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Abstract

Motivated by testing the significance of risk factors for a cross–section of returns,

we develop an inferential framework which involves function-on-scalar regression.

Asymptotic theory is developed assuming the factors form a weakly dependent

vector–valued time series, and the regression errors are weakly dependent func-

tions. To accommodate the empirical behavior of the cross–section of returns and

of the factors, we allow both the factors and the error functions can exhibit mild

departures from stationarity. This requires new new asymptotic theory which leads

to several tests for the significance of function–valued regression coefficients. The

new approach to the study of the significance of risk factors for a cross–section

of returns complements the established Fama–French approach based on portfolio

construction. It is more suitable if the statistical significance of the risk factors is

to be rigorously controlled.
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1 Introduction

Over the last forty years, the cross–section of returns has been one of the most extensively

studied aspects of finance. To a large extent, the work of Fama and MacBeth (1973) set a

paradigm which has been elaborated on in hundreds of papers, Harvey et al. (2014) pro-

vide a comprehensive account. Fama and MacBeth (1973) were motivated by testing the

two–parameter portfolio model of Markowitz (1959) and its extensions. They introduced
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a technique based on recursive construction of portfolios and least squares testing for

resulting time series regressions, a summary of this approach is provided in Appendix C.

The theory and methodology presented in this paper are motivated by the problem of

testing the significance of risk factors which is at the core of the research on the cross–

section of returns. Before presenting our model and theory in greater generality, we outline

the motivation and the specific application to this testing problem. Denote by Rn(i) the

return on security i in period n. The Arbitrage Pricing Theory, see e.g. Campbell et al.

(1997), postulates that

(1.1) Rn(i) = α(i) + βm(i)Mn +
K∑
k=1

βk(i)Fn(k) + εn(i),

where Rn(i) and Mn are excess returns, respectively, on asset i and on a well diversified

market portfolio. The temporal dynamics are modeled through Mn and other potential

common factors Fn(k). The errors εn(i) are typically assumed to be martingale differences

with nontrivial cross–sectional covariances. The interest is in testing which factors Fn(k)

are significant. Throughout the paper, the factors are considered known, they are either

directly observed or constructed.

We now explain the essence of our approach. For each fixed i, one can obtain an estimate

β̂k(i). These estimates are extremely noisy, no matter what ordering of securities is used,

as illustrated in Figure 1. This is one of the reasons why tests have been performed using

suitably constructed portfolios, which involve averaging the β̂k(i) over a handful of ranges

of i, Appendix C. The resulting testing procedures contain many levels of uncertainty,

which makes the assessment of the actual significance levels difficult. If the objective

is merely to test H0 : βk = 0, i.e. that the function βk is identically zero, an effective

approach with a well controlled significance level can be developed as follows. In any time

period n, the returns can be ordered from the lowest to the largest leading to smooth

functions Rn(t), where the set of values t is the same as the set of the securities i. The

difference is that the curves Rn(t) are nondecreasing, smooth functions of t, as shown in

Figure 2. This way of looking at the cross–section of returns provides another approach

to testing the significance of the risk factors. We replace model (1.1) with the model

(1.2) Rn(t) = α(t) + βm(t)Mn +
K∑
k=1

βk(t)Fn(k) + εn(t).

in which the functions Rn(·) are ordered returns. As we will see, in such a formulation,

the estimates of the functions α, βm and βk are smooth, and it is possible to test their

significance within a setting akin to linear regression. In model (1.1), for every security

i, the coefficients are the same for every period. This is no longer the case in model

(1.2), however the functions βk(·) contain information about the significance of the risk
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Figure 1: Estimated β̂k(i) for all SP500 stocks i and for Fn(k) equal to a volatility proxy.

The stocks are ordered by log Market value for January, 2010. The left panel shows raw

β̂k(i), the values in the right panel are winsorized at 1% and 99%.

factors F (k), which do not depend on the ordering of the returns. Compared to the

portfolio approach described in Appendix C, this approach reverses the roles of returns

and the betas; instead of sorting the assets by their estimated betas every month, they

are sorted by the observed returns. The estimated smooth function β̂k then tells us how

best, mid- and worst performing stocks in a given month respond (over the long run) to

the movements of the scalar factor Fn(k) (if the function βk is statistically different from

zero).

The portfolio based approach to cross–sectional returns has many well–known advan-

tages; ease of application and interpretation being perhaps the two most important ones.

It does however have disadvantages. Conclusions may be sensitive to how the portfolios

are constructed - they often do not hold for equal weighted portfolios. Second, most of

the papers draw conclusions based on the statistical differences between the parameters of

the top and bottom portfolios. Third, the relationship may be different within the port-

folios. Our approach deals with the entire universe of the stock in the sample. At least

theoretically, it reveals more information than a typical Fama–French approach. It must

be emphasized that methods based on portfolio construction potentially provide insights

beyond establishing the statistical significance of scalar factors. For example, the analysis

in Ang et al. (2006) shows that a portfolio constructed from stocks with low sensitivities

(large negative) to daily change in volatility in month n can be expected to yield a higher

monthly return at the end of month n+ 1. This may imply a trading strategy of buying

stocks with low sensitivities to market aggregate volatility and short selling stocks with

high sensitivities to realize arbitrage profit. However, this kind of portfolio contains too

many stocks (including many very illiquid ones) making such a trading strategy difficult
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Figure 2: Ordered cross–sectional returns Rn(t) for four consecutive months.

to realize. In conclusion, our approach provides at least a new angle on an important

problem of finance research, and may have some advantages relative to well–established

approaches.

This paper contributes to econometrics by developing estimation and testing theory in

the context of a general regression which includes model (1.2). The factors Mn, Fn(k) and

the error functions εn do not have to be stationary; previous research assumes stationarity

in models similar to (1.2), like the general model (2.1) introduced in Section 2. We treat

smooth response curves as whole statistical entities, functions whose temporal dynamics

are driven by the dynamics of the factors Fn(k) which contribute to the level and shape of

the response curves. The statistical methodology thus falls into the field of functional data

analysis (FDA). The paper of Ramsay and Ramsey (2001) introduced FDA methodology

to econometrics, but recent years have seen renewed interest in application of FDA to

the econometric analysis of financial data, see Kargin and Onatski (2008), Müller et al.

(2011), Horváth et al. (2014), Horváth and Rice (2015), among others. Several other

applications of FDA to the econometric analysis of financial data are given or referenced

in Horváth and Kokoszka (2012).

Recent contributions most closely related to our work include Hays et al. (2012) and

Kokoszka et al. (2015), Gagliardini et al. (2016) and Renault et al. (2016). Hays et al.

4



(2012) consider the model

(1.3) Xn(t) =
K∑
k=1

γnkFk(t) + εn(t).

The factors Fk are unknown functions that do not depend on the period n. The dynamics

are in the coefficients γnk which are assumed to follow Gaussian autoregressive processes.

Model (1.3) is motivated by and applied to forecasting yield curves. Kokoszka et al.

(2015) consider the regression

Rn(t) = β0(t) +

p∑
j=1

βjFnj(t) + εn(t),

in which the factors Fnj(t) are known functions which depend on n and the coefficients

βj are scalars. In their application, Rn(t), Fnj(t) are intraday returns on assets on day n.

In contrast to both (1.3) and (1), in (1.2) the factors are scalars and the coefficients are

functions. Gagliardini et al. (2016) consider the regression

(1.4) Rn(t) = αn(t) +
K∑
k=1

βnk(t)Fn(k) + εn(t),

in which t ∈ [0, 1] represents a continuum of assets, so mathematically (1.2) is a special

case of (1.4). Compared to (1.2), the coefficients of the factors Fn(k) depend on the period

n. Their objective is not to test the significance of these (sequences of) coefficients, but

to estimate the temporal evolution of risk premia. Renault et al. (2016) consider a model

similar to (1.4), t ∈ [0, 1] is the fraction t of assets. Their primary interest is in pricing

idiosyncratic variance factors. They assume that the functional coefficients are cumulative

integrals of “densities” defined on the interval [0, 1]. We also note the work of Romano

and Wolf (2013). While not concerned with functional regressions, it clarifies the issue

of testing for monotonicity of functions, which has bearing on the problem of testing the

significance of scalar risk factors.

The paper is organized as follows. Section 2 provides the formulation of the model

and explains the relevant inference. In Section 3, we state assumptions under which our

method is valid and provide the requisite asymptotic justification. Following a small

simulation study in Section 4, the application to testing for significance of risk factors

is presented in Section 5. Three appendices provide computational and mathematical

details, as well as a summary of the portfolio formation methodology. Asymptotic theory

for the GLS estimates introduced in Section 2 is presented in an on–line supplement.
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2 Statistical model, estimation and testing

The general statistical model we consider is

(2.1) Yn(t) = xn1β1(t) + xn2β2(t) + . . . xnpβp(t) + εn(t), n = 1, 2, . . . , N.

The index n may denote day, week, month, quarter or year. The {xnk, 1 ≤ n ≤ N} , k =

1, 2, . . . , p, are realizations of scalar time series which can exhibit temporal dependence,

and even some mild departures from stationarity. In the applications in Section 5, the

xnk are the risk factors Fn(k) in (1.2). Our objective in this section is to develop an

estimation and testing methodology for the coefficient functions βk.

Model (2.1) formally resembles the functional response model, see Faraway (1997),

Chiou et al. (2004), Chapter 13 of Ramsay and Silverman (2005), Reimherr and Nicolae

(2014), among many others. The currently available methodology and theory assumes

either that the regressors xnk are deterministic or are independent replications across n.

Such assumptions are suitable for inference based on designed experiments. For time

series regressors, like the risk factors, new methodology and asymptotic theory are called

for.

The term functional regression also refers to a class of models in which regression

coefficients depend on exogenous and/or lagged variables, see Fan and Zhang (1999) and

many papers that followed. Despite sharing the same name, these two classes of regression

models are very different, and are suitable for different problems.

In the development that follows, all random and deterministic functions are assumed

to be in the real Hilbert space L2 of square integrable functions with the inner product

〈x, y〉 =
∫
x(t)y(t)dt. The domain of integration is a compact interval. It is usually

assumed that it is the interval [0, 1], and we will do so as well. In any application,

the interval [min t,max t] is transformed to [0, 1] via an affine map. An introduction to

the theory of random function in L2 is presented in Chapter 2 of Horváth and Kokoszka

(2012), for a more in–depth treatment see Hsing and Eubank (2015). Precise assumptions

and asymptotic statements relevant to our context are provided in Section 3.

We begin by defining the vectors/matrices

Y (t) =


Y1(t)

Y2(t)
...

YN(t)

 β(t) =


β1(t)

β2(t)
...

βp(t)

 X =

x1,1 . . . x1,p
...

xN,1 . . . xN,p

 ε(t) =


ε1(t)

ε2(t)
...

εN(t)

 .
We then have the linear relationship Y (t) = Xβ(t) + ε(t). We consider two methods for

estimating the vector valued function β(t). The first is a least squares (LS) approach
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which utilizes the sum of squared residuals

LLS(β) =
N∑
n=1

∥∥∥∥∥Yn −
p∑

k=1

xnkβk

∥∥∥∥∥
2

=

∫
(Y (t)−Xβ(t))>(Y (t)−Xβ(t)) dt.

The estimate β̂LS(t) is the minimizer of LLS(β), and takes the familiar form

(2.2) β̂LS(t) = (X>X)−1X>Y (t).

The second method is an extension of an approach known as the Generalized Least Squares

(GLS), which generally reduces the variance of estimators in the presence of dependence

across statistical units. In our setting, the target function takes the form

(2.3) LGLS(β) =

∫
(Y (t)−Xβ(t))>V(t)(Y (t)−Xβ(t)) dt,

where V(t) is a matrix valued function of t. Practically, we use a data driven choice for

V(t), which we denote as V̂(t). As in scalar GLS, a good choice (and optimal under certain

assumptions) for the weights is to use the inverse covariance of the error terms. We thus

propose using V(t) ≡W−1(t, t) where Wij(t, s) = Cov(εi(t), εj(s)); the inverse denotes a

matrix inversion computed at each time point. The matrix W(t, s) can be estimated using

a Bartlett type estimator and is discussed in Appendix A. The minimizer of LGLS(β) is

denoted as β̂GLS and takes the form

(2.4) β̂GLS(t) = (X>V̂(t)X)−1X>V̂(t)Y (t).

We note that smooth estimates can be obtained by incorporating a penalty (ridge re-

gression). For example, the right–hand side of (2.2) could be replaced by (X>X +

αP)−1X>Y (t), see e.g. Ramsay et al. (2009), but we do not pursue this approach because

our focus is on testing the significance of the regression coefficients.

We now turn to the problem of testing if a particular βk is the zero function. The two

methods we propose work for any estimator β̂k whose covariance function

(2.5) Ck(t, s) = Cov(β̂k(t), β̂k(s))

can be estimated. We therefore present our approach in this general setting. In Ap-

pendix A, we explain how the covariance functions of the estimators β̂LS(t) and β̂GLS(t)

are obtained.

The first approach is based on the L2 norm. The test statistic is defined as

Λ̂k = N‖β̂k‖2 = N

∫
β̂2
k(t)dt.
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When βi(t) ≡ 0 (under the assumptions of Theorem 3.1), this statistic has approximately

a weighted chi–square distribution,

(2.6) Λ̂k ∼
N∑
j=1

λ̂k,jχ
2
j(1),

where λ̂k,j are the eigenvalues of Ĉk, an estimate of the Ck given by (2.5). One can only

handle the right hand side above numerically, but tools such as the imhoff function in

R, can be used to obtain P-values/critical values. The asymptotic justification for the

approximation (2.6) is given in Corollary 3.1. The second approach is based on functional

principal components, see e.g. Chapter 3 of Horváth and Kokoszka (2012). Denote by

v̂k,1, v̂k,2, . . . the eigenfunctions of Ĉk corresponding to the eigenvalues λ̂k,1 > λ̂k,2 > . . . ,

and set

T̂k,q = N

q∑
j=1

〈β̂k, v̂k,j〉2

λ̂k,j
.

Corollary 3.1 shows that for a fixed q,

(2.7) T̂k,q ∼ χ2(q).

In practice, the truncation level q is chosen as the smallest integer such that
∑q

j=1 λ̂k,j >

0.85
∑N

j=1 λ̂k,j. We thus use a data driven q, and the validity of this choice is justified by

a simulation study. The asymptotic theory is used to derived the approximation (2.7),

which is then enhanced by a data driven procedure.

To summarize, we will work with the following four test statistics:

Λ̂LS,k = N

∫
β̂2
LS,k(t) dt, (LS−L2);

T̂LS,k,q = N

q∑
j=1

〈β̂LS,k, v̂k,j〉2

λ̂k,j
, (LS− PCA);

Λ̂GLS,k = N

∫
β̂2
GLS,k(t) dt, (GLS−L2);

T̂GLS,k,q = N

q∑
j=1

〈β̂GLS,k, ṽk,j〉2

λ̃k,j
, (GLS− PCA).

The λ̂k,j, v̂k,j in the LS statistics are the eigenelements of ĈLS,k, while the λ̃k,j, ṽk,j in the

GLS statistics are the eigenelements of ĈGLS,k. The construction of the estimators ĈLS,k
and ĈGLS,k is explained in Section A.

The tests based on the PCA–statistics reject H0 : βk = 0 if the statistic, T̂k,q exceeds

a critical value of the chi–square distribution with q degrees of freedom. To apply the

tests based on the LS–statistics, an empirical distribution of the right–hand side of (2.6)

must be created for each specific data set. The null hypothesis is rejected if Λ̂k exceeds a

critical value of this empirical distribution.
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3 Asymptotic Theory

A key to establishing relations (2.6) and (2.7) is a central limit theorem for sums involving

the factors xnk and the error functions εn, cf. (2.2) and (2.4). The factors considered in

Section 5 show mild departures from stationarity (the volatility outlier representing the

October 1987 crash is handled separately). Many econometric time series exhibit sim-

ilar departures from stationarity, so central limit theorems for nonstationary sequences

have received a fair deal of attention in the past decades. Convergence to the normal

distribution has been established under various quantifications of the degree of nonsta-

tionarity and dependence. The often cited work of Herrndorf (1984) considered α–mixing

sequences, Davidson (1993) used near–epoch dependence, Neumann (2013) used the weak

dependence concept of Doukhan and Louhichi (1999). This list is by no means exhaustive.

In our approach, we use the concepts of a Bernoulli shift representation and approximabil-

ity, which have been used extensively in recent theoretical work on nonlinear time series,

e.g. see Pötscher and Prucha (1997), Wu (2005), Shao and Wu (2007), Aue et al. (2009),

Hörmann and Kokoszka (2010), Hörmann et al. (2013) and Kokoszka and Reimherr

(2013). We however allow some nonstationarity. Precise definitions together with a suit-

able central limit theorem are stated in Section 3.1. Using these results, we establish

in Section 3.2 the required asymptotic results for model (2.1), and provide asymptotic

justification for the tests based on relations (2.6) and (2.7).

3.1 Central limit theorem for nonstationary approximable se-

quences

Motivated by the problem studied in this paper and to enhance general applicability to

functional time series, we establish a CLT in a general separable Hilbert space H. Let

p ≥ 1 and let LpH be the space of H–valued random elements X such that

νp(X) =
(
E‖X‖p

)1/p
<∞.

Definition 3.1 We say that a sequence, {Zn}, in a real separable Hilbert space H is

weakly Lp–approximable if the following conditions hold:

1. There exists a sequence {un} of iid elements in an abstract measurable space U such

that

Zn = fn(un, un−1, . . . ),

for measurable functions fn : U∞ → H.

2. For each integer M > 0, consider an approximating sequence Zn,M defined by

Zn,M = fn(un, un−1, . . . , un−M , u
?
n−M−1, u

?
n−M−2, . . . ),
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where the sequences {u?n} = {u?n(n,m)} are copies of {un} independent across m

and n and independent of the original sequence {un}.

The following condition holds

(3.1)
∞∑

M=1

sup
1≤n<∞

νp(Zn − Zn,M) <∞.

Before proceeding, we comment on Definition 3.1. Condition 1 states that every obser-

vation Zn is a, in general nonlinear, moving average. The Zn are dependent, because

they are driven by the same sequence of errors, but they do not have to share the same

distributions because the functions fn may be different. The construction of the ap-

proximating sequences Zn,M in condition 2 is always possible, the nontrivial part of this

condition is requirement (3.1). We want the distance νp between the observations Zn
and their M–dependent approximations Zn,M to be small: the errors un far back in

the past make a contribution so small that they can be replaced by independent copies.

In previous research, the functions fn have been assumed to be equal, fn = f , imply-

ing that {Zn} is stationary. Definition 3.1 permits some degree of nonstationarity; the

class of weakly Lp–approximable sequences includes the Lp–m–approximable sequences

introduced in Hörmann and Kokoszka (2010), including functional linear processes, Bosq

(2000), and functional ARCH sequences, Hörmann et al. (2013). We also note the con-

cept of sequences weakly M–dependent in Lp introduced by Berkes et al. (2011). Their

definition also allows some degree of nonstationarity, even though stationarity is imposed

as an additional assumption in the statements of their results.

The main contribution of this section is Theorem 3.1. Its statement involves the space,

N , of Nuclear (or trace class) operators, a concise account is given in Section 13.5 of

Horváth and Kokoszka (2012). For any z1, z2 ∈ H, z1 ⊗ z2 is the operator defined by

z1 ⊗ z2(u) = 〈z1, u〉 z2.

Theorem 3.1 Assume that {Zn} is a zero mean weakly L2–approximable sequence in a

real separable Hilbert space H such that

1. sup1≤n<∞ E‖Zn‖4 <∞,

2. N−1
∑N

i=1

∑N
j=1 E(Zi ⊗ Zj)

N→ Γ, and

3. for any fixed 0 < M1 ≤M2 < N

N−1
bN/M1c∑
i=1

M2∑
j=1

M2∑
j′=1

E[Z(i−1)M1+j ⊗ Z(i−1)M1+j′ ]
N→ CM1,M2 .
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Then,

(3.2) N−1/2
N∑
n=1

Zn
D→ N (0,Γ).

Theorem 3.1 is proven in Appendix B. Condition 1 replaces the usual fourth moment

condition; the supremum is needed because the sequence {Zn} need not be stationary.

Condition 2 states that the long–run covariance operator exists and is a nuclear opera-

tor (all covariance operators are nuclear). Condition 3 is more technical, but essentially

implies that blocks of observations can be systematically dropped and one still has con-

vergence of the covariance operators. Lastly, since these are infinite dimensional objects,

tightness is always a central concern. Here tightness is guaranteed by the first condition

using a result found in Chen and White (1998).

3.2 Large sample theory for the tests of Section 2

We now apply Theorem 3.1 to derive the asymptotic distributions of β̂LS. Corresponding

results for β̂GLS can be obtained, but are quite technical. We have thus moved those

results to a supplement, and refer the interested reader there. We begin by considering

the least squares estimator. Notice that

√
N(β̂LS(t)− β(t)) = (N−1X>X)−1N−1/2X>ε(t).

Under very weak conditions N−1X>X
P→ ΣX , and this will be our assumption. Thus our

primary objective is to show that N−1/2X>ε(t) is asymptotically Gaussian. We have that

N−1/2X>ε(t) = N−1/2
N∑
n=1

Xnεn(t).

Here Xn is vector and εn(t) multiplies each coordinate of Xn. Thus, Theorem 3.1 with

Zn(t) := Xnεn(t) leads to the following Corollary.

Corollary 3.1 If the sequence of functions Zn(t) := Xnεn(t) satisfies the conditions of

Theorem 3.1 and

N−1X>X
P→ ΣX ,

then

(3.3)
√
N(β̂LS − β)⇒ N (0, CLS).

Furthermore when βk = 0, then the asymptotic distributions of Λ̂LS,k and T̂LS,k,q are given

in (2.6) and (2.7), respectively. When βk 6= 0, Λ̂LS,k
P→ ∞. When 〈βk, vj〉 6= 0 for some

j ≤ q, then T̂LS,k,q
P→∞ as well.
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Proof: Relation (3.3) follows directly from Theorem 3.1. Statements on relations (2.6)

and (2.7) follow from standard results on transformations of normal distributions. The

consistency of the tests is also easy to establish, if βk 6= 0, then Λ̂k ∼ N
∫
β2
k(t)dt, with

only a slightly more complex argument applying to T̂k,q.

We emphasize that the assumption that the functional sequence Zn(t) := Xnεn(t) sat-

isfies the conditions of Theorem 3.1 is very general and includes practically all reasonable

assumptions under which asymptotic normality of the LS and GLS can be expected in

our context. We now take a closer look at some specific special cases.

The functions Zn(t) := Xnεn(t) are random elements of the Hilbert space H = (L2)p

with the inner product

〈z1, z2〉 =

p∑
k=1

∫
z1k(t)z2k(t)dt.

We assume that the regressors Xn = [xn1, xn2, . . . , xnp]
> are independent of the the error

functions εn. Then,

E ‖Zn‖4 = E ‖Xn‖4E ‖εn‖4 = E

{
p∑

k=1

x2nk

}2

E

{∫
ε2n(t)dt

}2

.

Thus condition 1 of Theorem 3.1 is implied by

sup
n≥1

E

{
p∑

k=1

x2nk

}2

<∞ and sup
n≥1

E

{∫
ε2n(t)dt

}2

<∞.

If we assume, in addition, that the sequences {Xn} and {εn} are stationary, condition 1

is implied by E ‖X0‖4 <∞ and E ‖ε0‖4 <∞.

To obtain a simple special case under which condition 2 is satisfied, suppose the εn
are iid. It is easy to see that then E(Zi ⊗ Zj) = 0 if i 6= j, so that condition 2 requires

that N−1
∑N

i=1E(Zi⊗Zi) converges to a covariance operator acting on H. This in turn is

implied by the requirement that N−1
∑N

i=1E[XiX
>
i ] converges. If the Xi form a stationary

sequence, this condition always holds because the average is equal to E[X0X
>
0 ] for every

N .

Condition 3 is also easy to interpret if the εn are iid. In the case of two blocks of equal

length, M1 = M2 = N/2 = M , it requires that the operator

M−1
M∑
j=1

E(Zj ⊗ Zj) +M−1
M∑
j=1

E(ZM+j ⊗ ZM+j)

converges, as M →∞. This is implied by the convergence of

M−1
M∑
j=1

E(XjX
>
j ) +M−1

M∑
j=1

E(XM+jX
>
M+j).
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An analogous condition can be formulated for a larger number of blocks, and again holds

trivially if the Xn form a stationary sequence. Condition 3 thus intuitively states that

while the regressors can be nonstationary, their covariance matrices must not oscillate too

much

Various other technical assumptions could be specified, but this is not our objective.

The essence of Corollary 3.1 is that asymptotic normality holds under very general as-

sumptions, and what matters are the properties of the time series Xnεn(·).

4 A simulation Study

In this section, we conduct a simulation study in order to evaluate statistical power and

calibration of the least squares and the generalized least squares procedures introduced in

previous sections. A broad conclusion is that in the presence of temporal correlation the

GLS procedures have an advantage over the LS procedures in terms of empirical size and

power and the RMSE of the the estimators. In the absence of temporal correlations, all

procedures are comparable. A general recommendation is to use the GLS-L2 procedure

as a default.

Data Generating Processes: We generate data using the model

Yn(t) = β1(t)Xn1 + β2(t)Xn2 + β3(t)Xn3 + εn(t), 0 ≤ t ≤ 1,

with β1(t) = c sin(2πt) , β2(t) = t and β3(t) = t2. We will test whether β1 = 0. The

constant c allows us to control the size of β1 relative to the size of the remaining coefficients.

The null hypothesis corresponds to c = 0. Increasing c, makes the distance between the

alternative and null hypotheses larger.

We consider two types of distributions for the Xnj. To explore the performance of the

tests in a standard setting, we take Xnj
iid∼ N(0, 1), 1 ≤ j ≤ 3. To imitate the real

data used in Section 5, we draw bootstrap samples from the actual factors. Specifically,

the Xn1 follow the bootstrap distribution of MKTRF, the Xn2 of HML and the Xn3 of

FVIX. These factors are described in Section 5 and plotted in Figure 4. It is seen that

their spread is very different than the spread of the standard normal distribution, so each

bootstrap sample has been normalized to have mean 0 and variance 1. This is needed in

order to compare power using the same range of c > 0, which quantify the magnitude of

departure from the null hypothesis.

Temporal and cross–sectional dependence is introduced by using error curves defined

as

εn(t) =

∫ 1

0

α(t, s)εn−1(s)ds+ δn(t), t ∈ [0, 1]

13



where α(t, s) = γe−(t−s)
2
/0.8739, so the Hilbert–Schmidt norm is γ. We use γ = 0.5 (the

errors are correlated) and γ = 0 ( the errors are iid). The δn(t) are iid Gaussian random

functions with the Matérn covariance function

C(t, s) =

(
1 +

√
5|t− s|
ρ

+
5|t− s|2

3ρ2

)
exp

(
−
√

5|t− s|
ρ

)
.

We use ρ = 1/4.

Each curve is generated at one thousand equally spaced time points between 0 and

1. As for the return data studied in Section 5, the artificial data were converted to

functional objects using cubic B-splines with K = 20 basis functions. We use sample

size N = 100, 200, 500 and 10E3 replications for each scenario. The covariance of β̂1
is estimated using the method explained in Appendix A using h = 1/3. We also ran

simulations using h = 1/5. The rejection rates are very close to those obtained using

h = 1/3.

Empirical results: We begin by examining the type 1 error, i.e. the rows corresponding

to c = 0. All methods have empirical size within 2-3 standard deviations (0.007) of 0.05,

with some indication of conservative size for the GLS methods if γ = 0.5, but only in the

case if normal factors. This may thus be due to random variability. Turning to power, we

observe that it is smaller in case of the bootstrap distribution (Table 2 than in case of the

normal distribution. This is not surprising because the normally distributed factors are

an idealized case. We see that for smaller alternatives the PCA method does better than

the L2 method, with an average gain in power of about 10-20% depending on the row.

However, the methods equalize for larger alternatives. Under independence, the power is

about the same for both LS and GLS. However, in the dependent case, γ = 0.5, for smaller

alternatives we see on average about a 20-30% increase in power when using GLS. This

power gain occurs despite a lower empirical size. Regarding the RMSE of the estimators,

it is about 0.07 in all cases, except the case of the LS estimator applied to the DGP with

γ = 0.5. In that case, as expected, the RMSE is slightly larger, about 0.08. Based on

our small simulation study, we see that all methods have comparable performance, with

the PC methods offering power advantage. The LS-PC method emerges as a simple and

accurate test.
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γ = 0.5 γ = 0

LS-L2 LS-PC GLS-L2 GLS-PC LS-L2 LS-PC GLS-L2 GLS-PC

N = 100

c = 0.00 0.06 0.06 0.06 0.06 0.07 0.06 0.08 0.07

c = 0.05 0.08 0.08 0.09 0.09 0.08 0.08 0.09 0.09

c = 0.10 0.12 0.17 0.16 0.21 0.15 0.19 0.15 0.20

c = 0.15 0.24 0.31 0.33 0.39 0.28 0.34 0.30 0.36

c = 0.20 0.43 0.54 0.56 0.61 0.51 0.58 0.54 0.59

c = 0.25 0.68 0.75 0.79 0.79 0.75 0.77 0.76 0.78

c = 0.30 0.86 0.87 0.93 0.90 0.90 0.90 0.90 0.90

N = 200

c = 0.00 0.05 0.05 0.04 0.03 0.04 0.04 0.04 0.05

c = 0.05 0.07 0.10 0.08 0.10 0.09 0.10 0.09 0.10

c = 0.10 0.20 0.27 0.27 0.33 0.25 0.31 0.26 0.31

c = 0.15 0.48 0.57 0.58 0.66 0.56 0.62 0.57 0.64

c = 0.20 0.79 0.83 0.87 0.89 0.86 0.86 0.86 0.87

c = 0.25 0.95 0.95 0.97 0.97 0.97 0.96 0.97 0.97

c = 0.30 0.99 0.99 1.00 0.99 1.00 0.99 1.00 0.99

N = 500

c = 0.00 0.05 0.05 0.04 0.05 0.05 0.06 0.06 0.06

c = 0.05 0.13 0.2 0.19 0.25 0.17 0.22 0.18 0.23

c = 0.10 0.55 0.65 0.67 0.75 0.67 0.70 0.67 0.70

c = 0.15 0.94 0.95 0.97 0.97 0.97 0.96 0.97 0.96

c = 0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

c = 0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

c = 0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 1: The LS-L2, LS-PC, GLS-L2, GLS-PC columns correspond to rejection rates for

the different combinations of LS and GLS estimation procedures combined with a squared

integral (L2) or PCA test statistics. The first row, c = 0.00, is the empirical type 1 error,

while the subsequent rows correspond to empirical power. Dependent errors correspond

to γ = 0.5 and independent errors correspond to γ = 0.
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γ = 1
2

γ = 0

LS-L2 LS-PC GLS-L2 GLS-PC LS-L2 LS-PC GLS-L2 GLS-PC

N = 100

c = 0.00 0.05 0.06 0.05 0.07 0.05 0.07 0.06 0.07

c = 0.05 0.06 0.06 0.06 0.08 0.05 0.07 0.06 0.08

c = 0.10 0.08 0.09 0.09 0.10 0.08 0.10 0.09 0.12

c = 0.15 0.11 0.15 0.14 0.18 0.12 0.17 0.14 0.18

c = 0.20 0.17 0.24 0.23 0.28 0.20 0.27 0.22 0.29

c = 0.25 0.25 0.35 0.37 0.42 0.32 0.40 0.35 0.40

c = 0.30 0.40 0.49 0.51 0.55 0.48 0.58 0.49 0.56

N = 200

c = 0.00 0.05 0.06 0.06 0.06 0.06 0.06 0.07 0.06

c = 0.05 0.07 0.09 0.09 0.09 0.08 0.09 0.09 0.09

c = 0.10 0.11 0.15 0.15 0.19 0.13 0.18 0.13 0.18

c = 0.15 0.21 0.29 0.28 0.36 0.26 0.34 0.27 0.35

c = 0.20 0.39 0.47 0.49 0.56 0.47 0.52 0.47 0.53

c = 0.25 0.60 0.66 0.70 0.74 0.68 0.71 0.69 0.72

c = 0.30 0.81 0.82 0.87 0.86 0.87 0.86 0.87 0.85

N = 500

c = 0.00 0.04 0.05 0.05 0.06 0.05 0.05 0.05 0.05

c = 0.05 0.09 0.10 0.09 0.10 0.08 0.10 0.09 0.11

c = 0.10 0.22 0.28 0.28 0.38 0.26 0.32 0.27 0.32

c = 0.15 0.53 0.61 0.65 0.71 0.63 0.66 0.64 0.67

c = 0.20 0.85 0.87 0.92 0.92 0.92 0.90 0.92 0.91

c = 0.25 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99

c = 0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: This table shows information analogous to that shown in Table 1, but with

non–normal data generated using the bootstrap procedure described in this section.
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5 Application to cross–sectional returns

In this section, we apply the tests introduced in Section 2 and asymptotically justified in

Section 3 to the problem of identifying the risk factors, which we introduced in Section 1.

The response curves Yn in (2.1) are the ordered return curves Rn in (1.2) in month n,

adjusted for the risk free return. In other words, Yn(t) is the tth percentile among all

excess returns in month n, e.g. Yn(0.5) is the median excess return in month n. Following

the usual practice of empirical finance, the returns were trimmed at the top and bottom

2.5% before computing the Yn, plots are shown in Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
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5

1.
0

time

va
lu
e

Figure 3: Ordered monthly return curves, with 5% trim.

In our application, regression (1.2) takes the form

Yn(t)− RFn =α(t) + β1(t)MKTRFn + β2(t)SMBn(5.1)

+ β3(t)HMLn + β4(t)UMDn + β5(t)FVIXn + εn(t),

with the factors defined as follows:

RF Risk free return (US Treasury bill),

MKTRF SP500 return less risk free return,

SMB Small Minus Big Fama–French factor,

HML High Minus Low Fama–French factor,

UMD Up Minus Down Fama–French factor,

FVIX VIX proxy (volatility proxy).

In this setting, we want to investigate the contemporary relationship between the excess

return curves and the same five factors as in Ang et al. (2006). Our approach can be

applied to any similar factor model. We choose the present setting as an illustration.
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Figure 4: Time series plots of the factors in regression (5.1)

.

The above factors are among the most commonly studied risk factors. The MKTRF,

SMB, and HML are the factors of the famous Fama–French three factor model defined

in Fama and French (1992), the UMD factor (the momentum factor) was first introduced

in Carhart (1997). Those four are the most commonly used factors in the cross sectional

literature. The FVIX factor was introduced by Ang et al. (2006). It is constructed to

mimic the aggregate volatility risk, and is argued to be a good proxy for it. All factors

are indexed by the month, n, in the range from 02/1986 to 11/1999, i.e. N = 166. Their

plots are shown in Figure 4.

Estimated β functions and P-values are displayed, respectively, in Figure 5 and Table 3.

Table 3 shows that all factors are significant, Figure 5 leads to the following conclusions.

Positive (negative) movements in the market index and the two most commonly used

Fama–French factors, SMB and HML, correlate with the movements of individual shares

in the same direction, with the effect being the strongest for stocks that perform best in

the given month (for MKTRF and SMB factors) or the worst (for the HML factor). The

shape of the function β1 is consistent with the theory of Markowitz. The UMD factor
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is negatively correlated with contemporaneous returns. The FVIX factor exhibits the

most interesting impact: increased volatility is associated with higher returns for best

performing stocks and with lower returns for the worst performing stocks (in a given

month). Even though we used five important factors, they explain only a part of cross–

sectional returns, the intercept is not a zero function. This agrees with studies which used

methods based on portfolio construction.
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Figure 5: Plots of estimated β curves in model (5.1). Red and black curves indicate GLS

and LS estimates, respectively. Red dashed lines show point–wise confidence intervals for

the GLS estimate.

A close look of the shape of the beta curves reveals rich information. First, there is a

positive relation between the market excess return and the sorted excess return curve, and

the shapes of the excess return curves and the shape of the MKTRF beta curve are very

similar. Second, although there is a positive relationship between the excess return curve

and the SMB factor – the betas are all positve and above 0.5, the shapes for the beta

curve and the excess return curves are very different. The SMB beta curve is a skewed U

shape. That is middle excess returns are less correlated to SMB than excess returns at

the high and low end. Third, the shape of the HML beta is almost the opposite of the

excess return curves. That is, the correlation between the low excess returns and HML

is higher than the correlation between high excess returns and HML. Fourth, the beta

19



of the Momentum (UMD) shows a relatively flat shape with step down slow on the high

end. In particular, the beta values are much higher for the high end excess return than

the low end (roughly the highest is about 4 times the lowest). That is the high excess

return stocks are more sensitive to the contemporary UMD factor. Fifth, the relationship

between the excess return and the FVIX factor is quite interesting. The low and middle

excess returns are negatively correlated with the FVIX factor; the high excess returns

are however positively correlated to the FVIX factor. This is consistent with Ang et al.

(2006) who find negative correlation between low return portfolios and FVIX factor and

high positive correlation between high return portfolios and FVIX factor.

LS-L2 LS-PCA GLS-L2 GLS-PCA

Intercept 5.82e-05 0 2.43e-03 0

MKTRF 7.10e-08 5.48e-105 4.01e-09 0

SMB 5.09e-04 1.32e-88 1.50e-05 6.43e-60

HML 7.56e-04 8.25e-06 1.95e-04 8.10e-08

UMD 5.01e-02 1.76e-02 2.76e-02 8.50e-03

FVIX 4.21e-02 1.66e-01 2.81e-02 2.97e-08

Table 3: P-values for LS and GLS estimates in Figure 5. The tests are based on the four

statistics listed in Section 2.

We performed the above analysis with the October 1987 removed. The P–values and

the curves turned out to be only minimally different, but the significance statements were

not affected. Finite sample performance of the tests was evaluated by a simulation study.

For data resembling the cross section of returns, all methods have comparable empirical

sizes, in the range 4.5-6.0 % at the nominal level of 5%, with the GLS methods exhibiting

some power advantage. The conclusions of the application presented in this section do

not depend on the specific method used. As emphasized in the Introduction, this paper

focuses on theory and methodology; a more comprehensive empirical study is needed to

draw more general conclusions.

A Covariance structure estimation

To understand the derivation of the weighted loss function (2.3), it is instructive to first

consider the model yn =
∑p

k=1 xnkβk + εn, in which all quantities are scalars. The N ×
N covariance matrix Σ with entries Σ[i, j] = Cov(εi, εj) is diagonalized via AΣA> =

I, where I is the N × N identity matrix. The transformed errors ηn =
∑N

j=1Anjεj
are uncorrelated, and the GLS estimators are obtained as the LS estimators computed

after transforming the original regression by the matrix A. (The matrix Σ is estimated

20



recursively, Cochrane and Orcutt (1949), Chapter 5 of Shumway and Stoffer (2011).) If

the errors are functions, their second order structure is described by the covariances

(A.1) Wi,j(t, s) = Cov(εi(t), εj(s)).

If t = s, the entries Wi,j(t, t) form an N ×N covariance matrix, but if t 6= s, the matrix

W(t, s) is no longer symmetric nor positive definite, and the Cholesky decomposition

used in the scalar case no longer exists. For a fixed t, the GLS approach can however be

applied, and is equivalent to the minimization of

LGLS(β(t); t) = (Y (t)−Xβ(t))>W−1(t, t)(Y (t)−Xβ(t)).

Based on this argument, we use V(t) = W−1(t, t). The integration in (2.3) thus represents

averaging over all t’s, and leads to a loss function which does not depend on t.

In the actual implementation, we replace W(t, t) by an estimate Ŵ(t). Estimates Ŵ(t)

can be constructed in a number of ways. We use a nonparametric approach. Since the

εi(t) are not observed, they must be replaced by residuals ε̂i(t), but without knowing

Ŵ(t) these residuals cannot be computed. When calculating Ŵ for the LS procedure we

use

R̂`(t) =
1

N − p− `

N−∑̀
n=1

ε̂n+`(t)ε̂n(t),

and set

Ŵi,j(t, s) =

{
R̂i−j(s, t)K(|i− j|h), i ≥ j,

R̂j−i(t, s)K(|i− j|h), i < j.

We use the Epanechnikov kernel, K(x) = (1 − x2)+, and h = 1.147(N/4)1/3. These are

usual choices that work well in practice (see (Horváth and Kokoszka, 2012)); in our setting

they produce nice estimates Ŵ(t), which are both banded and tapered. Expression (A.1)

can be seen as a cross–covariance function of two time series, one indexed by t, the other

by s. Unlike autocovariance function, the sample cross-covariance function is defined for

both positive and negative lags. However, computationally, one does not want to store

more lags than is needed. Making use of the relationship R`(t, s) = R−`(s, t), we need

only keep track of nonnegative lags.

A direct construction of β̂GLS is not possible due to the presence of the matrix Ŵ.

We therefore use a recursive approach where β̂LS is used to get an initial estimate of W,

which is then used to get an estimate of β̂GLS, which is then use to reestimate W. This

cycle is continued until a convergence criterion described below is satisfied. The primary

task still reduces to the estimation of the covariances in the matrix W(t, s) defined by

(A.1). This can be done in a manner similar to the construction of Ŵ(t). At the rth

iteration, we compute

R̂
(r)
` (t, s) =

1

N − p− `

N−∑̀
n=1

ε̂
(r)
n+`(t)ε̂

(r)
n (s), 0 ≤ ` < N ;
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and then

Ŵ
(r)
i,j (t, s) =

{
R̂

(r)
i−j(s, t)K(|i− j|h), i ≥ j,

R̂
(r)
j−i(t, s)K(|i− j|h), i < j.

The recursive procedures stop if ‖β̂r−1k − β̂rk‖2 < 10−4, i.e. the convergence criterion is

based on the target quantity, the coefficient function of interest.

To implement the tests based on the four statistics introduced in Section 2, we must

estimate the covariance functions (2.5) for the estimators β̂LS and β̂GLS. Direct verification

shows that

ĈLS(t, s) = Ĉov(β̂LS(t), β̂LS(s)) = (X>X)−1X>Ŵ(t, s)X(X>X)−1,

where the N ×N matrix W(t, s) is defined by (A.1). While

ĈGLS(t, s) = Ĉov(β̂GLS(t), β̂GLS(s))

= (X>Ŵ−1(t)X)−1X>Ŵ−1(t)Ŵ(t, s)Ŵ−1(s)X(X>Ŵ−1(s)X)−1.

Here it is understood that the GLS estimator uses the recursive estimate of W.

B Proof of Theorem 3.1

An important intermediate step leading to the proof of Theorem 3.1 is an analogous

result for an m-dependent sequence, which is stated in Theorem B.1. We emphasize that

stationarity is not assumed in this result. It is therefore of independent interest, as it may

be used as a building block for results which involve some other forms of nonstationary

weak dependence which include m-dependence as a special case. Following the work of

Hoeffding and Robbins (1948), there has been a fair deal of research on the CLT for

scalar m-dependent sequences, Romano and Wolf (2000) provide a general result which

includes many previous results as special cases. Theorem B.1 is designed for Hilbert

space valued nonstationary sequences. Before providing the result, we state the following

Lemma established by Reimherr and Nicolae (2016).

Lemma B.1 (Reimherr and Nicolae) For each 1 ≤ N < ∞, let X1,N , . . . XN,N be

independent elements of a separable Hilbert space with mean zero and E‖Xn,N‖2+δ < ∞
for some δ > 0 and all 1 ≤ n ≤ N . If

N∑
n=1

E[Xn,N ⊗Xn,N ]
N→ C,

and
N∑
n=1

E‖Xn,N‖2+δ → 0,

22



then
N∑
n=1

Xn,N
D→ N (0, C).

Theorem B.1 Assume that {Zn} is an m-dependent sequence in a real separable Hilbert

space H and that conditions 1,2 and 3 of Theorem 3.1 hold. Then relation (3.2) holds.

Proof: To set notation, we assume that Zn is independent of Zk if |n−k| ≥M . Choose

M0 > 2M , M0 will used to block observations, and set r = bN/M0c. Define

YNM0 = N−1/2
r∑
i=1

M0−M∑
j=1

Z(i−1)M+j = N−1/2
r∑
i=1

Ui,

with the Ui =
∑M0−M

j=1 Z(i−1)M+j being independent. Using Lemma B.1, YNM0 will be

asymptotically Gaussian if

N−1
r∑
i=1

M0−M∑
j=1

M0−M∑
s=1

E[Z(i−1)m+j ⊗ Z(i−1)m+s]
N→ CM0 ,

and for some δ > 0

N−2−δ
r∑
i=1

E‖Ui‖2+δ → 0.

Since the first property is assumed, we need only prove the latter. Set δ = 2, then

N−4
r∑
i=1

E‖Ui‖4 = N−4
r∑
i=1

E〈Ui, Ui〉2.

Consider i = 1, then

E〈U1, U1〉2 =

M0−M∑
j1=1

M0−M∑
j2=1

M0−M∑
s1=1

M0−M∑
s2=1

E[〈Zj1 , Zs1〉〈Zj2 , Zs2〉].

Notice that for the summand to be nonzero, each index must be within M of at least one

other. One can show that the number of such terms is bounded by 3(2M +1)2(M0−M)2;

sharper rates can be found, but all will have this asymptotic order with respect to M and

M0. Multiple applications of the Cauchy–Schwarz inequality imply that

|E[〈Zj1 , Zs1〉〈Zj2 , Zs2〉]| ≤ sup
n

E‖Zn‖4.

Thus we have the bound

N−4
r∑
i=1

E‖Ui‖4 ≤
3r(2M + 1)2(M0 −M)2

N4
sup
n

E‖Zn‖4 → 0,
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as N → ∞. We therefore have that YNM0 ⇒ YM0 as N → ∞, where YM0 is Gaussian.

Clearly YM0 ⇒ Y as M0 → ∞ as desired. So we need only show that the block approx-

imation and the original sum are, asymptotically, equivalent. To do this, it is enough to

show that

lim
M0→∞

lim sup
N→∞

E‖N1/2Z̄ − YNM0‖2 = 0,

cf. Theorem 3.2 of Billingsley (1999). So consider

E‖N1/2Z̄ − YNM0‖2 = N−1E

∥∥∥∥∥
r−1∑
i=1

M∑
j=0

ZiM0−j

∥∥∥∥∥
2

= N−1
r−1∑
i=1

M∑
j=0

M∑
s=0

E〈ZiM0−j, ZiM0−s〉

≤ r(M + 1)2 sup E‖Zn‖2

N
∼ (M + 1)2 sup E‖Zn‖2

M0

→ 0,

as M0 →∞, thus the claim holds.

Proof of Theorem 3.1: By assumption, there exists a sequence Zn,M ,

Zn,M = fn(un, un−1, . . . , un−M , u
?
n−M−1, u

?
n−M−2, . . .),

which is M -dependent, decoupled from the original sequence, and such that

∞∑
M=1

sup
1≤n<∞

ν2(Zn − Zn,M) <∞.(B.1)

Define

YN,M = N−1/2
N∑
n=1

Zn,M

By Theorem B.1 YN,M ⇒ YM , where YM is a mean zero Gaussian element of H with the

covariance operator

CM = lim
N→∞

N−1
N∑
i=1

N∑
j=1

E(Zi,M ⊗ Zj,M).

Clearly, YM ⇒ Y where Y is a mean zero Gaussian element of H with covariance operator

C. Thus the original sum will have the same limiting distribution if

lim
M→∞

lim sup
N→∞

E‖N1/2Z̄ − YN,M‖2 = 0.
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We have

E‖N1/2Z̄ − YN,M‖2 = N−1E

∥∥∥∥∥
N∑
n=1

Zn − Zn,M

∥∥∥∥∥
2

= N−1
N∑
n1

N∑
n2

E〈Zn1 − Zn1M , Zn2 − Zn2M〉

= N−1
N∑
n

E‖Zn − ZnM‖2 + 2N−1
∑

1≤n1<n2≤N

E〈Zn1 − Zn1M , Zn2 − Zn2M〉.

Since the sum in (B.1) is finite, it follows that

lim sup
M

lim sup
N

N−1
N∑
n

E‖Zn − Zn,M‖2 = 0.

Next decompose the second summand into

2N−1
∑

1≤n1<n2≤N

E〈Zn1 − Zn1M , Zn2〉 − 2N−1
∑

1≤n1<n2≤N

E〈Zn1 − Zn1M , Zn2M〉.(B.2)

We now make use of a slight modification of the arguments given in Horvath, Kokoszka,

and Reeder (2013). x If n2 > n1 then (Zn1 , Zn1M) is independent of Zn2,n2−n1 . We can

thus make the insertion∑
1≤n1<n2≤N

E〈Zn1 − Zn1M , Zn2〉

=
∑

1≤n1<n2≤N

E〈Zn1 − Zn1M , Zn2 − Zn2,n2−n1〉

≤
∑

1≤n1<n2≤N

√
E‖Zn1 − Zn1M‖2

√
E‖Zn2 − Zn2,n2−n1‖2

≤ sup
n

√
E‖Zn − ZnM‖2

∑
1≤n1<n2≤N

√
E‖Zn2 − Zn2,n2−n1‖2

≤ sup
n

√
E‖Zn − ZnM‖2

∑
1≤n≤N

∞∑
m=1

√
E‖Zn − Zn,m‖2

≤ N sup
n

√
E‖Zn − ZnM‖2

∞∑
m=1

sup
n

√
E‖Zn − Zn,m‖2,

and the above is such that[
lim
M

lim sup
N

sup
1≤n≤N

√
E‖Zn − ZnM‖2

] ∞∑
m=1

sup
1≤n≤N

√
E‖Zn − Zn,m‖2 = 0,

by assumption. Similar arguments hold for the second term in B.2 and thus the claim

holds.
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C Cross–section of returns and portfolio formation

To facilitate the comparison with the new approach we propose, in this section we explain

the basic ideas of the approach to the study of the cross–section of returns based on

portfolio formation. The most frequently cited early reference to this approach is the work

of Fama and MacBeth (1973) whose objective was to test the validity of the efficiency

equation:

(C.1) ER(i) = ER0 + β(i)[ER(m)− ER0],

derived from the static two–parameter CAPM; R0 is the risk–free return and the β(i) =

Cov(R(i), R(m))/SD(R(m)) is the usual beta of asset i. To test the validity of (C.1),

Fama and MacBeth (1973) considered the model

(C.2) Rn(i) = αn + β(i)fn(1) + β2(i)fn(2) + s(i)fn(3) + εn(i),

where s(i) is an asset specific quantity constructed by the authors, which plays a role of

a beta in (1.1). The objective of testing is to determine if any other betas, except the

beta in (C.1), should be used to explain the cross–section of returns. The null hypothesis

is formulated as Ef2n = 0, Ef3n = 0. In such an approach, the quantities β(i), β2(i) and

s(i) are treated as known. In fact, they are not known, and a number of refinements are

needed to carry out the test. We now describe the main aspects of the testing procedure.

The tests use 20 sub–portfolios of a large market portfolio to reduce the variability in the

estimates of the βi. These portfolios change from month to month and are constructed by

ordering the individual estimates of βn(i). This procedure leads to the following regression

for each month (indexed by n):

(C.3) Rn(p) = αn+fn(1)β̂n−1(p)+fn(2)β̂2
n−1(p)+fn(3)ŝn−1(p)+εn(p), p = 1, 2, . . . , 20.

In regression (C.3), β̂n−1(p), β̂
2
n−1(p), ŝn−1(p) are treated as the explanatory variables. For

each month n the least squares estimates α̂n, f̂n(1), f̂n(2), f̂n(3) are computed. To test

the null hypothesis Efn(3) = 0, the usual t–test is applied to the f̂n(3). A possible

temporal dependence is ignored; the f̂n(3) are treated as independent observations with

common mean and variance. The above approach has been extended and modified in

various directions, see e.g. Fama and French (1992), which is perhaps the most cited

work in this field.

Our research has been most directly motivated by the work of Ang et al. (2006) who

investigate whether stocks with different sensitivities to innovations in aggregate volatility

have different returns. The main steps of the analysis can be summarized as follows. At

the end of each month n, for each stock i, run the regression

rt(i) = β0(i) + βm(i)Mt + βv(i)Vt + εt(i),

26



where t indexes a trading day in month n, Mt is the excess market return, and Vt is the

difference in the VIX index from day t − 1 to day t. Sort the stocks based on the least

squares estimates β̂v(i) and form five quintiles: quintile 1 contains stocks with the lowest

20% of the β̂v(i), quintile 5 those with the highest. Denote by Qp,n, p = 1, 2, 3, 4, 5, the

set of stocks which fall into quintile portfolio p thus formed. Notice that the composition

of these portfolios changes from month to month. Each month, one can compute the

value–weighted average of the β̂v(i) for each quintile. For example, for the first quantile,

we compute β̄
(p)
v,n =

∑
i∈Qp,n

wi,nβ̂
i
v,n. There are N = 166 months in the study, and one can

compute

β̄(p)
v =

1

N − 1

N−1∑
n=1

β̄(p)
v,n, p = 1, 2, 3, 4, 5.

Table 1 in Ang et al. (2006) reports that β̄
(1)
v = −2.09, β̄

(3)
v = 0.03 and β̄

(5)
v = 2.18. In

month n+1, we compute the value–weighted return for the stocks in each quintile formed

in month n:

Rn+1(p) =
∑
i∈Qp,n

wi,nRn+1(i), p = 1, 2, 3, 4, 5.

We then compute the averages R̄(p) of the Rn+1(p). Table 1 in Ang et al. (2006) reports

that R̄(1) = 1.64, R̄(3) = 1.36, R̄(5) = 0.60 percent. This analysis indicates that stocks

with low (large negative) sensitivities to the daily change in VIX have higher expected

monthly returns next month. After a more detailed validation of this conclusion, the

authors turn to the contemporaneous relationship at the monthly frequency by considering

the model

(C.4) Rn(p) = α(p) + βm(p)Mn + βs(p)Sn + βh(p)Hn + βv(p)Vn + εn(p),

where Sn and Hn are the usual Fama–French factors, and Vn is a custom constructed factor

which reflects monthly change in aggregate volatility (taking a monthly difference in the

VIX is not suitable). The resulting least squares estimates β̂v(p) are highly significant.

For example, the t–score of β̂v(1) is −4.06 and that of β̂v(5) is 5.35. The results from

regression (2.3) indicate that after controlling the Fama-French factors, there is a negative

relationship between the change of aggregate volatility and the the return of portfolio

constructed from stocks with low (large negative) sensitivities to the daily change in VIX,

whereas the relationship is positive for portfolio constructed from stocks with high (large

positive) sensitivities to the daily changes in the VIX.
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