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ABSTRACT 
 
 
 

DEVELOPMENT OF A DECISION THRESHOLD FOR RADIOLOGICAL SOURCE 

DETECTION UTILIZING BAYESIAN STATISTICAL TECHNIQUES APPLIED TO GROSS 

COUNT MEASUREMENTS 

  
 

Numerous studies have been published using Bayesian statistics in source localization 

and identification, characterization of radioactive samples, and uncertainty analysis; but there is a 

limited amount of material specific to the development of a decision threshold for simple gross 

count measurements using Bayesian statistics.  Radiation detection in low fidelity systems is 

customarily accomplished through the measurement of gross counts.  Difficulties arise when 

applying decision techniques to low count rate data, which are restricted by the fact that 

decisions are being made on individual gross count measurements alone.  The investigation 

presented demonstrates a method to develop a viable Bayesian model to detect radiological 

sources using gross count measurements in low fidelity systems.  An integral component of the 

research is the process required to validate a Bayesian model both statistically and operationally 

in Health Physics.  The results describe the necessary model development, validation steps, and 

application to the detection of radiological sources at low signal-to-background ratios by testing 

the model against laboratory data.  The approach may serve as a guideline for a series of 

requirements to integrate Bayesian modeling (specifically, an interaction model) with radiation 

detection using gross counts in low fidelity systems.   
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EXECUTIVE SUMMARY 
 
 
 

The objective of the work presented is to develop a Bayesian equivalent to the frequentist 

decision threshold for gross count measurements in radiation detection for low fidelity detector 

systems.  This is accomplished by creating a decision parameter 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 derived from a Bayesian 

linear interaction model.  The developed model and decision parameter are then tested against 

operationally relevant scenarios.  

Low fidelity detector systems typically require short acquisition times coupled with high 

sample throughput volume.  The most challenging scenario for these systems is one in which the 

signal-to-background ratio is low; or more specifically when the frequency distribution of the 

gross count measurements when a source is present is similar to the gross count background 

distribution.  The frequentist decision threshold will always be limited by making decisions on a 

single measurement.  The Bayesian linear regression model provides a posterior distribution for 

the relationship between the observed gross count measurement and the standard deviation of 

that measurement and the previous four measurements (termed 𝑆𝑆𝑆𝑆5).  This relationship can be 

conditionally modeled upon whether or not the measurement data are categorized as a series of 

background measurements or a series of measurements in which a source is present.  Bayesian 

regression modeling in which the variables possess a conditional association between the 

outcome and predictor variables is achieved through the use of an interaction model.  The 

interaction term, 𝛾𝛾, then provides a numerical value for the relationship between the observed 

gross count measurement and the standard deviation of that measurement and the previous four 

measurements. 
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An integral component of the results presented is the process required to validate a 

Bayesian model both statistically and operationally in Health Physics.  The results and discussion 

sections demonstrate the method to develop a viable interaction model to detect radiological 

sources using gross counts with the parameter 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 with these principles in mind.  The general 

structure of the procedure is: 

• Interaction model validation 

• Data exploration using Bayesian data analysis 

• Production of an equivalent to the frequentist decision threshold using 𝛾𝛾 

• Application of the decision parameter to operational conditions and comparison to the 

frequentist decision threshold 

• Testing and expansion of the model using established Bayesian statistical methods and 

tests 

• Application of the results to operational considerations in Health Physics 

Validation of the interaction model is achieved by comparing a multivariate regression model 

with and without interaction to study if the relationship between 𝑆𝑆𝑆𝑆5 and gross counts in a 

measurement depends upon whether or not a source is present.  The interaction model is also 

verified through the fact that these types of models are symmetrical and finding that the 

relationship between whether or not a source is present and gross counts in a measurement is 

dependent upon 𝑆𝑆𝑆𝑆5.  Bayesian statistical analyses are used to understand the parameters 

surrounding the original relationship that 𝑆𝑆𝑆𝑆5 and gross counts in a measurement depends upon 

whether or not a source is present.  This relationship is described statistically by the parameter 𝛾𝛾; 

and the perspective, 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, answers the question “what is the probability that the relationship 

between 𝑆𝑆𝑆𝑆5 and gross count measurements from background is less than the relationship 
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between 𝑆𝑆𝑆𝑆5 and gross count measurements from a sample?”  This question serves as the 

framework for a decision rule, Pr∗ < 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖, which is used in detection scenarios and applied to 

varying forms of the interaction model.  The interaction model is compared to a frequentist 

decision threshold to determine its detection efficiency.  The model performs comparably to the 

5s frequentist decision threshold for weak sources at lower false positive rates.   

Various forms of the model are developed based on information criterion and tested in 

the same manner.  Widely acceptable information criterion (WAIC) testing did not provide a 

conclusive model for the best predictive efficiency.  Model variations in parameter estimates, 

flipping the categorical predictor, and changing the nature of the relationship from a linear to a 

power function display similar detection efficiencies.  Any further model validation using 

multilevel models is unnecessary due to the computation time required for the Markov Chain 

Monte Carlo (MCMC) calculations used to approximate the posterior distributions.  These 

results all suggest that the original linear model is sufficient at this time, and that more rigorous 

modeling techniques are required for any possible improvement in detection efficiency.   

The interaction model operates by examining a set of previously recorded background 

gross count measurements, the training data Bkgd1, and resulting 𝑆𝑆𝑆𝑆5 with a set of unknown 

sample gross count measurements and resulting 𝑆𝑆𝑆𝑆5.  These two sets of data make up the arrays 

for 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 and 𝑆𝑆𝑆𝑆5𝑖𝑖.  Included in the data array is 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖, such that each index is 

correctly categorized as a known background measurement or an unknown sample measurement.  

This setup allows the model to work in a way that is intuitive to the operational measurement 

technique: known background data and resulting estimates are used to create a relationship that is 

expected to be consistent across all measurements with no source present, and this relationship is 

compared to the samples in question to judge if a source is present.  The set up for this system 
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requires simultaneous acquisition and analysis of measurements from background and the 

sample measurements in question.  Data collected and believed to be background serves as the 

training dataset.  This component of the detection system is advantageous in that an established 

training dataset is not necessary and long run background measurements are not required to 

establish parameter estimates, unlike the frequentist decision threshold.  The interaction model is 

extremely sensitive to statistical differences in training dataset distributions.  This result is 

extremely important to consider given that all of the tests use data where the source is stationary 

and continuously within the field of view of the detector.  In a scenario where the source is not 

stationary, the gross count measurement per time interval is roughly a function of distance from 

the active region of the detector.  The interaction model would be sensitive to the changes 

occurring per unit time interval, especially one in which the source is passing by the detector.  A 

feature such as this in a string of measurements may not be detectable in the 5 s equivalent of the 

frequentist decision threshold.  A final consideration for the interaction model is that 𝛾𝛾, and 

consequently this categorical linear interaction model, is universal.  Even though the scope of the 

paper studies the relationship between 𝑆𝑆𝑆𝑆5 and gross counts in a measurement, in theory any 

predictor can be used in place of 𝑆𝑆𝑆𝑆5.    
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INTRODUCTION 
 
 
 

Radiation detection in low fidelity systems is customarily accomplished through the 

measurement of gross counts.  These systems are typically the primary mechanism used in 

scenarios where interrogation time is short, sample volume and throughput are high, and source 

localization is deemed unnecessary, such as at border crossings or access points to radiation or 

sensitive areas through a radiation portal monitor.  If an alarm is triggered, more rigorous 

methods of detection and identification are initiated.  The function and effectiveness of such a 

system of passive interrogation are heavily dependent upon the initial alarm.  However, in low 

signal to background situations, an alarm may not trigger and a source can pass through 

undetected.  Ideally, with limitless resources to install additional monitors and extend the time 

per interrogation for all samples, detection systems could be compensating to account for this 

drawback.  In reality, the only cost effective solution is to improve the statistical analysis utilized 

by the detection system.        

Statistical analysis of a radiation measurement traditionally relies upon the use of the 

frequentist (classical) statistical test.  The general objective of a statistical test is to investigate a 

hypothesis concerning the values of one or more population parameters.  The experimenter will 

have a theory, or research hypothesis, concerning the parameter(s) of interest.  Classically, the 

support for the research hypothesis is referred to as the alternative hypothesis.  This support is 

obtained, using sample data as evidence, by showing that the converse of the alternative 

hypothesis, the null hypothesis, is false.  The test ultimately relies on a proof by contradiction, in 

which support for one theory is achieved through lack of support for its opposing theory.  The 

working parts of the statistical test are the test statistic, a function of the sample measurements 
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on which the statistical decision will be based, and the rejection region (Wackerly, et al., 2008).  

The rejection region specifies the values of the test statistic for which the null hypothesis, 𝐻𝐻0, is 

to be rejected in favor of the alternative hypothesis, 𝐻𝐻𝑎𝑎. 

In the case of radiation measurements, a statistical analysis is carried out on the 

assumption that the calculated background distribution derived from a “paired blank” count 

(Currie 1968; ANSI 2011) or a series of measurements is accurately representative of the true 

background distribution.  In statistical theory (Wackerly et al. 2008), the assumption is that the 

true population parameter 𝜃𝜃, the true mean of the background count distribution, is correctly 

described by the calculated parameter, 𝜃𝜃0, the calculated mean of the background count 

distribution.  The goal of the analysis is to then test a sample (an individual measurement, a 

series of measurements, or an average of those measurements), 𝜃𝜃�, against the accepted parameter 

𝜃𝜃0. 

Use of the frequentist statistical test for radiation detection and measurement arises from 

the necessity to separate signal from background.  A level or limit must then be chosen such that, 

if a sample of measurements were to contain a number of counts in a time interval greater than 

the established level or limit, the sample is deemed radioactive.  Conversely, if the measurements 

are below these values, the sample is considered background.  Given the elements of the 

statistical test listed previously, 𝐻𝐻0 is if the sample measurements are from a background 

distribution (are not radioactive), and 𝐻𝐻𝑎𝑎 is if the sample measurements are radioactive (these are 

generalizations of the hypotheses).  The test statistic is commonly a function of sample 

measurements, and the rejection region is the gross count(s), count rate, or net count(s) values of 

the sample above that level or limit.  ISO 11929 defines these values as characteristic limits 

(International Organization for Standardization, 2010): the decision threshold, the detection 
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limit, and the limits of the confidence interval.  The decision threshold, 𝑦𝑦∗, is considered an 

investigatory level and does not provide any information regarding detection capabilities; the 

detection decision is purely based on this value.  The decision threshold is derived by fixing the 

probability of type I error (false positive), 𝛼𝛼, on the calculated background distribution.  

Inherently, this determines the rejection region.  Multiple terms exist in the field of Health 

Physics for the decision threshold, and examples of these can be seen in the table below. 

Table 1-1.  Different Terms Associated with the Decision Threshold 
 

Name Term Defined in 
Decision level 𝐷𝐷𝐷𝐷 (ANSI N13.30 Rev.1, 2011) 
Critical level 𝐿𝐿𝑐𝑐 (Currie, 1968) 
Critical value 𝐿𝐿𝑐𝑐 (IUPAC, 1995) 
Decision threshold 𝑦𝑦∗ (International Organization for 

Standardization, 2010) 
Minimum significant measured 
activity 

None (Turner, 2007) 

Critical value of the response 
variable 

𝑦𝑦𝑐𝑐 (MARLAP, 2004) 

 
Historically, the decision level (𝐷𝐷𝐷𝐷) is considered the lowest possible useable “action level” 

when determining whether or not there is activity present above background.  The user typically 

compares measurements to the 𝐷𝐷𝐷𝐷 after the measurement is made (a posteriori).  One formula 

for 𝐷𝐷𝐷𝐷 is 

𝐷𝐷𝐷𝐷(𝑁𝑁𝑏𝑏|𝛼𝛼) = 𝑘𝑘𝛼𝛼�2𝑁𝑁𝑏𝑏 (1) 
 
where 𝑘𝑘𝛼𝛼 is found from the cumulative Normal distribution 
 

1 − 𝛼𝛼 =
1

√2𝜋𝜋
� e−𝑦𝑦2 2⁄
𝑘𝑘𝛼𝛼

−∞
d𝑦𝑦 (2) 

 
and 𝑁𝑁𝑏𝑏 is the observed number of background counts (Strom & MacLellan, 2001).  2𝑁𝑁𝑏𝑏 is 

assumed to be a good estimate of the variance of the net number of counts.  𝛼𝛼 is the accepted 

type I error and is typically fixed at a value of 0.05 (International Organization for 
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Standardization, 2010).  The standardization of the detection limit concept was aided by Lloyd 

Currie (Currie, 1968), who helped develop a consistent statistical approach to the determination 

of limits for qualitative detection and quantitative determination.  He coined his decision level 

the critical level (𝐿𝐿𝑐𝑐), which is defined as the “net signal (counts) or result that must be exceeded 

before there is a specific degree of confidence that the sample contains radioactive material 

(above background or of the blank)” (Rucker, 2001).  The critical level was defined such that 

𝐿𝐿𝑐𝑐 = 𝑘𝑘𝛼𝛼𝜎𝜎0 (3) 
 
where 𝑘𝑘𝛼𝛼 is the abscissa of the standard normal distribution for the blank or background 

distribution at the chosen probability, and 𝜎𝜎0 is the standard deviation of the net measurement 

result at zero when the sample contains zero radioactivity. 

 The decision threshold, 𝑦𝑦∗, is defined in a similar manner to Equations 1 and 2.  The 

decision threshold is derived by fixing the probability of a type I error, 𝛼𝛼, on the calculated 

background distribution and is found in terms of the primary measurement result, 𝑦𝑦, and the 

associated standard uncertainty, 𝑢𝑢(𝑦𝑦), as: 

𝑦𝑦∗ = 𝑦𝑦 + 𝑘𝑘𝛼𝛼𝑢𝑢(𝑦𝑦), (4) 
 
It is common practice to use net counts for the parameter values in the frequentist hypothesis 

test; however, the test also can be applied to only background counts in a simplified test.  If the 

background count distribution is well known, the primary measurement result 𝑦𝑦 from Equation 4 

becomes the mean of the measured background count distribution, and the uncertainty associated 

with this result is estimated by the standard deviation of the background count distribution.  

Since their first inception in the field, the characteristic limits have been elaborated on 

numerous times in order to develop practical applications.  Unfortunately, this has led to 

confusing nomenclature and an overlap between detection decisions being made using a 
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threshold based on type I error and minimum detectable concentrations (MDC) using type II 

error (false negative).  The concept of MDCs was established before Currie’s 1968 paper 

(Altschuler & Pasternack, 1963), but it was Currie’s work that helped standardize the definition.  

Currie characterized the detection limit, 𝐿𝐿𝑑𝑑, as “the smallest quantity of radioactive material that 

can be detected (distinguished from background) with some specified degree of confidence.”  A 

considerable difference between 𝐿𝐿𝑑𝑑 and 𝐿𝐿𝑐𝑐 is that 𝐿𝐿𝑐𝑐 is determined a priori, before the 

measurement is made.  The calculation for 𝐿𝐿𝑑𝑑 is 

𝐿𝐿𝑑𝑑 = 𝑘𝑘𝛼𝛼𝜎𝜎0 + 𝑘𝑘𝛽𝛽𝜎𝜎𝑑𝑑 (5) 

where 𝑘𝑘𝛼𝛼𝜎𝜎0 = 𝐿𝐿𝑐𝑐, 𝑘𝑘𝛽𝛽 is the abscissa of the standard normal distribution for the MDC 

distribution, and 𝜎𝜎𝑑𝑑 is the standard deviation of the net measurement result when the sample 

contains radioactivity at the level of the 𝐿𝐿𝑑𝑑.  The detection limit is commonly used to compare 

different methods’ measurement capabilities and ability to show compliance with regulatory 

limits.  The detection limit is also referred to as the MDC (MARLAP, 2004), detection limit (𝑦𝑦#) 

(International Organization for Standardization, 2010), minimum detectable true activity (Turner, 

2007), minimum detectable amount (MDA) (ANSI N13.30 Rev.1, 2011) and lower limit of 

detection (LLD) (NUREG-4007, 1984).  A generalized equation for the LLD is 

LLD = (4.66 × 𝜎𝜎𝑑𝑑) + 3 (6) 

in which both type I and type II errors are fixed at 5% and the sample and background counting 

times are equal (Cember & Johnson, 2009).  The second term in this equation, +3, takes into 

account the probability of observing 0 counts at a probability of 5%.  LLD can be extended to 

taking into account the counting efficiency of a system.  This is known as the minimum 

detectable activity (MDA) (Cember & Johnson, 2009), and can be calculated in the following 

manner: 
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MDA =
(4.66 × 𝜎𝜎𝑑𝑑) + 3

𝐾𝐾 × 𝑡𝑡
 (7) 

where 𝐾𝐾 is the factor that includes counter efficiency, the conversion factor for changing 

transformation rate into Bq if SI units are used, or into Ci if the traditional system of units is 

used, and chemical yield if chemical extraction is involved in preparation of the sample; and 𝑡𝑡 is 

the sample counting time and background counting time. 

Inappropriate applications of the two types of error to detection decisions can also be 

attributed to a misunderstanding of to which probability distribution to apply the error.  The 

probability of a type I error depends on the value of the parameter specified in the null 

hypothesis.  This probability can generally be calculated, or at least easily approximated.  The 

probability of a type II error can be calculated only after a specific value of the parameter of 

interest has been singled out for consideration.  The selection of a practically meaningful value 

for this parameter is often difficult (Wackerly, et al., 2008).  Applied to radiation measurements, 

type II error will be “scenario dependent” and, without any specification to the various types of 

samples that could be tested, selection of the alternative hypothesis is entirely arbitrary.  Type I 

error, and therefore the decision threshold, is the most important metric to consider in radiation 

detection using a frequentist statistical analysis. 

When applying traditional decision rules to very low count rate data, the data yield higher 

than expected false positive rates (Strom & MacLellan, 2001).  This is due to the intrinsic 

assumption that the experimenter has a precise estimate of the mean and standard deviation of 

the background distribution.  Sufficient estimates of either one cannot be attained in a low count 

rate situation because the signal-to-background ratio is so low that detecting distinguishable 

signal counts from background is difficult.  This is especially true in count rate or gross counts 

analysis.  In theory, decreasing the predetermined level of 𝛼𝛼 decreases the number of false 
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positive detections on the background distribution; however, the rate of positive detection of 

signal will suffer. 

The standard method to compute the decision threshold for counting experiments for 

ionizing radiation (International Organization for Standardization, 2010) does not specify a 

routine to measure background.  For measurements with expectations of low signal-to-

background ratios, a static background distribution may be assessed by conducting periodic long-

time background measurements (National Council on Radiation Protection and Measurements, 

1985), where the resulting background data are modeled to follow a normal (Gaussian) 

distribution defined by their mean and standard deviation.  These parameters are then fixed and 

used in a statistical test on subsequent measurements to determine whether or not a source is 

present.  As a result, background data that are accumulated over the course of the ensuing 

measurement analyses are ignored.  This wealth of additional background information available 

from repeated independent or continuous measurements performed with the same instrument can 

be used to improve the statistical analysis of a detection system.  Operational application of these 

statistical considerations have been described (Brandl & Herrera Jimenez, 2008) developed 

(Brandl, 2013), and tested in a laboratory setting (Brogan & Brandl, in press).  The statistical 

data analysis in these studies was developed from applications for quantitative methods to 

optimize a decision between two exhaustive, mutually exclusive hypotheses: that the signal 

detected is either due solely to background radiation, or that it is due to a radiological source 

embedded in the background.  The analysis was based on comparisons between data strings 

acquired by continuously operating instruments screening for illicit radiological sources and 

expected data patterns in the absence of a radiological source when the data strings reflect 

random sampling from the background distribution.  The pre-determined type I error was 
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retained in the course of the comparison, such that the occurrence of the whole data string used 

in the comparison does not exceed the accepted level in the absence of a source.  Quantitatively, 

the data string was analyzed for the probability that the null hypothesis, 𝐻𝐻0, is erroneously 

rejected at a probability of type I error 𝛼𝛼 provided 𝑛𝑛 individual measurements in the data string 

of length 𝑁𝑁 exceed a threshold level determined by 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 computed for the individual 

measurements in the data string:   

𝑃𝑃(reject 𝐻𝐻0|𝐻𝐻0 is true) = �
𝑁𝑁
𝑛𝑛
�  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛(1 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖)𝑁𝑁−𝑛𝑛 (8) 

The statistical approach is independent of operational sensor integration time, the time duration 

of the individual measurements in the data string, provided the integration time is generally fixed 

during data acquisition and individual measurements are independent from each other.  The data 

string metric is used to improve signal detection at lower false positive rates.  The approach takes 

advantage of finding the p-value, or attained significance level, which is the smallest level of 

significance 𝛼𝛼 for which the observed data indicate that the null hypothesis should be rejected 

given a specific test statistic (Wackerly, et al., 2008) while simultaneously using a binomial 

discriminator.  An ROC curve from the experimental study can be seen in Figure 1-1 (Brogan & 

Brandl, in press). 
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Figure 1-1.  ROC Curve Using Data String Algorithm 

 
The figure shows that the traditional decision threshold on gross count measurements can be 

improved upon using data patterns in a sequence of measurements.  This is evident by noting that 

the Traditional approach (dashed line) had lower true positive rates at a given fixed false positive 

rate when compared to any of the data string metric approaches in the figure.  These studies also 

validate the assumption that the information contained in prior knowledge can be used to 

increase detection sensitivity through a “more informed” decision threshold. 

 Bayesian data analysis, which incorporates the prior beliefs, data, and knowledge of the 

experimenter and produces probabilities for an underlying parameter, could theoretically be used 

to create a more informed decision threshold.  Moderately similar conclusions result from the 

Bayesian and frequentist approaches in simple analyses (Gelman, et al., 2013).  However, 

analyses using Bayesian methods are comparatively easier to extend to more complex statistical 

problems.  Numerous studies have been published using Bayesian statistics in source 

localization/identification (Tandon, et al., 2016), characterization of radioactive samples 

(Klumpp, et al., 2018), and uncertainty analysis (Michel, 2016); but there is a limited amount of 

material specific to the development of a decision threshold for simple gross count 



14 
 

measurements using Bayesian statistics.  ISO11929 reported a Bayesian approach to the decision 

threshold using a truncated Gaussian distribution (International Organization for Standardization, 

2010), but it was found that extensive revisions were required (Michel, 2016).  The difficulty lies 

in employing the Bayesian interpretation of probability to the characteristic limits defined in 

ISO11929. 

Bayes’ theorem allows an investigator to make probability statements about some 

parameter, 𝜃𝜃, given the data, 𝑦𝑦.  The theorem produces a probability distribution of the 

parameter(s) of interest by combining experimental data with prior knowledge or intuition.  This 

probability distribution, p(𝜃𝜃|𝑦𝑦), called the posterior distribution, is calculated in the following 

manner: 

p(𝜃𝜃|𝑦𝑦) =
p(𝑦𝑦|𝜃𝜃)p(𝜃𝜃)

p(𝑦𝑦) , (9) 

 where p(𝑦𝑦|𝜃𝜃) is the sampling or data distribution, p(𝜃𝜃) is the prior distribution, and p(𝑦𝑦) is a 

normalizing constant such that p(𝑦𝑦) = ∑ p(𝑦𝑦|𝜃𝜃)p(𝜃𝜃)𝜃𝜃 , and the sum is over all possible values of 

𝜃𝜃 (or p(𝑦𝑦) = ∫ p(𝑦𝑦|𝜃𝜃)p(𝜃𝜃)𝑑𝑑𝑑𝑑 in the case of continuous 𝜃𝜃).  The frequentist decision threshold 

makes decisions on a probability distribution following the general form p(𝑦𝑦|𝜃𝜃).  In essence, 

decisions are made on measurement(s) 𝑦𝑦 given the accepted estimate of the true parameter 𝜃𝜃 

using hypothesis testing and confidence interval procedures.  The same decision process should 

not be used on a posterior distribution.   

A Bayesian hypothesis cannot be falsified by a significance test, it may only be 

superseded by competing hypotheses instead (Gelman & Shalizi, 2013).  Given this idea, the 

Bayesian perspective leads directly to a decision theory.  The posterior distribution contains all 

available information and uncertainty about the true value of the parameter 𝜃𝜃, and all inference 
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about the parameter is made on the posterior distribution.  In the simplest case, a hypothesis test 

can be set up in the following manner: 

𝑃𝑃(Hypothesis 1 is true|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = posterior probability of Hypothesis 1
𝑃𝑃(Hypothesis 2 is true|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = posterior probability of Hypothesis 2 (10) 

where the decision criterion is to choose the hypothesis with the higher posterior density.  Other 

established procedures for decision making in Bayesian statistics utilize either a cost function or 

a Bayes Factor.   

The goal of a cost function is to minimize the expected loss for a given hypothesis.  The 

basic loss relationships are a 0/1 loss (𝐿𝐿0), linear loss (𝐿𝐿1), and squared loss (𝐿𝐿2).  The 

calculations for these relationships are 

𝐿𝐿0,𝑖𝑖�𝜃𝜃�� = �0 
1 

if 𝜃𝜃� = 𝜃𝜃
otherwise

𝐿𝐿0 = �𝐿𝐿0,𝑖𝑖�𝜃𝜃��
𝑖𝑖

 (11) 

 

𝐿𝐿1�𝜃𝜃�� = ��𝜃𝜃 − 𝜃𝜃��
𝑖𝑖

 (12) 

 

𝐿𝐿2�𝜃𝜃�� = ��𝜃𝜃 − 𝜃𝜃��
2

𝑖𝑖

 (13) 

The point estimate 𝜃𝜃� is chosen based on the investigator’s choice of loss function, and the value 

for 𝜃𝜃� is calculated from the posterior distribution.  𝐿𝐿0 is minimized at the mode of the posterior, 

𝐿𝐿1 is minimized at the median of the posterior, and 𝐿𝐿2 is minimized at the mean of the posterior.  

The optimal hypothesis is that which yields the lowest expected loss. 

In the case where two competing hypotheses (𝐻𝐻1,𝐻𝐻2) are being considered, the ratio of 

prior probabilities of hypotheses can be defined as 
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Prior Odds(𝐻𝐻1:𝐻𝐻2) =
p(𝐻𝐻1)
p(𝐻𝐻2) (14) 

and the ratio of the posterior probabilities of the hypotheses can be defined in a similar manner, 

such that 

Posterior Odds(𝐻𝐻1:𝐻𝐻2) =
p(𝐻𝐻1|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
p(𝐻𝐻2|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑). (15) 

Bayes’ theorem can be factored into the Posterior Odds formula, giving 

Posterior Odds(𝐻𝐻1:𝐻𝐻2) =
p(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝐻𝐻1)
p(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝐻𝐻2) ×

p(𝐻𝐻1)
p(𝐻𝐻2), (16) 

where the first term is called the Bayes Factor (𝐵𝐵𝐵𝐵).  The Bayes Factor quantifies the evidence of 

data arising from Hypothesis 1 versus Hypothesis 2.  In the discrete case, this is the ratio of the 

likelihoods of the observed data under the two hypotheses.  However, in the continuous case, the 

Bayes Factor becomes 

𝐵𝐵𝐵𝐵(𝐻𝐻1:𝐻𝐻2) =
∫p(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜃𝜃,𝐻𝐻1)𝑑𝑑𝑑𝑑
∫p(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜃𝜃,𝐻𝐻2)𝑑𝑑𝑑𝑑

 (17) 

the ratio of the marginal likelihoods.  The calculated value for 𝐵𝐵𝐵𝐵 is then typically compared to 

Jeffery’s scale, in which ranges of values are associated with varying evidence strength against 

𝐻𝐻2.  Note that if the test was flipped, such that 𝐵𝐵𝐵𝐵(𝐻𝐻2:𝐻𝐻1), the scale would be associated with 

varying evidence strength against 𝐻𝐻1. 

Extending the simple, hypothetical Bayesian hypothesis test to radiation detection is an 

intuitive process.  We can say Hypothesis 1 (𝐻𝐻1) is no source is present, and Hypothesis 2 (𝐻𝐻2) 

is a source is present.  In this simple case, these are the only two possibilities in that they are 

mutually exclusive hypotheses that cover the entire decision space.  A decision must be made 

between these two hypotheses, and the loss that occurs when decision 𝑑𝑑 is made can be denoted 

as 𝐿𝐿(𝑑𝑑).  The decision space is then (𝑑𝑑1,𝑑𝑑2) where 
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𝑑𝑑1: choose 𝐻𝐻1
𝑑𝑑2: choose 𝐻𝐻2

  

The Bayesian testing procedure then minimizes the posterior expected loss, which implicitly 

depends on the relevant consequences.  This is typically expressed by the “weight” assigned to 

the false positive and false negative rates.  The investigator then calculates the expected loss for 

the two different decisions, 

𝐿𝐿(𝑑𝑑1) = 𝑃𝑃(𝐻𝐻1|source) ∙ 0 + 𝑃𝑃(𝐻𝐻2|source) ∙ weight if 𝑑𝑑1 is wrong
𝐿𝐿(𝑑𝑑2) = 𝑃𝑃(𝐻𝐻1|source) ∙ weight if 𝑑𝑑2 is wrong + 𝑃𝑃(𝐻𝐻2|source) ∙ 0 (18) 

and chooses the decision with the lower expected loss.  The entire process heavily depends on 

the weight selected for a given incorrect decision.  Unless specific, verified prior knowledge is 

applied to the assignment of a loss or weight, use of this decision process is completely arbitrary.  

It is important to understand that this is not a product of Bayesian statistics; it is a requirement of 

decision theory (Berger, 1985).  According to decision theory, for a given set of information, the 

optimal action to decide between two options will be to accept one option if and only if the 

expected posterior loss is smaller than for the other option.  The consequences of loss can only 

be quantified by probabilities; however, the decisive probability for the decision (acceptance and 

rejection) has to be chosen by humans weighing the importance of loss (Michel, 2016). 

A set of decision procedures forming a complete class always includes the optimized 

decision rule (“complete class theorem”); the set of Bayesian decision rules is such a complete 

class (Wald, 1947).  This implies that any non-Bayesian decision procedure will at least be 

matched by a corresponding Bayesian procedure, and the “best” Bayesian procedure will provide 

the optimized statistical analysis.  While this theoretically renders Bayesian analyses superior to 

frequentist approaches, the complete class theorem does not consider possible mathematical or 

computational difficulties which might be associated with the definition of the optimized 
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decision procedure; the optimized Bayesian procedure may be mathematically complex or 

computationally intensive.  A Bayesian analysis has to start with a prior distribution which 

includes the true value of the unknown quantity, so the result must, at least, be known partially 

(Silver, 2012) (Gelman & Shalizi, 2013), and the investigator must be able to quantify 

uncertainties inherent in the experiment.  As a consequence, selection of a Bayesian process 

applied to the decision threshold requires an investigation of multiple models.  A proper starting 

point for the development of such models quantifies the distinction between how probabilities 

are treated in the two statistical disciplines.  

The main difference between frequentist and Bayesian statistical approaches may be 

found in their respective philosophical interpretation and understanding of “probability” 

(Vallverdu, 2008).  In the frequentist approach, probabilities are related to measurable 

frequencies of different outcomes from observed events.  A long-run sequence of repeated events 

allows for the determination of those frequencies.  In the Bayesian approach, probabilities are 

measures of the state of knowledge or uncertainty of the individual conducting the measurement.  

It explicitly includes the researcher’s knowledge of the experiment and the experimental setup.  

Considering these two definitions, it can be understood that directly applying the frequentist 

decision threshold to a Bayesian posterior density is illogical.  The frequentist decision threshold 

utilizes a confidence interval procedure on the probability function (𝑦𝑦|𝜃𝜃), and assumes a 

proportion of random samples from the same population will produce confidence intervals that 

contain the true population parameter 𝜃𝜃.  In the case where 𝛼𝛼 = 0.05, we can say that 95% of the 

random samples will produce confidence intervals that contain the true population parameter.  

We assume that long repeated measurements of background will yield a valid parameter estimate 

for the true background.  Common misconceptions of the 95% confidence interval procedure are 
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that there is a 95% chance that the confidence interval includes the true population parameter, 

and that the true population parameter is in the interval at a rate of 95%.  The frequentist 

definition of probability allows us to define a probability for the confidence interval procedure, 

but not for a specific sample.  The probability that the confidence interval captures the true 

parameter is either 0 or 1.  The problem with this procedure is that we can never know what the 

probability is that the true parameter will be 0 or 1.  The limitation of the confidence interval 

procedure is then how accurately the true population parameter can be estimated.  In radiation 

detection measurements, we assume that the experimenter has an extremely accurate estimate of 

the mean and standard deviation of the background.  Creating a Bayesian posterior distribution 

for the background count rate may remediate this complication. 

Credible intervals are the Bayesian analogue of the frequentist confidence interval 

(Kruschke, 2010).  They allow the experimenter to describe the unknown true parameter not as a 

fixed value but with a probability distribution.  The construct is similar to the confidence 

interval, but the key difference is probabilistic statements can be made about the parameter 

falling within a range of values.  Given that a Bayesian posterior distribution is constructed for a 

background distribution, a credible interval can be used to find how probable it is to observe 

specific values for the mean of the background distribution.  In theory, a summary of the 

posterior information would provide a sufficient amount of results to start developing Bayesian 

decision rules for radiation detection once a proper posterior distribution is acquired.  “To a 

Bayesian the best information one can ever have about 𝜃𝜃 is to know the posterior density” 

(Chistenson, et al., 2011).  One tool that can be used given this distribution is the prediction of 

future observations 𝑦𝑦�.  The predictive density of the future observations given the past 

observations is 
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𝑓𝑓𝑝𝑝(𝑦𝑦�|𝑦𝑦) = �𝑓𝑓𝑝𝑝(𝑦𝑦�|𝜃𝜃)𝑝𝑝(𝜃𝜃|𝑦𝑦)𝑑𝑑𝑑𝑑 (19) 

The same theory that specifies 𝑓𝑓(𝑦𝑦|𝜃𝜃) also provides a density 𝑓𝑓𝑝𝑝(𝑦𝑦�|𝜃𝜃) for new 

observations (Gelman, et al., 2013).  Given that measurement counts are scalar, the predictive 

distribution provides the probability that 𝑦𝑦� ≥ count value.  Theoretically, a “decision” 

probability can be selected, and the corresponding measurement 𝑦𝑦� would become the Bayesian 

analog of 𝑦𝑦∗.  The predictive distribution would then provide a Bayesian distribution that 

functions in the same decision manner used in the frequentist confidence interval procedure: test 

for observed scalar values that are greater than some limit set by an accepted probability.  The 

strength of a model’s predictive efficiency will depend upon the accuracy of the assumptions 

utilized to construct the model, i.e., the distributions employed for the prior and sampling 

distributions and the parameter estimates used to describe them.   

Specification of the parameters of the priors will always determine the effectiveness of 

the Bayesian approach (Chipman, et al., 2001), therefore variability in models will hinge upon 

the various estimators used for these parameters.  In the simplest scenario when only conjugate 

models are applied (Gelman, et al., 2013), the odds ratio test can be used to choose between 

different models.  If parameter choice and model forms become more complex (non-conjugates), 

such that distributions must be placed on these parameters, hierarchical models must be 

developed.  Computation of the posterior distribution estimates for these models is accomplished 

using advanced sampling strategies such as the quadratic approximation for MAP estimation and 

Markov Chain Monte Carlo (MCMC) (Gelman, et al., 2013).  Maximum a Posteriori (MAP) 

estimates are equal to the mode of the posterior distribution, and can be used to generate samples 

from a parameterized distribution using the MAP estimates to find the form of a posterior 

distribution.  More rigorous model validation techniques must be used if these techniques are 
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required to estimate the posterior distribution of a model.  A commonly accepted test is the 

Widely Applicable Information Criterion (WAIC) test (McElreath, 2016), which assesses a 

models’ predictive capabilities based on estimating out-of-sample prediction error.  The model 

with the most “weight” scored to it would be the best model to use.  It is important to note, 

however, that WAIC testing and information criterion do not determine what the “best” model is 

in a group of tested models.  They are merely guidelines to help the experimenter gain an idea of 

a model’s predictive capabilities. 

In the case of model specification and predictive efficiency, two fundamental types of 

statistical error leading to poor prediction can occur: overfitting and underfitting (McElreath, 

2016).  Overfitting results from the model learning too much from the data.  Conversely, 

underfitting is observed when the model does not learn enough from the data.  Typically, these 

two errors are addressed by constructing models using regularizing priors in conjunction with 

information theory (Gelman, et al., 2013).  The goal of regularizing priors is to use estimates that 

contain enough information to rule out unreasonable parameter values while simultaneously 

avoiding the possibility of being so strong that the bounds of the estimates rule out values that 

might be logical to include.  Essentially, models must balance between being weakly informative 

and fully informative.  This line of thinking ties into information theory, which dictates proper 

distribution selection by the principle of maximum entropy and predictive performance measured 

by information criterion (Gelman, et al., 2013; McElreath, 2016).  In essence, distributions 

selected for models should be the least informative distribution that is still consistent with the 

experimenter’s assumptions.  “The distribution that can happen the most ways is also the 

distribution with the biggest information entropy.  The distribution with the biggest entropy is 

the most conservative distribution that obeys its constraints” (McElreath, 2016).  
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MATERIALS AND METHODS 
 
 
 
Experimental Laboratory Data Acquisition and Statistical Software 
 

The measurement data used in the subsequent analyses presented were collected in a 

laboratory setup utilizing a 2 × 2 NaI scintillation detector (Model 902, Canberra Industries Inc., 

Meriden, CT) with a resolution of 8.5% at the 137Cs photopeak energy of 662 keV.  Acquisitions 

took place at times of the day when the background was expected to be stable.  To simulate a 

low-fidelity system for initial algorithm evaluation and testing, the data were acquired in the 

open window of the NaI detector system.  The data were collected as full spectral data.  All 

channel entries were then summed in the subsequent data analysis to provide simple gross count 

data.  The same laboratory setup was used for data acquisition with and without a source present, 

representing the presence of an exposed 137Cs source and an evaluation of the background, 

respectively.  Different source “strengths” were simulated by varying the distance between the 

(point) source and the face of the NaI detector.  Measurements were conducted for source-

detector distances of 200 cm and 400 cm, and three separate background (Bkgd1, Bkgd2, and 

Bkgd3) measurements were conducted.  Data were collected in measurement sequences to obtain 

1800 spectra per background measurement and 1800 source spectra at each source to detector 

distance.  Background and source-detector distance gross count distribution characteristics are 

summarized in Table 2-1. 

 
 
 
 
 
 
 

 



23 
 

Table 2-1.  Summary Statistics for Background and Source-Detector Distance 
Distributions 

 

 
 
The gross count frequency distributions for the each source-detector distance and background are 

shown in Figure 2-1.  Bkgd1 is overlaid (dashed line) in each figure as a reference.  

Figure 2-1.  Gross count frequency distributions 
 
All statistical tests and analyses performed on these data were done with the R statistical 

programming language (The R Foundation, 2018) and the Stan probabilistic programming 

language (NumFOCUS, 2018). 

200cm 400cm Bkgd1 Bkgd2 Bkgd3
Minimum 567 544 540 523 540
Maximum 734 716 706 716 709

Mean 648.7 625.7 617.7 617.3 615.6
Standard Dev. 26.01 26.07 25.37 26.3 26.4

Statistic
Source-Detector Distance
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Decision Threshold Limitations and Example Data Interpretation 

The frequency distributions in Figure 2-1 display the drawback to making decisions on 

individual gross (or net) count measurements for low signal-to-background ratio scenarios.  

Given that the decision threshold, 𝑦𝑦∗, is calculated using Equation 4 and 𝛼𝛼 = 0.05 with the 

Bkgd1 dataset, 𝑦𝑦∗ = 659.4.  Using this frequentist decision threshold, approximately 33% of the 

individual measurements from the 200cm dataset would trigger an alarm and approximately 

10% of the individual measurements from the 400cm dataset would trigger an alarm.  The 

limitation is that decisions are being made on individual gross count measurements.  As the 

overlap of the distributions of the background and source increases, the amount of alarms 

triggered with a source present decreases.  A decision threshold on individual measurements will 

always be limited by this caveat.  The same can be said for any Bayesian analogue using a 

predictive distribution for individual gross count measurements as explained in the previous 

section.  Parameter estimates can be obtained through a Bayesian approach for 𝜇𝜇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1 and 

𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1, but the decision threshold will still be applied to individual gross count measurements 

and the same limitation will exist.  However, Bayesian statistics can be used to improve 

frequentist parameter estimates given specific modeling conditions, or at least come to the same 

estimate. 

The frequentist approach to radiation detection on individual gross count measurements 

requires that all probabilities be defined by connection to countable events and their frequencies 

in very large samples.  When aiming to accurately model the background distribution in a 

counting experiment, operationally a health physicist is taught to take a long run count (typically 

30 minutes to 1 hour) on a background sample with the goal of estimating the mean and standard 

deviation of that background distribution to help determine the frequentist decision threshold.  
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Heuristically, this makes sense, but shows a limitation of using frequentist statistics: frequentist 

uncertainty is premised on imaginary resampling of data, and as such probability distributions 

are only applied to the measurements themselves.  It requires the health physicist to take a 

relatively considerable amount of measurements before they can be “confident” in their 

approximations about parameters such as the mean or standard deviation.  The precision of the 

estimate of a parameter, the standard error (𝑆𝑆𝑆𝑆), depends upon the number of measurements used 

in the experiment, further hinging the accuracy of a frequentist approach on the use of very large 

sample sizes.  In contrast, a Bayesian approach to the estimation of the mean of the background 

allows the experimenter to implement their knowledge into the approximation.  All uncertainty 

can be modeled using posterior probability.  Therefore, a model can be built such that probability 

statements regarding the mean and standard deviation can be made, given the data and the model 

structure.   

A simple experiment was conducted to illustrate the use of both procedures when 

estimating parameters for the frequentist decision threshold.  The Bkgd1, Bkgd2, and 400cm 

datasets were used for the example data interpretation.  𝑛𝑛 measurements from the Bkgd1 gross 

count dataset were used to calculate the estimated mean and standard deviation for that 

background distribution.  For example, 𝑛𝑛 = 3 corresponds to the first three measurements in the 

background count data sequence being used to calculate the mean and standard deviation of the 

background distribution.  These parameters would be used to calculate a frequentist decision 

threshold for a type I error rate of 𝛼𝛼 = 0.05 for that 𝑛𝑛.  The resulting decision thresholds per n 

measurements used were tested against 1800 measurements of the second background data set 

(to determine the false positive rate) and the source present data set (to determine the true 
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positive rate).  Figure 2-2 shows the true positive rate (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) and false positive rate (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 

on the dataset given 𝑛𝑛 measurements used to determine the frequentist decision threshold. 

  

  
Figure 2-2.  True and false positive rates for frequentist decision thresholds determined by n 

measurements.  The left panels are displayed over 1800 measurements and the right panels are 
displayed up to 250 detailing the onset of the evolution for the decision threshold. 

 
The left graphs show rates up to 𝑛𝑛 = 1800 measurements, while the right graphs show the exact 

same data as the graphs on the left, except n is shown on a smaller scale (up to to 𝑛𝑛 = 250).  The 

true positive rate graphs show a horizontal dashed line at 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0.095, which is the true 

positive rate that the 𝑛𝑛 = 1800 measurements decision threshold converges to.  The false 
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positive graphs show a horizontal dashed line at 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.05, which is the false positive rate 

that the 𝑛𝑛 = 1800 measurements decision threshold converges to.  The 𝑛𝑛 = 1800 measurement 

results bear significance because it is the resulting efficiency of a frequentist decision threshold 

procedure after 30 minutes of background data collected (1800 seconds).  The dotted vertical line 

on all graphs at 𝑛𝑛 = 224 displays the first decision threshold that possesses true and false 

positive rates approximately equal to 𝑛𝑛 = 1800.  It should be noted that the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 did 

converge to 0.107 by 𝑛𝑛 = 145 measurements, but the requirement for the example is to find the 

exact same 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 as 𝑛𝑛 = 1800.  To put the dashed line into perspective, 

approximately the same mean (616.78) and standard deviation (25.56) could have been 

calculated from a little less than 4 minutes as the parameter estimates from the measurements 

obtained over 30 minutes.  But, a calculation of the 95% confidence interval for the SE of the 

mean (standard deviation of the measurements divided by the square root of 𝑛𝑛 measurements) 

demonstrates why the 30 minute parameter estimates are operationally more responsible to use.  

The 95% 𝑆𝑆𝑆𝑆 confidence interval for the 30 minute mean approximation was [615.58, 617.99] 

while the interval for the 4 minute mean approximation was [612.80, 620.24].  This is a 

relatively wide interval for the mean of a distribution, one that may be unacceptable given the 

importance of a missed detection or the cost of a false alarm.  Regardless, these are intervals of 

confidence, contingent upon imagined samples and a statistical approach that relies upon the 

precision of the measurements. 

Estimates for the mean and standard deviation of the background can also be obtained 

using a Bayesian approach.  Applying a reasonable likelihood to the gross count data, and prior 

distributions to the mean and standard deviation of the gross count data, a simple Bayesian 

model could take the following form: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇,𝜎𝜎) 
𝜇𝜇 ~ Normal�𝜇𝜇𝜇𝜇,𝜎𝜎𝜇𝜇� 

   𝜎𝜎 ~ Uniform(𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎,𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎) (20) 
 

The model specifications above state that the likelihood for the gross count data is approximately 

normal with mean 𝜇𝜇 and standard deviation 𝜎𝜎.  The prior distribution for 𝜇𝜇 is approximately 

normal with mean 𝜇𝜇𝜇𝜇 and standard deviation 𝜎𝜎𝜇𝜇.  Lastly, the prior distribution for 𝜎𝜎 is uniform 

with some bound on the minimum and maximum values of 𝜎𝜎.  Applying what is known about 

the gross count data and some reasonable assumptions, a Bayesian model that would produce a 

posterior distribution for the mean of the background distribution would take the following form:    

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇,𝜎𝜎) 
𝜇𝜇 ~ Normal(630,30) 
  𝜎𝜎 ~ Uniform(0,50) (21) 

 
This is an acceptable model given what is known about the experiment: the gross count data 

likely possess a normal distribution, the distribution of 𝜇𝜇 being normal makes it so the input 

parameters carry a small amount of information about 𝜇𝜇, and the distribution of 𝜎𝜎 is vague in that 

equal, positive probability is assigned over a wide range of plausible values.  The resulting 

posterior distribution yields estimates for the values of 𝜇𝜇 and 𝜎𝜎 given the data and model — the 

mean and standard deviation of the background distribution given the measurement data. 

Using this model to analyze the data for 𝑛𝑛 = 1800 measurements, the posterior 

approximations of the mean (616.78 ± 0.6) and standard deviation (25.56 ± 0.43) of the 

measurement data were nearly identical to the frequentist approach.  The 95% credible interval, 

[615.60, 617.96], was also similar to the 𝑆𝑆𝑆𝑆 interval of the mean.  The difference lies in the 

interpretation of the values due to the manner in which they were generated.  The credible 

interval allows the experimenter to say: “Given the model assumptions and data, the probability 

that the mean of the background lies between 615.60 and 617.96 is 95%.”  For most, this is a 
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more intuitive statement than: “We are 95% confident that the mean is between 615.58 and 

617.99.” 

Given what is now known about the posterior estimates for the mean and standard 

deviation, a more informed model can be built by incorporating these estimates for the mean and 

standard deviation of the background into the original model.  The new model takes the 

following form: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇,𝜎𝜎) 
𝜇𝜇 ~ Normal(616.78,0.6) 

  𝜎𝜎 ~ Normal(25.56,0.43) (22) 
 
Using this updated model, data for 𝑛𝑛 = 224 measurements (equivalent to the 4 minute 

approximation) were analyzed.  The posterior estimate for the mean was 616.75 ± 0.57 and the 

estimate for the standard deviation was 25.78 ± 0.40.  The 95% credible interval, 

[615.64, 617.86] is much narrower than the frequentist counterpart [612.80, 620.24] at 4 

minutes, and is nearly identical to the interval using 𝑛𝑛 = 1800 measurements [615.58, 617.99].  

Herein lays the power of incorporating a Bayesian analysis into parameter estimation.  Bayesian 

modeling allows the experimenter to use prior knowledge to find acceptable estimates with less 

data and report them in an intuitive manner.  To illustrate the impact of prior knowledge on this 

dataset, the first model (a slightly “non-informed” model) was used to analyze the data for 

𝑛𝑛 = 224 measurements.  The resulting posterior estimates for the mean (616.53 ± 1.85) and 

standard deviation (27.53 ± 1.31) were comparable to the other models, but the 95% credible 

interval [612.90, 620.16] fell to bounds similar to the frequentist result on the error of the mean 

estimate [612.80, 620.24].  

 This simple example data interpretation displays the differences between using a 

frequentist or a Bayesian procedure to determine the parameter estimates used to calculate the 
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decision threshold 𝑦𝑦∗.  Even when a frequentist procedure and Bayesian model give exactly the 

same numerical answer, the interpretations of these answers due to their statistical nature can 

have entirely different meanings.  Inferences from a frequentist perspective rely upon imaginary, 

repeated sampling.  A Bayesian model treats “randomness” as a property of information, not of 

the experimental method.  Bayesian inference critics often assert that the approach invokes 

beliefs or subjective opinions, when in reality it is a logical procedure for processing 

information. Given this line of reasoning, the parameters described in a Bayesian model can be 

considered targets of learning, which are characterized by the posterior distribution the model 

produces.  In this sense, the Bayesian modeling procedure provides the means to obtain abstract 

statistical knowledge about the data in question.  The most widely applied statistical model to 

learning from data is a regression analysis.  When used in a Bayesian sense, regression analysis 

provides an intuitive manner to finding the relationship between parameters of interest. 

Bayesian Linear Regression 
 

This section utilizes language and terminology for describing and coding statistical 

models commonly found in statistical texts and journals, and is general to both Bayesian and 

non-Bayesian modeling. 

In a linear regression study, a set of measurements that the experimenter wishes to predict 

or understand is recognized as the outcome variable or variables, outcome𝑖𝑖.  A likelihood 

function/distribution is defined for each of these outcome variables, providing the probability of 

observing the specified data under distinct parameter values.  These distributions are always 

assigned normal distributions in linear regression.  Separately, the experimenter identifies 

another set of data, the predictor variables, predictor𝑖𝑖, to use to predict or understand the 

outcome variables.  Linear regression computes the relationship between outcome𝑖𝑖 and 
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predictor𝑖𝑖 by linking the shape of the likelihood (i.e., for mean, variance, etc.) to the predictor 

variables.  Under this experiment structure, the experimenter must determine and define all of the 

parameters for the model.  In a Bayesian context, this includes appropriately selecting prior 

distributions for all of the parameters in the linear regression model.  Selection of these priors 

defines the initial state of the model.  The basic structure for the linear regression model is then 

outcome𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽 × predictor𝑖𝑖 
𝛼𝛼 ~ Normal(𝜇𝜇𝛼𝛼,𝜎𝜎𝛼𝛼) 
𝛽𝛽 ~ Normal�𝜇𝜇𝛽𝛽 ,𝜎𝜎𝛽𝛽� 

   𝜎𝜎 ~ Uniform(min𝜎𝜎, max𝜎𝜎) (23) 
 
where 𝛼𝛼 provides the expected outcome when predictor𝑖𝑖 = 0 and the slope, 𝛽𝛽, describes the 

change in the expected outcome when predictor𝑖𝑖 changes by 1 unit. 

The linear model can be expanded to include multiple variables in an analysis that utilizes 

more than one predictor variable to form an outcome.  In multivariate regression, the expected 

outcome is a sum of at least three independent terms, the intercept 𝛼𝛼 included.  A general form 

for the multivariate regression for two variables is: 

outcome𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1 × predictor1,𝑖𝑖 + 𝛽𝛽2 × predictor2,𝑖𝑖 

𝛼𝛼 ~ Normal(𝜇𝜇𝛼𝛼,𝜎𝜎𝛼𝛼) 
𝛽𝛽1 ~ Normal�𝜇𝜇𝛽𝛽1 ,𝜎𝜎𝛽𝛽1� 
𝛽𝛽2 ~ Normal�𝜇𝜇𝛽𝛽2 ,𝜎𝜎𝛽𝛽2� 

  𝜎𝜎 ~ Uniform(min𝜎𝜎, max𝜎𝜎) (24) 
 

The multivariate model can be used to study the extent to which an outcome changes as the 

result of the absence or presence of a category, such as whether an outcome is determined as a 

background measurement or a set of measurements in which a source could be present.  The 

incorporation of a categorical variable into the above model is achieved by using a predictor 
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variable that takes on the discrete values 0 or 1, depending upon whether the categorical 

designation should be absent or present given the data. 

Bayesian Interaction Model 
 

The linear models presented up to this point consider each outcome, outcome𝑖𝑖, to be 

conditional on a set of predictors for each case 𝑖𝑖.  Embedded in these models is the assumption 

that each predictor has an independent association with the mean of the outcome.  Such an 

assumption is not always correct, as it is conceivable that associations among predictors are 

conditional (McElreath, 2016).  For example, suppose that a relationship between outcome and 

predictor used in a multivariate model varies according to whether the measurement is from 

background or with a source present.  The previous simple linear models cannot account for the 

required conditioning.  Modeling conditionality where one predictor depends upon another 

predictor is achieved by using an interaction (Gelman, et al., 2013).  A linear interaction model is 

built by creating a linear model for parameters within the linear model.  More specifically, the 

relationship between outcomei and predictor1 is made to vary as a function of predictor2.  

Within the linear model, this relationship is measured by the slope parameter 𝛽𝛽1.  To accomplish 

the desired interaction, 𝛽𝛽1 is constrained to be dependent upon predictor2 by defining 𝛽𝛽1 as a 

linear model itself and including predictor2 in the definition.  Using the previous multivariate 

regression equations, the linear interaction model takes the following form: 

outcome𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾𝑖𝑖 × predictor1,𝑖𝑖 + 𝛽𝛽2 × predictor2,𝑖𝑖 

           𝛾𝛾𝑖𝑖 = 𝛽𝛽1 + 𝛽𝛽1,2 × predictor2,𝑖𝑖 
 (25) 

Prior distributions are placed on all applicable parameters, but for simplicity have been omitted 

here.  The parameter 𝛽𝛽1,2 defines the strength of the dependency of outcomei and predictor1 on 

predictor2; and 𝛾𝛾𝑖𝑖 is a placeholder that defines the linear function of the slope between 
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outcomei and predictor1.  This equation defines the linear interaction effect between outcomei 

and predictor1.  The interaction model creates posterior distributions that are conditional on 

those aspects of the data that posterior distributions from the simpler linear models cannot 

resolve.  This modeling approach allows the relationship between the predictor variable and 

outcome to change depending upon another predictor variable, and provides the ability to 

estimate the aspects of a distribution of those changes. 

Application to Gross Count Measurement Data 
 

The scenario tested in this analysis is one in which outcome data either originated from 

measurements of ambient background or measurements with a radioactive source present.  As 

outlined previously, the data analyzed were gross counts in fixed one second intervals, such that 

the variable outcome𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖.  Suppose the experimenter wishes to study the relationship 

between a gross count measurement and the standard deviation of the gross counts obtained in 

the current measurement and the previous four measurements.  This predictor can be designated 

as 𝑆𝑆𝑆𝑆5, and predictor1,𝑖𝑖 = 𝑆𝑆𝑆𝑆5𝑖𝑖.  The condition of whether the analyzed data are from a 

background measurement or a measurement with a source present requires the linear model to 

incorporate a categorical predictor, such that predictor2,𝑖𝑖 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖.  In this categorical 

predictor, 𝐵𝐵𝑘𝑘𝑔𝑔𝑔𝑔_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 if 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is attributed to a background measurement; 0 otherwise.  

The simplified multivariate linear model for this scenario takes the following form:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
          𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑆𝑆𝑆𝑆5 × 𝑆𝑆𝑆𝑆5𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 (26) 

 
Given this model and the strategy discussed previously regarding the components of an 

interaction model, we want 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 and 𝑆𝑆𝑆𝑆5𝑖𝑖 to vary as a function of 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖  This 

relationship is measured by the slope 𝛽𝛽𝑆𝑆𝑆𝑆5.  To accomplish the desired interaction, 𝛽𝛽𝑆𝑆𝑆𝑆5 is 
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constrained to being dependent upon 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 by defining a linear model for 𝛽𝛽𝑆𝑆𝑆𝑆5 that 

includes 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.  The linear interaction model takes the following form:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾𝑖𝑖 × 𝑆𝑆𝑆𝑆5𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 

          𝛾𝛾𝑖𝑖 = 𝛽𝛽𝑆𝑆𝑆𝑆5 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 (27) 
 
By defining the relationship between 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆5 with a linear interaction model, any change 

in 𝜇𝜇𝑖𝑖 resulting from a unit change in 𝑆𝑆𝑆𝑆5𝑖𝑖 is given by 𝛾𝛾𝑖𝑖.  Now, to compute the relationship 

between 𝑆𝑆𝑆𝑆5𝑖𝑖 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖, incorporation of 𝛽𝛽𝑆𝑆𝑆𝑆5, 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5, and 𝐵𝐵𝐵𝐵𝑔𝑔𝑑𝑑_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 is 

required.  The model explicitly addresses the hypothesis that the slope between 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆5 

is conditional upon whether or not a measurement is from background, and the parameter 

𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 defines the strength of the dependency.  Even though the parameters 𝑆𝑆𝑆𝑆5 and 𝛾𝛾 

are constructs of this experiment, in the Bayesian framework they can be thought of as targets of 

learning that can be characterized by a posterior density.  This point highlights a valuable aspect 

of Bayesian statistical modeling: when an experimenter wishes to obtain abstract statistical 

knowledge about the data, a Bayesian procedure provides a model that can describe non-physical 

parameters.  The presented linear interaction model allows for the visualization of how much the 

relationship between 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆5 depends upon whether the measurement is background or 

not.   

The full model including prior distributions takes the form: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾𝑖𝑖 × 𝑆𝑆𝑆𝑆5𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 

𝛾𝛾𝑖𝑖 = 𝛽𝛽𝑆𝑆𝑆𝑆5 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 
𝛼𝛼 ~ Normal(𝜇𝜇𝛼𝛼,𝜎𝜎𝛼𝛼) 

𝛽𝛽𝑆𝑆𝑆𝑆5 ~ Normal�𝜇𝜇𝛽𝛽𝑆𝑆𝑆𝑆5 ,𝜎𝜎𝛽𝛽𝑆𝑆𝑆𝑆5� 
𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ~ Normal �𝜇𝜇𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ,𝜎𝜎𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆� 

𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 ~ Normal �𝜇𝜇𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 ,𝜎𝜎𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5� 
  𝜎𝜎 ~ Uniform(min𝜎𝜎, max𝜎𝜎) (28) 
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This Bayesian model functions by using the built-in definitions in Equation 28 for the likelihood, 

the parameters, and the prior.  These definitions are used to process the input measurement data, 

producing the posterior distribution.  Essentially, the model is conditioning the prior on the data 

to approximate the posterior distribution.  This conditioning is based on the rules of probability 

theory; namely Bayes’ theorem and the product rule for probability theory (Gelman, et al., 2013).  

Conjugate models can be conditioned formally to produce a posterior distribution; however, the 

linear interaction model presented requires various techniques to approximate the mathematics 

that follow from the definition of Bayes’ theorem.  Given the use of normal distributions in the 

model, a quadratic approximation is sufficient to estimate the posterior distribution (Gelman, et 

al., 2013).  Assuming that the posterior distribution p(𝜃𝜃|𝑦𝑦) is unimodal and nearly symmetric, it 

can be approximated by a normal distribution in that the logarithm of the posterior density is 

estimated by a quadratic function of 𝜃𝜃.  This technique takes advantage of the fact that the region 

near the peak of the posterior distribution will be nearly normal in shape in normal (Gaussian) 

mixture models.  To improve the approximation, logarithms or logits of parameters are used to 

create a parabola that can be described by a quadratic function.  An optimization algorithm in R 

locates the peak based on slopes between points, and the curvature near the peak is estimated.  

This curvature estimate is used to compute a quadratic approximation of the posterior 

distribution. 

The model uses Bayesian updating, which allows the experimenter to consider every 

possible combination of values for the specified parameters (McElreath, 2016).  Each of these 

combinations is scored by its relative plausibility, considering the data used.  These relative 

plausibilities are the posterior probabilities for each of the combinations of parameter values.  In 

other words, there are a finite number of normal distributions the model knows exist, and the 
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model considers every possible distribution defined by a combination of the input parameters.  

Consequently, the posterior distribution is a distribution of normal distributions constructed with 

the data and model in mind.  The estimate provided by the model is then the posterior 

distribution itself, not a specific point within it. 

Given the investigative nature of the experiment, appropriate selection of prior 

distributions and parameter values for the model is based on partial knowledge of the data to be 

analyzed and a preferred state of ignorance, premised on information theory and maximum 

entropy.  The model used to generate the results in this paper takes the form:   

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾𝑖𝑖 × 𝑆𝑆𝑆𝑆5𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 

𝛾𝛾𝑖𝑖 = 𝛽𝛽𝑆𝑆𝑆𝑆5 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 
𝛼𝛼 ~ Normal(600,10) 
𝛽𝛽𝑆𝑆𝑆𝑆5 ~ Normal(0,1) 

𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ~ Normal(0,1) 
𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 ~ Normal(0,1). 

                                                      𝜎𝜎 ~ Uniform(0,50) (29) 
 

Here, 𝛼𝛼 is the expected value for 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 when all of the predictors are equal to 0.  Based on 

knowledge from past observations, acceptable values for the expected gross counts, 𝜇𝜇𝑖𝑖, from 

background measurements in the data analyzed in this investigation can be centered at 600 

counts and assumed to be normally distributed over a relatively wide range.  This allows the 

model to start at a reasonable approximation, as well as maintaining a partial state of ignorance.  

The values for the Gaussian priors of 𝛽𝛽𝑆𝑆𝑆𝑆5, 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, and 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 were selected 

because equal probability exists above and below 0, where a value of 0 suggests that the 

predictors have no relationship to the observed gross counts.  This is a conservative assumption, 

especially considering that most of the probability mass is around 0.  A flat prior for 𝜎𝜎 constructs 

a posterior distribution proportional to the likelihood, with the advantage that the data will drive 

the model towards an appropriate approximation. 
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The model operates by examining a set of previously recorded background gross count 

measurements, the training data Bkgd1, and resulting 𝑆𝑆𝑆𝑆5 with a set of unknown sample gross 

count measurements and resulting 𝑆𝑆𝑆𝑆5.  These two sets of data make up the arrays for 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 

and 𝑆𝑆𝑆𝑆5𝑖𝑖.  Included in the data array is 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖, such that each index is correctly 

categorized as a known background measurement or an unknown sample measurement.  This 

setup allows the model to work in a way that is intuitive to operational measurement technique: 

known background data and resulting estimates are used to create a relationship that is expected 

to be consistent across all measurements with no source present, and this relationship is 

compared to the samples in question to judge if a source is present.  All statistical calculations 

and analyses were performed in the R statistical programming language and the Stan 

probabilistic programming language. 
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RESULTS AND DISCUSSION 
 
 
 
Format of Investigation 
 
 An integral component of the results presented is the process required to validate a 

Bayesian model both statistically and operationally in Health Physics.  The proceeding sections 

are formatted to demonstrate the method to develop a viable interaction model to detect 

radiological sources using gross counts with the parameter 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 with these principles in mind.  

The general structure of this procedure is: 

• Interaction model validation 

• Data exploration using Bayesian data analysis 

• Production of an equivalent to the frequentist decision threshold using 𝛾𝛾 

• Application of the decision parameter to operational conditions and comparison to the 

frequentist decision threshold 

• Testing and expansion of the model using established Bayesian statistical methods and 

tests 

• Application of the results to operational considerations in Health Physics 

This list by no means represents the only way to develop a decision threshold for gross counts 

using Bayesian statistics.  The approach presented may, however, serve as a guideline for a series 

of requirements to integrate Bayesian modeling (specifically, an interaction model) with 

radiation detection using gross counts in low fidelity systems.  By far the most crucial aspect of 

this process is contained within the last bullet, but the preceding sections in the list are necessary 

steps towards the requisite conclusions to be able to appropriately apply the model to an 

operationally relevant scenario in Health Physics.  The first five sections of this chapter describe 
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the necessary model development and validation steps, while the last section describes the model 

application to the detection of radiological sources at low signal-to-background ratios. 

Validating the Interaction Model 
 

The initial step in the investigation to test the hypothesis that the relationship (slope) 

between 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆5 is conditional upon whether or not the sample is from background is to 

analyze a large dataset with and without the interaction.  Due to the partially non-informed prior 

distributions and parameter values in the model presented, it is important to assess the hypothesis 

in a manner that is driven completely by the data.  This is achieved by using sufficient data that 

the non/partially-informed model has an insignificant impact on the resulting estimates other 

than shaping the results such that meaningful conclusions can be drawn.  The clearest way to 

visualize the hypothesis is to analyze all 3600 (1800 from background and 1800 from unknown 

sample) measurement indices per comparison, plot the linear regression with and without the 

interaction model, and overlay the regression line of expected gross counts for a given 𝑆𝑆𝑆𝑆5.  

These plots are shown in Figures 3-1, 3-2, 3-3, and 3-4.  Figure 3-1 shows training background 

measurements (Background1/Bkgd1) versus 200 cm source distance measurements; Figure 3-2 

shows training background measurements versus 400 cm source distance measurements; Figure 

3-3 shows training background measurements versus the second set of background 

measurements (Background 2/Bkgd2); and Figure 3-4 shows the results of running the model 

against itself, where the training background measurements are also used as the unknown sample 

measurements.  Plots on the left display linear regression using the training background data and 

plots on the right display linear regression using sample data.  Clear differences are observed 

when comparing the top plots to the bottom plots within each figure.  The top plots show a linear 

regression using the multivariate model without interaction, while the bottom plots show the 
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results from using the linear interaction model.  The regression line is the expected gross counts 

for a given SD5, and the shaded region represents the credible interval. 

 
Figure 3-1.  Regression plots for the 200cm source distance.  The top plots show a linear regression 

using the multivariate model without interaction, while the bottom plots show the results from 
using the linear interaction model. 
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Figure 3-2.  Regression plots for the 400cm source distance.  The top plots show a linear regression 

using the multivariate model without interaction, while the bottom plots show the results from 
using the linear interaction model. 
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Figure 3-3.  Regression plots for the Bkgd2 source distance.  The top plots show a linear regression 

using the multivariate model without interaction, while the bottom plots show the results from 
using the linear interaction model. 
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Figure 3-4.  Regression plots for the Self-test.  The top plots show a linear regression using the 
multivariate model without interaction, while the bottom plots show the results from using the 

linear interaction model. 
 

In Figures 3-1 and 3-2, a clear difference exists between the slope of the line for the background 

and sample plots using the interaction.  The positive slope seen in the 200 cm and 400 cm 

interaction plots suggests that a relationship between 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆5 is conditional upon 

whether or not the sample is from background.  To further substantiate this observation, it is 

apparent that when comparing Figures 3-3 and 3-4, the change in slope, if any, is minimal.  This 

indicates that a relationship exists when comparing background measurements to sample 

measurements with a source present. 

Symmetry in Interactions 
 

Additional support for the interaction model observations is obtained by taking advantage 

of the fact that linear interactions are symmetrical (McElreath, 2016).  Instead of suggesting that 

the relationship between 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆5 depend upon whether or not the sample is from 
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background, we change the model such that we are investigating if the relationship between 

𝐶𝐶𝐶𝐶𝑢𝑢𝑛𝑛𝑛𝑛 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is dependent upon 𝑆𝑆𝑆𝑆5.  To accomplish this, we still maintain every 

parameter and value from the original linear interaction model with the exception that we define 

a linear model for 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  that includes 𝑆𝑆𝑆𝑆5.  The model now takes the following form: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾𝑖𝑖 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝛽𝛽𝑆𝑆𝑆𝑆5 × 𝑆𝑆𝑆𝑆5𝑖𝑖 

                                 𝛾𝛾𝑖𝑖 = 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 × 𝑆𝑆𝑆𝑆5𝑖𝑖 (30) 
 

Essentially, we are asking if the gross counts obtained in background measurements versus 

measurements with a source present depend on the standard deviation of the gross counts 

obtained in the current measurement and the previous four measurements.  Using the same data 

arrays and prior distributions from the linear regression experiment, the results for all four 

scenarios are provided in Figure 3-5.   
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Figure 3-5.  Symmetry plots comparing Bkgd1 (labeled Bkgd/Bkgd1) to the 200cm 

source distance (top left) dataset, the 400cm source distance dataset (top right), 
the Bkgd2 dataset (Bkgd2 in bottom left), and the Self-test (bottom right) 

Within each plot, measurements from the training background data set are plotted on the right 

and the corresponding unknown sample measurements are plotted on the left.   Within each 

category on the plots, the entries are split such that counts below the median 𝑆𝑆𝑆𝑆5 value for that 

category are plotted on the left (black), and counts above the median 𝑆𝑆𝑆𝑆5 value are plotted on 

the right (violet).  The dashed line and shaded confidence region is the expected reduction in 

counts when we take an imagined sample with the minimum 𝑆𝑆𝑆𝑆5 value and change between 

source present and no source present.  It is apparent that across all scenarios, the slope of this line 

is nearly zero.  This suggests that for any measurement, from background or otherwise, having a 

relatively low 𝑆𝑆𝑆𝑆5 has a negligible effect on the gross counts for a particular measurement.  
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What is more important is the comparison of this line to the solid violet line within each plot.  

The solid line and shaded region represent the expected change in gross counts for an imaginary 

sample with a maximum 𝑆𝑆𝑆𝑆5 value.  This line shows a clear reduction in expected counts when 

compared between a measurement with a source present and no source present.  As the 

comparison changes from a stronger (200 cm) to a weaker (400 cm) source to no source present 

(Bkgd2) versus the background measurement data (Bkgd1), this reduction decreases to a slope 

similar to the dashed line.  These results indicate that for measurements associated with a high 

𝑆𝑆𝑆𝑆5, there is a positive effect (increase in expected gross counts) on the observed gross counts 

when a source is present.  The original perspective presented, that the relationship between 𝑆𝑆𝑆𝑆5 

and gross counts in a measurement depends upon whether or not a source is present, is 

simultaneously true with this second perspective, that the relationship between whether or not a 

source is present and gross counts in a measurement is dependent upon 𝑆𝑆𝑆𝑆5.  This result 

establishes that the interaction model is valid.  It is important to note however that these 

statements are only credible under the specific model assumptions and data used.  To further 

confirm the linear interaction model, the same analyses were performed using two additional 

background measurement datasets (Bkgd2, Bkgd3) as the training dataset.  The outcomes were 

similar to the previous results presented here.  The results can be seen in Appendix A. 

Using Bayesian Data Analysis to Explore Results 
 

Given the confirmation of the model assumptions, the next step is to utilize Bayesian data 

analysis to approximate the posterior distributions of the relevant parameters to help understand 

the previous observations.  Maximum a posteriori (MAP) estimates of the mean and standard 

deviation for the parameters 𝛼𝛼, 𝛽𝛽𝑆𝑆𝑆𝑆5, 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5, and 𝜎𝜎 were obtained using 

the quadratic approximation technique and are reported in Table 3-1. 
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Table 3-1.  MAP Estimates for Parameters from the Interaction Model 

 

The table contains the estimates across all four comparison experiments: 200 cm source 

and 400 cm source distances, a separate background (Background 2/Bkgd2), andan identical 

dataset (Self).  The parameter 𝛾𝛾 can be calculated using the relationship from Equation 27.  For 

example, the MAP slope relating 𝑆𝑆𝑆𝑆5 to gross counts for a measurement from background in the 

200 cm experiment is 

𝛾𝛾 = 𝛽𝛽𝑆𝑆𝑆𝑆5 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑆𝑆𝑆𝑆5 × 1 = 0.5 + (−0.99) = −0.49 
 

and the MAP slope relating 𝑆𝑆𝑆𝑆5 to gross counts for a measurement from a sample with the 

source present in the 200 cm experiment is 

𝛾𝛾 = 𝛽𝛽𝑆𝑆𝑆𝑆5 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 × 0 = 0.5 + 0 = 0.5 
 

From this calculation, it is apparent that the relationship between 𝑆𝑆𝑆𝑆5 and observed gross counts 

is reversed when comparing measurements from background and measurements with a source 

present.  The calculated 𝛾𝛾 for each experiment is shown in Table 3-2. 

Table 3-2.  Calculated 𝛾𝛾 for Given Source Types 

 

635.02 1.34 621.15 1.34 618.19 1.32 617.75 1.3
0.5 0.05 0.17 0.05 -0.04 0.05 0 0.05

-4.04 0.93 -0.75 0.93 -0.02 0.93 0.08 0.92
-0.99 0.05 -0.27 0.05 0.02 0.05 0 0.05
26.1 0.31 25.72 0.3 25.82 0.3 25.36 0.3

200cm 400cm Background 2 Self
Unknown Sample Dataset

𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃
𝛼𝛼

parameter 𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃

𝛽𝛽𝑆𝑆𝑆𝑆5
𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆

𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5
𝜎𝜎

No Source Source
-0.49 0.5
-0.1 0.17
-0.02 -0.04

0 0

200cm
400cm

Background 2
Self

Source Type
𝛾𝛾
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The table shows that the relationship changes sign when the background dataset is compared to a 

dataset with a source present, whereas no reversal occurs when comparing the background 

dataset to another background dataset or itself.  These results help explain the outcomes from the 

regression and symmetry figures and confirm that the relationship between 𝑆𝑆𝑆𝑆5 and gross counts 

in a measurement depends upon whether or not a source is present. 𝛾𝛾 then provides a numerical 

value for that relationship. 

Developing 𝛾𝛾 into a Decision Parameter 
 

While all of the MAP estimate values provide verification that the model is producing 

sensible values based on the data, they do not provide any information regarding the uncertainty 

of the estimates.  More specifically, to gain a better understanding of the relationship between 

𝑆𝑆𝑆𝑆5 and observed gross counts depending upon the presence of a source, we need to find the 

uncertainty associated with 𝛾𝛾.  This uncertainty can be obtained by computing the posterior 

distributions for the parameters in the model.  These distributions can be approximated by 

sampling from the linear interaction model, which is achieved by sampling vectors of values 

from a multi-dimensional normal distribution.  The resulting marginal distributions are shown in 

Figure 3-6; and the means, 𝜇𝜇𝛾𝛾, of these distributions are displayed in Table 3-3.   
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Figure 3-6.  Comparisons of marginal distributions for Bkgd1 (violet) versus labeled 

source type (black)   
 

Table 3-3.  Means of the Marginal Distributions for a Given Source Type 

 

The means are nearly equal to the MAP estimates for each corresponding calculated 𝛾𝛾 in Table 

3-2, which is expected, and also confirms that the marginal distributions are valid.  The tops of 

the marginal distributions are excluded from the figure due to the density being so relatively 

large that it would take away from the more important feature of the graphs: the distance 

No Source Source
-0.4943 0.5001
-0.1003 0.1715
-0.0171 -0.0384
-0.0053 -0.0021

400cm
Background 2

Self

Source Type

200cm

𝜇𝜇𝛾𝛾
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between the marginal distributions for the source type dataset (black) and the background 

training dataset (violet).  Again, a clear trend is visible as a comparison is made from the 

stronger (200 cm) to the weaker (400 cm) source to no source present (Bkgd2) versus the 

background measurement data (Bkgd1).   

The marginal distributions provide a response to the most useful question from the 

interaction model: what is the probability that the relationship between 𝑆𝑆𝑆𝑆5 and gross count 

measurements from background is less than the relationship between 𝑆𝑆𝑆𝑆5 and gross count 

measurements from a sample?  This question can be answered by computing the difference 

between the marginal distributions, 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, for each sample from the posterior, and find the 

proportion of differences below 0. A total of  104 samples are taken from the posterior for each 

𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 calculated.  The distributions for each 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 can be seen in Appendix A.   The results of 

these computations for each of the source strengths are shown in Table 3-4.  

Table 3-4.  𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 for Given Source Types   

 

These values are not the same as the overlap of the marginal distributions in Figure 3-6, 

because the values are derived from the posterior distribution of differences in slopes.  It is 

important to remember that this Bayesian model structure produces distributions of distributions, 

which is why this distinction exists and what makes 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 unique.  Additionally, these are not the 

probability of any observable event.  They are probabilities computed by the model based on the 

question asked, given this particular dataset.  For example, of all of the possible states the model 

calculates in the experiment with the 200 cm source distance dataset, 100% are consistent with 

1
1

0.3201
0.5284

200cm
400cm

Background 2
Self

Source Type 𝛾𝛾𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑
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the data and claim that 𝛾𝛾𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is less than 𝛾𝛾200𝑐𝑐𝑐𝑐.  In repeat sampling, we do expect 100% of the 

measurements from background to have a 𝛾𝛾 less than measurements with a source present at a 

distance of 200 cm from the detector.  This is an important concept to distinguish when drawing 

conclusions from a Bayesian model.  The model serves as a way to update the operators’ beliefs 

given their previous assumptions and the data presented; it does not directly answer the question 

“what is the probability of observing an event?”  This is what makes comparing observable 

outcomes from a Bayesian analysis and a frequentist approach problematic.  However, decisions 

based on those observable outcomes can be compared, especially in a simplified scenario where 

the decision space is either detection or no detection.  Using the linear interaction model as a 

detection method can be achieved by setting a threshold on the probability of 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  Doing so 

creates an operationally acceptable limit on how likely it is that the relationship between 

observed gross counts and 𝑆𝑆𝑆𝑆5 from measurements of an unknown sample is greater than the 

relationship between observed gross counts and 𝑆𝑆𝑆𝑆5 from measurements of a background 

sample.  Detection using 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is then accomplished by defining a decision such that a set of 

measurements, 𝑖𝑖, analyzed in the model are considered to trigger an alarm if 

                                  
          Pr∗ < 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 

(31) 

 
where Pr∗ is a pre-specified, fixed probability and 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 is the probability that the relationship 

between observed gross counts and 𝑆𝑆𝑆𝑆5 from measurements of an unknown sample are greater 

than the relationship between observed gross counts and 𝑆𝑆𝑆𝑆5 from measurements of a 

background sample. 
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Testing Under Operationally Equivalent Conditions 
 

The results presented up to this point have been based on analyses using 1800 one s gross 

count measurements.  The total time required to collect this data is 30 minutes, which is a 

relatively long detection time.  Considering that 𝑆𝑆𝑆𝑆5 is constructed from 5 individual 1 s gross 

count measurements, it is reasonable to test the model using a data array of 𝑖𝑖 = 5.  This would be 

equivalent to a 5 s measurement time consisting of 𝑛𝑛 = 5 individual measurements.  Before this 

can be done, the model’s output must be tested at reducing 𝑛𝑛 values to verify that the 

observations seen in the 𝑛𝑛 = 1800 experiment would hold.  The regression plots, symmetry 

plots, MAP estimates, calculated 𝛾𝛾 tables, marginal distributions, and marginal 𝜇𝜇𝛾𝛾 tables for 

these 𝑛𝑛 values can be seen in Appendix B.  𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 for each 𝑛𝑛 value per source type is shown in 

Table 3-5. 

Table 3-5.  𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 per 𝑛𝑛 Measurements for a Given Source Type 

 

It should be noted that the data used per 𝑛𝑛 overlap, meaning that the data from 𝑛𝑛 = 4 make up 

half of the data from 𝑛𝑛 = 8, and the data from 𝑛𝑛 = 8 make up half of the data from 𝑛𝑛 = 15, etc.  

This was done to see how the relationships modeled from the data changed as 𝑛𝑛 was reduced.  If 

non-overlapping data were used, it would be difficult to discern if the outcomes observed were a 

result of 𝑛𝑛 decreasing, or if the outcomes were influenced by the unique relationship between 

observed gross counts and 𝑆𝑆𝑆𝑆5 for that particular dataset.  It can be seen that similar trends from 

the 𝑛𝑛 = 1800 dataset persist as 𝑛𝑛 is reduced, confirming that testing the model with an 𝑛𝑛 = 5 (or 

equivalently, 𝑖𝑖 = 5) dataset is acceptable.  The Self results are always expected to be somewhere 

n 1800 900 450 225 113 57 29 15 8 4
200cm 1 1 1 1 1 1 0.999 0.966 0.985 0.699
400cm 1 1 1 1 0.982 0.74 0.791 0.789 0.614 0.216
Bkgd2 0.32 0.486 0.566 0.605 0.302 0.201 0.555 0.079 0.065 0.052

Self 0.528 0.51 0.517 0.509 0.496 0.478 0.47 0.437 0.433 0.42
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around 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.5 due to the model not being able to find a significant difference between the 

two datasets being analyzed, evident by the fact that both categories (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 0, 1) are 

being given roughly equal probability densities by the model. 

Commonly in non-Bayesian statistical inference, a minimum number of observations are 

required for a useful statistical estimate, making statistical inferences questionable at small 

sample sizes.  A Bayesian estimate, in contrast, is valid at any sample size.  This does not mean 

that more observations are not useful; the estimates just have a clear interpretation based on the 

model.  In the case of only using five measurements per analysis in the model, the same question 

is asked before using 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, but basing the question on considerably fewer samples.  The model 

is approximating the relationship between 𝑆𝑆𝑆𝑆5 and gross counts based on whether or not a 

source is present using only the five measurements analyzed and the inferences used to shape the 

model (the priors).  The strength of 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is that the uncertainty associated with using only five 

measurements is contained entirely in the marginal distributions for 𝛾𝛾𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and 𝛾𝛾𝑈𝑈𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛.  The 

only uncertainty that can be associated with 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is sampling uncertainty, which is addressed by 

using a large number of samples (104) taken from the posterior distribution to approximate the 

marginal distributions used to calculate 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.   

The same data used to generate the 1800 individual 1 s measurement results were used, 

but the data were partitioned into five 1 s measurement sequences.  Figure 3-7 displays the 

results from analyzing 360 independent measurement samples using Pr∗ values ranging from 0.5 

to 0.9975. 
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Figure 3-7.  Detection rates for different Pr*   

While the gross count measurements used to calculate an 𝑆𝑆𝑆𝑆5 in a given measurement sequence 

are being used in the preceding measurement sequence as outcome variables in the regression, 

this overlap is equivalent to an online measurement system.  Detections for the 200 cm and 

400 cm source distances can be equated to a true detection rate (true positives), and detections 

on Bkgd2 are equivalent to false alarms (false positives).  Setting Pr∗ = 0.5 is the least 

conservative decision, evident from the amount of alarms triggered on the Bkgd2 data.  At an 

approximate “false positive” rate of 0.05 (when the detection rate of Bkgd2 ≈ 0.05), the 

detection rate for the 200 cm source distance is ~0.33, and ~0.10 for the 400 cm source 

distance.  This is roughly equal to the alarm rates observed using the frequentist decision 

threshold on Page 20.  To further relate these results to common frequentist data analyses, 

characteristic limits for measurements of ionizing radiation (Equation 4) were applied to the 

same data.  The data were transformed such that they would be in the form of gross count 

measurements over 5 s intervals, equivalent to the amount of time used for one “measurement” 

dataset analyzed by the interaction model.  The decision threshold was determined using the 

same background measurement data utilized as the training dataset in the Bayesian interaction 
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model.  Notably, the entire dataset was used to determine this decision threshold.  The interaction 

model only analyzes the equivalent of one 5 s background measurement each time it performs its 

analysis, under a partially non-informed prior.  However, basing decisions on one 5 s 

background measurement is not good measurement technique using frequentist statistics, and all 

360 measurements were used to determine the decision threshold.  This decision threshold was 

used to analyze data from the 200 cm and 400 cm source distances to determine the fraction of 

true positive detections on the data.  The same decision threshold was used to determine the 

fraction of alarms on the Bkgd2 data.  This was done so that results from the decision threshold 

analysis could be directly compared to results from the interaction model analysis.  Figure 3-8 

shows the comparison of true positives to false positives for the interaction model and the 

decision threshold analyses at operationally relevant false positive rates (false positives ≤ 0.1).   

 
Figure 3-8. Detection efficiencies for the interaction model and the frequentist decision threshold 
(5s traditional) for the 200cm and 400cm source distances for 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 < 𝟎𝟎.𝟏𝟏 (log scale) 

Clearly, the frequentist decision threshold outperforms the interaction model when comparing 

the 200 cm source distance data, but they are similar when comparing the 400 cm source 

distance data.  This result is encouraging, considering that detection of weaker sources is 
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challenging for radiation counting statistics.  Further, the frequentist decision threshold was not 

able to attain a false positive rate equal to 0, while the interaction model was able to do so and 

still had positive detections on the sources (0.070 for the 200 cm source distance and 0.008 for 

the 400 cm source distance).  The limitations of the dataset size may have influence on results 

for lower false positive rates.  Given that the dataset consists of 360 observations, having one 

false positive is equal to a false positive rate = 1 360⁄ = 0.0028.  This false positive rate 

occurred for two different Pr∗ values (0.995 and 0.9925), whereas this only occurred for 

𝛼𝛼 = 0.0025 for the frequentist decision threshold.  More data could be collected to further study 

the difference between the frequentist decision threshold and Bayesian interaction model.  

However, considering no significant difference between the two approaches is observed with the 

current 400 cm dataset, no further data inclusion is deemed necessary at this time as significant 

differences are not expected. 

Model Specification and Optimization 
 

An essential facet of Bayesian data analysis is model specification and optimization 

(Gelman, et al., 2013).  Bayesian data analysis requires the construction and testing of models 

that are applied to the data in question.  This is due to the fact that infinite models can be created 

to describe a dataset; however, only a small fraction of those are applicable to the research 

question in a logical manner.  The idea is to build models with improved parameter estimates to 

better describe the phenomena being analyzed and test their estimated predictive efficiencies 

with a WAIC test.  Applied to the work presented thus far, the simplest way to do this is test the 

original multivariate model with no interaction against interaction models with identical 

distribution forms but different parameter bounds.  This also satisfies a basic tenant in Bayesian 

model development: models with fewer assumptions are to be preferred (Michel, 2016).  The 
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original interaction model contained normal distributions with parameter estimates that 

maintained a state of partially-informed ignorance.  Changing the distributions used in the 

original model would add significant assumptions to the model, as well as increase the 

complexity of model selection.  Two viable assumptions that could be applied to this model are 

using a model with an informed 𝛼𝛼-intercept, and using a model that allows broader values for 

linear relationships.  An informed 𝛼𝛼-intercept model would force the model to focus on a 

specific range for the expected gross count values when data inputs are only from background.  

Ideally, the 𝛼𝛼 prior distribution would possess a mean value equal to the mean of the background 

gross count distribution training dataset (617.7) with a relatively narrow standard deviation.  

Adhering to these concepts, the model takes the following form: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾𝑖𝑖 × 𝑆𝑆𝑆𝑆5𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 

𝛾𝛾𝑖𝑖 = 𝛽𝛽𝑆𝑆𝑆𝑆5 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 
𝛼𝛼 ~ Normal(617.7,3) 
𝛽𝛽𝑆𝑆𝑆𝑆5 ~ Normal(0,1) 

𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ~ Normal(0,1) 
𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 ~ Normal(0,1). 

                                                      𝜎𝜎 ~ Uniform(0,50) (32) 
 

The only difference between this model and the original interaction model in Equation 29 is the 

parameter values for the 𝛼𝛼 prior.  A standard deviation of 3 was chosen so that the range of 

values were limited, but not so stringent that the model would undoubtedly cause the data to be 

fit incorrectly.  The second variation of the original model, where broader values for linear 

relationships are applied, is constructed by increasing the standard deviation for all 𝛽𝛽 priors.  The 

model takes the following form: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾𝑖𝑖 × 𝑆𝑆𝑆𝑆5𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 

𝛾𝛾𝑖𝑖 = 𝛽𝛽𝑆𝑆𝑆𝑆5 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 
𝛼𝛼 ~ Normal(600,10) 
𝛽𝛽𝑆𝑆𝑆𝑆5 ~ Normal(0,2) 

𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ~ Normal(0,2) 
𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 ~ Normal(0,2). 

                                                      𝜎𝜎 ~ Uniform(0,50) (33) 
 

A value of 2 was chosen because, in the testing process, if this model was preferred over the 

original model then the experimenter would know that the linear relationship is indeed larger 

than initially believed.   

Infinite ranges of values could be applied in different combinations to these two basic 

variations of the original model, but the point of model validation tests is to help steer the 

experimenter in a logical direction.  In theory, operators could test as many models for estimated 

predictive efficiency as they desire, but drawing meaningful conclusions from the WAIC test 

results would be difficult.  Choosing these models (multivariate linear regression with no 

interaction from Equation 26, original interaction model, informed 𝛼𝛼-intercept, and larger 𝛽𝛽 

relationship) allows the operators to test whether or not the interaction model is preferred; and if 

it was preferred, should they be more stringent in telling the model what to anticipate for the 

expected gross count value, or is the relationship between outcomes and predictors larger than 

believed.  Lastly, because the desired application of this model is to be able to test datasets in 

operationally relevant scenarios, the operators want to determine what models have a higher 

estimated predictive efficiency at reduced 𝑛𝑛 observations.  WAIC testing was performed on these 

four models for 𝑛𝑛 = 1800, 𝑛𝑛 = 900, 𝑛𝑛 = 225, 𝑛𝑛 = 29, and 𝑛𝑛 = 5 observations.  For 

nomenclature simplicity, m7.4 is the multivariate linear regression model with no interaction, 

m7.5 is the original interaction model, m7.5a is the informed 𝛼𝛼-intercept model, and m7.5b is the 

larger 𝛽𝛽 relationship model.  The results tables below report the Akaike weight, which is “an 
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estimate of the probability that the model will make the best predictions on new data, conditional 

on the set of models considered” (McElreath, 2016).  The training background dataset Bkgd1 

was tested with the 200 cm dataset, the 400 cm dataset, and the Bkgd2 dataset. 

Table 3-6. 200cm Dataset Akaike Weights from WAIC Test   

 

Table 3-7. 400cm Dataset Akaike Weights from WAIC Test  

 

Table 3-8. Bkgd2 Dataset Akaike Weights from WAIC Test  

   

In Tables 3-6 and 3-7, tests where a source was present in the dataset, no model is preferred 

across all 𝑛𝑛 observation sizes; however, m7.4 only possesses weight in 3 out of the 10 tests run.  

In Table 3-8, m7.4 is preferred across all 𝑛𝑛 observation sizes.  This result is expected because the 

test indicates that a model without interaction is preferred when two datasets from background 

are tested in the model.  In this instance, no interaction model would be required.  These results 

support the results prior to the WAIC testing claiming that the relationship between 𝑆𝑆𝑆𝑆5 and 

gross counts in a measurement depends upon whether or not a source is present.  Even though no 

n 1800 900 225 29 5
m7.5 0 0 0.3 0.27 0.29
m7.5a 0 0 0 0.49 0.01
m7.5b 1 1 0.7 0.24 0
m7.4 0 0 0 0 0.7

n 1800 900 225 29 5
m7.5 0.32 0.33 0.29 0.11 0.27
m7.5a 0.24 0.36 0.45 0.35 0.45
m7.5b 0.44 0.3 0.26 0.1 0.02
m7.4 0 0 0 0.44 0.26

n 1800 900 225 29 5
m7.5 0.18 0.17 0.15 0.2 0.37
m7.5a 0.22 0.23 0.25 0.06 0.02
m7.5b 0.17 0.15 0.15 0.21 0.07
m7.4 0.44 0.45 0.44 0.53 0.55
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model was preferred outright in the WAIC test when a source was present, it does not mean that 

an interaction model is not a valid model to apply to this scenario and dataset.  It points out that 

none of these models conclusively outperform each other on estimated future data prediction 

given the assumptions.  There are two instances where m7.4 is preferred when a source is 

present, but this result only occurs at 𝑛𝑛 = 29 and 𝑛𝑛 = 5.  For larger 𝑛𝑛 values, in which sufficient 

data are present to accurately describe the relationship between 𝑆𝑆𝑆𝑆5 and gross counts in a 

measurement, interaction models are preferred.  Given this result, the selection of m7.4 at these 

smaller 𝑛𝑛 observation sizes suggests that the interaction models tested do not describe the 

relationship between 𝑆𝑆𝑆𝑆5 and gross counts in a measurement for that particular dataset 

accurately enough.  To put this result into perspective, the 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 values for the 200 cm, 400 cm, 

and Bkgd2 datasets for the 𝑛𝑛 = 5 observations are 0.857, 0.327, and 0.025, respectively.  In the 

200 cm WAIC test for 𝑛𝑛 = 5, m7.4 was preferred even though the 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑probability was 

relatively high.  This suggests that WAIC testing may not be a viable metric for determining 

detection efficiency.  Another factor to consider is that the datasets with a size of 𝑛𝑛 = 5 will vary 

widely and produce a range of values for 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, therefore each model must be tested to ascertain 

their detection efficiencies.   

To determine the detection efficiency of the models, each of the models was tested with 

the same dataset used to test the original interaction model.  The non-interaction model was 

excluded because it does not produce a posterior distribution for 𝛾𝛾, and no detection decision can 

be made.  A model that combined the informed 𝛼𝛼-intercept and larger 𝛽𝛽 relationship (termed 

m7.5ab) was also tested to see if the two assumptions functioned “synergistically” and increased 

the detection rate when compared to other models.  This model has the following form: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾𝑖𝑖 × 𝑆𝑆𝑆𝑆5𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 

𝛾𝛾𝑖𝑖 = 𝛽𝛽𝑆𝑆𝑆𝑆5 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 
𝛼𝛼 ~ Normal(617.7,3) 
𝛽𝛽𝑆𝑆𝑆𝑆5 ~ Normal(0,2) 

𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ~ Normal(0,2) 
𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 ~ Normal(0,2). 

                                                      𝜎𝜎 ~ Uniform(0,50) (34) 
 
Total detections on the 200 cm, 400 cm, and Bkgd2 datasets for given Pr∗ values are shown in 

Appendix C.  Figures 3-9 and 3-10 display results in a manner identical to Figure 3-8, where the 

fraction of detections with a source present (Detection Rate) was plotted against the fraction of 

detections on Bkgd2 (False Positives).  The frequentist decision threshold (5s frequentist) 

detection rates are included to make the results operationally relevant. 

 
Figure 3-9.  Detection efficiencies for the various interaction models and the frequentist decision 

threshold (5s traditional) for the 200cm source distance 
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Figure 3-10.  Detection efficiencies for the various interaction models and the frequentist decision 

threshold (5s traditional) for the 400cm source distance 
 

The frequentist decision threshold clearly outperforms the interaction models for the 200 cm 

source distance dataset.  The original interaction model (m7.5) performs the worst when 

compared to the other interaction models.  The same trends are not evident in the 400 cm source 

distance dataset.  While the frequentist approach does outperform the interaction models at larger 

false positive rates, the interaction models appear to perform better at lower false positive rates 

(false positives < 0.1).  Figure 3-11 shows the plot for detections at lower false positive rates 

(log scale). 
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Figure 3-11.  Detection efficiencies for the various interaction models and the frequentist decision 

threshold (5s traditional) for the 400cm source distance for 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 < 𝟎𝟎.𝟏𝟏 (log scale) 
 

Operationally, these are the most important values to consider because it is rare to use a detection 

method allowing greater than 10% false positives.  Although no model conclusively performs the 

best, it can be seen that there are instances where the interaction model is performing better for a 

given alarm rate on Bkgd2.  Again, these results may be limited at lower false positive rates by 

the 𝑛𝑛 = 360 observations used. 

 Another possible influence on the detection efficiency may be the manner in which the 

categorical predictor is assigned.  In all of the models presented thus far, the categorical 

predictor, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 if 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is attributed to a background measurement; 0 otherwise.  

Models were developed such that the categorical predictor was flipped in which 0 is assigned to 

background measurements.  The same model forms (m7.5, m7.5a, m7.5b, m7.5ab) as before 

were tested with this flipped predictor and termed m7.5_0, m7.5a_0, m7.5b_0, and m7.5ab_0.  

Figures 3-12, 3-13, and 3-14 show the results. 
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Figure 3-12.  Detection efficiencies for the various flipped categorical predictor interaction models 

and the frequentist decision threshold (5s traditional) for the 200cm source distance 
 

 
Figure 3-13.  Detection efficiencies for the various flipped categorical predictor interaction models 

and the frequentist decision threshold (5s traditional) for the 400cm source distance 
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Figure 3-14.  Detection efficiencies for the various flipped categorical predictor interaction models 

and the frequentist decision threshold (5s traditional) for the 400cm source distance for 
𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 < 𝟎𝟎.𝟏𝟏 (log scale) 

 
The same datasets were used (except for the change in the categorical predictor in the data array) 

as in the previous results in Figures 3-9 through 3-11.  Similar trends are observed between the 

two experiments, with the exception that the fraction of detections has increased for the flipped 

categorical predictor models at higher false positive rates (Alarms on Bkgd2 > 0.1).  However, 

at operationally relevant false positive rates, the results are similar to those shown in Figure 3-11.  

It can be seen that flipping the predictor does not have a significant impact on detection 

efficiency for this dataset, and the model results are not influenced by the designation of the 

categorical predictor variable.  Total detections on the 200 cm, 400 cm, and Bkgd2 datasets for 

given Pr∗ values can be seen in Appendix C. 

 Embedded in all of the models presented up to this point is the assumption that the 

relationship between 𝑆𝑆𝑆𝑆5 and gross counts in a measurement is linear.  A power model was 

created and tested to see if the detection efficiency increased under this assumption.  Equation 27 

was modified so that the relationship between 𝑆𝑆𝐷𝐷5 and gross counts in a measurement was taken 

to the 1.5 power, such that: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾𝑖𝑖 × 𝑆𝑆𝑆𝑆𝑖𝑖1.5 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 

          𝛾𝛾𝑖𝑖 = 𝛽𝛽𝑆𝑆𝑆𝑆5 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 (35) 
  
The model was tested with the exact same parameters as m7.5, m7.5a, m7.5b, and m7.5ab with 

the exact same dataset.  The results are also plotted in an identical manner in Figures 3-15, 3-16, 

and 3-17.  The same model names used in the linear model are reported in these figures to make 

comparisons simpler.   

 
Figure 3-15.  Detection efficiencies for the various power function interaction models and the 

frequentist decision threshold (5s traditional) for the 200cm source distance  
 

 
Figure 3-16.  Detection efficiencies for the various power function interaction models and the 

frequentist decision threshold (5s traditional) for the 400cm source distance 
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Figure 3-17.  Detection efficiencies for the various power function interaction models and the 

frequentist decision threshold (5s traditional) for the 400cm source distance for 
𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 < 𝟎𝟎.𝟏𝟏 (log scale) 

 
As with the other models, the 200 cm dataset heavily favors the frequentist decision threshold.  

The 400 cm dataset results are comparable to the linear model results, suggesting that changing 

the model from a linear to a power model does not significantly change the detection efficiency 

of the interaction model. 

 Simple model alterations, like the power model presented above, did not change the 

calculation of 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 considerably because the assumptions for the distributions and parameter 

estimates did not change.  This allows the continued use of the quadratic approximation to 

calculate the necessary estimates for the relevant posterior distributions.  A noted strength in 

Bayesian statistics is the development of statistically diverse models that could not be applied in 

the frequentist perspective.  The models typically take on forms involving non-conjugate priors 

and hyperparameters (Gelman, et al., 2013) that require MCMC to estimate the posterior 

distribution.  Such multilevel models require diagnostic tools to ensure that Markov chains have 

been defined correctly and converge to an estimate, that each successive sample within each 

parameter is not highly correlated with the sample before it, and that the chains are efficient 
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samplers.  While these are valuable tools for a Bayesian statistician, MCMC algorithm 

performance is outside of the scope of this research.  Further, the philosophical implications for 

creating a diverse model applied to this detection scenario require statistical theory far beyond 

what has been presented in this dissertation.  However, a simple multilevel model can be 

constructed that maintains the entropy and information criterion principles.  This is accomplished 

by applying hyperparameters to the 𝛼𝛼-intercept.  The model takes the following form 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎) 
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾𝑖𝑖 × 𝑆𝑆𝑆𝑆5𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 

𝛾𝛾𝑖𝑖 = 𝛽𝛽𝑆𝑆𝑆𝑆5 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 
𝛼𝛼 ~ Normal(𝜇𝜇𝛼𝛼,𝜎𝜎𝛼𝛼) 
𝜇𝜇𝛼𝛼 ~ Normal(600,10) 
𝜎𝜎𝛼𝛼 ~ HalfCauchy(0,1) 
𝛽𝛽𝑆𝑆𝑆𝑆5 ~ Normal(0,1) 

𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ~ Normal(0,1) 
𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5 ~ Normal(0,1). 

                                                      𝜎𝜎 ~ Uniform(0,50) (35) 
 

Parameter values for the prior distribution of 𝜇𝜇𝛼𝛼 are equal to the parameter values for the 𝛼𝛼-

intercept in the original interaction model.  A half-Cauchy distribution was used for the prior 

distribution of 𝜎𝜎𝛼𝛼.  It is a typical distribution to use in MCMC sampling models when nothing is 

assumed about the standard deviation (McElreath, 2016).  In this model, the outcome variable 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a vector of varying intercept parameters.  This type of model is typically applied when 

clustering variables, a method that groups similar variables into representative groups (SAS 

Institute, 2018).  This is actually accomplished with the incorporation of the categorical predictor 

in the original interaction model, but the purpose of testing this model is to see if a simple 

multilevel model can improve detection efficiency by creating better parameter estimates.  The 

model was tested using 𝑛𝑛 = 5 measurements for 5 different observations.  𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 was calculated 
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from the estimates and compared to the 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 calculations from the original interaction model 

using the same dataset.  The comparison is shown in Table 3-10. 

Table 3-10. 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Estimates for 5 Individual Observations Using the Original Interaction Model 
and the Multilevel Interaction Model Using MCMC for Various Source Types 

 

 

It can be seen that no significant difference exists between the two models regardless of the 

dataset.  The result suggests that for this simpler model, MCMC estimates produce 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑values 

similar to the original interaction model and detection efficiencies are expected to be similar.  

However, this does not mean that more complex models would not perform better than the 

models presented here.  Presumably, given enough knowledge, a Bayesian approach would 

perfectly model the relationship between 𝑆𝑆𝑆𝑆5 and gross counts in a measurement.  But, 

calculating the estimates for these models requires computation time not afforded in the 

detection scenario presented. 

Operational Considerations 
 
 A wide range of Bayesian applications to radiation detection exists for source localization 

and identification and characterization of radioactive samples.  These techniques are limited by 

the requirement of highly specified training datasets and relatively long computation times.  

While their accuracy and precision is sufficient given enough acquisition time, a Bayesian 

statistical approach to rapid detection using gross count measurements provides a basic detection 

method that can be used in low fidelity systems.  These systems are typically utilized in 

Original MCMC Original MCMC Original MCMC
0.857 0.835 0.327 0.347 0.025 0.044
0.982 0.957 0.601 0.576 0.257 0.291
0.656 0.653 0.730 0.707 0.405 0.405
0.379 0.373 0.972 0.934 0.861 0.855
0.228 0.239 0.196 0.205 0.957 0.900

200cm 400cm Bkgd2
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stationary portal monitors.  The interaction model presented has been tested under an acquisition 

time interval equivalent to 5 s on measurements collected by a stationary, continuously operating 

instrument.  The model structure allows for the use of the quadratic approximation to calculate 

posterior estimates required for detection, a technique that is not computationally demanding and 

bears a negligible time increase to decision making.  The set up for this system would require 

simultaneous acquisition and analysis of measurements from background and the sample in 

question.  Data collected and believed to be background would serve as the training dataset.  This 

component of the detection system is advantageous in that an established training dataset is not 

necessary and long run background measurements are not required to establish parameter 

estimates, unlike the frequentist decision threshold.  To ensure that the results observed thus far 

are not a result of the specific structure of the datasets analyzed, the data were randomized and 

new 𝑆𝑆𝑆𝑆5 were calculated.  The new data arrays consisted of the same data used to generate the 

1800 individual 1 s measurement, and the data were again partitioned into five 1 s measurement 

sequences.  The results of the analysis are shown in Figures 3-19, 3-20, and 3-21. 

 
Figure 3-19.  Detection efficiencies for the various interaction models and the frequentist decision 

threshold (5s traditional) for the 200cm source distance using randomized data 
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Figure 3-20.  Detection efficiencies for the various interaction models and the frequentist decision 

threshold (5s traditional) for the 400cm source distance using randomized data 
 

 
Figure 3-21.  Detection efficiencies for the various interaction models and the frequentist  

decision threshold (5s traditional) for the 400cm source distance for  
𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 < 𝟎𝟎.𝟏𝟏 (log scale) using randomized data 

 
Similar trends are observed here when compared to the original dataset, showing that the 

observed results are not simply due to a particular dataset.  The interaction model is, however, 

extremely sensitive to statistical differences in training dataset distributions.  As seen in Table 2-

1, the mean of the distributions for Bkgd1 and Bkgd2 are nearly identical, while the mean of the 

distribution for Bkgd3 is lower than the means of Bkgd1 and Bkgd2 by approximately 2 counts.  

Figures 3-22 and 3-23 display results from the tests identical to the 5 s measurement experiments 



72 
 

for the 400 cm source distance using the original interaction model presented throughout this 

dissertation, with the exception that the training dataset is Bkgd2 and the dataset used to test the 

false positive rate is Bkgd3. 

 
Figure 3-22.  Detection efficiencies for the various interaction models and the frequentist decision 

threshold (5s traditional) for the 400cm source distance when the training dataset and the 
background dataset differ statistically 

 

 
Figure 3-23.  Detection efficiencies for the various interaction models and the frequentist  

decision threshold (5s traditional) for the 400cm source distance when the training dataset 
and the background dataset differ statistically for 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 < 𝟎𝟎.𝟏𝟏 

 
The detection efficiency dropped drastically.  This is due to a large amount of false positives 

occurring (triggers on Bkgd3).  This result highlights what would happen if the training dataset 

was acquired in a location where the background differed from the location where the sample in 
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question was being measured.  This is not due to a “unique” order of the dataset, as it was 

verified in Figures 3-19 through 3-21 that the model is not influenced by the structure of a 

dataset.  This result is extremely important to consider given that all of the tests presented were 

carried out on data where the source was stationary and continuously within the field of the 

window of the detector.  In a scenario where the source is not stationary, the gross count 

measurement per time interval is roughly a function of distance from the detector window.  The 

interaction model would be sensitive to the changes occurring per unit time interval, especially 

one in which the source is passing by the detector.  The same datasets used to create Figures 3-22 

and 3-23 were applied to the flipped categorical predictor model to verify if the same sensitivity 

occurred.  Figures 3-24 and 3-25 display the results. 

 
Figure 3-24.  Detection efficiencies for the various flipped categorical predictor interaction models 

and the frequentist decision threshold (5s traditional) for the 400cm source distance when the 
training dataset and the background dataset differ statistically 
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Figure 3-24.  Detection efficiencies for the various flipped categorical predictor interaction models 

and the frequentist decision threshold (5s traditional) for the 400cm source distance when the 
training dataset and the background dataset differ statistically for 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 < 𝟎𝟎.𝟏𝟏 

 
These results look similar to the models where statistically similar background distributions were 

used.  Given that the flipped categorical predictor model “washed out” the sensitivity of the 

interaction model, it may be best to only use interaction models where the categorical predictor 

assigns 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 if 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is attributed to a background measurement; 0 otherwise. 
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CONCLUSION 
 
 
 

Numerous studies have been published using Bayesian statistics in source localization 

and identification, characterization of radioactive samples, and uncertainty analysis; but there is a 

limited amount of material specific to the development of a decision threshold for simple gross 

count measurements using Bayesian statistics.  Difficulties arise when applying decision 

techniques to low count rate data, which are restricted by the fact that decisions are being made 

on individual gross count measurements alone.  As the overlap of the distributions of the 

background and source increases, the number of alarms triggered with a source present 

decreases.  A decision threshold on individual measurements will always be limited by this 

caveat.  The investigation presented demonstrates a method to develop a viable Bayesian model 

to detect radiological sources using gross count measurements in low fidelity systems.  Bayesian 

statistics provides a theoretically infinite number of approaches to this scenario; the challenge 

lies in creating an approach that is operationally tractable while adhering to Bayesian modeling 

strategies.   

The Bayesian interaction model was proven statistically by comparing a multivariate 

regression model with and without interaction to study if the relationship between 𝑆𝑆𝑆𝑆5 and gross 

counts in a measurement depends upon whether or not a source is present.  The interaction model 

was then verified through the fact that these types of models are symmetrical and finding that the 

relationship between whether or not a source is present and gross counts in a measurement is 

dependent upon 𝑆𝑆𝑆𝑆5.  After finding that the interaction model was both valid, and that these 

relationships existed for the data tested, Bayesian statistical analyses were used to understand the 

parameters surrounding the original relationship that 𝑆𝑆𝑆𝑆5 and gross counts in a measurement 
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depends upon whether or not a source is present.  This relationship is described statistically by 

the parameter 𝛾𝛾; and a perspective was presented, 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, that allowed the question “what is the 

probability that the relationship between 𝑆𝑆𝑆𝑆5 and gross count measurements from background is 

less than the relationship between 𝑆𝑆𝑆𝑆5 and gross count measurements from a sample?”  This 

question served as the framework for a decision rule, Pr∗ < 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖, which can be used in 

detection scenarios and applied to varying forms of the interaction model.  The interaction model 

was tested on data and compared to a frequentist decision threshold to determine its detection 

efficiency.  The model was first tested to show that the decision rule could be applied to an 

operationally relevant number of measurements (𝑛𝑛 = 5), and then tested on a larger dataset 

comprised of this measurement length.  The model was found to perform comparably to the 5s 

frequentist decision threshold for weak sources at lower false positive rates.   

Various forms of the model were then developed based on information criterion and 

tested in the same manner.  The scope of the models tested was limited to reasonable changes to 

parameter estimates established by the maximum entropy principle and occupational limitations 

to detection due to computation time.  WAIC testing did not provide a conclusive model for the 

best predictive efficiency.  Model variations in parameter estimates, flipping the categorical 

predictor, and changing the nature of the relationship from a linear to a power function displayed 

similar detection efficiencies.  A multilevel model was developed and tested, but it was found to 

produce 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 values similar to the original interaction model.  Any further model validation 

using multilevel models was deemed unnecessary due to the computation time required for the 

MCMC calculations used.  These results all suggest that the original linear model is sufficient at 

this time, and that more rigorous modeling techniques would be required for any possible 

improvement in detection efficiency.   
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The interaction model operates by examining a set of previously recorded background 

gross count measurements, the training data Bkgd1, and resulting 𝑆𝑆𝑆𝑆5 with a set of unknown 

sample gross count measurements and resulting 𝑆𝑆𝑆𝑆5.  These two sets of data make up the arrays 

for 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 and 𝑆𝑆𝑆𝑆5𝑖𝑖.  Included in the data array is 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖, such that each index is 

correctly categorized as a known background measurement or an unknown sample measurement.  

This setup allows the model to work in a way that is intuitive to the operational measurement 

technique: known background data and resulting estimates are used to create a relationship that is 

expected to be consistent across all measurements with no source present, and this relationship is 

compared to the samples in question to judge if a source is present.  The set up for this system 

would require simultaneous acquisition and analysis of measurements from background and the 

sample in question.  Data collected and believed to be background would serve as the training 

dataset.  This component of the detection system is advantageous in that an established training 

dataset is not necessary and long run background measurements are not required to establish 

parameter estimates, unlike the frequentist decision threshold.  The interaction model is 

extremely sensitive to statistical differences in training dataset distributions.  This result is 

extremely important to consider given that all of the tests presented were carried out on data 

where the source was stationary and continuously within the field of view of the detector.  In a 

scenario where the source is not stationary, the gross count measurement per time interval is 

roughly a function of distance from the active region of the detector.  The interaction model 

would be sensitive to the changes occurring per unit time interval, especially one in which the 

source is passing by the detector.  A feature such as this in a string of measurements may not be 

detectable in the 5 s equivalent of the frequentist decision threshold.  This scenario should be 

tested in a laboratory setting to determine the sensitivity of the interaction model.  A larger 
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dataset than the one presented here should also be tested to study the detective efficiency of the 

models at extremely low (false positives < 0.01) false positive rates.   

 A final consideration for the interaction model is that 𝛾𝛾, and consequently this categorical 

linear interaction model, is universal.  Even though the scope of the paper studies the relationship 

between 𝑆𝑆𝑆𝑆5 and gross counts in a measurement, in theory any predictor can be used in place of 

𝑆𝑆𝑆𝑆5.  For example, interaction models were developed using 𝑆𝑆𝑆𝑆4 (standard deviation of the 

current measurement and the previous three measurements) and 𝑆𝑆𝑆𝑆3 (standard deviation of the 

current measurement and the previous two measurements) and tested over a small but identical 

dataset to the ones presented in this dissertation.  The regression plots tested against the 400 cm 

dataset for the interaction model only are shown in Figures 4-1 and 4-2. 

 
Figure 4-1.  Regression plots using 𝑺𝑺𝑺𝑺𝑺𝑺 

 

 
Figure 4-1.  Regression plots using 𝑺𝑺𝑺𝑺𝑺𝑺 
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The figures show that the interaction model can still detect differences for weak sources using 

different predictors.  This feature of the interaction model is operationally advantageous and 

highlights the strength of Bayesian statistics.  In theory, the experimenter (or health physicist) 

can construct a parameter they deem important in the detection scenario and use posterior 

distributions as a means to determine whether or not a source is present.  The Bayesian model 

can provide abstract statistical knowledge about unique parameters, allowing the applications 

and capabilities of this technique to far outreach those of the frequentist decision threshold 

applied to gross count measurements.  
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APPENDIX A 
 
 
 
Regression and Symmetry Plots Using Bkgd2 as the Training Dataset 

 
Figure A-1.  Regression plots for the 200cm source distance 
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Figure A-2.  Regression plots for the 400cm source distance 

 
Figure A-3.  Regression plots for the Bkgd3 source distance.  Note that Background1 

is actually the Bkgd2 dataset, and Background2 is the Bkgd3 dataset 
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Figure A-4.  Regression plots for the Self-test 

 



86 
 

 
Figure A-5.  Symmetry plots comparing Bkgd2 (labeled Bkgd/Bkgd1) to the 200cm 

source distance (top left) dataset, the 400cm source distance dataset (top right), 
the Bkgd3 dataset (Bkgd2 in bottom left), and the Self-test (bottom right)  
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Regression and Symmetry Plots Using Bkgd3 as the Training Dataset 
 

 
Figure A-6.  Regression plots for the 200cm source distance 

 

 
 

Figure A-7.  Regression plots for the 400cm source distance 
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Figure A-8.  Regression plots for the Bkgd1 source distance.  Note that Background1 

is actually the Bkgd3 dataset, and Background2 is the Bkgd1 dataset 
 

 
Figure A-9.  Regression plots for the Self-test 
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Figure A-10.  Symmetry plots comparing Bkgd2 (labeled Bkgd/Bkgd1) to the 200cm 

source distance (top left) dataset, the 400cm source distance dataset (top right), 
the Bkgd3 dataset (Bkgd2 in bottom left), and the Self-test (bottom right)  
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𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Distributions 
 

 
Figure A-11.  Distributions of 𝜸𝜸𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 for labeled source distance datasets using the Bkgd1 

training dataset 
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APPENDIX B 
 
 
 
𝑛𝑛 = 900 Data  

 
Figure B-1.  Regression plots for the 200cm source distance 
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Figure B-2.  Regression plots for the 400cm source distance 

 
Figure B-3.  Regression plots for the Bkgd2 source distance 
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Figure B-4.  Regression plots for the Self-test 
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Figure B-5.  Symmetry plots comparing Bkgd1 (labeled Bkgd/Bkgd1) to the 200cm 

source distance (top left) dataset, the 400cm source distance dataset (top right), 
the Bkgd2 dataset (Bkgd2 in bottom left), and the Self-test (bottom right) 

 

Table B-1.  MAP Estimates for Parameters from the Interaction Model 

 

 

 

634.92 1.9 621.37 1.87 619.15 1.83 618.8 1.86
0.49 0.08 0.17 0.07 -0.09 0.07 -0.08 0.08
-1.9 0.97 -0.25 0.96 0.04 0.96 0.09 0.96
-1.1 0.06 -0.34 0.06 0 0.06 0 0.06

26.33 0.44 25.89 0.43 25.96 0.43 25.38 0.42

200cm 400cm Background 2 Self
Unknown Sample Dataset

parameter 𝜃𝜃
𝛼𝛼

𝛽𝛽𝑆𝑆𝑆𝑆5
𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆

𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5
𝜎𝜎

𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃



95 
 

Table B-2.  Calculated 𝛾𝛾 for Given Source Types 
 

 
 

 
Figure B-6.  Comparisons of marginal distributions for Bkgd1 (violet) versus source type 400cm 

(top left), 400cm (top right), Bkgd2 (bottom left), and Self (bottom right)  
 

Table B-3.  Means of the Marginal Distributions for a Given Source Type 
 

 

No Source Source
-0.61 0.49
-0.16 0.17
-0.09 -0.09
-0.08 -0.08Self

Source Type

200cm
400cm

Background 2

𝛾𝛾

No Source Source
-0.6082 0.4876
-0.1636 0.1731
-0.0919 -0.0934
-0.0786 -0.0766

Source Type

200cm
400cm

Background 2
Self

𝜇𝜇𝛾𝛾
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𝑛𝑛 = 450 Data 
 

 
Figure B-7.  Regression plots for the 200cm source distance 

 

 
Figure B-8.  Regression plots for the 400cm source distance 
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Figure B-9.  Regression plots for the Bkgd2 source distance 

 

 
Figure B-10.  Regression plots for the Self-test 
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Figure B-11.  Symmetry plots comparing Bkgd1 (labeled Bkgd/Bkgd1) to the 200cm 

source distance (top left) dataset, the 400cm source distance dataset (top right), 
the Bkgd2 dataset (Bkgd2 in bottom left), and the Self-test (bottom right) 

 
 

Table B-4.  MAP Estimates for Parameters from the Interaction Model 

 

 
 

633.78 2.48 621.7 2.45 616.62 2.47 617.83 2.4
0.51 0.1 0.19 0.1 0.01 0.1 -0.05 0.11
-1.06 0.98 -0.21 0.98 0.17 0.98 0.09 0.98
-1.14 0.08 -0.38 0.08 -0.01 0.08 0 0.08
25.99 0.61 25.23 0.6 25.42 0.6 24.26 0.57

Unknown Sample Dataset
200cm 400cm Background 2 Self

parameter 𝜃𝜃
𝛼𝛼

𝛽𝛽𝑆𝑆𝑆𝑆5
𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆

𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5
𝜎𝜎

𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃
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Table B-5.  Calculated 𝛾𝛾 for Given Source Types 
 

 
 

 
Figure B-12.  Comparisons of marginal distributions for Bkgd1 (violet) versus source type 400cm 

(top left), 400cm (top right), Bkgd2 (bottom left), and Self (bottom right)  
 

Table B-6.  Means of the Marginal Distributions for a Given Source Type 
 

 

No Source Source
-0.61 0.49
-0.19 0.19
-0.09 -0.09
-0.05 -0.05

200cm
400cm

Background 2
Self

Source Type
𝛾𝛾

No Source Source
-0.6396 0.5042
-0.194 0.1871
-0.0072 0.0043
-0.0521 -0.0493Self

Source Type

200cm
400cm

Background 2

𝜇𝜇𝛾𝛾
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𝑛𝑛 = 225 Data 
 

 
Figure B-13.  Regression plots for the 200cm source distance 

 

 
Figure B-14.  Regression plots for the 400cm source distance 
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Figure B-15.  Regression plots for the Bkgd2 source distance 

 

 
Figure B-16.  Regression plots for the Self-test 
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Figure B-17.  Symmetry plots comparing Bkgd1 (labeled Bkgd/Bkgd1) to the 200cm 

source distance (top left) dataset, the 400cm source distance dataset (top right), 
the Bkgd2 dataset (Bkgd2 in bottom left), and the Self-test (bottom right) 

 
 

Table B-7.  MAP Estimates for Parameters from the Interaction Model 

 

 
 

637.19 3.33 621.61 3.3 618.05 3.39 620.29 3.21
0.32 0.13 0.25 0.13 -0.06 0.13 -0.17 0.15
-0.53 0.99 0.03 0.99 0.17 0.99 0.1 0.99
-1.16 0.11 -0.47 0.1 -0.03 0.1 0 0.1
25.98 0.87 24.45 0.82 24.98 0.83 23.21 0.77

200cm 400cm Background 2 Self
Unknown Sample Dataset

parameter 𝜃𝜃
𝛼𝛼

𝛽𝛽𝑆𝑆𝑆𝑆5
𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆

𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5
𝜎𝜎

𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃
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Table B-8.  Calculated 𝛾𝛾 for Given Source Types 
 

 
 

 
Figure B-18.  Comparisons of marginal distributions for Bkgd1 (violet) versus source type 400cm 

(top left), 400cm (top right), Bkgd2 (bottom left), and Self (bottom right)  
 

Table B-9.  Means of the Marginal Distributions for a Given Source Type 
 

 

No Source Source
-0.84 0.32
-0.22 0.24
-0.09 -0.06
-0.17 -0.17

200cm
400cm

Background 2
Self

Source Type
𝛾𝛾

No Source Source
-0.8435 0.3201
-0.2219 0.2474
-0.0868 -0.0583
-0.1744 -0.1713

Background 2
Self

Source Type

200cm
400cm

𝜇𝜇𝛾𝛾
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𝑛𝑛 = 113 Data 
 

 
Figure B-19.  Regression plots for the 200cm source distance 

 

 
Figure B-20.  Regression plots for the 400cm source distance 
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Figure B-21.  Regression plots for the Bkgd2 source distance 

 

 
Figure B-22.  Regression plots for the Self-test 
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Figure B-23.  Symmetry plots comparing Bkgd1 (labeled Bkgd/Bkgd1) to the 200cm 

source distance (top left) dataset, the 400cm source distance dataset (top right), 
the Bkgd2 dataset (Bkgd2 in bottom left), and the Self-test (bottom right) 

 
 

Table B-10.  MAP Estimates for Parameters from the Interaction Model 

 

 
 

629375 4.87 618.08 4.99 610.42 4.76 612.86 5.11
0.53 0.19 0.25 0.2 0.17 0.2 0.16 0.22
-0.18 1 -0.02 0.99 0.1 0.99 0.06 0.99

-1 0.14 -0.28 0.14 0.07 0.14 0 0.14
27.86 1.32 25.08 1.22 25.59 1.2 26.01 1.23

200cm 400cm Background 2 Self
Unknown Sample Dataset

parameter 𝜃𝜃
𝛼𝛼

𝛽𝛽𝑆𝑆𝑆𝑆5
𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆

𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5
𝜎𝜎

𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃
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Table B-11.  Calculated 𝛾𝛾 for Given Source Types 
 

 
 

 
Figure B-24.  Comparisons of marginal distributions for Bkgd1 (violet) versus source type 400cm 

(top left), 400cm (top right), Bkgd2 (bottom left), and Self (bottom right)  
 

Table B-12.  Means of the Marginal Distributions for a Given Source Type 
 

 

No Source Source
-0.47 0.53
-0.04 0.25
0.24 0.17
0.16 0.16

200cm
400cm

Background 2
Self

Source Type
𝛾𝛾

No Source Source
-0.4673 0.5286
-0.0374 0.2464
0.2434 0.171
0.1582 0.1574

400cm
Background 2

Self

Source Type

200cm

𝜇𝜇𝛾𝛾
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𝑛𝑛 = 57 Data 
 

 
Figure B-25.  Regression plots for the 200cm source distance 

 

 
Figure B-26.  Regression plots for the 400cm source distance 
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Figure B-27.  Regression plots for the Bkgd2 source distance 

 

 
Figure B-28.  Regression plots for the Self-test 
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Figure B-29.  Symmetry plots comparing Bkgd1 (labeled Bkgd/Bkgd1) to the 200cm 

source distance (top left) dataset, the 400cm source distance dataset (top right), 
the Bkgd2 dataset (Bkgd2 in bottom left), and the Self-test (bottom right) 

 
 

Table B-13.  MAP Estimates for Parameters from the Interaction Model 

 

 
 

626.21 5.77 615.15 6.15 608.72 6.1 609.17 6.49
0.69 0.23 0.42 0.24 0.39 0.28 0.52 0.28
-0.09 1 -0.01 1 0.04 1 0.03 1
-0.82 0.19 -0.12 0.18 0.15 0.18 0.01 0.18
25.58 1.72 24.62 1.64 23.23 1.54 23031 1.55

200cm 400cm Background 2 Self
Unknown Sample Dataset

parameter 𝜃𝜃
𝛼𝛼

𝛽𝛽𝑆𝑆𝑆𝑆5
𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆

𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5
𝜎𝜎

𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃



111 
 

Table B-14.  Calculated 𝛾𝛾 for Given Source Types 
 

 
 

 
Figure B-30.  Comparisons of marginal distributions for Bkgd1 (violet) versus source type 400cm 

(top left), 400cm (top right), Bkgd2 (bottom left), and Self (bottom right)  
 

Table B-15.  Means of the Marginal Distributions for a Given Source Type 
 

 

No Source Source
-0.13 0.69
0.3 0.42

0.54 0.39
0.53 0.52

200cm
400cm

Background 2
Self

Source Type
𝛾𝛾

No Source Source
-0.1235 0.6956
0.2953 0.4144
0.542 0.3907

0.5353 0.5253

200cm
400cm

Background 2
Self

Source Type
𝜇𝜇𝛾𝛾
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𝑛𝑛 = 29 Data 
 

 
Figure B-31.  Regression plots for the 200cm source distance 

 

 
Figure B-32.  Regression plots for the 400cm source distance 
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Figure B-33.  Regression plots for the Bkgd2 source distance 

 

 
Figure B-34.  Regression plots for the Self-test 
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Figure B-35.  Symmetry plots comparing Bkgd1 (labeled Bkgd/Bkgd1) to the 200cm 

source distance (top left) dataset, the 400cm source distance dataset (top right), 
the Bkgd2 dataset (Bkgd2 in bottom left), and the Self-test (bottom right) 

 
 

Table B-16.  MAP Estimates for Parameters from the Interaction Model 

 

 
 

620.04 7.39 611.01 7.4 600.23 7.09 601.41 7.71
0.92 0.28 0.58 0.33 0.8 0.35 0.7 0.33
-0.07 1 -0.04 1 0 1 -0.01 1
-0.86 0.27 -0.21 0.26 -0.04 0.25 0.02 0.24
29.08 2079 26.61 2.49 23.19 2.16 24.37 2.26

200cm 400cm Background 2 Self
Unknown Sample Dataset

parameter 𝜃𝜃
𝛼𝛼

𝛽𝛽𝑆𝑆𝑆𝑆5
𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆

𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5
𝜎𝜎

𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃
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Table B-17.  Calculated 𝛾𝛾 for Given Source Types 
 

 
 

 
Figure B-36.  Comparisons of marginal distributions for Bkgd1 (violet) versus source type 400cm 

(top left), 400cm (top right), Bkgd2 (bottom left), and Self (bottom right)  
 

Table B-18.  Means of the Marginal Distributions for a Given Source Type 
 

 

No Source Source
0.06 0.92
0.37 0.58
0.76 0.8
0.72 0.7

200cm
400cm

Background 2
Self

Source Type
𝛾𝛾

No Source Source
0.0561 0.9187
0.3659 0.579
0.76 0.7966

0.716 0.6958

200cm
400cm

Background 2
Self

Source Type
𝜇𝜇𝛾𝛾
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𝑛𝑛 = 15 Data 
 

 
Figure B-37.  Regression plots for the 200cm source distance 

 

 
Figure B-38.  Regression plots for the 400cm source distance 
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Figure B-39.  Regression plots for the Bkgd2 source distance 

 

 
Figure B-40.  Regression plots for the Self-test 

 
 
 



118 
 

 
Figure B-41.  Symmetry plots comparing Bkgd1 (labeled Bkgd/Bkgd1) to the 200cm 

source distance (top left) dataset, the 400cm source distance dataset (top right), 
the Bkgd2 dataset (Bkgd2 in bottom left), and the Self-test (bottom right) 

 
 

Table B-19.  MAP Estimates for Parameters from the Interaction Model 

 

 
 

618.53 7.95 601.55 7.47 597.32 7.27 601.82 7.49
1.17 0.32 1.3 0.32 0.79 0.35 1.02 0.35
-0.06 1 -0.02 1 0.02 1 -0.01 1
-0.7 0.39 -0.22 0.28 0.42 0.3 0.04 0.28

29.14 4 19.74 2.56 20.33 2.64 19.56 2.53

200cm 400cm Background 2 Self
Unknown Sample Dataset

parameter 𝜃𝜃
𝛼𝛼

𝛽𝛽𝑆𝑆𝑆𝑆5
𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆

𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5
𝜎𝜎

𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃
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Table B-20.  Calculated 𝛾𝛾 for Given Source Types 
 

 
 

 
Figure B-42.  Comparisons of marginal distributions for Bkgd1 (violet) versus source type 400cm 

(top left), 400cm (top right), Bkgd2 (bottom left), and Self (bottom right)  
 

Table B-21.  Means of the Marginal Distributions for a Given Source Type 
 

 

No Source Source
0.47 1.17
1.08 1.3
1.21 0.79
0.72 0.7

200cm
400cm

Background 2
Self

Source Type
𝛾𝛾

No Source Source
0.469 1.161
1.076 1.299
1.21 0.7966

1.056 1.017Self

Source Type

200cm
400cm

Background 2

𝜇𝜇𝛾𝛾
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𝑛𝑛 = 8 Data 
 

 
Figure B-43.  Regression plots for the 200cm source distance 

 

 
Figure B-44.  Regression plots for the 400cm source distance 
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Figure B-45.  Regression plots for the Bkgd2 source distance 

 

 
Figure B-46.  Regression plots for the Self-test 
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Figure B-47.  Symmetry plots comparing Bkgd1 (labeled Bkgd/Bkgd1) to the 200cm 

source distance (top left) dataset, the 400cm source distance dataset (top right), 
the Bkgd2 dataset (Bkgd2 in bottom left), and the Self-test (bottom right) 

 
 

Table B-22.  MAP Estimates for Parameters from the Interaction Model 

 

 
 

622.21 7.56 602.25 8.52 597.4 7.66 602.11 8.64
1.74 0.66 1.2 0.37 0.63 0.45 1.03 0.36
-0.08 1 -0.01 1 0.02 1 -0.01 1
-1.27 0.59 -0.1 0.36 0.58 0.39 0.05 0.32
18.89 4.01 21.71 3.87 19.49 3.48 19.17 3.4

200cm 400cm Background 2 Self
Unknown Sample Dataset

parameter 𝜃𝜃
𝛼𝛼

𝛽𝛽𝑆𝑆𝑆𝑆5
𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆

𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5
𝜎𝜎

𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃
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Table B-23.  Calculated 𝛾𝛾 for Given Source Types 
 

 
 

 
Figure B-48.  Comparisons of marginal distributions for Bkgd1 (violet) versus source type 400cm 

(top left), 400cm (top right), Bkgd2 (bottom left), and Self (bottom right)  
 

Table B-24.  Means of the Marginal Distributions for a Given Source Type 
 

 

No Source Source
0.47 1.17
1.1 1.2
1.21 0.63
1.08 1.03

200cm
400cm

Background 2
Self

Source Type
𝛾𝛾

No Source Source
0.4716 1.745
1.091 1.195
1.213 0.6275
1.085 1.031

Background 2
Self

Source Type

200cm
400cm

𝜇𝜇𝛾𝛾
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𝑛𝑛 = 4 Data 
 

 
Figure B-49.  Regression plots for the 200cm source distance 

 

 
Figure B-50.  Regression plots for the 400cm source distance 
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Figure B-51.  Regression plots for the Bkgd2 source distance 

 

 
Figure B-52.  Regression plots for the Self-test 
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Figure B-53.  Symmetry plots comparing Bkgd1 (labeled Bkgd/Bkgd1) to the 200cm 

source distance (top left) dataset, the 400cm source distance dataset (top right), 
the Bkgd2 dataset (Bkgd2 in bottom left), and the Self-test (bottom right) 

 
 

Table B-25.  MAP Estimates for Parameters from the Interaction Model 

 

 
 

614.46 9.38 603.53 8.97 599.33 7.98 603.78 9.59
1.24 0.72 0.81 0.47 0.18 0.68 1.05 0.41
-0.01 1 0.01 1 0.03 1 -0.01 1
-0.36 0.71 0.32 0.42 1.02 0.63 0.09 0.43
23.23 7.42 18.29 4.6 19.37 5.02 22.83 5.76

200cm 400cm Background 2 Self
Unknown Sample Dataset

parameter 𝜃𝜃
𝛼𝛼

𝛽𝛽𝑆𝑆𝑆𝑆5
𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆

𝛽𝛽𝐵𝐵𝑘𝑘𝐵𝐵𝑑𝑑_𝑆𝑆𝑎𝑎𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆5
𝜎𝜎

𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃
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Table B-26.  Calculated 𝛾𝛾 for Given Source Types 
 

 
 

 
Figure B-54.  Comparisons of marginal distributions for Bkgd1 (violet) versus source type 400cm 

(top left), 400cm (top right), Bkgd2 (bottom left), and Self (bottom right)  
 

Table B-27.  Means of the Marginal Distributions for a Given Source Type 
 

 

No Source Source
0.88 1.24
1.13 0.81
1.2 0.18

1.14 1.05

200cm
400cm

Background 2
Self

Source Type
𝛾𝛾

No Source Source
0.8709 1.239
1.129 0.8022
1.199 0.1868
1.126 1.038

400cm
Background 2

Self

Source Type

200cm

𝜇𝜇𝛾𝛾
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APPENDIX C 
 
 
 
Detection Rates for Various Models for Given 𝑃𝑃𝑃𝑃∗ 

 

 
Figure C-1.  Detection rates for various models on the given dataset 
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Figure C-1.  Detection rates for various flipped predictor models on the given dataset 
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