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ABSTRACT 

 

 

 

BIOLOGY AND OVER-WINTER SURVIVAL OF IRIS YELLOW SPOT VIRUS IN 

COLORADO 

 

 

Iris yellow spot virus (IYSV) (Family: Bunyaviridae, Genus: Tospovirus) and its insect 

vector, Thrips tabaci Lindeman, are of economic concern in onion (Allium cepa L.) growing 

regions worldwide.  IYSV symptoms appear on onion foliage as tan or straw colored, elongate 

diamond shaped lesions.  Accumulated lesions may coalesce on the foliage or girdle the scape, 

causing lodging and loss of seed.  There is no evidence that Tospoviruses, including IYSV, are 

seed transmitted.  Onion seed included in double antibody sandwich enzyme linked 

immunosorbent assays (DAS-ELISA) to detect IYSV occasionally yielded a positive result.  

IYSV was detected in the pedicels, petals, anthers, and fruits of onion flowers by reverse 

transcriptase polymerase chain reaction (RT-PCR).  Onion seed collected from several cultivars 

of IYSV symptomatic plants was grown out under greenhouse and growth chamber conditions.  

IYSV was not detected in the six week old seedlings.  Further investigation of onion seeds 

revealed IYSV could be detected in the seed coat, but not the emerging radicle.  It is highly 

unlikely that IYSV can pass from the seed coat to the new plant during germination, and seeds 

remain an unlikely source of IYSV inoculum. 

 Several weed species have been described as additional hosts and likely green bridges for 

IYSV survival, however, there is little work regarding the overwintering habits of T. tabaci and 

its potential to act as a source of inoculum during the following season.  The results presented in 

this work close the loop, and show that both T. tabaci and IYSV are present near onion fields 
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throughout the winter, T. tabaci will reproduce on several weed species, and larvae can acquire 

IYSV from non-allium sources.  Thrips activity was monitored via sticky trap during the winter 

months from 2011 to 2013.  Thrips activity appeared to cease once the average temperature fell 

below 0°C and resumed once the average temperature rose above 0°C.  Onion cull piles were 

constructed, and while these piles provided an environment conducive to thrips survival, few live 

thrips were recovered from the piles after the onset of bulb decay.  IYSV was detected by RT-

PCR in live adult and larval thrips recovered from onion, Malva neglecta Wallr. (common 

mallow), Taraxacum officinale Weber in Wiggers (dandelion), Descurainia sophia (L.) Webb. 

Ex Prantl (flixweed), Lactuca serriola L. (prickly lettuce), and Tragopogon dubius Scop. 

(salsify) during the winters from 2010 to 2013.  Of these plants, IYSV was detected in prickly 

lettuce and flixweed.  These five weed species were grown from seed in the greenhouse and 

exposed to viruliferous thrips to further elucidate their potential role as green bridges. Of the 

five, IYSV was detected in salsify and the thrips larvae reared on this plant.  Results indicate 

winter annuals play a role in onion thrips and IYSV over-winter survival, providing inoculum the 

next growing season, and that weed management during the winter may be warranted. 

 IYSV distribution throughout onion leaves is uneven and patchy.  A reverse transcription 

quantitative real time PCR (RT-qPCR) was developed to compare relative amounts of IYSV 

within leaves and between cultivars.  The amount of IYSV was greatest at the lesion site itself 

and decreased as distance from the lesion increased.  No statistically significant differences were 

found in the amount of IYSV between susceptible cultivar Granero and tolerant cultivar 

Advantage.  This assay may be useful for additional comparative studies with other crops and 

viruses. 
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INTRODUCTION 

 

 

 

Onions 

Taxonomy 

 Allium cepa L., the common onion, is currently taxonomically situated as follows: 

Class: Monocotyledones, Order: Asparagales, Family: Alliaceae, Genus: Allium (15).  Unless 

otherwise specified, Allium cepa L. will hereafter be referred to as common onion, or onion, 

denoting the crop grown for its fleshy bulb. 

 

Center of origin and domestication 

 Approximately 780 Allium species (15) occur worldwide, primarily in the Northern 

hemisphere between the Arctic Circle and Tropic of Cancer (39).  Only one Allium species has 

been described in the southern hemisphere (39).  Species diversity is greatest from the 

Mediterranean through Central Asia, followed by North America (39).  Most Allium species 

grow in arid climates, however, adaptation to diverse environments has occurred (39). 

 The common onion grown today for its bulb-like storage structure does not exist in the 

wild (15).  Domestication likely first occurred in the Middle East or southwest Asia in what is 

now Iran and Turkmenistan when the people of ancient civilizations transplanted wild onions 

into gardens (15, 39).  Historical records and artifacts show that onions have been cultivated for 

at least 4,700 years (15).  Ancient Egyptians placed onions in the eviscerated body cavity during 

mummification (1), and onions are depicted in carvings (39).  The people of ancient India, as 

well as the Greeks and Romans are known to have used onions (39).  The Romans likely 
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introduced onions throughout Europe and the Europeans later introduced onions to the Americas 

(39). 

 

Description and growth (15, 39) 

 A representative onion is shown in Figure 1.1.  The onion stem, also referred to as the 

basal plate, is a flat, disk-like structure at the base of the onion bulb.  Leaves grow in an alternate 

and opposite arrangement, with the youngest leaf emerging from the center of the stem.  The 

leaves are hollow and somewhat cylindrical, tapering to a point at the tip.  The older leaves form 

a sheath around the young, emerging leaves, and this sheath is known as a pseudostem.  The 

onion bulb is formed as the base of the leaves swell.  A subglobose umbel consisting of up to 

several hundred individual white flowers is borne at the end of a scape (Figure 1.2).  Onion 

scapes are hollow stalks, can grow to over one meter in height, and typically have a bulge in the 

lower half. 

 
Figure 1.1 Onions forming bulbs.  (Photo: Howard F. Schwartz, Colorado State University, Bugwood.org) 



3 

 
Figure 1.2.  Onion scapes with umbels.  (Photo: Howard F. Schwartz, Colorado State University, Bugwood.org) 

 

 The growth stages of onions are shown in Figure 1.3.  Upon seed germination the 

cotyledon emerges as a loop.  The cotyledon eventually senesces as leaves develop.  As new 

leaves grow, older leaves continue to progressively senesce.  When the plant has formed 8 to 13 

leaves the bulb begins to swell.  The foliage may fall over (also known as cropping) after new 

leaves have stopped forming and the pseudostem is left hollow.  Finally the outer bulb skins dry, 

forming a thin, papery covering over the bulb, and the leaves senesce.  Flowering may occur 

during the next growing season after a period of vernalization (15). Following pollination by 

honey bees (64) small, black seeds are produced in capsules. 
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Figure 1.3.  The growth stages of onion, beginning with cotyledon emergence (FIGURE 1), proceeding through 

vegetative growth (FIGURES 2 to 4), bulb formation (FIGURE 5), cropping (FIGURE 6), and scape formation and 

flowering (FIGURES 7 and 8).  (Image: Howard Schwartz, Colorado State University) 

 

Current use 

 Onions are primarily grown for consumption and are used by individuals cooking at 

home, in restaurants, and in the manufacture of prepared foods.  Onions have also long been used 

in traditional medicine and have since proven to contain compounds with antimicrobial, 

antiasthmatic, and anti-tumorigenic properties (13).  In addition, onion consumption has been 
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linked to decreased platelet aggregation.  Negative effects of onion consumption may include 

bad breath, acid reflux, or allergic response (13). 

 

Economic value 

 Worldwide onion production was approximately 83 million metric tons harvested from 

approximately 4.2 million hectares during 2012-2013 (38).  During 2013 in the United States 

61,326 hectares were planted to onion and 58,007 hectares were harvested at a value of 

$969,183,000.  In Colorado during 2013, 2,428 hectares were planted to onion and 1,618 were 

harvested with a value of $28,539,000 (84). 

 

Thrips tabaci Lindeman 

Taxonomy and Center of Origin 

Thrips tabaci Lindeman (Figure 1.4), commonly known as onion thrips, is a worldwide pest of 

onion (25).  This insect is placed in the Order: Thysanoptera, Suborder: Terebrantia, Family: 

Thripidae, Subfamily: Thripinae, and Genus: Thrips (28).  T. tabaci may have arisen in the 

eastern Mediterranean (94). 
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Figure 1.4. Adult Thrips tabaci Lindeman.  (Photo: Alton N. Sparks, Jr., University of Georgia, Bugwood.org) 

 

 

Life Cycle 

 Thrips undergo hemimetabolous metamorphosis as they develop from egg to adult 

(Figure 1.5).  Onion thrips development from egg to adult typically takes two to three weeks 

(25), however, total development time is temperature dependent (28) and will vary.  Eggs are 

typically laid in the leaf tissue, but T. tabaci will lay eggs in any part of the onion plant including 

flower petals (28).  After hatching, thrips feed on during two larval instars, followed by 

nonfeeding prepupal and pupal instars spent in the soil at the base of the plant, before emerging 

as winged adults (25).  T. tabaci are capable of various types of parthenogenic reproduction 

which contributes to their success as a pest of onion.  Unfertilized eggs may develop into females 
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(thelytoky), into males and females (deuterotoky), or unfertilized eggs can develop into males 

while fertilized eggs develop into females (arrhentoky) (28). 

 
Figure 1.5.  The life cycle of onion thrips.  (Image: W.S. Cranshaw in Compendium of Onion and Garlic Diseases 

and Pests 2
nd

 ed., APS Press) 

 

 

 T. tabaci are minute insects and adult female onion thrips (measuring 1.0 to 1.3 mm) are 

typically longer than males (0.7 mm) (28).  These insects are visible with the naked eye, but 

microscopy is necessary to distinguish any morphological features used in classification. 

 

Habits of onion thrips 

 Eggs are typically laid along the length of older leaves and after hatching the larvae move 

down the leaves and congregate in the crevices where new leaves have emerged.  Adults spend 

more of their time on exposed leaf surfaces where insecticides are more likely to reach them 
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(66).  T. tabaci concentrations vary randomly throughout an onion field, but areas with higher 

numbers, such as edges, may be present (28). 

 T. tabaci thrive in warm, dry environments especially when onions, their preferred host, 

are present in large numbers (94).  Thrips numbers tend to increase in hot, dry weather, but it is 

unclear if the increase is due to onion plant quality, favorable temperatures, or to the lack of rain 

which can wash thrips from onions and destroy prepupal and pupal thrips in the soil (28). 

 T. tabaci are phytophagous and will feed from leaf, petal, stamen and style cells, pollen, 

developing seeds, fruit, and nectar.  Onion thrips will occasionally prey on other small 

arthropods (94).  Thrips feed by first puncturing a cell wall with their mandible, then by sucking 

out the cellular contents through their maxillary stylets.  This feeding strategy has been termed 

“punch and suck” (94).  Plant tissue areas where thrips have fed have a silvery appearance (25). 

 Thrips cause injury to onion plants by reducing the photosynthetic capacity of the plant 

which can result in decreased yield, and by introducing fungal, viral, and bacterial pathogens (25, 

28, 34).  Wounds created by onion thrips can facilitate infection by fungal pathogens (28), and T. 

tabaci is the vector of Iris yellow spot virus (21). 

 

Iris yellow spot virus 

Taxonomy 

 Although still awaiting formal species approval by the International Committee on 

Taxonomy of Viruses (98), available evidence supports Iris yellow spot virus as a member of the 

genus Tospovirus in the family Bunyaviridae.  Viruses within the Bunyaviridae consist of three 

negative and/or ambisense single stranded RNA (ssRNA) molecules, each of which is 

surrounded by a protein coat.  The tripartite genome is enveloped by an 80 to 120 nm diameter 
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spherical lipid bilayer derived from host cell Golgi membranes.  Glycoproteins project from the 

membrane envelope.  The three ssRNA segments are known as S RNA, M RNA, and L RNA, 

due to their size differences.  Each of the three ssRNA segments has complimentary termini 

allowing each strand to form a closed loop. 

 Members of the genus Tospovirus are characterized by: conserved terminal sequences on 

each RNA segment; the S and M RNAs are ambisense; glycoproteins are encoded in the viral-

complimentary sense of the M RMA, while the NSm is encoded in the viral sense of the same 

RNA; the N protein is encoded in the vc-sense and the NSs is encoded in the v-sense of the S 

RNA; and they are transmitted by thrips. 

 Tospovirus species are determined by their vector specificity, plant host range, and N 

protein characteristics.  In order to be considered a species, the N protein amino acid sequence 

must be at least 90% different from the other Tospovirus species.  Currently 9 species are 

formally recognized and 14 are awaiting approval (98, 99). 

 Iris yellow spot virus was first isolated in The Netherlands from Iris hollandica Tub. 

plants displaying yellow to necrotic spots (21).  The 30 kDa IYSV nucleoprotein (N) was found 

to be distinct from other known tospovirus nucleoproteins.  The IYSV N protein did not interact 

with the anti-N sera of the other known tospoviruses, nor did the N proteins of the other 

tospoviruses react with the IYSV N antiserum in DAS-ELISA tests (21). 

 

Symptoms on onion 

 Pozzer et al. (75) described IYSV symptoms on onion as, “necrotic eyelike spots on 

leaves and flower stems, followed by abortion of the flowers in the umbel, and finally resulted in 

death of flowers.”  Kritzman et al. (61) described the symptoms on onion as “straw-colored, 
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chlorotic, and necrotic lesions on leaves.”  Lesions on scapes can coalesce, causing the scape to 

collapse (40), which has a negative impact on seed production. 

 
Figure 1.6. IYSV symptoms on an onion plant (left) and in an onion field (right).  (Photos: Howard F. Schwartz, 

Colorado State University, Bugwood.org) 

 

 Infection by IYSV has economic consequences.  IYSV incidence has been associated 

with a reduction in colossal and jumbo onion yield (42).  At times, IYSV has caused complete 

loss of onion bulb and seed crops in Brazil (75).  IYSV has been attributed to a 50 to 60% loss in 

onion bulb crop in Israel (60).  While conducting cultivar trials, du Toit and Pelter (31) found a 

negative correlation between IYSV incidence and total marketable and jumbo onion yield.  

Shock et al. (86) also found a negative correlation between IYSV incidence and bulb yield.  

Decreased onion seed yield has been correlated to increased insecticide use to control thrips in an 

attempt to prevent IYSV infection (64).  Economic losses in the form of increased labor costs 
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may occur when lesioned leaves must be removed from bunching onions before they are 

acceptable in the marketplace (59). 

 

IYSV distribution throughout the world 

 IYSV may have been present in Brazil as early as 1981, causing a disease called “sapeca” 

by local growers.  The cause of “sapeca” was not confirmed as IYSV until 1998 (75).  Symptoms 

typical of IYSV were first observed on onion scapes in Idaho and Oregon in 1989 (47) and 

electron microscopy revealed enveloped particles consistent with the morphology of a 

Tospovirus (47).  Unfortunately, mechanical transmission to onion was unsuccessful and Koch’s 

postulates remained uncompleted. 

 Symptoms later understood to be caused by IYSV were observed in field grown onion 

accessions in 1999 in Washington.  In 2005, IYSV was confirmed in field grown accessions of 

the wild onion species Allium pskemense, A. vavilovii, and A. altaicum (71).  Since its first 

observation and characterization, IYSV has been detected in onion crops throughout the world 

(Table 1.1). 

Table 1.1.  Chronology of IYSV infection of onion crops around the world. 

Year
a
 Location Year Location Year Location 

1998 Israel (43) 2007 Germany (59) 2010 Austria (59) 

1999 Brazil (75) 2007 The Netherlands (48) 2010 Mauritius (63) 

2001 Slovenia (59) 2007 South Africa (32) 2010 Mexico (97) 

2001 USA, Colorado (82) 2007 USA, New York (51) 2010 Uruguay (20) 

2003 Australia (23) 2007 Western Oregon (41) 2010 USA, Hawaii (85) 

2004 USA, Georgia (68) 2008 Canada (49) 2010 USA, Pennsylvania (50) 

2004 New Mexico (26) 2008 France (59) 2011 Eastern Africa (93) 

2004 Washington (33) 2008 Serbia (18) 2011 Kenya, Uganda (12) 

2005 Chile (79) 2009 Greece (19) 2011 Tajikistan (2) 

2005 Egypt (35) 2009 Italy (59) 2013 Bosnia and Herzegovina (96) 

2005 USA, Oregon (27) 2009 New Zealand (100) 2013 Indonesia (72) 

2006 India (76) 2009 USA, Nevada and California (7) 2013 Pakistan (55) 

2006 Peru (67)     

2006 Reunion Island (78)     

2006 USA, Texas (65)     
a
Year IYSV was first observed or formally reported. 
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Additional plant hosts of IYSV 

 Nearly 50 plants other than A. cepa have been shown to host IYSV (Table 1.2).  The 

early reports on IYSV claim that the host range is narrow (21, 60, 75); however, new plant hosts 

are frequently identified, thus expanding the known host range.  Currently, plants from 18 

families have been documented as IYSV hosts (89).  Plant hosts of IYSV have also been 

summarized by Smith et al. (89) and Schwartz (81) and their summaries contain additional 

taxonomic information and references. 

 

Acquisition and transmission of IYSV by Thrips tabaci 

 Thrips tabaci was confirmed as a vector of IYSV by Cortes et al. (21).  IYSV is 

transmitted in a persistent, propagative and transstadial manner.  There is no evidence of 

transovarial transmission.  There is no evidence of IYSV transmission by Frankliniella 

occidentalis (21), or Frankliniella schultzei (75).  Studies by Kritzman et al. (61) confirmed that 

T. tabaci was able to acquire IYSV from infected onion plants and transmit to healthy plants, but 

that F. occidentalis was not able to vector IYSV.  They were able to detect IYSV in 33 to 50% of 

the onion leaf pieces they placed single field collected thrips on, which they interpreted as a 33 to 

50% transmission rate.  Without knowing if the initial thrips were infected with IYSV, this rate 

can only be an approximation. 

 Inoue et al. (57) found no statistically meaningful differences in larval mortality, 

development time, or fecundity of thelytokous T. tabaci exposed or unexposed to IYSV; they 

suggested that the neutral effect of IYSV on onion thrips may explain the rapid spread of the 

disease.  They also found that both larvae and adults can transmit IYSV with efficiencies ranging 

from 17.3% to 44.1%, and that second instar larvae and adults transmitted at about the same 
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efficiency.  N. benthamiana and impatiens were used as indicator plants in the experiment, so it 

is possible that the results may differ when T. tabaci are reared on their preferred host plant.  

 The exact route a tospovirus (including IYSV) travels through a thrips is unknown, but a 

probable route has been suggested (101).  Detection of labeled virions by electron microscopy 

suggests ingested virus particles pass through the thrips’ foregut into the midgut.  From the 

midgut the virions must pass through the membranes of the microvilli, columnar epithelial cells, 

and muscle cells surrounding the midgut, and finally into the salivary glands.  Viral replication 

may occur in any of these cells.  During the larval stages the salivary glands, midgut, and 

visceral muscles are in direct contact with each other which may facilitate viral movement from 

the foregut into the salivary glands.  As thrips mature these structures lose contact.  These 

anatomical changes are currently the most favored explanation of tospoviral movement through 

thrips and serve as an explanation why adult F. occidentalis cannot transmit TSWV not acquired 

as a larvae.   

 Assuming T. tabaci undergo similar anatomical changes, T. tabaci would presumably 

have to acquire IYSV as larvae in order to transmit the virus.  Hoedjes et al. (48) were able to 

detect the IYSV N and NSs proteins in larval, pupal, and adult T. tabaci after a period of feeding 

on infected followed by uninfected plant material, thus providing evidence that IYSV replicates 

in the insects. 
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Table 1.2.  Additional Allium and non-Allium host plants of IYSV. 

Host plant Location and year of first published 

report 

Allium altaicum Wild onion Washington, USA, 2006 (71) 

Allium ampeloprasum  Egyptian leek Egypt, 2011  (45) 

Allium cepa var. ascalonicum Shallot Réunion Island, 2006 (78) 

Allium pskemense Wild onion Washington, USA, 2006 (71) 

Allium porrum  Leek Réunion Island, 2006 (78) 

Allium sativum   Garlic Réunion Island, 2006 (78) 

Allium roylei Wild onion New Mexico, USA, 2011 (24) 

Allium schoenoprasum Chive New Mexico, USA, 2011 (24) 

Allium tuberosum Garlic chives New Mexico, USA, 2011 (24) 

Allium vavilovii Wild onion Washington, USA, 2006 (71) 

Alstroemeria sp. Alstroemeria Netherlands, 2004 (48) 

Amaranthus retroflexus Redroot pigweed Idaho and Washington, USA, 2007 (80) 

Arctium minus Bernh.  Common burdock New York, USA, 2011 (53) 

Atriplex micrantha Ledeb.  Twoscale saltbush Utah, USA, 2009 (37) 

Bessera elegans Coral drops Japan, 2005 (58) 

Capsicum annuum L.  Pepper Tunisia, 2005 (10) 

Cichorium intybus L.  Chicory New York, USA, 2011 (53) 

Chenopodium album  Common 

lambsquarters 

Idaho and Washington, USA, 2007 (80) 

Chenopodium amaranticolor  Brazil, 1999 (75) 

Chenopodium quinoa Wild. Quinoa Brazil, 1999 (75) 

Clivia minata Natal lily Japan, 2005 (58) 

Cycas sp.  Iran, 2005 (44) 

Datura stramonium Datura Netherlands, 2005 (21) 

Dendranthema grandiflora (D.C.)Desmoul. Chrysanthemum Poland, 2005 (8) 

Eustoma grandiflorm  Lisianthus United Kingdom, 2008 (69) 

Eustoma russellianum  Lisianthus Israel, 2000 (60) 

Geranium carolinianum Carolina geranium Georgia, USA 2006 (40) 

Gomphrena globosa L. Globe amaranth Brazil, 1999 (75) 

Iris hollandica Tub.  Iris Netherlands, 1998 (21) 

Kochia scoparia  Kochia Idaho and Washington, USA, 2007 (80) 

Lactuca serriola  Prickly lettuce Idaho and Washington, USA, 2007 (80) 

Linaria canadensis Canada toadflax Georgia, USA 2006 (40) 

Nicotiana benthamiana Wild tobacco Brazil, 1999 (75) 

Nicotiana rustica L. Wild tobacco Brazil, 1999 (75) 

Pelargonium hortorum Zonal geranium Iran, 2005 (44) 

Petunia hybrida Petunia Netherlands, 1998 (21) 

Portulaca oleracea Common purslane Brazil, 1999 (75) 

Rosa sp.  Iran, 2005 (44) 

Rumex crispus L.  Curly dock New York, USA, 2011 (53) 

Scindapsus sp.  Iran, 2005 (44) 

Setaria viridis (L.) Beauv.  Green foxtail Utah, USA, 2009 (36) 

Solanum lycopersicum L.  Tomato Tunisia, 2005 (10) 

Solanum tuberosum L.  Potato Tunisia, 2005 (10) 

Sonchus asper  Spiny sowthistle Georgia, USA, 2007 (70) 

Taraxacum officinale G. H. Weber ex. 

Wiggers  

Dandelion New York, USA, 2011 (53) 

Tribulus terrestris  Puncturevine Idaho and Washington, USA, 2007 (80) 

Vicia sativa Common vetch Georgia, USA 2006 (40) 

Vigna unguiculata Cowpea Iran, 2005 (44) 
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Additional thrips hosts of IYSV 

 Srinivasan et al. (92) reported IYSV replication in and transmission by Frankliniella 

fusca on the indicator plant lisianthus (Eustoma russellianum).  This result must be interpreted 

cautiously.  Frankliniella fusca larvae were reared on lisianthus plants that had been inoculated 

by T. tabaci.  Although the authors claimed that T. tabaci did not survive on lisianthus, 

experience has shown that when examined microscopically, plants that appear devoid of thrips 

may actually harbor a small number.  It is difficult to distinguish thrips species while larvae, and 

the authors did not specify their method of species determination.  It is possible that a small 

population of T. tabaci survived on lisianthus among the F. fusca that were transferred to the 

plant.  If this were the case it would appear that F. fusca acquired and transmitted IYSV.  

Verifying the larvae were F. fusca by PCR would strengthen the claim. 

 In Georgia, USA, F. fusca is observed more frequently on onion than T. tabaci (91).  The 

presence of both species on IYSV infected onions does raise the possibility of F. fusca becoming 

an additional vector. 

 

Other modes of transmission 

 IYSV is not known to be seed transmitted (17, 61).  Kritzman et al. (61) collected 25 

onion bulbs from IYSV infected plants and planted them.  The resulting plants did not develop 

symptoms nor was IYSV detected in the leaf tissue, suggesting that IYSV does not remain in 

onion bulbs between growing seasons. 
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IYSV structure and genomic organization 

 The IYSV genome is contained within an 80 to 120 nm spherical membrane (60) derived 

from the host (101).  The tripartite genome of IYSV consists of three RNA segments designated 

S, M, and L, of approximately 2.9, 4.8, and 8.9 kb, respectively (21). 

 Cortes et al. (21) sequenced the 3,105 nucleotide IYSV S RNA.  Several features of this 

sequence including a conserved 5’ to 3’ terminal sequence, complementary sequences allowing 

the RNA strand to form a panhandle structure, and ambisense open reading frames (ORF) 

allowed them to confirm that IYSV was a new tospovirus. 

 Nucleotide composition among IYSV isolates is somewhat variable.  Cortez et al. (22) 

sequenced the M RNA segment of an IYSV isolate from The Netherlands and found it was 

comprised of 4838 nt, while Bag et al. (4) found the M RNA from an isolate from Washington, 

USA to be comprised of 4821 nt.  Both groups found that the M RNA contained an ORF in both 

the viral (v-) and viral complimentary (vc-) sense.  Amino acid sequence comparisons with other 

tospoviruses led both groups to conclude that the ORF in the v-sense likely encodes a small non-

structural protein termed NSm, a predicted movement protein.  The ORF in the vc-sense encodes 

a glycoprotein precursor, which is later processed into the G1 and G2 (or Gn and Gc, depending 

on author) glycoproteins (4, 22).  Like the S RNA, the M RNA has an AU rich region between 

the protein coding regions that allow the formation of a hairpin structure, and two complimentary 

regions at the 5’ and 3’ termini (4, 22).  These two regions are thought to give the molecule 

stability (21). 

 The L RNA consists of 8,880 nucleotides (3).  The 5’ and 3’ termini are complimentary 

and conserved, and there is an ORF in the vc-sense.  Based on amino acid sequence comparison 

with other tospoviruses, the L RNA ORF likely encodes an RNA-dependent RNA polymerase 
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(RdRp) (3).  No ORFs were found in the v-sense, and it was concluded that the L RNA functions 

as a negative sense RNA (3). 

 

IYSV proteins 

 Cortes et al. (21) predicted that in the v-sense the S RNA segment encoded a 50.1 kDa 

protein named NSs with unknown function.  Due to structural similarities with the NSs of Rift 

Valley fever virus and the diversity of the NSs sequence within the tospoviruses, Cortes et al. 

(21) suggest that the NSs protein may not be directly involved in replication but is important in 

determining host range and pathogenesis.  The NSs protein of other tospoviruses has been 

reported to suppress RNA silencing during plant infection (101).  Work by Bag et al. (5) supports 

the putative RNA silencing suppression function of the NSs.  They demonstrated a synergistic 

effect of TSWV and IYSV when both were co-inoculated into Datura plants.  It is not 

uncommon for a single plant to be infected with more than one Tospovirus.  Infection with more 

than one virus may have a synergistic effect, worsening symptoms, or may provide an avenue for 

genetic recombination and emergence of new viruses.  Symptoms were more severe, and the 

Datura plants died earlier when infected with both TSWV and IYSV.  They attributed the effect 

to the systemic expression of the IYSV NSs gene in addition to the TSWV NSs gene, which 

likely acted as an additional suppressor of RNA silencing. 

 Further support of the NSs protein acting as an RNA silencing suppressor comes from 

Hafez et al. (46) who found some changes in gene expression in leek in response to infection 

with IYSV.  Proteins involved with plant response to pathogens including mitogen-activated 

protein kinase, pathogenesis-related protein, and serine/threonine-protein kinase, were up-

regulated.  They also found that the alpha-tubulin suppressor-like protein was down regulated.  
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This is interesting and supports the idea that the NSs suppresses the manufacture of the alpha-

tubulin suppressor protein, allowing the NSm protein to form tubules (101). 

 Through cloning and expressing the S RNA vc-sense ORF in E. coli, Cortes et al. (21) 

were able to confirm that the nucleoprotein (N protein) is encoded by this RNA segment. 

 The exact function of the NSm is unknown, but Silva at al. (88) propose several 

possibilities including interaction with plasmodesmata proteins, the viral N proteins, or the viral 

RNA.  Studies of the NSm proteins of other plant viruses revealed that the protein is expressed 

early, alters plasmodesmata, and forms tubules, all of which suggest this protein facilitates viral 

cell to cell movement (101). 

 Tospoviral glycoproteins contain hydrophobic regions that anchor them in the viral 

membrane.  Glycoproteins may be involved with virion assembly or with host cell membrane 

interactions (101).  The specific functions of the IYSV G1 (Gn) and G2 (Gc) glycoproteins are 

still unknown, but sequence homology with TSWV and several animal infecting Bunyaviruses 

suggests that G1 (Gn) may bind to the insect midgut (22).  The two glycoproteins associated with 

TSWV were shown binding the virion to the thrips midgut and fusing the viral and host cell 

membranes (101).  It would not be unreasonable for the IYSV glycoproteins to function in a 

similar manner. 

 

IYSV replication 

 The specific details of IYSV replication are not known, but IYSV replication is likely 

similar to the replication process of other tospoviruses.  The general replication process of a 

tospovirus begins with virion attachment to a host cell.  The RNA genome enters the cell and 

becomes uncoated.  The RdRp transcribes mRNA which is translated by the host cell’s 
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ribosomes.  RNA strands complimentary to the original viral genomic RNA are synthesized and 

used as templates for genomic replication.  The new viral genomic RNA strands are coated with 

nucleoprotein, and the tripartite genome is enveloped with a host derived membrane (98). 

 Virus receptors have not yet been identified in thrips (101); however, tospovirus 

replication within thrips is thought to begin when the glycoproteins in the viral envelope bind 

and fuse with the host cell.  Upon membrane fusion the N protein enveloped RNA genome is 

released into the host cell’s cytoplasm where replication occurs (54, 101).  The TSWV RdRp 

removes the cap (‘cap-snatching’) and an additional 10 to 20 nt from host mRNA and attaches it 

to viral mRNA.  The host cell then recognizes the viral mRNA as its own and initiates translation 

(101). 

 Birithia et al. (11) found evidence of IYSV replication in T. tabaci by using direct 

antigen-coated ELISA to follow NSs protein accumulation over time.  They found greater 

absorbance over time which they associated with accumulation of the NSs protein.  They did not 

observe increases in absorbance in F. occidentalis or F. schultzei, or in any of the thrips that fed 

on healthy plants.  Non-structural proteins such as NSs are not present in virions, but are present 

during replication and movement. 

 

Emergence/Evolution 

 It is unclear how IYSV became a distinct Tospovirus species, but analysis of the 

nucleotide and amino acid sequences give clues as to how new viruses evolve.  The RdRp is 

error prone, and genomic reassortment can occur in plants infected with multiple viruses, thus 

contributing to genetic variability and driving evolution (101).  The approximately 60 amino acid 
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N-terminal sequence of the NSm protein is the most variable region among tospoviruses (22, 88) 

and this variability may be one of the determining factors of host range (22). 

 Phylogenetic analysis of the N and NSM proteins place IYSV in a group with a Eurasian 

origin.  GBNV (Groundnut bud necrosis virus) and WSMV (Watermelon silver mottle virus) are 

also in this group (88).  Sequence comparison of the RdRp among tospoviruses continues to 

group IYSV with tospoviruses of Eurasian origin (3).  Phylogenetic analysis of the N gene of 

IYSV isolates in Australia, group the Australian isolates with Japanese isolates (90).  The authors 

suggest the Australian and Japanese isolates share a common ancestor, and that IYSV did not 

originate in Australia. 

 Later analysis of 98 IYSV N gene sequences from isolates collected worldwide revealed 

temporal and spatial changes (56).  Most IYSV isolates fit into one of two genotypes: 

Netherlands (IYSVNL) or Brazil (IYSVBR).  Most of the IYSV isolates collected in North 

America and Europe fit best with the IYSVNL genotype, while isolates from Asia and Australia 

grouped with the IYSVBR genotype.  The percentage of isolates belonging to either genotype has 

shifted slightly from just over half belonging to the IYSVNL genotype prior to 2005, to just under 

half since then.  Recombination detection analysis suggests that IYSVBR may have evolved from 

IYSVNL. 

 

Detecting IYSV 

 IYSV can be detected by serological and molecular methods.  DAS-ELISA, reverse-

transcriptase PCR, and real time reverse transcriptase PCR methods have been described (73).  

The availability of IYSV sequences in GenBank allows any researcher to easily develop primers 

suitable for various PCR methods.  A DAS-ELISA kit, and an ImmunoStrip kit are commercially 
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available through Agdia, Inc. (Elkhart, IN).  Reduction of false positives can be reduced by 

following the modification to DAS-ELISA described by Gent et al. (42). 

 False negatives may also occur if the IYSV isolate is serologically distinct from those 

recognized by a given antibody (95), in which case detection of a conserved region by RT-PCR 

may be necessary to confirm a suspected infection. 

 

IYSV distribution in onion 

 IYSV is unevenly distributed throughout onion plants, but has been detected in each leaf 

in pre- and post-bulbing onions (14).  IYSV has not been detected in onion bulb, basal plate, or 

root samples by DAS-ELISA (14, 61).  Kritzman et al. (61) performed ELISA on eight onion 

leaves infected with IYSV and found the highest absorbance readings in the portion of the leaves 

closest to the bulb, which may indicate a higher concentration of virus particles in those samples 

relative to samples obtained toward the leaf tip. 

 

Mechanical inoculation 

 Reliable mechanical inoculation of IYSV into onion plants has not yet been achieved.  

Kritzman et al. (61) were able to detect IYSV by DAS-ELISA from onion plants that had been 

mechanically inoculated but the plants did not develop symptoms.  It is possible they were 

detecting the inoculum and not newly replicated virus.  Pozzer et al. (75) reported that although 

they did not observe symptoms on mechanically inoculated onion plants, they did observe 

symptoms on Nicotiana benthamiana after inoculation with an extract prepared from the 

mechanically inoculated asymptomatic onion plants.  This suggests either the inoculum remained 

infectious, or IYSV replicated within the onion plants without causing symptoms.  Beikzadeh et 
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al. (9) were also able to observe symptoms on indicator plants after mechanical inoculation with 

IYSV extracts, but did not observe symptoms on onion after attempting mechanical inoculation. 

 

Sources of IYSV inoculum 

 How IYSV arrives in new locations and persists in the environment is still under 

investigation.  There is evidence that IYSV and T. tabaci are transported in onion transplants 

(40).  IYSV may persist in volunteer onions.  Gent et al. (42) found IYSV in volunteer onions 

growing amidst other crops, but pointed out that it was unclear how IYSV arrived at the 

volunteers.  It is still unknown if IYSV overwinters in onion bulbs or if volunteer onions are 

infected by thrips.  Many of the additional plant hosts listed in Table 1.2 are common weeds 

found around onion fields and likely play a role in the persistence of thrips and IYSV in the 

environment.  Onion cull piles may be another source of inoculum as 35.7% of thrips collected 

from cull piles in Georgia were viruliferous (6).  More work needs to be done to determine if (or 

which) crops adjacent to onion fields influence and contribute to IYSV incidence (42). 

 

Thrips and IYSV in the field 

 Within a field, IYSV incidence is highest along edges and decreases toward the center of 

the field (42). du Toit and Pelter (31) also observed a higher incidence of IYSV at a field’s edge 

than in the center and proposed that thrips migrated from adjacent fields.  Secondary movement 

of thrips within the field is thought to be limited compared with thrips migration (31, 42). 

 Hsu et al. (52) found that thrips numbers were greater in transplanted onion fields than 

seeded onion fields early in the season, but later in the season thrips numbers were greater in 

seeded fields.  Thrips numbers were greater in fields harvested later in the season than earlier.  
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Whether the field was transplanted or seeded did not affect when IYSV was first detected or how 

the disease would develop, but IYSV incidence was greater in seeded fields.  IYSV incidence 

increased as the growing season progressed and was greater in fields harvested later in the 

season. 

 Bag et al. (6) developed antibodies against the NSs and were able to use them in a DAC-

ELISA assay to distinguish viruliferous thrips from thrips carrying non-replicating IYSV.  In 

thrips collected from fields in Hermiston, Oregon the greatest proportion of viruliferous thrips 

was found in mid-July.  Thrips samples from Georgia were also checked, and 58.9% of those 

collected from IYSV infected onion plants were viruliferous by this assay. 

 

IYSV and thrips management 

 Several strategies should be utilized to manage T. tabaci and IYSV.  Insecticides are 

typically used to suppress thrips populations in the hope that IYSV transmission will also be 

suppressed, however, thrips populations are prone to developing insecticide resistance (25).  

Schwartz et al. (83) found that a conventional insecticide treatment did not control thrips, but 

there was a reduction in thrips numbers when reduced-risk insecticides were used.  Conventional 

insecticide regimes may not be effective because thrips can continue to migrate from other crops; 

viruliferous thrips that escape the insecticide treatment can continue to infect plants; and thrips 

tend to congregate in tight spaces (such as the onion neck) inaccessible to insecticides (74).  The 

timing and order of the insecticides used can affect thrips numbers and onion yield (77).  In order 

to prevent thrips from becoming resistant to insecticides, it is recommended that no more than 

two applications of a particular chemistry be used in a season; growers may need to use several 

different insecticides with different modes of action throughout the season (77). Controlling 
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thrips late in the season to reduce the number that migrate into the field may prevent new 

introductions of IYSV to fields harvested later (52). 

 Cultural practices may also prevent or diminish the effects of onion thrips and IYSV (40).  

If transplants are used, they should be free of T. tabaci and IYSV.  If possible, seed producers 

should choose plants with shorter scapes, as shorter scapes are less likely to lodge than tall 

scapes when numerous lesions develop.  Volunteer onions should be removed and onions should 

not be planted in close proximity to other Allium species.  As of 2006, the role of weed control to 

manage IYSV was unknown, but it is generally advised that weeds be controlled.  Physically 

separating seed and bulb crops with large distances is also speculated to reduce the spread of 

IYSV, however, the appropriate separation distance is unknown.  Plant density may affect IYSV 

incidence, but this relationship may be cultivar dependent.  Thrips numbers often decrease on 

onion plants after a heavy rain, and overhead irrigation may provide a similar function, thus 

reducing thrips and IYSV incidence. 

 Although research on the relationship to onion plant stress and IYSV is lacking, it is 

advised that plant stress be minimized (40).  Shock et al. (87) found that IYSV symptoms were 

more severe and yield was lower on onion plants that received less than an optimal amount of 

water. 

 Buckland et al. (16) found an association of high rates of nitrogen fertilizer with high 

numbers of adult onion thrips.  They also found that when onions were planted following wheat, 

adult onion thrips were greater than if onions followed corn and attributed this to a lower 

nitrogen level in the soil following corn than wheat.  They were unable to find any factors that 

influenced the incidence of IYSV, but noted that incidence was low during the years the study 

was conducted.  They do suggest that planting onions after corn may be a better option than 
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planting onions after wheat.  Rotation of onions with nonhost crops may reduce the spread of 

IYSV, however, this is speculation (40). 

 Schwartz et al. (83) reported that applying straw mulch to a depth of 10 cm to onion beds 

reduced thrips numbers compared to onions grown on bare soil, however, the straw mulch did 

not appear to affect IYSV incidence.  Larentzaki et al. (62) found that straw mulch reduced the 

number of thrips larvae, but not adults, and suggested the mulch may impede thrips development 

within a field, but did not prevent adult migration from other fields.  The straw mulch did allow 

delayed insecticide application. 

 If harvest dates are to be staggered, it may be best to place some distance between fields 

to prevent thrips from migrating between harvested and unharvested fields (52).  An appropriate 

distance between fields that would prevent thrips migration is yet to be determined. 

 Strategies used to manage other tospoviruses have included: planting non-host barriers 

between crops; planting up wind of the inoculum source; adjusting agronomic practices; and 

planting resistant cultivars (74).  Onion cultivars resistant to IYSV are not available. 

 

Resistance 

 While there is as yet no evidence of resistance to IYSV, some cultivars appear less 

susceptible than others.  IYSV incidence differed in cultivars Granero and Sterling planted 

adjacent to each other (42).  Cultivar trials conducted in Washington showed IYSV incidence 

differed among 46 onion cultivars, but each cultivar was susceptible (31).  In cultivar trials 

conducted by Shock et al. (86), all cultivars were susceptible to IYSV, but some differences in 

response, such as incidence and yield, were noted. 



26 

 Onion cultivars that are resistant to onion thrips are not necessarily resistant to IYSV 

(30).  Resistant cultivars tend to support fewer thrips larvae than susceptible plants. Diaz-

Montano et al. (29) identified several onion cultivars resistant to onion thrips, but the same 

cultivars were not resistant to IYSV.  A yellow-green leaf color was associated with resistance to 

onion thrips.  In the absence of IYSV, onion plants exhibiting resistance to thrips were still 

impacted as plant height and fresh plant weight were reduced in all but one cultivar.  Despite 

lower thrips numbers on the resistant cultivars, it appeared that the thrips still caused enough leaf 

damage to negatively impact the plants. 

 

Objectives 

 The objectives of this work were to investigate onion seed as a potential source of IYSV 

inoculum, to identify additional host plants that may play a role in IYSV survival over the 

winter, and to develop a quantitative real time PCR assay to make comparisons about the amount 

of IYSV present in a sample.  The presence of IYSV in onion seed is examined in Chapter 2. In 

Chapter 3 onion cull piles were monitored and several plant species examined as potential 

overwintering sites of IYSV and Thrips tabaci.  Chapter 4 describes the development of a real 

time quantitative reverse transcriptase PCR.  The relative amount of IYSV between two onion 

cultivars was compared, and IYSV distribution in onion leaves described.  Appendices 1 to 3 

describe work supportive to developing the methods used in Chapters 2 and 3.  Appendix 4 

includes observations regarding volunteer onions, onion thrips, and IYSV.  Appendix 5 is a 

report on the use of thrips lures in a field setting, and Appendix 6 investigates the use of reverse 

transcription-loop mediated isothermal amplification as a potentially new IYSV diagnostic tool. 
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CHAPTER TWO: IRIS YELLOW SPOT VIRUS PRESENCE IN ONION SEED 

 

 

 

Introduction 

 When Iris yellow spot virus (IYSV) was first described, it was shown to be transmitted by 

Thrips tabaci (4).  Since that time it has been observed that IYSV can be introduced via onion 

transplants (or viruliferous T. tabaci on the transplants), (7) and persist in volunteer onions (8), 

cull piles (9), and weeds (19).  Onion seed was not expected to be a source of inoculum. 

Tospoviruses are generally not known to be seed transmitted; however, seed transmission 

of a Tospovirus is listed in some publications (10, 14, 20).  In 2001, Kritzman (13) tested 535 

onion seedlings grown from seed obtained from infected onion plants and found that none of the 

8 week old plants displayed IYSV symptoms or tested positive by ELISA.  It was concluded that 

IYSV is not seed transmitted.  At the time the following study was conducted, this was the only 

published account of testing onion seed for IYSV transmission that this author was aware of.  

Since then, Bulajic et al. (3) reported that they found no evidence of IYSV transmission by seed 

in 5,000 onion seedlings grown from infected plants.  Neither author stated how many, or which 

cultivars were used in their seed grow outs. 

 The published accounts of a seed transmitted Tospovirus, the small sample size tested by 

Kritzman (13), personal observation that seeds could yield a positive result in a DAS-ELISA test 

for IYSV, and detection of IYSV in onion flowers suggested that further investigation of the 

possibility of IYSV being seed transmitted was prudent.  The objectives of this study were to i) 

investigate the results of Kritzman (13) by testing a greater number of seeds from several 

cultivars of onion for the presence of IYSV in seed and evidence of transmission to the new 

plant, and ii) to determine the location of IYSV within the seed. 
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Materials and Methods 

Collection of onion seed 

 Onion seed was collected from three cultivars in 2010 and from seven cultivars in 2011 at 

the CSU Agricultural Research Development and Education Center (ARDEC) near Fort Collins, 

Colorado.  In 2010, umbels and scapes were collected from IYSV symptomatic and non-

symptomatic onion plants that had bolted (Table 2.1).  In 2011, umbels and scapes were 

collected only from IYSV symptomatic plants that had bolted (Table 2.1).  Red, yellow, and 

white cultivars were represented each year.  The goal was to select enough umbels and scapes to 

have sufficient seed to grow out from at least ten IYSV infected plants per cultivar per year.  The 

number of umbels and scapes collected per cultivar varied as the number of bolted onions was 

not equal among cultivars in both years.  With the exception of some Red Defender volunteers, 

the cultivars selected in 2010 were unavailable in 2011.  The diameter of each umbel was 

measured, as was the diameter of each scape 1, 5, and 10 cm from the base of the umbel.  Seeds 

were separated from each umbel, counted, and weighed, and the remaining chaff from each 

umbel was weighed.  These measurements were taken to make comparisons between IYSV 

infected and uninfected onion scapes and seed; however, these comparisons were not feasible as 

IYSV was detected in the majority of non-symptomatic plants.  Scapes were tested for IYSV by 

DAS-ELISA using commercially available antisera (Agdia, Inc., Elkhart, IN).  Seed, chaff, and 

scapes were stored in the lab until use. 

 In addition, an umbel from a symptomatic onion plant (cultivar unknown) was collected 

from CSU-ARDEC in August 2011 and taken to the lab for IYSV detection by RT-PCR.  Thrips 

were removed from the flowers and collected in a 1.5 ml microcentrifuge tube.  Ten florets were 

dissected into pedicels, petals, anthers, and fruits.  Each part was pooled and stored in groups of 
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five in 1.5 ml microcentrifuge tubes.  Two 0.1 g samples from the scape were excised and placed 

in 1.5 ml microcentrifuge tubes.  All samples were stored at -80°C until further use. 

 

Selection of seed for grow-out  

 Of the plants collected in 2010, scapes from ten umbels containing the most seed of each 

cultivar were tested for IYSV by DAS-ELISA (Table 2.1).  The intention was to compare seed 

from infected and uninfected plants; however, this was not feasible as IYSV was detected in the 

majority of non-symptomatic plants.  Scapes that tested negative for IYSV may have been 

infected at a different location.  In the end, seed from thirty symptomatic plants (ten umbels from 

each of three cultivars) was chosen regardless of the DAS-ELISA result.   

 Each scape collected in 2011 was tested for IYSV by DAS-ELISA.  If a scape was 

positive, and sufficient seed was available from the associated umbel, that single plant seed 

source was used in the subsequent grow-outs.  Seed from twenty-nine plants (from five cultivars) 

was selected for growing out (Table 2.1).  Commercially produced seed from cultivar Tequila 

(dpSeeds, Yuma, AZ) was used as a presumptive uninfected control in each grow-out.  A seed 

lot consisted of seed collected from a single umbel.  Designations given to seed lots from 

selected umbels are listed in Table 2.1. 
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Table 2.1.  Onion cultivars collected from the field in 2010 and 2011, DAS-ELISA results, number of umbels 

selected for grow-outs, and seed lot source designations. 

Cultivar  
 

 

2010 

Number of umbels/ 

scapes collected 

Number of IYSV 

positive scapes 

Number of umbels 

selected for grow 

out 

Seed lot source 

designations of 

selected umbels 

Pentium 

(symptomatic) 

34 10 of 10 10 P1, P2, P3, P7, P10, 

P20, P24, P25, P27, 

P30 
Pentium (non-

symptomatic) 

 

16 6 of 10 0  

Red Defender 

(symptomatic) 

24 10 of 10 10 RD3, RD5, RD9, 

RD11, RD12, RD13, 

RD15, RD16, RD21, 

RD22 
Red Defender (non-

symptomatic) 

 

15 7 of 10 0  

Solid Gold 

(symptomatic) 

17 8 of 10 10 SG1, SG4, SG5, 

SG6, SG8, SG9, 

SG13, SG15, SG16, 

SG17 
Solid Gold (non-

symptomatic) 

15 6 of 10 0  

 

2011 

 

Granero 25 19 of 25 10 G1, G7, G11, G12,  

G13, G17, G18, 

G19,  G20, G25 
Irish Eyes 

 

5 0 of 5 0  

Red Defender, 2011 

volunteers 

 

13 3 of 13 2 RD’1, RD’11 

Red, unknown 

cultivar 

 

22 4 of 22 0  

Salsa 14 12 of 14 6 S1, S7, S11, S12, 

S13, S14 

 
White Cloud 

 

17 5 of 17 1 WC13 

White, unknown 

cultivar 

27 16 of 30 10 W8, W9, W12, W15, 

W17, W19, W20, 

W21, W24, W28 
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Greenhouse grow-outs 

Sixty seeds from each selected lot of Solid Gold, Pentium, and Red Defender were 

divided among three petri dishes (20 seeds per dish).  Seeds were surface-disinfested in a 10% 

bleach solution then rinsed in distilled water before placement on moist filter paper in petri 

dishes.  The dishes were held at 18°C in a dark incubator.  Water was added as needed to keep 

the filter paper moist.  Once an emerging radicle reached 2 cm long, it was transplanted into a 

3.79 liter pot in the greenhouse and marked with a colored toothpick denoting the planting date.  

Pots contained Pro-Mix BX with biofungicide potting soil (Premier Horticulture, Québec, 

Canada).  Seedlings were best handled with blunt featherweight forceps (BioQuip Products, 

Rancho Dominguez, CA).  Germinated seeds were randomly assigned to pots by drawing a 

colored token from a pocket.  Ten germinated seeds were planted into each of their designated 

pots for a total of 30 seeds per lot (300 seeds per cultivar). Only ten seeds of the Tequila cultivar 

were planted in each block. 

Pots were arranged along a greenhouse bench in 10 blocks of 10 pots per block (100 pots 

total).  One seed lot from each of the three cultivars was randomly assigned to each block.  

Within each block, three pots for each seed lot were randomly placed.  The tenth pot (also 

randomly placed) was planted with Tequila seed (control).  For example, during the first grow-

out block one contained three pots of SG13, three pots of RD3, three pots of P2, and one pot of 

Tequila seed.    Randomization was conducted by a list randomizer 

(http://www.random.org/lists/). 

Plastic and mesh cylinders designed to exclude thrips were placed inside the pots (Figure 

2.1).  In later experiments, plastic wrap was taped over the intersection of the cylinder and pot in 

an additional effort to exclude thrips.  Plants were immediately measured, pulled from the soil, 
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and prepared for DAS-ELISA when it was apparent that thrips had breached the barriers.  This 

experiment was performed twice. 

 
Figure 2.1.  Example of thrips exclusion cylinders placed inside pots. 

 

Laboratory growth chamber grow-outs 

 Solid Gold, Pentium, and Red Defender seeds collected in 2010 were grown-out once in 

an 818 Low Temperature Illuminated Incubator (Thermo Electron Corp., Marietta, OH), and 

seed collected in 2011 was grown out twice in the same incubator.  Seeds were germinated as for 

the greenhouse grow-outs, however, because fungal growth continued to occur on the 

germinating seeds, surface disinfestation with bleach was eventually abandoned in favor of 

rolling the seeds in fungicide (Prevail
® 

K, Gustafson, McKinney, TX) before placing them on 

moist filter paper.  When radicles reached 2 cm, seeds were randomly assigned to and planted 

into 12.7 cm pots (size limitations of growth chamber) and marked with a colored toothpick.  
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Plants were grown for 6 weeks after which time they were pulled from the soil, measured for 

length, and prepared for DAS-ELISA. 

 A similar random block design was used for the growth chamber as in the greenhouse.  

However, due to the limited size of the growth chamber, only 5 blocks could be grown at one 

time.  In addition, seed lots were randomly assigned to blocks regardless of cultivar.  For 

example, a single block may have contained two seed lots from cultivar Granero and one from 

cultivar Salsa.  Instead of arranging pots horizontally along a greenhouse bench, pots were 

arranged in groups of 10 vertically in the growth chamber (10 pots per shelf). 

 Seedlings did not appear to thrive in the incubator.  Subsequently, lighting in the 

incubator was supplemented with five, T5 High Performance grow lights fitted with warm 

spectrum bulbs (Hydrofarm, Petaluma, CA).  Small dishes were placed under each pot to allow 

water to drain from the pots and not spill onto the growth chamber.  Pots were watered as needed 

to maintain soil moisture.  The incubator was programmed for a 16h light and 28°C (day), and 8h 

dark and 18°C (night) cycle. 

 

DAS-ELISA 

 Double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISA) were 

performed according to the manufacturer’s (Agdia, Inc., Elkhart, IN) instructions with the 

following modifications.  Plant tissue was ground in liquid nitrogen as described by Gent et al. 

(8).  A 0.2 g sample of plant tissue was typically used with 1.0 ml extraction buffer.  The first 

four PBST (phosphate buffered saline + tween) rinses were short (<10 seconds) followed by a 

longer rinse that remained in the plate for 5 minutes.  Samples were considered positive if they 
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measured 2X the background absorbance using an ELx800 Universal Microplate Reader (Bio-

Tek Insruments, Inc., Winooski, VT). 

 Dry scape tissue was not weighed, instead 2.0 cm segments were cut from each end of the 

scape and from the bulge, then ground in liquid nitrogen before adding 2.0 ml extraction buffer.  

If the dry tissue absorbed all the extraction buffer, an additional 0.5 ml extraction buffer was 

added such that 100 µl could be transferred to the plate. 

 Typically, any leftover germinated seeds were divided among three mortars for grinding 

and 1.0 ml extraction buffer was added. 

Plants harvested from pots were pooled by seed lot and leaves were cut into small 

segments.  Three, 0.2 g samples of pooled leaf tissue were tested for each lot.  In the event that 

insufficient plant material was available, all available plant material was tested. 

 

Selection of seed for shoot vs coat testing  

 Germinated seeds that had been positive by DAS-ELISA where at least three lots were 

available per cultivar and the cultivars were known were selected for this study.  Thus, three lots 

each of Granero, Pentium, Red Defender (2010), and Salsa were included. 

 

Growing the shoots, collecting shoots and coats 

 Seeds were sprouted on moist filter paper as in the grow outs until 50 seeds per lot could 

be processed and tested.  Shoots were pulled from seed coats.  Longer shoots tended to pull 

easily from the seed coat, but shorter shoots tended to break.  In that case the seed was broken 

open and shoot tissue was scraped out with forceps.  Shoots and seed coats were pooled 

separately in groups of five, weighed, and labeled such that pools of seed coats could be matched 
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to their corresponding pools of shoots.  Samples were stored at -80°C until use.  For any lot 

where IYSV was detected, an additional 50 seeds were sprouted and tested (up to 100 seeds were 

tested for an individual lot). 

 

RNA extraction and cDNA synthesis 

 Total RNA was extracted using the Spectrum Plant Total RNA kit (Sigma-Aldrich, St. 

Louis, MO) with the 750 µl binding solution option according to the manufacturer’s instructions.  

Total RNA was measured with a NanoDrop 1000 (Thermo Scientific, Waltham, MA).  Aliquots 

of RNA were treated with DNase I according to the manufacturer’s instructions (Fermentas, 

Glen Burnie, MD).  cDNA was synthesized from total RNA using M-MLV reverse-transcriptase 

according to the manufacturer's instructions for use with random primers (Invitrogen, Carlsbad, 

CA).  No more than 1.0 μg total RNA was used in each 20 μl reaction. When possible, cDNA 

was brought to a final concentration of 10 ng/μl before use in PCR. 

 

RT-PCR Conditions 

 Reverse-transcriptase PCR (RT-PCR) reactions were performed on a MJ Research PTC-

200 thermocycler with an initial step of 94° C for 3 min; followed by 40 repeats of the three step 

sequence of 94° C for 45 sec, 55° C for 30 sec, 72° C for 90 sec; and a final step of 72° C for 10 

min.  Each 20 μl reaction consisted of 20 mM Tris-HCl pH 8.4, 50 mM KCl, 3 mM MgCl2, 0.15 

mM dNTP mix, 1 unit Taq DNA polymerase (New England Biolabs, Ipswich, MA), 20 ng 

cDNA and autoclaved distilled water.  RT-PCR was conducted for each sample to confirm the 

presence or absence of IYSV.  The IYSV nucleoprotein gene was amplified by RT-PCR with 

primers designed by Coutts et al. (5) , and primers specific to plant NADH dehydrogenase ND2 
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subunit (21) were used as a control.  Reaction products were run in a 1% agarose gel (Bio-Rad 

Laboratories, Inc., Hercules, CA) stained with SYBRSafe (Invitrogen, Carlsbad, CA) in 1X TAE 

buffer (Bio-Rad Laboratories, Inc., Hercules, CA) exposed to UV light.  A 100 bp molecular 

weight marker (Fermentas, Glen Burnie, MD) was included on each gel. 

 

Results 

Scape testing 

 Of the 186 scapes that were tested, IYSV was detected in 106 of them (Table 2.1).  Due 

to the uneven distribution of IYSV and over half the non-symptomatic plants testing positive for 

IYSV, it was possible that IYSV could have been present in the plants that had a negative result.  

For these reasons non-symptomatic Solid Gold, Pentium, and Red Defender were not included in 

the grow-outs, but all the tested symptomatic plants of these cultivars were included.  Not all 

scapes from the cultivars collected in 2011 tested positive for IYSV.  Only seed from scapes 

where IYSV was detected was used in the subsequent grow-outs. 

 

RT-PCR of flowers 

 IYSV was detected in all the flower parts tested, including the petals, pedicels, anthers, 

and developing seeds.  IYSV was also detected in the scape and in thrips removed from the 

flowers (Figure 2.2). 
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Figure 2.2.  RT-PCR of pedicels, petals, anthers, fruit, and thrips removed from an onion umbel.  The umbel was 

collected in 2011 from an unknown cultivar growing in the onion research field at CSU-ARDEC. IYSV was 

detected in each of the flower parts and in the thrips present on the flowers.  Odd numbered lanes: NAD2. Even 

numbered lanes: IYSV.  M: 100bp molecular weight marker.  Lanes 1 to 4 and 11 to 12: pedicels; lanes 5 and 6: 

anthers; lanes 7, 8, 13, and 14: fruit; lanes 9 and 10: petals; lanes 15 to 18: scape; lanes 19 and 20: thrips; lanes 21 

and 22: -RT. 

 

 

Greenhouse grow-outs 

 During each grow-out in the greenhouse, thrips managed to get through the barriers, thus 

forcing the early termination of the experiment.  Nearly 2,000 germinated seeds were planted, of 

which 1,736 survived to the point when they were harvested approximately three weeks after 

being transplanted into pots.  Nearly 300 of the surviving plants were infested with thrips, and 

the only plants that tested positive for IYSV by DAS-ELISA were among this group.  Of the 

thrips infested plants, IYSV was only detected in three plants of cultivar Pentium (seed lot P10) 

removed from the same pot, and a single plant of cultivar Tequila.  Because the three thrips 

infested Pentium plants were pooled for testing, it is not known what proportion of thrips 

infested plants was infected with IYSV; however, IYSV was detected in 2 of 69 thrips infested 

pots (approximately 3%).  IYSV was not detected in any plant that was not infested with thrips.  

 M   1    2     3    4    5    6    7    8    9   10  11 12 

 M  13  14 15  16  17  18  19  20  21 22 
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Although the thrips infestation curtailed the experiments by five weeks, it should be noted that 

onion seedlings can be infected by IYSV by the time they are 21 days old. 

 

Lab grow-outs 

 Of the 2,545 germinated seeds planted into the growth chamber a total of 1,400 survived.  

Thrips did not infiltrate this portion of the experiment.  No plant tested positive for IYSV by 

DAS-ELISA. 

 

DAS-ELISA on sprouted seeds 

 Germinated seeds leftover from the greenhouse and laboratory grow-outs were tested by 

DAS-ELISA and IYSV was detected in some seed lots (Table 2.3).  Three lots each of Granero, 

Pentium, Red Defender, and Salsa were selected for further investigation. 

Table 2.3.  Seed lots that tested positive for IYSV by DAS-ELISA. Italics: lots selected for further study. 

Granero (2011) Solid Gold (2010) 

     G7, G12, G19, G20      SG8, SG9 

Pentium (2010) White Cloud (2011) 

     P2, P3, P10, P30      WC13 

Red Defender (2010) White, unknown cultivar (2011) 

     RD3, RD12, RD21      W8, W9, W19 

Salsa (2011)  

     S1, S13, S14  

 

Shoots vs. seed coats 

 With one exception, IYSV was not detected in any of the 940 shoots, however, IYSV was 

detected in 53 pools of seed coats (Table 2.4).  Real-time PCR was performed on the shoot 

sample that appeared to be infected with IYSV, however, no amplification occurred and this 

sample was considered negative for IYSV.  Germination of RD21 was poor, and the lot ran out 

of seeds before reaching 50 germinated seeds. 
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 The number of positive pools of seed coats was not equal between reps, or between 

cultivars.  IYSV was detected with the greatest frequency in the seed coats of Granero, followed 

by Pentium, Salsa, and Red Defender.  The weight of the pooled shoots ranged from 0.1 g to 

0.004 g, and the weight of the pooled seed coats ranged from 0.032 g to 0.009 g.  There was no 

apparent relationship between the weight of the pooled shoots and their IYSV status, or between 

the weight of the pooled seed coats and their IYSV status (Table 2.4). 
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Table 2.4.  Weight and RT-PCR result of onion shoots and their corresponding seed coats.  Each samples consists of 

a pool of five shoots or seed coats.  A second rep was conducted if IYSV was detected.  IYSV detected: + , IYSV 

not detected: - . 

Seed lot P2 

Rep 1 Rep 2 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

1 0.059 11 0.020 -/- 1 0.066 11 0.021 -/- 

2 0.045 12 0.021 -/- 2 0.046 12 0.024 -/- 

3 0.050 13 0.020 -/- 3 0.054 13 0.022 -/- 

4 0.054 14 0.022 -/- 4 0.078 14 0.017 -/+ 

5 0.034 15 0.026 -/- 5 0.061 15 0.015 -/- 

6 0.077 16 0.015 -/+ 6 0.092 16 0.015 -/- 

7 0.071 17 0.015 -/+ 7 0.057 17 0.018 -/- 

8 0.063 18 0.019 -/- 8 0.060 18 0.023 -/- 

9 0.028 19 0.025 -/- 9 0.044 19 0.023 -/- 

10 0.018 20 0.020 -/- 10 0.034 20 0.028 -/- 

Seed lot P3 

Rep 1 Rep 2 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

1 0.100 11 0.020 -/- 1 0.043 11 0.015 -/- 

2 0.093 12 0.018 -/+ 2 0.031 12 0.019 -/+ 

3 0.074 13 0.018 -/+ 3 0.049 13 0.016 -/- 

4 0.063 14 0.022 -/+ 4 0.051 14 0.015 -/+ 

5 0.073 15 0.016 -/+ 5 0.019 15 0.022 -/+ 

6 0.067 16 0.017 -/- 6 0.036 16 0.017 -/- 

7 0.046 17 0.024 -/- 7 0.032 17 0.023 -/- 

8 0.088 18 0.017 -/+ 8 0.028 18 0.024 -/+ 

9 0.058 19 0.015 -/+ 9 0.023 19 0.026 -/- 

10 0.052 20 0.016 -/- 10 0.017 20 0.032 -/- 

Seed lot P30 

Rep 1 Rep 2 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

1 0.051 11 0.015 -/- 1 0.066 11 0.015 -/- 

2 0.058 12 0.016 -/- 2 0.075 12 0.014 -/- 

3 0.058 13 0.014 -/+ 3 0.047 13 0.012 -/- 

4 0.044 14 0.014 -/+ 4 0.060 14 0.010 -/- 

5 0.068 15 0.014 -/- 5 0.058 15 0.012 -/- 

6 0.047 16 0.011 -/+ 6 0.044 16 0.012 -/- 

7 0.040 17 0.017 -/+ 7 0.048 17 0.012 -/- 

8 0.025 18 0.013 -/- 8 0.034 18 0.013 -/- 

9 0.032 19 0.013 -/- 9 0.023 19 0.014 -/- 

10 0.047 20 0.012 -/- 10 0.024 20 0.016 -/- 
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Table 2.4.  Continued 

Seed lot RD3 

Rep 1 Rep 2 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

1 0.051 11 0.016 -/+ 1 0.037 11 0.020 -/- 

2 0.067 12 0.013 -/+ 2 0.047 12 0.016 -/- 

3 0.052 13 0.018 -/+ 3 0.046 13 0.020 -/- 

4 0.067 14 0.013 -/- 4 0.066 14 0.018 -/- 

5 0.023 15 0.013 -/+ 5 0.063 15 0.016 -/- 

6 0.049 16 0.015 -/+ 6 0.027 16 0.024 -/- 

7 0.051 17 0.015 -/+ 7 0.030 17 0.018 -/- 

8 0.047 18 0.015 -/- 8 0.030 18 0.019 -/- 

9 0.035 19 0.019 -/- 9 0.019 19 0.022 -/+ 

10 0.033 20 0.019 -/- 10 0.017 20 0.022 -/- 

Seed lot RD12 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

     

1 0.054 11 0.018 -/-      

2 0.038 12 0.021 -/-      

3 0.032 13 0.023 -/-      

4 0.007 14 0.018 -/-      

5 0.013 15 0.016 -/-      

6 0.015 16 0.024 -/-      

7 0.004 17 0.024 -/-      

8 0.033 18 0.019 -/-      

9 - 19 -       

10 - 20 -       

Seed lot RD21 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

     

1 0.049 11 0.014 -/-      

2 0.047 12 0.017 -/-      

3 0.027 13 0.019 -/-      

4 0.037 14 0.020 -/-      

5 0.037 15 0.019 -/-      

6 0.052 16 0.013 -/-      

7 0.044 17 0.015 -/-      

8 0.031 18 0.018 -/-      

9 0.029 19 0.014 -/-      

10 0.020 20 0.011 -/-      
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Table 2.4.  Continued 

Seed lot S1 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

     

1 0.062 11 0.017 -/-      

2 0.027 12 0.016 -/-      

3 0.029 13 0.016 -/-      

4 0.016 14 0.017 -/-      

5 0.013 15 0.017 -/-      

6 0.007 16 0.010 -/-      

7 0.013 17 0.024 -/-      

8 0.004 18 0.024 -/-      

9 0.014 19 0.024 -/-      

10 0.013 20 0.029 -/-      

Seed lot S13 

Rep 1 Rep 2 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

1 0.045 11 0.024 -/- 1 0.083 11 0.011 -/- 

2 0.035 12 0.021 -/- 2 0.095 12 0.009 -/+ 

3 0.038 13 0.019 -/- 3 0.063 13 0.014 -/+ 

4 0.027 14 0.019 -/- 4 0.062 14 0.016 -/+ 

5 0.021 15 0.013 -/- 5 0.047 15 0.011 -/+ 

6 0.015 16 0.013 -/- 6 0.074 16 0.013 -/+ 

7 0.018 17 0.013 -/- 7 0.065 17 0.014 -/+ 

8 0.014 18 0.016 -/- 8 0.082 18 0.013 -/+ 

9 0.041 19 0.013 -/- 9 0.049 19 0.012 -/+ 

10 0.032 20 0.018 -/+ 10 0.047 20 0.015 -/+ 

Seed lot S14 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

     

1 0.042 11 0.017 -/-      

2 0.044 12 0.021 -/-      

3 0.066 13 0.022 -/-      

4 0.078 14 0.011 -/-      

5 0.053 15 0.015 -/-      

6 0.016 16 0.016 -/-      

7 0.013 17 0.012 -/-      

8 0.016 18 0.013 -/-      

9 0.010 19 0.022 -/-      

10 0.010 20 0.019 -/-      
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Table 2.4.  Continued 

Seed lot G12 

Rep 1 Rep 2 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

1 0.050 11 0.020 -/- 1 0.075 11 0.015 -/+ 

2 0.028 12 0.018 -/- 2 0.062 12 0.015 -/+ 

3 0.035 13 0.022 -/- 3 0.047 13 0.013 -/- 

4 0.017 14 0.019 -/- 4 0.079 14 0.012 -/+ 

5 0.009 15 0.021 -/- 5 0.087 15 0.016 -/+ 

6 0.055 16 0.014 -/- 6 0.061 16 0.014 -/- 

7 0.037 17 0.015 -/+ 7 0.067 17 0.019 -/+ 

8 0.026 18 0.016 -/- 8 0.065 18 0.019 -/- 

9 0.018 19 0.016 -/- 9 0.051 19 0.014 -/- 

10 0.018 20 0.027 -/- 10 0.043 20 0.016 -/+ 

Seed lot G19 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

     

1 0.042 11 0.018 -/-      

2 0.038 12 0.018 -/-      

3 0.032 13 0.015 -/-      

4 0.027 14 0.013 -/-      

5 0.023 15 0.019 -/-      

6 0.031 16 0.021 -/-      

7 0.017 17 0.012 -/-      

8 0.013 18 0.017 -/-      

9 0.050 19 0.012 -/-      

10 0.052 20 0.012 -/-      

Seed lot G20 

Rep 1 Rep 2 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

Sample Shoot 

weight 

(g) 

Sample Coat 

Weight 

(g) 

RT-PCR 

result 

Shoot/Coat 

1 0.040 11 0.017 -/- 1 0.050 11 0.020 -/+ 

2 0.027 12 0.017 -/- 2 0.044 12 0.019 -/+ 

3 0.016 13 0.014 -/- 3 0.048 13 0.025 -/+ 

4 0.013 14 0.013 -/- 4 0.043 14 0.018 -/+ 

5 0.026 15 0.022 -/- 5 0.073 15 0.015 -/+ 

6 0.020 16 0.013 -/- 6 0.058 16 0.012 -/+ 

7 0.042 17 0.021 -/- 7 0.048 17 0.015 -/+ 

8 0.031 18 0.018 -/+ 8 0.030 18 0.012 -/+ 

9 0.014 19 0.022 -/- 9 0.034 19 0.010 -/+ 

10 0.013 20 0.020 -/+ 10 0.029 20 0.018 -/+ 
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Discussion 

 Nearly 3,000 onion plants that were grown from seed collected from IYSV infected 

plants and not infested with thrips during the grow-outs were tested and did not have IYSV 

present.  Nearly 1,000 onion shoots germinated from seed collected from IYSV infected plants 

were tested and likewise did not have IYSV present. 

The reports of seed transmission of a Tospovirus, occasionally specified as Tomato 

spotted wilt virus (TSWV), present in the literature (10, 14, 20) all seem to be based on the 

findings of Jones (12), which Crowley (6) was unable to replicate.  Errors in methodology were 

pointed out by Baker and Smith (1).  Jones (12) did grow out seed, and the resulting plants 

displayed symptoms of what they suspected to be a virus.  They concluded that this virus was 

seed transmitted, but did note that thrips were not controlled and that this virus could be 

transmitted by thrips.  As the insect vector was not controlled during the seed grow-out 

experiments, the conclusion that the virus suspected of being TSWV is seed transmitted is not 

supported.  To date there is still no evidence that Tospoviruses can be seed transmitted. 

 In this study, IYSV was only detected in plants that had been infested with thrips.  In the 

absence of thrips, no plant from the grow-outs tested positive.  The most reasonable explanation 

of these results is that thrips transmitted IYSV to those plants in which IYSV was subsequently 

detected, and that IYSV is not apparently transmitted through onion seed.  The results presented 

here confirm those of Kritzman et al. (13) and Bulajik et al. (3). 

 It is not possible to prove absolutely that IYSV is not seed transmitted without testing all 

seeds.  The lower the level of infection, the larger the sample size needs to be in order to 

maximize the probability of detecting a lower incidence of infected seed.  Conversely, a large 

sample size where the pathogen is not detected indicates a low level of infection if the pathogen 
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in question is actually seed transmitted (17).  If all the seeds tested in this work (3,949) were 

considered to be a single lot and none were positive, the level of infection (if it existed) would be 

less than 0.001 (Table 4 in (17)).  The results of Bulajic et al. (3) who grew 5,000 onion plants 

from seed collected from IYSV infected plants and found no evidence of IYSV in the 10 week 

old seedlings further supports a low level of infection, in the unlikely event that infection exists. 

 When we consider the results of the seed coats separated from their shoots, it appears 

even less likely that IYSV is transmitted through seed as IYSV was not detected in shoots 

corresponding to seed coats where IYSV was detected.  A similar result was observed by 

Crowley (6) who dissected tomato and cineraria seeds and found  TSWV in seed coats but not 

embryos.  Since the seed coat is formed from the sporophyte, it is reasonable to conclude that 

seed coats from a virus infected plant would also contain that virus, especially considering that 

IYSV was detected in various onion flower parts (Figure 2.2).  When removing the shoots from 

the seed coats it was not always possible to separate the endosperm from the seed coat.  It is 

possible that IYSV is present in the endosperm, but the endosperm is unlikely to become infected 

unless the gametes in the pollen are infected (1). 

 It is extremely rare for a virus to be transferred from the seed coat or endosperm into the 

new plant.  In the few cases where this does occur, the virus is stable outside the host and is 

transmitted mechanically as the plant grows (11).  It is unlikely that this occurs with IYSV and 

onion as mechanical transmission of IYSV into onion is extremely difficult (2, 13, 16). 

 This work underscores the importance of knowing where in the seed a virus is located.  

That is, if only whole seeds had been tested, the conclusion that IYSV is seed transmitted could 

have been made.  However, separating the plant from the seed coat in combination with grow-

outs shows that while IYSV may be present in the seed, it is not present in the new plant.  
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CHAPTER 3: IRIS YELLOW SPOT VIRUS AND THRIPS TABACI OVERWINTER 

SURVIVAL IN COLORADO 

 

 

Introduction 

 Iris yellow spot virus (IYSV) is vectored by onion thrips, Thrips tabaci, and both can 

cause significant damage to onion crops (4).  To date there is no evidence of seed transmission 

((14, 22) and Chapter 2).  IYSV and T. tabaci can be introduced into a field via onion transplants 

(12, 24), however, it is still unclear how IYSV persists between growing seasons over the winter 

months when onions are not present. 

 Several non-allium plant species have been reported as additional hosts of IYSV and are 

summarized by Smith et al. (26).  Recent studies investigating non-allium plants as suitable hosts 

for IYSV or onion thrips have focused on either IYSV (12) or thrips (26), and have been 

conducted immediately before and after the onion growing season.  There are few studies 

published regarding the overwintering habits of T. tabaci that include field sampling in the 

winter months and those that do exist tend to focus on crop plants.  Onion thrips were recovered 

from alfalfa, clover, grass sod, and onion during the winter from 1945 to 1950 in southern Idaho 

(25).  During the winters of 1952 and 1953, onion thrips were found on red clover, alfalfa, winter 

wheat, and oat stubble in southwestern Ontario, Canada (2).  T. tabaci were found during the 

winter months of 1982 to 1984 in New York on wheat, alfalfa, oat, cabbage, barley, and weeds 

(20).  These studies established that onion thrips can overwinter on plant material in locations 

where winter temperatures often fall below freezing.  It does not appear that any surveys have 

attempted to connect onion thrips, IYSV, and non-allium host plants during the winter. 
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 After identifying additional host plants of IYSV, Hsu et al. (12) wondered if thrips would 

complete their life cycle on plants identified as IYSV hosts.  They point out that if adult T. tabaci 

were unable to oviposit on the plant, or if larvae were unable to acquire IYSV from the plant, the 

plant would not be a source of IYSV, and would be considered a “dead-end”.  This current work 

addresses that question by rearing thrips on six non-allium plants under greenhouse conditions 

and monitoring the IYSV status of the plants and thrips larvae developing on those plants. 

 The objectives of this study were to investigate T. tabaci and IYSV survival over the 

winter and evaluate a selection of weed species to better understand their role as potential IYSV 

and/or T. tabaci host plants.  

 

Materials and Methods 

 Thrips activity was monitored over two winters. Onion cull piles and weeds were 

investigated as sources of thrips, IYSV, or both.  Living thrips were located on several plant 

species and the IYSV status of both the plants and thrips was determined.  Finally, thrips were 

reared on a selection of the weed species identified during the study and both the plants and 

thrips larvae were evaluated for IYSV. 

 

Cull piles 

 Cull piles were located at CSU-ARDEC north of Fort Collins, CO where a research field 

planted with onions has been maintained annually since 1997.  The cull piles sampled from 

January to March 2011 were scattered throughout the onion research field, and consisted of 

remnants from unrelated experiments.  These piles varied in size, but were approximately 0.5 m
3
 

or smaller.  Five onions were removed from 5 to 6 piles each month and stored for 1-2 days at 
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4°C before they were examined.  Onions were sliced into quarters and visually examined for 

presence of thrips larvae and adults, layer by layer.  Thrips were removed with a paintbrush and 

preserved in 95% ethanol for later use.  If green neck tissue was present, each leaf was also 

visually examined for the presence of thrips.  Onions collected from cull piles in subsequent 

years were similarly stored and examined. 

 In March 2011, onions still standing in the field from the previous growing season were 

collected in addition to onions recovered from cull piles.  Live thrips collected from these onions 

and from cull piles were transferred to healthy onion plants in the greenhouse to determine if 

these thrips could transmit IYSV.  Thrips were left on these plants in isolation for one month at 

which time one leaf was removed from each pot of plants and tested for IYSV by DAS-ELISA 

(modified from (9)).  Symptomatic leaves were preferentially selected followed by leaves with 

the greatest amount of visible thrips damage.  Leaves were cut into 0.2 g sections and stored at -

80°C until DAS-ELISA was performed. 

In October 2011, three cull piles each 1.5 meter diameter by 0.9 meter high were 

constructed in the onion research field where the previous season’s onions remained until spring 

2012 (Figure 3.1).  Temperature probes (Watchdog data logger, Spectrum Technologies, Inc, 

Aurora, IL) were fastened to a pole 0, 10, 20, and 30 cm above the soil at the center of each pile.  

Temperatures were recorded hourly from October 2011 to February 2012.  Nine onions were 

collected from each pile (three each from the top, middle, and bottom) at the beginning of each 

month until February when the onions were too decayed to separate. 

In October 2012, three cull piles were constructed in the same manner as the piles of 

2011 to 2012, and were located in an empty field approximately 750 m northwest of the 2012 

onion research field.  Five onions were collected from the middle of each pile at the beginning of 
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each month through February when the onions were too decayed to sample.  Temperatures were 

recorded hourly from October 2012 to May 2013. 

 
Figure 3.1.  Onion cull piles constructed at CSU-ARDEC for the 2011 to 2012 winter.  Temperatures were 

monitored at 0, 10, 20, and 30 cm above the soil at the center of each pile.  Thrips activity was monitored with 

yellow sticky traps. 

 

Thrips activity 

 Thrips activity was monitored with 23 x 28 cm yellow sticky traps stapled to stakes about 

1.2 m off the ground from November 2011 to June 2012 and from October 2012 to June 2013.  

In 2011 to 2012, the yellow sticky traps were initially placed near each cull pile, but were later 

transferred to each corner of the field when the cull piles were transferred for field preparation 

and planting.  In 2012 to 2013 yellow sticky traps were placed at each corner of the field.  Traps 

were collected and replaced at approximately two week intervals.  Thrips were counted in the lab 

and averaged over the number of traps that were counted.  Traps were occasionally blown away 

by strong winds, and often partially impacted and covered with dirt and debris.  Air temperatures 

(1.5 m above ground level) were retrieved from the nearby CoAgMet Hourly Data Access 

(http://www.coagmet.colostate.edu/hourlysum_form.php), site FTC03 – CSU – ARDEC. 
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Additional plant hosts 

 Eleven plant species typically considered as weeds were collected from the vicinity of 

onion fields from January to March 2012 and 2013 (Table 3.1).  Although each species is 

commonly found in the vicinity of onion fields, not all plants were available at each site during 

the collection period.  Occasionally, snow cover prevented collection at a particular site for a 

particular date. 

 

Table 3.1. Plant species collected and examined for thrips and IYSV during 2012 to 2013. 

Scientific name Common name Location
a
 and year collected 

Bromus inermis Leyss. Smooth brome ARDEC (2012) 

Chorispora tenella (Pall.) DC. Blue mustard Larimer, Weld (2013) 

Convolvulus arvensis L. Bindweed ARDEC, Hort Farm, Larimer (2012) 

Descurainia sophia (L.) Webb. 

Ex Prantl 

Flixweed ARDEC (2012, 2013), Hort Farm (2012), Weld 

(2013), Larimer (2013) 

Erodium cicutarium (L.) L’Her. 

Ex Ait. 

Redstem filaree ARDEC (2012) 

Helianthus sp. Sunflower ARDEC (2012) 

Lactuca serriola L. Prickly lettuce ARDEC (2012, 2013), Hort Farm (2012), Weld 

(2013) 

Malva neglecta Wallr. Common mallow ARDEC (2012, 2013), Hort Farm (2012) 

Taraxacum officinale Weber in 

Wiggers 

Dandelion ARDEC, Hort Farm, Larimer (2012) 

Tragopogon dubius Scop. Salsify ARDEC (2012), Larimer (2013) 

Triticum aestivum Winter wheat ARDEC (2012) 
a
ARDEC: CSU Agricultural Research and Development Center; Hort Farm: CSU Horticulture Research Farm; 

Larimer: Commerical onion field in Larimer County, Colorado; Weld: Commercial onion field in Weld County, 

Colorado 

 

 In 2012, a wide range of green plants was collected at ARDEC from January to March.  

Additional plants were collected in April, 2012 from the CSU Horticulture Research Farm (Hort 

Farm) approximately 11 km northeast of Fort Collins, Colorado and from a commercial onion 

field approximately 32 km north of Fort Collins in Larimer County, Colorado.  Thrips and IYSV 

were present at ARDEC and the Larimer county field during the previous growing season.  

During the 2011 growing season at ARDEC, thrips density reached just over 6 adults per onion 
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plant and IYSV incidence was about 60%.  IYSV incidence reached 10% in the Larimer County 

field with <2 adult thrips per onion plant.  Few onions were planted previously at the Hort Farm, 

and it is not known if onions or IYSV were present during the 2011 growing season. 

 The results of the 2012 samples led to the collection of a more focused range of plants 

during 2013 from two commercial onion fields (one each in Larimer and Weld Counties, 

Colorado) in addition to ARDEC.  The Larimer County field was approximately 18 km north of 

Fort Collins, and the Weld County field was approximately 77 km southeast of Fort Collins, 

Colorado.  Thrips and IYSV were present in each field during the previous growing season 

(Schwartz and Szostek, unpublished).  During the 2012 growing season, thrips density reached 

65.5 per onion plant at ARDEC, 51.3/plant in the Larimer County field, and >200 thrips per 

onion plant in the Weld County field.  IYSV incidence for each field reached 78%, 87%, and 

20%, respectively.  Thrips numbers and IYSV incidence for each location were obtained through 

collaborators with the OnionIPM PIPE project (http://www.alliumnet.com/IPMPipe.html). 

 Plants were stored in resealable plastic bags at 4°C until inspection for thrips; usually 

within five days of collection.  Each plant was visually inspected for thrips with the aid of a 

dissecting microscope.  Thrips were removed from the plants with a fine tipped (#1, white 

bristle) artist’s paintbrush and preserved in 95% ethanol until prepared for RT-PCR.  Larvae 

were separated from adults.  Once thrips had been removed from the plants, the leaves were 

rinsed and blotted dry, and ten 0.1 g samples were stored at -80°C until RT-PCR analysis. 
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Larval acquisition of IYSV 

 To confirm that thrips could complete their life cycle on the collected plants and to 

confirm that larvae could acquire IYSV from other potential host plants, common mallow, 

flixweed, dandelion, prickly lettuce, salsify, and winter wheat (cultivar Byrd) were grown from 

seed in the presence of viruliferous thrips in a greenhouse.  Weed seeds were collected from 

ARDEC and the area around the CSU University Greenhouses, while winter wheat seed was 

obtained from the CSU wheat breeding project.  Seeds were started in flats, then transplanted 

into 3.8 liter pots.  When possible, four plants were transplanted into each of five pots for a total 

of 20 plants per species.  Approximately 10 adult thrips were transferred to each pot from 

symptomatic onion plants before covering the pot with a barrier (Figure 3.2) to limit thrips 

movement between pots from exterior sources.  At this time, adult thrips from symptomatic 

onion plants were also collected and tested for IYSV as a check.  After four weeks, thrips larvae 

were removed from each plant to be tested for IYSV by RT-PCR.  One leaf from each plant was 

removed, rinsed, and blotted dry.  Sections of each leaf with thrips feeding damage were excised 

from the leaves.  Leaf excisions were pooled, such that a single sample contained 0.1 g of plant 

material from two leaves.  Samples were stored at -80°C until further use. 
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Figure 3.2.  Barriers covering pots of weed species. 

 

RNA extraction and cDNA synthesis 

 Total RNA was extracted using the Spectrum Plant Total RNA kit with the 750 µl 

binding solution option according to the manufacturer’s instructions (Sigma-Aldrich, St. Louis, 

MO).  Total RNA was measured with a NanoDrop 1000 (Thermo Scientific, Waltham, MA).  

Aliquots of RNA were treated with DNase I according to the manufacturer’s instructions 

(Fermentas, Glen Burnie, MD).  cDNA was synthesized from total RNA using M-MLV reverse-

transcriptase according to the manufacturer's instructions for use with random primers 

(Invitrogen, Carlsbad, CA).  No more than 1.0 μg total RNA was used in each 20 μl reaction. 

When possible, cDNA was brought to a final concentration of 10 ng/μl before use in PCR. 
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RT-PCR conditions 

 Reverse-transcriptase PCR (RT-PCR) reactions were performed on a MJ Research PTC-

200 thermocycler (Waltham, MA) with an initial step of 94° C for 3 min; followed by 40 repeats 

of the three step sequence of 94° C for 45 sec, 55° C for 30 sec, 72° C for 90 sec; and a final step 

of 72° C for 10 min.  Each 20 μl reaction consisted of 20 mM Tris-HCl pH 8.4, 50 mM KCl, 3 

mM MgCl2, 0.15 mM dNTP mix, 1 unit Taq DNA polymerase (New England Biolabs, Ipswich, 

MA), 20 ng cDNA and autoclaved distilled water.  RT-PCR was conducted for each sample to 

confirm the presence or absence of IYSV.  The IYSV nucleoprotein gene was amplified by RT-

PCR with primers designed by Coutts et al. (5) , and primers specific to plant NADH 

dehydrogenase ND2 subunit (27) were used as a control.  Primers were designed with 

PrimerQuest software (IDT, Coralville, IA) against the cytochrome oxidase subunit I genes for 

Thrips tabaci (GenBank accession number: AM932043) and Frankliniella occidentalis 

(GenBank accession number AM932029) as controls for thrips samples.   The primers for T. 

tabaci were 5’ ATAAAGAAGGAGCGGGAACGGGAT 3’ (forward) and 

5’ATAGCTCCCGCTAACACTGGCAAA 3’ (reverse).  The primers used against F. 

occidentalis were 5’ TGCGGGAACGGGATGAACAGTTT 3’ (forward) and 5'- 

CTCCTCTCGGATCTAAGAAGGATGT -3' (reverse).  Primers were not developed for other, 

less frequently encountered thrips species.  Reaction products were run in either 1% or 1.5% 

agarose gels depending on the expected product sizes (Bio-Rad Laboratories, Inc., Hercules, 

CA), and stained with ethidium bromide in 1X TAE buffer (Bio-Rad Laboratories, Inc., 

Hercules, CA).  A 100bp molecular weight marker (Fermentas, Glen Burnie, MD) was included 

on each gel. 
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DAS-ELISA 

 Double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISA) were 

performed according to the manufacturer’s instructions (Agdia, Inc., Elkhart, IN) with the 

following modifications.  Plant tissue was ground in liquid nitrogen as described by Gent et al. 

(9).  A 0.2 g sample of plant tissue was typically used with 1.0 ml extraction buffer.  All PBST 

rinses were 4 short rinses and one longer rinse that remained on the plate for 5 minutes.  

Positives were 2X background. 

 

Thrips identification 

 Adult thrips were identified to species by J. Hardin, Research Associate at CSU, using 

the keys, Thysanoptera: an identification guide (17) and Thrips of California (10). 

 

Results 

Cull piles 

 Live thrips were recovered from cull piles during early 2011.  Five were recovered in 

January, eight in February, and 24 in March.  Species included Thrips tabaci and Frankliniella 

occidentalis, and with the exception of two larvae (one was collected in each of January and 

February), all were adults.  Thrips tabaci and F. occidentalis were identified by RT-PCR from 

pooled samples.  Subsequently, the proportion of each species present in the 2011 samples is not 

known.  Additional species may have been present in the pooled samples, but remained 

undetected.  IYSV was detected in a pool of four thrips (T. tabaci and F. occidentalis were 

present in the pool) collected in January and in a single T. tabaci collected in February.  IYSV 

was not detected in F. occidentalis.  The live thrips collected in March were transferred to seven 
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healthy onion plants, and IYSV was subsequently detected in five of the seven onion plants one 

month after thrips exposure. 

 No live thrips were recovered from the constructed cull piles over the winters of 2011 to 

2012 or 2012 to 2013.  Onions within the constructed cull piles did not sprout as the onions in 

the smaller piles of early 2011 did, but instead began to decay.  Although live thrips were not 

found in these piles other small, live arthropods were noted. 

 Temperatures at each location within the constructed cull piles were similar between cull 

piles in both 2011 to 2012 and 2012 to 2013 (Figure 3.3).  The temperature probe in the center 

pile (2011 to 2012) and in the south pile (2012 to 2013) occasionally recorded erroneous 

temperatures and these temperatures were omitted.  Temperatures at the bottom of each pile (0 

cm) fluctuated the least, while temperature fluctuation increased toward the top of each dome-

shaped pile where the insulating layer of onions was not as deep.  Each pile was exposed to 

temperatures below freezing for several weeks and the onions within the piles eventually froze.  

Temperatures in the cull piles did not fluctuate as dramatically as the surrounding air temperature 

did (Figure 3.4). 

 



65 

 
 

 
 
Figure 3.3.  Average daily temperature at four locations within each of three cull piles.  A-D, 2011 to 2012 

temperatures.  E-H, 2012 to 2013 temperatures.  A, E: 0 cm above soil.  B, F: 10 cm above soil. C, G: 20 cm above 

soil. D, H: 30 cm above soil. 
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Figure 3.3 continued.  Average daily temperature at four locations within each of three cull piles.  A-D, 2011 to 

2012 temperatures.  E-H, 2012 to 2013 temperatures.  A, E: 0 cm above soil.  B, F: 10 cm above soil. C, G: 20 cm 

above soil. D, H: 30 cm above soil. 
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Figure 3.3 continued.  Average daily temperature at four locations within each of three cull piles.  A-D, 2011 to 

2012 temperatures.  E-H, 2012 to 2013 temperatures.  A, E: 0 cm above soil.  B, F: 10 cm above soil. C, G: 20 cm 

above soil. D, H: 30 cm above soil. 
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Figure 3.3 continued.  Average daily temperature at four locations within each of three cull piles.  A-D, 2011 to 

2012 temperatures.  E-H, 2012 to 2013 temperatures.  A, E: 0 cm above soil.  B, F: 10 cm above soil. C, G: 20 cm 

above soil. D, H: 30 cm above soil. 
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Figure 3.4.  Average daily temperature of the three cull piles at each of four locations (0, 10, 20, or 30 cm above the 

soil) within the three cull piles compared to the average daily air temperature.  A: average temperatures for 2011 to 

2012; B: average temperatures for 2012 to 2013. 
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Thrips Activity 

 In both years, the number of thrips caught on sticky traps decreased as air temperature 

decreased and increased as air temperature increased (Figure 3.5).  Thrips were not trapped 

during periods when the average temperature remained below 0°C.  A single thrips was trapped 

in January 2012 when the average temperature was above 0°C for several days.  Once average 

temperatures rose above 0°C, thrips began to be caught again despite daily temperatures below 

0°C.  The average temperature from February to April 2012 was greater than for the same period 

in 2013, and more thrips were caught during this period in 2012 than in 2013.  Thrips numbers 

further increased after onions were transplanted into the field. 

Figure 3.5.  Temperatures averaged over the approximately two week intervals that sticky traps were in the field.  

Thrips numbers are averages over the number of traps remaining in the field at the end of each interval.  The 2012 

onion planting date is marked with *; the 2013 planting date with +. 
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Additional plant hosts 

 Live adult and larval thrips were recovered from 12 different plant species over two 

winters (Table 3.2).  IYSV was detected in field-collected plants of blue mustard, flixweed, 

prickly lettuce, salsify, smooth brome, sunflower, and winter wheat.  The onion plants were not 

tested as they are a known host of IYSV.  IYSV was detected in adult thrips collected from 

plants of common mallow, dandelion, flixweed, onion, prickly lettuce, and salsify.  IYSV was 

detected in larvae removed from onion, but not in larvae removed from any other plant.  Thrips 

larvae were not found on any of the plants in which IYSV was detected.  Adults and larvae 

collected from the same plant did not always share the same IYSV status; for example, IYSV 

was detected in adults collected from common mallow in January 2012, but not in the larvae 

removed from the same plant.  Likewise, the IYSV status of the plant and the thrips on the plant 

was not always identical; for example, IYSV was detected in blue mustard and flixweed (March 

2013), but not in the adult thrips associated with those plants.  Flixweed and prickly lettuce 

collected in March 2012 had IYSV and so did the adult thrips.  A greater variety of plant species 

was available later in the season than in January and February. 

 IYSV was detected in thrips collected from plants in January, February, and March of 

2012, while in 2013 it was only detected in thrips in March.  IYSV was not detected in plants or 

thrips collected in April, 2012 from the Hort Farm or from the commercial field in Larimer 

County; nor was IYSV detected in any of the plants or thrips collected from the Weld County 

field in 2013. 

The primers designed to detect T. tabaci and F. occidentalis confirmed the morphological 

identification of T. tabaci and F. occidentalis (Figure 3.6).  The results presented in Figure 3.6 

are a representative example, and the additional samples present in the original image have been 
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removed for simplicity.  The thrips represented in Figure 3.6 were removed from common 

mallow collected in January 2013 from ARDEC.  Larvae were separated from adult thrips, and 

adult thrips were identified and further separated by species.  T. tabaci and F. occidentalis were 

the only adult thrips species present in this sample.  RT-PCR of thrips identified as T. tabaci 

produced an amplicon between 200 to 300 bp (predicted size, 262 bp), and an amplicon of 

approximately 300 bp (predicted size, 308 bp) was produced from thrips identified as F. 

occidentalis.  Both amplicons were produced from the larval sample indicating both species were 

present as larvae.  IYSV was not detected in these thrips samples.  No amplification occurred in 

the negative controls.  The primers designed for one species did not produce amplicons when 

exposed to a different species. 
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Table 3.2. IYSV status of plants and thrips collected during the winters of 2012 and 2013. 

 Plant collected (IYSV 

status
a
) 

Location Number of adult thrips
b
 

(IYSV status
c
) 

Number of thrips larvae
b
 

(IYSV status
c
) 

Jan. 2012 Common mallow (-) ARDEC 15  (+) 2     (-) 

 Onion (n.t.) ARDEC 23  (+) 22   (+) 

Feb. 2012 Common mallow (-) ARDEC 6    (+) 3     (-) 

 Prickly lettuce (+) ARDEC 0  0 

 Winter wheat (+) ARDEC 4    (-) 0  

Mar. 2012 Bindweed (-) ARDEC 0 0 

 Dandelion (-) ARDEC 53  (+) 1     (-) 

 Flixweed (+) ARDEC 3    (+) 0 

 Prickly lettuce (+) ARDEC 1    (+) 0 

 Redstem filaree
d
 ARDEC 1    (-) 100 (-) 

 Salsify (-) ARDEC 3    (+) 17   (-) 

 Smooth brome  (+) ARDEC 1
e
     0  

 Sunflower (+) ARDEC 1
f
 0 

 Winter wheat
b
 ARDEC 0 11   (-) 

Apr. 2012 Bindweed (-) Hort Farm 2    (-) 1     (-) 

 Bindweed (-) Larimer 0 6     (-) 

 Common mallow (-) Hort Farm 0 24   (-) 

 Dandelion (-) Hort Farm 2    (-) 33   (-) 

 Dandelion (-) Larimer 2    (-) 17   (-) 

 Flixweed (-) Hort Farm 2    (-) 1     (-) 

 Prickly lettuce (-) Hort Farm 0    (-) 1     (-) 

Jan. 2013 Common mallow (-) ARDEC 23  (-) 7     (-) 

 Flixweed (-) ARDEC 23  (-) 35   (-) 

 Flixweed (-) Weld 2    (-) 0 

 Prickly lettuce (-) ARDEC 5    (-) 11   (-) 

 Prickly lettuce (-) Weld 0 0 

Feb. 2013 Blue mustard (-) Weld 1    (-) 0 

 Flixweed (-) Larimer 10  (-) 9     (-) 

 Flixweed (-) Weld 0 1     (-) 

 Prickly lettuce (-) Weld 0 0 

 Salsify (-) Larimer 2    (+) 0 

Mar. 2013 Blue mustard (+) Larimer 3    (-) 0 

 Blue mustard (-) Weld 0 0 

 Common mallow (-) ARDEC 4    (-) 2     (-) 

 Flixweed  (-) ARDEC 13  (-) 7     (-) 

 Flixweed (-) Weld 0 0 

 Flixweed (+) Larimer 36  (-) 0 

 Prickly lettuce (-) Weld 0 0 

n.t., not tested.  
a
positive status if IYSV was detected in at least one of ten 0.1 g plant leaf tissue samples.  

b
the 

number recovered from all bulked plants of the particular plant species on that collection date.  
c
IYSV status of the 

pooled adult or larval thrips collected from the corresponding plant.  
 d
samples would not amplify. 

 e
misplaced, not 

tested.  
f
slide mounted for identification, not tested. 
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Figure 3.6.  Representative agarose gel visualization of amplicons obtained by RT-PCR of RNA extracted from 

thrips species removed from common mallow.  Lanes 1 to 3: mixed larvae; lanes 4-6: adult F. occidentalis; lanes 7 

to 9, adult T. tabaci; lanes 10 to 12: -RT negative control; lanes 13 to 15: water only negative control. 

Lane M: 100bp molecular weight marker; lanes 1, 4, 7, 10, 13: IYSV; lanes 2, 5, 8, 11, 14: T. tabaci; lanes 3, 6, 9, 

12, 15: F. occidentalis. 

 

 

 Over the course of two winters, only four thrips species were found on the collected 

plants (Table 3.3).  The most abundant species in these samples were T. tabaci and F. 

occidentalis, both of which were present at each location.  Most plants harbored more than one 

species. 

Table 3.3. Adult thrips species recovered alive from field collected weed species during 2012 and 2013. 

 Location Plant Thrips species (number recovered) 

Feb. 2012 ARDEC Winter wheat Thrips tabaci (4) 

  Common mallow T. tabaci (4) 

Frankliniella occidentalis (2) 

Mar. 2012  Dandelion T. tabaci (54) 

F. occidentalis (3) 

F. fusca
a
 (2) 

  Salsify T. tabaci (3) 

  Flixweed T. tabaci (3) 

  Prickly lettuce T. tabaci (1) 

  Sunflower Microcephalothrips abdominalis
a
 (1) 

  Redstem filaree F. occidentalis (1) 

Jan. 2013 ARDEC Common mallow T. tabaci (7) 

F. occidentalis (14) 

  Flixweed T. tabaci (16) 

F. occidentalis (8) 

  Prickly lettuce T. tabaci (2) 

F. occidentalis (4) 

  Flixweed T. tabaci (2) 

 Weld Flixweed T. tabaci (10) 

Feb. 2013 Larimer Salsify T. tabaci (2) 

  Common mallow T. tabaci (1) 

F. occidentalis (3) 

 ARDEC Flixweed T. tabaci (10) 

F. occidentalis (2) 

  Blue mustard T. tabaci (3) 

 Larimer Flixweed T. tabaci (30) 

F. occidentalis (4) 
a
 Specimens were slide mounted for species confirmation, and were not tested for IYSV. 
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Larval acquisition of IYSV 

 Thrips feeding (Figure 3.7) and larvae were present on each plant species (common 

mallow, dandelion, flixweed, prickly lettuce, salsify, and winter wheat) grown from seed in the 

greenhouse.  IYSV was detected by RT-PCR in the adult thrips removed from symptomatic 

onion plants, thrips larvae removed from salsify (3 of 6 larval samples), and thrips larvae 

removed from dandelion (1 of 5 larval samples).  IYSV was detected in 8 of 15 salsify leaf 

samples and in 1 of 25 prickly lettuce leaf samples collected from different plants.  Dandelion 

samples did not amplify.  IYSV was not detected in common mallow, flixweed, or wheat, or in 

the thrips larvae removed from those plants. 

 

 
Figure 3.7. Thrips feeding damage and frass on four of the weed species planted in the greenhouse.  A: prickly 

lettuce; B: winter wheat; C: salsify; D: common mallow. 
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Discussion 

 Living thrips were found throughout the winter at several locations and on a variety of 

plants (Table 3.2).  T. tabaci, the vector of IYSV, was among the species found overwintering on 

these plants.  IYSV was detected in six non-allium plant species and in thrips removed from five 

non-allium plant species.  Of these plants, dandelion (12) and prickly lettuce (23) have been 

reported as hosts of IYSV, and common mallow and dandelion have been reported to support T. 

tabaci reproduction (26).  Blue mustard, flixweed, salsify, sunflower, and winter wheat have not 

yet been reported as potential hosts of IYSV.   

 Plants and the thrips associated with them did not always share the same IYSV status, 

such as the presence of IYSV in thrips removed from field-collected common mallow.  IYSV 

was never detected in common mallow.  The discrepancy in IYSV status suggests that IYSV 

infected onion thrips survive on plants that are either not IYSV hosts or not yet infected, onion 

thrips may not have acquired IYSV from infected plants during the winter, or the amount of 

plant material tested was insufficient to detect IYSV. 

The results of this study suggest that onion thrips infected with IYSV survive winter 

months (from last season’s onion harvest to the next season’s planting) on any available plants.  

Thrips associated with onions have been shown to survive up to six weeks at 0 to 1°C on a non-

preferred food source, although numbers did decrease over time (30).  With access to a source of 

food, female F. occidentalis can survive up to 40 days at an average temperature of 0°C (28).  

During the two winters of this study, the average temperature did not remain below freezing for 

more than 14 days.  F. occidentalis will freeze at -26°C (28), however, the lowest air temperature 

recorded during this study was -21.8° C and it may have been warmer in the plant spaces 

occupied by thrips.  The freezing point of T. tabaci has not been reported.  Thrips in the field 
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experience temperature fluctuations which may allow a lifespan beyond those reported under 

experimental conditions. 

 Although thrips larvae were found throughout the winter, continual generation of new 

thrips during winter seems less likely than thrips surviving the season.  Edelson and Magaro (7) 

found that T. tabaci development ceased below 11.5°C, and Horsfall and Fenton (11) reported 

that onion thrips tended to take longer to progress from one life stage to the next at cooler 

temperatures (20°C compared to 29°C).  The larvae collected during this study may have 

emerged while it was still warm, then were prevented from further development by the low 

temperatures.  Conversely, they may have emerged during brief periods of warmth and remained 

in the larval stage until temperatures were conducive to further development.  The observation of 

increased adult thrips activity when the average temperature rose above 0°C and the noticeable 

increase of adult thrips caught on the sticky traps once the average temperature rose above 

11.5°C (Figure 3.5) suggests adult thrips already present in the environment may become active 

at a lower temperature than development occurs.  It is also possible that thrips in Colorado have 

adapted to develop at lower temperatures than thrips in Texas, where the 11.5°C developmental 

threshold was observed.  Insects capable of overwinter survival adapt to local conditions and 

acclimate themselves to the changing seasons (16).  Details about the specific microclimate in 

which each plant thrips were found are unknown, but these microclimates may also influence 

survival and development. 

 It is difficult to say whether thrips acquire IYSV during the winter.  Thrips larvae were 

not present on any of the field collected non-allium plants in which IYSV was detected, and it is 

unknown if the adult thrips collected for this study acquired IYSV as larvae or as adults.  It is 

generally accepted that T. tabaci must acquire IYSV as a larva in order to transmit the virus as an 
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adult (8). It is reasonable to assume that at least a portion of overwintering adult thrips acquired 

IYSV as larvae because healthy onion plants became infected with IYSV after exposure to thrips 

collected in March 2011 from cull piles and from onions that had not yet been plowed under. 

This suggests the adult thrips were viruliferous.  The possibility that onion thrips already present 

in the greenhouse were responsible for transmitting IYSV to the healthy onion plants, despite the 

barriers, must also be considered.  IYSV was detected in thrips larvae collected from onions in 

January 2012 suggesting the larvae were overwintering with IYSV that had been acquired when 

the days were warm, or that they are able to acquire IYSV during the winter. 

 The third possible explanation for the discrepancy in IYSV status between the plant and 

associated thrips particularly where IYSV appears in thrips but not in the corresponding plant 

sample is that IYSV was present in the plant, but not in the particular leaf section that was tested.  

IYSV is distributed unevenly within onion plants (18, 24) and the same may be true of IYSV 

distribution within other plant species. 

 Larvae were found on common mallow, dandelion, flixweed, prickly lettuce, salsify, and 

winter wheat grown under greenhouse conditions indicating that these plant species can support 

T. tabaci reproduction.  Not all of these plants or the larvae associated with them had IYSV.  The 

larval acquisition experiments in the greenhouse show that thrips larvae can acquire IYSV from 

dandelion and salsify.  It is unlikely that the thrips larvae moved from the IYSV infected onions 

present in the greenhouse onto these weeds grown in isolation chambers.  As noted by Hsu et al. 

(12), T. tabaci larvae are not capable of flight and do not travel far from the plant they emerge 

on.  The acquisition efficiency of IYSV from plant to insect may vary by species as IYSV was 

detected in half of the larval samples collected from salsify, but in only 1 of 5 of the larval 

samples collected from dandelion.  While there is information regarding transmission of IYSV 
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from T. tabaci to plants (13, 14, 19), information is lacking on how efficiently T. tabaci acquires 

IYSV from different plants. It has been shown that some plant species can become systemically 

infected with IYSV, while others only develop local lesions (1).  This difference in virus 

distribution throughout a plant may affect acquisition by thrips, and it is possible that the IYSV 

infected plants collected in this study were only locally infected, and the thrips larvae had not fed 

in a leaf area with IYSV.  The possibility of variable acquisition of IYSV by T. tabaci is 

supported by similar work on other plant-thrips-tospovirus complexes.  F. occidentalis reared on 

different plant species infected with Impatiens necrotic spot virus (INSV) were found to transmit 

INSV at different efficiencies, indicating differences in efficiency of acquiring the virus as larvae 

(21).  Similarly, Tomato spotted wilt virus (TSWV) transmission by T. tabaci differed according 

to the TSWV-infected host plant on which the thrips were reared (3). 

 The plants collected in this study appear to support IYSV overwintering in two ways: as a 

direct host of IYSV or as a host for IYSV infected onion thrips. As a winter annual and/or 

biennial plant (29), common mallow appears to be an indirect green bridge supporting IYSV 

infected thrips.  IYSV was not detected in any of the common mallow samples from the field or 

greenhouse, but was detected in adult onion thrips removed from some of the field collected 

common mallow samples.  No larval sample collected from the field or greenhouse grown 

common mallow had acquired IYSV, further indicating this species is not an IYSV host.  IYSV 

infected onion thrips that successfully overwinter on common mallow could move to IYSV 

susceptible plants once they are available.  For this reason, it would be a good idea to control 

common mallow during the winter. 

 Dandelion, flixweed, prickly lettuce, salsify, and winter wheat likely play a similar role 

as common mallow as thrips host plants, but can also serve as a host for IYSV.  None of these 
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plants were consistently IYSV positive or negative in either the field collected samples or in the 

greenhouse grown plants.  For example, IYSV was detected in 8 of 15 greenhouse-grown salsify 

plant samples, but in none of the field collected plants.  Conversely, IYSV was not detected in 

any of the 15 greenhouse-grown flixweed samples, but was detected in field collected plants. 

 Larvae removed from dandelions grown under greenhouse conditions had IYSV, but 

because RT-PCR of the dandelion plant samples did not produce any amplicons, the IYSV status 

of these plants cannot be confirmed.  It can be assumed that the plants had IYSV because the 

larvae were able to acquire it.  Dandelion has been reported as an IYSV host (12) and its 

perennial nature (29) make it a good green bridge. 

 Although IYSV was detected in field collected flixweed and adult thrips removed from 

these plants, it was not detected in any flixweed sample from the greenhouse experiment or in 

the thrips removed from those plants.  As a winter annual (29), flixweed would need to be 

inoculated with IYSV after germination in the autumn.  Cold temperatures inhibiting thrips 

movement may prevent or reduce inoculation of flixweed under field conditions and is a 

reasonable explanation of why IYSV was not detected in more of the field collected flixweed 

samples.  However, this does not explain the lack of IYSV in the greenhouse-grown flixweed.  

Many larvae were observed on the greenhouse-grown flixweed, and larvae were present on 

flixweed collected from the field.  Flixweed may be important in supporting thrips through the 

winter or in increasing the number of thrips early in the next growing season.  This contrasts with 

the findings of Smith et al. (26), who did not find any thrips larvae on flixweed in New York. 

 As a biennial or winter annual (29), prickly lettuce is another good candidate as a green 

bridge.  Prickly lettuce has previously been reported as a host of IYSV (23) and the results 

presented here confirm that.  IYSV was found in prickly lettuce and in a single adult onion thrips 
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collected from that species.  Only one prickly lettuce plant had IYSV in the greenhouse, and 

none of the larvae from that plant or others had IYSV.  While it is clear that prickly lettuce can 

host IYSV and thrips, it is not clear if thrips can acquire IYSV from prickly lettuce since the 

virus was not detected in any of the larval samples. 

 IYSV was detected in a greater proportion of greenhouse-grown salsify (8 of 15 plant 

samples) and in the larvae associated with them (3 out of 6 larval samples) than in the other 

plant/thrips combinations.  This suggests that salsify could be a more important overwintering 

host of IYSV than the other non-allium plants considered in this study, and that salsify plays a 

role in the persistence of IYSV in the landscape.  Onion thrips are able to reproduce on and 

acquire IYSV from this plant species.  As a biennial (29),  salsify could become infected with 

IYSV during its first year and remain infective during its second year, although it is not known if 

this occurs.  IYSV was not detected in salsify collected from any field location, but was detected 

in the adult thrips removed from those plants (Table 3.2). 

 IYSV was detected in only one sample of field collected winter wheat and was not 

detected in any greenhouse grown wheat samples or in the larvae removed from them.  It is 

unknown what cultivar the field collected winter wheat was, so varietal differences are possible.  

Winter wheat has not been reported elsewhere as an IYSV host and additional cultivars of winter 

wheat should be explored to determine if winter wheat is an important additional host of IYSV.  

Because onion thrips can overwinter on wheat (2, 20)  it may serve as a green bridge for the 

vector, if not the virus, which could be problematic if the overwintering thrips were already 

infected.  The sunflower that IYSV was detected in was a newly sprouted volunteer of a 

domesticated type and was not present until mid-March.  While native sunflowers are common 

in Colorado, they are not green during the winter and are unlikely to be an important 
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overwintering site of IYSV or onion thrips, therefore no further investigation of sunflower as a 

host of IYSV was conducted. 

 Finding sources of IYSV in the landscape is like looking for a needle in a haystack.  

IYSV may be more prevalent in the environment than is apparent, but if the right plant wasn’t 

selected, or if the right leaf sampled, it could have been missed.  Most of the IYSV positive 

thrips recovered in this study were adults collected at ARDEC in 2012 when onions were still 

present in the field.  The thrips collected from non-allium plants at ARDEC could have been 

continually migrating from the onions; however, the sticky traps did not record much adult thrips 

activity during that time.  In addition, T. tabaci have been observed to have a preference for 

onions (6), but will feed on other plants when necessary.  It seems unlikely that onion thrips 

would leave their preferred plant in favor of a less preferred plant.  In contrast, onions from the 

previous growing season had been removed from the Larimer County field in 2013, yet IYSV 

was present in the thrips collected on salsify from that site.  This suggests IYSV can persist in 

the absence of onions.  It is surprising that so few thrips were collected from the plants at the 

Weld County location, considering the high number of thrips present on the onions during the 

previous growing season, but the onions had been removed from the field at the end of the 

growing season. 

 Thrips activity as monitored by sticky trap collection appeared to follow the temperature 

trend with fewer thrips caught as the temperature decreased, and more were caught as the 

temperature increased.  Changes in thrips numbers cannot be solely attributed to temperature as 

available plant matter also varied along with the temperature.  With the exception of a single 

thrips, thrips were not trapped during January and February of either 2012 or 2013.  However, 

live thrips were recovered from plants during the same period.  Temperatures may have been too 
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cold for flight, or the overall number of thrips had dropped so low as to greatly reduce the 

probability of the traps intercepting any adult thrips.  The results of this study make it clear that 

all thrips do not die during the winter, but that they are present in low numbers with little 

activity. 

 Onion cull piles would appear to be a logical place for IYSV and onion thrips to 

overwinter.  Cull piles have been reported as a source of IYSV (12) and have long been 

considered a source of onion thrips (11).  The temperatures near the soil of the cull piles 

constructed for this study were conducive the survival of other small arthropods.  An onion cull 

pile would seem to provide adequate shelter for onion thrips as the temperature inside remained 

steady and did not undergo the dramatic changes of the air temperature (Figure 3.4).  However, 

winter sampling of onion cull piles in Ontario, Canada (2) did not yield any onion thrips, and in 

the work presented here live thrips were not found in the deliberately constructed cull piles, but 

were found in the field cull piles left from the 2010 growing season.  The most reasonable 

explanation of this result is that many onions in the early 2011 cull piles had started to sprout and 

this green leaf tissue was where thrips were most often found.  The onions in the 2011 to 2012 

and 2012 to 2013 cull piles began to decay rather than sprout, hence there was no green tissue.  

This (along with the results of the non-allium host survey) suggests that onion thrips overwinter 

survival may be linked to the availability of green plant tissue.  Thrips are known to feed on the 

contents of epidermal, palisade and spongy mesophyll cells, and to develop faster on new, young 

leaves than on bulbs (15).  Frozen onion bulbs may not be an optimal source of nutrition or site 

for development.  Onion cull piles may be a source of IYSV if the onions within them sprout, 

thus providing onion thrips with food and shelter. 
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 The results of this study suggest some strategies that may reduce IYSV and/or thrips.  

Onions should not be allowed to remain in a field over the winter, as they can support IYSV 

infected adult and larval T. tabaci.  Onion culls should also be destroyed in order to prevent 

volunteers appearing within the cull piles.  Hsu et al. (12) found that volunteer onions in cull 

piles were a source of IYSV, and the results presented here show that volunteers within cull piles 

can support IYSV infected onion thrips.  Green weeds, particularly salsify, should be removed 

from the vicinity of onion fields.  Horsfall and Fenton (11) recommended burning weedy areas 

along roads, creeks, and windbreaks to eliminate hibernating thrips.  However, eradicating all 

weeds or plants from the vicinity of an onion field may not be practical and may conflict with 

other IPM goals or practices such as maintaining refugia for beneficial organisms or preventing 

soil erosion. 

 This work opens several avenues for further research.  It would be useful to know how 

far from an onion field IYSV infected plants and thrips are, in order to better target weed control.  

Boyce and Miller (2) found that onion thrips were plentiful in an alfalfa field 45 meters from an 

onion field, but that there were few onion thrips in an alfalfa field 400 m from the onion field.  It 

would be interesting to know if IYSV followed the same pattern.  Likewise, a formal study 

examining the effectiveness of the control strategies presented above would be useful to onion 

growers.  As discussed earlier, winter wheat should be further evaluated as a potential source of 

IYSV, especially since it is often grown adjacent to or in rotation with onions in Colorado and 

elsewhere. 

 This work did not attempt to determine how competent any of the weed species were to 

host IYSV, or the efficiency that thrips could acquire IYSV from any of the potential host plants. 

It would be interesting to know if thrips have oviposited in any of these overwintering plants, 
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and if there is any relationship between ovipositing and IYSV status of the plant.  This 

information could be useful to prioritize which weeds should be controlled. 

 There do not appear to be any studies regarding the effect of temperature on the 

acquisition of IYSV by T. tabaci from plants, or of any other plant-tospovirus-thrips complex.  

Tsumuki et al. (28) found that adult F. occidentalis walked less after exposure to -5°C, which 

prevented them from reaching their food source.  The larvae collected in the study presented here 

were already in direct contact with their food source, but it is possible that the movements 

required for feeding become inhibited by cold temperatures.  It would be interesting to learn if 

temperature affects a plant’s ability to host IYSV, and thrips’ ability to acquire the virus. 

 IYSV infected onion thrips that survive the winter are a likely source of inoculum at the 

start of the next growing season.  Living thrips were found during Colorado winters on a variety 

of weed species and IYSV was found in both plants and associated thrips during the winter.  Cull 

piles do not appear to be a favorable overwintering site for thrips unless the onions begin to 

sprout.  Thrips activity follows temperature trends, and thrips activity is lowest during the coldest 

part of the year. 

 Under greenhouse conditions, T. tabaci can complete its life cycle on a number of plants 

and acquire IYSV from a smaller subset of these plants.  To minimize thrips and IYSV 

overwintering, onions should not be left in the field between growing seasons, cull piles should 

be destroyed, and weeds should be managed throughout the winter. 
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CHAPTER 4: REVERSE TRANSCRIPTION QUANTITATIVE REAL-TIME PCR IS USED 

TO COMPARE THE RELATIVE AMOUNT OF IRIS YELLOW SPOT VIRUS BETWEEN 

TWO ONION CULTIVARS 

 

 

Introduction 

 Onions resistant to Iris yellow spot virus (IYSV) have not yet been identified (3).  Since 

the emergence of IYSV, several onion cultivar trials (7, 8, 16) and a recent germplasm evaluation 

(3) have included evaluation of IYSV incidence and severity.  Although no onion plants have 

emerged from the trials as resistant to IYSV, some cultivars appear more tolerant than others. 

 In the germplasm evaluations conducted by Boateng et al. (3), Advantage (tested as 

OLYS05N5 prior to commercial release by Crookham Co.), was at the low end of the spectrum 

for IYSV incidence.  Diaz-Montano et al. (7) found that Advantage was more resistant to thrips 

than other cultivars in their trials, but that no cultivar had resistance to IYSV.  When compared 

to Granero, Advantage had a lower IYSV severity rating and yielded more super colossal and 

colossal onions (16).  Cultivar trials have shown that Granero is susceptible to IYSV (8, 16).  For 

the work presented here, Advantage was chosen as an onion cultivar with more resistance to 

IYSV, and Granero was chosen as an IYSV susceptible cultivar. 

 Real-time PCR can be used to quantify the number of copies of a specific DNA sequence, 

however, as IYSV is an RNA virus (4) it must first be reverse transcribed to cDNA before 

detection by PCR.  Reverse transcription real-time PCR has been shown to detect IYSV from 

onion samples (15), and to detect several viruses infecting sweet potatoes (12).  Reverse 

transcription quantitative real-time PCR has also been used to compare relative amounts of virus 

between resistant and susceptible plants (2). 
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 The objective of this work was to use reverse transcription quantitative real-time PCR 

(RT-qPCR) to determine if there were differences in the relative amount of IYSV between the 

susceptible onion cultivar, Granero, and the more resistant cultivar, Advantage, which could be 

related to the difference in susceptibility.  In order to achieve this objective, a plasmid containing 

a portion of the IYSV nucleoprotein gene (IYSV N-gene) was constructed.  Standard curves 

were constructed with known quantities of the constructed plasmid which allowed the relative 

amount of IYSV within each sample to be calculated. 

 

Materials and Methods 

Sampling method 

 Three leaves displaying IYSV symptoms were removed from each of the onion cultivars 

Advantage and Granero.  These onions were grown in the onion research field at CSU-ARDEC 

near Fort Collins, Colorado during 2013.  The leaves were rinsed, blotted dry, and slit lengthwise 

to lay flat.  A borer was used to punch out circular samples of approximately 0.7 cm diameter.  

Samples encompassed the middle of the lesion, the lesion tip, and areas 1, 2, and 3 cm from the 

tip of the lesion (Figure 4.1).  Sampling away from the lesion followed the direction that had the 

fewest lesions in the area, and therefore was either toward the leaf tip or leaf base.  Sample 

weights ranged from 10 to 33 mg (Table 4.1).  Samples were frozen and stored at -80°C until 

RNA extraction approximately two months later. 

 

RNA extraction and cDNA synthesis 

 Total RNA was extracted using the Spectrum Plant Total RNA kit (Sigma-Aldrich, St. 

Louis, MO) with the 750 µl binding solution option according to the manufacturer’s instructions.  
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Total RNA was measured from a 2.0 µl aliquot of the extracted RNA using a NanoDrop 1000 

(Thermo Scientific, Waltham, MA).  Eight microliter aliquots of RNA were treated with DNase I 

according to the manufacturer’s instructions (Fermentas, Glen Burnie, MD).  cDNA was 

synthesized from approximately 90 ng DNase I treated total RNA using M-MLV reverse-

transcriptase according to the manufacturer's instructions for use with random primers 

(Invitrogen, Carlsbad, CA). 

 

RT-PCR conditions 

 Reverse-transcriptase PCR (RT-PCR) was conducted for each sample to confirm the 

presence or absence of IYSV.  RT-PCR reactions were performed on a MJ Research PTC-200 

thermocycler (Waltham, MA) with an initial step of 94° C for 3 min; followed by 40 repeats of 

the three step sequence of 94° C for 45 sec, 55° C for 30 sec, 72° C for 90 sec; and a final step of 

72° C for 10 min.  Each 20 μl reaction consisted of 20 mM Tris-HCl pH 8.4, 50 mM KCl, 3 mM 

MgCl2, 0.15 mM dNTP mix, 1 unit Taq DNA polymerase (New England Biolabs, Ipswich, MA), 

9 ng cDNA and molecular biology reagent grade water (Sigma-Aldrich, St. Louis, MO) 

sufficient to bring each reaction to 20 μl.  The IYSV nucleoprotein gene was amplified by RT-

PCR with primers designed by Coutts et al. (6), and primers specific to plant NADH 

dehydrogenase ND2 subunit (18) were used as a control.  Reaction products were run in a 1% 

agarose gel (Bio-Rad Laboratories, Inc., Hercules, CA) stained with SYBRSafe (Invitrogen, 

Carlsbad, CA) in 1X TAE buffer (Bio-Rad Laboratories, Inc., Hercules, CA), and visualized 

upon exposure to UV light.  A 100bp molecular weight marker (Fermentas, Glen Burnie, MD) 

was included on each gel. 
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Figure 4.1.  Top, Advantage leaves, Bottom, Granero leaves.  1: mid lesion; 2: lesion tip; 3: 1 cm from lesion; 4: 2 

cm from lesion; 5: 3 cm from lesion. 
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Real-time PCR standard curve and primer design 

 A cDNA sample from an onion plant already known to be positive for IYSV was 

amplified by RT-PCR and the PCR product was run on a 1% agarose gel.  Two 792 bp bands 

were excised from the gel, together yielding 44.5 ng/μl DNA upon purification with Qiaquick 

Gel Extraction kit (Qiagen, Valencia, CA) according to manufacturer's instructions and ligated 

into the pGEM-T Easy vector (Promega Corporation, Madison, WI) using the Fermentas rapid 

ligation kit (Fermentas, Glen Burnie, MD).  The vector was heat shock transformed into 

chemically competent Escherichia coli, strain DH5α, and transformed colonies were visible 

when grown on selective media as described in the instruction manual for the pGEM-T Easy 

vector.  Five ml of 4 transformed colonies were grown separately and plasmids were purified 

from culture using the QIAprep Spin Miniprep Kit (Qiagen, Valencia, CA).  Plasmid purification 

of the four selected transformed colonies yielded between 200 to 300 ng/μl plasmid DNA.  The 

plasmid was digested with EcoRI and viewed on a 1% agarose gel to verify that the plasmid 

contained an insert of expected molecular weight.  EcoR1 digestion of the purified plasmids 

yielded three fragments of expected molecular weight (3015, 605, and 187 bp) based on the 

plasmid and insert sequences.  The standard curve used to detect the IYSV N-gene consisted of 

10-fold serial dilutions of the purified plasmid from 1.0 ng/reaction to 1.0 x10
-6 

ng/reaction. 

 Real time PCR primers were designed with PrimerQuest software (IDT, Coralville, IA) 

specific to the plasmid insert.  Primers were also designed to a reference gene, Allium cepa 

cytochrome oxidase subunit 2 gene (GenBank accession no. GU253305), to verify that each RT 

reaction produced a similar amount of cDNA.  Several primer pairs were tested and the pair that 

had the most efficient amplification and a slope in the target range was selected for the plasmid 

insert and for the reference gene. 
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 The primer pair, 5'-AAATCTGCGGGCTTCCTCTGGTAA-3' and 5'-

AAAGGAAGAGCAGCTGCAGCAAAG-3' amplified the targeted region of the IYSV N-gene 

148 bp long from both the plasmid insert and plant samples with an average efficiency of 96%.  

Excellent replication of the points on the IYSV N-gene standard curve occurred with as little as 

1.0 femtogram of starting material.  The average slope of three standard curves was -3.428 (R
2
 = 

0.992), which falls within the acceptable range of -3.15 to -3.51.  The dissociation curve 

displayed a single peak, indicating the presence of only one PCR product.  Samples that were 

known to be IYSV positive by RT-PCR crossed the threshold between 19 to 31 cycles.  The 

triplicate reactions were nearly identical. 

 The primer pair, 5'-GGGAGCGAGAAGTATGGGATATGT-3' and 5'-

TGCGTAATGGATGACCCTCGAAAC-3' amplified the reference gene in the plant samples 

with an average efficiency of 97.2%.  The amplicon was 102 bp long. The average slope of three 

standard curves was -3.44 (R
2
 = 0.98), which falls within the acceptable range.  The standard 

curve used with the reference gene primers consisted of a dilution series from 1.0 ng/reaction to 

1.0 x10
-3 

ng/reaction of pooled cDNA.  The dissociation curve displayed a single peak, indicating 

the presence of only one PCR product.  Amplification of the control region occurred in all 

samples, other than negative controls.  Amplification curves of the control region were tightly 

grouped indicating each reaction contained the same amount of starting cDNA. 

 

Real time PCR conditions 

 RT-qPCR reactions to select primer pairs were performed on a Bio-Rad iCycleriQ 

Multicolor Real-Time PCR Detection System (Bio-Rad, Hercules, CA) using the following 

conditions: 95°C for 3 min; 40 repeats of the two step sequence of 95°C for 10 sec., 60°C for 45 
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sec.; 95°C for 1 min; 55°C for 1 min.  A dissociation curve was included at the conclusion of the 

40 repeats to verify the amplification of only one target sequence.  Each 25 μl reaction consisted 

of 12.5 μl 2x iQ SYBR Green Supermix (Bio-Rad, Hercules, CA), 1.0 μl of a 2.5 μM mixture of 

the forward and reverse primers, 6.5 μl water and 5.0 μl cDNA diluted to 6.0 x10
-2

 ng/μl.  Non-

template controls (water) were included for each standard curve and a no reverse transcriptase (-

RT) negative control was included with each group of samples.  All reactions were run in 

triplicate. 

 RT-qPCR reactions of the two onion cultivars were performed on a BioRad CFX 

Connect Real-Time System (Bio-Rad, Hercules, CA) using the following conditions: 95°C for 

10 min; 40 repeats of the two step sequence of 95°C for 15 sec., 60°C for 60 sec.; 95°C for 1 

min; 55°C for 1 min.  A dissociation curve was included at the conclusion of the 40 repeats to 

verify the amplification of only one target sequence.  Each 25 μl reaction consisted of 12.5 μl 

FastStart Universal SYBR Green Master (ROX) (F. Hoffmann-La Roche AG, Basel, 

Switzerland), 1.0 μl of a 2.5 μM mixture of the forward and reverse primers, 0.5 μl MgCl2, 6.0 μl 

water and 5.0 μl cDNA diluted to 5.0 x10
-2

 ng/μl.  Non-template controls (water) were included 

for each standard curve and a no reverse transcriptase (-RT) negative control was included with 

each group of samples.  All reactions were run in triplicate. 

 

Data analysis 

 RT-qPCR reaction efficiency was determined from the standard curves and provided by 

the software associated with the real-time PCR machines.  Amplification of a single RT-qPCR 

product was verified by a single peak in the melting curve.  The amount of amplicon was log 

transformed and analyzed with the MIXED procedure in SAS version 9.3 (SAS Institute Inc, 
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Cary, NC).  Significant differences of the mean amount of amplicon between cultivars, between 

locations, and between location by cultivar were determined with Tukey’s adjustment to the 

differences of least square means, α=0.05. 

 

Results 

RNA extraction 

 The leaf disks yielded RNA concentrations from 12.65 to 63.66 ng/μl (Table 4.1).  In 

order for each sample to contain the same amount of starting material, the lowest concentration 

of total RNA limited the amount of cDNA that could be made.  The optimal A260/280 value for 

RNA is within the range of 1.8 to 2.2 (11); 18 of the 30 RNA extractions were outside the 

optimal range. 

 

Table 4.1. Total RNA yield and purity of samples from two onion cultivars displaying IYSV symptoms. 

Advantage Granero 

Leaf Location
a
 

Weight
b
 

(mg) 

Yield 

(ng/µl) 

Purity 

(A260/A280) Leaf Location 

Weight 

(mg) 

Yield 

(ng/µl) 

Purity 

(A260/A280) 

1 1 12 20.00 2.26 1 1 12 25.72 2.30 

 2 13 28.19 2.25  2 13 24.87 2.54 

 3 17 24.38 2.35  3 13 15.45 2.27 

 4 16 50.53 2.06  4 12 16.27 2.44 

 5 18 14.65 2.64  5 10 16.60 2.32 

2 1 15 22.43 2.08 2 1 13 32.33 2.14 

 2 17 31.10 2.12  2 19 30.30 2.09 

 3 15 24.80 2.03  3 17 16.84 2.01 

 4 14 20.96 2.17  4 23 12.65 1.97 

 5 15 14.33 1.94  5 30 49.57 2.18 

3 1 18 25.77 2.29 3 1 14 22.91 2.10 

 2 19 48.80 2.26  2 12 34.63 2.31 

 3 26 50.90 2.24  3 13 27.05 2.35 

 4 32 63.66 2.27  4 12 13.56 2.22 

 5 33 47.10 2.28  5 12 16.95 2.49 
a
Location 1: mid-lesion; location 2: lesion tip; location 3: 1 cm from lesion tip; location 4: 2 cm from lesion tip; 

location 5: 3 cm from lesion tip.  
b
Weight of the leaf disk before RNA extraction. 
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RT-PCR 

 IYSV was detected in each of the Advantage and Granero samples (Figure 4.2).  One 

sample (lane 29) had evaporated during the PCR and appears negative on the gel, however, the 

subsequent RT-qPCR reactions verify that IYSV was present in that sample.  There was no 

amplification in the –RT controls (indicating genomic DNA was not present), or in the water 

only control (indicating no contamination).  Differences in band intensity can be observed on the 

gel with a trend of decreasing band intensity as the distance from the lesion increases. 

 
Figure 4.2.  IYSV was detected by RT-PCR in the Advantage and Granero samples.  Lanes 1-5: Advantage leaf 1; 

lanes 6-10: Advantage leaf 3; lanes 11-15: Advantage leaf 2; lanes 16-20: Granero leaf 2; lanes 21-25: Granero leaf 

1; lanes 26-30: Granero leaf 3.  Each leaf follows the order: mid-lesion, lesion-tip, 1, 2, 3 cm from lesion tip.  Lanes 

31 and 32: -RT control; lanes 33 and 34: NTC; lane 35: positive control.  The reaction represented by lane 29 had 

evaporated during the PCR. 

 

 

RT-qPCR 

 The RT-qPCR reactions of the leaf disk cDNA were not as efficient as the initial 

reactions that were performed when selecting primers.  When using onion leaf cDNA the 

average efficiency of the reference gene reactions was 85%, and was 76% for the IYSV N-gene 

M     1     2     3     4      5     6     7     8      9    10   11   12   13  14   15   16   17  18   19 

M    20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35 
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reactions.  The average slope and correlation coefficient (R
2
) values for the two genes are shown 

in Figure 4.3.  The dissociation curve for each gene displayed a single peak, indicating the 

presence of only one PCR product in the respective reactions.  No amplification occurred in any 

of the –RT or NTC reactions. 

 
Figure 4.3.  Standard curves of the RT-qPCR reactions for the reference gene (top) and IYSV N-gene (bottom).  

The top curve shows two runs plotted together, with a total of six individual reactions per each starting quantity.  

The bottom curve shows three runs plotted together, with a total of 9 individual reactions per each starting quantity.  

The reference gene standard curve ranged from 1.0 ng/reaction to 1.0 x 10
-3

 ng/reaction.  The IYSV N-gene standard 

curve ranged from 1.0 ng/reaction to 1.0 x 10
-6

 ng/reaction.  Slope and correlation coefficient (R
2
) for each curve are 

presented as an average of the runs. 
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 No significant differences in the mean amount of reference gene amplicon were found 

between the cultivars Advantage and Granero (F= 0.03, p= 0.8638), locations (F=0.23, p= 

0.9152), or locations by cultivar (F= 1.29, p=0.3162). 

 There were no significant differences in the mean amount of IYSV N-gene amplicon 

between the two onion cultivars (F= 0.02, p= 0.9078), or between locations by cultivar (F=0.41, 

p=0.8003) (Figure 4.4, top and middle).  There was a significant difference between locations 

(F=7.34, p=0.0015).  In particular, the differences were between the lesion and distal samples 

(Figure 4.4, bottom).  The amount of IYSV appeared to decrease as the distance from the lesion 

increased.  There were statistically significant differences between mid-lesion and 2 cm from the 

lesion (t= -3.16, p= 0.0419); between mid-lesion and 3 cm from the lesion (t=-4.21, p= 0.0052); 

between the lesion tip and 2 cm from the lesion (t= -3.22, p=0.0369); and between the lesion tip 

and 3 cm from the lesion (t=-4.27, p=0.0045). 
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Figure 4.4.  Comparisons of the mean relative amount (ng) of IYSV N-gene amplicon in onion cultivars Advantage 

(A) and Granero (G).  Top: The mean amount of IYSV N-gene amplicon between the two onion cultivars was not 

significantly different (α= 0.05, F= 0.02, p= 0.9078).  Middle: The mean amount of IYSV N-gene amplicon between 

the two onion cultivars at each location was not significantly different (α= 0.05F=0.41, p=0.8003). Bottom: There 

are significant differences of the mean amount of IYSV N-gene amplicon between the five locations along the leaf.  

The distances were measured from the lesion tip.  Bars labeled with the same letters are not significantly different 

from each other. 
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Discussion 

 

 The leaf disk samples used here were 3 to 10 times below the 100 mg plant material 

recommended to be used in the RNA extraction kit, which explains the relatively low yield of 

RNA from each sample.  In addition, the samples were ground by hand with a pestle which 

yields variable cell lysis between samples.  Several samples’ A260/280 values fell outside the 

accepted range of purity which was likely caused by the presence of proteins, phenol, or other 

plant metabolites in solution with the RNA (11).  In some cases these impurities can affect the 

results of RT-qPCR.  However, these problems can be avoided if the amplicon is small and by 

comparing relative amounts of amplicon (9), as is the case of the work presented here. 

 The differences in band intensity observed on the gel (Figure 4.2) give some indication 

that a different amount of IYSV was present in each sample.  The trend of decreasing band 

intensity with increasing distance from the lesion is also apparent in the results of the RT-qPCR 

reactions (Figure 4.4). 

 Although the Roche master mix produced standard curves within the acceptable range 

when first tested with the plasmid, it did not perform as well in the subsequent reactions, or as 

well as the mix purchased from BioRad.  The differences in amplification efficiency were most 

likely due to using different reagents (19).  Decreased amplification efficiency may cause the 

amount of amplicon to be underestimated.  However, as relative amounts were compared, the 

decreased efficiency should not affect the overall results.  The lack of any statistically significant 

differences among the mean amount of reference gene amplicon shows that each reaction started 

with the same amount of genetic material and that the differences in amplification of the IYSV 

N-gene are actual differences and not introduced through any errors. 
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 From the results presented here, Advantage and Granero appear to be equally susceptible 

to IYSV, but field trials (3, 7, 8, 16) suggest differences in sensitivity to the disease or perhaps 

even a degree of tolerance in Advantage.  The lack of difference in the relative amount of IYSV 

between the two onion cultivars suggests that the better performance of Advantage in the field 

(3, 16) cannot be attributed to a mechanism to limit viral movement or destroy the virus.  

Advantage may possess other physiological traits that allow expression of desirable agronomic 

characteristics while under stress. 

 Although differences in relative amount of IYSV were not found between the two 

cultivars, the differences in IYSV amount between locations along the leaf show that IYSV is not 

equally distributed throughout the onion leaves.  It has been demonstrated by DAS-ELISA that 

IYSV is unevenly distributed throughout onion (13, 14) and leek (17) plants.  The results of this 

study show that IYSV is present outside the lesions, but not as abundant.  If the amount of IYSV 

surrounding the lesions was below the threshold of detection by DAS-ELISA, it would appear 

that IYSV was absent from areas where it was actually present. 

 Smith et al. (17) found a patchy distribution of IYSV in the leaves of asymptomatic leek 

plants, while samples from the stems, scapes, basal plates, and roots were consistently negative.  

When IYSV distribution in onion plants was examined by Kritzman et al. (13) it also was not 

found in bulb or root tissue.  When IYSV was detected in the younger leek leaves (17), it was 

concentrated near the top and middle and rarely at the base of the leaf.  Smith et al. (17) 

concluded that because IYSV was not detected in basal plates or young leaves, it does not move 

systemically through the phloem but rather from cell to cell.  The IYSV genome contains a gene 

that is expected to code for a movement protein (5) so some amount of cell-to-cell movement 

would not be surprising.  It may take a long time for IYSV to travel to and enter phloem tissues, 
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if it does that at all. A more meticulous dissection of the leaves may show just how far and in 

what direction the virus spreads.  Further work is needed to determine exactly which cells IYSV 

occupies over the course of an infection, as many systemically infecting plant viruses are not 

uniformly distributed throughout the host (10). 

 It has been proposed that the patchy distribution of IYSV is the result of multiple point 

inoculations by thrips during their feeding activity (13, 17).  Thrips feed on plant epidermal and 

mesophyll tissues (1) and viral movement through these cells can be slow (10).  Because thrips 

had obviously been feeding on the sampled areas (the feeding can be observed as silvery flecks 

in Figure 4.1), it is impossible to tell from these results whether the virus present outside the 

lesion got there on its own through cell-to-cell movement, or if it was deposited by viruliferous 

thrips while feeding.  Questions about IYSV movement in onion plants and its accumulation 

over time will be difficult to answer until a reliable method for mechanical inoculation is 

developed. 

 Mapping pathogen concentration in plants is often undertaken to improve sampling 

protocols and to increase the likelihood of detecting the target pathogen.  These results suggest 

that a positive detection of IYSV will occur from leaf tissue samples that contain a lesion.  If 

asymptomatic onion plants are to be tested, areas showing thrips damage should be chosen. 

 Although no difference in the relative amount of IYSV was found between the two onion 

cultivars, the RT-qPCR method presented here may prove useful in screening other cultivars 

where resistance to IYSV is suspected.  Similar RT-qPCR approaches can be applied to further 

studies of IYSV, including detection of IYSV in asymptomatic plants and the study of genes 

involved in host resistance or tolerance to IYSV or thrips. 
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CONCLUSION 

 

 

 

 There is still no evidence that Iris yellow spot virus (IYSV) is seed transmitted, and 

because of this it is unlikely that onion (Allium cepa L.) seed is a source of IYSV inoculum.  

IYSV can be detected in the seed coat, and that should be kept in mind for future seed assays.  It 

remains to be determined if IYSV infection of the mother plant affects the subsequent seeds 

(e.g., size, quality, viability). 

 IYSV was detected in several weed species (Malva neglecta Wallr. (common mallow), 

Taraxacum officinale Weber in Wiggers (dandelion), Descurainia sophia (L.) Webb. Ex Prantl 

(flixweed), Lactuca serriola L. (prickly lettuce), and Tragopogon dubius Scop. (salsify)), and in 

onion thrips (Thrips tabaci Lind.) during two Colorado winters.  Greenhouse studies 

demonstrated that thrips can reproduce on these weed species and acquire IYSV from some of 

them.  IYSV was more often detected in greenhouse grown salsify plants and in the thrips larvae 

developing on them than in any of the other weeds or thrips larvae.  It would be useful to 

determine the distance from an onion field at which IYSV infected thrips and weeds can no 

longer be found.  This could provide insight as to how feasible weed control might be in 

reducing or delaying IYSV outbreaks. 

 Temperatures in Colorado did not fall low enough during the winter to completely 

eradicate thrips populations.  Although thrips numbers and activity are greatly decreased during 

the winter, some IYSV infected onion thrips survive on green plants in sheltered locations.  Even 

if the plant is not an IYSV host, it contributes to thrips survival and may be considered an 

indirect green bridge.  Onion cull piles were not an important site for thrips overwintering once 

decay set in.  Volunteer onions and onions left standing in the field did harbor IYSV infected 
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thrips over the winter.  It would be interesting to elucidate if volunteer onions have overwintered 

with IYSV, or if the plants are inoculated by onion thrips once growth resumes.  In Colorado, 

winter wheat is often planted adjacent to onions, in rotation with onions, or as a companion crop 

to onion.  Thrips and IYSV were detected from field collected winter wheat samples, but the 

winter wheat grown under greenhouse conditions did not become infected with IYSV.  The role 

of winter wheat as a green bridge for IYSV and onion thrips needs further investigation. 

 No onion cultivar has yet been identified with resistance to IYSV, however, some 

cultivars are more tolerant to the virus than other.  An RT-qPCR assay was developed to 

compare the relative amount of IYSV between an IYSV susceptible onion cultivar, Granero, and 

a tolerant cultivar, Advantage.  There were no differences in the relative amount of IYSV 

between the two cultivars.  Applying the RT-qPCR assay to additional onion cultivars would be 

interesting and may aid the search for resistance or be helpful in understanding cultivar tolerance 

to IYSV.  It has been established that IYSV is unevenly distributed within onion leaves.  This 

assay revealed a gradual decrease in the amount of IYSV as distance from the lesion increased.  

The assay should also prove useful in further investigations of IYSV behavior in onion plants, 

and help fine tune sampling for diagnostic procedures. 

 It is hoped that the results of this work prove useful to onion growers as part of their 

integrated pest management programs, and to researchers investigating the behavior of onion 

thrips and IYSV in onions. 
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APPENDIX 1: INDUCTION OF ONION BOLTING 

 

 

 

 Two experiments were performed to induce onions to bolt with the longer term goal of 

obtaining additional seeds to test for IYSV. 

 For the first experiment, onion sets were placed in a household chest freezer 

(approximately -16°C) for 1, 4, or 8 hours.  Two bags of 80 sets of the cultivars Ebenezer, Red 

Weathersfield, and Yellow Rock underwent each treatment.  Two bags of each cultivar were left 

untreated.  After treatment the sets were planted into the field at ARDEC in late April, 2012.  

Sets that did not survive the treatments (mushy from the freeze-thaw process) were discarded 

before planting, and the number of sets per treatment that were planted varied.  The remaining 

sets were split into two reps, with the exception of 8 hour treated Ebenezer and Red 

Weathersfield.  Too few of these sets survived the treatment to plant two reps.   

 The plants that grew from the sets remained small and did not develop more than 6 to 7 

leaves.  The numbers of plants that grew and bolted are listed in Table A1.1.  Only 9 scapes had 

developed by June 26, 2012.  The plants were in poor condition and no further data was recorded 

after this time.  The Red Weathersfield sets appeared to survive the freeze treatments better than 

the other two cultivars. 

 

Table A1.1  The number of plants and scapes that grew from freeze treated onion sets. 

 Ebenezer Red Weathersfield Yellow Rock 

 Plants
a
 Scapes

b
 Plants Scapes Plants Scapes 

Untreated 46 1 143 2 95 - 

1h 65 - 141 - 55 - 

4h 34 1 103 3 40 1 

8h 9 - 21 - 25 1 
a
The plants were counted on June 11, 2012.  

b
The scapes were counted on June 26, 2012. 
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 Sets are typically stored at warm temperatures (27-28°C) to prevent bolting; long term 

storage at 7-12°C can predispose larger onion sets to bolting (1).  It would appear that -16°C is 

too cold for onion sets because many of the sets froze and became mushy upon thawing.  It 

would be interesting to evaluate these short-term treatments at warmer temperatures. 

 In the second experiment, 50 onion bulbs each of cultivars Belmar, Cometa, and Granero 

were harvested from the field on September 20, 2012.  The bulbs were stored for approximately 

three months in the workroom at ARDEC, then planted into pots in a greenhouse on January 4, 

2013.  Bulbs that began to decay during storage were discarded.  Table A1.2 shows the number 

of bulbs planted, and the number that subsequently grew and bolted by March 19, 2013.  The 

percentage of plants that bolted was calculated from the number of plants that grew. 

 

Table A1.2.  The number of onion bulbs that grew and bolted under greenhouse conditions.  

Cultlivar Planted Grew (%) Bolted (%)
a
 

Belmar 50 46 (92) 27 (58) 

Cometa 47 22 (47) 10 (46) 

Granero 44 39 (88) 21 (54) 
a 
Calculated from the number of plants that grew. 

 

 More plants developed from the Belmar and Granero bulbs than from the Cometa bulbs.  

Approximately half the plants that grew developed scapes.  Although the onion plants bolted and 

flowered, seeds did not form.  If this method were to be used to produce seeds, the appropriate 

pollinator, such as honeybees, would need to be introduced.  Storing the bulbs at a temperature 

within the range of 4.5 to 14°C for the same time period would likely increase the number of 

plants that bolted (1) within six months of field harvest of the bulbs. 
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APPENDIX 2: COMPARISON OF DAS-ELISA AND RT-PCR ON FROZEN AND DRIED 

ONION SCAPE TISSUE 

 

 

 The following work was undertaken to determine an appropriate storage and detection 

method of IYSV in onion scapes.  These results were then applied to test the scapes described in 

Chapter 2. 

 Five IYSV symptomatic scapes of the cultivars Solid Gold and Pentium, and four IYSV 

symptomatic scapes of cultivar Red Defender were collected from ARDEC on August 31, 2010.  

Each scape was rinsed and blotted dry.  Two samples were removed from each scape; one 

sample contained a lesion and surrounding green tissue and the other sample consisted of an 

asymptomatic area distal to the lesion.  Each sample was quartered as shown in Figure A2.1.  

Each quarter was either frozen at -80°C or dried at room temperature before being tested for 

IYSV by RT-PCR or DAS-ELISA (both techniques are described in Chapter 2) approximately 

four months later.  Samples from three of the Solid Gold scapes intended for the freezer were 

accidentally left at room temperature overnight before freezing.  Results were analyzed with the 

freq procedure in SAS version 9.3 (SAS Institute Inc, Cary, NC). 

 

Figure A2.1.  Each sample removed from the onion scapes was quartered.  Portion A was frozen before testing by 

RT-PCR.  Portion B was dried before testing by RT-PCR.  Portion C was frozen before testing by DAS-ELISA.  

Portion D was dried before testing by DAS-ELISA. 
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 The DAS-ELISA and RT-PCR results are summarized in Table A2.1.  No statistically 

significant differences were found among the samples containing a lesion.  The method used to 

preserve or to test the samples containing a lesion did not influence the results.  There was a 

significant difference when comparing the results of DAS-ELISA and RT-PCR on samples 

removed from the distal region (p= 0.009).  IYSV was detected in more samples when RT-PCR 

was used.  In addition, when IYSV detection by DAS-ELISA and RT-PCR is compared from the 

frozen samples, a statistically significant difference exists (p=0.039).  Again, IYSV is detected 

more frequently by RT-PCR than by DAS-ELISA in frozen samples from the distal region.  No 

other significant differences were found among the results of the samples removed from the area 

distal to the lesion. 

 

Table A2.1.  IYSV status as determined by DAS-ELISA or RT-PCR of frozen and dried onion leaf tissue. 

 DAS-ELISA RT-PCR 

 Lesion Distal Lesion Distal 

 Dried Frozen Dried Frozen Dried Frozen Dried Frozen 

SG1 + + - + + + + + 
SG2 + + - - + + + + 
SG3 + + - - + + - - 

SG4 + + + + - - + + 
SG5 + + - - - + + + 
P1 - + + + + + - + 
P2 + + - - + + + + 
P3 + + - - + + + - 

P4 - - + + + + + + 
P5 + + - - - + - + 

RD1 + + + + - + + + 
RD2 + + + + + + + + 
RD3 + + - - + + + + 
RD4 + + + + + + + + 
SG: Solid Gold; P: Pentium; RD: Red Defender 

 

 The results indicate that using DAS-ELISA to detect IYSV from dried scapes is adequate, 

so long as the sample includes a lesion.  The results of the distal region suggest that RT-PCR is 

more sensitive than DAS-ELISA.  It is also possible that the IYSV genome is present at the distal 
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location before the coat proteins are expressed.  When testing asymptomatic plants for IYSV, 

RT-PCR is the better option. 
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APPENDIX 3: GENERATING CLEAN THRIPS COLONIES 

 

 

 

This appendix has been adapted from (4). 

 Inoue et al. (2) showed no significant differences in the larval mortality of Iris yellow 

spot virus (IYSV)-infected and uninfected Thrips tabaci, however it would be interesting to 

determine whether IYSV infected and uninfected T. tabaci respond differently to various 

environmental conditions.  Before those comparative studies can be undertaken, reliable access 

to colonies of IYSV infected and non-infected thrips is required.  Initially, onions with no 

apparent symptoms of IYSV were collected from the field with the intent to rear the thrips from 

those onions as potentially IYSV-free thrips.  Unfortunately, these field collected plants 

consistently tested positive for IYSV by DAS-ELISA (described in Chapter 2), and the thrips 

feeding on them were assumed to also be infected.  Although onion thrips prefer onion, they will 

use other plants as hosts (1, 3).  As far as we know IYSV is not transmitted to offspring, but must 

be acquired during thrips feeding on infected plant material (5).  If a plant isn't a host for IYSV, 

the virus won't infect that plant as thrips feed on it.  If the plant does not get infected, then 

subsequent generations of thrips that feed on that same plant should have no source of IYSV to 

acquire. 

 Five pots each of radish (Alta Globe cultivar) and onion (grown from Gurney's yellow 

onion sets) were planted with 4 plants/pot and physically isolated from external sources of thrips 

with a plastic and mesh cylinder placed over the plants (Figure A3.1).  Before adding thrips from 

symptomatic onion plants, a leaf tissue sample from each of the 4 plants in a pot was pooled and 

tested by RT-PCR (described in Chapter 2) for the absence of IYSV.  A sample of 34 thrips 

(adult and juvenile) was removed from a single symptomatic onion plant and 12 thrips were 
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placed onto radishes in a single pot, 12 were placed onto onions in a single pot, and the 

remaining 10 were tested for IYSV by RT-PCR. Samples of 34 thrips were removed and 

transferred from a total of 5 symptomatic onion plants, and IYSV presence in symptomatic 

leaves was verified by RT-PCR. 

 

Figure A3.1.  Barriers placed over onion and radish plants. 

 

 At 2 week intervals for 12 weeks, a portion of a leaf from each of 4 plants was removed 

and pooled by pot before testing for IYSV by RT-PCR.  To increase the chance of detecting 

IYSV, tissue samples with thrips damage were preferentially selected.  Five thrips (adult and 

larval) were collected from each pot and pooled by pot on the same day.  Thrips were not 

collected during week two as insufficient time had passed to produce the next generation and 

insect numbers were too low. 
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 RT-PCR results are summarized in Table A3.1.  The symptomatic source plants (not 

shown) and onion thrips removed from them and transferred to the onion and radish plants were 

positive for IYSV.  The onion and radish plants were negative for IYSV when the infected thrips 

were initially transferred to them.  IYSV was detected in onion plants by week two and remained 

in the plants.  IYSV was not detected in the radish plants during the 12 week period. 

 Thrips collected from IYSV positive onion plants remained positive for IYSV over the 12 

weeks.  Thrips collected from radish plants were negative by week 4 and remained IYSV-free 

over the 12 weeks.  During week 9, thrips were transferred from old to new plants of the same 

species.  IYSV was detected in three of the four thrips samples collected at week 10 from radish.  

This is very likely a contamination event due to collecting IYSV infected thrips from onions 

before collecting uninfected thrips from the radish plants.  Another possibility is that the adult 

thrips in these samples were from the original IYSV infected thrips placed on the plants at the 

start of the experiment.  IYSV was not detected in radish reared thrips during week 12, with the 

exception of a mislabeled sample that may have actually been the onion reared thrips.   

 Higher thrips numbers were generally observed on onion.  For future work where large 

numbers of clean thrips are needed, the best strategy may be to rear thrips on radish for 4 to 6 

weeks, then transfer clean thrips larvae to onion plants to increase their numbers.  Results from 

onion pot 5 indicate this may be a good strategy, as plants in this pot did not become infected 

with IYSV, nor was IYSV detected in the thrips collected from that pot. 
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Table A3.1. Summary of RT-PCR results for the presence (+) or absence (-) of IYSV.  

 Onion Radish 

 Plants Thrips (5/sample) Plants Thrips (5/sample) 

Pot 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Week 0 - - - - - + + + + + - - - - - + + + + + 

2 + - + + - * * * * * - - - - - + - * * * 

4 + + + + - + - + + - - - - - - - - - - - 

6 + + + + - + + + + - - - - - - - - - - - 

8 + + + + - + + + + - - - - - - - - + - - 

10 - - + + X + + + + X - - - - X + + - + X 

12 + - + + X + -
a
 + + X - - - - X - +

a
 - - X 

IYSV presence indicated by +; IYSV absence indicated by -.  *: Samples not collected.  X: Pots no longer available.  
a
: Mislabeled sample indicated. Thrips samples consisted of adults and larvae.  Plant samples consisted of one leaf 

tissue sample per plant pooled by pot. 
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APPENDIX 4: VOLUNTEER ONIONS AND ASSOCIATED THRIPS 

 

 

 

 To determine if IYSV first appears in volunteer onions or in onion thrips, volunteer 

onions were collected from a research field planted with onions at the Agricultural Research 

Development and Education Center (ARDEC) approximately 10 miles (16km) northeast of Fort 

Collins, Colorado.  Ten plants were randomly selected and collected every two weeks from late 

May to early July 2010.  Plastic 3.79 liter resealable bags were quickly placed over the leaves 

and necks of the onion plants before the onions were disconnected from the soil in order to 

minimize loss of thrips. The first ten onions were completely removed from the soil and the 

whole plant was closed inside the plastic bag, however, soil from the roots interfered with 

locating thrips. In order to reduce interference from soil, the necks of subsequent onions were cut 

at the soil line and only the leaves and neck were enclosed in the plastic bags. Bagged plant 

material was placed at 4°C from one to several hours to chill the thrips and facilitate their 

recovery for evaluation.  

 Individual leaves were removed from each plant by slicing them with a razor blade.  

Adult and larval thrips were counted and removed from the plants with a damp fine tipped (#1, 

white bristle) artist’s paintbrush, placed in 1.5 ml microcentrifuge tubes, and kept on ice until 

storage at -80°C.  Plants were numbered 1 to 10 and the tubes of thrips were labeled to 

correspond with the plant the thrips were removed from. With the exception of the first ten 

plants, any additional thrips found in the plastic bags were removed and added to the appropriate 

microcentrifuge tube. After the thrips were removed from the leaves, the leaves were returned to 

4°C until they were tested for IYSV by DAS-ELISA (described in Chapter 2). 
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 Three leaves (oldest, newest, and one of intermediate age) were removed from each plant.  

Leaves displaying IYSV symptoms were preferentially selected.  A 0.2g segment of each leaf 

was cut from the top, middle, and bottom of the leaf and tested for IYSV by DAS-ELISA.  

Positive plants had at least one sample with a reading more than twice the background level.  The 

thrips collected from the volunteer onion plants were tested for IYSV with RT-PCR (described in 

Chapter 2). 

 IYSV was not detected in volunteer onions or in thrips removed from the onions until 

early June, 2010 when IYSV was detected in both the plants and thrips (Table A4.1).  IYSV was 

detected in both symptomatic and asymptomatic plants.  IYSV status of a particular plant and the 

thrips removed from it were not always in agreement.  It is interesting that IYSV was not 

detected in any of the July plant samples, but was detected in all but one of the thrips populations 

removed from the plants.  The total number of thrips increased over time, and most volunteer 

onions supported a mixed population of thrips species, primarily T. tabaci and F. occidentalis.  

Volunteer onions have been considered a source for IYSV (1, 2), but it is still unclear if 

IYSV overwinters in the onion, or if the onion becomes reinoculated during thrips feeding once 

it sprouts.  The results of the IYSV status of volunteer onions and their associated thrips 

investigated here did not clarify the situation.  IYSV was first detected in both volunteers and 

their thrips on the same collection date (Table A4.1).  In some cases, IYSV appears in thrips but 

not in the corresponding volunteer; due to the uneven distribution of IYSV within onion plants 

(3, 4) it is possible that IYSV was present in the plant, but not in the particular leaf section that 

was tested.  It is also possible that the volunteer was not infected.  In other cases, IYSV was 

detected in the plant but not in the thrips associated with the plant.  Again, it is not clear if IYSV 

file:///C:/Users/Admin/Documents/Onion%20things/Let's%20call%20it%20a%20thesis/Appendix%20Volunteer%20Onions.docx%23_ENREF_1
file:///C:/Users/Admin/Documents/Onion%20things/Let's%20call%20it%20a%20thesis/Appendix%20Volunteer%20Onions.docx%23_ENREF_2
file:///C:/Users/Admin/Documents/Onion%20things/Let's%20call%20it%20a%20thesis/Appendix%20Volunteer%20Onions.docx%23_ENREF_3
file:///C:/Users/Admin/Documents/Onion%20things/Let's%20call%20it%20a%20thesis/Appendix%20Volunteer%20Onions.docx%23_ENREF_4


120 

overwintered in the plant and the thrips had not yet acquired the virus, or if the plant had been 

inoculated by thrips that had since moved on. 

 

Table A4.1.  IYSV status of volunteer onions and thrips associated with them collected at ARDEC. 

 IYSV 

status of 

volunteer 

Symptoms Thrips/plant 

and IYSV 

status 

Thrips species
a
 

26 May 2010 1   (-) No 1     (-) T. tabaci 

 2   (-) No 2     (-) T. tabaci 

 3   (-) No 0  

 4   (-) No 0  

 5   (-) No 0  

 6   (-) No 0  

 7   (-) No 3     (-) T. tabaci 

 8   (-) No 0  

 9   (-) No 0  

 10 (-) No 7     (-) T. tabaci 

9 June 2010 1   (-) Maybe 10   (-)  

 2   (-) No 6     (-) T. tabaci, F. occidentalis 

 3   (-) No 26   (+) T. tabaci, F. occidentalis 

 4   (-) No 33   (-) T. tabaci, F. occidentalis 

 5   (+) Yes 6     (+) T. tabaci, F. occidentalis 

 6   (-) No 32   (-) T. tabaci, F. occidentalis 

 7   (-) No 5     (-) T. tabaci, F. occidentalis 

 8   (-) No 3     (-) T. tabaci 

 9   (-) No 37   (-) T. tabaci, F. occidentalis 

 10 (+) Yes 5     (+) T. tabaci, F. occidentalis 

23 June 2010 1   (+) No 40   (+) T. tabaci, F. occidentalis 

 2   (+) No 11   (-) T. tabaci, F. occidentalis 

 3   (+) No 15   (-) T. tabaci, F. occidentalis 

 4   (-) No 7     (-) T. tabaci, F. occidentalis 

 5   (-) No 14   (-) T. tabaci, F. occidentalis 

 6   (-) No 208 (-) T. tabaci, F. occidentalis 

 7   (-) No 103 (-) T. tabaci 

 8   (+) No 19   (+) T. tabaci 

 9   (-) No 7     (-) T. tabaci 

 10 (+) No 137 (+) T. tabaci 

9 July 2010
b
 1   (-) No 105 (+) T. tabaci, F. occidentalis 

 2   (-) No 25   (-) T. tabaci, F. occidentalis 

 3   (-) No 206 (+) T. tabaci, F. occidentalis 

 4   (-) No 91   (+) T. tabaci, F. occidentalis 

 5   (-) Maybe 123 (+) T. tabaci, F. occidentalis 

 6   (-) No 64   (+) T. tabaci, F. occidentalis 

 7   (-) No 172 (+) T. tabaci, F. occidentalis 

 8   (-) Maybe 123 (+) T. tabaci, F. occidentalis 

 9   (-) No 47   (+) T. tabaci, F. occidentalis 

 10 (-) No 30   (+) T. tabaci, F. occidentalis 
a 
Species determined by RT-PCR; T. = Thrips, F. = Frankliniella.  Other species may have been present, but 

primers were not developed for any additional species.  
b
Most volunteers in the field at this time had bolted.  The 

collected samples had not bolted. 
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 It is interesting that IYSV was detected in plants before symptoms were present.  

Unfortunately, these results do not give any indication of the length of time between IYSV 

infection and appearance of symptoms. 

 In order to determine whether IYSV overwinters in onion bulbs, future work could 

include growing out bulbs from infected plants in the absence of thrips and testing the new plant 

tissue for IYSV.  However, if IYSV does not overwinter in the bulbs, or if it occurs at a low 

frequency, the number of bulbs that would need to be tested is very large.  The far greater 

challenge would be ensuring the plants remained free of thrips during the grow-out. 
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APPENDIX 5: EFFECTIVENESS OF A THRIPS LURE AND A SEEDCORN MAGGOT 

LURE TO ATTRACT TARGET INSECTS IN AN ONION FIELD 

 

 

This report was initially prepared for: Dr. Jan Meneley of AgBio Development, Inc., 

Westminster, CO and has been reformatted for inclusion in this dissertation. 

 

Introduction 

 Thrips are an important pest of many crops, including onions, and thrips damage to crops 

can be compounded when the thrips also vector plant pathogens. Onions can suffer yield loss due 

to Iris yellow spot virus (IYSV) which is vectored by the onion thrips, Thrips tabaci. Controlling 

T. tabaci is currently the best strategy for preventing IYSV in onions (2). In order to control 

thrips at the right time, the field must be monitored for the initial presence of thrips.  

 Earlier studies (1, 4) have shown that a variety of chemical compounds are attractive to 

thrips and that using a chemical attractant in combination with a water trap in onion fields is 

more effective at trapping thrips than a water trap alone. In our 2010 study, a thrips attractant 

lure was evaluated against a yellow sticky card to assess the potential benefit of the lure 

attracting more thrips than the card alone. Lures were also used in combination with water traps 

for the same purpose. 

 Seedcorn maggot can also be a pest of onion, and lures have been shown to be effective 

at attracting the adults to sticky cards (3). 

 Two separate lures for thrips (Thrips attractant, P178-lure) and seedcorn and onion 

maggots (SOM) (Delia platura/antigua, P316-lure) manufactured by ChemTica International, 

S.A. were provided by AgBio Development, Inc. (courtesy of J. Meneley). These lures were 
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attached to yellow sticky cards and placed in an onion field at CSU-ARDEC near Fort Collins, 

Colorado in 2010 to determine if they attract more target insects than a yellow sticky card alone. 

The number of thrips on onion plants surrounding the traps was also monitored for any 

secondary effect the lures might have. Thrips were also collected in water traps to further 

compare the efficacy of the lure and for future work investigating species composition. 

 

Materials and Methods 

Sticky cards 

 Yellow sticky cards (34 x 10 cm) were placed in the onion field alone or with one of a 

thrips lure or SOM lure. The yellow sticky cards were wrapped sticky side out over the end of a 

short (30 cm) stake and stapled in place (Figure A5.1). The top of the sticky card was 19.5-24 cm 

above the soil. Lures used in conjunction with sticky cards were stapled to the side edge of the 

sticky card. A sticky card alone, one with a thrips lure, or one with a SOM lure were placed in a 

straight line 7.6 meters apart. One set of this arrangement was placed in beds planted with onion 

sets (cultivar Solid Gold), and a second set was placed in beds of seeded onion (cultivar Belmar). 

This was repeated three times; once each in June, July and August of 2010. 

 Thrips were counted on ten plants (four in the same bed and six in the two beds on either 

side of the stake) when the stakes were initially placed in the field and again two days later. 

Sticky cards and lures were left in the field for three days. In June, the number of insects on the 

sticky cards was counted every day for three days, but in July and August the insects were 

counted once at the end of three days. Final counts of insects were done in the lab aided by a 

dissecting microscope in July and August. Insect counts were placed in the categories of thrips, 
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large flies, small flies, and other. Large flies included all flies longer than 2 mm and small flies 

included all flies smaller than 2 mm.  

 The ratio of thrips on the control to lure sticky card was calculated for each of the three 

months, and the mean ratio was compared to 1 (no difference) using Student's t-test, α=0.05. The 

mean ratio of large flies caught on the traps was analyzed the same way. The mean number of 

thrips on plants surrounding the sticky cards before and two days after the cards and lures were 

placed were also compared using Student's t-test, α=0.05. 

  
Figure A5.1.  Sticky trap with lure and water trap. 

 

Water traps 

 In July and August, the sticky cards were removed after three days and replaced with a 

water trap (Figure XYZ.1). Water traps were placed within centimeters of the sticky card 

locations. The water traps were constructed by attaching a small yellow one liter bucket to the 

top of a short stake. The buckets were the same apparent shade of yellow as the sticky cards. 

Lures were removed from the sticky cards and attached to the inside edge of the buckets. A small 

amount of detergent was added to the water in the buckets to break the surface tension of the 

water. Insects were collected over a 24 hour period, then removed and stored in 70% ethanol at 

4°C. Thrips were separated from the collected insects and counted.  
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 The ratio of thrips collected in the control to lure water traps was calculated for July and 

August, and the mean ratio was compared to 1 (no difference) using Student's t-test, α=0.05. 

 

Results 

Sticky cards 

 In both the seeded onions and onion sets, thrips numbers peaked in July while no clear 

pattern emerged for either the large or small flies (Tables A5.1 and A5.2). In the seeded onions, 

the number of thrips caught on the control sticky cards exceeded that of the sticky cards with the 

thrips lure attached to it, with the exception of August. In the onion sets, higher numbers of 

thrips were caught on the sticky cards with thrips lures than on the control, with the exception of 

August. The results of the t-test (Table A5.3) on the thrips ratios averaged over the three months 

indicate no significant difference existed in the number of thrips caught on sticky cards with or 

without the lure in either the seeded onions or the onions sets. 

Table A5.1. Insects captured on sticky traps placed in an area of Belmar onions grown from seed. 

Seeded Onions Control Thrips Lure Seedcorn Maggot Lure 

 June July August June July August June July August 

Thrips 491 3730 2316 386 2706 2763 305 2971 1799 

Large Flies 36 40 46 62 51 107 29 56 35 

Small Flies 161 210 150 292 195 196 187 330 169 

Other 39 162 54 25 167 100 82 143 58 

 

Table A5.2. Insects captured on sticky traps placed in an area of Solid Gold onions grown from sets. 

Onion Sets Control Thrips Lure Seedcorn Maggot Lure 

 June July August June July August June July August 

Thrips 399 3297 1929 581 5490 1536 358 2743 - * 

Large Flies 15 30 38 39 49 158 37 51 - 

Small Flies 158 246 171 459 358 231 459 241 - 

Other 22 126 53 32 268 132 27 158 - 

*additional lures were unavailable for August sampling 
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Table A5.3. Ratio of number of thrips on control sticky cards to sticky cards with thrips lure. 

Seeded Onions Onion Sets 

June July August June July August 

1.27 1.38 0.84 0.69 0.6 1.26 

p-value: 0.4282 p-value: 0.5360 

 

 

 The results of the t-test on the large fly ratios averaged over the three months (Table 

A5.4) indicate no significant difference existed in the number of large flies caught with or 

without the lure. 

 The ratio of all flies caught on the control vs lure was also calculated for each of the three 

months in each of the areas of the field (not shown). The results of the t-test on the large fly 

ratios averaged over the three months (p-value: 0.1970) indicate no significant difference existed 

in the number of flies caught with or without the lure. 

 

Table A5.4. Ratio of number of large flies on control sticky cards to sticky cards with SOM lure. 

Seeded Onions Onion Sets 

June July August June July August 

1.24 0.71 1.34 0.4 0.59 - 

p-value: 0.6603 p-value: 0.1144 

 

 

Thrips on plants 

 Tables A5.5 and A5.6 show the number of thrips counted on each of 10 plants 

surrounding the sticky card sites before and two days after placing the cards in the field. With the 

exception of the plants surrounding the control sticky card in the seeded onions in June (p-value 

0.0381, α=0.05), there were no significant differences in the average number of thrips per plant 

surrounding the sticky cards (α=0.05) two days after the traps were placed in the field. When 
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averaged across the three months, there was no significant change in the number of thrips on the 

plants two days after placing the traps in the field. 

Table A5.5. Number of thrips on plants before and two days after placing sticky cards and lures in a seeded onion 

bed. 

 Seeded Onions, Cultivar Belmar 

 June July August 

 Control Lure Control Lure Control Lure 

Site Before After Before After Before After Before After Before After Before After 

1 2 3 2 2 7 25 26 39 9 1 32 65 

2 0 1 1 1 12 11 24 22 6 2 0 103 

3 0 0 1 0 11 24 18 67 34 1 84 103 

4 0 1 0 4 19 17 16 57 11 6 91 23 

5 2 4 1 1 14 4 22 45 91 0 16 0 

6 1 2 0 1 22 28 28 8 6 0 5 46 

7 0 0 0 0 18 21 49 17 63 4 56 1 

8 0 4 0 1 17 12 53 14 18 17 31 6 

9 1 5 0 0 11 17 47 53 34 25 52 62 

10 2 2 0 3 18 20 19 28 8 73 28 53 

ave 

std dev: 

0.8 

0.92 

2.2 

1.75 

0.5 

0.71 

1.3 

1.34 

14.9 

4.63 

17.9 

7.31 

30.2 

13.98 

35.0 

20.17 

28.0 

28.64 

12.9 

22.70 

39.5 

30.96 

46.2 

38.63 

 

Table A5.6. Number of thrips on plants before and two days after placing sticky cards and lures in an onion set bed. 

 Onion Sets, Cultivar Solid Gold 

 June July August 

 Control Lure Control Lure Control Lure 

Site Before After Before After Before After Before After Before After Before After 

1 3 3 48 43 6 20 32 17 3 91 7 26 

2 19 14 0 2 38 83 29 17 0 91 28 36 

3 0 3 5 0 89 29 11 12 2 103 22 17 

4 34 2 60 25 18 23 19 22 78 0 5 16 

5 6 3 13 11 14 67 38 58 63 6 18 8 

6 7 8 3 3 67 26 36 27 9 85 3 8 

7 4 3 1 29 22 16 15 11 34 39 2 2 

8 10 2 21 1 24 37 19 22 57 0 6 50 

9 15 2 21 2 68 19 4 9 62 10 5 6 

10 20 10 22 0 97 47 18 50 58 2 5 25 

ave: 

std dev: 

11.8 

10.33 

5.0 

4.19 

19.4 

20.30 

11.6 

15.31 

44.3 

33.13 

36.7 

22.48 

22.1 

11.20 

24.5 

16.61 

36.6 

30.49 

42.7 

44.50 

10.1 

9.10 

19.4 

15.08 
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Water Traps 

 Table A5.7 shows the number of thrips collected in the water traps during a 24 hour 

period. In both the seeded onions and onion sets, more thrips were collected in August than in 

July. In the seeded onions there was a significant difference in the number of thrips caught 

between the control water trap and the water trap with the thrips lure (Table A5.8, p-value: 

0.0031, α=0.05). The difference in the number of thrips caught in the onion sets was not 

significant (Table A5.8). 

 There was no significant difference in the number of thrips caught between the control 

water traps and the water traps with the SOM lure.  

Table A5.7. Thrips captured in water traps placed in an area of Belmar onions grown from seed and Solid Gold 

onions grown from sets. 

 Control Thrips Lure Seedcorn Maggot Lure 

Seeded Onions July August July August July August 

Total Thrips 65 478 151 1126 64 219 

Onion Sets       

Total Thrips 80 201 190 368 125 - * 

*additional lures were unavailable for August sampling. 

 

Table A5.8. Ratio of number of thrips caught in control water traps to water traps with thrips lure. 

Seeded Onions Onion Sets 

July August July August 

0.43 0.42 0.42 0.55 

p-value: 0.0031 p-value: 0.0767 

 

Discussion 

Sticky cards 

 When Kuhar et al. (3) used SOM lures (also manufactured by ChemTica), they found that 

the sticky traps associated with lures significantly attracted more flies than sticky traps alone. 

Results reported here show no significant difference between the number of flies caught with or 
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without the SOM lure. Several differences in experimental design could account for these 

conflicting results. Their sample sizes were larger, their experiment spanned a much longer time 

(up to 61 days in one case), and field locations were in different parts of the country. 

 This experiment reported here lasted only three days and it is possible the results would 

have been different over a longer period. Sticky cards and lures were limited, so only one of each 

type of trap at a time was placed out in each section of the field. While this allowed us to collect 

insects during three months, we could not generate an average number of insects per type of trap 

per time point. Replicates of each trap distributed throughout the field at each time point (5 of 

each at a time for example) would make our results more meaningful. 

 Because the seeded onions and onion sets were at different developmental stages, their 

corresponding insect counts were kept separate. If the experiment were conducted in a field of 

uniform development there would be more reps to compare. It is also possible that the different 

lures and controls were placed too close together and interfered with each other. Repeating this 

with more replicates and greater spacing between lures and controls would be interesting. 

 

Thrips on plants 

 While there were no significant differences in the number of thrips on onion plants 

surrounding the sticky cards after the cards and lures were placed in the field, it does appear that 

thrips were not necessarily evenly distributed within the field. When averaged over the three 

months, the data suggests no difference in the number of thrips at the site of the control sticky 

card compared to the site of the sticky card with the thrips lure in the seeded onions before 

setting out the cards and lure (p-value: 0.1378, α=0.05). Thrips counts taken two days later 

suggest that the number of thrips on the plants had changed such that the number of thrips on 
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plants surrounding the control was no longer equal to the number of thrips on plants surrounding 

the lure (p-value: 0.0080, α=0.05). In this instance plants surrounding the lure had a greater 

number of thrips on them than did the control plants. The opposite occurred in the onion sets, 

with an unequal distribution of thrips on the plants before placing the sticky cards and lures in 

the field (p-value: 0.0262, α=0.05), then no significant difference was noted in the number of 

thrips on the plants at the two sticky card sites two days later (p-value: 0.1515, α=0.05). This 

may indicate that thrips were moving throughout the field. Again, a larger sample size should 

give a more meaningful result. 

 

Water traps 

 If the thrips counts from both the seeded onions and onion sets are combined, the results 

indicate a significant difference in the number of thrips caught in the water traps with the lures as 

compared to the control (p-value: 0.0004, α=0.05). Repeating the experiment with more traps per 

24 hour period should lend more robust support to these results. It would also be interesting to 

place water traps in the field earlier in the season and more frequently to get a better idea when 

exactly thrips arrive and can vector IYSV. 

 The thrips lures appear to be more effective when combined with the water trap than with 

the sticky cards. Thrips caught in the water traps remain intact and can be recovered and 

identified. This may be useful if specific thrips species need to be identified before determining 

appropriate pest control actions or in studies of thrips species composition and IYSV studies. 

 Repeating these experiments with more replicates, greater spacing between lures and 

controls, and with earlier and more frequent time points would be interesting for future 
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investigations into the value and potential application of these lures for use in onion integrated 

pest management programs. 
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APPENDIX 6: REVERSE TRANSCRIPTION-LOOP MEDIATED ISOTHERMAL 

AMPLIFICATION OF IRIS YELLOW SPOT VIRUS 

 

 

Introduction 

 Iris yellow spot virus (IYSV) is typically detected with double antibody sandwich 

enzyme-linked immunosorbent assay (DAS-ELISA) or reverse transcription polymerase chain 

reaction (RT-PCR), both of which are time consuming and require specialized equipment.  In 

addition, RT-PCR is costly; and reagents for 100 RT-PCR reactions can cost approximately 

$615. 

 Notomi et al. (2) developed loop mediated isothermal amplification (LAMP), a DNA 

amplification technique that occurs under isothermal conditions, uses four to six primers, and a 

strand displacing DNA polymerase.  The multiple primers confer greater specificity, and the 

strand displacing polymerase allows for rapid amplification.  Eiken Chemical Co., Ltd. (Tokyo, 

Japan) produced an animation of the process which can be viewed at: 

http://loopamp.eiken.co.jp/e/lamp/anim.html. 

 LAMP reactions can be modified by adding reverse transcriptase to amplify RNA (RT-

LAMP), and by adding fluorescent dyes to detect amplicons under UV light (2).  These 

modifications have been applied to detect several plant RNA viruses including Banana bract 

mosaic virus (3), Southern rice black-streaked dwarf virus (5), and Zucchini yellow mosaic virus 

(1).  RT-LAMP has the potential to be a sensitive, rapid, and cost effective diagnostic test that 

uses very little specialized equipment.  The objective of this work was to investigate the use of 

an RT-LAMP assay that could detect IYSV directly from onion tissue with minimal equipment. 

 

http://loopamp.eiken.co.jp/e/lamp/anim.html
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Materials and Methods 

Four primers were designed with PrimerExplorer V3 at 

http://primerexplorer.jp/e/v3_manual/index.html, and were synthesized by IDT (Coralville, IA).  

The two outer primers were F3: 5’CTGGCAAGTCTTGACAGC 3’, and B3: 5’ 

GGAGTGCATTTAGTCAGGATC 3’.  The two inner primers were FIP: 5’ 

TGCTCATAAGTTGAGAATCTGCTTTTTTACTCTTCCTTTAGCTTATTTCCA 3’ and BIP: 

5’ AGTTGCAAGAGTCATGGCAGTTTTTACAGTTTCATCAAAGATCTTCT 3’. 

 Reaction conditions were optimized using a BioRad CFX Connect Real-Time System 

(Bio-Rad, Hercules, CA), before investigating the use of simpler equipment.  SybrSafe dye 

(Invitrogen, Carlsbad, CA) was added to the reactions at a final concentration of 1X for 

amplification to be detected by the machine.  The machine was programmed with different time 

and temperature cycles.  Forty cycles of 30 s at 64°C, 90 s at 65°C produced the best 

amplification.  Melt curves were included with each run.   

 Initial reactions were prepared with RNA where the IYSV status of samples was 

previously determined by RT-PCR (the RT-PCR procedure is described in Chapter 2).  Reactions 

were typically prepared in duplicate.  Amounts and concentrations of MgSO4, dNTP mix, DTT, 

Bst, MMLV-RT, and RNase inhibitor were varied before settling on the mixture in Table A6.1.  

Dilution series from 150 to 1 ng RNA per reaction and from 1 to 1 x 10
-6

 ng RNA per reaction 

were prepared.   

 Once the reaction mixture was optimized using the BioRad CFX Connect Real-Time 

System, the reactions were attempted using a MJ Research PTC-200 thermocycler (Waltham, 

MA).  Results were viewed on a 1.5% agarose gel (Bio-Rad Laboratories, Inc., Hercules, CA) 

stained with SYBRSafe (Invitrogen, Carlsbad, CA) in 1X TAE buffer (Bio-Rad Laboratories, 

http://primerexplorer.jp/e/v3_manual/index.html
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Inc., Hercules, CA) and visualized upon exposure to UV light.  A 100bp molecular weight 

marker (Fermentas, Glen Burnie, MD) was included on each gel.  RNA, cDNA, and aliquots of a 

simple onion leaf extract were used as templates for amplification.  Onion leaf extracts were 

prepared in 1.5 ml microcentrifuge tubes by macerating a 0.01 g section of onion leaf displaying 

IYSV symptoms in 1 ml molecular biology grade water. 

 Efforts to prevent contamination included preparing the reactions in a PCR hood (in a 

different lab) that had been exposed to UV light and wiped down with 10% bleach or 70% 

ethanol, using pipettes wiped with 10% bleach or 70% ethanol before and after use, using a 

separate set of pipettes for preparing reactions and loading gels, using filter tips, overlaying each 

reaction with mineral oil, using dedicated reagents, wearing fresh gloves before preparing 

reactions, and taking care not to touch surfaces that could come in contact with the reagents. 

Table A6.1.  Reagent list for RT-LAMP of IYSV. 

Reagent (manufacturer) Stock 

concentration 

Working concentration 

or amount 

Amount in 25 µl 

reaction 

FIP/BIP primer mix 10 µM 1.6 µM 4 µl 

Betaine (Sigma-Aldrich, St. Louis, MO) 5 M 0.8 M 4 µl 

Isothermal amplification buffer (New 

England Biolabs, Ipswich, MA) 

10X 1X 2.5 µl 

DTT (Invitrogen, Carlsbad, CA) 0.1 M 10 mM 2.5 µl 

Molecular biology grade H2O (Sigma-

Aldrich, St. Louis, MO) 

  variable
a
 

dNTP mix (Fermentas, Glen Burnie, MD) 10 mM 0.4 mM 1 µl 

MgSO4(Sigma-Aldrich, St. Louis, MO) 100 mM 4 mM 1 µl 

Bst 2.0 DNA polymerase (New England 

Biolabs, Ipswich, MA) 

8000 U/ml 8 U 1 µl 

F3/B3 primer mix 10 µM 0.2 µM 0.5 µl 

MMLV-RT (Invitrogen, Carlsbad, CA) 200 U/µl 100 U 0.5 µl 

RNase inhibitor (Fermentas, Glen Burnie, 

MD) 

40 U/µl 20 U 0.5 µl 

a
Water was added to bring the final reaction volume to 25 µl, and varied according to the amount of template added. 

 

 

Results and Discussion 

 When using the BioRad CFX Connect Real-Time System, noticeable amplification 

occurred with as little as 0.1 ng RNA per reaction.  Single melt peaks appeared with each 
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reaction, and melt peaks were typically within 0.5°C of each other.  The duplicate reactions did 

not always behave the same.  Frequently, one would amplify and the other would not.  RT-

LAMP results did not always agree with RT-PCR results.  Usually the discrepancy was that 

amplification would occur by RT-LAMP and not by RT-PCR. 

 

Amplification from a simple onion leaf extract 

 Direct amplification from onion leaves was achieved (Figures A6.1 and A6.2).  Reactions 

were prepared with 5 µl plant extract (prepared from a 0.01 g section of onion leaf displaying 

IYSV symptoms macerated in 1 ml molecular biology grade water) and held at 65°C for 90, 120, 

and 150 minutes in a MJ Research PTC-200 thermocycler (Waltham, MA).  Amplification 

appeared strongest and most consistent when the reactions were held at 65°C for 150 minutes 

(Figure A6.1), so that time period was selected for subsequent reactions. 

 
Figure A6.1.  RT-LAMP of IYSV after 90 (lanes 1 to 7), 120 (lanes 8 to 14), and 150 (lanes 15 to 21) minutes at 

65°C.  M: 100 bp molecular weight marker.  Lanes 1 to 5, 8 to 12, and 15 to 19: 5µl of 0.01g IYSV symptomatic 

onion leaf macerated in 1ml water; lanes 6 and 7, 13 and 14, 20 and 21: NTC. 

 

    M    1     2     3     4     5      6     7            8     9   10   11   12   13   14           15  16    17  18    19   20  21 
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Figure A6.2. Amplification directly from plant tissue.  0.01g IYSV symptomatic onion leaf macerated in 1ml water.  

5µl extract per reaction, 150 minutes at 65°C.  M, 100 bp molecular weight marker.  Lanes 1-10, reactions prepared 

with aliquots from the same extract; lanes 11 and 12 NTC. 

 

Dyes 

 Adding SybrSafe (at a final concentration of 1X) to the reactions worked well to detect 

amplification when using the BioRad CFX Connect Real-Time System, but did not work well for 

viewing amplification visually upon exposure to UV light.  Other reagents fluoresced when 

exposed to UV light and it was impossible to discern if amplification had occurred.  Adding 2 µl 

PicoGreen (Invitrogen, Carlsbad, CA) to each reaction tube after the reaction was complete 

looked promising.  Exposing the tubes to 395 nm UV light produced a green color in tubes with 

amplification (Figure A6.3).  Reactions that had no amplicons remained pale orange.  The green 

color corresponded to the amplification shown in lanes 1 to 4 of the gel in Figure A6.3.  It was 

difficult to discern green from orange if amplification was weak, or if contamination occurred. 

 M   1   2    3   4   5   6    7   8   9   10 11 12 
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Figure A6.3.  Amplification from an extract prepared from an onion leaf with IYSV symptoms.  Left: PicoGreen 

was added to each tube.  Tubes with the green color indicate amplification occurred.  Tubes with no amplification 

remained pale orange.  Right: The amplification shown in lanes 1 to 4 correspond to the green tubes on the left.  M: 

100 bp molecular weight marker; lanes 1 to 4: extract prepared from an onion leaf displaying IYSV symptoms; lanes 

5 to 10: extracts prepared from IYSV- free onion leaves; lanes 11 and 12: NTC. 

 

Unexpected results 

 It appeared that amplifying IYSV directly from onion leaf tissue with this method was 

feasible.  However, amplification frequently occurred in reactions prepared with extracts of 

onion leaves known to be free of IYSV (i.e., they had been grown from seed in the absence of 

thrips and tested by DAS-ELISA).  The pattern of bands visible on the gel sometimes varied, 

especially when amplification occurred from plant samples known to be free of IYSV (Figure 

A6.4).  It is not known if this amplification was caused by contamination, primer-primer 

interactions, or by primers binding to genomic DNA of the onion, or of an unknown endophyte 

or epiphyte. 

 

  M 1  2  3  4  5  6 7 8  9 10 11 12 
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Figure A6.4.  Amplification from IYSV-free onion leaf extracts.  Unexpected amplification occurred in some of 

these reactions, and several different banding patterns were produced. M: 100 bp molecular weight marker.  Lanes 1 

to 5: red onion cultivar; lanes 6 to 10: white onion cultivar; lanes 11 and 12: positive control; lanes 13 and 14: NTC. 

 

 Variability between reactions prepared from the same extract also occurred (Figure 

A6.5), which could possibly be explained by differences in enzyme efficiency or heterogeneity 

within the plant extracts. 

 
Figure A6.5.  Variability between reactions made with aliquots from the same symptomatic onion leaf extract.  M: 

100 bp molecular weight marker; lanes 1 to 10: onion leaf extracts; lanes 11 and 12: NTC. 

 

 8 µl aliquots of onion leaf extract were treated with 1 to 5 µl DNase.  If the amplification 

in the uninfected samples was caused by non-target amplification of genomic DNA, the DNase 

 M   1   2   3   4    5   6   7   8    9  10 11 12 

   M  1  2  3   4  5  6   7  8   9 10 1112 13 14 
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treatments should have degraded any DNA present in the sample.  No difference was observed 

between aliquots treated with DNase and those left untreated. 

 Passing the plant extract through a 0.22 µm filter did not eliminate amplification from 

IYSV free samples.  Onion plant extracts were prepared in a buffer described by Thomson and 

Dietzgen (4), however, no amplification occurred from extracts prepared in that buffer.  Either 

the buffer inhibited the RT-LAMP reactions, or it destroyed the RNA. 

 

Contamination 

 Despite precautions taken to prevent contamination, it still occurred in about half the 

runs.  Amplicons would be detected in non-template controls (NTC) and in samples known to be 

free of IYSV.  Contamination appeared to be a random event.  Figure A6.7 shows ten NTC 

reactions aliquoted from a single master mix.  Because amplification occurred in only one of the 

ten aliquots, contaminated reagents can be ruled out.  It is interesting that contamination did not 

occur in any of the RT-qPCRs (Chapter 4) which are supposed to be very sensitive to 

contamination.  If RT-LAMP is more sensitive to contamination than other PCR methods, it may 

not be practical as a simple diagnostic method. 

 



142 

 
Figure A6.7.  Seemingly random contamination in lane 7.  M: 100 bp molecular weight marker.  Lanes 1 to 10: 

aliquots from a single master mix with no template. 

 

Conclusions 

 RT-LAMP did detect IYSV from a simple extract prepared from symptomatic onion leaf 

tissue, and amplification was detected by adding PicoGreen and observing the color change.  

However, the amplification that occurred from IYSV free extracts could be interpreted as a false 

positive result.  In addition, reactions were easily contaminated.  Amplification (or lack of 

amplification in the case of IYSV free samples) was not satisfactorily reliable or reproducible to 

recommend this method as a diagnostic technique.  This is unfortunate, as the complete process 

only took about four hours, as compared to over 11 hours to complete the typical RT-PCR 

process, and cost approximately one quarter that of RT-PCR. 

  

  M    1    2     3    4    5    6     7     8    9   10 
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