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ABSTRACT 

 

HIGHER ORDER VOLUME/SURFACE INTEGRAL EQUATION MODELING OF 

ANTENNAS AND SCATTERERS USING DIAKOPTICS AND METHOD OF MOMENTS 

 

The principal objective of this dissertation is to develop, test, and optimize accurate, 

efficient, and robust computational methodology and tools for modeling of general antennas and 

scatterers based on solutions of electromagnetic integral equation formulations using the method 

of moments (MoM) and diakoptics. The approaches and implementations include the volume 

integral equation (VIE) method and its hybridization with the surface integral equation (SIE) 

method, in two ways. The first way combines the VIE method for dielectric parts and the SIE 

method for metallic parts of the structure. The second way performs subdivision of the entire 

structure into SIE domains of different constant permittivities, while modeling the 

inhomogeneity within each domain by the VIE method and employing different Green’s 

functions, with describing the inhomogeneity within each domain in terms of a perturbation with 

respect to the background permittivity. The first approach is very suitable for analysis of 

composite wire-plate-dielectric radiation/scattering structures. The second approach provides a 

particularly efficient solution to problems involving inhomogineities embedded within high-

contrast homogeneous dielectric scatterers. The efficiency of computation is enhanced by 

applying the diakoptic domain decomposition. In the VIE-SIE diakoptic method, the interior 

diakoptic subsystems containing inhomogeneous dielectric materials are analyzed completely 

independently applying the VIE-SIE MoM solver, and the solution to the original problem is 

obtained from linear relations between electric and magnetic surface-current diakoptic 
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coefficients on diakoptic surfaces, written in the form of matrices. The techniques implement 

Lagrange-type generalized curved parametric hexahedral MoM-VIE volume elements and 

quadrilateral MoM-SIE and diakoptic patches of arbitrary geometrical-mapping orders, and 

divergence-conforming hierarchical polynomial vector basis functions of arbitrary current 

expansion orders. The hexahedra can be filled with inhomogeneous dielectric materials with 

continuous spatial variations of the permittivity described by Lagrange interpolation polynomials 

of arbitrary material-representation orders. Numerical computation is further accelerated by MPI 

parallelization to enable analysis of large electromagnetic problems. 
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1 VOLUME/SURFACE INTEGRAL EQUATION FOR SCATTERING AND RADIATION 

PROBLEMS
1
 

 

1.1 Introduction 

The method of moments (MoM) for discretizing integral equations in electromagnetics is an 

extremely powerful and versatile general numerical methodology for electromagnetic-field 

simulation in antenna and scattering applications [1]–[5]. For antennas and scatterers composed 

of metallic and homogeneous linear dielectric parts, the MoM is most frequently applied in 

conjunction with the surface integral equation (SIE) approach [2], [6], [7], where both electric 

and magnetic equivalent (artificial) surface currents are introduced over boundary surfaces 

between homogeneous regions of the structure, and surface integral equations based on boundary 

conditions for both electric and magnetic field intensity vectors are solved with current densities 

as unknowns. On the metallic surfaces, only the surface electric current exists (this is actual 

current) and is treated as an unknown quantity. An alternative approach to MoM analysis of 

dielectric scatterers is the volume integral equation (VIE) approach [8]–[11], where, employing 

the volume equivalence principle, a structure containing linear dielectric materials of arbitrary 

inhomogeneity and complexity is represented by a distribution of volume electric (polarization 

and conduction) current (the real current) radiating in free space, and the resulting VIE, with the 

total volume current density vector, or another vector proportional to it (e.g., the total electric 

field vector), as unknown quantity, is discretized by the MoM. The analysis of composite 

dielectric and metallic radiation/scattering structures can be performed combining the VIE for 

                                                 
1
 © 2013 IEEE. Reprinted, with permission, from E. Chobanyan, M.M. Ilic, and B. M. Notaros, Double-Higher-

Order Large-Domain Volume/Surface Integral Equation Method for Analysis of Composite Wire-Plate-Dielectric 

Antennas and Scatterers, IEEE Transactions on Antennas and Propagation, December 2013. 
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dielectric parts and the SIE for metallic parts, giving rise to a hybrid VIE-SIE or VSIE 

formulation, which solves simultaneously for the volume current throughout the dielectric 

domains and the surface current over the metallic surfaces of the composite structure [12]–[14],.  

However, practically all the existing three-dimensional (3-D) MoM-VIE and MoM-VSIE 

simulation tools for dielectric/metallic structures are low-order or small-domain (subdomain) 

techniques – the structure is modeled by volume (and surface) geometrical elements that are 

electrically very small and the volume (and surface) electric currents within the elements are 

approximated by low-order (zeroth-order and first-order) basis functions. More precisely, the 

elements (cells and patches) are on the order of /10 in each dimension,  being the wavelength 

in the medium. This results in a very large number of unknowns (unknown current-distribution 

coefficients) needed to obtain results of satisfactory accuracy, with all the associated problems 

and enormous requirements in computational resources. In addition, commonly used 3-D VIE 

elements are in the form of cubes, bricks (parallelepipeds), and tetrahedra, all with planar sides, 

and thus they do not provide enough flexibility and efficiency in modeling of structures with 

pronounced curvature. 

An alternative which can greatly reduce the number of unknowns for a given problem and 

enhance further the accuracy and efficiency of the MoM-VIE analysis in antenna/scattering 

applications is the higher order or large-domain (entire-domain) computational approach [15]. 

According to this approach, a structure is approximated by a number of as large as possible 

geometrical elements, and the approximation of current (or field) components within individual 

elements is in the form of a single (three-fold) functional series of sufficiently high order. Only 

relatively recently the computational electromagnetics (CEM) community has started to 

extensively investigate and employ higher order surface and volume elements and higher order 
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basis functions in the frame of MoM, including the SIE formulation [16], [17], VIE 

approach[20]–[27], and VSIE hybrid[30]–[36], as well as the finite element method (FEM) [37] 

–[41]. 

For MoM-VIE modeling of general structures that may possess arbitrary curvature, it is 

essential to have both higher order geometrical flexibility and higher order current-

approximation flexibility in the same method. In other words, if higher order basis functions for 

currents (or fields) are used on volume elements with flat sides, many small elements may be 

required for the geometrical precision of the model, and then higher order basis functions 

actually reduce to low-order functions (on small elements). On the other hand, geometrical 

flexibility of curved elements can be fully exploited only if they can be made electrically large, 

which implies the use of higher order current expansions within the elements as well. Finally, in 

order to make the modeling of realistic structures optimal, it is often convenient to have elements 

of different orders and sizes combined together in the same model. If all of these requirements 

are to be satisfied, implementation of hierarchical-type higher order polynomial basis functions 

for the approximation of the volume electric current within curved elements seems to be the right 

choice. 

This thesis proposes a novel higher order and large-domain Galerkin-type MoM-VIE 

technique for 3-D analysis of radiation/scattering structures based on higher order geometrical 

modeling and higher order current modeling, which we refer to as a double-higher-order VIE 

method. The volume elements proposed for the approximation of geometry are Lagrange-type 

interpolation generalized hexahedra of arbitrary geometrical-mapping orders. The basis functions 

proposed for the approximation of currents within the elements are hierarchical divergence-

conforming 3-D polynomial vector basis functions of arbitrary expansion orders. 
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The proposed technique represents a generalization of the MoM-VIE technique [19], where 

trilinear hexahedra (volume elements of the first geometrical order) are used with higher order 

polynomial current expansions. It also represents a VIE version of the double-higher-order SIE 

method [17], on one side, and a MoM version of the double-higher-order FEM [40], on the other 

side. In fact, this is a double-higher-order VIE-SIE or VSIE method, as it includes the 

corresponding SIE discretization of metallic surfaces, and in that sense may be considered a 

generalization of the MoM-VSIE technique [30], which uses volume and surface elements of the 

first geometrical order in conjunction with polynomial large-domain volume and surface current 

approximations.  

The new method enables excellent curvature modeling and excellent current-distribution 

modeling, which, in turn, enable using large curved VIE hexahedra that are on the order of  in 

each dimension as building blocks for modeling of the dielectric object (i.e., the volume 

elements can be by an order of magnitude larger in each direction than traditional low-order 

elements). In specific, the model can include as large as about 222 VIE generalized 

hexahedra (which is 8,000 times larger in volume than conventional low-order volume modeling 

discretization limit of  /10/10/10) with curvature modeling using high (e.g., fourth) 

geometrical-mapping orders and p-refined current distributions of high (e.g., sixth) orders of 

basis functions. Element orders in the model, however, can also be low, so that the lower order 

modeling approach is actually included in the higher order modeling. The geometrical orders and 

current-approximation orders of the VIE elements are entirely independent from each other, and 

the two sets of parameters of the double-higher-order model can be combined independently for 

the best overall performance of the method. Additionally, because the implemented basis 

functions are hierarchical, a whole spectrum of element sizes (e.g., from a very small fraction of 
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 to 2), geometrical orders (e.g., from 1 to 4), and current-approximation orders (e.g., from 1 to 

6) can be used at the same time in a single simulation model of a complex structure, making this 

method essentially a combined, low-to-high, order method. Finally, each individual element can 

have drastically different edge lengths, with or without curvature, enabling a whole range of 

generalized-hexahedral element shapes (e.g., brick-like, slab-like, and rod-like planar hexahedra, 

as well as spherically-shaped, cylindrically-shaped, and elliptically-shaped curved hexahedra, 

and also other “irregular” and/or curved hexahedral shapes) to be used in a simulation model as 

well. 

The results obtained by the double-higher-order VIE (VSIE) technique are validated against 

the analytical solutions in the form of Mie’s series and the numerical results obtained by the 

double-higher-order SIE and FEM-MoM (FEM-SIE) techniques [17] and [40], respectively, as 

well as the solutions using one of the industry’s leading commercial software tools for full wave 

electromagnetic analysis – WIPL-D, which is a higher order SIE code [2]. Numerical examples 

show that the proposed double-higher-order VIE  and VSIE modeling does not only provide an 

accurate solution and useful alternative to other, more frequently used, types of CEM techniques 

but in many cases provides either on par or a more efficient solution. Most importantly, note that 

all numerical comparisons and evaluations in the thesis are performed with respect to highly 

efficient and accurate techniques implementing similar types of higher order numerical 

discretization applied to different equations; the advantages of the proposed VIE/VSIE modeling 

are much more pronounced if compared to conventional approaches using low-order and small-

domain volume and surface discretizations. 
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1.2 Two-Potential Volume Integral Equation Formulation for the Equivalent 

Displacement Vector 

Consider an electromagnetic structure consisting of arbitrarily shaped dielectric and metallic 

parts, situated in free space. Let the relative permittivity, rε , and conductivity,  , of the 

dielectric material be known functions of  position, while the permeability at all points is 0μ . In 

addition, let the structure be excited by a time-harmonic electromagnetic field of complex 

electric field intensity vector Ei and angular frequency . This field may be a combination of 

incident plane waves (for a scattering structure) or the impressed field of one or more lumped 

generators (for an antenna structure). It induces volume electric (polarization and conduction) 

current, of density J, to flow throughout the volume of the structure. This current and the 

associated charge are, in turn, the sources of the scattered electric field, of intensity vector Es. 

From the constitutive equation for the current (generalized local Ohm’s law), J is related to the 

total (incident/impressed plus scattered) electric field intensity at any point in the material as [33] 

,
ω

σ
jεε     ),)(ε(ε jω esi0e  EEJ       (1) 

with eε  being the equivalent complex permittivity of the material at that point. The scattered 

field can be computed as if the sources were radiating in free space (volume equivalence 

principle), using magnetic vector and electric scalar Lorenz potentials, 

 AE jωs ,         (2) 

Vg

V

dμ0  JA ,         (3) 
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ωε

j
21

0 SV

SgVg JJnJ .      (4) 

Here, V is the domain with volume current and charge, dS  are surfaces of discontinuity in eε  

(where surface charge may accumulate), with the unit normal vector, n, directed from medium 2 

into medium 1, and g is the free-space Green’s function, 

R

e
g

R

π4

0jβ

  ,        000 μεωβ   ,       (5) 

0 being the free-space phase coefficient (wave number) and R the distance of the field point 

from the source point. Having in mind the integral expression for the field Es in (2)-(5), (1) 

represents a volume integral equation, with J as unknown quantity. 

However, if divergence-conforming bases are used in the VIE model, J in (1) is expressed in 

terms of the equivalent electric displacement vector, D=ɛeE, whose normal component is 

continuous (
21 DnDn  ) across the surfaces

dS . The relationship between the two vectors is  

DJ Cjω ,       
e

0e

ε

εε 
C ,       (6) 

where C stands for the electric contrast of the dielectric with respect to free space (background 

medium). With this, (1) and (2) give the following two-potential VIE with D as unknown: 

,jω
ε

i
e

EA
D

         (7) 

which, of course, includes the potential expressions in (3)-(5). Note that the unknown here is, in 

fact, the equivalent displacement current density, Jd=jD, in place of the equivalent conduction 

current density, J, in (1). 
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On metallic surfaces – that may have distributed loadings, e.g., surfaces with resistive or 

dielectric thin layers (coatings), conductors with skin effect taken into account, etc. – the volume 

current density J degenerates into the surface current density, Js, and the VIE (7) into a SIE 

given by [17] 

,)()(jω tangitangtangSS EAJ Z       (8) 

where ZS is the appropriate surface impedance. For bare surfaces made of a perfect electric 

conductor (PEC), ZS=0, and the tangential component of the total electric field on the surface is 

zero. In  analysis of structures composed of both dielectric and metallic parts, (7) and (8) 

constitute a hybrid VIE-SIE or VSIE system of integral equations, which are coupled together 

because potentials A and Φ at any point of the structure are functions of both D and JS. We 

discretize and solve the VSIE system simultaneously for D and JS using the method of moments. 

 

1.3 Higher Order 3-D Geometrical Modeling and Higher Order Basis Functions for 

Volume Current Modeling 

As basic building blocks for geometrical modeling in 3-D VIE computations, we propose 

Lagrange-type generalized curved parametric hexahedral volume elements of arbitrary 

geometrical orders uK , vK , and wK  ( uK , vK , wK   1), determined by 

)1)(1)(1(  wvu KKKM  points (interpolation nodes) arbitrarily positioned in space and 

analytically described as [40] 


    


u v wu v w

wvu

K

i
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j

K

k

kji
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K

i

K

j

K

k

K

k

K

j

K

iijk wvuwLvLuLwvu
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








u
u

K

il
l li

lK
i

uu

uu
uL

0

)( ,      1,,1  wvu ,  (9) 

where ),,(' kjiijk wvurr   are position vectors of interpolation nodes, uK
iL  represent Lagrange 

interpolation polynomials in the u coordinate, with the nodes defined as uul KKlu /)2(  , 

uKl ,...,1,0 , and similarly for )(vL vK
j  and )(wL wK

k
, and ijkr  are constant vector coefficients 

related to ijk'r . Note that the orders uK , vK , and wK  can be adopted anisotropically (i.e., they 

do not need to be the same) within an element. Equation (9) defines a mapping from a cubical 

parent domain to the generalized hexahedron, as illustrated in Fig. 1. 

 

Fig. 1. Generalized curved parametric hexahedral VIE element of geometrical orders uK , vK , and wK  

( uK , vK , wK   1), determined by )1)(1)(1(  wvu KKKM  interpolation nodes arbitrarily 

positioned in space; cubical parent domain is also shown. 
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Geometrically higher order elements obviously allow better flexibility and accuracy in 

modeling of complex curved structures. As a simple example, Fig. 2(a) and Fig. 2(b) show a 

sphere modeled by 1000 trilinear hexahedra ( uK = vK = wK =1) and a single triquadratic 

hexahedron ( uK = vK = wK =2), respectively. In this paper, we use the equidistant distribution 

of interpolation nodes along each coordinate in the 3-D parametric space, while the use of 

specific non-equidistant node distributions, which would provide additional modeling flexibility 

and accuracy in some VIE applications, is possible as well. In addition, any other choice of 

higher order volume expansions for geometrical modeling that can be represented as a triple sum 

of 3-D power functions u
i
v

j
w

k
 (e.g., parametric hexahedra using spline functions for describing 

the geometry) can also readily be implemented in our VIE method. 

    

(a)        (b) 

Fig. 2. A sphere modeled by (a) 1000 trilinear hexahedra [ uK = vK = wK =1 in (9)] and (b) a single 

triquadratic hexahedron [ uK = vK = wK =2 in (9)]. 

 

We represent the displacement vector inside every generalized hexahedron (Fig. 1) in the model 

as [33] 
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where f are divergence-conforming hierarchical-type vector basis functions defined by  
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Nu, Nv, and Nw are the adopted orders of the polynomial current approximation in the u-, v-, and 

w-direction, respectively, which are entirely independent from the element geometrical orders 

(Ku, Kv, and Kw), {} are unknown current-distribution coefficients, and  is the Jacobian of the 

covariant transformation, found from unitary vectors au, av and aw along the parametric 

coordinates, 

wvu aaa  )( ,   
u

u





r
a ,  

v
v






r
a ,  

w
w






r
a ,     (12) 

with r given in (9). Basis functions defined in (11) are hierarchical functions (each lower-order 

set of functions is a subset of all higher-order sets). 

Note that the lowest order of approximation (Nu=Nv=Nw=1) in (10)-(12) yields the 3-D 

rooftop functions on generalized hexahedral cells (which, for such basis functions, then must be 

very small). For any s and t (0sNv1, 0tNw1), the basis functions (1u)v
s
w

t
 (for 

p=0) and (u+1)v
s
w

t
 (for p=1) serve for adjusting the continuity boundary condition for the 

normal component of the vector D over sides u=1 and u=1, respectively, of the element 
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(divergence conformity), while the remaining basis functions (for 2pNu) are zero at the 

hexahedron sides and serve for improving the current approximation throughout the volume. 

From (10)-(12), this vector component for the side u=1, for instance, is 

||||

)(
),,1(sin)( ),(norm

uwv

uwv
uwvuuu wvDDD

aaa

aaa




    











1

0

0

1

0

α 
|),,1(),,1(|

2 wv N

t

ts
stu

N

swv

wv
wvwv aa

,     (13) 

where Du denotes the u-component of D at the side (the v- and w-components of D are tangential 

to the side), and u(v,w) the angle between the u parametric line and vw parametric surface at the 

same point. Since the respective unitary vectors tangential to the side, av(1,v,w) and aw(1,v,w), 

are the same for the two adjacent elements sharing the side, the continuity condition between the 

elements, for 1,1  wv , can readily (automatically) be enforced, regardless of the adopted 

geometrical orders, current-expansion orders, or local orientations of the elements. The only 

requirement that needs to be satisfied is the geometrical compatibility of the joint face. Shown in 

Fig. 3 is an example of an element (e1) of the first geometrical order in all directions 

( 1111 
e
w

e
v

e
u KKK , 81 

e
M ) and an element (e2) of the second geometrical order in all 

directions ( 2111 
e
w

e
v

e
u KKK , 272 

e
M ) that are adjacent in the mesh and share a common 

face. Moreover, the two elements have different current-approximation orders in all respective 

dimensions ( 11 
e
uN , 21 

e
vN , 21 

e
wN  and 72 

e
uN , 52 

e
vN , 32 

e
wN ). In our assembly 

procedure, the geometrical interpolation nodes associated with the two elements that govern the 

geometry of the common face are ordered in a way that ensures a symmetrical or anti-

symmetrical variation of the corresponding parametric coordinates, i.e., 
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21 }or  ,,{}or ,,{
ee

wvuwvu   (for the example in Fig. 3, 21 ee
vu   and 21 ee

ww  ). The 

continuity of the normal displacement vector component across the common face is imposed by 

equating the corresponding normal-vector coefficients, stu0  in (13), associated with e1 and e2, 

so that these coefficients are common for the two elements, with additional corrections (sign 

change) due to possibly different element orientations. The procedure has to be repeated for all 

faces shared by pairs of elements in the mesh. For elements with different geometrical orders, the 

same (or almost the same) parametric presentations on both sides of the common face are 

ensured by placing the interpolation nodes of the element with a higher order at positions that 

match the parameter values already determined by the interpolation nodes of the element with a 

lower order. For elements with different current-expansion orders, the normal-vector coefficients 

are matched only up to the lesser of the corresponding orders and are set to zero for the 

remaining normal-vector basis functions.  

 

Fig. 3. A connection of two generalized hexahedral elements with different geometrical orders, current-

approximation orders, and orientations. 
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This order reduction pertains to the common face only and does not influence the 

expansions throughout the rest of the volumes of the higher order elements. In VIE modeling, the 

use of bases automatically (for any numerical solution) satisfying the continuity of the normal 

component of D at joints of elements in the model actually ensures that theoretically nonexistent 

surface charges at a boundary between elements across which the properties of the dielectric are 

continuous functions cannot be obtained as a consequence of inaccurate numerical solution of a 

problem. However, since the vector D in air is not modeled, the boundary condition for Dnorm on 

the interface dielectric/air is not enforced automatically but numerically, taking into account the 

surface charge on the interface. 

Note also that the sum limits in (10) that correspond to the variations of a displacement 

vector component in the directions across that component are by one smaller than the order 

corresponding to the variation in the other parametric coordinate. This mixed-order arrangement, 

which ensures equal approximation orders for volume charge densities corresponding to the u-, 

v-, and w-directed current basis functions, has been found to be a preferable choice for modeling 

of volume currents in all applications. It enables considerable reductions in the overall number of 

unknowns, at no expense in terms of the accuracy of current and charge modeling throughout the 

elements. Note finally that similar higher order basis functions in the curl-conforming form are 

used in the FEM analysis [40], as well as that the 2-D (surface) version of the bases is employed 

in the SIE solution [17]. 

Finally, what is extremely important, in our VSIE technique for analysis of composite 

metallic and dielectric radiation/scattering structures, generalized curvilinear quadrilateral 

elements with 2-D higher order basis functions for SIE modeling of the surface current density Js 

over metallic surfaces are formally treated as degenerate generalized hexahedral elements, in 
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Fig. 1, having the w-dimension suppressed, with the displacement vector D, in (10), or the 

displacement current density, having only u- and v-components, with the w-component 

suppressed. In addition, thin metallic wires are formally treated as double-degenerate hexahedra 

with only the u-component of the vector D standing for the line current intensity, I, along the 

generatrices of wires (the reduced-kernel approximation for wires) [23]. This approach is 

formally implemented in all interactions of volume and surface elements (and wires) and the 

associated testing and basis functions, to dramatically reduce the number of possible 

combinations in treatments of elements of different nature in topological analysis of the structure 

in preprocessing, filling the MoM matrix through multiple levels of integration and packing the 

MoM generalized impedances and voltages, and field computations in postprocessing. 

 

1.4 Generalized Galerkin Impedances and Potential Integrals for Double-Higher-Order 

Hexahedral VIE Elements 

In order to determine the unknown coefficients {} in (10), the VSIE system in (7) and (8) 

is tested by means of the Galerkin method, i.e., using the same functions used for current 

expansion. The VIE-VIE type of generalized Galerkin impedances (the system matrix elements) 

corresponding to the volume-current testing and basis functions fm and fn defined on the mth and 

nth generalized hexahedral volume elements (Vm and Vn), respectively, in the model are given by 

[21], [33] 

mm

S

nm

V

nmm

V

nm

V

mnm
n

mn

mmmm

VVVZ SffAfff dddjωd
ε

1

e

vv   ,  (14) 
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where An  and n   are potentials due to the basis function fn and the last two integral terms are 

obtained expanding  nm f  and applying the divergence theorem, with Sm being the surface 

of the mth element, oriented outward. Similar expressions hold for VIE-SIE, SIE-VIE, and SIE-

SIE generalized Galerkin impedances. To illustrate the procedure for computing these 

impedances, we consider, without the loss of generality, only the u-components of basis and 

testing functions. Furthermore, we consider the functions in the following simplified form: 

u

wvu tsp

upst







r
ff      ])([ p

p uuQ  .      (15) 

The generalized Galerkin impedances corresponding to the complete, divergence-conforming, 

basis functions in (11) can be obtained as a linear combination of those corresponding to the 

simplified, three-dimensional power functions in (15). 

Upon substituting (15) and (9), the second integral term in (14) corresponding to the testing 

function defined by indices pm, sm, and tm on the mth hexahedron and the basis function defined 

by indices pn, sn, and tn on the nth hexahedron in the model becomes 
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where Ku
(m)

, Kv
(m)

, and Kw
(m)

 are the geometrical orders and Nu
(m)

, Nv
(m)

, and Nw
(m)

 the current 

approximation orders along the u-, v-, and w-coordinate, respectively, and 
)(m

ijkr  are the 

geometrical vector coefficients in the polynomial expansion of the mth hexahedron, while Ku
(n)

, 

Kv
(n)

, Kw
(n)

, Nu
(n)

, Nv
(n)

, Nw
(n)

, and )(n

ijkr are the corresponding parameters for the nth hexahedron, 

which is assumed, for simplicity, to be filled with a homogeneous dielectric of contrast Cn. The 

source-to-field distance R is computed as 

|),,(),,(| nnnnmmmm wvuwvuR rr  .       (17) 
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where, according to (4), the first integral term in this newly developed expression corresponds to 

the portion of the potential Φn due to the volume charges inside the nth hexahedron, while the 

second and third terms are associated with the contributions to Φn due to the surface charges on 

the sides of this hexahedron defined by 1nu  and 1nu , respectively. Moreover, in packing 

the generalized Galerkin impedances for divergence-conforming basis functions in (11), the 

latter two terms are taken into account (and are actually computed in the first place) only for 

basis functions nn t
n

s
nn wvu )1(   (for 0np ) and nn t

n
s
nn wvu )1(   (for 1np ), respectively, and 

only if the dielectric properties vary across the respective side of the hexahedron (e.g., for sides 
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belonging to dielectric-air interfaces in the model). Analogous final expressions are obtained for 

the remaining two terms of the VIE-VIE generalized Galerkin impedance. Of crucial importance 

is that all these impedance terms, as well as VIE-SIE, SIE-VIE, and SIE-SIE ones, for 

basis/testing functions in (15), as well as for those in (11), can be represented as linear 

combinations of 3-D/3-D basic Galerkin potential integrals with only simple power functions and 

Green’s function as integrands, 

mmmnnn
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m
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where P are the 3-D basic potential integrals, evaluated as 
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and the corresponding 3-D/2-D, 2-D/3-D, and 2-D/2-D Galerkin integrals. This is extremely 

important because Galerkin integrals with only simple power functions and Green’s function as 

integrands enable rapid and accurate recursive and nonredundant procedures for evaluation of the 

generalized MoM impedances. Equally important is the fact that there is no need for computing 

the corresponding field integrals, which is not the case in SIE analysis of dielectric and 

composite metallic/dielectric structures, where the computation of hyper-singular field integrals 

is needed to find the electric and magnetic fields in coupled electric/magnetic field integral 

equations (EFIE/MFIE) with electric and magnetic surface currents as unknowns [17]. 

In specific, efficient algorithms for recursive construction of the generalized Galerkin 

impedances and the VSIE system matrix are developed in order to avoid redundant operations 

related to the indices i, j, and k for geometrical representations and p, s, and t for current 
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expansions within the impedances, as well as the summation indices in the Gauss-Legendre 

integration formulas used for numerical integration, for any pair, m and n, of hexahedral 

elements in the model. In addition, since the coordinates u, v and w, as well as the corresponding 

indices, in the integrals S in (19) and (20), and analogously for other integrals in the technique, 

are cyclic, the same sequence of the S integrals (for all the required values of the subscripts hm, 

lm, qm, hn, ln, and qn) for a given pair of hexahedra can be used also for the evaluation of the 

generalized impedances relating to the v- and w-components of the vector D in the two 

hexahedra (note that there are nine combinations for the impedances corresponding to the three 

components of the testing and basis vector functions in the two elements). In addition, the same 

sequence of the S integrals can be used both in the impedances in (16) and in the 3-D/3-D part of 

the impedances in (18). So, for any hexahedron pair in the model, first and only once the entire 

sequence of the basic Galerkin integrals S is evaluated, and these integrals are then introduced 

(packed) into all impedances containing them. In the next level of packing, the impedances for 

basis/testing functions in (15) are recursively and nonredundantly combined into the final 

Galerkin impedances for functions in (11). 

A rapid and accurate combined numerical/analytical method is developed for the integration 

over curved higher order generalized hexahedral elements, for the P integrals in (20). When the 

distance R in (17) is relatively small or zero, the procedure of extracting the singularity is 

performed, which consists of analytical integration of a principal singular part of the integrand 

over a (generally not rectangular) parallelepiped whose parametric description is close to that of 

the generalized hexahedron in the vicinity of the singular point, and numerical integration of the 

rest using Gauss-Legendre quadrature formulas. The sides of the parallelepiped that corresponds 

to the generalized hexahedron specified in (9) are obtained by translating the straight segments 
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A1A2, B1B2, and C1C2 shown in Fig. 4, where these segments, in turn, are obtained differentiating 

the curves defined by ),,( 00 wvur , ),,( 00 wvur , and ),,( 00 wvur at the point ),,( 000 wvu . In other 

words, the parallelepiped is defined by the unitary vectors au, av, and aw of the generalized 

hexahedron, (12), at the singular point, and hence its parametric equation: 

)()()(),,( 000000cp wwvvuuwvu wvu  aaarr  1,,1  wvu   (21) 

where 0u , 0v  , and 0w are the coordinates of the singular point and ),,( 000c wvurr  , 

),,( 0000 wvuuu aa  , ),,( 0000 wvuvv aa  , and ),,( 0000 wvuww aa  .  For u close to 0u , v close 

to 0v , and w close to 0w , the point ),,( wvuM  of the curved hexahedron coincides with or is 

very close to the point ),,(p wvuM  of the parallelepiped. Therefore, in extracting the singularity 

in the P integrals, we subtract and add a term of the form 1/Rp (instead of 1/R), where 

),,(pcp wvuR rr   is the source-to-field distance for integration throughout the volume of the 

parallelepiped [22], 
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with d being determined as minRd   [of course, for the observation (field) point inside the 

generalized hexahedron or on its surface, 0d ]. In (22), the first integral is well behaved in the 

vicinity of the point ),,( 000 wvu and can be rather accurately integrated numerically, over the 

domain 1,,1  wvu , which represents the domain of both the curved hexahedron and the 

parallelepiped. However, to further enhance the accuracy of the numerical integration, we 

subdivide this domain into a number of integration subdomains by means of coordinate surfaces 
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u = 0u , v = 0v , and w = 0w , respectively. Note that this technique remains practically the same 

when P is a near-singular integral, namely, when the observation point is outside the generalized 

hexahedron but very close to its surface, while Duffy and singularity annihilation techniques 

generally appear not to work well for near-singular integrals. 

 

Fig. 4. Finding the parallelepiped whose parametric description is close to that of a curved higher order 

generalized hexahedral VIE element in the vicinity of the singular point (u0,v0,w0) (note that the case 

presented here is for u0 = v0 = w0 = 0) – for the singularity extraction procedure in (22) to solve the 3-D 

basic potential integrals over curved hexahedra. 

 

1.5 Numerical Results and Discussion 

1.5.1 Structure with Flat Surfaces and Sharp Edges 

As an example of structures with flat surfaces and sharp edges and corners, consider a 

lossless homogenous cubical dielectric scatterer of side length a, shown in the inset of Fig. 5. 

Relative permittivity of the dielectric is 4ε r  . Fig. 5 presents the monostatic radar cross section 

(RCS) of the cube, normalized to 2

0λ , as a function of 0λ/a , 0λ  being the free-space 

wavelength. In the higher order VIE approach, the scatterer is modeled by a single trilinear 
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hexahedral element (Ku = Kv = Kw = 1) – literally an entire-domain CEM model, which in this 

case reduces to a brick, with orders Nu=Nv= Nw=6 for the polynomial approximation of the 

displacement vector in the element and only 756VIE
unkn N  unknowns (without the use of 

symmetry).  

 

Fig. 5. Normalized monostatic radar cross section (RCS) of a dielectric ( rε  = 4) cube (λ0 is the free-

space wavelength): comparison of the higher order single-element (entire-domain) VIE solution with 

results obtained by the higher order SIE technique [17] and WIPL-D, respectively.  

 

The VIE solution is compared to the results obtained by the higher order SIE technique [17], 

with the cube surface modeled by means of six bilinear quadrilateral elements            (Ku = Kv = 

1) in conjunction with the polynomial expansions for electric and magnetic surface currents of 

orders Nu=Nv=6 in all of the elements, which results in a total of 864SIE
unkn N  unknowns, as 

well as with a fully hp-refined solution using WIPL-D, which also is a higher order SIE code. 
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We observe an excellent agreement between the three sets of numerical results in the whole 

range of frequencies considered, with the size of the higher order VIE and SIE elements at the 

highest frequency of the range being dλ2e , where r0d ε/λλ   is the wavelength in the 

dielectric, and with the VIE solution requiring fewer unknowns than both higher order SIE 

solutions.  

 

1.5.2 Spherical Homogeneous Dielectric Scatterer 

As the first example of curved dielectric structures, consider a lossless homogeneous 

spherical dielectric scatterer of radius a, shown in the top inset of Fig. 6. Relative permittivity of 

the dielectric is 4ε r  . Fig. 6 presents the monostatic radar cross section (RCS) of the scatterer, 

normalized to 
2
0λ , as a function of 0λ/a , 0λ  being the free-space wavelength. The numerical 

results obtained by three higher order VIE solutions, with the sphere modeled using (A) one 

curved hexahedron with geometrical orders 2 wvu KKK  [Fig. 2(b)], orders 

4 wvu NNN  for the polynomial approximation of the displacement vector in the element, 

and only 402VIE
unkn N  unknowns (without the use of symmetry), (B) one hexahedron with 

4 wvu KKK  and 4 wvu NNN , and (C) seven large elements, with the central 

element in the form of a cube ( 1 wvu KKK ) and six cushion-like curved hexahedral 

elements ( 2 wvu KKK ) attached to the cube sides (the mesh is shown in the lower right 

inset of Fig. 6) and 6 wvu NNN  in all of the elements ( 5,004VIE
unkn N ), are compared 

with the analytical solution in the form of Mie’s series. Note that the single-element models A 

and B (lower left inset of Fig. 6) are literally entire-domain curved CEM models.  
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Fig. 6. Normalized monostatic radar cross section of a dielectric ( rε  = 4) sphere: comparison of 

numerical solutions obtained by three double-higher-order VIE models (A, B, and C) with the 

analytical solution in the form of Mie’s series.  

 

Note also that the model B is aimed to illustrate the solution behavior when the geometrical 

approximation is improved, while the principal purpose of the solution C is to evaluate an hp-

refinement of the model, with both the number of elements increased (h-refinement) and the 

current approximation in the elements enhanced (p-refinement). We observe, in Fig. 6, that, as 

compared to the exact solution (Mie’s series), models A and B perform well up to the frequency 

at which 6.0λd a  and 1.02, respectively, where r0d ε/λλ   is the wavelength in the 

dielectric, which demonstrates a dramatic improvement of results when using geometrical 

modeling of the 4th order instead of the 2nd order geometrical modeling. In the latter case, when 

02.1λd a , the central dimension of the single hexahedral element used to model the sphere is 

about dλ04.22  ae  (sphere diameter), which indicates that the proposed double-higher-order 
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VIE technique allows using curved elements that are as large as dλ2e  across. We also observe 

a very significant improvement of results employing the hp-refined model C, which gives a good 

agreement with Mie’s series solution up to the frequency at which 83.1λd a . The largest 

dimension of the hexahedra in this model is approximately dλ21.26.1  ae  for cushion-like 

hexahedra, while the size of the cubical element in the middle amounts to dλ15.1e . In 

addition, note that among the three models of the sphere, models A and B have geometrical 

degeneracy around the corners of the hexahedral elements, which reflects on the current 

expansion through the Jacobian and influences the accuracy of the solution. Note also that 

computation of the Jacobian is actually not needed except in the first integral term in (12), since 

the Jacobians cancel out in final expressions for all other integral terms, as can be seen in (16) 

and (18).  

 

Table I. RCS Solution Error and MoM Matrix Condition Number for a Single-Element Sphere 

Model vs. Element Geometrical Orders. 

wvu KKK   Error Condition number 

2 28% 7903.98 

3 11% 8571.01 

4 0.3% 3909.71 

 

As an additional evaluation of convergence properties of the double higher-order VIE 

analysis, Table I gives the percentage error of RCS computation relative to the Mie’s series 

solution, %100RCS)RCS(RCSerror MieVIEMie   and condition number of the MoM matrix 

for the sphere of diameter dλ24.1d  modeled by a single curved hexahedron whose 

geometrical orders are varied from 2 wvu KKK  to 4 wvu KKK , while keeping 
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the current approximation orders constant, 4 wvu NNN . Table II shows the error and 

condition number for constant geometrical orders, 2 wvu KKK , and current expansion 

orders varied from 4 wvu NNN  to 6 wvu NNN . We observe in Tables I and II an 

excellent convergence of the VIE method with increasing both geometrical and current-

approximation orders.  

 

Table II. RCS Solution Error and MoM Matrix Condition Number for a Single-Element Sphere 

Model vs. Element Geometrical Orders. 

wvu NNN   Error Condition number 

4 28% 7903.98 

5 4.7% 689578.19 

6 4.1% 56342600.00 

 

Also, as expected, the condition number is almost unaffected by the geometrical orders, 

while it rapidly increases with increasing the orders of basis functions. However, the 

orthogonality and conditioning properties of the simplest hierarchical divergence-conforming 

polynomial vector basis functions, in (11), can be improved as in [44],[45], for instance, and this 

is needed when iterative solvers are used.  

 

1.5.3 Composite Metallic/Dielectric Sphere 

As an example of composite metallic/dielectric structures, that also possess curvature, 

consider a dielectrically coated PEC sphere excited by a plane wave, of frequency f = 1 GHz, as 

shown in the inset of Fig. 7. The radii of the PEC sphere and the coated sphere are a = 5 cm and 

b = 10 cm, respectively, and the relative permittivity of the dielectric of the coating is 4ε r  .  
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Fig. 7. Normalized bistatic radar cross section in two characteristic planes of a dielectrically coated PEC 

sphere ( 4ε r  , cm102  ba , f=1GHz): comparison of the double-higher-order VSIE results with 

the exact Mie’s series solution; figure inset shows a higher order VSIE mesh of the scatterer using six 

large cushion-like conformal hexahedral VIE elements and six curved quadrilateral SIE patches. 

 

The coating is modeled using only six large cushion-like conformal hexahedral VIE 

elements with 2 wvu KKK  and 6 wvu NNN , and the PEC surface is modeled by 

six curved quadrilateral SIE patches with 2 vu KK  and 6 vu NN , as depicted in the 

figure inset, resulting in a total of 4,824VSIE
unkn N  unknowns. The size of the volume and surface 

elements in the model ranges between dd λ06.1λ53.0  e . Fig. 7 shows the computed bistatic 

RCS of the scatterer in two characteristic planes, where an excellent agreement of the double-

higher-order VSIE results with the exact solution in the form of Mie’s series is observed (the 
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average absolute RCS errors, over all θ  angles, are 0.45dB and 0.13dB in planes  0φ  and 

 90φ , respectively). 

 

1.5.4 Wire Antenna Coupled to an Inhomogeneous Dielectric Body 

As an antenna example, consider an eight-turn helical dipole antenna near an 

inhomogeneous dielectric sphere composed of three concentric dielectric layers, as shown in the 

inset of Fig. 8 [46]. The sphere is modeled by 8 cubical ( 1 wvu KKK ) and 72 curvilinear 

triquadratic ( 2 wvu KKK ) hexahedral VIE elements, as indicated in Fig. 8, with the 

orders Nu, Nv, and Nw varied from 2 to 3 for different elements and in different directions, and the 

helical antenna is modeled by 72 straight ( 1uK ) SIE wire segments [46] with 2uN  for each 

of the segments, which results in a total of 6,995VSIE
unkn N  unknowns. Shown in Fig. 8 is the 

simulated radiation (gain) pattern of the antenna in the  0φ plane, as well as the simulation 

results for the antenna impedance, at MHz 900f , obtained by the proposed higher order VSIE 

technique and by the higher order FEM-MoM technique ( 447,7MoM-FEM
unkn N )[46], respectively, 

and an excellent agreement of the two sets of results is observed, for both the far field (the 

average absolute  
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Fig. 8. Analysis of an eight-turn helical dipole antenna ( mm 52 a , mm 25.1p , mm 77.1h , 

mm 2.02 r , mm 5d )  near an inhomogeneous, three-layer, dielectric sphere ( cm 41 a , 

cm 72 a , cm 103 a , 2ε r1  , 4ε r2  , 6ε r3  ) [36], modeled by 8 cubical and 72 curvilinear 

hexahedral VIE elements (figure inset shows a cross section of the VIE model): comparison of results 

for the radiation (gain) pattern of the antenna in the  0φ plane and for the antenna input impedance 

obtained by the double-higher-order VSIE method with reference FEM-MoM results [46].  

 

gain difference in the entire  0φ  plane is 0.28dB) and the impedance of the antenna, with the 

VSIE and FEM-MoM solutions implementing identical volumetric geometrical models of the 

layered sphere but, of course, discretizing very different equations throughout its volume. 
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1.5.5 Finite Array of Dielectric Scatterers (PBG Waveguide) 

As the next example, consider an infrared (IR) photonic band gap (PBG) waveguide 

realized, as a combination of PBG waveguide concepts proposed in [47] and [48], as a pattern of 

72 circular dielectric (GaAs) rods, with 11.4ε r  , in an air background shown in Fig. 9(a). The 

height of each cylinder is h=1.11µm, diameter is 2a=288nm, and the distance between the 

axis of adjacent cylinders is d=750nm. The array of rods is situated between two PEC plates of 

size 4.8×8.5 µm, perpendicular to the cylinder axes. The distance between the plates is 

D=1.6µm, and they are positioned symmetrically in all directions with respect to the PBG 

array. The structure is excited by a l = 674 nm long wire dipole at its edge [Fig. 9(a)], with the 

dipole being parallel to the axes of cylinders. In the double-higher-order VSIE model, each 

cylinder is modeled by a single curved hexahedral volume element with 2 wvu KKK  and 

3 wvu NNN , as depicted in Fig. 9(b), which yields a total count of 7,965VSIE
unkn N  

unknowns (with no use of symmetry), including the SIE unknowns for modeling the wire dipole 

and the PEC plates. The near-field distributions calculated in the plane cutting across the 

dielectric rods at 2/3 of their height, perpendicularly to their axes [this plane is sketched in 

Fig. 10(a)], at frequencies f1 = 120 THz, f2 = 175 THz, and f3 = 220 THz, respectively, are shown 

in Fig. 10, where PBG effects are clearly observed. 
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                                 (a)                                                                                      (b) 

Fig. 9.  (a) IR PBG waveguide realized as a pattern of circular dielectric ( 11.4εr  ) rods between two 

PEC plates (plates not shown) in an air background (the structure is excited by a wire dipole at its 

edge) and (b) modeling of each cylinder by a single curved hexahedral VIE element of the second 

geometrical orders.  

 

Field plots in Fig. 10(a) and (b) show no propagation through the structure at the frequency   

f1 (stop band of the waveguide within the stop band of the PBG lattice), Fig. 10(c) and (d) depict 

waveguide propagation at  the frequency f2 (waveguide pass band within the PBG stop band), 

while the plots in Fig. 10(e) and (f) demonstrate unobstructed propagation through the PBG 

structure at the frequency f3 (inside the pass band of the PBG lattice).  
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(f) 

Fig. 10. Magnitude of the near electric field of the PBG structure in Fig. 10(a) computed, in the plane 

indicated in Fig. 10(a), at frequencies (a)-(b) f1=120THz, (c)-(d) f2=175THz, and (e)-(f) 

f3=220THz, by (a), (c), (e) the double-higher-order VSIE technique [based on the model of cylinders 

shown in Fig. 10(b)] and by (b), (d), (f) the double-higher-order SIE technique [17]. 
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Moreover, at all frequencies, the double-higher-order VSIE solutions [Fig. 10(a), (c), and 

(e)] are compared to the results [in Fig. 10(b), (d), and (f)] obtained by the double-higher-order 

SIE technique [17], with the surface of each cylinder modeled by six curved quadrilateral 

patches with 2 vu KK  and 3 vu NN  ( 15,741SIE
unkn N ). A good agreement of the two 

sets of numerical results is observed. 

 

1.5.6 Human Bone Model 

As an example of curved, geometrically complex dielectric objects, consider a human bone 

model, shown in Fig. 11(a), illuminated by a plane wave at a frequency f = 2.5 GHz. This is also 

an example of bodies with high electric contrast and losses, namely, the bone permittivity and 

conductivity are 11.38ε r   and S/m0.39σ   [49]. The electrical dimensions of the bone are 

ddd 4.3303λ11.5947λλ 5.4518  . The results obtained by a 

 

Fig. 11. VIE modeling of a human bone 38.11ε r  , =0.39): (a) bone geometry, (b) trilinear VIE 

model, and (c) triquadratic curved VIE model. 
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trilinear ( 1 wvu KKK ) 1,024-element VIE model, shown in Fig. 11(b), with 

2 wvu NNN , and a triquadratic ( 2 wvu KKK ) curved 128-element VIE model, 

shown in Fig. 11(c), with 3 wvu NNN , are compared with a fully hp-refined WIPL-D 

reference solution.  

 

 

Fig. 12. Magnitude of the electric field in the plane indicated in Fig. 11(a) near or inside a bone model 

excited by a plane wave with a normal incidence to the plane at  f=2.5GHz: comparison of VIE 

results obtained using models  in Fig. 11(b) and (c) and a fully hp-refined WIPL-D reference solution. 

 

Note that the average dimensions of elements in the trilinear and triquadratic models are 

dλ73.0e  and dλ45.1e , respectively. Fig. 12 shows the near (internal or external) total 

electric field computed in the plane indicated in Fig. 11(a).  We observe a good agreement 

between the two higher order VIE solutions and the reference solution, with a large saving in the 
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number of unknowns, 088,11VIE
unkn N  instead of 856,25VIE

unkn N , in favor of the model with 

curved VIE elements. 

 

1.5.7 Satellite Dish Antenna with a Dielectric Radome 

As the final example, consider a satellite antenna with a parabolic dish reflector, excited by a 

cylindrical waveguide section of diameter h = 0.08 m and length l = 0.1 m, and covered by a 

hemispherical dielectric radome depicted in the inset of Fig. 13. The reflector dish opening and 

the radome surface diameters are d = 0.8 m and D = 0.82 m respectively. The radome is 6mm 

thick and its permittivity is 2.5ε r  . The operating frequency is f = 3 GHz, and 

d0 λ0.13λ 8.2 D . The VSIE model consists of 170 elements, namely, 48 hexahedral VIE 

elements with 2 wvu KKK , 1uN , and 4 wv NN , 120 quadrilateral SIE patches 

with 1 vu KK  and 4 vu NN , and two SIE wire segments with 1uK  and 3uN , and 

resulting in a total of  6,933VSIE
unkn N unknowns. More specifically, the VIE radome model is a 

layer of 48 thin volumetric blocks, with maximal dimensions amounting to d2.34λe  and 

different current approximation orders in radial direction ( 1uN ) and directions tangential to 

the radome surface ( 4 wv NN ). The radiation (gain) pattern of the antenna in the 

  0 =φ  plane computed by the VSIE is compared in Fig. 13 with the pure SIE solution by 

WIPL-D, which requires 908,23SIE
unkn N  unknowns, and we observe an excellent agreement of 

the two sets of results.  
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Fig. 13. Analysis of a parabolic satellite dish antenna excited by a cylindrical waveguide section 

(f=3GHz) and covered by a hemispherical dielectric ( 5.2ε r  )  radome (6-mm thick): comparison 

of results for the radiation pattern (gain) of the antenna in the   0 =φ  plane obtained by the double-

higher-order VSIE method (model with 48 curved hexahedral VIE elements, 120 curved quadrilateral 

SIE patches, and two SIE wire segments) with reference WIPL-D pure-SIE results.    

 

1.6 Summary 

In this section of the thesis was proposed a double-higher-order large-domain Galerkin-type 

method of moments for modeling of composite wire-plate-dielectric radiation/scattering 

structures. The method is based on the volume integral equation approach for dielectric parts and 

the surface integral equation approach for metallic parts of the composite structure. It employs 

Lagrange-type interpolation generalized hexahedra and quadrilaterals of arbitrary geometrical-
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mapping orders for the approximation of geometry and hierarchical divergence-conforming 

polynomial vector basis functions of arbitrary expansion orders for the approximation of currents 

within the elements. The results obtained by the double-higher-order VSIE method have been 

validated against the analytical solutions and the numerical results obtained by the double-

higher-order SIE and FEM-MoM techniques, as well as the WIPL-D results. Numerical 

examples have demonstrated that the double-higher-order VIE  and VSIE modeling provides a 

useful alternative to other, more frequently used, types of CEM techniques and either on par or a 

more efficient solution in many cases, even when compared to techniques implementing similar 

types of higher order numerical discretization. It has also been demonstrated that both 

components of the double-higher-order VIE/SIE modeling, i.e., higher order geometrical 

modeling and higher order current modeling, are essential for accurate and efficient MoM-VSIE 

computations. 
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2 IMPLEMENTATION OF LAGRANGE-TYPE MODELING OF CONTINUOUS 

PRMITTIVITY VARIATION  

 

2.1 Introduction 

One of the most popular techniques in the frequency domain for modeling scattering from 

highly inhomogeneous dielectric objects is the finite element method (FEM), hybridized with the 

method of moments/surface integral equation (MoM-SIE) [46]. In this approach the FEM 

domain is terminated by the surface to which the surface equivalence principle is applied: the 

closed region is solved by FEM, while the open region is simulated by MoM-SIE [17]. Both 

volume and surface geometrical discretization elements contribute to the total number of 

unknowns.  

An alternative to this approach is the method of moments/volume integral equation (MoM-

VIE) technique that was discussed in section 1. The VIE approach has the same capabilities for 

the modeling of inhomogeneous and anisotropic dielectric materials as FEM, but with certain 

advantages. VIE does not require additional unknowns, resulting from surface discretization. 

Moreover, it does not suffer from numerical resonance problems occurring due to the surface 

equivalence principle.  

In this section of the thesis we enhance the versatility of the method by implementing 

Lagrange-type modeling of the continuously varying dielectric parameters. Not only does this 

method allow for usage of a piecewise-constant approximation of the changing dielectric 

properties within the object (properties within each element are constant), but also variation of 

them within each of the discretization elements (continuously inhomogeneous geometrical 

elements). This enables direct representation of the continuously inhomogeneous materials and 
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demonstrates efficiency in comparison with a piecewise-homogeneous version of the method.  

To our knowledge, this is the first implementation of a volume integral equation with double-

higher-order inhomogeneous discretization elements.  

As one of the examples of a real world application, where modeling of the Lagrange-type 

continuously inhomogeneous permittivity is required, we compute the scattering from the 

melting hailstone. Most simulation approaches of this type of hydrometeors simplify the hail 

model into a homogeneous water-ice mixture of a canonical shape [67][68]. However, various 

simulations and measurements [69] show that this approach has certain limitations and precise 

modeling is required. A full-wave analysis of the electromagnetic scattering from the hailstones 

has conventionally been performed using the T-matrix [65] and discrete dipole approximation 

(DDA) [66] methods. However, to the best of our knowledge, practically all working T-matrix 

tools are only able to calculate scattering properties of rotationally symmetric particles and, more 

precisely, exclusively those with smooth surfaces. Moreover, the T-matrix method is restricted to 

the modeling of piecewise-homogeneous bodies, while the DDA method can be applied to 

arbitrarily shaped and highly inhomogeneous particles. However, the numerical accuracy of the 

method is relatively low, and improves slowly with an increase in the number of “dipoles”, 

which makes the DDA computation very burdensome. The DDA can be thought of as the most 

rudimentary version of the method of moments in the volume integral equation formulation. 

Therefore, higher-order continuously-inhomogeneous VIE formulation overcomes the limitations 

of both methods and provides an excellent tool for atmospheric particle modeling. The second 

practical example, demonstrates the efficiency of the method via scattering from the classical 

continuously inhomogeneous structure – Luneburg lens. The advantages and the efficiency of 
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higher order modeling are demonstrated by comparison with the commercial EM software 

HFSS. 

 

2.2 Implementation Details 

To implement continuous variations of medium parameters into MoM-VIE, we utilize the 

already developed Lagrange interpolating scheme for defining element spatial coordinates in (9), 

which can be conveniently reused to govern the change of the equivalent complex permittivity 

eε  within the element in [40], as follows: 


  
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K
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K
iijk wLvLuLwvu

0 0 0

e,e )()()(ε),,(ε ,   1,,1  wvu ,   (23) 

where ),,(εε ee, kjiijk wvu  are the permittivity values at the points defined by 

)1)(1)(1(  wvu KKK  position vectors of spatial interpolation nodes ijkr . In the case of 

1 wvu KKK , eε  is a trilinear function throughout the element volume, governed by the 

given fixed values at 8 points – hexahedron vertices. For 2 wvu KKK , the values for eε  

are defined at 27 interpolation nodes, and the corresponding profiles are triquadratic functions 

etc. This technique allows simple definitions of inhomogeneity profiles, as it utilizes the nodes 

already defined by the generalized hexahedral mesh.  

The matrix element corresponding to the volume testing fm and basis fn functions defined on 

the mth and nth generalized hexahedral volume elements (Vm and Vn), respectively, in the model 

are given by  (14), which yields 
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In case permittivity is a constant, all terms including nC  are vanishing. However, for 

continuously inhomogeneous elements, nC  is represented as 
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where û , v̂  and ŵ are unit vectors directed as element unitary vectors 
u

r
, 

v

r
 and 

w

r
 

respectively. Taking into account the fact that permittivity within each element is represented as 

in (23), the calculation of partial derivatives in (25) is a matter of simple analytical 

differentiation of the Lagrange polynomials. 

 

2.3 Numerical Results and Discussion 

2.3.1 Continuously Inhomogeneous Structure with Flat Surfaces and Sharp Edges 

As a first example of VIE analysis of a continuously inhomogeneous structure with sharp 

edges, consider a lossless cubical dielectric ( 1μ r  ) scatterer, of size a, and a linear radial 
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variation of relative permittivity ( rr εε  ) from 1ε r  , at the surface, to 6ε r  , at the center of 

the cube, as depicted in the inset of the Fig. 14. The scatterer is situated in free space and 

illuminated by a uniform plane wave incident normal to one face of the scatterer,  

 

 

 

 

 

 

Fig. 14. Normalized monostatic radar cross section ( 0λ  is the free-space wavelength) of a 

continuously inhomogeneous cubical scatterer computed by the continuous-MoM-VIE and 

continuous-FEM-MoM.   

 

as shown in Fig. 14. To represent this permittivity variation using the expansions in (23), the 

cube is modeled by 7 trilinear hexahedral finite elements of the first geometrical order. Namely, 

one small cube-like hexahedral, 10/a  in length, is situated at the cube center and surrounded by 

6 “cushion”-like hexahedra between the central cube and the scatterer surface. The field/current 

approximation orders are 6 wvu NNN  for all “cushions”, resulting in a total of 

552,1VIE
unkn N  unknowns (FEM required 2,560FEM

unkn N  unknowns). Validation of the 
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continuously inhomogeneous cubical VIE model, using large curved hexahedral elements with 

continuously changing rε , is carried out in comparison with solutions obtained by higher order 

FEM-MoM [41], [46].  Fig. 14 illustrates a monostatic radar cross section (RCS) of the cube, 

normalized to 2
0λ , as a function of 0λ/a , 0λ  being the free-space wavelength.  

 

2.3.2 Continuously Inhomogeneous Curved Structure  

As an example, illustrating the efficiency of the proposed method in modeling of 

continuously inhomogeneous structures, we consider a lossless spherical dielectric ( 1μr  ) 

scatterer, of radius cm 10a , situated in free space and illuminated by a uniform plane wave of 

frequency GHz 5.1f , impinging from  0θ inc  and  0inc direction. Relative permittivity of 

the sphere 
a

r
r

5
6)(ε r  , as depicted in the inset of Fig. 15, is a linear function of a radial 

coordinate r  with an origin at the center of the sphere. The sphere is modeled by 7 curvilinear 

hexahedral elements of the second geometrical order ( 2 wvu KKK ). In specific, the 

central sphere-like hexahedron of radius 20/a  and 6 “cushion”-like hexahedra between the 

central sphere and the scatterer surface. The field/current approximation for all elements are 

6 wvu NNN , resulting in total 5076tot

unkn N  unknowns. 
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.  

Fig. 15. Normalized bistatic RCS results of the inhomogeneous dielectric spherical scatterer, excited by 

a uniform plane wave (  90θ inc
, 0inc  ),  in the 0  cut, obtained by the proposed continuous-

MoM-VIE model, by the three piecewise-constant MoM-VIE models and reference continuous-FEM-

MoM solution [41]. 

 

Validation and efficiency of the continuously inhomogeneous MoM-VIE model, is carried 

out in comparison with MoM-VIE simulations of piecewise homogeneous approximate models 

of the structure and a continuous-FEM-MoM as a reference solution. Three different piecewise 

homogeneous models are constructed for the comparison, where the inhomogeneous “cushion”-

like elements are replaced by 7 and ,4 ,2L N  layers of thin homogeneous “cushions” of 

2 wvu KKK  geometrical and 4 wvu NNN  current approximation orders. Fig. 15 

shows the normalized to 2

0λ  bistatic radar cross section (RCS) of the sphere, 0λ  being the free-

space wavelength, of the scatterer in a characteristic plane (  0 ). It can be observed that with 
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increasing of LN , solution obtained by piecewise homogeneous modeling converges to the 

results of the continuously inhomogeneous MoM-VIE analysis, as well as that the continuous-

MoM-VIE solution accurately matches reference continuous-FEM-MoM [41] solution. In 

addition, the continuous MoM-VIE approach demonstrates advantages in both computational 

time and number of unknowns in comparison with the most precise piecewise-homogeneous 

7L N  layered MoM-VIE model, see Table III.  

 

Table III. Computational Time and Number of Unknowns Comparison for Continuous MoM-

VIE Sphere Model and its Piecewise-constant Approximations.  

 Number of unknowns Time [sec] 

Continuous 5076 1521 

Layered 2L N  2784 315 

Layered 4 L N  5280 1120 

Layered 7L N  9024 3307 

 

2.3.3 Realistic Model: Egg-shaped Hail 

The third example is illustrating real-life application of the method. We consider an egg-

shaped melting hailstone with a linear radial variation of the relative permittivity from 

 j5.23 20.71ε r   (wet hail) at the surface to  j0.004 14.3ε r   (dry hail) [68] at the center of 

the object, as depicted in the inset of Fig. 16. Similarly to the first example, the hailstone is 

modeled by only seven curvilinear hexahedral VIE elements with 2 wvu KKK  and 

6 wvu NNN , resulting in a total of  5076VIE

unkn N unknowns and  2674VIE T seconds of 

computational time per frequency. Validation of the higher order MoM-VIE model is carried out 

in comparison with solutions obtained by the higher order FEM-MoM [41], with the same 

continuously inhomogeneous large curved hexahedral FEM elements, but with completely 
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different field equations and numerical procedure. The FEM simulation required 

 5646FEM

unkn N number of unknowns and  6956FEM T seconds of computational time. Shown in 

Fig. 16 is the normalized monostatic RCS of the hailstone for the wave incident from the 

negative z direction, computed in frequency range from 1 G no Hz to 10 GHz, where we observe 

an excellent agreement of the two numerical methods.   

 

.  

Fig. 16. Normalized monostatic radar cross section of an egg-shaped continuously inhomogeneous 

melting hailstone model (shown in the inset) computed by the continuous-MoM-VIE and continuous-

FEM-MoM [41]. 



47 

 

2.3.4 Luneburg Lens 

As the last example, consider a Luneburg lens 5λ  in radius, which is a dielectric sphere with 

permittivity varying radially from 2, at its center, to 1, at its surface, as 

2

r 2)(ε 









R

r
r , where 

R is the radius of the lens. The lens is illuminated by the plane wave propagating against z-

direction and polarized as it is shown in the Fig. 17. The lens is modeled by 112 inhomogeneous 

curvilinear hexahedral VIE elements with 2 wvu KKK  and 4 wvu NNN , resulting 

in a total of 22,272VIE
unkn N  unknowns and 46,392VIE T seconds of computational time. Note 

that, due to the symmetric nature of the structure, only one fourth of the lens was modeled.  

 Validation of the higher order MoM-VIE model is carried out by demonstration of the lens 

effect and comparison of near field results with ones obtained by commercial EM software 

HFSS. The results for the normalized real part of the y-component of electric field vector in the 

plane passing through the lens along the propagation direction of the plane wave is shown in the 

Fig. 17. The result obtained in both simulations clearly demonstrate the focusing effect of the 

lens, while cross-validating each other (acknowledging the slight differences in the color coding 

used in the software).  In addition, the proposed continuous MoM-VIE technique demonstrates 

computational efficiency in comparison with HFSS simulation, which required 175,040 

homogeneous tetrahedra, 1,123,306HFSS
unkn N  unknowns and 152,674HFSS T seconds of 

computational time, which is approximately 3.3 times slower than MoM-VIE computations. 
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(a) 

 

(b) 

Fig. 17. Normalized real part of the y-component of the electric field Ey inside and outside of the 

Luneburg lens calculated by VIE-inhomogeneous (a) approach and HFSS (b)  commercial software. 
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2.4 Summary 

 This section presented an application of a double-higher order VIE technique for the 

calculation of scattering from continuously inhomogeneous dielectric bodies. Special Lagrange-

type generalized curved parametric hexahedra with variations of medium parameters were 

utilized for geometrical subdivision. This is the first implementation of continuously 

inhomogeneous tessellation elements in a double-higher VIE approach, which allow a 

permittivity throughout the element to be a function of spatial coordinates, (r). The general 

expression for the VIE-MoM matrix element calculation was derived, while taking into account 

permittivity variation.  

The method is verified by comparisons with a higher-order FEM technique [41][46] and  the 

commercial EM software HFSS. The examples have demonstrated higher efficiency, and a 

considerable reduction in the number of unknowns when  compared with both piecewise 

homogeneous VIE and general continuously inhomogeneous FEM techniques.  The efficiency of 

the continuously inhomogeneous VIE analysis should be even more pronounced when compared 

with low-order VIE solutions.  It should be noted that, in general, implementation of permittivity 

as a function of the position in each geometrical element becomes efficient when electrically 

large elements are utilized. Therefore, double-higher order discretization is more practical for 

application purposes.  
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3 GENERALIZED VOLUME/SURFACE INTEGRAL EQUATION METHOD OF 

MOMENTS TECHNIQUE 

 

3.1 Introduction 

As was previously mentioned, one of the most general approaches to the analysis of metallic 

and dielectric structures is the surface integral equation (SIE) approach [2],[17]. In this method, 

both electric and magnetic surface currents are introduced over boundary surfaces between 

homogeneous parts of the structure. Furthermore the surface integral equations, based on 

boundary conditions for both electric and magnetic field intensity vectors, are solved with 

current densities as unknowns. The main advantage of this method is its resilience in the 

modeling of high-contrast media and the ability to avoid discretizing the interior of the boundary 

surface (using volumetric elements), which can be very large. On the other hand, the SIE method 

is very inconvenient for dealing with inhomogeneous objects. In contrast VIE, which was 

described in sections 1 and 2, is a natural choice for simulating inhomogeneous dielectric 

objects. However, for high-contrast media it leads to larger computational errors and 

subsequently increases the number of unknowns [38]. Therefore, hybridization of these two 

techniques will result in an extremely efficient method, generalized volume-surface integral 

equation (VSIE), which takes advantage of the strengths of both approaches. The proposed 

technique results in an efficient solution for inhomogineities within high-contrast medium, while 

also creating the base for a diakoptic approach, similar to pure SIE-diakoptics [57]-[64], which 

will be discussed in detail in section 4.  
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3.2 Generalized Volume-Surface Integral Equation Formulation 

In the generalized VSIE analysis, the electromagnetic system is subdivided into subsystems 

by virtue of the surface equivalence principle [1]. For the clarity of explanation, we consider a 

single domain v  of permittivity 2ε and permeability 2μ , bounded by a closed surface S , as 

depicted in Fig. 18(a), so two subsystems, v  and its exterior (with medium parameters 1ε  and  

1μ ).  According to this principle, the electric and magnetic fields E  and H  everywhere can be 

uniquely evaluated by knowing electric and magnetic tangential fields SE  and SH  at S .  

 

         

(a)                                              (b)                                          (c) 

Fig. 18.  Illustration of the surface and volume equivalence principles, as the theoretical foundation of 

the generalized VSIE approach to electromagnetic analysis: (a) original electromagnetic system, split 

into two parts (subsystems) by a closed surface S  (diakoptic surface), on which equivalent surface 

currents are placed in order to radiate the actual fields, (b) equivalent interior problem, which includes 

an inhomogeneous dielectric body taken into account by the radiation of equivalent volume currents, 

and (c) equivalent exterior problem (with original fields outside and zero field inside S ). 

 

Without the loss of generality, let us assume that interior impressed volume electric currents 

of density J  exist only in a domain 0v , which is a part of v . For example, these currents can 

represent an actual volume current distribution of a dielectric body located inside v . The fields 
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E  and H  can be obtained as being radiated by fictitious equivalent surface electric and magnetic 

currents whose densities are given by SHnJ S  and SEnM S , where n  stands for a 

normal unit vector on S , directed toward the interior region, as shown in Fig. 18 (a). As a result 

of subtraction of the equivalent currents and their fields from the original problem, the fields E  

and H  in v  remain unchanged, while the fields in the exterior region are annihilated, Fig. 18 (b). 

The surface equivalence principle for the exterior region is established in the analogous way, 

Fig. 18(c).  

Assume now that the domain 0v  in Fig. 18 (a) actually represents an arbitrarily shaped 

inhomogeneous dielectric body, with the permittivity ε  and conductivity σ  of the dielectric 

material being known functions of position, while the permeability at all points is 0μ . According 

to the volume equivalence principle [1], the dielectric inhomogeneity can be taken into account 

by the radiation of volumetric electric currents of density J , which we can consider as the 

impressed sources when applying the surface equivalence principle, in Fig. 18. The constitutive 

(material) relationship for the total electric field at each point of the domain 0v  and boundary 

conditions for tangential components of total electric and magnetic field vectors on the surface 

S  yield  

     

   
taninctan22tan22S

tan11Stan22Stan11S

μ,ε,μ,ε,

μ,ε,μ,ε,μ,ε,

EDEME

MEJEJE




    (26a)  

     

   
taninctan22tan22S

tan11Stan22Stan11S

μ,ε,μ,ε,

μ,ε,μ,ε,μ,ε,

HDHMH

MHJHJH




    (26b)   

      0
ε

μ,ε,μ,ε,μ,ε,
e

2222S22S 
D

DEMEJE     (26c)   
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where D  is the equivalent electric displacement vector and ,
ω

σ
jεε e   is the equivalent 

complex permittivity of the material at that point, while incE  is an excitation electric field 

resulting from arbitrarily positioned sources outside of v . The vectors J  and D  are related to 

each other as ,jω DJ C   
ε

1ε

ε

εε

e

2e







C  is its dielectric contrast.  

The scattered electric field from the boundary surface in the region of the complex 

permittivity ε and complex permeabilityμ  is expressed in terms of the electric and magnetic 

current densities as follows: 

  φ jωμ,ε,S  AJE             FME 
ε

1
μ,ε,S      (27) 

while the scattered magnetic field is obtained by 

  U FMH  jωμ,ε,S          AJH 
μ

1
μ,ε,S     (28) 

Scattered electric and magnetic fields due to the inhomogeneity within the medium are 

calculated as follows: 

   v jωμ,ε, ADE    v
μ

1
μ,ε, ADH      (29) 

Sg

S

dμ S JA                               S

S

gd
ωε

j
φ SS J      (30) 

Sg

S

dε S MF                              SU

S

gd
μ ω

j
SS M      (31) 

VgC

V

d jωμv  DA                     













 

d

d) (jωd) jω(
ωε

j

SV

SgCVgC DnD  (32) 
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In the above expressions A , F  and vA are the magnetic and electric vector potentials, and φ , 

U  and   are electric and magnetic scalar potentials, respectively. g represents the Green’s 

function in (5) for the unbounded medium of parameters ε and μ .  

Taking into account the integral expressions for the fields E and H in (27-29), (26) 

represents a set of coupled electric/magnetic field integral equations for SJ , SM and D  as 

unknowns, which can be discretized and solved using the Method of Moments (MoM).  

 

3.3 Generalized Galerkin Impedances for Double-Higher-Order Volume and Surface 

Elements 

Assume that surfaces (metallic and dielectric) and inhomogeneous dielectric volumes in the 

system are approximated by a number of arbitrary surface and volume elements. Let us 

approximate the surface electric and magnetic current density vectors SJ , SM  and equivalent 

electric displacement vector D , over every element in the model by convenient set of basis 

functions with unknown complex current-distribution coefficients. In order to determine these 

coefficients, the EFIE/MFIE system in (26) is tested by means of the Galerkin method, i.e., using 

the same functions used for current expansion. The nine types of generalized Galerkin 

impedances (the system matrix elements) corresponding to the nine combinations of electric-, 

magnetic-current and electric displacement vector testing functions SmJ , SmM  and mD  defined 

on the m-th surface element (Sm) or inside m-th volume element (Vm) and basis functions nSJ , 

SnM  and nD  defined for the n-th element in the model are obtained by following testing 

procedure.  Testing (26a) with mSJ yelds 
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   
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Testing (26b) with mSM yelds 
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And finally testing (26c)   with mD  yelds 

   

  0d
ε

d μ,ε,

d μ,ε,d μ,ε,

e
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 ,   (35) 

which results in a system of linear equations represented in matrix form as follows: 






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
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D
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J

V

V

ZZZ

ZZZ

ZZZ

      (36) 

In the above 
SSJJZ , 

SSMJZ , 
SSJMZ , 

SSMMZ  are terms being calculated by pure SIE [17] and 

DDZ  by pure VIE (section 1) codes, while the other four terms are results of a hybrid VIE/SIE or 

generalized VSIE. These terms are calculated as follows: 
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Because PEC plates with an electric current distribution are already implemented in the 

developed VSIE method presented in section 1, integrals of the type DJS
Z  and 

SDJZ can be 

calculated using the existing code. In order to calculate the terms DMS
Z  and 

SDMZ , the  integrals 

involving the gradient of the Green’s function have to be evaluated. The expression for the 

gradient of Green’s function for r  and r  being a source and field point, respectively, is 

   rrrr 


  Ge
R

R
g Rjβ

3π4

jβ1
     22μεωβ      (41) 

To illustrate the procedure for computing impedances in (38), (40), analogously to section 1.4, 

only the u-components of the basis and testing functions are considered. Furthermore, without 

loss of generality, we consider the functions in the following simplified form  
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The generalized Galerkin impedances corresponding to the complete divergence-conforming 

basis functions in (11) and in [17] can be obtained as a linear combination of those 

corresponding to the simplified, three- and two-dimensional power functions in (42). Therefore,  
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where   and  can be m or n, depending on which matrix element is being calculated (m is 

always an index of a testing function, n – for the basis). Therefore, the matrix elements of (38) 

can be written as follows  
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Analogous to DMS
Z  the following expression for each 

sDMZ matrix element is obtained  
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 (49) 

The above derivations were performed without employing metallic surfaces. However the 

technique presented here does not lose its generality, because PEC surfaces are represented the 

same way as equivalent dielectric surfaces, except for the magnetic current distribution 0S M .  
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3.4 Numerical Results and Discussion 

3.4.1 Spherical Inclusion Embedded in Sphere 

As an example of the generalized VSIE application, consider the scattering of a z-directed 

plane wave from a dielectric sphere of radius 0λ1.0r and permittivity 20ε r  , embedded in a 

sphere of radius 0λ5.0r  and permittivity 10ε r  ( 0λ  is a free-space wavelength) [38]. This 

object can be treated as a homogeneous sphere of permittivity 10ε r  and the spherical 

inhomogeneity inside it of perturbation factor 2ε  .  

 

 

Fig. 19. Scattering from the dielectric sphere with spherical inclusion 

 

The embedded sphere was modeled by one hexahedral element of the second order with an  

order of equivalent electric displacement vector approximation of 3 wvu NNN , while the 

outer layer is constructed by 24 second order quadrilaterals with current approximations 
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5 vu NN , resulting in a total of 2508VSIE N  unknowns. In Fig. 19 the results for the radar 

cross-section (RCS) of the sphere in two different planes, calculated by generalized VSIE 

approach, is compared to an analytical solution in the form of Mie’s series.  

 

3.4.2 Smoothly Varying Inhomogeneity 

In the second example, we consider the scattering from a dielectric sphere of radius 3λa  

having a material profile that varies radially as rr 1510)(ε r   where r is defined in 

wavelengths (similar to example in [38]). To demonstrate the VSIE’s capability to model 

smoothly varying material profiles, we select a fictitious background medium of 5ε b   , for 

which r32ε  . The continuously inhomogeneous sphere was modeled by 7 hexahedral 

elements of the second order (similar to example in section 2.3.2) with an order of equivalent 

electric displacement vector approximation of 4 wvu NNN , while the surface layer is 

constructed by 6 second order quadrilaterals with current approximations 6 vu NN , resulting 

in a total of 2448VSIE N  unknowns and 943VSIE T seconds of computational time. In Fig. 20 

the results for the radar cross-section (RCS) of the sphere in two different planes, calculated by 

generalized VSIE approach, are validated by the piecewise-homogeneous VIE model constructed 

of 7 concentric spheres of constant permittivity. Pure VIE solution required 7776VIE N  

unknowns and 2391VIE T seconds of computational time. 
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Fig. 20. Scattering from the continuously inhomogeneous sphere 

 
 

 

3.5 Summary 

An efficient higher-order approach was developed for analysis of high contrast dielectric 

scatterers possessing inhomogeneity within the volume. As it is well known, the volume integral 

equation method (VIE) is not very efficient to analyze high-contrast dielectric medium, due to 

the requirement of very fine volumetric discretization of the structure. However, surface integral 

equation has been shown to be quite efficient in this sense, while suffering from the difficulties 

of modeling inhomogeneous dielectric objects. This section presented a subdivision of the entire 

system by SIE into domains of different constant permittivity, employing corresponding Green’s 

functions for each domain, all while modeling the inhomogeneity within each of them with VIE. 

The inhomogeneity within each domain was defined in terms of the perturbation factor in 

relation to the domain permittivity (background permittivity). 
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4 VOLUME/SURFACE INTEGRAL EQUATION BASED DIAKOPTIC DOMAIN 

DECOMPOSITION METHOD FOR 3-D ELECTROMAGNETIC SCATTERING ANALYSIS 

 

4.1 Introduction 

This section of the thesis proposes the diakoptic approach to electromagnetic modeling and 

computation [57]-[64] as one possible strategy aimed at extending the practical applicability of 

both SIE-MoM and VIE-MoM methods over their intrinsic numerical limits and considerably 

enhancing their efficiency in real-world simulations. The diakoptics provides a general and 

efficient way to break an electrically large and complex electromagnetic problem into smaller 

and simpler ones, i.e., to split the original electromagnetic system into a number of non-

overlapping subsystems of arbitrary shapes. Then each one of the subsystems can be analyzed 

independently.  The solution of the original problem can then be found as a linear combination of 

solutions of component problems, using the explicit linear relations between coefficients in 

expansions of equivalent electric and magnetic surface currents (or other sources) on boundary 

surfaces of the subsystems. For the best overall efficiency and accuracy of numerical solutions to 

problems that contain subdomains of a different “nature” (some homogeneous with metallic 

parts, some considerably inhomogeneous, with different types of excitations, etc.), some 

diakoptic subsystems are analyzed by the SIE-MoM [2], [17] and some via the VIE-MoM [30]-

[33] methods respectively. With the diakoptic approach, drastic enhancements of computation 

efficiency, measured in computing time, are possible for large and complex problems as 

compared to conventional MoM-VIE and MoM-SIE approaches, that implement the same type 

of discretization. 
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The first diakoptic approach for electromagnetic systems in application to circuit theory was 

formulated half a century ago by Gabriel Kron [50], for which reason the same name has been 

adopted. The term “diakoptics” comes from Greek words “” (dia), which means “in-

between,” and “κόπτω” (kopto), meaning “cut” or “split,” so diakoptics stands for “cutting in 

between”. The similarity of the proposed approach with the original diakoptic approach applied 

to circuit theory is that parts of the original problem are represented by linear relations in matrix 

form. However, our diakoptic analysis is based on the surface and volume equivalence principles 

and operates with coefficients of expansions of surface/volumetric electric and surface magnetic 

currents. 

 

4.2 Theoretical Background 

Consider a dielectric object of permittivity eε , situated in free space and exited by an 

incident field. According to the surface equivalence principle, the entire system can be broken 

into subdomains as in section 3, each representing one of the dielectric regions in the system and 

021 εεε  , 021 μμμ  . The scattered electric and magnetic fields, E and H, in each 

subdomain can be expressed in terms of the equivalent surface electric and magnetic currents, of 

density eJ and eM , placed on the boundary surface between subdomains (diakoptic surface), 

and volumetric current distribution J  within the object. The boundary conditions for the 

tangential components of the total electric and magnetic field vectors on the surface, as in (26), 

and the appropriate testing procedure result in a system of matrix equations similar to (36): 
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where  ej ,  em , and  d  are column-matrices of unknown coefficients for the approximation 

of eJ , eM , and JD Cjω , respectively, and  kv , 3,2,1k , constitute the excitation column-

matrix. The first eN  equations (matrix rows) in (50) are obtained by discretizing the electric-

field boundary condition (26a), while the remaining NN e  equations (rows) correspond to the 

magnetic-field boundary condition discretization (26b) and the constitutive relation for the 

inhomogeomeous dielectric domain (26c).  

A combined field integral equation (CFIE) formulation for the diakoptic surface can be 

obtained by multiplying the first eN  equations in (50) by α, and the last eN  equations by β. 

Summing the new equations and moving all the terms associated with  em  to the right-hand 

side of the matrix equation results in 
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  (51) 

The CFIE formulation was used because it does not introduce numerical instabilities at resonant 

frequencies of the diakoptic surface. Note that the matrix equation (50) cannot be solved without 

further information about the electromagnetic field outside the diakoptic subsystem. However, 

the mutual relations between  ej ,  em , and  d  given in (51), are valid for any field outside the 

subsystem. 
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Inverting the system matrix in (51), the following matrix linear relation results in 
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Therefore, based on (52), for each subdomain is obtained a set of linear relations between 

diakoptic current coefficients in each subdomain in the following matrix form: 

      
0 eee  iiii jmYj    2,1i         (55) 

where  iY  is the diakoptic ee NN   matrix of the subsystem and  
0 eij is the 1e N  column-

matrix containing coefficients of eJ , which represent the excitation in the subsystem. In order to 

numerically calculate these matrices, consider the coefficients  em  as excitation and coefficients 

 ej  as the response – in a linear subsystem. In particular, the matrix  iY  is obtained by 

assuming that all the excitations in the subsystem are turned off and the subsystem is excited 

with one unity-valued coefficient of  iem . 

In order to obtain the solution of the original electromagnetic problem, one needs to relate 

the diakoptic coefficients of equivalent electric and magnetic surface currents on boundaries 

between individual subsystems. At a diakoptic surface between adjacent subsystems, there are 

     e2e1e jjj  and      e2e1e mmm         (56) 
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where equivalent sources are with opposite signs (based on the equivalence theorem), and the 

directions of normal unit vectors  are opposite for the two (neighboring) subsystems. Combining 

(55) and (56), the following diakoptic matrix system is obtained: 

         
0 e20 e1e21    jjmYY          (57) 

the solution of which is  em . Analogously to (55), linear relations can be established between 

 ej  and  d  coefficients as  

      
0 ee C iiii jmd  2,1i          (58) 

Once  em  is found,  ej  and  d  can be calculated in a straightforward fashion, based on (55) 

and (58). 

 

4.3 Numerical Results and Discussion 

4.3.1 Array of Homogeneous Dielectric Cubical Scatterers 

As the first example of the application and validation of the VIE-SIE-diakoptics approach, 

consider an 88  array of homogeneous lossless dielectric cubes of edge lengths 6λ0a , with 

0λ  being the free-space wavelength, and relative permittivity 25.2ε r  , excited by a uniform 

plane wave from the direction defined by  90θ inc  and 0inc  , as shown in Fig. 21. The 

surface-to-surface distance between neighboring cubes is 6λ0d , in both x- and y-directions. 

Each cubical diakoptic subsystem is modeled by a single VIE element with orders 

1 wvu KKK  and 3 wvu NNN , with a diakoptic cubical surface constructed from six 

SIE patches with 1 vu KK  and 2 vu NN . 
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Fig. 21. Array of homogeneous dielectric cubical scatterers excited by a uniform plane wave 

(  90θinc , 0inc  )  

 

The number of VIE unknowns per subsystem is 756V N  and the total number of diakoptic 

unknowns (sum of unknowns on all diakoptic surfaces) is 6,1442 S N , which results in a total 

of 900,6Dia

tot N  unknowns and s155Dia

tot T  of computation time for the analysis. All 

computations presented in this paper are carried out without parallelization or using symmetry on 

an Intel® Core
TM

2 Quad CPU Q95550 at 2.83 GHz, with 8 GB RAM, under 64-bit Windows 7 

operating system.  

Fig. 22 shows the normalized bistatic radar cross section (RCS) of the array in a 

characteristic plane ( 0 ).We compare the diakoptic results with the solution obtained by the 

pure MoM-VIE method, which requires 6,912VIE

tot N unknowns and s135,1VIE

tot T  of 

computation time, and observe an excellent agreement of the two sets of results. In this example, 

the advantage of the diakoptic approach is not so much in the reduction of the number of 
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unknowns, but of the computation time (about 7.3 times). Moreover, the RAM memory 

consumption is MB160Dia

tot M  for the VIE-SIE-diakoptic method (note that in the diakoptic 

approach, the largest matrix equation that has to be solved is of the size SN ) and 

MB764VIE

tot M  for the MoM-VIE method. As additional validation, shown in Fig. 22 is an 

excellent agreement of the diakoptic solution with the RCS computed using the pure MoM-SIE 

method, which takes 6,144SIE

tot N  unknowns, s413SIE

tot T  of computation time, and 

MB604SIE

tot M  of RAM memory.  

 

 

Fig. 22.  Normalized bistatic radar cross section (RCS) of the array in the 0  cut, computed by the 

proposed VIE-SIE-diakoptic method, by the pure MoM-VIE technique and the pure MoM-SIE 

technique. 
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4.3.2 Array of Homogeneous Dielectric Spherical Scatterers 

As an example of curved structures, we replace the cubical scatterers in Fig. 22 by spherical 

ones, as portrayed in Fig. 23, where 31.2λ 0a  (sphere diameter), 29.4λ0d , 4ε r  , 

 90θ inc , and 0inc  .  

 

 

Fig. 23.   Array of homogeneous dielectric spherical scatterers excited by a uniform plane wave 

(  90θinc , 0inc  ). 

 

Each diakoptic subsystem, in spite of curvature, is again modeled by a single generalized 

hexahedral VIE element with 2 wvu KKK  and 4 wvu NNN , enclosed by a 

diakoptic surface composed of six generalized quadrilateral SIE patches with 2 vu KK  and 

2 vu NN , so the numbers of unknowns are 240V N , 144,62 S N , and 384,6Dia

tot N , 

computation time is s242Dia

tot T , and RAM memory consumption is MB152Dia

tot M .  
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Fig. 24.  Normalized bistatic RCS results in the 90  cut, obtained by the VIE-SIE-diakoptic, pure 

MoM-VIE, and pure MoM-SIE methods. 

 

The agreement of the RCS results with both the pure MoM-VIE ( ,36051VIE

tot N , 

s811,4VIE

tot T , GB7.3VIE

tot M ) and MoM-SIE solutions is, as can be observed from Fig. 24, 

again excellent, and the computation time and memory consumption are considerably in favor of 

the diakoptic method (reduction by 20 times in computation time and by 24 times in memory 

consumption when compared to the MoM-VIE method).  
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4.3.3 Array of Continuously Inhomogeneous Spherical Scatterers 

As an example of inhomogeneous structures, that are also curved, we next consider a 44  

array of continuously inhomogeneous dielectric spherical scatterers of diameters 5.1λ0a , 

shown in Fig. 25. All sphere-to-sphere distances are 3λ0d  and  0θ inc  and 0inc   for 

the impinging uniform plane wave. The inhomogeneity consists of a linear radial variation of the 

relative permittivity from 1ε r   at the surface to 6ε r   at the center of the spheres, as depicted 

in the inset of Fig. 26.  

 

 

Fig. 25. Array of continuously inhomogeneous dielectric spherical scatterers 

 

Each scatterer is modeled by seven curvilinear hexahedral VIE elements (with 

2 wvu KKK ), one element (with 2 wvu NNN ) approximating the central sphere 

(of diameter 20/a ) and six continuously inhomogeneous cushion-like elements (with 

3 wvu NNN ) attached to the corresponding sides of the central element, which can be 

seen in Fig. 25. The diakoptic surface enclosing each subsystem consists of six SIE patches with 
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2 vu KK  and 4 vu NN . The resulting numbers of unknowns are 630V N  (per 

subsystem), 6,1442 S N  (total), and 774,6Dia

tot N , and the total computation time is 

s795Dia

tot T .   

 

 

Fig. 26. Bistatic RCS results in the 90  cut obtained by the VIE-SIE-diakoptic and pure MoM-VIE 

methods. 

 

In Fig. 26, an excellent agreement of the RCS results obtained by the diakoptic method and 

those using the pure MoM-VIE method, with 080,01VIE

tot N  and s820,29VIE

tot T , is observed. 

In this case, the acceleration is even more dramatic (about 37 times) than in previous examples, 

because the MoM-VIE computation of matrix entries for a subsystem involving several 

inhomogeneous hexahedra is considerably more time consuming than for subsystems with a 
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single homogeneous element. The required RAM memory for the VIE-SIE-diakoptic and MoM-

VIE solutions is MB157Dia

tot M  and GB6.1VIE

tot M , respectively.  

 

4.3.4 Diakoptic Decomposition of a Large Dielectric Slab 

 As an example of a single solid object decomposed into diakoptic subsystems, consider 

scattering from a dielectric slab with relative permittivity 25.2ε r   and dimensions 

ddd λ2λ6λ6  , with dλ  standing for the wavelength in the dielectric. The plane wave 

excitation is as in the previous examples (  90θ inc , 0inc  ).  

 

 

Fig. 27. Large dielectric slab decomposesd into nine diakoptic subsystems  

 

The slab is decomposed into nine cubical diakoptic subsystems of edge lengths dλ2d , as 

shown in Fig. 27, and each subsystem is modeled by a single VIE element, with  

1 wvu KKK  and current-expansion orders varied as 4 NNNN wvu , 6, 8 and 9 
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(corresponding numbers of VIE unknowns 240V N , 756, 1,728 and 2,430 per subsystem), and 

is enclosed by a six-patch diakoptic surface, with 1 vu KK  and 6 vu NN  (total of 

7,7762 S N  diakoptic unknowns) .   

 

 

Fig. 28. Convergence analysis of the VIE-SIE-diakoptic solution for the normalized bistatic RCS 

(
0  cut) of the slab with increasing MoM-VIE polynomial current-approximation orders 

NNNN wvu   and comparison with results obtained using the pure MoM-VIE method. 

 

In Fig. 28, we observe a convergence of the VIE-SIE-diakoptic RCS results for the dielectric 

slab with increasing orders of VIE basis functions (p-refinement), as well as an excellent 

agreement of the ninth-order diakoptic solution ( 10,206Dia

tot N , s740Dia

tot T , 

MB336Dia

tot M ) with the results obtained by the pure MoM-VIE method with 
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9 wvu NNN  ( 870,21VIE

tot N , s620,7VIE
tot T , GB7.7VIE

tot M  of RAM). Hence the 

diakoptic method is 10.3 times faster and 23 times less expensive at memory consumption than 

the pure MoM approach in this case. For additional validation of the proposed diakoptic method, 

Fig. 29 shows the near (internal or external) total electric field computed in the plane indicated in 

Fig. 27.  

          

                 

(a)                                                                                       (b) 

Fig. 29. Magnitude of the near total electric field inside and around the dielectric slab scatterer 

computed in the plane indicated in Fig. 27, where the size of the near-field computation area is 

dd λ111λ1  , and it cuts through the middle of the vertical dimension of the slab: comparison of (a) 

VIE-SIE-diakoptic results and (b) pure MoM-SIE reference solution.  

The VIE-SIE-diakoptic results are compared with a fully hp-refined SIE solution 

( 648,11SIE

tot N , s2880SIE

tot T , and GB2.17SIE
tot M ), and an excellent agreement of the two 

sets of results is observed.  
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4.3.5 Diakoptic Decomposition of a Human Phantom 

Finally, as an example of a complex objects decomposed into completely different 

subsystems, consider scattering from a human phantom. The phantom is excited by the plane 

wave propagating along x-direction (  90θ inc , 0inc  ) at the frequency 900 MHz. The 

human phantom is decomposed into four diakoptic subsystems as shown in the inset of Fig. 30. 

Subsystems are modeled by 1436, 1310, 1050 and 985 VIE hexahedra and 1124, 1114, 1018 and 

976 SIE quadrilaterals respectively (total of 16,9282 S N  diakoptic unknowns). Initial 

triangular mesh was provided by NEVA Electromagnetics [15] and was re-meshed in ICEM 

CFD 15.0.  

 

 

Fig. 30. A human phantom decomposed into four diakoptic subsystems. Comparison of the VIE-SIE-

diakoptic solution for the normalized bistatic RCS ( 0  cut) of the human phantom with results 

obtained using the pure MoM-VIE method.  
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In Fig. 30, we observe a good agreement of the VIE-SIE-diakoptic RCS results for the human 

phantom ( 32,940Dia
tot N , s097,19Dia

tot T , GB25.2Dia
tot M ) with the solution obtained by 

the pure MoM-VIE method ( 012,16VIE
tot N , s522,870VIE

tot T , GB1.4VIE
tot M ). Hence the 

diakoptic method is 27.4 times faster and 1.82 times less expensive at memory consumption than 

the pure MoM approach in this case. Note, VIE-SIE-diakoptics requires less memory than pure 

VIE, because of the nature of the diakoptic computation. In addition, memory savings are not 

very pronounced, because all of the domains are different and require individual computation.  

 

4.4 Summary 

This section has proposed a novel diakoptic domain-decomposition method for 3-D 

electromagnetic analysis based on MoM-VIE-SIE modeling. The method breaks the original 

structure into a number of non-overlapping closed-region subsystems containing inhomogeneous 

dielectric materials and an open-region subsystem enclosing all other subsystems. Each 

subsystem is analyzed in a completely independent manner  by applying the double-higher-order 

large-domain Galerkin MoM-VIE-SIE or MoM-SIE solvers.  The solution to the original 

problem is therefore obtained from linear relations between coefficients in expansions of 

equivalent electric and magnetic surface currents on diakoptic boundary surfaces and 

representations of electromagnetic subsystems by diakoptic matrices. 

The proposed VIE-SIE-diakoptic method has been demonstrated, evaluated, and discussed 

in several characteristic scattering examples. Such examples include homogeneous and 

continuously inhomogeneous dielectric structures, as well as objects with both flat surfaces/sharp 

edges and pronounced curvature, and  far-field/ near-field computations. The results obtained by 

the diakoptic method have been validated against the solutions using both the pure MoM-VIE 
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method and the pure MoM-SIE method. Numerical examples have demonstrated that the 

proposed VIE-SIE-diakoptic method dramatically increases the efficiency of the conventional 

MoM-VIE approach. When compared to the pure MoM-VIE technique, implementing the same 

type of discretization (double-higher-order large-domain Galerkin discretization), the diakoptic 

approach enables accelerations and memory savings of one to two orders of magnitude, while 

fully preserving the accuracy of the analysis. Note that the acceleration and memory reduction 

achieved in the presented examples fit well within the theoretically derived performances of the 

diakoptic approach [63]. Moreover, the more complex the original system (problem) is, the more 

advantageous is the VIE-SIE-diakoptic analysis over the equivalent conventional (pure MoM-

VIE) approach. The research has also demonstrated that the general diakoptic methodology can 

effectively include VIE-based subsystems and has shown how that can be done. The proposed 

method is, to the best of our knowledge, the first general DD method based on MoM-VIE or 

MoM-VIE-SIE modeling in computational electromagnetics. 
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5 ORTHOGONALIZATION OF BASIS FUNCTIONS 

 

5.1 Introduction 

In general, method of moments (MOM) requires fewer unknowns than differential equation 

techniques. However, due to the nature of the computation of matrix elements, the matrix system 

is usually dense and ill-conditioned. This results in the complication of utilization of iterative 

solvers, which are N times faster than direct ones, with N being the number of unknowns. To 

overcome this issue in [26] [36] the authors introduce hierarchical Legendre basis functions for 

volume and volume-surface integral equations, where they show drastic improvement in 

conditioning of the matrix system.  In [45] new maximally-orthogonalized higher order bases are 

proposed for wires, quadrilaterals and hexahedra, where the efficiency of the new bases is 

demonstrated for surface integral equation MoM formulation. In this part of the thesis the goal is 

to investigate different types of bases functions for volume integral equation code and determine 

which of them result in the lowest matrix conditioning.  

 

5.2 Divergence-Conforming Expansions 

In section 1.3 the equivalent electrical displacement vector is expanded in terms of basis 

functions as follows 
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where f are divergence-conforming hierarchical-type vector basis functions defined by  
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Originally, in section 1.3 Q and P expansion functions are defined as 
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which will be referred as a classic set of functions. However, these expansions result in a very ill 

conditioned matrix equation, which was shown in section 1.5.2. In [26] [36], it was proposed to 

use Legendre and modified Legendre polynomials which, due to their orthogonality to each 

other, result in a smaller condition number. In addition, the accuracy of the solution 

representation does not suffer, because polynomial functions span the same functional space as 

the simple power functions. In this case Q and P functions are represented as follows 
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where  m
m

m

mm u
um

uL 1
d

d

!2

1
)( 2  are Legendre polynomials. The Q-functions are usually 

referred to as near-orthogonal basis functions. Further, in [35] the authors claim that the best 

matrix conditioning was obtained by scaling the basis functions so that the Euclidean norm of 

each basis function is unity on a square patch of unit side length. These scaling factors are 

defined as follows: 
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where mC
~

 and mC  are coefficients multiplying Q- and P-functions respectively. 

Since P-functions are adopted in the form of Legendre polynomials (62), they are already 

fully orthogonal with maximum absolute value on the interval [-1, 1] being equal to one, i.e. 

1)1( kP . In the case of Q-expansions (62), the zeroth and first order functions are the same as 

in (61) (in section 1.3 the importance of these first two basis functions for imposing continuity 

condition of the vector D was discussed), which are not orthogonal to the 2m  order functions. 

Therefore, the matrix of the inner product 
1

1
d)()(, uuQuQQQS jijiij  is not diagonal 

(Fig. 31 (b)), which would have been an ideal case.   

 

             

(a)                                              (b)                                            (c) 

Fig. 31. Sketch of the inner product matrix: (a) classic, (b) near-orthogonal, and (c) maximally-

orthogonal. 

 

This issue can be improved by the construction of polynomials based on a two-step Gram-

Schmidt procedure [45], which ensures the maximal orthogonality and divergence-conformity of 
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the new basis (inner product matrix is show in Fig. 31 (c)). The basic form of the obtained basis 

functions of orders up to 8 is represented in Table IV. 

 

Table IV. Maximally-Orthogonalized Q-funqtions.  

K )(uQk  

2 12 u  

3 uu 3  

4 187 24  uu  

5 uuu  35 43  

6 1195133 246  uuu  

7 
uuuu  357

3

25

15

253

15

143
 

8 134176286143 2468  uuus  

 

Table V. Normalization Coefficients for the Maximally-Orthogonalized Q-funqtions.  

K Norm to ±1 Euclidean 

2 1.000000 0.968246 

3 2.598076 2.561738 

4 0.777778 0.838525 

5 3.620824 4.248161 

6 0.645493 0.816397 

7 4.352125 5.882766 

8 0.563718 0.808509 

 

In order to minimize the condition number, the next step is to find an optimal normalization of 

the Q-functions, i.e. to determine appropriate scaling factors. Two normalization cases are 

considered. In the first case the functions are normalized by their maximum absolute value. This 

scaling will be referred as “Norm ±1”, since maximal and minimal values are +1 and -1. In the 

second case, Euclidean norms of all basis functions are set to unit value, which will be referred 
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to as “Euclidean”. For the maximally-orhtogonalized Q-functions scaling factors are given in the 

Table V. 

 

5.3 Numerical Results and Discussion 

As it was shown in section 1.5.2, the condition number almost does not depend on the 

geometrical order of element. Therefore, in this section, to accelerate numerical computations 

only first order geometrical elements are used. As an example consider scattering from a 

dielectric cube, with edge size 0λ4a  and permittivity 0.4ε r  . To isolate the effect of 

increasing the polynomial order, the matrix sizes were kept as close to each other as they can be 

with the given expansion order. According to [45] the best condition number was obtained for 

maximally-orthogonal expansions scaled according to the Euclidean norm. Therefore these basis 

functions were implemented. The results obtained for the condition number are presented in the 

Table VI.  

 

Table VI. Condition Number for Dielectric Cube in Cases of Classic and Maximally-Orthogonal 

Expansions 

Polynomial order Element size Number of 

unknowns 

Condition number 

Classic Max-orthogonal 

N = 2 0.5λ 13056 1.38E+08 8.06E+07 

N = 3 0.8λ 10800 3.11E+10 3.01E+08 

N = 4 λ 13056 8.17E+11 2.02E+08 

N = 5 1.33λ 10800 7.46E+13 1.12E+08 

N = 6 2λ 5616 2.83E+16 9.56E+07 

N = 7 2λ 8820 3.71E+16 4.46E+08 

 

As it can be seen from the Table VI the condition number of the matrix generated by 

expansion of the vector D in terms of classic basis functions grows very rapidly with increase of 
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the expansion order. In the case of maximally-orthogonalized expansion a condition number 

increases less than the order of magnitude, and even decreases for a small matrix size.  Note that 

similar results were obtained in [45] for MoM-SIE approach. 

 

5.4 Summary 

Maximally orthogonalized divergence-conforming higher order basis functions, proposed in 

[45] for elements in the form of generalized wires, quadrilaterals and hexahedra, were 

implemented in double-higher-order volume integral equation (MoM-VIE). It was illustrated by 

the numerical example that the implementation of the above mentioned bases dramatically 

improves the condition number of the matrix, while spanning the same polynomial space as the 

classic expansions. Therefore, without loss in accuracy of the field approximation within a 

hexahedral element, a better condition number of the MoM matrix was obtained.  
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6 PARALLELIZATION OF THE GENERALIZED VOLUME/SURFACE INTEGRAL 

EQUATION METHOD OF MOMENTS CODE 

 

6.1 Introduction 

Lately, with the growing popularity of numerical methods and their application for industrial 

and academic purposes, computational problems have become more and more time and memory 

consuming. Some numerical problems, if being calculated on the simple PC, can take weeks, 

even months, of computational time. This contradicts the general purpose of numerical methods 

– fast analysis of the full EM system. Such a problem can be overcome by utilizing the 

technological advancement in high performance computing (HPC). However, in order to use the 

full capability of the HPC system, parallelization of the numerical code is required, which results 

in additional programming work. In this section the already developed MoM-VSIE code is 

parallelized for ISTeC Cray, which is a supercomputer owned by Colorado State University.  

 

6.2 Parallel Algorithm Implementation into MoM-VSIE Code 

As a result of method of moments (MoM) discretization of the volume/surface integro-

differential equations a dense system of linear equations is obtained. As a direct matrix solver is 

used, the system matrix storage requires order of N
2
 memory, where N is a number of unknowns. 

To run computationally and storage expensive simulation the in-core parallelization of the VSIE 

code for a distributed memory system based on the message passing interface (MPI) basic linear 

algebra communication subprograms (BLACS) was developed [71]. The Cray supercomputer, 

used for simulations, contains 52 compute nodes, with a total of 104 AMD Magny Cours 64-bit 

1.9-GHz processors (two per node), where each processor has 12 cores. There is a 32-GB RAM 
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memory available on each node, while the interconnection between the nodes is SeaStar2+ with 

2D torus topology. For the in-core parallel solution of matrix equation ScaLAPAK solver, based 

on LU factorization was used. The solver requires the matrix to be stored in a 2D block-cyclic 

distribution [72] , as it is shown in the Fig. 32. 

 

                             (a)                                         (b)                                               (c)  

Fig. 32. 2D block-cyclic matrix distribution for NpxNp process grid with block dimensions equal to 

NBxNB : (a) being a global unknowns descriptor and its mapping to a 2D block-cyclic distribution 

descriptor, (b) global system matrix, and (c) local matrix on the zeroth processor [71].  

 

In the parallelization algorithm, the first available MPI processes are mapped into a logical 

2D process mesh, so that each process can be addressed by two coordinates.  Next, each process 

allocates the necessary memory for the local part of the matrix and calculates its entries as it is 

shown in the Fig. 32. Note that the unknowns are directly connected to the geometrical 

tessellation elements and for certain matrix entries computations it is required to perform 

integration on two different elements. Therefore, in certain cases a burdensome integration over 

a geometrical element needs to be repeated by several different processes. The other way to 
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parallelize the code was to distribute memory according to geometrical elements and then 

exchange the data to fill out the proper matrix elements. However, numerical experiments have 

shown that, the recalculation of a geometrical element is less expensive than the internode 

communication of pre-calculated values. 

 

6.3 Numerical Results and Discussion 

6.3.1 Scattering from the Human Brain 

To demonstrate the efficiency of the parallel MoM-VIE code, a computation of a human 

brain model is performed. The brain is modeled by 227 hexahedral ( 2 wvu KKK ) VIE 

elements, as indicated in Fig. 33 (b), with the orders Nu, Nv, and Nw equal to 2, which results in a 

total of 6,024VIE
unkn N  unknowns. The model was illuminated by the plane wave, impinging  

 

 

                                   (a)                                                                         (b) 

Fig. 33. Human brain model: (a) A STL surface of the brain provided by NEVA Electromagnetics [15] 

and (b) re-meshed into curvilinear hexahedra in ICEM CFD 15.0 
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from -x direction at frequency MHz 900f . Shown in Fig. 34 is the simulated near electric field 

in the plane, passing through the middle of the brain, obtained by the proposed higher order VIE 

technique. The model was run in sequential and parallel (on 4, 16 and 64 processes) fashion.  

 

 

                                   (a)                                                              (b) 

Fig. 34. Normalized near Ey component of electric field inside and around the brain model computed 

in the plane indicated passing through the middle of the brain, (a) MoM-VIE sequential results and 

(b) MoM-VIE parallel solution. 

 

In Table VII are shown the computational times for sequential and parallel versions (all ran 

on Cray supercomputer) along with the parallel code efficiency. Note, that parallel code 

efficiency is calculated as   PTTE psp ( , where sT  and pT  are computational times for 

sequential and parallel codes respectively, and P is the  number of processes. As it can be seen 

from the Table VII, the efficiency of the code drops very rapidly with an increase in the number 

of processes. This phenomenon occurs due to the fact that the number of elements being 

calculated on each process does not decrease proportional to the number of processes, which 
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heavily depends on geometrical alignment of elements in the model. For example, the ideal 

number of elements per process for N=2x2 should be 138, but in actual computation it varies 

from 117 to 145. For this case the number deviates from the expected within the 10% range, 

which is acceptable. However, in the case of N=8x8 the number of elements per process should 

be 34, while the real distribution varies between 30 and 64, the  upper bound of which is almost 

twice as big.  In order to improve the efficiency of the parallel code further acceleration based on 

the geometrical model preprocessing and proper element clusterization is required.  

 

Table VII. Computational Times for Sequential and Parallel VIE Computations of the Human 

Brain Model; Parallel Code Speedup and Efficiency 

Number of 

processes 

Computational time VIE elements 

per process 
Speedup ps TT  Parallel code 

efficiency pE  

N = 1 3 h  23 min 5 sec 227   

N = 2x2 1 h  19 min 8 sec 117-145 2.5663 0.6416 

N = 4x4 35 min 10 sec 60-93 5.7749 0.3609 

N = 8x8 17 min 30 sec 30-64 11.6048 0.1813 

 

6.3.2 Luneburg Lens Illuminated by a Corrugated Horn Antenna 

To demonstrate the efficiency of the parallel MoM-VSIE approach the composite 

metallic/dielectric structure is calculated. In order to fully exploit the parallel code performance 

the piecewise-homogeneous model of Luneburg Lens, presented in section 2.3.4, is illuminated 

by a corrugated horn antenna. The numerical model consists of 270 homogeneous hexahedral 

elements of the first  geometrical order and forth polynomial orders ( 1 wvu KKK  and 

4 wvu NNN ) , 124 bilinear quadrilateral patches ( 1 vu KK  and 3 vu NN ) and 1 

wire ( 1uK  and 3uN ) shown in the Fig. 35, resulting in 55,413VSIE
unkn N  unknowns.  Fig. 36  
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shows the absolute value of a total near electric field calculated in the plane, as indicated in 

Fig. 35 by the parallel code. 

 

 

Fig. 35. Luneburg lens illuminated by a corrugated horn antenna 

               

 

Fig. 36. Normalized near Ey component of electric field inside and around the Luneburg lens 

computed in the plane indicated in Fig. 35, by MoM-VSIE parallel solution. 
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The computation required usage of a minimum of 10x10 processes. In addition, results were 

obtained for 12x12 and 16x16 processes. The computational time for all three simulations is 

presented in the table VIII. 

 

Table VIII. Computational Times for Parallel VSIE Computations of the Luneburg Lens 

Illuminated by a Corrugate Horn Antenna 

Number of 

processes 

Computational time Number of VIE 

elements per process 

Ideal number of VIE 

elements per process 

N = 10x10  4 h  37 min 54 sec 21-85 30 

N = 12x12 5 h 2 min 30 sec 21-82 24 

N = 16x16   3 h  48 min 58 sec 11-75 18 

 

Since the simulation of this example requires 49 GB of RAM memory, the sequential 

computation on one node was impossible to perform. Therefore, to evaluate the codes efficiency, 

the reduced (not precise) version with 3 wvu NNN  and ,85542VSIE
unkn N  of the model 

was run.  Table IX presents the computational times for sequential and parallel versions of the 

code pertaining to the reduced model.  

 

Table IX. Computational Times for Sequential and Parallel VSIE Computations of the Reduced 

Luneburg Lens Illuminated by a Corrugate Horn Antenna model; Parallel Code Speedup and 

Efficiency 

Number of 

processes 

Computational time 

 

Number of VIE 

elements per process 
Speedup ps TT  Parallel code 

efficiency pE  

N = 1 19 h  38 min 41 sec    

N = 2x2 9 h  16 min  8 sec 153-179 2.1194 0.5299 

N = 4x4 4 h  28 min  6 sec 78-135 4.3964 0.2748 

N = 8x8 2 h  25 min 9 sec 53-99 8.1205 0.1269 
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Similarly to the example in section 6.3.1 we see a decrease in parallel code efficiency. 

However, in this case number of VIE elements per process is always greater than optimal (for 

N=2x2 the expected value being 135, for N=4x4 – 68, and for N=8x8 – 35). The surface horn 

antenna elements are all calculated by the same process, since the number of unknowns resulting 

from the SIE part is 2,229SIE
unkn N . 

 

6.4 Summary 

In this section of the thesis the MPI based algorithm for parallel MoM-VSIE computations 

on ISTeC Cray (supercomputer owned by Colorado State University) was implemented. This 

allowed for the acceleration of computations of larger electromagnetic problems and the 

overcoming of RAM memory limitations on a regular PC. The accuracy and the efficiency of the 

parallel code were evaluated for two different examples. 
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7 CONCLUSIONS AND FUTURE OBJECTIVES  

 

This thesis has proposed a universal double-higher-order method of moments discretization 

of volume and surface integral equations for analysis of arbitrary electromagnetic structures. In 

the volume integral equation (VIE), where the scattered field is represented by radiation of 

volumetric currents and charges, the equation for the total electric field was discretized. As a 

result, the numerical approximation of the equivalent electric displacement vector was obtained. 

In the surface integral equation, which is based on the surface equivalence principle, the 

boundary condition equations for the electric and magnetic fields were numerically solved. In 

this case, the functions of interest were equivalent electric and magnetic current distributions 

over interfaces of dielectric profile discontinuity and actual electric currents for PEC structures. 

The above mentioned equations, being combined in a system for a composite metallic/dielectric 

structures, were efficiently solved via method of moments and accelerated by a diakoptic 

approach.  

In the first chapter of the thesis a Galerkin-type MoM code, based on both the volume 

integral equation (VIE) approach for dielectrics and the surface integral equation (SIE) approach 

for metallic parts, was presented. For the approximation of the geometry, Lagrange-type 

interpolation generalized hexahedra for volumetric cells and quadrilaterals for surfaces were 

employed. Within each tessellation element the surface current and equivalent electric 

displacement vector were expanded in terms of the hierarchical divergence-conforming 

polynomial vector basis functions. This method, being referred to as a double-higher-order 

volume/surface integral equation (VSIE) throughout the thesis, has been validated by various 

numerical and analytical techniques, demonstrating its accuracy and efficiency.  
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In chapter 2, the VIE part of the VSIE approach was enhanced by the implementation of a 

continuously inhomogeneous dielectric variation throughout each discretization element. A 

special Lagrange-type approximation of the dielectric profile was adopted for each curved 

parametric hexahedron. This implementation allowed for the usage of electrically large elements 

for modeling of a highly inhomogeneous dielectric object. The developed continuously 

inhomogeneous VIE analysis, has demonstrated higher efficiency, and a considerable reduction 

in the number of unknowns in comparison with both piecewise homogeneous VIE and general 

continuously inhomogeneous techniques.  

In chapter 3, the SIE component of the VSIE technique was enhanced so as to allow for the 

analysis of dielectric structures, which resulted in a generalized VSIE technique. Not only has  

the newly developed approach demonstrated efficiency in the analysis of high contrast dielectric 

scatterers possessing inhomogeneity within the volume, but it also provides a base for the 

implementation of the diakoptic domain-decomposition approach.  Said diakoptic technique, 

presented in chapter 4, is comprised of breaking the original structure into a number of non-

overlapping subsystems, analyzing them in a wholly independent manner and combining the 

obtained results into a solution of the entire system. Since each subsystem is analyzed 

independently and in a parallel fashion, a substantial acceleration of the computation can be 

obtained. Moreover, the system division results in a lower requirement for the RAM memory 

usage. The above mentioned VIE-SIE-diakoptic method has been implemented into the double-

higher-order generalized VSIE code, described in chapters 1, 2 and 3. Its performance was 

evaluated, and discussed in several scattering examples, including both homogeneous and 

continuously inhomogeneous dielectric structures.  Numerical examples have demonstrated that 
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the developed VIE-SIE-dikoptic method dramatically increases the efficiency of the MoM-VIE 

approach, while preserving its accuracy. 

Further, in chapter 4 the classic divergence-conforming higher order bases were replaced by 

their equivalent maximally orthogonalized versions. Without any loss in the accuracy of the field 

approximation within a hexahedral element, new basis functions resulted in a better condition 

number of the MoM matrix. In chapter 5, a parallel algorithm for the MoM-VSIE computations 

on ISTeC Cray (the supercomputer owned by Colorado State University) was implemented. This 

upgrade of the code allowed for the acceleration of the computation of larger electromagnetic 

problems, while overcoming the RAM memory limitations of a regular PC.  

The above developed code presents the opportunity for continued research. Such research 

might include; modification of the parallelization algorithm to accelerate the computations on 

ISTeC Cray supercomputer, implementation of the iterative matrix equation solver to fully 

exploit the efficiency of the maximally orthogonalized basis functions, and exploration of fast 

algorithms, such as multilevel fast multipole method (MLFMM) for the acceleration of the 

system matrix computation.  
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