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ABSTRACT 

 

 

 

SEEING THE FOREST FOR THE SEEDS:  

MASTING AND MORTALITY IN DRY FOREST AND WOODLAND ECOSYSTEMS  

OF THE ROCKY MOUNTAINS AND COLORADO PLATEAU 

 

For forests to persist on the landscape, tree recruitment must keep pace with tree mortality. 

Larger, more frequent, and more severe disturbances have raised concerns about the capacity for 

water-limited forests and woodlands to recover under increasingly hotter climates. For most 

conifer species, seed availability is the fundamental prerequisite to new tree recruitment. In 

addition, most conifer species are also masting species, meaning seed production is highly variable 

among years and synchronous within a population. Masting creates boom and bust patterns of seed 

availability that shape forest dynamics. In many species, it remains unknown what drives masting 

or how the mosaic of climate and competition shape patterns of seed production across species 

ranges. This limits our ability to forecast forest demography across large spatial areas and under 

uncertain climate futures.  

This dissertation is an exploration into two key processes driving forest persistence and 

loss, mast seeding and tree mortality, in two pine species native to dry forests and woodlands of 

the Rocky Mountains and Colorado Plateau: piñon pine and ponderosa pine. In chapter one, I 

examine the spatiotemporal drivers of masting in piñon pine across its latitudinal distribution in 

Colorado and New Mexico. I demonstrate that masting was driven by favorable weather conditions 

acting during key phenological periods of cone development: initiation and pollination. Cone 

production was sensitive to the spatial variability in long-term climate - cooler and wetter sites 

produced more cones, more frequently than hotter and drier sites. In chapter two, I examined cone 
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production in ponderosa pine across a large portion of this species’ distribution between Arizona 

and Wyoming.  In contrast to piñon pine, I found that individual-level factors like tree size, age, 

and stand density, were better predictors of cone production than long-term climate or annual 

weather. In chapter three, I examined patterns of cone production between these two species jointly 

and related them to large scale modes of climate variability, like the North American monsoon and 

the El Niño Southern Oscillation. I found similar patterns, where piñon pine cone production was 

strongly associated with climate while ponderosa pine was not. Range wide synchrony in masting 

was associated with the North American monsoon, and regional north-south anti-synchrony was 

associated with the phase of the El Niño Southern Oscillation. Collectively, these chapters 

highlight contrasting masting patterns among these two, co-occurring pine species of dry forests 

and woodlands of the Rocky Mountains and Colorado Plateau. I explore the consequences of these 

contrasting life history strategies for forest management in this region, as well as the potential 

impacts of a changing climate and disturbance regime on seed production.  In the final chapter of 

this dissertation, I evaluated four drought metrics on their ability to correctly predict piñon pine 

die-off following a severe drought in 2018. The results highlight how some of these simple climate 

metrics can be used as an indicator of piñon pine die-off in future, hotter drought events, and I 

provide a simple framework for evaluating mortality risk at regional scales. 
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PREFACE 

 

 

For forests to persist into the future, new tree recruitment must exceed mortality (McDowell et 

al. 2020). Collectively, these two processes (recruitment and mortality) govern demographic 

rates and population growth in forests and woodlands (Merow et al. 2014). However, recent, 

accelerating rates of tree mortality have been observed across a range of forest types globally 

(vanMantgem et al. 2009, Allen et al. 2015). Larger, more frequent, and more severe 

disturbances like fires and droughts, pathogen-outbreaks, and insect infestations, have raised 

concerns about the capacity for forests and woodlands to recover under increasingly hotter 

climates (Milar et al. 2015, Davis et al. 2019, Batllori et al. 2020). Forecasts of tree mortality and 

recruitment events would be useful tools for managing and conserving forests under uncertain 

future conditions (Dietze et al. 2018). 

In seed-obligate (i.e., non-resprouting) trees, seed availability is a fundamental 

prerequisite to new tree recruitment (Clark et al. 1999). However, many trees do not produce 

seeds each year. Rather, many trees are masting species, meaning seed production is highly 

variable from year to year and often synchronous among individuals. Understanding masting can 

have benefits that go beyond predicting forest demographic processes. The boom-and-bust pulse 

of seeds through ecosystems can have cascading impacts on higher trophic levels, including the 

spillover of zoonotic diseases like sin Nombre orthohantavirus in the western US (Mills et al. 

1999). Masting is often associated with weather events like temperature or moisture anomalies 

during the seed development process (Pearse et al. 2016). However, specific weather effects on 

seed production vary among different species, populations, and even among co-located 

individuals, suggesting that any potential effects of a changing climate on seed production are 

unlikely to be uniform across large geographic areas. Range-wide demographic studies are 
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needed to quantify this spatial variability in demographic rates to identify areas of potential 

refugia to reproduction and recruitment, or alternatively, areas where extirpation may be likely.  

This dissertation is a demographic-based exploration into two key processes driving 

forest persistence and loss - mast seeding and tree mortality, in two dry pine species of the Rocky 

Mountains and Colorado Plateau: piñon pine and ponderosa pine. Over the next four chapters, I 

use a combination of field observations, empirical modeling, and spatial analyses to describe the 

patterns and drivers of these key demographic rates (i.e., cone production and tree die-off) across 

a large portion of these species ranges in the western US. The overarching goal of this 

dissertation was to lay the groundwork for future forecasts of plant demography, which will 

inform the management and conservation of dry forest and woodland ecosystems into the future.  

 

Research Organization 

This dissertation is organized into two parts. The first part contains three chapters, and each 

explores patterns of seed cone production in widespread, dry conifer species in the western US. I 

explore these patterns individually in the first two chapters (Chapter 1: piñon pine; Chapter 2: 

ponderosa pine), and together in the third chapter. Collectively, this section contributes to our 

understanding of how abiotic (e.g., climate and weather) and biotic factors (e.g., tree size, age, 

and competition) jointly impact masting at local, regional, and range-wide spatial scales. I 

describe divergent masting behavior in these two species and explore how this may affect future 

resilience and recovery under warmer climates and altered disturbance regimes.  

The second portion contains one chapter and investigates the spatial patterns of drought-

induced mortality (i.e., tree die-off) in piñon pine. Piñon pine is a model species in studies of 

drought and beetle associated die-off, and multiple climate thresholds have been proposed to 
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predict the tipping points of piñon pine mortality. I evaluated four of these thresholds based on 

their ability to correctly predict piñon pine die-off following a severe drought in 2018. The 

results highlight how some of these simple climate metrics can be used as an indicator of piñon 

pine die-off in future, hotter drought events. This research is the first, field-based comparison of 

several climate thresholds hypothesized to predict pinyon pine die-off, and I provide a simple 

framework for evaluating mortality risk at regional scales.  
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CHAPTER 1 

 

1ARIDITY DRIVES SPATIOTEMPORAL PATTERNS OF MASTING ACROSS THE 

LATITUDINAL RANGE OF A DRYLAND CONIFER SPECIES  

 

OVERVIEW 

Masting, or the synchronous and irregular production of seed crops, is controlled by 

environmental cues and resource budgets. Increasing temperatures and shifting precipitation 

regimes may alter the frequency and magnitude of masting, especially in species that experience 

chronic resource stress. Yet the effects of a changing climate on seed production are unlikely to 

be uniform across populations, particularly those that span broad abiotic gradients. In this study, 

we assessed the spatiotemporal patterns of masting across the latitudinal distribution of a widely 

distributed dryland conifer species, piñon pine (Pinus edulis). We quantified seed cone 

production from 2004-2017 using cone abscission scars in 187 trees from 28 sites along an 1100 

km latitudinal gradient to investigate the spatiotemporal drivers of seed cone production and 

synchrony across populations. Populations from chronically hot and dry areas (greater climatic 

water deficits and less monsoonal precipitation) tended to have greater interannual variability in 

seed cone production and smaller crop sizes. Mast years generally followed years with low vapor 

pressure deficits and high precipitation during key periods of the reproductive process, but the 

strength of these relationships varied across the region. Populations that received greater 

monsoonal precipitation were less sensitive to late summer vapor pressure deficits during seed 

cone initiation yet more sensitive to spring vapor pressure deficits during pollination. Spatially 

correlated patterns of vapor pressure deficit better predicted synchrony in seed cone production 
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than geographic distance, and these patterns were conserved at distances up to 500 km. These 

results demonstrate that aridity drives spatiotemporal variability in seed cone production. As a 

result, projected increases in aridity are likely to decrease the frequency and magnitude of 

masting in these dry forests and woodlands. Declines in seed production may compound climatic 

limitations to recruitment and impede tree regeneration, with cascading effects for numerous 

wildlife species. 

 

INTRODUCTION 

The synchronous production of highly variable annual seed crops, also known as masting, 

is a common reproductive strategy in dry forests and woodlands. Yet plant species that exhibit 

episodic demographic patterns are likely to be disproportionately affected by a changing climate 

(Enright et al. 2015). Pulsed demographic processes like seed production (Koenig and Knops 

2000, Pearse et al. 2016) and seedling recruitment (Savage et al. 1996, Rother and Veblen 2017) 

characterize dryland ecosystems, where water availability and evaporative demand strongly drive 

plant physiology (Loik et al. 2004). Projected increases in the aridity of many drylands 

throughout the 21st century (Seager et al. 2007, Buotte et al. 2018) portend shifts in species 

persistence through reductions in the frequency and magnitude of these demographic pulses. 

Given that successful seed production is the essential prerequisite for plant establishment, 

disruptions in seed production could act as a bottleneck to tree regeneration (Ruano et al. 2015, 

Brown et al. 2019). However, we still lack a quantitative understanding of the relationship 

between seed production and the spatiotemporal heterogeneity in water availability, particularly 

in comparison to demographic surveys of tree growth (Adams and Kolb 2004, Barger and 
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Woodhouse 2015, Redmond et al. 2017) and seedling establishment (Savage et al. 1996, Rother 

and Veblen 2017).  

The high interannual variability in seed production may reflect an inability to accumulate 

enough resources in a single growing season to regularly produce large annual seed crops (i.e. 

“resource budget hypothesis”, Isagi et al. 1997). A global analysis of masting species suggests 

that masting is a more common form of reproduction in less productive environments (Kelly and 

Sork 2002), and water availability has been linked with seed production in some dryland systems 

(Perez Ramos et al. 2010, Mooney et al. 2011). Indeed, trees in more resource limited 

environments tend to have more variable seed production and lower long-term averages (Pearse 

et al. 2017) and seed production has declined in some conifer species in association with 

increasing temperatures (Mutke et al. 2005, Redmond et al. 2012). If water limitations underlie 

masting behavior in dryland tree species, it follows that seed production should exhibit greater 

interannual variability in more water limited environments. 

Processes that synchronize ecological phenomena across populations due to correlated 

environments, also known as Moran effects (sensu Moran 1953, Koenig 2002), are well 

documented in masting species (Koenig and Knops 2000). Weather conditions, particularly 

during key reproductive processes (such as ovule differentiation, flowering, or pollination), are 

often strongly associated with seed production (eg. Forcella 1981, Parmenter et al. 2018). The 

relationship between weather and seed production is hypothesized to synchronize masting among 

individuals within a population, creating economies of scale that increase pollination efficiency 

and reduce seed predation (reviewed in Pearse et al. 2016). Disruptions in weather-masting 

relationships could affect the frequency or synchrony of mast events (Iler and Inouye 2013, 

Monks et al. 2016), therefore increases in temperature or shifting precipitation regimes could 
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decrease the future occurrence of large seed crops in masting species. The question remains for 

many species: Over what extent does synchrony in masting occur, and what role does the 

spatiotemporal variability in weather play in determining patterns of mast-synchrony across 

geographically separated populations?  

The extent of synchrony and variability in seed production across populations is often 

difficult to quantify due to the significant investment required in collecting supra-decadal time 

series across large geographic regions (but see: Koenig and Knops 1998 and 2013). It seems 

unlikely however that the relationship between seed production and weather should be uniform 

across areas of diverse climatic or topographic gradients. Tree growth, for example, is well 

documented to be more sensitive to fluctuations in interannual weather conditions at water 

limited sites (Fritts 1976, Barger and Woodhouse 2015, Redmond et al. 2017). In addition, recent 

work from Bogdziewicz et al. (2019) showed sessile oaks (Quercus petraea) at colder sites were 

more responsive to spring temperatures during flowering periods. Following the resource budget 

hypothesis, dryland ecosystems are strong candidate areas to observe interactions between the 

spatial patterns of water availability and the temporal fluctuations in weather on seed production.  

In this study, we reconstructed 14 years of seed cone production in 28 sites (n = 187 

trees) that span climatic gradients across the latitudinal distribution of a widespread conifer in the 

western United States, piñon pine (Pinus edulis, Engelmann). Our objectives were threefold: 

 

Objective 1) Identify the weather conditions that most strongly correlate with piñon pine seed 

cone production.  

Objective 2) Assess how the mean, interannual variability, and synchrony of seed cone 

production among trees within a population vary across gradients of aridity.  
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Objective 3) Investigate if trees in more arid environments are more sensitive to the weather 

conditions associated with masting. 

 

We predict that trees in more arid environments will exhibit lower seed cone production, greater 

interannual variability of seed cone production, and greater synchrony of reproduction within a 

site, as reproduction is limited to years to cool and wet years. As such, we expect trees in arid 

environments to be more sensitive to fluctuations in weather relative to trees that do not 

experience chronic water limitations. The expected outcome is that patterns of annual seed cone 

production should be similar among geographically separated populations occupying similar 

environments. 

 

METHODS 

Study species and region 

Piñon pine is a masting, dryland conifer that occurs across 100 million acres of the 

western United States (Romme et al. 2009). Piñon pine is often a model species for a significant 

amount of dendrochronological and climate change research because of its pronounced 

sensitivity to climate (Redmond et al. 2017, Breshears et al. 2018). Piñon pine seeds are an 

important food resource for a diverse array of wildlife species (Chambers et al. 1999) and are 

also gathered by local communities and commercial harvesters. (Lanner 1981). Previous research 

has shown that piñon pine seed cone production is strongly negatively associated with late 

summer temperatures at the time of seed cone initiation (Forcella 1981, Parmenter et al. 2018), 

and cone production has declined by over 60% in some areas of New Mexico during a 30-year 

period of climate warming (Redmond et al. 2012). 
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Seed cone production is initiated when reproductive structures differentiate in the late 

summer, two years prior to seed maturation (yr-2). Seed cones lay dormant overwinter and then 

undergo wind pollination the following spring (yr-1) (Little 1938, Mirov 1967). Pollen grains 

remain in the unfertilized cones until the proceeding spring (yr0) when fertilization, followed by 

rapid growth, occurs. Seeds mature in the fall, about 26 months following seed cone initiation. 

Discrete phenological periods like seed cone initiation and pollination strongly influence 

reproductive success in many species yet are often restricted to a matter of weeks or days (eg. 

Forcella 1981, Parmenter 2018). While damage from insects to seed cones can occur at nearly 

any point throughout the two-year cycle (Little 1943), severe weather conditions like drought 

during key phenological periods can exert strong negative controls over seed production 

(Bogdziewicz et al. 2018).   

This species is found across a broad range of environmental conditions, with a 

distribution spanning 10 degrees of latitude (~1100 km) and commonly occurring in elevations 

ranging from 1500 – 2500 m above sea level. The North American monsoon drives a bimodal 

distribution of annual precipitation in this region, decreasing along a south to north gradient 

across the latitudinal range of this species (Romme et al. 2009). Mean summer temperatures at 

our sites usually peak in July (ranging from 17.9° - 24.1° C) and are coldest in the month of 

January (ranging from -5.2° – 4.52° C, PRISM Climate Group 2018).  

 

Field sampling 

We sampled 28 sites that spanned gradients of elevation (1000 meters) and latitude (1100 

kilometers). Potential sites were identified using existing vegetation classifications (LANDFIRE 

2008) in tandem with geographic information systems. The study area was bounded 
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approximately between 40° and 33° latitude and -109° to -106° longitude. Sites were stratified 

by latitude and located within 1 kilometer of roads on federal public lands. We used a clustered 

sampling design wherein sites were paired within latitudinal bands to span the elevational 

distribution of piñon pine in the region. Doing so allowed us to survey across local (< 20 km) 

temperature and precipitation gradients in tandem with regional (> 100 km) climatic and 

physiographic gradients. In the field, we selected study sites that contained a minimum of six 

reproductively mature, healthy trees within an approximately 40 x 50-meter area. Several sites 

were excluded from sampling due to inadequate numbers of healthy, cone producing trees, 

particularly in areas that experienced high levels of drought-related mortality in the past two 

decades (Breshears et al. 2005). Mean annual precipitation at these sites ranged from 300 mm to 

630 mm (1981-2010, PRISM Climate Group 2018). Monsoonal precipitation (July-September) 

averages 56% of the mean annual precipitation in our southern sites, decreasing to 23% at our 

higher latitude sites (PRISM Climate Group 2018; Appendix 1 Table A.1.1). 

At each site, three 50-meter transects were established perpendicular to the slope and we 

recorded the physical characteristics of all trees with a diameter at the root collar (DRC) greater 

than 20 cm within a 5-meter belt upslope from the transect. We measured tree height with a laser 

range finder and canopy area by taking two perpendicular measurements of the live tree crown. 

We then sampled 6-8 piñon pine trees per site (randomly selected from our transects) for our 

cone production analyses. Trees were required to be healthy and reproductively mature, as 

confirmed by the evidence of at least one cone scar in the previous 15 years. This was 

determined by observing cones in the canopy of the tree or cutting branches to confirm the 

presence of cone scars. If six trees that met our sampling criteria were not present within five 

meters upslope of our transects, we established an additional fourth transect. If this additional 
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transect did not encompass enough healthy trees to meet our sampling requirements, we sampled 

the nearest healthy, mature piñon pine of any size within 10 meters of our transects. Damage to 

the bark can obscure observations of cone scars, particularly further back in time. Thus, trees 

with conspicuous evidence of severe canopy dieback were excluded from sampling. Low 

confidence or damaged scars were recorded as null and not included in our analyses. A severe 

drought in this region in 2002 limited our ability to confidently count cone scars prior to 2004.   

We used the cone abscission scar method (Redmond et al. 2016) to quantify historical 

cone and conelet production from 2004 to 2017. Piñon pine cones leave visible scars at the point 

of attachment to a branch. Crossdating the presence and absence of scars and any remaining cone 

or conelets with annual bud scales on the branch allows for the historical reconstruction of cone 

production in this species (Forcella 1981, Redmond et al. 2016). While this method is highly 

accurate at distinguishing between years of high and low seed cone production, this method 

cannot resolve whether seed cones were subsequently aborted prior to seed fall, or the quantity 

viable seeds were produced (Redmond et al. 2016). We quantified cone production on 6-8 trees 

at each site by first counting the number of cones and cone scars per year on 6-8 branches per 

tree and then averaging this value across all branches (following Redmond et al. 2016). This 

value was then multiplied by the number of cone bearing branches per tree and averaged across 

all trees sampled for cone production within a site. Branch counts can vary among observers, 

therefore, estimates of cone bearing branches were performed by a single, consistent observer in 

the field at all sites.  

 

Statistical Analysis: Masting Metrics 
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Annual seed cone production was calculated at the site level, as an average of seed cones 

produced per tree, per year. The long-term mean of seed cone production is this value averaged 

across all trees and all years. We used the coefficient of variation to describe the population-level 

interannual variability in cone production (CVp), which is measured as a ratio of the standard 

deviation to the mean of site-level cone production (wherein higher values are indicative of 

greater variability). Synchrony (r) within a site was measured as the pairwise Spearman’s 

correlation (to account for the highly skewed distributions of cone count data) between all trees 

and across all years at a given site (Table 1.1). Synchrony between sites was calculated as the 

pairwise Spearman’s correlation between sites within a cluster (Appendix 1 Table A.1.1, see 

below for discussion of clustering methods).  

 

Temporal patterns: Relationship between weather and masting 

To identify the weather variables that most strongly influence cone production (Objective 

1), we used Spearman’s rank correlations to compare mean annual seed cone production at each 

site (n=28) with monthly and bimonthly averages of mean vapor pressure deficit (VPD) and 

cumulative precipitation (Appendix 1 Table A.1.2 and A.1.3). Conditions like cloud cover, air 

pressure, and wind speed can influence local weather and plant productivity, but we focused on 

VPD and precipitation because they strongly influence plant water stress in these dryland 

ecosystems and are highly correlated with forest growth (Williams et al. 2013; Redmond et al. 

2017). VPD is the difference between the amount of moisture in the air (actual vapor pressure) 

and the amount of moisture the air can hold if it was fully saturated (saturated vapor pressure, 

Anderson 1936). We assessed running correlations for the three years prior to seed fall (Figure 

1.1). We identified the two strongest correlates of seed cone production based on the strongest 
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Spearman’s correlation coefficient. Interpolated weather data were obtained from PRISM at a 4-

kilometer resolution (PRISM Climate Group 2018). All analyses were performed in the 

statistical program R (R Core Team 2016). 

 

Spatial Patterns: Relationship between climate and masting 

We examined the effects of the spatial patterns of aridity on piñon pine seed cone 

production (Objective 2) by focusing on two variables: 30-year normal climatic water deficit 

(CWD) and monsoonality (percent contribution of July, August, and September precipitation to 

the mean annual precipitation). Climatic water deficit is the estimated difference between 

potential and actual evapotranspiration (i.e. the unmet demand for plant-available water), is 

influenced by changes in solar insolation and topography, and correlates strongly with species 

distributions (Stephenson 1998). Monsoonality is a spatial measurement of the average seasonal 

water deficit, which captures the bimodal distribution of precipitation in this region and co-varies 

strongly with latitude across our sites (Pearson’s r = -0.83). Monsoonal precipitation provides a 

significant source of hydrologic relief to plants during the late summer months, when 

evaporative demand is frequently at its highest and when reproduction is initiated in this species 

(Little 1938). Moreover, this monsoonal gradient is hypothesized to strongly influence tree 

sensitivity to annual climate, either due to an increased ability to photosynthesize under greater 

vapor pressure deficits (Szejner et al. 2016) or genetic adaptation (Mitton and Duran 2004).  

Thirty-year averages of climatic water deficit and monsoonality were calculated using 

field derived measurements of slope, aspect, and latitude with 800-meter resolution PRISM data 

(PRISM Climate Group 2018) and represent the spatial patterns of water availability at landscape 

scales. Climatic water deficit was calculated using a Thornthwaite type water balance equation 
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(Thornthwaite 1948, Dingman 2002) following the equations provided in Lutz et al. (2010), 

which calculates water loss from a hypothetical standard crop. We used the CWD and AET 

function in R (Redmond 2018) and assumed a constant soil available water capacity of 200 mm 

across all sites following Redmond et al. (2017), which is near the upper limit of soil available 

water capacity in our study region and thus assumes soil available water capacity is not limiting. 

We used multiple linear regression to assess the relationship between spatial patterns of 

water deficits, monsoonality, and masting. We regressed climatic water deficit and monsoonality 

against mean seed cone production (averaged across all years within a site), interannual 

variability (CVp), and synchrony among trees within a site. We hypothesized that tree size would 

covary with seed cone production and thus included a stand-level covariate to account for 

differences in tree size among our sites. We used mixed effect models to identify the strongest 

correlation between three metrics of tree size (live canopy area, basal area measured at root 

collar, and tree height) and mean seed cone production at the tree-level (see Appendix 1 Table 

A.1.4 for details). Because canopy area was most strongly related to seed cone production 

(Appendix 1 Table A.1.4), we averaged mean live canopy area across all trees sampled for seed 

cone production at each site to include as a covariate in our models. All analyses of spatial 

patterns were conducted at the site level. We scaled all predictor variables to a mean of zero and 

a standard deviation of 1 prior to all statistical analyses to facilitate interpretations between 

coefficients, thus, we report standardized regression coefficients in all models. Variance inflation 

factors of all models were less than 3 (Zuur et al. 2010) and confirmed using the vif function in 

the R package “car” (Fox and Weisberg 2019).  
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Spatiotemporal interactions: Differential sensitivity to the annual drivers of seed cone 

production 

We tested for interactions between spatial patterns of aridity and weather on seed cone 

production (Objective 3) using generalized linear mixed effect modeling. Specifically, we tested 

whether climatic water deficit or monsoonality influenced the sensitivity of annual seed cone 

production to the two strongest weather correlates identified in Objective 1. Similar to our 

analyses above, we calculated mean cone production across all trees at a site for each year and 

thus these analyses were conducted at the site-level rather than the tree-level. We also included 

mean live canopy area as a covariate in our model. The full model was fit to a negative binomial 

distribution using the “glmmadmb” package (Fournier et al. 2012). Site was included as a 

random intercept to account for the repeated measurements (i.e. years) at each site. We tested all 

possible subsets of model predictors using the dredge function in the “MuMin” package (Barton 

2018), ranked these models based on AICc criteria, and averaged all models within four AICc 

units of the top model (Table 1.2, Appendix 1 Table A.1.6).  

 

Synchrony of seed cone production 

Hierarchical cluster analyses were used to identify groups of sites that exhibited 

synchronous seed cone production. We calculated a Euclidian distance matrix of seed cone 

production at all sites and across all years using a flexible beta linkage rule of -0.25 to 

approximate the average linkage between all pairs of sites. Seed cone production was relativized 

as an annual proportion of the total site production across all years to account for differences in 

long term productivity or tree size among sites. We plotted the results onto a dendrogram to 

identify groupings based on shared patterns of mean annual seed cone production and examined 
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the scale of spatial synchrony across all sites using a Mantel test in the “vegan” package 

(Oksanen et al. 2018).  

Multiple regression on distance matrices (MRM) was used to test the role of weather in 

structuring the patterns of spatial synchrony. We calculated pairwise geographic distances 

between all sites and Euclidian distance matrices of the weather correlates identified from 

Hypothesis 1. These three matrices were then regressed against the Euclidian distance matrix of 

seed cone production to determine how weather structures spatial synchrony between sites. The 

model was built in the ecodist package (Goslee and Urban 2007) and significance was 

determined using a permutation test (n=999, Appendix 1 Table A.1.5).  

 

RESULTS 

Temporal patterns: Relationship between weather and masting 

We identified two discrete periods with strong associations between seed cone production 

and weather. These periods correspond to the timing of seed cone initiation and pollination 

which are two key reproductive processes in pines. The average VPD during the month of 

August, two years prior to cone maturation (median Spearman’s ρ = -0.45, Figure 1.1, Appendix 

1 Table A.1.2) and the average VPD during the months of April and May, one year prior to cone 

maturation (median Spearman’s ρ = -0.56, Figure 1.1, Appendix 1 Table A.1.3) were the 

strongest correlations during each of these respective periods. Annual seed cone production was 

also positively correlated with precipitation during seed cone initiation (August/September yr-2 

median Spearman’s ρ = 0.44, Appendix 1 Table A.1.3; Figure 1.1) and pollination (April/May 

yr-1 median Spearman’s ρ = 0.50, Appendix 1 Table A.1.3; Figure 1.1). 
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Figure 1.1. Running median Spearman’s correlations between annual seed cone production and 
monthly weather for the three years prior to seed maturation. Solid lines indicate median 

correlation and dot- ted lines indicate 1st and 3rd quartiles. Top panel shows precipitation (blue 

line) and bottom panel shows mean vapor pressure deficit (red line). Arrows indicate key 

phenological periods of seed cone initiation (August, two years prior to seed maturation) and 

pollination (April/May one year prior to seed maturation). 

 

Spatial Patterns: Relationship between climate and masting 

 Two components of masting (mean cone production and CVp) exhibited significant 

relationships with spatial patterns of aridity (Table 1.1, Figure 1.2). Monsoonality had a positive 

association with mean cone production (β = 0.51, P = 0.004) and a negative association with CVp 
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(- 0.30, P = 0.13). Inversely, climatic water deficit was associated with higher CVp (β = 0.52, P = 

0.009) and lower mean cone production (β = - 0.44, P = 0.008), indicating that trees at more 

water limited sites produce smaller and more variable cone crops. Mean live canopy area 

exhibited a positive association with mean seed cone production (β = 0.32, P = 0.043) but no 

clear relationship with CVp (β = - 0.13, P = 0.49). Synchrony between trees at a site showed no 

relationship with either monsoonality or climatic water deficit, suggesting that the processes that 

govern local synchrony among trees are relatively uniform across climatic gradients (Table 1.1).  

 

Table 1.1) Model results from multiple linear regression models examining the effects of aridity 

(climatic water deficit and monsoonality) and mean live canopy area (to account for differences 

in stand structures) on three masting metrics (mean cone production, CVp, and within site 

synchrony). Coefficients are scaled to a mean of zero and a standard deviation of one.  

 

Variable β SE 
 

P value  

Mean seed cone production model 
   

   

  Climatic Water Deficit - 0.44 0.15 0.008 

  Monsoonality 0.51 0.16 0.004 

  Mean Live Canopy Area 0.32 0.15 0.043 

    

 R2= 0.54 Df = 24 P < 0.001 

CVp model 
   

   

  Climatic Water Deficit 0.52 0.18 0.009 

  Monsoonality - 0.30 0.20 0.13 

  Mean Live Canopy Area - 0.13 0.18 0.49 

    

 R2= 0.30 Df=24 P = 0.01 

Within site synchrony model 
   

   

  Climatic Water Deficit 0.17 0.21 0.45 

  Monsoonality 0.15 0.23 0.99 

  Mean Live Canopy Area 0.18 0.22 0.42 

    

 R2= 0.06 Df=24 P = 0.70 

 



17 

  

Figure 1.2) Partial residual plots from multiple regression models showing the effects of aridity 

(30-yr climatic water deficit and monsoonality) on mean seed cone production (seed cones tree–
1yr–1) (panels a and b) and interannual variability of seed cone production (CVp , panels c and 

d). Solid lines show the predicted mean effect with dashed lines showing the 95% confidence 

intervals. 

 

Spatiotemporal interactions: Differential sensitivity to the annual drivers of seed cone 

production 
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Mean annual seed cone production was strongly associated with weather, aridity, and the 

interaction between the two (Figure 1.3). We did not detect any significant interactions between 

climatic water deficit and vapor pressure deficit; however, there were significant interactions 

between monsoonality and vapor pressure deficit during key periods of the reproductive process, 

indicating that the seasonal availability of water influenced the sensitivity of trees to evaporative 

demand (Figure 1.3, Table 1.2). Trees in areas of high monsoonal precipitation were not as 

strongly negatively associated with vapor pressure deficit during seed cone initiation in the late 

summer (yr-2) P < 0.001) but were more sensitive to vapor pressure deficit during pollination the 

following spring (yr-1) (P = 0.002). Greater climatic water deficit was associated with decreased 

annual seed cone production (β = - 0.29, P < 0.001) and monsoonality was associated with 

increased annual seed cone production (β = 0.30, P = 0.004, Table 1.2). Mean live canopy area 

was also positively associated with seed cone production (β = 0.21, P = 0.13).  

 

Table 1.2) Model averaged coefficients from generalized linear mixed effects models 

demonstrating the effects of weather, aridity, and the interactions between the two on mean 

annual seed cone production. Mean live canopy area and the previous year’s cone crop were 
included as covariates in our model. Coefficients are scaled to a mean of zero and a standard 

deviation of one.  

 

Variable β SE P value 

Weather    

  April/May VPD yr-1 - 0.54 0.06 < 0.001 

  August VPD yr-2 

 

- 0.22 0.06 < 0.001 

Aridity    

  Monsoonality 0.30 0.10 0.004 

  CWD 

 

- 0.29 0.08 < 0.001 

Spatiotemporal Interactions    

  April/May VPD yr-1 x Monsoonality - 0.19 0.06 0.002 

  August VPD yr-2 x Monsoonality 0.30 0.07 < 0.001 
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  April/May VPD yr-1 x CWD - 0.02 0.07 0.71 

  August VPD yr-2 x CWD 

 

- 0.08 0.06 0.19 

Covariates    

  Cones yr-1 - 0.34 0.06 < 0.001 

  Mean Live Canopy Area 0.21 0.08 0.13 

 

 

Figure 1.3) Partial residual plots of mean annual seed cone production (seed cones tree–1 yr–1) 

response to mean vapor pressure deficit at sites of low (10% quartile, left), medium (50% 

quartile, center) and high (90% quartile, right) levels of monsoonality. Top panels show a 

decreasing sensitivity to vapor pressure deficit during the period of seed cone initiation (August, 

two years prior to seed maturation) and bottom panels show an increasing sensitivity during seed 

cone pollination (April/May, one year prior to seed maturation) at higher levels of monsoonality. 

Vapor pressure deficit was scaled to a mean of zero and a standard deviation of 1 at each site. 

Solid lines show the predicted mean effect with dashed lines showing the 95% confidence 

intervals. 
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Synchrony of seed cone production 

 

We identified four clusters of sites that had high synchrony in seed cone production and 

were for the most part geographically contiguous (Figure 1.4). CVp within clusters ranged from 

1.24 - 1.87. Clusters A and B were located almost entirely within Colorado, and produced on 

average, approximately 25% fewer seed cones than clusters C and D. Cluster D was located 

entirely within New Mexico, experienced the highest rates of monsoonal precipitation, and 

consistently produced the largest cone crops.  

 

 



21 

Figure 1.4) Spatial patterns of synchrony (left) and temporal patterns of mean annual seed cone 

production (seed cones tree–1 yr–1) and associated weather conditions (right) across all study sites. 

Background coloration of map shows gradient of monsoonality overlaid with distribution of study 

sites. Letters next to sites indicate cluster association, and selected cities are denoted by a star for 

reference. Right panels are time series of mean annual seed cone production (left axis, solid black 

lines) and mean vapor pressure deficits (right axis) during key phenological periods within each 

cluster from 2004 to 2017. The red dotted line denotes August vapor pressure deficit during seed 

cone initiation, and the blue dashed line denotes April/May vapor pressure deficits during seed 

cone pollination. Vapor pressure deficit was scaled to a mean of 0 and a standard deviation of 1 

within each cluster. 

 

We detected positive spatial autocorrelation in the synchrony of seed cone production 

across all sites (Mantel correlation = 0.30, P = 0.001) and synchrony remained high at distances 

up to approximately 500 kilometers (Mantel correlation = 0.20, P = 0.003). Vapor pressure 

deficit during the periods of seed cone initiation (late summer yr-2) and pollination (spring yr-1) 

were significant predictors of synchrony between sites in our MRM model (R2 = 0.29, P = 0.001, 

Appendix 1 Table A.1.5). Geographic distance was not a significant predictor of between-site 

synchrony in our model, indicating that the spatial scale of local weather patterns exhibited 

greater explanatory power than distance alone. 

 

DISCUSSION 

Coincident declines in the climatic conditions favorable to seed production and seedling 

establishment will alter the regeneration niche of many tree species in the future (Enright et al. 

2015). In this study, we demonstrate that the spatial patterns of aridity were associated with 

reductions in mean seed cone crop size and increased interannual variability in seed cone 

production. Notably, seed cone production was strongly and negatively associated with vapor 

pressure deficits but the sensitivity of this relationship varied across the latitudinal distribution of 
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this species in association with spatial patterns of seasonal moisture. As a result, seed availability 

may be more limiting in arid areas, particularly following years of high vapor pressure deficits or 

low precipitation. This work demonstrates the potential for a quantitative understanding of 

conifer seed cone production across large and spatially heterogeneous geographic regions, which 

is crucial to accurately model changes in forest and woodland demography in response to climate 

change.  

 

Aridity drives spatial and temporal variation in seed cone production  

Our results largely supported our predictions and illustrate the dominant role of water 

availability in determining variability in seed production across both space and time. Vapor 

pressure deficit during seed cone initiation and pollination was negatively associated with 

subsequent annual seed cone production. Similar patterns are seen in Mediterranean oak 

(Quercus ilex), for which greater access to water increased acorn production in both space and 

time (Perez Ramos et al. 2010). In other systems, however, spatial and temporal correlates of 

seed production are decoupled. For example, years of high population-level acorn production in 

valley oak (Quercus lobata) are associated with warm spring temperatures, whereas tree-level 

acorn production is associated with microsites that allow for better access to water (Barringer et 

al. 2013, Koenig et al. 2015). Our study suggests that evaporative demand during key 

phenological periods limits reproductive success to irregular intervals and leads to the high 

variability and episodic nature of mast seeding in this species and likely many others.  

The relationship between aridity and the spatiotemporal variability in seed production 

suggests we can anticipate the impacts of climate change on seed production by understanding 

changing water dynamics. In other systems where the temporal and spatial correlates of seed 
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production are decoupled, there can be complex interactions among the drivers of seed 

production which complicate predictions about the impacts of a changing climate on seed 

production (Smaill et al. 2011). While our results suggest seed production will be negatively 

impacted by a warming climate, we demonstrate that these relationships are not uniform across 

the landscape. The role of summer precipitation, which covaries with latitude in this region, will 

become increasingly important for maintaining seed cone production in future warmer climates.  

We identified clear evidence for Moran effects in the patterns of synchronous seed 

production across sites. Sites that experienced similar vapor pressure deficits during seed cone 

initiation and pollination were observed to more frequently mast in concert with one another. 

The landscape-scale conservation of these relationships points to the potential to develop 

regional forecasts of mast events, which would prove useful to ecosystem managers and local 

pine nut gatherers. It is also important to recognize that other weather variables unmeasured in 

this study may also be useful for future forecasts of masting in this species. Further work is 

needed to quantify the forecast horizon of masting in this species, although predictions could be 

made as far as a year or more in advance for piñon pine and further refined in the months 

preceding seed fall. Challenges to forecasting masting include accounting for the abortion of 

cones resulting from density dependent impacts of pre-dispersal seed predators and self-

pollination.  

 

Broad scale climatic gradients influence sensitivity to annual drivers of seed cone production 

Spatial patterning in monsoonal precipitation across the latitudinal distribution of this 

species affected the sensitivity of seed cone production to vapor pressure deficits. We expected 

that higher temperatures, which lead to greater vapor pressure deficits, would restrict seed cone 
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production at the southernmost distribution of our species. Yet the southernmost populations 

experienced stronger monsoonal climates, which reduced the effects of evaporative demand 

during seed cone initiation. Annual cone production at sites with stronger monsoonal climates 

exhibited weaker associations with vapor pressure deficit during reproductive initiation, and 

these sites exhibited higher mean reproductive output and lower CVp over the course of this 

study. Inversely, sites further north were more sensitive to VPD during seed cone initiation but 

were less sensitive to VPD during pollination. Wetter spring months or greater infiltration of 

snow melt can act as a buffer against high evaporative demands during pollination in northern 

portions of piñon pine’s range, whereas the lack of spring precipitation further south inversely 

increases this sensitivity. 

This result is intuitive- the onset of the North American monsoon provides significant 

hydrologic relief to trees during the hottest part of the year (Truettner et al. 2018). Piñon pine 

also exhibits strong anisohydric tendencies and is efficient at increasing shallow root 

conductivity following moisture pulses, such as monsoonal storms (Linton et al. 1998, West 

2006). Similarly, in southwestern ponderosa pine forests, access to monsoonal precipitation 

increased the efficiency at which trees were able to maintain photosynthesis under high vapor 

pressure deficits (Sjenzer et al. 2016). Genetic variation could also explain the differential 

sensitivity of tree populations to evaporative demand. Alleles associated with longer, narrow 

stomata in piñon are more frequent in arid microhabitats and in regions with less summer 

precipitation (Mitton et al. 1998, Mitton and Duran 2004). Stomatal polymorphism likely 

increases water use efficiency and drought tolerance, and similar relationships may also be 

present in other tree species that experience seasonal water limitations. 
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Implications 

Our results suggest that predicted increases in water deficits, coupled with increasing 

evaporative demand, will lead to declines in the frequency and magnitude of mast seed events in 

climate-sensitive species the future. This trend could depress seedling recruitment, especially 

following projected increases in overstory mortality events due to wildfire and drought (Williams 

et al. 2010, Williams et al. 2013, McDowell et al. 2016), and may also negatively impact the 

various wildlife species that rely on conifer seeds (Christiansen and Whitman 1993, Brown et al. 

2001, Fair et al. 2018). Our results, in tandem with previous work from these systems, 

demonstrate that piñon pine is experiencing significant climate related demographic stress in 

association with a warming climate. Concurrent declines in seed production (Redmond et al. 

2012), seedling establishment (Redmond et al. 2015, Floyd et al. 2015), growth (Redmond et al. 

2017), and survival (Breshears et al. 2005) portend a shift in the distribution and persistence of 

this conifer across the most arid portions of its range. Given piñon pine’s role as a keystone 

species in many ecosystems for providing wildlife habitat (Bombacci and Pejchar 2016), food 

resources (Ignatov et al. 2017), water retention (Morillas et al. 2017), and carbon storage (Huang 

et al. 2010), it is vital to understand the potential consequences of this demographic squeeze.  

 

CONCLUSION 

 Our research demonstrates that seed cone production varies continuously and predictably 

across climatic gradients and documents the regional synchrony of masting in dry forests and 

woodlands. The non-linear relationships between weather, climate, and seed cone production 

highlight the importance of incorporating population-level geographic variability in future 

studies. Spatiotemporal models of conifer seed cone production and forest demography are key 
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to anticipating bottlenecks to tree recruitment, predicting range shifts, and identifying spatial 

refugia for species projected to experience more arid climates.   
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CHAPTER 2 

 

 

 
2JOINT IMPACTS OF WEATHER, CLIMATE, AND STAND STRUCTURE ON MAST 

SEEDING IN PONDEROSA PINE 

 

OVERVIEW 

Tree recruitment is shaped by climate, disturbance, and seed availability. Many trees are masting 

species, meaning seed production is highly variable from year to year and often synchronous 

within a stand. Masting remains poorly understood, and it is uncertain how a changing climate, 

altered disturbance regimes, and shifting management priorities may impact the timing and 

magnitude of future seed production across species ranges. We aimed to better understand what 

drives masting in a widely distributed conifer species in western North America, Rocky 

Mountain ponderosa pine (Pinus ponderosa var. scopulorum) dominated ecosystems. We 

surveyed ca. 15 years of cone production in 275 individuals from 49 locations varying in both 

climate and stand structure and which encompassed a 1300 km latitudinal gradient between 

Arizona and South Dakota, USA. We used mixed models to test competing hypotheses behind 

the drivers of annual cone production, and modeled the mean, interannual variability, and 

synchrony of cone production as a function of tree size, age, neighborhood competition, and 

climate (30-year average of climatic water deficit [CWD] and actual evapotranspiration [AET]). 

Weather and climate only weakly described annual cone production in ponderosa pine (R2
m of 

top model = 1.6%, R2
c = 30.1%), indicating substantial individual-level variability among years 

and among sites. Importantly, we found that tree size and neighborhood competition were strong 

drivers of the mean, interannual variability, and synchrony of cone production at the individual-
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level. Larger and open grown trees produced more cones with greater synchrony than smaller, 

densely grown trees, and larger trees also had lower interannual variability in cone production. 

Our study suggests that masting in ponderosa pine is driven by individual-level variability and 

strongly influenced by local, demographic factors like competition and tree size. Thus, 

management interventions that target these factors could also be powerful tools to alter tree 

recruitment in the future. 

 

INTRODUCTION 

The composition and distribution of future forests depends on recruitment (Sharma et al. 

2021, McDowell et al. 2020). For many seed-obligate (non-resprouting) species, seed availability 

is a primary filter on new tree recruitment (Gratzer et al. 2021, Crofts and Brown 2020, Brown et 

al. 2019, Clark et al. 1999). But seed production is still a relatively poorly understood component 

of tree demography, and it is uncertain how seed production may be affected by warming 

temperatures, altered disturbance regimes, or shifting management strategies (Hacket-Pain and 

Bogdziewics 2021, Vacchiano et al. 2021, Bogdziewics 2021). This is in part because many trees 

are masting species, meaning individual-level seed production varies from year to year, often 

synchronously within a population (Pearse et al. 2016). Mast years (or infrequent years of 

synchronous, large seed crops) are often driven by interannual variability in weather (Pearse et 

al. 2016), but the magnitude and frequency of seed crops vary among individuals of different 

sizes (Bogdziewicz et al. 2020, Minor and Kobe 2017, 2019), ages (Pesendorfer et al. 2020), 

stand densities (Andrus et al. 2020, Flathers et al. 2016), and climate regimes (Bogdziewicz et al. 

2019, Koenig et al. 2020, Wion et al. 2019). For many species, it remains unknown how the 

complex mosaic of climate and competition jointly shapes mast seeding across species ranges. 

Yet this information in necessary to anticipate disturbance and climate change impacts on future 
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seed production and recruitment potential (Clark et al. 2021, Sharma et al. 2021), and to inform 

how management decisions (thinning, burning, and logging) might affect future seed availability 

(e.g., Pearse et al. 2021).  

Masting imparts a cost on trees by foregoing opportunities for recruitment in years when 

seed production is either low or absent (Pearse et al. 2016). Masting also, however, provides 

advantages by creating economies of scale, or fitness benefits accrued at the individual-level 

through synchrony at the population-level, like predator satiation (Janzen 1971, Linhart et al. 

2014) and pollination efficiency (Moreira et al. 2014). As a result, changes in the synchrony or 

interannual variability of seed production can have greater effects on seed availability than 

changes in the overall mean of individual-level seed production (Bogdziewicz et al. 2021). For 

example, decreases in the variability and synchrony of seed production in European beech 

(Fagus crenata) led to a greater proportion of seeds being predated by insects, despite an overall 

increase in seed production by individual trees (Bogdziewicz et al. 2021). Understanding what 

shapes the variability and synchrony of seed production is crucial for managing masting species 

into the future.  

The resource budget hypothesis of masting (Isagi et al. 1997, Crone and Rapp, 2014) 

posits that plants are unable to acquire the resources sufficient to produce large, annual seed 

crops. Instead, plants store resources across multiple years to expend in infrequent, synchronous 

mast events. Weather acts as a proximate driver of masting by either triggering or vetoing the 

mechanisms that lead to successful seed initiation, pollination, or seed maturation (Pearse et al. 

2014, 2016). Under this hypothesis, climate change may affect future seed production by altering 

the frequency and magnitude of vetoes and triggers of mast years (Bogdziewics 2021). 

Alternatively, seed production may be driven and synchronized by a “cue” (i.e., a signal without 
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a direct, physical effect on seed maturation) that allows individual plants to reap the benefits of 

synchronized, population-level reproduction (Kelly et al. 2013). For example, the difference in 

temperature between the year of seed initiation and the year prior (“ΔT”) has been identified as a 

predictor of mast years in many species (Kelly et al. 2013, LaMontagne et al. 2021). Under this 

alternative hypothesis of masting, increasing mean temperatures are not expected to have 

significant impacts on seed production, because the difference in temperatures between any two 

years are not expected to change substantially (LaMontagne et al. 2021) Identifying which 

weather variables, and precisely how these variables affect seed production (i.e., as ‘proximate 

drivers’ or as ‘cues’) is necessary to anticipate climate change impacts on future seed production. 

Range-wide demographic studies are key tools for assessing how plant populations may 

respond to a changing climate (Doak and Morris 2010). Recent research has challenged the 

assumption that all populations of a species respond identically to weather (Bogdziewicz et al. 

2019, Wion et al. 2019, Koenig et al. 2020, Nussbaumer et al. 2016, Roland et al. 2014), 

suggesting any potential effects of a changing climate on masting may not unfold uniformly 

across the landscape. For example, in widely distributed species, populations may be limited by 

different climatic factors, or limited to different degrees across gradients of environmental stress 

(Ronald et al. 2014, Pearse et al. 2017, Bogdziewicz et al. 2019, Wion et al. 2019). Under a 

warming climate, plants in more stressful environments or at the margins of their distributions 

may be most sensitive to changes in climate-driven resource availability (e.g., environmental 

stress hypothesis; Pearse et al. 2017). The sensitivity of individual-level seed production to 

weather shapes the synchrony and variability of masting at the population-level, which in turn 

has important implications for forecasting mast years and assessing potential climate change 

impacts on plant and animal populations.  
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Disturbances like fire and drought, and human actions like thinning and logging, 

contribute to a complex mosaic of seed availability across the landscape by altering the spatial 

patterns and size and age distribution of trees within a stand. Local-scale variation in competition 

and tree sizes (i.e., stand structure) alter levels of competition for light, water, and nutrients, 

which impacts reproduction in many species (Andrus et al. 2020, Minor and Kobe 2019). 

Generally, larger trees and trees with greater access to abundant light, water, and nutrients 

produce more seeds than smaller trees growing in more competitive or less productive 

environments (Greene et al. 2002, Minor and Kobe 2017, 2019). Larger trees also tend to have 

fewer years without seed production, which lowers their variability and synchrony compared to 

smaller trees (Bogdziewicz et al. 2020). But other studies have found age, which is imperfectly 

related to size, to be a stronger predictor of changes in reproductive variation and synchrony over 

time, suggesting ontogenetic changes in resource dynamics may also play an important role in 

shaping masting behavior (Pesendorfer et al. 2020). If demographic attributes and stand structure 

strongly regulate seed production, then it stands to reason that management interventions that 

target these factors could also be powerful tools to alter tree recruitment. 

To fill these gaps in our knowledge, we set out to quantify the role of weather, climate 

(i.e., the long-term energy and water balance of a site), and stand structures (i.e., demographic 

factors like size, age, and neighborhood competition) on mast seeding in a widespread conifer 

species native to western North America, Rocky Mountain ponderosa pine (Pinus ponderosa var. 

scopulorum). Ponderosa pine is an ecologically and economically important conifer species 

found in montane forests, parks, and woodlands throughout western North America (Burns and 

Honkala, 1990). The production of a single crop of cones takes a little more than two full years. 

Initiation of cones occurs in the summer, two years before maturation (T-2), and pollination 
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occurs the following spring, one year before maturation (T-1). Seeds and cones rapidly mature in 

the final year (T) and are dispersed by wind and gravity (Krannitz and Duralia 2004). Cone 

abscission scars were used to reconstruct ca. 15 years of cone production of 275 trees from 49 

sites, which spanned a 1300 km latitudinal gradient across a large portion of this species 

distribution in the western United States. 

Previous work in a population of this species near Boulder, Colorado, USA, related mast 

years to several possible proximate drivers: below average summer temperatures and above 

average summer precipitation during the year of cone initiation (T-2), and spring temperatures 

during the year of cone pollination (T-1). However, relationships to temperature and 

precipitation were inconsistent in a separate population 100 km south and 1000 meters higher in 

elevation (Mooney et al. 2011). Further studies in this region have yet to resolve these 

differences in masting drivers across different sites. Only one study has assessed absolute 

temperature vs ΔT as drivers of cone production in ponderosa pine and found greater support for 

the absolute temperature model over the ΔT model (Morieria et al. 2015). Yet that study was 

limited in scope to a single population, and a recent assessment of North American conifers 

found broad support for ΔT across many taxa (which included ponderosa pine among multiple 

other “hot climate” pine species; LaMontagne et al., 2021). Another recent study found that 

ponderosa pine reproduction was largely asynchronous across much of its distribution and was 

not strongly related to large scale modes of climate variability like the El Niño Southern 

Oscillation or the North American monsoon (Wion et al. 2021). Therefore, the annual drivers of 

ponderosa pine seed production remain uncertain and warrant more detailed study. 

Our research was driven by the following questions: 
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1) Which weather variables best explain patterns of annual cone production in ponderosa 

pine? 

2) How does the relationship between weather and masting change across sites of varying 

climate conditions (i.e., the long-term water and energy balance at an individual site)? 

3) How does spatial variability in climate and stand structures (tree size, age, and 

neighborhood competition) jointly affect the mean, synchrony, and interannual variability 

of cone production of individual trees?  

We assessed evidence in the context of the resource budget (i.e., “proximate drivers) and 

“differential cue” hypotheses of masting. We hypothesized that cone production would be 

positively associated with cool and wet summer weather, consistent with previous studies in this 

species and other species in this region (Mooney et al. 2011, Wion et al. 2019, Parmenter et al. 

2018). Under the resource budget hypothesis, we would expect the relationship between weather 

and cone production to be stronger in drier and less productive environments, because 

reproduction is more strongly and frequently limited by climate. Consequently, we expect drier 

and less productive sites to exhibit greater interannual variability in cone production, greater 

synchrony among trees in a site, and lower mean cone production. We also expected smaller and 

younger trees, and trees with a high density of neighbors, to exhibit greater interannual 

variability, lower synchrony, and a lower mean of cone production. Under the differential cue 

hypothesis of masting, we would expect trees to be strongly synchronous with one another, both 

within sites and among closely located sites that share similar annual summer weather. We 

would not expect the strength of the relationship between weather and cone production to vary 

substantially among sites of differing climatic conditions, because this would negate the 

synchronizing effect and fitness benefits of a hypothetical cue. 
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Figure 2.1) Top: Ponderosa pine dominated woodland, with Pinus edulis and Juniperus 

osteosperma, near Douglas Mountain, Moffat County, Colorado, USA. Mean 30-year actual 

evapotranspiration is relatively low, indicating low availability of energy and moisture, and 

climatic water deficit is high indicating chronic drought stress. Notice exposed bedrock, spare 

understory, and relatively few, large, open grown trees.  Bottom: Ponderosa pine dominated 

forest in Black Hills, Pennington County, South Dakota, USA, Co-occuring species include 

Picea glauca and Betula papyrifera. Mean 30-year actual evapotranspiration is relatively high 
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and climatic water deficit is low, indicating simultaneous availablilty of energy and moisture 

(warm and wet climate) and little drought stress. Notice continuous grass cover with abundant 

seedlings, and dense regeneration in background.   

 

METHODS 

Data Collection 

The study area included ponderosa pine dominated forests and woodlands in the US 

states of Arizona, New Mexico, Colorado, Wyoming, and South Dakota. This area was bounded 

by 35° – 45° north latitude and -112° and -103° west longitude, or approximately a 1300 km 

latitudinal gradient. Site selection occurred by first locating potential field sites – locations 

within our study area that contained ponderosa pine and were within 1 km of an accessible road 

or trail. Sites were compiled from multiple research projects (see Rodman et al. 2020), so 

multiple sites (n = 31) were intentionally sampled within refugia of burn perimeters or located in 

unburned forests near these perimeters. After navigating to these points, we confirmed that each 

site contained at least five reproductively mature trees within 50 meters of a randomly placed 

plot center. Field sampling in Colorado and New Mexico (n = 34) occurred primarily in 2018. 

Sites in Wyoming (n = 4), South Dakota (n = 7), Arizona (n = 2), and northwestern Colorado (n 

= 2) were sampled in 2020.  

We collected seed cone production data from 275 trees at 49 sites using the cone 

abscission scar method (Forcella 1978, Redmond et al. 2016). This method involves sampling 

multiple branches from focal trees and counting the abundance or absence of cone scars 

(evidence of past reproduction) in relation to bud scale scars. We counted the number of cone 

bearing branches on each tree, which allows us to scale the estimates of cones per branch to the 

tree-level. This method has been used in several species (Bouchard and Pernot 2020, Wion et al. 

2019), including ponderosa pine (Rodman et al. 2020), and is highly effective at distinguishing 
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years of high from low seed production at the individual-level, and at distinguishing between 

high and low cone producing trees (Redmond et al., 2016).  

Emerging, unfertilized conelets that were observed in the year of sampling were not 

counted, because the timing of field sampling often spanned the emergence of these conelets 

(early to mid-summer) and could not consistently be recorded across sites. Some sites (n=10) 

that were established in 2018 were opportunistically resampled in 2019 for an additional year of 

data during a mast year. This was performed with binocular counts of cones across at least five 

random branches, and averaging observations across branches to the tree level (identical to the 

approach for counting evidence of reproduction in cone scar method). 

At each site, we randomly sampled between 5-7 mature trees for cone production data. 

We counted cone scars on at least five, reproductively mature trees at each site using at least 5 

branches from each tree – a sample size shown to adequately capture interannual variation in 

cone production at the individual and population level (Redmond et al. 2016). Because sampling 

occurred over multiple years, and branches on some trees were only able to be sampled over a 

shorter timespan, the length of the time series varied among trees and across sites. Damage from 

herbivory or accrued over time by weathering obscures older cone scars, and thus trees were not 

sampled beyond the year 2001 (mean number of sampling years per tree = 14.5 years). The 

majority of series (95.5%, n=260) were longer than 10 years (max = 19 years), and the shortest 

time series was 6 years (n = 1).  

We collected information on focal tree size (measured as diameter at breast height [DBH] 

or approximately 140 cm above the ground) and neighborhood competition using a basal area 

prism (adjustment factor = 5). We took increment cores from all trees sampled in 2018 to 

estimate individual tree ages. Trees were cored using either a 5mm or 12mm increment borer at 
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20-40 cm above the root collar, and cores were sanded and dated using standard 

dendrochronological techniques. Tree age was estimated by correcting for the offset from pith 

and the time to reach coring height (See Rodman et al. 2021 for details). We excluded trees that 

could not be dated due to a high occurrence of missing rings, rotted centers, or completely 

missed piths. We obtained estimates of tree age for roughly half of all trees in the final analysis 

(n = 139, 50.5% of trees). Because of the reduced sample size, analyses including age were 

performed separately (see below).  

 

Masting Metrics 

We calculated three metrics commonly used to describe masting behavior among 

individual trees: mean annual cone production, interannual variability, and synchrony. Annual 

cone production was sampled at the tree-level and all analyses were kept at the scale of the 

individual tree. Mean annual cone production was calculated as the average cone production per 

tree, across all years sampled. Interannual variability at the individual-level was calculated as the 

coefficient of variation (CVi) or the ratio of the standard deviation to the mean. Higher values of 

CVi indicate larger, between year differences in cone production at the tree-level. Synchrony was 

calculated as Pearson’s pairwise cross correlation of cone production between a focal tree and all 

other trees sampled for cone production at the site (values range from -1 to 1, with 1 being 

perfectly synchronous).  

 

Weather and Climate Variables 

We used monthly PRISM climate data at a 4km2 resolution to describe weather across 

our study area (PRISM Climate Group 2021). We focused on two meteorological variables - 
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precipitation and vapor pressure deficit (VPD) - which is tightly and exponentially related to 

maximum temperature (Grossiord et al. 2020). VPD is the difference between potential vapor 

pressure when the air is saturated with water and the actual vapor pressure of the atmosphere 

(Anderson 1936) and describes the atmospheric demand for water from plants and soils. Larger 

VPD values indicate warmer and drier conditions.  

Monthly mean VPD and cumulative precipitation data were extracted at each site for the 

3-year period preceding each observation of annual cone production. This length of time includes 

the events of cone pollination (year T-1 before cone maturation) and cone initiation (T-2 before 

cone maturation), as well as the “differential cue” period (the difference between years T-2 and 

T-3, Kelly et al. 2013). We aggregated monthly data into running three-month means (or sums, 

in the case of precipitation) to account for latitudinal variation in seasonal timing in our data and 

to smooth the high variability among individual months. Monthly precipitation and VPD were z-

score standardized to a mean of zero and a standard deviation of one within each site, to account 

for climatic differences across sites and isolate deviations from the long-term mean. Vapor 

pressure deficit was calculated using PRISM derived mean temperature and dew point, using the 

equations in Williams et al. (2013).  

We calculated ΔT as the difference in mean temperature of the peak boreal summer 

months (June, July, and August) between the year of cone initiation (T-2) and the year prior (T-

3). Negative values of ΔT indicate years where T-3 was warmer than T-2, and positive values 

indicate years where year T-3 was cooler than T-2. We also calculated the difference between 

summer VPD during the same time period (i.e., ΔVPD, analogous to the ΔT model) to match our 

analyses containing VPD. Similarly, negative values of ΔVPD indicate a high evaporative 

demand in year T-3 that was followed by lower evaporative demand in year T-2, and positive 
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values indicate the opposite pattern (low evaporative demand in T-3 followed by high 

evaporative demand in T-2).  

To describe climatic differences across the study area, we utilized two variables that 

describe the spatial variability in energy and water balance among sites. The first was the 30-year 

average of actual evapotranspiration (AET), or the water lost through evaporation and 

transpiration that is constrained by moisture availability (i.e., precipitation). High values of AET 

are associated with warmer and wetter climates and high amounts of primary productivity, low 

values of AET are associated with cooler and drier climates and low amounts of primary 

productivity. The second was the 30-year average of climatic water deficit (CWD), the 

difference between potential and actual evapotranspiration. This describes the evaporative 

demand of a site that is unmet by moisture availability and is used as a proxy for aridity or 

dryness (Stephenson 1990, 1998). Higher values of CWD are associated with hotter and drier 

climates. Values were extracted at the center point locations for each site from gridded 4km2 

Terra Climate products (Abatzoglou et al. 2018).  

 

Table 2.1) Description and ranges of the constituent parts of models predicting masting behavior 

(mean, interannual variability, and synchrony among trees at a site) at the tree-level.  

Abv. Description Type Range 

CVi Interannual variability of cone production at tree-level Response 0.41 – 4.24 

r Synchrony of cone production between trees at site Response - 0.33 – 0.90 

µ  Mean of cone production at tree-level Response 1 - 512 

    

CWD 30-year average of Climatic Water Deficit  Predictor 353 – 781 (mm) 

AET 30-year average of Actual Evapotranspiration  Predictor 275 – 548 (mm) 

DBH Diameter of tree at breast height Predictor 11.8 – 98 (cm) 

BA5 Basal area of neighborhood surrounding focal tree Predictor 0 – 22.96 (m/ha) 

AGE Age of tree in 2018 (n = 136) Predictor 40 – 238 (yrs) 

 

Statistical Analyses: Which weather variables best explain patterns of annual cone production in 

ponderosa pine? 
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We performed analyses was to identify the most parsimonious combination of 

“proximate drivers,” and compare this against a “differential cue” model to test hypotheses about 

the drivers of masting in ponderosa pine. We began by identifying potential combinations of 

precipitation and VPD during the three-years prior to seed maturation (i.e., the cone development 

phase) that we hypothesized would be associated with subsequent ponderosa pine cone 

production. We calculated the Spearman’s correlation coefficient between site-level annual cone 

production (averaged across all trees per year to avoid pseudo-replication) and each weather 

variable. We then reduced this matrix by ranking all variables based on their median correlation 

coefficient (measured across all sites) as an indicator of which variables and time periods were 

most strongly associated with cone production across the greatest number of sites (Table 2.2, 

similar to Wion et al. 2019). Notably, these univariate correlations were lower than weather-

masting relationships reported for other populations of dry pine species in this region (Mooney et 

al. 2011, Wion et al. 2019). Nevertheless, these analyses indicated two key points: 1) the 

differential cue ΔVPD was the strongest univariate correlation with cone production across the 

greatest number of sites, outperforming ΔT, and 2) mid-summer VPD and precipitation during 

the year of cone initiation (June – September, year T-2) were the strongest absolute predictors of 

cone production (Table 2.2). We used these preliminary results to guide the inclusion of weather 

variables in the model building process.   

 

Table 2.2) Median and one standard deviation (σ) values calculated from 49 Spearman’s 
correlations (ρ) between site-level cone production (averaged across all trees per year) and the 

seven strongest weather variables analyzed. The number of sites (and respective proportions) 

with statistically significant Spearman’s correlations (P < 0.05) is also reported. Fewer than a 

quarter of all sites sampled had statistically significant relationships with any weather variables. 

The notation T denotes the year of cone maturation, and the number indicates the years prior to 

cone maturation. Cone initiation occurs in year T-2.  Abbreviations are JJA = June, July, and 
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August, and JAS = July, August, September.  ΔVPD and ΔT are calculated as the difference 

between summer mean temperature or VPD (June, July, August) between year T-2 and T-3.   

 

 

Weather variable 

Median  

Spearman’s ρ 

σ  
Spearman’s ρ 

n sites (% total) 

P < 0.05 

ΔVPD - 0.30 0.24 8 (16.3%) 

T-2 PPT JJA 0.27 0.24 11 (22.4%) 

T-2 VPD JAS - 0.25 0.20 3 (6.1%) 

T-2 PPT JAS 0.24 0.21 4 (8.1%) 

ΔT - 0.20 0.24 7 (14.2%) 

T-3 VPD JJA 0.20 0.23 3 (6.1%) 

T-2 VPD JJA - 0.19 0.20 6 (12.2%) 

 

 

 The differential cue hypothesis rests on two key premises – the difference in temperatures 

(or in this case, VPD) between years better explains cone production compared to absolute 

temperature or VPD in either year, and the improbability of multiple, consecutive years of large 

temperature differentials explains the patterns of negative autocorrelation of seed production in 

trees (or the tendency for “bust” years to follow “boom” years).  To explicitly test these 

assumptions, and following previous research on this topic (Monks et al. 2016, Moriera et al. 

2015, Pearse et al. 2014) we included two additional variables in our model selection process. 

We tested models containing absolute summer VPD in year T-3 (June, July, and August; the 

strongest univariate correlation in year T-3 [Table 2.2]), and we also included cone production in 

the year prior to maturation (i.e., negative autocorrelation in T-1) as a covariate in all models. 

We tested all possible two-way combinations of plausible VPD and precipitation 

variables. We used generalized linear mixed models (GLMMs) and an information theoretic 

approach to assess the effects of weather on ponderosa pine cone production. Annual cone 
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production data arose from an overdispersed count process at the scale of the individual tree, 

which were grouped within sites. Therefore, we specified a GLMM with a negative binomial 

error distribution (quadratic parametrization, i.e., “nbinom2”) and an observational-level random 

effect (Harrison et al. 2014), as well as a random intercept of tree nested within site to account 

for the hierarchical structure of the data. All model terms were scaled to a standard deviation of 

one and centered on zero to facilitate comparisons of effect sizes. Collinearity of predictor 

variables in all models was confirmed to be low (variable inflation score < 2). We ranked models 

based on AIC, which balances model parsimony with explanatory power, and retained the model 

with the lowest AIC score as the top model (Appendix 2, Table A.2.1). Models within 4 AIC 

units of each other were considered equally parsimonious, and we retained or reported the 

simpler of the two models.  

 

Statistical Analyses: How does the relationship between weather and masting change across 

sites of varying climate conditions? 

After identifying a top model of annual cone production, we tested whether the 

relationship between weather and cone production was conditioned on the long-term climate of a 

site. We built models with interaction terms between each weather variable (identified from the 

top model above) and 30-year averages of AET and CWD. If either model reduced AIC from a 

top identified model without the interaction effect, we selected the model with the lowest AIC as 

the final (i.e., “full”) model.  

We report the difference in AIC values from a null (random intercept only) model, and 

we also report standardized coefficients and errors from this full model. We report the goodness 

of fit top models using the marginal pseudo R2 for mixed models (Nakagawa and Schielzeth, 
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2013), describing the fixed effects components of the top model. Pseudo R2 values describe the 

relationship between model predictions and observations after accounting for a distribution 

specific variance component and a latent residual variance and are constrained to values between 

0-100% (Nakagawa and Schielzeth, 2013).  

 

Statistical Analyses: How do long term climate and forest structure shape masting behavior? 

We used multi-model inference to determine the influence of forest structure and long-

term climate on masting behavior at the scale of the individual-tree. We built linear mixed 

models that predicted the mean, synchrony, and interannual variability as a function of tree size 

(diameter at breast height), tree age (when cored in 2018), neighborhood competition (basal area 

surrounding focal tree), and 30-year climate averages (CWD and AET; measured at the site-

level). Structural attributes (tree size, age, and neighborhood competition) were measured or 

collected in the field, at the scale of the individual focal tree. Tree age estimates were available 

for only about half of trees (n=136) and were not consistently available across all trees at each 

site. Therefore, we performed identical but separate analyses to determine the effects of age on 

masting behavior. We tested linear and non-linear (quadratic) effects of tree size and 

neighborhood competition and log-transformed mean cone production to conform to the 

assumptions of linear modeling. Site was included as a random intercept in all models. 

For each model describing masting behavior, we tested all subsets of the full model (i.e., 

containing all predictors) and compared model fits based on AICc scores using the dredge 

function in the MuMIn package (Barton 2020). We calculated the model averaged coefficients 

and standard errors for all top models (within 4 AIC units of the top model). As a measure of 
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goodness of fit, we calculated the marginal and conditional pseudo R2 for mixed models 

(Nakagawa and Schielzeth, 2013).  

All models were built using the package glmmTMB (Brooks et al. 2020) using the 

statistical software R (R Core Group, 2022). Data carpentry was performed using the data.table 

package (Dowle and Srinivasan, 2021), and data visualizations were made using the ggplot2 

package (Wickham 2016), patchwork (Pedersen 2020), scico (Pedersen and Crameri 2020), and 

PNW colors (Lawlor 2020) packages.  

  

RESULTS 

Across a 1300 km latitudinal gradient in the southern Rocky Mountains, we observed high 

variability in ponderosa pine cone production, both across years and among trees. Mean CVi 

across all sites was 1.71, and the average pairwise synchrony value among trees within a site was 

0.46, which is slightly more variable and less synchronous than prior studies, but still within the 

range of what has been reported for other populations of ponderosa pine (e.g., Mooney et al. 

2011).  

Model comparisons based on AIC indicated that a model containing summer VPD in the 

year prior to cone initiation (June, July, August T-3) and precipitation during year of cone 

initiation (June, July, August, T-2) best explained annual cone production in ponderosa pine. 

Both relationships were positive, indicating that years of high cone production followed years of 

high evaporative demand in T-3 and wetter than average years in T-2. Using this model, we 

tested for an interaction effect between each of the weather predictors (summer VPD T-3 and 

precipitation in T-2) and the two long-term climate predictors (30-year CWD and AET; Figure 

2.2). We found strong evidence (P <0.001) to support the hypothesis that trees respond to 



 

51 

weather differently based on the climate of a site. Interaction models reduced AIC from the 

weather-only model by at least 10 AIC points, and the top model reduced AIC by 36.5 AIC 

points. This model contained an interaction between 30-year AET and VPD in T-3, and 30-year 

CWD and precipitation in T-2, as well as the stand-alone effects of these variables, and cone 

production in the year prior to maturation as a covariate.  The goodness of fit from this full 

model was low (R2
m or the variance explained by only fixed effects = 1.6%, and R2

c or the 

variance explained by both fixed and random effects = 30.1%, Table 2.3); however, the relatively 

larger proportion of R2
c indicated there was strong variability among trees and among sites that 

was captured by these nested random effects. 

 

Table 2.3) Standardized model coefficients, standard errors, and associated P values from full 

model of annual cone production at the individual tree-level. Higher values of 30-year climatic 

water deficit (CWD) are associated with hotter, drier climates. ΔVPD is calculated as the 

difference in vapor pressure deficit between year T-2 and T-3 prior to cone maturation. Cone 

production in the year prior to maturation (Cones T-1) was included as a covariate.  
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Cone Abundance Model Mast Failure Model 

 β (se) T value P value  β (se) T value P value 

        

T-2 PPT  

JJA 

0.09 (0.02) 4.19 <0.001  -0.30 (0.06) -5.15 <0.001 

T-3 VPD  

JJA 

0.07 (0.02) 3.3 <0.001  -0.37 (0.03) -9.8 <0.001 

CWD x  

T-2 PPT JJA  

0.02 0.02 0.42  -0.27 (0.04) 2.2 <0.001 

AET x  

T-3 VPD JJA 

0.02 (0.02) -1.03 0.30  0.08 (0.04) -6.5 0.03 

AET -0.15 (0.09) 0.3 0.08  0.04 (0.13) 0.335 0.73 

CWD -0.09 (0.09) -0.97 0.33  0.13 (0.13) 1.01 0.31 

Cones yr-1 - 0.05 (0.02) -2.0 0.04  0.15 (0.04) 3.5 <0.001 

        

         

R2
m = 1.6% R2

c = 30.1%  ΔAIC (null) = 283.36 N = 4004 tree/yrs 
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Figure 2.2) Marginal predictions from model of annual cone production model highlight the 

significant interaction between climate (30-year average of climatic water deficit [CWD] and 

actual evapotranspiration [AET]) and summer weather (mean vapor pressure deficit [VPD] and 

precipitation [PPT] in June, July, and August [JJA]) on the probability of a mast failure (top row) 

and annual cone abundance (bottom row) at the individual tree-level. Values chosen to represent 

high and low CWD and AET values correspond to approximately the 10th and 90th percentiles of 

the observed data. Shading represents the predicted 95% confidence intervals. High CWD (hotter 

and drier sites) were and low AET (cooler and drier) sites more sensitive to interannual variation 

in weather. The R2
m was 1.6%, and R2

c was 32.9%.   

 

Effects of stand structures and climate on masting 

Tree size and neighborhood competition were consistently the most important variables 

predicting masting behavior of individual trees (i.e., mean, synchrony, and interannual 

variability). Larger trees were less variable (β = - 0.4, P = 0.03; Figures 2.3 and 2.4) and 

produced more cones overall (β = 0.72, P = 0.001; Figures 2.3 and 2.4). Greater basal area, a 
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proxy for competition, was non-linearly associated with synchrony (β = - 0.06, P = 0.03; Figures 

2.3 and 2.4). Synchrony was highest and remained relatively steady at low and intermediate 

levels of competition, before steeply declining at the highest levels of neighborhood competition. 

In models of masting behavior that contained age, the only significant effect of age was found in 

the synchrony model. Older trees were on average less synchronous among trees within a site (β 

= - 0.06, P = 0.02; Appendix 2 Figure A.2.1), indicating that old trees were more often 

producing cones out of step with nearby trees.  

We also highlight several potentially relevant non-linear trends (i.e., quadratic effects), 

that were marginally significant (P < 0.1) in the model averaged coefficients of the top models, 

specifically in models of mean cone production and interannual variability. We noted greater 

decreases in CVi at larger tree sizes (i.e., quadratic effect of DBH; β = 0.31, P = 0.054; Figures 

2.3 and 2.4), and non-linear declines in cone production at higher levels of competition (β = - 

0.25, P = 0.084; Figures 2.3 and 2.4). Goodness of fit explained by fixed effects of these models 

(R2
m) ranged from 10.2 – 36.2%, and goodness of fit from both random and fixed effects (R2

m) 

ranged from 35.9 - 57.4%.  

 

 

 

Figure 2.3) Model averaged coefficients and standard errors from the subset of top mixed models 

predicting the mean of cone production, synchrony, and interannual variability (CVi). Site was fit 

as a random effect. Model coefficients are standardized and scaled to facilitate interpretation 
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across models and among terms. Statistical significance (P = 0.05) denoted by asterisks. 

Abbreviations are as follows: AET = 30-year average of actual evapotranspiration, BA5 = 

neighborhood basal area, a proxy for neighborhood competition, CWD = 30-year average of 

climatic water deficit, DBH = diameter of tree at breast height, ^2 = quadratic terms.  

 

 

 

Figure 2.4) Selected marginal predictions from models describing the effects of tree size 

(measured as diameter at breast height [DBH]) and neighborhood competition [BA]) on masting 

behavior (mean, synchrony, and interannual variability [CVi]) at the individual tree-level. 

Dashed line in lower left panel denotes marginally significant quadratic effect of tree size on 

CVi. Shading represents the predicted 95% confidence intervals. 
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DISCUSSION 

Recruitment of many forests is governed by seed availability, but our knowledge of the basic 

factors that drive and shape seed production remain limited. We surveyed ponderosa pine cone 

production across the southern Rocky Mountains to assess how mast seeding and its relationship 

to weather, climate, and stand structure varied across a large portion of this species’ range. We 

note three key findings related to our hypotheses: First, absolute VPD and precipitation 

explained the observed patterns of cone production better than ΔVPD, but on average, weather 

only weakly described patterns of annual cone production. Second, the effects of VPD were 

stronger as sites with a low 30-year AET, and the effects of precipitation were stronger at sites 

with a high 30-year CWD (hotter and drier sites), suggesting differential sensitivity to the drivers 

of masting across the range of ponderosa pine. Lastly, the effects of tree size and neighborhood 

competition were consistently more important than long-term climate in shaping masting 

behavior (the mean, variability, and synchrony) of individual trees. Our study provides evidence 

that masting in ponderosa pine is dominated by individual-level variability and strongly 

influenced by local, neighborhood-level factors. Current efforts to reduce stand density and 

conserve large trees in ponderosa pine forests may have important, secondary impacts on seed 

availability. 

 

What drives masting in ponderosa pine? 

 

Our current understanding of masting provides us with two competing hypotheses to 

explain the mechanisms behind weather and seed production relationships. Weather either acts as 
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a “cue” to synchronize reproduction among individuals (Kelly et al. 2013) or as a proximate 

effect on masting vetoes and triggers (Pearse et al. 2014). Model comparisons indicated greater 

support for the hypothesis that masting in ponderosa pine is driven by “proximate drivers”, in 

this case summer VPD and precipitation, rather than a “cue” like ΔT or ΔVPD. This result is 

inconsistent with a recent study that found broad support for the ΔT model across many North 

American conifers (LaMontagne et al. 2021), but in line with a similar finding from Moreira et 

al. (2015). If masting in ponderosa pine were driven by a “cue”, we would expect the 

relationship to this cue to be a strong and consistent driver of reproduction among individuals 

across widely separated sites, in order for individual plants to reap the benefits of synchronized 

seed production (Kelly et al. 2013). Our findings do not support this interpretation, because 

weather was neither a strong driver nor a widely consistent driver of reproduction across the 

studied populations (e.g., relatively low correlation coefficients and goodness of fit of models).  

Notably, the relationship between precipitation and cone production was strongest at 

hotter and drier sites, which were characterized by higher 30-year averages of climatic water 

deficit, and the relationship between VPD and cone production was strongest at cooler and drier 

sites, which were characterized by low 30-year averages of actual evapotranspiration. This 

pattern suggests populations may be limited by different climatic factors (i.e., energy or 

moisture), which leads to differential sensitivity to these weather drivers across the range of 

ponderosa pine.  In this study, sites in cooler, drier environments are likely more limited by 

energy, and are more sensitive to the interannual fluctuations in VPD, whereas sites in hotter, 

drier environments are likely limited by moisture, and thus are more sensitive to interannual 

fluctuations in precipitation. Nevertheless, most sites had no clear relationship to the studied 
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weather variables, suggesting that reproduction in many populations of ponderosa pine may be 

relatively insensitive to warming temperatures from climate change. 

The observed pattern corroborates previous findings that the relationship between 

ponderosa pine seed production varies at highly local scales. Mooney et al. (2011) described a 

breakdown in the relationship between weather and masting across a distance as short as 100 km, 

and we observe similar trends here. Seed production was occasionally synchronous between 

nearby sites but was just as often asynchronous at local scales (see Wion et al. 2021 for 

discussion of synchrony among these sites). This could be because of fine-scale genetic variation 

among populations, or because of steep environmental gradients in topographically complex 

areas (like the Rocky Mountains) that are not captured by coarse resolution models of climate 

and weather. This could lead to variation in the triggers of masting among genetically or 

climatically separated populations, or differences in the primary factors limiting reproduction 

across species ranges. As suggested here, the relative influence of precipitation and temperature 

may shift along a gradient of climatic stress (Redmond et al., 2018), leading to divergent climatic 

associations between leading and trailing edges of species ranges (Roland et al. 2014). How this 

affects recruitment and population growth remains a key question. 

  Strong masting behavior (high synchrony and variability) may also be selected for in 

populations experiencing higher rates of predation, like selection for serotiny in lodgepole pine 

(Talluto and Benkman 2014, Benkman and Slepielski 2004). Previous studies have documented 

evidence for multiple, co-occurring fitness benefits from masting in a single population of 

ponderosa pine, including predator satiation (Linhart et al. 2014) and pollen-coupling (Moreira et 

al. 2014). The relative importance of these fitness trade-offs may vary based on their ecological 

context, for example, predator satiation may exert stronger influences on masting behavior in 
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stands with high amounts of seed predation, whereas pollen coupling may be more important in 

isolated trees or groups of trees in woodland or park settings. Thus, the mosaic of factors that 

ultimately select for masting in different populations could drive highly variable masting 

dynamics at highly local scales.  

 

 

Figure 5) Patterns of masting in ponderosa pine in selected populations across the southern 

Rocky Mountains. Panel A (left) shows the distribution of study sites (black dots) overlaid 

against the distribution of ponderosa pine across the study region. Background colors show range 

of 30-year mean climatic water deficit (CWD, mm/year), with blue colors denoting on average 

cooler and wetter climates (low CWD) and red colors denoting hotter and drier areas (high 

CWD). The right panel highlights how annual cone production varies across five co-located sites 

along the southern Front Range of central Colorado between 2004-2018. Sites presented here are 

between 1-30 km apart from one another, and the 30-year CWD at these sites ranged from ~ 380 

– 660 mm/year, which is close to the overall mean of our sites (533 mm/year). Each line 

represents an individual tree sampled for cone production, which was standardized at the tree 
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level (number of cones produced per branch sampled) to visualize individual-level investment in 

reproduction overtime. Annual cone production, variability (CVp; coefficient of variation at the 

population-level), and synchrony (r; mean, pairwise correlation among all trees at the site) were 

highly variable among sites - even between closely located sites.  

 

Managing ponderosa pine ecosystems for masting 

Models of masting behavior pointed to both tree size and competition as the most 

important predictors of the mean, variability, and synchrony at the individual tree level. This 

result is not particularly surprising, as it aligns closely with a century of forest science in these 

ecosystems. Large and open grown trees produce more seeds than smaller and more densely 

grown trees (Pearson 1923, Schubert 1974, Krannitz and Durallia 2004), in part due to greater 

crown area to support more cones and greater access to resources (light, water, and nutrients) 

required for large seed crops. This is also corroborated by long-term evidence from thinning 

experiments, which also show higher levels of cone production in lower to intermediate density 

stands, as well as greater levels of seedling establishment and survival (i.e., recruitment) 

following high seed years (Flathers et al. 2016, Kolb et al. 2020). Importantly, it suggests that 

management efforts targeted to conserve large trees and reduce stand density may be an 

important, overlooked tool to regulate future recruitment.  

A study from the Front Range of Colorado estimated that after accounting for losses to 

seed predators and viability, only 14% of seed crops remained available for germination, and 

only following relatively large seed years (Shepperd et al. 2006). This suggests that although 

larger trees may produce more cones, more often, seed availability for recruitment may still only 

be present in mast years. An important limitation of this study is that we assessed cone 

production, which describes individual-level investment into reproduction, and not total seed 

availability or viability. Therefore, the question remains - how do factors like variability and 
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synchrony in individual-level cone production translate to overall seed availability on the 

landscape? 

Generally, it is presumed that high synchrony in seed and cone production translates to 

higher overall seed availability, because it builds the economies of scale necessary to offset the 

costs of masting (Pearse et al. 2016). This interpretation is generally supported in our data by the 

observation of identical, hump shaped relationships between neighborhood competition and 

mean cone production and synchrony, and corroborates observations from long term thinning 

experiments (Flathers et al 2016). Both mean cone production and synchrony peaked at low- to 

intermediate values of competition before steeply declining at high levels of competition. It 

remains unknown whether trees with a low CVi (more frequent cone producers) produce 

significant quantities of viable seeds in years of low to moderate cone production. Despite the 

likelihood of poor seed viability in off-years, these trees are still likely to be the biggest 

producers during mast years and thus may have outsized impacts on recruitment and building 

economies of scale in masting populations.  

For managers concerned with maintaining or increasing seed availability on the 

landscape, the results of this study support current efforts to conserve and protect large 

ponderosa pine trees on the landscape, and to restore more open, parklike stand structures across 

low elevation, montane forests from which fire has been historically excluded (Allen et al. 2002, 

Battaglia et al. 2018). In addition, managers should aim to proactively conserve these trees on the 

landscape by thinning smaller diameter trees and reintroducing low severity fire to reduce 

neighborhood competition and crown-fire risk. Such treatments are likely to have concurrent, 

synergetic impacts on forest resilience by reducing drought stress of mature trees, opening new 
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niches for seedling recruitment in the understory, and increasing the mean and synchrony of seed 

production in the overstory (Bradford et al. 2021, McCauley et al. 2022).  

 

How will a changing climate and shifting disturbance regimes affect masting? 

It remains highly uncertain whether and how a changing climate will affect future seed 

production (Hacket-Pain and Bogdziewicz 2021). The results of this study suggest that 

ponderosa pine cone production in many populations may not be strongly impacted by continued 

climate warming and associated increases in water deficit, relative to other dry conifers in this 

region (e.g., Redmond et al. 2012). Ponderosa pine cone production was only weakly associated 

with absolute temperature and precipitation.  In contrast, cone production of other dry pine 

species (Redmond et al. 2012, Wion et al. 2019, Mutke et al. 2005), such as piñon pine, 

conforms to the environmental stress hypothesis (Pearse et al 2017) because they produce 

smaller and more variable crops at hotter, drier sites.  Those species have already experienced 

crop declines associated with a warming climate (Redmond et al., 2012; Mutke et al., 2005). If 

seed production in ponderosa pine is driven by proximate effects of vetoes and triggers, then 

warming temperatures may lead to an increased frequency of veto years, although these effects 

will likely be limited, given the relatively weak associations with climate and weather. Future 

consequences of climate change on seed availability and consumers are also highly uncertain. 

Continued, long-term studies across broad extents are needed to assess current and ongoing 

changes in reproduction dynamics.  

Changing disturbance regimes are likely to have an impact on the patterns of masting 

behavior in ponderosa pine forests, through reductions in tree density and the loss of large and 

old trees across the landscape. Ponderosa pine is considered an archetypal fire-adapted species in 



 

63 

the western US (Stevens et al. 2020) and is widely distributed species across a range of forest 

types and climatic conditions (Burns and Honkala 1991). Many ponderosa pine forests have 

experienced increases in tree density over the past century – both the result from the legacies of 

fire exclusion policies and recovery from historical land use (e.g., grazing, logging, and mining, 

Naficy et al. 2010, Rodman et al. 2019). Areas adapted to historic, low-severity fire regimes 

(commonly low elevation and lower latitude forests with a grass dominated understory) are 

likely most affected by human-caused deviations from fire regimes, and where the goals of 

reducing fire risk and ecosystem restoration likely converge (Rodman et al. 2019). In ponderosa 

pine forests strongly affected by legacies of fire exclusion, increases in tree density have likely 

contributed to an overall decrease in the total amount of seed production of individual-trees, and 

possibly reduced benefits associated with variability and synchrony of mast seeding, such as 

predator satiation. 

The loss of large trees as a consequence of disturbance may have an outsized impact on 

seed availability across the landscape. Large trees are preferential hosts of bark beetles 

(Stephenson et al. 2015) and face heightened threats from increasing drought stress from hotter 

temperatures (Bennet et al. 2015, McDowell et al. 2015). Increased frequency of high severity, 

stand replacing fires also threaten the persistence of large and old trees on the landscape (Millar 

et al. 2015). Because large trees were also less variable (lower CVi, indicating smaller between-

year differences in cone production), they may have important impacts on post-fire recruitment, 

especially in species that are limited to narrow windows of recruitment. Notably, it remains 

understudied how the timing of seed production, relative to fire and climate, may influence post-

fire ponderosa pine regeneration, which is a crucial piece of missing information in our 

understanding of post-fire landscape management (Stevens et al. 2021). While the loss of large 
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trees from drought and fire have clear negative impacts on seed availability, our research 

suggests that reductions in tree density from controlled, low severity disturbances may also 

positively impact the synchrony and variability of reproduction, which could potentially affect 

future patterns of ecosystem recovery.  

 

CONCLUSION 

We conducted a broad survey of ponderosa pine cone production to better understand what 

drives and shapes masting behavior, and how it varies across a large portion of this species’ 

distribution in the southern Rocky Mountains. We show that absolute VPD and precipitation 

were weak associates of ponderosa pine masting in some populations, but these effects were not 

uniform across the landscape, and further work should be done to resolve the drivers of masting 

in climate insensitive populations. Importantly, we demonstrate that large and open grown trees 

were the most productive individuals, and conserving these individuals is likely the shortest path 

to maintaining reproductive potential in the era of accelerating disturbances. Current efforts to 

restore fire-excluded ponderosa pine forests to open, parklike stand structures are also likely to 

have positive impacts on seed availability, through increases in the mean and synchrony of 

individual-tree cone production. Long-term monitoring of both seed production and recruitment 

will continue to be the most useful tool for determining climate change impacts on tree 

demographic processes, and how they influence population growth rates across species ranges.   
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CHAPTER 3 

 

 

 
3THE EFFECTS OF ENSO AND THE NORTH AMERICAN MONSOON ON MAST 

SEEDING IN TWO ROCKY MOUNTAIN CONIFER SPECIES 

 

OVERVIEW 

We aimed to disentangle the patterns of synchronous and variable cone production (i.e., masting) 

and its relationship to climate in two conifer species native to dry forests of western North 

America. We used cone abscission scars to reconstruct ca. 15 years of recent cone production in 

Pinus edulis and Pinus ponderosa, and used redundancy analysis to relate time series of annual 

cone production to climate indices describing the North American monsoon and the El Niño 

Southern Oscillation (ENSO). We show that the sensitivity to climate and resulting synchrony in 

cone production varies substantially between species. Cone production among populations of P. 

edulis was much more spatially synchronous and more closely related to large-scale modes of 

climate variability than were populations of P. ponderosa. Large-scale synchrony in P. edulis 

cone production was associated with the North American monsoon and we identified a dipole 

pattern of regional cone production associated with ENSO phase. In P. ponderosa, these climate 

indices were not strongly associated with cone production, resulting in asynchronous masting 

patterns among populations. This study helps frame our understanding of mast seeding as a life 

history strategy and has implications for our ability to forecast mast years in these species. 

 

INTRODUCTION 

 

3
 By Andreas P. Wion, Ian S. Pearse, Kyle C. Rodman, Thomas T. Veblen, and Miranda D. Redmond. Formatted for 

and accepted in the Philosophical Transactions of the Royal Society B.   
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Masting is the synchronous and irregular production of episodic seed crops by plant 

populations [1]. Variable seed production is a life history strategy common among many 

different plant families, which may have evolved as a mechanism to cope with nutrient or 

resource limitations [2, 3], satiate seed predators [4], or increase pollination efficiency [5]. In 

conifers and other long-lived species, synchronized mast years (such years of large, synchronized 

seed crops) occurring across large geographic areas are likely driven by broad-scale similarities 

in weather (i.e., Moran effects, [6, 7]). The effects of weather on seed production often occur 

during key phenological periods of the seed and cone development process which, for many 

species, take place over multiple years [8, 9]. Such lagged relationships between the consecutive 

stages of seed development and broad-scale weather patterns present opportunities for ecological 

forecasts of mast years, which would aid in the management of plant regeneration, animal 

population dynamics, and zoonotic disease outbreaks [10]. Yet it remains unclear how much of 

the interannual variability in seed production can be attributed to broad-scale weather patterns, 

and how much variability arises from local or regional factors. Disentangling these patterns and 

their relationship to climate is a prerequisite to future forecasts of masting.  

Resource matching is the null hypothesis of masting, which posits that plant investment 

in annual reproduction is a linear function of the available resources or nutrients each year [2, 

11]. While intuitive, empirical observations of seed production at large-scales and over long time 

periods are often noisy and complex. Synchrony in seed production among populations is 

commonly reported across many hundreds, sometimes thousands, of kilometers [9, 12, 13], but 

populations may also be unsynchronized at local-scales (e.g., < 100 kilometers; [8, 14]) or anti-

synchronous at continental-scales (i.e., an ecological dipole; [15, 16]). Broadly synchronous mast 

years occur infrequently, while seed production is highly localized or region-specific during 
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most years, across many species [9, 12, 13, 14]. Individual-level factors like size and age [17, 

18], endogenous resource budgets [19], density-dependent dynamics like competition and pollen 

availability [20, 21], and local climate differences [9, 22] may all lead to a decoupling of seed 

production and interannual climate variability among individual trees. Divergent sensitivities of 

forest populations may lead to complex patterns of asynchronous seed production that are 

ultimately unrelated to similarities in weather.  

Water is the primary limiting resource for plant physiological processes in dry and 

seasonally dry ecosystems [23]. Climate conditions that alleviate water stress, such as cool 

temperatures (via reduced evaporative demand due to lower saturation vapor pressure) and 

abundant precipitation (via increased soil moisture) drive forest productivity in most dry 

ecosystems [24]. Moisture constraints on tree demography are apparent in dry conifer forests of 

western North America, where regional pulses of tree recruitment and growth follow infrequent 

years of above average precipitation and cool temperatures [25, 26, 27, 28], and likely also drive 

masting in several forest species native to this region [8, 9, 29]. Cool temperatures and abundant 

precipitation may be a “cue” to synchronize phenological events like cone initiation or pollen 

dispersal, but weather also has direct, proximate effects on seed production [2]. Drought and hot 

temperatures can “veto” mast crops [2, 30], leading to infrequent but highly synchronous mast 

crops during years of widespread moisture availability. In this study, we hypothesized that large 

scale modes of climate variability which influence tree water stress would drive the patterns of 

synchronous masting in dry forests of western North America. 

Large-scale modes of climate variability, like the El Niño Southern Oscillation (ENSO) 

and the North American monsoon, shape recurring continental-scale patterns of moisture 

availability throughout western North America [31, 32, 33]. These climate modes are highly 
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pronounced in southwestern North America (portions of the southwestern United States and 

western Mexico) where precipitation is strongly bimodal- i.e., peaking in the winter and summer, 

with little or no precipitation in the intervening months [34]. The North American monsoon is 

strongly associated with increased summer precipitation in this region [33], whereas ENSO is 

associated with cool season (winter and spring) temperature and precipitation [31, 32, 35]. 

Notably, below-average temperatures and above-average precipitation in southwestern North 

America often cooccur with below-average precipitation and above-average temperatures in 

northwestern North America (portions of the northern US and western Canada [35]). This 

climate-dipole is characteristic of the El Niño phase of ENSO (La Niña describes the inverse of 

this pattern), which tends to develop over several months and peak in the boreal winter [36]. 

Climate dipoles can reinforce negative spatial autocorrelation, or anti-synchrony, among 

populations over large distances- driving see-saw patterns of boom-and-bust population 

dynamics across geographically disparate regions [16]. A growing body of evidence suggests 

that there are links between mast years and large-scale modes of climate variability in some tree 

species [37, 38, 39], but there has yet been little exploration of the synchronizing effect of 

climate modes on masting across species in North America.  

We aimed to disentangle the patterns of synchronous cone production and their 

relationship to these large-scale modes of climate variability in two tree species native to dry 

forests of western North America (Rocky Mountain ponderosa pine, Pinus ponderosa var. 

scopulorum; and Colorado piñon pine, Pinus edulis). Cone abscission scars [40] were used to 

reconstruct 14-16 years of annual cone production in 470 individual trees from 76 sites. We then 

identified the variation in annual cone production across sites that could be explained by the 

interannual variation in climate modes during key phenological periods of cone development 
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using redundancy analysis. The results carry implications for our ability to forecast future mast 

years, which can aid in management of cascading ecosystem processes arising from the 

availability of seeds [10] and illuminate our understanding of mast seeding as a life history 

strategy in these conifer species.  

 

 

METHODS 

Natural History 

Piñon pine and ponderosa pine are widespread conifer species found throughout dry 

forests, woodlands, and savannas of western North America [41]. Both species require at least 

two years to produce a single crop of cones. Cone production is initiated during the growing 

season, two years before cones are fully mature and seeds are released. Cone initiation in 

ponderosa pine occurs earlier in the growing season (June or July [42]) than piñon pine cone 

initiation, which occurs in late August or early September [43]. Unfertilized conelets overwinter 

and are pollinated the following spring, April or May, one year prior to cone maturation. During 

this time, a small structure forms between the cone and the branch, leaving a conspicuous scar at 

the point of attachment when a cone is abscised. These ‘cone scars’ can then be recorded in 

relation to the annual growth whorls of branches to reconstruct cone production in these species 

[40]. 

Previous research has linked masting in both species to periods of above average 

moisture and below average temperatures, primarily during cone initiation and pollen dispersal 

[8, 9, 29]. This motivated our expectation that the North American monsoon would have a 

positive relationship with subsequent cone production- specifically, summer precipitation falling 
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two years prior to cone maturation (i.e., the months preceding and during cone initiation). We 

also expected ENSO would impact cone production one year prior to cone maturation, preceding 

and during pollen dispersal. Cool temperatures and abundant moisture may prime resource 

uptake overwinter between initiation and pollination, or stable spring weather may cue 

synchronous pollen release among populations [44]. Alternatively, winter and spring drought 

may lead to desiccation of unfertilized conelets, or unstable spring weather (e.g., late frosts) may 

damage pollen cones or lead to asynchronous pollen dispersal among populations.  

 

Study Area 

We quantified annual cone production at 76 sites (P. edulis – 28 sites, 188 trees; P. 

ponderosa – 48 sites, 282 trees; Appendix 3 Figure A.3.1) located in the Black Hills, the central 

and southern Rocky Mountains, the Colorado Plateau, and the mountains of Arizona and New 

Mexico. Each site contained cone production data on one of the two focal species. The study area 

is bounded by 32o and 44o north latitude and -112o and -103o longitude. The study sites ranged in 

elevation from 1,400 and 2,800 meters above sea level and from 265 mm to 675 mm in mean 

(1981-2010) annual precipitation (using 800-m resolution 30-year climate averages from PRISM 

[45]).  

Individual sites were combined from several different research projects, and the site 

selection criteria differed slightly between each project (see [9, 20] for full details). In addition, 

17 ponderosa pine sites were sampled that were adjacent to recent wildfires or within unburned 

or low-severity fire refugia (see [20] for details). However, all sites conformed to the following 

criteria: 1) sites were located on public federal lands within 1 km of an accessible road, and 2) 

each site contained a minimum of 5 reproductively and healthy trees of the focal species within 
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50 meters of a randomly placed plot center. At each site, trees were randomly selected within 

stands for cone production sampling. Most often, this was achieved by sampling the nearest tree 

from a fixed point (or otherwise nearest opportunity) along a randomly placed or oriented belt 

transect (see Appendix 3: Sampling criteria of individual trees for more details). 

 

Cone Production Data 

We reconstructed recent historical cone production using the cone abscission scar method 

[40]. This method has been statistically validated against records of cone production in piñon 

pine [46], and used previously in other species [47, 48, 49], including ponderosa pine [20]. 

Results from a previous study suggest that stand-level estimates of the mean annual cone 

abundance stabilize after sampling 4-5 branches per tree, and 4-6 individuals per site [46]. We 

surveyed 5-7 trees at each site, and 4-8 branches per tree, and then recorded the total number of 

cone-bearing branches per tree to scale the estimates of cones per branch to annual cones per tree 

(see Appendix A1 for more details). The estimates of annual cone production are expressed as 

the mean cone production tree-1 year-1 (aligned to reflect the year of cone maturation) at each 

site. We compiled time series of annual cone production at each site into a matrix with years as 

rows and sites as columns for each species. Data were scaled and centered (i.e., z-score 

transformation) within each site using the series-wide means and standard deviations to equalize 

variance across sites. 

 

Large-scale modes of climate variability 

Interannual climate variability across the study area is shaped by two large-scale forces 

(the North American monsoon and ENSO) operating in different seasons (the warm season and 
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cool season, respectively; [34]). We aimed to capture this interannual variability using two 

climate indices, one describing the annual intensity of the North American monsoon across our 

study sites, and the other describing the annual magnitude of ENSO, which is associated with 

interannual variability in winter and spring precipitation and temperature (Figure 3.1). We 

aligned these indices to correspond with the matrices of annual cone production at two- and one-

year lags, respectively, corresponding to the year of cone initiation for the North American 

monsoon (year -2 relative to cone maturation) and cone pollination for ENSO (year -1 relative to 

cone maturation) in both species. 

We used principal component analysis (PCA) to decompose the variability in summer 

precipitation across all study sites to develop an index of annual monsoon intensity. This index 

was developed using monthly PRISM data, which are gridded climate series based on 

interpolated weather station data and regression models to account for physiographic effects of 

slope and elevation, developed at a 4-kilometer resolution for the conterminous United States 

[45]. Monthly precipitation totals for June - September were extracted at the site’s center-point 

location and summed by site and year for the period 2001-2016 (corresponding to the year of 

cone initiation, or two years prior to the last available year of cone production data). Next, 

precipitation anomalies within each time series were transformed to z-scores. PCA was then 

performed on the transformed site-level time series. The first principal component explained 

52.3% of the overall variability in precipitation, with positive values describing years of 

abundant monsoon precipitation across a large proportion of study sites. This index, which 

provides a simplified representation of the effects of the North American monsoon, was retained 

for use in subsequent redundancy analyses (below).  
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 We used the bimonthly December/January average of the Multivariate ENSO Index 

(MEI v.2 [50]) to describe the magnitude of ENSO events at an annual resolution from 2002-

2017 (corresponding to the year of cone pollination, or one year prior to the last available year of 

cone production data). The MEI is the first principal component of a series of measurements 

associated with ENSO magnitude, including sea surface temperature, atmospheric pressure, wind 

speed, and outgoing longwave radiation in the tropical Pacific [50]. This index is standardized 

relative to a 1980-2018 reference period such that positive phases of ENSO (MEI > 0.5) are 

considered El Niño events and are associated with cool and wet winters and springs in the US 

Southwest - the southern portion of our study area. Impacts from ENSO are strongest in this 

southern portion of our study area, and this relationship decays and ultimately reverses north of 

approximately 40 degrees north latitude (Figure 3.1). Negative phases of ENSO (MEI < -0.5) are 

considered La Niña events and are associated with hot and dry winters and springs in this region. 

We focused on the December/January period because ENSO events typically peak in strength 

during this time, and thus are commonly used as a benchmark of annual ENSO magnitude [36]. 

ENSO is also known to interact with other climate modes, like the Pacific Decadal Oscillation 

[51] or Atlantic Multidecadal Oscillation [52, which may influence summer precipitation and 

temperature across large portions of the central United States [52, 53]. Importantly, the two 

climate indices examined here were not correlated (r = 0.16, p = 0.55), and therefore we interpret 

each as an independent variable describing the general climate patterns during winter/spring 

(ENSO) and summer (the North American monsoon).  

 



 

82 

 

Figure 3.1) Large-scale modes of climate variability across the study area, masked to the 

combined distribution of piñon pine and ponderosa pine in this region (distribution from [54]). 

Colors represent the Pearson correlation between the climate index of interest and weather 

during key periods of cone development. Panel A shows the correlation between the index of 

annual North American (NA) monsoon intensity and a gridded series of summer precipitation 

(June – September) between 2001-2016. Panels B and C show the correlation between the 

December/January average of the Multivariate ENSO Index (MEI), spring precipitation (March-

May, B), and temperature (C) between 2002-2017. See Appendix 3 for maps of correlation 

between ENSO (El Niño Southern Oscillation) and winter (December-March) precipitation and 

temperature, which were largely identical.  

 

Redundancy Analysis 

We performed redundancy analyses (RDA) to identify and describe the variation in 

annual cone production that was shared among (i.e., redundant with) the two climate indices of 

interest: ENSO and the North American monsoon. Redundancy analysis is an extension of 

constrained principal components analysis and multiple regression, where two or more datasets 

are summarized by the linear relationships between a set of multivariate response and predictor 

variables [55]. This approach allows us to identify commonalities between many time series of 

cone production and a limited number of explanatory variables. The response variable in each 

RDA was a matrix of annual cone production across all sites for each focal species, and the 
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predictor variables were the two climate indices describing annual monsoon intensity and ENSO 

magnitude. We report the proportion of constrained variability (i.e., shared with the predictor 

variables) for each species, as well as the adjusted R2 of the full RDA model. The statistical 

significance of predictor variables and RDA axes was assessed individually using permutational 

multivariate analysis of variance (PERMANOVA) on a constrained ordination with 999 

iterations.  

All statistical analyses were performed using the software R [56]. Data carpentry was 

performed using the data.table [57] package, RDA analysis was conducted in vegan [58], spatial 

analyses were conducted using the raster package [59], and figures were produced using the 

ggplot2 [60], scico [61], and patchwork [62] packages.  

 

RESULTS 

The North American monsoon and ENSO were strongly related to time series of piñon 

pine cone production, but such relationships were weak or absent in ponderosa pine. These two 

climate indices – the first describing intensity of the monsoon during cone initiation, and the 

other the magnitude of winter ENSO prior to cone pollination, captured 40% of the overall 

interannual variability (i.e., constrained variability) in piñon pine cone production, but only 

15.2% of interannual variability in ponderosa pine cone production. PERMANOVA tests 

indicated that both climate indices were significant model terms (i.e., having non-zero effect 

sizes) in our RDA model for piñon pine (Table 3.1), but these terms were marginally significant 

or not significant in ponderosa pine. Similarly, both RDA1 and 2 were statistically significant 

(i.e., explained a proportion of variation greater than what would be expected by random chance) 

in piñon pine but not ponderosa pine (Table 3.2). The first axis of unconstrained variability in 
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ponderosa pine explained a greater proportion than the first axis of the constrained variability, 

indicating a low signal to noise ratio between these climate indices and masting in ponderosa 

pine.  

 

Table 3.1) Coefficients for piñon pine (top) and ponderosa pine (bottom) redundancy analysis 

(RDA) models, describing the impact of large-scale modes of climate variability during key 

phenological events (noted in parentheses) on annual cone production in both species. MEI = 

Multivariate ENSO Index; ENSO = El Niño Southern Oscillation. 

 

 

Piñon pine RDA Variance F statistic  P value 

    

North American monsoon 

(cone initiation; yr-2) 

7.24 4.73 0.002 

Dec/Jan MEI  

(cone pollination; yr-1) 

3.95 2.58 0.018 

   Adj. R2 = 0.29 

Ponderosa pine RDA    

    

North American monsoon 

(cone initiation; yr-2) 

4.53 1.45 0.087 

Dec/Jan MEI  

(cone pollination; yr-1) 

2.75 0.88 0.643 

   Adj. R2 = 0.02 

 

 

Table 3.2) Summary of the individual axes from the piñon pine (top) and ponderosa pine 

(bottom) redundancy analysis (RDA) models. In both species, RDA1 was associated with the 

North American monsoon, and RDA2 was associated with ENSO (Appendix 3 Figure A.3.2). 

The proportion of constrained variability described by each axis is included in parentheses.  

 

Piñon pine RDA Variance F statistic  P value 

    

RDA1 (25.9%) 7.25 4.73 0.002 
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RDA2 (14%) 3.93 2.58 0.011 

    

Ponderosa pine 

RDA 

   

    

RDA1 (9.4%) 4.53 1.45 0.265 

RDA2 (5.7%) 2.75 0.88 0.632 

 

 

The two climate indices had similar effects on the constrained ordination in both species 

(Appendix 3 Figure A.3.2), but in ponderosa pine, these relationships explain a very small 

proportion of variability in the overall dataset (Adj. R2 = 0.02), and therefore statistical 

relationships were either marginal or insignificant (Tables 3.1 and 3.2). For this reason, 

descriptions of climate-masting relationships below focus primarily on piñon pine.  

The first axis of the RDA (RDA1) was a time series that captured the greatest proportion 

of variability which was shared between the climate indices and matrices of annual cone 

production (Figure 3.2, left panels). RDA1 was positively associated with monsoon intensity 

(Appendix 3 Figure A.3.2), and site scores exhibited largely positive scores (Figure 3.2, center 

and right panels). In other words, a large proportion of piñon pine sites exhibited positive 

associations between monsoon precipitation during cone initiation and subsequent mast years 

two years later, a finding that supports previous research in this species [9, 32]. This indicates 

that the North American monsoon is a strong driver of the variability in annual piñon pine cone 

production. High values of RDA1 occurred in 2008 and 2015, describing years of both abundant 

monsoon precipitation and widespread mast years in piñon pine (Figure 3.2).  
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Figure 3.2) The axes of variability shared among the North American monsoon and cone 

production, or RDA1, in piñon pine (top left and center panel) and ponderosa pine (bottom left 

and right panel). Left panels show time series of the sample scores (solid black line) which are 

the weighted average of RDA1 site scores for each year (colored circles). Dashed lines show the 

index of the North American monsoon (during cone initiation, or two years prior to cone 

maturation) across all study sites. Both time series are aligned to reflect the year of cone 

maturation. Values of sample scores and the monsoon index are unitless and were scaled to 

equalize variance between the series. In-panel text reports the Pearson correlation coefficient and 

associated p-value between RDA1 and the North American monsoon. Center and right panels 

show maps of the site scores, or the weighted sum of RDA1 sample scores across all years at 

each site for each species. The North American monsoon was a strong driver of piñon pine cone 

production (explaining 25.9% of the overall variability in piñon pine cone production), but did 

not explain a statistically significant amount of variability in ponderosa pine cone production 

(9.7%).  

 

The axis of shared variability among ENSO and annual cone production (RDA2) 

described regional patterns where cone production was abundant in one region and absent in 

another (Figure 3.3). In both species, RDA2 was associated with ENSO during the year of cone 

pollination (Appendix 3 Figure A.3.2), but this relationship only explained a significant portion 

of the overall variability in cone production in piñon pine (Table 3.2). In ponderosa pine, RDA2 

only explained 5.7% of the shared variability between ENSO and cone production, and 

PERMANOVA tests indicated this was not a significant proportion of the total variability in 

cone production. 
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Maps of the RDA2 site scores revealed a dipole pattern in piñon pine (Figure 3.3), where 

positive values of RDA2 were associated with cone production at southern sites (largely in New 

Mexico) and negative values of RDA2 were associated cone production at northern sites (in 

western Colorado). Because RDA2 is positively associated with ENSO, El Niño years (positive 

values of the MEI) are associated with mast years in the southwestern portion of the study area. 

This pattern is flipped during La Niña years, where negative values (La Niña years) are 

associated with mast crop failures in the southwestern portion of the study area. We did not 

observe regional-scale spatial structuring in RDA2 for ponderosa pine. Sites with high and low 

RDA2 site scores were often in close proximity and were distributed evenly throughout the 

latitudinal gradient, making it highly unlikely that RDA2 reflects a consistent regional-scale 

climate signal.  

 

 

 

Figure 3.3: The axes of variability shared among the El Niño Southern Oscillation (ENSO) and 

cone production, or RDA2, in piñon pine (top left and center panel) and ponderosa pine (bottom 

left and right panel). Left panels show time series of the sample scores (solid black line) which 

are the weighted average of RDA2 site scores for each year (colored circles). Dashed lines show 

the December/January average of the Multivariate ENSO Index (MEI) during cone pollination, 



 

88 

one year prior to cone maturation. Values of the MEI are unitless, years greater than 0.5 are 

considered El Niño years and less than -0.5 are considered La Niña years (dotted horizontal 

lines). Both time series are aligned to reflect the year of cone maturation. In-panel text reports 

the Pearson correlation coefficient and associated p-value between RDA2 and the MEI. Center 

and right panels show maps of the site scores, or the weighted sum of RDA2 sample scores 

across all years at each site for each species. RDA2 in piñon pine described an ecological dipole, 

where El Niño years are associated with masting at southern sites and crop failures at northern 

sites, and La Niña years are associated with the opposite pattern. Despite a strong correlation 

between the MEI and RDA2 in ponderosa pine, this relationship did not explain a significant 

proportion of the overall variability in cone production (5.7%).  

 

DISCUSSION 

Mast years are bottom-up resource pulses in forest ecosystems that drive processes such 

as plant regeneration [28], animal population dynamics [63], and zoonotic disease outbreaks 

[64]. This study disentangled regionally synchronous patterns of masting and related these to two 

large-scale modes of climate variability. The results demonstrate that climate sensitivity and 

synchrony in cone production vary substantially between two co-occurring dry pine species in 

western North America. Masting in piñon pine was highly synchronous among populations and 

exhibited stronger relationships to large-scale modes of climate variability in comparison to 

ponderosa pine. Our a priori expectations about the timing of moisture in relation to key 

phenological periods were also supported for piñon pine, but climate modes during these same 

time periods had little effect on ponderosa pine. Specifically, piñon pine showed strong positive 

responses in cone production following above average monsoon precipitation, and regional anti-

synchrony in association with ENSO. In contrast, ponderosa pine populations had highly variable 

patterns of seed production, ultimately leading to complex patterns of asynchronous reproduction 

that were unrelated to the climate indices studied here. Below we explore some potential reasons 

for these differences, and the implications they have for forecasts of masting and our 

understanding of masting as a life history strategy.  
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Divergent climate-masting relationships between species 

Temporal variation in ponderosa pine cone production was not associated with ENSO or 

the North American Monsoon, the two climate indices widely considered to be important 

climatic drivers of growth and recruitment in our study area [26, 27, 65]. This result stands in 

contrast to the patterns exhibited by piñon pine, which displayed higher synchrony in cone 

production among populations and stronger responses to modes of climate variability. We 

suspect that this may be tied to differences in life history strategies between species or reflect the 

different ecological settings that these species inhabit. For example, piñon pine produces fewer, 

larger seeds that are highly vulnerable to predation and attract seed consumers with large home 

range sizes, such as birds, in contrast to ponderosa pine [41]. The evolutionary pressures of 

predator satiation may select for stronger regional synchrony in species that are highly 

vulnerable to predation especially in those species that are dispersed by highly mobile seed 

predators [11], as seen in piñon pine; however, previous research has shown that ponderosa pine 

also experiences some fitness benefits related to the economies of scale associated with predator 

satiation [66]. Piñon pine also occupies drier habitats (e.g., lower elevations and latitudes) than 

ponderosa pine, and as such may experience more frequent reproductive vetoes related to 

drought and hot temperatures or lack the resources necessary to produce smaller crops in non-

mast years. These explanations are not mutually exclusive, as the larger seed mass in piñon pine 

(and other animal dispersed species) may also incur higher resource costs. In other words, it may 

require a greater relative investment of resources to produce larger seeds in drier environments 

and could explain the stronger relationship to climate seen here.  
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The high degree of asynchrony in ponderosa pine aligns with a previous study of climate-

masting relationships in this species on the Colorado Front Range. Mooney et al. [8] documented 

a rapid decay of synchrony among ponderosa pine populations greater than 30 kilometers apart. 

Such asynchrony might be attributed to the high heterogeneity in local water balance or soils 

across topographically complex areas like the Rocky Mountains. They also described a 

relationship between cone production and antecedent spring temperature and precipitation in 

several populations near Boulder, Colorado, however; these relationships were not consistent in a 

separate population 100 kilometers to the south. High levels of genetic variability among 

populations may drive different degrees of climate sensitivity, as has been suggested in Fagus 

crenata [67]. The prevalence of ‘super producers,’ or trees that do not exhibit a strong masting 

habit and instead produce large levels of cones each year [68], has a genetic component and 

appears to be somewhat common in ponderosa pine [69, 70]. Super producers are by definition 

largely asynchronous from other trees within a shared stand and exhibit little to no relationship 

with climate. The role of genetic variability in regulating the sensitivity of trees to climate and 

the production of seeds remains an intriguing and understudied question [71].  

Piñon pine populations on drier sites tend to produce smaller and less frequent cone crops 

than populations on wetter sites, suggesting that water balance plays an important role in 

regulating the size and frequency of mast years [9]. But it is unclear from this study whether 

water balance plays a similar role in ponderosa pine cone production. Cone production in 

ponderosa pine was not strongly associated with the direct effects of moisture availability during 

cone initiation or pollination; however, cone production may instead be more strongly associated 

with factors like temperature, or other environmental factors not examined in this study. 

Ponderosa pines are generally fast-growing, shade intolerant trees capable of reaching relatively 
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tall heights, whereas piñon pines are generally shade tolerant and slow growing, attaining much 

older ages but reaching much smaller statures [41]. Individual-level factors such as tree size, age, 

and stand structure may influence climate sensitivity and cone abundance [20, 72], and thus may 

play a relatively greater role in the individual-level variability of ponderosa pine cone production 

than in piñon pine. Density dependent factors like competition [20] or pollination limitations [21] 

also likely play important roles in regulating the interannual variability of ponderosa pine cone 

production.  

 

An ecological dipole associated with ENSO 

We identified a dipole relationship between ENSO and regional cone production in piñon 

pine. A mechanistic explanation for this pattern is that warm and dry springs in the southwestern 

United States, associated with La Niña, veto subsequent cone production by disrupting pollen 

dispersal [2, 44]. Alternatively, El Niño brings moisture that may prime resource uptake and 

sustain pollen cone development through the typically hot and dry spring months in this area 

[34]. Asynchrony in pollen release may also disrupt the cone development process independent 

of the direct effects of weather, as has been documented in some oak (Quercus) species [44]. 

Previous research using these same piñon pine sites found increased sensitivity to spring climate 

during cone pollination in southern populations of piñon pine [9]. In contrast, populations further 

north were more sensitive to late summer climate during the period of cone initiation. The 

northern portion of the ecological dipole observed in this study typically experiences dry 

summers, receiving most of the mean annual precipitation during winter, fall, and spring, while 

the southern portion where precipitation is highly bimodal [34]. Precipitation falling during the 

cool season is generally not subject to intense evaporative demand, which allows water to 
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percolate into deep soil storage [73]. Piñon pine radial growth is sensitive to antecedent winter 

precipitation [74], and this relationship is stronger on sites that have greater soil available water 

capacity [75]. This suggests that interactions between summer and winter water balance may 

play an important role in regulating cone production in piñon pine.  

The relationship between large scale modes of climate variability and masting may also 

act as a cue to synchronize reproduction across large geographic areas. Synergistic interactions 

between broad-scale climate modes and plant reproduction may bridge evolutionary and 

mechanistic hypotheses explaining masting [39]. Climate modes can align weather across the 

multiple consecutive stages of cone development and can manifest as lagged environmental 

conditions that are favorable to tree recruitment in this region [39]. Timing mast years to climate 

modes like ENSO could benefit the fitness of seedlings, but we did not detect such a relationship 

in ponderosa pine. A recent study demonstrated that ponderosa pine recruitment between the 

northwest and southwest United States followed a dipole pattern similar to that reported here for 

piñon pine [76]. However, our ponderosa pine sites are concentrated in areas where the effects of 

ENSO are highly variable (near 40 degrees latitude), and further sampling at the extreme 

margins of our study area may illuminate yet undiscovered patterns.  

Infrequent, broad-scale masting events operate as a keystone process that influences 

community and ecosystem dynamics across trophic levels. The lagged relationships between 

cone production and climate described in this study and many others indicate that near-term 

ecological forecasts of mast years may be within reach, at least for some species. Mast forecasts 

may eventually be leveraged to time ecosystem management activities related to the management 

of plant and animal populations, including in shelterwood forestry, ecosystem restoration [77], 

and endangered species management [78, 79], which are often intertwined with boom-and-bust 
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cycles of seed availability [10]. Piñon pine has experienced extensive tree mortality associated 

with recent hotter droughts [80, 81], documented declines in cone production [82], and limited 

recruitment following these recent die-off events [83]. Forecasts of piñon pine masting may thus 

help manage the balance between supply and demand for piñon pine seeds for research, 

management, cultural, and commercial purposes [10]. The present study suggests that a deeper 

understanding of the interaction between ENSO and North American monsoon will be a useful 

indicator when developing regional forecasts of masting in piñon pine.  

Linking the patterns of synchronous reproduction to large-scale climate modes can help 

improve forecasts of mast years and reveal the underlying mechanisms that drive masting. The 

lack of a regional climate signal driving ponderosa pine cone production requires further 

exploration into whether a broader array of potential climatic variables can predict seed 

production in this species. Future work on this topic should also be focused on resolving 

individual-level variability in masting, including how stand structure, size, and age affect cone 

production, and how these factors scale up to drive the variability in seed production at stand- 

and ecosystem-levels. This information will be critical to accurately parameterize demographic 

processes in predictive models, and project future changes in forest ecosystems across broad 

biophysical gradients.  
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CHAPTER 4 

 

 

 
4DEAD AGAIN: PREDICTIONS OF REPEAT TREE DIE-OFF UNDER HOTTER 

DROUGHTS CONFIRM TIPPING POINTS FOR A DRYLAND CONIFER SPECIES 

 

OVERVIEW 

Tree die-off, driven by extreme drought and exacerbated by a warming climate, is occurring 

rapidly across every wooded continent - threatening carbon sinks and other ecosystem services 

provided by forests and woodlands. Forecasting the spatial patterns of tree die-off in response to 

drought is a priority for the management and conservation of forested ecosystems under 

projected future hotter and drier climates. Several thresholds derived from drought-metrics have 

been proposed to predict mortality of Pinus edulis, a model tree species in many studies of 

drought-induced tree die-off. To improve future capacity to forecast tree mortality, we used a 

severe drought as a natural experiment. We compared the ability of existing mortality thresholds 

derived from four drought metrics (the Forest Drought Severity Index, the Standardized 

Precipitation Evapotranspiration Index, and raw values of precipitation and vapor pressure 

deficit, calculated using 4km PRISM data) to predict areas of P. edulis die-off following an 

extreme drought in 2018 across the southwestern US. Using aerial detection surveys of tree 

mortality in combination with gridded climate data, we calculated the agreement between these 

four proposed thresholds and the presence and absence of regional-scale tree die-off using 

sensitivity, specificity, and the area under the curve (AUC). Overall, existing mortality 

thresholds tended to over predict the spatial extent of tree die-off across the landscape, yet some 

retain moderate skill in discriminating between areas that experienced and did not experience 
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tree die-off. The simple precipitation threshold had the highest AUC score (71%) as well as fair 

sensitivity and specificity, but the Forest Drought Severity Index had the greatest sensitivity to 

die-off (85.9%). We highlight that empirically derived climate thresholds may be useful 

forecasting tools to identify vulnerable areas to drought induced die-off, allowing for targeted 

responses to future droughts and improved management of at-risk areas.  

 

INTRODUCTION 

Tree die-off (or mass-mortality events of trees) driven by extreme drought, exacerbated 

by a warming climate, and frequently associated with forest pests and pathogens, presents a 

global-scale challenge to maintaining forested ecosystems under accelerating climate warming 

(Breshears et al. 2005, Allen et al. 2010, 2015). Forecasting tree die-off has the potential to 

inform management goals like the provisioning of ecosystem services, developing treatments to 

increase forest resiliency during or prior to drought, and planning recovery efforts following 

drought, as well as scientific questions like carbon sink-source dynamics, global climate 

circulation, and species distributions (e.g., Bradford et al. 2018, Anderegg et al. 2013, Swann et 

al. 2018, Jackson 2021). But forecasting tree die-off remains a major challenge, as tree die-off 

events are relatively infrequent, long-lasting, and slow developing in comparison to many other 

forest disturbances like fires or hurricanes (Redmond et al. 2019). Thus, while the study of tree 

mortality is often a retrospective exercise, advancing forecasts of tree die-off requires iteratively 

testing existing hypotheses to refine future predictions, highlight areas of uncertainty, and 

evaluate our understanding of ecological processes (Dietze 2017).  

“Hotter droughts” or “hot droughts” (Allen et al. 2015; originally “global-change-type-

droughts”, Breshears et al. 2005) are major drivers of tree die-off, due to the positive exponential 
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relationship between maximum temperature and saturation vapor pressure (Breshears et al. 2013, 

Groissord et al. 2020). Hotter temperatures exponentially increase the water stress experienced 

by plants during periods of drought (e.g., Vapor Pressure Deficit [VPD], Anderson 1953, 

Groissord et al. 2020), therefore continued and accelerating climate warming greatly increases 

the vulnerability of trees to bark beetles, pathogens, hydraulic failure of the xylem, and carbon 

starvation (Adams et al. 2009, McDowell et al. 2008, 2011, Breshears et al. 2013, Gaylord et al. 

2013). Identifying temperature and moisture thresholds associated with tree die-off (i.e., 

mortality thresholds) has been the focus of much recent research (e.g., Huang et al. 2015, 

Clifford et al. 2013, Hammond et al. 2019) in part because this would allow scientists and 

managers to better predict how, when, and where trees are most likely to die following hotter 

droughts. However, the wide variation in physiological vulnerability and drought exposure 

makes individual-tree mortality exceedingly difficult to predict (Trugman et al. 2021). 

Ultimately, it is unclear whether empirically derived threshold responses, often retrospectively 

identified from a single drought event, produce transferrable and repeatable results in future 

drought events of differing severity, or whether such predictions are consistent across large 

geographic areas.  

One of the best-documented examples of tree die-off occurred in the southwestern United 

States during the early 2000s (Breshears et al. 2005, Meddens et al. 2015, Floyd et al. 2009). An 

outbreak of piñon Ips beetles (Ips confusus), occurring in combination with a hot drought event, 

resulted in high levels of regional-scale mortality of piñon pine (Pinus edulis), an iconic conifer 

species in dry woodlands and forests of the region. This event motivated a substantial amount of 

research on drought and warming-driven die-off. In the last twenty years, over a dozen metrics 

and their associated thresholds have been proposed as predictors of piñon pine die-off (reviewed 
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in Breshears et al. 2018). Many of these metrics require detailed ecophysiological and hydraulic 

data to predict individual-level mortality (Breshears et al. 2018), though such data are not widely 

available, especially over long periods of time or across broad spatial areas. However, four of 

these metrics are amenable to broad-scale forecasting efforts: the Forest Drought Severity Index 

(FDSI), the Standardized Precipitation Evaporation Index (SPEI), and absolute values of 

precipitation and VPD (Breshears et al. 2018). Yet, the applicability of these metrics and their 

associated thresholds to predict piñon pine mortality have not been field-tested in subsequent 

droughts. Such metrics also share similarities with those available for other species of Pinus 

(e.g., Williams et al. 2013, Breshears et al. 2018) and field-validating such relationships will 

improve our ability to forecast forest die-off in other systems and species.  

We used a recent hot drought as a natural experiment to evaluate our ability to predict 

areas experiencing piñon pine die-off using these four existing mortality thresholds. Our primary 

objective was to assess whether thresholds derived from these four regional-scale drought 

metrics could successfully predict the spatial patterns of piñon pine die-off in advance of aerial 

surveys of tree die-off the following year. We also explore the repeatability of these empirically 

derived thresholds’ ability to predict tree die-off across events with different historical 

contingencies by comparing tree die-off following the 2018 drought to a benchmark year for tree 

die-off (2002). Finally, we highlight the importance of testing previously developed mortality 

thresholds discuss how these results bear on our ability to develop future forecasts of tree die-off.  

 

Methods and Materials 

  

Study species and area 

  



 

106 

Piñon pine occupies low elevation, semi-arid forests and woodlands of the southwestern 

United States and Mexico. The study area comprised the distribution of piñon pine (from Little 

1971) in the US states of Colorado, New Mexico, Utah, and Arizona (hereafter the southwestern 

US). Trees of the genus Pinus are some of the most commercially important species worldwide, 

and piñon pine specifically has been used in a large majority of studies examining hotter drought 

driven die-off, making it a model species (Breshears et al. 2018). It has been estimated that half 

of a million hectares of piñon pine woodlands and forests in the southwestern US (14% of the 

total area of the species) have been affected by tree die-off between 2000-2018 (Hicke et al. 

2020), with some areas experiencing near total loss of mature piñon pine trees (Breshears et al. 

2005, Floyd et al. 2009, Clifford et al. 2013).  

The climate of the southwestern US is characterized by cold winters, warm summers, and 

highly seasonal precipitation. Annual precipitation averages around 400 mm per year (PRISM 

Climate Group, 1981-2010) and is highly seasonal. In the north and western portion of the study 

area, precipitation falls mostly as snow during the cool-season (October – April) and the warm-

season is dry. Heading south and east, precipitation is more strongly influenced by the North 

American monsoon (Notaro et al. 2010). In these areas, half or more of the annual precipitation 

may fall during the summer months of July, August, and September (which are usually the driest 

months in the north and west portions of the study area, PRISM Climate Group, 2021).  

Much of this area has experienced a persistent hydrological drought for two decades, the 

driest such period since in at least 1200 years (Williams et al. 2022), and climate models predict 

continued warming and drying trends in the future (Bradford et al. 2020, Cook et al. 2021). The 

2018 hot drought in the southwest US was an acute event that was overlaid on this extended 

hydrological drought. About half of the study area experienced precipitation deficits greater than 
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50% of the climatological normal (e.g., 1981-2010), and annual mean temperatures in 2018 

across the region were on average 0.5 - 2° C warmer relative to 1981-2010 climate averages 

(PRISM Climate Group, 2021). Despite several drought events that occurred between 2002-

2018, the 2018 drought event was at the time the most severe drought since 2002 (Figure 4.1).  

 

 

Figure 4.1) Running six-month standardized precipitation-evapotranspiration index (SPEI) 

values between Jan 1, 1989, and December 1, 2018 averaged across all piñon pine woodlands in 

the southwestern US. Each bar represents the difference in precipitation and evapotranspiration 

for the prior 6-month period, standardized to the long-term mean (since 1901). Positive values 

(blue) indicate cooler and wetter than average conditions, and negative values (red) indicate 

hotter and drier than average conditions. SPEI was calculated with a Thornwaithe type water 

balance using PRISM derived precipitation and mean temperature at a 4km resolution, and the 

distribution of piñon pine woodlands was described by Little (1971). Dashed line indicates 1 

standard deviation below the average (fainter line, -1.5) as benchmarks of drought stress. 

Drought conditions in 2018 (minimum 6-month SPEI value = -1.81) were the most severe in this 

area since 2002 (minimum 6-month SPEI value = -2.10). A long-term drought in 2012 briefly 

reached a minimum 6-month SPEI value of -1.69, but overall, the 2012 event was less severe 

than the 2002 or 2018 droughts. 

 

Quantifying tree-die off – Aerial Detection Surveys 

  

To quantify tree die-off across the study area, we used Aerial Detection Surveys (ADS; 

USDA Forest Service 2019). These surveys are flown by the United States Forest Service each 

year, usually in mid-summer, and are widely used in studies of tree mortality at coarse spatial 
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grains (ca. 1 km2) and at regional extents (Coleman et al. 2018, Hicke et al. 2020, Meddens et al. 

2012, Preisler et al. 2017, Masek et al. 2013, Hart et al. 2017). Trained surveyors sketch 

polygons of areas affected by tree mortality, representing stand-level mortality at spatial scales 

greater than 0.4 ha, and then estimate the attributes of these polygons including the approximate 

area, severity category (5 categories based on the percentage of dead or dying trees), tree species, 

and mortality agent. Detection of mortality often lags at least a year behind drought; therefore, 

we examined ADS surveys flown in summer 2019 to assess the impacts of the 2018 hotter 

drought (similar to Hicke et al. 2020 and Meddens et al. 2012). Previous work also suggests that 

the background rate of mortality in these systems is 1-3% annually (van Mantgem et al. 2009); 

therefore, to be confident that we were describing mortality events that exceeded background 

mortality rates, we excluded observations where fewer than 15 trees died in areas < 0.4 ha in size 

(point observations) and stand-level observations labeled as < 10% mortality severity (ADS 

severity classes 1-2). Finally, we masked all data surveyed by ADS teams in 2019 to the extent 

of piñon pine (Little, 1971). All analyses were carried out in R 4.1.0 (R Core Team 2021) using 

functions from the raster (Hilmans 2021) and sf (Pebesma 2018) packages. Data visualizations 

were made in ggplot2 (Wickham 2016) with scico, PNWcolors, and patchwork packages 

(Pedersen and Crameri 2020, Lawlor 2020, Pedersen 2020), and data carpentry was performed 

using data.table (Dowle and Srinivasan, 2021). 

We calculated the total number of acres affected by tree die-off by summing the area of 

all polygons in each severity class. However very few of these polygons were in the most severe 

mortality class (i.e., > 50% mortality of live trees, n = 9). Therefore, summing the total area 

affected would overestimate the total area directly affected by tree die-off. To account for this, 

we multiplied each polygon by a constant corresponding to the upper, middle, and lower bounds 
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of each severity class. For example, the acreage of polygons described as experiencing 11-29% 

mortality (the lowest severity class included in this study, “Severity class 3 – Moderate”) were 

multiplied by 11% (lower bound), 29% (upper bound), and 20% (middle estimate). For 

comparison with gridded climate data (below) we transformed ADS polygon data to a 4-

kilometer resolution raster of presence/absence and aligned with the gridded climate data (Figure 

4.2). We then calculated the total acres affected by tree die-off in each pixel to visualize the 

spatial patterns of mortality across the region.  

 

 

 

Figure 4.2) Panel A shows tree die-off (i.e., observations of mortality exceeding 10% of the 

affected area) of piñon pine in 2019 as quantified by aerial detection surveys (ADS). Gray 

shading shows the distribution of piñon pine across the U.S. states of Colorado, New Mexico, 

Arizona, and Utah (southwest US), and darker colors indicate greater amounts of tree die-off in 

each pixel. Total area affected was estimated by multiplying the size of each polygon by the 

middle estimate of each ADS severity class. Panel B is zoomed to the extent of tree die-off 

observations in the study area. Tree-die off in 2019 was not spatially widespread across the area 

and was only present in 2.7% of the areas surveyed by ADS teams. 

 

Quantifying drought intensity – Climatic thresholds 
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We compared published thresholds of four climate metrics hypothesized to predict 

regional conifer die-off in the southwestern US (reviewed in Breshears et al. 2018, Table 4.1; 

Figure 4.3): the Forest Drought Severity Index (FDSI, Williams et al. 2013), the Standardized 

Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al. 2010, Huang et al. 2015), 

and absolute precipitation (PPT) and vapor pressure deficit (VPD; described by Clifford et al. 

2013). Gridded 4 km monthly climate data from PRISM (PRISM Climate Group 2020) were 

used to calculate the pixel value of all metrics across the study area.  

 

Table 4.1) Descriptions of four published metrics and the hypothesized thresholds of Pinus 

edulis die-off. 

Metric Description  Threshold 

FDSI1 Mean Forest Drought Severity Index of the current year and the 

year prior. FDSI is calculated as the combination of winter (Nov - 

Mar) precipitation, May - July VPD of the current year, and Aug-

Oct VPD of the year prior, and is standardized by applying a ratio 

of the current conditions to the long-term mean. 

-1.41 

SPEI2 Negative Standardized Precipitation Evapotranspiration Index 

values for the 11-month period of September (during the year 

prior) through July (of the current year). SPEI is calculated as 

difference between precipitation and potential evapotranspiration, 

standardized to the long-term mean. 

 

-1.64 

PPT3 Total precipitation of the current water year (September – previous 

October) and the year prior. 

< 600 mm 
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VPD3 Mean warm-season (May-August) vapor pressure deficit (VPD), 

averaged over the current year and the year prior. 

> 17 hPa 

1Williams et al. 2013, 2Huang et al. 2015, 3Clifford et al. 2013 

 

 

 

Figure 4.3) Spatial patterns of tipping points hypothesized to be predictors of tree die-off during 

the 2018 hotter drought across the range of Pinus edulis that was surveyed by Aerial Detection 

Surveys in 2019 (all pixels). Gridded climate data were classified as either beyond (red colors) or 

below (blue colors) the tipping points. The proportion of pixels above or below tipping points are 

included in parentheses.  
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Using tree ring chronologies that span 1000 years from the southwest US, Williams et al. 

(2013) identified years with FDSI values below -1.41 as benchmark years of severe drought 

stress, where tree die-off was likely widespread across this region. Williams et al. (2013) also 

showed a strong negative correlation between FDSI and the area affected by bark beetles as 

observed by ADS data. However, some authors have cautioned against using FDSI as a point-

based metric, stating that FDSI was intended to capture the regionally coherent variability in tree 

growth of multiple tree species across the entire southwest US (McDowell et al. 2016; Williams 

et al. 2013). Nevertheless, FDSI (and the -1.41 threshold) has been used as a benchmark of 

severe drought stress in other studies of tree mortality and drought (Flake and Weisberg 2018, 

McDowell et al. 2013); thus, its utility as a point-based metric of drought severity and mortality 

likelihood warrants explicit testing. We calculated FDSI following the equations in Williams et 

al. (2013). Specifically, we calculated the two-year average of FDSI values (i.e., 2017-2018) 

relative to the period between 1896 – 2018. 

The SPEI is a multiscalar index that is calculated as the difference between precipitation 

and potential evapotranspiration, integrated over time, and standardized to the long-term mean. 

During the 2002 drought, 11-month SPEI values (<= -1.64) were associated with a cessation of 

tree growth and subsequent die-off following the 2002 event (Huang et al. 2015; Table 1). SPEI 

was calculated using a Thornwaithe type water balance model for the period 1901-2018, using 

PRISM derived mean temperature and precipitation, and the SPEI package (Begueria and 

Vicente-Serrano 2017) in R.  

Both FDSI and SPEI were standardized at the pixel-level to the 122-year and 118-year 

(respectively) average, with negative values indicating more severe drought stress relative to the 

long-term average. On the other hand, the precipitation and VPD thresholds are absolute values, 



 

113 

and thus are not standardized at the pixel-level to a long-term mean. We summed monthly 

precipitation over the previous two water years (2017-2018; the period from October 1 – 

September 30) to calculate the precipitation threshold from Clifford et al. (2013). We used 

monthly maximum and minimum temperature, and average dew-point temperature from the prior 

two years to calculate mean warm-season (May-August) VPD following Clifford et al.’s (2013) 

approach, which also followed the equations for VPD provided in Williams et al. (2013; above).  

Because 2002 was a benchmark year for tree die-off in this region, we compared the 

intensity of the 2018 and 2002 droughts as characterized by these four metrics (Figure 4). These 

two events were nearly equivalent in terms of their two-year precipitation totals and warm-

season VPD averages, with 2002 being slightly warmer and drier than 2018 overall (Figure 4). 

This is likely because PPT and VPD are based on the raw climate values, which vary greatly 

across the region in relation to topography, rather than standardized to the long-term mean. 

However, FDSI and SPEI, which are standardized indices, clearly differentiate these two events 

in terms of drought severity, with both FDSI and SPEI being more negative (i.e., hotter and 

drier) in 2002 than in 2018 (Figure 4). Near-uniformly negative values of these metrics reflect 

the pervasive nature of hot drought conditions throughout the study area. 
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Figure 4.4) Comparison of 2002 and 2018 hotter droughts. Violin plots show the continuous 

distribution of the four drought metrics of interest: two-year average of the Forest Drought 

Severity Index (FDSI), and 11-month Standardized Precipitation Evapotranspiration Index 

(SPEI), two-year precipitation total (PPT), and two-year mean warm-season vapor pressure 

deficit (VPD), in 2002 (blue, left) and 2018 (yellow, right). Red dotted lines denote proposed 

threshold values for each metric. Horizontal solid lines indicate the 5%, median, and 95% 

percentiles of the data. Although the drought events are nearly equivalent in terms of PPT and 

VPD values, both standardized drought metrics (FDSI and SPEI) were more negative in 2002, 

indicating hotter and drier conditions.  

 

Agreement between climatic thresholds and tree die-off 

  We extracted continuous values of the drought metrics for each pixel with and without 

observations of tree die-off, and then plotted the distribution of all pixels for each individual 

metric in relation to their proposed threshold to visualize the skill of the threshold in 

discriminating areas that experienced die-off. Climate data were transformed to binary variables 

(0 – below threshold, or 1 – beyond threshold) and compared to presence/absence maps of tree 

die-off with confusion matrices using in the caret package in R (Khun 2021). We evaluated 
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metrics based on their sensitivity (i.e., true positive rate, or the proportion of correct predictions 

containing tree die-off), specificity (i.e., true negative rate, or the proportion of correct 

predictions not containing tree die-off), and the area under the curve (AUC; a metric of overall 

predictive power that balances the trade-off between sensitivity and specificity using a receiver’s 

operating characteristic curve, Marzban 2004). Values are constrained from 0 – 1, with values of 

0.5 indicating predictions no better than chance, and higher values indicating a higher proportion 

of correct predictions (both presence and absence).  

  

RESULTS 

Can empirically derived thresholds predict the spatial patterns of tree die-off? 

  We estimate that between 5,621.1– 10,950.4 ha (middle estimate = 8,285.9 ha) were 

directly affected by tree die-off (i.e., tree mortality > 10%) in 2019. Tree die-off was not spatially 

extensive and was found in only 2.7% of the pixels within the study area (Figure 4.1). The area 

of mortality observations (n =313) ranged from 0.4 – 2,354.4 ha, with a median polygon area of 

5.2 ha. Simple comparisons of the total area beyond the climate threshold relative to the total 

area that experienced tree die-off would suggest that overall, these metrics tended to 

overestimate the amount of tree die-off anticipated in 2019 (ranging from 13.1% to 46.1% of the 

study area predicted to experience die-off, Figure 4.3).  

 The FDSI threshold had the greatest true-positive rate (sensitivity = 86.9%, Figure 4.5) 

indicating that this metric was highly skilled at correctly predicting locations where tree 

mortality was most likely to occur across the landscape. However, the FDSI threshold also had 

the lowest true-negative rate (specificity = 15.8%, Figure 4.5), indicating that a substantial 

amount of mortality occurred in areas that FDSI predicted it would not (i.e., below the -1.41 
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threshold, Figure 4.6). Overall, the FDSI threshold had the lowest AUC score (51%). When 

accounting for both sensitivity and specificity, the precipitation threshold better balanced 

predictions of both presence and absence, with the highest AUC score (71%), highest true 

negative rate (specificity = 73.2%) and the second highest true positive rate (sensitivity = 

68.6%). Based on visual assessments, the value of the VPD threshold was roughly consistent 

with the location proposed by Clifford et al. (2013; Figure 4.6); however, the VPD threshold was 

less specific than the precipitation threshold, (sensitivity = 64.3%, specificity = 57.9%, AUC = 

61.1%; Figures 4.5 and 4.6). Observations of tree-die off were skewed towards the hotter and 

drier side of SPEI values, although mortality was also observed across a wide range of SPEI 

values, indicating relatively low specificity (Figure 4.5). The SPEI threshold also predicted the 

most amount of tree die-off relative to the other metrics (46.4% of all pixels were expected to 

contain die-off, Figure 4.3) and classification accuracy metrics hovered near 54% (sensitivity = 

54.3%, specificity = 54% and AUC = 54.6%). 
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Figure 4.5) Results of confusion matrices classifying the agreement between all pixels surveyed 

by ADS in 2019 within the distribution of P. edulis that experienced tree die-off (>10 % 

mortality) and those pixels that exceeded die-off tipping points of the four metrics. Sensitivity is 

the true positive rate, specificity is the true negative rate, and AUC balances the overall 

proportion of correction predictions (balancing sensitivity and specificity).  

 

  

 Figure 4.6) Distribution of drought metric values for all pixels that were surveyed by ADS in 

2019 that either had evidence of tree die-off (yellow) or had no tree die off (blue). Distribution of 

metric values for all pixels are plotted on the x axis, and the location of the tipping point is 

shown by a dashed line. The y axis shows the cumulative density (unitless) of all pixels in each 

category. Drought stress increases from right to left along the x axis of each panel, denoted by 

direction of red arrows.  

 

DISCUSSION 

This study was a key first step in advancing future forecast models of tree die-off. By 

field-testing multiple pre-existing mortality thresholds (specifically those which can be easily 

calculated from readily available climate data), we can begin to evaluate our understanding of 

regional-scale tree die-off, refine future predictions under repeat drought events, highlight areas 

of potential uncertainty, and point to areas of growing confidence where these results may be 
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translated into action. In the southwest US, droughts are projected to increase in frequency, 

intensity, and duration in step with a warmer climate, portending continued tree die-off events 

that will have major impacts on society and ecosystems alike (Overpeck and Udall 2017, Chiang 

et al. 2021, McDowell et al. 2016, Williams et al. 2010, 2013). Yet significant uncertainties 

remain about when and where these droughts will ultimately occur, and which trees are the most 

likely to die following drought. Thus, managing for forest and woodland persistence in a hotter 

future will require the capacity to respond to extreme climate events as they are developing, and 

to rapidly implement targeted interventions that increase ecosystem resiliency to drought or aid 

in the recovery of ecosystems following droughts (Bradford et al. 2018, 2020, Redmond et al. 

2019).  

Tree mortality is notoriously difficult to accurately predict (Trugman et al. 2021). Recent 

research has used hydraulic data, forest inventories, remote sensing, and climate data to predict 

tree mortality in many different species with mixed success (Venturas et al. 2021, Rogers et al. 

2018, Preisler et al. 2017, Das et al. 2013). Ecophysiological approaches to understanding 

drought-driven mortality may provide a mechanistic understanding of the processes that 

proximately lead to tree death (McDowell et al. 2013). Yet individual-level factors can confound 

hydraulic predictions, and such models often contain many parameters that vary continuously 

and can be difficult to estimate precisely. In this study, we bypass the variability in drought 

responses at the individual level and instead take a top-down approach to predicting tree 

mortality at regional scales. Our results suggest that simple metrics derived from readily 

available climate data may provide broadly useful generalizations about the spatial patterns of 

tree mortality across large spatial extents and lay the groundwork for refining future forecasts of 

drought-driven tree die-off. Such information can help rapidly identify areas of priority for 
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implementing adaptive management decisions, including managing for understory vegetation 

responses, future fire risk, public fuelwood sources, wildlife habitat, and the provisioning of 

other ecosystem services. 

 

 

Tree die-off following repeat hotter drought events 

 

Following the 2018 drought, tree die-off was less severe compared to the 2002 drought. 

Though the estimates are not directly comparable, Hicke et al. (2020) estimated that across 

approximately 300,000 ha impacted by hotter drought and piñon Ips beetles (Ips confusus), 400 

million trees died following the 2002 hotter drought. For comparison, these estimates are an 

order of magnitude greater than what we estimate died following the 2018 event (middle 

estimate of tree die-off = 8,286 ha). We also estimate that the highest severity class of tree die-

off (i.e., > 50% mortality) accounted for only 20% of the total area experiencing die-off in 2019 

(middle estimate = 1,643 ha, minimum estimate = 1,095.5 ha, maximum estimate = 2,191 ha). A 

lack of highly susceptible trees following the 2002 hotter drought could explain the discrepancy 

in die-off severity between droughts. Many of the regions affected during the 2018 hotter 

drought were also affected by the 2002 event (Meddens et al. 2015, Hicke et al. 2020). Though 

ADS data does not characterize size and age distributions of surveyed forests, the absence of 

widespread and severe mortality may reflect the lack of large and old trees remaining on these 

landscapes (Floyd et al. 2015), which are preferred hosts of piñon ips beetles (Negron and 

Wilson, 2003). 
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Repeat tree die-off events may also increase the relative abundance of drought adapted 

genotypes in surviving populations, which can shape the susceptibility of populations to future 

drought at the landscape level (Kuparinen et al. 2010). Trees likely exhibit some capacity to 

adapt to repeated exposure to drought, possibly through temporarily reducing structural growth 

or the remobilization of stored carbon (Ovenden et al. 2021, Peltier et al. 2021), though damage 

incurred from past droughts can also influence mortality responses in subsequent droughts 

(Macalady and Buggman 2014, Trugman et al. 2018). It remains unclear whether any such 

adaptive capacity or phenotypic plasticity will maintain pace with the velocity of climate change 

(Kuparinen et al. 2010, Jump and Peneulas 2005).  

The 2002 drought also followed several decades of cool and wet weather, particularly 

during the 1970’s and 1980’s, which may have promoted structural overshoot of canopy growth 

(Jump et al. 2017, Zhang et al. 2021) or facilitated establishment of trees into marginal 

microsites, i.e., areas that can support young trees during cool and wet periods but lack the buffer 

from drought to support older trees during hot and dry periods (Greenwood and Weisberg 2008). 

The 16-year period between 2002 and 2018 was notably much drier and hotter than the long-

term average (Williams et al. 2022), and since piñon pine can take decades to reach maturity, 

there have been few opportunities for episodic recruitment or structural overshoot during the 

historically dry conditions that have characterized the early 21st century (Floyd et al. 2015). The 

2002 drought lasted several years - notably longer than the 2018 drought, which was also 

punctuated by a small number of heavy summer rainfall events in part of the region, relieving 

short-term drought stress in a field experiment (Redmond et al., 2019). The reduced regional 

mortality response of piñon pine to subsequent hotter drought events may have important 
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implications for forecasting and may bias these thresholds towards overpredicting mortality 

across the landscape.  

 

Differences among drought metrics 

 

While some of these metrics showed promise in predicting tree die-off, they varied in 

their predictive power and the context when each may be most useful. The FDSI mortality 

threshold was the most sensitive of the four metrics, correctly predicting the areas that 

experienced tree die-off more than 85% of the time. This suggests that the FDSI mortality 

threshold could be most useful for identifying locations that are the most likely to experience 

mortality during drought. For example, in situations where resources may be limited, managers 

or scientists may choose to selectively target only a subset of the areas likely to experience future 

mortality, and FDSI could be used to prioritize those locations. However, the low specificity of 

FDSI may limit its ability to accurately capture more detailed, spatial patterns of tree die-off at 

regional extents. The FDSI metric was initially developed as a region-wide indicator of 

annualized forest drought stress as measured by tree rings. In other words, widespread tree die-

off is only predicted to occur in years when region-wide FDSI reaches below -1.41 (Williams et 

al., 2013), which was not achieved in 2018 (Figure 3). For this reason, the authors of this index 

have argued that it may not be appropriate as a point-based metric (e.g., McDowell et al. 2016), 

because FDSI at any given point may not be indicative of FDSI across the entire southwest. This 

may explain the poor specificity of the metric in discriminating tree die-off from tree survival at 

point locations. Nevertheless, our study suggests that FDSI may still retain a high degree of 
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sensitivity as a point-based metric and in some cases may be useful in identifying priority areas 

for targeted actions.  

The precipitation mortality threshold proposed by Clifford et al. (2013) was better able to 

discriminate both true-positives and true-negatives, providing a more balanced picture of tree 

die-off at the regional level. This was somewhat surprising, given the wide range of mean annual 

precipitation across the study area relative to the extent this mortality threshold was originally 

developed at (i.e., 100 km transect in central New Mexico, Clifford et al. 2013), but also because 

responses to reduced precipitation are implicitly constrained by temperature (i.e., VPD; Adams 

et al. 2009, Williams et al. 2013). Yet its simplicity provides significant practical value to land 

managers concerned about tree die-off in the face of increasing hot drought. Absolute 

precipitation totals do not require data transformation (like FDSI) or software packages (like 

SPEI) to calculate, and precipitation is widely and easily monitored by numerous individuals and 

agencies. Clear paths to refining this relationship include the use of weather station data and real 

time monitoring of tree die-off events. Furthermore, understanding how this relationship varies 

across individuals of different size and age classes, along topographic and climatic gradients, and 

in the presence and absence of pathogens and other biotic agents of tree mortality, will greatly 

improve future forecasting efforts as well.  

Differences in predictive power among these metrics may arise from the different extents 

and scales that these metrics were originally developed at (i.e., range-wide extent for FDSI and 

SPEI, regional-extent for PPT and VPD), or the different data sources originally used to 

parameterize these thresholds. It should be noted here that the grain-size of our climate data (4 

km2) did not always align with the mortality observations (ranging in size from 0.4 – 2,354.4 ha 

or approximately 20 km2), and uncertainty in our relatively coarse-grained maps of piñon 
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presence could also introduce error in these analyses. Within the relatively coarse-grained 

resolution of this climate data, there are many fine-scale biophysical attributes that likely also 

modulate mortality responses, including stand density, topographic exposure, and soil depth and 

texture (Trugman et al. 2021). Tree mortality often arises from cross-scale phenomena among 

these drivers (i.e., individual-level resistance, stand- or landscape-level vulnerability, and 

regional-scale climate drivers), and thus accounting for these different variables and their 

interactions in future models will be a key to producing more accurate forecasts of tree mortality.  

Near term ecological forecasting requires a learn-by-doing approach, with close 

collaboration between scientists and managers to supply an iterative cycle of adaptive 

management (Dietze et al. 2018). We show that empirically derived thresholds show promise in 

predicting the spatial patterns of tree die-off in the future, although such relationships must 

continue to be tested, validated, and refined to develop accurate forecasts. Nevertheless, 

regional-scale forecasts of tree die-off, similar to semi-seasonal forecasts of fire activity or 

extreme weather, may soon be within reach for this species and other species at risk from hotter 

drought.  

 

CONCLUSION 

 

By building the capacity to forecast future tree die-off, we can inform efforts to manage and 

restore forested ecosystems following hotter droughts. This research highlights areas of both 

agreement and uncertainty in our predictive understanding of tree die-off from drought, and we 

suggest that simple forecasts using readily available climate data may soon be within reach for 

this widely studied conifer species. Yet numerous avenues remain to improve these predictions 
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of tree die-off, including accounting for biophysical characteristics like stand density, soil 

properties, tree size, and topographic exposure, which are known to influence mortality in many 

species. The thresholds evaluated here should continue to be tested in a forward-facing manner, 

including with independent field observations and local weather station data, to further refine our 

predictive understanding of tree survival and die-off in an increasingly hotter world.  
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CONCLUSION 

 

 

 

This dissertation was an exploration into the drivers of mast seeding and mortality in 

piñon and ponderosa pine ecosystems of the Rocky Mountains and Colorado Plateau. I employed 

a combination of field surveys and empirical modeling to describe the variation in two key 

demographic processes across a large portion of these species’ distributions in in the western US. 

I describe divergent masting behavior in these two species and explore how this may affect 

future resilience and recovery under warmer climates and altered disturbance regimes. I also 

provide the first, field-based comparison of several climate thresholds expected to predict pinyon 

pine die-off and provide a simple framework for evaluating mortality risk at regional scales.  

Part 1 of this dissertation highlights contrasting masting behavior between these two dry 

pine species. Masting in pinyon pine was strongly associated with climate factors, synchronous 

across large distances (up to 500 kilometers), and cone production was more variable at hotter 

and drier sites. This suggests that ongoing changes in climate may have significant impacts on 

future pinyon pine seed production (e.g., Redmond et al. 2012). However, I found a contrasting 

masting pattern in ponderosa pine, in which cone production was not strongly associated with 

climate, highly asynchronous across sites, and more strongly influenced by individual and 

neighborhood-scale factors like tree size and density. This suggests that ponderosa pine may be 

less sensitive to future changes in climate than pinyon pine, and that we may be able to manage 

ponderosa pine ecosystems for increased seed production by conserving large trees and reducing 

stand density. Forecasts of mast years may also soon be within reach for piñon pine, but further 

work likely needs to be undertaken to develop a stronger, predictive understanding of ponderosa 

pine cone production. 
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In part two of this dissertation, I compared four climate thresholds based on their ability 

to correctly predict piñon pine die-off. All metrics overpredicted mortality to some degree, 

suggesting that these climate thresholds may overestimate the severity of future die-off events. 

However, I also highlight that these relatively simple climate metrics can be generally useful 

indicators of tree die-off a year or more in advance of its detection by aerial surveys by the US 

Forest Service. This research also lays the groundwork for future forecasts of tree die-off 

following ongoing, hotter drought events.  

This dissertation represents several significant advances in our understanding of dry forest 

and woodland demography, how it varies across space and time, and how we may be able to 

leverage forecasts of demography to improve management and conservation.  Much work 

remains to be done – key remaining questions include how seed production translates to seedling 

recruitment, particularly how the timing of seed production interacts with climate and 

disturbance events shape the patterns of ecosystem recovery. Long term collection of 

demographic data across broad geographic regions will be most useful for the parameterization 

of future population models to predict future forest distributions, map species refugia, and to 

identify bottlenecks to population growth. Every seed harbors the potential for a thousand future 

forests, and the answers to many key questions in forest ecology may be found by better 

understanding them. 
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APPENDIX 1 

Table A.1.1) Site level summary statistics. Mean cones is the average number of seed cones 

produced per tree, across all years. CVp is the ratio of the standard deviation to the long term 

mean of seed cone production at each site, with higher values indicating more variable cone 

production. Within site r is the degree of synchrony (mean pairwise Spearman correlation) 

between all trees and across all years at a site. Within cluster r is calculated in the same manner 

but is measured between sites within each cluster (representing how synchronous a site is with 

others in the identified cluster). Monsoonality is the 30-year mean of July, August, and 

September precipitation- reported in both absolute quantities (millimeters) and percent of annual 

precipitation. Climatic water deficit (CWD) was calculated using the CWD and AET function in 

R (Redmond 2018) and is the 30-year average of the difference between potential and actual 

evapotranspiration at 800-meter resolution. Mean live canopy area was included as a scalar to 

account for differences between stands across sites and is the average area of live canopy of all 

trees within a site.  
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Cluster  Latitude Longitude 
Mean 

cones 
CVp 

Within 

site r 

Within 

cluster 

r 

Monsoonality  

(mm / % annual 

ppt) 

CWD 

(mm) 

Mean live 

canopy area 

(m2) 

A 40.87 106.14 26 1.81 0.88 0.85 107 23.2% 288 18.78 

A 40.59 108.67 38 1.85 0.79 0.85 114 23.6% 311 19.49 

B 39.00 108.89 10 1.77 0.42 0.49 111 24.1% 562 12.27 

B 38.94 108.91 15 1.68 0.6 0.53 119 25.3% 402 19.35 

B 38.74 107.61 30 1.29 0.59 0.54 121 26.4% 438 21.38 

B 38.64 109.01 28 1.62 0.49 0.54 160 30.5% 439 13.37 

B 38.62 107.59 36 1.3 0.44 0.52 143 29.2% 223 17.86 

B 38.62 109.05 46 1.39 0.59 0.59 175 30.1% 316 21.4 

B 38.45 108.02 21 1.85 0.52 0.44 118 35.0% 447 15.29 

C 38.38 108.07 42 1.04 0.45 0.72 167 34.1% 243 16.72 

B 38.13 108.57 30 1.31 0.54 0.54 153 33.8% 352 16.59 

B 38.12 108.50 28 1.45 0.41 0.51 148 34.5% 366 21.86 

C 37.88 108.59 37 1.32 0.69 0.64 136 31.6% 422 20.97 

C 37.86 108.63 53 1.13 0.63 0.54 135 30.8% 297 24.79 

C 36.49 106.46 46 1.31 0.52 0.60 187 38.2% 176 22.21 

C 36.39 106.49 45 1.27 0.67 0.65 163 40.4% 307 15.33 

C 35.71 106.62 36 1.18 0.48 0.63 215 41.7% 246 17.25 

C 35.68 106.66 39 1.12 0.52 0.59 193 46.3% 533 13.55 

D 35.28 106.48 20 2.38 0.73 0.53 186 42.0% 604 18.64 

D 35.25 106.36 16 2.2 0.75 0.68 214 40.9% 435 11.83 

D 34.20 107.21 59 1.24 0.64 0.68 178 52.9% 754 27.37 

D 34.06 107.23 50 1.35 0.78 0.58 322 56.1% 278 18.24 

C 34.04 107.13 40 1.44 0.54 0.43 223 54.7% 561 18.66 

D 33.44 108.84 39 1.56 0.77 0.73 233 41.4% 345 26.27 

D 33.39 108.82 53 1.38 0.56 0.72 248 42.2% 347 25.23 

D 33.30 108.88 36 1.64 0.68 0.74 217 43.7% 529 27.57 

B 32.83 108.36 46 1.16 0.51 0.28 297 46.8% 255 37.77 

B 32.81 108.15 42 1.52 0.73 0.36 256 53.1% 598 32.87 



 

137 

Table A.1.2) Spearman’s correlation (1st quartile [25%], median [50%], and 3rd quartile [75%]) 

between annual seed cone production and monthly weather for the three years prior to seed 

maturation. Bold shows the strongest correlations, which was used in subsequent analyses. 

VPD     PPT    

         

Month 

1st 

quartile median 

3rd 

quartile 

 

Month 

1st 

quartile median 

3rd 

quartile 

J (yr-3) -0.129 0.084 0.240  J (yr-3) -0.008 0.099 0.210 

F -0.193 -0.004 0.258  F -0.189 -0.048 0.154 

M -0.015 0.149 0.307  M -0.295 -0.182 -0.002 

A 0.044 0.136 0.252  A -0.357 -0.169 -0.097 

M -0.158 0.134 0.314  M -0.198 -0.057 0.102 

J 0.003 0.147 0.297  J -0.407 -0.259 -0.073 

J -0.225 -0.038 0.128  J -0.160 -0.056 0.107 

A -0.018 0.136 0.199  A -0.403 -0.273 -0.072 

S -0.211 -0.113 -0.010  S 0.017 0.123 0.300 

O -0.265 -0.081 0.087  O -0.181 -0.114 0.040 

N 0.126 0.209 0.384  N -0.329 -0.189 -0.009 

D -0.194 0.064 0.344  D -0.374 -0.206 -0.052 

J (yr-2) -0.142 0.160 0.343  J (yr-2) -0.373 -0.132 0.090 

F -0.082 0.189 0.459  F -0.368 -0.103 0.172 

M -0.230 -0.054 0.097  M -0.189 0.000 0.208 

A -0.215 -0.018 0.093  A -0.188 -0.046 0.130 

M -0.180 0.000 0.152  M -0.143 0.011 0.130 

J -0.156 -0.043 0.075  J -0.097 0.130 0.239 

J -0.200 -0.080 0.058  J 0.163 0.262 0.407 

A -0.552 -0.448 -0.176  A 0.170 0.281 0.536 

S -0.399 -0.153 -0.033  S 0.014 0.240 0.391 

O -0.219 -0.119 0.049  O -0.076 0.147 0.302 

N -0.389 -0.138 -0.071  N -0.046 0.148 0.339 

D -0.318 -0.178 -0.060  D -0.038 0.134 0.222 

J (yr-1) -0.326 -0.242 -0.090  J (yr-1) -0.136 0.086 0.273 

F -0.160 0.046 0.258  F -0.128 -0.026 0.232 

M -0.260 -0.079 0.163  M -0.049 0.185 0.427 

A -0.539 -0.399 -0.324  A 0.240 0.423 0.525 

M -0.553 -0.448 -0.390  M 0.285 0.354 0.460 

J -0.334 -0.233 -0.042  J -0.022 0.112 0.274 

J -0.198 -0.147 -0.023  J -0.035 0.102 0.238 

A -0.158 -0.075 0.055  A -0.095 -0.007 0.179 

S 0.004 0.170 0.230  S -0.290 -0.083 0.003 

O -0.153 -0.029 0.152  O -0.146 -0.077 0.053 

N -0.110 -0.029 0.078  N -0.225 -0.044 0.144 

D -0.288 -0.103 0.134  D -0.098 0.085 0.214 
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Table A.1.3) Spearman’s correlation (1st quartile [25%], median [50%], and 3rd quartile [75%]) 

between annual seed cone production and monthly weather for the three years prior to seed 

maturation. Bold shows the strongest correlations, which was used in subsequent analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VPD     PPT    

         

Month 

1st 

quartile median 

3rd 

quartile 

 

Month 

1st 

quartile median 

3rd 

quartile 

JF (yr-3) -0.116 0.033 0.245  JF (yr-3) -0.100 0.095 0.177 

FM -0.142 0.056 0.350  FM -0.260 -0.092 0.002 

MA -0.037 0.197 0.391  MA -0.334 -0.207 -0.080 

AM 0.022 0.155 0.354  AM -0.308 -0.176 -0.001 

MJ -0.025 0.147 0.222  MJ -0.244 -0.163 -0.088 

JJ 0.082 0.217 0.302  JJ -0.213 -0.095 0.020 

JA -0.042 0.107 0.277  JA -0.296 -0.157 -0.011 

AS -0.147 -0.015 0.163  AS -0.203 -0.042 0.108 

SO -0.222 -0.136 0.039  SO -0.065 0.139 0.241 

ON -0.121 0.019 0.205  ON -0.257 -0.111 0.004 

ND 0.124 0.229 0.386  ND -0.365 -0.209 -0.067 

DJ -0.278 0.317 0.421  DJ -0.411 -0.236 -0.008 

JF (yr-2) -0.058 0.297 0.466  JF (yr-2) -0.445 -0.077 0.225 

FM -0.048 0.071 0.358  FM -0.320 -0.040 0.179 

MA -0.248 -0.064 0.113  MA -0.170 -0.065 0.176 

AM -0.169 -0.084 0.092  AM -0.211 0.001 0.157 

MJ -0.074 -0.004 0.079  MJ -0.031 0.069 0.230 

JJ -0.253 -0.107 -0.003  JJ 0.097 0.300 0.431 

JA -0.496 -0.345 -0.270  JA 0.252 0.352 0.521 

AS -0.527 -0.437 -0.245  AS 0.181 0.441 0.549 

SO -0.403 -0.182 0.004  SO 0.125 0.253 0.369 

ON -0.295 -0.180 0.067  ON -0.099 0.101 0.392 

ND -0.394 -0.237 -0.033  ND -0.120 0.194 0.292 

DJ -0.391 -0.280 -0.155  DJ -0.008 0.123 0.314 

JF (yr-1) -0.286 -0.059 0.073  JF (yr-1) -0.159 0.017 0.287 

FM -0.221 -0.130 0.235  FM -0.098 0.076 0.346 

MA -0.484 -0.355 -0.053  MA 0.135 0.352 0.497 

AM -0.659 -0.564 -0.453  AM 0.307 0.499 0.616 

MJ -0.512 -0.383 -0.262  MJ 0.213 0.336 0.403 

JJ -0.431 -0.251 -0.160  JJ -0.114 0.070 0.247 

JA -0.240 -0.089 0.031  JA -0.052 0.087 0.223 

AS -0.078 -0.014 0.151  AS -0.227 -0.099 0.028 

SO -0.066 0.042 0.205  SO -0.365 -0.053 -0.001 

ON -0.123 -0.063 0.097  ON -0.268 -0.116 0.024 

ND -0.169 -0.055 0.123  ND -0.085 0.011 0.145 

DJ -0.249 -0.104 0.173  DJ -0.169 -0.011 0.258 
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Table A.1.4) To identify which tree size variable is most strongly associated with seed cone 

production, we performed linear mixed effect modeling to assess the relationship between mean 

cone production (number of cones per tree) at the tree-level (n=185) and three metrics of tree 

size: mean live canopy area, height, and basal area (measured at root collar). We scaled predictor 

variables to a mean of zero and a standard deviation of one to facilitate interpretation between 

coefficients. Because our metrics of tree size were correlated with one another, we built three 

separate linear mixed models and included site as a random intercept. Our analyses indicated that 

live canopy area was the strongest tree-level correlate with mean seed cone production, based on 

AICc.  

 

 

 

Table A.1.5) Multiple regression on distance matrices (MRM) model of synchrony between 

sites. Significance of individual terms and full model determined using permutation tests 

(n=999). 

 

Variable MRM Coefficient  P value  

   

April/May VPDyr-1 0.052 0.014 

August VPDyr-2 0.053 0.025 

Geographic Distance 0.000 0.496 

   

R2 = 0.29 F=51.4 P = 0.001 

   

 

 

  

Variable  β  SE T value  AICc 

     

Live Canopy Area 8.59 0.63 7.19 1540.25 

Basal Area 4.84 1.27 3.80 1571.89 

Height 4.95 1.41 3.50 1573.92 

Intercept-only 35.97 2.31 15.55 1586.13 
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Table A.1.6) All model subsets within 4 AICc units of top model of annual seed cone production. Model was fit to a negative binomial 

distribution and included site as a random intercept. The average of these models are presented in Table 1.2 in the main text. Results 

are presented as standardized regression coefficients, scaled to a mean of zero and a standard deviation of one. Canopy (mean canopy 

area in tables) is a scalar that describes differences in stand structures across sties. CWD is climatic water deficit and Monsoonality is 

the proportion of summer precipitation (July, August, September) relative to the mean annual precipitation expressed as a percentage. 

VPD yr-1 is vapor pressure deficit at the time of cone pollination (April/May yr-1) and VPD yr-2 is the during the time of cone 

initiation. Cones yr-1 is the previous years cone production at a site. Interactions are indicated with an x. Delta represents the change 

in AICc units between the top model and subsequent models, and the weight is the relative importance of this model of all possible 

subsets expressed as a percentage.  

 

 

Canopy CWD 

VPD 

yr-1 

VPD 

yr-2 Monsoonality Conesyr-1 

VPDyr-1 

x CWD 

VPDyr-2 

x CWD 

VPDyr-1 x 

Monsoon 

VPDyr-2 x 

Monsoon AICc weight 

0.21 -0.28 -0.53 -0.23 0.28 -0.34 - - -0.19 0.29 3215.69 0.32 

0.21 -0.29 -0.54 -0.22 0.29 -0.34 - -0.08 -0.19 0.32 3215.93 0.28 

0.21 -0.28 -0.53 -0.23 0.29 -0.34 -0.03 - -0.18 0.29 3217.45 0.13 

0.21 -0.29 -0.54 -0.22 0.29 -0.34 0.00 -0.08 -0.19 0.32 3218.08 0.10 

NA -0.32 -0.54 -0.23 0.38 -0.32 - - -0.19 0.29 3219.52 0.05 
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APPENDIX 2 

Table A.2.1) Model selection table of the weather variables associated with ponderosa pine cone 

production. Monthly weather data (precipitation = PPT, vapor pressure deficit = VPD) were 

aggregated into three month means, denoted by either JJA (June, July, August) or JAS (July, 

August, September). Analyses covered the three year period prior to seed cone maturation, and 

years of variables (T) are identified relative to the year of cone maturation (T-0).  Cone initiation 

occurs in T-2. ΔVPD is calculated as the difference between VPD in T-2 and T-3. All models 

included cone production in the year prior to maturation (T-1) as a covariate. Models were fit 

with an observation-level random intercept, and a random intercept of tree nested within site, and 

a negative binomial error distribution. The ΔVPD model best explained patterns of annual cone 
production in ponderosa pine, though a model of precipitation and VPD was equally supported 

based on AIC. 

 

Model AIC ΔAIC from top 

T-3 VPD JJA + T-2 PPT JJA 24,987.3 0 

ΔVPD 24,994.49 -7.2 

T-3 VPD JJA + T-2 VPD JJA 24,997.87 -10.56 

T-3 VPD JJA + T-2 PPT JAS 25,009.57 -22.27 

T-2 VPD JJA + T-2 PPT JAS 25,012.16 -24.86 

T-3 VPD JJA + T-2 VPD JAS 25,031.32 -44.013 

T-2 VPD JAS + T-2 PPT JAS 25,045.12 -57.82 

T-2 PPT JAS 25,049.67 -62.37 

T-2 VPD JAS + T-2 PPT JJA 25082.12 -94.91 

T-2 VPD JJA + T-2 PPT JJA 25,085.4 -98.01 

T-2 PPT JJA 25090.06 -102.76 

T-2 VPD JAS 25,117.37 -130.10 

T-2 VPD JJA 25,131.9 -144.60 

T-3 VPD JJA 25,133.17 -145.87 

Random Intercepts-Only 25,234.12 -246.81 
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Figure A.2.1) Marginal prediction of the effect of age on tree-level synchrony. Age was only a 

significant predictor of tree synchrony, after accounting for the effects of tree size (diameter at 

breast height) climate (30 yr CWD and AET), and neighborhood competition (measured with a 

basal area prism).  Older trees were on average less synchronous than younger trees, in other 

words, old trees produced cones more often than the population-level average in a site.   
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APPENDIX 3 

Figure A.3.1) Map of the sites used in this study with the distribution of focal species in the 

study area.  Distribution mapped using data from Wilson et al. 2014.  Darker colors indicate 

higher basal area (measured in m2/ha) of the focal species.  Piñon pine sites are indicated by 

circles and the distribution of piñon pine is colored brown.  Ponderosa pine sites are indicated by 

triangles and the distribution is colored blue.   
 

 

 

Figure A.3.2) Ordination plots showing redundancy analysis axes RDA1 and RDA2 for both 

species.  Blue arrows indicate the strength and direction of the relationships between RDA axes 

and the constraining variables.  Site scores are plotted in red and the sample scores are black 

circles and labeled by year.   
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Figure A.3.3) Maps showing the correlation coefficient between the December/January average 

of the Multivariate ENSO Index (MEI) and winter precipitation and mean temperature 

(December-February). ENSO = El Niño Southern Oscillation.   
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Appendix 3 - Sampling criteria of individual trees 

Trees that were selected for cone scar sampling were required to be greater than 20 cm in 

diameter at the root collar in piñon pine or at breast height (140 cm) in ponderosa pine. We 

sampled trees that were open-grown to minimize the effects of competition or climate buffering 

from overstory trees, and we avoided sampling trees with significant crown or trunk damage 

from defoliators, bark beetles, fire, or mechanical damage. Tree branches with broken tips, or 

those that have been previously damaged by herbivores, prevent the reliable dating of bud scale 

scars (which are used to separate annual growth segments) and thus were excluded. In addition, 

trees with crown base heights exceeding the maximum height of the sampling tool (> 8m) were 
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excluded by necessity. Sites were also sampled in different years (2017-2020), therefore sites 

sampled in 2017 lacked data in 2018, 2019, and 2020. To control for variability in sample depth 

across years, we limited the ponderosa analysis to 2003-2018, as all ponderosa sites had 

complete or nearly complete data for these years, and the piñon analyses were limited to 2004-

2017. Comparisons between species were therefore restricted to 2004-2017.  

 


