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ABSTRACT 
 
 
 

CHANGES IN AUTOREACTIVE B CELL LIFESTYLE EARY IN DEVELOPMENT OF  
 

AUTOIMMUNITY 
 
 
 

Type 1 diabetes (T1D) is an autoimmune disorder characterized by destruction of the 

pancreatic beta cells, leading to decreased production of insulin and hyperglycemia. Although 

environmental factors contribute, genetic factors are likely the primary determinants of risk. With 

recent advances in GWAS studies, hundreds of risk-conferring alleles have been discovered for 

T1D. For most cases the exact mechanisms by which these genes and their gene products 

contribute to development of autoimmunity remains to be elucidated. However, given that T1D 

requires the activation of autoantigen-specific T and B cells that are normally silenced by immune 

tolerance, it is likely a combination of HLA and non-HLA alleles act in concert to undermine normal 

tolerance mechanisms, allowing activation of these autoreactive cells.  

Although T cells are the primary effectors of beta cell destruction in T1D, autoreactive B 

cells are thought to act primarily as antigen presenting cells. In a healthy individual, autoreactive 

B cells are normally silenced by one of three mechanisms: receptor editing, clonal deletion, or 

anergy. In this work I determined B cells bearing antigen receptors with high affinity for insulin are 

found only in the anergic B cell compartment, termed BND, of healthy individuals. Importantly, 

these cells leave this compartment in a proportion of first-degree relatives (FDRs), and in all 

autoantibody positive pre-diabetics and new onset diabetics. We posited people at risk for 

development of T1D carry autoimmune risk alleles that impair proper silencing of autoreactive B 

cells by anergy, allowing these cells to become activated and contribute to disease. In order to 

test this, I analyzed the HLA class II alleles and over 50 high risk non-HLA alleles in BND sufficient 

and deficient FDRs. I found loss of anergic insulin-binding B cells (IBCs) in FDRs was associated 

with the high risk T1D HLA alleles and polymorphisms in the high risk non-HLA loci, INS, PTPN2, 
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PTPN22, and IKZF3. The associations of loss of B cell anergy with these particular risk alleles 

suggest insulin-reactive T cells and changes in negative regulation of B cell signaling contribute 

to the unstable anergic phenotype observed in autoimmune patients.  

In our T1D studies, we found loss of anergic IBCs was correlated with loss of the entire 

anergic B cell population, irrespective of their specificity, suggesting loss of B cell anergy could 

be a common phenomenon in other autoimmune diseases. In addition, many risk alleles for T1D 

are shared among other autoimmune diseases, including HLA and PTPN22, suggesting B cell 

anergy could be compromised in other autoimmune disorders in which similar contributing risk 

alleles are at play. Hence, I also analyzed the frequency and phenotype of thyroglobulin (Tg) and 

thyroid peroxidase (TPO) binding B cells, as well as total B cells, in early onset and long standing 

autoimmune thyroid disease (AITD) patients compared to healthy controls. Similar to studies in 

T1D, early onset AITD patients had a significant decrease in anergic Tg and TPO-binding B cells 

that was correlated with a decrease in total anergic B cells. Furthermore, loss of anergic Tg-

binding B cells was inversely correlated with Tg autoantibodies and Tg-binding B cells expressed 

high levels of the activation marker CD86. These findings suggest activation of high affinity thyroid 

reactive B cells that are normally silenced by anergy, likely leads to production of autoantibodies.  

In order to further elucidate the possible contribution a breakdown in anergy of 

autoreactive B cells has in development of autoimmunity, I studied the phenotype and functional 

status of IBCs in diabetes susceptible (NOD) and diabetes resistant (C57BL/6) mice transgenic 

for the 125Tg heavy chain. This transgene increases the frequency of peripheral IBCs to a level 

that is easily detectable (~0.5-2% of total splenic B cells depending on the strain) [33]. In these 

mice, I found that high affinity IBCs were phenotypically and functionally anergic in C57BL/6 mice, 

but the equivalent in NOD appeared activated and functionally responsive, accumulated in the 

pancreas, and expressed insulin peptides in association with MHC II on their cell surface. 

Accumulation of these B cells in the pancreas correlated with retention and activation of insulin-

reactive CD4 T cells. Hence, these mouse studies nicely summarize what I hypothesize occurs 
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in autoimmune humans; namely, anergy is impaired in autoreactive B cells, likely due to genetic 

risk alleles, which allows them to become activated and provide critical antigen presenting 

function to cognate antigen-reactive T cells.  These studies are significant in that they are the first 

studies to identify a breach in B cell anergy occurs early in development in multiple autoimmune 

disorders in humans, which is likely driven by a combination of autoimmune risk alleles that alter 

thresholds for B cell activation, enabling them to become activated and participate in disease 

through antigen presentation and autoantibody production. Furthermore, these studies highlight 

the utility of loss of B cell anergy as a possible biomarker for increased risk for development of 

autoimmune disorders. 
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CHAPTER 1 
 
 
 

Introduction 
 
 
 
PATHOGENESIS OF TYPE 1 DIABETES 

Type 1 diabetes (T1D) is an autoimmune disorder characterized by self-reactive 

lymphocyte destruction of insulin producing beta cells in the pancreas. Although genetics is 

considered the major contributor to risk for development of T1D, the environment is also important 

given the discordance rate of monozygotic twins is around 50% [1, 2]. In healthy individuals self- 

reactive lymphocytes are kept in check through various tolerance mechanisms, both central, i.e. 

occurring in the bone marrow or thymus, and peripheral, i.e. occurring at other sites, that prevent 

their accumulation, activation and consequent development of autoimmunity [3, 4]. In T1D the 

combination of genetic risk alleles and environmental factors, allows self-reactive lymphocytes to 

escape tolerance checkpoints leading to development of autoimmunity [4]. In T1D, self-reactive 

CD4 T cells, CD8 T cells, and B cells infiltrate the pancreas causing significant beta cell death 

and destruction. Over time the capacity to secrete insulin in response to a glucose load declines, 

leading to overt elevation in serum glucose and clinical diagnosis of T1D (Figure 1.1).  

 

EMERGENCE OF SELF-REACTIVE B CELLS 

Studies have shown that as much as 70% of B cells born in the bone marrow bind self-

antigens, such as DNA or insulin, via their B cell receptor (BCR) [5]. In order to prevent 

development of autoimmunity, these self-reactive B cells must be culled, rehabilitated, or 

suppressed. In the bone marrow, B lymphocytes that bind self-antigen with high avidity undergo 

a process called receptor editing wherein strong BCR signals induce them to rearrange their 

antigen receptor light chain genes, silencing one allele and expressing a second, leading to 
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expression of a BCR with altered specificity [6, 7]. For many cells this process eliminates 

autoreactivity, but when it does not, continuing strong BCR signals lead to death by apoptosis  

(Figure 1.2A). These rehabilitation and culling processes are classified as central tolerance 

mechanisms since they occur in the bone marrow, the birthplace of B cells. On the opposite end 

of the spectrum, newly produced B cells lacking significant autoreactivity proceed to the periphery 

and become mature naïve B cells that function in protective immunity. Due to their lack of 

autoreactivity, these cells are “ignorant” of self-antigen and pose no danger unless they acquire 

autoreactivity as a consequence of somatic mutation in the germinal center reaction. B cells that 

bind to self-antigen with moderate avidity, however, can also enter the periphery where they are 

silenced via a peripheral tolerance mechanism termed anergy (Figure 1.2A). Anergic B cells are 

characterized by an inability to become activated, proliferate, and produce antibody [8-12] as a 

consequence of chronic BCR binding to self-antigen. Anergic B cells continue to express BCR, 

but at lower levels, and the output BCR signals changes. The BCR signals in anergic B cells 

become biased towards activation of regulatory pathways involving phosphatases such as 

PTPN22, PTEN and SHIP-1, that prevent anergic B cells from responding to self- and cross-

reactive exogenous antigens [13-15]. Anergy is sometimes undermined by genetic 

polymorphisms that compromise these pathways. Importantly, the anergic status of autoreactive 

B cells is reversed by antigen dissociation from the BCR, raising the possibility that environment 

influences may adversely affect anergy [10].  Hence, it is thought that breakdown in the tolerance 

mechanisms, such as anergy, that are in place to prevent accumulation and activation of self-

reactive B cells leads to development of autoimmunity [3]. 

 

EVIDENCE OF A ROLE FOR B CELLS IN T1D 

While T cells have been implicated as the major players in destruction of the beta cells in 

the pancreas leading to T1D, recent studies have highlighted the necessity for B cells. In the non-

obese diabetic (NOD) mouse model, which develops spontaneous diabetes, B cells are required 
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for disease development [16].  In addition, depletion of B cells using anti-CD20 or anti-CD22 

prevents diabetes in the NOD model [17, 18]. Moreover, a clinical trial using Rituximab (anti-

CD20) to deplete B cells in recent onset T1D subjects showed decreased beta cell loss and a 

delayed requirement for insulin one year after treatment [19, 20]. Though the effects of Rituximab 

were minimal two years after treatment, this study demonstrates a role for B cells in this disease. 

It is likely that by the time Rituximab was administered, many B cells had already committed their 

crimes, since at the time of T1D diagnosis beta cell mass is sufficiently low to foster hyperglycemia 

(Figure 1.1).  

A study often cited as evidence that B cells are not important in T1D is a report of a person 

who developed T1D despite being deficient in B cells [21]. However, other studies have taught us 

that conditions of lymphopenia, be it by genetic defects or pharmacologically induced, can support 

the accumulation and expansion of self-reactive T cells, without the need for B cell help [22, 23]. 

Such an event is suspected to have occurred in this individual. 

 

B CELLS AS ANTIGEN PRESENTERS 

So what role do B cells have in T1D? Studies have shown B cells are likely exerting their 

affect by presenting islet autoantigens to diabetogenic T cells [24, 25], but also by production of 

cytokines [26, 27] and autoantibodies [28-30]. In the NOD mouse model, inhibition of the ability 

of B cells to present antigen by either class I or class II prevents diabetes [24, 31], demonstrating 

the importance of B cells to present antigen to CD4+ T cells and cross-present to CD8+ T cells. 

In addition, restriction of the B cell repertoire to an irrelevant islet antigen, thus disallowing 

presentation of islet antigens, prevents diabetes [32]. On the other hand, skewing BCR specificity 

towards insulin accelerates disease [33]. Hence, these studies demonstrate that islet-reactive B 

cells are necessary and are likely acting as antigen presenting cells to diabetogenic T cells. 

Anergic B cells are not competent to present antigen, thus their provision of this function likely 

depends on compromise of anergy, as occurs in the NOD model, discussed in Chapter 6, and 

3



T1D patients (Chapter 4). T cells activated and expanded as a consequence of antigen 

presentation act as pancreatic beta cell executioners.  

It was recently discovered that post translational modification of islet cell antigens, such 

as insulin and chromogranin A, leads to the creation of hybrid peptides capable of activating T 

cells to a high degree [34]. These hybrid peptides have now been identified in both mouse and 

human [34-36]. B cells reactive with native islet antigens could bind, process and present 

molecules containing these hybrid peptides. The idea that hybrid peptide-reactive T cells could 

be the major diabetogenic force is attractive because these T cells would not normally be 

censored in the thymus due to autoreactivity.   

 

B CELLS AS AUTOANTIBODY PRODUCERS 

To date studies have shown that the presence of islet autoantibodies is one of the best 

predictors for disease development [28]. Islet autoantibodies that have been identified thus far 

and are routinely assayed include those against insulin, insulinoma-associated antigen 2 (IA-2), 

glutamic acid decarboxylase 65 (GAD65), and zinc transporter 8 (ZnT8) [29]. Typically in patients 

the first antibodies identified are against insulin, which can occur many years before onset of 

disease [37]. Subjects who have high affinity anti-insulin antibodies or antibodies to more than 

one islet antigen are almost assured of developing diabetes at some point in life [38-40]. While 

the presence of autoantibodies suggests a role for B cells in T1D and is a harbinger for disease, 

the pathogenicity of these antibodies is ambiguous. In mice, production of autoantibodies is 

dispensable for disease [41] and this may be the case in humans as well.  

 

PHENOTYPE OF B CELLS IN T1D PATIENTS 

Given the evidence for a role of B cells in T1D, recent studies in human have sought to 

characterize changes in the B cell compartment during disease development. Menard et. al. found 

that B cells reactive with autoantigens expressed by HEp-2 cells increase in frequency in T1D 
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patients [42]. As noted above, under normal circumstances autoreactive B cells are silenced at 

two distinct checkpoints during development: at the immature B cell stage in the bone marrow 

and prior to entry into the mature naïve stage in the periphery [5] (Figure 1.2A). However, it was 

discovered that T1D patients had an increased number of autoreactive B cells at both the new 

emigrant/transitional and mature naïve B cell stages, suggesting impairment of both central and 

peripheral B cell tolerance [42] (Figure 1.2B). It is also worth noting that the accumulating 

autoreactive cells are polyreactive, binding to ssDNA, dsDNA, insulin, and LPS. Not surprisingly, 

a later study by the same group found that treatment with Rituximab failed to reset these impaired 

tolerance checkpoints [43]. The B cells generated after Rituximab treatment were as 

auto/polyreactive as the B cells that were present in the periphery prior to treatment.  

 In order to determine whether B cells in T1D subjects have a decreased propensity for 

receptor editing, one study analyzed the frequency of recombining sequence (RS) 

rearrangements in lambda positive B cells in T1D subjects compared to controls. RS sequences 

accumulate in, and therefore, mark cells that have undergone receptor editing. Results indicated 

T1D patients had reduced RS rearrangements compared to healthy controls, suggesting T1D 

patients may have a higher autoreactivity threshold for initiation of receptor editing, which may 

allow increased numbers of autoreactive B cells to enter into the periphery [44] (Figure 1.2B). 

Taken together, T1D patients show impaired central and peripheral B cell tolerance, and as 

discussed in Chapter 3, this includes anergy. 

Since T1D is an organ-specific autoimmune disorder, studies should ideally analyze B 

cells in the target tissues, namely the pancreas and pancreatic lymph node. One of the earliest 

studies that analyzed infiltrating cell populations in the pancreas using cadaveric tissues found 

that B cells appear late during insulitis along with CD8+ T cells (Figure 1.1) [45]. Based on this 

study, one could speculate B cells are acting as antigen presenting cells to the CD8+ T cells. 

Indeed, B cells have been shown to be essential antigen presenting cells for CD8+ T cells in 

development of T1D in NOD [31]. With the formation of the Network for Pancreatic Organ Donors 
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with diabetes (nPOD), more recent studies have been able to extend these findings by analyzing 

B cells in the pancreas and pancreatic lymph node in more subjects at various stages of disease. 

Recently, one group found two distinct patters of insulitis, designated CD20Hi (many B cells 

present) and CD20Lo (few B cells present), distinguish T1D subjects. Subjects who were 

diagnosed before the age of 7 always display the CD20Hi phenotype, while subjects diagnosed 

after 13 years of age always show the CD20Lo phenotype [46]. These findings suggest the two 

forms are differentially aggressive. In line with this, they found that subjects who display the 

CD20Hi profile show loss of beta cell mass at a more rapid rate than those with the CD20Lo 

phenotype [46]. This study may help explain why treatment with Rituximab is more efficacious in 

the younger subjects in the clinical trial [19]. Studies in our lab have been able to track high affinity 

insulin-binding B cells to the pancreas and pancreatic lymph node where they appear activated 

in both NOD mice [47] and recent onset T1D patients (unpublished). Hence, it is likely that islet-

reactive B cells that escape anergy migrate from the peripheral blood into the pancreas and 

pancreatic lymph node, where they participate in disease through antigen presentation (Figure 

1.2B). 

Interestingly, a recent study looking at the frequency of germinal centers in the pancreatic 

lymph nodes of nPOD donors found that newly diagnosed subjects had a decrease in the number 

of germinal centers and follicular dendritic cell networks compared to long standing T1D subjects 

and healthy controls [48]. The authors hypothesize that maturing autoreactive B cells could be 

pushed into antibody secreting cells at a more rapid rate, therefore causing a disruption in normal 

follicular development. Since the authors used CD20 as a marker for B cells in their study, they 

would not have been able to enumerate plasma cells that are CD20lo/-. Future studies using more 

subjects and more B cell markers could help elucidate the role of B cells in the pancreatic lymph 

nodes early in disease. 
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GENETIC RISK ALLELES IN B CELLS AND T1D 

Since development of T1D is driven by genetic risk alleles and the environment, it seems  

likely that the these factors mediate their effects in part by promoting loss of central and peripheral 

B cell tolerance. The T1D risk allele most affecting likelihood of disease development is HLA class 

II. DR4-DQ8 followed by DR3-DQ2 alleles confer greatest risk [2, 49]. CD4 T cells recognizing 

autoantigen. e.g. insulin, peptide-associated DR4-DQ8 could evoke loss of B cell tolerance. The 

genetic polymorphism conferring second highest risk is in the VNTR region of the insulin (INS) 

gene [2]. This polymorphism is thought to increase the number of insulin-specific T cells in the 

periphery due to impaired T cell tolerance induction in the thymus [50]. Increased insulin-specific 

T cells likely promote activation of insulin-reactive B cells, driving them to participate in disease. 

As discussed in Chapter 4, we found that loss of anergic insulin-binding B cells is associated with 

risk conferring HLA class II and insulin allotypes, suggesting T cells contribute to loss of B cell 

anergy.  

In addition, our studies have shown that loss of B cell anergy is associated with 

polymorphisms in the PTPN22 and PTPN2 genes (Chapter 4). PTPN2 and PTPN22 are negative 

regulators of B cell signaling [51].  Recent GWAS studies have shown that the PTPN22 genotype 

is the third highest contributor to T1D risk, after HLA and the INS genes [2]. PTPN22 encodes the 

lymphoid tyrosine phosphatase, Lyp, expressed in T and B cells. Previous studies have shown 

that PTPN22 functions to dampen B cell signaling and expression of a risk-conferring allele is 

associated with increased autoreactive B cell frequency in the peripheral blood of T1D patients 

[42, 52]. Interestingly, one study found that T1D subjects carrying the PTPN22 risk allele had 

increased anergic (BND) B cells in their periphery [52]. The disparity of their findings with our study 

could be due to the difference in subjects since they looked at presumably long standing T1D 

subjects and we analyzed first-degree relatives. It could also be due to a difference in gating 

strategies to identify anergic B cells. Targeted ectopic expression of the risk allele in B cells in 
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vivo leads to autoimmunity [53]. Hence, we hypothesize the PTPN22 risk allele may promote loss 

of anergy via compromising anergy, leading to development of autoimmunity.  

The PTPN2 gene encodes another protein tyrosine phosphatase that is expressed in both 

B and T cells and has been shown to have a range of functions, including negative regulation of 

JAK/STAT signaling [54] and dephosphorylation of Lck and Fyn after stimulation through the T 

cell receptor [55]. The PTPN2 SNP rs1803217 was shown to be associated with 40% reduction 

in PTPN2 mRNA in primary human Treg and CD4+ memory T cells [56]. Though the study did 

not examine B cells, one would expect a similar reduction in mRNA in some B cell subsets as 

well. A study in which PTPN2 was inducibly deleted in the hematopoietic compartment of adult 

mice developed autoimmunity characterized by an increase in the number of B cells, including 

germinal center B cells, and anti-nuclear autoantibody production [57]. Thus, polymorphisms in 

genes whose products function in negative regulation of BCR may confer T1D risk by impairing 

peripheral tolerance. Other T1D-associated allelic variants of genes expressed in B cells, such 

as BACH2 and SH2B3 may in time also be proven to impair B cell tolerance.  

 

RATIONALE AND HYPOTHESES 

 Given the evidence for the importance of islet-reactive B cells, and in particular insulin-

reactive B cells, in the pathogenesis of T1D and studies indicating impaired central and peripheral 

tolerance of autoreactive B cells in T1D subjects, the aim of this study was to analyze the 

phenotype of insulin-reactive B cells in the peripheral blood of subjects along a continuum of T1D 

development. We hypothesize that potentially pathogenic insulin-reactive B cells (IBCs) that are 

normally silenced by anergy become activated and participate in T1D development. Since 

antigen-reactive B cells occur at a very low frequency (<0.1%) in the peripheral blood, I first 

developed a method to identify and enrich for antigen-reactive B cells from blood and tissues 

using magnetic particles, discussed in detail in Chapter 2. Using this method to identify IBCs, I 

found that anergic, termed BND, insulin-binding B cells were lost in subjects who had 
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autoantibodies but were not yet diabetic and those who had been diagnosed with T1D within the 

past year compared to healthy controls (Chapter 3). Subjects who had been diabetic for more 

than one year had levels of insulin-binding anergic B cells similar to controls. Interestingly, in a 

portion of first-degree relatives these cells were also decreased in frequency, suggesting that loss 

of anergy precedes production of autoantibodies. In addition, loss of insulin-binding BND cells was 

correlated with loss of total BND cells, irrespective of their specificity. These results indicate a 

possible predisposing genetic defect could drive loss of B cell anergy and loss of anergic B cells 

may be an early event in other autoimmune disorders sharing similar risk alleles. 

Hence, we hypothesize people at risk for development of T1D carry autoimmune risk 

alelles that impair proper silencing of autoreactive B cells, allowing these cells to become 

activated and contribute to disease. In Chapter 4, I sought to test this by determining whether loss 

of B cell anergy is associated with high risk HLA and non-HLA T1D risk alleles. I found that loss 

of B cell anergy was associated with high risk HLA haplotypes and polymorphisms in the non-

HLA risk loci, INS, PTPN2, PTPN22, and IKZF3. These results indicate insulin-reactive T cells 

and changes in inhibitory signaling of autoreactive B cells likely contribute to impaired B cell 

anergy in T1D.  

Given that many of the genetic risk alleles in genes such as PTPN22, CTLA4, and IL2-

RA,  are shared among many autoimmune diseases, such as autoimmune thyroid disease (AITD), 

systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA) [42, 58-61], I determined 

whether loss of anergic B cells was a common phenomenon in other autoimmune disorders by 

analyzing the phenotype and activation status of thyroid-reactive B cells in autoimmune thyroid 

patients (Chapter 5). Similar to findings in T1D patients, I found that there was a significant 

decrease in anergic thyroglobulin (Tg) and thyroid peroxidase (TPO) binding B cells, as well as 

total anergic B cells, in early onset AITD patients that returned to normal levels in patients 

diagnosed more than one year prior to analysis. In addition, loss of anergic Tg-binding B cells 

was inversely correlated with anti-Tg antibody titers and Tg-binding cells, particularly the few 
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remaining anergic B cells in early onset patients, showed increased CD86 expression. These 

results suggest loss of anergic Tg-binding cells is an early event in AITD and activation of these 

cells likely leads to the production of autoantibodies.   

In order to further understand the contribution of insulin-reactive B cells in T1D, I studied 

the phenotype and functional status of IBCs in diabetes susceptible (NOD) and diabetes resistant 

(C57BL/6) mice transgenic for the 125Tg heavy chain, which increases the frequency of IBCs in 

the periphery [33] (Chapter 6). C57BL/6 mice also carried the same MHC class II known to be 

required for T1D in the NOD mouse model (H2g7), thus ensuring all B cells were capable of 

presenting peptides to diabetogenic CD4 T cells. In these mice, I found that high affinity IBCs 

were phenotypically and functionally anergic in C57BL/6 mice, but the equivalent in NOD 

appeared activated and functionally responsive, accumulated in the pancreas, and expressed 

insulin peptides in association with MHC II on their cell surface. Accumulation of these B cells in 

the pancreas correlated with retention and activation of insulin-reactive CD4 T cells. Hence, by 

utilizing mouse models, these studies nicely summarize what we hypothesize occurs in 

autoimmune humans; namely, anergy is impaired in autoreactive B cells, likely due to genetic risk 

alleles, which allows them to become activated and provide critical antigen presenting function to 

cognate antigen-reactive T cells.   
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Adapted from Van Belle et al. 2011. Physiol Rev.
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Figure 1.2. Autoreactive B cell tolerance in healthy individuals and their escape and 

participation in type 1 diabetics. A. In healthy individuals non-autoreactive B cells migrate into 

the periphery and become mature naïve B cells. Autoreactive B cells with a high avidity for self-

antigen undergo central tolerance in the bone marrow where receptor editing or clonal deletion 

occurs. Autoreactive B cells with moderate avidity for self can enter the periphery and become 

tolerized by the process termed anergy. B. In type 1 diabetics, it has been shown autoreactive B 

cells undergo decreased central and peripheral tolerance allowing escape of these autoreactive 

B cells. These cells participate in disease by entering the pancreas or pancreatic lymph node 

where they produce autoantibodies and present antigen to islet-reactive CD4+ and CD8+ T cells. 
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CHAPTER 2 
 
 
 

Detection and enrichment of rare antigen-specific B cells for analysis of phenotype and function
 
 
 
SUMMARY 

 B cells reactive with a specific antigen usually occur at a frequency of <0.05% of 

lymphocytes. For decades researchers have sought methods to isolate and enrich these rare 

cells for studies of their phenotype and biology. Approaches are inevitably based on the principle 

that B cells recognize native antigen by virtue of cell surface receptors that are representative in 

specificity of antibodies that will eventually be secreted by their differentiated daughters. Perhaps 

the most obvious approach to the problem involves use of fluorochrome-conjugated antigens in 

conjunction with fluorescence-activated cell sorting (FACS). However, the utility of these methods 

is limited by cell frequency and the achievable rate of analysis and isolation by electronic sorting. 

Here we describe a novel method to enrich rare antigen-specific B cells using magnetic 

nanoparticles that results in high yield enrichment of antigen-reactive B cells from large starting 

cell populations. This method enables improved monitoring of the phenotype and biology of 

antigen reactive cells before and following in vivo antigen encounter, such as after immunization 

or during development of autoimmunity.  

 

INTRODUCTION 

Limiting dilution analyses of antibody-secreting cell precursor frequency have suggested 

that B cells reactive to a particular antigen typically occur at a frequency of 0.05 to 0.005% in the 

normal repertoire, depending on vaccination status and size/number of epitopes present on the 

antigen. The low frequency of these cells has made it difficult to study changes in their status 

during development of immune responses, such as following vaccination or exposure to a foreign 

antigen, or during development of autoimmunity. Previously, researchers have undertaken 
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isolation of antigen-reactive B cells using techniques ranging from antigen coated plates or 

column adsorbents, to antigen-coated red blood cell resetting, to fluorescence-activated cell 

sorting [62-67]. Though these techniques have been successful in identifying and isolating 

antigen-reactive B cells, the results have varied in terms of yield, purity and scalability. Recently 

we developed a novel method to both detect and enrich rare B lymphocyte subpopulations using 

magnetic nanoparticles. The method enables enrichment with relatively high yield and purity from 

large starting populations, and is compatible with analysis of responses to antigen. By enriching 

from populations of cells in suspension, the method eliminates constraints that are associated 

with the geometry of antigen-coated plates or columns, and limit throughput. Finally, since 

enriched cells remain associated with antigen and a fluorescent reporter, they can be further 

purified by FACS sorting. As described herein we have used this approach for study of peripheral 

blood tetanus toxoid-reactive B cells before and following immunization of human subjects, as 

well as autoantigen-reactive B cells from subjects with various autoimmune disorders, including 

type 1 diabetes, Graves’ disease, and Hashimoto’s disease [68]. The method works equally well 

in mouse and human, and is compatible with analysis of antigen-reactive B cells from a variety of 

tissues.  

In its basic format, peripheral blood mononuclear cells are first incubated with biotinylated 

antigen along with antibodies to cell surface antigens required for phenotypic analysis. This 

labeling step is followed by washing and fixation, and addition of streptavidin coupled to Alexa 

Fluor 647 for detection of the biotinylated-antigen binding cells (Figure 2.1). Previous studies have 

identified antigen-specific B cells in a similar manner but using antigens directly conjugated to a 

fluorochrome [33, 69-71]. Although this is a worthy approach, use of biotinylated antigens in 

conjunction with streptavidin enables greater signal amplification (hence better differentiation of 

positive and negative binding cells), particularly when antigens are small [72-74]. An additional 

consideration is the use of streptavidin instead of avidin because streptavidin is deglycosylated, 

decreasing non-specific binding. Further, we use Alexa Fluor 647 as our fluorochrome due to its 
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photostability, quantum yield (brightness), and its small size (~1.3 kD).  Protein fluorochromes 

such as phycoerythrin (~250 kD) and allophycocyanin (~105 kD) [75] are not optimal because 

they potentially contain many antigenic epitopes. Use of a small organic fluorescent dye 

composed of a single epitope, such as Alexa Fluor 647, reduces complexity of the isolated cell 

population.  

Once cells are biotinylated-antigen and Alexa 647-streptavidin adsorbed, they are 

enriched using anti-Alexa 647 conjugated magnetic nanoparticles. Single  nanoparticles are not 

detected by most flow cytometers and therefore need not be removed prior to purification by 

FACS sorting and downstream assays [76]. Magnetic selection for antigen-specific B cells 

enriches the population of interest, eliminating the time and cost of sorting rare events using a 

flow cytometer.  

In figure 2.3, we show representative results from enrichment of tetanus-toxoid (Tet Tox)-

specific B cells from a subject before and seven days after tetanus toxoid booster immunization. 

We chose this particular application as an example in order to demonstrate the ability of this 

method to enrich antigen-specific B cells following acute in vivo stimulation. When coupled with 

flow cytometry, this method is capable of enriching and differentiating antigen-specific naïve, 

memory, and plasmablast B cells and allows the researcher to follow changes in their frequency 

over time. In addition, we include another possible downstream assay, an ELISPOT, which 

demonstrates that cells retain the ability to secrete antibody following enrichment. Another 

application of this method could involve adoptive transfer of enriched cells into a host.  We have 

previously shown cells maintain the ability to act as antigen presenting cells to antigen-specific T 

cells following isolation and transfer (data not shown). Hence, there are a number of possible 

downstream assays that could be coupled to the method, which together informs our 

understanding of the antigen-specific immune response. We have described the method below, 

including controls to determine overall yield, purity, cell specificity, and fold-enrichment. 
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PROTCOL 

1. Isolation of human PBMCs  

1.1) Collect 30-50 mL of blood using heparinized blood collection tubes. The amount 

of blood used depends on the particular experimental question and frequency in blood of 

antigen-specific B cells of interest. For our purposes we generally start with ~30 mL of blood. 

Heparinized blood can be processed immediately or rocked gently overnight at room 

temperature for processing the following day. The delay in processing has very little effect on 

the efficiency of enrichment and is associated with minimal loss of viability.  

1.2) Mix whole blood 1:1 with sterile, room temperature magnesium and calcium free 

phosphate-buffered saline (PBS). 

1.3) In a 50 mL sterile conical tube, add 10 mL of room temperature Ficoll-Paque PLUS. 

Opened Ficoll bottles can be stored in the dark at 4°C, but should be warmed to room 

temperature before use. 

1.4) If possible set your pipette gun to the slow setting and/or apply very little, yet 

consistent, trigger pressure to slowly layer 30-35 mL of the diluted blood on top of the Ficoll, 

being careful not to mix the two. Placing the tip of the pipette against the edge of the 50 mL 

conical while adding the diluted blood will help ensure a consistent steady flow.  

1.5) Centrifuge at 400 x g for 30 minutes at 20°C with the brake turned off.    

1.6) Remove the upper layer, which contains plasma and platelets, being careful not to 

disturb the mononuclear cell layer below.  

1.7) Using a sterile pipette, collect the mononuclear cell layer (buffy coat) and place 

into a separate sterile 50 mL conical tube.  
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1.8) Add PBS to the cell suspension to a volume of 50 mL. 

1.9) Centrifuge at 400 x g for 10 minutes at 20°C with brake. 

1.10) Remove supernatant and resuspend pelleted cells in 10 mL of PBS. Count cells 

and determine viability using a hemocytometer or automated cell counter.  

1.11) Resuspend cells at 107 cells/mL and place on ice until ready for further processing.  

2. Staining of cells 

2.1) Remove 1-2 x 106 cells for each fluorescence compensation/FMO control needed, if 

applicable.  

2.2) Centrifuge remainder of cells at 400 x g for 10 minutes at 20°C with brake.  

2.3) Resuspend cells in sterile filtered, cold FACS buffer (PBS + 1% bovine serum albumin 

(BSA) + 0.01% sodium azide) at 3-6x107 cells/mL. FACS buffer should be cold and 

remain on ice throughout the staining procedure. It is a good idea to divide your cell 

population into fourths (A-D) when optimizing the assay. Fraction A will be used to 

enrich for antigen-specific B cells of interest, fractions B and C to determine the 

specificity of enrichment/staining (see 2.6 and 2.7 below), and fraction D to determine 

the frequency and number of antigen-specific cells in the unenriched population to 

enable calculation of yield and fold-enrichment. 

2.4) Add human FcR blocking reagent to fractions A-D on ice to prevent binding of 

antibodies to Fc receptors. Follow manufacturer’s instructions for appropriate 

conditions.  
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2.5) Add fluorochrome-conjugated antibodies to cell surface antigens of interest to fractions 

A-D for 30 minutes on ice in the dark, being careful not to include fluorochromes that 

may cross react with the anti-Alexa Fluor 647 antibodies coupled to magnetic 

nanoparticles. These include antibody conjugates to Alexa680, Cy5, Cy5.5, and Cy7. 

Any viability stains that are added should be compatible with the use of a fixative.  If 

you do not intend to analyze your cells using FACS, but will determine antibody-

secreting frequency, for example, by ELISPOT, surface staining with antibodies is 

unnecessary.  

2.6) To test the specificity of the assay, incubate Fraction B with sufficient amount of 

unlabeled antigen, such that the majority of the receptors with an affinity of at least 10-

6 M are blocked. Typically, a good starting concentration is a 50-100 fold excess of the 

amount of antigen deemed sufficient in 2.7 below (e.g. 50-100 μM). Incubate with the 

excess unlabeled antigen for 30 minutes on ice. This should block any B cells with a 

high affinity for the unlabeled antigen to bind to the biotinylated antigen, which is added 

in step 2.7 below, thus allowing confirmation of the specificity of the cells enriched. 

This step can be completed in conjunction with step 2.5 above. 

2.7) Add biotinylated antigen to Fractions A, B, and D. Concentration of biotinylated antigen 

should be titrated to determine the optimal amount needed to ensure adequate 

detection and separation of binding cells from non-specific bystander cells. Typically 

a good starting concentration to test is 1-5 μM. Biotinylated antigen is omitted from 

Fraction C in order to determine any binding of B cells to other reagents in the protocol, 

such as streptavidin-Alexa Fluor 647 and the magnetic beads. For Fractions A and D, 

this step can be done concurrently with step 2.5 above.  For Fraction B, this step 

should be done after step 2.6 (washing in between steps is unnecessary). 
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2.8) Wash cells twice by suspension of cells in 1 mL of cold FACS buffer per 5 x 107 cells 

and centrifugation at 400 x g for 5 minutes at 4°C. 

2.9) After the final wash, dilute concentrated cell suspension in 1 mL 2% formaldehyde per 

5 x 107 cells and let sit in dark on ice for 5 minutes. Fixation of the cells at this point 

ensures that the biotinylated antigen remains bound to the BCR for the remaining of 

the procedure. If you need viable cells for downstream analysis, such as in ELISPOTs 

or adoptive transfers, omit the fixation step.   

2.10) Wash cells twice with 1 mL of cold FACS buffer per 5 x 107 cells and centrifuge at 400 

x g for 5 minutes at 4°C. Resuspend in 1 mL cold FACS buffer per 5 x 107 cells.  

2.11) Add 1-2 μg Streptavidin-Alexa 647/mL and incubate on ice for 20 minutes in the dark. 

The amount of streptavidin added should be titrated for each application. 

2.12) Wash cells twice with 1 mL cold FACS buffer per 5 x 107 cells and centrifuge at 400 x 

g for 5 minutes at 4°C. Fraction D preparation is completed at this point as it will not 

undergo enrichment using the magnetic beads. This sample will be used to determine 

the frequency and number of antigen-specific B cells in your sample. This will be used 

to determine your yield and fold-enrichment achieved by enrichment. 

3. Magnetic nanoparticle-based enrichment 

3.1) Resuspend cells from samples A-C in 1 mL of cold separation buffer (PBS + 0.5% 

BSA + 2mM EDTA) per 5 x 107 cells and pass through a 40 μm filter to eliminate any 

clumps that could clog the column.  
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3.2) Add Anti-Cy5/Anti-Alexa Fluor 647 nanoparticles. For optimal results, the 

concentration of nanoparticles should be titrated for each use, but a good starting point 

is 50 μL suspension per 5 x 107 cells/ mL. Rotate in the dark at 4°C for 10 minutes.  

3.3) Wash twice with 1 mL cold separation buffer at 400 x g for 5 minutes at 4°C.  

3.4) Resuspend cells in 1 mL of cold separation buffer per 5 x 107 cells.  

4. Magnetic enrichment using LS or LD columns 

4.1) Place three LS or LD columns in the magnetic field of a MACS separator and add 3 

mL of separation buffer to wet the columns (see product description to determine which 

type of column is best suited for your needs). Allow all 3 mL to pass through the column 

and discard after collection. Although separation of magnetic nanoparticle labeled cells 

can be accomplished using any one of the magnetic separation devices that are 

commercially available, our laboratory has had the most success with the use of LS 

columns, in terms of yield, purity, and efficiency of enrichment.  

4.2) Place three 15 mL conical tubes labeled “Fraction A/(B)/(C) negative”, for negatively 

selected cells, under the column. Add the magnetic particle labeled cells to their 

respective column and allow the entire volume to pass through.  

4.3) Add 3 mL of cold separation buffer on top, and allow this to pass through the column 

and repeat with 2 mL. 

4.4) Collect the negatively selected cells and set aside on ice. 

4.5) Remove the column from the magnetic field and place on top of a 15 mL conical tube 

labeled “Fraction A/(B)/(C) positive”, for positively selected cells.   
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4.6) Fill the column to the top with approximately 6 mL of separation buffer and immediately 

plunge this volume through the column to collect cells that had bound to the magnetic 

field using the provided plunger.  

4.7) To increase purity, the positively selected cells can be further enriched using a second 

clean column, repeating the procedure.  

4.8) Spin both the negatively and positively selected fractions at 400 x g for 10 minutes at 

4°C and suspend in desired final volume. 

4.9) Proceed with downstream analysis, such as FACS, ELISPOT or adoptive transfer. 

5. Analysis of purity, yield, and fold-enrichment using flow cytometry 

5.1) Populations enriched as described above inevitably contain contaminating cells that 

have not bound streptavidin-Alexa 647 but are trapped in the matrix. These impurities 

can be removed from enriched populations by FACS sorting. To estimate purity of 

enriched populations, gate on live cells based on forward and side scatter and/or 

live/dead stain and analyze Alexa 647+ cell frequency. The percentage within this latter 

gate is indicative of purity. Further analysis of the specificity and antigen affinity of 

these cells requires FACS sorting of single cells, followed by cloning and sequencing 

of expressed immunoglobulin genes and recombinant antibody production and 

analysis.  

5.2) Yield refers to the number of isolated antigen-binding B cells recovered in Fraction A 

relative to the number in the starting population (Fraction D). Since you started with 

the same number of cells in Fraction D as Fraction A, you can directly determine the 

yield (# of antigen-binding B cells in Fraction A ÷ # of antigen-binding B cells in Fraction 

D).  
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5.3) Fold-enrichment (E) is reflected by the percentage of Alexa 647+ B cells in the 

“positively” enriched Fraction A relative to that in Fraction D. This value indicates the 

proportional increase in antigen-specific B cells achieved by nanoparticle enrichment. 

The value can be found using the following equation: E =
% antigen−specific in enriched 

% antigen−specific in unenriched 
 

RESULTS 

To demonstrate this technique, we show representative results obtained using tetanus-

toxoid (Tet-Tox) as a model antigen to detect and enrich for Tet-Tox-reactive B cells in the 

peripheral blood of subjects who have been vaccinated against tetanus at varying time points. 

Figure 2.1 is a schematic of the method and the antigen adsorbent. Figure 2.2a shows the 

frequency of Tet-Tox-reactive B cells from an individual who was last vaccinated against tetanus 

more than a decade ago. Shown are the enriched (“positive”) and depleted (“negative”) 

populations from Fraction A and the baseline frequency of Tet-Tox-specific B cells from Fraction 

D. Hence, in this example we are able to enrich binding cells by around 7-fold and achieved a 

purity of 4% in the enriched fraction.   

Figure 2.2b shows the specificity of the reaction using blood from a subject who had been 

vaccinated ~3 years earlier. When we added a 50-fold excess (50 μM) of unlabeled tetanus-toxoid 

to the cells before addition of the biotinylated antigen (Fraction B) we are able to block binding by 

83%, demonstrating the specificity of antigen binding. When we omitted biotinylated antigen from 

the procedure (Fraction C), a small number (~ 0.2%) of B cells still bound; this small fraction of B 

cells presumably reflects binding to some non-antigen in the adsorbant, such as the streptavidin-

Alexa Fluor 647, the anti-Alexa 647 antibody or the magnetic beads.  

To demonstrate use of the method to analyze changes in antigen-binding cell phenotype 

following immunization we show in Figure 2.3 the frequency of Tet-Tox-specific B cells in the 

naïve, memory, and plasmablast populations in blood drawn before and 7 days after booster 

vaccination of a healthy subject. While the percentage of naïve B cells among total Tet-Tox-
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binding B cells decreased from 84% to 64% after boost, the percentage of memory and 

plasmablast populations among total Tet Tox-reactive cells increased from 16% to 36% and 0% 

to 40%, respectively. Figure 2.3b shows representative ELISPOT data from peripheral blood from 

the 7 days post-boost healthy subject. Isolation of the Tet-Tox-binding B cells led to 4-fold 

enrichment in tetanus toxoid antibody secreting-cell frequency.  

 

DISCUSSION 

 Here we describe a novel method to accomplish isolation and enrichment of antigen-

binding B cells from human peripheral blood. The method is readily applicable to mice and to 

other tissues, such as the spleen and lymph nodes, and is compatible with post-enrichment 

analysis of cell phenotype and function. 

          The user should be cognizant of a number of variables that can affect success of this 

procedure. In our experience dead cells tend to stick to the magnetic beads and “take up” 

fluorescent dyes, such as the Streptavidin-Alexa Fluor 647, leading to non-specific increased 

background. It is critical to remove as many dead cells from samples as possible before beginning 

this procedure. Use of stains that enable live/dead discrimination to gate out dead cells from the 

analysis may be helpful, but presence of dead cells may compromise interpretation of assays of 

antibody secreting cell frequency and function following adoptive transfer. 

In addition, we have found that careful titration of the biotinylated antigen added is 

essential to distinguishing antigen-specific and non-specific binding.  Use of too little antigen will 

lead to underestimation of the frequency of antigen-binding cells, while too much antigen can 

cause false positive detection/enrichment. Use of antigen concentrations that are too high may 

can be indicated by apparent binding to non-B cells in the samples. Further, apparent detection 

of an excessively high frequency (>1%) of antigen reactive cells may be an indication of binding 

specificity issue. The ultimate goal when determining the optimal amount of antigen to use is to 

add a little bit more antigen than is present at physiological concentrations, such that the majority 
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of the B cell receptors with an affinity of <10-6 M, for example, for the antigen are saturated. This 

ensures you are detecting antigen-specific B cells with an affinity that has pathogenic potential. 

Addition of too little antigen, i.e. at or below physiological concentrations, may lead to detection 

of very few antigen-specific B cells due to decreased antigen occupation of the BCRs. On the 

other hand, addition of too much antigen, far exceeding physiological concentrations, can lead to 

increased non-specific binding which will include B cells with a low affinity for the antigen (>10-6 

M) and are actually ignorant of the antigen in vivo. Hence, it is vital to first titrate the biotinylated 

antigen across a few logs in order to be confident that only true antigen-reactive B cells are being 

detected. Similarly, we have found that use of too much streptavidin-Alexa647 can increase 

background.  

One of the limitations to this technique is its reduced effectiveness for enrichment of 

antigen-binding B cells from cryopreserved compared to fresh cells. This could relate to greater 

cell death and associated “stickiness” in frozen samples. Nonetheless, the method can be applied 

to frozen samples but it is probably important not to directly compare results from enrichment and 

analysis of fresh and frozen cells. Another limitation is the purity of antigen-specific B cells in your 

enriched sample.  In our experience, there are always some cells that “tag along”, which includes 

both non-specific B cells and T cells. This is to be expected given the rarity of the cell population 

you are trying to enrich for. However, you can increase the purity of your cells by ensuring you 

have a single cell suspension before adding your cells to the column, enriching a second time on 

a new column, or by FACS sorting your antigen-specific B cells. Depending on the type of study 

you are doing, the researcher can decide which option is best and whether it is necessary.  

As we optimized this technique we envisioned that it would be amenable to discrimination 

of high affinity versus low affinity antigen-reactive cells based on antigen titration or staining 

intensity. However, in a previous study, we showed antigen-reactive B cells with up to a 1000-fold 

difference in affinity to their antigen were equally enriched using this method[68]. Hence, formal 

measurement of the affinity of enriched cells using surface plasmon resonance analysis of 
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expressed recombinant antigen receptors is required if knowledge of the affinity is pertinent to 

your study.   

Inherent in this technique is the limitation that addition of the biotinylated antigen and 

streptavidin can activate the cells by cross-linking the BCR. This could pose a problem for 

particular downstream functional assays, such as those that seek to compare stimulated cells to 

a resting control. This problem may be mitigated by keeping control samples cold to prevent 

transduction of signals. It is also possible that BCR signals could affect an ongoing biological 

response. In our experience antigen-enriched cells maintain their ability to secrete antibody, as 

indicated by ELISPOT analysis (Figure 2.3b) and function as antigen presenting cells to T cells in 

vitro and after adoptive transfer into mice (data not shown). A final limitation to this technique is 

the use of anti-fluorochome antibodies to accomplish nanoparticle binding to antigen adsorbed 

cells.  Anti-Alexa 647 cross-reacts with certain structurally related fluorochromes, including Cy7 

and Cy5.5. This can limit the options of antibody conjugates available for measurement of 

phenotypic markers. However, with increased availability of new fluorochromes, this is becoming 

less of an issue. 

Using this detection and enrichment method, it is possible to easily identify antigen-binding 

B cells in ex vivo peripheral blood, spleen, or other tissues. This method is particularly useful in 

studying the immune response of antigen reactive cells following immunization or exposure to 

foreign antigens and in the setting of autoimmune disease. Although no method to detect antigen-

reactive B cells has proven to be without its faults, this method is fast, simple, and produces a 

relatively high purity, yield, and enrichment of antigen-reactive cells that can be coupled to a 

variety of downstream assays. In addition, due to the basic principles of the method, this 

procedure could easily be tailored to a variety of experimental needs.  
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Table 2.1 Materials needed

Name of material/Equipment Company
Catalog 

number
Comments/Description

Antigen of interest variable variable

At least 100 μg to biotinylate 
easily; if using protein try to 

use protein that has been 

validated by ELISA. It must 

be carrier  protein free.

Biotin for labeling; e.g. EZ link 

Sulfo-NHS-LC-Biotin

e.g. Thermo 

Scientific
e.g. 21335

Biotin is available in different 

formulations, such as those 

containing  various length 

spacers, so the type used 

should be determined by the 

researcher

Streptavidin-Alexa Fluor 647 Invitrogen S21374
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Figure 2.1 Method for detection and enrichment of tetanus toxoid (Tet Tox)-binding 

B cells. A. Protocol for enrichment and isolation of Tet-Tox-binding B cells. B. Diagram of 

adsorbent employed to identify and enrich Tet-Tox-binding B cells.
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Figure 2.2 Representative cytograms demonstrating enrichment of Tet Tox-

binding B cells from human peripheral blood. A. Cytograms of enriched and 

depleted Tet Tox-reactive B cells from Fraction A and total Tet-Tox-reactive B cells 

from Fraction D from a normal subject last vaccinated >10 years previously. B. 

Cytograms of PBMCs from the “positive” populations from a subject vaccinated 

~3 years previously and enriched as in A (Fraction A), after pre-incubation with 

excess of 50 uM unlabeled Tet-tox (Fraction B), or enriched with Tet-Tox-biotin 

omitted during the procedure (Fraction C). All analyses were gated on CD19+ 

lymphocytes. Percentages represent the percent of Tet-Tox-binding cells of all 

B cells (CD19+) in the final fraction. 
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Figure 2.3 Examples of post-enrichment analysis of antigen-binding cells. 

A. Representative flow cytometric analysis of cell phenotype following enrichment of 

Tet-Tox-binding B cells. Cytograms depict identification and analysis of Tet-Tox-reactive 

naïve (CD27-), memory (CD27+), and plasmablasts (CD27++ CD38++) in B cell 

subpopulations of a subject before and 7 days after booster vaccination against tetanus. 

All cells were gated on CD19+ lymphocytes from the enriched “positive” populations. 

B. Representative ELISPOT analysis of antibody secreting cells in enriched, depleted, 

and total unenriched B cell fractions from peripheral blood of a healthy subject 7 days 

after boost.
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CHAPTER 3 
 
 
 

Loss of anergic B cells in pre-diabetic and new onset type 1 diabetic patients 
 
 
 
SUMMARY 
 

Although dogma predicts that under normal circumstances potentially offensive 

autoreactive cells are silenced by mechanisms of immune tolerance, islet antigen-reactive B 

lymphocytes are known to play a crucial role in the development of autoimmunity in Type 1 

Diabetes (T1D). Thus participation of these cells in T1D may reflect escape from silencing 

mechanisms. Consistent with this concept we found that in healthy subjects, high affinity insulin-

binding B cells (IBCs) occur exclusively in the anergic BND compartment. Antigen receptors 

expressed by these cells are polyreactive and have N-region additions, Vh usage, and charged 

CDR3 regions consistent with autoreactivity. Consistent with a potential early role in 

autoimmunity, these high affinity insulin-binding B cells are absent from the anergic compartment 

of some first degree relatives, and all pre-diabetic and new-onset (<1yr) T1D patients tested, but 

return to normal levels in individuals diabetic for >1 year. Interestingly, these changes were 

correlated by transient loss of the entire BND compartment. These findings suggest that 

environmental events such as infection or injury may, by disrupting B cell anergy, dispose 

individuals toward autoimmunity, the precise nature of which is specified by genetic risk factors, 

such as HLA alleles. 

 

INTRODUCTION 

Although effector T cells mediate islet destruction in type 1 diabetes (T1D), it has become 

clear that B cells also play an important role in disease development. Rituximab (anti-CD20), a B 

cell depleting therapy, has shown efficacy in clinical trials in which newly diagnosed patients had 
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preserved beta-cell function one year after treatment [77]. In non-obese diabetic (NOD) mice, 

disease development requires B cells specific for islet antigens such as insulin [33].  

While autoreactive B lymphocytes play a critical role as producers of pathogenic 

autoantibodies in diseases such as Lupus and Rheumatoid Arthritis, they appear to function 

differently in T1D. Although production of high affinity islet antigen reactive autoantibodies 

indicates increased risk, such antibodies appear dispensable for disease, indicating that B cells 

may instead contribute by antigen presentation and/or cytokine production [25, 41]. 

We hypothesized that insulin-binding B cells (IBCs) that function in T1D are normally 

silenced by anergy, a mode of B cell tolerance wherein autoantigen reactive cells populate 

peripheral lymphoid organs but are antigen unresponsive [9, 11, 78, 79]. Recent description of 

the surface phenotype of a cohort of anergic human B cells, termed BND cells, allowed testing of 

this hypothesis [9]. BND refers to “naïve IgD+
,
 IgM- B cells” that normally represent ~2.5% of 

peripheral blood B cells. More than 75% of cells in the BND compartment bear autoreactive antigen 

receptors and are refractory to antigen receptor stimulation in vitro, and thus appear anergic. More 

recently, Quach et al. [79] extended these findings, showing that the anergic population includes 

cells that express low  membrane IgM but are otherwise BND in phenotype. This IgMlow/- IgD+ 

phenotype is typical of anergic B cells in the mouse [11, 78].  

To explore the relationship between development of autoimmunity and integrity of the 

anergic B cell compartment we undertook studies of the affinity, frequency, and surface 

phenotype of IBCs in the peripheral blood of subjects along the continuum of T1D development.  

We report that IBCs are present in the anergic BND B cell compartment, and that antigen receptors 

expressed by these cells are of high affinity and polyreactive. Importantly, IBCs are present in the 

anergic B cell compartment of healthy subjects, but absent from this compartment in some first 

degree relatives (FDR), all pre-diabetic subjects, and all new onset patients.  Interestingly, 

individuals who are diabetic for >1 year have anergic IBC levels similar to healthy controls. These 

findings indicate loss of BND cells in FDRs and pre-diabetic individuals may reflect breach of 
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anergy predisposing subjects to development of anti-islet antibodies and participation in 

development of T1D.  

 

MATERIALS AND METHODS 

Peripheral Blood Processing  

Samples were obtained with informed consent at the Barbara Davis Center for Childhood 

Diabetes using protocols approved by the University of Colorado Institutional Review Board. 

Eligible subjects were male or female, who met the American Diabetes Association criteria for 

classification of disease.  GAD antibody, islet cell antibody, insulin autoantibody, and zinc 

transporter 8 antibody titer tests were used to confirm diagnosis of pre-diabetes and type 1 

diabetes.  PBMCs from autoantibody negative first degree relatives, autoantibody positive pre-

diabetics (identified in the Type 1 Diabetes TrialNet Natural History study), new onset T1D 

patients, long standing T1D patients, and healthy age/sex matched controls were isolated from 

heparinized blood by Ficoll-Hypaque fractionation.  

 

Flow cytometry analysis and enrichment of insulin-binding B cells 

In order to maintain consistency of gating, each day a patient sample was analyzed 

alongside an age/sex matched healthy control and the healthy control cells were used to draw 

gates, which were then copied to the patient cells. PBMCs were stained in 

PBS/1%BSA/0.02%NaAzide with human FcR Blocking Reagent (Miltenyi Biotec), 0.1 µg/106 cells 

insulin-biotin, and mouse monoclonal anti-human antibodies against CD19-V450 (BD 

Bioscience), CD27-PerCP (BioLegend), IgM-PE (Southern Biotech), and IgD-FITC (BD) for 20 

minutes at 4ºC.  For the insulin receptor studies, cells were stained with anti-CD19, CD27, as well 

as PE-anti-CD220 (BD) to detect insulin receptors, and FITC-anti-CD14 (BD) to detect 

monocytes. After washing, cells were then fixed with 2% formaldehyde at 4ºC, followed by 

incubation with streptavidin-AlexaFlour647 for 20 minutes at 4ºC.  Cells were washed, suspended 
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in MACS buffer (PBS/0.5%BSA/2mMEDTA), and incubated with Anti-Cy5/Anti-Alexa647 

microbeads (Miltenyi) for 15 minutes at 4ºC.  Samples were then passed over magnetized LS 

columns (Miltenyi), washed 3 times with 2 mL of MACS buffer, and bound cells were eluted with 

6 mL of MACS buffer.  Flow cytometry was performed on an LSR II (BD) and data analyzed with 

FlowJo software ver. 8.8.4.  

 

B cell Calcium Flux Analysis  

Using a strategy similar to previous reports [9, 79], PBMCs freshly isolated from buffy 

coats were enriched for B cells using a no-touch method (Miltenyi Naïve B cell Isolation Kit II).  

Cells were suspended in warmed 37° RPMI, 2% BSA, and 1 μM Indo1-AM (Molecular Probes).   

Cells were stained with antibodies, as previously described [9] for 30 minutes and washed two 

times with warmed RPMI containing 2% BSA.  Cells were then placed on a LSRII flow cytometer 

and after 20 seconds of baseline readings were stimulated with 20 μg/mL of F(ab’)2 goat anti-

human IgD (Southern Biotech) or 1 μL of 1mg/mL ionomycin as a control. The mature naïve 

fractions were gated as CD19+CD27-IgG-, while the BND fractions were gated as CD19+CD27-IgM. 

Calcium mobilization analysis was conducted using FlowJo software. 

 

PhosFlow Analysis 

B cells were enriched using the no-touch B cell enrichment kit, as described above, and 

serum starved by incubation in serum free RPMI medium for 1 hour at 37°C.  Cells were 

stimulated with 20 ug/mL rabbit F(ab’)2 anti-human IgG (H&L) (Jackson Labs) for 5 minutes at  

37°C, or left unstimulated.  Cells were immediately fixed with 2% PFA at 37°C for 10 minutes, 

spun down, and then resuspended with ice cold 100% methanol and placed on ice for 30 minutes.  

Cells were washed and stained with mouse monoclonal anti-human antibodies against CD19, 

CD27, IgM, and IgD for 15 minutes.  Cells were also stained with mouse anti-pZAP70/Syk, anti-
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pPLCγ2, anti-pAKT, or PTEN antibodies (BD Phosflow) or isotype control.  Flow cytometry was 

performed as described above. 

 

Immunoglobulin Gene Cloning 

Cells were stained and enriched for insulin-binding B cells, as indicated in the flow 

cytometry section above, before BND or mature naïve cells were single cell sorted into 96 well 

plates.  V region amplification, sequence analysis, and recombinant monoclonal antibody 

production was completed as previously described [9, 80].  Briefly, variable region genes were 

amplified by RT-PCR to identify and clone the Ig heavy and light chain genes. The variable region 

genes were then cloned into expression vectors and expressed with human IgG constant regions 

in the 293A human cell line.  A total of 11 antibodies from BND cells and 16 antibodies from mature 

naïve B cells were compared. 

 

Assay of antibody by ELISA  

To screen expressed antibodies for antigen reactivity, ELISA microtiter plates (Costar) 

were coated with 10 ug/mL of recombinant human insulin (Sigma-Aldrich), LPS (Sigma-Aldrich), 

or calf chromatin (kindly provided by L. Wysocki, National Jewish Health) in PBS overnight at 4°C, 

followed by incubation with blocking buffer solution (PBS with 3% BSA)  for 1.5 hours at room 

temperature. Recombinant antibodies or human sera were serially diluted in blocking buffer and 

incubated in the 96 well plates for 2 hours at room temperature. Between all steps the plates were 

washed 4 times with PBS containing 0.05% Tween-20.  HRP Goat-anti-human IgG (H&L) (Bio-

Rad Laboratories), followed by development with TMB single solution (Invitrogen) were used to 

detect antibody binding. Reactions were stopped using 1N H2PO4 (Sigma). Antibody was 

measured based on optical density at 450nm using a VERSAMax plate reader (Molecular 

Devices) and the data were analyzed with Softmax software. For recombinant antibody ELISA 

figures, each curve represents results from an individual recombinant antibody. For serum ELISA 
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figures, the curves from each subject are combined into one new onset or one healthy control 

curve using replicate values. 

  

Statistics 

Data were analyzed using Prism software (GraphPad Software, Inc.).  One-way ANOVA 

followed by a Bonferroni’s Multiple Comparison post-test was used to determine significance of 

differences among the five patient groups. One-way ANOVA with repeated measures tests were 

used to compare differences in ELISA curves. Chi-squared tests were used to compare 

differences in variable region sequences. Spearman’s Correlation tests were used to determine 

correlation between two data sets.  

 

RESULTS    

Anticipating that insulin-binding cells (IBC) likely occur in very low frequency in the normal 

B cell repertoire, we first developed the magnetic microparticle adsorbent method described 

schematically in Figure 3.1A and B to stain and enrich IBCs for subsequent analysis [75]. In a 

typical PBMC sample, ~0.37% of total B cells bound the adsorbent (Fig 3.1C), and selection 

resulted in ~20-fold enrichment of IBCs (Fig 3.1C). Omission of insulin led to a ~90% reduction in 

IBC yield, indicating that most cells are enriched by virtue of insulin recognition (Fig 3.1D). We 

also verified insulin specificity by saturating anti-A647 magnetic beads with free biotin-SA-A647 

and saw near complete blocking of cell binding (data not shown). In order to address the possibility 

that cells are enriched by virtue of insulin receptor (CD220) binding, which seemed unlikely given 

the 100 fold lower expression of insulin receptors than antigen receptors on B cells [81], we 

stained our enriched cells using antibodies against the insulin receptor. As shown in Figure 3.1E 

and F, enriched IBCs and non-IBCs express equivalent levels of insulin receptors indicating that 

IBCs are not selected based on insulin receptor level.  Hence, cells isolated by this procedure 

bind the adsorbent by virtue of antigen receptor recognition of insulin. At ~0.37% of peripheral 
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blood B cells, IBCs occur at higher frequency than those that bind the large exogenous antigen 

phycoerythrin [75]. This might be explained in part by findings shown in figure 3.3 that some 

insulin-binding antibodies are polyreactive, binding multiple structurally unrelated antigens [5].  

In order to analyze the distribution of IBCs in B cell subpopulations, we used a gating 

strategy employed by Duty and Quach, which allows recognition of BND cells [9, 79] (Fig 3.2A). 

As previously described, cells are CD19+CD27-IgMlow/-IgD+, while mature naïve B cells are 

CD19+CD27-IgM+IgD+. In healthy individuals ~50% of these BND cells expressed little or no CD21, 

a phenotype also previously associated with anergy (data not shown) [82]. To confirm that BND 

cells recognized using these markers are anergic, we assessed their response to BCR stimulation 

based Ca2+ mobilization and phosphorylation of B cell signaling molecules (Fig 3.2B/C).  Analysis 

of these parameters using IBC BNDs was not possible due to the low frequency of these cells, and 

thus we analyzed total BNDs. As expected based on previous literature [9, 79], BND cells exhibited 

greatly reduced BCR-mediated Ca2+ mobilization and significantly reduced Syk, Akt, and PLCγ2 

phosphorylation relative to naïve B cells. We also analyzed the relative expression of PTEN, a 

negative regulator of the PI3-kinase pathway, in BND and naïve cells (Fig 3.2B/C). BND cells 

showed significantly increased expression of PTEN compared to naïve cells, a finding that has 

been shown in mouse models of B cell anergy [14, 83], but has not been previously demonstrated 

in human anergic B cells. 

Interestingly, we found IBCs in almost all B cell subpopulations (Fig 3.2A). We considered 

the possibility that many of the cells captured by the adsorbent employed may have such low 

affinity for insulin that they are effectively ignorant of ambient autoantigen. Studies in other 

systems have shown that while B cells bearing receptors with moderate to high affinity for self-

antigen can be rendered anergic, those bearing a low affinity for the same self-antigen can be 

effectively ignorant of antigen in their environment [84, 85].  To test this possibility as well as to 

confirm the specificity of isolated BND IBC for insulin, we cloned immunoglobulin genes from single 

naïve and BND IBCs, expressed their variable regions in the context of IgG constant regions, and 
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analyzed the specificity and approximate affinity of these recombinant immunoglobulins by ELISA 

[80]. As shown in Figure 3.3A, while BND IBCs expressed high affinity anti-insulin BCR, naïve IBC 

BCR affinity for insulin appears >100-1000 fold lower.  Based on the titration curves, the BND IBCs 

have an approximate affinity for insulin of ~6.6 x 10-10 M, which is sufficient to maintain anergy in 

the face of normal blood levels of insulin (6.0 x 10-11 – 6.0 x 10-10 M) when at least 30-40% of B 

cell receptors are occupied, which has been reported to sustain anergy [86].  However, the mature 

naïve IBCs appear to have an insulin affinity of only ~1.67 x 10-7 M, which is too low to maintain 

anergy, thus these cells are likely ignorant, i.e. unresponsive to insulin, and therefore, fail to be 

tolerized.  Moreover, given that earlier studies have shown that self-reactive B lymphocytes often 

have polyreactive BCRs [5], we determined the reactivity of our recombinant antibodies to LPS 

and chromatin.  All high affinity BND-derived antibodies displayed significant reactivity to LPS and 

chromatin, indicating polyreactivity (Fig 3.3A).   

We then analyzed heavy chain variable region gene usage by BND IBCs and found that 

their sequences showed no signs of somatic mutation indicating their auto/polyreactivity is not 

generated by participation in prior immune responses (data not shown). Auto/polyreactivity has 

been previously associated with long IgH complementarity-determining regions (CDR3) regions 

with increased numbers of positive amino acid residues [5, 87, 88]. Comparison of the number of 

positive charged amino acid residues in CDR3s of BCR of BNDs and naïve IBCs revealed that the 

BND cells have more positive charged amino acids than mature naïve cells (mean of 3 versus 1.5, 

respectively; p<0.001) (Fig 3.3B). Further, both BND and mature naïve IBCs had significantly more 

positive charged amino acids in their CDR3 regions than seen in the normal human mature B cell 

repertoire [5] (p<0.01 for mature naïve IBCs and p<0.001 BND IBCs) (data not shown). In addition, 

the frequency of IBC BNDs with long CDR3 regions (>17 amino acids) was significantly higher 

(p<0.03) than the mature naïve cells (Fig 3.3C) consistent with auto/polyreactivity. Lastly, we 

analyzed variable region gene usage and found the BND cells use predominantly JH6 gene 

segments (Fig 3.3D), which is indicative of increased receptor editing and autoreactivity (p<0.04) 
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[5, 9, 89]. Together, these data not only confirm that B cells isolated using this adsorbent do 

indeed bear insulin-binding BCR, but also that BND IBCs have high insulin affinity consistent with 

anergy, are polyreactive, and their BCR have structural features consistent with autoreactivity.   

If insulin-reactive B cells that in healthy individuals occur in the anergic BND fraction 

participate in autoimmune responses in Type 1 Diabetics, one would predict that insulin reactive 

antibodies produced by diabetic patients would be polyreactive. If this is the case, sera from new 

onset patients should contain antibodies reactive with both insulin and chromatin.  We analyzed 

insulin and chromatin reactivity of serum antibodies from new onset diabetic, insulin autoantibody 

positive (IAA+) patients who had not yet received exogenous insulin treatment.  Interestingly, new 

onset diabetic patients have increased reactivity to both insulin and chromatin relative to healthy 

controls serum (Fig 3.4). LPS was also tested but reactivity was not statistically different (data not 

shown).  Taken together these data are consistent with T1D associated loss of anergy by BND  

cells  bearing  polyreactive antigen receptors with high affinity for insulin.  

In order to test further this possibility, we compared the frequency of IBCs captured by our 

adsorbent, including anergic IBCs, in blood B cell subpopulations from various subject groups 

(Fig 3.2A). Consistent with the hypothesis, in autoantibody positive pre-diabetic and new onset 

patients, significantly fewer IBCs were BND (CD27-IgMlo/-IgD+) and CD27- IgMlo/-IgD- cells relative 

to healthy controls (Fig 3.5A and B). Most significant were differences in frequency of IBC that 

are BND, which showed reduction from 2.4% in healthy controls to 0.57% and 0.41% in pre-diabetic 

and new onset diabetics, respectively (p<0.001 for both). Parenthetically, this decrease in BND 

IBCs was not simply a function of subject age and in follow-up studies appeared stable over >6-

12 months (data not shown).  Interestingly, some first-degree relatives (FDRs) showed a BND 

frequency among IBCs similar to unrelated healthy controls while others were similar to pre-

diabetic and new onset patients (Fig 3.5A). These findings suggest that departure of IBC from the 

BND compartment precedes, and may therefore predispose individuals to development of insulin 

autoantibodies and, eventually, T1D.  
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Loss of the anergic BND IBC population may reflect entry of these cells into a non-anergic 

state competent to present antigen to diabetogenetic CD4+ T cells. However the size of the BND 

pool is so small that such a shift would not significantly affect frequency of much larger mature 

populations. Nonetheless we examined the relative frequency of IBCs in mature compartments 

and observed a trend toward increased frequency of IBCs among mature naïve (IgM+IgD+) B cell 

populations in pre-diabetic and new onset patients compared to the long standing T1D and 

healthy controls (Fig 3.5A). Thus loss of IBCs from the BND compartment may reflect upregulation 

of mIgM, consistent with loss of anergy [78]. This change may also reflect relocalization of these 

cells to other anatomical sites, particularly the pancreas and pancreatic lymph nodes that are rich 

in autoantigen. This possibility would be consistent with reported B cell accumulation in the 

pancreases of diabetic individuals [45] and the recent study suggesting anergic insulin-specific B 

cells are capable of entering the pancreases of NOD mice [90]. 

As noted above we also observed a statistically significant decrease in CD27-IgMlow/-IgD- 

IBCs in pre-diabetic subjects and new onset patients relative to healthy controls (Fig 3.5A). In 

healthy individuals ~50% of these cells expressed little or no CD21, suggestive of anergy (data 

not shown) [82]. Thus, we suggest that these CD27, IgM, IgD triple negative IBCs may represent 

a second anergic population that is lost in pre and early T1D.  Additionally, these cells may be 

members of a recently described population that lacks expression of CD27, IgD, and IgM, but 

bear somatically mutated mIgG, and are thought to have class-switched outside a germinal center 

[91, 92]. 

Perhaps most importantly, some autoantibody negative first-degree relatives of diabetic 

patients showed an IBC BND frequency similar to pre-diabetic and new onset patients while others 

were similar to unrelated healthy controls (Fig 3.5A). These findings suggest that loss of BND IBC 

cells precedes, and therefore may predispose individuals to develop insulin autoantibodies and, 

eventually, T1D.  
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Although the majority (~70%) of the IBCs were found in the CD27- compartment, some 

occurred among CD27+ memory B cells. As shown in Figure 3.5B, pre-diabetic and new onset 

patients exhibit a decrease, though not statistically significant, in the frequency of IBCs among 

CD19+ CD27+ IgM- IgD+. Cells in this population were previously shown to be IgD heavy chain 

class switched and enriched in autoreactive cells (Cδ–CS) [93]. Thus anergic IBCs that normally 

occur in this population may also relocalize during onset of diabetes.  

Studies in a variety of systems suggest that environmental factors such as infection and/or 

injury, as well as colonization by certain commensal microbes, may promote development of 

autoimmunity [1, 94, 95]. If such triggers act by causing loss of B cell anergy in diseases such as 

T1D, they may do so nonspecifically, i.e. irrespective of B cell autoantigen specificity.  If such 

factors are in play, loss of BND IBCs may be accompanied by loss of all BND cells. To test this 

possibility we analyzed total BND frequency, and found a correlated reduction in BND in the IBC 

and total B cell population of pre-diabetic and new onset patients compared to long-standing T1D 

and healthy controls (Fig 3.6). This finding suggests that a generalized loss of anergic B cells may 

precede development of autoimmunity.  

 

DISCUSSION  

We have characterized insulin autoantigen-binding B cells in the previously defined 

anergic BND  population in peripheral blood of healthy humans. These cells were found to express 

high affinity insulin-binding antigen receptors that are cross-reactive with chromatin and LPS. 

They possess germline-encoded hypervariable regions consistent with origination in the primary 

repertoire. In addition, they exhibit longer N-region additions and biased usage of Jh6, features 

previously associated with autoantibodies. Finally their CDR3 regions contained increased 

positively charged amino acid residues typical of DNA-binding autoantibodies. These potentially 

pathogenic anergic B cells were lost or exhibited altered phenotype in some first-degree relative, 
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and all pre-diabetic, and new onset diabetic patients consistent with an early role in development 

of T1D.   

This is the first reported analysis of alterations in autoantigen-reactive B cells in the context 

of development of type 1 diabetes in humans. An initial surprising finding was that IBCs occur at 

higher frequency in the normal repertoire than cells reactive with the large exogenous antigen 

phycoerythrin [75]. However, given our findings that our IBCs were also reactive to chromatin and 

LPS, the higher frequency we observed may be explained in part by the polyreactivity of these 

cells.  

Also surprising, was the finding that IBCs occur in all major B cell compartments, 

suggesting that, in addition to potentially harmful high affinity receptor-bearing cells, the isolation 

procedure captures cells that bear antigen receptors of such low affinity that they are ignorant of 

low concentration antigen in their surroundings. 

Consistent with this, the population containing the most IBCs, the mature naïve population, 

is composed of low affinity B cell clones, whereas the anergic IBC population in the healthy 

individual is almost entirely composed of high affinity, polyreactive B cell clones.  The chromatin 

and LPS crossreactivity of anergic high affinity IBCs is surprising given previous evidence that 

polyreactive autoreactive B cells appear to be preferentially purged from the repertoire very early 

in development [5, 96]. However, polyreactivity could have functional importance since these cells 

may be activated by virtue of cross-reactivity with chromatin released by tissue damage, and 

subsequently present insulin also bound by their antigen receptors.  

Importantly, this polyreactive anergic population is lost in a subset of FDRs, all pre-

diabetic, and all new onset patients, suggesting that a breach in peripheral B cell tolerance has 

occurred.  Consistent with this, new onset insulin autoantibody positive patients have elevated 

serum antibodies reactive with chromatin relative to healthy controls, which is consistent with 

activation of anergic, polyreactive B cells found in healthy individuals.  Although previous studies 

have found increased anti-DNA antibodies in the serum on T1D patients, as well as some of their 
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first-degree relatives [97, 98], this is the first study to correlate this finding with loss of the anergic 

polyreactive B cell population. Moreover, given that T1D patients are prone to development of 

other autoimmunities [99, 100], including autoimmune thyroiditis and Addison’s disease, we 

suspect these polyreactive B cells are also reactive with self-antigens, such as thyroglobulin, as 

has been observed in the NOD mouse [101].  Studies in our laboratory are currently underway to 

examine this possibility.  

In addition to the loss of anergic IBCs, we found a correlated decrease in total anergic B 

cells, irrespective of their specificity, in pre-diabetic and new onset patients, as well as some 

FDRs.  These results suggest that loss of anergy may predispose individuals to multiple types of 

autoimmunity, and that loss of B cell anergy may be a phenomenon that also precedes other non-

T1D related autoimmune disorders. Consistent with this, Kinnunen et al. recently found that MS 

patients, as well as RA and long standing T1D patients, have increased frequency of 

auto/polyreactive B cells in their mature naïve B cell pool [102], suggesting loss of peripheral B 

cell tolerance.  Given that recent genome-wide association studies (GWAS) have revealed 

common polymorphisms among multiple autoimmune disorders [59], we suspect the loss of B cell 

anergy we observe in T1D patients, and perhaps other autoimmune patients, is associated with 

combinations of susceptibility alleles that compromise anergy globally. PTPN22 polymorphisms 

have been shown to dampen B cell signaling and are associated with increased autoreactive B 

cells in the peripheral blood of T1D patients [42, 52].  In addition, susceptibility alleles encoding 

BLK, Lyn, PTPN2, BANK1, CSK and FcγRIIb, are associated with B cell signaling and may 

promote loss of anergy via alterations in thresholds for activation [58]. Hence, we speculate that 

risk alleles that compromise regulation of BCR signaling increase the risk of development of 

autoimmunity by undermining immune tolerance. 

The apparent transience of loss of anergic B cells observed seems inconsistent with a 

genetic basis, but rather suggests that loss of anergy may be due to an environmental insult, such 

as infection, injury, or a diet/microbiota change. This seems plausible given that multiple systems 
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have shown environmental factors can promote development of autoimmunity [1, 94, 95] and that 

it is well established that both genetics and the environment must be playing a role in development 

of T1D [103]. 

In conclusion, we have defined changes in the surface phenotype of peripheral blood B 

cells of patients along the continuum of T1D. Our findings reveal a potential biomarker for 

increased risk of T1D: a significant decrease in the BND population of IBCs in peripheral blood. 

Indeed, we have uncovered a possible biomarker for risk of development of B cell-dependent 

autoimmunity in general, namely a decrease in total BND.  Longitudinal studies in progress should 

help establish the utility of these changes as prognostic and diagnostic biomarkers. Finally, 

findings are consistent with a role for perturbation of B cell anergy in development of T1D and 

perhaps other autoimmune diseases.  
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Figure 3.1  Detection and enrichment of IBCs is dependent on insulin binding to the 

BCR.  A. Protocol for enrichment and isolation of IBCs.  B. Diagram of adsorbent used 

to identify and isolate IBCs. C.Representative cytograms of IBCs enriched from blood 

of a new onset patient. Cells that bound to the adsorbent and eluted from magnetic 

column are termed enriched, non-binders termed depleted, and un-enriched termed 

total. D. Cytograms of PBMCs enriched as in (A) or enriched with insulin-biotin omitted 

during the procedure. E.F. Representative cytograms of insulin receptor antibody 

staining of enriched IBC populations. Monocyte staining is shown as a positive control. 

All cells were gated on CD19+ lymphocytes.  
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Figure 3.2 Total BND cells show reduced response upon anti-BCR stimulation 

compared to their mature naïve counterparts, suggesting they are anergic. A. 

Gating strategy for identification and analysis of insulin-binding naïve and 

memory B cell subpopulations illustrated using cells from a healthy control.  IgM vs IgD 

gates of CD19+CD27- (I) IBCs produce the following subpopulations: (a) IgM+ IgDlo/-, 

(b) Mature Naïve, (c) BND, and (d) IgMlo IgD-.  IgM vs IgD gates of CD19+ CD27+ (II) 

IBCs produce the following subpopulations: (e) IgMhiIgDlo/-, (f) Pre-switch, (g) Cδ-CS, 
and (h) class-switch (CS). Staining of T (CD19-) cells (III) are shown as verification of 

gating strategy. B. Representative Ca2+ mobilization plot over time for BND and mature 

naïve B cells upon stimulation with 20 ug/mL of goat anti-human IgD F(ab’)2. 

Representative histogram showing the relative expression of IgD on BND and mature 

naïve B cells is similar.  C. Difference of pPLCy2, pSyk, pAkt, and PTEN median 

florescence intensity (MFI) between unstimulated and stimulated naïve and BND cells 

in three different experiments (**p<0.002, Student’s t test).
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Figure 3.3 IBCs found in the BND fraction bear high affinity, polyreactive antigen 

receptors and have VH regions consistent with auto/polyreactivity.

A. ELISA data showing the affinity and specificity of recombinant antibodies made from 

cloned immunoglobulins from single cell BND (n = 11) and mature naïve IBCs (n = 16). 

Anergic BND IBCs have higher affinity for insulin and are polyreactive relative to IBCs in 

the mature naïve compartment. B-D. Sequencing of the heavy chain variable region 

genes revealed BND cells have more positive charged amino acids in their CDR3 

regions (***p<0.001, Student’s t test), have longer CDR3 regions (*p<0.03 for >17 aa 

and 11-14 aa, Student’s t test), and have increased use of JH6 (*p<0.04, Student’s t test), 

which is consistent with auto/polyreactivity.
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Figure 3.4 Sera from insulin autoantibody positive new onsets show increased 

reactivity to both insulin and chromatin. A. ELISA data showing sera from insulin 

autoantibody (IAA) positive new onset patients (n=5) have increased reactivity to not only 

insulin (*p<0.05), but also chromatin (**p<0.01), compared to healthy control IAA- 

samples (n=5) (significance determined by One-way ANOVA with repeated measures). 

Curves depict mean +/- SEM of OD values from 5 individual subjects.

B. Correlation between insulin and chromatin reactivity for each human sample 

(each bar represents data from one individual) at the 1:10 dilution (p = 0.005, 

Spearman’s correlation)
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Figure 3.5 Surface phenotype of naïve and memory IBCs shows significant 

differences between some “at risk” first-degree relatives, pre-diabetic, and 

new-onset patients compared to long-standing T1D patients and healthy 

controls.  A. Percentage of CD19+CD27-IBCs captured by the adsorbent that fall 

in the IgM vs IgD gates. Percentages reported as percent of total CD27- IBCs ±SD.  

B. Percentage of CD19+CD27+IBC “memory” subpopulations from subjects reported 

as percent of total CD27+ IBCs ±SD. (Statistical significance determined by One-way 

ANOVA followed by Bonferroni’s multiple comparison post test; *p<0.05, ***p<0.001). 

Samples include autoantibody negative first-degree relatives (FDR, n=25), 

autoantibody positive pre-diabetics (Pre-T1D, n=17), new onset diabetics (<1 year 

from diagnosis, N/O T1D, n=21), long standing diabetics (>1yr, L/S T1D, n=21) and 

healthy age matched controls (H/C, n=36).
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Figure 3.6 Subjects with low BND frequency among IBCs also exhibit low 

frequency of BND among total B cells. A. Percentage ±SD of IBCs that are 

BND compared to the percentage of total (non-insulin binding) CD27- B cells 

that are BND in subjects from various groups. (Statistical significance 

determined by One-way ANOVA followed by Bonferroni’s multiple comparison 

post-test, **p<0.01, ***p<0.001). B. Correlation between frequency of total BND 

and IBC BND in individual FDRs (p=0.003, Spearman’s correlation test). Each 

bar represents data from an individual FDR. 
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CHAPTER 4 
 
 
 

Loss of anergic insulin-binding B cells in type 1 diabetes is associated with high risk HLA and  
 

non-HLA susceptibility alleles 
 
 

 
SUMMARY  
 

While autoreactive B cells are normally silenced in healthy individuals, these cells become 

activated and contribute to development of type 1 diabetes (T1D). Little is known regarding 

mechanisms operative in subversion of B cell tolerance leading to participation of these cells in 

autoimmunity. We have previously shown that high affinity insulin-binding B cells (IBCs) occur 

exclusively in the anergic (BND) compartment in peripheral blood of healthy subjects. Consistent 

with their activation very early in disease, these high affinity IBCs are absent from the BND 

compartment of some first degree relatives (FDRs), and all autoantibody positive pre-diabetic and 

new-onset T1D patients, at a time when they appear in pancreatic islets. Loss of BND IBCs is 

associated with loss of the entire BND B cell compartment, consistent with provocation by an 

environmental trigger or predisposing genetic factor. To explore this possibility we analyzed the 

association between HLA and non-HLA T1D-associated risk allele genotypes and loss of BNDs in 

FDRs.  We found that high risk HLA alleles, as well as a subset of non-HLA risk alleles whose 

products function in B and T cell development, are associated with a low BND phenotype. Hence, 

our results suggest a role for these alleles in perturbation of B cell anergy in development of T1D, 

which may be dictated by high risk genotypes.  

 

INTRODUCTION 

 Type 1 diabetes (T1D) is an autoimmune disease in which self-reactive lymphocytes 

destroy the insulin-producing pancreatic beta cells. While genetic variations are thought to be the 

major contributor to risk for developing T1D, the environment also plays a role. These factors may 
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impart their effects by compromising maintenance of immune tolerance in T cells and/or B cells, 

both of which are known to be essential in the pathogenesis of T1D. Studies have shown these 

B cells are likely acting as antigen presenting cells and autoantibody producers in T1D [28, 31, 

33]. How these self-reactive B cells, which are normally silenced in healthy individuals, become 

activated to participate in disease is not known. Previous studies have shown that as much as 

70% of all B cells generated in the bone marrow are autoreactive [5]. Autoreactive B cells are 

silenced by multiple mechanisms. Those reactive with high avidity self-antigens undergo receptor 

editing, in which they rearrange their antigen receptor light chains modifying specificity. If this 

process fails and high avidity persists, cells can be induced to undergo apoptosis, a mechanism 

referred to clonal deletion [6]. Cells reactive with low avidity autoantigens, even if these have high 

affinity, do not receive sufficiently strong signals to induce receptor editing. These cells mature 

and inhabit the periphery where they are maintained in a state of unresponsiveness, called 

anergy. Anergic B cells show evidence of previous antigen exposure including downregulation of 

surface IgM and elevated basal calcium, but are refractory to further stimulation [10, 11]. 

Importantly, studies in mice have demonstrated anergy is rapidly reversed if autoantigen 

dissociates from the BCR, suggesting that this unresponsive state is maintained by a non-durable, 

and presumably fragile, biochemical mechanism rather than genetic reprograming. Consistent 

with this, the activity of inhibitory signaling pathways is upregulated in anergic cells by 

phosphorylation (SHIP1 and SHP-1) and miRNA regulation of expression levels (PTEN) [10, 14]. 

B cell intrinsic expression of these regulatory phosphatases is required to maintain anergy [13, 

14]. It is likely that additional genetic factors also play an important role in tuning B cell 

responsiveness to antigen and maintenance of anergy. Obvious candidates lie among the 

products of genes alleles of which have been shown to confer risk of developing autoimmunity. 

Previously we examined the status of insulin-reactive B cell (IBC) in peripheral blood of 

healthy individuals. We found these cells have a high affinity for insulin and are polyreactive, 
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binding to LPS and chromatin. Interestingly, these cells disappear from the peripheral blood in 

islet autoantibody positive and recent onset T1D subjects, as well as a portion of first degree 

relatives (FDRs) [68]. In order to better understand what might drive loss of anergic B cells early 

in T1D, in this study we genotyped both BND sufficient and deficient FDRs for high risk HLA and 

non-HLA T1D alleles. We found loss of anergic IBC BND cells is associated with the high risk HLA 

class II DR4-DQ8 haplotype and polymorphisms in the risk conferring INS, PTPN2, and IKZF3 

genes. Results suggest insulin-specific T cells and changes in B cell signaling are involved in loss 

of B cell anergy.  

 

MATERIALS AND METHODS 

Peripheral Blood Processing  

Samples were obtained with informed consent at the Barbara Davis Center for Childhood 

Diabetes using protocols approved by the University of Colorado Institutional Review Board. 

Eligible T1D subjects were male or female, who met the American Diabetes Association criteria 

for classification of disease.  GAD antibody, islet cell antibody, insulin autoantibody, and zinc 

transporter 8 antibody titer tests were used to confirm diagnosis of pre-diabetes and type 1 

diabetes.  PBMCs from autoantibody negative first degree relatives, autoantibody positive pre-

diabetics (identified in the Type 1 Diabetes TrialNet Natural History study), new onset T1D 

patients, long standing T1D patients, and healthy age/sex matched controls were isolated from 

heparinized blood by Ficoll-Hypaque fractionation. DNA was extracted from the granulocyte layer 

using the DNA midi kit (Qiagen). 

 

Flow cytometry analysis and enrichment of insulin-binding B cells 

In order to maintain consistency of gating, each day a patient sample was analyzed 

alongside an age/sex matched healthy control and the healthy control cells were used to draw 

gates, which were then copied to the patient cells. PBMCs were stained in 
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PBS/1%BSA/0.02%NaAzide with human FcR Blocking Reagent (Miltenyi Biotec), 0.1 µg/106 cells 

insulin-biotin, and mouse monoclonal anti-human antibodies against CD19-BV510 (BioLegend), 

CD27-PerCP or CD27-BUV395 (BioLegend), IgM-PE (Southern Biotech), and IgD-FITC (BD 

Biosciences) or IgD-BV421 (BioLegend) for 20 minutes at 4ºC.  After washing, cells were then 

fixed with 2% formaldehyde at 4ºC, followed by incubation with streptavidin-AlexaFlour647 for 20 

minutes at 4ºC.  Cells were washed, suspended in MACS buffer (PBS/0.5%BSA/2mMEDTA), and 

incubated with Anti-Cy5/Anti-Alexa647 microbeads (Miltenyi) for 15 minutes at 4ºC.  Samples 

were then passed over magnetized LS columns (Miltenyi), washed 3 times with 2 mL of MACS 

buffer, and bound cells were eluted with 6 mL of MACS buffer.  Flow cytometry was performed 

on an LSR II (BD) and data analyzed with FlowJo software ver. 8.8.4. 

 

HLA and non-HLA genotyping 

DNA from FDRs and healthy controls was HLA genotyped at the Autoantibody/HLA 

Service Center at the Barbara Davis Center for Childhood Diabetes using established protocols. 

DNA for non-HLA genotyping was sent to the University of Florida Diabetes Institute for 

interrogation of 58 unique SNP loci found to be associated with development of T1D according to 

ImmunoBase (https://www.immunobase.org/). Genotyping was conducted using a custom made 

chip which utilizes TaqMan probe and primer sets (Thermo Fisher).  

 

Statistics 

Data were analyzed using Prism software (GraphPad Software, Inc.).  One-way ANOVA 

followed by a Bonferroni’s Multiple Comparison post-test was used to determine significance of 

differences among the five patient groups. Mann-Whitney non-parametric t tests were used to 

determine differences in genetic non-HLA risk alleles.   
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RESULTS 

 As previously described and depicted in figure 4.1A, we used magnetic particles to enrich 

for insulin-binding B cells (IBCs) in the peripheral blood of subjects along a continuum of diabetes 

development [68, 104], including FDRs (n=94), autoantibody positive (n=18), recent onset (< 6 

months) (n=21), long standing (>1 year) (n=21), and healthy controls (n=46). We further 

phenotyped these IBCs to determine what proportion fell into the recently identified anergic B cell 

population in humans, termed BND (Figure 4.1B). BND cells are mature naïve B cells that have 

downregulated surface IgM but retain IgD. We have previously found the IBCs in the BND 

population have a very high affinity (~6.6 x 10-10 mol/L) for insulin, but are refractory to stimulation 

through BCR based on decreased calcium flux and phosphorylation of Syk, PLCγ2, and Akt [68].  

 While the absolute number of IBCs did not vary between subject groups (data not shown), 

we found anergic IBCs were lost in all autoantibody positive and recent onset T1D subjects 

compared to long standing and healthy controls (Figure 4.1C). Interestingly, a portion of FDRs 

also displayed the low BND phenotype. We hypothesized these individuals may be at increased 

risk for development of autoantibodies and T1D. In order to rule out the possibility loss of BND was 

correlated with a younger age, we analyzed the frequency of BND cells in FDRs in various age 

groups. As seen in figure 4.1D, there was no significant difference between levels of BND in all 

age groups, suggesting loss of anergy in IBCs is independent of age.  

Next, in order to further understand what may drive loss of IBC BND cells and determine 

whether our FDRs with the low IBC BND phenotype showed other evidence of increased risk for 

development of T1D, we HLA genotyped our BND sufficient and deficient FDRs. Interestingly, the 

FDRs who carried the very high risk DR3/4-DQ2/8 and DR4/4-DQ8/8 haplotypes had a significant 

decrease in IBC BND cells, while subjects heterozygous for the moderate risk DR4-DQ8 and DR3-

DQ2 genotypes showed similar levels to subjects carrying non-T1D risk related HLA haplotypes 

(Figure 4.2A). Surprisingly, the FDRs who carried the T1D protective DQB1*0602 (DQ6) allele 

[105] had a significant increase in the frequency of IBC BND cells, suggesting enhanced tolerance 
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of these autoreactive cells. If the high risk T1D HLA genotypes regulate IBC levels in our FDRs, 

then the same should be true in our healthy control group. Though none of the controls we 

genotyped carried the high risk DR3/4-DQ2/8 genotype, we saw a similar significant decrease in 

IBC BND frequency with the high risk DR4/4-DQ8/8 T1D genotype and significant increase with 

the protective DQ6 allele (Figure 4.2B). 

 Next, we wanted to explore whether any single nucleotide polymorphisms (SNPs) in non-

HLA T1D susceptibility genes also help drive loss of B cell anergy, using a gene chip that assays 

58 of the high risk non-HLA T1D associated SNPs. Since almost all of our FDRs who carried the 

DR4-DQ8 haplotype had a decrease in IBC BND, we only genotyped BND sufficient and deficient 

FDRs heterozygous for the DR3-DQ2 or non-T1D associated HLA alleles. Results indicate loss 

of IBC BND cells is associated with polymorphisms in the INS (rs689), PTNP2 (rs1893217), and 

IKZF3 (rs2872507) genes. In addition, loss of IBC BND cells was lower in carriers of the high risk 

non-synonymous SNP PTPN22 (rs2476601), though significance was not reached due to the low 

presence of carriers in our FDR group (Figure 4.3).  

 

DISCUSSION 

 Studies have shown HLA class II is the number one determinant for T1D risk, accounting 

for up to one-half of the genetic risk [106]. While both the HLA DR4-DQ8 and DR3-DQ2 

haplotypes confer the most risk [49], development of insulin autoantibodies (IAAs) are more 

frequent among patients with DR4-DQ8 [107, 108]. Studies have shown that the HLA-DQ8 

molecule has an amino acid substitution at position 57 in the P9 pocket of the binding groove, 

which creates a wider peptide-binding groove [109, 110].  Some argue this substitution allows 

promiscuous binding and presentation of peptides, including those of insulin [110, 111]. Hence, it 

is interesting loss of IBC BND cells is closely associated with FDRs carrying the DR4-DQ8 

haplotype. It is tempting to speculate that CD4 T cells recognizing insulin peptides presented by 

IBCs may promote loss of anergy.  
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 In line with this, we also found loss of IBC BND is associated with the SNP (rs689) in the 

highest risk conferring non-HLA gene, INS. It is thought carriers of the risk allele have decreased 

expression of the insulin protein in the thymus, leading to decreased negative selection of insulin-

specific T cells [112]. In addition, a recent study found the rs689 polymorphism was significantly 

associated with development of IAAs, but not other autoantibodies in T1D patients [113]. Hence, 

it seems plausible carriers of this polymorphism have increased numbers of peripheral insulin-

reactive T cells that escaped central tolerance that could provide the necessary T cell help to an 

IBC, thus driving them out of a state of anergy or preventing them from ever entering it. These 

IBCs could then go on and differentiate into insulin autoantibody producing plasma cells.  

Loss of IBC BND was also associated with the PTPN2 SNP rs1893217. PTPN2 is 

ubiquitously expressed, including in both B and T cells, as well as beta cells in the pancreas. 

Studies have shown PTPN2 has a range of functions, including negative regulation of JAK/STAT 

signaling [54] and dephosphorylation of Lck and Fyn after stimulation through the T cell receptor 

[55]. In addition, the T1D susceptibility PTPN2 SNP rs1893217 was correlated with decreased IL-

2 signaling in CD4+ T cells in control subjects [56]. In T1D subjects, decreased IL-2 signaling has 

been shown to affect maintenance of FOXP3 expression in Treg cells [114]. Hence, it is plausible 

the PTPN2 SNP rs1893217 could alter B cell signaling, as it has been shown to do in T cells, or 

impair development of Treg cells. The absence of Treg cells in the periphery has been shown to 

lead to the accumulation of autoreactive B cells [115] and loss of B cell anergy [116]. Studies in 

our lab have also shown loss of anergic IBCs is correlated with a decrease in the frequency of 

CD4+ CD25hi CD127lo Treg cells in the periphery (data not shown). 

 IKZF3, also known as AIOLOS, is a member of the Ikaros family of zinc-finger proteins 

that regulates B cell proliferation and differentiation. Though not well studied in the context of 

T1D, B cells in IKZF3-deficient mice have an activated cell surface phenotype [117] and 

spontaneously develop human SLE-like phenotypes, including anti-nuclear antibodies and 
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glomerulonephritis [118]. Hence, loss of IBC BND cells could be due to changes in the threshold 

for activation due in part to polymorphisms in Ikaros.  

 Taken together our results indicate loss of anergy in insulin-binding B cells is associated 

with high risk HLA and non-HLA T1D genotypes. These risk alleles could impact B cell anergy, 

and therefore, development of autoantibodies and/or T1D, through an increase in the number of 

insulin-specific T cells in the periphery, their ability to provide T cell help, loss of Treg cells, or 

alterations in the signaling thresholds needed to maintain anergy. Future studies are underway to 

validate our findings, including a longitudinal study to follow our FDRs for development of 

autoantibodies, in order to better understand the contribution of these various SNPs in disruption 

of B cell anergy.  
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Figure 4.1 Loss of IBC BND cells in autoantibody positive, recent onset type 1 

diabetes, and some first-degree relatives. A. Diagram of adsorbant used to identify and 

enrich for insulin-binding B cells (IBCs). B. Representative gating strategy to identify 

anergic (BND) IBCs. Gates for IgM and IgD are drawn based on CD19- T cells. C. BND 

cells (as percentage of CD27- IBC+ B cells) in peripheral blood of first-degree relatives 

(FDRs), autoantibody positive (AAb+), recent onset type 1 diabetes (R/O T1D), 

long-standing type 1 diabetes (L/S T1D), and healthy controls (H/C). D. BND cells (as 

percentage of CD27- IBC+ B cells) in blood of FDRs of various age groups. 
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Figure 4.2 Loss of IBC BND cells is associated with high risk T1D HLA genotypes. 

A. Percentage of IBC BND cells in FDRs stratified by HLA genotypes. B. Percentage 

of IBC BND cells is healthy controls (H/C) stratified by HLA genotypes. HLA genotypes 

with highest risk for development of T1D are on the left and decrease toward the right. 
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Figure 4.3 Loss of IBC BND cells is associated with high risk type 1 diabetes non-HLA 

genotypes. Percentage of IBC BND cells in FDRs who carry the risk allele for a particular 

SNP or do not. Risk alleles are in bold. Closed circles are FDRs who carry the non-risk allele 

and open circles are FDRs who carry the risk allele. 
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CHAPTER 5 
 
 
 

Loss of tolerance and activation of thyroid antigen-binding B cells in recent onset autoimmune  
 

thyroid disease patients 
 
 
 
SUMMARY 
 

Autoimmune thyroid disease (AITD), which includes Hashimoto’s thyroiditis (HD) and 

Graves’ disease (GD), is the most common autoimmune disorder in the United States, affecting 

over 20 million people. At the time of diagnosis, both HD and GD are characterized by the 

accumulation of B and T lymphocytes in the thyroid gland and production of autoantibodies 

targeting the thyroid, indicating that a breach in tolerance of autoreactive lymphocytes has 

occurred. However, few studies have sought to understand the underlying pathogenesis of AITD 

that ultimately leads to production of autoantibodies and loss of thyroid function. In this study, we 

analyzed the phenotype of thyroid antigen-reactive B cells in the peripheral blood of recent onset 

and long standing AITD patients. We found that in recent onset patients thyroid antigen-reactive 

B cells in blood no longer appear anergic, rather they express CD86, a marker of activation. This 

likely reflects activation of these cells leading to their production of autoantibodies. Hence, this 

study reports the early loss of anergy in thyroid antigen-reactive B cells, an event that contributes 

to development of AITD. 

 

INTRODUCTION 

While autoimmune thyroid disease (AITD) is rarely life threatening, it is one of the most 

common autoimmune disorders and carries with it many serious comorbidities. The AITD 

constellation includes Hashimoto’s thyroiditis (HT) and Graves’ disease (GD), and common 

comorbidities include weight gain/loss, heart abnormalities, nervousness/agitation, and increased 

risk for thyroid cancer [119]. In addition, AITD is one of the most common secondary autoimmune 
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disorders associated with primary autoimmunities such as type 1 diabetes (T1D), systemic lupus 

erythematosus (SLE), and rheumatoid arthritis (RA) [120-122]. Secondary AITD is an immune 

related Adverse Event (irAE) commonly seen following treatment with immune-checkpoint 

antibodies, such as anti-PD-1/PD-L1 and anti-CTLA4 [123-125]. In addition, up to 30% of multiple 

sclerosis patients treated with Alemtuzumab (anti-CD52), which depletes both B and T cells and 

some myeloid cells, develop secondary AITD. The majority of these patients develop GD [126, 

127]. Hence, studies aimed at understanding the underlying pathogenesis of AITD and 

identification of possible biomarkers to stratify individuals at risk for primary or secondary AITD is 

needed.  

Both HT and GD are characterized by the production of autoantibodies directed against 

the thyroid that either lead to hypothyroidism in HT or hyperthyroidism in GD. Autoantibodies 

against thyroglobulin (Tg) and thyroid peroxidase (TPO) are common in the serum of both HT and 

GD patients, while autoantibodies against the thyroid-stimulating hormone receptor (TSH-R) is 

more characteristic in GD patients. Mouse models of HT and GD have demonstrated an important 

role for B cells in the pathogenesis of disease [128-131]. In humans and mice, B cells are thought 

to not only produce autoantibodies, but also act as antigen presenting cells to T cells. Analysis of 

the thyroid gland in AITD patients has revealed the presence of B cells in and around the thyroid, 

forming lymphoid follicles, which are not present in healthy controls [132, 133]. While we know B 

cells are essential in the pathogenesis of AITD, nothing is known regarding changes in the status 

of thyroid antigen reactive B cells during disease development.  

Development of a B cell-mediated autoimmunity, such as AITD, requires a breach in 

tolerance that allows self-reactive B cells to become activated and participate in disease. In 

healthy individuals, it has been shown that up to 70% of B cells produced in the bone marrow 

bind to self-antigens. However, most autoreactive B cells appear to be eliminated before reaching 

the periphery as indicated by the fact that autoreactive B cell frequency in the periphery is 

reportedly ~20% [5]. In the bone marrow, B cells that bind to self with a high avidity undergo a 
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process of receptor editing, in which they will rearrange their B cell antigen receptor (BCR) 

immunoglobulin light chains until self-reactivity is eliminated. If they fail to edit away their self-

reactivity, these cells can undergo apoptosis [6]. B cells that have moderate avidity for self-antigen 

can escape these tolerance checkpoints in the bone marrow and enter the periphery where 

chronic antigen binding induces anergy. Anergic B cells are unresponsive to antigenic stimulation 

and are characterized by down regulation of surface IgM and an inability to become activated and 

produce antibodies [8, 10, 11]. Though most of what we know about anergic B cells has come 

from studies in mice, an anergic B cell population has been identified in the peripheral blood of 

healthy individuals [9]. These cells bear the markers of mature naïve (CD19+CD27-) while 

expressing low surface IgM expression but normal levels of IgD. They are termed termed BND (“B 

cells that are naïve IgD+”).  

Previously, we analyzed the frequency of anergic insulin-binding B cells in the peripheral 

blood of subjects along a continuum of type 1 diabetes development, using a method we devised 

to identify and enrich insulin binding B cells (IBC) using magnetic particles [68, 104]. We found 

that autoantibody positive and recent onset T1D subjects have a significant decrease in the 

frequency of anergic IBC and total anergic B cells. Interestingly, we found in a portion of first-

degree relatives the frequency of anergic B cells is also very low, suggesting that loss of B cell 

anergy precedes development of autoantibodies and could be a biomarker for increased risk for 

development of T1D [68]. Another group reported that SLE patients have decreased numbers of 

anergic anti-nuclear B cells in peripheral blood compared to healthy controls [74]. Based on these 

studies, we hypothesized loss of anergic B cells could be an early event in other autoimmune 

disorders, such as AITD, and therefore, could be utilized as a biomarker for individuals at risk for 

developing primary or secondary AITD. Using our method to enrich for antigen-specific B cells, 

we analyzed the phenotype of Tg and TPO-specific B cells in the peripheral blood of recent onset 

and long standing AITD subjects compared to healthy controls. We found that recent onset AITD 

subjects have reduced numbers of anergic Tg/TPO-specific B cells in blood, and this is correlated 
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with increased autoantibody titers. In addition, Tg-specific B cells show increased expression of 

CD86, suggesting activation and increased capacity to function in antigen-presentation to thyroid 

antigen-reactive T cells. Hence, this is the first study to identify changes in the phenotype of 

thyroid-antigen-reactive B cells in the peripheral blood during AITD development. 

 

MATERIAL AND METHODS 

Subjects and Peripheral Blood Processing  

Samples were obtained with informed consent at the University of Colorado Anschutz 

Medical Center and the Barbara Davis Center for Childhood Diabetes using protocols approved 

by the University of Colorado Institutional Review Board. Eligible subjects were male or female, 

who had been diagnosed with either Graves’ disease (GD) or Hashimoto’s thyroiditis (HT) within 

6 months for early onsets and more than one year ago for long standing. Presence of antibodies 

against Tg, TPO, and TSH-R, as well as TSH, Free T4, and Total T3 tests were used to confirm 

a diagnosis of GD or HT. PBMCs from 12 early onsets, 10 long standing, and 19 healthy age/sex 

matched controls were isolated from heparinized blood by Ficoll-Hypaque fractionation.  

 

HLA genotyping 

DNA from AITD and healthy controls was extracted from the granulocyte layer using the 

DNA midi kit (Qiagen). HLA genotyping was conducted at the Autoantibody/HLA Service Center 

at the Barbara Davis Center for Childhood Diabetes using established protocols 

 

Enrichment of antigen-specific B cells and flow cytometry analysis 

In order to maintain consistency of gating, enrichment of antigen-specific B cells, and 

changes in day to day flow cytometer settings, each day patient samples were analyzed in parallel 

with age/sex matched healthy controls. A minimum of 30 million PBMCs were used to enrich for 

Tg and/or TPO-specific B cells. Blood from all AITD subjects was divided in half and enriched for 
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Tg or TPO-specific B cells, unless an insufficient amount of blood was collected and then only 

one antigen was used. Native human Tg (AbD Serotec) and recombinant human TPO (Kronus) 

were biotinylated according to manufacturer’s instructions (Thermo Scientific EZ-Link Sulfo-NHS-

Biotin).  

PBMCs were stained in PBS/1%BSA/0.02%NaAzide with human FcR Blocking Reagent 

(Miltenyi Biotec), 0.1 µg/106 cells Tg-biotin or TPO-biotin or TT-biotin, and mouse monoclonal 

anti-human antibodies against CD19-BV511 (BioLegend), CD27-BUV395 (BioLegend), IgM-PE 

(Southern Biotech), IgD-FITC (BD Biosciences), CD38-BV421 (BioLegend), and CD86-BV711 

(BioLegend) for 20 minutes at 4ºC. Cells were then fixed with 2% formaldehyde at 4ºC, followed 

by incubation with streptavidin-AlexaFlour647 for 20 minutes at 4ºC.  Cells were washed, 

suspended in MACS buffer (PBS/0.5%BSA/2mMEDTA), and incubated with 1uL anti-Cy5/Anti-

Alexa647 microbeads (Miltenyi) /106 cells for 15 minutes at 4ºC.  Samples were then passed over 

magnetized LS columns (Miltenyi), which was washed 3 times with 2mL of MACS buffer, and 

bound cells were eluted with 6 mL of MACS buffer.  Flow cytometry was performed on LSR 

Fortessa X20 (BD) and data analyzed with FlowJo software ver. 9.9.4. Gates for BND cells were 

drawn based on CD19- T cells, which are negative for IgM and IgD. 

 

Intracellular PTEN staining 

 In early onset AITD subjects and healthy controls that had an excess of PBMCs, staining 

for intracellular PTEN expression was completed. Approximately 2 million PBMCs in triplicates 

were fixed and permeabilized (BD fix/perm) for 20 minutes on ice. Cells were washed twice with 

BD Perm/Wash, and then stained with anti-CD19-BV510, anti-CD27-BUV395, anti-IgM-PE-Cy7, 

anti-IgD-BV421, and anti-PTEN-Alexa647 (BD) for 1 hour on ice. Cells were washed twice with 

BD Perm/Wash and then fixed with 2% paraformaldehyde prior to flow cytometry. 
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Statistics 

Data were analyzed using Prism software (GraphPad Software, Inc.). Paired Student’s t 

tests were used to determine significance of differences among patient groups. Spearman’s 

Correlation tests were used to determine correlation between two data sets.  

 

RESULTS AND DISCUSSION 

AITD subjects 

For this study we recruited early onset (E/O) AITD patients (10 GD and 2 HT) diagnosed 

within the previous 6 months. Only subjects that had not begun treatment or had only had minimal 

treatment with thyroid replacement or antithyroid drugs were enrolled (Table 5.1), since we 

suspected treatment could alter the phenotype of their peripheral blood lymphocytes.  Initially we 

sought to recruit an equal number of HT and GD patients. However, this was made extremely 

difficult by the fact the treatment of HT patients is typically begun prior to entering specialist care. 

Therefore the majority of HT patients coming to our center did not meet eligibility requirements. 

TSH, T4, T3, and antibody titers for Tg, TPO, and TSH-R were assayed for each patient within 4 

weeks of their blood draw (Table 5.1). We also recruited 10 long-standing (L/S) AITD patients (5 

GD and 5 HT) that had been diagnosed more than a year earlier, and 19 closely age/sex matched 

healthy controls. For each AITD subject that was recruited on a given day, we recruited a healthy 

control so that they could be analyzed simultaneously. Hence, for all analyses a paired Student’s 

t test was used. In addition, whenever possible we enriched and analyzed both Tg and TPO-

specific B cells from each subject. 

 

Enrichment for thyroid antigen-specific B cells is specific 

 Given that antigen-specific B cells normally occur at a very low frequency (<0.1%) in the 

peripheral blood, we utilized our previously published method to enrich thyroid antigen-specific B 

cells in recent onset AITD, long standing AITD, and healthy controls [104]. As depicted in figure 
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5.1A, biotinylated Tg or TPO was added to the cells along with antibodies against other cell 

surface markers, followed by streptavidin Alexa647. Anti-Tg/TPO B cells were enriched using 

anti-Alexa647 magnetic beads and were analyzed by flow cytometry. In a typical PBMC sample, 

around 0.8% of total B cells bound Tg and 0.4% bound TPO (Figure 5.1B). Enrichment of these 

cells yielded a ~20-150-fold increase in antigen-binding cell frequency, which enhanced our ability 

to conduct phenotypic analysis.  

 In order to verify that our enriched cells were reactive with Tg and TPO antigens, and not 

some other component of the adsorbent, such as streptavidin Alexa647, we tested the effect of 

omission of the thyroid antigens from the enrichment scheme (Figure 5.1B).  An insignificant 

number of cells was enriched supporting the thyroid antigen specificity of antigen binding. In 

addition, no antigen binding cells were found among CD19- cells, which are primarily comprised 

of T cells (Figure 5.1B). Finally, addition of ~50 fold molar excess of unlabeled Tg/TPO before 

addition of the biotinylated antigen blocks binding by ~90% (data not shown), also demonstrating 

the specificity of antigen binding.   

 

Total Tg and TPO-binding B cell frequency is increased in blood of AITD subjects 

         Comparative analysis of Tg and TPO-binding B cells  in peripheral blood of early onset 

AITD, long standing AITD, and healthy controls, revealed no statistically significant differences in 

frequency, whether we compared AITD patients as a group or by disease classification (HT or 

GD) or duration of time since diagnosis (E/O or L/S) (Figure 5.1C). However, while not statistically 

significant, the frequency of Tg and TPO-reactive B cells per 107 PBMCs is increased in the AITD 

patients as a group, independent of their classification or time since diagnosis [Tg: Mean (per 107 

PBMCs) (95% CI) 3,565 (349.7, 6779); TPO: Mean (per 107 PBMCs) (95% CI) 21,817 (9,061, 

34,573)] compared to healthy controls [Tg: Mean (per 107 PBMCs) (95% CI) 1,814 (228.5, 3,400); 

TPO: Mean (per 107 PBMCs) (95% CI) 14,221 (6,625, 21,814)].  

Loss of anergic Tg/TPO-reactive B cells from peripheral blood in early onset AITD subjects 
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 In order to analyze the distribution of Tg/TPO-specific B cells in various B cell 

subpopulations, we enriched antigen binding cells as in figure 5.1 and applied the gating strategy 

shown in figure 5.2A. As depicted, we were able to determine the proportion of antigen-binding 

cells that reside in the naïve, memory, and plasmablast subpopulations, as well as the previously 

described anergic (BND) and double negative (DN) B cell subpopulations [9, 91, 134]. As 

mentioned previously, BND cells are characterized as mature naïve (CD19+ CD27-) but have 

greatly reduced surface IgM while retaining normal levels of IgD  [9]. Previous studies have shown 

that these cells have are autoreactive, but refractory to stimulation through their BCR based on 

decreased intracellular calcium flux and phosphorylation of BCR signaling pathway 

intermediaries, such as Syk, PLCy2, and Akt (data not shown) [9, 68, 79]. The double negative 

(DN) B cells are CD27 and IgD negative, but despite lack of expression of the CD27 memory B 

cell marker are class-switched memory B cells [91]. It is thought that these cells arise outside the 

germinal center or are a distinct B cell lineage that never acquires the CD27 marker [91, 92]. 

These DN cells have been found to be increased in SLE and RA patients [91, 135]. 

 Interestingly, analysis of the frequency of Tg and TPO-specific B cells in the naïve, DN, 

memory, and plasmablast populations in blood of AITD subjects and healthy controls revealed no 

significant differences between groups (data not shown). This is similar to observations in studies 

of insulin-binding cells in type 1 diabetics. In that study we found based on analysis of affinity of 

recombinant BCR cloned from single insulin binding B cells that most antigen-binding cells 

enriched by this method have such a low affinity that they are ignorant of ambient antigen. We 

suspect the same is true in the case of enriched thyroid antigen-binding B cells, especially since 

Tg and insulin are present in the blood at similar concentrations, ~50 pmol/L [136, 137] and TPO 

is not thought to circulate in the blood at detectable levels. Hence, ignorant Tg and TPO-binding 

cells should be innocuous and occur in all major B cell subpopulations depending on their antigen 

experience.  
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 The frequency of Tg and TPO-reactive B cells that reside in the BND compartment was 

significantly decreased in early onset AITD subjects compared to long standing AITD and healthy 

controls (Figure 5.2B). These results suggest a breach in tolerance occurs early in AITD and is 

transient, since in patients diagnosed for more than one year prior to analysis the anergic B cell 

population returns to near normal levels. The transient nature of this loss suggests that an 

environmental trigger may initiate a breach in tolerance of thyroid antigen-reactive B cells.  

 When we analyzed the frequency of total (Tg/TPO-) anergic BND cells, we found a 

significant decrease in the early onset AITD subjects compared to the long-standing and healthy 

controls (Figure 5.2C). Given that the transient loss of anergic thyroid antigen-reactive B cells is 

likely due to an environmental factor, one would expect this event to affect the anergy of 

auoreactive B cells regardless of their autoantigen specificity. Hence, this finding suggests loss 

of anergic B cells is a general phenomenon that occurs early in disease and may even precede 

it, as is the case in T1D.    

 

Loss of anergic Tg-specific B cells is inversely correlated with autoantibody titers 

Early diagnosis of AITD in part depends on the presence of autoantibodies targeting 

thyroid antigens. Thus it presupposes that a breach in B cell tolerance must occur prior to 

production of autoantibodies. Hence, we suspected loss of B cell anergy in early onset AITD 

subjects may correlate with development of autoantibodies. In figure 5.3, the frequency of anergic 

Tg/TPO binding B cells is plotted against the subject’s respective Tg/TPO antibody titer levels. 

We found loss of anergic B cells inversely correlated with appearance of Tg antibody (Tg 

correlation coefficient -0.756) and to a much lesser extent with TPO (correlation coefficient -

0.018).  The inverse correlation was significant for Tg (p = 0.015).   
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Tg-reactive B cells show evidence of activation in early onset AITD subjects 

 The inverse correlation between loss of anergic Tg, and to a lesser extent TPO, reactive  

B cells and appearance of autoantibodies suggests activation of these thyroid antigen-binding B 

cells. Hence, we next wanted to investigate whether the Tg/TPO-reactive B cells showed 

evidence of activation in the AITD subjects compared to healthy controls by analyzing the 

expression level of CD86, a marker for B cell activation, on these cells. Interestingly, the 

expression of CD86 on Tg-reactive B cells in early onset AITD subjects was significantly 

increased compared to healthy controls (Figure 5.3B). This finding was somewhat surprising, 

given that based on our T1D study we hypothesize the majority of the Tg-reactive B cells we 

enrich for have such a low affinity for their antigen they are virtually ignorant. When we analyzed 

the expression of CD86 in the various Tg-binding B cell subpopulations, we found that in early 

onset AITD subjects CD86 was significantly increased on all major subpopulations, including the 

the few remaining BND, naïve, and memory B cells compared to healthy controls (Figure 5.3C). 

However, the fold increase in CD86 expression was highest in the BND population, which we know 

have a high antigen affinity. Studies in mice and humans have shown that anergic B cells can 

upregulate CD86 in vitro in response to anti-BCR stimulation [79, 138] or IL-4/CD40L [9, 10, 139, 

140]. These findings also suggest Tg-reactive B cells in AITD subjects have an increased capacity 

to activated and present antigen to Tg-reactive T cells, since CD86 is also a co-stimulatory 

molecule required for T cell activation. 

 The above findings were only found in the Tg-reactive B cell population in the early onsets. 

When we analyzed CD86 expression in the TPO-binding B cells (Figure 5.3B) or the non-Tg/TPO 

binding B cells (data not show), or analyzed long standing AITD subjects (Figure 5.3B), no 

statistical differences were found. These results are consistent with our finding that loss of anergic 

B cells was only found to be inversely correlated with autoantibody titers in the Tg but not TPO-

binding cells. In addition, stratifying the AITD subjects based on their subclass (HT or GD) did not 

make a difference, and therefore, they were grouped together for the above analyses. 
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CONCLUSIONS 

Recently diagnosed AITD subjects were found to have a significant decrease in the 

frequency of anergic Tg and TPO-reactive B cells, as well as total anergic B cells compared to 

long standing AITD subjects and healthy controls. This finding suggests loss of anergy is transient 

and is not limited to relevant antigen-specific B cells during onset of autoimmunity. Such a 

phenomenon is likely due to an environmental trigger, such as increased dietary iodine, especially 

since both the environment and genetics are important contributors to development of AITD. In 

addition, recent GWAS studies have identified several risk alleles associated with development 

of AITD, some of which could be helping drive loss of B cell tolerance. A polymorphism in the 

PTPN22 gene, which encodes the lymphoid tyrosine phosphatase (Lyp) protein, is highly 

associated with AITD [61, 141], and has previously been shown to be a negative regulator of B 

cell signaling [52]. In addition, individuals who carry this polymorphism have increased numbers 

of autoreactive B cells in their periphery [42]. In addition, expression of PTEN, a negative regulator 

of B cell signaling, has been shown to be increased in anergic B cells in mice [14, 83]. I analyzed 

the relative level of PTEN in B cells in a portion of the early onset AITD patients, as well as early 

onset T1D patients, and compared them to their healthy control ran on the same day (Figure 5.4). 

I found that in autoimmune patients PTEN is significantly decreased in B cells compared to 

controls, and even more so in their total BND cells. Hence, we suspect a combination of 

susceptibility genes and/or changes in negative regulators are involved in driving loss of B cell 

anergy. Studies in our lab are currently underway to better understand the contribution of genetic 

risk alleles to loss of B cell anergy.  

Loss of anergic B cells was inversely correlated with autoantibody titers, particularly anti-

Tg antibodies, demonstrating a break in B cell anergy likely precedes differentiation into 

autoantibody producing cells, something known to occur in mice but has not been shown in 

humans [15]. In addition, Tg-reactive B cells in AITD subjects had increased expression of the 

activation marker CD86 compared to healthy controls, suggesting early activation of these cells 
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and competence to act as antigen-presenting cells to Tg-reactive T cells. Although all Tg-binding 

B cell populations showed increased CD86 expression compared to healthy controls, the fold 

increase in CD86 expression was higher in the few remaining BND cells in the early onset AITD 

subjects.  Historically anergic B cells in both mice and human have been shown to be negative 

for CD86 expression, though they can be induced to express it in vitro after stimulation with anti-

BCR or IL-4/CD40L [9, 10, 79, 138]. Further, Chang et al. found that an equivalent population to 

BND cells has increased expression of CD86 ex vivo in SLE patients but not healthy controls [142]. 

Hence, we hypothesize that the few Tg-reactive BND cells left in the peripheral blood of early onset 

AITD subjects have recently received strong interaction with multimeric Tg, which could be in the 

form of immune complexes, thus upregulating CD86. Given that loss of anergic Tg-reactive B 

cells inversely correlated with Tg antibody titers, this seems plausible. Alternatively, these cells 

may be recently activated mature naïve Tg-reactive B cells that upon seeing their antigen have 

internalized their BCR, with reduced mIgM emulating the phenotype of BND cells.  

Dogma suggests autoreactive B cells become anergic in the periphery due to chronic 

antigen binding in the absence of second signals provided by “helper” T cells (signal 1 without 

signal 2). Hence, if an anergic B cell receives T cell help, it could drive them out of a state of 

anergy. The gene conferring the highest susceptibility for AITD is in the HLA locus. It is has been 

shown that the HLA class II genes DR3 and DR4 confer the highest risk [141] and in our study 

18/22 AITD subjects carried one or both of these genes (Figure 5.5). It is hypothesized these 

class II molecules are permissive to binding of Tg and TSH-R peptides that when presented to T 

cells, gives rise to AITD [143]. Hence, it is possible loss of B cell anergy in our early onset AITD 

subjects enables these B cells to present antigen and thus receive T cell help. We suspect other 

factors are in play, such as the environment and other genetic risk alleles, that allow escape of 

tolerance of thyroid-specific B and T cells. 

This is the first study comparing the status of Tg and TPO-reactive B cells in the peripheral 

blood of early onset AITD, long standing AITD, and healthy controls. Loss of B cell anergy was 
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found in the early onset subjects, but may precede onset of disease, as suggested by loss of 

anergic B cells in first-degree relative of T1D patients [68]. Hence, loss of B cell anergy could be 

an early indicator of increased risk of developing primary or secondary AITD. Studies in our lab 

are focused at addressing this possibility in high risk first-degree relatives and MS patients treated 

with Alemtuzumab.  
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Table 5.1 Early onset subject test results 

Patient 
ID 

Diagnosis TPO ab 
(0-34 

IU/mL) 

TG ab 
(0.0-4 
IU/mL) 

TSHR 
ab 

(0.0-
1.75 
IU/L) 

TSH 
(0.45-

4.5 
uIU/mL) 

Thyroxin
e/T4 
Free 
(0.82-
1.77 

ng/dL) 

Total 
T3 (71-

180 
ng/dL) 

% 
BND 

(of 
TG+) 

% BND 
(of 

TPO+) 

2838 Graves' 1230 (H) 94 (H) 3.7 (H) 0.02 (L) 1.17 116 2.14 0 

2899 Graves' 1202 (H) 2 26.75 
(H) 

81.84 
(H) 

1.99 (H) 132 3.37 0 

2946 Graves' 3.2 <0.9 13.87 
(H) 

<0.015 
(L) 

1.96 (N) 179 (H) 0.409 NA 

2983 Graves' 202 (H) 5 (H) 33.35 
(H) 

0.02 (L) 3.52 (H) 359 (H) 0.291 0.778 

3000 Hashimoto 2874 (H) 1150 
(H) 

<0.90 9.11 (H) 0.92 92 0.425 0.659 

3066 Graves' 589 (H) <1 27.2 
(H) 

0.03 (L) 5.75 (H) 778 (H) 0.32 1.14 

3116 Graves' 143 (H) 0 NA <0.006 
(L) 

6.56 (H) 627 (H) 4.68 0.97 

3190 Graves' 109 (H) 247 (H) 9.23 
(H) 

0.18 (L) 3.53 (H) 219 (H) 0 2.73 

3236 Hashimoto >13000 
(H) 

2369 
(H) 

<0.9 8.28 (H) 1.02 154 0 NA 

3305 Graves' 142 (H) 2 24.23 
(H) 

0.04 (L) 3.46 (H) 330 (H) 0.224 0.513 

3327 Graves' 1882 (H) >2200 
(H) 

5.88 
(H) 

<0.015 
(L) 

1.3 124 NA 2.33 

3533 Graves' 88 (H) 1 2.92 
(H) 

0.03 (L) 1.87 (H) 256 (H) NA 0 
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Figure 5.1 Detection and enrichment of Tg/TPO-binding B cells is specific. 

A. Diagram of adsorbent used to identify and isolate Tg or TPO-reactive B cells. B. 

Representative cytograms of Tg/TPO-reactive B cells enriched from the blood of a 

healthy control when antigen is added or when it is omitted. Cells that bound to the 

adsorbent and eluted from the magnet are termed enriched, non-binders termed 

depleted, and un-enriched termed total. Percentages shown are the percent of B cells 

that are Alexa647 positive. C. Number of Tg and TPO-binding B cells recovered per 

10^7 PBMCS in AITD subjects compared to healthy controls. Each line represents a 

pair of AITD and healthy control that were ran on the same day.
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Figure 5.2 Early onset AITD subjects have a loss of anergic Tg and TPO-bindig B 

cells in their peripheral blood. A. Representative gating strategy for identification and 

analysis of Tg/TPO-reactive B cells using Tg as an example. IgM vs IgD gates are drawn 

based on staining of T (CD19-) cells, which are IgM-IgD-. B. Percentage of anergic Tg and 

TPO-reactive BND cells in early onset (E/O) AITD, long standing (L/S) AITD, and healthy 

controls (H/C). C. Percentage of total (Tg/TPO-) anergic BND cells in each subject group.
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Figure 5.3 Loss of anergic Tg-reactive B cells is correlated with autoantibody 

production and activation. A. Anti-Tg and anti-TPO titers for each early onset AITD 

subject is plotted with their respective percentage of anergic Tg/TPO-reactive BND cells 

to demonstrate correlation between the two. Anti-Tg titers had a significant inverse 

correlation with % Tg-binding BND cells; p=0.015, Spearman’s correlation test). B. Fold 

increase of geometric mean florescence intensity (gMFI) of CD86 on Tg-binding B cells 

from AITD E/O and AITD L/S patients over healthy controls. Representative histogram 

of CD86 expression from Tg-binding B cells from AITD E/O (black line) and H/C (gray 

line). C. Fold increase of CD86 gMFI on TPO-binding B cells from AITD E/O and AITD 

L/S patients over healthy controls. D. Fold increase in CD86 gMFI on Tg-reactive BND, 

mature naïve (MN) (CD27-), and memory (CD27+) B cell subpopulations from early 

onset AITD subjects compared to healthy controls. CD86 gMFI on AITD subjects was 

normalized to healthy controls in order to account for changes in voltage settings that 

occurred during the course of the sample collections.  Statistical significance determined 

by paired Student’s t tests. 
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CHAPTER 6 
 
 
 

Insulin-reactive B cells escape tolerance in NOD mice and contribute to the development of T1D  
 

by functioning as essential antigen presenters to diabetogenic T cells in the pancreas 
 
 
 
SUMMARY 

Although islet antigen-reactive B cells are known to play an important role in the 

development of type 1 diabetes (T1D) in both man and the non-obese diabetic (NOD) mouse, 

mechanisms responsible for their apparent break in tolerance and contribution to disease remain 

unclear. Here we report comparative analysis of the phenotype and function of insulin-reactive B 

cells in disease sensitive NOD and disease resistant C57BL/6 mice. In disease resistant mice, 

many insulin-reactive B cells reach the periphery where those with lower affinity are enriched in 

lambda expression indicating successful receptor editing and those with high affinity for insulin 

are anergic. Both central and peripheral B cell tolerance appears defective in NOD, as increased 

numbers of high affinity insulin-reactive cells reach the periphery where they show signs of 

activation and differentiation. These cells accumulate in the pancreas prior to overt disease 

development and express insulin B:9-23 peptide in association with cell surface I-Ag7 indicating 

successful BCR-mediated antigen uptake and processing.  Accumulation of these B cells in the 

pancreas is uniquely associated with retention and activation of insulin-reactive CD4 T cells. We 

conclude that during development of T1D islet antigen-reactive B cells lose tolerance and provide 

critical antigen presenting function for diabetogenic CD4 T cells.  

 

INTRODUCTION 

 While it is clear that T cells are the primary pathogenic effectors in type 1 diabetes (T1D), 

mounting evidence supports the notion that B cells play an important role in disease development. 

Non-obese diabetic (NOD) mice deficient in B cells from birth fail to develop T1D [144] and 
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transient B cell depletion renders NOD mice resistant to disease [17, 18, 145]. In new onset 

human diabetic patients, B cell-depleting Rituximab (anti-CD20) therapy slows the decline of beta 

cell function, arresting loss of C-peptide until the B cell compartment regenerates [77]. Thus 

evidence of B cell function is clear, although the mechanism by which B cells contribute to T1D 

remains elusive. 

 B cell receptor (BCR) specificity for islet autoantigen is critical for disease. NOD mice in 

which the BCR repertoire is biased toward insulin reactivity develop disease at an increased rate 

and higher penetrance [33].  Conversely, skewing the repertoire away from insulin reactivity [33] 

or fixing the BCR specificity to an irrelevant antigen prevents T1D [32]. Targeted depletion of 

insulin-binding B cells also impairs development of the disorder [146]. These results indicate that 

reactivity to islet antigens is critical for development of T1D and that B cell function in this context 

does not depend on antibody secretion. Islet autoantibodies (Igs) arise during T1D development 

long before hyperglycemia [29, 147], but are not essential for disease development [41] and do 

not transfer disease [25].  Transgenic NOD mice in which B cells express membrane-bound, but 

not secreted Ig, develop T1D at the same rate and frequency as wild-type NOD [41]. Thus we 

hypothesize that islet antigen reactive B cells participate in disease by non-redundant cytokine 

production and/or presentation of autoantigen to islet antigen-reactive T cells. Consistent with this 

possibility B cells have shown to be critical for autoantigen presentation and cross-presentation 

to CD8 T cells and disease development in NOD [24, 31].  

 Function of islet antigen-reactive B cells in T1D presumably requires a breach in B cell 

tolerance or ignorance. Ignorance refers to a situation in which BCR recognize antigen of such 

low avidity that the B cell does not receive an actionable signal. At least three tolerance 

mechanisms: receptor editing, clonal deletion, and anergy normally function to inactivate and/or 

eliminate potentially dangerous autoreactive B cells. Overall, B cell development in NOD bone 

marrow appears normal, suggesting clonal deletion is generally intact [148]. The number of 

transitional B cells in spleen, however, is diminished in NOD compared to C57BL/6 [148]. This is 
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suggestive of problems in maintenance of B cell anergy since anergic B cells tend to reside in this 

compartment [12].  

           Fixation of the B cell repertoire by immunoglobulin transgenesis has allowed the study of 

B cell tolerance to specific autoantigens. B cells in NOD and C57BL/6 mice expressing anti-hen 

egg lysozyme (HEL) BCR undergo equivalent B cell clonal deletion upon recognition of 

membrane-bound HEL [148]. However while soluble HEL expression leads to anergy of anti-HEL 

B cells in C57BL/6, anergy appears compromised in NOD [148]. More pertinent to T1D are studies 

of the 125 immunoglobulin transgenic mouse in which BCR recognize the islet autoantigen insulin 

[33]. It has been suggested that in both NOD and C57BL/6, 125 transgenic B cells mature 

normally, and respond to BCR stimulation by upregulation of CD86, yet do not proliferate or mount 

antibody responses following stimulation [138]. Nonetheless, NOD 125 B cells exhibit slightly 

higher surface IgM levels consistent with loss of anergy [33]. Taken together, available evidence 

suggests that in NOD the silencing of insulin-reactive B cells may be compromised, enabling them 

to promote T1D. Here we describe studies designed to explore this possibility.    

 In experiments described here we employed a repertoire-diverse model in which 

representation of insulin-reactive B cells is nonetheless increased by expression of the BCR 

heavy chain (VH125) of the 125 insulin reactive hybridoma [149, 150].This heavy chain pairs with 

endogenous immunoglobulin light chains to achieve repertoire diversity [33]. It is important to note 

that VH125.C57BL/6 mice and VH125.NOD mice were derived from the same founder VH125 

transgenic [151], thus genetic determinants should impact expression equivalently in the two 

backgrounds [33]. In VH125.NOD and VH125.C57BL/6 mice, insulin-binding B cells are enriched 

sufficiently to easily detect following antigen adsorbent-based enrichment [104]. From the earliest 

stages of development, insulin-binding B cells can be tracked as they compete with non-

autoreactive B cells for survival factors and physical space. Previous studies using this model 

indicate that insulin-binding VH125.NOD B cells, despite interacting with autoantigen, exit the 

bone marrow unimpeded [90]. However, in the autoimmune resistant C57BL/6 background, a 
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large proportion of insulin-binding B cells are eliminated early in development [90]. Thus confusion 

exists regarding the tolerance status of autoreactive B cells in NOD, as well as the mechanism(s) 

by which they contribute to T1D. 

 Here we interrogate the small, insulin-reactive B cell population that occurs in VH125 mice, 

and demonstrate that in diabetes-susceptible (NOD) and resistant (C57BL/6) mice carrying the 

same MHC II allotype (IAg7), those with BCR affinity sufficiently high to sense insulin at 

physiological concentrations are phenotypically and functionally distinct [47]. In VH125.C57BL/6-

H2g7, clonal deletion and receptor editing eliminate the majority of high affinity insulin-binding B 

cells. However, a significant proportion of these cells reach the periphery and are functionally 

anergic. Insulin-binding B cells in VH125.NOD escape all modes of tolerance, with a large 

proportion of these cells appearing activated prior to onset of T1D. Importantly, these VH125.NOD 

insulin-binding B cells accumulate in the pancreas, display the insulin B:9-23 peptide in 

association with their MHCII, and promote accumulation and activation of insulin-specific CD4 T 

cells. Thus our results indicate that insulin-reactive B cells provide non-redundant antigen-

presenting function for CD4 T cells during T1D development.  

 

MATERIALS AND METHODS 

Mice 

Mice expressing the IgMa heavy chain transgenes VH125 and VH281 on the NOD and C57BL/6 

backgrounds were kindly supplied by JW Thomas [33, 138]. VH125.C57BL/6 mice were 

backcrossed onto the C57BL/6-H2g7 background, obtained from the Jackson Laboratory to 

create VH125.C57BL/6.H2g7 within our colony. BDC12.4-1.RAG-/-.NOD were supplied by Aaron 

Michels at the Barbara Davis Center. Female mice were used for all experiments, unless 

otherwise noted. Mice were monitored for the development of diabetes for a period of 40 weeks. 

Two consecutive blood glucose readings >250 mg/dl (One Touch), without fasting, identified a 

mouse as diabetic. All animals were housed in facilities at National Jewish Health and University 
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of Colorado SOM, Anschutz Medical Campus under specific pathogen free conditions. Each 

facility’s Animal Care and Use Committee approved all experimental procedures. 

 

Method to identify, enrich, and isolate B cells based on their BCR binding to insulin. 

The approach is described previously [68, 104] and diagrammatically in figure 6.1C. In 

short, the starting cell population is first depleted of red blood cells. Cells were then stained in 

PBS/2% BSA/0.02% sodium azide with 0.1 ug/106 cells of insulin-biotin and a combination of B 

cell markers (as described below) for 30 minutes at 4°C. After washing, cells were then fixed with 

2% formaldehyde at 4°C, followed by incubation with streptavidin– Alexa Fluor 647 for 15 min at 

4°C. Cells were washed, suspended in MACS buffer (PBS/0.5% BSA/2 mmol/L EDTA), and 

incubated with anti-Cy5/anti-Alexa 647 microbeads (Miltenyi Biotec) for 10 min at 4°C. Samples 

were then passed over magnetized LS columns (Miltenyi Biotec) and washed three times with 2 

mL of MACS buffer, and bound cells were eluted with 6 mL of MACS buffer. 

 

Flow Cytometry Analysis 

Whole pancreas preparation and staining for autoreactive T cells specific for insulin B:9-

23 was completed as previously described [152] with tetramers obtained from the Kappler 

Laboratory. For all other stains commercial antibodies directed against the following molecules 

were used: AMS-32.1 (BD), B220 (RA3-6B2; BD), CD1d (1B1; BioLegend), CD4 (GK1.5; 

BioLengend), CD19 (6D5; BioLegend), CD21/35 (eBio8D9; eBioscience), CD23 (B3B4; BD), 

CD24 (M1/69; eBioscience), CD44 (IM7; BioLegend), CD86 (GL1; BD), CD138 (281-2; BD), Goat 

Anti-Mouse Lambda-FITC (Southern Biotech), and Steptavidin Brilliant-Violet 421 (BioLegend). 

Anti-IgM B-7-6 was produced in the Cambier Laboratory and conjugated to DyLight (Pierce) 

fluorochromes, according to the manufacturer’s protocol. mAb287 was produced in the Zhang 

Laboratory and conjugated to Zenon (Thermo Fisher Scientific) fluorochromes, according to the 

manufacturer’s protocol. Flow cytometry was performed on a CYAN (Beckman Coulter) and 
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Fortessa (BD Biosciences) and data analyzed with FlowJo software version 8.8.4. VH281.NOD 

and VH281.C57BL/6 mice were used as gating controls, given they do not generate insulin-

binding B cells [33]. 

 

B cell Calcium Flux Analysis  

Splenocytes were harvested from mice and red blood cells were lysed using ammonium 

chloride. Cells were suspended at 107 cells/mL in warmed 37° C RPMI, 2% BSA, and 1 μM Indo1-

AM (Molecular Probes).  Anti-CD19-PE, anti-IgM-B.7.6.-FITC Fab, and biotinylated insulin were 

added during incubation with Indo for 30 minutes and washed two times with warmed RPMI 

containing 2% BSA. Cells were then stained with anti-biotin-Dylight 650 Fab, made in house, for 

15 minutes. Fab antibodies were used in order to not prematurely stimulate the cells. Cells were 

then placed on a BD Fortessa flow cytometer and after 15 seconds of baseline readings were 

stimulated with 5 μg/mL of F(ab’)2 goat anti-mouse IgM (Jackson Labs) or 1 μL of 1 mg/mL 

ionomycin as a control. The insulin binding versus non-insulin binding B cell populations were 

gated based on CD19- T cells, which served as a negative control for insulin-binding. Calcium 

mobilization analysis was conducted using FlowJo software. 

  

PhosFlow Syk and PTEN Analysis 

Splenocytes were harvested from mice and red blood cells were lysed using ammonium 

chloride. Cells were stimulated with 5 ug/mL goat anti-mouse IgM (Jackson Labs) for 5 minutes 

at 37°C, or left unstimulated. Cells were immediately fixed with 2% PFA at 37°C for 10 minutes, 

spun down, and then resuspended with ice cold 100% methanol and placed on ice for 30 minutes.  

Cells were washed and stained with biotinylated insulin and monoclonal anti-mouse antibodies 

against CD19 and IgM for 15 minutes.  Cells were also stained with mouse anti-ZAP70/Syk 

antibody (BD Phosflow) and anti-PTEN (BD Phosflow), or isotype control simultaneously.  Cells 
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were washed twice, followed by staining with streptavidin-Alexa Fluor 421 to identify insulin 

binding B cells. Flow cytometry was performed as described above. 

 

Statistics 

Data were analyzed using Prism software (GraphPad Software, Inc.).  Student t tests were used 

to compare differences between groups.  

 

RESULTS 

Insulin-binding B cell frequency is directly correlated with penetrance and rate of onset of T1D in 

NOD.  

 If B cells bearing insulin-binding BCR (IBC) play an essential role in the development of 

T1D, one would expect that disease development should correlate with the in vivo frequency of 

IBCs. To formally explore this relationship, we analyzed the rate of onset and penetrance of 

disease in genetically modified NOD mice in which IBCs differ in frequency (Fig 6.1A and 6.1B).  

IBCs were assayed as shown schematically in figure 6.1C and described below. As shown in 

figure 6.1, splenic IBC frequency was directly correlated with rate of disease development in these 

animals.  In VH125.NOD mice ten weeks of age, ~1% of splenic B cells (~8x104/spleen) bound 

insulin. All of these mice developed disease by 30 weeks of age (Fig 6.1A). In 10 week old non-

transgenic female NOD mice, about one tenth the number of splenic IBC were seen and disease 

onset was delayed, with 70% of mice diabetic at 30 weeks (Fig 6.1A). The IgM heavy chain VH281 

differs from VH125 in lacking two amino acids in the CDR2, and this heavy chain is not permissive 

for insulin binding, regardless of paired light chain [33]. No IBCs were detectable in VH281.NOD 

mice, and <5% of female VH281.NOD developed T1D during the course of the experiment (Fig 

6.1A). The few VH281.NOD mice that developed disease had lost allelic exclusion as indicated 

by the fact that they expressed endogenous μb heavy chain allotype (data not shown). Thus 
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disease development may have been supported by rare cells that acquired insulin reactivity by 

virtue of endogenous Ig gene usage.  

 As shown in figure 6.1B, female gender bias for development of T1D was maintained in 

the presence of the VH125 transgene. Though 100% disease incidence was observed in male 

VH125.NOD, the rate of development was slower than in females. The gender difference was 

directly correlated with splenic insulin-binding B cell numbers.  Thus gender-based factors that 

affect disease also affect insulin-binding B cell frequency. Taken together, results are consistent 

with the possibility that the rate and penetrance of T1D in genetically predisposed mice are 

determined in part by the number of insulin-binding B cells present in peripheral lymphoid organs. 

Furthermore, gender bias could reflect an effect of sex on autoreactive B cell numbers. 

 Interestingly, despite containing more peripheral IBCs than WT NOD mice, 

VH125.C57BL/6-H2g7 mice carrying the IAg7 risk allele did not develop disease (Fig 6.1A). The 

MHC II allotype IAg7, which is found in NOD, is uniquely able to present insulin peptide to 

pathogenic CD4 T cells, supporting disease development [24]. C57BL/6 mice with the NOD MHC 

haplotype (C57BL/6-H2g7) can develop benign insulitis, but do not progress to overt disease 

[153]. Thus, on the C57BL/6 genetic background the presence of insulin-binding B cells does not 

alone suffice to support disease development even when a MHC II allotype competent to present 

pathogenic insulin peptides is expressed. 

 

Identification and isolation of insulin-binding B cells 

Experiments described in figure 6.1A and B were made possible by development of 

methodology to identify and isolate clonally distributed and thus rare B cells that bind insulin via 

their BCR [68, 104]. In the procedure (Fig 6.1C), splenocytes are depleted of red blood cells and 

then incubated with biotinylated insulin in combination with antibodies to cell markers of interest. 

Cells are then washed and fixed with 2% paraformaldehyde, before being incubated in 

Streptavidin-Alexa647 and washed again. Finally, anti-Alexa647-conjugated MACS beads are 
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added to the suspension, and cells that bind the MACS beads are enriched using a magnetic 

column.  

Experiments demonstrated that cell populations isolated using this protocol are highly 

enriched B cells that bind insulin via their antigen receptors. In support of this conclusion are the 

following findings. There was no enrichment of “insulin-binding” B cells when biotinylated insulin 

was omitted during selection (Fig 6.1C). Furthermore, pre-exposure of cells to excess unlabeled 

insulin at concentrations that block detectable binding of biotinylated insulin blocked cell selection 

(Fig 6.1C). Thus the method selected B cells with reactivity to insulin without significant 

contamination by cells recognizing avidin, Alexa647 or anti-Alexa647-conjugated beads. In further 

experiments we found that the method does not enrich B cells from MD4 immunoglobulin 

transgenic mice in which all B cells bear antigen receptors reactive with hen egg lysozyme (data 

not shown).  Thus we conclude that the method does not enrich cells based on insulin binding to 

CD220 insulin receptors, which would be equivalently expressed on cells from MD4 and WT mice.  

We then compared results of analysis of equivalently stained insulin-binding B cells before 

and after enrichment by magnetic selection. Binding cell frequencies were consistent with those 

reported in figure 6.1A (Fig 6.1D). Interestingly however, based on staining intensity IBCs from 

VH125.C57BL/6-H2g7 bind significantly less antigen than IBCs from VH125 NOD, whether one 

compares magnetic particle enriched or un-enriched populations. This result is consistent with the 

possibility that IBCs in VH125.C57BL/6-H2g7 are more profoundly anergic than those in VH125 

NOD, as previous studies have demonstrated a correlation between anergy and reduced mIgM 

expression [12, 78]. This conclusion extends previous findings in mice transgenic for anti-hen egg 

lysozyme (HEL) BCR, which demonstrated that anergy of anti-HEL B cells is compromised in 

NOD relative to C57BL/6 backgrounds [148].  
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VH125.NOD display defects in both central and peripheral tolerance 

 The observed reduced frequency of IBCs in VH125.C57BL6-H2g7 spleens relative to 

VH125.NOD is consistent with defective elimination of IBC by central tolerance mechanisms in 

NOD. To further explore this possibility, we compared the frequency of insulin-binding B cells in 

the bone marrow of VH125.NOD and VH125.C57BL/6-H2g7. In VH125.NOD, we found an 

approximate 3 fold higher frequency of immature insulin-binding B cells than VH125.C57BL/6-

H2g7 (Fig 6.2A). This finding and the fact that this differential is not as great as the ~7 fold 

difference seen in the periphery, suggests that central tolerance is less efficient in NOD (Fig 6.1D).  

This is consistent with a recent study by Henry-Bonami et al., who showed that in VH125.NOD 

immature insulin-binding B cells transition from the parenchyma to the sinusoids of the bone 

marrow and exit to the periphery with no reduction in numbers [90]. As seen in the periphery, 

surface IgM expression on immature insulin-binding B cells from VH125.NOD was elevated 

compared to those in VH125.C57BL/6-H2g7 (Fig 6.2A). This may reflect imposition of anergy in 

the bone marrow compartment where B cells first encounter this systemic autoantigen.  

During the course of our studies, we noted the occurrence of two distinct IBC populations 

in both the VH125.NOD and VH125.C57BL/6-H2g7 that distributed on distinct diagonals when 

analyzed for IgM expression and insulin binding intensity (Fig 6.2B). In the VH125.C57BL6-H2g7 

mice, the low insulin binding B cell population, designated Insulinlo, expressed high levels of 

surface IgM, while the right shifted high insulin binding B cell population (Insulinhi) had lower 

expression of IgM (Fig 6.1B). This is in contrast to the VH125.NOD mouse, in which both the 

Insulinlo and Insulinhi B cell populations expressed high IgM levels and antigen binding intensity, 

which is evident when cytograms of the populations from the two strains are overlaid (Fig 6.2B, 

right panel). Based on these findings, we suspect the Insulinlo B cell population in the 

VH125.C57BL/6-H2g7 has sufficiently low insulin affinity that they are ignorant of insulin in their 

environment, despite being captured by the enrichment procedure. The Insulinhi B cell population 

likely has sufficiently high affinity that it has been rendered anergic, as indicated by IgM 
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downregulation. On the other hand, it appears that the Insulinhi B cell population in the 

VH125.NOD mice has not been anergized, since IgM levels remain high. 

In order to further analyze the status of these cells, we explored their history of receptor 

editing by analyzing the ratio of lambda:kappa BCR light chain usage, often used as a surrogate 

measure of receptor editing (Fig 6.2C) [154]. The frequency of lambda positive cells was higher 

among Insulinhi-binding B cells from VH125.C57BL/6-H2g7 (~7%) than among Insulinhi-binding B 

cells from VH125.NOD (~4%). Thus it appears that fewer of these IBC have attempted to edit in 

NOD.  This could permit more pathogenic high affinity insulin-binding B cells to enter the periphery 

in NOD because less attempt is made to reduce affinity by alternate light chain usage. 

 Analysis of the relative number of IBCs in the periphery as a function of animal age 

provided additional evidence of a difference in autoreactive B cells in the two genetic backgrounds 

(Fig 6.2D). The total number of splenic insulin-binding B cells in VH125.NOD increased nearly 

five-fold between weaning (~0.5x105/spleen) and onset of overt T1D (~2x105/spleen) (Fig 6.2D), 

while in VH125.C57BL/6 no such accumulation of insulin-binding B cells occurred. The total 

number of splenic insulin-binding B cells in VH125.C57BL/6 remained low and constant 

(~0.25x105/spleen) regardless of age, consistent with maintenance of peripheral tolerance in 

these mice. 

To better understand their potential contribution to disease development, we assessed the 

relative numbers of B cells with high versus low insulin affinity as a function of age (Fig 6.2E).  In 

VH125.NOD, both high and low insulin-binding B cells were present in spleen at the earliest time 

point examined (weaning), and increased in number until the B cell compartment matured, i.e. 

about 6 weeks of age. While the frequency of low insulin-binding splenic B cells remained 

relatively constant after six weeks of age, the frequency of high affinity B cells continued to 

increase until onset of diabetes, consistent with contribution to disease.  

Next, we determined which splenic B cell compartments Insulinlo and Insulinhi B cell 

populations were occupying in the two strains. Analysis of CD21, CD23, and CD1d revealed that 
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the Insulinhi B cell population in the B6 is low in CD21 and high in CD23 (Fig 6.2F) consistent with 

the previously defined phenotype of anergic An1 cells found in the T3 population [12]. In contrast, 

Insulinlo B cells in the B6 are distributed in all major splenic B cell compartments, consistent with 

the possibility they are ignorant of ambient antigen. Further, Insulinhi cells are homogeneously low 

in CD1d while Insulinlo cells exhibit a distribution of CD1d expression similar to non-insulin binding 

cells. Importantly, both the Insulinhi and Insulinlo B cell populations in the NOD have high surface 

IgM levels, and are distributed in all major splenic B cell populations, consistent with lack of anergy 

(Fig 6.2B and 6.2F). 

 

Insulin-binding B cells in VH125.NOD show signs of activation, ability to differentiate into plasma 

cells, and enter the pancreas prior to overt disease onset.  

Hypothesizing that high affinity VH125.NOD insulin-binding B cells have broken tolerance, 

we next examined whether these cells exhibit increased markers of activation compared to the 

non-insulin binding B cells contained within the same spleen. It has been shown high CD19 

expression correlates with a lower threshold of B cell activation [155, 156]. Insulin-binding B cells 

and non insulin-binding B cells in VH125.NOD and VH125.C57BL/6-H2g7 had comparable levels 

of CD19 expression (Fig 6.3A). This was consistent with other models of autoimmunity [155, 157-

159]. In humans, an anergic B cell population has been identified as expressing low levels of 

CD21 [82]. While the insulin-binding B cells in VH125.NOD and Insulinlo B cells in the 

VH125.C57BL/6-H2g7 had relatively normal levels of CD21 expression compared to their 

respective non-insulin binding B cell population, the Insulinhi B cell population in the B6 has a 

significantly lower expression of CD21, consistent with the human anergic phenotype (Fig 6.3A). 

Next, we compared the expression of CD86 on these cells in order to determine their activation 

status and potential to act as antigen-presenting cells. Interestingly, both the Insulinhi and Insulinlo 

B cells in the VH125.NOD have a relatively normal to increased expression of CD86, but both the 

Insulinlo and Insulinhi B cells in the B6 have a significantly decreased expression of CD86 (Fig 
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6.3A) compared to non-insulin binding B cells. These findings support the conclusion that T1D 

resistant VH125.C57BL6-H2g7 Insulinhi B cells are anergic and the Insulinlo B cells are likely 

ignorant due to their low affinity for insulin. However, in VH125.NOD both the Insulinhi and Insulinlo 

B cells have increased expression of BCR and have a high affinity for insulin, and therefore, have 

potential for activation and participation in disease. 

Next, we examined whether insulin-binding B cells in the two strains are capable of 

differentiating into plasmablasts. While no plasmablasts were found in the VH125.C57BL/6-H2g7 

mice (data not shown), almost 1% of the insulin-binding B cells in the VH125.NOD were 

plasmablasts compared to 0.38% of the non-insulin binding B cells (Fig 6.3B).  The VH125 heavy 

chain limits serum Ig to the IgM isotype. We could detect insulin-specific IgM autoantibodies in 

VH125.NOD, but not VH281.NOD, VH125.C57BL/6, or VH125.C57BL/6-H2g7 (data not shown). 

Insulin-binding B cells were subsequently found to accumulate in the pancreas of VH125.NOD, 

but not VH125.C57BL/6-H2g7, though these mice can develop benign insulitis (Fig 6.3C). Taken 

together, these findings indicate that the insulin-binding B cells in disease prone VH125.NOD 

become activated and accumulate in the pancreas during disease development.  

 

Insulin-binding B cells in VH125.NOD are functionally responsive to stimulation and have 

significantly decreased expression of PTEN, a negative regulator of B cell signaling. 

 Data described above suggest that high affinity IBC in VH125.C57BL/6 are anergic, but 

those from VH125.NOD are not. To test this more formally we assessed the responsiveness of 

these populations to BCR stimulation.  In order to test the responsiveness of IBCs we needed to 

develop a method to identify the cells without prematurely stimulating them with the addition of 

streptavidin. Direct labeling of insulin with fluorescein did not adequately distinguish the insulin 

binding from the non-insulin-binding B cells in either strain (data not shown). However, when we 

added biotinylated insulin followed by a fluorescently labeled anti-biotin Fab we were able to 

distinguish the insulin-binding B cells from the non-insulin binding B cells without stimulation (Fig 
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6.3D). Of note, this method did not enable resolution of Insulinhi and Insulinlo B cell populations 

based on antigen binding, likely due to decreased signal amplification compared to biotin-

streptavidin. However, because the IBCs in the VH125.C57BL/6-H2g7 have decreased IgM 

expression, we believe this method identifies the Insulinhi B cells when these markers are paired.  

Similarly, because the IBCs in the VH125.NOD have increased IgM expression, we believe we 

capture the Insulinhi B cells in this stain, as well (Fig 6.3D).  

 When we stimulated these cells with F(ab’)2 anti-IgM, we found that in VH125.C57BL/6-

H2g7 the insulin-binding B cells failed to mobilize intracellular calcium (Fig 6.3D), a classic 

indication of anergy. VH125.NOD insulin-binding B cells responded well, mobilizing calcium 

comparably to non-insulin binding B cells in NOD and B6 (Fig 6.3D).  A similar relationship was 

seen in tyrosine phosphorylation of the BCR proximal tyrosine kinase Syk. IBCs from 

VH125.C57BL/6-H2g7 showed significantly less induced Syk phosphorylation than non-insulin 

binding B cells (Fig 6.3E), demonstrating a dampened signaling response consistent with anergy. 

Insulin-binding B cells from VH125.NOD showed enhanced pSyk following stimulation compared 

to non-insulin binding B cells (Fig 6.3E), confirming that they are not anergic and may be easily 

primed for participation in disease. 

The phosphatase and tension homolog, PTEN, has been shown to be increased in the 

anergic transgenic mouse model MD4/ML5 and is partially responsible for hyporesponsiveness 

of anergic B cells in this model [83]. When we compared expression of PTEN in insulin-binding 

vs non-insulin binding B cells, we found that IBCs from VH125.C57BL/6-H2g7 have significantly 

increased levels of PTEN compared to non-IBCs (Fig 6.3E), similar to the anergic cells in the 

MD4/ML5 mouse model. However, IBCs in the VH125.NOD mouse had significantly decreased 

expression of PTEN compared to non-IBCs (Fig 6.3E), a finding consistent with the recent report 

of reduced PTEN expression in B cells from autoimmune SLE patients [160]. Taken together, 

these results demonstrate that IBCs in the B6 mouse are functionally anergic while those in NOD 

are not.  
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Insulin-binding B cells mediate the in vivo activation of diabetogenic insulin reactive T cells. 

  We observed that insulin-binding B cells in disease prone VH125.NOD can be activated 

(Fig 6.3A) and can differentiate into plasma cells (Fig 6.3B). However, the insulin-autoantibodies 

generated by plasma cells have been previously shown to be largely non-pathogenic [25]. 

Therefore, we next examined another possible role for these insulin-binding B cells, namely in 

presentation of autoantigen to diabetogenic T cells. It has been shown previously that 

development of T1D in NOD mice requires that B cell express MHCII I-Ag7 suggesting that B cell 

disease promoting function involves antigen presentation [24].  

          T cells recognizing the insulin B chain amino acid sequence 9 to 23 (B:9-23) in the context 

of MHCII I-Ag7 can be diabetogenic. The B:9-23 insulin peptide can occupy the binding groove 

of the NOD MHCII molecule, IAg7, in a number of registers. Pathogenic insulin-specific T cells 

primarily recognize the MHC II complex when the insulin peptide is bound in register 3 [152, 161]. 

We have recently produced and described an antibody, designated mAb287, that binds 

specifically to B:9-23 insulin peptide bound to IAg7 in register 3 [162]. Availability of this antibody 

allows analysis of the uptake, proteolytic processing and loading of insulin peptide into MHCII of 

splenic insulin-binding B cells. As shown in figure 6.3A, ex vivo insulin-binding B cells from 

VH125.NOD, but not VH125.C57BL/6-H2g7 mice showed significant staining with this antibody. 

Comparable levels of total MHC II were observed on IBC from the two mouse strains (Fig 6.4A). 

These findings are consistent with the possibility that B cells from VH125.NOD mediate their 

function by antigen presentation. It also indicates that, despite possessing the ability to bind 

antigen, anergic B cells are unable to successfully process antigen and load it into MHCII. These 

findings led us to explore the in vivo effect of insulin peptide-presenting B cells on the biology of 

diabetogenic insulin reactive CD4 cells.   

Crawford et al. recently developed a set of fluorescent insulin-IAg7 tetramers that bind 

specifically to B:9-23-reactive T cells [152]. We used these tetramers to mark B:9-23-reactive T 

cells in the VH125.NOD, NOD, VH281.NOD, and VH125.C57BL/6-H2g7 mice. On the NOD 
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background, the frequency of pancreatic B:9-23-reactive T cells correlated with the frequency of 

insulin-binding B cells present (Figs 6.1 and 6.4B,C), with the highest numbers seen in 

VH125.NOD (Fig 6.4B,C). Since B:9-23 reactive T cells accumulate in the pancreas of 

VH125.NOD but very few do in VH281.NOD mice, B cell specificity for insulin must be critical. 

Very few B:9-23-reactive T cells  were found in VH125.C57BL/6-H2g7. This may be the 

consequence of anergy in these IBC, or the result of some other NOD genotype dependent effect. 

Importantly, the B:9-23 reactive T cells that accumulated in VH125.NOD also expressed the 

highest levels of the memory marker CD44, consistent with their activation by insulin reactive B 

cells (Fig 6.4B).  

 

DISCUSSION 

 Previous studies have demonstrated a critical role for islet antigen-reactive B cells in the 

development of T1D in the NOD mouse, and have implicated B cells in human T1D. While B cell 

function in this context would be expected to require loss of tolerance to islet antigens, the only 

study that has directly tested this possibility concluded that the offending B cells remain anergic 

[138]. This conundrum prompted us to examine and compare the status of insulin-reactive B cells 

in disease permissive NOD compared to disease resistant C57BL/6.H2g7 genetic backgrounds, 

and to further explore how these cells contribute to disease in NOD. Results demonstrate that in 

C57BL/6 mice high affinity insulin-reactive B cells are silenced by both central and peripheral 

mechanisms. In the periphery these cells appear anergic based low mIgM expression, T3 marker 

phenotype, low expression of CD1d and CD21, high PTEN expression, and unresponsiveness to 

BCR stimulation as measured by calcium mobilization and Syk tyrosine kinase phosphorylation 

[8, 12, 78, 82, 83] Conversely, in NOD these cells are less efficiently eliminated by central 

tolerance mechanisms, occurring in the periphery at 7-8 fold higher frequency. High insulin affinity 

B cells progressively accumulate from birth in the spleens of these mice. They occupy all major 

B cell compartments in the spleen and are not anergic as indicated by high mIgM expression and 
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robust calcium mobilization and Syk phosphorylation in response to BCR stimulation. In NOD but 

not C57BL/6, insulin-reactive cells show propensity to differentiate into B220 low, CD138 high 

plasmablasts.  

Functional studies revealed that insulin-binding NOD B cells internalize and process 

antigen in vivo, successfully loading insulin B:9-23 peptide into MHCII. Insulin binding cells in 

C57BL/6.H2g7 do not accomplish MHCII loading. Activated insulin-reactive cells in NOD 

accumulate in the pancreas, and this is associated with accumulation of diabetogenic, insulin B:9-

23-reactive T cells at this site.  Accumulation of insulin-reactive T cells in the NOD pancreas 

requires that B cells be insulin reactive, as it is reduced in NOD and hardly detectable in 

VH281.NOD. Taken together, data demonstrate that B cell tolerance to insulin fails in NOD. 

Rather than being rendered anergic as is seen in C57BL6.H2g7 mice, high affinity insulin reactive 

cells become activated and accumulate in spleen and pancreas. These cells capture, process 

and present antigen to diabetogenic insulin T cells that show signs of activation as indicated by 

increased CD44 expression.  

The inability of anergic B cells to internalize, process and present antigen represents a 

significant advancement in our understanding of the biology of anergic B cells. It indicates that in 

anergic cells signaling machinery downstream from the antigen receptor is unable to sustain this 

process. Studies have shown antigen presentation by B cells requires cross-linking of the BCR, 

phosphorylation of ITAMs on the Igα:Igβ co-receptor, recruitment  and phosphorylation of kinases 

such as Syk, and activation of downstream signaling pathways including the PI3K pathway that 

results in rapid endocytosis of antigen-engaged receptors and entry into late endosomal antigen 

processing compartments [163]. Hence, inhibitory molecules, such as PTEN, that are upregulated 

in anergic IBCs in B6 likely inhibit antigen presentation from occurring. Thus it appears that the 

inability of anergic cells to present antigen is a checkpoint in their participation in immune 

responses to exogenous antigens.  
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These studies are also informative regarding the relative importance of various antigen 

presenting cell populations in the development of T1D in NOD. Lack of significant diabetogenic 

insulin-reactive CD4 T cell accumulation in the pancreas of NOD mice in which the B cell 

repertoire lacks insulin reactivity (VH281.NOD) leads to the inescapable conclusion that antigen-

specific B cells are critical antigen presenting cells in this process.  Efficacy of B cell depleting 

therapy in human T1D suggests that the same may be true in man. 

This study also raises an important question regarding whether and how the immune 

system perceives soluble monomeric autoantigens. There is general agreement that induction of 

BCR signaling, like that of other ITAM-containing receptors, requires receptor aggregation. Now 

classical studies of Chiller and Weigle and others showed that antigen valence was critical for 

induction of B cell tolerance in vitro [164, 165]. It is likely that tolerance measured in these models 

reflected anergy. In view of this and the demonstrated requirement for chronic antigen exposure 

to induce and maintain anergy [10], it seems most likely that this response requires BCR 

aggregation. How could this occur in the VH125 model where the autoantigen is monomeric?  An 

obvious possibility is that B cells see insulin that is cell associated by virtue of association with 

the ubiquitous insulin receptor CD220. However the parent hybridoma, 125, antibody has been 

shown not to bind insulin that is associated with its receptor [150]. Another possibility is that these 

B cells recognize insulin that is associated with BCR on other insulin-reactive B cells. This too is 

very unlikely because the VH125 expressed on all B cells in this transgenic mouse would direct 

specificity of all insulin reactive cells to the same epitope regardless of light chain usage.  

Resolution of this question will clearly require more study. 

The lessons learned in this study regarding the role of loss of B cell anergy in T1D almost 

certainly extends to other autoimmunities seen in NOD, including autoimmune sialitis and 

autoimmune peripheral polyneuropathy, as well as the autoimmunities that develop after genetic 

manipulation or crosses to NOD, including the KRN model of arthritis and the NOD.H2h4 model 

98



of autoimmune thyroiditis [166, 167]. Thus, it is likely that loss of B cell anergy is an important 

contributor to autoimmunity in NOD due to genetic risk factors in all of these cases. 
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Figure 6.1 BCR specificity for insulin contributes to T1D development in NOD.  
A. Disease curve for female VH125.NOD, NOD, VH281.NOD, and VH125.C57BL/6-H2g7 mice 
monitored weekly from weaning until disease onset or 40 weeks of age. Total splenic insulin-
specific B cell numbers (CD19+) for 8-12 week old female mice are shown. B. A diagram of the 
absorbent used for magnetic particle based staining and enrichment of IBCs. Splenic cells from 
VH125.NOD were subjected to the enrichment protocol in the presence of 50X unlabeled insulin, 
or in the absence of biotinylated insulin. C. Comparison of the number of splenic IBCs from female 
8-10 week old VH125.C57BL/6.H2g7, VH125.NOD, VH281.NOD and NOD mice.  
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Figure 6.2 Defective central and peripheral silencing of insulin-reactive B cells in NOD.  
A. Insulin-reactive B cell frequency and relative IgM expression (IgM MFI of IBCs divided by non-
insulin binding B cells) among immature B cells in bone marrow of female VH125.NOD and 
VH125.C57BL/6-H2g7 mice at 8-10 weeks of age. Representative histogram of IgM expression 
shown. B. Representative cytograms of IgM expression versus insulin reactivity in the 
VH125.C57BL/6-H2g7 and VH125.NOD mice. Staining reveals a low affinity IBC population, 
designated Insulinlo (black oval), and a high affinity IBCs population, Insulinhi (red oval), in the 
VH125.C57BL/6-H2g7 mouse. In the VH125.NOD mouse both the Insulinlo and Insulinhi B cell 
populations have a high affinity for antigen. The two cytograms are overlaid for comparison of IgM 
levels and insulin reactivity. C. Percentage of splenic lambda positive CD19+ B cells in the Insulinlo 
and Insulinhi B cell populations from the two strains. D. Changes in the number of splenic IBCs 
with age and progression to T1D in the two strains. E. Changes in the number of Insulinlo and 
Insulinhi splenic B cells in VH125.NOD mice with age and progression to T1D. F. Splenic B cell 
subpopulation distribution of Insulinlo (black), Insulinhi (red), and non-IBCs (grey) B cells in spleens 
of 10 week old VH125.C57BL/6-H2g7 and VH125.NOD mice. Marginal zone (MZ), transitional 
type 1 (T1), and transitional type 2 (T2) B cells are CD21hi CD23lo, whereas follicular (FO) and 
transitional type 3 (T3) are CD21lo CD23hi. Marginal zone B cells are CD1d+.   
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Figure 6.3 Insulin-binding B cells in VH125.NOD show signs of activation and are 

responsive to stimuli prior to disease onset.
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Figure 6.3 IBCs in VH125.NOD show signs of activation and are responsive to stimuli prior 
to disease onset. A. Relative geometric mean fluorescence intensity of the surface markers 
CD19, CD21, and CD86 in splenic IBCs compared to non-IBCs in healthy female VH125.NOD 
and VH125.C57BL/6-H2g7 mice (8-12 weeks of age) mice. B. The frequency of insulin-binding 
B220lo CD138+ plasmablasts is increased in the spleen of VH125.NOD compared to non-IBCs. 
No insulin-binding plasma cells are detected in the VH125.C57BL/6-H2g7 mouse (data not 
shown). C. IBCs can be detected in the pancreas of VH125.NOD, but not T1D resistant 
VH125.C57BL/6-H2g7. D. IBCs in the VH125.C57BL/6-H2g7 (black line) do not mobilize 
intracellular calcium following stimulation compared to non-IBCs (grey line), whereas the IBCs in 
VH125.NOD (red line) do. E. Change in geometric mean fluorescence intensity of phosphorylated 
Syk following stimulation and PTEN levels in IBC versus non-IBC in VH125.C57BL/6-H2g7 and 
VH125.NOD mice. Cells were stimulated with 5 ug/mL of goat anti-mouse IgM F(ab)’2 in all 
stimulation experiments. Data are representative of at least three separate experiments. 
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Figure 6.4 Functional IBCs are required for in vivo activation of pancreatic 

anti-insulin T cells. A. VH125.NOD, but not VH125.C57BL/6-H2g7, splenic IBCs present 

insulin peptide (B:9-23) in their MHC II complex as measured by staining with mAb287. B. 

The number of splenic IBCs (shown in figure 1D) correlates with the frequency of pancreatic 

insulin-reactive CD4+ T cells as measured by tetramer staining. CD44, as a measure of T 

cell activation, is highest in the VH125.NOD. C. Overlaid histograms for IAg7-insulin 

tetramer staining (black) compared to control IAg7-HEL tetramer staining (grey). The 

frequency of IAg7-Insulin tetramer+ T cells (percentage in upper right corner) is highest in 

the VH125.NOD.
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CHAPTER 7 
 
 
 

Discussion and future directions 
 
 
 

 These studies are the first to identify B cell anergy is compromised early in autoimmune 

patients. I found both early onset T1D and AITD patients show defects in maintaining autoreactive 

B cells in the anergic B cell population. Importantly, I also found this defect occurs before onset 

of disease, since it is also seen in autoantibody positive, but not yet diabetic patients, and even 

some first degree relatives of T1D patients. Loss of anergic B cells is associated with high risk 

T1D HLA and non-HLA alleles, suggesting genetics is likely the major contributor to defects in 

maintenance of anergy. To support this, I show in mice B cell anergy of IBCs is compromised in 

NOD mice, an autoimmune prone strain with known genetic loci that contribute to autoimmunity, 

but not in C57BL/6 mice, and autoimmune resistant strain, harboring the same MHC II haplotype 

as NOD.  

These studies highlight some important findings regarding anergy in humans. First, an 

inability to sustain autoreactive B cells in the anergic compartment is common in at least three 

autoimmune disorders, T1D and AITD, as demonstrated here, and SLE as previously published 

[74]. I suspect in time the same will be shown for other autoimmune disorders, including MS and 

RA. Studies in our lab are currently addressing this possibility.  

 Secondly, loss of B cell anergy could be an early biomarker for individuals at risk for 

developing autoimmune disorders. Future studies to follow BND sufficient and deficient FDRs 

longitudinally for development of autoantibodies and disease are underway.  

Third, these studies demonstrate particular genetic risk alleles likely prevent autoreactive 

B cells from becoming anergic. Given that T1D and most other autoimmune diseases are 

polygenic, it is expected a combination of risk alleles, which may vary with each autoimmune 

disorder, work in concert to undermine B cell anergy. For T1D it appears high risk HLA haplotypes 
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and polymorphisms in the PTPN2, INS, IKZB3, and likely PTPN22 genes are involved. Future 

studies to validate these findings are needed. While the 1858C>T polymorphism in PTPN22 was 

not shown to have a statistically significant association with loss of B cell anergy, there was a 

trend, and the lack of significance was likely due to the small sample size and rarity of the 

polymorphism in the general population. This SNP is of particular interest, since it is a common 

risk allele among T1D, AITD, SLE, and RA and has been shown to alter negative regulation of B 

cell signaling [52, 168]. Hence, more studies to determine how this risk allele affects B cell anergy 

are needed. Previous studies in our lab have shown acute expression of the mouse ortholog of 

the human PTPN22 risk allele, PEP-R619W, induces activation, proliferation, and differentiation 

of anergic B cells upon transfer into a C57BL/6 recipient (unpublished). One could extend these 

findings to the VH125.C57BL/6-H2g7 mouse, in order to determine whether conditional 

expression of the PEP-R619W allele is sufficient to break anergy in the IBCs and possibly lead to 

diabetes. I have begun to breed these mice already in the lab in hopes of doing these experiments. 

Further, similar studies analyzing the status of anergic B cells in mice expressing any one of the 

mouse orthologs of these risk alleles or more simply conditional deletion of the gene, such as 

PTPN2, in B cells only could be accomplished. Studies in our lab are also currently underway to 

explore what the effect of loss of PTPN2 expression in B cells has on anergic B cells.  

Another important finding from this work demonstrates that anergic B cells in healthy 

humans have high PTEN expression, a negative regulator of B cell signaling, compared to non-

anergic B cells. While this has been shown in mice using transgenic models for B cell anergy [14, 

83], this is the first report to demonstrate increased PTEN expression occurs in anergic B cells in 

humans. Moreover, while decreased PTEN expression in B cells has been shown in SLE patients 

[160], this is the first report to show similar findings in T1D and AITD patients.  Perhaps more 

important, PTEN expression is decreased even further in the few remaining autoreactive BND cells 

in these subjects. These findings were mirrored in the mouse, in which PTEN was increased in 

all B cells in the disease resistant VH125.C57BL/6.H2g7 mouse, but particularly so in the IBCs 
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that remain anergic. However, PTEN was significantly decreased in all B cells in the disease 

susceptible VH125.NOD mouse, but especially in the non-anergic IBCs. Hence, it is possible 

PTEN levels may govern the responsiveness of autoreactive B cells in humans. I have begun 

studies in our lab to explore this possibility using various PTEN inhibitors. In addition, since PTEN 

levels have been shown to be regulated by microRNAs, such as miRNA 7, 21, 22, and 92a [160, 

169, 170], I am currently analyzing the relative abundance of these microRNAs in BND versus 

mature naïve B cells, with the hypothesis that BND cells from healthy individuals should express 

less of these miRNAs, while autoimmune subjects may express more of these regulating miRNAs 

in all B cells and any remaining BND cells. 

Moreover, these studies highlight the functional consequence of risk alleles on the 

activation of autoreactive B cells and their subsequent participation in disease. If autoimmune risk 

alleles, such as in PTPN22, PTPN2, or changes in microRNAs that target PTEN, work together 

to undermine B cell anergy, then this allows autoreactive B cells that normally should reside in 

the BND compartment to become activated, express CD86, and act as autoantibody producing 

cells and/or antigen presenting cells to T cells. This is suggested in the AITD studies in which 

anergic BND cells are lost, but the few remaining Tg-reactive BND cells express high levels of CD86 

and Tg-reactive B cells go on to produce autoantibodies. These findings were also shown in the 

VH125 mice. IBCs in the C57BL/6 mouse remain anergic, have decreased CD86 expression and 

increased PTEN expression, and are incapable of producing anti-insulin antibodies (data not 

shown) or placing insulin peptide in their MHC II. On the other hand, in NOD, an autoimmune 

prone strain, IBCs were functionally able to respond to anti-BCR stimulation, had normal to 

increased levels of CD86, decreased levels of PTEN, and were capable of producing anti-insulin 

antibodies and placing insulin-peptide in their MHC II, allowing them to receive T cell help. 

Although the mouse studies I have shown here nicely summarize what we hypothesize is 

occurring in human T1D patients, studies to show this in human have been difficult.  Over the 

past four years we have been members of the Network for Pancreatic Organ Donors with diabetes 
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(nPOD), which is an organization that procures organs from cadaveric T1D organ donors, 

including the pancreas, pancreatic lymph nodes, and spleen. From the few samples I have 

received and analyzed, I have been able to determine that the majority of the B cells present in 

the pancreatic islets bind to insulin and appear activated (data not shown). However, this needs 

to be repeated with more T1D organ donors and healthy controls in order to draw clear 

conclusions. Our lab and the nPOD network are actively seeking more organ donors around the 

world in order to collect vital information to better understand the pathogenesis of T1D in humans.    

In addition, we have cryopreserved pancreatic lymph node B cells from over 20 T1D subjects at 

various times in the disease process and healthy controls that I plan to analyze using over 35 B 

cell markers with mass cytometry. Results from these studies will hopefully shed light on the 

phenotype of insulin-binding B cells in the draining lymph node of the pancreas, which will better 

inform us of their role in T1D. Moreover, studies using mass cytometry will hopefully identify other 

markers of high affinity anergic B cells, other than low IgM expression, which will better enable us 

to track these cells in healthy controls and their disappearance in autoimmune subjects.   

Lastly, all of the studies presented here utilized the novel method I helped develop to 

identify and enrich for antigen-binding B cells from blood and tissues of humans and mice. While 

this method has mainly been used to identify autoantigen reactive B cells in studies of 

autoimmune disorders, the method could easily be applied to foreign antigens, such as bacteria 

or viruses, in order to follow the immune response in B cells during the course of infection or 

immunization. I have conducted preliminary studies tracking tetanus-binding B cells before and 

after immunization. However, further studies to identify changes in the repertoire of tetanus-

binding B cells following immunization could be completed using one of the many single cell 

dispersing technologies. Such studies would allow a deeper understanding of the somatic 

mutation and affinity maturation that occurs in antigen-reactive B cells. In addition, tracking 

antigen-reactive B cells during the course of a foreign antigen infection, such as from Ebola or 
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Zika virus, could help aid treatment and prevention measures through a better understanding of 

the role of B cells during disease.  

In conclusion, studies presented here demonstrate that anergy as a mode to tolerize 

autoreactive B cells in autoimmune patients is unstable. It is likely a combination of non-HLA risk 

alleles that impairs maintenance of B cell anergy through alterations in the threshold for B and T 

cell signaling and the correct HLA alleles that allow presentation of the relevant peptide which 

allows these autoreactive B cells to become activated and participate in disease.  
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