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ABSTRACT 

Over the last 40 years researchers have made various efforts to develop automatic 
feedback controllers for irrigation canals. However, most of this work has 
concentrated on feedback controllers for single, in-line canals with no branches. 
In practice it would be desirable to automate an entire canal network and not just 
one of the branches. Because the branches in a network are hydraulically coupled 
with each other, a branching canal network cannot be controlled by designing 
separate controllers for each branch and then letting them run simultaneously. 
Changing the gate position in one pool on one branch can affect the water levels 
in pools on other branches. Because of this effect, the controllers designed for 
each of the in-line branches of the network will interfere with each other and 
potentially create instabilities in the branching canal network. Thus, the 
controller must be designed for the network as a whole and the branching flow 
dynamics must be explicitly taken into account during the controller design 
process. This paper presents preliminary simulation results on three different 
downstream feedback controllers on a branching canal network. The first 
controller is a series of Proportional-Integral (PI) controllers, one per pool. The 
second is a fully centralized PI controller. The third controller uses Model 
Predictive Control (MPC) to determine the appropriate control actions. 

INTRODUCTION 

The main purpose of an irrigation water delivery system is to deliver water to 
users at the desired time, rate, frequency, and duration. Most operators of 
irrigation water delivery systems operate the canals using manual techniques. 
Routing known flow changes and accounting for unknown flow disturbances and 
flow measurement errors using manual control is a difficult and time-consuming 
process. Thus, some canal operators have turned to automatic control techniques 
in an attempt to more efficiently control irrigation water delivery systems. 

Over the past 40 years, researchers have proposed a wide variety of algorithms for 
automatic control of water levels in irrigation canals (Malaterre et af. 1998). 
These control algorithms include classic proportional-integral (PI) controllers, 
heuristic controllers, predictive controllers, and optimal controllers. Despite the 
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large number of proposed algorithms, automatic control of irrigation water 
delivery systems has been successful under only a limited range of operating 
conditions (Rogers and Goussard 1998 and Pongput and Merkley 1997). 

One drawback to the existing attempts to automatically control irrigation water 
delivery systems is that these control algorithms are only applicable to single in
line canal systems. If they are applied to branching canal networks, then the 
controllers will interfere with each other and may adversely impact the overall 
system. Thus, it is desirable to develop an automatic control system that can be 
applied to branching canal networks. 

This paper presents preliminary simulation results on three different downstream 
feedback algorithms on a branching canal network. The first algorithm uses 
Proportional-Integral (PI) control, with each check controlled by errors in the 
water level at the downstream end of the downstream pool. The second algorithm 
is the fully centralized PI controller, which is a PI controller with complete 
hydraulic decoupling that explicitly takes the delay times of the pools into account 
(see Clemmens and Schuurmans 1999 for more details on this controller). With 
this controller, the flow rate at any check structure can be influenced by water 
level errors in any pool and by prior control actions at any check structure. These 
first two controllers use optimization techniques off-line to determine the 
controller constants. The third algorithm uses Model Predictive Control (MPC) to 
determine the appropriate control actions. For this controller, optimization 
techniques are performed on-line at each control time step. All of these 
controllers use a lumped-parameter linear approximation of the Saint Venant 
equations as their underlying linear process model. 

BACKGROUND 

Linear Process Model 

The core of any automatic control system is the underlying process model that is 
used to model flow in open channels. Open-channel flow is described by the 
Saint Venant equations, which are a set of hyperbolic, nonlinear, partial 
differential equations that are distributed in time and space. However, nonlinear 
feedback control is not as easy to define as linear feedback control. Thus, the 
control problem is greatly simplified if the process model is linearized and linear 
feedback control is utilized. 

Schuurmans et al. (1995) developed the integrator-delay (ID) model to describe 
flow in open channels. The ID model is a lumped-parameter linear response 
model that can handle backwater effects as well as normal flow conditions. For 
one pool, the ID model can be expressed as: 
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where e is the deviation of the downstream water level from its desired steady
state level, qt. is the deviation of the upstream inflow to the pool from its steady
state value, qout is the deviation of the downstream outflow from the pool from its 
steady-state value, As is the backwater surface area of the pool, T is the delay time 
of the pool, and t is time. The ID model depends on only two hydraulic 
parameters per pool: the delay time, T, and the backwater surface area, As. Once 
these two properties are determined, the hydraulic characteristics for the pool are 
completely defined. See Clemmens et al. (1997) for details on determining As 
and T. 

State-Space Representation 

There are many benefits to using the ID model as the underlying linear process 
model. First, it is a lumped-parameter model, so it is mathematically easier to 
handle compared to a distributed model. Second, the ID model can be used to 
define the discrete state-transition equations commonly used in linear system 
theory without the need for state estimation techniques: 

x{k + 1) = Ox (k)+ iU{k) (2) 

e{k} = Cx{k} (3) 

where u(k) is a vector of changes in control actions at time k, x(k) is a vector of 
changes in the state of the system at time k, e(k) is a vector of water level errors at 
time k, and 41, r, and C are the state-transition matrices, which are defined by 
discretizing the ID equations. A convenient way to define the state vector is to 
have it consist of changes in water level errors, previous incremental control 
actions, and previous water level errors (Clemmens and Schuurmans 1999). 

Controller Objectives 

Both the optimal PI controllers and MPC determine the appropriate control 
actions by minimizing an objective function, J: 
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J = Ie(kY Qe(k)+u(kYRu(k) 
(4) 

k=O 

where Q is the penalty function for water level errors and R is the penalty 
function for changes in control actions. Although these controllers are tuned 
using optimization techniques, the user still needs to determine the appropriate 
values for the penalty function matrices Q and R. Typically, this is done using 
trial-and-error techniques. To simplifY this process, Q is set equal to I, and R = P 
P where p is the penalty weight for the controller and P is the identity matrix 
weighted by the relative capacity of each pool in the canal (see Clemmens et al. 
1997 for more details). 

Optimal Proportional-Integral Controllers 

Using linear system theory, the typical control law for PI controllers in state-space 
form can be expressed as: 

u(k) = -Kx(k) (5) 

where K is the controller gain matrix determined by minimizing the objective 
function, J. The solution for K is subject to the dynamic characteristics of the 
physical system, as described by the state-transition equations (2) and (3). This 
optimization procedure is performed once and the same gain matrix, K, is used 
throughout the simulation. The form of K defines the type of PI controller that is 
used. For example, if all of the elements of K are nonzero, then this represents 
the fully centralized PI controller. If only the elements of K that correspond to 
the proportional and integral constants of the controller are nonzero and the rest of 
the elements are zero, then this form of K represents a series of simple PI 
controllers, one per pool (see Clemmens et al. 1997 for more details). For these 
optimal PI controllers, the value of p needs to be determined through trial-and
error techniques. 

Model Predictive Control 

MPC originated in the late 1970s and has been used extensively in the process 
control industry. MPC has three basic components, summarized as follows 
(Camacho and Bordons 1999): 

1. A linear process model, the ID model in this case, is used to predict the 
system output for some time into the future, O(k+ilk). The time that is 
predicted into the future is called the prediction horizon, p. The output 
predictions have two components: a free response and a forced response 
(Clarke 1994). The free response is the expected behavior of the system 
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assuming no future control actions. The forced response is the additional 
component of the process output that is due to the unknown future changes 
in control actions, u(k+ilk). The forced response is considered over a time 
horizon called the control horizon, m, while the free response is 
considered over the entire prediction horizon, p. The control horizon is 
less than or equal to the prediction horizon. While in the control horizon, 
the process model is used to obtain output predictions based on both the 
free and forced responses. After the control horizon has passed, the 
remaining output predictions are based on only the free response ofthe 
system. This prediction strategy is shown in Figure 1. 

2. An objective function, similar to equation ( 4 ), is minimized by adjusting 
the future control actions, u(k+ilk). This optimization problem is subject 
to the many constraints that may be imposed on the system. 

3. Once the sequence of future control actions that minimizes the desired 
objective function is determined, only the first set of control actions is 
implemented on the system, u(k+ 11k). The system is then updated and the 
process is repeated. This is known as the receding horizon strategy. 

u(k) 

y(k+mlk) 

y(k) 
p 

k-\ k k+\ k+2 k+m k+p 

Time 

Figure 1. MPC prediction strategy (from Camacho and Bordons 1999) 

MPC differs from the optimal PI controllers in that there is no explicit control law 
such as equation ( 5 ), and the optimization problem is solved on-line at each time 
step during the simulation. Implementing MPC on-line may present some 
difficulties because the optimization problem may be very complex and require an 
extensive amount of computing power to solve. Also, feasibility is an issue with 
MPC. If the constraints imposed on the optimization problem are too restrictive, 
then the problem may become infeasible and the controller will not function. 
Tuning the MPC controller consists of determining the appropriate values for the 
control horizon, the prediction horizon, and the penalty weight for the controller 
(P). 
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CONTROL OF BRANCHING CANAL NETWORKS 

The first step in developing a controller for a branching canal network is to make 
sure that the state-transition equations capture the branching canal hydraulics by 
moditying the underlying ID equations. In the pool where the branch occurs, 
equation ( 1 ) must be modified to include the outflow into both branches of the 
canal system. This methodology is best explained by looking at an example of a 
branching canal system. Consider ASCE test canal 1 (see Clemmens et af. 1998 
for more details on the ASCE test canals) and assume that there is a branch that 
occurs at the downstream end of pool 4. One of the branches contains pools 5 and 
6 from the ASCE test canal 1 while the other branch contains pools 7 and 8, as 
shown in Figure 2. 

Rxi8 

Rxi7 

q(l+ q(1 
qo ---+ -+ 

qJ --. 

Rxi! Rxi2 Rxi3 Rxi4 RxiS Rxi6 

Figure 2. Schematic diagram of branching canal network 

Without the branch, the ID equation for pool 4 can be expressed as: 

When a branch is present at the end of pool 4, the underlying ID equation is 
modified to become: 

(6) 

(7) 
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The ID equations for pools 5 and 7 can be developed with qin equal to q4.1 and 
q4.2, respectively. The ID equations for the remaining five pools retain the form 
of equation ( 6). The eight ID equations are then discretized and placed in the 
state-space form of equations ( 2 ) and ( 3 ) (see Clemrnens and Schuurmans 1999 
for more details on how this is done). Once the proper modifications have been 
made to the underlying ID equations, optimal control theory or MPC can be 
applied to the system. For the optimal PI controllers, an additional adjustment 
needs to be made. Elements in the gain matrix, K, which are not feasible for the 
branching canal network, need to be set to zero. For example, for a fully 
centralized PI controller, a portion of the control actions at gate 7 would be passed 
to gate 5. For an in-line system, this is appropriate. However, for the system 
shown in Figure 2, gate 7 is hydraulically isolated from gate 5 and it would not 
be appropriate to pass a portion of the control actions at gate 7 to gate 5. Thus, 
these infeasibilities need to be identified in the branching canal network and the 
corresponding elements in the gain matrix need to be set to zero. 

Control Tests 

The authors performed simulations on the branched version of test canal 1 using 
the same initial conditions specified for test case 1 (see Clemmens et al. 1998 for 
details on ASCE test case 1). To test the effectiveness of the controller, an 
offiake change occurred in each section of the branching canal network (i.e., 
upstream from the branch and in each of the two branches). Six hours into the 
simulation, the offtake flows at pools 3 and 8 increased from 0.1 m3/s to 0.2 m3/s, 
while the offiake at pool 5 was shut off. Simulations were carried out using the 
simple PI controller, the fully centralized PI controller, and MPC. All simulations 
were performed using the hydrodynamic model SOBEK (Delft Hydraulics 2000). 
SOBEK has the ability to simulate branching canal networks and to be linked to 
MATLAB (MathWorks 2000). All of the control routines were written as 
MAT LAB m-files that interfaced with SOBEK. Because the goal of this paper 
was to determine the feasibility of these types offeedback controllers on 
branching canal networks, several simplifications were made to the ASCE test 
case 1. The simulations were performed only under tuned conditions, the 
minimum gate movement constraints were not enforced, and all of the flow 
changes were considered unscheduled (i.e., no feedfoward routine was 
implemented). 

Two constraints were imposed on the simulations: I} the gates were not allowed 
to be completely closed and 2} the gates were not allowed to be taken out of the 
water. For the optimal PI controllers, these constraints were imposed after the 
control calculations were performed. In other words, the control law was used to 
determine a set of changes in control action variables. If these changes caused the 
constraints to be violated, then the control actions were adjusted until the 
constraints were satisfied. For MPC, the constraints were written explicitly into 
the constrained optimization problem. 



394 USCIDIEWRI Conference 

RESULTS 

Optimal Proportional-Integral Controllers 

From past experience, the authors found that setting p= 20 works well for the 
steep test canal 1. Because no control actions are passed to other gates for the 
simple PI controller, no further modifications need to be made to the gain matrix 
and constrained optimization techniques can be used to determine the coefficients 
of K. About 10 hours after the disturbances, the PI controller returned the water 
levels to their setpoints and had a maximum deviation from the setpoint of about 
0.2 m (Figure 3). Overall, these results are similar to other simulation results 
obtained using simple PI controllers on the unscheduled flow changes for test case 
I-Ion the in-line test canal 1. For example, both Clemmens and Wahl in (1999) 
and Wahlin and Clernmens (\999) present simulation results that have similar 
maximum water level deviations for the unscheduled portion of the test case 1-1 
as reported here for the branching canal network. However, the PI controllers for 
the in-line test canal 1 were not as sluggish as the PI controller for the branched 
system, and the water levels were returned to their setpoints in about six hours. In 
practice, these water level deviations and settling times may not be acceptable. 
Prescheduled delivery changes with a feedforward routine would improve the 
overall performance of this controller. 
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Figure 3. Simulation results using the simple PI controller (p = 20) 

For the fully centralized PI controller, the infeasibilities that occur due to the 
branching canal network dynamics were identified and the corresponding 
elements in the gain matrix were set to zero. The gain matrix was then 
determined using constrained optimization techniques. There is a marked 
improvement in using the fully centralized PI controller (Figure 4) over the 
simple PI controller (e.g., less overshoot, less oscillations, faster settling time, 
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etc.). Within six hours of the disturbances, the fully centralized PI controller 
restored the water levels to their setpoints. These results agree fairly well with the 
unscheduled simulation results for the fully centralized PI controller on the in-line 
test canal 1 (Clemmens and Wahlin 1999). Again, overall controller performance 
would be improved with the addition of a feedforward routine. 
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Figure 4. Simulation results using the fully centralized PI controller (p = 20) 
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Figure 5. Simulation results using Model Predictive Control (p = 10) 

Model Predictive Control 

For the MPC simulations, the control horizon, m, was set to 20 time steps while 
the prediction horizon,p, was set to 40 time steps. Unlike the optimal PI 
controllers, better results were obtained with p= 10 instead of20. The simulation 
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results for MPC (Figure 5) are similar to those for the fully centralized PI 
controller, and, within six hours of the disturbances, the MPC controller restored 
the water levels to their desired setpoints. One of the benefits of MPC is that it 
has a feedforward routine built into the algorithm. Utilizing this option, the 
overall performance of the controller would improve. 

CONCLUSIONS 

Several conclusions can be drawn from these simulation studies: 

1. Automatic controllers can be developed for branching canal networks by 
considering the branching dynamics in the underlying linear process 
model. 

2. The fully centralized PI controller and the MPC controller adequately 
controlled this simple branching canal network under the given flow 
conditions. 

3. The simple PI controller worked on the branching canal network; 
however, its performance was not as good as the fully centralized PI 
controller or MPC. 

4. The controller performance was almost identical for the fully centralized 
PI controller and MPC. 

The performance of these controllers on this simple branching canal network is 
encouraging. Additional simulation studies need to be performed to better define 
the robustness of these controllers. 
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