

Shorebird Use of Military Lands in Interior Alaska

Introduction

 Shorebird populations are declining globally. Approximately half of North American species have experienced population declines (e.g., Fig 1; Andres et al. 2012).

• Interior Alaska is difficult to access and very remote. As a result, no design-based surveys have been done on shorebird occupancy in the boreal forest.

 The Department of Defense uses and manages land in Interior Alaska that could be important shorebird breeding habitat.

• This is the first such study to develop a boreal forest survey protocol to determine shorebird occupancy on military lands in Interior Alaska.

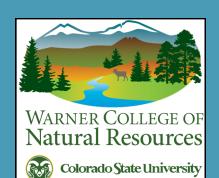
Figure 1: Lesser Yellowlegs on Donnelly Training Area East plot.

Objectives & Hypotheses

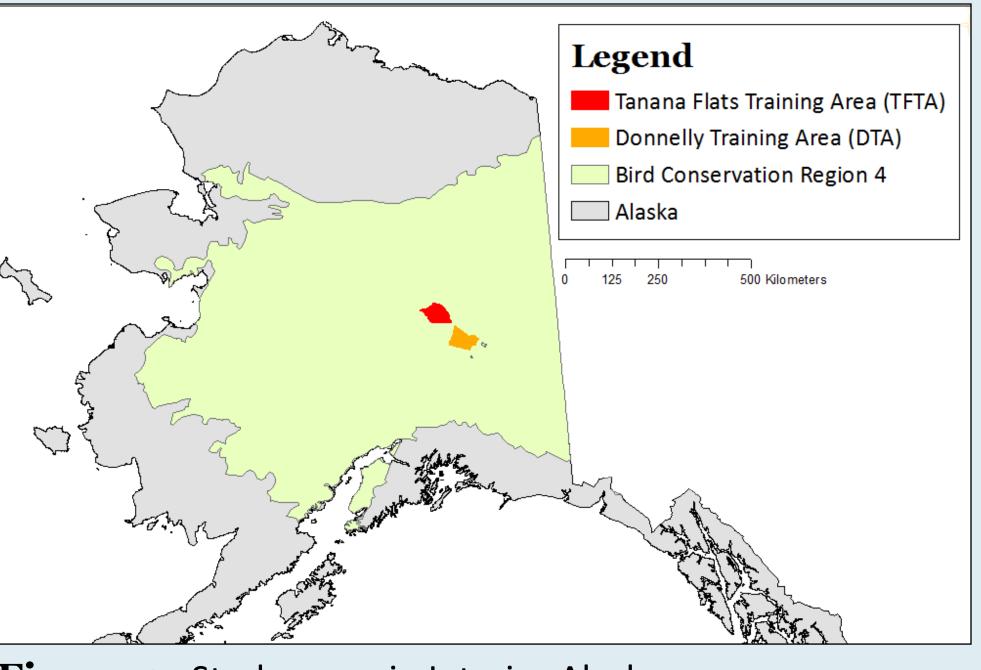
 Identify shorebird species using military lands with a survey approach modified for the boreal forest.

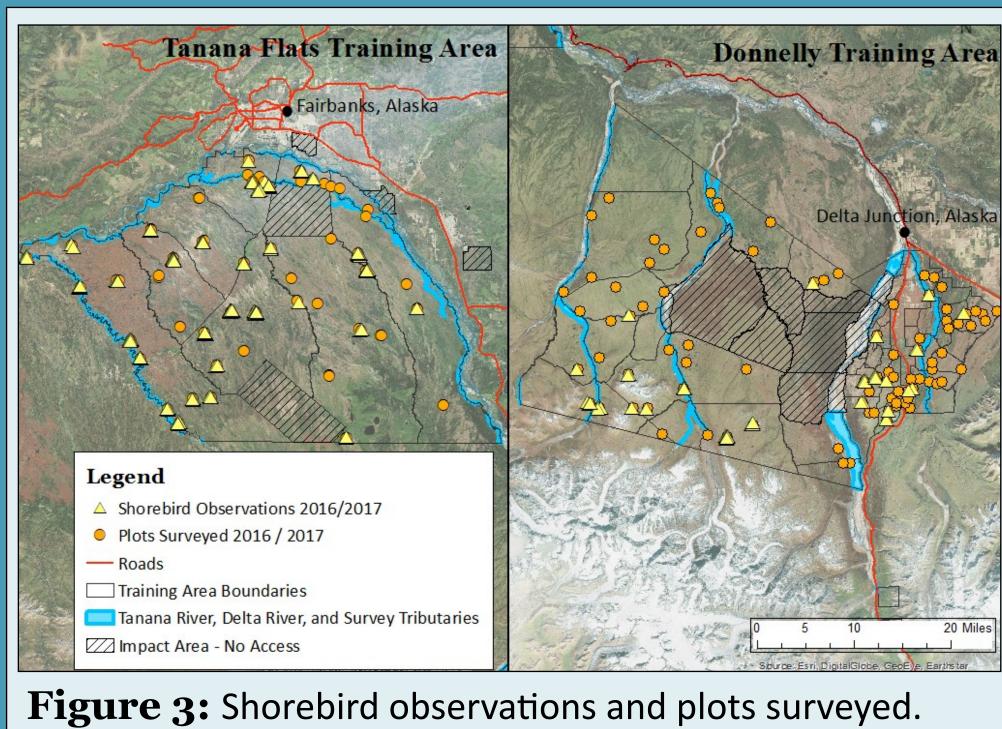
• Estimate occupancy / use for these species and determine associated habitat covariates.

Covariates	Lowland Shorebirds	Upland Shorebirds
Distance to Wetland	_	_
Elevation	_	+
% Shrub Cover	_	+
% Water on Plot	+	+
Most occupied Viereck Classification	Wet, grassland / open mudflat	Low shrub


Table 1: Covariates hypothesized to influence shorebird
 use on plot. As covariate values increase, hypothesized direction of probability of shorebird use either decreases (-) or increases (+).

• Generate map of predicted shorebird use areas to inform military training locations and times.





Methods

- sampling.
- 2003).

Ellen Martin^{1,2}, Kim Jochum^{2,3}, Calvin Bagley², Paul F. Doherty, Jr.¹

¹ Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado 80523 ² Center for Environmental Management of Military Lands, Colorado State University, Fort Collins, Colorado 80523 ³ Department of Public Works Environmental Division, United States Army Garrison, Fort Wainwright, Fairbanks, Alaska 99703

Figure 2: Study areas in Interior Alaska.

• We surveyed 140 plots (400m x 400m) in 2017 and 78 plots in 2016 on Tanana Flats Training Area and Donnelly Training Areas (Fig 2 and Fig 3) twice with dependent double observers using stratified random

• We collected data on habitat covariates at these plots. • We used occupancy / use models (MacKenzie et al.

2006) to estimate habitat use and used AIC information for model selection (Burnham and Anderson

• We analyzed data for all shorebirds and for speciesspecific habitat relationships.

Results

- We observed 12 species of shorebirds during plot surveys in 2016 and 2017 (484 total observations; Table 2). Timing of surveys was an important determinant in number of shorebirds observed (e.g., May vs July).
- Average occupancy of shorebirds was 0.419 (SE=0.066), (from Ψ .,p. models).
- Average detection for shorebirds was 0.652 (SE=0.081), (from Ψ ., p. models).
- The most important variables for occupancy were distance to wetlands, elevation, scrub canopy percent, scrub presence, and forest absence (Table 3).
- Distance to wetlands and elevation were included in final top model (Fig 4).
- (Table 3).

Species

Lesser Yellowlegs (Wilson's Snipe (Gal Spotted Sandpiper Solitary Sandpiper Dunlin (*Calidris alp* Least Sandpiper (Co Whimbrel (*Numeni* **Black-bellied Plove** Upland Sandpiper American Golden-F Baird's Sandpiper (Pectoral Sandpiper

Table 3: Importance values (cumulative variable weights) for shorebirds found on plot. Habitat codes (Viereck et. al. 1992) separated into 4 categories: Barren/Open Water, Forest, Forb/Lichen, and Scrub. Variables with weight greater than 0.5 in bold, variables in top model highlighted.

Discussion

- species.
- Our results provide the Department of Defense with habitat relationships that can be used to refine shorebird occupancy maps and inform military use of habitat.
- Habitats identified as high use by shorebirds are susceptible to climate change and predicted to dramatically change as permafrost melts, water tables change, and temperatures rise.

• Results of preliminary occupancy model analysis are consistent with hypotheses

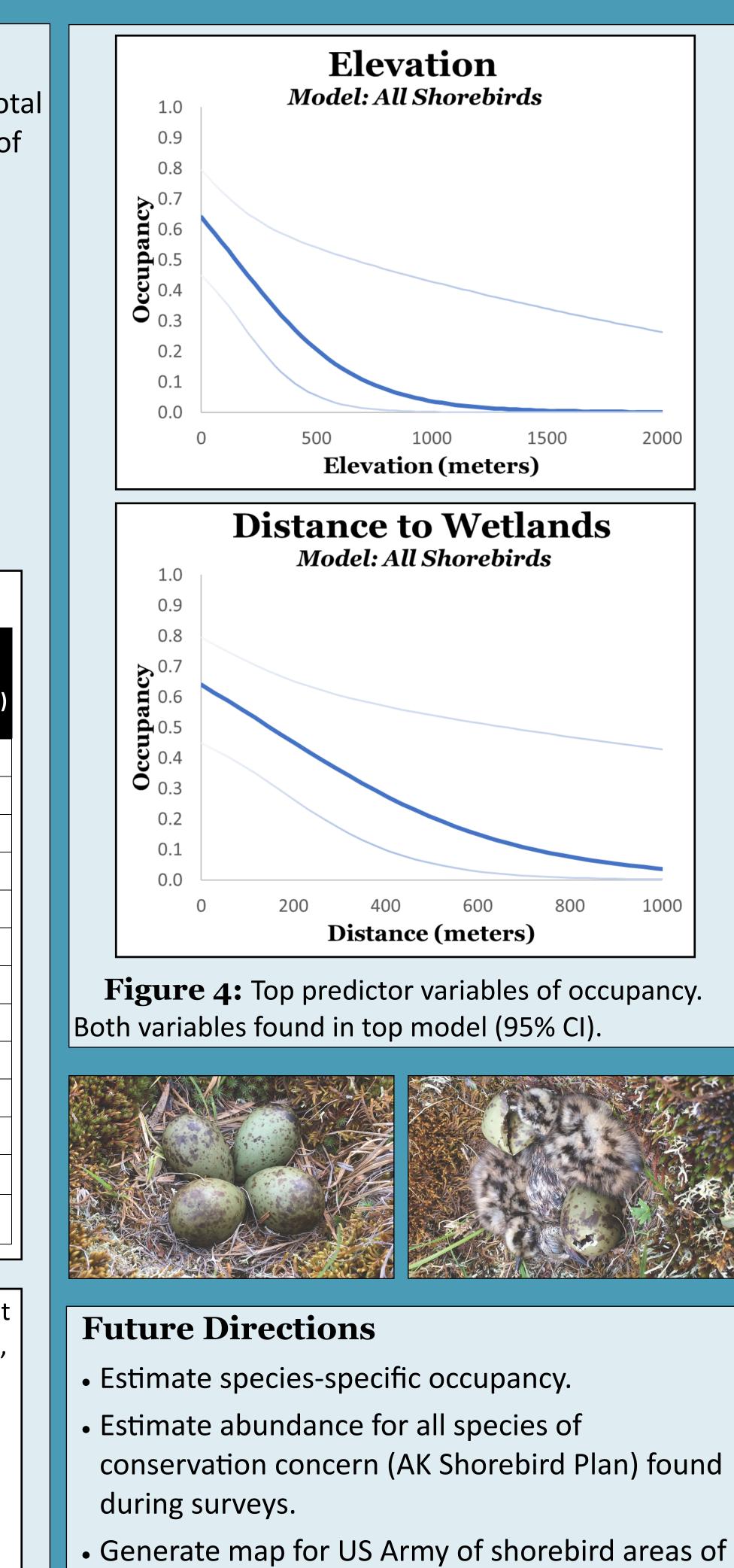

	Upland vs Lowland	2016 Count	2017 Count	AK Shorebird Cons. Plan (High Concern List)	USFWS (High Concern List)
(Tringa flavipes)	Lowland	43	144	\checkmark	\checkmark
allinago delicata)	Lowland	41	153		
r (Actitis macularius)	Lowland	10	21		
r (<i>Tringa solitaria</i>)	Lowland	4	5	\checkmark	\checkmark
pina)	Lowland	1	0	\checkmark	
Calidris minutilla)	Lowland	0	1		
nius phaeopus)	Upland	5	11	\checkmark	\checkmark
er (<i>Pluvialis squatarola</i>)	Upland	2	3		
· (Bartramia longicauda)	Upland	1	3	\checkmark	\checkmark
-Plover (<i>Pluvialis dominica</i>)	Upland	0	1	\checkmark	
(Calidris bairdii)	Upland	0	1		
er (Calidris melanotos)	Upland	0	1		
		120	364		

Table 2: Shorebird raw count and conservation status.

Variable	All Shorebirds
Distance to Wetland	0.949
Elevation	0.810
Scrub Canopy Percent	0.775
Scrub Habitat	0.711
Forest Habitat	0.635
Forb / Lichen Habitat	0.438
Barren / Open Water Habitat	0.342
Percent Water on Plot	0.261

• We documented species of high concern on military lands in Interior Alaska. We conclude military lands in Interior Alaska provide important breeding habitat for these

- use to inform military training timing and location.
- Results and methods useful to inform future boreal shorebird surveys.

Literature Cited:			
Alaska Shorebird Group. 2008. Alaska Shorebird Conservation Plan. Version II. Alaska Shorebird Group, Anchorage, AK.			
Andres, B. A., Smith, P. A., Morrison, R. I. G., Gratto-Trevor, C. L., Brown, S. C., & Friis, C. A. (2012). Population estimates of North American shorebirds, 2012. Wader Study Group Bulletin, 119(3), 178 -194.			
Brown, S., C. Hickey, B. Harrington, B., and R. Gill (eds.). 2001. The United States shorebird conservation plan. 2nd edition. Manomet Center for Conservation Sciences, Manomet, Massachusetts. 61 pp.			
Burnham KP, Anderson DR. 2003. Model selection and multimodel inference: a practical information- theoretic approach. Springer Science & Business Media, New York.			
MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines. 2006. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier, Amsterdam.			
U.S. Fish and Wildlife Service. 2008. Birds of Conservation Concern 2008. United States Department of Interior, Fish and Wildlife Service, Division of Migratory Bird Management, Arlington, Virginia.			
Viereck, L.A.; Dyrness, C.T.; Batten, A.R.; Wenzlick, K.J. 1992. The Alaska vegetation classification. Gen. Tech. Rep. PNW-GTR-286. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 278 p.			