
DISSERTATION

QUANTIFICATION AND APPLICATION OF UNCERTAINTY IN THE FORMATION OF

NANOPARTICLES

Submitted by

Danny Long

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2023

Doctoral Committee:

Advisor: Wolfgang Bangerth

Patrick Shipman
Jiangguo (James) Liu
Richard Finke

Copyright by Danny Long 2023

All Rights Reserved

ABSTRACT

QUANTIFICATION AND APPLICATION OF UNCERTAINTY IN THE FORMATION OF

NANOPARTICLES

Nanoparticles are essential across many scientific applications, but their properties are size-

dependent. Despite the usefulness of producing monodisperse particle size distributions, it still

remains a challenge to fully understand – and hence be able to control – nanoparticle formation

reactions due to limitations in what can be observed experimentally. This thesis transfers mathe-

matical, statistical, and computational techniques to this area of nanoparticle chemistry to substan-

tially bolster the sophistication of the quantitative analysis used to better understand nanoparticle

systems. First, more efficient software is developed to simulate the reactions. Then, parameter

estimation is performed in a robust manner through Bayesian inference, where I demonstrate the

ability to parameterize nonlinear ordinary differential equations in such a way that I can fit the

observed data and quantify the uncertainty in the parameter estimates. From Bayesian inference, I

build three additional analysis frameworks. (1) Model selection through a Bayesian framework; (2)

optimizing the yield of the nanoparticle-forming reactions while accounting for uncertainty; and

(3) optimizing future measurements to collect data providing the most new information. The cul-

mination of this thesis provides a quantitative framework to analyze arbitrary nanoparticle systems

to complement and fill in the gaps of the current experimental techniques.

ii

ACKNOWLEDGEMENTS

Throughout my graduate studies, many people helped me during these stressful few years.

First, I want to thank Wolfgang Bangerth, my advisor. You allowed (made) me to choose my own

project which allowed my mathematical interests to evolve naturally as well as keep me motivated.

Furthermore, you are more than just an academic advisor; you have been a mentor for both my

career and personal life, and I am grateful for the growth I have achieved with your help. Thank

you as well to the members of Wolfgang’s research group for talking about math together and

proofreading my papers: Marc, Justin, Tyler, Jerett, Leah, Paddy, Sophie, and Zhuoran.

Thank you to Rick Finke for your presence during my graduate work. I am motivated by

applications – rather than purely because math is cool – and your insatiable excitement for science

helped tremendously during periods where results were few and far between. Thank you to the

rest of the collaborative research group, as well, for the countless conversations about science and

providing a diversity of viewpoints: Derek, Chris, Patrick, Luke, and Leah.

The most important thank you is to all of my friends. Life continues during graduate school –

except, perhaps, the last couple months leading up to one’s defense – and without your support and

friendship, graduate school would have been much more challenging. I am grateful to and thankful

for you: Brittany, Dustin, Elliot, Erin, Sydney, Elena, Shannon, Lander, Dean, Elle, Lucas, Peter,

Steven, and many others.

iii

DEDICATION

I dedicate this thesis to my discovery of coffee during the pandemic.

iv

TABLE OF CONTENTS

ABSTRACT . ii
ACKNOWLEDGEMENTS . iii
DEDICATION . iv
ACRONYMS . vii

Chapter 1 Introduction . 1

Chapter 2 Mathematical Modeling . 4
2.1 The problem: A discussion of the chemical background 4
2.2 The mathematical forward model . 7
2.3 Performance considerations . 14

Chapter 3 Statistical modeling . 17
3.1 Data . 19
3.2 Likelihood function . 21
3.3 Prior distribution . 25
3.4 Exploring the posterior distribution . 29
3.5 Statistical inversion of parameters . 34

3.5.1 Inversion of the 3-step mechanism . 37
3.5.2 Inversion of the 4-step mechanism . 42
3.5.3 Data fits . 47

3.6 Chain convergence . 48
3.7 Model selection . 67

3.7.1 Bayes’ factor . 68
3.7.2 Mixture model . 70

Chapter 4 Optimization under uncertainty . 76
4.1 Mathematical formulation . 77
4.2 Evaluation of the cost function . 79
4.3 Optimization algorithm . 83

4.3.1 Surrogate model . 86
4.3.2 Acquisition function . 95

4.4 Optimization of experimental conditions 97
4.4.1 Optimization parameters . 98
4.4.2 Optimization visualization . 99
4.4.3 Optimization results . 103

Chapter 5 Optimal experimental design . 110
5.1 Defining optimal experimental design . 111
5.2 Computing the utility of an experimental design 115
5.3 Optimal experimental design results . 119

v

Chapter 6 Summary . 126

Bibliography . 129

vi

ACRONYMS

CDF cumulative distribution function

GP Gaussian process

HME harmonic mean estimator

KDE kernel density estimation

LFIRE Likelihood-Free Inference by Ratio Estimation

MCMC Markov Chain Monte Carlo

MPSRF multivariate potential scale reduction factor

ODEs ordinary differential equations

PDF probability distribution function

PSD particle size distribution

TEM transmission electron microscopy

vii

Chapter 1

Introduction

My dissertation focuses on employing mathematical techniques that aim to quantify the inher-

ent uncertainty associated with real-world problems. Namely, I use techniques from mathematics

and Bayesian statistics to answer questions related to Bayesian inversion, optimization under un-

certainty, and optimal experimental design, all while incorporating a mathematical model describ-

ing chemical reactions that produce nanoparticles. This chapter serves as an introduction to the

scientific application and a high-level explanation of the key themes of my work.

Nanoparticles are clusters of matter whose dimensions are in the range of 1 nm-100 nm [111].

These particles can be formed out of individual atoms or more complex molecular structures.

Nanoparticles are highly useful in industrial applications such as light-emitting diodes [20,33,101,

107], solar cells [83, 85, 95, 104], and as catalysts for various chemical reactions [3, 5, 21, 26].

The size of the nanoparticles has a substantial effect in nearly all of these applications. It is not

difficult to imagine, then, that being able to modify experimental reaction conditions in order

to control the size of the nanoparticles formed is interesting to the community. The first step

of this control process is understanding what physical processes are important to the formation

of a particular nanoparticle system. If the chemical reactions can be captured mathematically

and accurate predictions of the particle size distribution (PSD) are possible, then optimization

problems can be formulated to exert control over the system that is desired. The ultimate goal is

for a reaction to produce monodisperse nanoparticles; that is, particles all of the exact same size.

This is not realistic, however, so the practical goal is to produce near-monodisperse nanoparticles:

particles whose dimensions are ±15% of each other [1].

Mathematical modeling is crucial to this process because the creation of nanoparticles is a

highly complex reaction where the number of particles of each possible size influences the out-

come of the reaction. Experimental techniques cannot deduce every reaction rate that is present

1

and a heuristic approach to controlling the shape of the PSD would involve numerous ad hoc ma-

nipulations of experimental conditions, which is both time and resource inefficient.

On the other hand, efficient mathematical software can consider all of desired conditions in a

fraction of the time. The mathematical modeling technique I utilize is based on chemical mecha-

nisms. These mechanisms are simplifications of the chemical reactions that occur. This simplifi-

cation is accomplished by applying empirical approximations of the relationship between reaction

rate for particles of various sizes. As I will discuss later, there are layers of complexity within

these mechanisms, with some mechanisms being “more complex” than others. My colleagues and

I follow the principle of Occam’s razor, meaning we search for the model that is as simple as nec-

essary. The terminology I use in the nanoparticle context is the minimal mechanism. Hence, I seek

to identify the most simple chemical mechanism that accurately represents the chemical reactions.

The mathematical techniques I employ in my work falls within the realm of Bayesian modeling.

These techniques are coined Bayesian from the heavy use of Bayes’ theorem [4]. Philosophically,

Bayesian modeling considers a data-informed perspective of the probability of an event combined

with knowledge of probability of an event known a priori. In settings with discrete possibilities,

the combination of this knowledge provides a measure of the probability of an event occurring;

with possibilities spanning a continuum, the combined knowledge provides a probability distri-

bution. I eventually want to deduce parameter values involved in the mathematical model of the

nanoparticle-forming chemical reactions. Instead of identifying point-estimates of these parameter

values, Bayesian modeling constructs a probability distribution over the parameter space. Access

to a probability distribution allows for the accurate propagation of parameter uncertainty, which

allows for more robust simulations of the chemical reactions. As the data for nanoparticle systems

are noisy, Bayesian modeling is an effective means to account for this uncertainty introduced by

the data.

In Chapter 2 I begin by describing the chemical reactions that form nanoparticles in further

detail. From there, I present the mathematical model my colleagues developed and then discuss

computational aspects that I implemented to improve the computational performance of the model.

2

Next, Chapter 3 describes the Bayesian inverse problem where I quantify the uncertainty in

what parameter values best correspond to experimentally measured data. The result is a set of

probability distributions where statistical measures such as mean values and confidence intervals

may be extracted. The probability distributions I create can be thought of as a “fitting” procedure.

Typically one thinks of an inverse problem as finding model parameters such that the simulation

“fits” well with the observed data. In the Bayesian setting, one extends this to testing if an interval

of simulation results “fits” well with the observed data. These probability distributions form the

basis for the following chapters of my thesis, but I can also use them to select a model of the

nanoparticle reactions in a quantitative manner. This model selection is the culmination of the

Chapter 3 contents.

Then, Chapter 4 describes an optimization problem to modify the setup of the chemical reaction

in order to target a high concentration of a specific particle size while minimizing the spread of the

PSD. Moreover, the uncertainty quantification performed in Chapter 3 allows me to frame my work

as optimization under uncertainty to appropriately account for the uncertainty associated with the

model and data.

Finally, the accuracy of simulations depends on how well one can characterize model param-

eters. Chapter 5 describes the optimal experimental design problem which determines how new

data should be collected in order to better identify the parameters in the mathematical models; in

other words, produce narrower probability distributions during the Bayesian inversion problem of

Chapter 3. Narrower probability distributions for parameters will result in narrower confidence

intervals in simulations and thus will help reduce uncertainty within questions such as the one I

pose in Chapter 4.

3

Chapter 2

Mathematical Modeling

I begin my technical discussion by developing the mathematical model that I use throughout

my thesis. This model was developed in [46] and applied in [47–49, 118]. Although my con-

tributions are not in the development of this model, it is important to understand the model as

background for the contributions I do make. To that end, I begin by giving an overview of the

relevant chemistry in Section 2.1. Next, in Section 2.2 I describe how to move from the chemistry

description of nanoparticles to the mathematical description, ultimately arriving at the mathemat-

ical model I use to describe the nanoparticle formation process. Finally, in Section 2.3 I touch on

some computational aspects of the mathematical model that were not investigated previously and

show how I made substantial improvements in computational performance.

2.1 The problem: A discussion of the chemical background

This section describes the basic chemistry of nanoparticle formation in order to motivate the

later chapters of this dissertation. Specifically, the physical processes by which nanoparticles are

created and increase in size are presented. This section will not give a comprehensive chemical

analysis of nanoparticle science as this dissertation is focused on the mathematical techniques of

analyzing and predicting the outcome of these chemical reactions.

Fundamentally, nanoparticles form in three ways:

1. Some precursor compound undergoes a reaction to form the smallest possible nanoparticle

– a process called nucleation;

2. A precursor reacts with an existing particle, thus increasing the size of the particle – a process

called growth;

3. Two particles, possibly of different size, react with each other, thus creating a single, larger

particle – a process called agglomeration.

4

All of these processes happen at different rates, so if there are nanoparticles of size up to N atoms,

then there are N reaction rates describing growth and N2/2 reaction rates describing agglomera-

tion. It is not possible to quantify all of these parameters in any meaningful way. Thus, pseudo-

elementary steps [7, 8, 27, 28, 55, 62, 116] are proposed to capture the important components of

particle formation without introducing over-fitting issues. Pseudo-elementary steps fundamentally

apply a growth or agglomeration process to a group of particle sizes in the same way. For example,

a system might be characterized by having “small” growth for which particles deemed “small”

undergo growth with the same reaction rate. Pseudo-elementary steps, therefore, greatly reduce

the number of parameters needed to characterize a set of reactions.

I will use a particular nanoparticle system to demonstrate the techniques I develop. I use

a nanoparticle system that has been well-studied [48, 81, 116, and references therein] so that I

know what reactions take place, but the contents of this work can be generalized to arbitrary

nanoparticle systems so long as the reactions that take place are known. The system I study sees

{(1,5−COD)IrI ·POM}8− reduced under H2, where POM is polyoxometalate, P2W15Nb3O62
9−,

and 1,5−COD is 1,5-cyclooctadiene, C8H12. This chemical system produces nanoparticles com-

posed of iridium atoms. The nucleation mechanism for this system has been experimentally deter-

mined [81] to be

2 [(COD) Ir · POM]8− + 4 solv
kf−−⇀↽−−
kb

2 [(COD) Ir(solv)2]
+ + 2POM9−,

2 [(COD) Ir(solv)2]
+ + [(COD)Ir · POM]8− + 7.5H2

k1−−→ Ir(0) 3 + POM9− + 3H+

+ 3 cyclooctane + 4 solv,

(2.1)

where k∗ are reaction rates. For brevity, I denote the precursor [(COD) Ir · POM]8− by “A”,

the solvated complex, [(COD)Ir(solv)2]
+, as “A(solv)2”, the ligand, POM9−, as “L”, and (small)

particles consisting of iridium(0) atoms generally as “B”. The nucleation mechanism (2.1) can then

5

be equivalently written as

2{A · L + 2 solv
kf−−⇀↽−−
kb

A(solv)2 + L},

2A(solv)2 +A · L k1−−→ B3 + L + 4 solv.

(2.2)

For this Ir-POM system, it has been shown in [46, 48, 49] that particle formation can be char-

acterized by “small” and “large” growth, and possibly by “small-small” agglomeration. That is, if

we denote “small” particles by “B” and “large” particles by “C”, then there are the growth steps

A+ B
k2−−→ C + L,

A+ C
k3−−→ 1.5C + L,

(2.3)

and potentially the agglomeration step

B + B
k4−−→ C. (2.4)

Therefore, there are two potential mechanistic models to describe this iridium particle system:

the 3-step mechanism

2{A · L + 2 solv
kf−−⇀↽−−
kb

A(solv)2 + L},

2A(solv)2 +A · L k1−−→ B3 + L + 4 solv,

A+ B
k2−−→ C + L,

A+ C
k3−−→ 1.5C + L,

(2.5)

6

and the 4-step mechanism

2{A · L + 2 solv
kf−−⇀↽−−
kb

A(solv)2 + L},

2A(solv)2 +A · L k1−−→ B3 + L + 4 solv,

A+ B
k2−−→ C + L,

A+ C
k3−−→ 1.5C + L,

B + B
k4−−→ C.

(2.6)

Other pseudo-elementary steps have been proposed, but each has been systematically disproven

in [46].

I have two chemical models to analyze, but I require a mathematical formulation in order to

proceed with the techniques I employ in the following chapters. The next section develops this

mathematical formulation.

2.2 The mathematical forward model

In order to analyze (2.5) and (2.6), I need a mathematical model representing the dynamics

of these chemical reactions. Modeling chemical reactions follows the law of mass action which

states that the rate of a chemical reaction is proportional to the product of the concentrations of

the reactants. Hence, I utilize a system of ordinary differential equations (ODEs) to represent (2.5)

and (2.6). The remainder of this section follows the work in [46]. In the following discussion and

the remainder of this work I will omit units from my discussion. However, Table 2.1 provides a

reference for the units of all quantities used throughout Chapter 2 – Chapter 5

The law of mass action means if one is modeling the chemical reaction

αX+ βY
k−−→ α′X′ + β′Y′ (2.7)

7

Table 2.1: Reference for the units of parameters I introduce in Chapter 2–Chapter 5.

Parameter Description Units
kf Forward reaction rate in (2.2) L2mol−2h−1

kb Backward reaction rate in (2.2) Lmol−1h−1

k1 Nucleation reaction rate in (2.2) L2mol−2h−1

k2 Small particle growth reaction rate Lmol−1h−1

k3 Large particle growth reaction rate Lmol−1h−1

k4 Small particle agglomeration reaction rate Lmol−1h−1

t∗ Time h
A0 Initial precursor concentration molL−1

POM0 Initial POM concentration molL−1

α∗ Multiplicative factor to parameter ∗ unitless

where X, Y, X′, and Y′ are chemical species and α, β, α′, β′ are integers, then the resulting equa-

tions describing the time evolution of the chemical concentrations are

dX

dt
= −kαXαY β,

dY

dt
= −kβXαY β,

dX ′

dt
= kα′XαY β,

dY ′

dt
= kβ′XαY β.

(2.8)

If (2.7) was the reversible reaction

αX+ βY
kf−−⇀↽−−
kb

α′X′ + β′Y′ (2.9)

then instead of (2.8), the time evolution of the chemical species is described with

dX

dt
= −kfαXαY β + kbαX

′α′

Y ′β′

,

dY

dt
= −kfβXαY β + kbβX

′α′

Y ′β′

,

dX ′

dt
= kfα

′XαY β − kbα
′X ′α′

Y β′

,

dY ′

dt
= kfβ

′XαY β − kbβ
′X ′α′

Y β′

.

(2.10)

8

Finally, the superposition principle applies to a series of chemical reactions. That is, the rates of

change from each reaction can be added together to quantify the rates of change for the entire

reaction. For example, the set of reactions

X+ Y
k1−−→ Z,

X+ Z
k2−−→ Y

(2.11)

is modeled by

dX

dt
= −k1XY − k2XZ,

dY

dt
= −k1XY + k2XZ,

dZ

dt
= k1XY − k2XZ,

(2.12)

where the first term of each right-hand side comes from the first reaction of (2.11) and the second

term in each right-hand side is from the second reaction.

These modeling principles from the law of mass action can be applied to the mechanisms (2.5)

and (2.6) [46,48,49]. The following mathematical notation is used: the precursor species A · L as

A, the solvent solv as S, the solvated complex A(solv)2 as As, the particles represented by B and

C as Bi where i is the size of the particle, and the ligand L as L.

The nucleation mechanism is given by

2{A · L + 2 solv
kf−−⇀↽−−
kb

A(solv)2 + L},

2A(solv)2 +A · L k1−−→ B3 + L + 4 solv.

Note that the concentration of the solvent is not tracked over time. This is because the amount

of solvent is large compared to the other chemical species and, experimentally, the concentration

of the solvent does not significantly change over time. Hence, S is treated as a constant. The

9

pseudo-elementary “small” growth mechanism

A+ B
k2−−→ C + L

is described by the individual reactions

A+ Bi
αik2−−→ Bi+1 + L, 3 ≤ i ≤M

where M is the cutoff between “small” and “large” particles, Bi represents a particle of size i and

αi = iri

is a function describing how many atoms are on the surface of the particle, thus allowing the

interaction of this chemical reaction to take place anywhere on the surface. The function

ri = 2.677i−0.28

is an empirical description of what proportion of atoms are located on the surface of a nanoparticle

[96]. Similarly, the “large” growth mechanism

A+ C
k3−−→ 1.5C + L

represents the reactions

A+ Bi
αik3−−→ Bi+1 + L, M < i ≤ J,

10

where J is the largest particle size. This notation is made more concise by defining

βi =

k2αi, 3 ≤ i ≤M,

k3αi, M < i ≤ J

and considering the reactions

A+ Bi
βi−−→ Bi+1 + L, 3 ≤ i ≤ J.

The agglomeration mechanism

B + B
k4−−→ C

represents the reactions

Bi + Bj
αiαjk4−−−−→ Bi+j, 3 ≤ i, j ≤M.

Again, I make this more concise by defining

Γij =

k4αiαj, 3 ≤ i ≤M,

0, M < i ≤ J

and using the reactions

Bi + Bj
Γij−−→ Bi+j, 3 ≤ i, j ≤ J.

11

Tying everything together, the equations for the 3-step mechanism (2.5) are

dA

dt
= −kfAS2 + kbAsL− k1AA

2
s︸ ︷︷ ︸

nucleation

−A

J∑

j=3

βjBj

︸ ︷︷ ︸
growth

,

dAs

dt
= kfAS

2 − kbAsL− 2k1AA
2
s︸ ︷︷ ︸

nucleation

,

dL

dt
= kfAS

2 − kbAsL︸ ︷︷ ︸
nucleation

+A

J∑

j=3

βjBj

︸ ︷︷ ︸
growth

,

dB3

dt
= k1AA

2
s︸ ︷︷ ︸

nucleation

− β3AB3︸ ︷︷ ︸
growth

,

dBi

dt
= A(βi−1Bi−1 − βiBi)︸ ︷︷ ︸

growth

, 4 ≤ i ≤ J,

(2.13)

12

and the equations for the 4-step mechanism (2.6) are

dA

dt
= −kfAS2 + kbAsL− k1AA

2
s︸ ︷︷ ︸

nucleation

−A

J∑

j=3

βjBj

︸ ︷︷ ︸
growth

,

dAs

dt
= kfAS

2 − kbAsL− 2k1AA
2
s︸ ︷︷ ︸

nucleation

,

dL

dt
= kfAS

2 − kbAsL︸ ︷︷ ︸
nucleation

+A

J∑

j=3

βjBj

︸ ︷︷ ︸
growth

,

dB3

dt
= k1AA

2
s︸ ︷︷ ︸

nucleation

− β3AB3︸ ︷︷ ︸
growth

−
M∑

j=3

Γ3jB3Bj

︸ ︷︷ ︸
agglomeration

,

dBi

dt
= A(βi−1Bi−1 − βiBi)︸ ︷︷ ︸

growth

−
M∑

j=3

ΓijBiBj +
∑

µ+ν=i
3≤µ≤ν≤M

ΓµνBmuBnu

︸ ︷︷ ︸
agglomeration

, 4 ≤ i ≤ J.

(2.14)

Equations (2.13) and (2.14) define the dynamics of the chemical reactions and, with appropriate

choice of parameters k∗,M , it is possible to predict the PSD if the appropriate mechanism is

identified, as is demonstrated in Figure 2.1. Further details can be found in [46, 48, 49].

In (2.13) and (2.14) the parameter J defines the largest particle that can be created or, rather,

the largest particle that is meaningful to track. The size of the system of ODEs – and therefore

the computational expense of performing simulations such as those in Figure 2.1 – is dependent

on J . For the iridium system introduced in Section 2.1, J = 2500. This selection of J = 2500

comes from the observation that experiments usually involve particles up to approximately 4 nm

and a particle composed of 2500 iridium atoms corresponds to approximately 4 nm (see (3.4) for

this conversion).

13

Now that the equations governing nanoparticle formation have been derived in (2.13) and

(2.14), I want to discuss computational performance and my first contribution to this work.

2.3 Performance considerations

In this section, I discuss the performance of solving the ODEs in (2.13) and (2.14). The initial

work done on this project by my colleagues did not require high levels of performance to have

practical feasibility. However, the work I will perform in upcoming chapters will require multiple

orders of magnitude more solves of the ODEs than has been done so far. Thus, my first contribution

is to translate a few practices from the computational sciences to speed up the solves of the ODEs

I have to compute.

In previous work [46–49, 118], the implementation to solve (2.13) and (2.14) was performed

in MATLAB using the ODE15S function [97]. This solver is chosen because the ODEs are stiff –

a general term indicating the necessity of excessively small step sizes required for stability when

using “normal” ODE solvers – and therefore specialized methods are necessary for efficient solves.

Most notably, stiff solvers such as ODE15S use implicit methods which require the solution of

a linear system involving the Jacobian matrix – the partial derivatives of each right-hand side

function in the ODEs – at every time step. By default in MATLAB, this linear system is formed by

taking numerical derivatives if the Jacobian matrix is not provided; this is the case in this initial

implementation. Taking numerical derivatives rather than using analytically derived equations

provides robustness to errors since hand-computing the Jacobian is an error-prone process, but

sacrifices computational performance. This implementation, on modern hardware, takes 40–90

seconds to solve the ODEs, with the time variance relating to the values of the parameters k∗,M .

MATLAB provides options to specify the Jacobian matrix and use sparse matrices to improve

performance. However, I decided to utilize a C++ implementation to achieve performance im-

provements. Comparisons between my C++ implementation versus using ODE15S with a provided

Jacobian and sparse matrices might yield comparable performance results, but this comparison is

out of the scope of my work.

14

Figure 2.1: Plots showing the measured PSD of Ir(0) n with a blue histogram versus the simulated PSD

in a red curve. The simulated PSD is produced using the optimized parameters in [49] with the 3-step

mechanism (2.5). From left to right and top to bottom, the PSDs are at times 0.918, 1.170, 2.336, and 4.838

hours. The y-axis is a probability density whose precise value is not meaningful in this context, hence labels

are omitted.

15

Figure 2.2: Plots showing the sparsity pattern of the Jacobian matrix. (Left) The sparsity pattern when no

agglomeration is present, that is, the 3-step mechanism; (Middle) The sparsity pattern when agglomeration

can occur between particles with 100 atoms or fewer; (Right) The sparsity pattern when agglomeration

can occur between particles with 1250 atoms or fewer. This rightmost plot shows the most dense possible

Jacobian that I model since agglomeration between two 1250 atom particles results in a 2500 atom particle,

the largest such particle I consider.

Using a C++ implementation that uses EIGEN [40] for efficient linear algebra operations and

SUNDIALS [52] for state-of-the-art ODE solvers, the system of ODEs in (2.13) or (2.14) can be

solved in 1–5 seconds on modern hardware. This timeline is reasonable even for the computation-

ally expensive simulations required in Chapter 3. These performance benefits can be attributed to

noting the sparsity in the Jacobian matrix, as seen in Figure 2.2, which led me to use sparse matri-

ces and sparse linear solvers, which are more efficient than their dense linear solver counterparts

(assuming a matrix is “sparse enough”). EIGEN provides many ways to solve linear systems, but I

found the BiCGSTAB method [110] using an incomplete LU factorization [92] as a preconditioner

resulted in the best performance.

Now that I can solve (2.13) and (2.14) in a few seconds, I am ready to fit my models to the

observed data. I will perform this fitting procedure in a Bayesian manner, which will require

solving the ODEs tens of thousands of times in serial, hence why I needed to improve performance.

The contents of Chapter 3 explains this fitting procedure in detail.

16

Chapter 3

Statistical modeling

This chapter describes the process of performing parameter estimation in a way that gives

statistical information about the parameters. This process is called Bayesian inversion and this

methodology has seen large uptake in the last twenty years in a broad spectrum of disciplines.

Specifically in chemistry, a literature review finds examples of Bayesian inversion in work such

as [6, 9, 11, 16, 18, 25, 31, 32, 34, 44, 45, 57, 59, 69, 84, 86, 94, 100, 108, 121]. Furthermore, a two-

part review performed by Armstrong and Hibbert [2, 51] details the use of Bayesian inversion in

the chemistry sub-disciplines of combustion, chemometrics, forensic sciences, medical testing,

microbiology/DNA analysis, chromatography and mass spectrometry, environmental chemistry,

and occupational health and safety. That being said, Bayesian inversion techniques have not yet

propagated into nanoparticle science and thus the work of my dissertation and the paper published

[70] along the way are the first examples of the use of Bayesian inversion in the nanoparticle

context, to my knowledge.

The research previously performed by my colleagues in [46–49,118] exemplifies the traditional

– that is, deterministic – approach to inverse problems, which are able to produce results such

as those in Figure 2.1. This type of inverse problem requires relatively few evaluations of the

forward model (solving the system of ODEs from (2.13) or (2.14)), but is only able to produce a

point-estimate of the parameters. That is, only the single, best set of parameters is identified with

no indication of variability. Conversely, Bayesian inversion requires a large number of forward

evaluations, but in-turn provides an entire distribution of the parameter space. Thus, the point-

estimate would correspond to the mode of the distribution, but Bayesian inversion also provides

information about the uncertainty of each parameter and I can make decisions based on interpreting

this uncertainty. Sections 3.5–3.7 go through this decision-making process.

17

Bayesian inversion answers the question to what certainty are the parameters known? This

process uses Bayes’ theorem which states that

π(K|data) =
πL(data|K)πpr(K)

π(data)
, (3.1)

where:

• π(K|data) is called the posterior distribution and quantifies the probability a set of parame-

ters K is “correct” based on the available data;

• πL(data|K) is called the likelihood distribution and quantifies how likely it is to have mea-

sured the available data if a particular set of parameters is assumed to be true;

• πpr(K) is called the prior distribution and quantifies any prior knowledge about what, if any,

parameter values I believe to be true;

• π(data) is a normalization factor.

To highlight that the data is a constant and that I do not care about the normalization factor of

the likelihood distribution, I will instead use the likelihood function L(K) ∝ πL(data|K) for the

remainder of this chapter. As I will demonstrate in Section 3.4, I only actually care about the value

of the posterior distribution up to a constant – that is, I only care about the ratio of posterior values

when developing probability distributions – and thus I will consider the proportionality

π(K|data) ∝ L(K)πpr(K). (3.2)

The goal of Bayesian inversion is to estimate π(K|data). In general, there is not an analytic ex-

pression for the likelihood function and, consequently, the posterior distribution. Thus, numerical

algorithms are required to construct the posterior and to perform the subsequent data analysis. The

remainder of this chapter accomplishes these tasks by:

18

1. Analyzing the available experimental data in Section 3.1 to motivate my derivations of the

likelihood and prior;

2. Developing a likelihood function in Section 3.2 that represents the data collection process

and the associated measurement error;

3. Constructing a prior distribution in Section 3.3 that encodes my beliefs about what parameter

values are reasonable;

4. Describing a class of numerical algorithms in Section 3.4 that approximate the posterior

distribution;

5. Perform the Bayesian inversion in Section 3.5 to create probability distributions for K;

6. Analyze the posterior samples in Section 3.6 to assess the convergence of the numerical

algorithm;

7. Compare the posterior samples from the 3-step and 4-step mechanisms in Section 3.7 to

quantitatively select the more appropriate model.

I begin by discussing the experimental data I have.

3.1 Data

Bayesian inversion relies on understanding how likely it is to have measured a certain set of

data if a set of parameters is assumed to reflect physical reality. Therefore it is crucial to understand

the data collection process in order to construct a likelihood function that provides insight about

the posterior distribution. This section discusses the data for the iridium nanoparticle system I am

analyzing.

The key quantity of interest for nanoparticle systems is the PSD. The primary way to collect

data about the PSD is a measurement technique called transmission electron microscopy (TEM).

Essentially, a beam of electrons is transmitted through the nanoparticle solution and an image is

produced. The image contains pictures of the nanoparticles and the diameters of these particles

19

Figure 3.1: Examples of the collected TEM data. Images are provided from [117, supplemental informa-

tion].

can be measured with the aid of computer software. Examples of these images are in Figure 3.1.

Measurements are conducted at multiple different times throughout the chemical reaction in order

to get an idea of the time change of the PSD. Time series data is crucial to finding appropriate

chemical reaction rates because, in the absence of multiple time points of data, there is no distinc-

tion between the reaction finishing at its actual finish time and the reaction finishing at any time

before the true reaction time. Hence, in this scenario without time series data, if parameters K∗ are

optimal, then λK∗ for λ ≥ 1 are also optimal.

There are two ways to get multiple measurements: (i) the chemical reaction is started and sub-

sequently stopped when the measurement is taken, then additional chemical reactions are started

from scratch with the same experimental conditions to gather additional data; or (ii) small samples

are removed from the solution throughout the reaction and measurements are taken on those sam-

ples. The data used in this dissertation used methodology (ii). Either way the data is collected, it is

reasonable to assume that each measurement is independent from each other because the number

of extracted particles is substantially less than the total number of particles and the reacting solu-

tion is well-mixed. With an assumption of independence between data sets, I can consider a joint

20

likelihood function for all of the data sets by simply multiplying the likelihood functions for single

data sets.

The collected data is summarized into the histograms in Figure 3.2. The histograms are pre-

sented such that detected particles smaller than 1.4 nm are displayed in light blue while larger

particles are shown in dark blue. This distinction indicates the limitations of the measurement

process for smaller sized particles. Therefore, I only consider comparisons between the data and

simulations for particle sizes larger than 1.4 nm.

The presentation of the data in Figure 3.2 provides the key to how to construct the likelihood

function. If I simulate a PSD and convert it to a probability distribution binned into the same

histogram rectangles as the data, then I can compare the expected frequency of each bin of particle

sizes in the simulation to the observed frequency of each bin of particle sizes. I now formalize this

idea into a mathematical expression.

3.2 Likelihood function

With the type of data collected understood, I derive an appropriate likelihood function. The

purpose of the likelihood function is to convert the solution of the forward model into a form that

is comparable to the data. At its core, the likelihood function assumes K are the true values of the

parameters and it produces a quantitative measure of the (unnormalized) probability of measuring

the observed data under this assumption. Assuming a K in this context requires solving equations

(2.13) or (2.14) in order to determine the particle concentrations Bi. Since I assume a set of

parameters, I need to make a probability distribution based off the result of this simulation. This

can be readily constructed by creating the probability mass function

pi = Bi

(
J∑

i=3

Bi

)−1

, 3 ≤ i ≤ J. (3.3)

The probability distributions in (3.3) are specified for each particle size. However, the data

presented in Section 3.1 are binned together based on the particle diameter into a histogram. The

21

0.918 hours

0 2 4

Size (nm)

0

5

10

15

20

25

30
T

E
M

 d
a

ta
 c

o
u

n
ts

1.17 hours

0 2 4

Size (nm)

0

5

10

15

20

25

30

T
E

M
 d

a
ta

 c
o

u
n

ts
2.336 hours

0 2 4

Size (nm)

0

5

10

15

20

25

30

T
E

M
 d

a
ta

 c
o

u
n

ts

4.838 hours

0 2 4

Size (nm)

0

5

10

15

20

25

30

T
E

M
 d

a
ta

 c
o

u
n

ts

Figure 3.2: Histograms showing the number of Ir(0) n particles measured via transmission electron mi-

croscopy at different time points of the reaction (based on [117]). Particle counts for particles smaller

than 1.4 nm are unreliable and are shown in a lighter color. For comparison, nanoparticles composed of

J = 2500 iridium atoms have a size of 4.0 nm.

22

histogram bins start at 1.4 nm (see Section 3.1 for an explanation of this lower bound), end at

4.1 nm, and each have width 0.1 nm. Therefore, I need to approximate the diameter corresponding

to each particle size and then bin the probabilities into a probability mass function corresponding

to the same histogram bins the data uses.

The diameter can be estimated by the equation

diameter(i) = 0.3000805× i1/3, (3.4)

where i is the number of atoms in a particle. This empirical equation is based on a nonlinear fit of

published size data for Ir(0)i particles, where i is the number of iridium atoms, which can be found

in [48, Figure S1]. Using (3.4), I can congregate (3.3) into the binned probability mass function by

defining

pβℓ
=

∑

diameter(i)∈βℓ

pi, (3.5)

where βℓ are the bin ranges defined by β1 = [1.4, 1.5), β2 = [1.5, 1.6), · · · , β26 = [3.9, 4.0), β27 =

[4.0, 4.1]. These binned probabilities correspond to measured data in each bin denoted bmeasured
ℓ .

Identifying a single particle from the TEM data is essentially a random selection of a particle

labeled with some size bin βℓ. Hence, this measurement process is akin to picking colored balls out

of an urn, which is the simile I will use to ease the interpretation of my derivation of the likelihood

function.

Suppose the balls can be any of n different colors and I randomly select a set of b balls that

happens to have bi balls of color i, where i = 1, · · · , n. Let N be the total number of balls in

the urn, such that N ≫ b = b1 + · · · + bn. Let pi be the probability of a ball having color i in

the urn. The process begins by selecting b of the N balls, of which each selection has probability

N−1. Now that a selection of balls is chosen, b1 of the b balls are selected to be color 1. Each of

these selections occur independently with probability p1; since N ≫ b, assuming this process is

independent and that p1 stays constant is reasonable and holds for the subsequent steps as well.

23

Then, from the remaining b − b1 balls, select b2 of the balls to be color 2. These balls are each

selected with probability p2. If I continue this process until all colors are accounted for, I find the

probability of selecting balls {bi} given probabilities {pi} and that b total balls are selected to be

p ({bi}|{pi}, b selected) =
1

N b

(
N

b

)(
b

b1

)
pb11

(
b− b1
b2

)
pb22 · · ·

(
b− b1 − · · · − bn−1

bn

)
pbnk , (3.6)

where
(
n
k

)
represents the binomial coefficient. I can simplify (3.6) by reducing the binomial coef-

ficients to

(
N

b

)(
b

b1

)
· · ·
(
b− b1 − · · · − bn−1

bn

)
=

N !

(N − b)!b!

b!

(b− b1)!b1!
· · · (b− b1 − · · · − bn−1)!

(b− b1 − · · · − bn)!bn!

=
N !

(N − b)!

n∏

i=1

1

bi!
.

(3.7)

Thus I can represent the probability (3.6) as

p ({bi}|{pi}, b selected) =

(
1

N b

N !

(N − b)!

n∏

i=1

1

bi!

)
n∏

i=1

πbi
i (3.8)

Now, using the notation developed for the nanoparticle system, I make the substitutions pℓ =

pβℓ
(K) to use the probabilities in (3.5) and to note the parameter dependence of this quantity,

bℓ = bmeasured
ℓ to use the number of measured particles in each bin, N = Ntotal to represent to total

number of particles in the chemical solution, and let b to represent the total number of particles

collected in the measurement. Hence, I have

p(data|K) =

(
1

N b
total

Ntotal!

(Ntotal − b)!

27∏

ℓ=1

1

bmeasured
ℓ !

)

︸ ︷︷ ︸
independent of K

27∏

ℓ=1

pβℓ
(K)b

measured
ℓ

︸ ︷︷ ︸
K dependent

. (3.9)

For the likelihood function I want to use to approximate the posterior distribution, normaliza-

tion factors are irrelevant. Here, normalization factors are any quantity independent of the variable

parameters K. Hence I can remove the K-independent term noted in (3.9) to get my likelihood

24

function

L(K) =
27∏

ℓ=1

pβℓ
(K)b

measured
ℓ . (3.10)

For practical purposes, (3.10) is not ideal. In general, pβℓ
(K) ≪ 1 and bmeasured

ℓ ≫ 1 so the

likelihood calculation is prone to rounding error when implemented in software. Hence what I

actually use in my software is

logL(K) =
27∑

ℓ=1

bmeasured
ℓ log pβℓ

(K). (3.11)

The likelihood function I derived is only for a single data set. As I discussed in Section 3.1, I

can assume independence of the data sets and therefore independence of the likelihood functions.

If Li(K) is the likelihood function for the ith set of data, then I can use independence – and the

fact that I have four data sets for my problem – to get

L(K) =
4∏

i=1

Li(K),

logL(K) =
4∑

i=1

logLi(K).

(3.12)

I now have derived the likelihood function. Therefore I have one of the ingredients to (3.2).

The other ingredient to compute the posterior distribution is the prior distribution.

3.3 Prior distribution

Now that the likelihood function has been derived, the next step is to develop the prior dis-

tribution. Pairing the prior distribution and the likelihood function together allows me to use the

algorithms, which I describe in Section 3.4, to estimate the posterior distribution. This section

discusses my choice of the prior distribution.

25

The prior distribution captures the “expert” knowledge about the parameters in question. That

is, if there are certain values of the parameters that do not make physical sense, then that can be

encoded by assigning them a probability of zero or a very low probability. On the other hand, if

experimental results or other scientific intuition suggest certain parameter values are more likely,

then these parameter values can be given a higher probability in order to put more trust in them.

That being said, when I say the prior distribution is “expert” knowledge, that is to be interpreted as

a very high standard. If there is not a large degree of confidence in specifying a prior distribution,

then it is better to simply use an uninformative prior distribution. An example of how a prior

distribution that does not accurately reflect the posterior performs worse than an uninformative

prior distribution can be seen in [103, Example 4.66].

In this context, an uninformative prior distribution means a uniform distribution. Thus all

parameter values within the range of the uniform distribution are deemed “equally likely”. Since

neither I nor my chemist colleagues have reason to suspect certain ranges of parameter values are

more likely than others, I take the uninformative prior distribution route in order to not influence

the posterior distribution. For particular parameters K{k1, k2, · · · , kN} where N is the number of

parameters, the uniform distribution for the ith parameter of K is defined by its probability density

function

Unifcontinuous
ki

(a, b) =

1
b−a

, a ≤ ki ≤ b,

0, otherwise

(3.13)

for continuous parameters and its probability mass function

Unifdiscrete
ki

(a, b) =

1
b−a+1

, a ≤ ki ≤ b, ki ∈ ❩,

0, otherwise

(3.14)

for discrete (integer) parameters.

26

The question, then, is what should be the bounds for the uniform distribution for each pa-

rameter. My approach is to pick the bounds such that the prior distribution does not impede the

exploration of the posterior distribution. Since the posterior distribution is proportional to the prod-

uct of the likelihood function and the prior distribution, any region of parameter space where the

prior distribution is zero results in the posterior distribution also being zero. For the nanoparticle

system described in Chapter 1, the parameters space for each mechanism is

K3-step = {kf , kb, k1, k2, k3,M} ,

K4-step = {kf , kb, k1, k2, k3, k4,M} .
(3.15)

Each of the k∗ parameters are reaction rates that take on values in ❘. M is the cutoff between

“small” and “large” particles as described in Chapter 1; thus M takes integer values. For the rate

constants, negative values do not make physical sense. For the particle size cutoff, integer values

less than the smallest particle size do not make sense – for the iridium system, the smallest particle

size is three. Now I simply need upper bounds on the uniform distributions that are large enough

to not affect results. I performed some preliminary (partial) runs of the algorithms described in

Section 3.4 with various values for the upper bound until I found the order of magnitude for each

parameter value that was never reached in my simulations. Then I added an additional order of

magnitude to be conservative. For the M parameter, my chemist colleagues have chemical reasons

for why the cutoff should be at most a particle with 600 atoms, although simply choosing the largest

particle size (2500 atoms in this case) is also a fine option; in my simulations, for which results

can be found in Section 3.5, a particle with 600 atoms was reached with negligible frequency and

thus I am confident that the choice of 600 instead of 2500 did not affect my results. As a result, the

prior distributions I use are given in (3.16). For ease of notation UnifM is taken to be the discrete

uniform probability mass function in (3.14) and Unifk∗ are taken to be the continuous uniform

27

probability density function in (3.13). I then use the following:

π3-step
pr (K) = Unifkf (0, 1× 103)× Unifkb(0, 2× 108)× Unifk1(0, 1× 108)

× Unifk2(0, 1× 108)× Unifk3(0, 1× 108)× UnifM(3, 600),

π4-step
pr (K) = Unifkf (0, 1× 103)× Unifkb(0, 2× 108)× Unifk1(0, 1× 108)

× Unifk2(0, 1× 108)× Unifk3(0, 1× 108)× Unifk4(0, 1× 108)

× UnifM(3, 600).

(3.16)

The use of prior distribution (3.16) describes the approach I take for my first round of analysis,

as described in Section 3.5 and visualized in Figure 3.3 and Figure 3.6. At that point in my

analysis, although the results of analysis A are not sufficient for characterizing the parameters as I

will discuss later, the generated posterior distributions are my best estimation of what the parameter

space looks like. The ultimate role of the prior distributions is to encode my beliefs in what the

posterior distribution is. Hence, after analysis A, from a Bayesian perspective I have updated my

beliefs and now, instead of taking the uninformative prior distribution as my initial beliefs, I take

the results of analysis A as what I believe the posterior to be. Therefore, I perform subsequent

rounds of analysis where the posterior distribution from the previous analysis informs the new

prior distribution. One could form this new prior distributions with a kernel density estimation

(KDE) [82, 90], but since all of the evidence I have points to my posterior being unimodal and in

order to make the prior computations easier, I use the multivariate normal distribution

π(2)
pr (K) = (2π)−p/2 |Σ|−1/2 exp

{
−1

2
(K − µ)⊺ Σ−1 (K − µ)

}
, (3.17)

where p is the number of parameters (p = 6 for the 3-step model and p = 7 for the 4-step model)

and µ and Σ are sample mean and covariance matrix of the samples generated in the previous

analysis. Technically, the multivariate normal distribution allows negative values (or values < 3 in

the case of the parameter M), which are nonphysical in my problem. To remedy this, I can bound

28

the prior distribution away from the nonphysical parameter values and consider

NF =

∫ 0

−∞

∫ 3

−∞

π(2)
pr dk∗dM +

∫ 0

−∞

∫ ∞

2500

π(2)
pr dk∗dM

πpr(K) =
1

1−NF
π(2)

pr (K).

(3.18)

Notice that the parameter M is now treated as a continuous value. This assumption is fine as the

value of M can be rounded down for a physical interpretation within the mathematical model (but

the unrounded number must be kept within posterior samples!). This point is also discussed in

Section 3.4 and the numerical results in Section 3.5 concur that M ∈ ❘
+ instead of M ∈ ❩

+ does

not deteriorate my results.

Now that the likelihood function and the prior distribution have been selected, I can use estab-

lished algorithms to create an approximation of the posterior distribution. These algorithms are

discussed in the next section.

3.4 Exploring the posterior distribution

I now have both necessary ingredients to (3.2) and therefore I have a way to calculate the pos-

terior distribution, π(K|data), for individual values of K (up to an unimportant factor). However,

in theory, I need to perform this calculation for every possible parameter value in order to have

the exact posterior distribution. This is not possible since there are infinitely many K. Therefore,

I need to utilize algorithms to approximate the posterior distribution based on a finite number of

evaluated K.

A popular way to approximate the posterior distribution in this manner is a class of algorithms

called Markov Chain Monte Carlo (MCMC) methods. At its core, this class of methods con-

siders parameters K(i) and, based on only K(i) (hence Markov Chain), proposes a trial sample

K(i+1) by randomly perturbing K(i) (hence Monte Carlo). Then the trial sample is accepted or

rejected based off some criteria that varies between algorithms. The result is a chain of samples
{
K(0),K(1),K(2), · · ·

}
. The posterior distribution is then constructed with the N samples gener-

29

ated by weighting each sample by N−1. Statistical quantities can then be computed with

k̄b ≈
1

N

N∑

i=1

k
(i)
b π(K(i)|data)

using N samples, and similar expressions for the mean values of other parameters, covariances,

and other quantities of interest. The efficacy of these approximations depends on the MCMC algo-

rithm retaining many samples K(i) where π(K|data) is large and few samples where the posterior

distribution is small.

The first MCMC algorithm I employ is called Metropolis-Hastings [50]. This algorithm is as

follows:

1. Propose a trial sample Ktrial, chosen in some proximity of the current sample Kcurrent via the

proposal distribution g(Kcurrent).

2. Evaluate the ratio of probabilities

AR =
π(Ktrial|data)g(Kcurrent|K trial)

π(Kcurrent|data)g(Ktrial|Kcurrent)
(3.19)

to calculate an acceptance ratio.

3. Accept or reject Ktrial with probability min(1, AR). In the case of acceptance, Ktrial is ap-

pended to the list of collected samples. In the case of rejection, Kcurrent is appended to the

list of collected samples.

4. Repeat for a specified number of samples N .

In the calculation of the acceptance ratio (3.19), the ratio of the posterior distribution favors

samples with higher posterior distribution values. On the other hand, the ratio of the proposal

distribution works to mitigate the effect of the proposal distribution favoring certain parameter

values. In other words, if the proposal distribution is not symmetric, the acceptance ratio takes

this into consideration. In practice, the proposal distribution is typically taken to be a uniform or

30

normal distribution. Both of these distributions are symmetric and thus

1 =
g(Kcurrent|Ktrial)

g(Ktrial|Kcurrent)
,

AR =
p(Ktrial|data)
p(Kcurrent|data)

.

(3.20)

I use a multivariate normal proposal distribution, so I am able to use (3.20).

The total acceptance rate across an entire chain of samples is often tracked as a measure of how

efficient the sampling procedure is. It can be shown in specific circumstances that an acceptance

rate of 23.4% is optimal [36]. Therefore, with the Metropolis-Hastings algorithm, it is common

practice to tune the hyperparameters of the proposal distribution to target a 23.4% acceptance rate.

While this result is proven for an idealized and largely unrealistic example, practical experience

shows that targeting a 23.4% acceptance rate works quite well for a large class of problems [12,

Section 4.2]. That being said, practical wisdom also says that an acceptance rate in the range

of approximately 15% − 50% works well enough, so I do not have to be too precise with my

hyperparameter tuning. I use an uncorrelated multivariate normal distribution of the form

g3-step(Ktrial|Kcurrent) ∼ N

Kcurrent,

σ2
kf

σ2
kb

σ2
k1

σ2
k2

σ2
k3

σ2
M

, (3.21)

31

g4-step(Ktrial|Kcurrent) ∼ N

Kcurrent,

σ2
kf

σ2
kb

σ2
k1

σ2
k2

σ2
k3

σ2
k4

σ2
M

. (3.22)

for the proposal distribution.

There are numerous improvements over the Metropolis-Hastings algorithm that have been de-

veloped [39,42,43,53,113]. The purpose of my dissertation is not to do an exhaustive comparison

of MCMC methods, but after using Metropolis-Hastings to get an initial posterior distribution as

seen in Section 3.5, I want to perform subsequent MCMC iterations for additional analyses. For

these MCMC runs, I want to improve my convergence to the posterior distribution to save compu-

tational time. Hence I use the adaptive variant of Metropolis-Hastings [43] as well.

Adaptive Metropolis-Hastings proposes a simple modification of Metropolis-Hastings. The key

observation is when a new sample is proposed according to the proposal distribution, if samples

are proposed from a distribution similar to the posterior, then the sampler is more efficient. In

this context, more efficient means fewer samples are required for reasonable convergence to the

posterior. In the original Metropolis-Hastings algorithm, one typically has to manually tune various

hyperparameters – such as the fixed proposal distribution – in order to achieve efficient sampling.

Adaptive Metropolis-Hastings, on the other hand, learns the shape of the posterior distribution

as samples are generated and adaptively updates the proposal distribution with this accumulated

knowledge. Typically the algorithm is of the form:

1. Begin with a user-defined proposal distribution and user-defined “learning period” composed

of n samples to learn the posterior shape.

32

2. After n samples, compute the current sample covariance matrixCi and propose a trial sample

according to Ktrial ∼ N(Kcurrent, δCi + εI), where N(·, ·) is the multivariate normal distribu-

tion, δ is some multiplier to control how close to propose samples, and εI is a small multiple

of the identity matrix used for numerical stability.

3. Perform the normal Metropolis-Hastings logic to accept or reject Ktrial.

4. Update the sample covariance matrix and repeat.

Theoretical analysis of this algorithm on test problems shows that δ = 2.382/(no. of parameters)

is a good choice [37]. That being said, as my results in Section 3.5 show, this rule of thumb is not

always optimal because the theoretical analysis required knowledge of the true posterior distribu-

tion. Hence, after I perform an analysis using adaptive Metropolis-Hastings, I do a final analysis

using traditional Metropolis-Hastings to flesh out my results. This behavior I see is also why often

the adaptive Metropolis-Hastings algorithm is often presented as the algorithm I list above plus a

final step of fixing the covariance matrix afterN iterations and performing the Metropolis-Hastings

algorithm afterwards. The only modification I make to this is updating my prior beliefs in between

and performing manual hyperparameter tuning to the proposal distribution to get a more optimal

acceptance ratio.

Also note that the adaptivity is applied through a continuous random variable, rather than the

discrete random variable used for parameterM . One could either modelM as a continuous random

variable and truncate it to an integer after a sample is proposed or split the proposal distribution

into an adaptive proposal for the continuous parameters and a separate – adaptive or not adaptive!

– proposal for the discrete parameters. For simplicity, I choose to extend M to be a real number

instead of just an integer and round down when applying it in the model. This choice also pairs

well with using the multivariate normal distribution as a prior as I describe in Section 3.3.

In this section I described how to estimate the posterior distribution using an iterative method.

With this, I have all of the components needed to sample from the posterior distribution. In the

next section, I will perform this sampling.

33

3.5 Statistical inversion of parameters

In the previous sections of this chapter I have explained how to perform a Bayesian inversion

analysis. I developed the likelihood function and the prior distribution specific to the nanoparticle

problem discussed in Chapter 1. This section brings the entire process together and demonstrates

my results of performing Bayesian inversion on the iridium nanoparticle system. I present my

results separately for the 3-step mechanism in Section 3.5.1 and the 4-step mechanism in Sec-

tion 3.5.2. All results in this chapter use the MCMC algorithm implementations in the UQLAB

software package [72, 114]. First, however, I will describe the general procedure I conducted for

both analyses. I first perform a hyperparameter-tuning procedure wherein I:

1. Run the Metropolis-Hastings algorithm for a few short chains;

2. Document the acceptance ratio of those chains;

3. Broaden the proposal distribution if the acceptance ratios are larger than 23.4%, or narrow

the proposal distribution if the acceptance ratios are smaller than 23.4%;

4. Repeat 1–3 until all of the chains achieve an acceptance ratio close to 23.4%, for which I

used ±10% as my “sniff test”;

5. Begin the full run of 232 chains each containing 20000 samples.

The results using this procedure are documented in [70]. In this paper my colleagues and I pub-

lished, there are two differences from what I will present in this work:

• I did not perform a quantitative assessment of model fit and thus did not save the data re-

garding (unnormalized) posterior density values;

• I assumed the ratio between kf and kb was known and fixed for simplicity.

That being said, my initial analysis [70] accomplished the non-trivial task of finding an area of

parameter space that explains the data quite well. However, I do want evaluations of the poste-

rior density for the model comparisons I will discuss in Section 3.7 and I would like an analysis

34

where kf and kb are allowed to vary independently of each other. As a result, I need to redo my

analysis. This time, however, I am not starting from scratch. I have developed knowledge about

the parameter space. I have a sense of the shape of the posterior distribution now and I can encode

that in the proposal distribution used in the Metropolis-Hastings algorithm. Based on the results I

produced [70, eqns. 16, 17], I have that

K∗
3-step =

{
k∗f = (3.31± 0.38)× 10−3, k∗b = (6.62± 0.75)× 103,

k∗1 = (1.24± 0.12)× 105, k∗2 = (2.60± 0.86)× 105,

k∗3 = (6.22± 0.25)× 103, M∗ = 107± 5
}
,

(3.23)

K∗
4-step =

{
k∗f = (6.85± 0.65)× 10−2, k∗b = (1.37± 0.13)× 105,

k∗1 = (7.69± 0.86)× 104, k∗2 = (1.40± 0.10)× 104,

k∗3 = (7.15± 0.32)× 103, k∗4 = (1.74± 0.78)× 103,

M∗ = 111± 14
}
,

(3.24)

where the values of kf come from the relation kf = kb × 5 × 10−7 and the reported error is the

sample standard deviation. For both the 3- and 4-step mechanisms, I do the following:

• Construct covariance matrices C3-step and C4-step based on the standard deviations in (3.23)

and (3.24), excluding the correlation terms;

• Generate starting parameters for 20 chains by drawing from multivariate normal distribu-

tions centered about the mean values in (3.23) and (3.24), with covariance of 1.1C3-step and

1.1C4-step; the factor of 1.1 is introduced because a convergence criteria described in Sec-

tion 3.6 is dependent on the starting points for each chain to be dispersed more broadly than

the posterior;

• Use the uniform prior distributions in (3.16);

• Set the proposal distribution to be of the form of (3.21) and (3.22) with the covariance ma-

trices satisfying αC3-step and βC4-step;

35

• Starting with α, β = 1, run 20 chains of 100 samples and document the acceptance ratio of

each chain;

• Adjust α, β until all 20 chains have acceptance ratios of 20%–30%;

• Using the tuned α, β, perform the Metropolis-Hastings algorithm [50] to generate 15000

samples.

I consider this procedure “analysis A” and describe it as such in the figures and tables I present.

Following this, I perform the adaptive Metropolis-Hastings procedure with:

• The prior distribution as a multivariate normal with mean and covariance matrix derived from

the last 50% of the posterior samples in analysis A – the first 50% of samples are “burned”

in order to forget where the chains started;

• 20 chains worth of initial samples generated from the prior distribution, except with the

covariance scaled up by 10%;

• The proposal distribution following the covariance matrix of the prior distribution, but scaled

based on the same procedure to target the first 300 samples of each chain having acceptance

ratios in the 20%–30% range;

• An initial mixing period of 300 samples;

• An adaptation period of 14700 samples.

I consider the result of this procedure “analysis B”. Finally, I take this second set of results and

repeat “analysis B” except with the non-adaptive Metropolis-Hastings algorithm to form “analysis

C”. The three analyses I conduct are summarized in Table 3.1. Now, I begin by summarizing the

results of these three analyses for the 3-step mechanism.

36

Table 3.1: Summary of the MCMC analyses I perform. Adaption period refers to the number of samples

with an adaptive covariance matrix. N(·, ·) refers to the normal distribution. ❊(·) refers to the sample

mean. C(·) refers to the sample covariance matrix.

Adaptation Prior Posterior
Chains Samples Adaptive Period Distribution Samples

Analysis A 20 15000 No – Uniform K(A)

Analysis B 20 15000 Yes 14700 N
(
❊(K(A)), C(K(A))

)
K(B)

Analysis C 20 15000 No – N
(
❊(K(B)), C(K(B))

)
K(C)

Table 3.2: Summary of the central tendencies of the posterior distribution for MCMC analysis A of the 3-

step mechanism using the Metropolis-Hastings algorithm. MAP is the maximum a posteriori, the maximum

value observed for the posterior distribution. The posterior distribution is visualized in Figure 3.3.

Parameter MAP Mean 2.5%− 97.5% Quantile
kf 1.2× 10−3 2.2× 10−3 (1.2− 4.1)× 10−3

kb 7.3× 103 7.0× 103 (5.4− 8.8)× 103

k1 58.7× 104 26.8× 104 (8.5− 57.1)× 104

k2 16.4× 105 13.0× 105 (2.7− 32.9)× 105

k3 5.6× 103 5.8× 103 (5.4− 6.4)× 103

M 109 106 96− 115

3.5.1 Inversion of the 3-step mechanism

Using the 3-step mechanism, I perform analysis A. Figure 3.3 shows the resulting marginal

posterior distributions and Table 3.2 summarizes the central tendencies and the 95% credible in-

terval of each parameter. For this analysis, I have three notable observations:

1. Parameter k1 has a very broad distribution, as identified in the third row of Table 3.2 showing

the 95% credible interval spanning two orders of magnitude. Moreover, the maximum a

posteriori (i.e. the best observed posterior density value) is outside the credible interval.

This indicates a lack of convergence to the posterior; more on this in Section 3.6.

2. Parameter k2 also has a very broad distribution, again which can be seen by the credible

interval in the fourth row of Table 3.2 spanning two orders of magnitude.

3. There is an interesting correlation between parameters k1 and kf as seen in the marginal

distribution in the first column and third row of Figure 3.3.

37

Figure 3.3: 1- and 2-dimensional marginal distributions for MCMC analysis A of the 3-step mechanism

using the Metropolis-Hastings algorithm. The diagonal shows the 1-dimensional marginals and the lower-

triangular regions shows the 2-dimensional marginal as indicated by the row and column labels. Summary

statistics are presented in Table 3.2.

38

Table 3.3: Summary of the central tendencies of the posterior distribution for MCMC analysis B of the 3-

step mechanism using the Metropolis-Hastings algorithm. MAP is the maximum a posteriori, the maximum

value observed for the posterior distribution. The posterior distribution is visualized in Figure 3.4.

Parameter MAP Mean 2.5%− 97.5% Quantile
kf 1.2× 10−3 1.2× 10−3 (1.0− 1.5)× 10−3

kb 7.5× 103 7.5× 103 (6.4− 8.6)× 103

k1 5.9× 105 5.8× 105 (4.3− 7.3)× 105

k2 18.5× 105 18.4× 105 (6.0− 32.3)× 105

k3 5.6× 103 5.6× 103 (5.4− 5.9)× 103

M 109 107 100− 114

Next, analysis B of the 3-step mechanism produces the posterior distribution shown in Fig-

ure 3.4 and the summarized parameter information in Table 3.3. Here, my observations are:

1. The distribution for k2 remains quite broad, as can be seen as its credible interval in Table 3.3

still encompasses two orders of magnitude.

2. The distribution for k1 has settled close to the maximum a posteriori found in analysis A,

supporting the idea that analysis A failed to converge to the posterior distribution.

3. The one dimensional marginal distributions seen on the diagonal of Figure 3.4 are rather

jagged. This indicates a low acceptance probability; more on this and better visualizations

of this phenomenon in Section 3.6.

Finally, I perform analysis C of the 3-step mechanism. The posterior marginal distributions are

shown in Figure 3.5 and parameter summaries are in Table 3.4. My observations are:

1. The distribution of k2 remains broad, spanning two orders of magnitude. As I discuss in

Section 3.6, I am confident analysis C converged to the posterior distribution and thus I

conclude that k2 is the most challenging parameter to identify in this model.

2. The jaggedness of the one dimensional marginal distributions have been smoothed out as

compared to analysis B. This indicates a more optimal acceptance ratio, although a similar

effect could be produced by “thinning” the chains; more on this in Section 3.6.

39

Figure 3.4: 1- and 2-dimensional marginal distributions for MCMC analysis B of the 3-step mechanism

using the Metropolis-Hastings algorithm. The diagonal shows the 1-dimensional marginals and the lower-

triangular regions shows the 2-dimensional marginal as indicated by the row and column labels. Summary

statistics are presented in Table 3.3.

40

Figure 3.5: 1- and 2-dimensional marginal distributions for MCMC analysis C of the 3-step mechanism

using the Metropolis-Hastings algorithm. The diagonal shows the 1-dimensional marginals and the lower-

triangular regions shows the 2-dimensional marginal as indicated by the row and column labels. Summary

statistics are presented in Table 3.4.

3. The interesting correlation between k1 and kf has been smoothed out. In analysis A, a

distinct “banana-shape” appeared, but the two dimensional marginal in Figure 3.5 shows a

more simple oval. Strong correlation still exists, but it has been “normalized”. This is likely

due to the influence of using a normal approximation for the prior distribution. Future work

could impose less structure via the prior distribution through use of a KDE or other methods

to see if the “banana-shape” persists.

Next, I present my results for the 4-step mechanism.

41

Table 3.4: Summary of the central tendencies of the posterior distribution for the MCMC analysis C of the 3-

step mechanism using the Metropolis-Hastings algorithm. MAP is the maximum a posteriori, the maximum

value observed for the posterior distribution. The posterior distribution is visualized in Figure 3.5.

Parameter MAP Mean 2.5%− 97.5% Quantile
kf 1.2× 10−3 1.2× 10−3 (1.1− 1.4)× 10−3

kb 7.4× 103 7.5× 103 (6.6− 8.5)× 103

k1 5.5× 105 5.7× 105 (4.4− 7.0)× 105

k2 20.3× 105 19.5× 105 (8.2− 31.4)× 105

k3 5.5× 103 5.6× 103 (5.4− 5.8)× 103

M 110 108 102− 114

Table 3.5: Summary of the central tendencies of the posterior distribution for MCMC analysis A of the 4-

step mechanism using the Metropolis-Hastings algorithm. MAP is the maximum a posteriori, the maximum

value observed for the posterior distribution. The posterior distribution is visualized in Figure 3.6.

Parameter MAP Mean 2.5%− 97.5% Quantile
kf 2.3× 10−3 7.6× 10−3 (2.4− 58.0)× 10−3

kb 1.4× 104 3.5× 104 (1.3− 16.1)× 104

k1 34.5× 104 25.9× 104 (8.3− 43.3)× 104

k2 3.5× 104 2.1× 104 (1.0− 3.5)× 104

k3 6.2× 103 6.7× 103 (6.1− 7.4)× 103

k4 101.0× 101 52.2× 101 (1.1− 219.5)× 101

M 101 106 90− 134

3.5.2 Inversion of the 4-step mechanism

For the 4-step mechanism, I go through the same three part analysis as with the 3-step mecha-

nism. Analysis A is summarized with the marginal posterior distributions in Figure 3.6 and sum-

mary statistics in Table 3.5. My observations are:

1. Parameters k1 and k2 have broad distributions. They have a few modes each, but these modes

are not in distinct regions. This indicates to me that more samples would blend the modes

together to form a unimodal distribution.

2. Recall that k4 is about agglomeration and is the additional physics added to the 3-step mech-

anism – i.e. the 3-step mechanism is the 4-step mechanism with k4 = 0 – and thus part of

my analysis is to investigate if adding this complexity to the model is significant. Here I note

that the distribution of k4 is broad, spanning three orders of magnitude.

42

Figure 3.6: 1- and 2-dimensional marginal distributions for MCMC analysis A of the 4-step mechanism

using the Metropolis-Hastings algorithm. The diagonal shows the 1-dimensional marginals and the lower-

triangular regions shows the 2-dimensional marginal as indicated by the row and column labels. Summary

statistics are presented in Table 3.5.

43

Figure 3.7: 1- and 2-dimensional marginal distributions for MCMC analysis B of the 4-step mechanism

using the Metropolis-Hastings algorithm. The diagonal shows the 1-dimensional marginals and the lower-

triangular regions shows the 2-dimensional marginal as indicated by the row and column labels. Summary

statistics are presented in Table 3.6.

Next, I conduct analysis B of the 4-step mechanism. The marginal posterior distributions are

shown in Figure 3.7 and summary statistics of each parameter are in Table 3.6. I observe that:

1. Parameters k1 and k2 have settled into a much smaller region of parameter space. Their

credible intervals no longer span two orders of magnitude.

2. Parameter k4 still has a broad distribution.

Finally, I perform analysis C of the 4-step mechanism. The marginal posterior distributions are

shown in Figure 3.8 and summary statistics of each parameter are in Table 3.7. I observe that:

44

Table 3.6: Summary of the central tendencies of the posterior distribution for MCMC analysis B of the 4-

step mechanism using the Metropolis-Hastings algorithm. MAP is the maximum a posteriori, the maximum

value observed for the posterior distribution. The posterior distribution is visualized in Figure 3.7.

Parameter MAP Mean 2.5%− 97.5% Quantile
kf 2.1× 10−3 2.2× 10−3 (1.9− 2.8)× 10−3

kb 1.4× 104 1.4× 104 (1.1− 1.7)× 104

k1 3.6× 105 3.6× 105 (2.7− 4.3)× 105

k2 3.7× 104 3.7× 104 (3.1− 4.3)× 104

k3 6.2× 103 6.2× 103 (5.9− 6.5)× 103

k4 9.6× 102 11.9× 102 (2.1− 22.8)× 102

M 102 102 95− 110

Table 3.7: Summary of the central tendencies of the posterior distribution for MCMC analysis C of the 4-

step mechanism using the Metropolis-Hastings algorithm. MAP is the maximum a posteriori, the maximum

value observed for the posterior distribution. The posterior distribution is visualized in Figure 3.8.

Parameter MAP Mean 2.5%− 97.5% Quantile
kf 2.0× 10−3 2.1× 10−3 (1.8− 2.4)× 10−3

kb 1.3× 104 1.3× 104 (1.1− 1.5)× 104

k1 4.0× 105 3.9× 105 (3.2− 4.5)× 105

k2 4.0× 104 4.0× 104 (3.4− 4.6)× 104

k3 6.1× 103 6.1× 103 (5.9− 6.4)× 103

k4 15.2× 102 13.4× 102 (3.8− 23.5)× 102

M 102 103 97− 109

1. The parameter kb takes on values on the order of 104 whereas in the 3-step mechanism values

for kb on the order of 103 are found. That being said, the ratio kf/kb is similar: 1.5 × 10−7

for the 4-step and 1.6× 10−7 for the 3-step.

2. The parameter k2 takes values on the order of 104 (with tight uncertainty bounds) in the 4-

step mechanism, whereas the 3-step mechanism finds values of 105 − 106 for k2. Of course,

smaller particles have their growth affected by both parameters k2 and k4 in the 4-step model

while the 3-step model has small particle growth only affected by k2. Since k4 has large

uncertainty in the 4-step, it appears as if the uncertainty present in k2 in the 3-step model has

been transferred to k4 in the 4-step model. In other words, my interpretation is that adding

agglomeration to the 4-step model has not necessarily reduced the uncertainty in the model

but, rather, has just moved it to a different parameter.

45

Figure 3.8: 1- and 2-dimensional marginal distributions for MCMC analysis C of the 4-step mechanism

using the Metropolis-Hastings algorithm. The diagonal shows the 1-dimensional marginals and the lower-

triangular regions shows the 2-dimensional marginal as indicated by the row and column labels. Summary

statistics are presented in Table 3.7.

46

I performed Bayesian inversion analyses for both the 3-step and 4-step mechanisms. The goal

of these analyses is to figure model parameters that correspond to simulations that fit well to the

data. Hence, it is important to visualize my results not only in terms of the parameter spaces

Figure 3.5 and Figure 3.8, but also in terms of what I expect a measurement to yield based on my

simulations. The next section discusses this visualization.

3.5.3 Data fits

In previous work with my collaborators, we have visualized a simulation fitting to the data in

the manner of Figure 2.1. However, with how noisy the data are, I found it challenging to visually

assess how well a simulation matched the data. Therefore, I developed a better way to visualize the

simulation so that it compared to the data in a more direct way. The idea is to perform a simulation

of the measurement process, not simply the concentrations over time. The measurement process

is akin to drawing from a multinomial distribution. Therefore, to better visualize the simulations

versus data, I do the following:

1. Draw 10000 samples from the posterior distribution.

2. Solve the ODEs using the posterior samples to compute concentrations for each particle at

each time when data were collected.

3. Convert particle concentrations into probabilities of “drawing” that particle according to

(3.3).

4. Simulate data collection by drawing an equal number of total particles from the simulated

multinomial distribution as was observed in the actual data.

5. Graph the distribution of the simulated measurements alongside the observed data. These

are organized in 0.1 nm bins.

The first data were observed after 0.918 hours. Figure 3.9 shows the fits of the 3-step mecha-

nism (top) and the 4-step mechanism (bottom). Note that these visualizations include the uncer-

tainty in the parameter estimates due to how the visualization was constructed. A “good fit” can be

47

determined by if the data – represented by a black circle in the figures I present herein – is located

in a high probability region. For this first set of data, the fits are quite similar between the 3-step

and 4-step mechanisms. The only notable difference I find is the data in the 1.6 nm to 1.7 nm range

is much more likely to be observed in the 3-step mechanism.

The second data are observed after 1.170 hours and are visualized in Figure 3.10. Note that

this data is very sparse, only containing 61 particle observations whereas the first, third, and fourth

data sets contain 246, 150, and 213 particle observations respectively. Overall, I find the fits to be

approximately the same. The observed data for bins 1.5 nm to 1.6 nm, 2.8 nm to 2.9 nm, 2.9 nm

to 3.0 nm, and 3.8 nm to 3.9 nm seem to be especially unlikely according to both mechanisms.

The third data are observed after 2.336 hours and I show the simulation versus data in Fig-

ure 3.11. Again, I find the fits to be very similar. The observations in bins 2.3 nm to 2.4 nm and

2.6 nm to 2.7 nm are notably unlikely according to my simulations.

The final data are observed after 4.838 hours and this marks the end of the reaction. From the

visualization in Figure 3.12, I again conclude that, visually, the simulation fits the data similarly

between the 3-step and 4-step mechanism. There appear to be outlier observations in bins 2.8 nm

to 2.9 nm and 3.1 nm to 3.2 nm but overall the simulations agree well with the data.

The visualizations in this section show agreement between both mechanisms and the observed

data. In other words, the collected data is reasonably within the uncertainty stemming from the

distributions I constructed during my Bayesian inversion analyses. However, these visualizations

assume that I found the posterior distribution. In the next section, I conduct detailed analyses of

the convergence of my posterior distributions so that I am confident in my results.

3.6 Chain convergence

In this section, I will talk about the determination of whether the MCMC posterior distributions

in Section 3.5 have converged to the posterior distribution or not. For both the 3-step and 4-step

mechanisms, I find that:

• Analysis A does not converge to the posterior distribution;

48

3-step: 0.918 hours

1.
4-

1.
5

nm

1.
8-

1.
9

nm

2.
2-

2.
3

nm

2.
6-

2.
7

nm

3.
0-

3.
1

nm

3.
4-

3.
5

nm

3.
8-

3.
9

nm

0

5

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f
o
b
s
e
rv

e
d
 p

a
rt

ic
le

s

Observed
Simulated

4-step: 0.918 hours

1.
4-

1.
5

nm

1.
8-

1.
9

nm

2.
2-

2.
3

nm

2.
6-

2.
7

nm

3.
0-

3.
1

nm

3.
4-

3.
5

nm

3.
8-

3.
9

nm

0

5

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f
o
b
s
e
rv

e
d
 p

a
rt

ic
le

s

Observed
Simulated

Figure 3.9: Observed data in red plotted against simulated data in blue of (top) the 3-step mechanism and

(bottom) the 4-step mechanism 0.918 hours into the reaction. A good fit is determined by the observed data

being in a high probability region of the simulated data.

49

3-step: 1.170 hours

1.
4-

1.
5

nm

1.
8-

1.
9

nm

2.
2-

2.
3

nm

2.
6-

2.
7

nm

3.
0-

3.
1

nm

3.
4-

3.
5

nm

3.
8-

3.
9

nm

0

2

4

6

8

10

12

N
u
m

b
e
r

o
f
o
b
s
e
rv

e
d
 p

a
rt

ic
le

s

Observed
Simulated

4-step: 1.170 hours

1.
4-

1.
5

nm

1.
8-

1.
9

nm

2.
2-

2.
3

nm

2.
6-

2.
7

nm

3.
0-

3.
1

nm

3.
4-

3.
5

nm

3.
8-

3.
9

nm

0

2

4

6

8

10

12

N
u
m

b
e
r

o
f
o
b
s
e
rv

e
d
 p

a
rt

ic
le

s

Observed
Simulated

Figure 3.10: Observed data in red plotted against simulated data in blue of (top) the 3-step mechanism and

(bottom) the 4-step mechanism 1.170 hours into the reaction. A good fit is determined by the observed data

being in a high probability region of the simulated data.

50

3-step: 2.336 hours

1.
4-

1.
5

nm

1.
8-

1.
9

nm

2.
2-

2.
3

nm

2.
6-

2.
7

nm

3.
0-

3.
1

nm

3.
4-

3.
5

nm

3.
8-

3.
9

nm

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
o
b
s
e
rv

e
d
 p

a
rt

ic
le

s

Observed
Simulated

4-step: 2.336 hours

1.
4-

1.
5

nm

1.
8-

1.
9

nm

2.
2-

2.
3

nm

2.
6-

2.
7

nm

3.
0-

3.
1

nm

3.
4-

3.
5

nm

3.
8-

3.
9

nm

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
o
b
s
e
rv

e
d
 p

a
rt

ic
le

s

Observed
Simulated

Figure 3.11: Observed data in red plotted against simulated data in blue of (top) the 3-step mechanism and

(bottom) the 4-step mechanism 2.336 hours into the reaction. A good fit is determined by the observed data

being in a high probability region of the simulated data.

51

3-step: 4.838 hours

1.
4-

1.
5

nm

1.
8-

1.
9

nm

2.
2-

2.
3

nm

2.
6-

2.
7

nm

3.
0-

3.
1

nm

3.
4-

3.
5

nm

3.
8-

3.
9

nm

0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f
o
b
s
e
rv

e
d
 p

a
rt

ic
le

s

Observed
Simulated

4-step: 4.838 hours

1.
4-

1.
5

nm

1.
8-

1.
9

nm

2.
2-

2.
3

nm

2.
6-

2.
7

nm

3.
0-

3.
1

nm

3.
4-

3.
5

nm

3.
8-

3.
9

nm

0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f
o
b
s
e
rv

e
d
 p

a
rt

ic
le

s

Observed
Simulated

Figure 3.12: Observed data in red plotted against simulated data in blue of (top) the 3-step mechanism and

(bottom) the 4-step mechanism 4.838 hours into the reaction. A good fit is determined by the observed data

being in a high probability region of the simulated data.

52

• Analysis B does appear to have converged, but has fewer independent samples than I want;

• Analysis C has converged to the posterior and I am comfortable using this analysis for final

results.

This section goes through my process of coming to these conclusions. In order to do this, my goals

in this section are to:

1. Assess the convergence of my posterior distributions to gain confidence in my results.

2. Reduce the autocorrelation in my chains so that techniques such as Monte Carlo integration

do not suffer from slower convergence.

Note that for the second goal I will perform a process called “thinning” – a process by which every

kth sample is discarded – but I do not actually perform this during this chapter. For figures such as

Figure 3.8 the difference in computational expense is negligible. For figures such as Figure 3.12,

there certainly is a difference in computational expense between solving, say, 10000 ODEs versus

1000 ODEs, but I found the time difference to be on the scale of minutes, rather than hours or

days, so I found it to be acceptable to not thin my samples. On the other hand, for the optimization

procedures performed in the subsequent chapters, I will have to solve thousands of ODEs every

iteration of an iterative algorithm. In that case, it does matter how many times I need to solve my

ODEs each iteration and thus I thin my samples for Chapter 4 and Chapter 5.

Assessing convergence for an MCMC analysis is a heuristic process. Therefore it is helpful to

look at convergence through a few of these heuristics before making a decision. The most intu-

itive way to assess convergence is by considering trace plots, which plot the sample number in an

MCMC chain on the x-axis and the parameter value on the y-axis. Figure 3.13 demonstrates some

examples of what this looks like. The leftmost plot shows what a converged chain typically looks

like: centered around some mean value with a constant variance around the mean. In this case,

I would say the chain has reached a stationary distribution. Informally, a stationary distribution

refers to when a chain has reached a state where its random walk is centered around a common

mean value and its variance is fixed; see [76, section 3.3] for a formal discussion. The left-center

53

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Steps

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Steps

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Steps

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Steps

Figure 3.13: (Left) Example of a trace plot for a converged MCMC chain. (Left-center) Example of a trace

plot for a converged MCMC chain after a burn-in period. (Right-center) Example of unconverged MCMC

chains when two chains have not settled on the same distribution. (Right) Example of unconverged MCMC

chains that have not settled into stationary distributions.

plot shows a typical phenomenon wherein a chain takes a number of steps traveling to a different

region of parameter-space before settling into a stationary distribution. This phenomenon is typi-

cally dealt with via applying a “burn-in” period where the first K samples are discarded [35]. The

right-center plot shows an example of two MCMC chains that, separately, seem to have reached

stationary distributions, but they do not overlap. This behavior either indicates (1) that the chains

are not converged and will join together if they are run sufficiently long, or (2) that the chains fol-

low a multimodal distribution and are “stuck” in separate modes, although as the number of steps

grows large the chains would travel to the other modes. Finally, the rightmost plot of Figure 3.13

shows an extreme case where two chains are not stationary. This example will also be referred to

when I discuss other convergence assessments later in this section.

I generate trace plots for every parameter of the 3-step and 4-step mechanisms. For analysis A

of each mechanism I produce Figure 3.14 and Figure 3.15. For the plots of the 3-step mechanism in

Figure 3.14, there are very clear signs of non-convergence. Parameters k1 and k2 have not settled to

a stationary distribution for individual chains or as a collective. Parameters kf , kb, and k3 appear to

still be traveling to a higher probability region of parameter space. Parameter M does appear to be

stationary, however. The results I show in Figure 3.15 tell a similar story, although more extreme.

Parameters k1 and k2 have not found agreement. Parameters kf , kb, k3, and k4 appear to be moving

towards a stationary distribution, although k4 also shows significant variance even near the end of

the chain. Parameter M appears to have found a stationary distribution after approximately 50%

of the steps.

54

Figure 3.14: Trace plots for the first MCMC analysis of the 3-step mechanism. In each plot, the left subplot

shows the parameter value plotted alongside the sample number with each individual chain plotted in a

different color. The right subplot shows a KDE of the marginal distribution for each chain in separate

colors and for all chains together in black.

55

Figure 3.15: Trace plots for the first MCMC analysis of the 4-step mechanism. In each plot, the left subplot

shows the parameter value plotted alongside the sample number with each individual chain plotted in a

different color. The right subplot shows a KDE of the marginal distribution for each chain in separate

colors and for all chains together in black.

56

Next, Figure 3.16 and Figure 3.17 show the trace plots for analysis B for each mechanism. The

results for both analyses are similar so I will describe my interpretations together. For most of the

parameters, there appears to be a small period with higher variance where the chain travels (in its

mean value) slightly. This lasts approximately 1000 samples before settling into what appears to be

a fairly stationary distribution. That being said, the KDE I include on these plots shows substantial

roughness – that is, the “bumpiness” – and this is indicative of chains not overlapping a lot. In this

case, this is because both of these analyses had a very low acceptance rate for their chains, as can

be seen in Figure 3.20. I discuss this further at the end of this section, but this low acceptance ratio

is what prompted me to conduct the third round of MCMC.

Finally, Figure 3.18 and Figure 3.19 show the trace plots for the final round of MCMC analysis.

For all parameters the parameters appear to be varying about the same mean for every chain.

Moreover, the KDE for individual chains are quite similar to the KDE for all combined chains.

There also does not appear to be any burn-in period. I consider these distributions converged based

on the trace plots.

The next convergence heuristic I discuss is a quantitative assessment of convergence. Although

this is a numerical score rather than a qualitative deduction, interpreting what the score means is

still a subjective measure and thus this is still a heuristic. The intuition behind this score is that

if multiple chains have converged to a stationary distribution, then the variation exhibited within

the chains and between the chains should be comparable. This convergence score is presented

in [35] and the following equations are reproduced from this source. Let P (j)
i be a scalar value

corresponding to the ith sample of the jth chain. For the purposes of my work, I interpret this as

a single parameter value since I am interested in the posterior distribution of the parameter space,

but if one was interested in the posterior distribution of some arbitrary quantity of interest, then

57

Figure 3.16: Trace plots for the second MCMC analysis of the 3-step mechanism. In each plot, the left

subplot shows the parameter value plotted alongside the sample number with each individual chain plotted

in a different color. The right subplot shows a KDE of the marginal distribution for each chain in separate

colors and for all chains together in black.

58

Figure 3.17: Trace plots for the second MCMC analysis of the 4-step mechanism. In each plot, the left

subplot shows the parameter value plotted alongside the sample number with each individual chain plotted

in a different color. The right subplot shows a KDE of the marginal distribution for each chain in separate

colors and for all chains together in black.

59

Figure 3.18: Trace plots for the third MCMC analysis of the 3-step mechanism. In each plot, the left

subplot shows the parameter value plotted alongside the sample number with each individual chain plotted

in a different color. The right subplot shows a KDE of the marginal distribution for each chain in separate

colors and for all chains together in black.

60

Figure 3.19: Trace plots for the third MCMC analysis of the 4-step mechanism. In each plot, the left

subplot shows the parameter value plotted alongside the sample number with each individual chain plotted

in a different color. The right subplot shows a KDE of the marginal distribution for each chain in separate

colors and for all chains together in black.

61

this same analysis holds. Then, if there are M chains and N samples per chain, I compute 1

B =
1

M − 1

M∑

j=1

(
P̄ (j) − P̄

)2
, where P̄ (j) =

1

N

N∑

i=1

P (j)
i , P̄ =

1

M

M∑

j=1

P̄ (j) (3.25)

W =
1

M

M∑

j=1

s2j , where s2j =
1

N − 1

N∑

i=1

(
P (j)

i − P̄ (j)
)2
. (3.26)

From (3.25) and (3.26), an overestimate of the variance posterior distribution is constructed with

v̂ar+ =
N − 1

N
W +B. (3.27)

While v̂ar+ is an overestimate of the variance, W is an underestimate of the variance. This is

becauseW is the average variance of each chain, but since the chains contain finitely many samples

they have not had time to explore the entire range of the posterior distribution. Thus, in [35], the

convergence statistic to monitor is an estimate of the factor by which the variance of the posterior

might reduce if the MCMC sampling was run in perpetuity. This statistic – called the potential

scale reduction factor – is given by

R̂ =

√
v̂ar+

W
. (3.28)

R̂ → 1 as N → ∞ and typically a threshold of R̂ < 1.1 is taken as evidence of convergence.

A similar statistic has been developed to assess the convergence of all the parameters simulta-

neously. This is called the multivariate potential scale reduction factor (MPSRF) [13]. Let P (j)
i

be the ith column-vector of parameters in the jth chain. Then let N be the number of samples per

1In the original text, what I call B – the between chain variance – is denoted as B/N and thus the calculations of
(3.27) and (3.31) include this factor of 1

N
. I modify the notation in my work because I found the notation B/N to be

cumbersome and confusing.

62

Table 3.8: Convergence statistics for each MCMC analysis. The MPSRF column indicates (3.31) and

considers all parameters simultaneously; a value less than 1.1 is typically considered an indication of

convergence. The other columns indicate (3.28) calculated for the individual parameter; all parameters

having values less than 1.1 is typically considered an indication of convergence.

Analysis kf kb k1 k2 k3 k4 M MPSRF
3-Step A 1.414 1.109 1.834 1.696 1.099 – 1.016 2.362
3-Step B 1.023 1.015 1.027 1.023 1.014 – 1.014 1.041
3-Step C 1.001 1.002 1.001 1.001 1.001 – 1.002 1.002
4-Step A 1.110 1.393 1.781 2.127 1.310 1.236 1.136 7.896
4-Step B 1.014 1.011 1.015 1.010 1.014 1.012 1.013 1.032
4-Step C 1.001 1.002 1.002 1.002 1.001 1.002 1.002 1.005

chain and M be the number of chains. Then define1

B =
1

M − 1

M∑

j=1

(
P̄

(j) − P̄
)(

P̄
(j) − P̄

)
⊺

,

where P̄
(j)

=
1

N

N∑

i=1

P
(j)
i , P̄ =

1

M

M∑

j=1

P̄
(j)
,

(3.29)

W =
1

M

M∑

j=1

s2j , where s2j =
1

N − 1

N∑

i=1

(
P

(j)
i − P̄

(j)
)(

P
(j)
i − P̄

(j)
)
⊺

. (3.30)

MPSRF is then defined as

R̂p =
N − 1

N
+
M + 1

M
λ1, (3.31)

where λ1 is the largest eigenvalue of W−1B. Similar to (3.28), R̂p approaches 1 from above and

consensus is that R̂p < 1.1 is an indication of convergence.

I compute both (3.28) and (3.31) and present the results in Table 3.8. For both mechanisms,

analysis A finds all of these potential scale reduction factors to be greater than 1.1, indicating a

lack of convergence. For the second and third analyses, all statistics are less than 1.1, indicating

convergence. It is noteworthy that for analysis B the potential reduction is roughly 10−2 and for

analysis C the reduction factor is 10−3, so analysis C shows stronger evidence of convergence.

63

Investigating trace plots and computing R̂ are the primary means of assessing posterior conver-

gence. However, samples in MCMC chains exhibit strong autocorrelation: correlation between a

sample and the samples that come before and after it. This autocorrelation arises due to the Markov

Chain that is constructed during MCMC algorithms. Therefore, consecutive samples provide sim-

ilar information. Instead it would be preferable to have independent samples, particularly for the

purposes of performing Monte Carlo integration over parameter space like I do in Chapter 4 and

Chapter 5. Independent samples also provide a more intuitive understanding of how much infor-

mation one has. Practical experience from [35] suggests that 10 to 100 independent samples in

each chain is sufficient for many cases.

The way to find how many independent samples exist within one’s chains is to compute the

so-called autocorrelation length scale – the average distance between samples before they are

independent – and divide the total number of samples by that. The number of independent samples

is called the effective sample size and I denote it n̂eff; the “hat” is because one has to estimate this

quantity. From [35], the way to compute n̂eff is

Vt =
1

M(N − t)

M∑

j=1

N∑

i=t+1

(
P (j)

i − P (j)
i−t

)2
(3.32)

ρ̂t = 1− Vt

2v̂ar+
(3.33)

n̂eff =
NM

1 + 2
∑T

t=1 ρ̂t
, (3.34)

where M is the number of chains, N is the number of samples per chain, and T is a cutoff where

the correlation ρ̂t is too noisy. In [35], the convention is to take T to be the first, odd positive

integer for which ρ̂T+1 + ρ̂T+1 < 0.

I implement the computation of (3.34). Figure 3.21 visualizes ρ̂t versus the lag t for every pa-

rameter in the 3-step and 4-step mechanism. The lag t for which all of the curves collapse to zero

is a visual cue for the number of samples that need to be skipped to find an independent sample.

Table 3.9 shows the computation of the effective sample size for each MCMC analysis. For both

mechanisms, I find that analysis A contained very few independent samples, finding between 1–65

64

Table 3.9: Effective sample size for each parameter for each MCMC analysis as calculated by (3.34).
Effective sample size describes the number of independent samples and, since all of my analyses have the

same number of chains and samples per chain, also acts as a comparison of the efficiency of the sampling

performed.

Analysis kf kb k1 k2 k3 k4 M
3-Step A 44 104 31 38 125 − 1315
3-Step B 1018 1236 843 984 1115 − 1139
3-Step C 11876 11883 10887 10626 11944 − 11691
4-Step A 57 43 27 30 58 58 97
4-Step B 1656 1729 1494 1546 1443 1615 1645
4-Step C 11632 12057 9328 9007 10979 9403 12094

independent samples per chain. In analysis B, although the convergence statistics in Table 3.8 indi-

cate analysis B converged, the low acceptance ratios caused substantial autocorrelation. However,

there is still in improvement over analysis A with 42–86 independent samples per chain. Finally,

in analysis C, the sampling was much more efficient and I produced 450–604 independent samples

per chain.

I also look at the relationship between the acceptance ratio of an MCMC analysis and the

effective sample size. Figure 3.20 shows box plots of the acceptance ratio for each chain in each

MCMC analysis I conduct. Analysis A of both the 3-step and 4-step mechanism did not converge to

the posterior, neither had many independent samples, and the 3-step analysis was near “optimal”

acceptance ratios whereas the 4-step was far below. This result tells me that if one has non-

convergent chains then one cannot expect many independent samples regardless of acceptance

ratio. The second and third analyses both converged according to my analysis above, but the

acceptance ratio of the third analyses were far closer to “optimal” than the second. I interpret

this result as what “optimal” acceptance ratios really mean: one receives a more efficient gain of

information per sample.

I have conducted a detailed analyses of the convergence of my posterior distributions. The re-

sults I computed in the third MCMC analyses are sufficient for me to have an accurate representa-

tion of the posterior distribution. With this knowledge, I have enough information to quantitatively

select a model. The next section discusses this process.

65

3-step A

3-step B

3-step C

4-step A

4-step B

4-step C

Asymmetric
 M

odel S
elect

Symmetric
 M

odel S
elect

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A

c
c
e

p
ta

n
c
e

 R
a

ti
o

Figure 3.20: Box plot showing the acceptance ratios of the chains in the analyses performed in Section 3.5

and Section 3.7. Each box displays the median value with a blue horizontal line, the 2.5%− 97.5% quantile

outlined in blue, the minimum and maximum non-outlier values in black, and any outliers with blue circles.

66

0 5000 10000

lag

-1

-0.5

0

0.5

1
a
u
to

c
o
rr

e
la

ti
o
n

3-Step Analysis A

k
f

k
b

k
1

k
2

k
3

M

0 5000 10000

lag

-1

-0.5

0

0.5

1

a
u

to
c
o

rr
e

la
ti
o

n

3-Step Analysis B

k
f

k
b

k
1

k
2

k
3

M

0 5000 10000

lag

-1

-0.5

0

0.5

1

a
u
to

c
o
rr

e
la

ti
o
n

3-Step Analysis C

k
f

k
b

k
1

k
2

k
3

M

Figure 3.21: Autocorrelation function estimates (3.33) for both MCMC analysis of the 3- and 4-step mecha-

nisms. When thinning MCMC chains to produce chains with close to independent samples, every ℓth sample

is taken where ℓ is the lag for which all parameter autocorrelations have collapsed to zero.

3.7 Model selection

This chapter, so far, has described the process of generating samples such that the distribution

of the parameters mimics, and eventually converges to, the posterior distribution. In the context of

scientific development, one often wants to repeat the process determining the posterior for multiple

different models. Once samples are generated for multiple models, the natural next step is to

quantitatively determine which model best describes the data. This quantitative assessment is done

by computing the Bayes factor [56] between two or more competing models. I find that the 3-step

mechanism is the more appropriate model. This was also the determination in [48, 49], but my

application of Bayesian inversion allows me to make this decision in a more rigorous manner.

In this section, I will derive the equations for the Bayes factor, describe the heuristic inter-

pretation of the Bayes factor, and provide the computational means of computing the Bayes factor

provided sampled posterior distributions. As I will discuss, there are significant difficulties with as-

sessing model selection by use of Bayes factors. Hence, I will also describe an alternative method

that poses a mixture model formulation blending the two models together and allow MCMC to

67

elucidate the preferred model. I apply these methods to comparing the 3-step and 4-step mecha-

nisms and walk through my interpretation of the results that led me to determine that the 3-step

mechanism is the appropriate model.

3.7.1 Bayes’ factor

Let M denote a computational model, for example the 3-step and 4-step mechanisms are dif-

ferent computational models. From Bayes’ theorem, I can express the posterior distribution of a

computational model π(M|data) in a similar manner to (3.1) with

π(M|data) =
π(data|M)π(M)

π(data)
. (3.35)

I am interested in π(data|M) as this represents the probability of finding the experimental data

assuming M is the true model; in other words, π(data|M) represents the support M provides for

collecting the observed data. Therefore, the philosophy of data-driven model selection insists that

the model for which the data is best supported is the appropriate choice of model. Bayes factor is

a comparison between two models, M1 and M2, given by

BF12 =
π(data|M1)

π(data|M2)
, (3.36)

so that BF12 > 1 indicates support for M1, BF12 < 1 indicates support for M2, and BF12 = 1

indicates M1 and M2 are equally likely.

As always, data is noisy and BF > 1 could simply be an artifact of a combination of measure-

ment error and sample size bias. Hence, heuristic scales have been developed to interpret the Bayes

factor. I use a popular table from [60] reproduced in Table 3.10 for my heuristic interpretation of

Bayes factor.

68

Table 3.10: Interpretation of Bayes factor values as a measure of the strength of evidence. This table is

reproduced from [60].

log10 BF BF Strength of evidence
0 to 1/2 1 to 3.2 Not worth more than a bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong

>2 >100 Decisive

Since the models, Mi, I am considering depend on parameters Ki, π(data|Mi) is obtained by

integrating over parameter space. Hence,

π(data|Mi) =

∫

D(Ki)

πL(data|Ki,Mi)πpr(Ki|Mi)dKi, (3.37)

where D(Ki) is the parameter space for Mi. (3.37) can be made explicit by indicating the depen-

dence on M in (3.1) and noticing

π(K|data,M) =
πL(data|K,M)πpr(K|M)

π(data|M)
,

∫

D(K)

π(K|data,M)dK =

∫

D(K)

πL(data|K,M)πpr(K|M)

π(data|M)
dK,

1 =
1

π(data|M)

∫

D(K)

πL(data|K,M)πpr(K|M)dK,

π(data|M) =

∫

D(K)

πL(data|K,M)πpr(K|M)dK.

(3.38)

Note that π(data|M) is simply the normalization factor for πL(data|K,M)πpr(K|M). Since I

cannot analytically compute the integral in (3.37), I must use estimators based on the samples

generated using the techniques of Section 3.4. In the remainder of my thesis, I will denote an

estimator of π(data|M) as π̂(data) and drop the dependence on M except when I need to compare

results from multiple models.

69

To make the most out of MCMC samples, the most commonly used method to estimate (3.37)

is called the harmonic mean estimator (HME) [78] given by

π̂HME =

[
1

N

N∑

n=1

1

πL (data|K(n))

]−1

. (3.39)

Applying (3.39) to the 3-step and 4-step mechanism, I find

log10 (BF34) = log10

(
π(data|3-step)
π(data|4-step)

)
≈ log10

(
π̂HME(3-step)
π̂HME(4-step)

)
= 5.62, (3.40)

indicating “decisive” evidence for the 3-step mechanism. However, I must note that the HME

estimator is flawed. In general, the convergence rate of (3.39) is N1/α−1 where 1 < α ≤ 2 and

α ≈ 1 in cases where the prior is much broader than the likelihood [19]. Alternative methods have

been proposed, e.g. see [19, 30] for reviews, but they require relatively involved calculations. The

appeal of (3.39) is that the calculation is a simple post-processing step, so it would be nice to have

a method that is as simple as that. That desire leads to an alternative methodology which I describe

next.

3.7.2 Mixture model

Recently, a new approach to the model selection problem was proposed in [89]. This proposed

replacement considers a mixture of two computational models – or, in theory, more than two, but I

will stick with two for the purposes of my thesis – each with their own set of parameters, and the

extent to which the models are mixed is also controlled by a (hyper-)parameter. More formally,

consider the models M1 and M2 with their corresponding parameters K1 and K2. Also consider

the mixture parameter ω ∈ [0, 1]. Then, let

M(K, ω) = ωM1(K1) + (1− ω)M2(K2), (3.41)

70

where K = {K1,K2} and addition represents adding together the resulting quantities from the

computational models. In my case, each computational model is the solution of the ODEs to obtain

particle concentrations and thus addition is defined as adding together the concentrations for each

particle. The mixture model M(K, ω) can then be treated as a Bayesian inference problem where

the result of ω indicates which model is preferred. Depending on the relationship between M1 and

M2, a prior distribution can be assigned to ω to reflect preferences in the model selection process.

For instance, if the two models have similar levels of complexity, then a prior distribution that is

symmetric and has most of its mass near zero and one will impart a desire to use one model or the

other – but not both! – and assign equal prior probability to each model. An example of how to

accomplish this is with the beta distribution, whose probability distribution function (PDF) is

B(ω;α, β) = ωα−1(1− ω)β−1

B(α, β)
,

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
,

(3.42)

where Γ is the Gamma function. When the shape parameters α, β of the beta distribution are equal

and both less than one, the PDF is u-shaped as depicted in the left plot of Figure 3.22. On the other

hand, if the shape parameters are less than one, but unequal, asymmetry is introduced as shown in

the right plot of Figure 3.22. This prior distribution is suitable for models with varying levels of

complexity where the more simple model is preferred. I test both of the cases shown in Figure 3.22

to see if the results vary depending on whether the 3-step is deemed equally or more likely.

For my specific problem of model selection, let M3-step(K3-step) and M4-step(K4-step) denote the

computational models for the 3-step and 4-step mechanisms respectively. Then I form the mixture

model

M(K3-step,K4-step, ω) = ωM3-step(K3-step) + (1− ω)M4-step(K4-step). (3.43)

Previously, the computation of the likelihood involved solving the ODEs for M3-step(K3-step) or

M4-step(K4-step), translating the concentrations into probabilities with (3.3) and (3.5), and then com-

71

Figure 3.22: Prior distributions for the mixture parameter ω in (3.41). (Left) A prior distribution suitable

for equally favoring both models. Note the cumulative distribution function (CDF) in orange reaches 0.5
at ω = 0.5 indicating an equal weighting towards either model. (Right) A prior distribution suitable for

favoring one model over the other. Note the cumulative distribution function (CDF) in orange reaches 0.5
when ω > 0.5 indicating weighting towards the 3-step mechanism.

puting the resulting multinomial distribution with the observed data as input. Now, the model is

a weighted average between the 3-step and 4-step mechanisms, so once the concentrations are

computed for both mechanisms, they are weighted together with ω to compute the mixture model

concentrations. Then the likelihood calculations proceeds in the same manner as I described in

Section 3.2. I can then run my same MCMC procedure, but this time using the mixture model.

Here, I take as my prior distribution

πpr (K3-step) ∼ N
(
K∗

3-step, C3-step

)

πpr (K4-step) ∼ N
(
K∗

4-step, C4-step

)

ω ∼ B(0.5, 0.5) or B(0.6, 0.4),

(3.44)

where K∗
3-step and K∗

4-step are the maximum a posteriori parameters noted in Table 3.4 and Table 3.7,

C3-step and C4-step are the covariance matrices of the posterior samples from the third MCMC anal-

ysis performed in Section 3.5, and there is no correlation between each of the three, disjoint pa-

72

rameter sets. I take the proposal distribution to be

K3-step

K4-step

ω

trial

∼ N

K3-step

K4-step

ω

previous

,

C3-step

C4-step

1

. (3.45)

I manually tune this proposal distribution until I find the first 100 samples on each of the 20 chains

has an acceptance ratio within 20%–50%. In this case, K3-step and K4-step are nuisance parameters

that I am not interested in, so my decisions are based more in line with what is optimal for a

one-dimensional MCMC problem: a higher acceptance ratio of 44% is theoretically optimal in

special cases [37]. I then run 20 chains of 5000 samples using the Metropolis-Hastings algorithm.

I denote the analysis where ω ∼ B(0.5, 0.5) as the “unbiased” analysis (unbiased, here, used

as a layperson’s term rather than the formal statistical definition) and the analysis where ω ∼

B(0.6, 0.4) as the “biased” analysis.

After running an MCMC analysis on the mixture model, I integrate over the nuisance parame-

ters K3-step and K4-step; in practice, this means simply ignoring all parameter values other than ω and

performing the rest of the analysis as if ω was the only parameter. I test convergence as described

in Section 3.6. I find that

R̂unbiased = 1.019 (3.46)

R̂biased = 1.024, (3.47)

indicating convergence, and the trace plots in Figure 3.23 also indicate convergence to the posterior,

with a burn-in period of approximately 200 samples. Graphing the posterior distribution for ω

clearly shows where the evidence lies. Figure 3.24 shows the posterior for both the biased and

unbiased analyses. These figures plot both the PDF and cumulative distribution function (CDF) of

the posterior. The important quantity to note is what value of ω corresponds to the CDF being 0.5;

call that point ω∗. If ω∗ < 0.5, then the evidence suggests the 4-step mechanism is preferable. If

73

Figure 3.23: Trace plots for the model selection MCMC analysis. (left) The results using an unbiased prior

on ω. (right) The results using a prior distribution on ω biased towards the 3-step mechanism.

ω∗ > 0.5, then the 3-step mechanism is preferred. Moreover, how close ω∗ is to 0.5 changes how

definitive the evidence is. In both cases, the evidence strongly favors the 3-step mechanism. I find

ω∗
unbiased = 0.9567 and ω∗

biased = 0.9759.

My analysis throughout this entire chapter provided three different ways to select between the

3-step and 4-step mechanisms. First, in Section 3.5.3, the principle of Occam’s razor would sug-

gest that since the 3-step mechanism is more simple than the 4-step and the fits to the data are

qualitatively similar, that the 3-step mechanism is the appropriate choice: make a model precisely

as complicated as it needs to be. Second, in Section 3.7.1, the (highly flawed, but simple) HME

computation of the Bayes factor suggested strong evidence for the 3-step mechanism. Third, this

section demonstrated with the mixture model approach that the 3-step mechanism is the model sup-

ported best by the data. Therefore I conclude that the 3-step is the minimal mechanism necessary

to describe this nanoparticle system.

The results of this chapter provide an important scientific advancement: the detailed character-

ization of not only the appropriate mathematical model to use but also the parameter uncertainty

present. Recall, however, the ultimate goal of studying nanoparticle synthesis that I described in

Chapter 1. I want to be able to manipulate experimental conditions so that a chemical reaction

results in a near-monodisperse PSD. Then, since nanoparticles have size-dependent properties, the

74

Figure 3.24: Posterior distribution plotted for ω in the model selection MCMC analysis. Each plot contains

the PDF and CDF of the posterior distribution. For model selection purposes, the value ω∗ where the

CDF reaches 50% indicates which model was selected. Here, ω∗ > 0.5 indicates evidence for the 3-step

mechanism and ω∗ < 0.5 indicates evidence for the 4-step mechanism.

outcome of the reaction will have properties more specific to one’s needs. With the Bayesian

inverse problem I performed in this chapter, I am well-equipped to perform simulations of par-

ticle concentrations over time and quantify the uncertainty present in the particle concentrations.

Because I can simulate the chemical reaction, I can use these simulations in the setting of an op-

timization problem to adjust the experiment closer to what I desire. This optimization problem is

the subject of the next chapter.

75

Chapter 4

Optimization under uncertainty

A key question in nanoparticle synthesis is how to create more narrow particle size distribu-

tion (PSD)s in order to produce more specific properties from the resultant set of nanoparticles.

With the completion of the Bayesian inversion analysis of Chapter 3, I have selected the 3-step

mechanism and I am able to simulate a reaction along with the uncertainty around the particle con-

centrations. Now I want to explore how modifying experimental conditions affects the PSD and

develop a method to find experimental conditions that lead to a desired outcome. In this chapter,

I focus on the desired outcome being a near-monodisperse PSD centered around some prechosen

particle size.

The optimization performed in this chapter will involve new parameters. To incorporate un-

certainty within the optimization I perform, I will need to perform Monte Carlo integration over

the model parameters. That is, K3-step will refer to the model parameters discussed in Chapter 3

and will follow the posterior π(K3-step|data) visualized in Figure 3.5 that I constructed during the

final MCMC analysis. For brevity I will drop the “3-step” and simply refer to these parameters as

K. I introduce new parameters θ which denote the parameters I optimize over. These optimiza-

tion parameters include the end time of the reaction, the initial precursor concentration, and the

initial ligand concentration as experimental conditions that are easy to manipulate. I also include

modifications to model parameters kf , k1, k2, and k3 as an exploratory “what if” analysis. These

model parameters can be effectively modified by methods such as adjusting the temperature, using

a different ligand, using a different solvent concentration, or using a different solvent altogether.

However, the precise relationship between, e.g., a change in temperature of 10 ◦C and the corre-

sponding change in k1, k2, and k3 is currently unknown and requires further research. Despite this

limitation, hypothetical studies are valuable in understanding if, for example, studying temperature

dependence could lead to narrower PSDs.

76

In this chapter I will begin in Section 4.1 by defining the optimization problem I want to solve.

Then I will discuss how I evaluate the cost function that quantifies how well a particular θ fits my

goals in Section 4.2. Then, in Section 4.3 I discuss the optimization algorithm I use and finally in

Section 4.4 I will present my results.

4.1 Mathematical formulation

The first goal I have is to identify the quantities that matter. As I previously described, nanopar-

ticles have size-dependent properties, so I would like to control the reactions to get as many par-

ticles as possible near the desired size. As such, considering the mean value and variance of the

PSD are crucial. Hence, I care about the two functions

PM(θ;K) =

2500∑
i=3

Bi(θ;K)diameter(i)

2500∑
i=3

Bi(θ;K)

, (4.1)

PS(θ;K) =

√√√√√√√

2500∑
i=3

Bi(θ;K) [diameter(i)− PM(θ;K)]2

2500∑
i=3

Bi(θ;K)

, (4.2)

where Bi(θ;K) is the concentration of particles with i atoms from solving the ODEs (2.13),

diameter(i) is the conversion from number of atoms to the diameter in nanometers given by (3.4),

PM stands for “PSD mean”, and PS “PSD standard deviation”. However, with respect to the

mean of the PSD, I care about how close it is to a given desired size, which I denote µ, giving me

the function

MD(θ;K) = |PM(θ;K)− µ| , (4.3)

where MD stands for “mean deviation”.

Given the uncertainty captured in the Bayesian inference described in Chapter 3, I can account

for the distributions in the inferred parameters. Thus, I can take expectations over the space of

77

inferred parameters K, with expectation of some function f defined as

❊(f) =

∫
f(K)π(K|data)dK, (4.4)

where π(K|data) is the posterior distribution computed in Chapter 3, giving functions

EMD(θ) = ❊ (MD(θ;K)) , (4.5)

EPS(θ) = ❊ (PS(θ;K)) . (4.6)

Now, from a practical point of view, one wants a consistent yield from their nanoparticle synthesis

process. In other words, the distribution about the inferred parameters induces a distribution about

the mean and variance of the PSD. As a result, it may be the case that on average the mean of the

PSD is close to the desired mean, but the variance of the PSD mean is quite large, and similarly for

the variance of the PSD. Thus, incorporating the variability due to the inferred parameters in my

optimization could be useful. Therefore, I also consider the functions

VMD(θ) = ❊
(
[MD(θ;K)− EMD(θ))2

]
, (4.7)

V PS(θ) = ❊
(
[PS(θ;K)− EPS(θ)]2

)
. (4.8)

Finally, it would be wasteful for the reaction to not run to completion. Therefore, I also consider

the conversion ratio

AC(θ;K) =
Aend(θ;K)

A0(θ;K)
, (4.9)

EAC(θ) = ❊(AC(θ;K)), (4.10)

where Aend(θ) is the precursor concentration when the reaction is stopped and A0(θ) is the initial

precursor concentration.

78

I am then left with the total cost function

C(θ) = w1EMD(θ) + w2EPS(θ) + w3VMD(θ) + w4V PS(θ) + w5EAC(θ), (4.11)

where wi are weights given to each Ci. In my work I heuristically choose values for wi and

explain my choices in Section 4.4. This is called scalarization in the multi-objective optimization

literature, but one could also approach this problem through alternative methods; see [41] for a

recent review including different ways of choosing weights in the scalarization method.

Now, I have a cost function that is the weighted sum of five expectations; that is, the weighted

sum of five difficult integrals which I cannot compute exactly. In the following section I will

describe how I will construct an approximation to the cost function that is feasible to numerically

compute.

4.2 Evaluation of the cost function

Evaluating the cost function (4.11) involves computing expectations, which is essentially prop-

agating the uncertainty in K through the ODEs (2.13) to compute a distribution for MD, PS, and

AC, and finally computing summary statistics in the form of mean and variance. The simplest

way to perform this process is through Monte Carlo integration, i.e. for
{
K(i)

}
i=1,...,N

drawn from

π(K|data)

ÊMD(θ) =
1

N

N∑

i=1

MD(θ;K(i)), V̂ MD(θ) =
1

N

N∑

i=1

[
MD(θ;K(i))− ÊMD(θ)

]2
,

ÊPS(θ) =
1

N

N∑

i=1

PS(θ;K(i)), V̂ PS(θ) =
1

N

N∑

i=1

[
PS(θ;K(i))− ÊPS(θ)

]2
,

ÊAC(θ) =
1

N

N∑

i=1

AC(θ;K(i)).

(4.12)

Monte Carlo integration is the technique I employ for my work since I found the computational

expense of computing the approximations (4.12) to be acceptable; see Table 4.1. Monte Carlo

79

integration remains the most computationally efficient integration strategy for high dimensional

integrals (approximately >10 in this context), but polynomial chaos methods could have also been

used in this context to calculate mean values and variances with potentially fewer solves of the

system of ODEs [80, 87, 120].

The question, then, is how many Monte Carlo samples are necessary to compute (4.12) to a

reasonable accuracy. To test convergence, I choose θ corresponding to the experimental conditions

of the data used in Chapter 3. I also choose a “desired size” of 2.7264 nm which corresponds

to 750 atoms, which is close to the mean particle size at the end of the reaction under the same

experimental conditions as the data in Chapter 3. I then draw 100, 000 values of K from π(K|data),

solve the ODEs for each K, and record values for (4.2), (4.3), and (4.9). I then compute the values

of the expectations in (4.12) as a function of the number of samples included in the integral. In

Figures 4.1–4.5 I plot these results along with highlighting what values are within 5% and 1% of

the final value. In Table 4.1 I note how many samples are necessary to be within 5% and 1% of the

final value for all samples afterwards.

I encounter a complication, however, when I perform this optimization. As I discuss in Sec-

tion 4.4, I introduce an initial concentration of POM as an optimization parameter. Physically,

adding POM slows the reaction down and results in lower concentrations of particles. Pragmati-

cally, this means I have to decrease the tolerance when I solve my ODEs which results in smaller

time steps and thus a more computationally expensive solve. Solving 1000 ODEs each iteration

of an optimization algorithm, then, is too computationally expensive for me. Therefore I decide

to evaluate (4.12) using 500 samples and treat the evaluation of the cost function as a noisy – as

opposed to exact – evaluation, which I explain further in Section 4.3.1.

Now that I have a methodology to evaluate my cost function, I discuss the algorithm I utilize

to find the parameters θ that minimize my cost.

80

Figure 4.1: Convergence of the Monte Carlo integration of (4.5). The left plot shows 5% error bounds in

gray. The right plot shows 1% error bounds in gray.

Figure 4.2: Convergence of the Monte Carlo integration of (4.6). The left plot shows 5% error bounds in

gray. The right plot shows 1% error bounds in gray.

Table 4.1: Number of samples to reach a tolerance in Monte Carlo integration of the components of the cost

function (4.11). Tolerance is measured as the interval [(1− ε)x, (1+ ε)x] where ε is the tolerance level and

x is the function value with the most Monte Carlo samples used.

Samples to be within
Function ±5% ±1%
EMD 114 3,601
EPS 1 12
VMD 587 60,056
V PS 1,337 17,197
EAC 19 1,454

81

Figure 4.3: Convergence of the Monte Carlo integration of (4.7). The left plot shows 5% error bounds in

gray. The right plot shows 1% error bounds in gray.

Figure 4.4: Convergence of the Monte Carlo integration of (4.8). The left plot shows 5% error bounds in

gray. The right plot shows 1% error bounds in gray.

82

Figure 4.5: Convergence of the Monte Carlo integration (4.10). The left plot shows 5% error bounds in

gray. The right plot shows 1% error bounds in gray.

4.3 Optimization algorithm

From Section 4.1 I have a cost function that I would like to minimize. However, I have two

difficulties associated with optimization that must be addressed: (1) I cannot compute derivatives

of C(θ) and, as such, I cannot utilize algorithms like gradient descent, Newton’s methods, and

variants thereof; and (2) my cost function is the weighted sum of five different cost functions,

which presumably each have their own, potentially non-overlapping, local and global minima, and

hence it is reasonable to suspect that C(θ) has many local minima. In this section I will describe

the optimization algorithm I will use to remedy these two issues.

A number of methods have been developed to circumvent the lack of gradient information

and yet still perform better than random search. A ubiquitous example is the Nelder-Mead algo-

rithm [77]. In this algorithm, a simplex is constructed by evaluating the cost function at a number

of points. The worst point – that is, the point corresponding to the largest evaluation of the cost

function – is then reflected about the centroid of the opposite face of the simplex. If this reflected

point is an improvement, then a new simplex is constructed and this process is repeated; if the

reflected point is not an improvement, then some logic is applied to reduce the search area. Imple-

mentations vary for the exact algorithm, but the general idea is to follow a direction of decreasing

cost function, which presumably is the direction that a gradient-based algorithm would also fol-

83

low. There are modern improvements [65, see Section 4.1 and references therein], but these are

all from the class of derivative-free local optimization algorithms. All local algorithms are highly

dependent on the starting point since they can only provide convergence to a local minimizer. In

my problem, I cannot explicitly plot the cost function, so I cannot directly evaluate if I have a sin-

gle, global minimizer or multiple local minimizers. Therefore, if I employed an algorithm such as

Nelder-Mead, then it would be difficult to have confidence that my result is the global minimizer.

From a practical perspective, this may mean that there are numerous experimental setups that are

“pretty good”, and perhaps that is good enough for certain practitioners, but it would be nice to

find the best possible experimental setup.

In contrast, one can also pose so-called derivative-free global optimization algorithms. In prin-

ciple, one might simply run Nelder-Mead many times starting at different points in the optimization

domain. However, many algorithms have been posed to perform a global search in a more efficient

manner, see [54, 61, 112] to name a few. In some sense, many of the common global optimization

algorithms utilize clever brute-force. For example, in particle swarm optimization [10, 61], many

“particles” are generated by choosing points within the optimization domain. Then the particles

move based on a combination of the best point the individual particle has seen and the best point

the entire swarm has seen. Efficiency is gained when one can compute a large portion of the par-

ticles simultaneously by using parallel computations. In my problem, as discussed in Section 4.2,

I require parallel computation to make the cost function itself computationally feasible. As such,

I desire an algorithm that seeks to minimize evaluations of the cost function and does not need to

evaluate the cost function in parallel to be feasible.

Bayesian optimization [68] is a common technique for global optimization when the cost func-

tion is expensive to evaluate. The idea is to construct a probabilistic surrogate model – that is, an

interpolating function that also quantifies the uncertainty one has in the estimated values between

function evaluations – and pair that with a so-called acquisition function. Having a probabilis-

tic representation of the surrogate model is key because one would like to explore areas of the

optimization domain that not only have a desirable value of the cost function, but also a high un-

84

certainty in the actual value of the cost function; in doing so, one might “strike gold” and find a

minimizer amidst an area of large interpolation uncertainty.

The workflow of Bayesian optimization is as follows:

1. Begin with surrogate model trained on N points {θi}Ni=1.

2. Find the minimizer θN+1 of the acquisition function (which is based on the surrogate model).

3. Evaluate the cost function at θN+1.

4. Construct the set {θi}Ni=1 ∪ {θN+1} and retrain the surrogate model with the new point.

The key elements are defining the surrogate model and the acquisition function. I state my selec-

tions for these two components first and then go into detail about each afterwards.

First, regarding the choice of surrogate model, the necessary criteria are (1) to have an in-

terpolating function such that I know what the cost function is at evaluated points, (2) to have

a general trend connecting evaluated points, (3) some notion of noise between the interpolation

points, and (4) an easy way to compute important test statistics such as the mean value and vari-

ance of an interpolated value. The most common way to approach this is through a Gaussian

process (GP) [23, 66, 93]. The idea with a GP is to evaluate the interpolated function at a number

of points. Then a kernel is defined that defines a trend between points as well as some distribution

between the points, for example a covariance measure that allows zero uncertainty at evaluated

points and maximizes uncertainty at the midpoint between evaluated points. More details may be

found in Section 4.3.1, in which I use a GP as the surrogate model with the Matérn 5/2 kernel [73];

see (4.33).

Second, the choice of acquisition function is a modeling decision based on what one finds

important. There are a few common choices, but the idea is to have a function of the trend and

variance of the surrogate model. For this application, I choose to employ the expected improvement

plus acquisition function. Refer to Section 4.3.2 for a more detailed discussion of this choice and

other options.

85

The acquisition function then needs to be optimized during the Bayesian optimization algo-

rithm. Generally, this simply means using some form of global optimization. The specific algo-

rithm is not important in this context, because Bayesian optimization typically assumes the evalu-

ation of the cost function is substantially more expensive than evaluating the acquisition function.

I use the MATLAB implementation of Bayesian optimization in my work herein and their im-

plementation evaluates the acquisition function at a few thousand points and then performs local

minimization on several of the “better” points. See the MATLAB documentation for the function

BAYESOPT for more details [74].

Now that I have described my choices for the necessary ingredients of Bayesian optimization,

I will describe GPs and acquisition functions in more detail for clarity to my decision-making

process and as a reference to how each choice operates.

4.3.1 Surrogate model

The general set up of a surrogate model is that one has a set of points and then the evaluations

of those points. More formally, and in the common language of the uncertainty quantification

community, one has a given experimental design Θ = {θ1, . . . ,θN} and corresponding model

responses Y = {y1, . . . , yN} = {M(θ1), . . . ,M(θN)}, where M is some computational model

– e.g., some function involving the solution to a set of differential equations – which one can

evaluate at will given a point θ in its domain, albeit typically at significant computational cost. In

this chapter, when I apply the techniques I describe herein, my computational model M is my cost

function C(θ) described in (4.11).

The question, then, is: how can I interpolate my model evaluations? In a simplified setting

where θ ∈ ❘, I might simply fit a polynomial of degree N − 1 through Θ and Y for a global inter-

polation function. Or, perhaps, I want to mitigate the large oscillations that often come with high

degree interpolation polynomials, so I employ piecewise polynomial interpolation or cubic spline

interpolation to maintain differentiability. These methods work very well in their deterministic set-

ting when the only important result of interpolation is the best guess at what the model response is.

86

However, in the context of Bayesian optimization, I require information regarding how confident I

am about the interpolated value to encourage exploration of the optimization parameter space. For

this reason, probabilistic interpolation techniques are necessary.

The idea of Gaussian process modeling, then, is to develop a probabilistic model of the form

Ŷ (θ)pr = f(θ)
⊺β + σ2Z(θ) (4.13)

as described in [93]. The first term in (4.13) is an analogue to a polynomial fit one might employ in

the deterministic setting, where f(θ) are a collection ofK arbitrary functions and β is the vector of

weights assigned to each of those functions. The inner product f(θ)⊺β is called the trend function

in this context. Next, σ2 denotes the constant variance assigned to the Gaussian process. Finally,

Z(θ) is a zero-mean, unit-variance Gaussian process defined by an correlation function R that I

will describe later. Then, following the methodology in [93], a prediction Y0 based on parameters

θ0 and the observations Y follow the joint distribution

Y0

Y

 ∼ NN+1

f

⊺

0β

Fβ

 , σ2

1 r
⊺

0

r0 R

 , (4.14)

where f⊺

0β is the trend as in (4.13), Fβ is the trend evaluated at each point in the experimental

design, r0 is the vector

r0 =

(
R(θ0,θ1) · · · R(θ0,θN)

)
⊺

, (4.15)

andR is the matrix

R =

R(θ1,θ1) · · · R(θ1,θN)

...
. . .

...

R(θN ,θ1) · · · R(θN ,θN)

. (4.16)

87

Now, I want a predictor of Y0 that is optimal in some sense. The standard approach is to view this

through a Bayesian perspective where (4.13) is taken as the prior model and I want to condition on

the fact that Y are observed. To address “optimal in some sense”, one chooses the predictor Ŷ0 to

be the best linear unbiased predictor meaning:

• linear: Ŷ0 = a
⊺

0Y ,

• unbiased: ❊
[
Ŷ0 − Y0

]
= 0,

• best: Ŷ0 = min
Y ∗

0
linear, unbiased

❊
[
(Y ∗

0 − Y0)
2].

In other words: Ŷ0 is a linear combination of Y , which is nice because the linear combination of

Gaussian random variables is a Gaussian random variable; Ŷ0 has expectation equal to that of the

true model evaluation; Ŷ0 has the minimum variance of all other linear, unbiased estimators.

Under this framework, one can then show that

µŶ0
= ❊

[
Ŷ0|Y

]
= f⊺

0 β̂ + r⊺0R
−1
(
Y − F β̂

)
, (4.17)

where

β̂ =
(
F ⊺R−1F

)−1
F ⊺R−1Y . (4.18)

Moreover, one can find that the variance of this predictor is

σ2
Ŷ0

= ❊

[(
Ŷ0 − Y0

)2]
= σ2

(
1− r⊺0R−1r0 + u

⊺

0

(
F ⊺R−1F

)−1
u0

)
, (4.19)

where

u0 = F
⊺R−1r0 − f0. (4.20)

See [93, Chapter 3] and [23, Chapter 1] for further details and proofs of the above. The predictor

Ŷ0 has a few nice properties that I will outline below.

88

Interpolation

Ŷ0 interpolates the observed model responses through its mean value. To see this, recall (4.17)

and (4.18). Then I consider one of the observed responses Yi from parameters θi. Let fi ≡ f(θi)

and ri ≡ r(θi). Then note:

r
⊺

iR
−1 = e⊺i , (4.21)

where e⊺i is the unit vector with a one in the ith row and zeros elsewhere;

e
⊺

iY = Yi ≡ M(θi), (4.22)

where Yi is the ith observed model response; and

e
⊺

iF = f⊺

i . (4.23)

From these facts, I can show

µŶi
= f⊺

i β̂ + r⊺0R
−1
(
Y − F β̂

)

= f⊺

i β̂ + e⊺i

(
Y − F β̂

)

= f⊺

i β̂ + e⊺iY − eiF β̂

= f⊺

i β̂ + Yi − f⊺

i β̂

= Yi.

This is the minimal property desired of a surrogate model: if a surrogate model cannot reproduce

the (assumed to be exactly known!) model responses, then it is not a very useful model. Under a

probabilistic framework, however, another fundamental notion that should be satisfied is that there

is zero uncertainty surrounding the observed values. Next, I show that the predictor Ŷ0 satisfies

this property.

89

Collapsing variance

While I want to regard a prediction between observed values as a random variable with some

non-zero spread, the observed values themselves should reduce to a deterministic value. That

is, since I actually observed that the model evaluated to a specific value – and I assume zero or

negligible error since I am evaluating a deterministic computational model or have evidence that

my Monte Carlo integration is converged – then I know what the value is. Since Ŷ0 is a Gaussian

random variable, it suffices to show that the variance σ2
Ŷ0

= 0 when evaluating θi ∈ Θ.

First, consider u0 as defined in (4.20). I will denote ui here to emphasize it is evaluated for

one of the points in the experimental design Θ. Also recall from (4.21) and (4.23) thatR−1ri = ei

and F ⊺ei = fi. Thus, I have

ui = F
⊺R−1ri − fi

= F ⊺ei − fi

= fi − fi

= 0.

Now, the variance is reduced to

σ2
Ŷi
= σ2

(
1− r⊺iR−1ri

)

= σ2 (1− r⊺i ei) .

As a preview to the discussion on the correlation function, I see that r⊺i ei = R(θi,θi). As such, if

R(θ,θ) = 1 for arbitrary, relevant θ, then I have the result I desire. Thus, this will be the condition

imposed for a function R to be considered appropriate in this setting. This condition is reasonable

because the correlation between a point and itself is one.

90

Hence, at a point in the experimental design θi, the predictor follows

Ŷi ∼ N(Yi, 0)

and is thus deterministic.

Moving my attention to points outside of the experimental design, I can utilize the fact that the

predictor follows a Gaussian distribution to construct confidence intervals.

Confidence intervals

One nice statistic describing the uncertainty of a value is a confidence interval. This measure

provides a spread of reasonable values that one might see, based on a specified confidence level

α, so one might make a more informed decision based on the context of the problem. In my case,

since Ŷ0 is Gaussian, it is very simple to compute confidence intervals. The confidence interval of

value Y0 for parameters θ0 is

Y0 ∈
[
µŶ0

− Φ−1
(
1− α

2

)
σŶ0

, µŶ0
+ Φ−1

(
1− α

2

)
σŶ0

]
, (4.24)

where Φ−1 is the inverse cumulative distribution function of the standard normal distribution. With

a probability 1− α, true value of Y0 is expected to be within the given confidence interval.

I have explained properties of a GP when it is being used as an interpolating function. However,

as I discussed in Section 4.2, computing the cost function to a high accuracy is too computationally

expensive in my case with Monte Carlo integration. Next, I present modifications to (4.17) and

(4.19) to account for noisy model evaluations.

Noisy model evaluations

I have noise in the evaluation of my cost function and I assume the noise is homoscedastic;

that is, the variance of the noise is constant with respect to θ. Then, the joint distribution of the

91

observations and a prediction is modified from (4.14) to

Y0

Y

 ∼ NN+1

f

⊺

0β

Fβ

 ,

σ2 σ2r
⊺

0

σ2r0 σ2R+ σnI

 , (4.25)

where σn is the noise in the cost function evaluations and I is the identity matrix. Then, the mean

and variance of a prediction can be computed with [88]

µŶ0
= ❊

[
Ŷ0|Y

]
= f⊺

0 β̂ + r̃⊺0R̃
−1
(
Y − F β̂

)
, (4.26)

σ2
Ŷ0

= ❊

[(
Ŷ0 − Y0

)2]
= σ2

total

(
1− r̃⊺0R̃−1r̃0 + u

⊺

0

(
F ⊺R̃−1F

)−1

u0

)
, (4.27)

where

σ2
total = σ2 + σ2

n, (4.28)

r̃0 =

(
1− σ2

n

σ2
total

)
r0, (4.29)

R̃ =

(
1− σ2

n

σ2
total

)
R+

σ2
n

σ2
total

I. (4.30)

Then I can compute confidence intervals in the same manner as (4.24).

Now that the nice properties of a Gaussian process have been discussed, I want to discuss the

choice of correlation function – or kernel – that finishes the construction of the Gaussian process.

Correlation function

The correlation function is a way for the designer of the Gaussian process to inject knowledge

of how parameters θ0 relate to the experimental design θi ∈ Θ. For example, one might suspect

that being further away – according to some norm – from the observations would result in behav-

ior less similar to the observations and, as such, more uncertainty on the predicted response to θ0.

There is also a concept of stationarity versus non-stationarity with correlation functions. The dif-

ference, essentially, is a stationary correlation function only depends on the distance between two

92

points. Conversely, a non-stationary correlation function allows for differences based on where in

the domain two points are. In the absence of better knowledge of the 3-step mechanisms behav-

ior with respect to parameters θ, I take the Occam’s razor approach and use the simpler choice

of assuming stationarity and thus will focus on discussing the popular stationary correlation func-

tions. The following will discuss one-dimensional correlation functions and the extension to the

multivariate case will be described afterwards.

Among the most popular stationary correlation functions are the exponential

Re(θ1, θ2; ℓ) = exp

(
−|θ1 − θ2|

ℓ

)
, (4.31)

Gaussian (or squared exponential)

Rg(θ1, θ2; ℓ) = exp

(
−1

2

(|θ1 − θ2|
ℓ

)2
)
, (4.32)

and Matérn functions [73]

Rm(θ1, θ2; ℓ, ν) =
1

2ν−1Γ(ν)

(
2
√
ν
|θ1 − θ2|

ℓ

)ν

Kν

[
2
√
ν
|θ1 − θ2|

ℓ

]
, (4.33)

where ν ≥ 1/2, Γ is the gamma function that generalizes factorials Γ(z) =
∫∞

0
tz−1e−tdt, and Kν

is the modified Bessel function of the second kind. (4.33) is rather complicated but can fortunately

be greatly simplified when ν = p + 1/2 for p ∈ ◆, see [88, eq. 4.16]. The most important

correlation functions in the Matérn family are

Rm(θ1, θ2; ℓ, ν = 3/2) =

(
1 +

√
3
|θ1 − θ2|

ℓ

)
exp

[
−
√
3
|θ1 − θ2|

ℓ

]

Rm(θ1, θ2; ℓ, ν = 5/2) =

(
1 +

√
5
|θ1 − θ2|

ℓ
+

5

3

(|θ1 − θ2|
ℓ

)2
)
exp

[
−
√
5
|θ1 − θ2|

ℓ

]
,

(4.34)

as can be found in [88, eq. 4.17]. Note that Rm(θ1, θ2; ℓ, ν = 1/2) = Re(θ1, θ2; ℓ), in the limit

ν → ∞ Rm(θ1, θ2; ℓ, ν) → Rg(θ1, θ2; ℓ), and ν ≥ 7/2 (including ν → ∞), are pragmatically

93

the same for practical applications due to the amount of smoothness (i.e., derivatives) ν imposes,

see [88, ch. 4.2].

Note two problems that now arise:

1. Which of (4.31), (4.32), and (4.34) should I choose?

2. How do I choose the unknown parameter ℓ that arises in (4.31), (4.32), and (4.34)?

I answer these questions next.

Choice of correlation function

Among other possible correlation functions that I did not discuss, [88,93] describe exponential,

Gaussian, and Matérn correlation functions as the most popular used in the literature. As such,

there is precedence for using any of them. In [105, ch. 6.5], there is an argument for the Matérn

class to be the canonical correlation function. This argument relates to allowing the parameter

search to be over both ℓ and ν, as well as the choice of ν controlling smoothness; i.e., (4.31) is

not continuously differentiable, (4.32) is infinitely differentiable, but (4.33) has ⌈ν⌉−1 derivatives

[88, 93]. However, [88] notes that the Matérn functions for ν ≥ 7/2 all behave similar to the

Gaussian correlation function, which [105] argues is inappropriate.

Then, the choices are narrowed down to the Matérn functions in (4.34) and the exponential

function in (4.31) (i.e., the Matérn function with ν = 1/2). In [93, ch. 3.3], an empirical study

is performed on how to choose the correlation function (and how to choose the parameter(s) in

the correlation function; see the next discussion). Essentially, numerous methods were tested on

a problem where an analytic solution is available and the error was calculated as a measure of

performance. As can be seen in [93, Figures 3.6–3.8], the exponential and Matérn functions per-

form similarly. The authors of [93] conclude with a recommendation of using the exponential

correlation function2, but allude to evidence that the Matérn family is just as good but simply

2Technically, the exponential family is recommended, which includes exp(|θ1 − θ2)
p/ℓ) for 0 < p ≤ 2 – hence also

including the Gaussian correlation function – but for 0 < p < 2 this entire family is continuous, but not continuously
differentiable everywhere, so they exhibit the same smoothness properties as the p = 1 case I mentioned in (4.31)
and thus I lump them together.

94

more computationally expensive. However, this study did not use the convenient representation of

Matérn functions such as those in (4.34), instead using various integer values for ν for which the

expensive formula (4.33) is required. The half-integer Matérn correlation functions have similar

computational expense to the exponential correlation functions, so I do not consider the compu-

tation time of a Matérn function to be relevant. Because of the results in the empirical study, the

recommendation to limit the smoothness of the correlation function, and the recommendation to

treat the Matérn family as the canonical correlation function, I decide to use Matérn with ν = 5/2

in my application. I choose ν = 5/2 instead of ν = 3/2 because it is the most common kernel

used in the literature.

The value of the shape parameter ℓ needs to be selected in a judicious manner. This is typically

done through maximum likelihood or cross-validation methods, see [93, chapter 3] for a discussion

on these techniques.

It is now clear that with a Gaussian process I can compute the trend of an interpolated point

conditioned on the observations through (4.26), I can extract information about the uncertainty

through (4.27) and (4.24), and I can do these in an efficient manner. As discussed when I introduced

Bayesian optimization, I want to sequentially build my surrogate model of the cost function by

choosing new observations in a “clever manner.” This “clever manner” means combining the trend

of the Gaussian process with its uncertainty to search for new points to evaluate. This combination

is called the acquisition function, which I discuss next.

4.3.2 Acquisition function

In a typical optimization problem – say one solved by gradient descent – the cost function is

unambiguously the correct measure of how well the optimization parameters perform. However,

in the context of Bayesian optimization, since a GP is the function being optimized during each

iteration, the addition of uncertainty provides room for Bayesian decision making in the selec-

tion of the next evaluation point. This notion is called the acquisition function in the context of

95

Bayesian optimization. The idea is simple: choose a function of the GP that combines the trend

and uncertainty in some way and optimize that.

In principle, the simplest acquisition function one might use is a risk-free function. That is,

ARF(θ) = ❊(Ŷ (θ)); (4.35)

in other words, the acquisition function is the trend of the GP. For brevity, let me denote the mean

and standard deviation of the GP evaluated at a point θ as

µ(θ) = ❊(Ŷ (θ)), σ(θ) =

√
❊

([
Ŷ (θ)− ❊(Ŷ (θ))

]2)
. (4.36)

That being said – particularly when few evaluations are informing the GP – exploring areas of the

parameter space where uncertainty is high can yield more optimal values of the cost function. A

first natural extension of (4.35) is the lower confidence bound acquisition function

ALCB(θ) = µ(θ)− βσ(θ); (4.37)

that is, the GP trend minus β times the standard deviation. One might take another approach and

directly calculate the probability of the cost function yielding a better value. This thought leads to

the probability of improvement acquisition function. Since a GP provides a Gaussian distribution

for observations, probability of improvement is calculated as

APOI(θ) = Φ

argmin

θ
[µ(θ)]− µ(θ)

σ(θ)

 , (4.38)

where Φ is the CDF of the normal distribution with mean zero and unit variance. Finally, the

final acquisition function I will discuss takes the probability of improvement a step further through

weighting by how much the cost function would improve. This is the expected improvement [58]

96

acquisition function given by

AEI(θ) =

∫ ∞

−∞

max

(
0, argmin

θ
[µ(θ)]− Ŷ

)
N
[
Ŷ ;µ(θ), σ2(θ)

]
dŶ

=

(
argmin

θ
[µ(θ)]− µ(θ)

)
Φ

argmin

θ
[µ(θ)]− µ(θ)

σ(θ)

+ σ(θ)N

argmin

θ
[µ(θ)]− µ(θ)

σ(θ)

 ,

(4.39)

where N (Y) is the PDF of the standard normal distribution and N (Y ;µ, σ2) is the PDF of the

normal distribution with mean µ and variance σ2. Expected improvement is one of the most pop-

ular acquisition functions and the philosophy of choosing one’s next evaluation point on where

one expects the best result resonates with me. Hence, I decide on expected improvement as my

acquisition function.

From practical experience, one can find that through the course of Bayesian optimization that

a certain portion of parameter space is focused on before the rest of parameter space is adequately

explored. This is called over-exploiting an area. The expected improvement algorithm can be

modified to detect when over-exploitation is occurring and increase the correlation function in

an effort to bias towards areas of parameter space that are under-explored; see the MATLAB

documentation [75] for an explanation of their implementation based on the work in [15]. By

MATLAB’s notation, this is called the expected improvement plus acquisition function and is

what I use in my work.

Now that I have explained how Bayesian optimization works, I will apply this technique to my

study of nanoparticle formation and the goal of trying to find experimental conditions that permit

narrow PSDs centered around a requested size.

4.4 Optimization of experimental conditions

Now I am ready to apply Bayesian optimization to my nanoparticle problem. Recall, the goal

is to optimize the multi-objective cost function (4.11). First, I will describe the optimization pa-

97

rameters θ I have at my disposal. Then, I will walk through some examples of optimizing over

θ ∈ ❘ to develop intuition about what each component of the cost function affects in the optimized

result. From this intuition, I will then describe my choices for the weights wi in (4.11) and proceed

to perform optimization over multiple experimental conditions simultaneously.

4.4.1 Optimization parameters

The optimization parameters that I have at my disposal can be grouped into two categories.

The first group are optimization parameters where the modification of the experiment has a direct

analogue within my mathematical model. These parameters are:

• A0 – the initial precursor concentration,

• tend – the time at which the reaction is stopped,

• POM0 – the initial POM concentration.

The second group are parameters that represent changes that could be made by modifications to

the experiment, but more data needs to be collected to understand exactly what experimental con-

ditions correspond to what parameter values. These “hypothetical” parameters are:

• αkf – multiplier to the kf reaction rate – this could be achieved by diluting the solvent

(αkf < 1), using a different solvent that acts as a stronger catalyst (αkf > 1), or changing

the ligand from POM to some other molecule;

• αT – multiplier to the k1, k2, and k3 reaction rates – this could be done by adjusting the

temperature the reaction is conducted at, but the temperature dependence of these reaction

rates is presently unknown.

Now that I have described the optimization parameters, in the next section I will provide visual

examples of what the Bayesian optimization process looks like and what effect each component of

the cost function (4.11) has.

98

4.4.2 Optimization visualization

I start with a visualization of the Bayesian optimization process. Recall, Bayesian optimization

is composed of: (1) forming a probabilistic surrogate model of the cost function; and (2) applying

an acquisition function to the surrogate model to choose the next evaluation point. In order to

plot the GP surrogate model and the acquisition function as clearly as possible, I perform a one-

dimensional optimization on the optimization parameter tend ∈ [0.1, 100]h. Figure 4.6 shows the

GP and acquisition function after five iterations and fifteen iterations. The GP plots in the left

column show the trend along with two standard deviations of uncertainty. With few evaluations

of the cost function, there is a lot of uncertainty about the trend. As more evaluations occur, the

trend predicts the cost function much more accurately and the variance in the predictor decreases.

The acquisition function plotted in the right column of Figure 4.6 also demonstrates this behavior.

With few function evaluations – hence large variance in the predictor – the acquisition function

takes large values nearby the current best evaluated point and other areas of parameter space. With

more function evaluations and a more accurate GP, the acquisition function takes on large values

only near the minimizer.

Next, I want to explore appropriate values wi for the cost function (4.11). I sample six random

values from A0 ∈ [1 × 10−4 ,1]molL−1 and tend ∈ [0.1 ,100]h, evaluate what each component of

the cost function is for those points, and plot the PSDs to see if the values I find are representative

of a “good” or “bad” value. In Table 4.2 I consolidate the values of each component of the cost

function and in Figure 4.7 I plot the corresponding PSDs.

For EMD, the values are on the order of 1–2 and I would say all of the PSDs are far from the

“desired size” that I calculate EMD with respect to. That being said, the interpretation for EMD

is quite simple: the simulated mean particle size is EMDnm away from the desired particle size. I

want to normalize the cost function so that each component is ≈ 1 for a “bad” PSD. 1 nm apart in

mean value is not a good result, so I take the EMD weight to be w1 = 1. Note that I also test the

effect of w1 = 5 in Section 4.4.3 and explain why therein. Now considering EPS, the values in

Table 4.2 are ≈ 0.5 and I consider all of the PSDs in Figure 4.7 to be wide. I take the EPS weight

99

10
-1

10
0

10
1

10
2

t
end

-0.5

0

0.5

1

1.5

2
C

o
s
t

Gaussian Process

10
-1

10
0

10
1

10
2

t
end

0

0.01

0.02

0.03

0.04

0.05

E
x
p
e
c
te

d
 I
m

p
ro

v
e
m

e
n
t

Acquisition Function

10
-1

10
0

10
1

10
2

t
end

0

0.2

0.4

0.6

0.8

1

1.2

C
o
s
t

Gaussian Process

10
-1

10
0

10
1

10
2

t
end

0

2

4

6

8

10

E
x
p
e
c
te

d
 I
m

p
ro

v
e
m

e
n
t

#10
-4 Acquisition Function

Figure 4.6: Examples of the Bayesian optimization process after (top) 5 iterations and (bottom) 15 itera-

tions. The left column shows the trained Gaussian process where the blue line is the trend, the blue dots are

computed evaluations of the cost, and the gray shows two standard deviations of the distribution around the

trend. The right column shows the evaluation of the acquisition function on the trained Gaussian process.

In both plots, the black dot indicates where the next evaluation in the Bayesian optimization algorithm takes

place. In the bottom plot of the acquisition function, the black dot is not located on the peak of the expected

improvement curve due to the “plus” algorithm used to avoid over-sampling a small region; see [15,75] for

details. Also note the difference in scale of the two plots on the right.

100

Table 4.2: Values of each component of the cost function (4.11) evaluated at six random points within

A0 ∈ [1× 10−4 ,1]molL−1 and tend ∈ [0.1 ,100]h. These values compare to the PSDs in Figure 4.7.

Function Point 1 Point 2 Point 3 Point 4 Point 5 Point 6
EMD 1.8 1.1 1.0 1.1 1.5 1.3
EPS 4.5× 10−1 7.7× 10−1 4.4× 10−1 7.7× 10−1 5.1× 10−1 5.0× 10−1

VMD 1.1× 10−3 4.7× 10−5 4.2× 10−4 4.8× 10−5 6.5× 10−4 6.7× 10−4

V PS 1.4× 10−4 1.4× 10−5 8.6× 10−5 1.4× 10−5 2.2× 10−5 3.0× 10−5

EAC 7.5× 10−13 2.5× 10−1 2.2× 10−1 2.1× 10−1 4.0× 10−12 3.2× 10−9

to be w2 = 1 to put more emphasis on the mean value of the PSD, although a larger value such as

w2 = 2 would also be reasonable. Next, for VMD, values are on the order of 1×10−5 to 1×10−3.

VMD is related to the uncertainty, so I analyze the uncertainty in the PSDs in Figure 4.7. I find

that the first and second PSDs are good examples of high and low uncertainty, respectively. These

two PSDs correspond to VMD on the order of 1× 10−3 for high uncertainty and 1× 10−5 for low

uncertainty. To normalize the high uncertainty case to w3VMD ≈ 1, I take w3 =1 × 103. Then

with V PS, my analysis is similar. For the same high and low uncertainty PSDs I find values on

the order of 1× 10−4 and 1× 10−5, respectively. Thus I choose w4 =1× 104 so that w4V PS ≈ 1

in the high uncertainty case. Finally, for EAC, the interpretation of this function is very intuitive:

the reaction is (1−EAC)× 100% complete. It is much more efficient materials-wise to perform a

reaction to its natural completion in order to produce more particles. Therefore I test both w5 = 2

and w5 = 5 to normalize a 50% complete and 80% complete reaction to the same cost as a PSD

whose mean is 1 nm from the desired mean.

Now that I have selected the weights wi in (4.11), I present a few optimizations on the param-

eters A0 ∈ [1 × 10−4 ,1]molL−1 and tend ∈ [0.1 ,100]h to show the effect of each component of

the cost function. Note that I only perform 25 iterations for each of the following cases to save on

computational cost since I simply want to show the effect of each cost measure here. Analyzing

Figure 4.8, I make the following observations:

1. EMD only – the only important factor is that the mean diameter in the PSD is close to the

desired size, so it is no surprise that A0 and tend are found that closely match the desired size,

albeit at the expense of the reaction not running to completion;

101

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

3

3.5

4

#10
-9

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

1

2

3

4

5

6

#10
-11

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

1

2

3

4

5

#10
-10

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
#10

-11

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

3

3.5
#10

-9

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

#10
-9

Avg PSD

Desired size

Average size

PSD uncertainty

Figure 4.7: PSDs for six random points within A0 ∈ [1× 10−4 ,1]molL−1 and tend ∈ [0.1 ,100]h in order

to assess typical values of each component of the cost function (4.11). These figures correspond to Table 4.2

with the top row corresponding to points 1–3 and the bottom row to points 4–6.

102

2. EMD and EPS – cutting a reaction short corresponds to lower PSD width because the

reaction has not had time to create a variety of different particle sizes, so including EPS

may need to be balanced by penalizing an incomplete reaction by including EAC;

3. EMD and VMD – uncertainty is penalized in this case but, as Figure 4.8 shows, uncertainty

concentrated about the peak of the PSD may not influence the mean size too much and

therefore be tolerated by VMD;

4. EMD and V PS – uncertainty again is penalized, except this combination results in a qual-

itatively different PSD than the previous examples, indicating that the variance of the PSD

spread may be more sensitive to uncertainty than the PSD mean;

5. EMD and EAC – this combination penalizes an incomplete reaction and, as Figure 4.8

demonstrates, the cost function interprets it as desirable to have a complete reaction whose

PSD mean is far from the requested size, and hence EAC needs to be balanced by the other

cost components;

6. All cost component – the five functions that form (4.11) form a balance where the PSD

mean is close to the desired size, the uncertainty is relatively low, and the reaction is mostly

completed.

Now I am ready to optimize the PSD shape and perform this analysis in the next section.

4.4.3 Optimization results

In this section I find that I am able to affect the shape of the PSD to target a specific size particle.

I am not able to create a monodisperse PSD through my optimization3, but I will demonstrate the

ability to find experimental conditions where my simulations predict a narrow PSD centered around

a size close to my desired size. For the results I present herein, I fix my desired size at 150 atoms

which corresponds to 1.59 nm. In the following, I test the effects of two different ways to weight

3Nor is a truly monodisperse PSD expected in nature from a multi-step, self-assembly process!

103

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

3

3.5

4

#10
-9 EMD

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

3

3.5

4

#10
-9 EMD + EPS

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

1

2

3

4

5

#10
-9 EMD + VMD

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

1

2

3

4

5

6

7

8

9

#10
-10 EMD + VPS

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

3

3.5

4

#10
-10 EMD + EAC

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

1

2

3

4

5

6

7

8

#10
-10 EMD + EPS + VMD + VPS + EAC

Avg PSD

Desired size

Average size

PSD uncertainty

Figure 4.8: PSDs resulting from the (incomplete) optimization of parameters A0 ∈ [1 × 10−4 ,1] and

tend ∈ [0.1 ,100] for subsets of the components of the cost function (4.11).

104

the cost function (4.11). The first way follows the analysis I detailed in the previous section:

w(1) =

[
w1, w2, w3, w4, w5

]

=

[
1, 1, 1× 103, 1× 104, 2

]
.

(4.40)

I will denote this weighting as “risk averse” in the figures I present in this section. The second

weighting methodology puts more emphasis on matching the mean value and completing a com-

plete reaction and disregards the uncertainty to simulate a “high risk, high reward” mentality:

w(2) =

[
w1, w2, w3, w4, w5

]

=

[
5, 1, 0, 0, 5

]
.

(4.41)

I will denote this weighting as “risk tolerant” in the figures I present in this section. I then perform

five optimizations:

1. Optimization over parameters A0, tend, and POM0 with the weights w(1);

2. Optimization over parameters A0, tend, and POM0 with weights w(2) and weakening the

stopping condition on the Bayesian optimization algorithm to allow at minimum 250 itera-

tions;

3. Optimization over parameters A0, tend, POM0, αkf , and αT with weights w(1);

4. Optimization over parameters A0, tend, POM0, αkf , and αT with weights w(2);

5. Optimization over parameters A0, tend, POM0, αkf , and αT with weightsw(2) and removing

the stopping condition on the Bayesian optimization algorithm.

For the first four optimizations I perform, I enforce a stopping condition on the Bayesian opti-

mization algorithm. After 50 iterations (250 for the second; I explain this later in this section),

I start tracking the ratio of the largest expected improvement to the best observed cost function

value. Once the expected improvement drops below 0.1% of the optimal cost value, then I end

105

my optimization routine. I do, however, cap the total number of evaluations of the cost function at

500. This is a simple heuristic I decided on for the purposes of this analysis; see [79] for a detailed

discussion around this stopping criterion. Bayesian optimization is often prescribed to simply stop

after a set amount of time or number of iterations. Recently, there has been increased attention

towards developing more robust stopping criterion, for example the work in [71], but comparing

different stopping criterion is out of the scope of my work. For the fifth optimization, I noticed that

the other optimization analyses stopped well short of the maximum number of iterations I allow.

Thus, I perform a fifth optimization analysis where I simply perform 500 iterations of Bayesian

optimization to see if my results are noticeably better than when I use my simple stopping crite-

rion. Now I will discuss the results of each of these optimizations grouped by the optimization

parameters included.

First, I optimize with respect to A0, tend, and POM0. The optimized PSDs are shown in

Figure 4.9. The first optimization is performed with weights w(1). When I conduct this opti-

mization, I find the optimal parameters are A0 = 4.7892 × 10−2 molL−1, tend = 9.9728 × 101 h,

POM0 = 1.059 × 10−4 molL−1, and the average A utilization is 92.8%. The reaction is mostly

complete based on how much precursor is used in the optimized experiment, but the optimized

PSD is far from what I am looking for4 as can be seen by how much the PSD mean deviates

from the desired particle size in the left plot in Figure 4.9. When I switch to using w(2), the re-

sults reverse. From the optimized parameters A0 = 1.018 × 10−4 molL−1, tend = 2.815 h, and

POM0 = 1.0015 × 10−4 molL−1, I find that the PSD mean lines up almost exactly with the de-

sired mean as is shown in the right plot in Figure 4.9. However, the reaction is cut well short based

on the average A utilization being 16.9%, hence the reaction is relatively wasteful. In both of these

cases, I suspect a higher computational budget might lead me to a better PSD. This, however, is

a limitation of both Bayesian optimization and optimization in general when the cost function is

expensive to evaluate and therefore must be considered when performing an analysis like the one I

4This reasoning is based on the average particle size being far from the desired size, but note that the mode of the
PSD is close to the desired size. A potential future research project would be to investigate these optimizations by
measuring the central tendency of a PSD by the highest concentration particle rather than the average particle size.

106

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

3

3.5

#10
-12 Optimal PSD: Risk Averse

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

3

#10
-10 Optimal PSD: Risk Tolerant

Avg PSD

Desired size

Average size

PSD uncertainty

Figure 4.9: Optimal PSDs when optimizing the experimental conditions tend, A0, and POM0. (Left) The

optimal PSD when weights (4.40) are used. (Right) The optimal PSD when weights (4.41) are used.

conduct here. Future research could explore computing derivatives of the cost function (4.11) and

supplying the Bayesian optimization algorithm with gradient information [24, 119].

Now, I add αkf and αT as optimization parameters. I plot the resulting PSDs in Figure 4.10.

First, using weights w(1), I find the optimal parameters are: A0 = 5.5825 × 10−4 molL−1, tend =

5.0759 h, POM0 = 1.0368×10−4 molL−1, αkf = 9.9295, and αkT = 5.0266×10−1. The resulting

PSD is the left plot in Figure 4.10 and on average 99.5% of the precursor is used up, indicating the

reaction is performed to completion. The generated particles are, however, approximately 0.5 nm

larger than desired. Similarly, when I use weights w(2) the optimized PSD is strikingly similar

as I show in the right plot of Figure 4.10. The optimal parameters are different: A0 = 1.3 ×

10−3 molL−1, tend = 6.8169× 101 h, POM0 = 1.1538× 10−4 molL−1, αkf = 9.9612, and αkT =

6.9087 × 10−1. Again, the suggested reaction is performed until its natural end since the average

A utilization is 100%. I did notice that I met my termination condition after 52 iterations – only

2 iterations after I allow the optimization to conclude – and I want to test if that was a premature

conclusion to my Bayesian optimization. In fact, it must be the case that the global optimum

was not found because I am optimizing over a superset of parameters compared to the previous

experiment and the “risk tolerant” results in Figure 4.9 are better than in Figure 4.10. Thus, I

107

0 1 2 3 4

Particle size (nm)

0

1

2

3

4

5

6

7

8

9

#10
-9 Optimal PSD: Risk Averse

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

#10
-8 Optimal PSD: Risk Tolerant

Avg PSD

Desired size

Average size

PSD uncertainty

Figure 4.10: Optimal PSDs when optimizing the experimental conditions tend, A0, POM0, αkf , and αT .

(Left) The optimal PSD when weights (4.40) are used. (Right) The optimal PSD when weights (4.41) are

used.

eliminated the expected improvement termination condition and simply ran 500 iterations. The

resulting PSD can be seen in the left plot in Figure 4.11. With optimized parametersA0 = 2.7667×

10−4 molL−1, tend = 8.4036 × 10−1 h, POM0 = 1.0004 × 10−4 molL−1, αkf = 9.8811, αkT =

3.9556, I simulate an extremely narrow PSD whose mean size is very close to the size I wanted.

The average A utilization is 76.5%, which means there is still some time left in the reaction,

but I am still pleased with the balance between resource efficiency of this proposed experimental

setup and the resultant PSD. That being said, the PSD is slightly smaller than the size I requested.

The right plot in Figure 4.11 shows the resulting PSD after 2 h where the reaction now consumes

87.2% of the precursor. I found this by manually increasing the reaction time until I was pleased

with the result. This manual fine-tuning is clearly not ideal – future research should involve a local

optimization after the (global) Bayesian optimization5 – but the point I want to express is how a

local search following Bayesian optimization can improve results.

5For example, one could perform Bayesian optimization only on tend after the other parameters are identified, or one
could apply a local optimization algorithm like Nelder-Mead in a small neighborhood around the parameters the
Bayesian optimization algorithm found.

108

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

3

3.5

#10
-8 Global Optimization

Avg PSD

Desired size

Average size

PSD uncertainty

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

3

#10
-8 Local Optimization

Avg PSD

Desired size

Average size

PSD uncertainty

Figure 4.11: Optimal PSDs when optimizing the experimental conditions tend, A0, POM0, αkf , and αT .

These plots are comparable to the methodology of the right plot in Figure 4.10 except the termination

condition on Bayesian optimization was weakened to stop after 500 iterations. (Left) The optimal PSD

determined by Bayesian optimization. (Right) The optimal PSD determined by a local search of only tend

performed following Bayesian optimization.

This chapter dealt with the treatment of optimizing the shape of the PSD in such a way that

accounted for the uncertainty in the model parameters. In fact, I showed that I can systematically

deduce experimental conditions that correspond to a pre-specified, desired outcome. What would

be preferable, however, is to not have to worry about the uncertainty because I know the model

parameters K to such a degree of accuracy that I can work in the deterministic setting. This, of

course, occurs in the limit of having infinite data, but having a sufficient amount of data will make

this approximation reasonable. The next chapter explores the question of determining what data to

collect next in order to better determine the model parameters K and thus decrease the uncertainty

in my simulations.

109

Chapter 5

Optimal experimental design

This chapter explores a Bayesian approach to experimental design. My goal is to design a new

experiment that provides as much information as possible. I interpret this as finding experimental

conditions where my simulations have high uncertainty. That is to say, I want to conduct an exper-

iment under conditions where my simulations currently have high uncertainty. High uncertainty

indicates I have limited information – that is, my data are not informative in those experimental

conditions – and thus a judicious experiment would measure under those conditions of excessive

uncertainty because this measurement could shine substantial light onto which of the parameter

values is the “true” one. Depending on what I find, this could have two effects:

1. Allow me to perform Bayesian inference like I did in Chapter 3 incorporating the new data

and thus learning more about the posterior distribution;

2. Explore limitations of the model I discussed in Chapter 2 by finding experimental conditions

that do not align with my assumptions.

Mathematical models are, necessarily, imperfect. Hence either of these two effects are interesting

to investigate: either I develop a posterior distribution that allows for more accurate simulations or

I discover model limitations that provide me with information about when my model is useful or

spurs further research that leads to the discovery of a more accurate model.

This chapter is organized as follows. First, I will discuss how one defines an optimal design.

Then, I will outline the numerical algorithm I use to compute this optimal design. Finally, I will

apply this approach to the nanoparticle problem I investigate and discuss my results.

110

5.1 Defining optimal experimental design

The first question is: what do I mean by an optimal design? If one models their data with a

polynomial regression model, then there is substantial literature discussing approaches to optimal

design; for example, see [17, 22] for reviews of methods.

Consider the example linear regression model

Y = a0 + a1X, (5.1)

where Y predicts some measurement, X is the independent variable I assume the measurement

is related to, and a0 and a1 are model parameters that need to be inferred. Now I want to know

for what values of X should I conduct my experiment to best estimate a0 and a1. One of the most

popular methods to approach this problem is to find the so-called D-optimal design [102]. Suppose

N candidate pointsXN = {Xn} are requested and consider the evaluation of the linear regression

model on these points

Y =Ma

Y =

1 X1

1 X2

...
...

1 XN

a0

a1

 .

(5.2)

Then, the D-optimal designX∗
N is given by

X∗
N = argmin

XN∈❘N

(
1

det(M ⊺M)

)
, (5.3)

where det is the determinant operator. The idea with D-optimality is that the matrix (M ⊺M)−1

represents the variance and covariance of the model parameters a0 and a1. Hence, minimizing the

determinant in (5.3) is equivalent to minimizing the variability in parameter estimates (as measured

111

by the determinant). The minimization of (5.3) can then be conducted through an optimization

algorithm. Moreover, the evaluation of det (M ⊺M) is very computationally efficient in the linear

regression case since it is simply a 2 × 2 matrix. Other optimality measures such as A-optimality

and G-optimality can be taken [22].

This optimal design problem on a linear regression model can be viewed through a Bayesian

lens as well. From the Bayesian standpoint, let me assume the following:

• The likelihood distribution is modeled as πL(Y |a, σ2) = N(Ma, σ2I);

• The prior distribution is πpr(a) = N(a0, σ
2R−1).

Here, σ2 is the known variance of the observations Y , N(·, ·) is the normal distribution, R is

some known matrix, and Y , M , and a follow the same notation as (5.2). In this setting there are

numerous interpretations of D-optimal, but one interpretation can be shown to be

X∗
N = argmin

XN∈❘N

(
1

det(M ⊺M +R)

)
; (5.4)

see [17] and references therein for a discussion of this Bayesian optimality condition along with

alternatives. The reason the formulations (5.3) and (5.4) are useful choices is because the entries

of the matrix (M ⊺M)−1 represent the variance and covariances of the model parameters. Hence,

minimizing the determinant of this matrix (or this matrix scaled by a fixed noise level) minimizes

the volume of the ellipsoid in parameter space in which the parameters are likely to be. Other opti-

mality criteria include seeking to minimize the average variance of the parameters (A-optimality)

and minimizing the variance of a prediction while accounting for the number of model parameters

and suggested experiments (G-efficiency) [22].

Formulations such as (5.3) and (5.4) become much more complicated when one’s model is

nonlinear. In particular, when the likelihood distribution (and hence the posterior) are intractable

to calculate. As discussed in Chapter 3, my nanoparticle problem satisfies this intractability. To

understand how to approach this more challenging case, I will introduce some information theory.

112

Mutual information [99] – also known as Kullback-Leibler (KL) divergence [67] – is a mea-

sure of the similarity of two distributions. For continuous probability distributions p(x) and q(x),

mutual information is given by

DKL(p∥q) =
∫
p(x) ln

(
p(x)

q(x)

)
dx. (5.5)

When p(x) = q(x), then DKL(p∥q) = 0. Otherwise, DKL(p∥q) > 0. In fact, the Bayesian D-

optimality condition (5.4) can be derived by using (5.5) and optimizing with respect to maximizing

the information gain from the prior distribution (q(x)) to the posterior distribution (p(x)).

In the setting of optimal experimental design, I will need to pose (5.5) in a slightly different

manner. Consider my knowledge base at the onset of this optimal experimental design study. I have

completed a Bayesian inference problem as described in Chapter 3, so I have developed knowledge

about the distribution of parameters K through the posterior distribution π(K|data). Therefore, as

I seek the optimal experimental design, my current, expert knowledge is the posterior distribution

I computed in Chapter 36. Recall, as I explained in Section 3.3, the prior distribution encompasses

my current beliefs about the distribution of K. Hence, in this setting, I take π(K) = π(K|data)7,

where I drop the conditioning on “data” because the data analyzed in Chapter 3 is now enveloped

in my current knowledge base and the future data I design an experiment to collect does not inform

this distribution. Then I consider a proposed design, d, – that is, experimental conditions – and

data that I would collect, y, if I were to perform design d. Then, in theory, if I were to collect

y and perform a Bayesian inference analysis, I would compute a posterior distribution π(K|d,y).

The mutual information between the posterior and prior distributions would then be computed

by [63, 64, 91]

U(d) =

∫
π(K)π(y|K,d) ln

(
π(K|d,y)
π(K)

)
dKdy, (5.6)

6Specifically, the posterior distribution for the 3-step mechanism visualized in Figure 3.5 since I determined in Sec-
tion 3.7 that the data-driven evidence supports the 3-step over the 4-step.

7Although π(K) could be taken as the same prior distribution I use in Chapter 3 if data has not been collected yet.

113

where π(y|K,d) is the likelihood distribution associated with π(K|d,y) and I introduce the nota-

tion U(d) to denote this is a utility function that I will be optimizing later on. The interpretation of

(5.6) is that U(d) ≈ 0 indicates the design d provides little information that the prior distribution

π(K) did not already provide and as a result π(K|d,y) ≈ π(K). Hence, the experiment conducted

was not very useful. On the other hand, U(d) ≫ 0 indicates the design provides a lot of informa-

tion and the resulting posterior distribution will be significantly different than the prior distribution

if that data were collected.

To exactly compute (5.6), I would need to choose a design d, conduct the experiment and col-

lect data y (really, collect all possible data realizations y in order to compute the integral in (5.6)),

and then perform Bayesian inference to compute the posterior distribution π(K|d,y). Clearly, this

is not realistic. Instead, the utility is approximated by [64]

U(d) ≈ 1

N

N∑

i=1

ln

[
π(K(i)|d,y(i))

π(K)

]
, (5.7)

where model parameters K(i) are drawn from the prior distribution π(K) and data y(i) is simulated

via the computational model where design d is specified and parameters K(i) are taken. I can draw

from the prior distribution8 and, given d and K(i), I can simulate data by:

1. computing a PSD by solving (2.13);

2. forming a multinomial distribution from the particle concentrations;

3. drawing from that multinomial distribution M times to simulate observing M particles in a

TEM image.

All that is left is computing the log-ratio

ln

[
π(K(i)|d,y(i))

π(K)

]
. (5.8)

8Take the MCMC samples generated in Chapter 3, thin the chains as described in Section 3.6, determine the bandwidth
matrix BW of a KDE applied to the thinned samples, draw a random sample s from the thinned MCMC chains, draw
a random number r from N(0, BW), and finally the observation is given by s+ r.

114

This computation is nontrivial and [91] provides a review of modern methodologies for this com-

putation. I decide to use a methodology introduced more recently in [109] and applied in [63, 64].

The next section discusses how to compute the log-ratio (5.8) in a tractable manner.

5.2 Computing the utility of an experimental design

The authors of [109] propose a method called Likelihood-Free Inference by Ratio Estimation

(LFIRE) as a computationally efficient way of estimating (5.8). In this section, I describe the

LFIRE algorithm and how to apply it to my nanoparticle problem.

At its core, the LFIRE algorithm involves simulating data observations from the prior and

posterior distributions and then posing a classification problem to see if the observations from each

distribution can be distinguished. The rationale is that if there is high uncertainty in the simulation

for some design d, then the classifier will be able to distinguish between the prior and posterior

simulated data. This will then correspond to

ln

[
π(K(i)|d,y(i))

π(K)

]
≫ 0.

Before discussing LFIRE, however, I need to express (5.8) in terms of likelihood (i.e., data-

generating) distributions. I assume the design has no impact on my prior distribution, hence

π(K|d) = π(K), (5.9)

and use Bayes’ theorem to note

π(K|d,y) = π(y|K,d)π(K|d)
π(y|d) . (5.10)

Then I find that (dropping the (i) in (5.8) for generality)

π(K|d,y)
π(K)

=
π(y|K,d)π(K|d)

π(y|d) × 1

π(K)
(5.11)

115

and apply the relationship (5.9) to conclude

π(K|d,y)
π(K)

=
π(y|K,d)
π(y|d)

. (5.12)

Hence, I use LFIRE to approximate

ln

(
π(K|d,y)
π(K)

)
= ln

(
π(y|K,d)
π(y|d)

)
(5.13)

which allows me to approximate (5.6) via (5.7). The LFIRE method then proceeds as follows.

First, generate a single set of simulated data from the prior distribution. That is, sample Nprior

model parameters from π(K) and simulate one measurement per {K(i)}i=1,...,Nprior to form the set

of simulated data Yprior = {y(i)}i=1,...,Nprior . Next, sample a single parameter K(i) from π(K). This

will correspond to the ith summand in (5.7), so this step is repeated NMC times. With the sampled

parameter K(i), I then generate Npost simulated data sets to form Ypost = {y(i,j)}j=1,...,Npost .

Now that simulated data has been generated, LFIRE proposes a nonlinear logistic regression

problem to attempt to classify the data Yprior and Ypost as coming from their respective distributions.

This regression problem is posed as

P(y0 ∈ Ypost;h) =
1

1 + ν exp(−h(y0))
, (5.14)

where P indicates the probability of an event, h(y) is a nonlinear function, and ν = Nprior/Npost.

This function h(y) is chosen carefully. In [109, Appendix A], the authors prove that if

J (h,K, Nprior, Npost) =
1

Nprior +Npost

[
Npost∑

i=1

ln
(
1 + ν exp

{
−h(y(i)

post)
})

+

Nprior∑

i=1

ln

(
1 +

1

ν
exp

{
h(y

(i)
prior)

})]
,

(5.15)

116

and the function h∗(y) is defined as

h∗(y) := lim
Npost,Nprior→∞

[
argmin
h(y,K)

J (h,K, Nprior, Npost)

]
, (5.16)

then h∗(y), in fact, satisfies

h∗(y) = ln

(
π(y|K,d)
π(y|d)

)
. (5.17)

Therefore, if I solve the limiting minimization problem (5.16) then I have also computed the log-

ratio that I desire. Of course, finding the exact function h∗(y) is intractable, so one uses finite

sample sizes Nprior and Npost and restricts the function space of h(y) to be

ĥ(y) = β⊺ψ(y), (5.18)

where ψ = [ψ1(y), · · · , ψb(y)] are summary statistics such as mean and variance of the simulated

data and β = [β1, · · · , βb] ∈ ❘
b. The computation of the log-ratio is now condensed to fixingNprior

and Npost and inferring β through the cost function

Ĵ (β,K) =
1

Nprior +Npost

[
Npost∑

i=1

ln
(
1 + ν exp

{
−β⊺ψ(y

(i)
post)
})

+

Nprior∑

i=1

ln

(
1 +

1

ν
exp

{
β⊺ψ(y

(i)
prior)

})]
,

(5.19)

wherein minimizing Ĵ (β,K) with respect to β provides an approximation to the log-ratio (5.17).

The LFIRE method proposes inferring β with the regularization problem

β∗ = argmin
β∈❘b

[
Ĵ (β,K) + λ

b∑

i=1

|βi|
]
. (5.20)

The regularization parameter λ is deduced by performing cross-validation [106]. That is, the fol-

lowing procedure is performed:

117

1. Pick λ > 0;

2. Split the simulated data into K disjoint sets
{
Y(i)

prior,Y
(i)
post

}
i=1,...,K

;

3. Organize the split data into training sets
{
Y train

post ,Y train
prior

}
and testing sets

{
Y test

post,Y test
prior

}
, ensur-

ing the training and testing sets are disjoint;

4. Using as the data
{
Y train

post ,Y train
prior

}
, perform the optimization algorithm to find β∗

λ via (5.20);

5. Test the accuracy of the classification by computing probabilities of data originating from

the posterior by computing (5.14) and tabulating the percentage of correct classifications:

correct for y ∈ Y test
post means P(y ∈ Y train

post) ≥ 0.5, whereas correct for y ∈ Y test
prior means

P(y ∈ Y train
post) < 0.5;

6. Repeat steps 3–5 until all split sets
{
Y(i)

prior,Y
(i)
post

}
i=1,...,K

have been the testing set exactly

once;

7. Average the correct classification percentage for each of the K cross-validation iterations to

compute a fitness score for the current λ;

8. Repeat steps 1–7 within an optimization algorithm (e.g. Bayesian optimization) to find the

optimal λ∗ with the fitness score as the cost function.

Once λ∗ is found, the minimization problem (5.20) is solved using all of the simulated data. With

β∗ found, the log-ratio (5.8) is simply computed as

ln

[
π(K(i)|d,y(i))

π(K)

]
≈ β∗⊺ψ(y

(i)
0), (5.21)

where y(i)
0 is one last simulated measurement from the posterior with K(i).

For my implementation of this algorithm, I make the following choices. I consider a simulated

measurement drawing 300 particles from the multinomial distribution induced by the simulated

concentrations. For the sake of computational expense, I let Nprior = Npost = NMC = 500. I also

118

use 2-fold cross-validation instead of the recommended 10-fold cross-validation to save compu-

tation time. To optimize λ, I use Bayesian optimization and to optimize β with the MATLAB

function FMINUNC, which uses the BFGS quasi-Newton minimization algorithm [14, 29, 38, 98].

Finally, for summary statisticsψ, I compute the sample mean and sample variance of the simulated

particle measurements for each time the design specifies. Hence, if d specifies collecting data at

M different times, then

ψ =

[
µi, σ2

i , · · · µM , σ2
M

]
, (5.22)

where µi is the simulated PSD mean at the ith time and σ2
i is the simulated PSD variance at the ith

time. Other summary statistics may provide better results, but that investigation is out of the scope

of my work.

With the contents of this section, I now have a methodology to compute an approximation of

the utility (5.7) for a single design d. In order to find the optimal design, I perform Bayesian

optimization with the cost function being −U(d), where the negative is introduced because soft-

ware implementations of optimization algorithms minimize instead of maximize by convention.

For the results in the following section, I impose the same stopping conditions as in Chapter 4:

after 50 iterations start tracking the expected improvement relative to the best observed objective

function value, stop the optimization if expected improvement falls below 0.1%, and allow a max-

imum of 500 function evaluations. In the next section, I present my results of finding the optimal

experimental design.

5.3 Optimal experimental design results

In this section I present three different optimal designs. The first two designs demonstrate the

identification of simulations with high uncertainty. The last design demonstrates the identification

of finding the limits of my mathematical model. In this section I will present these three designs

and discuss my interpretations.

119

The first design scenario I present allows a single observation while performing the nanopar-

ticle reactions using the same conditions as the collected data I used in Chapter 3. Recall, these

conditions are: A0 = 1.2× 10−3 molL−1 and POM0 = 0molL−1, among other conditions such as

the temperature that I omit in my discussion; see [117] for a detailed discussion of the experimental

methodology. I request data to be collected at a single additional time and allow that measurement

to occur within 0.1–10h. Figure 5.1 shows the PSDs along with uncertainty for the optimal design

I found and the design with the lowest mutual information that was evaluated during my opti-

mization procedure. I find the optimal design in this case is to conduct a measurement at 0.102 h.

The optimized design exhibits exactly the elevated uncertainty that I expect. As can be seen in

Figure 5.1, around the peak of the distribution, the uncertainty causes my simulations to predict

concentrations from 2 × 10−10 molL−1 to 6 × 10−10 molL−1 with an average of approximately

3.5× 10−10 molL−1. That is, roughly speaking, my simulation predicts a peak particle concentra-

tion of 3.5 × 10−10 ± 100%! This finding also matches my scientific intuition. There are a lot of

fast dynamics within the 3-step mechanism, namely in the nucleation mechanism. Previously, the

first measurement occurred after approximately one hour, so it stands to reason that a measurement

early on within the reaction would help calibrate the parameters K to account for the early reaction

kinetics that likely are smoothed out as the reaction undergoes.

On the other hand, the example of low mutual information – that is, a suboptimal design – that

I present in Figure 5.1 also tells a fascinating tale. The PSD I present corresponds to the lowest

mutual information I observed during optimization. This happens at 6.697 h, which is after the

reaction has completed and hence the PSD should be similar to the data collected at 4.838 h, for

which I have a relatively high number of particle observations. Notice the uncertainty is much

more controlled than in the optimal design: the maximum uncertainty occurs around the peak of

the distribution and I find this range is approximately (2 ± 0.5) × 10−9molL−1, a much lower

relative difference than in the optimal design. Interestingly, another design with very low mutual

information (close in value to the example I plot in Figure 5.1) is taking a measurement at 0.9786 h.

Recall, the first observed data in Chapter 3 occurred at 0.918 h and this data set included the most

120

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

#10
-9 Low Mutual Information

0 1 2 3 4

Particle size (nm)

0

1

2

3

4

5

#10
-10 Max Mutual Information

Figure 5.1: Simulated PSD with a design (left) a measurement at a late time of 6.697 h, resulting in low

mutual information – i.e. a non-informative design – and (right) a measurement at an early time of 0.102 h,

resulting in the optimized design to maximize the mutual information.

observed particles. My optimization methodology investigated an observation similar to where I

already observed a large number of particles and concluded it is not worth observing more data

there. That is precisely what should happen.

Next, I extend my design to collecting measurements at four different times throughout the

reaction, while maintaining the conditions A0 = 1.2 × 10−3 molL−1 and POM0 = 0molL−1.

Figure 5.2 presents the resulting optimal design. The suggested measurement times are 0.113,

0.483, 1.158, and 4.603 h. Similar to the optimal design presented first, a measurement at 0.113 h

makes sense scientifically and based on the uncertainty present in the PSD. The measurement

at 0.483 h also makes sense: another measurement early on in the reaction and the uncertainty

for the smallest particle sizes is high as can be seen in Figure 5.2 for sizes around 0.5 nm. The

measurement at 1.158 h is intriguing. On the one hand, the PSD uncertainty appears relatively low,

but on the other hand this time is very close to my data observation at 1.17 h which has very sparse

data. It makes sense to me that a repeat observation at this point in the reaction would provide

insight that is not gained because the observed PSD does not have enough particles to produce

a well-defined size distribution. Finally, the observation at 4.603 h does not seem like the most

121

optimal choice. I already have a good observation close to that time and the uncertainty in the

PSD appears low. I suspect I terminated my Bayesian optimization early and that including more

simulated data and more samples in the Monte Carlo samples in the approximation (5.7) would

help identify a more optimal design. Alternatively, my intuition may simply differ from what

the mutual information criteria finds. Alternative visualizations may illuminate why 4.603 h is an

optimal measurement, but that is a topic for further research.

Finally, I again extend my design to four separate measurements and allow for A0 ∈ [1 ×

10−4, 1 × 10−2]molL−1 and POM0 ∈ [1 × 10−4, 1 × 10−1]molL−1. The optimized design is

A0 = 1.5363 × 10−4 molL−1, POM0 = 1.8439 × 10−4 molL−1, and the measurement times are

0.039, 8.640, 12.960, and 19.659 h. In this analysis, I allowed for the reaction to last up to 24 h

since adjusting precursor and POM concentrations can cause the reaction to take longer. The

PSDs corresponding to the measurements are in Figure 5.3. I find this optimal design extremely

insightful. First off, all the PSDs in Figure 5.3 seem to have large uncertainty over a large range of

particle sizes. More interesting, however, are the results of the last two suggested measurements

(the bottom row of Figure 5.3). These show a very low overall concentration of particles, but the

particles are accumulating at the maximum particle size I allow. Mathematically, the reason this

occurs is because the high concentration of POM causes the reversible reaction in (2.2) to highly

favor A ·L+2 solv as opposed to A(solv)2+L. Hence, the concentration of A(solv)2 remains low,

which quashes nucleation due its quadratic dependence on A(solv)2. Then, the few particles that

are formed exist within an abundance of the precursor A and thus are able to grow to much larger

sizes according to my mathematical model. At first glance, it may seem as if the only inappropriate

model assumption is that clusters do not form in sizes significantly larger than 4 nm. However, an

empirical study was performed in [115] wherein this reaction was conducted with A0 = 1.2 ×

10−3 molL−1 and POM0 = 9 × 10−3 molL−1. My simulations according to my mathematical

model and the experimental design results in Figure 5.3 would suggest this experiment would result

in iridium nanoparticles in excess of 4 nm or 2500 atoms. However, the findings of [115] are that

these experimental conditions result in particles containing approximately 150 iridium atoms. That

122

0 1 2 3 4

Particle size (nm)

0

1

2

3

4

5

6

7

#10
-10 0.113 hours

0 1 2 3 4

Particle size (nm)

0

1

2

3

4

5

6

7

#10
-9 0.483 hours

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

3

#10
-9 1.158 hours

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

#10
-9 4.603 hours

Figure 5.2: Simulated PSDs at the optimal design times where the design allows for four measurements at

four different times without changing the experimental conditions as compared to the data in Chapter 3.

123

is, the increased presence of POM, as postulated by the authors of [115], causes the ligand POM

to “block” the reactionary surface of iridium particles and therefore prevent them from growing

larger. My simulations and the results in [115] are contradictory. This contradiction suggests an

insufficiency in modeling the POM dependence of particle growth. Moreover, it suggests the need

to further study the growth (and agglomeration) kernel discussed in Chapter 2 to account for the

ligand-dependence of nanoparticle formation in a more robust manner. The hope, then, is that a

model applicable to a larger range of experimental conditions is developed.

The results of this chapter demonstrate a methodology to deduce an experimental design that

allows me to maximally extract new information about the iridium nanoparticle system from the

collected data. When experimental conditions are kept static and only the measurement times are

adjusted, areas of high uncertainty are identified and my results suggest I need more information

about the early stage of the reaction to better understand the fast nucleation kinetics that occur. On

the other hand, when experimental conditions are allowed to vary, deficiencies in the mathematical

model are systematically identified, indicating that my optimal experimental design formulation is

also an important tool in the disproof -based mechanistic description of nanoparticle formation.

124

0 1 2 3 4

Particle size (nm)

0

0.5

1

1.5

2

2.5

3

3.5

4

#10
-13 0.039 hours

0 1 2 3 4

Particle size (nm)

0

0.2

0.4

0.6

0.8

1

#10
-10 8.640 hours

0 1 2 3 4

Particle size (nm)

0

1

2

3

4

5

6

#10
-11 12.960 hours

0 1 2 3 4

Particle size (nm)

0

1

2

3

4

5
#10

-11 19.659 hours

Figure 5.3: Simulated PSDs at the optimal design where the design allows for four measurements at different

times and modifications to the initial concentrations of the precursor and ligand POM.

125

Chapter 6

Summary

My dissertation work fell into the intersection of nanoparticle chemistry, mathematics, and

statistics. Through my approaches I was able to answer important scientific questions, which I

summarize in the remainder of this chapter.

In Chapter 2, I introduced the scientific and mathematical modeling approach to mechanistic

nanoparticle formation that provided the foundation of my work. This methodology was developed

over a number of years by my colleagues. Most importantly, I began with two models to explore:

1. The 3-step mechanism wherein nanoparticles form via nucleation and particle growth;

2. The 4-step mechanism wherein nanoparticles form via nucleation, particle growth, and nu-

cleation.

I started my contributions by analyzing the computational efficiency of solving the equations that

model the nanoparticle-forming chemical reactions. I was able to utilize sparse matrices to reduce

the memory requirements, a more sophisticated ODE solver to acquire higher accuracy with fewer

time steps, and sparse linear algebra to solve the linear system arising at each time step more

efficiently. Overall, I was able to attain a ∼ 20× increase in computational efficiency through my

efforts.

Next, in Chapter 3 I explored a project on estimating the parameters that arise in the mod-

els introduced in Chapter 2. Not only did I estimate optimal parameter values, but I constructed

probability distributions for those parameters. In so doing, I was able to accurately characterize

uncertainty in the model and had a methodology to propagate parameter uncertainty to uncertainty

in the nanoparticle size distribution. I constructed the probability distributions through an itera-

tive technique, so I detailed a thorough analysis to ensure that I converged to the true probability

distribution throughout this iterative process. After developing probability distributions for two

different models of nanoparticle formation, I approached the problem of quantitatively selecting

126

the more appropriate model by using information within the probability distributions surrounding

the parameters of each model. At the conclusion of this project, I was able to:

• Find parameters that optimally correspond to the experimental data for both the 3-step and

4-step mechanisms;

• Construct accurate probability distributions of the model parameters in order to accurately

capture uncertainty for both the 3-step and 4-step mechanisms;

• Quantitatively determine that there is substantially more data-driven evidence that the 3-

step mechanism is a more appropriate model than the 4-step mechanism, thus answering the

scientific questions of whether agglomeration occurs within the iridium nanoparticle system

I study herein.

With the conclusion of this project, my results naturally brought me to a new investigation, which

was the subject of my next project.

In Chapter 4, the characterization of model parameters led me to ask if I could now control the

nanoparticle reaction to realize a desired particle size distribution. In order to answer this question,

I developed a mathematical representation of what a desirable particle size distribution is, while

incorporating the uncertainty inherent in the model due to parameter uncertainty. From this step, I

tackled the challenges of an optimization problem without access to derivatives and an expensive

function to evaluate at each iteration. Using Bayesian optimization, I was able to circumvent these

issues to find experimental setups that resulted in a nanoparticle-forming chemical reaction that

produced nanoparticles in a near-monodisperse distribution centered around a requested average

size. As the properties of nanoparticles are dependent on their size in many applications, my work

has provided a systematic framework for the crucial scientific challenge of controlling particle

size distributions. The role of uncertainty present in this project and my previous one motivated

my final project through a desire to reduce the parameter uncertainty.

My final project in Chapter 5 explored how to better characterize model parameters by effi-

ciently conducting a new experiment to collect data. As performing these nanoparticle-forming

127

chemical reactions and the subsequent data collection can be labor, time, and resource intensive,

having a computational approach to designing experimental conditions is, again, a scientific ques-

tion of significant interest. In this project, I broach the seemingly intractable question of optimizing

the expected change in the probability distribution of model parameters when data is collected ac-

cording to a to-be-optimized experimental design. To accomplish my goal, I utilized a specialized

algorithm developed in the statistics community to deduce an optimal experimental design in a

computationally feasible time frame. I proposed three optimal designs satisfying different exper-

imental constraints. Two of these designs matched with scientific intuition by proposing taking

measurements early in the reaction when I know that my current data does not capture the fast

chemical kinetics that occur early in the nanoparticle-forming chemical reactions, which provided

strong evidence of the usefulness of my approach. The last design identified shortcomings in the

assumptions I made when selecting the 3-step mechanism as the mathematical model, which is also

an interesting and useful effect my approach has. Thus, this project provides a means to under-

stand nanoparticle-forming chemical reactions in a resource efficient manner by designing optimal

experimental conditions.

My dissertation explored three projects at the cusp of modern nanoparticle science. Charac-

terizing accurate mathematical models, controlling particle size distributions, and knowing what

experiment to conduct next are preeminent scientific questions that are actively researched and I

made progress in techniques to accomplish all three questions.

128

Bibliography

[1] J. D. AIKEN, Y. LIN, AND R. G. FINKE, A perspective on nanocluster catalysis: poly-

oxoanion and (n-C4H9)4N
+ stabilized Ir(0)

∼300 nanocluster ‘soluble heterogeneous cata-

lysts’, Journal of Molecular Catalysis A: Chemical, 114 (1996), pp. 29–51.

[2] N. ARMSTRONG AND D. HIBBERT, An introduction to Bayesian methods for analyzing

chemistry data, Chemometrics and Intelligent Laboratory Systems, 97 (2009), pp. 194–210.

[3] M. R. AXET AND K. PHILIPPOT, Catalysis with Colloidal Ruthenium Nanoparticles,

Chemical Reviews, 120 (2020), pp. 1085–1145.

[4] T. BAYES, LII. An essay towards solving a problem in the doctrine of chances. By the late

Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R.

S, Philosophical Transactions of the Royal Society of London, 53 (1763), pp. 370–418.

[5] I. E. BECK, V. I. BUKHTIYAROV, I. Y. PAKHARUKOV, V. I. ZAIKOVSKY, V. V.

KRIVENTSOV, AND V. N. PARMON, Platinum nanoparticles on Al2O3: Correlation be-

tween the particle size and activity in total methane oxidation, Journal of Catalysis, 268

(2009), pp. 60–67.

[6] R. D. BERRY, H. N. NAJM, B. J. DEBUSSCHERE, Y. M. MARZOUK, AND H. ADAL-

STEINSSON, Data-free inference of the joint distribution of uncertain model parameters,

Journal of Computational Physics, 231 (2012), pp. 2180–2198.

[7] C. BESSON, E. E. FINNEY, AND R. G. FINKE, A Mechanism for Transition-Metal

Nanoparticle Self-Assembly, Journal of the American Chemical Society, 127 (2005),

pp. 8179–8184.

[8] , Nanocluster Nucleation, Growth, and Then Agglomeration Kinetic and Mechanistic

Studies: A More General, Four-Step Mechanism Involving Double Autocatalysis, Chemistry

of Materials, 17 (2005), pp. 4925–4938.

129

[9] F. T. BÖLLE, A. E. G. MIKKELSEN, K. S. THYGESEN, T. VEGGE, AND I. E. CASTELLI,

Structural and chemical mechanisms governing stability of inorganic Janus nanotubes, npj

Computational Materials, 7 (2021).

[10] M. R. BONYADI AND Z. MICHALEWICZ, Particle Swarm Optimization for Single Objec-

tive Continuous Space Problems: A Review, Evolutionary Computation, 25 (2017), pp. 1–

54.

[11] K. BRAMAN, T. A. OLIVER, AND V. RAMAN, Bayesian analysis of syngas chemistry

models, Combustion Theory and Modelling, 17 (2013), pp. 858–887.

[12] S. BROOKS, A. GELMAN, G. JONES, AND X.-L. MENG, eds., Handbook of Markov Chain

Monte Carlo, Chapman and Hall/CRC, May 2011.

[13] S. P. BROOKS AND A. GELMAN, General Methods for Monitoring Convergence of Iterative

Simulations, Journal of Computational and Graphical Statistics, 7 (1998), pp. 434–455.

[14] C. G. BROYDEN, The Convergence of a Class of Double-rank Minimization Algorithms

1. General Considerations, IMA Journal of Applied Mathematics, 6 (1970), pp. 76–90.

[15] A. D. BULL, Convergence rates of efficient global optimization algorithms, 2011.

[16] L. CAI, H. PITSCH, S. Y. MOHAMED, V. RAMAN, J. BUGLER, H. CURRAN, AND S. M.

SARATHY, Optimized reaction mechanism rate rules for ignition of normal alkanes, Com-

bustion and Flame, 173 (2016), pp. 468–482.

[17] K. CHALONER AND I. VERDINELLI, Bayesian Experimental Design: A Review, Statistical

Science, 10 (1995).

[18] E. CISNEROS-GARIBAY, C. PANTANO, AND J. B. FREUND, Accounting for uncertainty in

RCCE species selection, Combustion and Flame, 208 (2019), pp. 219–234.

[19] M. A. CLYDE, J. O. BERGER, F. BULLARD, E. B. FORD, W. H. JEFFERYS, R. LUO,

R. PAULO, AND T. LOREDO, Current Challenges in Bayesian Model Choice, in Statistical

130

Challenges in Modern Astronomy IV, G. J. Babu and E. D. Feigelson, eds., vol. 371 of

Astronomical Society of the Pacific Conference Series, Nov. 2007, p. 224.

[20] V. L. COLVIN, M. C. SCHLAMP, AND A. P. ALIVISATOS, Light-emitting diodes made

from cadmium selenide nanocrystals and a semiconducting polymer, Nature, 370 (1994),

pp. 354–357.

[21] F. P. DA SILVA, J. L. FIORIO, AND L. M. ROSSI, Tuning the Catalytic Activity and Selec-

tivity of Pd Nanoparticles Using Ligand-Modified Supports and Surfaces, ACS Omega, 2

(2017), pp. 6014–6022.

[22] P. DE AGUIAR, B. BOURGUIGNON, M. KHOTS, D. MASSART, AND R. PHAN-THAN-

LUU, D-optimal designs, Chemometrics and Intelligent Laboratory Systems, 30 (1995),

pp. 199–210.

[23] V. DUBOURG, Adaptive surrogate models for reliability analysis and reliability-based de-

sign optimization, PhD thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011.

[24] D. ERIKSSON, K. DONG, E. LEE, D. BINDEL, AND A. G. WILSON, Scaling Gaussian

process regression with derivatives, Advances in neural information processing systems, 31

(2018).

[25] M.-Y. FAN, Y.-L. ZHANG, Y.-C. LIN, J. LI, H. CHENG, N. AN, Y. SUN, Y. QIU, F. CAO,

AND P. FU, Roles of Sulfur Oxidation Pathways in the Variability in Stable Sulfur Isotopic

Composition of Sulfate Aerosols at an Urban Site in Beijing, China, Environmental Science

& Technology Letters, 7 (2020), pp. 883–888.

[26] I. FAVIER, D. PLA, AND M. GÓMEZ, Palladium Nanoparticles in Polyols: Synthesis,

Catalytic Couplings, and Hydrogenations, Chemical Reviews, 120 (2019), pp. 1146–1183.

[27] R. J. FIELD AND R. M. NOYES, Oscillations in chemical systems. 18. Mechanisms of chem-

ical oscillators: conceptual bases, Accounts of Chemical Research, 10 (1977), pp. 214–221.

131

[28] E. E. FINNEY AND R. G. FINKE, The Four-Step, Double-Autocatalytic Mechanism for

Transition-Metal Nanocluster Nucleation, Growth, and Then Agglomeration: Metal, Lig-

and, Concentration, Temperature, and Solvent Dependency Studies, Chemistry of Materials,

20 (2008), pp. 1956–1970.

[29] R. FLETCHER, A new approach to variable metric algorithms, The Computer Journal, 13

(1970), pp. 317–322.

[30] N. FRIEL AND J. WYSE, Estimating the evidence - a review, Statistica Neerlandica, 66

(2012), pp. 288–308.

[31] N. GALAGALI AND Y. M. MARZOUK, Bayesian inference of chemical kinetic models from

proposed reactions, Chemical Engineering Science, 123 (2015), pp. 170–190.

[32] E. GALLICCHIO, M. ANDREC, A. K. FELTS, AND R. M. LEVY, Temperature Weighted

Histogram Analysis Method, Replica Exchange, and Transition Paths†, The Journal of

Physical Chemistry B, 109 (2005), pp. 6722–6731.

[33] D. C. GARY, M. W. TERBAN, S. J. L. BILLINGE, AND B. M. COSSAIRT, Two-Step Nucle-

ation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates, Chemistry

of Materials, 27 (2015), pp. 1432–1441.

[34] D. J. GAVAGHAN, J. COOPER, A. C. DALY, C. GILL, K. GILLOW, M. ROBINSON, A. N.

SIMONOV, J. ZHANG, AND A. M. BOND, Use of Bayesian Inference for Parameter Recov-

ery in DC and AC Voltammetry, ChemElectroChem, 5 (2017), pp. 917–935.

[35] A. GELMAN, J. B. CARLIN, H. S. STERN, D. B. DUNSON, A. VEHTARI, AND D. B. RU-

BIN, Bayesian Data Analysis, Chapman & Hall/CRC Texts in Statistical Science, Chapman

& Hall/CRC, Philadelphia, PA, 3 ed., Nov. 2013.

[36] A. GELMAN, W. R. GILKS, AND G. O. ROBERTS, Weak convergence and optimal scaling

of random walk Metropolis algorithms, The Annals of Applied Probability, 7 (1997).

132

[37] A. GELMAN, G. O. ROBERTS, AND W. R. GILKS, Efficient Metropolis Jumping Rules,

Clarendon Press, Oxford, England, Apr. 1996.

[38] D. GOLDFARB, A family of variable-metric methods derived by variational means, Mathe-

matics of Computation, 24 (1970), pp. 23–26.

[39] J. GOODMAN AND J. WEARE, Ensemble samplers with affine invariance, Communications

in Applied Mathematics and Computational Science, 5 (2010), pp. 65–80.

[40] G. GUENNEBAUD, B. JACOB, ET AL., Eigen v3. http://eigen.tuxfamily.org, 2010.

[41] N. GUNANTARA, A review of multi-objective optimization: Methods and its applications,

Cogent Engineering, 5 (2018), p. 1502242.

[42] H. HAARIO, M. LAINE, A. MIRA, AND E. SAKSMAN, DRAM: efficient adaptive MCMC,

Statistics and computing, 16 (2006), pp. 339–354.

[43] H. HAARIO, E. SAKSMAN, AND J. TAMMINEN, An Adaptive Metropolis Algorithm,

Bernoulli, 7 (2001), p. 223.

[44] L. HAKIM, G. LACAZE, M. KHALIL, H. N. NAJM, AND J. C. OEFELEIN, Modeling

Auto-Ignition Transients in Reacting Diesel Jets, Journal of Engineering for Gas Turbines

and Power, 138 (2016).

[45] L. HAKIM, G. LACAZE, M. KHALIL, K. SARGSYAN, H. NAJM, AND J. OEFELEIN, Prob-

abilistic parameter estimation in a 2-step chemical kinetics model for n-dodecane jet au-

toignition, Combustion Theory and Modelling, 22 (2018), pp. 446–466.

[46] D. HANDWERK, Mechanism-Enabled Population Balances and the Effects of Anisotropies

in the Complex Ginzburg-Landau Equation, PhD thesis, Department of Mathematics, Col-

orado State University, Fort Collins, CO, 2019.

[47] D. R. HANDWERK, P. D. SHIPMAN, S. ÖZKAR, AND R. G. FINKE, Dust Effects on Ir(0)n

Nanoparticle Formation Nucleation and Growth Kinetics and Particle Size-Distributions:

133

Analysis by and Insights from Mechanism-Enabled Population Balance Modeling, Lang-

muir, 36 (2020), pp. 1496–1506.

[48] D. R. HANDWERK, P. D. SHIPMAN, C. B. WHITEHEAD, S. ÖZKAR, AND R. G. FINKE,

Mechanism-Enabled Population Balance Modeling of Particle Formation en Route to Parti-

cle Average Size and Size Distribution Understanding and Control, Journal of the American

Chemical Society, 141 (2019), pp. 15827–15839.

[49] , Particle Size Distributions via Mechanism-Enabled Population Balance Modeling,

The Journal of Physical Chemistry C, 124 (2020), pp. 4852–4880.

[50] W. K. HASTINGS, Monte Carlo sampling methods using Markov chains and their applica-

tions, Biometrika, 57 (1970), pp. 97–109.

[51] D. HIBBERT AND N. ARMSTRONG, An introduction to Bayesian methods for analyzing

chemistry data, Chemometrics and Intelligent Laboratory Systems, 97 (2009), pp. 211–220.

[52] A. C. HINDMARSH, P. N. BROWN, K. E. GRANT, S. L. LEE, R. SERBAN, D. E.

SHUMAKER, AND C. S. WOODWARD, SUNDIALS: Suite of nonlinear and differen-

tial/algebraic equation solvers, ACM Transactions on Mathematical Software (TOMS), 31

(2005), pp. 363–396.

[53] M. D. HOFFMAN, A. GELMAN, ET AL., The No-U-Turn sampler: adaptively setting path

lengths in Hamiltonian Monte Carlo., J. Mach. Learn. Res., 15 (2014), pp. 1593–1623.

[54] R. HOOKE AND T. A. JEEVES, ❵❵ Direct Search'' Solution of Numerical and Statistical

Problems, Journal of the ACM, 8 (1961), pp. 212–229.

[55] B. J. HORNSTEIN AND R. G. FINKE, Transition-Metal Nanocluster Kinetic and Mechanis-

tic Studies Emphasizing Nanocluster Agglomeration: Demonstration of a Kinetic Method

That Allows Monitoring of All Three Phases of Nanocluster Formation and Aging, Chem-

istry of Materials, 16 (2003), pp. 139–150.

134

[56] H. JEFFREYS, The Theory of Probability, Oxford Classic Texts in the Physical Sciences,

OUP Oxford, 1998.

[57] R. H. JOHNSTONE, E. T. CHANG, R. BARDENET, T. P. DE BOER, D. J. GAVAGHAN,

P. PATHMANATHAN, R. H. CLAYTON, AND G. R. MIRAMS, Uncertainty and variability

in models of the cardiac action potential: Can we build trustworthy models?, Journal of

Molecular and Cellular Cardiology, 96 (2016), pp. 49–62.

[58] D. R. JONES, M. SCHONLAU, AND W. J. WELCH, Efficient Global Optimization of Ex-

pensive Black-Box Functions, Journal of Global Optimization, 13 (1998), pp. 455–492.

[59] H. KANEKO AND K. FUNATSU, Adaptive soft sensor based on online support vector regres-

sion and Bayesian ensemble learning for various states in chemical plants, Chemometrics

and Intelligent Laboratory Systems, 137 (2014), pp. 57–66.

[60] R. E. KASS AND A. E. RAFTERY, Bayes Factors, Journal of the American Statistical

Association, 90 (1995), pp. 773–795.

[61] J. KENNEDY AND R. EBERHART, Particle swarm optimization, in Proceedings of ICNN'95

- International Conference on Neural Networks, IEEE, 1995.

[62] P. D. KENT, J. E. MONDLOCH, AND R. G. FINKE, A Four-Step Mechanism for the For-

mation of Supported-Nanoparticle Heterogenous Catalysts in Contact with Solution: The

Conversion of Ir (1,5-COD) Cl/γ-Al2O3 to Ir(0)
∼170/γ-Al2O3, Journal of the American

Chemical Society, 136 (2014), pp. 1930–1941.

[63] S. KLEINEGESSE, C. DROVANDI, AND M. U. GUTMANN, Sequential Bayesian Experi-

mental Design for Implicit Models via Mutual Information, 2020.

[64] S. KLEINEGESSE AND M. U. GUTMANN, Efficient Bayesian Experimental Design for Im-

plicit Models, in Proceedings of the Twenty-Second International Conference on Artificial

Intelligence and Statistics, K. Chaudhuri and M. Sugiyama, eds., vol. 89 of Proceedings of

Machine Learning Research, PMLR, 16–18 Apr 2019, pp. 476–485.

135

[65] T. G. KOLDA, R. M. LEWIS, AND V. TORCZON, Optimization by Direct Search: New

Perspectives on Some Classical and Modern Methods, SIAM Review, 45 (2003), pp. 385–

482.

[66] D. G. KRIGE, A statistical approach to some basic mine valuation problems on the Wit-

watersrand, Journal of the Southern African Institute of Mining and Metallurgy, 52 (1951),

pp. 119–139.

[67] S. KULLBACK AND R. A. LEIBLER, On Information and Sufficiency, The Annals of Math-

ematical Statistics, 22 (1951), pp. 79–86.

[68] H. J. KUSHNER, A versatile stochastic model of a function of unknown and time varying

form, Journal of Mathematical Analysis and Applications, 5 (1962), pp. 150–167.

[69] H. O. LLOYD-LANEY, N. D. J. YATES, M. J. ROBINSON, A. R. HEWSON, J. D. FIRTH,

D. M. ELTON, J. ZHANG, A. M. BOND, A. PARKIN, AND D. J. GAVAGHAN, Using Purely

Sinusoidal Voltammetry for Rapid Inference of Surface-Confined Electrochemical Reaction

Parameters, Analytical Chemistry, 93 (2021), pp. 2062–2071.

[70] D. K. LONG, W. BANGERTH, D. R. HANDWERK, C. B. WHITEHEAD, P. D. SHIPMAN,

AND R. G. FINKE, Estimating reaction parameters in mechanism-enabled population bal-

ance models of nanoparticle size distributions: A Bayesian inverse problem approach, Jour-

nal of Computational Chemistry, 43 (2022), pp. 43–56.

[71] A. MAKAROVA, H. SHEN, V. PERRONE, A. KLEIN, J. B. FADDOUL, A. KRAUSE,

M. SEEGER, AND C. ARCHAMBEAU, Automatic Termination for Hyperparameter Opti-

mization, 2021.

[72] S. MARELLI AND B. SUDRET, UQLab: A Framework for Uncertainty Quantification in

Matlab, in Vulnerability, Uncertainty, and Risk, American Society of Civil Engineers, June

2014.

136

[73] B. MATÉRN, Spatial Variation, Springer New York, 1986.

[74] MATHWORKS, Statistics and Machine Learning Toolbox: bayesopt [R2022b]. https:

//www.mathworks.com/help/stats/bayesopt.html, 2016. Accessed: 2023-02-17.

[75] , Statistics and Machine Learning Toolbox: Bayesian Optimization Algorithm

[R2022b]. https://www.mathworks.com/help/stats/bayesian-optimization-algorithm.html,

2023. Accessed: 2023-02-17.

[76] R. M. NEAL, Probabilistic inference using Markov chain Monte Carlo methods, tech. rep.,

Department of Computer Science, University of Toronto Toronto, Ontario, Canada, 1993.

[77] J. A. NELDER AND R. MEAD, A Simplex Method for Function Minimization, The Com-

puter Journal, 7 (1965), pp. 308–313.

[78] M. A. NEWTON AND A. E. RAFTERY, Approximate Bayesian Inference with the Weighted

Likelihood Bootstrap, Journal of the Royal Statistical Society, 56 (1994), pp. 3–48.

[79] V. NGUYEN, S. GUPTA, S. RANA, C. LI, AND S. VENKATESH, Regret for Expected Im-

provement over the Best-Observed Value and Stopping Condition, in Proceedings of the

Ninth Asian Conference on Machine Learning, M.-L. Zhang and Y.-K. Noh, eds., vol. 77 of

Proceedings of Machine Learning Research, Yonsei University, Seoul, Republic of Korea,

15–17 Nov 2017, PMLR, pp. 279–294.

[80] S. OLADYSHKIN AND W. NOWAK, Data-driven uncertainty quantification using the arbi-

trary polynomial chaos expansion, Reliability Engineering & System Safety, 106 (2012),

pp. 179–190.

[81] S. ÖZKAR AND R. G. FINKE, Nanoparticle Nucleation Is Termolecular in Metal

and Involves Hydrogen: Evidence for a Kinetically Effective Nucleus of Three

{Ir3 H2x · P2 W15 Nb3 O62}6− in Ir(0)n Nanoparticle Formation From [(1,5-COD)IrI ·

P2 W15 Nb3 O62]
8− plus dihydrogen, Journal of the American Chemical Society, 139 (2017),

pp. 5444–5457.

137

[82] E. PARZEN, On Estimation of a Probability Density Function and Mode, The Annals of

Mathematical Statistics, 33 (1962), pp. 1065–1076.

[83] A. G. PATTANTYUS-ABRAHAM, I. J. KRAMER, A. R. BARKHOUSE, X. WANG, G. KON-

STANTATOS, R. DEBNATH, L. LEVINA, I. RAABE, M. K. NAZEERUDDIN, M. GRÄTZEL,

AND E. H. SARGENT, Depleted-Heterojunction Colloidal Quantum Dot Solar Cells, ACS

Nano, 4 (2010), pp. 3374–3380.

[84] J. PRAGER, H. N. NAJM, K. SARGSYAN, C. SAFTA, AND W. J. PITZ, Uncertainty quan-

tification of reaction mechanisms accounting for correlations introduced by rate rules and

fitted Arrhenius parameters, Combustion and Flame, 160 (2013), pp. 1583–1593.

[85] L. PROTESESCU, S. YAKUNIN, M. I. BODNARCHUK, F. KRIEG, R. CAPUTO, C. H. HEN-

DON, R. X. YANG, A. WALSH, AND M. V. KOVALENKO, Nanocrystals of Cesium Lead

Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing

Bright Emission with Wide Color Gamut, Nano Letters, 15 (2015), pp. 3692–3696.

[86] A. PULIYANDA, K. SIVARAMAKRISHNAN, Z. LI, A. DE KLERK, AND V. PRASAD, Data

fusion by joint non-negative matrix factorization for hypothesizing pseudo-chemistry using

Bayesian networks, Reaction Chemistry & Engineering, 5 (2020), pp. 1719–1737.

[87] S. RANFTL AND W. VON DER LINDEN, Bayesian Surrogate Analysis and Uncertainty

Propagation, in The 40th International Workshop on Bayesian Inference and Maximum

Entropy Methods in Science and Engineering, MDPI, Nov. 2021.

[88] C. E. RASMUSSEN AND C. K. I. WILLIAMS, Gaussian processes for machine learning,

Adaptive Computation and Machine Learning series, MIT Press, London, England, Nov.

2005.

[89] C. P. ROBERT, The expected demise of the Bayes factor, Journal of Mathematical Psychol-

ogy, 72 (2016), pp. 33–37.

138

[90] M. ROSENBLATT, Remarks on Some Nonparametric Estimates of a Density Function, The

Annals of Mathematical Statistics, 27 (1956), pp. 832–837.

[91] E. G. RYAN, C. C. DROVANDI, J. M. MCGREE, AND A. N. PETTITT, A Review of Modern

Computational Algorithms for Bayesian Optimal Design, International Statistical Review,

84 (2015), pp. 128–154.

[92] Y. SAAD, ILUT: A dual threshold incomplete LU factorization, Numerical Linear Algebra

with Applications, 1 (1994), pp. 387–402.

[93] T. J. SANTNER, B. J. WILLIAMS, AND W. I. NOTZ, The Design and Analysis of Computer

Experiments, Springer New York, 2003.

[94] K. SARGSYAN, H. N. NAJM, AND R. GHANEM, On the Statistical Calibration of Physical

Models, International Journal of Chemical Kinetics, 47 (2015), pp. 246–276.

[95] R. D. SCHALLER AND V. I. KLIMOV, High Efficiency Carrier Multiplication in PbSe

Nanocrystals: Implications for Solar Energy Conversion, Physical Review Letters, 92

(2004).

[96] A. SCHMIDT AND V. SMIRNOV, Concept of “magic" number clusters as a new approach

to the interpretation of unusual kinetics of the Heck reaction with aryl bromides, Topics in

Catalysis, 32 (2005), pp. 71–75.

[97] L. F. SHAMPINE AND M. W. REICHELT, The MATLAB ODE suite, SIAM Journal on Sci-

entific Computing, 18 (1997), pp. 1–22.

[98] D. F. SHANNO, Conditioning of quasi-newton methods for function minimization, Mathe-

matics of Computation, 24 (1970), pp. 647–656.

[99] C. E. SHANNON, A Mathematical Theory of Communication, Bell System Technical Jour-

nal, 27 (1948), pp. 379–423.

139

[100] W. SHAO AND X. TIAN, Adaptive soft sensor for quality prediction of chemical processes

based on selective ensemble of local partial least squares models, Chemical Engineering

Research and Design, 95 (2015), pp. 113–132.

[101] Y. SHIRASAKI, G. J. SUPRAN, M. G. BAWENDI, AND V. BULOVIĆ, Emergence of col-

loidal quantum-dot light-emitting technologies, Nature Photonics, 7 (2012), pp. 13–23.

[102] K. SMITH, On the Standard Deviations of Adjusted and Interpolated Values of an Observed

Polynomial Function and its Constants and the Guidance they give Towards a Proper Choice

of the Distribution of Observations, Biometrika, 12 (1918), p. 1.

[103] R. C. SMITH, Uncertainty Quantification: Theory, Implementation, and Applications, So-

ciety for Industrial and Applied Mathematics, 2014.

[104] I. SPANOPOULOS, I. HADAR, W. KE, P. GUO, E. M. MOZUR, E. MORGAN, S. WANG,

D. ZHENG, S. PADGAONKAR, G. N. M. REDDY, E. A. WEISS, M. C. HERSAM, R. SE-

SHADRI, R. D. SCHALLER, AND M. G. KANATZIDIS, Tunable Broad Light Emission from

3D “Hollow” Bromide Perovskites through Defect Engineering, Journal of the American

Chemical Society, 143 (2021), pp. 7069–7080.

[105] M. L. STEIN, Interpolation of Spatial Data, Springer New York, 1999.

[106] M. STONE, Cross-Validatory Choice and Assessment of Statistical Predictions, Journal of

the Royal Statistical Society: Series B (Methodological), 36 (1974), pp. 111–133.

[107] J. W. STOUWDAM AND R. A. J. JANSSEN, Red, green, and blue quantum dot LEDs with

solution processable ZnO nanocrystal electron injection layers, Journal of Materials Chem-

istry, 18 (2008), p. 1889.

[108] N. SUN, R. J. CARROLL, AND H. ZHAO, Bayesian error analysis model for reconstructing

transcriptional regulatory networks, Proceedings of the National Academy of Sciences, 103

(2006), pp. 7988–7993.

140

[109] O. THOMAS, R. DUTTA, J. CORANDER, S. KASKI, AND M. U. GUTMANN, Likelihood-

free inference by ratio estimation, 2016.

[110] H. A. VAN DER VORST, Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG

for the Solution of Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical

Computing, 13 (1992), pp. 631–644.

[111] M. VERT, Y. DOI, K.-H. HELLWICH, M. HESS, P. HODGE, P. KUBISA, M. RINAUDO,

AND F. SCHUÉ, Terminology for biorelated polymers and applications (IUPAC recommen-

dations 2012), Pure and Applied Chemistry, 84 (2012), pp. 377–410.

[112] M. D. VOSE, Modeling Simple Genetic Algorithms, in Foundations of Genetic Algorithms,

Elsevier, 1993, pp. 63–73.

[113] J. A. VRUGT, C. TER BRAAK, C. DIKS, B. A. ROBINSON, J. M. HYMAN, AND D. HIG-

DON, Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with

Self-Adaptive Randomized Subspace Sampling, International Journal of Nonlinear Sciences

and Numerical Simulation, 10 (2009).

[114] P.-R. WAGNER, J. NAGEL, S. MARELLI, AND B. SUDRET, UQLab user manual –

Bayesian inversion for model calibration and validation, tech. rep., Chair of Risk, Safety

and Uncertainty Quantification, ETH Zurich,Switzerland, 2022. Report UQLab-V2.0-113.

[115] M. A. WATZKY AND R. G. FINKE, Nanocluster Size-Control and “Magic Number” Inves-

tigations. Experimental Tests of the “Living-Metal Polymer” Concept and of Mechanism-

Based Size-Control Predictions Leading to the Syntheses of Iridium(0) Nanoclusters Cen-

tering about Four Sequential Magic Numbers, Chemistry of Materials, 9 (1997), pp. 3083–

3095.

[116] M. A. WATZKY AND R. G. FINKE, Transition metal nanocluster formation kinetic and

mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous

141

nucleation and fast autocatalytic surface growth, Journal of the American Chemical Society,

119 (1997), pp. 10382–10400.

[117] M. A. WATZKY, E. E. FINNEY, AND R. G. FINKE, Transition-Metal Nanocluster Size

vs Formation Time and the Catalytically Effective Nucleus Number: A Mechanism-Based

Treatment, Journal of the American Chemical Society, 130 (2008), pp. 11959–11969.

[118] C. B. WHITEHEAD, D. R. HANDWERK, P. D. SHIPMAN, Y. LI, A. I. FRENKEL, B. IN-

GHAM, N. M. KIRBY, AND R. G. FINKE, Nanoparticle Formation Kinetics, Mechanisms,

and Accurate Rate Constants: Examination of a Second-Generation Ir(0)n Particle For-

mation System by Five Monitoring Methods Plus Initial Mechanism-Enabled Population

Balance Modeling, The Journal of Physical Chemistry C, 125 (2021), pp. 13449–13476.

[119] J. WU, M. POLOCZEK, A. G. WILSON, AND P. FRAZIER, Bayesian optimization with

gradients, Advances in neural information processing systems, 30 (2017).

[120] D. XIU AND G. E. KARNIADAKIS, The Wiener–Askey Polynomial Chaos for Stochastic

Differential Equations, SIAM Journal on Scientific Computing, 24 (2002), pp. 619–644.

[121] J. ZÁDOR, I. G. ZSÉLY, T. TURÁNYI, M. RATTO, S. TARANTOLA, AND A. SALTELLI,

Local and Global Uncertainty Analyses of a Methane Flame Model, The Journal of Physical

Chemistry A, 109 (2005), pp. 9795–9807.

142

	Abstract
	Acknowledgements
	Dedication
	Acronyms
	Introduction
	Mathematical Modeling
	The problem: A discussion of the chemical background
	The mathematical forward model
	Performance considerations

	Statistical modeling
	Data
	Likelihood function
	Prior distribution
	Exploring the posterior distribution
	Statistical inversion of parameters
	Inversion of the 3-step mechanism
	Inversion of the 4-step mechanism
	Data fits

	Chain convergence
	Model selection
	Bayes' factor
	Mixture model

	Optimization under uncertainty
	Mathematical formulation
	Evaluation of the cost function
	Optimization algorithm
	Surrogate model
	Acquisition function

	Optimization of experimental conditions
	Optimization parameters
	Optimization visualization
	Optimization results

	Optimal experimental design
	Defining optimal experimental design
	Computing the utility of an experimental design
	Optimal experimental design results

	Summary
	Bibliography

