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ABSTRACT OF DISSERTATION 

SPATIAL PROCESSES WITH STOCHASTIC HETEROSCEDASTICITY 

Stationary Gaussian processes are widely used in spatial data modeling and 

analysis. Stationarity is a relatively restrictive assumption regarding spatial asso­

ciation. By introducing stochastic volatility into a Gaussian process, we propose 

a stochastic heteroscedastic process (SHP) with conditional nonstationarity. That 

is, conditional on a latent Gaussian process, the SHP is a Gaussian process with 

non-stationary covariance structure. Unconditionally, the SHP is a stationary non-

Gaussian process. The realizations from SHP are versatile and can represent spatial 

inhomogeneities. The unconditional correlation of SHP offers a rich class of corre­

lation functions which can also allow for a smoothed nugget effect. 

For maximum likelihood estimation, we propose to apply importance sampling 

in the likelihood calculation and latent process estimation. The importance density 

we constructed is of the same dimensionality as the observations. When the sample 

size is large, the importance sampling scheme becomes infeasible and/or inaccurate. 

A low-dimensional approximation model is developed to solve the numerical diffi­

culties. We develop two spatial prediction methods: PBP (plug-in best predictor) 

and PBLUP (plug-in best linear unbiased predictor). Empirical results with sim­

ulated and real data show improved out-of-sample prediction performance of SHP 

modeling over stationary Gaussian process modeling. 

We extend the single-realization model to SHP model with replicates. The 

spatial replications are modeled as independent realizations from a SHP model 

conditional on a common latent process. A simulation study shows substantial 
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improvements in parameter estimation and process prediction when replicates are 

available. In a example with real atmospheric deposition data, the SHP model with 

replicates outperforms the Gaussian process model in prediction by capturing the 

spatial volatilities. 

Wenying Huang 
Department of Statistics 
Colorado State University 
Fort Collins, Colorado 80523 
Summer 2008 
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Chapter 1 

INTRODUCTION A N D MOTIVATION 

The development and application of spatial models to analyze spatial data 

have grown considerably during the past 20 years. Spatial data arc geographically 

referenced and can be presented by 2-dimensional or 3-dimensional maps. Driven by 

new location technologies such as global positioning systems (GPS), there are huge 

amounts of spatial data collected in research areas such as meteorology, ecology, 

environmental health and so on. Statisticians and researchers in the corresponding 

areas seek methods to describe the trends and correlation structures among the data 

and make predictions of observations at unobserved locations. For example, the 

Northeast Fisheries Center of the National Marine Fisheries Service in Woods Hole, 

Massachusetts, samples the continental shelf off the Northeastern United States 

to estimate the abundance of sea scallops and other shellfish. The scallops data 

have been studied by many researchers to explore the spatial association and make 

predictions of abundance at unsampled locations; see Ecker and Heltshc (1994) and 

Ecker and Gelfand (1997) for more information about the data and modeling issues. 

In this chapter, we will provide an overview of modern spatial data modeling 

techniques. Specifically, we will give more details on research and development of 

nonstationary spatial process models. In addition, we will introduce the stochastic 

volatility (SV) model and the spatial stochastic volatility (SSV) model, which moti­

vates us to propose the stochastic heteroscedastic spatial (SHP) model. At the end 

of the chapter, we will outline this dissertation. 
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1.1 Spatial Data and Models 

1.1.1 Introduction of spatial data modeling 

A spatial process is a collection of random variables, Y(x) : x € D, where D is 

a subset of d-dimensional Euclidean space 7Zd. For a spatial data set, we assume it 

is a partial realization of Y('), i.e., Y(x\), Y(x2), ...,Y(xn). 

Types of spatial data 

A fundamental problem of spatial data analysis is how to define the spatial 

region and locations of the entities being studied, which has crucial effects on the 

techniques which can be used for the analysis and on the conclusions which can be 

obtained. In much of the literature, spatial data is classified into three types by the 

nature of the spatial domain D: 

• Geo statistical data, where the location x varies continuously over domain D, 

which means Y(x) can be observed anywhere within D. It is also called 

point-referenced data. Examples of geostatistical data include observations 

on rainfall, temperature and air quality variables. In this dissertation, we will 

focus on geostatistical data modeling. 

• Lattice data, where D is a fixed finite or countable set. The area being studied 

is partitioned into a regular or irregular lattice. Examples of lattice data 

include yields on agricultural trials, where the domain is partitioned into fields, 

and spatial econometrics data, where the domain is partitioned into census 

tracts or counties. Markov random field (MRF) models are often used to 

model lattice data. 

• Point pattern data, where D is a pre-defined plane and the data are the co­

ordinates X],...,xn of event locations. That is, the random process Y(x) is 
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simply equal to 1 for all locations x where the event occurs and 0 elsewhere. 

Examples of point pattern data include lightening strikes in certain areas and 

locations of a certain species of tree in the forest. 

Stationary geostatistical data modeling 

Gaussian processes are commonly used to model geostatistical data. Excellent 

references include Ripley (1981), Cressie (1993), Stein (1999) and Banerjee et al. 

(2003). A Gaussian process is a stochastic process Y(x) for which every finite 

collection of random variables (y(x\), Y(x2), ••-, Y(xn)) has a multivariate normal 

distribution. Alternatively, a Gaussian process is a stochastic process for which any 

linear combination of any finite collection of (Y(x\), Y(x%),..., Y(xn)) is normally 

distributed. 

A spatial process is strictly stationary if for any set of locations (x1 ; x2,..., xn) € 

D and any location shift h such that (x\ + h, x<i + h, ...,xn + h) € D, 

(Y(Xl),...,Y(xn)) I (Y(Xl + h), ...,Y(xn + h)), (1.1) 

i.e., the probability distribution at any set of fixed positions is the same for that of 

the positions after a common translation. As a result, moments such as the mean 

and variance, if they exist, do not depend on location. 

Second-order stationarity is less stringent than strict stationarity. It requires 

constant mean and that the covariance between any two locations only depends on 

the difference of the two locations, i.e., E(Y(x)) = n and Cov(Y{x + h),Y(x)) = 

C(h) for all h e lZd such that x + h and x both lie in D. For a Gaussian process, the 

second-order stationarity is equivalent to strict stationarity because its distribution 

is completely characterized by the mean and covariance structure. There is a third 

type of stationarity called intrinsic stationarity, under which E(Y(x+h) — Y(x)) = 0 

and 

E(Y{x + h)- Y{x)f - Var(y(a; + h) - Y{x)) = 27(h). (1.2) 
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That is, the left-hand side of (1.2) only depends on h no matter how x varies. 

In this case, the process is said to be intrinsically stationary, and 2y(h) is called 

the variogram while j(h) is called the semivariogram. The intrinsic stationarity is 

defined through the first and second moments of the difference Y(x + h) — Y(x). It 

does not specify the distribution of Y(xi),Y(x<2),...,Y(xn) and therefore provides 

no likelihood. It is easy to derive the relationship between the variogram and the 

covariance function. Given C, a covariance function of a stationary spatial process, 

we can recover 7 by j(h) = C(0) — C(h). If the spatial process is ergodic, C(h) —» 0 

as | |h| | —» 00, we have 

C(h) = C7(0) - 7(fc) = lim 7 ( u ) - 7 ( f c ) . 
HWIh+oo 

A stationary process is isotropic if the covariance between Y(x) and Y(x + h) is a 

function solely of \\h\\; otherwise, it is anisotropic. Isotropic processes are popular 

because they are simple, easily-interpreted and there are a number of nice parametric 

isotropic covariance functions. 

The classic Gaussian process model has the form 

Y(x) = fi(x) + W{x), (1.3) 

where /i(x) is a deterministic large-scale trend and usually takes the form of g(x)T/3, 

where g(x) = (gi(x), ...,gp(x)) are known regression functions and f3 — (Pi, ..•PP)T 

is a vector of unknown regression coefficients. The spatially correlated error process 

W(x) is usually assumed to be a stationary Gaussian process with mean 0, variance 

a2 and (isotropic) correlation function p. 

Equation (1.3) is the basic model for a spatial surface. It is common practice 

to model the observed gcostatistical data by 

Y(x) = fi(x) + W(x) + e(x), (1.4) 
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where e(x) is called nugget and is usually assumed to be iid normally distributed. 

Its variance corresponds to the height of the jump discontinuity of the covariance 

at the origin. The nugget is considered to come from physical measurement error, 

i.e., the replication variability and microscale variability which accounts for possible 

model misspecification at a very fine scale. 

Correlation functions 

In equation (1.3), the correlation function p and the variance a2 characterize 

the distributional properties of the spatially correlated error process W(x). From 

Bochner's Theorem, p is a valid correlation function if and only if it is the character­

istic function of a symmetric random variable. In practice, parametric correlation 

functions are usually used due to the simplicity, estimability and nice statistical in­

ference properties. For an isotropic spatial process, exponential, Gaussian, Matern 

and spherical correlation functions arc commonly used. 

Most isotropic correlation functions have a range parameter, denoted by </>. 

The correlation function is usually monotonic in (j). But the formulations of the 

correlation function in terms of 4> are different in different literatures. Throughout 

this dissertation, the correlation increases with range parameter 4> decreasing. We 

define several popular correlation functions as follows: 

• Gaussian: p(x,x') — cxp(—<f>\\x — a?'||2), 

• Exponential: p(x,x') = exp(-0||cc — x'\\), 

• Spherical: p(x, x1) = (1 - \.b(j>\\x - x'\\ + 0.5(>||cc - £c'||)3)/{||cc-a;'||<iM-

Different correlation functions can have very close correlation plots by adjusting 

their range parameters. But even so, the underlying sample paths have different 

smoothness properties. Referring to Lindgren (2004) Chapter 2, denoting the co-

variance function as r(t), a Gaussian process satisfying r(t) •- r(0) — C|£|a + o(|£|Q) as 
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t —> 0 for some 0 < a < 2 has continuous sample path almost surely. Furthermore, 

a Gaussian process is continuously diffcrentiable if —r"(t) — —r"(0) — C\t\@ + o(|i|^) 

with 0 < (3 < 2. According to Solak et al. (2003), because differentiation is a linear 

operation, the derivative of a Gaussian process remains a Gaussian process. The 

covariance function of the derivative Gaussian process is the second derivative of the 

covariance function for the Gaussian process. Therefore, the Gaussian correlation 

function leads to very smooth realizations of the spatial process because it is an an­

alytic function. If using exponential correlation function, in which case a = 1, the 

sample path is continuous but not diffcrentiable. For more theoretical discussions 

about the differentiability of a spatial process, refer to Lindgren (2004) and Stein 

(1999). It is practical to prespecify the form of the correlation function based on 

the preassumed smoothness of the underlying spatial process. Some model selection 

criterion, such as AIC, can also be employed. 

Matern (1986) introduced a more flexible family of correlation functions given 

by 

P(x, x') = _ l - r ( 2 v ^ 0 | | x - x'\\riCv(2y/V<l>\\x - x'\\), 

where Kv{-) is the modified Bessel function of order v. The smoothness parameter v 

controls the differentiability of the sample path. Let \v\ denote the integer ceiling of 

v, i.e., the smallest integer that is greater than or equal to v. The functions drawn 

from a Gaussian process with Matern correlation have almost surely continuously 

diffcrentiable sample paths of order ([Vj — 1). When v = 1/2, the Matern correlation 

function becomes exp(—\f2cf)\\x — x'\\), which is an exponential correlation function 

with range parameter v 2 f As v —-> oo, p(x,x') converges to exp(—4>2\\x — ^ ' | | 2 ) , 

the Gaussian correlation function with range parameter <fi2. Stein (1999) provides a 

detailed discussion about the spectra of Matern correlation and its properties. 
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Kriging 

The classical approach to spatial prediction is called kriging. Kriging is simply 

a special case of optimal linear prediction applied to spatial random processes. This 

method is named after a South African mining engineer, D. G. Krige, who developed 

the technique in an attempt to more accurately predict ore reserves. Over the past 

several decades kriging has become a fundamental tool in the field of geostatistics. 

Kriging refers to making inference on unobserved values of the spatial process 

Y(x) based on the observed data (Y(xi),Y(x2), ...,Y(xn)). The kriging predictor 

at a point XQ, denoted by Y(xo), satisfies the following conditions: 

• it is linear in the observations: Y(x0) — X^=i ^Y{xi), 

• it is unbiased: E(Y(XQ)) = Y(XQ), 

• it minimizes the mean-squared prediction error (MSPE), E(y(cco) — 

E ^ j U ^ ) ) 2 o v e r ' s . 

Based on different assumptions on the spatial mean n, it is customary to fur­

ther define simple kriging, ordinary kriging and universal kriging. Simple krig­

ing assumes that [i is zero. In terms of a Gaussian process, where Y(XQ) and 

(Y(xi),Y(x2), ...,Y(xn)) are jointly multivariate normal, the simple kriging pre­

dictor is just the conditional expectation of Y(x0) given (Y(xi),Y(x2), ...,Y(xn)), 

i.e., 

Y (x0) = Cov(Y(x0), Y (x))Var(Y {x^Y (x). (1.5) 

For ordinary kriging, one assumes that /i is an unknown constant. Wc restrict 

SILi 'i = 1 to guarantee unbiasedness. It turns out that ordinary kriging results in 

the best linear unbiased estimator (BLUE). Universal kriging refers to the situation 

in which \i is assumed to be an (unknown) linear combination of known functions 

that depend on the locations. The universal kriging predictor has the form 

Y(x0) = g(xo)
T^GLS + Cov(Y(xo),Y(x))Vav(Y(x))~1(Y(x)-G(x)0GLS), (1.6) 
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where g(x0) is a p x 1 regression function and G(x) = (g(xi), ...,g(xn))
T. Here 

@GLS
 refers to the generalized least square estimates for the regression coefficients . 

Cressic (1993) has shown the details on obtaining the prediction equations for each 

case. 

1.1.2 Nonstationary spatial process modeling 

Isotropy and stationarity are often useful as working assumptions for modeling 

spatial data. But it is desirable to allow anisotropy and spatial heterogeneity in 

many applications. Several anisotropic and nonstationary spatial processes have 

been developed. 

Anisotropy refers to the case in which the spatial correlation depends upon 

the distances and directions between spatial locations rather than merely distances. 

Anisotropy is generally difficult to handle. But there is a special case, known as 

geometric anisotropy, that is tractable. In the isotropic case, iso-correlation contours 

are spherical. When a linear transformation of the coordinate system applies, the 

spherical contours are changed to elliptical contours. In practice, it is customary to 

define geometric anisotropy by two parameters, anisotropy angle 4>A and anisotropy 

ratio ipR. The transformation consists in multiplying the original coordinates x by 

a rotation matrix RA and a shrinking matrix TA-, as follows, 

xA = xRATA, (1.7) 

where TA = Diag(l,-!/>#) and 

= c o s ( ^ ) -sm(tjjA) 
A [ sin(ipA) c o s ( ^ ) 

Then the geometric anisotropic correlation is given by 

p(x,x';0) = po(\\xA-x'A\\;0), (1.8) 
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provided that po is an isotropic correlation function with parameters 0. This lin­

ear transformation can be reversed to correct geometric anisotropy into isotropy. 

A geometric anisotropic spatial process is stationary because po(|jas^ — a3'4||;0) = 

p0(\\(x-x')RATA\\;9). 

A variety of approaches for nonstationary spatial process modeling have been 

developed over the last decade. Research regarding their properties, applications and 

improvements are ongoing. We summarize here in brief several of these approaches. 

Multiplicative model 

One of the approaches to model nonstationarity is through scaling 

(Banerjee et al. (2003)). Assuming that W(x) is a mean 0, variance 1 station­

ary process with correlation function p, a nonstationary process can be constructed 

by a(x)W(x). Here, a(x) is a pre-specified deterministic function. A customary 

choice is a{x) = g(u(x))o where u{x) is a suitable positive covariate and g is a 

strictly increasing positive function. But it is hard to specify functions u and g that 

are adapted to the data and physically meaningful. 

Space deformation 

Geometric anisotropy is obtained by linear transformation of spatial coor­

dinate systems of an isotropic process, as shown in equations (1.7) and (1.8). 

Sampson and Guttorp (1992) generalize this transformation idea by permitting a 

one-to-one nonlinear mapping over the geographic domain of interest. They refer to 

the plane of geographical coordinates x of the observed locations as the G plane and 

the transformed plane as the D (stands for dispersion) plane, where the stationarity 

and, in fact, isotropy holds. The variance (dispersion) between two locations can be 

written as 

Var(y(x) - Y(x')) = g(\\f(x) - f(x')\\), (1.9) 
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where / is a nonlinear transform function and g is a valid isotropic variogram in 

D space. Both of / and g are unknown and need to be estimated. It is desir­

able that / be bijective, otherwise there exist two different points in G space for 

which the correlation of the Y process is 1. Perrin and Meiring (1999) investigated 

some identifiability issues of this model. They showed that the transformation / is 

unique up to translation, rotation and reflection about a line or any combination of 

these transformations, provided that the correlation function is strictly decreasing 

or diffcrentiable. 

Sampson and Guttorp (1992) suppose that a random function is sampled re­

peatedly at a fixed number of sampling locations so that the point estimates of 

spatial covariance among the sampling stations can be computed. They smooth the 

sample covariance in a nonparametric way. The model is implemented through two 

steps. First, using nonmetric multidimensional scaling (MDS), they compute a two-

dimensional representation of the sampling stations for which a monotone function 

of interpoint distances Sij approximates the spatial dispersions. MDS transforms the 

problem into one for which the covariance structure, expressed in terms of spatial 

dispersions, is stationary and isotropic. Second, they compute thin-plate splines to 

provide smooth mappings of the geographic representation of the sampling stations 

into their MDS representation. The above methods are based on computationally 

intensive algorithms. 

This approach has been applied and extended in a variety of ways. 

Mardia and Goodall (1993) model multivariate spatial fields, assuming a Kronecker 

structure for the space x time covariance structure and find the estimated D-plane 

locations and the parameters of the covariance function by solving the likelihood 

equations. Smith (1996) implements maximum likelihood to estimate the param­

eters of the Matern correlation, the coefficients of radial basis functions and the 

components of the spatial deformation / . 
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Without stationarity and/or any parametric assumption, it is impossible to es­

timate the spatial covariance (dispersion) by using a single realization of the under­

lying spatial process. The deformation approach requires independent replications 

of the spatial process in order to get an estimated (sample) covariance matrix. In 

practice, we seldom have independent replications of a spatial process. Typically 

repeated measurements across time are collected. The approximately independent 

and identically distributed (iid) observations are obtained by removing the trend 

and seasonality first. Some researchers, however, prefer spatio-temporal modeling 

to analyze the spatial correlation and temporal evolution simultaneously. 

Convolution methods 

Higdon ct al. (1998) propose an attractive and powerful way of introducing 

nonstationarity. It is based on a moving average specification of a Gaussian process. 

Any stationary Gaussian process Y(x) having correlation 

p(h) = / k(x)k(x — h)dx, 
JTZ2 
'n2 

where k(-) is a smoothing kernel, can be expressed as the convolution of a Gaussian 

white noise process u(x) (Brownian motion) by 

Y(x) = / k(u — x)u}(u)du, 
in2 

where uj(u)du corresponds to du{u) in the definition of an Ito integral. To account 

for nonstationarity, the smoothing kernel is allowed to depend on the spatial location 

x. Then, the nonstationary process is represented by 

Y(x)= / kx(u - x)co(u)du, 
I TV-

where kx(-) is a bivariate normal kernel with center at 0 and with covariance E^ 

that varies spatially. The correlation between two points x and x' becomes 

p(x,x') = / kx(u — x)kX'(u — x)du. 
J-R? 
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Higdon et al. (1998) provided a closed-form expression for p(x, x1). They developed 

a Bayesian hierarchical model which can incorporate uncertainties in the resulting 

inference. The problem of prior formulations was left for further discussion since 

the nature of the models does not give rise to any inviting conjugate formulations. 

This model fitting does not require repeated realizations from the spatial process. 

The non-stationary spatial dependence is explained through a constructive "process-

convolution" approach, which ensures that the resulting covariance structure is valid. 

The convolution method of Higdon et al. (1998) varies parameters of the kernel 

function spatially. Fuentes and Smith (2001) propose an alternative convolution 

approach to model nonstationarity. They vary the stationary processes instead of 

the kernel, i.e., 

Y(x) = I k{x- u)Ye(u)(x)du, 

where k is a fixed kernel function and Yg,u\ is a family of independent stationary 

Gaussian processes indexed by parameter 9(u), which varies substantially over the 

whole space D. The covariance of Y(-) is a convolution of the local covariances 

C(x,x';Q) — / k(x — u)k(x' — U)CQ,UAX,X')(IU. 

If A; is a sharply peaked kernel function and 0(u) varies slowly with u, this has 

the property that for x near u, the process "looks like" a stationary process with 

parameter 0(u). On the other hand, since 0(u) may vary substantially over the 

whole space, it also allows significant nonstationarity. Fuentes and Smith (2001) 

discussed model fitting through exact and approximate likelihood maximization, 

and proposed a hierarchical Bayesian approach to allow predictive inference. 

Most of the nonstationary approaches outlined in this section have certain lim­

itations. Since there is no universally accepted approach so far, it is desirable to 

develop new methods that are capable of modeling a wide variety of spatial processes 

and are attractively interpretable. 
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1.2 Stochastic Volatility Model 

1.2.1 Stochastic volatility in time series data analysis 

In time series analysis, numerous models have been proposed to capture chang­

ing variance and covariance structure. Autoregressive conditional heteroscedasticity 

(ARCH) is one such model, in which the conditional variance is modeled as a deter­

ministic function of the available information, i.e., the past observations. Stochastic 

volatility (SV) attempts to achieve the same objective as the ARCH. In an SV 

model, the conditional variance is modeled as a latent stochastic process. The most 

popular stochastic volatility model from Taylor (1986) assumes 

yt = et exp( V 2 ) , h = 70 + 7i/it_i + r/t, (1.10) 

where et and r\t arc assumed to be independent Gaussian white noise with variances 

1 and 0-Jj, respectively. The log-volatility ht is unobserved but can be estimated using 

the observations. It is referred to as a latent process. The properties of the SV model 

are easy to derive. Particularly, it is worthwhile to mention that the kurtosis of the 

SV model is 3exp(cr^), which is greater than 3, the normal distribution kurtosis. 

This means that the SV model has heavier tails than the corresponding normal 

distribution. The dynamic properties of the SV model are conveniently investigated 

by taking log of y\, i.e., 

logy? = ht + log e%, ht = 70 + 7 A - 1 + Vt- (1-11) 

This is a linear process, which adds the iid loge^ error to the AR(1) process ht. 

Consequently log yf follows an ARMA(1,1) process. The random variable log ê  is 

log chi-square distributed and it has mean -1.27 and variance 4.93. 

We plot a simulated time series from a SV model generated by equation (1.10) 

and a real time series in Figure 1.1. The "nonstationary" features in the series 
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are clearly seen in that values large in absolute value tend to be clustered, corre­

sponding to high volatility, and values small in absolute value tend to be clustered, 

corresponding to low volatility. 

100 200 300 400 

(b) (c) 

Figure 1.1: SV time series data plots. Panel (a) shows the ht process of a simulated 
SV model. Panel (b) shows the yt process of the simulated SV model. We take 
7o = 0,7i = 0.8, af = 0.1, ho = 0 for the SV simulation in panels (a) and (b). Panel 
(c) shows the percentage daily returns of the Dow Jones Industrial Index for the 
period July 1st, 1997, through April 9th, 1999. 

The estimation of the SV model is difficult because it is not immediately clear 

how to evaluate the likelihood as the distribution of yt\yt-i is specified implicitly 

through a latent process. Researchers have developed many methods to estimate the 

SV model and the efforts are still going on. Shephard (1996) provides a comprehen­

sive reference about estimation using generalized method of moments (GMM), quasi-

likelihood, importance sampling and several Markov Chain Monte Carlo (MCMC) 

approaches. We summarize some important estimation methods here. 

Quasi-likelihood estimation 

Since log tf is iid, log y\ can be written as a non-Gaussian linear state-space 

model (see Brockwell and Davis (2002) Chapter 8): 

observation equation: logyj? = ht + log e%, 

state equation: ht = 70 + 7]A-i + Vt- (1.12) 
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The Kalman filter can be used to provide the best linear unbiased estimator of ht 

given (logyf, .. .jlogy^j). The parameter 0 — (c^,70,71) can be estimated using 

quasi-likelihood (Harvey et al. (1994)) 

T T 

W>V) = 4 E 1 O § F < - \Y,v*/Ft, (1.13) 
t=\ t=\ 

where vt is the one-step-ahead prediction error and Ft is the corresponding mean 

squared error from the Kalman filter. If (1.12) had been a Gaussian state-space 

model then (1.13) would be the exact likelihood. But as log ê  follows a log chi-

squarc distribution, (1.13) is referred as quasi-likclihood and can be used to provide 

consistent parameter estimates and asymptotically normal inferences. 

Besides parameter estimation, we are interested in estimating and predicting 

the latent process ht. Typically the posterior mode h\y is a good representation. 

Durbin and Koopman (1993), along with others, proposed to recursively solve the 

linearized approximation to dl(h,y)/dh = 0. 

Likelihood and importance sampling 

The exact likelihood can be computed by integrating out the latent process ht, 

f(yi,.-,VT) = J f(vi,:,yT\h)f(h)dh. (l.u) 

As this integral has no closed form it has to be computed numerically. Monte Carlo 

integration is a direct approach, i.e., draw a large number of realizations of h from its 

unconditional distribution, then approximate (1.14) by (1/iV) XL=1 f(yi, •••,UT\hj). 

This estimation usually performs poorly especially when the number of observations 

T is large. An importance sampling strategy is often used to improve the efficiency 

and accuracy of a Monte Carlo integral approximation. Given an importance density 

g(-), rewrite (1.14) as 
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Danielsson and Richard (1993) developed an Accelerated Gaussian Importance 

Sampler (AGIS) which recursively improves its performance, converging towards the 

optimal g. Their method is highly efficient for very high-dimensional integration of 

density and likelihood functions, as illustrated by an application to a first-order SV 

model for daily stock returns with N = 1000 Monte Carlo replications for T = 2022 

observations. The algorithms of Danielsson and Richard (1993) are quite involved 

even for the simplest model. 

Markov chain Monte Carlo (MCMC) 

Early work on using MCMC for the SV model focused on "single move" algo­

rithms, drawing ht individually, ideally from its conditional distribution ht\h\t,y, 

where h\t refers to all elements of h except ht. For the first-order SV model, we 

have 

f(ht\h\t,y) = f(ht\fH-i,ht+i,yt) oc f\yt\ht)I'{ht+1\ht)f (ht\ht^). (1.16) 

Since the normalization constant is unknown, it is impossible to sample directly 

from (1.16). Some elaborate rejection sampling methods have been developed to 

implement Gibbs sampling. For example, it is easy to see that 

logf(ht\ht-i,ht+i,yt) = c o n s t - -ht- 7n(ht ~ Kf - nVt exp(-/i t) , (1.17) 

where of and h\ arc functions in terms of ht-i,ht+i,cr^,j0 and 7J . AS 

f(ht\ht-i, ht+i,yt) is a log-concave density function, the adaptive rejection sampling 

proposed by Wild and Gilks (1993) can be used here. 

This "single move" sampler may converge slowly especially when 71 is close to 

1, i.e., h\y are highly correlated. To overcome this problem, one can work with 

blocks or a "multi-move" sampler instead of sampling ht\h\t,y one at a time. We 

introduce the idea by de Jong and Shephard (1995). They work on the linear state-

space model (1.12). They approximate loge^ by a mixture of normals so that 

l o g e f l K ^ - N ^ . , ^ 2 ) , j = l , . . . ,J. (1.18) 
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Here the {wt} are iid with P(wt = j) = TTJ. Kim et al. (1998) selected [ij,a?,iTj for 

j = 1,..., 7 to match the moments and various other features of this approximation 

to the truth, i.e., log chi-square distribution with one degree of freedom. 

The advantage of this representation of the model is that conditionally on w, 

the state-space (1.12) is now Gaussian. One can simultaneously sample (h\y,w) by 

use of the Gaussian simulation smoother proposed by de Jong and Shephard (1995). 

This approach avoids the correlation in the ht process and therefore expedites the 

convergence. But (1.18) is only an approximation. It is a challenging problem to 

come up with multi-move algorithms without transforming the model. 

1.2.2 Regression with input-dependent noise 

In time series, the stochastic volatility models describe the time-varying vari­

ance by use of a latent stochastic process. In the regression literature, there is some 

similar treatment. For a classic regression model, the response can be described 

by a deterministic function of the inputs, together with additive Gaussian noise 

having constant variance. In many applications a more realistic model would al­

low the noise variance itself to depend on the input variables. Bishop and Qazaz 

(1997) propose such a regression model and apply Bayesian methodology for infer­

ence. They illustrate their algorithm by a simulated example in which the noise 

variance depends on x2. It is natural to extend the deterministic dependence re­

lationship between noise variance and input variable to a latent stochastic process 

model. Goldberg et al. (1998) suggest modeling the noise variance using a Gaus­

sian process, similar to the SV model structure. In their paper, the input vector is 

denoted by x and the observed output vector is denoted by t. Given n data points 

T> = ((xi, ti), (x2, t2),..., (xn, tn)) and assuming that any offset or trend in the data 
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has been removed, i.e., JJL{X) = 0, the Gaussian process model is given by 

^i = Vi ~r ^i; 

y~N(0 ,C y (x , aO) , 

ei~N(0,n), 

ri = exp(^), 

z~N{0,C,(x,x)), (1.19) 

where 

<?„(*«, o ^ ) = Wyexp (~^wyl(xP - x^)A + Jy6(i,j), (1.20) 

— 1/2 

and fy specifies the overall y-scale and w t is the length-scale associated with the 

Ith coordinate. So a geometric anisotropic Gaussian covariance function is adopted 

here. Note that Jy is a "jitter" term, which is added to prevent ill-conditioning of 

the covariance matrix of the outputs. Typically Jy is given a small value, e.g., 10~6. 

Cz has the same form as (1.20) except different parameter values. 

In the estimation and prediction procedure, it is vital to sample the noise rates z 

from the posterior distribution p(z\t). As this is quite difficult, they instead sample 

from p(y, z\t) and ignore y values to get the sample of z. They use Gibbs sampling 

to sample from p(y,z\t) by alternatively sampling from p(z\y,t) and p(y\z,t). It 

is clear that 

p(z\y,t)<xp{t\y,z)p(z). (1.21) 

It is not easy to sample z as a vector. They propose to sample from p(zi\z-i,y,t) 

using rejection sampling. They claim that the average rejection rate is approximately 

two-thirds. For making predictions for t*, an output at an unobserved point a;*, 

they propose to use Monte Carlo integration. For sampling from the posteriors on 

parameters, they apply Metropolis algorithms within the Gibbs sampling. 
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In brief, model (1.19) allows heteroscedastic variance structure and has at trac­

tive probabilistic properties. The model is written in a hierarchical way and it is 

natural to use MCMC method for estimation and prediction. But sampling the la­

tent process z is difficult. The one-at-a-time rejection sampling is not very efficient. 

The prior specification for parameters in Baycsian approach is also a delicate issue. 

1.2.3 Spat ia l s tochas t i c volat i l i ty m o d e l for lat t ice d a t a 

The ideas of SV in time series can be applied to the spatial context. Spatial 

hetcroscedasticity for lattice da ta has been studied by Yan (2007). 

Lattice da ta are collected over a finite set of regular or irregular geographic 

units, so tha t we have measurements Y\,...,Yn associated with units 1,..., n. Instead 

of working directly on the joint distribution of Y\,..., Yn, the lattice da ta are usually 

modeled through the conditional distribution of Yi given Yj's in a neighborhood Nt 

of the unit i. A Markov Random Field (MRF), i.e., 

p{yi\yj,j ^ *) = p(yi\yj,j e Nt) (1.22) 

is a special case in which a joint distribution is completely determined from the 

locally-specified conditionals. The Hammersley-Clifford Theorem (Besag (1974)) 

proves tha t if we have a MRF, then the joint distribution uniquely determined by 

(1.22) is a Gibbs distribution. Geman and Geman (1984) state that if we have a 

joint Gibbs distribution, then we have a MRF. 

Now we introduce the popular conditional autoregressive (CAR) model, pro­

posed by Besag et al. (1991), 

Yi = fj, + fa + e.i 

J2j^i bij<t>j a\ 

e%~N(0,a2
e), (1.23) 
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where fa is conditionally specified and follows a Gaussian Markov Random Field. 

The bij's are known weights with fry = bji. A common choice for bij is 1 if units i 

and j are adjacent and 0 otherwise. 

In Yan (2007), a spatial stochastic volatility (SSV) component was introduced 

into the CAR model. The SSV model is given as follows: 

Yi = n + fa + a, 

et ~ N(0,exp{nh + hi)), 

/.|^^ivf%^^,^-V (1.24) 

By introducing the latent spatial process h in the log volatility, the error variance 

e» has a spatially clustered structure instead of iid iV(0, of). The latent process h 

follows another Gaussian Markov random field and a\ is the variance parameter for 

h. The weights fty's and c^-'s are prespecified and they can be different in general. To 

make the parameters /i and \i^ identifiable, Yan (2007) put the constraints YM=\ 4>i — 

0 and XT=i »̂ ~ 0' As * n e SSV model (1.24) is presented in a hierarchical structure, 

the author uses Bayesian methods for statistical inference. 

The SSV process brings more flexibility in modeling lattice data. As stated 

in Yan (2007), in the case of volatility clustering, researchers may want to detect 

"hot spots" of volatilities, and monitor these spots more closely in the future. This 

can be done naturally by the SSV model. When prediction is of interest, the SSV 

model may be preferred to constant volatility models by allowing the variance to 

vary spatially. SSV can also be an approximation of a more complex model and can 

pick up the effects of omitted variables. 
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1.2.4 Non-Gaussian Bayesian geostatistical modeling 

In Section 1.2.1 through Section 1.2.3, we have introduced stochastic volatility 

model in time series and its extensions in regression and spatial lattice data model­

ing. As a matter of fact, there have been also some geostatistical models developed 

in which the variance is modeled through a random process instead of a constant 

value. For spatial data with independent replications, Damian et al. (2001) and 

Schmidt and O'Hagan (2003) proposed to specify the location-dependent variance 

when formulating the deformation model (Sampson and Guttorp (1992)) in fully 

Bayesian frameworks. The former applied thin-plate splines for deformation and 

modeled the temporal variances as a random field by use of a Gaussian process 

prior. The latter defined the mapping between G-plane and D-plane (see Section 

1.1.2 for definitions) by an unknown function d(-) and a Gaussian process prior dis­

tribution is assigned to d(-). They assigned an iid inverse Gamma prior distribution 

to the variances. 

For a single spatial process realization, a non-Gaussian geostatistical model was 

proposed by Palacios and Steel (2006). From their paper, the basic geostatistical 

model is expressed as 

Z(x) = fT{x)P + <re(x) + TP{x), (1.25) 

where e(cc) is a second-order stationary error process with mean 0, variance 1 and 

isotropic correlation function Cg. In order to catch the non-Gaussian feature, such 

as heavy tails, they propose to extend model (1.25) by adding a mixing variable 

Aj G 1Z+ to each observation i = 1, ...,n. The new model at zth location becomes 

Zi = fT(Xl)(3 + a ^ + TPi, (1.26) 
vAi 

where pi ~ N(0,1), iid and independent of e = (ej,..., en)
T ~ N(0, Cg). The mixing 

variables A; are independent of Pi and e. In order to obtain a valid stochastic process 
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and ensure nice properties, they propose to model the mixing variable by 

ln(A) - (ln(A1),...ln(An))r ~ N (-^l,uC0) , (1.27) 

i.e., model ln(A) by use of a Gaussian process with constant mean —v/2 and co-

variance function VCQ. Note that the correlation function they used for ln(A) is 

identical to that of the e process. They argue that the two correlation functions can 

be different in principle but in that case it would be extremely difficult to estimate 

parameters with a practically relevant sample size. 

They call the new model "Gaussian-log-Gaussian (GLG)". They derive expres­

sions for the moments. Bayesian inference is performed for estimation and predic­

tion. Proper priors are applied and random-walk Metropolis-Hastings algorithms 

are used to draw samples from posteriors for all parameters. The latent process 

vectors were partitioned into blocks and the proposal distribution was constructed 

by use of log-normal distributions to approximate truncated normal distributions 

for the conditional posterior. 

1.3 Outline of the Dissertation 

We have introduced the traditional stationary Gaussian process modeling for 

geostatistical data and some nonstationary approaches in Section 1.1. In Section 1.2, 

we review the stochastic volatility model in time series and discuss some extended 

applications in regression and spatial data analysis. The GLG model in Section 

1.2.4 is actually an extension from the multiplicative model in Section 1.1.2. The 

multiplicative model introduces nonstationarity by scaling. The location-dependent 

scale <T(X) is specified using a deterministic function, while the GLG model uses a 

latent stochastic process to model the scale variable. Our motivation comes from the 

SV model in a similar fashion. We think about modeling the scale er(sc) by revising 

the SV model (1.10). The discrete time t is replaced by the continuous (non-lattice) 
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d-dimensional spatial index x and the iid noise et is replaced by a stochastic process 

Z{x). By doing so, we propose a new model called the stochastic hctcrosccdastic 

process (SHP). We will model spatial surfaces as realizations from SHP. 

Chapter 2 starts by defining the SHP model. Some important properties, es­

pecially the features of conditional and unconditional covariance functions, are in­

vestigated. By simulation, we show the versatility of SHP realizations, together 

with the parameter confounding effects that exist in the unconditional correlation 

functions and sample paths. In Chapter 3, we propose to apply importance sam­

pling in likelihood calculation and latent process estimation. We derive methods 

of predicting the spatial processes at unobserved locations. Some delicate imple­

mentation issues are discussed in detail. A low-dimensional approximation model 

is introduced to overcome the computational issues when the sample size is large. 

We also extend the single-realization SHP model to the SHP model with replicates. 

Chapter 4 provides a variety of simulation studies to evaluate the estimation and 

prediction procedures for the SHP model and compare different spatial prediction 

methods. In Chapter 5, we present applications of the SHP model on three data 

sets: Enhanced Vegetation Index (EVI) data, China precipitation data and NO3 de­

position data. The advantages of SHP over a stationary Gaussian process model are 

illustrated from a few aspects: SHP is better at capturing spatial heterogeneities, it 

yields superior prediction performance, and it gives efficient selection probabilities 

(using SHP prediction variance) for adaptive sampling. Finally, Chapter 6 gives a 

overview of the thesis and discusses possible future research directions. 



Chapter 2 

THE STOCHASTIC HETEROSCEDASTIC PROCESS MODEL 

As we briefly discussed in Section 1.1.2, one of the approaches to model non-

stationarity is through scaling (Banerjee ct al. (2003)). Suppose Z(x) is a mean 0, 

variance 1 stationary process with correlation function p and a{x) is a pre-specified 

deterministic function, then W(x) = a(x)Z(x) is a nonstationary process. The 

cr(cc) is a pre-specified deterministic function. Motivated by the SV model in time 

series, we think about modeling a(x) as a random process such that W(x) retains 

the nonlinear flavor in terms of sample path with nice probabilistic structure. 

2.1 Definition of the Stochastic Heteroscedastic Process (SHP) 

We now represent the SHP model as follows: 

Y(x) =g(x)T/3 + W(x), 

W(x) =aexp(^p-)Z{x), a > 0, r > 0, (2.1) 

where a(x) and Z(x) are two independent stationary Gaussian processes with mean 

0, variance 1 and correlation functions pa and pz respectively. Throughout this 

dissertation, we take pa and pz to be isotropic correlation functions with range 

parameters <f)a and 4>z respectively. The overall trend is represented by linear re­

gression g{x)T(3, where g(x) — (gi(x),...,gp(x)) and /3 a p x 1 coefficient vector. 

The correlated error process W(x) captures residual spatial association. The spa­

tial dependence structure is described by the covariance function of W(x), which is 
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traditionally assumed to be stationary. But for the SHP model (2.1), conditional 

on the a process, theVK(x) process has nonstationary covariance function. 

The latent process a{x) is used to model the clustering effect of volatility, which 

makes the realizations generated from the SHP model more versatile than those from 

Gaussian processes. The sample paths simulated from a Gaussian process model ex­

hibit homogenous features, as shown in panel (a) of Figure 2.1. Increasing the range 

parameter <f>, the whole sample path becomes simultaneously more variable. While 

for sample paths generated from the SHP model, fixing the Z process, the sample 

path can be Gaussian-like when 4>a is small but becomes more heterogenous by in­

creasing 4>cn a s shown in panel (b) of Figure 2.1. Also note that by use of different 

correlation functions for a and Z processes, the sample paths can have rich smooth­

ness (differentiability) properties. By setting r 2 = 0, the SHP model (2.1) reduces to 

the Gaussian process model (1.3). In Figure 2.2, we plot a Gaussian process surface 

by letting r2 = 0 in panel (a). As we increase T2 to 0.4, the SHP model surface still 

has a relatively uniform degree of smoothness over the whole input domain, similar 

to those simulated from a Gaussian process, as seen in Figure 2.2 panel (b). That 

is, we do not need to restrict r2 = 0 to generate Gaussian-like realizations. The 

SHP model can recover the Gaussian process properties by allowing small values 

of <fia (as shown by Figure 2.1) and/or T2 (as shown by Figure 2.2). On the other 

hand, the realization from the SHP model has some local volatility, which gets more 

obvious with increasing 4>a and/or r2 , as seen in panel (b) of Figure 2.1 and Figure 

2.2 panel (c). 

2.2 Properties of the SHP Model 

Conditionally on a, the SHP model is a Gaussian process with non-stationary 

covariance structure. Unconditionally, the SHP is a stationary non-Gaussian pro­

cess. In this section, we describe some key properties of SHP that are useful for 

modeling. 
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(a) (b) 

Figure 2.1: Gaussian process and SHP 1-d simulation plots. Panel (a) shows some 
sample paths simulated from a, Gaussian process. We take a2 = 1 and a Gaussian 
correlation function. Panel (b) shows some sample paths simulated from a SHP 
model. We take a2 = 1, r2 = 1, pz a Gaussian correlation with <pz = 10 and pa 

a Matern correlation with v = 2.5. Each of the a process realizations on the right 
panel use a common simulated random noise sequence. The Z process for all of the 
6 sample paths use another common random noise sequence. 

(a) (b) (c) 

Figure 2.2: Gaussian process and SHP 2-d simulation surface plots (I). We simulate 
2-d realizations from a SHP model by use of a2 = 0.2,4>a = 0.15 and <j>z = 0.3. 
Both pa and pz arc Gaussian correlations. Panel (a) corresponds to r2 = 0 which 
is a Gaussian process realization. Panel (b) corresponds to r2 = 0.4. Panel (c) 
corresponds to r2 = 4. The a process realizations in panels (b) and (c) use a 
common simulated random noise sequence. The Z process realizations in all panels 
use another common random noise sequence. 
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The Y process has mean g{x)Tj5, variance a2exp(r2 /2) and kurtosis 

(Var(r )Y 

The normal distribution has kurtosis equal to 3, so the data from the SHP model 

has "excess kurtosis" or heavier tails than the normal. 

2.2.1 SHP covariance function 

Using the independence of a and Z processes, W has unconditional correlation 

function given by 

PY(x, x') = exp ( - i r 2 + i r 2 pa ( | | * - * ' | | ) ) pg(\\* ~ *'ll), (2-2) 

which is isotropic. This unconditional correlation function is flexible because it 

combines the properties of two isotropic correlation functions pa and pz. It can be 

used independently of the non-Gaussian SHP model as a rich isotropic correlation 

class for Gaussian processes. We will discuss its unique smoothed nugget effect 

property later in this chapter. 

Conditioning on the latent process a, the covariance function between two 

points is 

7(3!, x'\a) = a2 exp ( — ^ ) Pz(x, x') exp I — i _ Z \ . (2.3) 

Equations (2.2) and (2.3) indicate that the W process is conditionally heterosccdas-

tic and unconditionally weakly stationary. For a single realization of SHP, it is 

the covariance conditional on the latent process a that decides the heteroscedastic 

features. In Figure 2.3, we plot two 2-d surfaces, one realization simulated from 

a Gaussian process (panel (a)) and another simulated from a SHP model (panel 

(b)). While the unconditional correlation functions for the two models are nearly 

identical as shown in panel (c), the realizations are remarkably different. The re­

alization from the Gaussian process has a relatively uniform degree of smoothness 
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over the whole input domain. In contrast, the smoothness of the SHP realization 

varies over different parts of the region, which is due largely to the inhomogeneity 

of the conditional covariance function. 

(a) (b) (c) 

Figure 2.3: Gaussian process and SUP 2-d simulation surface plots (2). Panel (a) 
is a Gaussian process surface with <p = 6.4. Panel (b) is a SHP realization with 
6a = 8.5 and 6Z = 4.4. All correlation functions are Matern with ;/ = 2.5. Panel (c) 
shows the correlation functions of the Gaussian process in (a) and SHP in (b). The 
Z processes in panels (a) and (b) use a common simulated random noise sequence. 

2.2.2 Smoothed nugget effect of the unconditional correlation function 

The unconditional correlation function (2.3) motivates us to explore the limiting 

processes as 4>a —* 0 and 4>a —> oo. When cf)a = 0, the a process degenerates to 

a single N(0,1) random variable and the unconditional correlation function for Y 

becomes pz. While the process Y remains non-Gaussian, a single realization of Y 

is not distinguishable from a realization of a Gaussian process. It is a realization 

of the Gaussian process Z scaled by the multiplicative constant exp(ra/2). On the 

other hand, as <j)a —* oo, the unconditional correlation function converges to 

(x x') = I 1 ' lf ' ^ " " ^ ' H =0' 
\ C X P ( - T ) ^ ( a 3 ' x ' ) ; if ||a; - x'| | > 0, 

which is simply pz with the addition of the relative nugget 5 = 1 — exp(r2/4). 

The effect of varying the correlation parameters on the correlation function 
can be seen from Figure 2.4. The correlation decreases with (f>a or r 2 increases for 
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each value of h, the distance between sample points. As cj)a approaches infinity, one 

can see the emergence of a smoothed nugget. At <j)a = oo, we have a full-fledged 

nugget of size 1 — exp(——). In the other direction, the correlation function decays 

smoothly for small values of <j)a. When r2 = 0, the correlation in panel (b) reduces 

to a Gaussian correlation. With r2 increasing, the smoothed nugget effect becomes 

more pronounced and the correlation decreases more sharply. 

The unconditional correlation of SHP offers a rich class of correlation functions 

that can also allow for a smoothed nugget effect. For the traditional Gaussian pro­

cess model, a nugget is added to the covariance structure to model the measurement 

error and microscale variability. These effects are modeled with a single parameter 

and cannot be separated. The additive nugget makes the covariance discontinuous 

at the origin, which is undesirable for microscale variation that accounts for possible 

model misspecification at a very fine scale. The smoothed nugget of the SHP un­

conditional correlation function explains the microscale variation in a natural way, 

using a parameterization that is distinct from an additive measurement error. 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0,2 0.4 0.6 0.8 1.0 

h ti 

(a) (b) 

Figure 2.4: SHP unconditional correlation function plots. The left panel shows the 
effect of <pa{ 4>z = 5 and r2 = 2). The right panel shows the effect of r2 {(f)z = 5 and 
<PQ = 200). Both pa and pz are Gaussian correlations. 
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2.3 Confounding Effects of the Model Parameters 

The realizations simulated from the SHP model are versatile and can represent 

spatial inhomogeneities. But the flexibility comes with a certain price, i.e., a more 

complicated model with a more complicated likelihood, due to the latent process, 

than that of a stationary Gaussian process model. In this section, wc will explore 

the confounding effects of model parameters, illustrated via simulation plots. 

2.3.1 Confounding in the unconditional correlation function 

In Figure 2.5, we plot several Gaussian correlation functions using different 

range parameter values in panel (a). By applying Gaussian correlation functions 

on both pa and pz, and using the same range values in (a) interactively for 4>a 

and 4>z, we create some SHP unconditional correlation function plots in panels (b) 

and (c). Wc sec that for Gaussian correlation functions in panel (a), changing the 

range parameter cj> makes the correlation function vary substantially. For the SHP 

unconditional correlation in panel (b), however, the correlation plots almost overlap 

for a large range of <j>a values when fixing (ftz at 100. Further the correlations in 

panel (c) vary much less than the Gaussian correlations when varying <j>z with 4>a 

fixed at 100. In Figure 2.6 panel (a), we show several unconditional correlation plots 

by varying r 2 with fixed <j)z and 4>a values. The correlations for four different r2 

values are very close. In Figure 2.6 panel (b), two correlation plots obtained with 

very different r2 and </>Q values are almost identical. 

Comparing Figures 2.5 and 2.6 with Figure 2.4, we see that <f)z is most dominant 

in the unconditional correlation shape. When <j)z is small, adjusting r2 and/or <pa 

values can substantially change the correlation features, especially the smoothed 

nugget effect. But when. <pz is large enough, adjusting r2 and <j)a across a wide 

ranges does almost nothing to the correlation plot. Also the confounding between 

4>a and (f)z, 4>a and r2 are obvious. So, although the SHP unconditional correlation 
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(2.2) is flexible and produces the smoothed nugget effect property, it is difficult to 

estimate the parameters due to confounding if we use it as an isotropic correlation 

function in a Gaussian process model. 

(a) (b) (c) 

Figure 2.5: Confounding correlation plot (I). Panel (a) shows Gaussian correlation 
plots under different range values. Panel (b) shows SHP unconditional correlations 
with <pz fixed and <pa varying. Panel (c) shows SHP unconditional correlations with 
4>a fixed and <fiz varying. We take r2 = 4. Both pa and pz are Gaussian correlation 
functions. 

2.3.2 Confounding in the sample paths 

In Figure 2.7, we plot two Gaussian process realizations on each panel using 

4> = 30, 60 and 90, respectively. It is clear that increasing 4> leads to considerably 

more variable sample paths. In Figures 2.8 and 2.9, we show some SHP sample 

paths using cj)a and <j>z values as in Figure 2.5 panel (b) and (c), respectively. From 

Figure 2.8, we see that the sample path features are very similar for a large range 

of 4>a values when fixing 4>z — 100. Also, Figure 2.9 shows that the sample path 

features are similar for <f>z — 60 or 90 when fixing 4>a — 100. Realizations using 

<f>z = 30 have slightly smoother features than <f>z = 60 or 90. Note that sample 

paths in Figure 2.8 panel (c) (</>z = 100) are more volatile in some ways than those 

in Figure 2.9 (4>z — 30,60 and 90). Based on these observations, we conclude that 

(j)z (or Z process) provides more control on the sample path features than </>a (or 
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tausq=5, phia=30 

0.0 0.1 0.2 0.3 

(a) 

0.2 

h 

(b) 

Figure 2.6: Confounding correlation plot (II). Panel (a) shows SHP unconditional 
correlation with <pz — 100 and <pa = 30 fixed and r2 varying. Panel (b) shows the 
effect of using very different r2 and 4>a values with <pz ~ 90. Both pa and pz arc 
Gaussian correlation functions. 

a process). The sample features arc not as sensitive with respect to (j>a and <$>z as 

those for Gaussian process with respect to (/>, which will possibly make parameter 

estimation more problematic than the Gaussian case. Also <f>a will probably be even 

harder to identify than </>z. 

In Figure 2.10, we show three SHP realizations in each panel by interchanging 

4>a and cj)z values. By use of the same common random number sequences for both 

a and Z across panels, the plots in two panels show very similar shapes. This 

indicates the confounding effects between <\>a and <f)z in representing sample paths. 

Figure 2.11 shows SHP realizations by use of different correlation functions for a 

and Z processes. Even so, sample paths produced with large 4>z and small 4>a are 

similar to those using small <f)z and large <f>a. For realizations shown in Figures 

2.10 and 2.11 and using a finite number of sampled points which are not too dense, 

it is difficult to recognize from which parameter combinations the realizations are 

generated. 
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In Chapter 4, we will explore the influence of these confounding effects on 

parameter estimation and sample path prediction. 

T , , ^ r-L, , , r 

(a) (b) (c) 

Figure 2.7: Gaussian process sample paths. Panel (a) - Panel (c) each shows two 
simulated Gaussian process sample paths using (I) = 30, 4> = 60 and c/> = 90 re­
spectively. Wc take ft — 0 and a'2 = 0.2 and use a Gaussian correlation function. 
Common random number sequences are applied across panels. 
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(a) (b) (c) 

Figure 2.8: SHP sample paths (I). Panel (a) - Panel (c) each shows two simulated 
SUP sample paths using (pa = 30, (f>a — 60 and (t>a — 90 respectively. We take a2 = 
0.2, r2 = 4, [S = 0 and <f>z = .100. Both pn and pz arc Gaussian correlations. Common 
random number sequences arc applied for both a and Z realizations respectively 
across three panels. 

(a) (b) (c) 

Figure 2.9: SHP sample paths (II). Panel (a) - Panel (c) each shows two simu­
lated SHP sample paths using 4'z = 30, (j>z = 60 and <pz = 90 respectively. We 
take cr2 = 0.2, r2 — 4, (3 — 0 and 4>a — 100. Both pa and pz are Gaussian correla­
tions. Common random number sequences are applied for both a and Z realizations 
respectively across three panels and. arc the same as in Figure 2.8. 
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Figure 2.10: SHP confounding sample paths (I). Panel (a) shows three SHP sample 
paths based on <pn — 40 and (j)z = 80. Panel (b) shows three SHP sample paths 
based on rp0 = 80 and 0, = 40. Both pa and pz are Gaussian correlation functions. 
We take p = 0, a2 = 0.2 and r2 = 4. The a and Z processes realizations in two 
panels use common random noise sequences, respectively. 

(a) (b) 

Figure 2.11: SHP confounding sample paths (II). Panel (a) shows three SHP sample 
paths based on <f>a = 10 and d>z = 60. Panel (b) shows three SHP sample paths 
based on <6„ = 15 and <pz = 20. The correlation function pa is taken to be Matern 
with v = 2.5 and pz is Gaussian. We take (3 — 0, a2 — 1 and r2 = 1. The a 
and Z processes realizations in two panels use common random, noise sequences, 
respectively. 



Chapter 3 

LIKELIHOOD INFERENCE 

As we discussed in Section 1.2.1, the SV model in time series has easily-derived 

probabilistic properties, but the estimation is difficult since the likelihood is not 

in a closed form. The distribution of yt\yt-i is specified implicitly through the 

latent process ht. Researchers have developed many methods to estimate the SV 

model, among which maximum likelihood by use of an importance sampling device 

and Markov Chain Monte Carlo (MCMC) have had the most impact. For the 

MCMC approach, early work focused on "single move" algorithms, drawing ht one 

at a time. The drawback of "single move" is slow convergence especially when 

the latent process has high correlation. A "multi-move" sampler is obtained by 

approximating log ef by a mixture of normals so that log yl can be written in the 

form of a Gaussian linear state-space model, and a Gaussian simulation smoother 

can be applied to draw h\y simultaneously. One can argue that this approach is 

only based on an approximation. For the SHP model, the correlation of the latent 

process will lead to slow convergence in MCMC algorithm if using a "single move" 

sampler. Since the a process is continuous, the correlation has even more impact 

that in a discrete-time AR(1) process in a SV model. Also, log(Z2) is correlated 

instead of iid log chi-square distributed, which prevents us from readily applying a 

"multi-move" sampler analogous to the SV model. We will explore methodologies 

to improve MCMC convergence behavior in future work. In this dissertation, we use 

a maximum likelihood method and importance sampling strategy. We describe the 

scheme of likelihood calculation in Section 3.1. We derive an importance density 
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used for likelihood approximation and latent process estimation. In Section 3.2, we 

present strategies for predicting the latent processes a and Y at unobserved location 

x0. We go through some implementation details in Section 3.3. In Section 3.4, we 

introduce a low-dimensional importance density to overcome the high dimensionality 

problems when the data set is large. Section 3.5 discusses how to model the SHP 

with replicates. 

3.1 Importance Density and Likelihood Approximation 

Let a := (a(xi), ...,a(xn))
T be the vector of the latent process values at the 

observed locations and i\> := (9, </>a) the model parameters. Here 9 := (a2, r2 , <f>z, (3). 

The joint density of (Y,a) (Y := (Y(xi), ...,Y(xn))
T) of the SHP model is given 

by 

p{Y,a\rf>) = p{Y\a,0)p{a\<j>a) 

= p(Y\cx,e)\Ra\-^exp(-^aTR^a)(2n)-^ (3.1) 

where Ra is the correlation matrix for ex, which only depends on 4>a and 

p(Y\a, 9) - N (G(X)/3, a2diag {exp ( ™ ) } i?,diag {exp [—) } ) , 

where Rz is the n x n correlation matrix for z and G(x) is the n x p design matrix 

for the regression term. It follows that the likelihood of the observed data is given 

by the n-fold integral 

L(i/f,Y)= Ip{Y,a\ij>)da= f p(Y\a,9)p{a\(j)a)da. (3.2) 

The likelihood (3.2) cannot be computed explicitly. There are some simulation-based 

procedures in the literature to approximate such integration (see Robert and Casella 

(1999)). Importance sampling may be used to increase computational efficiency 

and improve the accuracy of the approximation. Some methodologies have been 
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developed to find efficient important densities, e.g., Danielsson and Richard (1993) 

and Durbin and Koopman (1997), etc. Suppose we have an importance density 

pa(a\Y,if}), by implementation of Monte Carlo integration, the integral in (3.2) can 

be rewritten as 

n i v\ [ P(Y\<x-,Q)p{<x\4>a) , ) v r M , 
L^Y) = J pJalY,^) P-W'*)*" 

= E n 

N 4-^ 

pa(a\Y,xjj) 

> ( y | q , g ) p ( a l 0 o ) 

pa(a\Y,il>) 
N r p ( y | a « ) 0 ) p ( a W | 0 a ) 

(3.3) 
Pa(aM\Y,il>) 

where a^,..., a ^ are drawn from pa(a\Y, ip). 

As mentioned in Durbin and Koopman (1997), to achieve efficiency the impor­

tance density pa(a\Y,ip) should be chosen to be as close as can be managed to 

p(at\Y,ip) within the class of conditional densities that are feasible and efficient 

for drawing simulation samples. The reason for this choice is that, if pa(a\Y,i/j) 

is exactly equal to p(a\Y,ijj), then a sample of only N = 1 is required for accu­

rate likelihood calculation, as is easily shown. In this dissertation, we refer to the 

likelihood approximation method in Davis and Rodriguez-Yam (2005) and obtain 

a density pa(a\Y,tl)) that is an approximation of the posterior density p(a\Y,xjj). 

Their work was applied to state-space models so that recursive prediction algo­

rithms, such as the Kalman recursions or innovations algorithm, were available to 

accelerate the calculation in finding the importance density. In Section 3.1.1, we will 

derive pa(a\Y, i/') by modifying the method in Davis and Rodriguez-Yam (2005) to 

fit the SHP model framework. 

3.1.1 Derivation of the importance density 

To find a good approximation of p(a\Y, ip), Davis and Rodriguez-Yam (2005) 

start with a Taylor series expansion of logp(a|Y", i/>) in a neighborhood of the poste­

rior mode of p(a\Y,tp). The log-density of (Y,a), denoted by l(xf};Y,a), is given 
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by 

n 1 1 
l(iP; Y, a) = - - log(27r) + - log l ^ 1 + 1(9; Y\a) - -OLTR-1CL, (3.4) 

where 1(9; Y\a) := logp(Y|a, 9). 

Now, let 

k* := ^-l(0;Y\a)\a=a; (3.5) 

where a* is the mode of p(Y, a\tf)), which solves -^l(^;Y, a ) = 0. From (3.4), it 

follows that 

fc* := fl^a*. (3.6) 

Hence, the second order Taylor expansion of l(9;Y\a) with respect to the latent 

process a around the posterior mode a* is 

1(9; Y\a) = h* + a*TR-a\a - a") - ha - a*)TK*(ot - a*) + e ( a , a* ) , (3.7) 

where ft* := Z(0; Y | a ) | a = c r , # * := - a ^ r K ^ ' . y l Q : ) l a = a * and e (a , a* ) is the 

corresponding remainder. Thus, 

n 1 1 
Z ( ^ ; Y , a ) = --log(27r) + - log | J R a | - 1 + h * - - a * T ^ 1 a * 

- i ( a - a*) T (^* + / C ) ( a - «*) + e(a , a*). (3.8) 

Let p 0 ( a | V , ^ ) be the approximation of the posterior (or joint distribution (3.8)) 

when the remainder term is omitted. It follows that 

Pa(a\Y, </>) ~ N(a*, (K* + R^1)'1), (3.9) 

which is the equation (6) of Davis and Rodriguez-Yam (2005), except replacing V 

by R-\ 
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For the SHP model, by careful derivation, we get K* calculated as follows: 

K' = ~2(B + dm{c}), 

B = d i a 6 {eXp ( - I f ) } d iagf r - W ^ r - O i x m 

TOC 
x diag < cxp 

c = (exp ( - ^ ) ) diag{Y - G(x)(3}R;ldmg{Y - G(x)(3} 

x d i a g j e x p f - ^ H . (3.10) 

Thus we have created an importance density and can approximate the likelihood 

value by (3.3). Maximizing (3.3) with respect to ip, we can get the maximum 

likelihood estimate ip. Some implementation details will be discussed in Section 

3.3. 

3.1.2 Es t imat ion of functions of the volatility 

If ip were known, a function of the latent process at observed locations, h(a), 

can be estimated as the conditional expectation E[/ i (a) |y] , written as 

E[h(a)\Y] = I h{a)p(a\Y,ip)da 

( Q ) — P W W ) — 
/ h(a)p(Y\a, 0)p(oc\4>a)doL 

J p(Y\a, 0)p(a\<pa)da 

Ea[h(a)p(Y\a, 6)p(a\4>a) / Pa{a\Y, t/>)] (3.11) 
Ea\p(Y\at,9)p{a\<f>a)/pa(<x\Y,il>)] ' 

Once the parameter estimate ijj is obtained, the conditional expectation in (3.11) is 

approximated using Monte Carlo integration by sampling from pa(a\Y, i/>). Then 

equation (3.11) can be approximated by Monte Carlo integration. In this way, we 

are able to estimate many functions h(a) of interest, e.g., a and exp(ra /2) . 
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3.2 Prediction 

A critical issue in spatial data analysis is prediction, i.e., to predict the 

variable Y at an unobserved location Xo given observations of a random field 

Y = (Y(xi), ...,Y(xn)). For the SHP model, we are not only interested in the 

process Y but also the latent process a which describes the spatial volatility. We 

have presented the scheme of estimating the a process at observed locations in Sec­

tion 3.1.2. In this Section, we will show the methods of predicting a and Y at an 

unobserved location x0. 

3.2.1 Prediction of the latent process 

Let ao be the value of the latent process at some unobserved location a30. We 

seek for the best predictor E(ao|Y). Noting that p(ao\ot, Y) is equivalent top(ao\a), 

since 

p(a0\oc,Y) 
p(a0,OL,Y) 

p(Y\a)p{a) 

= PtTlo'O)0') P ( Q o . a ) 
p(Y\a) p{a) 

_ p(a0,a) 
p{a) 

- p (a 0 | a ) . (3.12) 

As the joint distribution of (ao,cx) is multivariate normal, the conditional distribu­

tion of «o is also Gaussian with mean and variance given by 

E(a0\a,Y) ~E(a0\a) — TaR^cx, (3.13) 

Var(a0 |a , Y) = V a r ( a 0 H = 1 - raR~lrT
a, (3.14) 
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where ra is the correlation vector of the a process between XQ and x. Furthermore, 

it can be seen that 

E(a0 |Y) = E{E(a0\a,Y)\Y)} 

= E{E(a0|a)|Y} 

= E{raR^cx\Y} 

= raR-'EicxlY). (3.15) 

Consequently, we plug the estimates of 4>a and E(a |Y) into (3.15) to get a plug-in 

best predictor of ao-

It will also be of interest to predict a function of ao, e.g., <72exp(rao) and 

<7exp(r«0/2), the conditional variance and standard deviation of Y at unobserved 

location x0. Following the same scheme, we predict h(ao) by E(h(ao)\Y) and 

the corresponding prediction variance by V&r(h(a0)\Y). By integrating out a in 

E(h(ao)\a,Y) and Var(/i(a0)|a, Y) , the predictor and prediction variance will be 

a function of E ( a | Y ) , which is straightforward to evaluate. 

3.2.2 Pred ic t ion of the Y process 

Plug-in Best Pred ic to r ( P B P ) 

Given the latent process a and parameter ?/>, the joint distribution of YQ at 

unobserved location XQ and the vector Y at sampled sites x = (x\, ...,xn) is het-

erosccdastic Gaussian. The covariance of (Yo, Y) conditional on (ao, a ) is given 

by 

COV(YQ, Y\a0, a) = a2 exp ( —^J rz(x0, cc)diag | exp ( — J j , 

Cov(Y, Y\a) = cr2diag jexp [—- j j #zdiag jexp ( — J J , 

Cov(y0,lo|ao) = a 2 e x p ( r a 0 ) . (3.16) 
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where Rz is the n x n correlation matrix for z and rz(x0, x) is the 1 x n correlation 

vector between ZQ and z. For ease of notation, we will write rz for rz(xo,x) and 

rT
z for rz(x,Xo). We will adopt similar notation for correlations of the a process. 

The diag{exp(ra/2)} refers to the nxn diagonal matrix with exp(ra/2) being the 

diagonal elements. The conditional mean and variance of the predictive distribution 

for YQ can be written as: 

E{Y0\Y, a , «0) = g(x0)
T(3 + exp(rao/2)r2JR;1diag {exp ( - ™ ) } (Y - G(x)/3), 

(3.17) 

V&r(Y0\Y,a,a0) = a2 exp{ra0){l - rzR;1^), (3.18) 

where G(x) = (g(x\), ...,g(xn))
T. As such, the best predictor E(yo|^) can be 

obtained by integrating out (ao,a) with respect to p(ao,ct\Y) in (3.17). By use 

of equations (3.13) and (3.14) (the mean and variance of conditional distribution 

ao\Y,oc), integrating out a0\Y,ct, we obtain using properties of the lognormal 

distribution, 

E(exp(ra 0 /2) |F,ct) - E(exp(ra0/2)|cx) 

= exp (^-raR-lOL + j(1 - raR^rT
a)^j , (3.19) 

E(exp(rao) | l r , a ) — E(exp(rao)|a) 

= e^{rraR-1oc + T-{l^raR-lrl)\. (3.20) 

Combining equations (3.17) and (3.19), the best predictor E (y 0 | ^ ) can be obtained 

by 

E(Y0\Y) - E{E(Y0\Y,a,aQ)\Y] 

= E{E[E(Y0\Y,a,a0)\Y,oc}\Y} 

= E([g(xo)T/3 + E(exp(rao/2) |Y,a)rZ JR;1 

xd iag{exp( - ra /2 )} (y - G(x)(3)]\Y), (3.21) 
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where the last expectation is taken with respect to p(a\Y). Since we do not have 

closed form expression for this posterior distribution, wc cannot calculate (3.21) 

explicitly. Fortunately, we can evaluate such a function of a by applying importance 

sampling and Monte Carlo integration as in Section 3.1.2. Similarly, by integrating 

out aQ\Y,a, the prediction variance Var(Yo|Y) can be written as 

Var(Y0|Y) = E(Var(Yo|Y,a,ao)|Y) + Var(E(Yo|Y,a,a0) |Y), 

E(Var(y 0 |Y ,a ,a 0 ) |Y) = E ([a2E(exp(rao)|Y, a ) ( l - r zR~z
l rT

z)]\Y) , 

Var(E(Yo|Y,a,a0) |Y) = E([E(exp(ra0) |y, Q)(r , JR;1diag{exp(-ra/2)} 

x(Y-G(x)f3))2]\Y) 

-(E(YQ\Y)-g(x0)
T(3)2, (3.22) 

where E(exp(rao) |Y,a) is calculated by use of (3.20) and E(Y0|Y) is obtained 

through (3.21). The final expectations are taken with respect to p(a\Y), which will 

be approximated by importance sampling and Monte Carlo integration. Once we 

have the parameter estimates i/>, we get the plug-in best predictor (PBP) and the 

plug-in prediction variance by plugging ij) into (3.21) and (3.22). 

Note that the plug-in prediction variance calculated above depends on the ob­

servations y . Recall the prediction variance for Gaussian process model, 

Var(y0 |Y) = a2
g(l - rgR~lrT

g), (3.23) 

where the subscript "g" indicates parameter/correlation matrices for Gaussian pro­

cess model. Equation (3.23) does not depend on the observation vector Y. We 

would expect that the observation-dependent SHP prediction variance accounts for 

spatial heterogeneity. 

Plug-in Best Linear Unbiased Predictor (PBLUP) 

If the parameter I/J were known, the best linear unbiased predictor (BLUP) 

could be readily computed. By integrating out the latent process a, the mean 
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vector and covariance matrix of the unconditional joint distribution for (YQ, Y) is 

given by 

Y G(x) 
1 r 
„T 
y 

r?. R 
(3.24) /9,o-2exp(r2/2) 

where ry stands for ry(xQ, x), and Ry and ry are computed by (2.2). 

Since the parameters are assumed known, the BLUP (in fact, the best linear 

predictor, BLP) of YQ is given by 

Y0 = g(x0)
Tf3 + ryRy\Y - G(x)f3), (3.25) 

and the corresponding prediction variance is given by 

- 1 _ T \ Var(y0) - a i e x p ( r 7 2 ) ( l - ryRy
lr (3.26) 

For a Gaussian process model, the empirical BLUP is obtained by plugging in the 

estimated correlation parameters together with the profiled mean and variance es­

timates, which are also GLS (Generalized Least Squares) estimates. For the SHP 

model, there is no explicit expression for the likelihood. It is impossible to profile out 

(3 and a2. Therefore, we will plug in the whole parameter estimates ip into (3.25) 

and (3.26) to get the Plug-in Best Linear Unbiased Predictor and the corresponding 

prediction variance. 

In Chapter 4, we will compare the prediction performance of PBP and PBLUP 

through simulations. The advantage of PBP is that it accounts for the spatial 

inhomogeneities by incorporating the a process estimates. The PBLUP is computa­

tionally faster and its correlation function with smoothed nugget property accounts 

for small scale variations. When we plug in the estimated parameter ip in equations 

(3.22) and (3.26) to get the prediction variances, we underestimate the prediction 

variances by ignoring the variances arising from estimating if). This is a common is­

sue in statistical literature. It is difficult to incorporate the variance from parameter 

estimation into prediction inference when using maximum likelihood methods. A 

Bayesian approach has the advantage of incorporating uncertainties in the prediction 

inference. We leave this as a topic of future research. 
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3.3 Implementation 

When using (3.3) to calculate the likelihood, it is a common practice to use 

"common random numbers" (CRNs) to generate a^\ ...,a.^N^ for different parame­

ter values ip. CRNs will help improve the smoothness of the likelihood and facilitate 

the convergence of estimates. Due to the numerical optimization in high dimensional 

space, we have more computational issues to discuss for maximum likelihood esti­

mation procedure. 

3.3.1 Estimating the posterior mode 

The performance of the importance density (3.9) heavily depends on the pos­

terior mode a*, which is obtained by maximizing (3.4). Since the dimensionality 

of a is the same as the number of observations, it is difficult to find a*, especially 

for large data sets. To make this optimization more feasible and accurate, we ap­

proximate the a process by a low-dimensional process and do optimization over the 

low-dimensional space. 

In Section 1.1, we have discussed that Higdon (2002) proposes a process con­

volution method to construct a continuous spatial model. A Gaussian process a(x) 

over a spatial region D can be constructed through convolving a continuous white 

noise ui(x) with a smoothing kernel k(x), i.e., 

a(x) = \ k(u — x)to(u)du, for x € D. (3.27) 
JD 

The resulting covariance function for a(x) is given by 

7(x, x') — Cov(a(x),a(x')) = / k(u — x)k(u — x')du = / k(u — d)k(u)du, 
J D J D 

(3.28) 

where d = x — x'. In case of isotropy, "y(x, x') only depends on ||d|| = ||cc — x'\\. 

There is a one-to-one relationship between the smoothing kernel k(d) and the co-

variance 7(| |d| |) under mild conditions. The relationship is based on the convo­

lution theorem for Fourier transforms. For example, the Gaussian kernel k{d) oc 



47 

exp(—2(/>||d||2) corresponds to Gaussian covariance function 7(d) oc exp(—0||d||2). 

More details about this relationship and various kernels and their induced covariance 

functions can be found in Higdon (2002). 

We restrict the latent process u(u) to be nonzero at a coarse lattice of spatial 

sites KI,...,KJ. We take J far less than the dimensionality of the observations. 

In this case, a, small number of parameters W(KI) , ...,U(KJ) effectively controls the 

entire spatial process a(x). The resulting continuous a process is then approximated 

by 
j 

a(x) = \^ujjklf>a(x — Kj). (3.29) 

where k$n is the kernel with parameter <j)a. In matrix multiplication notation, we 

can write a = Ku>, where K is the n x J matrix given by 

K = 

k(j><y(xl - Ki ) k<j>a{xi-K2) fc^(Xi - Kj) 

^ „ ( C C „ - K i ) kct>a(xn-K2) ••• k^a{xn - Kj) 

We substitute (3.29) into (3.4) and maximize the likelihood with respect to u> in 

dimension J. The a*(x) is then approximated by 

j 

(3.30) 

where u>* = (w*,u>2, •••,ojj) is the mode of the low-dimensional approximate joint 

likelihood. 

We show the efficacy of applying the low-dimensional approximation on esti­

mating a* through a 1-d example. Figure 3.1 shows the true sample paths of a and 

Y that we simulated. We set J = 10 in this example. We choose five fixed knots 

that are equally-spaced locations within the domain [0, 2]. The other five knots are 

randomly sampled with probability proportional to |V|. As such, the kernel centers 

can cover the whole domain well and put more emphasis on bump locations. We will 
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use this strategy to determine kernel centers throughout this dissertation, i.e., fixed 

knots which evenly spread within the domain and the remaining knots randomly 

selected with probabilities proportional to \Y\. 

Since the joint likelihood (3.4) is not convex in terms of a , there could be 

multiple maxima. Even for J = 10, the optimization is in a mildly high-dimensional 

space and it is better to try different initial values in order to find a good estimate. 

We try three different initial values a i , a 2 and a 3 . 

We try to find meaningful initial values instead of randomly drawing from 

the prior N(0,pa). The first initial value a j comes from "solving" for a from its 

generating equation after plugging in a rough estimate of Z. Recall the Gaussian 

process model (with nugget) and the SHP model: 

Gaussian process model: Y(x) = g{x)T j3 + oZ{x) + e(cc), (3.31) 

SHP model: Y{x) = g{xff3 + a exp (~^) Z(x). (3.32) 

We first fit the data using the Gaussian process model (3.31). Denoting the 

maximum likelihood estimates from the Gaussian process model (with nugget, 

t(x) ~ iid N(0, a2)) by (/3,</>, <72,<7e
2), the "smoothed" response Y at an observed 

location x0 is computed by 

Y\x0) = g{x0)
Tp + fR-\Y - G/9), 

where r is the estimated correlation vector between Y(x0) and (Y(x\), ...,Y(xn)) by 

ignoring the nugget term, R is the estimated covariance matrix for (Y(x\), ...,Y(xn)) 

and G = (g(x\), ...,g(xn))
T. An estimate of Z(x0) is obtained by by Z(x0) = 

(Y(x0) — g{x0)
TP)/a. In order to guarantee that Y(x0) ^ g(x0)

T/3, we set a lower 

bound for estimating of to avoid a zero estimate. We treat this Z(x0) as an estimate 

of the Z process realization at the observed locations x0 in equation (3.32). We get 

the first initial value a.\(f3,a2,T) by solving (3.32), 

ai(x0;/3, a2,T) = [log(Y(x0) - g(x0)
Tl3)2 -loga2 -log Z(X0)

2}/T. (3.33) 
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The second initial value oc2{(3,a2,r) is also obtained by solving (3.32). Instead of 

using the rough estimate Z, we set all logZ2 values equal to —1.27, which is the 

mean of the log chi-square distribution with one degree of freedom, i.e., 

a2(xo] 0, a2, T) = [log(y(x„) - g{x0)
Tf3)2 - log a2 + 1.27]/r. (3.34) 

The third initial value a 3 is simply a vector of zeros, which is the mean of the 

prior. When applying the low-dimensional approximation scheme on estimating a*, 

we first transfer the initial vectors an, a.2 and a^ to cj\, UJ2 and o>3, by taking 

ijj — (KTK)~loc. By plugging a = Ku> into equation (3.4), we apply three initial 

values wi, u>2 and u>3 and obtain three estimated modes u){, u*2 and Wg, from which 

we chose the one corresponding to the largest joint likelihood value as the final mode 

estimate u*. The a* is then approximated by equation (3.30). 

For illustration, we use true parameters to estimate a* for the SHP realization 

shown in Figure 3.1. Figures 3.2, 3.3 and 3.4 show the results of estimating a* by 

use of three initial values and two methods: optimizing with respect to ct directly 

and optimization in low-dimensional space (with respect to w). We can see that 

the a* obtained by the low-dimensional optimization approach are close to the 

true a values, while the a* obtained by direct optimization with respect to a do 

not move from the initial values too much and are quite different from the true 

a values. Although the posterior mode does not exactly equal the true a , it is 

expected that they are close. We also notice that the estimate is robust to initial 

values for low-dimensional optimization in the sense that different initial values lead 

to similar a* estimates. But the results of optimization with respect to en depend 

quite strongly on the initial values. In Table 3.1, we list the mean square error of 

the estimated mode with respect to the true a values, n _ 1 ^ " = 1 ( a* — a)2, which 

illustrates the above conclusions quantitatively. From Table 3.1, we see that the 

joint likelihood values of the low-dimensional approach are very close to each other 
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for different initial values and much greater than those from optimizing with respect 

to a directly. Overall, the low-dimensional approach improves the posterior mode 

estimate dramatically over optimizing in the original high-dimensional space. 

In summary, to evaluate a likelihood value at a set of parameter values ip = 

(a2,r2, <f>a,4>z,{3), we take the following steps: 

Step 1 Fit a Gaussian process model with nugget (equation (3.31)) and get a rough 

estimate of Z, i.e., Z. 

Step 2 Solve equations (3.33) and (3.34) to get initial values ai(/9,cr2 ,r) and 

a2(/3,cr2,r)-

Step 3 Transform the three initial values oci, ct2 and a.3 (vector of zeros) to initial 

values in u> space, i.e., wi, a>2 and CJ3. 

Step 4 Optimize (3.4) with respect to u; by plugging in a = Ku>, using three initial 

values u>i, u>2 and CJ3. 

Step 5 Choose u>* from u>*, u;̂  and u>l, the one corresponding to the largest joint 

likelihood value. 

Step 6 Take a* = KUJ* and plug a* and tp into formulas (3.10) to get the impor­

tance density. 

Step 7 Sample a large number of CK'S from the importance density and calculate 

the likelihood by equation (3.3). 

3.3.2 Es t imat ing a2 

By simulation, we found that the likelihood is flat for a wide range of a2 values, 

which brings difficulties in maximum likelihood estimation for a2. It is impossible 

to profile out a2 in equation (3.2). We tried to profile a2 out of the joint density 
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(a) (b) 

Figure 3.1: Estimating the posterior mode (I). Panel (a) shows the true a sample 
path. Panel (b) shows the true Y process realization. Circles are sampled points. 
Stars on the x-axis are locations of kernel centers. We take /? = 0. a2 = 0.2, r2 = 4, 
4>a = 40 and (pz = 80. Both pa and pz are Gaussian correlation functions. The true 
sample path is based on 200 equal-spaced points on [0,2]. The sampled locations 
are 30 equal-spaced points. 

True alpha 
Starting values 
Estimated mode 

0.5 

(a) (b) 

Figure 3.2: Estimating the posterior mode (II). Panel (a) shows the optimization 
with respect to ex directly. Panel (b) shows the optimization by applying low-
dimensional approximation. We take the starting values cx\ in each panel and plot 
the true a, the starting values and the estimated posterior mode for comparison. 
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Figure 3,3: Estimating the posterior mode (III). Panel (a) shows the optimization 
with respect to a. directly. Panel (b) shows the optimization by applying low-
dimensional approximation. We take the starting values cx2 in each panel and plot 
the true a , the starting values and the estimated posterior mode for comparison. 

True alpha 

Starting values 

Estimated mode 

True alpha 

Starting values 

Estimated mode 

(a) (b) 

Figure 3,4: Estimating the posterior mode (IV). Panel (a) shows the optimization 
with respect to a directly. Panel (b) shows the optimization by applying low-
dimensional approximation. We take the starting values 0:3 (a vector of zeros) in 
each panel and plot the true a , the starting values and the estimated posterior mode 
for comparison. 
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Table 3.1: Comparison of MSE and log-likelihood values for estimating posterior 
mode by direct optimization and low-dimensional approximation approach. 

a i 

" 2 

« 3 

MSE.a 

2.12 

1.54 

0.63 

MSE.a; 

0.25 

0.26 

0.27 

loglik.a 

-1396.4 

-1581.8 

-185.2 

loglik.a; 

-70.5 

-66.8 

-68.9 

"loglik.a and loglik.w refer to the log likelihood values (up to a constant); MSE.a and MSE.w refer to the mean 
square errors of the estimated mode with respect to the true a values at 30 sampled locations. The suffixes a and 
UJ refer to optimization with respect to a directly and by applying low-dimensional methodology, respectively. 

of (Y,a), i.e., equation (3.1) when finding a*. Accordingly, we maximize (3.1) 

with respect to a and a2 (having closed form) simultaneously. It turns out that 

in simulations the a2 estimate obtained in this way is highly positively biased. 

Therefore, we explore an alternative way to estimate a2. From SHP model (2.1), by 

incorporating the correlations in the observations, the expected value of the sample 

variance is 

a 2 e x p ( ^ ) ( n 2 - E i E i P y ( * , J ' ) ) 
E ( s } = ^ T T T ) • 

Therefore, an unbiased estimator for a2 would be 

>2 n(n — l)exp(—y)s2 

(3.35) 

if T2 and py were known. We propose to fix a2 at the sample variance and obtain 

maximum likelihood estimates for r2 , (f>Q, (f)z and (3. Then by plugging maximum 

likelihood estimates of the other parameters in equation (3.35), we get the final 

estimate for a2. 

Because the data have a heavy-tailed distribution, we use a robust alternative to 

s2 in estimating a2. We use the scaled Median Absolute Deviation (MAD) estimate, 

a robust estimate for a developed by Johnstone and Silverman (1997), 

MAD = ^ d i a n ( ] y - m e d i a n ( F ) | ) , (3.36) 
0.6745 v ' 
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where 0.6745 is the standard normal MAD. We replace s2 in equation (3.35) by the 

square of MAD in equation (3.36). 

3.4 A Low-Dimensional Approximation Model 

In Section 3.3.1, we introduced a low-dimensional approximation for the latent 

process a. We replace a by its low-dimensional approximation (3.29) in the joint 

likelihood equation (3.4). The mode a* is obtained by (3.30) after optimizing (3.4) 

to get oj*. This low-dimensional approximation scheme reduces computational load 

and increases accuracy in the numerical optimization procedure. But the importance 

density calculated from (3.9) and (3.10) is still of dimension n. When the data 

set is large, this n-dimensional importance density is cumbersome and not feasible 

for reliable computation. We would like to develop a low-dimensional importance 

density by approximating the a process completely. 

We approximate the SHP model by 

Y(x) = g(x)T(3 + W(x), 

W{x) = aexp ( ——- J Z(x), a > 0, r > 0, (3.37) 

where w ~ N(0, Ij). We have introduced the notation K in Section 3.3.1. The log 

joint density of (Y,u>) is 

71 1 

Z(V; Y, u) = - - log(27r) + Z(V; y|w) - -uTu, (3.38) 

where l(ip;y\u) := logp(Y\u>,d) and 

p(Y |w, 6) ~ N (G(X)0, a2diag jexp ( ^ J } ^2diag iexp [ ^ -

For this approximation model, following the same derivation procedure in Section 

3.1, the J-dimensional importance density is given by 

Pa(u\Y, VO ~ N(u>*, (K* + Ij)-1), (3.39) 
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where 

B = diag j exp ( - ^ ^ ) } diag{Y - gT^}R;1 

xdiag{Y - gT/3}diag < exp ( — 
2 

T 

c = ^ e x p ^iJ^fiyj diag{Y - gT/3}R^di&g{Y - gT(3} 

x d i a g { e x p ( - ^ ^ ) } . (3.40) 

Using the approximation model (3.37) and the low-dimensional importance 

density formulated by (3.39) and (3.40), we can get maximum likelihood estimates 

of the parameters through a faster optimization procedure. A function of the latent 

vector UJ can be estimated through a strategy similar to that for estimating a as 

shown in Section 3.1.2, i.e., the best predictor E(h{uj)\Y) is 

E[h{u>)\Y] = [ h{w)p{w\Y,%l))du 

fh(u)p(Y\u,e)p(u\(f>a)du 

Jp{Y\u,0)p(u\<l>a)du> 
Ea[h(u)p{Y\u>, e)p{u\d>a)/Pa(Lj\Y, </>)] 

(3.41) 
Ea\p(y\^o)P(u\<i>a)/pa(U\Y,^)} • 

The last step will be approximated by Monte Carlo integration using samples 

u/1), . . . , a>C) drawn from pa(u;|Y", ift). 

Based on the low-dimensional approximation model (3.37), the prediction of YQ 

at unobserved location Xo is straightforward. Conditioning on the latent vector u, 

(Yo, Y) are heteroscedastic Gaussian. The conditional mean and variance for Y0 are 

E(Y0\Y, w) = 9(x0)
Tf3 + exp(rfc0u;)r2JR;1diag{exp(-rKa;/2)}(Y - G(x)/3), 

(3.42) 
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Var(y0 |y ,w) = a2exp(rfc0w)(l - rzR-lrT
z). (3.43) 

Furthermore, the prediction variance Var(y0 |Y) can be written as 

Var(y0 |Y) = E(Var(Y0 |Y,w)|Y) + Var(E(Yo|Y,u>)|Y), 

Var(E(Y0 |Y,u;|Y) = E([exp(rfe0w)(rz/?2-1diag{exp(-rKa;/2)} 

x (Y - G(x)[3))2}\Y) 

-(E(Y0\Y)-g(x0)
Tf3)2, (3.44) 

where fc0 = (k^ixo - «i) , ^ o (a3 0 - K 2 ) , ..., ^ a (as 0 - Kj)). Given the parameter ?/;, 

equations (3.42), (3.43) and (3.44) are all functions of the latent vector u>. Therefore, 

we can plug in the parameter estimates ip and utilize (3.41) to compute the plug-in 

best predictor and the prediction variance by Monte Carlo integration. 

An important issue of estimation and prediction by use of the approximation 

model (3.37) is the determination of the kernel centers (KI,K2,.--KJ). We use the 

same strategies as in Section 3.3.1, i.e., fixed knot locations that evenly spread 

within the domain and the remaining knots randomly selected by use of probabilities 

proportional to |Y|. Wc actually try a large number (ranging from 100 to 1000 

depending on the application) of randomly selected knots and choose the one that 

yields the largest joint likelihood value. 

3.5 S H P wi th Replicates 

In practice, some spatial processes are measured at a finite set of locations over 

a region of interest D at regular times. For example, in studies of air pollution, 

some measurements of interest are recorded at monitoring stations at regular time 

intervals (daily, monthly, yearly,.., etc.). In this situation, the stochastic process can 

be described by Y(x,t) where x € D and t represents time. Frequently, the aims 

arc to estimate the process Y(x,t) and to predict the process at locations and times 
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which are not being measured. The introduction of time into spatial modeling in­

creases the model complexity and computation burden. Spatial-temporal modeling 

(Banerjee ct al. (2003)) considers the spatial correlation, temporal correlation and 

possibly the interaction of spatial and time trend simultaneously. Research in the 

area of heterogeneous spatial covariancc modeling simplifies the temporal aspect, in 

the sense that the observations are assumed independent in time, probably obtained 

after detrending, see Sampson and Guttorp (1992), Schmidt and O'Hagan (2003), 

Damian ct al. (2001) and Nychka et al. (2002). We denote by YU...,YT the T 

independent n-dimensional vectors of observations. The sample covariance matrix 

S can be calculated (S is non-singular if T > n). Most approaches of modeling 

nonstationary spatial covariances work with the likelihood of S or smoothing S by 

some modern statistical techniques. 

We can extend the SHP model (2.1) to fit the framework of such a problem. 

We assume that the spatial processes YI,...,YT come from a SHP model conditional 

on a common a process, i.e., 

Yt(x) = gt(x)T/3 + Wt(x), 

Wt(x) =aexp(^^)zt(x), a > 0, r > 0, (3.45) 

where Zt(x),t = 1, ....,T are independent stationary Gaussian processes with mean 

0, variance 1 and correlation functions pz. The latent process a(x), independent of 

t, is used to model the spatially correlated variance process. Therefore, Y\,...,YT 

arc conditionally independent given a. 

The joint likelihood of model (3.45) is given by 

p(Y,a\ip) = p(Y\oc,9)p(a\(/)a) 
T 

= Y[p(Yt\oc,0)p((x\(f)a). (3.46) 
t=i 
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Correspondingly, the log density of (Y,a) is given by 

T 

l{$; Y,a.) = -7± log(27r) + - log \Ra\~
l + J ] Z(0; Yt\a) - -OP'R^OL. (3.47) 

1 t=i 

Comparing this log density with equation (3.4), the only difference is to replace 

l(0;Y\a) by X/t=i K^'i ^ t | a ) - Therefore, we follow a strategy similar to that in 

Section 3.1.1 to derive the importance density, which is still of the form (3.9), i.e., 

pa(a\Y, t/>) ~ N(a*, (K* + R^)'1), (3.48) 

with K* calculated by 

T 

t=\ 

Bt — diag < exp 
2 

TO? 
xdiag{y t - gT(3}Rz

 1diag{y t - gT/3}diag < exp ( 

ct = (exp ( - ^ ) ) diag{Y t - gT0}R;1 

xdiag{F ( - gT/3}dmg j exp f - 1 ^ J } (349) 

By use of the importance density formulated in equations (3.48) and (3.49), we can 

do maximum likelihood parameter estimation using very similar procedures as those 

for the single-realization SHP model. Since we have replicates for the Z process, 

it is expected to improve the estimation and prediction performances by taking 

advantage of more information. We will also revise some implementation details 

accordingly. 

Conditional on a, Yt(x)'s are independently and identically distributed as 

~N(g(x)Tf3, a2 exp(ra) /oz). We can calculate the sample standard deviation Sy(x) at 

each location x. Since Sy(x) converges to aexp(ra(a;)/2) as the number of replicates 
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goes to infinity, it is immediately seen that Yt{x)/Sy{x) is approximately distributed 

asN(g(x)TP/Sy(x),pz). As such, {Y^x^/Syixi), ...,Yt(xn)/Sy{xn)}J=1 := Z is ap­

proximately T realizations from a Gaussian process with correlation function pz. We 

can estimate 4>z using the approximate likelihood of Z, which is a good initial value 

for estimating <pz using maximum likelihood. 

For estimating the posterior mode ex*, we use different initial values from Sec­

tion 3.3.1. Since we have replicates, there will be T solutions of cx.\ and ex2 in solving 

equations (3.33) and (3.34). It is not computationally efficient to try so many initial 

values. With replicates, we can obtain the sample variance at each observed loca­

tion, which will provide a direct estimate of ex. Therefore, we will apply two initial 

values here. The first initial value is simply a vector of zeros. Conditional on a, the 

variance of Y(x, t) is a2 exp(ra). By equating this variance to the sample variance, 

we calculate the second initial values by 

a0(x) = (log(S2
y(x)) - log(a2))/r. (3.50) 

The strategy of choosing kernel centers is also different from the single-

realization SHP model. We still fix a certain number of knots that evenly spread 

within the domain but the remaining knots will be randomly selected by use of 

probability proportional to Sy(x) instead of |Y(a;)|. 

For prediction, since Y\,..., YT are independent with each other (conditional on 

a), the conditional mean for a new observation at Xo and time t, denoted by Yo,t> 

can be written as: 

E(Y0it\(Yu ..., YT), ex, a0) = E(Y0,t\Yt, a, a0) (3.51) 

= g(x0)
Tp + exp(ra0/2)rZJR;1diag {exp ( - ^ ) } (Yt - G{x)(3). 
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That is, conditional on ex and a0, YQtt only depends on Yt- By revising equation 

(3.21), t h e P B P o f YQ. i can be obtained by 

E(YQtt\(Y1,...,YT)) = E(g(x0fp\(Y1,...,YT)) 

+E(E(exp(ra0/2)\(Y1,...,YT),cx)rzR;ldiag{cxp(-TOc/2)} 

x(Yt-G(x)P)\(Yu-,YT)), (3.52) 

where E(exp(rao/2) |(yi , . . . , Y r ) , a ) is the same as equation (3.19) except replacing 

Y by (Y"i, ...,YT)- The last expectation is taken with respect to p(a\(Y\, ...,YT)), 

which is computed by applying importance sampling and Monte Carlo integration as 

in Section 3.1.2, by replacing E(h(oc)\Y) with E(h(a)\(Yi,..., YT))- For prediction 

variance Var(Yojt|(Yi,..., V^)) , the formulas are similar as those in equation (3.22) 

by replacing the Y vector in condition with (Y\,...,YT) and (V — G(x)f3) by 

(Yt-G(x)P). 



Chapter 4 

SIMULATION STUDIES OF SPATIAL PREDICTION METHODS 

We explored some properties of the SHP model in Chapter 2. Specifically, we 

showed the parameter confounding effects that exist in the unconditional correlation 

functions and the sample paths, which would possibly bring difficulties in parameter 

estimation. Chapter 3 proposed maximum likelihood parameter estimation strategy 

and two process predictors. The purpose of this chapter is to evaluate the estimation 

and prediction methods proposed in Chapter 3 through simulations. To assess the 

performances of different spatial prediction methods, we simulate realizations from 

the SHP model, stationary Gaussian process model and some nonstationary models, 

and compare the out-of-sample mean square prediction errors by use of different 

model fits. We also explore the estimation and prediction performances of the low-

dimensional approximation model and the SHP model with replicates. 

4.1 Simulation Study for SHP Model 

In this section, wc will generate 1-dimcnsional and 2-dimcnsional realizations 

from the SHP model. By applying different parameters and different sample sizes, 

we will explore the properties of the maximum likelihood estimates. We will evaluate 

the prediction performances of the SHP and Gaussian process model fits on the SHP 

realizations by comparing their mean square prediction error (MSPE). 
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4.1.1 Prediction and estimation comparisons for 1-dim SHP simulation 

Simulation setup 

We simulate 1-dimensional realizations from the SHP model with constant mean 

(3 = 0. We take a2 = 0.2 and change the values of r2, 4>a and (j)z to form four 

parameter combinations. The parameter values we used arc summarized in Table 

4.1. Both pa and pz are taken to be Gaussian correlation functions. The true 

sample path is based on 200 input points equally spaced on [0,2]. To achieve a 

fair comparison, we use the same random number sequences to generate both a 

and Z processes respectively for realizations using different parameter values. For 

each parameter combination, we take sample sizes of 30 and 60. The observed 

30 or 60 locations are regularly spaced in the domain [0,2]. For each realization 

and each sample size, we fit SHP and Gaussian process models using 30 or 60 

observations, estimate model parameters, predict Y at the remaining 170 or 140 

unobserved locations and calculate the out-of-sample MSPE. For the SHP model, 

we implement maximum likelihood estimation by use of the techniques presented in 

Sections 3.1 and 3.3. We apply PBLUP and PBP for predictions. For the Gaussian 

process model, we employ maximum likelihood estimation and take empirical BLUP 

using Gaussian, exponential, spherical and Matern correlation functions. Since both 

pa and pz are Gaussian correlations, it turns out that Gaussian correlation function 

leads to the best prediction result, i.e., smallest MSPE. Therefore, we only present 

the results for the Gaussian process model using a Gaussian correlation function. 

In order to evaluate our parameter estimation and process prediction schemes, 

for some parameter combinations, we try three more SHP predictors in addition 

to PBLUP and PBP. First, we take BLUP predictor using true parameter values 

in equation (3.25). Second, given true parameter values, equation (3.21) can be 

evaluated by plugging in the true parameters, applying importance sampling and 
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Monte Carlo integration. We call such a predictor as MBP (Monte Carlo best 

predictor), Third, given true parameters and the true a vector at observed locations, 

the best predictor (BP) can be easily obtained. Referring to equations (3.17) and 

(3.19), we immediately see that 

E(Y0\Y) = E[E(y0 |Y,a0)3 

= g(x0)
T(3 + E(exp(ra 0 /2) |y)rZ JR; 1diag{exp(-ra /2)} 

x(Y-G(x){3), (4.1) 

where 

E(cxp(™0/2)|Y) = exp (^-raR-l<x + ^-(1 - r a # > « ) ) • (4-2) 

Everything is known in equations (4.1) and (4.2). This best predictor should per­

forms the "best" among all predictors we try. 

Results 

We first analyze the results from estimation and prediction by use of 30 or 60 

observations. Table 4.1 lists the mean and standard deviation of parameter estimates 

for the SHP model based on 100 realizations. We see that the estimates for 4>a and 

4>z, the important range parameters, have large variances for sample size 30. The 

standard deviations decrease considerably when increasing sample size to 60. But 

the estimates for the second parameter combination, i.e., 4>a = 80 and <j)z = 40, 

are badly biased. They are in reverse relationship to the corresponding true values, 

i.e., estimated low 4>a (with mean 56.11 at n = 30 and 45.22 at n = 60) and high 

estimated 4>z (with mean 90.00 at n — 30 and 161.74 at n — 60) versus high true 

4>a (80) and low true <j)z (40). Another unusual phenomenon is that with increased 

sample size, the estimates are even more negatively biased for 4>a and positively 

biased for 4>z. 
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We can explain these situations from the discussion of confounding effects in 

Section 2.3. We have shown that both the unconditional correlation function and 

sample path features are not as sensitive with respect to <t>a and <frz as those for 

Gaussian process with respect to its range parameter cf), which leads to large vari­

ances in estimating 4>a and <f>z. We actually show some realizations from the SHP 

model with the first two parameter combinations in Figure 2.10. Comparing panels 

(a) and (b) in Figure 2.10, the sample paths show strong inhomogeneous features 

and look very similar. For any single realization, it is hard to identify from which 

parameter combination it was generated. The simulation result tells us that the 

likelihood "prefers" to let the Z process account for the primary features of the Y 

process (by leading to greater <fiz than 4>a). It makes sense that the variance process 

a is smoother than the overall trend process Z. 

We can also explain the reason using stochastic process interpolation theory. 

Any 1-dimensional curve or 2-dimensional surface can be deemed as a realization 

from a Gaussian process with properly chosen correlation function to satisfy the 

required smoothness/differentiability property. With sample points dense enough 

(particularly easy to achieve for a 1-dimensional sample path), any 1-dimensional 

curve or 2-dimensional surface can be perfectly interpolated by a Gaussian process. 

Therefore, with sample size increasing, the SHP model fitting will be more and more 

reduced to a Gaussian process model fit. As such, the 4>z estimate will increase while 

4>a estimate will decrease. 

The estimates for the location parameter (3 and scale parameter a2 look like 

almost the same for sample sizes 30 and 60 if referring to the mean and standard 

deviation summaries. The additional sample size does not help improving the esti­

mation precision because the observations are highly correlated instead of iid. As 

such, estimates for the (3 and a2 are reasonable. The estimate of r 2 is also satisfying. 

Figures 4.1 and 4.2 are the boxplots of MSPE for sample sizes 30 and 60, 

respectively. Throughout this thesis, boxplot refers to the box and whisker plot 



65 

without outliers. We do not show outliers in the boxplot to avoid graphs in which the 

main information is screened due to some extreme outliers. Because the realizations 

come from SHP model, we expect that SHP using PBP yields the best prediction 

results. Therefore we table the ratios of MSPE for Gaussian process model and SHP 

PBLUP over MSPE for SHP PBP. The larger the ratio is, the better the performance 

of SHP PBP over the other two prediction methods. Table 4.2 summarizes these 

MSPE ratios. From the boxplots and summary of MSPE ratios, we see that for 

the first two parameter combinations, SHP PBP outperforms Gaussian process and 

SHP PBLUP considerably, reflected by large MSPE ratios and low boxes. We know 

that realizations from these two parameter combinations are very "SHP" like, i.e. 

with obvious heterogenous features that stationary Gaussian processes are unable 

to capture. It is encouraging to see that, for the second parameter combination, 

although the estimates for cpa and 4>z are totally reversed, the prediction performance 

is very pleasing. This confirms that the realizations from the SHP model with high 

(j)a and low 4>z values can be represented by low cf>a and high cj)z values. SHP 

PBLUP yields similar prediction results as the fitted Gaussian process. It is not 

surprising since PBLUP is simply a linear predictor using the SHP unconditional 

correlation function. Therefore, in order to catch the spatial inhomogeneities, we 

should apply SHP PBP for prediction. From now on, without further comment, 

SHP model prediction will refer to prediction by use of PBP. For the third and 

fourth parameter combinations, the three predictors arc very close. From Chapter 

2, we know that realizations from the SHP model can be Gaussian-like by allowing 

small T2 and/or <pa values. By setting 4>a = 10 and T2 = 1 in the third and fourth 

parameter combinations, we do generate Gaussian-like SHP realizations. Therefore, 

it is not surprising (and even encouraging) that SHP PBP yields similar prediction 

performance as Gaussian process model, as well as SHP PBLUP. 
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In general, we get satisfying maximum likelihood estimation results. The es­

timated parameters reflect the model features from which we generate the realiza­

tions. SHP PBP outperforms Gaussian process model and SHP PBLUP for pre­

dicting those SHP-like realizations. In order to further investigate the prediction 

performance of SHP PBP, we would like to compare it with three more predictors 

introduced above: BLUP, MBP and BP. These three predictors are all based on 

known true parameters. Figure 4.3 gives the boxplots of MSPE by use of all six pre­

diction methods for the first two parameter combinations and two sample sizes. Not 

surprisingly, BP gives excellent prediction results, far beyond the other predictors. 

It is interesting to sec that for the first parameter combination (<j)Q = 40,(/>z = 80), 

the MSPEs for PBP and MBP are very close, indicating that without knowing a , 

the true parameters do not improve the prediction comparing to estimated param­

eters. For sample size 60, PBP and MBP have comparable performance as BP. 

For the second parameter combination (<pa = 40,4>z = 80), MBP gets worse results 

and crashes for sample size 60. We discuss this breakdown later in this subsection. 

BLUP works close to PBLUP (as well as GP). This makes sense if we recall the 

severe confounding effects of parameters in the unconditional correlation functions 

in Section 2.3.1. It is confirmed again that the linear predictor for SHP is incapable 

of capturing the heterogeneous features and making good predictions. Among these 

six predictors, we are most interested in comparing PBP and MBP. 

Both MBP and BP use true parameters. Without knowing a , MBP performs 

much worse than BP. Therefore, we doubt the prediction performance is highly 

associated with the a estimates. Table 4.3 compares the MSPE for predicting Y 

process and MSE for estimating ex by summarizing the ratios of PBP result over 

MBP result. For the first parameter combination, PBP estimates a. a little worse 

than MBP for sample size 30 and comparable with MBP for sample size 60. The 

predictions for Y process are similar. For the second parameter combination, PBP 
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estimates a and predicts Y much better than MBP for sample size 30. For sample 

size 60, the estimate of a for MBP has totally failed, which leads to the extremely 

poor prediction results for Y. Therefore, we see that the a estimate is essential for 

the prediction performance. 

Tabic 4.1: Performance of maximum likelihood estimates of parameters in the 1-
dimensional SHP model. The means and standard deviations are based on 100 
simulated realizations from the model. 

n 

30 

60 

30 

60 

30 

60 

30 

60 

True 

Mean 
Stdev 

Mean 
Stdev 

True 

Mean 
Stdev 

Mean 
Stdev 

True 

Mean 
Stdev 

Mean 
Stdev 

True 

Mean 
Stdev 

Mean 
Stdev 

a1 

0.2 

0.22 
0.23 

0.22 
0.23 

0.2 

0.24 
0.25 

0.24 
0.24 

0.2 

0.28 
0.33 

0.28 
0.35 

0.2 

0.21 
0.15 

0.21 
0.15 

r2 

4 

3.85 
2.41 

4.28 
2.61 

4 

3.72 
2.46 

4.00 
2.62 

4 

3.77 
2.56 

4.64 
2.77 

1 

1.09 
0.72 

1.11 
0.81 

<Pa 

40 

41.28 
20.80 

27.84 
11.94 

80 

56.11 
24.94 

45.22 
21.55 

10 

17.67 
10.15 

9.95 
5.34 

40 

65.26 
34.55 

32.34 
14.02 

4h 

80 

90.25 
22.09 

119.33 
19.23 

40 

90.00 
25.32 

161.74 
21.67 

80 

77.93 
19.35 

80.77 
15.70 

80 

S4..66 
20.30 

100.45 
12.51 

P 
0 

0.01 
0.34 

0.00 
0.35 

0 

0.01 
0.37 

0.01 
0.35 

0 

0.00 
0.34 

0.02 
0.31 

0 

0.01 
0.17 

0.01 
0.17 

4.1.2 Prediction and estimation comparisons for 2-dim SHP simulation 

In Section 2.1 Figure 2.2 panels (b) and (c), we plot two SHP realizations, 

one of which has similar features as a realization from a Gaussian process (when 

r 2 = 0.4) and the other of which has a SHP-like heterogeneous pattern (when 
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0a = 80,cp2 = 4 0 , r 2 

Tabic 4.2: Summary of MSPE ratios for the 1-dimensional SHP simulation based 
on 100 realizations. Ratios greater than one favor the PBP method. 

Parameters n Min 1st Quartilc Median 3rd Quartile Max 

30^ CL28 L06 1764 3.05 22.65 

60*" 0.59 0.97 1.18 1.70 17.87 fk _ 4n A _ en Ti _ 4 

ggpNuj- o.55 1.02 1.21 1.66 15.26 

_ _ _ _ _ _ _ _ 3.15 23.30 

60-"p 0.34 1.29 1.97 3.33 13.42 

Wblup 0.21 1.21 1.77 3.05 26.30 

6()pbiup 0 3 5 1 2 o 1.97 3.27 58.73 

~ 30gp 0Td 0.72 1.14 2.04 7.98 

609P 0.46 0.96 1.01 1.07 2.75 

30pWup 0.08 0.75 1.11 1.97 6.72 

60pMUp o.75 0.98 1.03 1.09 1.91 

309P 0.28 0.84 (199 1.44 6.68 

6 0 ^ 0.67 0.98 1.03 1.09 6.38 

3 0 PWU P ( ) f 3 5 o.89 1.04 1.41 5.68 

60pbiup Q.69 0.98 1.04 1.11 3.66 

(j>a = 10, cpz = 80,7- ' = 4 

<pa = 4 0 , ^ = 8 0 , r 2 

"30s"' or 609 ' ' refer to MSPE ratios of Gaussian process model over SHP model using PBP with sample sizes 
30 or 60. 30P'''"P or 60PW"*' refer to MSPE ratios of SHP model using PBLUP over SHP model using PBP with 
sample sizes 30 or 60. 
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GP PBLUP PBP GP PBLUP PBP 

(a) (b) 

GP PBLUP PBP GP PBLUP PBP 

(C) (d) 

Figure 4.1: The 1-d SHP simulation MSPE boxplots for sample size 30. Panel (a) 
corresponds to <pa — 40, <pz = 80, r 2 = 4. Panel (b) corresponds to 4>a = 80, <pt = 
40, r2 = 4. Panel (c) corresponds to <pQ = 10, <pz = 80, r2 = 4. Panel (d) corresponds 
to (pa = 40, cpz = 80, r2 = 1. 
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GP PBLUP PBP GP PBLUP PBP 

(c) (d) 

Figure 4.2: The 1-d SHP simulation MSPE boxplots for sample size 60. Panel (a) 
corresponds to <f>a = 40, <pz — 80, r 2 = 4. Panel (b) corresponds to 4>a = 80, <pz = 
40, r2 = 4. Panel (c). corresponds to (f)a — 10, <j)z = 80, T2 = 4. Panel (d) corresponds 
to (pa = 40, cpz ^ 80, r2 = 1. 
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Figure 4.3: The 1-d SHP simulation MSPE boxplots for six predictors. Panel (a) 
corresponds to </>Q = 40,4>z = 80, n = 30. Panel (b) corresponds to <pa = 40, <pz = 
80,n = 60. Panel (c) corresponds to cpa = 80, cpz = 40,??, = 30. Panel (d) corre­
sponds to (p0 =• 80, (pz — 40, n = 60. 
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Table 4.3: Summary of MSPE ratios (PBP/MBP) for the 1-dimensional SUP sim­
ulation based on 100 realizations. Ratios greater than one favor the MBP method. 

Parameters Min 1st Quartilc Median 3rd Quartilc Max 

0.09 0.78 LOO 1.61 16.58 

0.45 1.27 1.89 3.02 12.64 
0.24 0.82 0.95 1.09 3.31 

0.11 0.63 1.09 1.90 6.92 

n = 30, Y Cl07 0M 087 L46 T% 

ra = 30 ,a 0.18 0.54 0.80 1.17 3.64 
n = 60,y 1.28e-10 1.54&-4 3.06&-3 5.05c-2 4.16 

n = 60 ,a 0.02 0.05 0.09 0.14 0.55 

a " n = 30, V"" and "n = 60, Y" refer to the MSPE ratios for prediction of Y process, "n — 30, a" and 
"n = 60, a" refer to the MSPE ratios for estimating a. process at observed locations. 

r2 = 4). From the 1-dimensional SHP simulation study, we learn that the MLE has 

"reverse estimation" behavior for 4>a and <j)z when the true value of 4>a is high and 

4>z is low. We would like to re-examine this issue by a 2-dimensional SHP simulation 

study. We have three parameter combinations to try. The true parameter values are 

listed in Table 4.4. We simulation 100 realizations from SHP model using each of 

the three parameter combinations. For each realization, the true surface is based on 

21 x 21 grid points on [0,8] x [0,8]. To achieve a fair comparison, we use the same 

random number sequences for both a and Z processes respectively for realizations 

based on different parameter combinations. For each parameter setting, we try two 

sample sizes: 50 and 80. The observed locations are obtained by cluster sampling 

and simple random sampling. As shown in Figure 4.4, we first choose four cluster 

centers at (2,2), (2,6), (6,2) and (6,6), then we sample three more locations from 

the second-order neighborhood around each center. We randomly sample 34 points, 

together with 16 clustered points, to compose the 50 observed locations, see Figure 

</>0 40, (L = 80 

n = 30, Y 

n = 30, a 
n = 60, Y 

n = 60, a 
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4.4 panel (a). For sample size 80, we add 30 more randomly selected points on the 

base of 50 sampled locations, see Figure 4,4 panel (b). For each realization and 

each sample size, we fit Gaussian process models by use of Gaussian, exponential, 

spherical and Matern correlation functions. Since both pa and pz are Gaussian 

correlations, it turns out that Gaussian correlation leads to the best prediction result, 

i.e., smallest MSPE. Therefore, we only present the result of Gaussian process model 

using Gaussian correlation. For SHP modeling, we implement maximum likelihood 

estimation, then apply PBLUP and PBP for predictions. 

The sample means and standard deviations of model parameter estimates are 

summarized in Table 4.4. First notice that estimation of a2 for the r2 = 0.4 model 

is more accurate than for the r2 = 4 models because the realizations from the latter 

models are more volatile. Estimation of r2 for the r2 = 4 models are better than 

for the T2 = 0.4 model because the former models provide richer information about 

the latent process. The estimation in the 4>a = 0.3, 4>z — 0.15 model is again biased 

to the point of reversal, as in the 1-dimensional case: <f>a estimates have means 

0.21/0.18 and 4>z estimates have means 0.40/0.46. Increasing sample size effectively 

decreases the standard deviation. 

Table 4.5 summarizes MSPE ratios of Gaussian process fitting and SHP PBLUP 

over SHP PBP. Figure 4.5 gives the boxplots of all MSPEs. When r2 = 4, SHP PBP 

gives the best prediction results. SHP PBLUP has similar prediction performance 

as the Gaussian process model. This is another example in which we clearly should 

apply SHP PBP to catch the spatial heterogeneities and get the best prediction 

results. When r2 = 0.4, SHP PBP has similar performance as SHP PBLUP as well 

as Gaussian process fitting. So for 2-dimensional Gaussian-like SHP realizations, the 

out-of-sample prediction performance of Gaussian process modeling is comparable 

to the SHP model. 
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(a) (b) 

Figure 4.4: Sampling locations of the 2-d SHP simulation. Panel (a) shows 50 
sampled locations and panel (b) shows 80 sampled locations. The circles are 21 x 21 
grid points. The 4 squares are clustered neighborhoods. The 16 solid circles arc 
clustered locations. The star points are randomly sampled 34/64 locations. 

| j -r 

BQB 

T y 

i gig ^SBs 
GP50 PBLUP50 PBP50 GP50 PBLUP50 GP50 PBLUP50 PBP50 GPflQ PBLUPBO PBP80 

(a) (b) (c) 

Figure 4.5: MSPE boxplots for the 2-dimcnsional SHP simulation. Panel (a) cor­
responds to r2 = 4, (pa = 0.15, (pz — 0.3. Panel (b) corresponds to r2 = 0A,<pa = 
0.15, (pz = 0.3 and panel (c) corresponds to r2 = 4,<pa = 0.3, (pz = 0.15. 
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Tabic 4.4: Performance of maximum likelihood estimates of parameters in the 2-
dimensional SHP model. The means and standard deviations arc based on 100 
simulated realizations from the model. 

n 

50 

80 

50 

80 

50 

80 

True 

Mean 
Stdev 

Mean 
Stdev 

True 

Mean 
Stdev 

Mean 
Stdev 

True 

Mean 
Stdev 

Mean 
Stdev 

0 

0.2 

0.26 
0.33 

0.26 
0.39 

0.2 

0.22 
0.17 

0.21 
0.13 

0.2 

0.21 
0.25 

0.20 
0.23 

0 
T~ 

4 

3.91 
2.30 

3.97 
2.15 

0.4 

0.49 
0.33 

0.47 
0.34 

4 

4.36 
2.51 

4.37 
2.56 

<t>a 

0.15 

0.16 
0.08 

0.12 
0.05 

0.15 

0.25 
0.12 

0.17 
0.09 

0.3 

0.21 
0.13 

0.18 
0.08 

<Pz 
0.3 

0.34 
0.07 

0.37 
0.06 

0.3 

0.30 
0.07 

0.31 
0.04 

0.15 

0.40 
0.10 

0.46 
0.08 

a 
0 

-0.03 
0.35 

0.00 
0.31 

0 

-0.02 
0.16 

-0.02 
0.15 

0 

-0.01 
0.38 

-0.02 
0.35 
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Table 4.5: Summary of MSPE ratios for the 2-dimensional SHP simulation based 
on 100 realizations. Ratios greater than one favor SHP model with PBP. 

Parameters 

<pa = 0.15, <pz
 : 

<f>„ = 0 .15 ,0 , = 

4>a — 0.3, 0z = 

= 0.3,r2 = 

= 0.3, r2 = 

= 0.15, r2 = 

= 4 

= 0.4 

- 4 

n 
5Q9P 

8 0 ^ 
Knpblup 

gQpblup 

509P 

8 0 f l 'P 

zrvpblup 

gQpblup 

b(W> 

809P 
em>6£up 

gQpftiup 

Mill 

0.18 

0.11 

0.12 

0.13 

0.47 

0.52 

0.60 

0.58 

0.22 

0.39 

0.17 

0.44 

1st Quartile 

1.07 

1.05 

1.08 

1.07 

0.87 

0.85 
0.93 

0.90 

0.92 

1.03 

0.95 

1.07 

Median 

1.24 

1.36 
1.34 

1.40 

0.98 

1.05 
1.02 

1.02 

1.22 

1.34 

1.24 

1.54 

3rd Quartile 

1.80 

2.20 

1.95 

2.33 

1.17 

1.28 

1.15 

1.18 

1.81 

2.32 

1.80 

2.48 

Max 

6.12 

8.81 
4.64 

20.78 

2.34 

3.76 
2.16 

3.89 

11.47 

5.19 

21.09 

7.95 

"oO"'' or 80'"' refer to MSPE: ratio of Gaussian process model over SUP model with PBP. 50'''''"'' or 80'''''"'' 
refer to MSPE ratio of SHP model with PBLUP over SHP model with PBP. 
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4.2 Simulation Study for Stationary Gaussian Process Model 

From Chapter 2, we know that the SHP model will reduce to a stationary 

Gaussian process model by setting r2 = 0. Moreover, small r2 and/or 4>a values 

will lead to Gaussian-like SHP realizations. In Section 4.1, we show that for the 

Gaussian-like SHP realizations, SHP and Gaussian process models have similar out-

of-sample prediction performance. In this section, we will simulate realizations 

from stationary Gaussian process model and evaluate the out-of-sample prediction 

performance of SHP model fitting on the stationary Gaussian process realizations. 

From now on, wc will often abbreviate Gaussian process as GP. 

4.2.1 Prediction comparisons for 1-dim Gaussian process simulation 

We try four stationary Gaussian process models. Fixing mean 0 and variance 

4, we apply Gaussian correlation functions with range parameter /ft equal to 100 

(high) and 10 (low) and exponential correlation functions with </> equal to 10 (high) 

and 1 (low). For each model, we simulate 100 realizations. The true sample paths 

are based on 200 input points equally spaced on [0,2] and 30 observations are sam­

pled regularly. The random number sequences for generating true sample paths are 

the same for all four GP models. We fit Gaussian process model and SHP model, 

predict the process at unobserved locations and compute the out-of-sample MSPE. 

The summaries of MSPE ratios are given by Table 4.6. Figure 4.6 gives a compar­

ison of MSPE using boxplots. We see that SHP fitting has comparable prediction 

performance as stationary Gaussian process (the true model) fit for all four models. 

4.2.2 Prediction comparisons for 2-dim Gaussian process simulation 

For 2-dimensional stationary Gaussian process, we again try four models. Fix­

ing mean 0 and variance 4, we apply Gaussian correlation functions with range 

parameter </> equal to 1 (high) and 0.2 (low) and exponential correlation functions 
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Table 4.6: Summary of MSPE ratios (SIIP/GP) for the 1-dimensional stationary 
Gaussian, process simulation based on 100 realizations. 

Model Min 1st Quartile Median 3rd Quartile Max 

Gaussian correlation <p = 100 0.59 

Gaussian correlation <p = 10 0.94 

Exponential correlation <j) = 10 0.52 

Exponential correlation d> = 1 0.93 

0.97 

1.00 

0.99 

1.00 

1.00 

1.00 

1.00 

1.00 

1.03 

1.01 

1.01 

1.00 

1.50 

1.44 

1.05 

1.03 

(a) (b) 

(c) (d) 

Figure 4.6: MSPE boxplots for the 1-dimcnsional stationary Gaussian process model 
simulation. Panel (a) corresponds to Gaussian correlation with <-/> = 100. Panel (b) 
corresponds to Gaussian correlation with (p = 10. Panel (c) corresponds to expo­
nential correlation with (p = 10. Panel (d) corresponds to exponential correlation 
with (,6=1. 
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with <fi equal to 0.05 (high) and 0.01 (low). For each model, we simulate 100 real­

izations. The true sample surfaces arc based on 21 x 21 grid points on [0,8] x [0,8]. 

The 80 observations are sampled according to the sample map shown on panel (b) 

of Figure 4.4. Wc fit Gaussian process model and SHP model, predict the process 

at unobserved locations and compute the out-of-samplc MSPE. The summaries of 

MSPE ratios are given by Table 4.7. Figure 4.7 provides a comparison of MSPE 

using boxplots. For GP models using exponential correlation functions and Gaus­

sian correlation with <j> — 1, SHP fitting has very close prediction performance as 

stationary Gaussian process (true model) fit. For Gaussian correlation with </> = 0.2, 

MSPEs for SHP and Gaussian process models are close from the boxplot (Figure 4.7 

panel (b)). But from Table 4.7, the ratios have a little wider range. The minimum 

value 0.00 is due to failure of convergence of GP parameter estimates. 

Table 4.7: Summary of MSPE ratios (SHP/GP) for the 2-dimcnsional stationary 
Gaussian process simulation of 100 realizations. 

Min 1st Quartilc Median 3rd Quartile Max 

Gaussian correlation 6 = 1 0.90 0.99 1.01 1.03 1.21 

Gaussian correlation <f> = 0.2 0.00 0.85 1.01 1.14 3.68 

Exponential correlation (p = 0.05 0.93 0.99 1.00 1.01 1.05 

Exponential correlation 6 = 0.01 0.39 1.00 1.00 1.01 1.17 

4.3 Simulation Study for Nonstationary Spatial Process Models 

4.3.1 Deformation model 

Wc have briefly discussed using space deformation to construct heterogeneous 

spatial covariances in Section 1.1.2. In this section, we will extend the 1-dimensional 

example from Nychka et al. (2002) to a 2-dimensional nonstationary Gaussian pro­

cess by use of deformed nonstationary covariance. 
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(a) (b) 

(c) (d) 

Figure 4.7: MSPE boxplots for the 2-dimensional stationary Gaussian process model 
simulation. Panel (a) corresponds to Gaussian correlation with e/> = 1.0. Panel (b) 
corresponds to Gaussian correlation with 4> = 0.2. Panel (c) corresponds to expo­
nential correlation with <p = 0.05. Panel (d) corresponds to exponential correlation 
with 0 = 0.01. 
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In Nychka et al. (2002), a one-dimensional nonstationary model is obtained by 

the following deformation 

T(x)=px+(l-p)$(?-^\, (4.3) 

where x is the 1-dimensional location value and $ is the standard normal distribution 

function. This deformation is composed of linear (non-deformed) part and nonlinear 

(deformed) part with p indicating the fraction of linear part. The parameters p. and 

a together with p control the degree of deformation. We restrict x to be between 0 

and 1. But the deformation can be applied to arbitrary x values simply by scaling. 

The nonstationary deformation correlation is obtained by p(\T(x) — T(x')\) with p 

a prespecified isotropic correlation function. 

In Figure 4.8, we plot several correlation function images to show how this 

deformation works. Panel (a) shows the stationary correlation by taking the identity 

transformation since p = 1. The correlations are the same for any two locations with 

the same distances. In panel (b), due to the deformation by setting p = 0.5, we 

see the shorter range correlations in the middle of the interval and longer ranges 

near the end points. In panel (c), there is no linear part (p = 0). We see the 

correlations are severely distorted and far from stationary. There are very short 

ranges in the middle and high correlations near the end. Panels (d) through (f) 

show the positioning effects of p. Panels (g)-(i) show that smaller a leads to more 

deformation. 

This deformation strategy can be extended to higher dimension by transforming 

all dimensions jointly or independently. In our study, we transform X\ and x2 in 

x = (xi,X2)T separately and obtain the nonstationary correlation by 

p(x, x') = p ( V m O n ) - TxK))* + (T2(x2) - T2(x'2)y) , (4.4) 

where T\ and T2 arc deformations applied to x\ and x2 respectively. They can be 

the same or different. 
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Nychka et al. (2002) simulate realizations from the 1-dimensional deformation 

model and estimate the nonstationary covariancc by use of multiresolution (wavelet) 

basis functions. For our simulation study purpose, we will simulate realizations 

from the 2-dimensional deformation model and then, assuming a correct model 

specification, estimate parameters Pi,p2, A*i, Pi and o\,o2 together with mean (5 and 

range parameter </>. 

4.3.2 Weighted nons ta t ionary model 

As we mentioned in Section 1.1.2, a nonstationary model can be obtained by 

weighting (multiplicative model). Referring to a simulation example in Chang et al. 

(2007), we propose a nonstationary model by 

Y(x) = (TtWiWYiix) + a2w2{x)Y2{x), (4.5) 

where wi(x) = /||cc — Xo||/max||a: — x0\\ and w2(x) — y/l — Wi(x). The XQ is a 
y X£LJ 

prespecified reference point within the domain, and Y\(x) and Y2(x) are station­

ary Gaussian processes with (isotropic) stationary correlation functions p\ and p2 

respectively. The two positive scalers a\ and a2 can be equal or different. The cor­

relation functions p\ (with 4>\) and p2 (with 4>2) can be the same or different. In this 

example, we take p\ and p2 to be the same correlation functions but using different 

range parameters. It can be seen that the covariance of Y is nonstationary, given 

by 

7(cc, x1) = a\wi(x)wi{x')pi{x, x') + alw2(x)w2(x')p2(x, x'). (4.6) 

For our simulation study purpose, we will simulate realizations from the 

weighted nonstationary model, assuming that the model and the reference point 

CCQ are known, then estimate parameters al,a2,(f)i,4>2 together with the mean /?. 
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Figure 4.8: The 1-dimensional nonstationary correlations through deformation. The 
correlation function in the deformation space is Gaussian with range parameter 
<p = 50. 
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4.3.3 Prediction comparisons for SHP and nonstationary model simu­
lations 

Wc want to simulate from the deformation model, weighted nonstationary 

model and SHP. The idea here is to compare model fittings of stationary Gaus­

sian process model, deformation model, weighted nonstationary model and SHP 

model on the simulated realizations. 

We simulate 100 realizations from each model. The true surface is based on 

21 x 21 grid points on [0,8] x [0,8]. We sampled 80 points by use of cluster sampling 

and simple random sampling, the same strategy and sample locations as in Section 

4.1.2 Figure 4.4. For all simulations, we adopt zero mean. 

For the deformation model, we deform x\ and x2 by use of different parameters. 

We take pi = 0.6, H\ = 0.2, o\ = 0.2 for transforming x\ and p2 = 0.8, [i2 = 0.7, o2 = 

0.2 for transforming x2- We apply a Gaussian covariance function with variance 

6 and range parameter 0.2 in the deformed space. For each realization, we fit 

a stationary Gaussian process model, deformation model, weighted nonstationary 

model by use of origin as reference location (XQ = (0,0)T), weighted nonstationary 

model by use of center as reference location (xo = (4,4)T) and SHP model. Figure 

4.9 panel (a) summarizes the MSPE for different model fits. The two nonstationary 

models, together with SHP, outperform the stationary Gaussian process model. It is 

not surprising that the true deformation model performs the best. The SHP model 

gives smaller MSPE than the weighted nonstationary models. 

For the weighted nonstationary model, we take both p\ and p2 as Gaussian 

correlation functions. We use the origin as reference location (xQ = (0,0)T) and 

</>i = 0.1, 4>2 — 0.3, a\ = 4, a\ = 1. Figure 4.9 panel (b) provides the boxplot of the 

MSPE for different model fits. Again, the two nonstationary models, together with 

SHP, outperform the stationary Gaussian process model. The true model, weighted 

nonstationary model by use of origin as reference location, performs the best. We 
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see that the SHP model outperforms the deformation model and the weighted non-

stationary model by use of center (XQ = (4,4)T) as reference location. From this 

example, we see that SHP outperforms the deterministic weighted nonstationary 

model when the weight is a little misspecified, which illustrates that SHP has the 

advantage of model flexibility by using latent (Gaussian) stochastic process to model 

the scale/weight. 

For the SHP model, wc take both pa and pz as Gaussian correlation functions 

and a2 = 0.2, T 2 — Q,4>a = 0.1, ^ — 0.2,(3 = 0. Figure 4.9 panel (c) summarizes 

the MSPE for different model fits. Not surprisingly, the SHP model performs the 

best. The weighted nonstationary model by use of origin as reference location gives 

slightly poorer result than the stationary Gaussian process model. 

Overall, the two nonstationary models we introduced, together with SHP, are 

capable of capturing the nonstationary properties even for realizations generated 

from other nonstationary models, reflected by their better fits than stationary Gaus­

sian process model. SHP can outperform the nonstationary models and comparable 

to the true model. 

4.4 Simulation Study for the Low-Dimensional SHP Approximation 
Model 

In this section, we will revisit some simulation examples presented above and 

refit models by use of the low-dimensional SHP approximation model proposed in 

Section 3.4. The purpose is to compare the prediction performances of the regular 

SHP model and the low-dimensional approximation model. 

4.4.1 Prediction and estimation comparisons for 1-dim SHP simulation 

In Section 4.1.1, we ran 1-dimensional simulations using four parameter combi­

nations and two different sample sizes. We concluded that the first two parameter 

combinations, i.e., with a2 = 0.2, r2 = 4, (3 = 0, setting <f>a = 40, 4>z = 80 or 
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Figure 4.9: MSPE boxplots for simulations from nonstationary process models. 
Panel (a) corresponds to simulations from deformation model by use of p, = 
0.6,/ii = 0.2, (Ti = 0.2 and p-2 = 0.8, \x% — 0.7, CT2 = 0.2; Panel (b) corresponds to 
simulations from weighted covariance model by use of the origin as reference location 
and c/>i = 0.1,02 = 0.3, a\ = 4, erf — 1; Panel (c) corresponds to simulations from 
SHP model by use of a2 = 0.2, r2 = 6,d>a = 0.1, & = 0.2,/? = 0. Wgt.org refers to 
weighted nonstationary model by use of origin as reference location. Wgt.ccn refers 
to weighted nonstationary model by use of center as reference location. Defor refers 
to deformation model. 

(pa = 80, 4>z = 40 are representatives of SHP model features. In this section, we use 

the low-dimensional approximation model to refit realizations generated from SHP 

model by use of these two parameter combinations. 

Table 4.8 summarizes the parameter estimation results. The parameter esti­

mates do not match the true values well, especially for r2 . The Ku> in equation 

(3.37) is an approximation of the a process in equation (2.1). They are equivalent 

in the limiting situation, i.e., when the number of knots goes to infinity and the 

summation becomes integration. But in the low-dimensional case (we use J = 10 

knots), they do not have a one-to-one correspondence. We should not expect the 

parameters estimated by use of the low-dimensional approximation model fit to re­

flect the true model parameter values. The mean and standard deviation for a2 

and (3 almost do not change for sample sizes 30 and 60. This is because the initial 

values are very close for the two sample sizes (initial value for a2 is calculated by 

http://Wgt.org
http://Wgt.org
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(3.36) and initial value for (5 is sample mean), and the final optimization results do 

not differ too much. If we observe the 5-number summaries instead of mean and 

standard deviation, we do see the differences. The standard deviation for <j)a and 

4>z decrease considerably when sample size increases from 30 to 60. For the second 

parameter combination, the estimate for 4>z (with mean 94.00 at n — 30 and 160.80 

at n — 60) deviates from the true value (40) severely. 

To evaluate the low-dimensional approximation model, we arc more concerned 

about the out-of-sample prediction performance than parameter estimation accu­

racy. We examine prediction performance through the comparison of MSPE as 

shown in Figure 4.10 and Table 4.9. Figure 4.10 compares the true SHP model 

fit and low-dimensional approximation model fit by MSPE boxplots. We see that 

for small sample size (n = 30), the true model outperforms the low-dimensional 

approximation model. For large sample size (n = 60), the two model fits are com­

parable. This indicates that with sample size increasing, the difficulties for true 

model fit by use of high dimensional importance density increases, while the low-

dimensional approximation model is faster and has relatively better performance. 

For 1-d, 60 evenly located points on [0,2] are dense enough, and so we did not in­

crease sample size further. But we expect that with sample size increasing further, 

the low-dimensional approximation model will beat the true model fit, which we 

will see in the next section about 2-dimensional simulations. From Table 4.9, we see 

that although the boxplots for are similar, the MSPE ratios are widely spread. 

4.4.2 Prediction comparisons for 2-dim SHP simulation 

From the above 1-dimensional simulation, we see that the parameter estima­

tion based on true SHP model and the low-dimensional approximation model do 

not match. In this section, we ignore the parameter estimation while concentrat­

ing on the out-of-sample prediction performance for 2-dimensional simulations. In 
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Tabic 4.8: Summary of parameter estimates for low-dimensional approximation 
model fits on the 1-dimensional SHP simulations. The means and standard de­
viations are based on 100 simulated SHP realizations. 

~ True 0.2 4 40 80 0* 

Mean 0.22 0.13 75.16 100.52 0.00 
Stdev 0.23 0.18 56.57 27.04 0.35 

Mean 0.22 0.21 50.81 125.51 0.00 
Stdcv 0.23 0.18 27.85 20.86 0.35 

30 

60 

True 

Mean 
Stdev 

Mean 
Stdev 

0.2 

0.24 
0.25 

0.24 
0.25 

4 

0.15 
0.25 

0.15 
0.12 

80 

130.32 
137.19 

89.20 
56.50 

40 

94.00 
23.11 

160.80 
23.77 

0 

0.00 
0.35 

0.01 
0.37 

Table 4.9: Summary of MSPE ratios for low-dimensional approximation model 
study on 1-dimcnsional SHP simulations. We take the ratio of MSPE using low-
dimensional approximation model over SHP model on 100 1-dimensional SHP real­
izations. 

®a • 

<Pa ; 

= 40, 

= 80, 

Pz 

<]>z 

= 80 

= 40 

n 

n 

n 

n 

= 30 

= 60 

= 30 

= 60 

Min 

0.20 

0.49 

0.10 

0.01 

1st Quartile 

0.82 

0.91 

0.92 

0.82 

Median 

1.13 

0.99 

1.23 

1.04 

3rd Quartile 

1.62 

1.09 

1.95 

1.52 

Max 

22.60 

4.56 

16.65 

13.67 
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Figure 4.10: MSPE boxplots for comparing low-dimensional approximation model 
and SH.P model on 1-dimensional SHP realizations. Panel (a) corresponds to <j>a = 
40, (^ = 80, n = 30. Panel (b) corresponds to cpa = 40,<A>~ = 80, n — 60. Panel 
(c) corresponds to 4>a =• 80, <pz — 40, n = 30. Panel (d) corresponds to <pa = 
80, (pz = 40, n = 60. PBP.a refers to regular SHP model fit and PBP.w refers to 
low-dimensional approximation model fit. 
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Section 4.1.2, we try three parameter sets to evaluate the estimation and predic­

tion procedures for regular SHP model. The first parameter combination, i.e., 

a2 = 0.2, r2 = 4, (pa = 0.15, (pz = 0.3, j3 = 0 is most favorable. The realizations 

generated from this parameter set are SHP-like and we get very good estimation 

and prediction results. In this section, we refit realizations from this parameter set 

by use of low-dimensional approximation model. We take two sample sizes: 80 and 

160. We summarize the MSPE ratios in Table 4.10 and compare the boxplots in 

Figure 4.11. For sample size 80, the low-dimensional approximation model has com­

parable prediction performance to the regular SHP model. For sample size 160, the 

approximation model yields considerably smaller MSPE than regular SHP model. 

This example provides some evidence that the low-dimensional approximation model 

can solve the numerical difficulties and improve predictions when the sample size is 

large. 

Table 4.10: Summary of MSPE ratios for low-dimensional approximation model 
study on 2-dimensional SHP simulations. We. take the ratio of MSPE using low-
dimensional approximation model over SHP model on 100 2-dimensional SHP real­
izations. 

n=80 

n=160 

Min 

0.30 

0.06 

1st Quartile 

0.87 

0.46 

Median 

1.06 

0.78 

3rd Quartile 

1.36 

1.09 

Max 

4.10 

5.29 

4.4.3 Prediction comparisons for nonstationary simulations 

We have shown that for SHP realizations, the true SHP model fitting outper­

forms the low-dimensional approximation model when sample size is small, while the 

low-dimensional approximation model works better as sample size increases. Over­

all, the low-dimensional approximation model runs faster than regular SHP model. 

With sample size increasing, the computational advantage of the low-dimensional 

approximation model becomes more obvious. It is of interest to compare these 
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Figure 4.11: MSPE boxplots for comparing low-dimensional approximation model 
and SHP model on 2-dimensional SHP realizations. Panel (a) and (b) correspond 
to sample sizes 80 and 160, respectively. PBP.a refers to regular SHP model fit and 
PBP.w refers to low-dimensional approximation model fit. 

two model fittings on some other nonstationary models. We have introduced de­

formation model and weighted nonstationary model in Section 4.3. We simulated 

realizations from these two nonstationary models and compare different model fit­

tings in Section 4.3.3. In this section, we refit those nonstationary realizations by 

use of the low-dimensional approximation model. 

Figure 4.12 shows the boxplots of MSPE. We see that for both nonstationary 

models, the low-dimensional approximation model fit is slightly worse than SHP 

model while better than stationary Gaussian process model and other nonstationary 

models except the true model. Note that for these two examples, the sample size is 

80. 

In summary, the low-dimensional approximation model has similar performance 

as the SHP model. When sample size is small, it is recommended to apply SHP 

model. When sample size is large, SHP model becomes infeasible and it is better to 

use the low-dimensional approximation model, which is faster and more accurate. 



92 

sBBga 
GP Wgt.org Wgt.cen Defor SHP SHP.w GP Wgt.org Wgt.cen Defor SHP S H P w 

(a) (b) 

Figure 4.12: MSPE boxplots for comparing low-dimensional approximation model 
and other prediction methods on nonstationary simulations. Panel (a) corresponds 
to simulations from deformation model by use of pi = 0.6, /.ij = 0.2, ax — 0.2 and 
'Pi = 0.8,/./,2 = 0.7, CT-2 = 0.2; Panel (b) corresponds to simulations from weighted 
nonstationary model by use of the origin as reference location and (j)X = 0.1, <fo = 
0.3, a\ — 4, o\ — 1. Wgt.org refers to weighted nonstationary model by use of origin 
as reference location. Wgt.cen refers to weighted nonstationary model by use of 
center as reference location. Defor refers to deformation model. SHP.w refers to the 
low-dimensional approximation model. 
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4.5 A Simulation Study for SHP Model with Replicates 

We introduced the SHP model with replicates and outlined the estimation and 

prediction procedures in Section 3.5. In this section, we will illustrate the estimation 

and prediction implementations via a simulation. 

We adopt the 1-dimensional simulation framework from Section 4.1.1. We will 

use the first parameter set in the 1-d simulation example, i.e., a2 = 0.2, r2 = 4, <pa = 

40,^>z = 80 and (5 = 0. The realizations from a SHP model with replicates are 

generated as follows: 

• On [0,2], let X\, ....X200 be equally spaced points. 

• We generate 100 realizations of oti = (a^xi),....,ai(x2oo))T and Z{ — 

(Zi(xi),....,Zi(x2oo))Ti from which we form Y» = (Yi(x1),...., Yi(x2oo))T, 

i = 1,...,100. This is how we generate 100 Y's from the single-realization 

SHP model. 

• For each i = 1,...,100, we generate Z i 2 = (Z i2(xi),...., Zi2(x2oo))T, •••, ZiT = 

(ZiT(xi),...., ZiT(x2oo))T• We then use the same a ; to generate (T — 1) more 

Y's for each i, given by: Yit = (3 + a exp(TCti/2)Zit for t = 2, ...,T. 

In this example, we try T = 20. We select 30 equally-spaced points as observed 

locations, the same as in the previous 1-d single-realization SHP simulation study. 

We fit SHP and GP models using a total of 30 x 20 — 600 points and predict the 

remaining 170 x 20 = 3400 points. For the SHP model with replicates, we apply the 

estimation and prediction methods introduced in Section 3.5. For the GP model, 

the 20 replicates arc regarded as iid replicates. The likelihood is simply the product 

of 20 likelihoods for 20 realizations from the same Gaussian process. 

We compare the parameter estimation results from the single-realization SHP 

model and SHP with replicates in Table 4.11. First we see that the standard devia­

tions for the T 2 and (3 estimates decrease considerably and the standard deviation for 
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the a2 estimate decreases mildly for SHP model with 20 replicates. The estimation 

for 4>z improves significantly, while the estimate for §a still has large variance. Since 

we have 20 realizations for the Z process, it is reasonable that we can estimate <j>z 

much better than the single-realization SHP model. It may not be surprising that 

we do not estimate (f>a better because we do not have replicates in a . 

Table 4.12 provides summaries of MSPE ratios. First we observe the ratios 

of MSPE for GP model over SHP model for realizations each with 20 replicates 

(GP.20/SHP.20). The ratios are remarkably greater than 1, recognizing that the 

SHP model (with replicates) can capture the heterogenous features in the sample 

paths and lead to better prediction performance than the GP model fit. 

The first realization of the 20 replicates is from our previous single-realization 

SHP simulation. We would like to compare the prediction performance on the first 

realization for the single-realization SHP model fit and replicate SHP model fit. 

Ratios SHP.1/SHP.20 provide such information. We see that the ratio is consider­

ably greater than 1, indicating the improvement of prediction performance of SHP 

model with replicates. In Section 4.1.1, we conclude that the a estimate is essential 

for the prediction performance, by comparing the MSPE of oc for PBP and MBP. 

Here we also summarize the ratios of MSPE for a from two model fits ( a . l / a .20) . 

It is clearly seen that the replicate model has much better ex estimates than the 

single-realization model. 

We are also interested in the ratios of MSPE for GP model fits using single 

realization over replicates (GP.1/GP.20). We see that these two GP model fits are 

comparable. Therefore replicates from the SHP model do not help improve the GP 

(wrong) model fit. 

Figure 4.13 compares the MSPE of every first realization of 20 replicates for 

predictions using SHP PBP, SHP BP and SHP PBP with 20 replicates model. We 

sec the substantially smaller MSPE for SHP PBP with replicates comparing to the 

single realization SHP PBP. 
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Overall, by taking advantage of the replicates, we improve the parameter esti­

mation and process prediction performances considerably. 

The performance of our algorithms does not hold uniformly in the parame­

ter space. We have also considered the second parameter set from the 1-d single-

realization SHP simulation study, i.e., the 4>a = 80,0Z = 40 model. Numerical 

difficulties arise from computing likelihood values using equation (3.3), due to the 

decreased correlation in the a process and therefore inefficiency of the importance 

sampling. Improvements to the algorithms or an alternative estimation procedures 

are a subject for future research. 

Tabic 4.11: Comparison of Parameter estimation for the 1-dimensional SHP simu­
lation. The means and standard deviations are based on 100 simulated realizations 
from the single-realization model (T = 1) or SHP model with 20 replicates (T = 20). 

__ _ __ _ _ _ _ _ _ 

True Wl 4 40 W~ 5" 

Mean 0.22 3.85 41.28 90.25 0.01 
Stdev 0.23 2.41 20.80 22.09 0.34 

Mean 0.22 4.03 40.08 90.49 -0.01 
Stdcv 0.20 0.77 23.71. 4.09 0.05 
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Tabic 4.12: Summary of MSPE ratios for the 1-dimcnsional SHP with replicates 
based on 100 simulated realizations. 

Min 1st Quartile Median 3rd Quartile Max 

GP.20/SHP.20 1.27 

SHP.1/SHP.20 0.22 

a . l / a . 2 0 0.61 

GP.1/GP.20 0.58 

2.57 

1.22 

1.97 

0.95 

3.44 

1.79 

3.43 

1.00 

5.71 

3.63 

5.57 

1.04 

29.06 

35.86 

29.16 

16.92 

"GP.20/SHP.20 refers to ratios of MSPE for GP model over SHP model for realizations each with 20 replicates. 
MSPE for V is based on 1.70 (unobserved) out of 200 (true) observations and 20 replicates. GP.1/GP.20 and 
SHP.1/SHP.20 refer to the ratios of MSPE for GP/SHP model using single-realization over GP/SHP model using 
20 replicates. MSPE for Y is based on 170 (unobserved) out of 200 (true) observations for the first realization out of 
20 replicates. CK.I/CK.20 refers to the ratios of MSPE for SHP model using single-realization over SHP model using 
20 replicates. MSPE for a is based on 30 observed locations for the first realization out of 20 replicates. 

Figure 4.13: 
Boxplot for 1-dimcnsional SHP with replicates. The sample size is 30. MSPE is 
based on 170 (unobserved) out of 200 (true) observations for the first realization out 
of 20 replicates. PBP refers to single-realization SHP model fit and PBP.20 refers 
to SHP model fit with 20 replicates. 



Chapter 5 

APPLICATIONS 

Chapter 4 assessed the parameter estimation and process prediction perfor­

mances of the SHP model through simulations. In this chapter, we will apply the 

SHP model to three real data applications. The enhanced vegetation index (EVI) 

data analysis is a 1-dimensional application. The 2-dimensional example, China 

precipitation data, shows typical spatial heterogeneities and illustrates an adaptive 

sampling scheme. The NO3 deposition data have replicates over 20 years. We would 

like to see the advantages of SHP model over GP model for fitting these three data 

sets. The out-of-sample MSPE is the criterion of comparing prediction performances 

for the SHP model and the stationary Gaussian process model in these examples. 

5.1 Enhanced Vegetation Index (EVI) Data Analysis 

EVI (the enhanced vegetation index) is the most common index used to assess 

Earth's vegetation from space. It was developed by Huete et al. (2002) and uses 

remote sensing data collected by NASA thanks to its satellite Terra. Terra's goal 

is to assess the health of the planet by providing comprehensive information about 

Earth's land, oceans and atmosphere. EVI describes the relative "greenness" of 

Earth's vegetation, which is in mathematical terms "a comparison of amounts of 

visible and near-infrared sunlight that are absorbed and reflected by plants". In 

other words, it allows recognition of the type of vegetation and crop and the density 

and size of leaves for every pixel (size of pixels can be 250, 500 or 1000 meters 

depending on the spatial resolution of a sensor). 
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The data we use for analysis come from the Natural Resource Ecology Labora­

tory (NREL) at Colorado State University. The data set contains EVI values from 

January 2000 to December 2005 in Iowa (longitude 91.91°N and latitude 42.84°W), 

The data is recorded every 8 days for 6 full years of observations and EVI values 

range from 259 to 8034. We standardized the EVI values (subtracted the sample 

mean and divided by the sample standard deviation) before model fitting. From 

panel (a) of Figure 5.1, we see the sinusoidal shape of the EVI curve and the yearly 

trend. Therefore, we decide to regress on Fourier bases with period 365, i.e., 

k 

f(t) = PQ + X](&r cos(2r7rt/365) + (3sr sin(2r7ri/365)), (5.1) 
r = l 

where k is the number of sinusoidal functions used in regression. We fit the regres­

sion curves using up to k — 6 sinusoidal functions. Because the sine and cosine 

functions are orthogonal to each other, the regression coefficients are uncorrelated. 

The coefficient estimates do not change by adding or dropping regression terms. We 

summarize the coefficient estimates in Table 5.1. We sec that the coefficients for 

sine functions are significant at level 0.05 up to k = 5. In Figure 5.1 panel (a), we 

see that the regression curve fits the data well. In Figure 5.2, we plot the residuals 

from regression on sinusoidal functions for k = 1 up to k = 6. It can be seen that 

the residuals are smooth and highly correlated. The residuals did not change too 

much after k = 4. We finally fit the data using k = 6 sinusoidal functions. Figure 

5.1 panel (b) shows the enlarged plot of the residuals. Since the residuals are ob­

viously correlated and show inhomogeneous features, we should not treat them as 

iid normally distributed. We think that the SHP model will be a good fit for the 

residuals. 

We want to compare the performance of SHP modeling and Gaussian process 

fitting by examining the out-of-sample prediction performance. We sample 36 time 

points from the residuals where six points are randomly selected from each year. We 
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use the 36 points to establish the model and predict the residuals at the remaining 

216 time points. We repeat this procedure 100 times by independently sampling the 

36 time points. For Gaussian process modeling, we tried using Gaussian, exponential 

and spherical correlation functions. The spherical correlation function leads to the 

best prediction results, i.e., the smallest MSPE. Therefore, we only list the result of 

Gaussian process using spherical correlation function. For SHP modeling, we apply 

Gaussian correlation functions for both a and Z processes. Figure 5.3 provides 

the MSPE boxplot and Table 5.2 summarizes the MSPE ratios. SHP model by 

use of PBP prediction outperforms SHP PBLUP and Gaussian process modeling 

considerably. SHP PBLUP has smaller MSPE than the Gaussian process model. 

For this example, SHP unconditional correlation function outperforms the other 

isotropic correlation functions. 

0 500 1000 1600 2000 0 500 1000 1500 2000 

t I 

(a) (b) 

Figure 5.1: 
EV1 data analysis (1). Panel (a) plots the original data and regression curve using 
6 sinusoidal functions. Panel (b) shows the residuals after regression. The dashed 
lines arc separation of different years. 
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Figure 5.2: EVI data analysis (II): Regression residuals for fits with increasing 
numbers of sinusoidal basis functions. 
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Figure 5.3: EV1 data analysis (III): MSPE boxplots for 100 replicates of out-of-
sample prediction of 216 days given 36 days selected by stratified simple random 
sampling, six days per year. 

Table 5.1: Summary of regression coefficients for EVI data analysis. 

Estimate Standard error t value Pr(> \i\) 

00 
fid 
ftl 
& 2 

Ps2 
& 3 

& 3 

0c4 
Ps4 
Pc5 
Pso 

Pc6 
Ps6 

-0.052 
-1.19 
-0.47 
0.41 
0.43 

-0.0058 
-0.11 

-0.012 
-0.044 
-0.024 
0.039 
0.022 

0.00015 

0.013 
0.018 
0.018 
0.018 
0.018 
0.018 
0.018 
0.018 
0.018 
0.018 
0.018 
0.018 
0.018 

-4.01 
-66.01 
-25.80 
22.52 
23.57 
-0.33 
-6.23 
-0.69 
-2.41 
-1.33 
2.13 
1.22 

0.008 

6.53e - 05 
< 2e - 16 
< 2e - 16 
< 2e - 16 
< 2e - 16 

0.75 
1.82e - 09 

0.49 
0.017 

0.18 
0.034 

0.22 
1.00 
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Table 5.2: Summary of MSPE ratios for EVI data residuals fitting. Results are based 
on 100 replicates of out-of-samplc prediction of 216 days given 36 days selected by 
stratified simple random sampling, six days per year. 

GP/(SHP PBP) 
(SHP PBLUP)/(SHP PBP) 
GP/(SHP PBLUP) 

Min 

0.03 
0.29 
0.10 

1st Quartile 

1.18 
0.98 
1.14 

Median 

1.59 
1.05 
1.50 

3rd Quartile 

2.06 
1.19 
1.83 

Max 

17.55 
2.03 

13.19 

5.2 China Precipitation Data Analysis 

In this section, we will demonstrate the advantages of SHP model over sta­

tionary Gaussian process model by an example used in Spherekit, the spatial 

interpolation toolkit. Spherekit was developed at the National Center for Geo­

graphic Information and Analysis (NCGIA) at the University of California, Santa 

Barbara. The data set they use for tutoring consists of precipitation in millimeters 

for 160 weather stations in China. The data was based on the Global Historical 

Climate Network (GHCN). Both the software and data set can be downloaded from 

ht tp : / /www.ncgia .ucsb .edu/pubs /sphereki t / . The values are long term average 

(year 1961 - 1990) for January precipitation. Figure 5.4 panel (a) plots locations 

of the 160 weather stations. Bubbles are used to show different scales of data val­

ues. We sec that the data is somehow deficient in that high altitude locations in 

the Himalayan mountains are under-represented. It shows obvious spatial inhomo-

geneous feature. There are more clustered stations and the precipitation is much 

more abundant in the south area. For north and west areas, the data are relatively 

sparse and the precipitation is lower. 

In order to compare the performance of SHP modeling and Gaussian process 

modeling, we sample 30 stations as observed locations and predict the precipitation 

at the remaining of 130 stations. Due to the unevenly distributed locations of 

http://www.ncgia.ucsb.edu/pubs/spherekit/
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the data, we want to do stratified sampling to avoid unusual sampled locations. 

We divide the whole country into three subareas, as shown in Figure 5.4 panel (b). 

There are 20, 96 and 44 stations in subregions I, II and III respectively. We randomly 

sampled 5, 15 and 10 stations from subregions I, II and III respectively. We repeat 

this stratified sampling procedure 300 times by using different random seeds. For 

each sample, we fit Gaussian process model and SHP model. For each model fitting, 

we calculate the out-of-sample MSPE. For Gaussian process modeling, we apply 

Gaussian, exponential, spherical and Matern correlation functions. It turns out 

that exponential and spherical correlations lead to very close and the best (i.e., the 

smallest) MSPE results. For simplicity, we choose to report the results based on the 

exponential correlation fit only. For SHP modeling, we use exponential correlation 

functions for both a and Z processes. It is hard to get an explicit form of the 

kernel that induces the exponential correlation function, for use in the procedure of 

estimating the posterior mode a* (discussed in Section 3.3.1). Therefore we simply 

apply klf>a(d) = exp((/>a||d||). In this example and the following N03 deposition 

data analysis, a* obtained using this kernel for the low-dimensional approximation 

is effective in our importance sampling procedure. 

We only report the PBP prediction results here since it works better than 

PBLUP. Figure 5.4 panel (b) gives the MSPE boxplots. We see that for sample 

size 30, SHP outperforms Gaussian process model substantially. Table 5.3 gives 

the summary of MSPE ratios. The first numerical row corresponds to the MSPE 

ratio summary for sample size 30 based on 300 samples. It is clear that for most 

samples, SHP model yields smaller out-of-sample prediction errors than Gaussian 

process model. 

Another advantage of the SHP model is that the prediction variance, calculated 

by (3.18), provides a means to compute selection probabilities for efficient adaptive 

sampling. For each sample of 30 observed locations, we randomly sample 20 more 
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stations with probability proportional to either the SHP prediction variance or the 

Gaussian process prediction variance (calculated by equation (3.23)). We will refer 

to the former as SHP adaptive sampling and the latter as GP adaptive sampling. 

For each sample of size 50 obtained by either SHP adaptive sampling or GP adaptive 

sampling, we refit the Gaussian process model and SHP model and predict values at 

the remaining 110 unobserved locations. We actually fit models for 600 samples, 300 

of which come from SHP adaptive sampling and another 300 of which come from 

GP adaptive sampling. From Table 5.3, by observing summaries for GP-GP50/GP-

SHP50 and SHP-GP50/SHP-SHP50, we see that for samples from both adaptive 

sampling schemes, SHP model yields smaller out-of-sample prediction errors than 

Gaussian process model for most samples, although the ratios are less remarkable 

than the 30-station case given the large sample size of 50. Note that for GP-

GP50/SHP-GP50 and GP-SHP50/SHP-SHP50, we actually take the ratios of MSPE 

for different samples each extended from the same 30 base sampled locations by use 

of the same model fits. This ratio indicates that SHP adaptive sampling is more 

efficient on improving the out-of-sample prediction performance than GP adaptive 

sampling. Also from Figure 5.4 panel (b), it is clear that by use of probability 

proportional to the prediction variance for adaptive sampling, the 50-station MSPE 

is reduced substantially compared with 30-station MSPE. While the GP adaptive 

sampling does not reduce the MSPE as significantly as SHP adaptive sampling does. 

It is not surprising that the SHP model fits better than the Gaussian process 

because the data show an obvious inhomogeneous pattern from Figure 5.4 panel 

(a). Since the data value scales differ considerably among subregions I, II and III, 

we would like to compare the MSPE for each subregion. For the previous analysis, 

we fitted Gaussian process and SHP interpolation models, i.e., there is no nugget 

term. The nugget usually refers to measurement error and is assumed to be iid 

normally distributed with mean 0. Because the data are long-term averages, it is 
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reasonable to assume that measurement errors have been averaged away. The nugget 

may also account for microscale variability, i.e., possible model misspecification at 

very fine scale. So we would like to investigate whether adding a nugget term for 

the Gaussian process model would help capturing heteroscedasticity and improve 

prediction performance. 

Figure 5.5 gives MSPE boxplots for subregions. The first column of panels refers 

to 30-location MSPE boxplots. We observe that subregion II dominates the whole 

MSPE with the largest scale. The Gaussian process with nugget model improves 

the MSPE over Gaussian process interpolation model and is comparable to the SHP 

model for subregions I and II. But for subregion III where the low volatilities occur, 

both Gaussian process models perform much more poorly than the SHP model. By 

comparing the second and third columns across rows, we see that for subregions I 

and III, 50 observations obtained from GP adaptive sampling perform slightly bet­

ter than 50 observations from SHP adaptive sampling. But for subregion II, SHP 

adaptive sampling outperforms GP adaptive sampling considerably. Since subregion 

II dominates the overall MSPE, this explains the results on Figure 5.4 panel (b). 

We know that Gaussian process prediction variances are independent of the obser­

vations. The observed locations have 0 prediction variances and locations further 

away from the existing sampled points have larger prediction variances. Therefore 

the GP adaptive sampling selects new locations fairly uniformly across the whole 

region. The SHP prediction variances depend on the observations and can reflect 

the heteroscedasticity. Due to the presence of high volatilities in subregion II, the 

SHP adaptive sampling selects new locations intensively from this hot spot. For the 

second column, the two Gaussian process models perform comparably. Because the 

20 additional locations arc selected by non-nugget GP adaptive sampling, the 50 

observations favor the interpolation Gaussian process model. For the third column, 

the Gaussian process with nugget model works better than the interpolation Gaus­

sian process model for subregions I and III. In subregion II, they have similar model 
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performances and comparable to SHP due to large sample size. Because most of 

the 20 additional locations come intensively from the subregion II by use of SHP 

adaptive sampling, the relative prediction performance in subregions I and III does 

not change too much from the 30-observation setup. 

Overall, adding a nugget to the Gaussian process model helps improve the 

prediction performance especially for small sample size but SHP still performs the 

best. SHP model successfully captures the low volatilities and outperforms Gaussian 

process models significantly in subregion III. This example illustrates the fact that 

the SHP prediction variance can represent spatial volatilities and can be efficient in 

adaptive sampling. 

Table 5.3: Summary of MSPE ratios for China precipitation data analysis. Results 
are based on 300 samples. 

GP30/SHP30 

GP-GP50/GP-SHP50 

SHP-GP50/SHP-SHP50 

GP-GP50/SHP-GP50 

GP-SHP50/SHP-SHP50 

min 

0.62 

0.74 

0.81 

0.23 

0.58 

1st Quartile 

0.98 

0.98 

0.99 

1.05 

1.08 

Median 

1.06 

1.02 

1.02 

1.25 

1.28 

3rd Quartile 

1.17 

1.07 

1.06 

1.51 

1.49 

Max 

5.07 

5.17 

6.82 

6.90 

3.29 

Percent 

79 

65 

68 

79 

83 

aGP30 refers to Gaussian process modeling and SHP30 refers to SHP modeling with 30 observations; GP-GP50 
and GP-SHP50 refer to GP and SUP model fits using 50 observations where the extra 20 locations are selected by 
GP adaptive sampling. SHP-GP50 and SHP-SHP50 refer to GP and SHP model fits based on 50 observations where 
the extra 20 locations are selected by SHP adaptive sampling. The last column (Percent) indicates the percentage 
of MSPE ratios being greater than 1 out of 300 samples. 

5.3 NO3 Deposition Data Analysis 

The National Atmospheric Deposition Program (NADP) monitors wet atmo­

spheric deposition (chemical constituents deposited from the atmosphere via rain, 
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(a) (b) 

Figure 5.4: China precipitation data analysis. Panel (a) is the precipitation data 
map. The whole region is manually separated into 3 subregions for stratified sam­
pling. A bubble plot is used to show different value scales. Panel (b) is the MSPE 
boxplots. GP30 refers to Gaussian process modeling and SHP30 refers to SHP 
modeling by use of 30 observations; GP-GP50 and GP-SHP50 refer to GP and SHP 
model fits using 50 observations where the extra 20 locations are selected by GP 
adaptive sampling. SHP-GP50 and SHP-SHP50 refer to GP and SHP model fits 
based on 50 observations where the extra 20 locations arc selected by SHP adaptive 
sampling. 
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Figure 5.5: China precipitation data analysis - Subrcgion MSPE boxplots. The rows 
correspond to subrcgions I, II and III from top to bottom. From left to right, the 
columns correspond to 30 observations, 50 observations where the 20 more stations 
are sampled through GP adaptive sampling, 50 stations where the 20 more stations 
arc sampled through SHP adaptive sampling. For each boxplot, the boxes from 
left to right correspond to Gaussian process interpolation model, SHP interpolation 
model and Gaussian process model by allowing a nugget term. 
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sleet, and snow) in the United States. From h t tp : / / nadp . sws .u iuc . edu / , the 

NADP data set provides fundamental research support in the areas of air quality, 

water quality, agricultural effects, forest productivity, materials effects, ecosystem 

studies, watershed studies, and human health. In this section, wc will analyze the an­

nual average of NO3 concentration (mg/L) from 1986 to 2005. The domain of inter­

est covers 17 states in the west United States with longitude between 100° and 120° 

west and latitude between 30° and 50° north. There are a total of 79 monitoring sites, 

52 of which have complete data for 20 years. The remaining 27 sites have an average 

of 43% complete data (232 records/(20 x 27)), with records varying from two years 

to 18 years. Figure 5.6 plots locations of the monitoring sites. The complete data 

set can be downloaded from h t tp : / /nadp . sws .u iuc .edu / s i t e s /n tnmap .asp? . 

In practice, it will be desired to predict those un-monitored/un-rccorded data 

values. In order to assess the prediction performance, we fit the stationary Gaussian 

process model and SHP model using only the data from the 52 sites with complete 

records, then predict the data from the 27 sites with incomplete records. We calcu­

late the out-of-sample MSPE using the 232 observations recorded irregularly across 

20 years at the 27 sites. For the SHP model, the observations across years are taken 

as independent replicates conditional on a common a process. Therefore we will fit 

a SHP model with replicates, i.e., model (3.45). For the Gaussian process model, the 

observations over years are regarded as iid replicates. The likelihood for the Gaus­

sian process model will be the product of 20 likelihoods for 20 realizations from the 

same random process. For prediction using the Gaussian process model, since the 

20 replicates are independent, we predict the 27 sites for each year independently. 

For prediction using the SHP model, wc apply equation (3.52). 

For Gaussian process models, we try Gaussian correlation functions 

with/without nugget and exponential correlation functions with/without nugget. 

It turns out that the exponential correlation function without nugget model yields 

http://nadp.sws.uiuc.edu/
http://nadp.sws.uiuc.edu/sites/ntnmap.asp
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the smallest overall MSPE (taken over 232 observations across 27 locations and 20 

years), which equals 0.057. We fit the SHP model with replicates by use of expo­

nential correlation functions for both a and Z processes. The overall MSPE for 

SHP model is 0.050. So the SHP model reduces the overall MSPE by about 12% 

compared to the best Gaussian process model. 

In addition to computing the overall MSPE, we summarize the out-of-sample 

prediction errors for the 27 locations (computing MSPE across all recorded years 

within each location) and for the 20 years (computing MSPE across all locations 

within each year). Table 5.4 provides the summary of MSPE ratios over 27 locations 

and across 20 years. Figure 5.8 compares relative MSPE ratios over 27 locations 

and across 20 years. For MSPE across 27 locations, the SHP model outperforms 

the Gaussian process model at 16 out of 27 sites (60%). From Figure 5.8 panel 

(a), we see that the Gaussian process model yields slightly smaller MSPE at 11 

out of 27 sites. But SHP outperforms the Gaussian process model considerably 

at a number of sites, e.g., locations 1, 6, 7, 8, 9, 10, 12, 13, 15, 16 and 25. The 

Gaussian process model only yields obviously smaller MSPE at sites 21 and 23. 

From Table 5.4 and Figure 5.8 panel (b), we see that SHP outperforms Gaussian 

process model remarkably for 16 years out of 20 years (80%) and has comparable 

MSPE as Gaussian process model for the remaining four years. 

We want to further investigate the advantage of the SHP model over the Gaus­

sian process model. From Section 5.2, we see that the SHP model outperforms the 

Gaussian process model by capturing the volatilities successfully. Since we have 

replicates over 20 years, we can calculate the sample standard deviation at each of 

the 52 locations with complete data. In Figure 5.7 panel (a), we plot the image and 

contours of the sample standard deviations. We observe low variances in the north­

west corner and high variances around the Colorado area. The image also shows 

large variances in the southwest corner but they come from the cubic interpolation 

because we are short of observations there. 
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We are curious how the prediction variance images look like for the SHP model 

and Gaussian process model. Because the prediction variance for SHP model calcu­

lated by (3.18) is dependent of the observations, the prediction variances for the same 

location are different across years. But the 20 replicates share the common a pro­

cess and the prediction variances conditional on a are identical for the same location 

across different years. So we try to estimation the conditional standard deviation 

<7exp(ra/2). Equation (3.19) gives the formula of E(exp(Tao/2)|Y, a ) , the condi­

tional standard deviation at an unobserved location XQ. By applying importance 

sampling and Monte Carlo integration as discussed in Section 3.2, we can calculate 

E(exp(ra0 /2) |Y). The final estimate of aexp(ra0/2) is obtained by plugging in 

the estimated parameters in the Monte Carlo approximation of E(<7exp(ro!o/2)|Y). 

We plot the estimated conditional standard deviation image in Figure 5.7 panel (c). 

The prediction variances for the Gaussian process model calculated by equation 

(3.23) are independent of observations and therefore identical across years. Figure 

5.7 panel (b) gives the image plot of the GP prediction variance. 

For the Gaussian process model, the prediction variances are independent of 

the observations. The observed locations have 0 prediction variances and locations 

further away from the observed sites have larger prediction variances. Therefore 

the standard deviation image shows small contours around each of the 52 sites. 

The conditional prediction standard deviation image for the SHP model, however, 

is smooth. We see that the SHP standard deviation image matches the sample 

standard deviation image in most areas, e.g., greatest variances around the Colorado 

areas and small variances in the northwest corner. We show the SHP standard 

deviation contours and 27 prediction locations together in Figure 5.7 panel (d). 

It is obvious that the locations for which SHP has remarkably smaller MSPE are 

clustered in the highly volatile areas around Colorado and the northwest corner with 

low volatility. Comparing Figure 5.6 panel (b) and Figure 5.7 panel (d), we see that 
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the three locations yielding largest relative MSPE ratios (locations 12, 25 and 13) 

are clustered in the low volatility area, the northwest corner. Locations 6, 7, 8, 9, 

10, which give mild large MSPE ratios, are clustered in the highly volatile Colorado 

area. From the above analysis, we conclude that the SHP model outperforms the 

Gaussian process model by capturing the spatial volatilities. 
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Figure 5.6: Deposition (NO3) data map. In panel (a), the solid triangles correspond 
to 52 sites with complete 20 years data and the empty squares correspond to 27 sites 
with incomplete data. In panel (b), wc index the 27 sites by numbers. 

Table 5.4: Summary of MSPE ratios (GP/SHP) for the deposition (7V03) data 

analysis. 
min 1st Quartile Median 3rd Quartilc Max Percent 

27 locations 0.44 

20 years 0.92 

0.95 

1.06 

1.10 

1.19 

1.44 19.99 60 

1.28 1.70 80 

"The last column (Percent) indicates the percentage of MSPE ratios being greater than 1. 
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Figure 5.7: NO3 deposition data standard deviation images. Panel (a) is the image 
and contour of sample standard deviation using cubic spline interpolation based on 
52 sites. Panel (b) is Gaussian process prediction standard deviation. Panel (c) is 
SHP conditional standard deviation, i.e., the estimates of a exp(rft/2). The triangles 
arc 52 complete data, locations. All images arc based on 50 x 50 grid points. Panel 
(d) plot the 27 predicting locations along with SHP conditional standard deviation 
contours. Solid squares refer to locations that SHP model yields smaller MSPE than 
Gaussian process model and empty squares refer to locations that Gaussian process 
model yields smaller MSPE. 
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Figure 5.8: Relative MSPE ratios for NO3 deposition data analysis. Panel (a) 
plots the relative MSPE ratios at each of 27 locations. Panel (b) shows the rel­
ative MSPE ratios across 20 years. We calculate the relative MSPE ratio by 
[MSPE(GP)-M.SPE(SIIP)]/mean[MSPE(GP),MSPE(SHP)]. Ratios greater than 1 
favor the SHP model. 



Chapter 6 

CONCLUSIONS A N D F U T U R E WORK 

6.1 General Conclusions 

Spatial data modeling and analysis aim at the description, explanation and 

prediction of a spatial process based on a sample of observations. The Gaussian 

process with a stationary and isotropic correlation function is customarily used to 

model spatial data. In recent years, a lot of research focuses on modeling the spatial 

covariance structure more realistically by relaxing the stationary assumptions. This 

dissertation has developed a new method that is capable of modeling a wide variety 

of spatial processes and are attractively interpretable. 

By analogy to temporal and spatial lattice stochastic volatility models, we pro­

pose a stochastic heteroscedastic process (SHP). Conditional on a latent Gaussian 

process, the SHP is a Gaussian process with non-stationary covariance structure. 

Unconditionally, the SHP is a stationary non-Gaussian process. The realizations 

from SHP are versatile and can show obvious heterogeneous features. By adjusting 

parameter values, SHP can also produce Gaussian-like realizations. The uncondi­

tional correlation of SHP offers a rich class of correlation functions which can also 

allow for a smoothed nugget effect. This smoothed nugget explains the microscale 

variation in a natural way. The unconditional correlation function can be used 

independently as a flexible isotropic correlation class. The SHP model has more 

parameters involved than the stationary Gaussian process model, which brings flex­

ibility but also leads to confounding effects that complicate parameter estimation. 
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We investigate the difficulties of identifying parameter values through the uncondi­

tional correlation and sample path simulation plots. 

For statistical inference, we have proposed to apply importance sampling and 

Monte Carlo integration to evaluate the likelihood values. The importance density 

we proposed is a multivariate normal distribution with mean equal to the posterior 

mode. The performance of this importance density heavily depends on the posterior 

mode estimate. By use of a low-dimensional approximation of the latent process 

in the optimization procedure, we improve the posterior mode estimation dramati­

cally. This low-dimensional approximation scheme is extended to construct a fully 

low-dimensional approximation model for SHP, which reduces computational load 

and increases accuracy considerably when dealing with large sample size. For pre­

diction, we derive the formulas for BLUP (best linear unbiased predictor) and BP 

(best predictor). By plugging in the maximum likelihood estimators for parame­

ters and applying importance sampling in Monte Carlo integration, we call the final 

predictors PBLUP (plug-in BLUP) and PBP (plug-in BP). 

To evaluate the estimation procedures and compare the prediction performances 

for SHP and other spatial prediction methods, we conduct various simulation stud­

ies. From 1-dimensional and 2-dimensional SHP simulation studies, we see that 

our importance sampling strategy for parameter estimation and process prediction 

works well. We also investigate the interesting "reverse estimation" phenomenon 

for the two range parameters, which can be explained by confounding effects and 

stochastic process interpolation theory. We conclude that SHP PBP yields the best 

prediction performance by incorporating the latent process to capture the spatial 

heteroscedasticity. We show that SHP can fit data generated from Gaussian pro­

cesses as well as from the true model. Two parameterized nonstationary models — 

deformation model and weighted nonstationary model are introduced. From simu­

lation, these two nonstationary models, together with SHP, are capable of catching 
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the inhomogeneous features for realizations simulated from the nonstationary mod­

els and SHP model, reflected by their better prediction performances than station­

ary Gaussian process model. It has been demonstrated that the low-dimensional 

approximation model we proposed has slightly worse or similar prediction perfor­

mance as regular SHP model for mild sample size. But with sample size increasing, 

the low-dimensional approximation model becomes more feasible and accurate. 

In Sampson and Guttorp (1992) and many other research work of modeling 

nonstatonary spatial covariance structure, the spatial data collected over time are 

deemed as iid replicates, probably obtained after detrending. They work with like­

lihood of the sample covariance matrix S or smooth S by modern statistical tech­

niques. We have extended the single-realization SHP model to SHP model with 

replicates to fit the framework of such problem. We assume the replicates come 

from a SHP model conditioning on a common latent process. From simulation, we 

see the remarkable improvements in parameter estimation and process prediction 

by having replicates over single-realization SHP model. 

We present applications of SHP model on three real data sets. The advan­

tages of SHP over stationary Gaussian process model are illustrated in several ways. 

The enhanced vegetation index (EVI) data analysis shows the advantage of SHP 

model over stationary Gaussian process model for 1-dimensional case. The China 

precipitation data application revealed an important feature of SHP model, the effi­

ciency of using probability proportional to the SHP prediction variance in adaptive 

sampling for additional site selections. From the NO3 deposition data analysis, we 

see that the SHP model with replicates outperforms the Gaussian process model in 

prediction by capturing the spatial volatilities. 

6.2 Future Topics for Research 

Besides improvements of the algorithms for estimation and prediction, there 

are several aspects in which this work can be further developed to make SHP more 
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generally applicable to a wider class of spatial processes. We summarize below what 

we consider the main future directions. 

6.2.1 Bayesian approach 

The Bayesian approach has been intensively applied in spatial data modeling 

and analysis. It is easy to rewrite the SHP model (2.1) in a hierarchical structure, 

Y\x/,,a ~ N (G/3, a2diag {cxp ( ™ ) } it^diag {exp ( ™ ) } ) , 

a\cf>a ~N(0 ,p Q ) . (6.1) 

By specifying the priors on parameters ip = (cr2,r2, (/>«, 0z,/3), we complete a hier­

archical Bayesian model. The posterior is given by 

pW\Y) ex f(Y\i/,, a M a | ^ ) p ( V ) . (6.2) 

The parameters are usually drawn by use of Metropolis-Hastings algorithms. The 

difficulties consist in drawing a from its conditional (posterior) distribution. For 

MCMC approach in time series SV model, the most popular approach to draw the 

latent vector ht is a "multi-move" sampler, which is obtained by approximating log e2 

by a mixture of normals so that the log y2 can be written in the form of a Gaussian 

linear state-space model, and a Gaussian simulation smoother can be applied to 

draw h\Y simultaneously. For the GLG (Gaussian-log-Gaussian) model proposed by 

Palacios and Steel (2006), the latent process vector is partitioned into blocks by use 

of certain clustering algorithm or regular partitioning of the space. For each cluster, 

they apply a Metropolis-Hastings step and the proposal distribution is constructed 

by use of log-normal distributions to approximate truncated normal distributions 

for the conditional posterior. For SHP model, the a process is continuous and 

the correlation is more severe than the AR(1) process in SV model. Also, log(Z2) 
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is correlated instead of iid log chi-square distributed which impedes us to apply 

"multi-move" sampler analogous to the SV model directly. But we have successfully 

developed a low-dimensional approximation model in Section 3.4, which reduces the 

dimensionality of the latent process dramatically. The latent vector u> — (to\, ...,IOJ) 

are iid standard normally distributed. We should be able to draw the latent vector 

u) = (uii, ...,UJJ) simultaneously without being bothered by the high correlations. 

But from the simulation studies in Section 4.4, the parameter estimates based on the 

low-dimensional approximation model do not match the true SHP model parameters 

well. Therefore we will need to further explore how to "tune up" the parameter 

estimates. 

6.2.2 Measuremen t error 

The extension of SHP model by adding a measurement error term is immediate. 

By allowing the measurement error (nugget) term, SHP becomes more flexible and 

more adapted to model a wider variety of spatial data. Our importance sampling 

estimation strategy cannot be extended directly because the importance density we 

proposed is not readily revised to adapt the nugget model. But it is easy to write 

the extended SHP model in a hierarchical structure, 

Y\tp,W ~N(G/3 + VT,ae
2/), 

W\il>,a ~ N (o,a2diag{exp ( ™ ) } i^diag {exp ( ™ ) } ) , 

c # Q ~N(0 ) J R a ) , (6.3) 

where we assume the nugget is iid normally distributed with mean 0 and variance 

er2. If we are able to implement the full Bayesian approach proposed in Section 6.2.1 

well, it will be straightforward to extend the schemes to model (6.3). 
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