synthesis of cyclic carbonate 381.

382
 (54% yield)

383

Scheme 12.6. Sarpong's synthesis of 384.

In accordance with this strategy, allylic alcohol 377 was protected with $\mathrm{Boc}_{2} \mathrm{O}$ to give allylic carbonate 378. With the requisite carbonate formed, we next explored methods to remove the TIPS group. Unfortunately, thus far we have been unable to remove the TIPS protecting group under a variety of fluoride-mediated conditions (Scheme 12.7). We are hesitant to expose 378 to strongly acidic conditions due to the presence of the acid sensitive carbonate. Although we have been unable to access phenol 379 thus far, we are still in the process of exploring methods to access this enticing intermediate.

Scheme 12.7. Attempted synthesis of phenol 379.

Chapter Thirteen

Elaboration of the Alkyne

To ultimately gain access to tetrapetalone A (130), we sought a method to form the final five-membered ring. We hoped to form this ring by elaborating alkyne 351 into a suitable nucleophile (cf. Schemes 11.10 and 11.11). We believed that vinyl stannanes, olefins, ketones, and silyl enol ethers would all be viable nucleophiles in this approach. Thus syntheses of these compounds were explored.

13.1 Attempts to Form a Vinyl Stannane

We first targeted a vinyl stannane, as vinyl stannanes have been reported in the literature to react intramolecularly with palladium m-allyl species. ${ }^{34}$ Therefore our planned reaction pathway is outlined in Scheme 13.1. Oxidative addition into allylic carbonate 386 would, after loss of CO_{2}, form palladium π-allyl 387, which is represented as the η^{1} - π-allyl. Transmetallation from the vinyl stannane would form palladium intermediate 388, which could undergo reductive elimination to form tetracycle 348.

Scheme 13.1. Proposed synthesis of tetracycle 348 from vinyl stannane 386.

We hoped to install the requisite vinyl stannane by hydrostannylation of alkyne 389. Because we hoped to acces the anti-hydrostannylated product 390, we were attracted to radical conditions to perform this transformation. ${ }^{35}$ Initial experiments on alkyne 389 included the use of a trialkyl tin hydride and a radical initiator; however, none of the desired product was obtained (Table 13.1). We are currently in the process of screening other tin hydride species and radical initiators.

Table 13.1. Attempts to form vinyl stannane 390.

13.2 Attempts to Form an Aryl Ketone

The most studied of the three nucleophiles that we want to approach is aryl ketone 391, which would be formed from hydrolysis of the triple bond. The ketone could be utilized in our desired reaction as a nucleophile by transforming it to either enolate 392 upon reaction with a strong base such as LDA or silyl enol ether 393. In either case a palladium m-allyl species (394) could be formed after oxidative addition into the allylic carbonate. Attack from the enolate onto the palladium π-allyl would then form tetracycle 395 (Scheme 13.2).

391

392

393

Scheme 13.2. Proposed synthesis of tetracycle 395 from ketone 391.

The attempts to form ketone $\mathbf{3 9 1}$ are outlined in Table 13.2. In our screening we initially attempted hydroboration/ oxidation (entry 1) and acid hydrolysis (entry 2). After those failed we moved to metal mediated hydrolysis including: palladium (entry 3), silver (entry 4), and gold (entries 5, 6, and 7). ${ }^{36}$ Unfortunately in all these attempts none of the desired product 396 was obtained, instead recovered starting material was obtained in most cases.

Table 13.2. Attempts to form ketone 396.

entry	R	conditions
1	Me	$\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}, \mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{MeOH}$
2	Me	p TsOH, EtOH, $60{ }^{\circ} \mathrm{C}$
3	Me	$\begin{aligned} & \mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2} \\ & \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C} \end{aligned}$
4	TIPS	AgOTf , toluene
5	TIPS	$\begin{gathered} {[\mathrm{Au}(\mathrm{IPr})]_{2}\left(\mathrm{OH}_{3}\right) \mathrm{BF}_{4}, \mathrm{NaHCO}_{3}} \\ \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN} \end{gathered}$
6	TIPS	$\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right), \mathrm{AgSbF}_{6}, \mathrm{NaHCO}_{3}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}$
7	TIPS	$\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right), \mathrm{Cu}(\mathrm{OTf})_{2}$ $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$

13.3 Attempts to Reduce the Alkyne to an Olefin

The last nucleophile we are interested in approaching is an olefin, which would be able to participate in a tandem palladium π-allyl/ Heck reaction. The reaction would be initiated by initial oxidative addition into allylic carbonate 397 to form palladium m-allyl 398. Migratory insertion into the nearby double bond would provide 399, which could undergo β-hydride elimination to give tetracycle 348. One important consideration is in the β-hydride elimination the palladium and hydride must be syn to each other, therefore to undergo this desired reaction we must start with the cis-olefin shown (Scheme 13.3). While subsequent complexation and migratory insetion of olefins (i.e. Heck chemistry) has not been demonstrated for π-allyls, they have been shown to undergo complexation and migratory insertion of $\mathrm{CO} .{ }^{37}$

Scheme 13.3. Proposed synthesis of tetracycle 348 from styrene 397.

This transformation is in the most preliminary stages, as only one condition has been attempted. In the presence of hydrogen and Lindlar's catalyst, only starting material was obtained (Scheme 13.4). We are currently investigating this route further.

Scheme 13.4. Attempted reduction of alkyne 389.

13.4 Conclusion and Future Work

At this point we have access to an alkyne that we are hopeful can be transformed into an appropriate nucleophile to react with a palladium π-allyl species that will be derived from an allylic carbonate. We have outlined three strategies in this chapter to functionalize the alkyne, all of which are in the very early stages of exploration. In addition to the approaches discussed
thus far, we have devised two routes starting from aryl triflate 375. Direct Stille coupling of 375 with a vinyl stannane would deliver styrene 400, the same product we are targeting through reduction of the alkyne (13.5.a). If instead the Stille reaction is performed in the presence of carbon monoxide, enone 401 could be accessed. After elaboration to cylic carbonate 402, conjugate reduction would provide enolate 392, which could interact with the allylic carbonate either directly or with the aid of palladium or a Lewis acid (Scheme 13.5.b).
a)

375

路

401

402

Scheme 13.5. Proposed reaction to form a) styrene 400 through a Stille coupling and b) tetracycle 395 through a carbonylative Stille coupling followed by conjugate reduction.

Chapter Fourteen

Ansaetherone

Concurrent to our studies toward the tetrapetalones, we also became interested in ansaetherone (135). This interest stemmed from the proposed biosynthetic pathway of the tetrapetalones, which included ansaetherone as an intermediate (cf. Scheme 6.2). ${ }^{3}$ Thus if we could gain access to 135 , it may be possible to convert it to one of the tetrapetalones in a biomimetic fashion (Scheme 14.1).

Scheme 14.1. Relationship between ansaetherone (135) and the tetrapetalones.

14.1 Proposed Conversion of Ansaetherone to the Tetrapetalones

The main challenges associated with the conversion of ansaetherone (135) to the tetrapetalones are the contraction of the six to a five-membered ring and formation of the seven-five ring system, which can only take place after trans/cis-isomerization of the olefin in the eleven-membered ring. To address the olefin isomerization and formation of the fivemembered tetramic acid moiety we envisioned utilizing allylic epoxide 404 as a substrate in a palladium-mediated transannular allylic amidation (Scheme 14.2). In the event ansaetherone derivative 403 would be selectively epoxidized under nucleophilic conditions to give allylic epoxide 404. Exposure of $\mathbf{4 0 4}$ to palladium(0) would form intermediate m-allyl species 405,
which upon migration to the corresponding η^{1} - π-allyl (406) can undergo olefin isomerization and eventually deliver $\eta^{1}-\pi$-allyl 407. Ring closure by intramolecular attack of the amide nitrogen would furnish 408. Inspection of molecular models indicates that cyclization prior to olefin isomerization is unlikely and the formation of 408 would be preferred. Having installed the tetramic acid moiety and set the olefin geometry only ring contraction followed by acetylation, deprotection, and glycosylation remains to form tetrapetalone B (132).

Scheme 14.2. Proposed conversion of ansaetherone (135) to tetrapetalone B (132).

As depicted in Scheme 14.2 we envision the ring contraction to form the tetracyclic core of the tetrapetalones could proceed under Lewis acidic or basic conditions. A more detailed schematic showing how these processes are envisioned is outlined in Scheme 14.3. Exposure of dihydropyran 408 to Lewis acid would promote the formation of allylic cation 410, which could be captured by the electron rich aromatic ring to provide tetracycle 409. Alternatively, exposure
of the phenol 408 to basic conditions would result in phenoxide 411, which could undergo a stereoselective 1,2-Wittig rearrangement of resonance structure 412 to deliver tetracycle 409.

Scheme 14.3. Proposed synthesis of tetracycle 409 through a Lewis acidic or basic pathway.

An alternate pathway to convert phenol 408 to tetrapetalone $B(132)$ is depicted in Scheme 14.4. Phenolic oxidation would initially form oxocarbenium 413, which could eliminate to form para-quinone 414. Exposure of 414 to UV light would promote a Paternó-Büchi reaction to give an intermediate oxetane (415) that upon ring opening and loss of a proton would furnish tetracycle 416. Tetrapetalone B would then be completed by acetylation, deprotection, reduction, and glycosylation. This approach was inspired by George and coworkers' synthesis of tetracycle 419 through a Paternó-Büchi/ elimination route from para-quinone 417 (Scheme 14.5). ${ }^{38}$

Scheme 14.4. Proposed alternate synthesis of tetrapetalone B from phenol 408.

Scheme 14.5. George's Paternó-Büchi/ elimination route to tetracycle 419.

14.2 A Phenolic Oxidation Pathway to Ansaetherone

With a plan to convert ansaetherone (135) to tetrapetalone B (132) in place, we sought a method to access 135 . In that regard we envisioned 135 would ultimately arise from deprotection and glycosylation of diene 420, the product of a tandem enyne/ cross metathesis starting from enyne 421. Given that the olefin geometry of the exocyclic double bond is unknown in the natural product, late stage formation of this double bond will potentially lend access to both E and Z isomers and thus help lead to structural elucidation. Nevertheless, enyne 421 would be formed from an amidation of aniline 422, which itself would be derived from
phenol 423 after a phenolic oxidation to form the dihydropyran and installation of the aniline nitrogen from the aryl bromide. Phenol 423 would ultimately arrive from dibromophenol 424 and aldehyde 425 (Scheme 14.6).

Scheme 14.6. Retrosynthetic analysis of ansaetherone (135).

The synthesis began with a known two-step sequence to access β-hydroxy ester 427 from ethyl acetate (426) and methacrolein (330). ${ }^{39}$ Silyl protection followed by a two-step reduction/ oxidation sequence furnished aldehyde 425. Protected dibromophenol 428 was formed via TIPS protection of phenol 424 and then underwent mono lithium-halogen exchange and reaction with aldehyde $425 .{ }^{6 b}$ Removal of both silyl protecting groups provided phenolic oxidation precursor 429. Unfortunately, exposure of 429 to phenolic oxidation conditions led mostly to decomposition of the starting material.

Scheme 14.7. Attempted phenolic oxidation of 429.

Although difficulties were met with the phenolic oxidation of 429, we still believed the dihydropyran moiety could be formed through a phenolic oxidation. Inspired by the work of Kita and coworkers, who showed that 433 could be formed by exposure of alcohol 431 to bisacetoxyiodo benzene and MK10, presumably through the intermediacy of 432 (Scheme 14.8), ${ }^{40}$ the synthetic strategy outlined in Scheme 14.9 was devised. Specifically, intermediate 422 would now be formed from an alkyl migration/ elimination sequence from spirotetrahydrofuran 434, which itself would be formed in situ from a phenolic oxidation and intramolecular trapping of alcohol 435. Alcohol 435 would ultimately derive from known ketone 436 and methacrolein (330).

Scheme 14.8. Kita's synthesis of dihydropyran 433.

Scheme 14.9. Revised retrosynthetic analysis of dihydropyran 422.

In the event known acetophenone 436 underwent an aldol reaction with methacrolein (330) to provide β-hydroxy ketone 437 . Although ketone 437 is lacking the required α-methyl group, we decided to explore the subsequent chemistry on the desmethyl compound. With that in mind, 437 was reduced to selectively give anti-diol 438 as essentially one diastereomer. Protected phenol 438 was then explored in the phenolic oxidation step. However none of the desired product was obtained utilizing the conditions developed by Kita and coworkers or with DDQ (Scheme 14.10).

Scheme 14.10. Attempted synthesis of dihydropyran 439.

We had utilized protected phenol 438 in this step because Kita and coworkers had used methyl protected phenols in their paper. However given our unsuccessful result we opted to look at the reaction with free phenol 441, which would proceed via an alternate mechanistic pathway (i.e. intermediate 442). To access free phenol 441, diol 438 was converted to acetal 440. Exposure to sodium ethane thiolate removed the methyl protecting group and TFA removed the
acetal to give phenolic oxidation precursor 441. Gratifyingly, exposing 441 to iodobenzene diacetate provided spirotetrahydrofuran 443 albeit in low yields. Excited by this phenolic oxidation product we next explored the alkyl shift to form tetrahydropyran 439. Subjecting 439 to the conditions developed by Kita and coworkers (i.e. MK10) resulted in no desired product formation, as did adding $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. Given the low yields of 443 and the inability to move it forward, we opted to explore other strategies toward ansaetherone (135).

Scheme 14.11. Attempted synthesis of dihydropyran 439.

14.3 Turning to a Fries Rearrangement

Given the difficulties encountered in trying to form the aromatic $\mathrm{C}-\mathrm{O}$ bond, we decided to alter our approach and begin with that bond already in place. Therefore ansaetherone (135) would still arise from enyne 421, which would be derived from aniline 422 as described in Scheme 14.6. However aniline 422 would come from reduction of nitrophenol 444, the product of an intramolecular oxy-Michael addition of phenol 445. ${ }^{41}$ The key reaction in the formation of
phenol 445 would be an anionic Fries rearrangement of the ester derived from acylation of phenol 446 with acid 447 (Scheme 14.12). ${ }^{42}$

Scheme 14.12. Revised retrosynthetic analysis of ansaetherone (135).

To investigate the proposed anionic Fries rearrangement, known ylide 331 was reacted with methacrolein (330) and the resultant ester (332) was saponified to give acid 447. Conversion to the acid chloride and addition of commercially available phenol 446 provided access to aryl ester 448 in moderate yield. Subjecting aryl bromide 448 to n-BuLi or t-BuLi provided the desired anionic Fries rearrangement product in very low yields. Furthermore the intramolecular oxy-Michael addition of phenol 445 did not provide any of the desired product 444 on the small scale.

Scheme 14.13. Attempted synthesis of oxy-Michael product 444.

Although we were able to obtain small amounts of anionic Fries product 444, it was clear this was not a viable route. We hypothesized that removal of the electron withdrawing nitro group may be beneficial for both the Fries rearrangement and the oxy-Michael addition. Thus we believed nitrobenzene 444 would be the product of the oxy-Michael addition followed by a nitration starting with phenol 449, which would be derived from phenol 450 and acid 447 through an acylation/ anionic Fries rearrangement sequence (Scheme 14.14).

Scheme 14.14. Revised retrosynthetic analysis of nitrobenzene 444.

Converting carboxylic acid 447 to the acid chloride then adding phenol 450 provided aryl ester 451 although in low yield once again. To help improve this acylation event, carboxylic acid 447 was converted to anhydride 452, which proved to be a more effective acylating agent, giving 451 in good yield. Furthermore, aryl bromide 451 effectively underwent the desired
anionic Fries rearrangement to give aryl ketone 449 albeit still in low yield (Scheme 14.15). Employing other lithium or magnesium bases did not improve this reaction. Attempts to improve this rearrangement by utilizing Lewis acid-catalyzed Fries or photo Fries conditions were futile, leading either to recovered starting material or deacylated product (Scheme 14.15).

Scheme 14.15. Synthesis of aryl ketone 449.

Scheme 14.16. Attempts at Fries or photo Fries rearrangments.

14.4 Forming an Oxy-Michael Precursor Through an Aldol Reaction

Although we were able to obtain aryl ketone 449 through an anionic Fries rearrangement, due to our inability to optimize this transformation we opted to explore other
ways to obtain this required compound. In that regard dimethoxyphenol (454) was transformed to ketophenol 455 under known conditions. ${ }^{43}$ Subjecting 455 to aldol condensation conditions to give enone 449 directly only resulted only in recovered starting material, most likely due to a retro-aldol reaction occurring more readily than the desired dehydration. However, aldol adduct 456 could be obtained by switching to irreversible conditions utilizing LDA (Scheme 14.17).

Scheme 14.17. Aldol Attempts to form aryl ketone 449.

With β-hydroxy ketone 456 in hand we next looked to eliminate to form enone 449. Direct elimination under a variety of conditions gave no desired product, instead in most cases giving retro-Aldol product. However 456 could be converted to bismesylate 457 and eliminated to give enone 458 (Scheme 14.18). Although the yield on this reaction is low, there has been no attempt to optimize this reaction as of yet. We believe the most direct pathway would involve subjecting 458 to two equivalents of LDA, which would both promote the elimination and removal of the phenolic mesylate in the same step. ${ }^{44}$ With phenol 449 in hand we will be able to investigate the remaining steps of the synthesis towards ansaetherone (135) and eventually the tetrapetalones (Scheme 14.19).

Scheme 14.18. Synthesis of enone 458.

Scheme 14.19. Proposed future work to obtain nitrobenzene 444.

References for Part Two

1. (a) Komoda, T.; Sugiyama, Y.; Abe, N.; Imachi, M.; Hirota, H.; Hirota, A. Tetrahedron Lett. 2003, 44, 1659-1661; (b) Komoda, T.; Sugiyama, Y.; Abe, N.; Imachi, M.; Hirota, H.; Koshino, H.; Hirota, A. Tetrahedron Lett. 2003, 44, 7417-7419; (c) Komoda, T.; Yoshida, K.; Abe, N.; Sugiyama, Y.; Imachi, M.; Hirota, H.; Koshino, H.; Hirota, A. Biosci., Biotechnol., Biochem. 2004, 68, 104-111.
2. Komoda, T.; Kishi, M.; Abe, N.; Sugiyama, Y.; Hirota, A. Biosci., Biotechnol., Biochem. 2004, 68, 903-908.
3. Komoda, T.; Akasaka, K.; Hirota, A. Biosci., Biotechnol., Biochem. 2008, 72, 23922397.
4. Komoda, T.; Sugiyama, Y.; Hirota, A. Org. Biomol. Chem. 2007, 5, 1615-1620.
5. (a) Wang, X.; Porco, J. A. Angew. Chem. Int. Ed. 2005, 44, 3067-3071; (b) Wang, X.; Porco, J. A. Angew. Chem. Int. Ed. 2006, 45, 6607-6607.
6. (a) Marcus, A. P.; Lee, A. S.; Davis, R. L.; Tantillo, D. J.; Sarpong, R. Angew. Chem. Int. Ed. 2008, 47, 6379-6383; (b) Marcus, A. P.; Sarpong, R. Org. Lett. 2010, 12, 4560-4563.
7. Li, C.; Li, X.; Hong, R. Org. Lett. 2009, 11, 4036-4039.
8. Yang, S.; Xi, Y.; Zhu, R.; Wang, L.; Chen, J.; Yang, Z. Org. Lett. 2013, 15, 812-815.
9. Howell, J. M. Synthetic Strategies Toward the Total Synthesis of Tetrapetalone A. Ph. D. Thesis, Colorado State University, Fort Collins, CO, 2012.
10. von Hirschheydt, T.; Voss, E. Synthesis 2004, 2004, 2062-2065.
11. Godenschwager, P. F.; Collum, D. B. J. Am. Chem. Soc. 2008, 130, 8726-8732.
12. Maruoka, K.; Imoto, H.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 4131-4132.
13. Wasserman, H. H.; Pearce, B. C. Tetrahedron 1988, 44, 3365-3372.
14. Negoro, N.; Sasaki, S.; Mikami, S.; Ito, M.; Suzuki, M.; Tsujihata, Y.; Ito, R.; Harada, A.; Takeuchi, K.; Suzuki, N.; Miyazaki, J.; Santou, T.; Odani, T.; Kanzaki, N.; Funami, M.; Tanaka, T.; Kogame, A.; Matsunaga, S.; Yasuma, T.; Momose, Y. ACS Med. Chem. Lett. 2010, 1, 290-294.
15. von Delius, M.; Geertsema, E. M.; Leigh, D. A. Nat. Chem. 2010, 2, 96-101.
16. Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem. Int. Ed. 2002, 41, 3056-3058.
17. (a) Crisp, G. T.; Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1984, 106, 7500-7506; (b) Stille, J. K. Angew. Chem. Int. Ed. 1986, 25, 508-524.
18. Murphy, J. M.; Liao, X.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 15434-15435.
19. (a) Fürstner, A. Top. Catal. 1997, 4, 285-299; (b) Fürstner, A. Chem. Rev. 1999, 99, 991-1046.
20. (a) Maier, M. E. Angew. Chem. Int. Ed. 2000, 39, 2073-2077; (b) Takao, K.-i., Tadano, K-i Heterocycles 2010, 81, 1603-1629.
21. (a) Lemarchand, A.; Bach, T. Tetrahedron 2004, 60, 9659-9673; (b) Querolle, O.; Dubois, J.; Thoret, S.; Roussi, F.; Guëritte, F. o.; Guënard, D. J. Med. Chem. 2004, 47, 59375944; (c) Lemarchand, A.; Bach, T. Synthesis 2005, 2005, 1977-1990.
22. Majumdar, K. C.; Chattopadhyay, B.; Ansary, I. Can. J. Chem. 2009, 87, 472-477.
23. Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 11360-11370.
24. Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.; Schrodi, Y. Org. Lett. 2007, 9, 1589-1592.
25. (a) Schoenberg, A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 7761-7764; (b) Baillargeon, V. P.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 452-461.
26. Corminboeuf, O.; Overman, L. E.; Pennington, L. D. J. Org. Chem. 2009, 74, 54585470.
27. Montgomery, J. Angew. Chem. Int. Ed. 2004, 43, 3890-3908.
28. Chrovian, C. C.; Knapp-Reed, B.; Montgomery, J. Org. Lett. 2008, 10, 811-814.
29. Denmark, S. E.; Kobayashi, T.; Regens, C. S. Tetrahedron 2010, 66, 4745-4759.
30. Rodríguez-Berríos, R. I. R.; Torres, G.; Prieto, J. A. Tetrahedron 2011, 67, 830-836.
31. Mo, F.; Trzepkowski, L. J.; Dong, G. Angew. Chem. Int. Ed. 2012, 51, 13075-13079.
32. (a) Adler, E.; Holmberg, K.; Ryrfors, L.-O. Acta Chem. Scand. Ser. B 1974, 28, 883887; (b) Ohkata, K.; Tamura, Y.; Shetuni, B. B.; Takagi, R.; Miyanaga, W.; Kojima, S.; Paquette, L. A. J. Am. Chem. Soc. 2004, 126, 16783-16792.
33. Hamlin, A. M.; de Jesus Cortez, F.; Lapointe, D.; Sarpong, R. Angew. Chem. Int. Ed. 2013, 52, 4854-4857.
34. (a) Keinan, E.; Peretz, M. J. Org. Chem. 1983, 48, 5302-5309; (b) Goliaszewski, A.; Schwartz, J. Organometallics 1985, 4, 417-419; (c) Trost, B. M.; Walchli, R. J. Am. Chem. Soc. 1987, 109, 3487-3488; (d) Del Valle, L.; Stille, J. K.; Hegedus, L. S. J. Org. Chem. 1990, 55, 3019-3023; (e) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585-9595; (f) Albéniz, A. C.; Espinet, P.; Martín-Ruiz, B. Chem. Eur. J. 2001, 7, 2481-2489; (g) White, J. D.; Carter, R. G.; Sundermann, K. F.; Wartmann, M. J. Am. Chem. Soc. 2001, 123, 5407-5413.
35. (a) Nozaki, K.; Oshima, K.; Uchimoto, K. J. Am. Chem. Soc. 1987, 109, 2547-2549; (b) Nozaki, K.; Oshima, K.; Utimoto, K. Tetrahedron 1989, 45, 923-933; (c) Dodero, V. n. I.; Koll, L. C.; Mandolesi, S. D.; Podestá, J. C. J. Organomet. Chem. 2002, 650, 173-180; (d) Chae, J.; Konno, T.; Kanda, M.; Ishihara, T.; Yamanaka, H. J. Fluorine Chem. 2003, 120, 185-193.
36. Gómez-Suárez, A. n.; Oonishi, Y.; Meiries, S.; Nolan, S. P. Organometallics 2013, 32, 1106-1111.
37. (a) Braunstein, P.; Zhang, J.; Welter, R. Dalton Trans. 2003, 507-509; (b) Zhang, J.; Braunstein, P.; Welter, R. Inorg. Chem. 2004, 43, 4172-4177.
38. Pepper, H. P.; Kuan, K. K. W.; George, J. H. Org. Lett. 2012, 14, 1524-1527.
39. Fráter, G.; Müller, U.; Günther, W. Tetrahedron 1984, 40, 1269-1277.
40. Hata, K.; Hamamoto, H.; Shiozaki, Y.; Cämmerer, S. B.; Kita, Y. Tetrahedron 2007, 63, 4052-4060.
41. Ishikawa, T.; Oku, Y.; Kotake, K.-I. Tetrahedron 1997, 53, 14915-14928.
42. (a) Miller, J. A. J. Org. Chem. 1987, 52, 322-323; (b) Horne, S.; Rodrigo, R. J. Org. Chem. 1990, 55, 4520-4522; (c) Hardcastle, I. R.; Quayle, P. Tetrahedron Lett. 1994, 35, 17491750.
43. Zhang, Y.; Lee, Y. S.; Rothman, R. B.; Dersch, C. M.; Deschamps, J. R.; Jacobson, A. E.; Rice, K. C. J. Med. Chem. 2009, 52, 7570-7579.
44. Ritter, T.; Stanek, K.; Larrosa, I.; Carreira, E. M. Org. Lett. 2004, 6, 1513-1514.

Appendix One

Experimental

Preparation of DKP 39

To a solution of dipeptide $55^{1}(1.287 \mathrm{~g}, 4.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(49 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TFA ($2.29 \mathrm{~mL}, 29.7 \mathrm{mmol}$). The solution was allowed to warm to room temperature and stirred overnight. The solvent was removed in vacuo and the crude material was used directly in the next reaction.

The crude TFA salt was dissolved in MeOH and refluxed. After two days the solvent was removed in vacuo and the crude material was purified by flash chromatography (5:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$) to yield DKP 39 as a white solid ($0.461 \mathrm{~g}, 73 \%$ yield). Spectral data for DKP 39 was consistent with that published in the literature. ${ }^{1-2}$

Preparation of DKP 72

n-BuLi ($1.93 \mathrm{M}, 0.192 \mathrm{~mL}, 0.37 \mathrm{mmol}$) was added to a solution of THF (7 mL) and DMSO (3 mL) at $0^{\circ} \mathrm{C}$. The reaction was allowed to stir for 20 min at $0^{\circ} \mathrm{C}$ then 10 min at room temperature then cooled back to $0^{\circ} \mathrm{C}$ at which point known DKP $71^{3}(0.100 \mathrm{~g}, 0.34 \mathrm{mmol})$ in DMSO (3 mL) was added. The reaction was allowed to stir for 15 min at $0^{\circ} \mathrm{C}$ then 15 min at room temperature. The reaction was cooled back to $0^{\circ} \mathrm{C}$ and benzyl bromide ($0.044 \mathrm{~mL}, 0.37$ mmol) was added. After 1 h the reaction was warmed back to room temperature and water (20 mL) was added and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organics were washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in
vacuo. The crude material was purified by flash chromatography ($6: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}$) to yield DKP 72 ($0.074 \mathrm{~g}, 56 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.36-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, 2H), 6.96 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-$ 3.10 ($\mathrm{m}, 2 \mathrm{H}$), $2.33(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3)$: $\delta 165.80,164.62,135.33$, 134.64, 134.39, 129.86, 128.99, 128.96, 128.72, 128.58, 128.43, 128.16, 128.07, 127.60, 59.98, 49.57, 48.49, 46.79, 36.74; FTIR (thin film): 3047, 3028, 2935, 1654, 1494, 1469, 1455, 1432, 1422, 1332, 1321, 1242, 1228, 1181, 1171, 1080, 1030, $1002 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 385.1916$, found: 385.1916 .

Preparation of DKP 76

n-BuLi (1.93 M, $1.7 \mathrm{~mL}, 0.88 \mathrm{mmol}$) was added to a solution of DMSO (15 mL) and THF $(35 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 35 min known DKP 74^{3} ($0.550 \mathrm{~g}, 1.55 \mathrm{mmol}$) in DMSO (15 mL) was added. After 25 min benzyl bromide 75^{4} ($0.558 \mathrm{~g}, 1.7 \mathrm{mmol}$) was added and allowed to stir for 2 h at which point the solution was allowed to warm to room temperature and water (30 mL) was added and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organics were washed with water $(2 \times 30 \mathrm{~mL})$ and brine (40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}$) to give DKP $76(0.322 \mathrm{~g}$, 35\% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.16-7.04(\mathrm{~m}, 5 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 4 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 2 \mathrm{H})$, 5.24 (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=6.2$
$\mathrm{Hz}, 1 \mathrm{H}), 3.90-3.89(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 6 \mathrm{H}), 3.67(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.37(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.01,164.81,159.67,159.57,158.62,140.85,130.19,129.89$, 129.40, 127.85, 127.40, 123.53, 114.48, 109.89, 93.84, 59.90, 56.78, 55.52, 49.29, 47.93, 42.58; FTIR (thin film): 3251, 2899, 2837, 1650, 1586, 1567, 1513, 1466, 1434, 1422, 1356, 1269, 1247, 1174, 1096, 1039, $1010 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}$ $(\mathrm{M}+\mathrm{H})^{+}: 601.1199$, found: 601.1195 .

Preparation of protected amino acid 82

81

82

KOtBu ($0.484 \mathrm{~g}, 4.3 \mathrm{mmol}$) was suspended in THF (18 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. Known imine $81^{5}(0.916 \mathrm{~g}, 3.6 \mathrm{mmol})$ in THF (18 mL) was added via cannula to the suspension and allowed to stir for 30 min at which point known benzyl bromide $75^{4}(1.3 \mathrm{~g}, 3.97 \mathrm{mmol})$ in THF (18 mL) via cannula. After 5 h the reaction was warmed to room temperature and water (40 mL) was added and the THF was removed in vacuo. The aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organics were washed with brine $(40 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ benzene) to provide 82 as a white solid ($1.299 \mathrm{~g}, 72 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.51-6.50(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{dd}, J=10.0,3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, \mathrm{J}=13.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, \mathrm{J}=13.3,10.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.26,171.44,158.27,142.26,139.52,136.06,130.45$, 129.05, 128.64, 128.33, 128.17, 127.84, 124.89, 109.09, 94.08, 64.53, 56.75, 52.49, 44.39; FTIR (thin film): : 3056, 2950, 2837, 1736, 1658, 1621, 1566, 1464, 1446, 1435, 1316, 1262,

1206, 1172, 1073, 1027, $1013 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NNO}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 500.0723, found: 500.0719.

Preparation of amino ester 79

To a solution of imine $82(4.82 \mathrm{~g}, 9.65 \mathrm{mmol})$ in THF (97 mL) was added a 10% solution of citric acid in water (32 mL) and allowed to stir for 16 h then the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(40 \mathrm{~mL})$ and extracted with $1 \mathrm{~N} \mathrm{HCI}(2 \times 30 \mathrm{~mL})$. The acidic solution was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times$ 30 mL) and basified with solid $\mathrm{K}_{2} \mathrm{CO}_{3}$. The basic aqueous solution was extracted with EtOAc (3 $\times 30 \mathrm{~mL}$), washed with brine (50 mL), dried with MgSO_{4}, filtered and concentrated in vacuo to yield crude 79 ($3.0 \mathrm{~g}, 93 \%$ yield), which was used in the next step as is.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}$, $J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{dd}, J=13.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=$ 13.5, 8.9 Hz, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.51,158.55,142.50,129.15,123.47$, 109.47, 93.53, 56.76, 54.75, 52.29, 51.41, 46.38.

Preparation of DKP 70

To a solution of amine $79(3.00 \mathrm{~g}, 8.95 \mathrm{mmol})$, Boc-sarcosine (78) ($2.03 \mathrm{~g}, 10.7 \mathrm{mmol}$), and $\operatorname{EDCI}(1.72 \mathrm{~g}, 8.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.25 \mathrm{~mL}, 8.95 \mathrm{mmol})$ and the
reaction was allowed to stir for 20 h after which the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $10 \% \mathrm{HCl}$ in water $(20 \mathrm{~mL})$ then sat. aq. $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$. The combined aqueous washes were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$ and the organics were combined and washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($\left.15: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right)$ to give dipeptide 83 .
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.69 (dd, J = 8.2, 1.0 Hz, 1H), 4.94-4.86 (m, 1H), 3.89-3.84 (s, 3H), 3.84-3.75 (m, 1H), 3.75-3.72 (s, 3H), 3.40 (dd, $J=14.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.44-1.38(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.91,169.33,158.52,141.32,129.35,122.82,109.66$, 56.73, 52.75, 52.62, 51.39, 42.94, 35.81, 28.50.

Dipeptide 83 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ and TFA ($4.1 \mathrm{~mL}, 53.7 \mathrm{mmol}$) was added. The reaction stirred overnight and the solvent was removed in vacuo. The crude material was purified by flash chromatography ($12: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$). After column there was still a mixture of starting material and product, which was free based by dissolving in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}$ ($1.25 \mathrm{~mL}, 8.95 \mathrm{mmol}$) was added. After stirring for 20 min , water $(20 \mathrm{~mL})$ was added and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$ and the combined organics were washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The material was then used in the next step as is.

The deprotected dipeptide ($2.11 \mathrm{~g}, 5.2 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(54 \mathrm{~mL}$) and $\mathrm{NH}_{4} \mathrm{OH}(28 \%$ in water, 5.36 mL) was added. After 1 h the solvent was removed in vacuo. The crude material was purified by flash chromatography ($12: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$) to provide DKP 70 ($1.761 \mathrm{~g}, 53 \%$ yield, three steps).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$: δ 7.67-7.64 (m, 1H), 7.23-7.18 (m, 1H), 6.84-6.82 (m, 1H), 6.72-6.67 (m, 1H), 4.97-4.89 (m, 1H), 3.86 (s, 3H), 3.72-3.69 (s, 3H), 3.45-3.38 (m, 1H), 3.27$3.19(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 172.26$, 171.72, 158.49, 141.61, 129.25, 122.81, 109.60, 109.47, 93.87, 56.74, 54.60, 52.65, 52.26,
42.92, 36.87; FTIR (thin film): 3246, 2930, 1659, 1640, 1584, 1566, 1463, 1426, 1321, 1262, 1200, 1184, 1100, 1064, 1025, $1013 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IN}_{2} \mathrm{O}_{3}$ $(\mathrm{M}+\mathrm{H})^{+}: 375.0206$, found: 375.0199.

Preparation of DKP 84

To aryl iodide 70 ($1.542 \mathrm{~g}, 4.1 \mathrm{mmol}$), $\mathrm{Cul}(0.078 \mathrm{~g}, 0.41 \mathrm{mmol})$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.741 \mathrm{~g}, 8.2$ $\mathrm{mmol})$ were added toluene $(41 \mathrm{~mL})$ then DMEDA ($87.2 \mu \mathrm{~L}, 0.82 \mathrm{mmol}$). The reaction was heated to $110^{\circ} \mathrm{C}$ for 12 h then filtered and the solvent removed in vacuo. The crude material was filtered through a plug of silica gel ($15: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$) to yield DKP $84(0.574 \mathrm{~g}, 57 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.16(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.88(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=0.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.47-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 4 \mathrm{H}), 3.34(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (75 MHz, CDCl_{3}): $\delta 165.79,159.61,150.43,134.08,129.94,127.94,117.29,112.78,62.76$, 56.68, 54.12, 35.50, 33.83; FTIR (thin film): 2937, 2838, 1653, 1606, 1486, 1464, 1461, 1418, 1406, 1343, 1292, 1271, 1213, 1145, 1122, $1065 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 247.1083$, found: 247.1074 .

Deuterium incorporation studies of DKP 84

			Incorporation (\%)	
Entry	Base	Temperature $\left({ }^{\circ} \mathrm{C}\right)$		D_{a}

DKP 84 ($0.010 \mathrm{~g}, 0.040 \mathrm{mmol}$) was dissolved in THF (1 mL) and added to the appropriate base (2.1 equiv.) in THF (1 mL) at the given temperature. The reaction stirred for 30 min and was brought to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{D}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added and stirred for 10 min . The solution was diluted with more $\mathrm{D}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The \% deuterium incorporation was then found by integration of the relevant peaks in the crude NMR.

Preparation of indole 87

Indole 87 was obtained as a side product in various attempts outlined in Table 3.5. An example is given here. DKP ($0.030 \mathrm{~g}, 0.12 \mathrm{mmol}$) in THF (4 mL) was added to a freshly prepared solution of LDA (prepared by adding $n-\operatorname{BuLi}(2.13 \mathrm{M}, 0.169 \mathrm{~mL}, 0.36 \mathrm{mmol})$ to diisopropylamine $(0.056 \mathrm{~mL}, 0.40 \mathrm{mmol})$ in THF $(1.2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and allowing it to stir for 30 $\mathrm{min})$ at $-78{ }^{\circ} \mathrm{C}$. After $1 \mathrm{~h} \mathrm{BnSSBn}(0.098 \mathrm{~g}, 0.040 \mathrm{mmol})$ was added and stirred for 1 h 45 min after which the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 15 min . The reaction was quenched
with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organics were washed with brined (10 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($100 \% \mathrm{EtOAc}$) to provide DKP 87.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~s}$, 2 H), $4.02(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H})$.

Preparation of indole 89

To a solution of DKP $84(0.030 \mathrm{~g}, 0.122 \mathrm{mmol})$ in THF $(1.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added LDA ($0.71 \mathrm{M}, 0.38 \mathrm{~mL}, 0.268 \mathrm{mmol})$. After $1 \mathrm{~h} \mathrm{TBSCI}(0.046 \mathrm{~g}, 0.305 \mathrm{mmol})$ in THF (1.2 mL) was added and the solution was allowed to warm to room temperature. After 3 h the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organics were washed with brine (10 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by column chromatography (100% EtOAc) to provide indole 89 ($0.009 \mathrm{~g}, 20 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 0.86-0.82(\mathrm{~m}, 9 \mathrm{H}), 0.10(\mathrm{~s}$, 6 H).

Preparation of DKP 90 and indole 87

To a solution of DKP $84(0.015 \mathrm{~g}, 0.061 \mathrm{mmol})$ in benzene $(1 \mathrm{~mL})$ was added $\mathrm{Pb}(\mathrm{OAc})_{4}$ ($0.054 \mathrm{~g}, 0.122 \mathrm{mmol}$). After 7.5 h the reaction was filtered through celite and the solvent was removed in vacuo. The crude material was purified by flash chromatography ($100 \% \mathrm{EtOAc}$) to provide DKP 90 and indole 87.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J$ $=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 3.03-3.02(\mathrm{~s}, 3 \mathrm{H})$, 2.00-1.99(s, 3H).

Preparation of amide 91

To a heterogeneous mixture of Acid $93(11.0 \mathrm{~g}, 66.2 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(276 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added oxalyl chloride ($6.47 \mathrm{~mL}, 71.8 \mathrm{mmol}$) followed by dimethylformamide ($0.21 \mathrm{~mL}, 2.76$ $\mathrm{mmol})$. After 15 min the solution was allowed to warm to room temperature. After stirring for an additional 2.5 h the reaction was cooled back down to $0^{\circ} \mathrm{C}$ and Aniline $92(10.0 \mathrm{~g}, 55.2 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(17.7 \mathrm{~mL}, 127 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(276 \mathrm{~mL})$ were added slowly via an addition funnel. The solution was then allowed to warm to room temperature and stirred for 12 h . To the mixture was added $10 \% \mathrm{HCl}(300 \mathrm{~mL})$ and brine (100 mL) and the layers were separated. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \times 100 \mathrm{~mL})$ and the organic layers were combined and dried over sodium sulfate. After filtration the solvent was removed in vacuo
and the resulting oil was purified by flash chromatography ($9: 1 \rightarrow 4: 1 \mathrm{DCM}_{\mathrm{Et}}^{2} \mathrm{O}$) to give 91 (9.8 $\mathrm{g}, 54 \%$ yield) as a yellow oil which slowly solidified.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, Toluene - d8, $\left.105{ }^{\circ} \mathrm{C}\right) \delta 8.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}$, $3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}\right.$, Toluene - d8, $\left.105^{\circ} \mathrm{C}\right) \delta 166.9,166.1,154.0,127.3,127.1$, 125.6, 122.3, 115.5, 56.0, 53.1, 51.5, 41.0, 35.8; FTIR (thin film) 3288, 3005, 2950, 2840, 1723, 1700, 1660, 1609, 1586, 1521, 1470, 1434, 1405, 1285, 1062, 751; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{CIN}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}: 329.0899$, found: 329.0898 ; m.p. $97-100^{\circ} \mathrm{C}$.

Preparation of DKP 49

A solution of Amide 91 ($9.80 \mathrm{~g}, 29.8 \mathrm{mmol}$), potassium carbonate ($4.94 \mathrm{~g}, 35.8 \mathrm{mmol}$), potassium iodide ($1.24 \mathrm{~g}, 7.45 \mathrm{mmol}$) and $\mathrm{MeOH}(298 \mathrm{~mL})$ was heated to $65^{\circ} \mathrm{C}$. After 1 h the reaction was allowed to cool to room temperature and the reaction mixture was filtered and the solvent removed in vacuo. The crude material was purified by flash chromatography (15:1 DCM:MeOH) to give 3 ($7.2 \mathrm{~g}, 83 \%$ yield). Spectral data for DKP 49 was consistent with that published in the literature. ${ }^{6}$

Preparation of bisselenobenzoate 103

Known dibromide 459^{3} ($0.030 \mathrm{~g}, 0.1 \mathrm{mmol}$) was dissolved in DMF (1 mL) and cooled to $45{ }^{\circ} \mathrm{C} . \mathrm{KSeBz}^{7}(0.2 \mathrm{~g}, 0.045 \mathrm{mmol})$ was added and the solution was stirred for 4.5 h . The reaction was allowed to warm to room temperature and water (5 mL) was added. The solution was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$ and the combined organics were washed with water $(2 \times$ 10 mL) and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was purified by flash chromatography $(15 \% \rightarrow 30 \%$ EtOAc/hexanes) to yield bisselenobenzoate 103 ($0.025 \mathrm{~g}, 49 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.99-7.90(\mathrm{~m}, 4 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 4 \mathrm{H})$, $6.06(\mathrm{~s}, 2 \mathrm{H}), 3.10-2.96(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.03,165.21,137.12,134.78$, 129.14, 127.94, 78.81, 60.87, 32.25; FTIR (thin film): 3061, 2927, 2854, 1729, 1677, 1447, 1396, 1291, 1242, 1200, 1171, 1062, 1037, $1023 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Se}_{2}(\mathrm{M}+\mathrm{H})^{+}: 510.9675$, found: 510.9666 .

Preparation of bisselenobenzoate 104

109

(21\% yield)

104

The same procedure for the preparation of bisselenobenzoate 103 was followed. DKP 109 ($0.384 \mathrm{~g}, 0.85 \mathrm{mmol}$) and $\mathrm{KSeBz}(0.386 \mathrm{~g}, 1.7 \mathrm{mmol})$ in DMF (8.5 mL) were used to produce bisselenobenzoate 104 ($0.118 \mathrm{~g}, 21 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta$ 7.92-7.90(m, 4H), 7.68-7.64 (m, 2H), 7.53-7.49 (m, 4H), 7.37-7.29 (m, 10H), $6.10(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (101 MHz, CDCl_{3}): $\delta 165.26,135.05,134.71,129.10,128.80,128.71,128.18,127.99,58.62$, 47.99; FTIR (thin film): 3063, 3032, 2945, 1730, 1705, 1595, 1581, 1447, 1426, 1256, 1202, 1174, $1065 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Se}_{2}(\mathrm{M}+\mathrm{H})^{+}: 663.0301$, found: 663.0299.

Preparation of bromide 112

Amino acid 111^{8} ($0.600 \mathrm{~g}, 2.8 \mathrm{mmol}$), NBS ($0.548 \mathrm{~g}, 3.1 \mathrm{mmol}$), AIBN ($5 \mathrm{mg}, 0.028$ $\mathrm{mmol})$ and $\mathrm{CCl}_{4}(28 \mathrm{~mL})$ were added together and heated to $80^{\circ} \mathrm{C}$ for 3 h at which point the reaction was cooled to room temperature, filtered and the solvent was removed in vacuo to give bromide 112 ($0.723 \mathrm{~g}, 87 \%$ yield), which was used without further purification in the next step.

Preparation of diselenide 113

112

Absolute ethanol ($0.12 \mathrm{~mL}, 2 \mathrm{mmol}$) was added drop wise to a flask containing selenium powder ($0.027 \mathrm{~g}, 0.034 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(0.026 \mathrm{~g}, 0.675 \mathrm{mmol})$. The solution turned reddish brown then grey and hydrogen gas evolved. After 10 min DMF (0.7 mL) was added and the solution turned dark brown. The dark brown color slowly dissipated until it was light brown in color. After stirring for $1 \mathrm{~h}, 95 \%$ ethanol (0.080 mL) then selenium powder ($0.027 \mathrm{~g}, 0.338$) was added and the solution turned dark brown. After 20 min bromide $112(0.2 \mathrm{~g}, 0.675 \mathrm{mmol})$ in

DMF (0.3 mL) was added. After 30 min the solution was heated to $70^{\circ} \mathrm{C}$ and kept there for 35 min at which point the reaction was cooled to room temperature and water (10 mL) was added. The mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$ and the combined organics were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give diselenide $113(0.078 \mathrm{~g}$, 39% yield).

HRMS (ESI-APCI) m/z calc'd for $(\mathrm{M}+\mathrm{Na})^{+}: 615.0700$, found: 615.0711 .

Preparation of diselenide 106

Absolute ethanol ($0.12 \mathrm{~mL}, 2 \mathrm{mmol}$) was added drop wise to a flask containing selenium powder ($0.026 \mathrm{~g}, 0.33 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(0.025 \mathrm{~g}, 0.66 \mathrm{mmol})$. The solution turned reddish brown then white and hydrogen gas evolved. After 10 min DMF (0.66 mL) was added and the solution turned dark brown. The dark brown color slowly dissipated until the solution was colorless. After stirring for $1 \mathrm{~h}, 95 \%$ ethanol $(0.077 \mathrm{~mL})$ then selenium powder ($0.026 \mathrm{~g}, 0.33$ mmol) was added and the solution turned dark brown. After stirring for 45 min the flask was put in a MeCN/dry ice bath and dibromide 109 ($0.3 \mathrm{~g}, 0.66 \mathrm{mmol}$) in DMF (2 mL) was added. The solution stirred for 1.5 h then water (10 mL) was added and extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$. The combined organics were washed with water ($2 \times 20 \mathrm{~mL}$) and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give a reddish brown solid. The solid was purified by flash chromatography ($5: 45: 50 \mathrm{Et}_{2} \mathrm{O}$:hexanes $: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield diselenide 106 as an orange solid ($0.049 \mathrm{~g}, 33 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.38(\mathrm{~m}, 10 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.41(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.5,164.4,134.0,129.2,128.6,58.3$, 47.6; ${ }^{77}$ Se-NMR (76 MHz, CDCl_{3}) δ 561.9; FTIR (thin film) 3065, 2975, 1671, 1444, $1418 \mathrm{~cm}^{-1}$; Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}_{2}$: C, 48.02; H 3.58; N, 6.22; found C, 48.22; H, 3.65; N, 6.27; m.p. $164{ }^{\circ} \mathrm{C}$ (decomp.).

Preparation of dibromide 109

To a solution of bisthiomethyl ether $116(0.281 \mathrm{~g}, 0.73 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.3 \mathrm{~mL})$ was added Br_{2} ($0.082 \mathrm{~mL}, 1.6 \mathrm{mmol}$). After 20 min the solution was concentrated in vacuo to give the crude dibromide 109 (0.33 g , quant. yield) and due to instability was used crude in the next reaction.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.28(\mathrm{~m}, 10 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 5.31(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.05(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5,132.8,129.3,129.1,129.0,57.6$, 48.3.

Preparation of bisselenoether 120

106

120

To a solution of diselenide $106(0.128 \mathrm{~g}, 0.28 \mathrm{mmol})$ in $\mathrm{MeOH}(1.6 \mathrm{~mL})$ was added pyridine (0.9 mL), $\mathrm{Mel}(0.6 \mathrm{~mL})$ then $\mathrm{NaBH}_{4}(0.022 \mathrm{~g}, 0.57 \mathrm{mmol})$. After $1 \mathrm{~h} \mathrm{HCl}(5 \mathrm{~mL}, 2 \mathrm{~N}$ in $\mathrm{H}_{2} \mathrm{O}$) was added and extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organics were washed
with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give the crude bisselenomethyl ether. The crude solid was purified by flash chromatography (15\% EtOAc/hexanes) to give 120 as a white solid ($0.091 \mathrm{~g}, 68 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.25(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H})$, 4.01 ($\mathrm{d}, \mathrm{J}=14.7$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.1,134.7,129.0,128.6,128.3,54.3,47.4$, 8.0; ${ }^{77}$ Se-NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 250.8$; FTIR (thin film) 3063, 3029, 2926, 1672, 1446, 1426 cm^{-1}; Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}_{2}$: C, 50.01 ; $\mathrm{H}, 4.62$; $\mathrm{N}, 5.83$; found $\mathrm{C}, 50.34$; $\mathrm{H}, 4.75$; N , 5.75; m.p. $105-108^{\circ} \mathrm{C}$.

Preparation of dithioacetal 121

To a solution of disulfide $115(0.1 \mathrm{~g}, 0.28 \mathrm{mmol})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was added pyridine $(1 \mathrm{~mL}), \mathrm{CH}_{2} \mathrm{I}_{2}(0.6 \mathrm{~mL})$ then $\mathrm{NaBH}_{4}(0.021 \mathrm{~g}, 0.56 \mathrm{mmol})$. After 10 min another portion of $\mathrm{CH}_{2} \mathrm{I}_{2}$ (0.6 mL) was added. After stirring for $2 \mathrm{~h}, \mathrm{HCl}\left(10 \mathrm{~mL}, 2 \mathrm{~N}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organics were washed with brine $(15 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was purified by flash chromatography $(10 \% \rightarrow 30 \%$ EtOAc/hexanes) to give diketopiperazine 121 as a white solid ($0.057 \mathrm{~g}, 55 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.35(\mathrm{~m}, 10 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=14.8,2 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H})$, $4.16(\mathrm{~d}, \mathrm{~J}=14.8,2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.5,164.6,134.1,129.1$, 128.5, 60.3, 47.9, 29.3; FTIR (thin film) 3064, 3031, 2966, 1676, 1447, $1423 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+} 371.4964$, found 371.0887 ; m.p. 189-192 ${ }^{\circ} \mathrm{C}$.

Preparation of dithioacetal 125

A solution of known dithioacetal $\mathbf{3 0}^{6 \mathrm{a}}(1.7 \mathrm{~g}, 5.24 \mathrm{mmol})$ and $\mathrm{BOMCI}(7.3 \mathrm{~mL}, 52.4 \mathrm{mmol})$ in THF (210 mL) was cooled to $-78^{\circ} \mathrm{C}$. n-BuLi ($2.6 \mathrm{M}, 4.64 \mathrm{~mL}, 12.05 \mathrm{mmol}$) was added over 1 h 15 min . After 40 min the reaction was allowed to warm to room temperature and stirred for 5 h. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 100$ $\mathrm{mL})$. The combined organics were washed with brine (200 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($15 \% \rightarrow 30 \%$ EtOAc/hexanes then $1 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give dithioacetal 125 ($0.961 \mathrm{~g}, 32 \%$ yield).
${ }^{1} \mathrm{H}-$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.38-7.24(\mathrm{~m}, 12 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.76-$ $4.66(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{dd}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.81-3.75 (m, 5H), 3.25-3.23 (s, 3H), 3.16 (s, 3H).

Preparation of disulfide 126

Dithioacetal 125 ($0.300 \mathrm{~g}, 0.53 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(117 \mathrm{~mL})$ and mCPBA $(0.143 \mathrm{~g}, 0.83 \mathrm{mmol})$ was added. After stirring for 8 min DMS ($0.050 \mathrm{~mL}, 0.64 \mathrm{mmol}$) and then 2 min later a $5: 1$ mixture of $\mathrm{MeOH}: \mathrm{HClO}_{4}(1.06 \mathrm{~mL})$ was added. After stirring for 19 h sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added and extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organics were washed with brine (10 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude
material was purified by flash chromatography ($10 \% \rightarrow 20 \%$ EtOAc/hexanes) to give pure disulfide 126 (0.145 g, 62\% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta$ 7.39-7.29 (m, 10H), 4.77-4.67 (m, 4H), 4.29-4.21 (m, 4H), 3.16-3.14 (m, 6H).

Preparation of bisthiomethyl ether 127

Disulfide 126 ($0.270 \mathrm{~g}, 0.61 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(3.4 \mathrm{~mL})$, pyridine (2 mL), and $\mathrm{Mel}(1.4 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Solid $\mathrm{NaBH}_{4}(0.046 \mathrm{~g}, 1.2 \mathrm{mmol})$ was added and after 15 min the reaction was allowed to warm to room temperature. After $3 \mathrm{~h} 15 \mathrm{~min} 1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organics were washed with brine (10 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexanes) to give bisthiomethyl ether 127 ($0.211 \mathrm{~g}, 73 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.34-7.19(\mathrm{~m}, 10 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 6 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (101 MHz, CDCl_{3}): $\delta 165.00,137.56,128.31,127.59,126.92,73.18,70.90,65.11,65.08$, 29.66, 13.52; FTIR (thin film): 3467, 3062, 3029, 2923, 2866, 1496, 1453, 1425, 1381, 1244, 1205, 1101, $1026 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{Na})^{+}$: 497.1545, found: 497.1541.

Preparation of bromoketone 236

$\mathrm{NaH}(60 \%$ in mineral oil, $7.0 \mathrm{~g}, 0.29 \mathrm{~mol})$ was suspended in THF (265 mL) and cooled to $0^{\circ} \mathrm{C}$. Malonate $460(27.1 \mathrm{~mL}, 0.159 \mathrm{~mol})$ was added portionwise over 50 min while H_{2} evolved. The reaction was warmed to room temperature, stirred at that temperature for 30 min , then was cooled back to $0^{\circ} \mathrm{C}$. Acid bromide 461 ($21.1 \mathrm{~mL}, 0.175 \mathrm{~mol}$) was added and the reaction was allowed to warm to room temperature. The solution became cloudy as NaBr crashed out and after stirring for 17 h was filtered through celite three times then silica gel once to provide bromoketone 236 as a yellow oil (51.9 g , quant. yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 4.68(\mathrm{dd}, J=9.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.17(\mathrm{~m}, 4 \mathrm{H}), 2.05-$ $1.99(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{dt}, J=15.3,7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (101 MHz, CDCl_{3}): $\delta 195.86,168.47,167.59,66.32,62.73,62.33,51.17,26.96,18.03,13.83$, 13.78, 11.81; FTIR (thin film): 2981, 2940, 2908, 2879, 1719, 1449, 1380, 1256, 1110, $1014 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{BrO}_{5}(\mathrm{M}+\mathrm{H})^{+}$: 323.0494, found: 323.0493.

Preparation of aniline 237

235

237

A solution of 3 -aminophenol (235) ($2.18 \mathrm{~g}, 20.0 \mathrm{mmol}$), alkyl bromide $236(3.23 \mathrm{~g}, 10$ $\mathrm{mmol})$, and $\mathrm{KI}(0.166 \mathrm{~g}, 1.0 \mathrm{mmol})$ was heated to $50^{\circ} \mathrm{C}$ for 48 h . All volatiles were removed in vacuo and the crude mixture was purified via flash chromatography ($30 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to yield aniline 237 ($1.79 \mathrm{~g}, 51 \%$ yield) as a reddish brown oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 6.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.17 (dd, $J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.40-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.14$ (m, 2H), 3.94-3.89 (m, 2H), 1.96 (ddd, $J=14.1,7.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dt}, J=14.7,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.65(\mathrm{~d}, J=22.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{q}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3H); ${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): δ 203.88, 168.78, 168.67, 156.78, 147.79, 130.15, 106.16, 105.44, 100.30, 64.94, 62.41, 62.27, 61.15, 24.84, 19.25, 13.86, 13.73, 9.77; FTIR (thin film): 3396, 2980, 2940, 2908, 2878, 1717, 1600, 1517, 1498, 1451, 1378, 1264, 1161, 1114, 1017 cm^{-1}; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}: 352.1755$, found: 352.1764.

Preparation of ketone 239

A solution of aniline $237(1.79 \mathrm{~g}, 5.08 \mathrm{mmol})$ and acetic acid (5.0 mL) in toluene (50 mL) was heated to $80^{\circ} \mathrm{C}$ overnight. All volatiles were removed in vacuo and the crude mixture was purified via flash chromatography (30% EtOAc/hexanes) to yield phenol 287 ($1.44 \mathrm{~g}, 93 \%$ yield) as a separable mixture of diastereomers.

Higher R_{f} diastereomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{t}, \mathrm{J}=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=5.6,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23-4.18(\mathrm{~m}, 2 \mathrm{H}), 1.97$ (ddt, $J=14.8,7.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$, 1.29-1.23 (m, 3H), 0.75 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 204.90, 169.73, 165.11, 157.10, 136.22, 130.15, 115.31, 114.87, 112.39, 68.24, 62.96, 59.76, 21.28, 14.96, 13.90, 7.99; FTIR (thin film): 3331, 2972, 2939, 2881, 1778, 1747, 1683, 1608, 1596, 1492, 1460, 1407, 1298, 1222, 1159, 1126, 1108, 1048, 1009; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}: 306.1336$, found: 306.1340.

Lower R_{f} diastereomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.82(\mathrm{dt}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{ddd}, J=8.2,2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 4.52$ (dd, $J=7.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.19(\mathrm{~m}, 2 \mathrm{H}), 1.98$ (ddd, $J=14.5,7.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dt}, J=$ 14.5, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 204.61,169.54,165.35,156.88,136.28,130.13,114.97,114.51,112.16,67.54$, 62.79, 59.66, 22.50, 17.19, 13.87, 8.67; FTIR (thin film): 3320, 2980, 2940, 2882, 1776, 1745, 1682, 1596, 1492, 1460, 1407, 1297, 1215, 1158, 1106, 1046, 1011.

To a solution of phenol $287(0.811 \mathrm{~g}, 2.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(27 \mathrm{~mL})$ was added imidazole ($0.271 \mathrm{~g}, 3.98 \mathrm{mmol}$) and TIPSCI ($0.739 \mathrm{~mL}, 3.45 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature then quenched with water (30 mL). The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified via flash chromatography (10% EtOAc/hexanes) to yield ketone 234 ($1.21 \mathrm{~g}, 99 \%$ yield) as a separable mixture of diastereomers as an off-white waxy solid.

Higher R_{f} diastereomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.27(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, \mathrm{J}$ $=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=5.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.97(\mathrm{~s}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{~s}, 18 \mathrm{H})$, $0.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.41,168.61,165.17,156.74,136.74$, $129.81,118.44,116.63,116.12,67.78,62.72,59.58,21.22,17.86,14.87,13.86,12.63,7.89$; FTIR (thin film): 2966, 2945, 2893, 2869, 1780, 1749, 1709, 1598, 1490, 1463, 1449, 1388, 1297, 1221, 1183, 1158, 1126, 1107, 1073, 1048, 1005; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 462.2670$, found: 462.2676 .

Lower R_{f} diastereomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{t}, \mathrm{J}=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.80(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=$ $7.1,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{dt}, J=14.3,5.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.11(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 18 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.14,168.67,165.52$,
$156.70,136.55,129.79,118.33,116.27,116.03,67.24,62.58,22.46,17.86,17.17,13.86$, 12.61, 8.64; FTIR (thin film): 2945, 2894, 2869, 1775, 1732, 1702, 1599, 1496, 1447, 1395, 1306, 1255, 1232, 1160, 1127, 1107, 1052, 1005.

Preparation of enal 239

234

(80% yield)

239

To a $-78{ }^{\circ} \mathrm{C}$ solution of ketone $234(3.63 \mathrm{~g} 7.86 \mathrm{mmol})$ in THF (80 mL) was added NaHMDS ($8.65 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 8.65 mmol) and the reaction mixture was allowed to warm slowly to $-50^{\circ} \mathrm{C}$ then cooled to $-78^{\circ} \mathrm{C}$. Meanwhile, the vinyl bromide ($1.76 \mathrm{~g}, 11.8 \mathrm{mmol}$) was added slowly to a solution of the bulky Lewis acid (generated from slow addition of AlMe_{3} (7.03 $\mathrm{mL}, 2.0 \mathrm{M}$ in hexanes, 14.07 mmol) to a solution of 2,6-diphenylphenol ($9.90 \mathrm{~g}, 40.2 \mathrm{mmol}$) in toluene (70 mL) at room temperature) at $-78{ }^{\circ} \mathrm{C}$ and maintained for 20 min . The solution containing aldehyde complex 245 was then transferred via cannula to the sodium enolate of ketone 234. The reaction mixture was maintained at $-78^{\circ} \mathrm{C}$ for 1 h then allowed to warm slowly to room temperature over 3 h . The reaction mixture was quenched with sat. aq. Rochelle's salt (100 mL), stirred vigorously overnight, and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified via flash chromatography ($5 \% \rightarrow 10 \%$ EtOAc/hexanes) to yield enal 239 ($3.33 \mathrm{~g}, 80 \%$ yield) as an inseparable mixture of diastereomers as a light brown oil. The major diastereomer is characterized.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}, \mathrm{J}=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{ddd}, J=8.2,2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{qd}, J=7.1,3.0$ Hz, 2H), 2.42 (dd, $J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.18 (dd, $J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}$, $3 H), 1.29(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 3 \mathrm{H}), 1.10-1.04(\mathrm{~m}, 18 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 203.07,193.82,169.39,165.22,156.64,149.71,142.03,136.09$, 129.88, 119.22, 117.50, 116.66, 62.89, 58.82, 27.78, 17.79, 13.87, 12.57, 10.30, 8.06; FTIR (thin film): 2946, 2868, 1777, 1751, 1710, 1598, 1491, 1463, 1378, 1354, 1284, 1225, 1124, 1004; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{NO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 530.2932$, found: 530.2941.

Preparation of carboxylic acid 247

239

(47\% yield)

247

To a $-78{ }^{\circ} \mathrm{C}$ solution of phosphonate $246(0.436 \mathrm{~g} 2.08 \mathrm{mmol})$ in THF (20 mL) was added n-BuLi ($2.79 \mathrm{~mL}, 1.49 \mathrm{M}, 4.15 \mathrm{mmol}$). After 40 min enal 239 ($1.0 \mathrm{~g}, 1.89 \mathrm{mmol}$) in THF $(5.0 \mathrm{~mL})$ was added slowly. The reaction mixture was maintained at $-78^{\circ} \mathrm{C}$ for 1 h then allowed to warm slowly to $0{ }^{\circ} \mathrm{C}$ and quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and extracted with EtOAc (3 x 25 mL). The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified via flash chromatography ($20 \% \rightarrow 30 \% \rightarrow 60 \%$ EtOAc/hexanes) to yield carboxylic acid 247 (0.515 g , 47\% yield) as an inseparable mixture of diastereomers as a colorless oil and unreacted enal 239 ($0.215 \mathrm{~g}, 22 \%$ yield). The major diastereomer of the product is characterized.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}$,
$2 \mathrm{H}), 2.26(\mathrm{dd}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dd, $J=14.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$, $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.18(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}, 18 \mathrm{H}), 0.82(\mathrm{q}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.02,169.59,165.58,156.51,143.80,138.05$, 136.36, 132.22, 129.68, 119.11, 118.40, 117.38, 76.04, 62.76, 58.77, 50.69, 45.27, 28.84, 28.28, 17.78, 13.86, 12.60, 8.07; FTIR (thin film): 2946, 2869, 2653, 2529, 2253, 1775, 1748, 1714, 1635, 1598, 1489, 1463, 1379, 1285, 1122, 1004; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{NO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 586.3203$, found: 586.3203 .

Preparation of acid chloride 233

To a solution of carboxylic acid $245(0.100 \mathrm{~g}, 0.171 \mathrm{mmol})$ in acetonitrile (5 mL) was added oxalyl chloride ($0.017 \mathrm{~mL}, 0.205 \mathrm{mmol}$) and DMF (1 drop). The reaction was vented with a needle until effervescence ceased, then maintained under a positive pressure of N_{2} overnight. All volatiles were removed under full vacuum to yield acid chloride $233(0.105 \mathrm{mg})$ as a crude oil, which was used without further purification.

Preparation of ketone 259

233

259

To a $0{ }^{\circ} \mathrm{C}$ solution of acid chloride $233(20.6 \mathrm{mg}, 0.0341 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was added $\mathrm{AlCl}_{3}(0.009 \mathrm{~g}, 0.0683 \mathrm{mmol})$ and anisole $(0.050 \mathrm{~mL}, 0.460 \mathrm{mmol})$. The reaction mixture was allowed to warm to room temperature and maintained overnight. After addition of sat. aq. Rochelle's salt (5 mL) the reaction was stirred vigorously for 2 h and the mixture was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (20% EtOAc/hexanes) to yield ketone 259 ($0.008 \mathrm{mg}, 35 \%$ yield) as an inseparable mixture of diastereomers as a colorless oil. The major diastereomer of the product is characterized.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-$ $7.01(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H})$, 5.58 (s, 1H), 4.27 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.86(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{dd}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13$ (dd, $J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.02(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.27-1.18 (m, 3H), 1.11-1.04 (m, 18H), $0.82(\mathrm{q}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 204.18, 197.78, 169.58, 165.63, 162.92, 156.49, 142.04, 138.08, 136.90, 136.48, 131.80, 131.10, 130.05, 129.63, 118.99, 118.22, 117.43, 113.55, 76.13, 62.75, 58.76, 55.44, 28.85, 18.07, 17.82, 14.88, 13.87, 12.58, 8.10; FTIR (thin film): 2943, 2868, 1774, 1748, 1708, 1647, 1599, 1509, 1490, 1461, 1376, 1354, 1283, 1254, 1173, 1149, 1111, 1005; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{NO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 676.3664$, found: 676.3673.

Preparation of allylic carbonate 265

239

265

To a solution of enal $239(0.222 \mathrm{~g}, 0.419 \mathrm{mmol})$ in THF (5 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{MeMgCl}(0.210 \mathrm{~mL}, 3.0 \mathrm{M}$ in THF, 0.630 mmol) and maintained for 1.5 h . Methyl chloroformate ($0.097 \mathrm{~mL}, 1.26 \mathrm{mmol}$) was then added and the reaction mixture was allowed to warm slowly to room temperature then quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography $(10 \% \rightarrow 30 \%$ EtOAc/hexanes) to yield allylic carbonate $265(0.225 \mathrm{~g}, 89 \%$ yield) as an inseparable mixture of diastereomers as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.21(\mathrm{q}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dt}, J=15.8,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.97-6.95 (m, 1H), 6.82-6.79 (m, 1H), $5.65(\mathrm{~d}, J=21.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=6.5,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.26-4.22 (m, 2H), $3.74(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{td}, J=7.3,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, 1.76 (dd, $J=5.4,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.09-$ $1.04(\mathrm{~m}, 18 \mathrm{H}), 0.74(\mathrm{tt}, J=7.6,3.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.22,204.02$, 169.63, 165.80, 165.78, 156.37, 154.78, 154.74, 140.99, 140.91, 136.49, 136.44, 129.51, 129.45, 126.59, 125.89, 118.73, 118.69, 117.80, 117.54, 117.47, 79.09, 78.89, 76.02, 75.95, $62.58,62.56,58.74,58.67,54.70,27.80,27.54,19.15,18.99,17.83,13.83,13.63,13.20,12.57$, 8.08, 8.06; FTIR (thin film): 2946, 2869, 1775, 1750, 1598, 1490, 1445, 1378, 1355, 1268, 1112, 1071; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{NO}_{8} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 604.3300$, found: 604.3310.

Preparation of allylic carbonate 268

239

MeOCOCl
(79\% yield)

268

To a solution of enal $239(0.300 \mathrm{~g}, 0.566 \mathrm{mmol})$ in THF (6 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ was added 2-propenylMgCl ($1.70 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF, 0.849 mmol) and maintained for 1.5 h . Methyl chloroformate ($0.131 \mathrm{~mL}, 1.70 \mathrm{mmol}$) was then added and the reaction mixture was allowed to warm slowly to room temperature and quenched with sat. aq. NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 5 \mathrm{~mL}$). The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified via flash chromatography ($15 \% \rightarrow 20 \% \mathrm{EtOAc} /$ hexanes) to yield allylic carbonate 268 ($0.280 \mathrm{~g}, 79 \%$ yield) as an inseparable mixture of diastereomers as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.21(\mathrm{q}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.80(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}$, $1 \mathrm{H}), 4.25$ (td, $J=6.6,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-3.77(\mathrm{~s}, 3 \mathrm{H}), 2.32$ (ddd, $J=14.5,10.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ ($\mathrm{dd}, J=14.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.71(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~m}, 6 \mathrm{H}), 1.25(\mathrm{~m}, 6 \mathrm{H}), 1.13-1.05(\mathrm{~m}, 18 \mathrm{H}), 0.76(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.21,204.09,169.60,165.76,165.74,156.43$, $156.42,154.62,154.57,139.97,139.91,137.92,137.85,136.50,136.45,129.51,129.42$, 127.95, 127.39, 118.74, 118.66, 117.66, 117.62, 117.41, 114.96, 114.48, 84.84, 84.81, 76.20, 62.58, 58.68, 58.62, 54.85, 27.98, 27.72, 18.42, 18.09, 17.84, 14.05, 13.84, 13.49, 12.60, 8.13; FTIR (thin film): 2946, 2869, 1775, 1751, 1709, 1651, 1598, 1490, 1444, 1377, 1355, 1269, 1112; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{NO}_{8} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 630.3480$, found: 630.3480 .

Preparation of fused tricycle 269

A flame dried vial was charged with methyl carbonate 268 ($0.029 \mathrm{~g}, 0.0461 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.2 \mathrm{mg}, 0.00461 \mathrm{mmol})$, and DIPHOS ($3.7 \mathrm{mg}, 0.00922 \mathrm{mmol}$) and vacuum purged under N_{2}. DMF (3 mL) was then added and the reaction mixture heated to $110{ }^{\circ} \mathrm{C}$ overnight. Volatiles were removed in vacuo and the crude mixture was purified by flash chromatography (5\% EtOAc/hexanes) to yield fused tricycle 269 ($15 \mathrm{mg}, 59 \%$ yield) as a colorless crystalline solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 1 \mathrm{H}), 2.17$ (dd, $J=14.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{dd}, J=14.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{dt}, J=15.0,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}), 0.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.78,170.31,156.35,146.44,141.67,138.07,129.45,129.40$, $128.28,128.23,128.19,121.45,121.41,121.38,121.35,120.52,120.44,119.55,106.29$, 106.25, 98.39, 79.18, 72.28, 61.34, 60.25, 57.30, 25.27, 17.86, 14.57, 13.96, 12.59, 9.53; FTIR (thin film): 2945, 2868, 1742, 1702, 1666, 1596, 1487, 1464, 1443, 1384, 1367, 1282, 1246, 1197, 1155, 1133, 1081, 1006; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 554.3296, found: 554.3287.

Preparation of allylic carbonate 275

To a solution of enal $239(0.112 \mathrm{~g}, 0.211 \mathrm{mmol})$ in THF (3 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ was added vinylMgCl ($0.317 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 0.317 mmol) and maintained for 1.5 h . Methyl chloroformate ($0.049 \mathrm{~mL}, 0.634 \mathrm{mmol}$) was then added and the reaction mixture was allowed to warm slowly to room temperature and quenched with sat. aq. NaHCO_{3} and extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (10\% EtOAc/hexanes) to yield allylic carbonate 462 ($0.096 \mathrm{~g}, 74 \%$ yield) as an inseparable mixture of diastereomers as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.21(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=13.5,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.35-5.27(\mathrm{~m}, 3 \mathrm{H})$, 4.26-4.22 (m, 2H), 3.77 (s, 3H), 2.28 (dd, $J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dd}, \mathrm{J}=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.75(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{dd}, J=16.2,7.3 \mathrm{~Hz}, 18 \mathrm{H}), 0.77-0.72(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.14,203.97,169.61,165.76,156.39,154.62,154.57$, 138.76, 136.47, 136.41, 133.46, 133.41, 129.52, 129.46, 127.81, 127.45, 118.77, 118.75, 118.68, 118.62, 117.77, 117.52, 117.50, 117.44, 82.86, 82.84, 76.12, 76.04, 62.57, 58.71, 58.66, 54.86, 27.78, 27.55, 13.99, 13.84, 13.72, 12.58, 8.08, 8.06; FTIR (thin film): 2946, 2869, 1776, 1752, 1709, 1598, 1490, 1444, 1377, 1355, 1262, 1113; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{NO}_{8} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 616.3307$, found: 616.3307.

To a solution of methyl carbonate $462(130 \mathrm{mg}, 0.211 \mathrm{mmol})$ in THF $(4.5 \mathrm{~mL})$ cooled to $15{ }^{\circ} \mathrm{C}$ was added TBAF ($0.23 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 0.23 mmol). The reaction was monitored by TLC and after 5 min quenched with water (10 mL) and extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified via column chromatography (20% EtOAc/hexanes) to yield phenol 275 (0.097 mg , quant. yield) as an inseparable mixture of diastereomers as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.23(\mathrm{tt}, J=7.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.36$ $(\mathrm{m}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.80(\mathrm{~s}, 3 \mathrm{H})$, 2.24-2.02(m, 2H), 1.76-1.72 (m, 3H), 1.66-1.63 (m, 3H), 1.29-1.23 (m, 3H), 0.81-0.75 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, CDCl_{3}): $\delta 203.97,203.86,169.85,169.80,165.57,165.53,156.75,156.69,156.66,155.25$, 155.21, 139.63, 139.42, 135.93, 135.90, 133.20, 133.04, 129.92, 129.88, 128.35, 127.24, $119.11,118.45,118.22,118.01,114.79,114.75,113.29,113.24,83.37,83.18,75.67,75.24$, $62.88,62.83,58.99,58.87,55.13,29.15,28.78,17.75,17.53,14.59,13.88,13.33,8.09,7.96 ;$ FTIR (thin film): 3368, 2985, 2942, 1775, 1750, 1704, 1683, 1595, 1491, 1445, 1383, 1335, 1262, 1160, 1113; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{8}(\mathrm{M}+\mathrm{H})^{+}$: 460.1971 , found: 460.1977.

Preparation of tricycle 276

A flame dried vial was charged with methyl carbonate 275 ($0.020 \mathrm{~g}, 0.0435 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.0 \mathrm{mg}, 0.00435 \mathrm{mmol})$, and DIPHOS $(3.5 \mathrm{mg}, 0.00871 \mathrm{mmol})$ and vacuum purged
under N_{2}. DMF (1 mL) and toluene (1 mL) was added and the reaction mixture heated to $120^{\circ} \mathrm{C}$ overnight. The crude mixture was loaded directly on to silica gel and purified via flash chromatography (20% EtOAc/hexanes) to yield tricycle 276 ($11.5 \mathrm{mg}, 69 \%$ yield) as an inseparable mixture of diastereomers or olefin isomers as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.83-$ $6.76(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.21(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.24(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 6 \mathrm{H})$, 1.32-1.27 (m, 3H), 1.11-1.07 (m, 3H), 1.04-0.98 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 200.57$, 167.98, 165.69, 157.29, 139.43, 133.12, 131.40, 130.28, 126.29, 126.25, 124.96, 118.19, $118.14,114.00,113.77,105.41,105.35,81.45,63.16,48.85,32.05,20.06,17.04,13.88,7.80$; FTIR (thin film): 3333, 2972, 2939, 1775, 1685, 1618, 1600, 1499, 1465, 1381, 1294, 1224, 1167, 1108, 1015; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}$: 384.1811, found: 384.1815.

Preparation of tetramic acid 280

A solution of aniline $281^{9}(4.00 \mathrm{~g}, 23.9 \mathrm{mmol})$, bromide $238(3.87 \mathrm{~g}, 12.0 \mathrm{mmol})$, and KI $(0.199 \mathrm{~g}, 1.2 \mathrm{mmol})$ in $\mathrm{EtOH}(60 \mathrm{~mL})$ was heated to $60^{\circ} \mathrm{C}$ for 48 h . The solution was then cooled to room temperature and the volatiles were removed in vacuo. The crude material was purified by flash chromatography $(10 \% \rightarrow 15 \% \rightarrow 20 \%$ EtOAc/hexanes) to give aniline 286 (1.703 $\mathrm{g}, 17 \%$ yield) as a mixture of diastereomers.

To aniline 286 ($1.703 \mathrm{~g}, 4.16 \mathrm{mmol}$) was added toluene (42 mL) then $\mathrm{AcOH}(4.2 \mathrm{~mL}$) and the reaction was heated to $80^{\circ} \mathrm{C}$ for 16.5 h . The reaction was cooled to room temperature
and the volatiles were removed in vacuo. The crude mixture was purified by flash chromatography $(20 \% \rightarrow 30 \%$ EtOAc/hexanes) to yield phenol $463(1.324 \mathrm{~g}, 88 \%$ yield) as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 1 \mathrm{H})$, $7.33(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=5.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.87(\mathrm{~s}, 3 \mathrm{H})$, 2.01-1.93 (m, 1H), 1.81-1.74 (m, 1H), $1.58(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.21(\mathrm{~m}, 3 \mathrm{H}), 0.72(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=7.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, J=3.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.01-1.93 (m, 1H), 1.87-1.79 (m, 1H), 1.62 (s, 3H), 1.23-1.19 (m, 3H), $0.85(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.22,203.88,194.67,191.40,170.13,166.33,165.13,157.49$, $157.47,136.16,132.06,116.92,116.82,115.83,115.81,115.67,115.47,68.02,67.56,63.12$, $62.95,59.77,59.72,52.51,22.38,21.15,17.16,14.96,13.88,13.82,8.56,7.92$; FTIR (thin film): 3339, 2979, 2941, 1777, 1746, 1704, 1681, 1598, 1455, 1437, 1330, 1295, 1209, 1107, 1006 cm^{-1}; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{7}(\mathrm{M}+\mathrm{H})^{+}: 364.1396$, found: 364.1394.

To a solution of phenol $463(1.324 \mathrm{~g}, 3.64 \mathrm{mmol})$ and imidazole ($0.372 \mathrm{~g}, 5.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(36 \mathrm{~mL})$ was added TIPSCI ($1.0 \mathrm{~mL}, 4.74 \mathrm{mmol}$). The reaction was stirred for 17.5 h then water (30 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organics were washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography to yield tetramic acid $\mathbf{2 8 0}$ ($1.818 \mathrm{~g}, 96 \%$ yield) as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.58(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=5.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.81-$ $1.76(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.19(\mathrm{~m}, 6 \mathrm{H}), 1.08(\mathrm{~s}, 18 \mathrm{H}), 0.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz; CDCl $)_{3}$: $\delta 7.55(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.56(\mathrm{dd}, J=7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.59$ (s, 3H), 1.31-1.19 (m, 6H), 1.09 (d, $J=7.4 \mathrm{~Hz}, 18 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101$
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.83,204.59,168.83,166.11,165.35,164.95,156.78,156.74,136.84$, $136.66,132.03,132.01,120.56,119.14,119.11,116.90,116.60,67.50,66.98,62.84,62.67$, $59.55,59.43,52.40,22.31,21.09,17.82,17.19,14.89,13.86,13.83,12.56,12.53,8.50,7.81$; FTIR (thin film): 2945, 2893, 2868, 1777, 1707, 1593, 1453, 1386, 1372, 1331, 1243, 1212, 1104, $1013 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{NO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 520.2731$, found: 520.2723.

Preparation of diene 287

280

287

To a $-78{ }^{\circ} \mathrm{C}$ solution of ketone $280(1.318 \mathrm{~g} 2.54 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ was added NaHMDS ($2.79 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 2.79 mmol) and the reaction mixture was allowed to warm slowly to $-50^{\circ} \mathrm{C}$ then cooled to $-78^{\circ} \mathrm{C}$. Meanwhile, the vinyl bromide ($0.568 \mathrm{~g}, 3.81 \mathrm{mmol}$) was added slowly to a solution of the Lewis acid (generated from slow addition of $\mathrm{AlMe}_{3}(2.29 \mathrm{~mL}$, 2.0 M in hexanes, 4.57 mmol) to a solution of 2,6 -diphenylphenol ($3.128 \mathrm{~g}, 12.7 \mathrm{mmol}$) in toluene (25 mL) at room temperature) at $-78^{\circ} \mathrm{C}$ and maintained for 20 min . The solution containing aldehyde complex 245 was then transferred via cannula to the sodium enolate of ketone 280. The reaction mixture was maintained at $-78^{\circ} \mathrm{C}$ for 1 h then allowed to warm slowly to room temperature over 3 h . The reaction mixture was quenched with sat. aq. Rochelle's salt $(50 \mathrm{~mL})$, stirred vigorously overnight, and extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified via flash chromatography $(5 \% \rightarrow 10 \% \rightarrow 20 \%$ EtOAc/hexanes) to yield an intermediate enal ($0.812 \mathrm{~g}, 54 \%$ yield) as an inseparable mixture of diastereomers.

KHMDS (0.5 M in THF, $2.8 \mathrm{~mL}, 1.4 \mathrm{mmol}$) was added to $\mathrm{PPh}_{3} \operatorname{MeBr}(0.536 \mathrm{~g}, 1.5 \mathrm{mmol})$. After 1 h the enal from the last step $(0.287 \mathrm{~g}, 0.489 \mathrm{mmol})$ in THF (5 mL) was added. After 10 min sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added. The mixture was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$ and the combined organics were washed with brine (10 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (10\% EtOAc/hexanes) to give triene 287 ($0.071 \mathrm{~g}, 25 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.72(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.35-6.28(\mathrm{dd}, J=17.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J$ $=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.87(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{dt}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.03$ $(\mathrm{m}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.63(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.16(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=4.2$ $\mathrm{Hz}, 18 \mathrm{H}$), 0.75 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 222.27,203.87,194.65$, 191.46, 169.72, 166.14, 165.59, 156.44, 140.74, 139.58, 136.63, 131.93, 130.28, 120.99, $119.76,119.30,119.27,114.85,76.08,62.78,58.76,52.33,28.66,18.00,17.85,17.79,17.67$, 13.84, 12.95, 12.51, 8.07; FTIR (thin film): 2945, 2893, 2868, 1776, 1708, 1592, 1453, 1376, 1361, 1312, 1239, 1186, 1146, 1107, $1020 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{NO}_{7} \mathrm{Si}$ $(\mathrm{M}+\mathrm{H})^{+}: 586.3200$, found: 586.3201.

Preparation of tetramic acid 295

A solution of phenol $294(10.9 \mathrm{~g}, 35.8 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(14.9 \mathrm{~g}, 107 \mathrm{mmol})$, and Mel (13.4 $\mathrm{mL}, 215 \mathrm{mmol}$) in acetone (358 mmol) was heated to $60^{\circ} \mathrm{C}$ for 5.5 h . The reaction was cooled to room temperature and the colvent removed in vacuo. The crude material was ran through a
plug of silica gel (100\% EtOAc) to yield tetramic acid 295 (10.6 g, 93\% yield) as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.31(\mathrm{td}, J=8.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.81 (ddd, $J=8.1,5.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=5.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dt}, J=13.6$, $6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.79(\mathrm{~s}, 3 \mathrm{H}), 1.95$ (dddt, $J=14.5,10.8,7.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}$, $3 \mathrm{H}), 1.22-1.18(\mathrm{~m}, 3 \mathrm{H}), 0.72(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.31(\mathrm{td}, J=8.1$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (ddd, $J=8.1,5.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (dd, $J=7.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dt}, J=13.6,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{dddt}, J=14.5,10.8,7.2$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{dd}, \mathrm{J}=7.4,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.81(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.24,205.03,194.66,194.64,191.46,168.86,168.83,165.52$, $165.13,160.20,160.17,136.79,136.65,129.96,129.92,116.05,115.97,112.41,112.28$, 110.47, 110.39, 67.78, 67.26, 62.76, 62.64, 59.57, 59.47, 55.41, 22.45, 21.19, 17.18, 14.88, 13.88, 8.64, 7.94; FTIR (thin film): 2974, 2939, 2881, 1775, 1744, 1603, 1589, 1493, 1455, 1386, 1291, 1123, 1106, 1039, $1010 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}$: 320.1498, found: 320.1488.

Preparation of aryl boronic ester 296

Tetramic acid 295 ($2.33 \mathrm{~g}, 7.3 \mathrm{mmol}),[\mathrm{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(0.048 \mathrm{~g}, 0.073 \mathrm{mmol})$, dtbpy $(0.063 \mathrm{~g}, 0.23 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{Pin}_{2}(1.85 \mathrm{~g}, 7.3 \mathrm{mmol})$, and THF (15 mL) were added to a Schlenk flask and the solvent was degassed by the freeze/ pump/ thaw method (3x). The mixture was then heated to $80^{\circ} \mathrm{C}$ and maintained that that temperature for 18 h . The reaction was cooled to room temperature and the solvent was removed in vacuo. The crude material was purified by
flash chromatography $(15 \% \rightarrow 30 \%$ EtOAc/hexanes) to yield aryl boronic ester 296 (2.194 g, 68% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.28(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}$, $J=5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.75(\mathrm{~m}, 3 \mathrm{H}), 1.95-$ $1.85(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 12 \mathrm{H}), 1.21-1.11$ $(\mathrm{m}, 3 \mathrm{H}), 0.67-0.64(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.25(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.75$ (m, 3H), 1.95-1.85 (m, 1H), $1.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $12 \mathrm{H}), 1.21-1.11(\mathrm{~m}, 3 \mathrm{H}), 0.79(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.20,205.07$, 194.71, 168.76, 165.55, 165.11, 159.65, 159.61, 136.34, 136.22, 121.87, 121.72, 117.56, $117.50,114.56,114.51,114.20,84.05,67.76,67.22,62.66,62.65,62.49,59.42,59.31,55.44$, $55.41,24.76,22.40,21.18,17.09,14.89,13.82,8.52,7.91 ;$ FTIR (thin film): 2978, 2938, 1777, 1745, 1702, 1588, 1450, 1430, 1372, 1359, 1294, 1252, 1166, 1143, 1105, 1048, 1010, 968 , $954 \mathrm{~cm}^{-1} ;$ HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}: 446.2350$, found: 446.2351.

Preparation of styrene 297

296

297

Aryl boronic ester 296 ($0.460 \mathrm{~g}, 1.04 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.073 \mathrm{~g}, 0.104 \mathrm{mmol})$, KOtBu $(0.350 \mathrm{~g}, 3.12 \mathrm{mmol})$, 2-bromobutene $(0.13 \mathrm{~mL}, 1.25 \mathrm{mmol})$, and toluene $(3.2 \mathrm{~mL})$ were added together and heated to $80^{\circ} \mathrm{C}$. After 14 h the reaction was cooled to room temperature and water $(10 \mathrm{~mL})$ was added. The solution was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$ and the combined organics were washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated in vacuo.

The crude material was purified by flash chromatography ($15 \% \rightarrow 20 \%$ EtOAc/hexanes) to yield styrene 297 ($0.116 \mathrm{~g}, 30 \%$ yield) as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.00(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.26$ $(\mathrm{m}, 1 \mathrm{H}), 5.10-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 3 \mathrm{H}), 2.52-2.43$ $(m, 2 H), 2.06-1.72(m, 2 H), 1.60-1.55(m, 3 H), 1.33-1.04(m, 6 H), 0.95-0.71(m, 3 H)$.

Preparation of ketone 298

Styrene 297 ($0.155 \mathrm{~g}, 0.415 \mathrm{mmol}$) was dissolved in THF (3 mL) and water (1.5 mL) and $\mathrm{OsO}_{4}(0.08 \mathrm{M}, 0.052 \mathrm{~mL}, 0.0415 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(0.462 \mathrm{~g}, 2.2 \mathrm{mmol})$ were added. The reaction was stirred for 3 h the water (5 mL) was added and the solution was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organics were washed with brine (10 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (25\% EtOAc/hexanes) to yield ketone 298 ($0.073 \mathrm{~g}, 47 \%$ yield) as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$: $\delta 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 1 \mathrm{H}), 4.88-4.58(\mathrm{~m}$, $1 \mathrm{H})$, 4.29-4.16 (m, 2H), 3.90-3.84 (m, 3H), 3.04-2.96 (m, 2H), 2.05-1.76 (m, 2H), 1.61-1.52 (m, $3 H), 1.30-1.17(m, 6 H), 0.93-0.69(m, 3 H)$.

Preparation of aryl bromide 301 from aryl boronic ester 296

$\mathrm{CuBr}_{2}(0.599 \mathrm{~g}, 2.68 \mathrm{mmol})$ was dissolved in water (11.2 mL). In a separate flask aryl boronic ester 296 ($0.397 \mathrm{~g}, 0.89 \mathrm{mmol}$) was dissolved in MeOH (11.2 mL). The solution of 296 in MeOH was then poured into the aqueous solution and heated to $80^{\circ} \mathrm{C}$. The reaction was stirred for 4.5 h then cooled to room temperature and brine (20 mL) was added. The mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organics were washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (15% EtOAc/hexanes) to yield aryl bromide 301 ($0.262 \mathrm{~g}, 77 \%$ yield) as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.12(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{dd}, \mathrm{J}$ $=5.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.23-$ $1.14(\mathrm{~m}, 3 \mathrm{H}), 0.73-0.65(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.12(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~m}, 1 \mathrm{H}), 6.95-$ $6.90(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.73(\mathrm{~m}, 2 \mathrm{H})$, 1.53-1.49 (m, 3H), 1.23-1.14 (m, 3H), 0.84-0.78 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.54$, 204.37, 194.65, 194.63, 194.62, 168.86, 168.80, 165.31, 164.86, 160.69, 160.64, 137.66, $137.58,122.96,122.90,121.38,118.89,118.87,118.75,116.34,116.28,115.42,115.25$, $115.16,112.00,111.81,109.50,109.43,67.50,67.00,62.85,62.69,59.51,59.41,55.69,55.66$, 55.62, 22.34, 21.11, 17.13, 14.88, 13.87, 8.56, 7.90; FTIR (thin film): 2975, 2939, 2880, 1777, 1744, 1702, 1598, 1571, 1449, 1381, 1287, 1251, 1179, 1106, 1042, $1010 \mathrm{~cm}^{-1}$; HRMS (ESIAPCI) m / z calc'd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrNO}_{5}(\mathrm{M}+\mathrm{H})^{+}: 398.0603$, found: 398.0580 .

Preparation of aryl bromide 301 from arene 295

Alternative to the two-step procedure, aryl bromide $\mathbf{3 0 1}$ can be synthesized from arene 295 by subjecting the crude material of the borylation reaction directly into the bromination step. This was performed as followed:

Arene $295(3.91 \mathrm{~g}, 12.6 \mathrm{mmol}),[\operatorname{lr}(\mathrm{OMe})(\mathrm{cod})]_{2}(0.084 \mathrm{~g}, 0.126 \mathrm{mmol})$, dtbpy $(0.108 \mathrm{~g}$, $0.40 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{Pin}_{2}(3.20 \mathrm{~g}, 12.6 \mathrm{mmol})$, and THF (25 mL) were added to a Schlenk flask and the solvent was degassed by the freeze/ pump/ thaw method (3x). The mixture was then heated to $80{ }^{\circ} \mathrm{C}$ and maintained that that temperature for 13.5 h . The reaction was cooled to room temperature and the solvent was removed in vacuo. The crude material was dissolved in MeOH $(158 \mathrm{~mL})$ and added to a solution of $\mathrm{CuBr}_{2}(8.44 \mathrm{~g}, 37.8 \mathrm{mmol})$ in water $(158 \mathrm{~mL})$. The reaction was stirred for 5 h then cooled to room temperature and brine $(150 \mathrm{~mL})$ was added. The mixture was extracted with EtOAc $(3 \times 150 \mathrm{~mL})$. The combined organics were washed with brine (300 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($15 \% \mathrm{EtOAc} /$ hexanes) to yield aryl bromide 301 ($2.745 \mathrm{~g}, 57 \%$ yield, two steps) as a mixture of diastereomers. All spectral data was identical to the material produced in the two step procedure.

Preparation of enone 300

Aryl bromide 301 ($0.439 \mathrm{~g}, 1.15 \mathrm{mmol}$), vinyl stannane 302 ($1.52 \mathrm{~g}, 4.58 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.081 \mathrm{~g}, 0.115 \mathrm{mmol})$, and $\mathrm{DMF}(11.5 \mathrm{~mL})$ were added to a steel bomb. The bomb was flushed with CO by filling to 30 bar and venting three times. The bomb was then filled with CO to 30 bar and heated to $80^{\circ} \mathrm{C}$. The reaction was stirred for 19 h then cooled to room temperature. The bomb was vented and water (30 mL) was added. The mixture was extracted with $\operatorname{EtOAc}(3 \times 20 \mathrm{~mL})$ and the combined organics were washed with brine $(30 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (15% EtOAc/hexanes) to give enone 300 ($0.164 \mathrm{~g}, 38 \%$ yield) as a mixture of diastereomers and starting material 301 ($0.174 \mathrm{~g}, 40 \%$ recovery).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta$ 7.33-7.29 (m, 1H), 7.24-7.22 (m, 1H), 7.16-7.13 (m, 1H), $5.93(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=5.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{td}, J=6.6,3.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.13$ $(\mathrm{m}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dt}, J=12.2,5.7 \mathrm{~Hz}$, 2 H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{td}, J=7.1,3.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.85(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.65,204.46,203.26,196.96,196.94$, 169.02, 168.97, 165.35, 164.92, 160.02, 159.98, 159.93, 143.34, 139.49, 136.59, 136.50, 127.95, 116.95, 116.76, 113.85, 113.82, 112.57, 112.42, 67.48, 66.98, 62.86, 62.72, 59.56, 59.46, 55.71, 55.67, 55.65, 22.37, 21.08, 18.52, 18.49, 18.08, 17.19, 14.91, 13.87, 8.58, 7.90; FTIR (thin film): 2977, 2939, 2844, 1777, 1745, 1704, 1656, 1626, 1592, 1453, 1435, 1338,

1214, 1182, 1108, 1061, 1034, $1011 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}$: 388.1760, found: 388.1765.

Preparation of triene 303

To a $-78{ }^{\circ} \mathrm{C}$ solution of ketone $300(0.164 \mathrm{~g} 0.49 \mathrm{mmol})$ in THF (4.4 mL) was added NaHMDS ($0.48 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 0.48 mmol) and the reaction mixture was allowed to warm slowly to $-50^{\circ} \mathrm{C}$ then cooled to $-78^{\circ} \mathrm{C}$. Meanwhile, the vinyl bromide ($0.098 \mathrm{~g}, 0.66 \mathrm{mmol}$) was added slowly to a solution of the Lewis acid (generated from slow addition of $\mathrm{AlMe}_{3}(0.40 \mathrm{~mL}$, 2.0 M in hexanes, 0.79 mmol) to a solution of 2,6-diphenylphenol ($0.542 \mathrm{~g}, 2.2 \mathrm{mmol}$) in toluene $(4.4 \mathrm{~mL})$ at room temperature) at $-78^{\circ} \mathrm{C}$ and maintained for 20 min . The solution containing aldehyde complex 245 was then transferred via cannula to the sodium enolate of ketone 300. The reaction mixture was maintained at $-78^{\circ} \mathrm{C}$ for 1 h then allowed to warm slowly to room temperature over 3 h . The reaction mixture was quenched with sat. aq. Rochelle's salt (10 mL), stirred vigorously overnight, and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified via flash chromatography $(15 \% \rightarrow 30 \%$ EtOAc/hexanes) to provide enal 464 ($0.088 \mathrm{~g}, 44 \%$ yield) as an inseparable mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.45$ ($\mathrm{s}, 1 \mathrm{H}$), $5.92(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.82(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.39(\mathrm{~m}$, $1 \mathrm{H}), 2.20-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.99(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.83(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.58(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.20(\mathrm{~m}$,
$3 \mathrm{H}), 0.89-0.77(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.49,196.65,193.96,193.70,193.67$, 169.68, 165.01, 160.11, 160.02, 149.47, 149.03, 148.87, 143.42, 142.11, 139.52, 135.93, 129.97, 127.81, 127.75, 118.92, 118.39, 117.28, 115.16, 112.55, 112.37, 111.86, 63.03, 58.80, 55.68, 27.88, 27.82, 18.51, 17.92, 16.09, 14.03, 13.90, 10.33, 8.62, 8.11; FTIR (thin film): 2981, 2940, 2842, 1777, 1747, 1659, 1628, 1595, 1493, 1455, 1376, 1358, 1284, 1221, 1162, 1125, $1032 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{7}(\mathrm{M}+\mathrm{H})^{+}: 456.2022$, found: 456.2021.

NaHMDS (1 M in THF, $0.22 \mathrm{~mL}, 0.22 \mathrm{mmol}$) was added to $\mathrm{PPh}_{3} \mathrm{MeBr}(0.086 \mathrm{~g}, 0.24$ $\mathrm{mmol})$. After 1 h enal 464 ($0.088 \mathrm{~g}, 0.20 \mathrm{mmol}$) in THF (2 mL) was added. After 10 min sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{EtOAc}(3 \times 5 \mathrm{~mL})$ and the combined organics were washed with brine (10 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give triene 303 ($0.021 \mathrm{~g}, 24 \%$ yield) as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{ddd}, J=17.3,10.7,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.90(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=17.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dt}, J=$ $10.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.25(\mathrm{dt}, J=11.0,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 3 \mathrm{H}), 2.24$ (ddd, $J=14.4,7.3,5.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.08 (ddd, $J=14.6,7.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.27$ (tdd, $J=7.7,6.9,6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{td}, J=7.4,1.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.22$, 203.70, 169.88, 169.71, 165.78, 165.56, 159.87, 143.35, 140.92, 140.69, 139.71, 139.42, 139.16, 136.56, 136.23, 130.59, 130.13, 129.63, 127.56, 119.55, 118.01, 115.77, 115.02, $114.74,112.64,112.35,111.93,76.67,62.81,62.69,58.81,58.78,55.61,55.30,28.83,28.71$, 18.58, 17.91, 17.85, 13.89, 13.10, 13.06, 8.14.

Preparation of allylic alcohol 304

Enone 303 ($0.017 \mathrm{~g}, 0.037 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(0.4 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.015 \mathrm{~g}, 0.041 \mathrm{mmol})$ was added and after $7 \mathrm{~min} \mathrm{NaBH}_{4}(0.002 \mathrm{~g}, 0.041 \mathrm{mmol})$ was added. After $1 \mathrm{~h} \mathrm{CeCl} 3 \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.015 \mathrm{~g}, 0.041 \mathrm{mmol})$ then $\mathrm{NaBH}_{4}(0.002 \mathrm{~g}, 0.041 \mathrm{mmol})$ was added again. After 10 min the reaction was allowed to warm to room temperature. After 2 h the reaction mixture was concentrated in vacuo. The crude material was purified by flash chromatography ($15 \% \rightarrow 20 \% \rightarrow 30 \%$ EtOAc/hexanes) to give allylic alcohol 304 ($0.010 \mathrm{~g}, 59 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 6.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.33-6.26(\mathrm{~m}$, $1 \mathrm{H}), 5.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.07(\mathrm{~m}, 3 \mathrm{H}), 4.92-4.91(\mathrm{~m}, 1 \mathrm{H})$, 4.25 (qd, $J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81-3.77(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.06$ (ddd, $J=13.8,6.6,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=2.5,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 3 \mathrm{H})$, 0.77 (tt, $J=7.4,3.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.16,204.15,169.71,165.74$, 159.98, 159.94, 146.33, 146.28, 144.12, 141.37, 140.85, 139.48, 139.46, 136.41, 136.38, $130.41,130.39,130.03,116.32,116.27,114.69,111.99,111.73,111.07,111.05,110.70$, 110.52, 62.73, 62.71, 58.83, 58.82, 55.43, 55.39, 29.67, 28.94, 28.87, 17.97, 17.86, 17.76, 13.88, 13.09, 13.07, 12.89, 8.13, 8.12; FTIR (thin film): 3456, 2979, 2940, 2849, 1774, 1745, 1599, 1461, 1378, 1288, 1226, 1152, 1126, $1052 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}: 456.2386$, found: 456.2386 .

Preparation of styrene 313

Aryl bromide 301 ($0.507 \mathrm{~g}, 1.32 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.093 \mathrm{~g}, 0.132 \mathrm{mmol})$, vinyl stannane ($0.77 \mathrm{~mL}, 2.64 \mathrm{mmol}$), and DMF (13.2 mL) were heated to $80^{\circ} \mathrm{C}$. After 16 h the reaction was cooled to room temperature and water (20 mL) was added. The mixture was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$) and the combined organics were washed with water $(2 \times 20$ mL) then brine (30 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($15 \% \rightarrow 20 \%$ EtOAc/hexanes) to give styrene 313 ($0.367 \mathrm{~g}, 80 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.03(\mathrm{q}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, \mathrm{J}$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=17.5,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66(\mathrm{~m}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 3 \mathrm{H}), 1.31-$ 1.22 (m, 3H), 0.94-0.73 (m, 3H).

Preparation of benzaldehyde 312

Styrene 313 ($0.367 \mathrm{~g}, 1.06 \mathrm{mmol}$) was dissolved in THF (7 mL) and water (3.5 mL) and $\mathrm{OsO}_{4}(0.08 \mathrm{M}, 1.33 \mathrm{~mL}, 0.106 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(1.18 \mathrm{~g}, 5.51 \mathrm{mmol})$ were added. The reaction was stirred for 3 h the water (10 mL) was added and the solution was extracted with EtOAc ($3 \times$ 10 mL). The combined organics were washed with brine (20 mL), dried over MgSO , filtered
and concentrated in vacuo. The crude material was purified by flash chromatography (20\% EtOAc/hexanes) to yield ketone 312 ($0.231 \mathrm{~g}, 63 \%$ yield) as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 9.98-9.94(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=1.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dt}$, $J=5.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ (ddd, $J=4.0,2.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.85$ (dd, $J=5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-$ $4.21(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.88(\mathrm{~m}, 3 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.24-$ $1.20(\mathrm{~m}, 3 \mathrm{H}), 0.73(\mathrm{q}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 9.98-9.94(\mathrm{~m}, 1 \mathrm{H}), 7.52$ (dd, $J=1.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dt}, J=5.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=4.0,2.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58$ (dd, $J=7.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.88(\mathrm{~m}, 3 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=$ $14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{q}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (101 MHz, CDCl_{3}): δ 204.42, 204.20, 194.70, 191.14, 169.10, 165.28, 164.82, 160.80, 160.77, $138.18,137.69,137.58,119.42,119.23,117.25,117.10,116.45,116.43,111.54,111.23,67.37$, $66.89,62.95,62.81,59.59,59.49,55.85,22.33,21.05,17.28,14.95,13.91,8.55,7.89$; FTIR (thin film): 2976, 2939, 2880, 2849, 1777, 1744, 1595, 1458, 1384, 1291, 1214, 1153, 1107, 1079, $1010 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}: 348.1447$, found: 348.1440.

Preparation of vinyl iodide 314

312

n-BuLi (1.6 M in hexanes, $0.14 \mathrm{~mL}, 0.216 \mathrm{mmol}$) was added to $\mathrm{EtPPh}_{3} \operatorname{Br}(0.080 \mathrm{~g}, 0.216$ $\mathrm{mmol})$ in THF (0.43 mL) at room temperature. After 30 min this solution was added via cannula to a mixture of $\mathrm{I}_{2}(0.055 \mathrm{~g}, 0.216 \mathrm{mmol})$ in $\operatorname{THF}(1.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction was slowly warmed to $-10^{\circ} \mathrm{C}$ over 1 hr 15 min then cooled to $-45^{\circ} \mathrm{C}$ at which point $\mathrm{NaHMDS}(1.0 \mathrm{M}$ in THF, $0.216 \mathrm{~mL}, 0.216 \mathrm{mmol})$ was added. After stirring for 15 min benzaldehyde 312 (0.075 g ,
0.216 mmol) in THF (3 mL) was added and the mixture was allowed to slowly warm to room temperature. After $1 \mathrm{hr} 45 \mathrm{~min} \mathrm{MeOH}(5 \mathrm{~mL})$ was added and the volatiles were removed in vacuo. The crude material was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to provide vinyl iodide 314 (0.028 g , 27\% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.04(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~m}, \mathrm{~J}=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.68(\mathrm{~m}, 3 \mathrm{H}), 2.06-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.55(\mathrm{~m}$, $3 H), 1.31-1.19(m, 3 H), 0.93-0.73(m, 3 H)$.

Preparation of alkyne 315

To a $-78{ }^{\circ} \mathrm{C}$ solution of ketone $314(0.052 \mathrm{~g} 0.107 \mathrm{mmol})$ in THF $(1.1 \mathrm{~mL})$ was added NaHMDS ($0.12 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 0.12 mmol) and the reaction mixture was allowed to warm slowly to $-50^{\circ} \mathrm{C}$ then cooled to $-78^{\circ} \mathrm{C}$. Meanwhile, the vinyl bromide ($0.024 \mathrm{~g}, 0.161 \mathrm{mmol}$) was added slowly to a solution of the Lewis acid (generated from slow addition of AlMe_{3} (0.096 $\mathrm{mL}, 2.0 \mathrm{M}$ in hexanes, 0.193 mmol) to a solution of 2,6-diphenylphenol ($0.132 \mathrm{~g}, 0.535 \mathrm{mmol}$) in toluene (1.1 mL) at room temperature) at $-78^{\circ} \mathrm{C}$ and maintained for 20 min . The solution containing aldehyde complex 245 was then transferred via cannula to the sodium enolate of ketone 314. The reaction mixture was maintained at $-78^{\circ} \mathrm{C}$ for 1 h then allowed to warm slowly to room temperature over 3 h . The reaction mixture was quenched with sat. aq. Rochelle's salt (5 mL), stirred vigorously overnight, and extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was
purified via flash chromatography $(5 \% \rightarrow 10 \% \rightarrow 20 \%$ EtOAc/hexanes) to yield alkyne 315 (0.024 g, 52\% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{qd}, J=7.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77-3.75$ (m, 3H), 2.39 (dd, $J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.88-1.85 (m, 3H), 1.63-1.57 (m, 3H), 1.28-1.24 (m, 3H), 0.87-0.80 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 202.82,194.68,194.00,165.14,159.78,149.35,142.07,136.05,125.90,120.16$, 115.09, 111.87, 87.25, 78.84, 62.95, 58.77, 55.44, 27.77, 17.95, 13.91, 10.31, 8.12, 4.32; FTIR (thin film): 2981, 2940, 2847, 1776, 1747, 1589, 1450, 1428, 1378, 1361, 1319, 1299, 1285, 1222, 1201, 1171, 1124, 1062, $1014 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}$: 426.1917, found: 426.1901.

Preparation of alkyne 315

301
315
In a Schlenk flask was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.043 \mathrm{~g}, 0.061 \mathrm{mmol})$ and $\mathrm{Cul}(0.006 \mathrm{~g}$, $0.0304 \mathrm{mmol})$ then aryl bromide 301 ($0.233 \mathrm{~g}, 0.608 \mathrm{mmol}$) in $\mathrm{Et}_{3} \mathrm{~N}(6.1 \mathrm{~mL})$. Propyne gas was then bubble through the solution for 30 s and the Schlenk flask was closed under the propyne atmosphere. The reaction was heated at $50^{\circ} \mathrm{C}$ for 19 h then was cooled to room temperature and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$ and the combined organics were washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (20\% EtOAc/hexanes) to give alkyne 358 ($0.160 \mathrm{~g}, 74 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.15(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{dd}, J=$ 5.5, 2.8 Hz, 1H), 4.25-4.16 (m, 2H), 3.80 (s, 3H), 2.02 (s, 3H), 1.99-1.87 (m, 2H), 1.59-1.56 (s, $3 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 3 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.15(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}$, $4 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{td}, J=4.6,2.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{td}, J=7.4,2.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.07,204.38,168.88,168.86,168.76,165.31,165.03,160.69$, 159.92, 159.90, 137.57, 136.67, 134.07, 128.40, 128.33, 125.77, 123.01, 118.99, 118.89, 115.50, 115.36, 114.93, 114.78, 110.61, 109.53, 109.45, 86.95, 78.92, 67.63, 67.04, 62.80, 62.76, 59.46, 55.73, 55.51, 22.41, 21.15, 17.24, 14.91, 13.91, 13.90, 8.60, 7.92, 4.28; FTIR (thin film): 2974, 2939, 1777, 1744, 1703, 1593, 1572, 1449, 1435, 1289, 1251, 1202, 1174, 1107 cm^{-1}; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}: 358.1654$, found: 358.1645.

To a $-78{ }^{\circ} \mathrm{C}$ solution of alkyne $358(0.160 \mathrm{~g} 0.448 \mathrm{mmol})$ in THF (4.5 mL) was added NaHMDS ($0.49 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 0.49 mmol) and the reaction mixture was allowed to warm slowly to $-50^{\circ} \mathrm{C}$ then cooled to $-78^{\circ} \mathrm{C}$. Meanwhile, the vinyl bromide ($0.100 \mathrm{~g}, 0.672 \mathrm{mmol}$) was added slowly to a solution of the Lewis acid (generated from slow addition of AlMe_{3} (0.40 $\mathrm{mL}, 2.0 \mathrm{M}$ in hexanes, 0.806 mmol) to a solution of 2,6-diphenylphenol ($0.552 \mathrm{~g}, 2.24 \mathrm{mmol}$) in toluene (4.5 mL) at room temperature) at $-78^{\circ} \mathrm{C}$ and maintained for 20 min . The solution containing aldehyde complex 243 was then transferred via cannula to the sodium enolate of ketone 358. The reaction mixture was maintained at $-78^{\circ} \mathrm{C}$ for 1 h then allowed to warm slowly to room temperature over 3 h . The reaction mixture was quenched with sat. aq. Rochelle's salt $(15 \mathrm{~mL})$, stirred vigorously overnight, and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified via flash chromatography $(5 \% \rightarrow 10 \% \rightarrow 20 \%$ EtOAc/hexanes) to yield alkyne 315 (0.024 g, 65% yield). The spectral data was identical to that obtained when alkyne 315 was synthesized from vinyl iodide 314.

Preparation of synthesis of aldehyde 325

To a solution of $295(0.500 \mathrm{~g}, 1.57 \mathrm{mmol})$ in THF (20 mL) was added NaHMDS (1 M in THF, $1.9 \mathrm{~mL}, 1.88 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to stir for 20 min at this temperature. Meanwhile, $\mathrm{AlMe}_{3}(2 \mathrm{M}$ in toluene, $1.4 \mathrm{~mL}, 2.82 \mathrm{mmol}$) was added to a solution of 2,6-diphenylphenol ($1.97 \mathrm{~g}, 7.99 \mathrm{mmol}$) in toluene (20 mL). After 10 min stirring at room temperature the toluene solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and methacrolein $(0.20 \mathrm{~mL}, 2.35$ mmol) was added, which resulted in the formation of a bright yellow solution. The THF solution of the sodium enolate of $\mathbf{2 9 5}$ was then transferred via cannula to the methacrolein-Lewis Acid complex at $-78^{\circ} \mathrm{C}$, the solution stirred for another 10 min at $-78^{\circ} \mathrm{C}$ and then slowly warmed to room temperature. After stirring for 1 h at room temperature the reaction was quenched by addition of saturated aqueous Rochelle's salt (30 mL) and the mixture stirred vigorously for 30 min . Then diethyl ether (10 mL) was added and the phases separated. The aqueous phase was extracted with diethyl ether $(2 \times 10 \mathrm{~mL})$ and the combined organic phase was washed with brine (30 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($5: 1 \rightarrow 2: 1$ hexanes:EtOAc) to yield aldehyde $325(0.460 \mathrm{~g}, 75 \%$ yield $)$ as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 9.47-9.36(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=$ $8.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 4.31-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.40(\mathrm{~m}, 3 \mathrm{H})$, $1.99(\mathrm{~m}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.20(\mathrm{~m}, 3 \mathrm{H})$, 1.07-1.00(m, 3H), 0.96-0.88 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ 208.08, 207.93, 207.79, 207.08, 202.61, 202.19, 202.04, 201.76, 170.31, 170.09, 170.03, 165.43, 165.35, 165.31, 165.10, 160.35,
$160.33,160.31,149.57,135.54,135.48,135.39,130.26,130.21,130.14,120.72,120.65$, $120.54,115.87,114.86,114.84,114.74,114.68,114.07,114.02,113.94,113.29,75.73,75.55$, 75.24, 74.81, 63.08, 62.90, 62.68, 62.58, 58.62, 58.58, 58.38, 55.39, 41.63, 41.11, 40.99, 40.88, $36.94,36.91,36.51,36.32,29.62,29.00,28.43,28.22,18.00,17.34,16.40,16.17,15.94,15.77$, 15.75, 14.02, 13.92, 13.86, 8.90, 8.81, 8.56, 8.54; FTIR (thin film): 2977, 2940, 2883, 2838, 1772, 1702, 1603, 1588, 1512, 1492, 1455, 1383, 1288, 1270, 1218, $1038 \mathrm{~cm}^{-1}$; HRMS (ESIAPCI) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}: 390.1917$, found: 390.1907.

Preparation of vinyl carbonate 321

To a solution of aldehyde $325(0.150 \mathrm{~g}, 0.385 \mathrm{mmol})$ in THF (5 mL) was added vinylmagnesium bromide (1.1 M in THF, $0.42 \mathrm{~mL}, 0.462 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ and the mixture stirred for 1 h at this temperature. Methyl chloroformate ($75 \mathrm{~mL}, 0.963 \mathrm{mmol}$) was added and the mixture was allowed to warm to room temperature. Aqueous saturated sodium bicarbonate (10 mL) and diethylether (10 mL) were added and the phases separated. The aqueous phase was extracted with diethyl ether ($2 \times 5 \mathrm{~mL}$) and the combined organic phase was washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($3: 1 \rightarrow 2: 1$ hexanes:EtOAc) to provide vinyl carbonate 321 (0.087 g , 48% yield) as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.34(\mathrm{~m}, 1 \mathrm{H})$, 6.94-6.90 (m, 1H), 6.86-6.82 (m, 1H), 6.79 $(\mathrm{m}, 1 \mathrm{H}), 5.69-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.69$
$(\mathrm{m}, 7 \mathrm{H}), 2.18-1.80(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.18(\mathrm{~m}, 3 \mathrm{H}), 1.01-0.84(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (101 MHz, CDCl_{3}): $\delta 207.63,207.31,170.41,170.19,165.67,165.58,160.24,160.20,154.99$, 135.61, 132.72, 132.69, 130.07, 129.99, 120.76, 120.66, 120.57, 120.51, 119.58, 118.90, 114.86, 114.81, 114.53, 113.85, 113.72, 96.97, 82.18, 75.81, 75.61, 62.64, 62.56, 62.52, 58.84, $58.63,58.58,55.44,55.38,55.33,55.30,54.99,54.70,40.27,40.21,34.52,32.04,31.33,28.80$, 28.76, 18.58, 18.52, 18.42, 17.94, 17.42, 17.27, 17.20, 13.87, 9.03, 8.69, 8.59; FTIR (thin film): 2979, 2941, 1770, 1745, 1701, 1602, 1587, 1492, 1442, 1381, 1134, 1036, $1018 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{8}(\mathrm{M}+\mathrm{H})^{+}: 476.2284$, found: 476.2277.

Preparation of epoxide 334

333

334

To a suspension of known allylic alcohol $\mathbf{3 3 3}{ }^{10}(1.50 \mathrm{~g}, 13.37 \mathrm{mmol})$ and $\mathrm{VO}(\mathrm{acac})_{2}(196$ $\mathrm{mg}, 0.76 \mathrm{mmol})$ in benzene (50 mL) was added TBHP (7.3 M in $\mathrm{H}_{2} \mathrm{O}, 2.3 \mathrm{~mL}, 16.79 \mathrm{mmol}$) at room temperature. The dark reddish-brown solution was stirred for 14 h at ambient temperature before MgSO_{4} was added. The mixture was stirred for 30 min , filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($5: 1 \rightarrow 4: 1$ hexanes:EtOAc) to provide allylic epoxide 334 ($1.18 \mathrm{~g}, 69 \%$ yield). All spectral data matched that known in the literature for $334 .{ }^{10}$

Preparation of bromide 335

Triphenylphosphine ($675 \mathrm{mg}, 2.575 \mathrm{mmol}$) was suspended in acetonitrile (5 mL) and cooled to $0^{\circ} \mathrm{C}$ before bromine ($130 \mathrm{~mL}, 2.575 \mathrm{mmol}$) was added dropwise. The tan suspension was stirred for 20 min at $0^{\circ} \mathrm{C}$ then a solution of allylic epoxide $334(300 \mathrm{mg}, 2.341 \mathrm{mmol})$ and triethylamine ($390 \mathrm{~mL}, 2.809 \mathrm{mmol}$) in acetonitrile (1 mL) was added. The mixture was allowed to warm to room temperature and stirred for 30 min before diethyl ether (10 mL) was added. The precipitate was filtered off, the filtrate concentrated in vacuo and the crude material was purified by flash chromatography ($50: 1 \rightarrow 20: 1$ hexanes:EtOAc) to furnish allylic bromide 335 (202 mg, 45\% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.26(\mathrm{~s}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 138.26, 112.47, 66.03, 61.31, 38.99, 19.58, 13.71; FTIR (thin film): 3093, 2970, 2935, 2857, $1656,1446,1423,1384,1216,1070,1040,1015 \mathrm{~cm}^{-1}$.

Preparation of tosylate 336

To an ice cold solution of epoxy alcohol 334 ($300 \mathrm{mg}, 2.341 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added DMAP ($30 \mathrm{mg}, 0.234 \mathrm{mmol}$), triethylamine ($0.35 \mathrm{~mL}, 2.575 \mathrm{mmol}$) and $p-\mathrm{TsCl}$ (470 $\mathrm{mg}, 2.458 \mathrm{mmol})$. The white suspension formed was stirred for 30 min at $0^{\circ} \mathrm{C}$ and then warmed to room temperature where it was stirred for 1 h . The mixture was quenched by addition of saturated aqueous ammonium chloride (10 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(3 \times 5 \mathrm{~mL})$ and the combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (10:1 hexanes:EtOAc) to give allylic tosylate 336 ($473 \mathrm{mg}, 72 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.78-7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.97(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.95(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.04,137.69,132.62$, 129.89, 127.91, 112.83, 73.72, 62.67, 59.55, 21.62, 19.60, 12.76; FTIR (thin film): 2975, 2939, 1656, 1598, 1495, 1448, 1359, 1175, $1096 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{4} \mathrm{~S}$ $(\mathrm{M}+\mathrm{Na})^{+}: 305.0823$, found: 305.0810 .

Preparation of carboxylic acid 337

325

337

To a solution of aldehyde 325 ($570 \mathrm{mg}, 1.46 \mathrm{mmol}$) in acetonitrile (3 mL) was added a solution of $\mathrm{NaH}_{2} \mathrm{PO}_{2}(53 \mathrm{mg}, 0.438 \mathrm{mmol})$ in water $(1.5 \mathrm{~mL})$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%(\mathrm{w} / \mathrm{w})$ in $\mathrm{H}_{2} \mathrm{O}, 0.15 \mathrm{~mL}, 1.42 \mathrm{mmol}$). The biphasic mixture was cooled to $0^{\circ} \mathrm{C}$ and stirred vigorously, while a solution of $\mathrm{NaClO}_{2}(80 \%(\mathrm{w} / \mathrm{w}), 232 \mathrm{mg}, 2.05 \mathrm{mmol})$ in water $(1.5 \mathrm{~mL})$ was added over 45 min . After stirring for 1 h at $0^{\circ} \mathrm{C}$ the reaction was quenched by addition of saturated aqueous sodium bisulfite solution (1 mL) and saturated aqueous ammonium chloride (5 mL). Then EtOAc (10 mL) was added and the phases separated. The aqueous phase was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$ and the combined organic phase was washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo to provide carboxylic acid 337 ($460 \mathrm{mg}, 91 \%$ yield) as a mixture of diastereomers in form of an off white foam.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.34(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~m}$, $1 \mathrm{H})$, 4.25-4.16 (m, 2H), 3.79-3.77 (m, 3H), 2.59 (m, 1H), 2.35-2.31 (m, 1H), 1.97-1.67 (m, 3H), 1.65-1.52 (m, 3H), 1.33-1.21 (m, 3H), 1.17-1.10 (m, 3H), $0.91(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 207.70,207.40,207.13,206.42,181.57,181.10,180.91,180.62,170.60,170.58$, $170.34,170.21,165.49,165.39,165.33,164.86,160.34,160.29,136.50,135.58,135.55$, 135.37, 135.32, $130.25,130.18,130.12,120.80,120.68,120.58,120.56,114.86,114.67$, 114.60, 114.17, 114.14, 113.92, 75.83, 75.62, 75.57, 74.89, 65.79, 62.98, 62.88, 62.65, 62.57, $58.70,58.67,58.57,58.50,55.39,55.35,55.27,40.63,39.85,39.76,39.20,34.77,34.67,34.44$, 34.06, 29.63, 29.19, 28.42, 27.74, 27.18, 20.16, 20.01, 19.95, 19.89, 17.88, 17.78, 15.68, 15.63, 15.12, 14.01, 13.86, 13.78, 8.92, 8.74, 8.54, 8.52; FTIR (thin film): 3084, 2979, 2941, 2885, 1772, 2740, 1603, 1588, 1492, 1455, 1385, 1288, 1269, 1217, 1177, $1149 \mathrm{~cm}^{-1}$; HRMS (ESIAPCI) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{7}(\mathrm{M}+\mathrm{H})^{+}: 406.1866$, found: 406.1845.

Preparation of ketone 339

337

(70\% yield, two steps)

To a solution of carboxylic acid 337 ($530 \mathrm{mg}, 1.31 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added oxalyl chloride ($0.22 \mathrm{~mL}, 2.61 \mathrm{mmol}$) followed by a drop of DMF. The solution was stirred for 30 min and then concentrated in vacuo. The residue was dissolved in 1,2-dichloroethane (20 mL) and $\mathrm{AICl}_{3}(261 \mathrm{mg}, 1.96 \mathrm{mmol})$ was added and the suspension heated at $65^{\circ} \mathrm{C}$ for 4 h . The yellowish mixture was then cooled to room temperature and a saturated aqueous Rochelle's salt $(20 \mathrm{~mL})$ was added and the mixture stirred vigorously for 30 min . The mixture was then diluted with water (10 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the phases separated. The aqueous phase was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ and the combined organic phase was washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated in vcauo. The crude material was purified by flash chromatography ($4: 1 \rightarrow 3: 1$ hexanes:EtOAc) to yield ketone 339 ($356 \mathrm{mg}, 70 \%$ yield) as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$: $\delta 8.11(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.86$ $(\mathrm{m}, 3 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.31-1.17(\mathrm{~m}, 6 \mathrm{H}), 0.79(\mathrm{~m}$, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 208.16,206.63,197.99,197.57,169.11,165.32,165.19$, 163.71, 163.62, 136.72, 136.60, 132.52, 125.57, 114.48, 114.43, 114.37, 113.76, 75.56, 75.10, 62.99, 62.88, 58.42, 58.39, 55.81, 55.76, 42.39, 41.98, 41.45, 40.56, 31.10, 30.76, 17.03, 16.91, 15.80, 15.63, 13.90, 8.83, 7.99; FTIR (thin film): 2977, 2938, 2873, 1775, 1745, 1704, 1673, 1600, 1496, 1445, 1378, 1298, 1151, 1112, $1032 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}: 388.1760$, found: 388.1762.

Preparation of aldehyde 342

To a solution of ketone $295(1.00 \mathrm{~g}, 3.13 \mathrm{mmol})$ in THF (30 mL) was added NaHMDS (1 M in THF, $3.7 \mathrm{~mL}, 3.76 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to stir for 20 min. Meanwhile, $\mathrm{AlMe}_{3}(2 \mathrm{M}$ in toluene, $2.8 \mathrm{~mL}, 2.82 \mathrm{mmol}$) was added to a solution of 2,6diphenylphenol ($3.94 \mathrm{~g}, 15.98 \mathrm{mmol}$) in toluene (30 mL). After 10 min stirring at room temperature the toluene solution was cooled to $-78^{\circ} \mathrm{C}$ and methacrolein ($0.40 \mathrm{~mL}, 4.70 \mathrm{mmol}$) was added, which resulted in the formation of a bright yellow solution. The THF solution of the sodium enolate of 325 was then transferred via cannula to the methacrolein-Lewis Acid
complex at $-78^{\circ} \mathrm{C}$. The solution was stirred for another 10 min at $-78^{\circ} \mathrm{C}$ and then was allowed to slowly warm to room temperature. After stirring for 1 h at room temperature the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and bromine ($0.24 \mathrm{~mL}, 4.70 \mathrm{mmol}$) was added dropwise. The reaction mixture was allowed to warm to room temperature and quenched by addition of saturated aqueous Rochelle's salt solution (50 mL), which was stirred vigorously for 30 min . The aqueous phase was extracted with diethyl ether $(3 \times 20 \mathrm{~mL})$ and the combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($5: 1 \rightarrow 3: 1$ hexanes:EtOAc) to give aldehyde 342 (1.16 g, 79% yield) as a mixture of diastereomers in form of a brownish oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$: $\delta 9.23-9.10(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.74(\mathrm{~m}, 3 \mathrm{H})$, 4.34-4.16 (m, 2H), 3.81-3.75 (m, 3H), 3.10 (m, 1H), 2.63-2.44 (m, 1H), 2.25-1.97 (m, 2H), 1.94$1.84(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.21(\mathrm{~m}, 3 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}): $\delta 207.02,206.75,205.95,205.54,192.36,190.64,189.86,189.64,169.92,169.78$, 169.76, 165.33, 165.17, 164.85, 160.44, 160.33, 135.38, 135.37, 135.14, 134.85, 130.48, $130.45,130.27,130.26,121.05,120.70,120.64,120.62,115.09,115.03,114.89,114.75$, 114.69, 114.27, 114.22, 114.18, 114.10, 75.95, 75.84, 74.83, 74.65, 66.64, 66.42, 65.64, 65.20, 63.29, 63.21, 62.94, 62.79, 59.10, 58.82, 58.79, 58.57, 55.42, 46.31, 45.08, 44.76, 42.25, 31.76, $31.54,28.99,28.37,27.62,25.18,24.72,24.53,18.20,17.31,15.69,15.33,14.05,13.96,13.89$, 8.95, 8.77, 8.66, 8.62; FTIR (thin film): 2980, 2941, 2838, 1773, 1602, 1587, 1492, 1451, 1380, 1312, 1269, 1235, 1209, 1158, 1138, $1038 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BrNO}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 490.0841$, found: 490.0834 .

Preparation of carboxylic acid 343

To a solution of aldehyde $342(1.00 \mathrm{~g}, 2.135 \mathrm{mmol})$ in acetonitrile (5 mL) was added a solution of $\mathrm{NaH}_{2} \mathrm{PO}_{2}(77 \mathrm{mg}, 0.641 \mathrm{mmol})$ in water $(3 \mathrm{~mL})$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \%(\mathrm{w} / \mathrm{w})\right.$ in $\mathrm{H}_{2} \mathrm{O}$, $0.22 \mathrm{~mL}, 2.24 \mathrm{mmol})$. The biphasic mixture was cooled to $0^{\circ} \mathrm{C}$ and stirred vigorously while a solution of $\mathrm{NaClO}_{2}(80 \%(\mathrm{w} / \mathrm{w}), 483 \mathrm{mg}, 4.27 \mathrm{mmol})$ in water $(2 \mathrm{~mL})$ was added over 45 min . After stirring for 1 h at $0^{\circ} \mathrm{C}$ the reaction was quenched by addition of saturated aqueous sodium bisulfite solution (2 mL) and saturated aqueous ammonium chloride (10 mL). The aqueous phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and the combined organic phase was washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo to yield carboxylic acid 343 ($400 \mathrm{mg}, 97 \%$ yield) as a mixture of diastereomers, which was used without further purification.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right):$: $\quad 7.41-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.73(\mathrm{~m}, 3 \mathrm{H}), 4.31-4.16(\mathrm{~m}, 2 \mathrm{H})$, 3.84-3.73 (m, 3H), 3.36-3.18 (m, 1H), 2.96 (m, 1H), 2.67-2.26 (m, 2H), 2.09-1.94 (m, 3H), 1.73$1.48(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.18(\mathrm{~m}, 3 \mathrm{H}), 0.97-0.83(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.31$, 205.82, 205.64, 205.35, 204.81, 177.58, 177.44, 174.14, 173.85, 173.53, 173.10, 171.65, $171.54,170.98,170.68,170.33,170.27,170.11,165.44,165.30,164.90,164.48,160.40$, $160.28,160.25,160.20,137.13,135.26,135.24,135.10,134.77,130.43,130.33,130.28$, $130.24,130.20,130.06,121.02,120.97,120.82,120.48,120.35,115.01,114.97,114.79$, 114.70, 114.51, 114.39, 114.33, 114.31, 114.28, 113.51, 109.98, 83.18, 77.93, 76.03, 75.53, $74.95,71.75,64.48,63.35,63.21,62.81,62.72,62.70,62.38,60.53,59.09,58.95,58.58,58.01$, $57.62,56.58,55.43,55.39,55.37,49.09,48.86,47.69,46.73,46.15,44.39,30.86,30.71,30.55$, 29.64, 29.34, 29.19, 28.94, 28.87, 28.72, 28.38, 27.50, 25.92, 25.33, 21.01, 20.97, 19.06, 18.45,
$18.26,17.37,15.90,15.67,15.48,14.13,14.04,14.00,13.96,13.87,13.69,13.66,9.30,8.95$, 8.73, 8.68, 8.47, 8.10; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{BrNO}_{7}(\mathrm{M}+\mathrm{H})^{+}: 470.1001$, found: 470.1004 .

Preparation of ketone 344

To a solution of carboxylic acid $343(1.27 \mathrm{~g}, 2.62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added oxalyl chloride ($0.44 \mathrm{~mL}, 5.24 \mathrm{mmol}$) followed by a drop of DMF. The solution was stirred for 30 min and then concentrated in vacuo. The residue was dissolved in 1,2-dichloroethane (20 mL) and AICl_{3} ($699 \mathrm{mg}, 5.24 \mathrm{mmol}$) was added and the suspension was heated at $65^{\circ} \mathrm{C}$ for 4 h . The yellowish mixture was cooled to room temperature and saturated aqueous Rochelle's salt (20 mL) was added and the mixture was stirred vigorously for 30 min . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic phases were washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($5: 1 \rightarrow 2: 1$ hexanes:EtOAc) to yield ketone 344 ($0.254 \mathrm{~g}, 21 \%$ yield, higher R_{f} diastereomer contaminated with inseparable acid chloride intermediate; $0.345 \mathrm{~g}, 28 \%$ yield, lower R_{f} diastereomer, pure). Only the lower R_{f} diastereomer is characterized.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 8.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (dd, $J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 1 \mathrm{H})$, $1.99(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Preparation of enone 345

To a solution of α-bromo ketone 344 ($345 \mathrm{mg}, 0.740 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added DBU (220 mL, 1.48 mmol) and the dark solution was stirred for 2 h at ambient temperature. The reaction mixture was diluted with saturated aqueous ammonium chloride (10 mL) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($5: 1 \rightarrow 4: 1$ hexanes:EtOAc) to furnish 345 (226 $\mathrm{mg}, 79 \%$ yield) of a separable mixture of diastereomers.

Diastereomer A: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, \mathrm{J}=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.98$ $(\mathrm{m}, 4 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}): $\delta 205.13,194.71,188.23,168.32,164.30,163.11,139.76,136.92,133.78,133.41$, $128.45,114.47,112.41,62.90,57.68,55.81,27.57,20.91,15.23,13.69,8.47$.

Diastereomer B: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.95(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.06-$ $2.00(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{dd}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ 204.98, 194.96, 187.48, 168.60, 165.17, 163.28, 139.27, 138.48, 134.14, 133.51, 127.96, 114.36, 112.75, 62.82, 57.94, 55.73, 28.08, 21.03, 18.91, 13.93, 8.41. HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}$: 386.1604, found: 386.1590.

Preparation of alcohol 346

To a solution of enone 345 ($94 \mathrm{mg}, 0.244 \mathrm{mmol}$) in THF (4 mL) was added isopropenylmagnesium bromide (0.5 M in THF, $540 \mathrm{~mL}, 0.268 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The dark green mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$ and then warmed to $0^{\circ} \mathrm{C}$. After 1 h at $0^{\circ} \mathrm{C}$ the reaction was quenched by addition of saturated aqueous ammonium chloride solution (10 mL) and the aqueous phase extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$). The combined organic phases were washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($4: 1 \rightarrow 3: 1$ hexanes:EtOAc) to provide allylic alcohol 346 ($43 \mathrm{mg}, 41 \%$ yield) and starting material ($345,30 \mathrm{mg}, 32 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82-$ $3.81(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{~m}, 3 \mathrm{H}), 0.76(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.44,205.33,167.55,167.24,165.68,165.39$, $159.20,159.09,148.09,147.24,140.55,138.95,133.47,132.62,129.14,127.73,125.81$, 123.30, 114.63, 113.89, 113.49, 113.42, 113.36, 112.90, 112.85, 111.58, 78.93, 73.47, 62.75, 62.66, 62.59, 62.43, 62.40, 57.75, 57.31, 55.51, 55.45, 31.21, 29.65, 23.67, 23.61, 22.77, 18.34, 18.10, 17.71, 16.31, 13.91, 8.71, 8.30; FTIR (thin film): 3475, 2979, 2940, 1776, 1745, 1701, 1609, 1502, 1448, 1380, 1276, 1261, 1233, 1110, $1036 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}: 428.2073$, found: 428.2072.

Preparation of tetracycle 347

To a solution of allylic alcohol $346(83 \mathrm{mg}, 0.194 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(50 \mathrm{~mL}, 0.388 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The yellowish solution was stirred for 10 min at -78 ${ }^{\circ} \mathrm{C}$ and then warmed to $0^{\circ} \mathrm{C}$. After 20 min at $0^{\circ} \mathrm{C}$, the reaction was quenched by addition of saturated aqueous sodium bicarbonate solution (5 mL) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($5: 1 \rightarrow 4: 1$ hexanes:EtOAc) to provide tetracycle 347 ($56 \mathrm{mg}, 71 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.24(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.88-3.79(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.82(\mathrm{~m}$, $1 \mathrm{H})$, 1.63-1.58 (m, 3H), 1.29-1.21 (m, 3H), 0.77-0.71 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 207.58, 167.93, 165.83, 157.35, 144.08, 142.71, 142.08, 135.95, 133.65, 130.10, 128.92, 128.50, 127.94, 108.93, 108.76, 108.19, 75.61, 62.47, 58.69, 55.75, 55.71, 45.65, 31.55, 28.35, $28.25,25.38,25.23,18.66,17.82,17.78,15.59,14.10,13.89,13.81,8.92,8.63 ;$ FTIR (thin film): 2979, 2938, 1776, 1746, 1702, 1653, 1609, 1480, 1456, 1445, 1384, 1289, 1232, 1132, 1043 cm^{-1}; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}: 410.1967$, found: 410.1963.

Preparation of aldehyde 355

To a solution of aryl bromide 301 ($300 \mathrm{mg}, 0.753 \mathrm{mmol}$) in THF (10 mL) was added NaHMDS (1 M in THF, $0.83 \mathrm{~mL}, 0.829 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the mixture allowed to stir for 20 min . Meanwhile, $\mathrm{AlMe}_{3}(2 \mathrm{M}$ in toluene, $0.68 \mathrm{~mL}, 1.36 \mathrm{mmol}$) was added to a solution of 2,6-diphenylphenol ($946 \mathrm{mg}, 3.84 \mathrm{mmol}$) in toluene (10 mL). After 10 min stirring at room temperature the toluene solution was cooled to $-78^{\circ} \mathrm{C}$ and methacrolein ($95 \mathrm{~mL}, 1.13 \mathrm{mmol}$) was added, which resulted in the formation of a bright yellow solution. The THF solution of the sodium enolate of 301 was then transferred via cannula to the methacrolein-Lewis Acid complex at $-78^{\circ} \mathrm{C}$. The reaction was stirred for another 10 min at $-78^{\circ} \mathrm{C}$ and then was allowed to slowly warm to room temperature. After stirring for 1 h at room temperature the reaction was quenched by addition of saturated aqueous Rochelle's salt solution (15 mL) and the mixture stirred vigorously for 30 min . The aqueous phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$) and the combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (5:1 $\rightarrow 3: 1$ hexanes:EtOAc) to furnish aldehyde 355 ($160 \mathrm{mg}, 45 \%$ yield) as a mixture of diastereomers in form of a yellowish oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 9.57-9.37(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.69$ (s, 1H), 4.22-4.07 (m, 2H), 3.79-3.76 (m, 3H), 2.59-2.44 (m, 3H), 1.81 (m, 2H), 1.58-1.51 (m, $3 \mathrm{H})$, 1.26-1.20 (m, 3H), 1.10-1.02 (m, 3H), 0.95-0.88 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 207.57, 207.36, 207.27, 206.53, 202.83, 202.46, 202.02, 201.84, 201.64, 171.09, 170.28, 170.24, 170.02, 169.95, 165.23, 165.17, 165.11, 164.88, 160.82, 160.80, 160.78, 160.57,
$155.71,143.27,136.51,136.43,136.32,123.79,123.75,123.68,123.66,123.24,123.19$, $123.12,122.73,122.61,117.34,117.28,117.18,115.81,114.36,114.27,114.16,114.12$, 112.99, 75.83, 75.61, 75.34, 74.89, 64.30, 63.23, 63.03, 62.81, 62.71, 60.34, 58.71, 58.57, $58.54,58.32,55.76,55.73,55.72,55.70,55.64,53.21,51.03,45.87,41.62,41.08,40.95,40.86$, $36.85,36.75,36.29,36.20,30.58,29.58,29.00,28.41,28.16,21.01,20.97,19.07,17.96,17.32$, $16.38,16.20,16.16,15.98,15.74,15.71,14.16,14.04,13.92,13.88,13.67,11.68,8.89,8.79$, 8.57, 8.54; FTIR (thin film): 2976, 2940, 2877, 1772, 1702, 1596, 1571, 1448, 1426, 1306, 1276, 1233, 1213, 1078, 1054, $1037 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{BrNO}_{6}(\mathrm{M}+\mathrm{H})^{+}$: 470.1001, found: 470.1004.

Preparation of carboxylic acid 356

To a solution of aldehyde 355 ($255 \mathrm{mg}, 0.544 \mathrm{mmol}$) in acetonitrile (1 mL) was added a solution of $\mathrm{NaH}_{2} \mathrm{PO}_{2}(20 \mathrm{mg}, 0.163 \mathrm{mmol})$ in water $(0.5 \mathrm{~mL})$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%(\mathrm{w} / \mathrm{w})$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.60 \mathrm{~mL}, 0.566 \mathrm{mmol}\right)$. The biphasic mixture was cooled to $0^{\circ} \mathrm{C}$ and stirred vigorously, while a solution of $\mathrm{NaClO}_{2}(80 \%(\mathrm{w} / \mathrm{w}), 86 \mathrm{mg}, 1.09 \mathrm{mmol})$ in water $(0.5 \mathrm{~mL})$ was added over 45 min. After stirring for 1 h at $0^{\circ} \mathrm{C}$ the reaction was quenched by addition of saturated aqueous sodium bisulfite solution (1 mL) and saturated aqueous ammonium chloride (5 mL). The aqueous phase was extracted with $\operatorname{EtOAc}(3 \times 5 \mathrm{~mL})$ and the combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrated in vacuo to provide carboxylic acid 356 ($250 \mathrm{mg}, 95 \%$ yield) as a mixture of diastereomers, which was used without further purification.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.07(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.14$ $(\mathrm{m}, 2 \mathrm{H}), 3.79-3.72(\mathrm{~m}, 3 \mathrm{H}), 2.73-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.59(\mathrm{~m}$, $3 \mathrm{H})$, 1.28-1.21 (m, 3H), 1.21-1.10 (m, 3H), 0.94-0.86 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 207.12, 206.83, 206.49, 205.85, 181.51, 180.95, 180.82, 180.56, 180.03, 170.81, 170.78, $170.48,170.39,165.30,165.21,165.17,164.71,160.82,160.77,160.49,156.06,143.21$, 136.40, 136.17, 123.78, 123.74, 123.68, 123.62, 123.26, 123.19, 123.11, 122.81, 122.49, 117.49, 117.45, 117.28, 115.94, 114.35, 114.18, 114.07, 114.03, 112.84, 76.03, 75.79, 75.17, 63.27, 63.15, 62.91, 62.86, 58.74, 58.51, 55.78, 55.74, 55.70, 55.65, 53.31, 52.82, 40.46, 39.70, 39.61, 39.02, 38.36, 34.77, 34.70, 34.41, 34.03, 29.21, 28.58, 27.84, 27.18, 20.18, 20.03, 19.98, 19.85, 17.78, 17.76, 15.68, 15.64, 14.54, 14.03, 13.89, 13.80, 8.94, 8.73, 8.53; FTIR (thin film): 3086, 2978, 2940, 1773, 1704, 1596, 1571, 1449, 1426, 1383, 1276, 1210, 1176, $1038 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{BrNO}_{7}(\mathrm{M}+\mathrm{H})^{+}: 484.0971$, found: 484.0958.

Preparation of aldehyde 359

To a solution of alkyne $358(810 \mathrm{mg}, 2.27 \mathrm{mmol})$ in THF (25 mL) was added NaHMDS (1 M in THF, $2.70 \mathrm{~mL}, 2.72 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to stir for 20 min. Meanwhile, $\mathrm{AlMe}_{3}(2 \mathrm{M}$ in toluene, $2.00 \mathrm{~mL}, 4.08 \mathrm{mmol}$) was added to a solution of 2,6diphenylphenol ($2.85 \mathrm{~g}, 11.56 \mathrm{mmol}$) in toluene (25 mL). After 10 min stirring at room temperature the toluene solution was cooled to $-78^{\circ} \mathrm{C}$ and methacrolein ($290 \mathrm{~mL}, 3.40 \mathrm{mmol}$) was added, which resulted in the formation of a bright yellow solution. The THF solution of the sodium enolate of 358 was then transferred via cannula to the methacrolein-Lewis Acid
complex at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred for another 10 min at $-78^{\circ} \mathrm{C}$ and then slowly warmed to room temperature. After stirring for 1 h the reaction was quenched by addition of saturated aqueous Rochelle's salt solution (50 mL) and the mixture stirred vigorously for 30 min . The aqueous phase was extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$) and the combined organic phases were washed with brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($5: 1 \rightarrow 2: 1$ hexanes:EtOAc) to give aldehyde 359 ($652 \mathrm{mg}, 67 \%$ yield) as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 9.46-9.36(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~s}$, $1 \mathrm{H})$, 4.31-4.18 (m, 2H), $3.77(\mathrm{~m}, 3 \mathrm{H})$, 2.69-2.42 (m, 3H), 2.04-2.00 (m, 3H), 1.88-1.75 (m, 2H), 1.68-1.51 (m, 3H), 1.37-1.20 (m, 3H), 1.07-1.01 (m, 3H), 0.96-0.87 (m, 3H); ${ }^{13}$ C-NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 207.94,207.79,207.66,206.91,202.57,202.15,201.95,201.66,170.17,169.95$, $169.88,165.39,165.29,165.25,165.03,160.00,135.47,135.39,135.28,126.25,126.22$, 126.14, 123.93, 123.86, 123.70, 116.53, 116.44, 116.41, 115.03, 115.00, 114.95, 114.86, 87.40 , 87.37, $87.34,78.75,78.73,75.72,75.50,75.23,74.74,63.13,62.94,62.71,62.60,58.69,58.58$, $58.54,58.33,55.50,55.48,55.46,55.44,41.63,41.09,40.97,40.88,37.02,36.83,36.43,36.24$, 29.66, 28.89, 28.33, 28.23, 18.09, 17.35, 16.40, 16.17, 15.94, 15.77, 15.70, 14.15, 14.04, 13.93, 13.87, 8.93, 8.84, 8.61, 8.57, 4.29; FTIR (thin film): 2977, 2940, 2882, 2242, 1772, 1702, 1590, 1451, 1426, 1385, 1297, 1217, 1201, 1171, $1062 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}: 428.2073$, found: 428.2076.

Preparation of carboxylic acid $\mathbf{3 6 0}$

359

360

To a solution of aldehyde 359 ($200 \mathrm{mg}, 0.468 \mathrm{mmol}$) in acetonitrile (1 mL) was added a solution of $\mathrm{NaH}_{2} \mathrm{PO}_{2}(17 \mathrm{mg}, 0.140 \mathrm{mmol})$ in water $(0.5 \mathrm{~mL})$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%(\mathrm{w} / \mathrm{w})$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.50 \mathrm{~mL}, 0.487 \mathrm{mmol}\right)$. The biphasic mixture was cooled to $0^{\circ} \mathrm{C}$ and stirred vigorously while a solution of $\mathrm{NaClO}_{2}(80 \%(\mathrm{w} / \mathrm{w}), 106 \mathrm{mg}, 0.936 \mathrm{mmol})$ in water $(0.5 \mathrm{~mL})$ was added over 45 min . After stirring for 1 h at $0^{\circ} \mathrm{C}$ the reaction was quenched by addition of saturated aqueous sodium bisulfite solution (1 mL) and saturated aqueous ammonium chloride (5 mL). The aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$) and the combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrated in vacuo to furnish carboxylic acid 360 ($197 \mathrm{mg}, 95 \%$ yield) as a mixture of diastereoisomers, which was used without further purification.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta$ 6.96-6.93 (m, 1H), 6.87-6.81 (m, 1H), 6.72-6.66 (m, 1H), 4.28-4.15 (m, 2H), 3.82-3.75 (m, 3H), 2.68-2.54 (m, 2H), $2.32(d d d, J=14.5,8.0,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.06-2.00 (m, 3H), 2.00-1.70 (m, 2H), 1.64-1.50 (m, 3H), 1.35-1.21 (m, 3H), 1.20-1.12 (m, 3H), 0.95-0.88 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 207.60,207.32,207.00,206.29,181.69$, 181.13, 181.02, 180.75, 170.44, 170.17, 170.06, 165.45, 165.33, 165.30, 164.79, 160.02, 159.99, 135.53, 135.46, 135.27, 135.24, 126.24, 126.21, 126.19, 126.11, 124.03, 123.91, 123.80, 123.68, 116.65, 116.63, 116.45, 116.40, 115.11, 115.03, 114.90, 114.81, 87.35, 87.29, $78.77,75.79,75.54,74.79,63.04,62.93,62.68,62.59,58.65,58.53,58.45,55.49,55.44,40.74$, 39.80, 39.70, 39.12, 34.75, 34.62, 34.43, 34.04, 31.55, 29.23, 28.29, 27.70, 27.19, 25.23, 22.61, 20.17, 20.03, 19.96, 19.91, 18.00, 17.80, 15.68, 15.59, 14.08, 14.04, 13.87, 13.80, 8.97, 8.77,
8.57, 4.30; FTIR (thin film): 3058, 2978, 2940, 2242, 1773, 1740, 1590, 1452, 1426, 1386, 1325, 1265, 1200, 1171, 1148, 1126, 1061, $1017 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{7}$ $(\mathrm{M}+\mathrm{H})^{+}: 444.2022$, found: 444.2025.

Preparation of phenol 365

To a solution of enone 345 ($172 \mathrm{mg}, 0.446 \mathrm{mmol}$), [bis(trifluoroacetoxy)iodo]benzene ($384 \mathrm{mg}, 893 \mathrm{mmol}$) and palladium(II) acetate ($5 \mathrm{mg}, 0.022 \mathrm{mmol}$) in 1,2-dichloroethane (4.5 mL) was added trifluoroacetic acid $(0.5 \mathrm{~mL})$ and the mixture was heated at $80^{\circ} \mathrm{C}$ for 2.5 h . After cooling to room temperature, the mixture was diluted with saturated aqueous sodium bicarbonate solution (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($5: 1 \rightarrow 4: 1$ hexanes:EtOAc) to give phenol 365 ($127 \mathrm{mg}, 71 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 13.47(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~m}, 1 \mathrm{H}), 6.50-6.45(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.06$ $(\mathrm{m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{td}, \mathrm{J}=16.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.11$ ($\mathrm{m}, 3 \mathrm{H}$) , $0.81(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.97,204.77,191.52,191.13,168.61$, 168.29, 167.42, 167.20, 164.98, 164.83, 164.65, 164.36, 141.22, 140.48, 139.47, 137.80, 135.09, 134.80, 111.94, 111.78, 108.88, 108.68, 101.08, 101.03, 76.45, 75.67, 62.88, 57.80, 57.50, 55.79, 55.75, 27.37, 26.93, 21.16, 21.13, 18.72, 15.52, 13.94, 13.78, 8.07; FTIR (thin film): 2981, 2939, 1781, 1713, 1617, 1578, 1447, 1429, 1375, 1347, 1289, 1239, 1210, 1167, 1123, $1057 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{7}(\mathrm{M}+\mathrm{H})^{+}$: 402.1553, found: 402.1548.

Preparation of triflate 366

365

To a solution of phenol $365(112 \mathrm{mg}, 0.279 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added pyridine ($45 \mathrm{~mL}, 0.558 \mathrm{mmol}$) followed by triflic anhydride ($0.71 \mathrm{~mL}, 0.419 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h before it was quenched by addition of saturated aqueous ammonium chloride solution $(2 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic phases were washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (4:1 hexanes:EtOAc) to deliver aryl triflate 366 ($112 \mathrm{mg}, 76 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.02(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~m}$, $1 \mathrm{H})$, 4.29-4.05 (m, 2H), $3.89(\mathrm{~s}, 3 \mathrm{H})$, 2.04-2.00 (m, 4H), $1.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.55(\mathrm{~m}$, $3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.87-0.77(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.70,203.60$, 188.23, 187.57, 168.76, 168.61, 164.92, 163.81, 162.05, 161.90, 148.15, 147.88, 138.36, $137.95,137.73,137.33,134.56,134.16,124.90,124.49,120.08,120.07,116.88,113.14$, $112.93,109.63,77.81,77.08,63.18,62.98,57.81,57.63,56.33,56.27,28.39,27.71,20.53$, 20.35, 18.96, 15.00, 13.93, 13.60, 8.40, 8.35; ${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-73.07$; FTIR (thin film): 2983, 2941, 2851, 1782, 1750, 1716, 1660, 1614, 1426, 1381, 1358, 1290, 1211, 1171, 1140, 1114, $1009 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{9} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 534.1046$, found: 534.1037.

Preparation of alkyne 351

Triflate 366 ($40 \mathrm{mg}, 0.075 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5.3 \mathrm{mg}, 7.5 \mathrm{mmol})$ and copper(I) iodide ($0.7 \mathrm{mg}, 3.7 \mathrm{mmol}$) were suspendend in triethylamine (3 mL). Propyne gas was bubbled into the solution for 10 s and the mixture was heated to $60^{\circ} \mathrm{C}$. After 30 min at elevated temperature propyne was again bubbled in for 10 seconds and the mixture stirred at $60^{\circ} \mathrm{C}$ for an additional 4 hours. The dark reaction mixture was cooled to room temperature, diluted with diethyl ether (10 mL) and saturated aqueous ammonium chloride solution (10 mL) was added. The aqueous phase was extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$ and the combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($4: 1 \rightarrow 3: 1$ hexanes:EtOAc) to furnish alkyne 351 ($24 \mathrm{mg}, 75 \%$ yield) as a brown crystalline solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.02(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.03(\mathrm{~m}$, $2 H), 3.83(\mathrm{~m}, 3 \mathrm{H})$, 2.02-2.01 (m, 6H), $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.06$ (m,3H), $0.82(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.38,204.35,191.35,190.29,168.71$, 168.66, 165.17, 164.14, 160.94, 160.80, 138.32, 137.42, 136.63, 136.10, 133.23, 133.20, 132.80, 132.62, 126.30, 125.94, 119.28, 119.19, 113.46, 113.30, 90.76, 90.70, 63.00, 62.77, $57.89,57.70,55.76,55.72,28.05,27.53,20.76,20.58,19.02,14.98,13.90,13.53,8.30,8.26$, 4.64, 4.56; FTIR (thin film): 2980, 2939, 2237, 1778, 1747, 1710, 1659, 1594, 1567, 1431, 1385, 1357, 1317, 1292, 1241, 1147, 1126, $1103 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{6}$ $(\mathrm{M}+\mathrm{H})^{+}: 424.1760$, found: 424.1747.

Preparation of allylic alcohol 367

To a solution of enone 345 ($37 \mathrm{mg}, 0.096 \mathrm{mmol}$) and cerium(III) chloride heptahydrate ($39 \mathrm{mg}, 0.106 \mathrm{mmol}$) in $\mathrm{MeOH}(2.5 \mathrm{~mL})$ and THF (0.5 mL) was added sodium borohydride (4.4 $\mathrm{mg}, 0.115 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After 40 minutes the reaction was quenched by addition of saturated aqueous ammonium chloride (5 mL). The aqueous phase was extracted with diethyl ether (3×5 mL) and the combined organic phases were washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($4: 1 \rightarrow 3: 1$ hexanes:EtOAc) to provide allylic alcohol 367 ($27 \mathrm{mg}, 73 \%$ yield) as a separable mixture of diastereomers. Single crystals suitable for X-ray analysis were obtained by slow diffusion of hexane into a concentrated solution of 367 in diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Diastereomer A: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=$ 8.6, 2.5 Hz, 1H), $6.82(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=0.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.17-4.00(\mathrm{~m}$, 2 H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{dd}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-$ $1.59(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{dd}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; FTIR (thin film): 3455, 2976, 2940, 1774, 1743, 1691, 1661, 1612, 1585, 1500, 1447, 1383, 1290, 1218, 1169, 1111, 1044, 1031, $1010 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{6}$ $(\mathrm{M}+\mathrm{H})^{+}: 388.1760$, found: 388.1755 .

Diastereomer B: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.49-7.46(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{dd}, \mathrm{J}=8.6,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.50$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{dd}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.20,194.80$, 169.63, 165.56, 159.13, 141.33, 134.59, 131.89, 124.76, 121.26, 114.46, 114.05, 74.47, 67.84,
62.65, 58.27, 55.57, 29.58, 20.89, 18.96, 13.89, 7.95; FTIR (thin film): 3444, 2981, 2935, 2852, $1774,1740,1613,1586,1503,1448,1391,1292,1238,1228,1139,1109,1072,1032 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}: 388.1760$, found: 388.1767.

Preparation of aldehyde 370

234

To a solution of ketone 234 ($11.02 \mathrm{~g}, 23.88 \mathrm{mmol}$) in THF (250 mL) was added NaHMDS (1 M in THF, $26.3 \mathrm{~mL}, 26.27 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 30. Meanwhile, AlMe_{3} (neat, $4.3 \mathrm{~mL}, 42.98 \mathrm{mmol}$) was added to a solution of 2,6diphenylphenol ($30.0 \mathrm{~g}, 121.8 \mathrm{mmol}$) in toluene $(250 \mathrm{~mL})$. After 10 min the toluene solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and methacrolein ($3.0 \mathrm{~mL}, 35.82 \mathrm{mmol}$) was added, which resulted in the formation of a bright yellow solution. The THF solution of the sodium enolate of 234 was then transferred via cannula to the methacrolein-Lewis Acid complex at $-78^{\circ} \mathrm{C}$. The solution was stirred for another 10 min at $-78^{\circ} \mathrm{C}$ and then slowly warmed to room temperature. After stirring for 2 h at room temperature the reaction was cooled to $-78^{\circ} \mathrm{C}$ and bromine $(2.2 \mathrm{~mL}, 42.98$ mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and quenched by addition of saturated aqueous Rochelle's salt (200 mL) and the mixture stirred vigorously for 30 min . The aqueous phase was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$) and the combined organic phases were washed with brine (200 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (20:1 $\rightarrow 3: 1$ hexanes:EtOAc) to furnish aldehyde 370 ($7.84 \mathrm{~g}, 54 \%$ yield) as a mixture of diastereoisomers in form of a brownish oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 9.09(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.84(\mathrm{~m}, 2 \mathrm{H})$, 6.79-6.75 ($\mathrm{m}, 1 \mathrm{H}$), 4.32-4.20 (m, 2H), $3.03(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.66-2.59 (m, 1H), 1.92-1.84 (m, 4H), 1.65-1.47 (m, 4H), $1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~m}, 18 \mathrm{H}), 0.90(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (101 MHz, CDCl_{3}): $\delta 206.05,205.70,190.54,189.53,169.72,169.63,165.15,164.83,157.01$, $156.91,135.33,134.67,130.39,130.17,121.00,120.89,120.86,120.67,120.54,120.36,75.95$, $74.81,66.70,65.41,63.17,62.91,58.68,58.49,45.00,42.77,31.56,28.25,24.45,24.40,17.90$, 17.28, 15.71, 14.01, 13.86, 12.58, 12.55, 8.74, 8.61; FTIR (thin film): 2945, 2892, 2868, 1777, 1746, 1706, 1596, 1486, 1464, 1446, 1381, 1282, 1205, 1060, 1015, $1005 \mathrm{~cm}^{-1}$; HRMS (ESIAPCI) m / z calc'd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{BrNO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 610.2200$, found: 610.2188 .

Preparation of carboxylic acid 371

370

371

To a solution of aldehyde $370(7.80 \mathrm{~g}, 12.80 \mathrm{mmol})$ in acetonitrile (30 mL) was added a solution of $\mathrm{NaH}_{2} \mathrm{PO}_{2}(768 \mathrm{mg}, 6.40 \mathrm{mmol})$ in water $(5 \mathrm{~mL})$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \%(\mathrm{w} / \mathrm{w})\right.$ in $\mathrm{H}_{2} \mathrm{O}$, $1.3 \mathrm{~mL}, 13.44 \mathrm{mmol}$). The biphasic mixture was cooled to $0^{\circ} \mathrm{C}$ and stirred vigorously, while a solution of $\mathrm{NaClO}_{2}(80 \%(\mathrm{w} / \mathrm{w}), 2.89 \mathrm{~g}, 25.61 \mathrm{mmol}, 2.0$ equiv) in water $(20 \mathrm{~mL})$ was added over 45 min . After stirring for 1 h at $0^{\circ} \mathrm{C}$, the reaction was quenched by addition of saturated aqueous ammonium chloride (50 mL). The aqueous phase was extracted with diethyl ether ($3 \times$ 30 mL) and the combined organic phases were washed with brine (100 mL), dried over MgSO_{4}, filtered and concentrated in vacuo to provide carboxylic acid 371 ($7.22 \mathrm{~g}, 91 \%$ yield) as a mixture of diastereomers, which was used without further purification.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.31(\mathrm{td}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.75(\mathrm{~m}, 3 \mathrm{H}), 4.30-4.09$ (m, 2H), 3.05-2.95 (m, 1H), $2.62(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{td}, J=7.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-$ $1.52(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.19(\mathrm{~m}, 6 \mathrm{H}), 1.08-1.05(\mathrm{~m}, 18 \mathrm{H}), 0.91(\mathrm{~m}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.04,205.49,174.96,174.75,169.95,169.78,169.77,165.38,164.90$, 156.87, 135.01, 134.58, 130.27, 130.15, 121.14, 121.03, 121.01, 120.96, 120.75, 120.66, 75.39, 63.15, 62.79, 58.77, 58.47, 57.13, 56.14, 56.13, 46.60, 46.46, 29.12, 28.65, 28.45, 25.87, 18.30, 17.83, 15.72, 14.16, 14.02, 13.85, 12.56, 12.53, 8.68, 8.50; FTIR (thin film): 2945, 2892, 2868, 1777, 1743, 1706, 1671, 1596, 1488, 1462, 1384, 1284, 1265, 1215,1157, 1136, 1015, 1005, $996 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{BrNO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 626.2149$, found: 626.2153.

Preparation of ketone 372

To a solution of carboxylic acid $371(7.22 \mathrm{~g}, 11.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added oxalyl chloride ($1.95 \mathrm{~mL}, 23.05 \mathrm{mmol}$) followed by three drops of DMF. The solution was stirred for 30 min and then concentrated in vacuo. The residue was then dissolved in 1,2dichloroethane (80 mL) and $\mathrm{SnCl}_{4}(2.7 \mathrm{~mL}, 23.05 \mathrm{mmol})$ was added and the suspension was heated at $90{ }^{\circ} \mathrm{C}$ for $8 \mathrm{~h} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the reaction mixture revealed the presence of starting material, therefore more $\mathrm{SnCl}_{4}(0.5 \mathrm{~mL}, 4.25 \mathrm{mmol})$ was added and the suspension heated at $90^{\circ} \mathrm{C}$ for 11 h . The dark mixture was then cooled to room temperature and filtered over a short plug of celite, which was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed in vacuo. The crude material was purified by flash chromatography ($15: 1 \rightarrow 5: 1$ hexanes:EtOAc)
to provide α-bromo ketone 372 ($4.25 \mathrm{~g}, 61 \%$ yield) as a mixture of diastereomers in form of a brownish oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}$, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$, $1.85(\mathrm{dd}, \mathrm{J}=14.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.08(\mathrm{~m}, J=13.6$ $\mathrm{Hz}, 18 \mathrm{H}$), $0.76(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.91(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.22(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{dd}, J=14.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{dd}, J$ $=14.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.08(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 18 \mathrm{H}), 0.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (101 MHz, CDCl_{3}): δ 206.19, 204.03, 193.32, 191.65, 168.80, 168.46, 165.64, 165.06, $161.45,160.82,136.88,136.12,133.99,132.85,123.95,122.38,121.02,120.22,119.86$, $118.74,117.02,74.09,73.02,63.05,62.97,62.59,60.02,58.97,57.76,50.48,46.06,31.71$, $31.56,30.99,28.92,18.57,17.87,17.84,17.79,17.77,17.67,14.04,13.86,12.58,12.56,8.56$, 7.73; FTIR (thin film): 2945, 2893, 2868, 1777, 1712, 1671, 1595, 1493, 1463, 1426, 1376, 1284, 1262, 1228, 1139, 1118, 1055, $983 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{BrNO}_{6} \mathrm{Si}$ $(\mathrm{M}+\mathrm{H})^{+}: 610.2023$, found: 610.2019.

Preparation of enone 373

To a solution of α-bromo ketone 372 ($4.25 \mathrm{~g}, 7.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added DBU ($2.1 \mathrm{~mL}, 14.01 \mathrm{mmol}$) and the dark solution stirred for 2 h at ambient temperature. The reaction mixture was diluted with saturated aqueous ammonium chloride (50 mL) and the
aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($5: 1 \rightarrow 4: 1$ hexanes:EtOAc) to give enone 373 ($3.31 \mathrm{~g}, 89 \%$ yield) of a clear oil that solidified upon standing.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.88(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~m}, 1 \mathrm{H})$, $4.26(\mathrm{dd}, J=14.7,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~m}, J=3.7 \mathrm{~Hz}, 6 \mathrm{H})$, 1.10-1.09 (m, 18H), $0.78(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.29,205.06$, 188.37, 187.42, 168.52, 168.13, 165.10, 164.33, 160.43, 160.22, 139.79, 139.19, 138.58, 136.92, 133.99, 133.64, 133.37, 133.20, 128.77, 128.04, 120.46, 120.16, 118.50, 118.44, 77.03, $76.22,62.87,62.72,57.91,57.66,28.02,27.54,21.00,20.87,18.88,17.88,17.85,17.76,17.74$, 17.65, 17.61, 15.22, 13.81, 13.67, 12.60, 12.57, 12.51, 12.25, 8.37; FTIR (thin film): 2944, 2892, 2867, 1781, 1751, 1714, 1633, 1497, 1492, 1430, 1378, 1359, 1291, 1258, 1235, 1149, 1103, 1015, 997, $985 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 528.2781$, found: 528.2779.

Preparation of phenol 374

A solution of enone 373 ($1.00 \mathrm{~g}, 1.895 \mathrm{mmol}$), [bis(trifluoroacetoxy)iodo] benzene (1.63 $\mathrm{g}, 3.79 \mathrm{mmol}$) and palladium(II) trifluoroacetate ($31 \mathrm{mg}, 0.095 \mathrm{mmol}$) in 1,2-dichloroethane (15 mL) was heated at $80^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature the mixture was diluted with aqueous ammonium hydroxide ($1 \mathrm{M}, 30 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified
by flash chromatography ($15: 1 \rightarrow 10: 1$ hexanes:EtOAc) to furnish phenol 374 ($870 \mathrm{mg}, 84 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 13.23(\mathrm{~s}, 1 \mathrm{H}), 6.60-6.45(\mathrm{~m}, 3 \mathrm{H}), 4.28-4.05(\mathrm{~m}, 2 \mathrm{H}), 2.05-$ $1.99(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 6 \mathrm{H}), 1.15-1.09(\mathrm{~m}, 18 \mathrm{H}), 0.79(\mathrm{t}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 205.10,191.60,168.62,168.22,166.80,166.55$, 164.38, 162.21, 161.99, 141.22, 140.38, 139.60, 137.86, 135.15, 134.88, 112.88, 112.83, 112.56, 112.34, 108.41, 108.14, 76.41, 75.65, 62.89, 62.82, 57.80, 57.49, 29.66, 27.25, 26.85, 21.10, 18.74, 17.76, 17.74, 17.73, 17.70, 15.53, 13.82, 13.78, 12.60, 12.58, 8.05, 8.03; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 544.2731$, found: 544.2726.

Preparation of triflate 375

374

375

To a solution of phenol $374(850 \mathrm{mg}, 1.563 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added pyridine ($0.50 \mathrm{~mL}, 6.253 \mathrm{mmol}$) followed by triflic anhydride ($530 \mathrm{~mL}, 3.127 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h before it was quenched by addition of saturated aqueous ammonium chloride (10 mL). The aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL}$) and the combined organic phases were washed with brine (30 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (4:1 hexanes:EtOAc) to provide aryl triflate 375 ($896 \mathrm{mg}, 85 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.01(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~m}$, $1 \mathrm{H}), 4.26$ (dd, $J=9.7,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 6 \mathrm{H}), 1.10-1.06(\mathrm{~m}$, 18 H), 0.79 ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 203.82,203.63,188.29,187.50$, 168.67, 168.43, 164.82, 163.82, 159.22, 159.05, 148.06, 147.72, 138.36, 137.99, 137.83,
$137.28,134.35,133.98,125.21,124.70,120.08,119.18,119.02,116.89,115.05,114.74,77.69$, $63.14,62.86,57.74,57.62,28.39,27.69,20.49,20.30,18.87,17.63,17.61,14.97,13.80,13.58$, 12.49, 12.46, 12.24, 8.31, 8.29; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-73.41,-73.50$; FTIR (thin film): 2946, 2894, 2869, 1782, 1752, 1718, 1660, 1608, 1427, 1360, 1291, 1243, 1140, 1113, 1015 $\mathrm{cm}^{-1} ;$ HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{NO}_{9} \mathrm{SSi}(\mathrm{M}+\mathrm{H})^{+}: 676.2223$, found: 676.2220.

Preparation of alkyne 376

375

376

Triflate 375 ($300 \mathrm{mg}, 0.444 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(31 \mathrm{mg}, 0.044 \mathrm{mmol})$ and $\mathrm{Cul}(4.2 \mathrm{mg}$, 0.022 mmol) were suspendend in triethylamine (10 mL). Propyne gas was bubbled into the solution for 10 s and the mixture was heated to $50^{\circ} \mathrm{C}$. After 30 min at elevated temperature propyne was bubbled through the solution for 10 s and the mixture stirred at $50^{\circ} \mathrm{C}$ for 4 hours. The dark reaction mixture was cooled to room temperature and diluted with diethyl ether (50 mL) and saturated aqueous ammonium chloride solution (50 mL). The aqueous phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$) and the combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (20:1 $\rightarrow 10: 1$ hexanes:EtOAc) to give alkyne 376 ($200 \mathrm{mg}, 80 \%$ yield) as a brown crystalline solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 6.99(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~m}$, $1 \mathrm{H})$, $5.25(\mathrm{~s}, 1 \mathrm{H}), 4.24-4.01(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.51$ $(\mathrm{m}, 3 \mathrm{H}), 1.27-1.18(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{~m}, 18 \mathrm{H}), 0.79(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 204.44,204.31,191.56,190.24,168.66,168.52,165.09,164.13,157.92,157.74,138.26$, 137.34, 136.69, 136.15, 133.54, 133.10, 132.75, 132.69, 126.18, 125.86, 125.70, 125.39,
$118.86,118.64,90.60,90.56,77.16,76.55,62.97,62.68,57.83,57.69,28.00,27.46,20.73$, $20.53,18.93,17.76,17.73,17.62,17.60,14.92,13.76,13.51,12.55,12.51,12.44,12.23,8.28$, 8.24, 4.63, 4.55; FTIR (thin film): 3421, 2945, 2894, 2868, 2235, 2159, 1780, 1750, 1654, 1593, 1561, 1541, 1463, 1427, 1387, 1317, 1293, 1243, 1206, 1124, $1014 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{NO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 566.2938, found: 566.2933.

Preparation of allylic alcohol 377

To a solution of enone 373 ($528 \mathrm{mg}, 1.00 \mathrm{mmol}$) and cerium(III) chloride heptahydrate ($410 \mathrm{mg}, 1.1 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL}$) and THF (5 mL) was added sodium borohydride (42 mg , 1.1 mmol) at $0^{\circ} \mathrm{C}$. After 1 h the reaction was quenched by addition of saturated aqueous ammonium chloride (5 mL). The aqueous phase was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$) and the combined organic phases were washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (10:1 $\rightarrow 5: 1$ hexanes:EtOAc) to give allylic alcohol 377 ($398 \mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.40(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H})$, $5.11(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.54$ $(\mathrm{s}, 3 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 6 \mathrm{H}), 1.12-1.01(\mathrm{~m}, 18 \mathrm{H}), 0.82-0.73(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.55,205.19,169.63,169.38,165.52,165.04,155.37,155.27,141.78$, 141.19, 136.02, 135.17, 131.50, 131.31, 125.03, 124.50, 120.97, 120.95, 120.29, 119.75, 119.69, 75.44, 74.50, 67.59, 67.58, 62.74, 62.58, 58.26, 58.09, 29.43, 29.29, 21.04, 20.62, 18.82, 17.80, 15.43, 13.77, 13.57, 12.57, 12.55, 8.01, 7.91; FTIR (thin film): 3492, 2944, 2893, 2867, 1776, 1748, 1691, 1608, 1579, 1497, 1462, 1448, 1431, 1383, 1290, 1109, 1013, 976 cm
${ }^{1}: 2344,2894,2868,1782,1752,1614,1574,1462,1402,1369,1344,1236,1196,1178,1144$, 1122, 1101, 1072, 1056, 1015, 997, $993 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{NO}_{6} \mathrm{Si}$ $(\mathrm{M}+\mathrm{H})^{+}: 530.2938$, found: 530.2941.

Preparation of phenol 368

To a solution of allylic alcohol 377 ($40 \mathrm{mg}, 0.076 \mathrm{mmol}$) in THF (1 mL) was added TBAF (1 M in THF, $150 \mathrm{~mL}, 0.151 \mathrm{mmol}$) at room temperature. After stirring for 1 h at ambient temperature the reaction was quenched by addition of saturated aqueous ammonium chloride $(1 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether $(3 \times 1 \mathrm{~mL})$ and the combined organic phases were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($1: 1$ hexanes:EtOAc) to supply diol 368 ($20 \mathrm{mg}, 71 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$; acetone- $\left.\mathrm{d}_{6}\right): \delta 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~m}, 1 \mathrm{H})$, $5.51(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.10(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~m}, 3 \mathrm{H}), 1.84(\mathrm{~m}$, $2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.17(\mathrm{~m}, 3 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right): \delta$ 168.77, 168.44, 165.75, 165.34, 156.60, 156.42, 143.11, 142.33, 135.19, 134.45, 132.47, 132.18, 125.04, 124.82, 120.80, 120.74, 115.50, 115.38, 115.35, 115.24, 74.97, 74.11, 67.11, $66.98,62.28,62.11,57.93,57.65,29.58,29.49,20.40,20.24,18.08,15.01,13.30,13.17,7.55$, 7.49; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}: 374.1604$, found: 374.1598

Preparation of carbonate 378

To a solution of allylic alcohol 377 ($340 \mathrm{mg}, 0.642 \mathrm{mmol}$) in THF (7 mL) was added $\mathrm{Boc}_{2} \mathrm{O}(420 \mathrm{mg}, 1.925 \mathrm{mmol})$ and sodium hydride (60% in mineral oil, $77 \mathrm{mg}, 1.925 \mathrm{mmol}$). The suspension was stirred for 20 h at ambient temperature and then quenched by addition of saturated aqueous ammonium chloride (10 mL). The aqueous phase was extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$ and the combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($10: 1 \rightarrow 5: 1$ hexanes:EtOAc) to provide allylic carbonate 378 ($215 \mathrm{mg}, 53 \%$ yield) starting material (377, $99 \mathrm{mg}, 29 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.36(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H})$, $4.25(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.09(\mathrm{~m}, 18 \mathrm{H})$, $0.86(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.20,169.29,165.61,155.84,152.66$, $138.43,131.88,130.99,124.63,122.50,120.35,120.30,82.89,74.14,72.26,62.54,58.37$, 29.83, 27.67, 27.63, 20.34, 19.10, 17.82, 17.76, 17.74, 13.81, 12.56, 7.92; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{NO}_{8} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 630.3462 , found: 630.3451 .

Preparation of aldehyde 425

Known β-hydroxy ester 427^{11} (5.0 g , 29 mmol) and imidazole ($4.34 \mathrm{~g}, 63.8 \mathrm{mmol}$) were dissolved in DMF (36 mL) and TBSCI ($5.25 \mathrm{~g}, 34.8 \mathrm{mmol}$) and allowed to stir overnight. Water
$(50 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc $(3 \times 40 \mathrm{~mL})$ and the combined organics were washed with brine (75 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (5\% EtOAc/hexanes) to give silyl ether 465 (7.875 g, 95\% yield). This compound was contaminated with a small amount of a compound lacking the α-methyl group due to incomplete conversion in the previous step. This compound could however could be removed after the next step.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 4.87-4.85(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{qd}, J=$ $7.2,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.22(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.83-0.81(\mathrm{~m}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.63,144.62$, 114.31, $79.74,60.22,44.72,17.95,15.81,14.11,13.99,-4.85,-5.59$; FTIR (thin film): 2955, 2930, 2887, 2857, 1736, 1473, 1463, 1389, 1376, 1362, 1251, 1175, $1071 \mathrm{~cm}^{-1}$; HRMS (ESIAPCI) m / z calc'd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 287.2042, found: 287.2034.

Ester 465 ($1.5 \mathrm{~g}, 5.24 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(52 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1 M in hexanes, $15.7 \mathrm{~mL}, 15.7 \mathrm{mmol}$) was added and the reaction was allowed to warm to room temperature. After 1 h 45 min sat. aq. Rochelles salt (50 mL) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and the combined organics were washed with brine (75 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (10\% EtOAc/hexanes) to give alcohol 466 ($0.679 \mathrm{~g}, 53 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 4.86(\mathrm{t}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}), 1.78-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 145.78, 112.80, 82.44, 66.24, 37.98, 25.76, 18.02, 17.17, 14.26, -4.61, -5.33; FTIR (thin film): 3388, 2957, 2930, 2886, 2858, 1472, 1463, 1388, 1373, 1256, 1065, $1040 \mathrm{~cm}^{-1}$; HRMS (ESIAPCI) m / z calc'd for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}:$245.1937, found: 245.1925.

Oxalyl chloride ($0.57 \mathrm{~mL}, 6.53 \mathrm{mmol}$) was added to a solution of DMSO ($0.78 \mathrm{~mL}, 11.04$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 10 min alcohol $466(1.228 \mathrm{~g}, 5.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26$ $\mathrm{mL})$ was added. The reaction was stirred for 45 min then $\mathrm{Et}_{3} \mathrm{~N}(3.5 \mathrm{~mL}, 25.1 \mathrm{mmol})$ was added. After 45 min the reaction was warmed to room temperature and the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$ and the combined organics were washed with brine (100 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (10\% EtOAc/hexanes) to give aldehyde 425 ($1.028 \mathrm{~g}, 84 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 4.92-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.52 (ddd, $J=7.9,7.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (101 MHz, CDCl_{3}): $\delta 204.94,144.52,113.78,78.64,49.82,25.64,18.05,16.63$, 11.01, -4.64, -5.37; FTIR (thin film): 2956, 2930, 2886, 2857, 1727, 1472, 1462, 1389, 1373, 1362, 1251, 1117, $1065 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}$ (hydrate of the aldehyde) (M-H): 259.1729, found: 259.1725.

Preparation of phenol 429

n-BuLi (1.6 M in hexanes, $3.18 \mathrm{~mL}, 5.09 \mathrm{mmol}$) was added to aryl bromide $\mathbf{4 2 8}^{12}$ (2.077 $\mathrm{g}, 5.09 \mathrm{mmol})$ in THF (11.3 mL) at $-78^{\circ} \mathrm{C}$. After 10 min aldehyde $425(1.028 \mathrm{~g}, 4.24 \mathrm{mmol})$ in THF (2.1 mL) was added. The reaction was stirred for 20 min then warmed to room temperature. After 20 min the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organics were washed with brine $(20 \mathrm{~mL})$, dried over
MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($10 \% \mathrm{EtOAc} /$ hex) to give alcohol 467 (2.4 g , quant. yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}$, 3 H), 1.27-1.19 (m, 3H), 1.11-1.03 (m, 18H), 0.94-0.91 (s, 9H), 0.77 (d, J=7.1 Hz, 3H), 0.100.08 (s, 3H), 0.04 (s, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.56,147.27,146.17,145.41$, 144.81, 122.90, 122.22, 122.02, 121.35, 121.10, 117.91, 116.06, 114.62, 112.66, 84.84, 80.51, 78.80, 71.21, 42.80, 41.92, 25.96, 25.87, 25.82, 25.78, 18.98, 18.09, 17.90, 17.85, 17.76, 16.38, 14.29, 12.63, 12.57, 10.16, -4.23, -4.67, -5.27, -5.30; FTIR (thin film): 3487, 2946, 2930, 2893, 2867, 1596, 1567, 1471, 1463, 1442, 1278, 1257, 1151, 1106, 1090, 1061, 1013, $1001 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{28} \mathrm{H}_{51} \mathrm{BrNaO}_{3} \mathrm{Si}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 595.2437$, found: 595.2434.

TBAF (1 M in THF, $4.12 \mathrm{~mL}, 4.12 \mathrm{mmol}$) was added to alcohol 467 ($1.07 \mathrm{~g}, 1.87 \mathrm{mmol}$) in THF (18.7 mL). After 1 h the solvent was removed in vacuo and the crude material was purified by flash chromatography $(30 \% \rightarrow 50 \%$ EtOAc/hexanes) to give phenol $429(0.254 \mathrm{~g}$, 45% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.96$ ($\mathrm{m}, 2 \mathrm{H}$), $4.06(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.74$ (s, 3H), 0.77-0.76 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.61,146.01,145.24,122.46$, 121.19, 117.52, 113.01, 112.04, 79.32, 73.55, 40.70, 17.96, 10.93; FTIR (thin film): 3310, 2972, 2921, 1597, 1576, 1377, 1266, 1149, $1090 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrClO}_{3}$ $(\mathrm{M}+\mathrm{Cl})^{-}: 337.0029$, found: 337.0032 .

Preparation of β-hydroxy ketone 437

LDA was prepared by addition of $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $3.0 \mathrm{mg}, 4.802 \mathrm{mmol}$) to a solution of diisopropylamine ($730 \mathrm{~mL}, 5.239 \mathrm{mmol}$) in THF (10 mL). After stirring for 30 min at $78{ }^{\circ} \mathrm{C}$, acetophenone $436(1.00 \mathrm{~g}, 4.356 \mathrm{mmol})$ in THF (2 mL) was added and the orange solution was stirred for 45 min at $-78^{\circ} \mathrm{C}$. Methacrolein ($80 \%, 450 \mathrm{~mL}, 4.365 \mathrm{mmol}$) was added and the greenish solution formed was stirred for another 45 min at $-78^{\circ} \mathrm{C}$ before it was quenched by addition of acetic acid $(0.5 \mathrm{~mL})$ in THF (1 mL). The mixture was then warmed to room temperature and the white suspension was diluted with water (30 mL). The aqueous phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$) and the combined organic phases were washed with brine (40 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (3:1 hexanes:EtOAc) to furnish allylic alcohol 437 ($921 \mathrm{mg}, 71 \%$ yield) along with a minor amount of inseparable debrominated product.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}$, $J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.07(\mathrm{~m}, 3 \mathrm{H})$, 1.75 (s, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.65,162.01,145.73,132.22,131.46,130.43$, 119.62, 113.79, 113.12, 111.32, 71.62, 55.71, 47.19, 43.18, 18.50, 18.41; FTIR (thin film): 3445, 2970, 2941, 2915, 2840, 1676, 1593, 1488, 1457, 1439, 1261, 1229, 1170, $1027 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrO}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 299.0283, found: 299.0268.

Preparation of diol 438

Tetramethylammonium triacetoxyborohydride ($2.11 \mathrm{~g}, 8.02 \mathrm{mmol}$) was dissolved in a mixture of acetonitrile $(3 \mathrm{~mL})$ and acetic acid $(3 \mathrm{~mL})$ and the mixture was stirred for 30 min . Then a solution of allylic alcohol $437(300 \mathrm{mg}, 1.00 \mathrm{mmol})$ in acetonitrile (1 mL) was added and the mixture was stirred for 2 h at ambient temperature. The mixture was then diluted with saturated aqueous Rochelle's salt solution (10 mL) and diethyl ether (10 mL) followed by slow addition of saturated aqueous sodium bicarbonate solution (10 mL). The aqueous phase was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$ and the combined organic phases were washed with saturated aqueous sodium bicarbonate (30 mL) and brine (30 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (9:1 $\rightarrow 3: 1$ hexanes:EtOAc) to provide diol 438 ($221 \mathrm{mg}, 73 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}$, $J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dt}, J=7.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.26(\mathrm{~m}, 1 \mathrm{H})$, 3.77 (s, 3H), $3.38(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.10,146.83,135.06,128.10,121.39,117.67,113.70,110.39$, 73.28, 70.36, 55.50, 40.19, 18.99; FTIR (thin film): 3340, 2942, 2917, 2836, 1604, 1589, 1490, 1455, 1439, 1285, 1234, 1070, $1027 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BrNO}_{3}$ $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 318.0705, found: 318.069.

Preparation of acetal 440

Diol 438 ($450 \mathrm{mg}, 1.49 \mathrm{mmol}$) and $p-\mathrm{TsOH}(28 \mathrm{mg}, 0.15 \mathrm{mmol})$ were dissolved in 2,2dimethoxypropane (2 mL) and heated to $56{ }^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to room temperature and diluted with diethyl ether (10 mL) and saturated aqueous sodium bicarbonate solution (10 mL). The aqueous phase was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$) and the combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (20:1 hexanes:EtOAc) to provide acetal 440 ($379 \mathrm{mg}, 74 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (dd, $J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=9.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 1 H), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 2.24 (ddd, $J=13.2,8.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.14,145.09,134.03,128.28,121.91,117.50,114.02$, 110.71, 100.91, 69.93, 67.62, 55.52, 37.13, 25.44, 25.06, 18.62; FTIR (thin film): 2987, 2940, $2836,1604,1567,1494,1457,1439,1377,1167,1130,1096,1029 \mathrm{~cm}^{-1}$.

Preparation of phenol 441

To a suspension of sodium hydride (60% in mineral oil, $101 \mathrm{mg}, 2.514 \mathrm{mmol}$) in DMF (3 mL) was added ethanethiol ($181 \mathrm{~mL}, 2.514 \mathrm{mmol}$) and the foaming mixture was stirred for 15 min until a clear solution was obtained. A solution of acetal 440 ($286 \mathrm{mg}, 0.838 \mathrm{mmol}$) in DMF (1 mL) was then added and the mixture was heated to $90^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was then cooled to room temperature and diluted with diethyl ether (10 mL) and saturated aqueous ammonium chloride solution (10 mL). The aqueous phase was extracted with diethyl ether ($3 \times$ 5 mL) and the combined organic phases were washed with brine ($2 \times 20 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (20:1 $\rightarrow 10: 1$ hexanes:EtOAc) to provide phenol 468 ($220 \mathrm{mg}, 80 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.40(\mathrm{dd}, J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=4.8,2.6 \mathrm{~Hz}$, $1 \mathrm{H})$, 6.76-6.73 (m, 1H), 5.99-5.92 (m, 1H), $5.20(\mathrm{dd}, J=9.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}$, $1 \mathrm{H}), 4.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{ddd}, J=13.5,8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}$, 2 H), 1.51 ($\mathrm{s}, 3 \mathrm{H}$), 1.48 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 155.54,155.52,144.86,133.32$, 128.63, 128.59, 122.16, 119.42, 119.40, 115.24, 111.08, 101.21, 72.56, 70.20, 67.79, 36.77, 25.50, 25.08, 18.65; FTIR (thin film): 3347, 2989, 2936, 2159, 2030, 1976, 1608, 1583, 1495, 1434, 1319, 1220, 1161, 1132, 1089, 1031, $1008 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrO}_{3}(\mathrm{M}-\mathrm{H}):$ 325.0439, found: 325.0442.

Acetal $468(200 \mathrm{mg}, 0.611 \mathrm{mmol})$ was dissolved in methanol $(2 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$ and TFA ($14 \mathrm{~mL}, 0.183 \mathrm{mmol}$) was added. The solution was stirred 3 h at $0^{\circ} \mathrm{C}$ and for an additional 3 h at room temperature before it was diluted with diethyl ether (10 mL) and saturated aqueous
sodium bicarbonate (10 mL). The aqueous phase was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$) and the combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (4:1 $\rightarrow 2: 1$ hexanes:EtOAc) to furnish phenol 441 ($117 \mathrm{mg}, 66 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$; acetone $\left.-\mathrm{d}_{6}\right): \delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~m}, 1 \mathrm{H})$, $6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dt}, J=9.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.79-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J$ $=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~m}, ~ J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.70(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (101 MHz , aceton- d_{6}): $\delta 205.52,156.91,148.24,135.46,128.47,118.68,114.92$, 109.04, 71.94, 69.10, 42.55, 17.98; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrO}_{3}(\mathrm{M}-\mathrm{H})^{-}$: 285.0126, found: 285.0123.

Preparation of spirotetrahydrofuran 443

To a solution of triol 441 ($50 \mathrm{mg}, 0.174 \mathrm{mmol}$) in acetonitrile (3 mL) was added $\mathrm{Phl}(\mathrm{OAc})_{2}(112 \mathrm{mg}, 0.348 \mathrm{mmol})$ and the solution was stirred for 6 h . The orange solution was then diluted with diethyl ether $(10 \mathrm{~mL})$ and saturated aqueous sodium bicarbonate $(10 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$ and the combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($3: 1 \rightarrow 2: 1$ hexanes:EtOAc) to give spirotetrahydrofuran 443 ($7 \mathrm{mg}, 14 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~m}, 1 \mathrm{H}), 6.55-6.51(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H})$, $4.91(\mathrm{~s}, 1 \mathrm{H}), 4.36-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 183.10,146.45,145.82,143.77,136.45,136.40,133.26,111.86$, 72.90, 64.57, 58.06, 34.10, 17.77.

Preparation of ester 448

447
 (40\% yield)

446

DMF ($0.006 \mathrm{~mL}, 0.08 \mathrm{mmol}$) was added to a solution of acid $447{ }^{13}(0.244 \mathrm{~g}, 1.94 \mathrm{mmol})$ and oxalyl chloride $(0.29 \mathrm{~mL}, 3.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 30 min the reaction was warmed to room temperature and after 30 min a solution of phenol $446(0.400 \mathrm{~g}, 1.61 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.45 \mathrm{~mL}, 3.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added. After stirring for 2 h sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(20 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organics were washed with sat. aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude mixture was purified by flash chromatography (5\% EtOAc/hexanes) to give ester 448 ($0.229 \mathrm{~g}, 40 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{dt}, J=7.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 3 \mathrm{H}), 2.18-2.13$ ($\mathrm{m}, 3 \mathrm{H}$), 2.00-1.98 (m,3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 165.68,156.98,144.11,142.91$, 140.49, 125.48, 124.10, 124.05, 121.84, 120.02, 109.83, 56.33, 22.64, 13.98; FTIR (thin film): 3092, 2929, 2850, 1741, 1614, 1537, 1476, 1436, 1347, 1302, 1197, 1072, $1041 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrNO}_{5}(\mathrm{M}+\mathrm{H})^{+}: 356.0134$, found: 356.0132.

Preparation of enone 445

n-BuLi (1.67 M in hexanes, $0.16 \mathrm{~mL}, 0.26 \mathrm{mmol}$) was added to aryl bromide 448 (0.085 $\mathrm{g}, 0.24 \mathrm{mmol})$ in THF (2.4 mL) at $-78{ }^{\circ} \mathrm{C}$. After 2.5 h the reaction was warmed to room temperature and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{EtOAc}(3 \times$ 5 mL) and the combined organics washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($5 \% \rightarrow 10 \%$ EtOAc/hexanes) to give enone 445 ($0.006 \mathrm{~g}, 9 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 10.59(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.59(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$, 1.94 (s, 3H).

Preparation of ester 451

DMF (3 drops) was added to a solution of acid 447 ($1.24 \mathrm{~g}, 9.85 \mathrm{mmol}$) and oxalyl chloride ($1.11 \mathrm{~mL}, 12.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 30 min the reaction was warmed to room temperature and after 30 min a solution of phenol $450(1.00 \mathrm{~g}, 4.93 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}$ ($1.72 \mathrm{~mL}, 12.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added. After stirring for 2 h sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(50 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined
organics were washed with sat. aq. $\mathrm{NaHCO}_{3}(75 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude mixture was purified by flash chromatography ($2 \% \rightarrow 3 \% \rightarrow 5 \%$ EtOAc/hexanes) to give ester 451 ($0.444 \mathrm{~g}, 29 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85$ (dd, J = 8.9, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}$, 3 H); ${ }^{13} \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.80,157.61,142.83,142.15,140.64,126.35,123.93$, 121.03, 118.06, 116.31, 114.10, 55.78, 22.73, 14.03; FTIR (thin film): 2962, 2940, 2837, 1771, 1727, 1600, 1580, 1488, 1439, 1263, 1229, 1181, 1082, $1030 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrO}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 311.0283, found: 311.2080.

Preparation of anhydride 452

DCC ($0.577 \mathrm{~g}, 2.79 \mathrm{mmol})$ was added to acid $447(0.863 \mathrm{~g}, 5.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 35 min the solution was warmed to room temperature. After 1 h 20 min the reaction was placed in the freezer overnight. The solution was then filtered through a pad of silica while still cold. The solvent was removed in vacuo to provide anhydride 452 ($0.574 \mathrm{~g}, 44 \%$ yield), which was used in the next step as is.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.20(\mathrm{~s}, 2 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H}), 1.99$ (s, 6H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.27,144.51,140.65,127.12,122.08,22.79,14.00$; FTIR (thin film): 2970, 2929, 1769, 1710, 1633, 1623, 1446, 1388, 1265, 1187, $1003 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$: 257.1154, found: 257.1157.

Preparation of ester 451

Anhydride 452 ($0.574 \mathrm{~g}, 2.45 \mathrm{mmol}$), phenol 450 ($0.452 \mathrm{~g}, 2.23 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.34 \mathrm{~mL}$, $2.45 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ were combined and heated to $45^{\circ} \mathrm{C}$. After 15 h the reaction was cooled to room temperature and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organics were washed with $1 \mathrm{~N} \mathrm{NaOH}(50 \mathrm{~mL})$ and brine (50 mL), dride over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography $(2.5 \% \rightarrow 5 \%$ EtOAc/hexanes) to give ester 451 ($0.612 \mathrm{~g}, 88 \%$ yield). All spectral data matched that from the acid chloride procedure.

Preparation of enone 449

n-BuLi (1.67 M in hexanes, 1.28 mL , 2.14 mmol) was added to aryl bromide 451 (0.444 $\mathrm{g}, 1.43 \mathrm{mmol}$) in THF (14.3 mL) at $-78^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and stir of $17 \mathrm{~h} . \mathrm{MeOH}(10 \mathrm{~mL})$ was added and the volatiles were removed in vacuo. The crude material was purified by flash chromatography (5\% EtOAc/hexanes) to give enone 449 ($0.056 \mathrm{~g}, 17 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 11.33(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.82,157.11,151.24,140.30,139.99,134.51,123.42$,
119.91, 119.12, 115.66, 113.79, 55.87, 15.10, 14.07; FTIR (thin film): 2955, 2933, 2871, 2860, 2836, 1726, 1630, 1599, 1483, 1323, 1281, 1254, 1218, 1138, $1039 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m / z calc'd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3}(\mathrm{M}-\mathrm{H}):$: 231.1021, found: 231.1023.

Preparation of ester 453

Anhydride 452 ($0.519 \mathrm{~g}, 2.22 \mathrm{mmol}$), p-methoxyphenol ($0.25 \mathrm{~g}, 2.01 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.31$ mL , 2.22 mmol), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were combined and heated to $45^{\circ} \mathrm{C}$. After stirring for 15 h the reaction was cooled to room temperature and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organics were washed with $1 \mathrm{~N} \mathrm{NaOH}(30$ mL) and brine (30 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($2 \% \rightarrow 10 \%$ EtOAc/hexanes) to give ester 453 ($0.292 \mathrm{~g}, 63 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=9.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.87(\mathrm{~m}$, $2 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.67,157.08,144.59,142.12,140.68,126.92,122.37,120.56,114.39$, 114.37, 55.54, 22.76, 14.01; FTIR (thin film): 2958, 2934, 2836, 1721, 1633, 1610, 1596, 1504, 1455, 1442, 1229, 1090, $1031 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 233.1178, found: 233.1176.

Preparation of Aldol product 456

455

(89\% yield)

456

LDA was prepared by adding $n-B u L i(1.67 \mathrm{M}$ in hexanes, $2.19 \mathrm{~mL}, 3.65 \mathrm{mmol}$) to $i-$ $\mathrm{Pr}_{2} \mathrm{NH}(0.58 \mathrm{~mL}, 4.2 \mathrm{mmol})$ in THF (16 mL) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 30 min ketone 455^{14} ($0.300 \mathrm{~g}, 1.66 \mathrm{mmol}$) in THF (5 mL) was added. After 25 min methacrolein ($80 \%, 0.21 \mathrm{~mL}, 2.49$ mmol) was added. After 40 min the reaction was quenched with $\mathrm{AcOH}(2 \mathrm{~mL})$ and allowed to warm to room temperature. Sat. aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ was added and the solution was estracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organics were washed with brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography ($10 \% \rightarrow 30 \%$ EtOAc/hexanes) to give aldol product 456 ($0.371 \mathrm{~g}, 89 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 11.82(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H})$, $6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 1 \mathrm{H})$, 1.71 (s, 3H), 1.21 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 209.78,157.49,157.19$, 151.71, 144.51, 143.81, 124.35, 124.02, 119.66, 119.29, 119.02, 117.71, 114.37, 113.46, 112.69, 112.59, 78.25, 74.72, 55.87, 42.96, 42.76, 19.26, 16.87, 15.49, 11.71; FTIR (thin film): 3495, 2975, 2939, 2836, 1639, 1611, 1590, 1484, 1373, 1269, 1245, 1173, $1038 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}(\mathrm{M}-\mathrm{H})^{-}:$249.1127, found: 249.1129.

Preparation of bismesylate 457

$\mathrm{MsCl}(0.14 \mathrm{~mL}, 1.83 \mathrm{mmol})$ was added to alcohol 456 ($0.207 \mathrm{~g}, 0.83 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.46 \mathrm{~mL}, 3.32 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.3 \mathrm{~mL})$. The reaction was stirred for 16 h then sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrate in vacuo. The crude material was purified by flash chromatography (40% EtOAc/hexanes) to give bismesylate 457 ($0.262 \mathrm{~g}, 78 \%$ yield) as a mixture of diastereomers.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.32-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.15(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=4.1$ $\mathrm{Hz}, 3 \mathrm{H}), 3.66(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.71,158.18,140.18,139.43,133.23,124.43,118.19$, 116.93, 114.91, 85.12, 55.87, 47.11, 38.98, 37.63, 18.11, 12.60; FTIR (thin film): 3389, 3022, 2979, 2941, 1697, 1582, 1486, 1459, 1415, 1351, 1331, 1274, 1197, $1032 \mathrm{~cm}^{-1}$;HRMS (ESIAPCI) m / z calc'd for $(\mathrm{M}+\mathrm{H})^{+}: 429.0654$, found: 429.0653.

Preparation of enone 458

To a solution of bismesylate $457(0.984 \mathrm{~g}, 2.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.35 \mathrm{~mL}, 9.68 \mathrm{mmol})$. The reaction was allowed to stir at room temperature for 3 d the saturated aqueous ammonium chloride (30 mL) was added. The aqueous layer was extracted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$ and the combined organics were washed with brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by column chromatography (30% EtOAc/hexanes) to provide enone 458 ($0.349 \mathrm{~g}, 46 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{dt}, J=9.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}$, $J=3.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 3.76-3.75$ $(\mathrm{m}, 3 \mathrm{H}), 3.01-3.01(\mathrm{~m}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 196.55$, 157.67, 147.26, 147.21, 140.69, 139.31, 136.17, 134.22, 124.08, 121.90, 116.31, 114.38, 55.74, 37.56, 22.56, 12.78; FTIR (thin film): 3058, 2966, 2940, 2840, 1652, 1611, 1583, 1485, 1464, 1445, 1414, 1367, 1331, 1266, 1198, 1161, $1031 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI) m/z calc'd for $(\mathrm{M}+\mathrm{H})^{+}: 311.0953$, found: 311.0947.

References for Appendix One

1. López-Cobeñas, A.; Cledera, P.; Sánchez, J. D.; López-Alvarado, P.; Ramos, M. T.; Avendaño, C.; Menéndez, J. C. Synthesis 2005, 2005, 3412-3422.
2. Levene, P. A.; Bass, L. W.; Steiger, R. E. J. Biol. Chem. 1929, 81, 697-702.
3. Williams, R. M.; Armstrong, R. W.; Maruyama, L. K.; Dung, J. S.; Anderson, O. P. J. Am. Chem. Soc. 1985, 107, 3246-3253.
4. Piers, E.; Harrison, C. L.; Zetina-Rocha, C. Org. Lett. 2001, 3, 3245-3247.
5. (a) Danner, P.; Bauer, M.; Phukan, P.; Maier, Martin E. Eur. J. Org. Chem. 2005, 2005, 317-325; (b) O'Donnell, M. J.; Boniece, J. M.; Earp, S. E. Tetrahedron Lett. 1978, 19, 2641-2644.
6. (a) Fukuyama, T.; Nakatsuka, S.-I.; Kishi, Y. Tetrahedron 1981, 37, 2045-2078; (b) Kishi, Y.; Fukuyama, T.; Nakatsuka, S. J. Am. Chem. Soc. 1973, 95, 6492-6493.
7. Ishihara, H.; Hirabayashi, Y. Chem. Lett. 1976, 5, 203-204.
8. Bélanger, G.; April, M.; Dauphin, É.; Roy, S. J. Org. Chem. 2007, 72, 1104-1111.
9. von Delius, M.; Geertsema, E. M.; Leigh, D. A. Nat. Chem. 2010, 2, 96-101.
10. Narjes, F.; Schaumann, E. Liebigs Ann. Chem. 1993, 1993, 841-846.
11. Fráter, G.; Müller, U.; Günther, W. Tetrahedron 1984, 40, 1269-1277.
12. Shetty, R. S.; Lee, Y.; Liu, B.; Husain, A.; Joseph, R. W.; Lu, Y.; Nelson, D.; Mihelcic, J.; Chao, W.; Moffett, K. K.; Schumacher, A.; Flubacher, D.; Stojanovic, A.; Bukhtiyarova, M.; Williams, K.; Lee, K.-J.; Ochman, A. R.; Saporito, M. S.; Moore, W. R.; Flynn, G. A.; Dorsey, B. D.; Springman, E. B.; Fujimoto, T.; Kelly, M. J. J. Med. Chem. 2010, 54, 179200.
13. Marcus, A. P.; Lee, A. S.; Davis, R. L.; Tantillo, D. J.; Sarpong, R. Angew. Chem. Int. Ed. 2008, 47, 6379-6383.
14. Zhang, Y.; Lee, Y. S.; Rothman, R. B.; Dersch, C. M.; Deschamps, J. R.; Jacobson, A. E.; Rice, K. C. J. Med. Chem. 2009, 52, 7570-7579.

Appendix Two

Spectra

Figure A2.1. ${ }^{1} \mathrm{H}$-NMR of DKP 72.

Figure A2.2. ${ }^{13} \mathrm{C}$-NMR of DKP 72.

Figure A2.3. FTIR of DKP 72.

Figure A2.4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of DKP 76.

Figure A2.5. ${ }^{13} \mathrm{C}$-NMR of DKP 76.

Figure A2.6. FTIR of DKP 76.

Figure A2.7. ${ }^{1} \mathrm{H}$-NMR of protected amino acid 82.

Figure A2.8. ${ }^{13} \mathrm{C}$-NMR of protected amino acid 82.

Figure A2.9. FTIR of protected amino acid 82.

Figure A2.10. ${ }^{1} \mathrm{H}$-NMR of amino ester 79.

Figure A2.11. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of amino ester 79.

Figure A2.12. ${ }^{1} \mathrm{H}$-NMR of dipeptide 83.

Figure A2.13. ${ }^{13} \mathrm{C}$-NMR of dipeptide 83.

Figure A2.14. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of DKP 70.

Figure A2.15. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of DKP 70.

Figure A2.16. ${ }^{1} \mathrm{H}$-NMR of DKP 84.

Figure A2.17. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of DKP 84.

Figure A2.18. FTIR of DKP 84.

Figure A2.19. ${ }^{1} \mathrm{H}$-NMR of indole 87.

Figure A2.20. ${ }^{1} \mathrm{H}$-NMR of indole 89.

Figure A2.21. ${ }^{1} \mathrm{H}$-NMR of DKP 90.

Figure A2.22. ${ }^{1} \mathrm{H}$-NMR of amide 91.

Figure A2.23. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of amide 91.

Figure A2.24. FTIR of amide 91.

Figure A2.25. ${ }^{1} \mathrm{H}$-NMR of bisselenobenzoate 103.

Figure A2.26. ${ }^{13} \mathrm{C}$-NMR of bisselenobenzoate 103.

Figure A2.27. FTIR of bisselenobenzoate 103.

Figure A2.28. ${ }^{1} \mathrm{H}$-NMR of bisselenobenzoate 104.

Figure A2.29. ${ }^{13} \mathrm{C}$-NMR of bisselenobenzoate 104.

Figure A2.30. FTIR of bisselenobenzoate 104.

Figure A2.31. ${ }^{1} \mathrm{H}$-NMR of diselenide 106.

Figure A2.32. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of diselenide 106.

Figure A2.33. ${ }^{77} \mathrm{Se}-\mathrm{NMR}$ of diselenide 106.

Figure A2.34. FTIR of diselenide 106.

Figure A2.35. ${ }^{1} \mathrm{H}$-NMR of dibromide 109.

Figure A2.36. ${ }^{13} \mathrm{C}$-NMR of dibromide 109.

Figure A2.37. ${ }^{1} \mathrm{H}$-NMR of bisselenoether 120.

Figure A2.38. ${ }^{13} \mathrm{C}$-NMR of bisselenoether 120.

Figure A2.39. ${ }^{77}$ Se-NMR of bisselenoether 120.

Figure A2.40. FTIR of bisselenoether 120.

Figure A2.41. ${ }^{1} \mathrm{H}$-NMR of dithioacetal 121.

Figure A2.42. ${ }^{13} \mathrm{C}$-NMR of dithioacetal 121.

Page 1/1

Figure A2.43. FTIR of dithioacetal 121.

Figure A2.44. ${ }^{1} \mathrm{H}$-NMR of dithioacetal 125.

Figure A2.45. ${ }^{1} \mathrm{H}$-NMR of disulfide 126.

Figure A2.46. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of bisthiomethyl ether 127.

Figure A2.47. ${ }^{13} \mathrm{C}$-NMR of bisthiomethyl ether 127.

Figure A2.48. FTIR of bisthiomethyl ether 127.

Figure A2.49. ${ }^{1} \mathrm{H}$-NMR of bromoketone 236.

Figure A2.50. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of bromoketone 236.

Figure A2.51. FTIR of bromoketone 236.

Figure A2.52. ${ }^{1} \mathrm{H}$-NMR of aniline 237.

Figure A2.53. ${ }^{13} \mathrm{C}$-NMR of aniline 237.

Figure A2.54. FTIR of aniline 237.

Figure A2.55. ${ }^{1} \mathrm{H}$-NMR of phenol 287 (higher R_{f} diastereomer).

Figure A2.56. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 287 (higher R_{f} diastereomer).

Figure A2.57. FTIR of phenol 287 (higher R_{f} diastereomer).

Figure A2.58. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of phenol 287 (lower R_{f} diastereomer).

Figure A2.59. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 287 (lower R_{f} diastereomer).

Figure A2.60. FTIR of phenol 287 (lower R_{f} diastereomer).

Figure A2.61. ${ }^{1} \mathrm{H}$-NMR of ketone 234 (higher R_{f} diastereomer).

Figure A2.62. ${ }^{13} \mathrm{C}$-NMR of ketone 234 (higher R_{f} diastereomer).

Figure A2.63. FTIR of ketone 234 (higher R_{f} diastereomer).

Figure A2.64. ${ }^{1} \mathrm{H}$-NMR of ketone $\mathbf{2 3 4}$ (lower R_{f} diastereomer).

Figure A2.65. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of ketone 234 (lower R_{f} diastereomer).

Figure A2.66. FTIR of ketone 234 (lower R_{f} diastereomer).

ppm

Figure A2.67. ${ }^{1} \mathrm{H}$-NMR of enal 239.

Figure A2.68. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of enal 239.

Figure A2.69. FTIR of enal 239.

Figure A2.70. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of carboxylic acid 247.

Figure A2.71. ${ }^{13} \mathrm{C}$-NMR of carboxylic acid 247.

Figure A2.72. FTIR of carboxylic acid 247.

Figure A2.73. ${ }^{1} \mathrm{H}$-NMR of ketone 259.

Figure A2.74. ${ }^{13} \mathrm{C}$-NMR of ketone 259.

Figure A2.75. FTIR of ketone 259.

Figure A2.76. ${ }^{1} \mathrm{H}$-NMR of allylic carbonate 265.

Figure A2.77. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of allylic carbonate 265.

Figure A2.78. FTIR of allylic carbonate 265.

Figure A2.79. ${ }^{1} \mathrm{H}$-NMR of allylic carbonate 268.

Figure A2.80. ${ }^{13}$ C-NMR of allylic carbonate 268.

Figure A2.81. FTIR of allylic carbonate 268.

Figure A2.82. ${ }^{1} \mathrm{H}$-NMR of fused tricycle 269.

Figure A2.83. ${ }^{13} \mathrm{C}$-NMR of fused tricycle 269.

Figure A2.84. FTIR of fused tricycle 269.

Figure A2.85. ${ }^{1} \mathrm{H}$-NMR of allylic carbonate 462.

Figure A2.86. ${ }^{13} \mathrm{C}$-NMR of allylic carbonate 462.

Figure A2.87. FTIR of allylic carbonate 462.

Figure A2.88. ${ }^{1} \mathrm{H}$-NMR of allylic carbonate 275.

Figure A2.89. ${ }^{13} \mathrm{C}$-NMR of allylic carbonate 275.

Figure A2.90. FTIR of allylic carbonate 275.

Figure A2.91. ${ }^{1} \mathrm{H}$-NMR of tricycle 276.

Figure A2.92. ${ }^{13} \mathrm{C}$-NMR of tricycle 276.

Figure A2.93. FTIR of tricycle 276.

Figure A2.94. ${ }^{1} \mathrm{H}$-NMR of phenol 463.

Figure A2.95. ${ }^{13} \mathrm{C}$-NMR of phenol 463.

Figure A2.96. FTIR of phenol 463.

Figure A2.97. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of tetramic acid 280.

Figure A2.98. ${ }^{13} \mathrm{C}$-NMR of tetramic acid 280.

Figure A2.99. FTIR of tetramic acid 280.

Figure A2.100. ${ }^{1} \mathrm{H}$-NMR of diene 287.

Figure A2.101. ${ }^{13} \mathrm{C}$-NMR of diene 287.

Figure A2.102. FTIR of diene 287.

Figure A2.103. ${ }^{1} \mathrm{H}$-NMR of tetramic acid 295.

Figure A2.104. ${ }^{13} \mathrm{C}$-NMR of tetramic acid 295.

Figure A2.105. FTIR of tetramic acid 295.

Figure A2.106. ${ }^{1} \mathrm{H}$-NMR of aryl boronic ester 296.

Figure A2.107. ${ }^{13} \mathrm{C}$-NMR of aryl boronic ester 296.

Figure A2.108. FTIR of aryl boronic ester 296.

Figure A2.109. ${ }^{1} \mathrm{H}$-NMR of styrene 297.

Figure A2.110. ${ }^{1} \mathrm{H}$-NMR of ketone 298.

Figure A2.111. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of aryl bromide 301.

Figure A2.112. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aryl bromide 301.

Figure A2.113. FTIR of aryl bromide 301.

Figure A2.114. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of enone $\mathbf{3 0 0}$.

Figure A2.115. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of enone $\mathbf{3 0 0}$.

Figure A2.116. FTIR of enone 300.

Figure A2.117. ${ }^{1} \mathrm{H}$-NMR of enal 464.

Figure A2.118. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of enal 464.

Figure A2.119. FTIR of enal 464.

Figure A2.120. ${ }^{1} \mathrm{H}$-NMR of triene 303.

Figure A2.121. ${ }^{13} \mathrm{C}$-NMR of triene 303.

Figure A2.122. ${ }^{1} \mathrm{H}$-NMR of allylic alcohol 304.

Figure A2.123. ${ }^{13} \mathrm{C}$-NMR of allylic alcohol 304.

Figure A2.124. FTIR of allylic alcohol 304.

Figure A2.125. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of styrene 313.

Figure A2.126. ${ }^{1} \mathrm{H}$-NMR of benzaldehyde 312.

Figure A2.127. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of benzaldehyde 312.

Figure A2.128. FTIR of benzaldehyde 312.

Figure A2.129. ${ }^{1} \mathrm{H}$-NMR of vinyl iodide 314.

Figure A2.130. ${ }^{1} \mathrm{H}$-NMR of alkyne 315.

Figure A2.131. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of alkyne 315.

Figure A2.132. FTIR of alkyne 315.

Figure A2.133. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of alkyne 358.

Figure A2.134. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of alkyne 358.

Figure A2.135. FTIR of alkyne 358.

Figure A2.136. ${ }^{1} \mathrm{H}$-NMR of aldehyde 325.

Figure A2.137. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldehyde 325.

Figure A2.138. FTIR of aldehyde 325.

Figure A2.139. ${ }^{1} \mathrm{H}$-NMR of vinyl carbonate 321.

Figure A2.140. ${ }^{13} \mathrm{C}$-NMR of vinyl carbonate 321.

Figure A2.141. FTIR of vinyl carbonate 321.

Figure A2.142. ${ }^{1} \mathrm{H}$-NMR of bromide 335.

Figure A2.143. ${ }^{13} \mathrm{C}$-NMR of bromide 335.

Figure A2.144. FTIR of bromide 335.

Figure A2.145. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of tosylate 336.

Figure A2.146. ${ }^{13} \mathrm{C}$-NMR of tosylate 336.

Figure A2.147. FTIR of tosylate 336.

Figure A2.148. ${ }^{1} \mathrm{H}$-NMR of carboxylic acid 337.

Figure A2.149. ${ }^{13} \mathrm{C}$-NMR of carboxylic acid 337.

Figure A2.150. FTIR of carboxylic acid 337.

Figure A2.151. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of ketone 339.

Figure A2.152. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of ketone 339.

Figure A2.153. FTIR of ketone 339.

Figure A2.154. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of aldehyde 342.

Figure A2.155. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldehyde 342.

Figure A2.156. FTIR of aldehyde 342.

Figure A2.157. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of carboxylic acid 343.

Figure A2.158. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of carboxylic acid 343.

Figure A2.159. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of ketone 344.

Figure A2.160. ${ }^{1} \mathrm{H}$-NMR of enone 345 (diastereomer A).

Figure A2.161. ${ }^{13} \mathrm{C}$-NMR of enone $\mathbf{3 4 5}$ (diastereomer A).

Figure A2.162. ${ }^{1} \mathrm{H}$-NMR of enone $\mathbf{3 4 5}$ (diastereomer B).

Figure A2.163. ${ }^{13} \mathrm{C}$-NMR of enone $\mathbf{3 4 5}$ (diastereomer B).

Figure A2.164. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of alcohol 346.

Figure A2.165. ${ }^{13} \mathrm{C}$-NMR of alcohol 346.

Figure A2.166. FTIR of alcohol 346.

Figure A2.167. ${ }^{1} \mathrm{H}$-NMR of tetracycle $\mathbf{3 4 7}$.

Figure A2.168. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of tetracycle 347.

Figure A2.169. FTIR of tetracycle 347.

Figure A2.170. ${ }^{1} \mathrm{H}$-NMR of aldehyde 355.

Figure A2.171. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldehyde 355.

Figure A2.172. FTIR of aldehyde 355.

Figure A2.173. ${ }^{1} \mathrm{H}$-NMR of carboxylic acid 356.

Figure A2.174. ${ }^{13} \mathrm{C}$-NMR of carboxylic acid 356.

Figure A2.175. FTIR of carboxylic acid 356.

Figure A2.176. ${ }^{1} \mathrm{H}$-NMR of aldehyde 359.

Figure A2.177. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldehyde 359.

Figure A2.178. FTIR of aldehyde 359.

Figure A2.179. ${ }^{1} \mathrm{H}$-NMR of carboxylic acid $\mathbf{3 6 0 .}$

Figure A2.180. ${ }^{13} \mathrm{C}$-NMR of carboxylic acid $\mathbf{3 6 0}$.

Figure A2.181. FTIR of carboxylic acid $\mathbf{3 6 0}$.

Figure A2.182. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of phenol 365.

Figure A2.183. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 365.

Figure A2.184. FTIR of phenol 365.

Figure A2.185. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of triflate 366.

Figure A2.186. ${ }^{13} \mathrm{C}$-NMR of triflate 366.

Figure A2.187. ${ }^{19} \mathrm{~F}$-NMR of triflate 366.

Figure A2.188. FTIR of triflate 366.

Figure A2.189. ${ }^{1} \mathrm{H}$-NMR of alkyne 351.

Figure A2.190. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of alkyne 351.

Figure A2.191. FTIR of alkyne 351.

Figure A2.192. ${ }^{1} \mathrm{H}$-NMR of allylic alcohol 367 (diastereomer A).

Figure A2.193. FTIR of allylic alcohol $\mathbf{3 6 7}$ (diastereomer A).

Figure A2.194. ${ }^{1} \mathrm{H}$-NMR of allylic alcohol 367 (diastereomer B).

Figure A2.195. ${ }^{13} \mathrm{C}$-NMR of allylic alcohol $\mathbf{3 6 7}$ (diastereomer B).

Figure A2.196. FTIR of allylic alcohol 367 (diastereomer B).

Figure A2.197. ${ }^{1} \mathrm{H}$-NMR of aldehyde 370.

Figure A2.198. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldehyde $\mathbf{3 7 0}$.

Figure A2.199. FTIR of aldehyde 370.

Figure A2.200. ${ }^{1} \mathrm{H}$-NMR of carboxylic acid 371.

Figure A2.201. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of carboxylic acid 371.

Figure A2.202. FTIR of carboxylic acid 371.

Figure A2.203. ${ }^{1} \mathrm{H}$-NMR of ketone 372.

Figure A2.204. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of ketone 372.

Figure A2.205. FTIR of ketone 372.

Figure A2.206. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of enone 373.

Figure A2.207. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of enone 373.

Figure A2.208. FTIR of enone 373.

Figure A2.209. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of phenol 374.

Figure A2.210. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 374.

Figure A2.211. FTIR of phenol 374.

Figure A2.212. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of triflate 375.

Figure A2.213. ${ }^{13} \mathrm{C}$-NMR of triflate 375.

Figure A2.214. ${ }^{19} \mathrm{~F}$-NMR of triflate 375.

Figure A2.215. FTIR of triflate 375.

Figure A2.216. ${ }^{1} \mathrm{H}$-NMR of alkyne 376.

Figure A2.217. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of alkyne 376.

Figure A2.218. FTIR of alkyne 376.

Figure A2.219. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of allylic alcohol 377.

Figure A2.220. ${ }^{13} \mathrm{C}$-NMR of allylic alcohol 377.

Figure A2.221. FTIR of allylic alcohol 377.

Figure A2.222. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of phenol 368.

Figure A2.223. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 368.

Figure A2.224. ${ }^{1} \mathrm{H}$-NMR of carbonate 378.

Figure A2.225. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of carbonate 378.

Figure A2.226. ${ }^{1} \mathrm{H}$-NMR of silyl ether 465.

Figure A2.227. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of silyl ether 465.

Figure A2.228. FTIR of silyl ether 465.

Figure A2.229. ${ }^{1} \mathrm{H}$-NMR of alcohol 466.

Figure A2.230. ${ }^{13} \mathrm{C}$-NMR of alcohol 466.

Figure A2.231. FTIR of alcohol 466.

Figure A2.232. ${ }^{1} \mathrm{H}$-NMR of aldehyde 425.

Figure A2.233. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldehyde 425.

Figure A2.234. FTIR of aldehyde 425.

Figure A2.235. ${ }^{1} \mathrm{H}$-NMR of alcohol 467.

Figure A2.236. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of alcohol 467.

Figure A2.237. FTIR of alcohol 467.

Figure A2.238. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of phenol 429.

Figure A2.239. ${ }^{13} \mathrm{C}$-NMR of phenol 429.

Figure A2.240. FTIR of phenol 429.

Figure A2.241. ${ }^{1} \mathrm{H}$-NMR of β-hydroxy ketone 437.

Figure A2.242. ${ }^{13} \mathrm{C}$-NMR of β-hydroxy ketone 437.

Figure A2.243. FTIR of β-hydroxy ketone 437.

Figure A2.244. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of diol 438.

Figure A2.245. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of diol 438.

Figure A2.246. FTIR of diol 438.

Figure A2.247. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of acetal 440.

Figure A2.248. ${ }^{13} \mathrm{C}$-NMR of acetal 440.

Figure A2.249. FTIR of acetal 440.

Figure A2.250. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of phenol 468.

Figure A2.251. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 468.

Figure A2.252. FTIR of phenol 468.

Figure A2.253. ${ }^{1} \mathrm{H}$-NMR of phenol 441.

Figure A2.254. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of phenol 441.

Figure A2.255. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of spirotetrahydrofuran 443.

Figure A2.256. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of spirotetrahydrofuran 443.

Figure A2.257. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of ester 448.

Figure A2.258. ${ }^{13} \mathrm{C}$-NMR of ester 448.

Figure A2.259. FTIR of ester 448.

Figure A2.260. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of enone 445.

Figure A2.261. ${ }^{1} \mathrm{H}$-NMR of ester 451.

Figure A2.262. ${ }^{13} \mathrm{C}$-NMR of ester 451.

Figure A2.263. FTIR of ester 451.

Figure A2.264. ${ }^{1} \mathrm{H}$-NMR of anhydride 452.

Figure A2.265. ${ }^{13} \mathrm{C}$-NMR of anhydride 452.

Figure A2.266. FTIR of anhydride 452.

Figure A2.267. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of enone 449.

Figure A2.268. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of enone 449.

Figure A2.269. FTIR of enone 449.

Figure A2.270. ${ }^{1} \mathrm{H}$-NMR of ester 453.

Figure A2.271. ${ }^{13} \mathrm{C}$-NMR of ester 453.

Figure A2.272. FTIR of ester 453.

Figure A2.273. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of aldol product 456.

Figure A2.274. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of aldol product 456.

Figure A2.275. FTIR of aldol product 456.

Figure A2.276. ${ }^{1} \mathrm{H}$-NMR of bismesylate 457.

Figure A2.277. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of bismesylate 457.

Figure A2.278. FTIR of bismesylate 457.

Figure A2.279. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of enone 458.

Figure A2.280. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of enone 458.

Figure A2.281. FTIR of enone 458.

Appendix Three

Crystallographic Data and Tables

X-Ray Crystallography Report for Fused Tricycle 269

A. Crystal data and structure refinement.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=26.37^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [l>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
wood22
C32 H47 N O5 Si
553.80

120(2) K
0.71073 Å

Monoclinic
C2/c
$a=55.062(4) \AA \quad \alpha=90^{\circ}$.
$b=8.9017(7) \AA \quad \beta=100.454(4)^{\circ}$.
$c=13.1258(10) \AA \quad Y=90^{\circ}$.
6326.8(8) \AA^{3}

8
$1.163 \mathrm{Mg} / \mathrm{m}^{3}$
$0.112 \mathrm{~mm}^{-1}$
2400
$0.15 \times 0.15 \times 0.03 \mathrm{~mm}^{3}$
2.96 to 26.37°.
$-68<=h<=63,-11<=k<=11,-15<=\mid<=16$
50816
$6457[R(\mathrm{int})=0.0471]$
99.8 \%

None
0.9966 and 0.9833

Full-matrix least-squares on F^{2}
6457 / 0 / 352
1.041
$R 1=0.0435, w R 2=0.1080$
$R 1=0.0633, w R 2=0.1193$
0.305 and -0.304 e. \AA^{-3}
B. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{\mathbf{2}} \mathrm{x}$ $\left.10^{3}\right) . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{Uij}^{\mathrm{j}}$ tensor.

	x	y	z	U(eq)
$\mathrm{Si}(1)$	572(1)	7802(1)	1983(1)	29(1)
$\mathrm{O}(1)$	697(1)	7541(2)	940(1)	29(1)
C(1)	1963(1)	7766(2)	3140(1)	16(1)
N(1)	1577(1)	8269(1)	2096(1)	17(1)
$\mathrm{O}(5)$	2067(1)	6843(1)	4012(1)	18(1)
$\mathrm{O}(2)$	1481(1)	10555(1)	2732(1)	20(1)
O(3)	1923(1)	9357(1)	5414(1)	30(1)
C(2)	2309(1)	6330(2)	3915(1)	20(1)
$\mathrm{O}(4)$	1589(1)	8110(1)	4594(1)	23(1)
C(3)	2401(1)	7449(2)	3222(1)	19(1)
C(4)	2631(1)	7877(2)	3255(1)	28(1)
C(5)	2173(1)	8009(2)	2509(1)	18(1)
C(6)	2097(1)	7049(2)	1551(1)	19(1)
C(7)	2269(1)	6859(2)	804(1)	28(1)
C(8)	1870(1)	6513(2)	1486(1)	20(1)
C(9)	1749(1)	6979(2)	2379(1)	18(1)
C(10)	1607(1)	5691(2)	2781(1)	22(1)
C(11)	1752(1)	4245(2)	3080(1)	28(1)
C(12)	1612(1)	9442(2)	2764(1)	16(1)
C(13)	1851(1)	9204(2)	3545(1)	17(1)
C(14)	2013(1)	10608(2)	3598(2)	26(1)
C(15)	1796(1)	8910(2)	4627(1)	21(1)
C(16)	1528(1)	7711(2)	5592(1)	32(1)
C(17)	1276(1)	7083(4)	5411(2)	70(1)
C(18)	1365(1)	8167(2)	1276(1)	17(1)
C(19)	1395(1)	8238(2)	253(1)	21(1)
C(20)	1188(1)	8103(2)	-523(1)	25(1)
C(21)	958(1)	7879(2)	-280(1)	24(1)
C(22)	929(1)	7807(2)	749(1)	22(1)
C(23)	1135(1)	7970(2)	1533(1)	21(1)
C(24)	741(1)	6631(3)	3087(2)	50(1)

C(25)	$845(1)$	$5161(3)$	$2755(2)$	$69(1)$
C(26)	$591(1)$	$6360(5)$	$3950(2)$	$90(1)$
C(27)	$596(1)$	$9848(3)$	$2350(2)$	$54(1)$
C(28)	$605(1)$	$10881(3)$	$1432(3)$	$85(1)$
C(29)	$393(1)$	$10342(4)$	$2944(3)$	$89(1)$
C(30)	$246(1)$	$7157(3)$	$1532(2)$	$40(1)$
C(31)	$225(1)$	$5463(3)$	$1330(2)$	$56(1)$
C(32)	$118(1)$	$8013(3)$	$584(2)$	$59(1)$

C. Bond lengths [\AA] and angles $\left[^{\circ}\right]$.

$\mathrm{Si}(1)-\mathrm{O}(1)$	$1.6567(13)$
$\mathrm{Si}(1)-\mathrm{C}(30)$	$1.877(2)$
$\mathrm{Si}(1)-\mathrm{C}(27)$	$1.882(2)$
$\mathrm{Si}(1)-\mathrm{C}(24)$	$1.888(2)$
$\mathrm{O}(1)-\mathrm{C}(22)$	$1.364(2)$
$\mathrm{C}(1)-\mathrm{O}(5)$	$1.4394(18)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.553(2)$
$\mathrm{C}(1)-\mathrm{C}(13)$	$1.556(2)$
$\mathrm{C}(1)-\mathrm{C}(9)$	$1.568(2)$
$\mathrm{N}(1)-\mathrm{C}(12)$	$1.354(2)$
$\mathrm{N}(1)-\mathrm{C}(18)$	$1.438(2)$
$\mathrm{N}(1)-\mathrm{C}(9)$	$1.491(2)$
$\mathrm{O}(5)-\mathrm{C}(2)$	$1.4354(19)$
$\mathrm{O}(2)-\mathrm{C}(12)$	$1.2211(18)$
$\mathrm{O}(3)-\mathrm{C}(15)$	$1.205(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.497(2)$
$\mathrm{O}(4)-\mathrm{C}(15)$	$1.335(2)$
$\mathrm{O}(4)-\mathrm{C}(16)$	$1.456(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.319(2)$
$\mathrm{C}(3)-\mathrm{C}(5)$	$1.506(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.515(2)$
$\mathrm{C}(6)-\mathrm{C}(8)$	$1.326(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.490(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.510(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.535(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.528(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.530(2)$
$\mathrm{C}(13)-\mathrm{C}(15)$	$1.528(2)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.475(380(2)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.383(2)$
$\mathrm{C}(18)-\mathrm{C}(23)$	$\mathrm{l})$
$\mathrm{C}(18)-\mathrm{C}(19)$	$\mathrm{C}(19)-\mathrm{C}(20)$
$\mathrm{C}(20)-\mathrm{C}(21)$	

$C(21)-C(22)$	$1.390(2)$
$C(22)-C(23)$	$1.395(2)$
$C(24)-C(25)$	$1.522(4)$
$C(24)-C(26)$	$1.536(3)$
$C(27)-C(28)$	$1.524(4)$
$C(27)-C(29)$	$1.539(3)$
$C(30)-C(32)$	$1.519(3)$
$C(30)-C(31)$	$1.532(3)$

$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(30)$	$102.31(8)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(27)$	$109.13(10)$

$\mathrm{C}(30)-\mathrm{Si}(1)-\mathrm{C}(27) \quad 113.21(10)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(24) \quad 109.65(9)$
C(30)-Si(1)-C(24) 112.56(10)
$\mathrm{C}(27)-\mathrm{Si}(1)-\mathrm{C}(24) \quad 109.68(12)$
$\mathrm{C}(22)-\mathrm{O}(1)-\mathrm{Si}(1) \quad 132.06(11)$
$O(5)-C(1)-C(5) \quad 106.13(12)$
$O(5)-C(1)-C(13) \quad 108.81(12)$
$C(5)-C(1)-C(13) \quad 116.59(12)$
$O(5)-C(1)-C(9) \quad 113.31(12)$
$C(5)-C(1)-C(9) \quad 105.65(12)$
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{C}(9) \quad 106.52(12)$
$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(18) \quad 122.27(13)$
$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(9) \quad 115.02(13)$
$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{C}(9) \quad 121.95(12)$
$C(2)-O(5)-C(1) \quad 110.56(12)$
$O(5)-C(2)-C(3) \quad 105.25(12)$
$C(15)-O(4)-C(16) \quad 115.89(13)$
$C(4)-C(3)-C(2) \quad 126.95(15)$
$C(4)-C(3)-C(5) \quad 127.78(16)$
$C(2)-C(3)-C(5) \quad 105.23(13)$
$C(3)-C(5)-C(6) \quad 113.64(13)$
$C(3)-C(5)-C(1) \quad 103.77(12)$
$C(6)-C(5)-C(1) \quad 104.19(13)$
$C(8)-C(6)-C(7) \quad 128.35(16)$
$C(8)-C(6)-C(5) \quad 111.72(14)$

$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.89(15)$
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{C}(9)$	$113.41(14)$
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	$111.72(13)$
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$108.71(13)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$112.76(13)$
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(1)$	$100.72(12)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	$103.17(13)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(1)$	$119.13(13)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$116.32(14)$
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{N}(1)$	$126.12(14)$
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	$124.47(14)$
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	$109.34(13)$
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(14)$	$108.06(13)$
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(12)$	$110.78(13)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$109.89(13)$
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(1)$	$109.61(12)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(1)$	$115.03(13)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(1)$	$103.43(12)$
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{O}(4)$	$124.21(16)$
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(13)$	$123.92(16)$
$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{C}(13)$	$111.86(13)$
$\mathrm{O}(4)-\mathrm{C}(16)-\mathrm{C}(17)$	$108.28(16)$
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)$	$121.22(15)$
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{N}(1)$	$118.64(14)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{N}(1)$	$120.13(14)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$118.89(15)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$120.69(16)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$120.25(16)$
$\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{C}(21)$	$117.57(15)$
$\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{C}(23)$	$122.99(15)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$119.41(15)$
$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	$119.51(15)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(26)$	$110.8(2)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{Si}(1)$	$114.38(17)$
$\mathrm{C}(26)-\mathrm{C}(24)-\mathrm{Si}(1)$	$113.34(19)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(29)$	$111.0(2)$

$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{Si}(1)$	$113.11(19)$
$\mathrm{C}(29)-\mathrm{C}(27)-\mathrm{Si}(1)$	$112.57(19)$
$\mathrm{C}(32)-\mathrm{C}(30)-\mathrm{C}(31)$	$110.1(2)$
$\mathrm{C}(32)-\mathrm{C}(30)-\mathrm{Si}(1)$	$112.35(16)$
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{Si}(1)$	$113.11(15)$

D. Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$). The anisotropic

 displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$| | U^{11} | U^{22} | U^{33} | U^{23} | U^{13} | U^{12} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| $\mathrm{Si}(1)$ | $19(1)$ | $41(1)$ | $29(1)$ | $-5(1)$ | $8(1)$ | $-4(1)$ |
| $\mathrm{O}(1)$ | $14(1)$ | $49(1)$ | $24(1)$ | $-2(1)$ | $3(1)$ | $-4(1)$ |
| $\mathrm{C}(1)$ | $17(1)$ | $16(1)$ | $15(1)$ | $1(1)$ | $1(1)$ | $2(1)$ |
| $\mathrm{N}(1)$ | $14(1)$ | $18(1)$ | $18(1)$ | $-1(1)$ | $1(1)$ | $2(1)$ |
| $\mathrm{O}(5)$ | $18(1)$ | $20(1)$ | $17(1)$ | $3(1)$ | $3(1)$ | $4(1)$ |
| $\mathrm{O}(2)$ | $21(1)$ | $20(1)$ | $20(1)$ | $1(1)$ | $5(1)$ | $6(1)$ |
| $\mathrm{O}(3)$ | $30(1)$ | $36(1)$ | $20(1)$ | $-9(1)$ | $-4(1)$ | $7(1)$ |
| $\mathrm{C}(2)$ | $18(1)$ | $21(1)$ | $20(1)$ | $0(1)$ | $2(1)$ | $5(1)$ |
| $\mathrm{O}(4)$ | $28(1)$ | $27(1)$ | $15(1)$ | $0(1)$ | $6(1)$ | $0(1)$ |
| $\mathrm{C}(3)$ | $19(1)$ | $23(1)$ | $17(1)$ | $-1(1)$ | $2(1)$ | $4(1)$ |
| $\mathrm{C}(4)$ | $20(1)$ | $40(1)$ | $23(1)$ | $5(1)$ | $2(1)$ | $2(1)$ |
| $\mathrm{C}(5)$ | $16(1)$ | $18(1)$ | $18(1)$ | $1(1)$ | $3(1)$ | $2(1)$ |
| $\mathrm{C}(6)$ | $21(1)$ | $20(1)$ | $16(1)$ | $3(1)$ | $2(1)$ | $7(1)$ |
| $\mathrm{C}(7)$ | $25(1)$ | $39(1)$ | $19(1)$ | $0(1)$ | $5(1)$ | $8(1)$ |
| $\mathrm{C}(8)$ | $22(1)$ | $19(1)$ | $18(1)$ | $-2(1)$ | $1(1)$ | $4(1)$ |
| $\mathrm{C}(9)$ | $16(1)$ | $17(1)$ | $20(1)$ | $0(1)$ | $2(1)$ | $3(1)$ |
| $\mathrm{C}(10)$ | $22(1)$ | $19(1)$ | $23(1)$ | $-2(1)$ | $2(1)$ | $-2(1)$ |
| $\mathrm{C}(11)$ | $32(1)$ | $19(1)$ | $31(1)$ | $2(1)$ | $-1(1)$ | $-4(1)$ |
| $\mathrm{C}(12)$ | $17(1)$ | $18(1)$ | $15(1)$ | $2(1)$ | $6(1)$ | $-1(1)$ |
| $\mathrm{C}(13)$ | $16(1)$ | $17(1)$ | $19(1)$ | $-3(1)$ | $2(1)$ | $2(1)$ |
| $\mathrm{C}(14)$ | $20(1)$ | $19(1)$ | $36(1)$ | $-5(1)$ | $2(1)$ | $-1(1)$ |
| $\mathrm{C}(15)$ | $23(1)$ | $19(1)$ | $22(1)$ | $-3(1)$ | $1(1)$ | $8(1)$ |
| $\mathrm{C}(16)$ | $44(1)$ | $35(1)$ | $17(1)$ | $4(1)$ | $9(1)$ | $5(1)$ |
| $\mathrm{C}(17)$ | $55(2)$ | $125(3)$ | $32(1)$ | $18(1)$ | $15(1)$ | $-27(2)$ |
| $\mathrm{C}(18)$ | $16(1)$ | $16(1)$ | $19(1)$ | $-1(1)$ | $0(1)$ | $-1(1)$ |
| $\mathrm{C}(19)$ | $18(1)$ | $25(1)$ | $22(1)$ | $2(1)$ | $6(1)$ | $-1(1)$ |
| $\mathrm{C}(20)$ | $25(1)$ | $34(1)$ | $16(1)$ | $1(1)$ | $3(1)$ | $-3(1)$ |
| $\mathrm{C}(21)$ | $20(1)$ | $30(1)$ | $19(1)$ | $0(1)$ | $-2(1)$ | $-2(1)$ |
| $\mathrm{C}(22)$ | $15(1)$ | $27(1)$ | $24(1)$ | $0(1)$ | $4(1)$ | $0(1)$ |
| $\mathrm{C}(23)$ | $19(1)$ | $28(1)$ | $17(1)$ | $-1(1)$ | $4(1)$ | $1(1)$ |
| $\mathrm{C}(24)$ | $34(1)$ | $84(2)$ | $32(1)$ | $14(1)$ | $4(1)$ | $-17(1)$ |
| | | | | | | |

$\mathrm{C}(25)$	$53(2)$	$56(2)$	$91(2)$	$38(2)$	$-1(2)$	$-4(1)$
$\mathrm{C}(26)$	$62(2)$	$167(4)$	$42(2)$	$30(2)$	$12(1)$	$-36(2)$
$\mathrm{C}(27)$	$28(1)$	$55(1)$	$79(2)$	$-28(1)$	$12(1)$	$-2(1)$
$\mathrm{C}(28)$	$72(2)$	$38(1)$	$149(3)$	$1(2)$	$32(2)$	$7(1)$
$\mathrm{C}(29)$	$44(2)$	$100(2)$	$124(3)$	$-73(2)$	$22(2)$	$0(2)$
$\mathrm{C}(30)$	$21(1)$	$59(1)$	$41(1)$	$-7(1)$	$13(1)$	$-6(1)$
$\mathrm{C}(31)$	$35(1)$	$63(2)$	$65(2)$	$-1(1)$	$2(1)$	$-21(1)$
$\mathrm{C}(32)$	$23(1)$	$74(2)$	$74(2)$	$3(1)$	$-7(1)$	$0(1)$

E. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(2A)	2301	5334	3610	23
H(2B)	2417	6297	4586	23
H(4A)	2757	7471	3749	33
H(4B)	2668	8584	2785	33
H(5A)	2189	9070	2331	21
H(7A)	2194	6222	245	42
H(7B)	2420	6411	1152	42
H(7C)	2304	7823	535	42
H(8A)	1794	5908	944	24
H(10A)	1544	6048	3383	26
$\mathrm{H}(10 \mathrm{~B})$	1465	5450	2252	26
H(11A)	1646	3517	3318	42
H(11B)	1890	4453	3621	42
H(11C)	1810	3855	2487	42
H(14A)	1930	11436	3855	38
H(14B)	2043	10843	2918	38
H(14C)	2167	10427	4054	38
H(16A)	1535	8594	6030	38
H(16B)	1644	6975	5937	38
H(17A)	1232	6813	6062	105
H(17B)	1270	6207	4981	105
H(17C)	1161	7820	5072	105
H(19A)	1551	8373	88	25
H(20A)	1206	8165	-1213	30
H(21A)	821	7775	-807	28
H(23A)	1117	7947	2225	26
H(24A)	885	7228	3404	60
H(25A)	929	4637	3356	103
H(25B)	958	5369	2299	103
H(25C)	712	4551	2402	103
H(26A)	687	5768	4489	135

H(26B)	441	5837	3670	135
H(26C)	552	7308	4229	135
H(27A)	753	9973	2827	64
H(28A)	615	11907	1662	127
H(28B)	458	10746	921	127
H(28C)	747	10642	1134	127
H(29A)	412	11389	3115	133
H(29B)	405	9764	3569	133
H(29C)	233	10182	2520	133
H(30A)	155	7374	2092	47
H(31A)	55	5197	1108	83
H(31B)	291	4931	1955	83
H(31C)	317	5200	800	83
H(32A)	-48	7650	383	88
H(32B)	206	7865	25	88
H(32C)	115	9064	744	88

X-Ray Crystallography Report for Allylic Alcohol 367

A. Crystal data and structure refinement.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=28.55^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [l>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
wood26
C21 H25 N O6
387.42

120(2) K
0.71073 Å

Monoclinic
P 21/c
$a=8.9089(9) \AA \quad \alpha=90^{\circ}$.
$b=25.655(3) \AA \quad \beta=114.678(5)^{\circ}$.
c $=9.3854(9) \AA \quad Y=90^{\circ}$.
1949.2(3) \AA^{3}

4
$1.320 \mathrm{Mg} / \mathrm{m}^{3}$
$0.097 \mathrm{~mm}^{-1}$
824
$0.23 \times 0.15 \times 0.11 \mathrm{~mm}^{3}$
1.59 to 28.55°.
$-11<=h<=11,-34<=k<=34,-11<=1<=12$
40478
$4899[\mathrm{R}(\mathrm{int})=0.0375]$
98.7 \%

Semi-empirical from equivalents
0.9895 and 0.9776

Full-matrix least-squares on F^{2}
4899 / 0 / 259
1.074
$R 1=0.0393, w R 2=0.1014$
$R 1=0.0510, w R 2=0.1146$
0.366 and -0.262 e. \AA^{-3}
B. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \mathrm{x}$ 10^{3}). $U(e q)$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
$\mathrm{O}(1)$	1855(1)	-566(1)	10109(1)	22(1)
$\mathrm{O}(2)$	-3549(1)	306(1)	3717(1)	23(1)
$\mathrm{O}(3)$	545(1)	2371(1)	6575(1)	18(1)
$\mathrm{O}(4)$	3022(1)	767(1)	6421(1)	16(1)
O(5)	4478(1)	1807(1)	8281(1)	19(1)
O(6)	4288(1)	2198(1)	6068(1)	27(1)
N(1)	819(1)	1015(1)	6938(1)	12(1)
C(1)	922(1)	-249(1)	8896(1)	15(1)
C(2)	-670(2)	-427(1)	7969(1)	17(1)
C(3)	-1707(2)	-146(1)	6667(1)	16(1)
C(4)	-1185(1)	321(1)	6266(1)	14(1)
C(5)	361(1)	510(1)	7270(1)	13(1)
C(6)	1439(1)	229(1)	8569(1)	14(1)
C(7)	3543(2)	-425(1)	11000(2)	28(1)
C(8)	-2176(2)	603(1)	4727(1)	16(1)
C(9)	-2821(1)	1134(1)	4953(1)	15(1)
C(10)	-4625(2)	1240(1)	3960(2)	24(1)
$\mathrm{C}(11)$	-1884(1)	1498(1)	5939(1)	15(1)
C(12)	-74(1)	1484(1)	7059(1)	13(1)
C(13)	113(2)	1578(1)	8749(1)	16(1)
C(14)	1889(2)	1609(1)	9988(1)	20(1)
C(15)	819(1)	1912(1)	6569(1)	13(1)
C(16)	2036(1)	1664(1)	6011(1)	13(1)
C(17)	2073(1)	1097(1)	6500(1)	12(1)
C(18)	1315(2)	1698(1)	4212(1)	19(1)
C(19)	3730(1)	1923(1)	6758(1)	16(1)
C(20)	6089(2)	2051(1)	9144(2)	27(1)
C(21)	6797(2)	1844(1)	10783(2)	33(1)

C. Bond lengths $[\AA]$ and angles $\left[^{\circ}\right]$.

$\mathrm{O}(1)-\mathrm{C}(1)$	$1.3635(14)$
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.4288(16)$
$\mathrm{O}(2)-\mathrm{C}(8)$	$1.4162(14)$
$\mathrm{O}(3)-\mathrm{C}(15)$	$1.2035(15)$
$\mathrm{O}(4)-\mathrm{C}(17)$	$1.2196(14)$
$\mathrm{O}(5)-\mathrm{C}(19)$	$1.3337(15)$
$\mathrm{O}(5)-\mathrm{C}(20)$	$1.4616(14)$
$\mathrm{O}(6)-\mathrm{C}(19)$	$1.1987(15)$
$\mathrm{N}(1)-\mathrm{C}(17)$	$1.3576(15)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.4312(15)$
$\mathrm{N}(1)-\mathrm{C}(12)$	$1.4738(15)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.3888(17)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.3949(17)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.3872(17)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.3933(17)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.3909(15)$
$\mathrm{C}(4)-\mathrm{C}(8)$	$1.5239(16)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.3956(16)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.5288(17)$
$\mathrm{C}(9)-\mathrm{C}(11)$	$1.3336(17)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.5080(16)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.5135(16)$
$\mathrm{C}(12)-\mathrm{C}(15)$	$1.5344(16)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.5430(17)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.5250(17)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.5256(17)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.5213(16)$
$\mathrm{C}(16)-\mathrm{C}(19)$	$1.5259(16)$
$\mathrm{C}(16)-\mathrm{C}(18)$	$1.5379(16)$
$\mathrm{C}(20)-\mathrm{C}(21)$	
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(7)$	
$\mathrm{C}(19)-\mathrm{O}(5)-\mathrm{C}(20)$	$106(2)$
$\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{C}(5)$	$10)$

$\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{C}(12)$	$115.81(9)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(12)$	$120.72(9)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$124.61(11)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$115.58(11)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$119.79(11)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$120.58(11)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120.66(11)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$117.65(10)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)$	$119.69(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	$122.47(10)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$122.58(11)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	$117.30(10)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(1)$	$120.12(10)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.48(10)$
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(4)$	$112.14(10)$
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$107.60(9)$
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(9)$	$113.21(10)$
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.01(11)$
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(8)$	$123.89(10)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$116.09(10)$
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	$129.92(11)$
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	$114.78(9)$
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(15)$	$101.34(9)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)$	$108.08(9)$
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	$112.10(9)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$109.68(10)$
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{C}(13)$	$110.49(9)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$115.10(10)$
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(16)$	$125.78(11)$
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(12)$	$124.49(11)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(12)$	$109.67(9)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$102.93(9)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(19)$	$112.67(9)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(19)$	$111.65(9)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(18)$	$109.40(9)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(18)$	$108.78(9)$

$\mathrm{C}(19)-\mathrm{C}(16)-\mathrm{C}(18)$	$111.06(10)$
$\mathrm{O}(4)-\mathrm{C}(17)-\mathrm{N}(1)$	$126.15(11)$
$\mathrm{O}(4)-\mathrm{C}(17)-\mathrm{C}(16)$	$124.88(10)$
$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{C}(16)$	$108.84(10)$
$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{O}(5)$	$125.19(11)$
$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{C}(16)$	$124.23(11)$
$\mathrm{O}(5)-\mathrm{C}(19)-\mathrm{C}(16)$	$110.57(10)$
$\mathrm{O}(5)-\mathrm{C}(20)-\mathrm{C}(21)$	$108.22(12)$

D. Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$). The anisotropic

displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U
$\mathrm{O}(1)$	$20(1)$	$15(1)$	$22(1)$	$7(1)$	$2(1)$	$0(1)$
$\mathrm{O}(2)$	$20(1)$	$14(1)$	$23(1)$	$-4(1)$	$-2(1)$	$0(1)$
$\mathrm{O}(3)$	$22(1)$	$9(1)$	$26(1)$	$0(1)$	$12(1)$	$1(1)$
$\mathrm{O}(4)$	$15(1)$	$12(1)$	$22(1)$	$0(1)$	$8(1)$	$2(1)$
$\mathrm{O}(5)$	$13(1)$	$22(1)$	$20(1)$	$-3(1)$	$5(1)$	$-5(1)$
$\mathrm{O}(6)$	$27(1)$	$25(1)$	$33(1)$	$3(1)$	$16(1)$	$-9(1)$
$\mathrm{N}(1)$	$13(1)$	$8(1)$	$17(1)$	$1(1)$	$7(1)$	$0(1)$
$\mathrm{C}(1)$	$19(1)$	$12(1)$	$15(1)$	$1(1)$	$7(1)$	$2(1)$
$\mathrm{C}(2)$	$22(1)$	$12(1)$	$18(1)$	$0(1)$	$9(1)$	$-4(1)$
$\mathrm{C}(3)$	$17(1)$	$13(1)$	$17(1)$	$-2(1)$	$5(1)$	$-4(1)$
$\mathrm{C}(4)$	$15(1)$	$11(1)$	$15(1)$	$-1(1)$	$5(1)$	$0(1)$
$\mathrm{C}(5)$	$15(1)$	$9(1)$	$17(1)$	$0(1)$	$8(1)$	$0(1)$
$\mathrm{C}(6)$	$13(1)$	$12(1)$	$16(1)$	$-1(1)$	$5(1)$	$0(1)$
$\mathrm{C}(7)$	$18(1)$	$25(1)$	$31(1)$	$8(1)$	$1(1)$	$2(1)$
$\mathrm{C}(8)$	$16(1)$	$13(1)$	$16(1)$	$-1(1)$	$3(1)$	$0(1)$
$\mathrm{C}(9)$	$15(1)$	$14(1)$	$18(1)$	$2(1)$	$7(1)$	$0(1)$
$\mathrm{C}(10)$	$14(1)$	$19(1)$	$32(1)$	$-2(1)$	$3(1)$	$1(1)$
$\mathrm{C}(11)$	$12(1)$	$13(1)$	$20(1)$	$1(1)$	$7(1)$	$2(1)$
$\mathrm{C}(12)$	$14(1)$	$8(1)$	$17(1)$	$-1(1)$	$6(1)$	$0(1)$
$\mathrm{C}(13)$	$18(1)$	$14(1)$	$20(1)$	$-1(1)$	$10(1)$	$-1(1)$
$\mathrm{C}(14)$	$22(1)$	$19(1)$	$17(1)$	$-2(1)$	$7(1)$	$0(1)$
$\mathrm{C}(15)$	$13(1)$	$12(1)$	$13(1)$	$0(1)$	$4(1)$	$-1(1)$
$\mathrm{C}(16)$	$14(1)$	$10(1)$	$14(1)$	$0(1)$	$6(1)$	$-1(1)$
$\mathrm{C}(17)$	$11(1)$	$11(1)$	$10(1)$	$-1(1)$	$2(1)$	$-2(1)$
$\mathrm{C}(18)$	$22(1)$	$19(1)$	$15(1)$	$3(1)$	$8(1)$	$1(1)$
$\mathrm{C}(19)$	$15(1)$	$11(1)$	$22(1)$	$-2(1)$	$9(1)$	$0(1)$
$\mathrm{C}(20)$	$14(1)$	$32(1)$	$31(1)$	$-9(1)$	$6(1)$	$-8(1)$
$\mathrm{C}(21)$	$22(1)$	$30(1)$	$33(1)$	$-7(1)$	$-2(1)$	$2(1)$

E. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{\mathbf{3}}$).

	x	y	z	U(eq)
H(2)	-3231	8	3600	34
H(2A)	-1046	-744	8232	20
H(3)	-2785	-273	6042	19
H(6)	2503	362	9214	17
H(7A)	4111	-405	10304	41
H(7B)	4080	-688	11810	41
H(7C)	3597	-85	11497	41
H(8)	-1433	660	4185	20
H(10A)	-4885	1600	4121	36
H(10B)	-5300	1001	4261	36
H(10C)	-4862	1188	2852	36
H(11)	-2438	1815	5937	18
H(13A)	-457	1907	8770	19
H(13B)	-456	1292	9036	19
H(14A)	2458	1280	10007	29
H(14B)	1889	1670	11018	29
H(14C)	2461	1896	9734	29
H(18A)	2050	1517	3836	28
H(18B)	1213	2064	3893	28
H(18C)	223	1533	3762	28
H(20A)	5965	2435	9155	32
H(20B)	6834	1970	8633	32
$\mathrm{H}(21 \mathrm{~A})$	6045	1923	11274	50
H(21B)	7870	2008	11387	50
$\mathrm{H}(21 \mathrm{C})$	6941	1466	10762	50

List of Abbreviations

[O]	oxidation
${ }^{\circ} \mathrm{C}$	degrees Celsius
A	angstrom
Ac	acetyl
acac	acetylacetone
ACS	American Chemical Society
AHBA	3-amino-5-hydroxybenzoic acid
AIBN	azoisobutyronitrile
aq.	aqueous
atm	atmosphere
$\mathrm{B}_{2} \mathrm{Pin}_{2}$	bis(pinacolato)diboron
Bn	benzyl
Boc	tert-butoxycarbonyl
BOM	benzyl methyl ether
BPin	pinacolborane
Bz	benzoyl
CHDA	cyclohexyldiamine
cm^{-1}	inverse centimeters
cod	1,5-cyclooctadiene
COSY	correlation spectroscopy
Cy	cyclohexyl
d	doublet
d.r.	diastereomeric ratio
dba	dibenzylidene acetone
DBU	1,8-diazabicyclo[5.4.0]-undec-7-ene
DCC	dicyclohexylcarbodiimide
DCE	dichloroethane
DCM	dichloromethane
dd	doublet of doublets
ddd	doublet of doublet of doublets
DDQ	2,3-dichloro-5,6-dicyano benzoquinone
ddt	doublet of doublet of triplets
DEPT	distortionless enhancement by polarization transfer
DIBAL-H	diisobutylaluminum hydride
DIPHOS (dppe)	1,2-bis(diphenylphosphino)ethane
DKP	diketopiperazine
DMAP	N, N-dimethylamino pyridine
DMEDA	N, N-dimethylethylenediamine
DMF	N, N-dimethylformamide
DMS	dimethyl sulfide
DMSO	dimethyl sulfoxide
dt	doublet of triplets
dtbpy	4,4-di-tert-butyl bipyridine
DTT	dithiothreitol
E_{0}	reduction potential at $25^{\circ} \mathrm{C}$
EDCI	N-Ethyl- $N^{\prime \prime}$-(3-dimethylaminopropyl)carbodiimide hydrochloride

ESeP	epidiselenodiketopiperazine
ESI-APCI	electrospray ionization-atmospheric pressure chemical ionization
Et	ethyl
EtOH	ethanol
ETP	epidithiodiketopiperazine
FTIR	Fourier transform infrared spectroscopy
g	gram
HMBC	heteronuclear multiple bond correlation
HMPA	hexamethylphosphoramide
HMQC	heteronuclear multiple quantum correlation
HPLC	high performance liquid chromatography
HRMS	high-resolution mass spectroscopy
Hz	hertz
hv	light
$i-\operatorname{Pr}$	isopropyl
IBX	2-iodoxybenzoic acid
IC_{50}	half maximum inhibitory concentration
IMes•HCl	1,3-dimesitylimidazolium chloride
imid.	imidazole
INADEQUATE	incredible natural abundance double quantum transfer experiment
J	coupling constant
kg	kilogram
KHMDS	potassium hexamethyldisilazide
L	liter
LA	Lewis acid
LDA	lithium diisopropylaminde
LHMDS	lithium hexamethyldisilazide
LTMP	lithium 2,2,6,6-tetramethylpiperidide
M	molar
m	multiplet
$m-C P B A$	meta-chloroperoxybenzoic acid
m / z	mass to charge ratio
Me	methyl
MeOH	methanol
mg	milligram
MHz	megahertz
MIC	minimum inhibitory concentration
mL	milliliter
mmol	millimole
mol	mole
MOM	methoxy methyl
Ms	mesyl
MTB	Mycobacterium tuberculosis
mV	millivolts
N	normal
$n-\mathrm{Bu}$ (Bu)	normal butyl
NaHMDS	sodium hexamethyldisilazide
NBS	N -bromosuccinimide
NCS	N -chlorosuccinimide
NHK	Nozaki-Hiyama-Kishi
nm	nanometer

nM	nanomolar
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
NOESY	nuclear Overhauser effect spectroscopy
NuH	nucleophile
OTFA	trifluoroacetate
Pg	protecting group
Ph	phenyl
PhH	benzene
PIDA	bisacetoxyiodo benzene
PIFA	[bis(trifluoroacetoxy)iodo]benzene
Piv	pivaloyl
PMB	para-methoxybenzyl
PMP	para-methoxyphenyl
PPA	polyphosphoric acid
pTSA	para-toluenesulfonic acid
pyr.	pyridine
q	quartet
R	generic carbon group or hydrogen
RCM	ring-closing metathesis
Rf	retention factor
ROS	reactive oxygen species
s	singlet
sat.	saturated
SBL	soybean lipoxygenase
SEM	methyl 2-trimethylsilylethyl ether
t	triplet
t-Bu	tert-butyl
TASF	tris(dimethylamino)sulfonium difluorotrimethylsilicate
TB	tuberculosis
TBAF	tetrabutylammonium fluoride
TBAI	tetrabutylammonium iodide
TBAT	tetrabutylammonium difluorotriphenylsilicate
TBDPS	tert-butyldiphenyl silyl
TBHP	tert-butyl hydrogenperoxide
TBS	tert-butyldimethyl silyl
Tf	triflate
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	triisopropyl silyl
TMS	trimethyl silyl
Ts	tosyl
tt	ultraviet of triplets
UV	microgram
X	mg

