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ABSTRACT

An eigateen level axisymmetric primitive equation tropical cyclone
model which incorporates the Arakawa-Schubert (1974) spectral cumulus
parameterization is presented. The quasi-equilibrium hypothesis, which
involves the solution of an integral equation for the cloud base mass
flux distribution, is successfully formulated as an optimization pro-
blem to guarantee a nonnegative solution. A Tinear analysis suggests
that in the tropics a large fraction of the available potential energy
generated by the release of latent heat is partitioned to gravity-
inertia wave motion and hence is radiated away to the far field. There-
fore, an approximate pure gravity wave radiation boundary condition is
derived which minimizes the reflection of gravity-inertia waves by the
lateral bourdary of the model.

The sersitivity of axisymmetric model storm development to the
exact form of the lateral boundary condition, initial moisture distri-
bution, and Tatent heat release mechanism is tested. It is demon-
strated that the development of a hurricane-1ike circulation can be
simulated without parameterized convection as suggested by Rosenthal
(1978). Several other sensitivity experiments are conducted to address
the roles of radiation and cumulus momentum transport in tropical
cyclone development. The numerical results lead to the conclusion that
neither of these processes should be neglected in attempts to numeri-
cally simulate the Tife cycle of the tropical cyclone since they appear
to contributz significantly to the organization and scale of tropical

disturbances.
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1.0 INTRODUCTION

The genesis and intensification of the tropical cyclone must cer-
tainly rank among the moét spectacular of atmospheric phenomena.
Observational studies have Tong since established that the energy to
drive these storms is obtained from the release of Tatent heat in deep
cumulus convection (e.g. Riehl and Malkus, 1961; Yanai, 1961a, b).
Unfortunately, howsver, the details of the interactions between the
cumulus and large-scale which give rise to the formation of a tropical
storm are much less well understood.

Early Tinear stability analyses of the growth of small amplitude
perturbaticns in a conditionally unstable environment were unable to
explain the observed size and growth rates of the tropical cyclone
(e.g. Hagque, 1952; Syono, 1953; Lilly, 1960). Thus, Charney and
Eliassen (1964) and Ooyama (1964) proposed a mathematical theory in
which the cloud field is organized so as to give rise to a heat source,
which causes amplification of the large-scale disturbance, which in
turn amplifies the cloud field. This cooperative interaction bectween
the cloud field and large-scale circulation is more commonly referred
to as Conditional Instability of the Second Kind (CISK).

Since the dynamical processes of the tropical cyclone generally
occur on two widely different space and time scales (large-scale and
cumulus-scale) both Charney and Eliassen and Ooyama treated the
convective-scale:implicitly, or by what is now called cumulus param-
eterization. Their approach stimulated many efforts to numerically
simulate the 1ife cycle of the tropical cyclone with more complicated
nonlinear rmodels (e.g. Ooyama, 1969a, b; Sundqvist, 1970a, b; Yamasaki,

1968a, b; kosenthal, 1970; Anthes, 1972). The cumulus parameterization



methods employed in these models were highly empirical, neglecting
many of the physical processes involved in the mutual interaction of
the convective-scale and large-scale. Although these schemes have
performed rather well, it is generally agreed that their relatively
crude character Timits their ability to contribute to a greater under-
standing of the processes which lTead to tropical cyclone formation.

A thecretically complete and much more satisfying approach to
cumulus parameterization has been proposed by Arakawa and Schubert
(1974). Their theory describes the mutual interactior between an
ensemble of cumulus clouds and the large-scale environment. The
cloud field (or cloud ensemble) is represented by a spectrum of ideal-
ized model clouds ('sub-ensembles') each of which has its own mass,
heat and moisture budget. The vertical transports accomplished by
this spectrum of model clouds are actually the convective-scale eddy
fluxes which appear, for example, in the horizontally averaged budget
equations for dry static energy s, and water substance q (e.g. Yanai
et al., 1973). Thus, knowledge of these eddy fluxes reduces to the
determination of the cloud base mass flux for each member of the
spectrum of model clouds. In order to predict the convective-scale
eddy fluxes, Arakawa and Schubert propose the concept of quasi- -
equilibrium which assumes that the cloud base mass flux distribution
can be related to time changes in the large-scale thermodynamic
fields. Since this theory is the most physical and mathematically
elegant approach proposed to date we believe it has the most potential
for providing additional insight into the interactions between the
cumulus-scale and large-scale which lead to tropical cyclone develop-

ment. Surprisingly, with the exception of one investigation



(Wada, 1979), the theory has yet toc be used in the numerical simulation
of a tropical cyclone.

In this thesis, we briefly review: the axisymmetric primitive
equation tropical cyclone medel first presented by Hack and Schubert
(1976). The two unique aspects of the model are the convective param-
eterizatisn, which follows the theory presented by Arakawa and Schubert
(1974), and the formulation of the lateral boundary condition, which
can be described as an approximate pure gravity wave radiation condi-
tion.

From a computational point of view, the most difficult aspect of
the Arakawa-Schubert cumulus parameterization is the solution of the
integral =quation for the cloud base mass flux distribution. The
various tachniques suggested for solving this equation are all deficient
since they do not guarantee a nonnegative mass flux distribution which
is a necessary constraint if the solution is to be considered physically
reasonable. By relaxing the quasi-equilibrium assumption, however,
it is possible tc formulate an optimization problem which constrains
the cloud base mass flux to be nonnegative. This procedure, which
is referrad to as the optimal adjustment method, is discussed in
chapter 2.

The particular formulation of the lateral boundary condition is
motivated by the recent Tinear studies of geostrophic adjustment by
Schubert =t al. (1980) and Silva Dias and Schubert (1979) which suggest
that in 1ow latitudes most of the available potential energy generated
by the release of latent heat is partitioned to gravity-wave motion

and is therefore radiated away to the far field. A similar argument



is extended to a fully stratified model atmosphere (chapter 3) which
gives rise to the lateral boundary condition employed in the model.

For nearly two decades the numerical simulation of the development
of a hurricane circulation with the explicit release >f latent heat was
regarded as unachievable since early attempts to do so ended in ap-
parent failure (Kasahara, 1961, 1962; Sydno, 1962). Recently, however,
Rosenthal {1978) has successfully simulated the develspment of a
tropical cyclone in which convective elements are explicitly resolved,
demonstrating that the failure of these early investijations was
probably not related to the explicit release of latent heat in a con-
ditionally unstable atmosphere, but rather to a deficient model design.
In chapter 5 we show that the tropical cyclone model used in this study
is also capable of producing a hurricane circulation using only the
explicit release of latent heat, although the desirability of such an
approach is questionable.

Recent diagnostic studies of tropical weather systems have iden-
tified net longwave radiational cooling and cumulus-scale transports
of horizontal momentum as two processes which appear to contribute
significantly to the large-scale dynamic and thermodynamic budgets
(e.g. Yanai et al., 1976; Reed and Johnson, 1974; Shasiro, 1978,
Stevens, 1979). Previous numerical simulations of thz= tropical cyclone
have generally neglected each of these convectively madulated processes.
In chapter 6 we consider the sensitivity of model sto~m development to
the incorporation of each process as well as to the combination. Other
experiments which examine the sensitivity of model storm development
to the initial moisture field and the lateral boundary condition are

also conducted (see chapter 5). The response of the model is used to



assess the significance of each of these effects on tropical cyclone

development.



2.0 MODEL CESCRIPTION

2.1 Large-Scale Governing Equations

We begin by noting that the large-scale governing equations are
formulated for an f-plane using axisymmetric cylindriczl coordinates
in the horizontal, and the o-coordinate in the vertical. Following
Arakawa and Lamb (1977) we define o as

p-pT_p-pT

ekl ot (2.1)

0 =

where the top boundary pressure Py is a specified constant, and the
surface pressure Pg (or equivalently m) is a function of the horizontal
coordinate and time. The upper and Tower boundaries are respectively
given by 0=0 and o=1. In the special case where pT==0, (2.1) reduces
to the definition originally proposed by Phillips (195V).

The governing equations, which consist of the hor-zontal momentum
equations, the hydrostatic equation, the mass continuity equation, the
thermodynamic equation, the ideal gas law, and the water vapor mass

continuity equation can be written

du _ v pelo] om _ 2
gt - (Fr)ve st oo go=S o (2.2)
oy (feYu=s (2.3)
dt r v°® :
9 _ _
o O (2.4)
dm dru , 59 _
d_t.+‘n-(ﬁ?+§5]_0, (2.5)

d_T_ﬁT_%%:cL(c_E)+s

& " p ) (2.6)

T®



b, = RT (2.7)
99 - _(e. '
It (C-E) + Sq R (2.8)

where the individual time derivative of an arbitrary scalar quantity

Y is given by
at "ttty TR 3o ? (2.9)

and the :ymbols are defined as follows:
r - radius
t - time
u - radial wind component
v - tangential wind component
c - vertical o velocity, do/dt
p - pressure
o - specific volume
T - temperature
¢ - geopotential
q - water vapor mixing ratio
C - rate of large-scale condensation per unit mass of dry air

E - rate of large-scale evaporation per unit mass of dry air

Su- Y
Sv -
> convective scale source/sink terms
ST -
S"A
G

f - constant Coriolis parameter
R - gas constant for air

c,. - specific heat capacity for air



K - R/Cp

L - Tatent heat of evaporation
The formulation of the convective-scale source/sink terms is discussed
in sections 2.2 and 2.3, while the formulation of the large-scale
condensation (C) and evaporation (E) is presented in section 2.4. In
the absence of these terms, (2.2)-(2.7) govern adiabatic inviscid flow.

As.upper and lower boundary conditions we require that air par-
ticles do not cross the =0 and o =1 coordinate surfaces, i.e.

G=0 at 0=0,1. (2.10)

Integrating (2.5) over the entire vertical column using the boundary

conditions (2.10) gives
1

g—Ttr= -rg—r j rrudo . (2.11)
0

If we now integrate (2.5) from the top of the vertical column to o

using the upper boundary condition, we obtain yet anotrer form of the

continuity equation
o

o = - [o am , 3 J wrudo’] . (2.12)
0
Thus, knowledge of the radial wind component u allows computation

of %%—by means of (2.11), and mo may then be diagnosed at any o level
using (2.12).

Defining the potential temperature

=T {EQ}K (2.13)

and using the definition of the vertical coordinate (2.1), allows us

to rewrite the thermodynamic equation (2.6) as



o

&
Y

o]

¢

sT . 3T, «[p)" dr _ L (el
8t+u8r+0{po} I cp(“:)*s

QJ!QJ
Q

T (2.14)

The system of equations is now complete consisting of ten equations
(2.11, 2.2, 2.3, 2.14, 2.8, 2.1, 2.12, 2.7, 2.4 and 2.13) in the ten
unknown variables =. u, v, T, g, P, 6, o, ¢, and €, all of which are
functicoss of the three independent variables {r,o,t} with the exception
of 7 which is a2 function of (r,t) only. Five of these variables are
predictzd (w, u, v, T and g) while the others are diagnosed.

Fo~ purposes of numerical integration it is more convenient to
consider the five prognostic equations in flux form rather than in the
advective form in which they have been introduced. Using the form of
the conuinuity equation given by (2.5) and the definition of the total
derivative (2.9), we cbtain the flux form of the individual time deriv-

ative o7 an arbitrary scalar quantity ¥ as

dil °
r 3o By 2 (o) ¢ 2 (ny) (2.15)

Accordingly, the prognostic equations can be rewritten, and the com-
plete system of equations can be arranged for numerical integration in

the foilowing order.

2 () = - & J(]mr‘udc , (2.16)
0
™ = - id é%—(vr) + é%-jg vrudc’% , (2.17)
9
p=pyFmo, (2.18)
o =L, (2.19)
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b _

35 = " T (2.20)
a ®
55-(ﬂru) = - g%-(wruu) - g%-(vrcu)i-(f4‘¥9 TrV
(2.21)
- r(w %%—-Fowa %%)-Fﬂrsu R
2 (mrv) = - 2 (mruv) - 2 (mrov) - (F+¥) mru+mrsS (2.22)
at ar o0 r v °? :
P \K
g = T{E?] . (2.23)

K
g%‘(WPT) = - g%-(nruT)- h%j 2 (nrde)

o)
(2.24)
Troo. | 9 3 L
+ = [§E-+ u §?J1r+ mr E—-(C—E) Sy s
p p
—g—(nrq)= - ii—(wruq)- 2 (rrgq) +mr(-C+E) + 7rS (2.25)
ot ar o0 q :

Initial conditions are required on the five progncstic variables
Ts U, vV, T and q. The initialization procedure as well as the initial
conditions are discussed in chapter 4. The procedure followed in a
single prognostic cycle is as follows.
1) Calculate the tendency of w from (2.16).
2) Using the tendency of m just calculated, calculate mro from
(2.17).
3) Using (2.18) and (2.19), calculate the geopotential ¢ from
(2.20).
4) Calculate the tendencies of u and v from (2.21) and (2.22).
5) Using (2.23) calculate the tendency of T from (2.24).
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6; lalculate the tendency of g from {2.25).

7) ¢

0

turn
The discrete model consists of 18 levels in the vertical direction
(pT==100 wh) and 64 gricd zoints in the horizontal direction {4ir=15 km).
Horizonta! and vertica? finite differencing of (2.161-{2.25) follow the
schemes proposed by Arakawa {1972) and Arakawa, Mintz et al. (1974) for
the UCLA M. The vertical differencing is identical to the 1972 UCLA
scheme while ihe herizontal differencing is somewhat different due to
the use ¢* cylindrical coordinates and considerably simpler due to our

-

assumptic- of ax

=lo
3

ympetry. A discussion of the finite differencing of
the Targe-sca’tez governing equations (2.16)-(2.25) is included in
Appendix .

-~

2.2 Pararcterization of Cumulus Convection

The importence of cumulus convection te the genesis, intensifica-
tion anc rintenance of the tropical cycione has
by observational studies {e.g. Riehl and Malkus, 1961: Yanai, 1%87a, b}.
However, cariy stability anaiyses (Haque, 1952; Syono, 1853; Litly,
1960), which freat the dynamics of the cyclore in most respecte Tike
a cloud, were uynabie %o acceunt for the observed size and growth rates
of tropical cyciones. This apparent failure of theory led Charrey and
Eliasser '1954) and Coyama (1964} to introduce the concept of Condi-
tional Instability of the Sacond Kind (CISK) which embodies 2 cuopera-

-

tive inter-zction beiween fnz cumulus-scale and large-scaie. In a

broad sen:e, CISK describes g situation in which the targe-scaie
circulation is responsibie for organizing and maintaining cumulus

O I D SR R T L I RO 3 P Y - R P R ST SR VT o PR
convaction oy reoviding Lng necessary transplri oF WRTer vansr, Wil
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release of Tatent heat in deep convective elements. Both Charney and
Eliassen and Ooyama dealt with the Targe-scale explicitly, but treated
the convective scale implicitly, i.e. the cumulus activity was
specified to be a function of the large-scale fields, or was treated
by what is now commonly referred to as cumulus parameterization.
Although Charney and Eliassen's and Ooyama's work dealt only with
the initial growth of a tropical depression, their cpproach stimulated
efforts to numeri;a]]y simulate the Tife cycle of tropical cyclones
with more complicated non-1inear models. The convective parameteriza-
tions employed in these tropical cyclone models were highly empirical,
neglecting many of the physical processes involved in the mutual inter-
action of cloud and environment. These included sctemes in which the
convective-scale heating rates were dependent upon the large-scale
convergence of water vapor in the atmospheric boundary layer (Ooyama,
1969a, b; Ogura, 1964), and the net large-scale convergence of water
vapor. throughout the depth of the troposphere (Kuo, 1965). Such schemes
have performed surprisingly well in numerical integrations (e.g.
Yamasaki, .1968a, b; Ooyama, 1969, b; Rosenthal, 1970; Sundqvist, 1970a,
'b) .in which. the models have produced many of :the important features
observed in tropical cyclones. It is generaily agreed, however, that
these relatively crude techniques are Timited in their ability to
contribute to a greater understanding of the interaction between
cumulus clouds and the cyclone-scale flow in tropical storms,
especially during the developing (or nondeveloping) stages. Unfor-
tunately, suitable alternatives were lacking for many years, primari]y
because of a lack of knowledge regarding the interaction of clouds

with the larger scale.
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The problem of establishing the physical nature of the interaction
of organized cumulus convection with the Targe-scale fields is funda-
mental to tropical meteorology. A c?ear»understanding of this inter-
action is in all Tikelihood essential te an understanding of why the
tropical cyclone is such a rare event., In recent years, many diagnos-
tic (and some prognostic) studies have been made which have led to an
improvement in our knowledge of cumulus convection, and consequently
to an improvement in cumulus parameterization theory. Simple one
dimensional cloud models have proven to be useful in diagnosing the
interaction of precipitating cumulus ensembles with the larger-scale
motions (e.g. Yanai et ai., 1973; Ogura and Cho, 1973; Gray, 1973;
Nitta, 1977, 1978: Yanai et al., 1976; Johnson, 1976, 1977). The use
of such idealized models of convection has enabled observationalists
for the first time to extract convective-scale properties directly
from tre large-scale observations. The simpier problem of non-
precipitating trade wind cumulus convection has also been studied
{e.g. Augystein et al., 1973; Holland and Rasmussen, 1973; Betts, 1975;
Nitta, 1975) and has contributed to a better understanding of the way
in which the convective-scale fluxes contribute to the growth ard
maintenance the trade inversion. These and other studies have helped
to establish a general consensus on how cumulus clouds modify the
large-sceie thermodynamic fields.

Ooyzma (1971) recognized the need to improve cumulus parameteriza-
tion thecry, and was the first tc propose a theory taking into account
the ceexistence of a spectrum of clouds. The clouds were represented

by independent entraining buoyant elements dispatched from the mixed
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layer. The theory was not closed, however, since the determination

of the 'dispatcher function' was left to future consideration. Even
so, several numerical experiments have been conducted with the theory
(using empirically derived forms of the dispatcher function) yielding
reasonable results (Ooyama, 1973; Rosenthal, 1973). |

Arakawa and Schubert (1974) have proposed a closed cumulus param-
eterization theory which describes the interaction of a spectrally
divided cumulus cloud ensemble with the large-scale environment. With
the exception of one investigation (Wada, 1979) this theory has yet
to be used in the numerical simulation of a tropical cylcone. Since
the theory is the most complete theory proposed to date, we will make
use of it in this study with the hope that it may help provide
additional insight into the interactions between the cumulus-scale
and large-scale which lead to tropical cyclone developrent. In this
section we discuss the formulation of the Arakawa-Schubert cumulus
parameterization theory. Several simplifications have been made
to the theory for computational reasons and will be noted in the
discussion.

The mutual interaction between the cloud ensemble and the Targe-
scale environment is conceptually illustrated in Fig. 2.1 where the
equations of the theory have been grouped into three c:tegories:
feedback, static control, and dynamic control (Schubert, 1974). The
equations which constitute the feedback part of the loop describe
how the cumulus-scale transport terms and source/sink terms modify
the large-scale thermodynamic fields, while the equations comprising

the static and dynamic'contro1 parts of the interaction loop describe



FEEDBACK

/kﬁ cumulus terms in  be—— 71

prognostic equations
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integral equation .._-/

for ma(b).

Figure 2.1 Schematic representation of cloud-environment interaction
(after Schubert, 1974).
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how the properties of the cloud ensemble are controlled by the large-
scale fields. We continue our discussion of the parameterization
theory within this framework.

2.2.1 Feedback

The complete theory divides the large-scale envirorment into a
subcloud mixed Tayer of variable depth and the region of cumulus con-
vection above the mixed layer, separated by an infinitesimally thin
transition layer (see Fig. 2.2). In the subcloud mixed layer the dry
static energy (szchT-+¢), water vapor mixing ratio q, and therefore
the moist static energy h, are constant with height and are denoted
by the symbols Sys Gy and hM‘ The top of the subcloud mixed layer
Pg is generally somewhat below cloud base Pe- Below Pg> convective-
scale transports are accomplished by the turbulence of the mixed layer,
where the turbulence is confined below Pg by the stable and infinites-
imally thin transition layer. Across the transition layer there can
be discontinuities in the dry static energy and moisture, as well as
discontinuities in the convective-scale fluxes. Above Fg the convec-
tive-scale transports are accomplished by the cloud ensemble. Let us
write the heat and moisture budget equations for this region in terms
of dry static energy s and water vapor mixing ratio g (¢®. VYanai

et al., 1973). These are

35S I s T
- 5_15 ) 52‘ )+ LR+ QR (2.26)

Q|
+in|
il
]
-
=
L]
<
n]
1
e|
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and
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Figure 2.2 Typical ITCZ profiles of s , h , and h ¥ . Above pg these profiles are
those of Yanai et al. (1973). The schematic sub-ensemble has cloud

A {AYA
p’P)"’ A

T3

base Pc slightly above Py The mas

s
while the mass flux at p, is mB(ﬁ)dﬁ.

Lt



%=—W-VE—52%-§%[WW]-R : (2.27)
The barred quantities represent horizontal averages over ar area large
enough to contain an ensemble of clouds, but small enough <o as only
to cover-a fraction of a Targe-scale disturbance. The primed quanti-
ties represent deviations from the horizontal averages and are inter-
preted as convective-scale properties, while the quantity F is the
convective-scale 1iquid water sink (i.e. the water remcved by convec-
tion in the form of precipitation). The 1liquid water <tatic energy

S, =5~ Le 1is the static energy analogue of the liquic waier potential
temperature introduced by Betts (1975).

In addition to the vertical transport of heat and moicture, we
allow the cumulus ensemble to vertically transport (i.z. redistribute)
horizontal momentum. A budget equation, which is similar {0 those
for heat and moisture, can be derived for the horizontz1 momentum W

and is written

2V . .oy, 2 S W
W—-\V»V\V-map-flkx WV - Vo ap(m W) . (2.28)

Following Schubert (1974) we express the convective-scile {Tuxes of
dry static energy, water vapor, liquid water, and horizonta1 momen-

tum as

%“(-w'573 E‘F (p) =

B
[ () [s(pap) -SRI mg(®) d  p by, (2.29)
Pg~P1 |
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[ n(pp) [ag(pp) - AP I my(B) ¢ b <y o (2.30)
pB_pT

Pg
[ e 2(pp) M) @ p<p (2.31)

[ npB) [N (pah) - Wo)I my(B) 6 p < py.(2.32)
Pg=Pr

We see from {2.29)-(2.32) that the cumulus cloud ensemble has been
spectrally divided into 'sub-ensembles' each of which is characterized
by its pressure depth ﬁ = Pg~Pp> where Pp is the detrainment pressure
level. Our use of p as the spectral parameter differs from the origi-
nal formulation in which the sub-ensembles were characterized by the
fractional entrainment rate A. This alteration is motivated by
computational convenience and will be discussed further when we con-
sider the dynamic control part of the theory. Thus, the dry static
energy, water vapor, liquid water and horizontal vector momentum inside
sub-ensemble p at lavel p are respectively denoted by sc(p,ﬁ), qc(p,ﬁ),
¢{p,p) and svc(p,ﬁ). The vertical mass flux at level p due tc sub-

ensemble p is n(p,ﬁ)mB(ﬁ)dﬁ where n(p,p) is the normalized mass flux
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which has unit value at the top of the sub-cloud mixed layer Py A
simple physical interpretation of (2.29)-72.32) is that for each sub-
ensemble 5, the net upward flux at level p of a particular quantity
(such as s or W) is given by the difference between the upward flux
of that quantity inside the sub-ensemble (denoted by subscript c) and
the downward flux of the environmental value (denoted by a bar). This
downward mass flux in the envirohment is merely the :zompansating sub-
sidence produced by the sub-ensemble. Since the environment does not
contain 1iquid water there is no downward flux of 1iquid water due to
environmental subsidence, and the convective-scale Tiquid water flux
takes a simpler form. The total ensemble flux at Tevel p of any
quantity (such as F or FW) is then given by an integra’ over all
sub-ensembles which penetrate level p.

By combining the three basic fluxes FS, Fq, and F2 wWe can rewrite

(2.26) and (2.27) as

35 _ 8% 3 '
5 = 8t| s + gap Fs-Lz + LR (2.33)
and
3q _ 39 3 i
=t atlL S + gap Fq+2 R (2.34)
where
F =F_ - LF (2.35)

(2.36)
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and the la~ger scale contributions to the time derivatives on the left
hand side »f (2.26) and (2.27) have been grouped intc one term denoted

with the subscript L.S. Similarly, (2.28) can also be rewritten

-
=

LU %—IL.S.+ g.é%F\v (2.37)
The convective 1iquid water sink R is defined by
Pg-P
RP) -9 n(p.B) <, (B)alp.Pimg(F) b - (2.38)
PPt

The expression for R states that the quantity of water removed from
the atmosphere at level p by sub-ensemble p is simply proportional to
the sib-ensemble 1iquid water content at that level. Physically this
means that a certain fraction of the liquid water content (or cloud
droplets) of each sub-ensemble is converted to raindroplets (as
speci-ied by the coefficient cO(B)) which are immediately removed
from the system (i.e. they are assumed to reach the ground withcut
evaporating). As originally formulated, Arakawa and Schubert chose

) so that the

a constant autoconversion coefficient ¢ of 2.0x 10
calculated values of the cloud 1iquid water content would approximately
agree with observed values. However, Silva Dias and.Schubert (1977)
used —he results of a theoretical parametric model of cumuius convection
(Lope:r, 1973) to demonstrate that a constant value of N probably
under:stinated the precipitation associated with deep clouds while
overestimating the precipitation associated with shallow clouds. In

a one dimensional ('semi-prognostic') model which incorporated the
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Arakawa-Schubert parameterization scheme, they went on t> show that the
choice of a variable autoconversion coefficient (which p-~oduced more
reasonable precipitation rates) had 1ittle effect on the cloud popula-
tion produced by the model, although it did slightly decrease the
magnitude of the temperature and moisture tendencies associated with
the parameterized convection. Thus, we have chosen to use an auto-
conversion coefficient < which is dependent upon B {see Fig. 2.3)
such that the deep clouds are more efficient at producing precipita-
tion while the shallow clouds are less efficient.

Since R(p) then represents the total ensemble sink of liquid
water at level p, we obtain the total ensemble precizitation rate (P)

by integrating R(p) over the depth of the model atmosphere,

Pg
P = —J R(p)dp . (2.39)

Below Pg the convective-scale fluxes of s, q and Were linear ‘in

Fos wls
the convective-scale flux of & is zero everywhere. n thre complete

pressure with the values (FS)S’ ( and (F at =he surface, and
theory, the surface fluxes and convective-scale fluxes of heat and
moisture at Pg. determine the time variation of the deptt of the sub-
cloud mixed layer. However, the present version of the tropical
cyclone model does not include a mixed layer of varieble depth, but
rather a 'mixed layer' whose top is defined by a fixed sigma coordinate
surface. Thus, for computational reasons, we find it necessary to
modify the way in which the cumulus ensemble interacts with the mixed

layer. This modification involves allowing the cumulus convection to

directly influence the energy budget of the mixed layer, rather than



,?_\voo JUDLILSSD0D UOLSUADAUODOGNR Y| £°7 a4nbiLy

d
v

omuN omw¢ Omuw Omw 0000

23

-1100

-200°
o
(d)°9

/.VOO.

1 1 I ! 1 _ 1 ddgoo



24

determining the depth of the mixed layer as in the more general thecry.
The budget equations for the dry static energy, moisture and momentum

of the mixed layer (sM, Ay and WM respectively) are given by

3s
M. _wy. g Y
30y _ _
e WyeVay + 5;%55 [(Fg)g-(Fglgl (2.41)
and
3 Wy
3t :"WM'VWM'*ngﬁ;[(Fw)s-(Fw)B] (2.42)
where
(Fg = AsMg
(Flg = Aay : (2.43)
(Fylg = 4WMg

In (2.43) the symbol delta represents the jump of the particular
property across the top of the sub-cloud mixed layer pB(e.g. As =
EKpB_)—EM). The quantity MB is the total cloud base mass flux

associated with the cumulus ensemble, i.e.
0

g = - mg(H) d - (2.44)
Pg=P1
We note that in the above formulation, the convective-scale fluxes of
s and q are continuous across the top of the subclouc mixed layer even
though the large-scale values are not. One additional approximation
we make is that the cloud base P and the top of the model mixed layer

Pg are one and the same.
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s-L2° Fq+%’ FW ?

the cumulus ensemble source/sink term R constitute the feedback part

The cumulus ensemble transport terms, F MB’ and

of the interaction loop shown in Fig. 2.1. From (2.29), (2.30), (2.31),
(2.32), (2.38) and (2.44) we see that the determination of these quan-
tities is equivalent to the determination of n(p,p), sc(p,ﬁ), qc(p,ﬁ),
2(p,p), Wc(p,ﬁ) and mB(ﬁ). A1l except mB(ﬁ) are determined in the
static control part of the interaction loop while mB(ﬁ) is determined

by the dynamic control. Once these quantities are known, it is possible
to predict the time variation of the temperature and moisture field

both above and below Pg-

2.2.2 Static control

The stb-ensemble normalized mass flux, moist static enérgy and
total water content are determined from their respective budget equa-

tions. These are given by

2bap) m(B8) - (B)n(p,h) (2.45)
35 (PP (P.D)] = -A(BIn(p.BIR(p) (2.46)

and

2 {n(p,B)[a(p:5)42(p,B) 1} = n(p,B)c, (BIL(,H)-MBIn(p.BYa(p) » (2.47)

where the fractional entrainment rate A(P) has the units Pa_]. The air
inside the sub-ensembles (or clouds) is assumed to be saturated at a
temperature only slightly different than the environment, an assumption

which gives rise to the saturation relation

9 (pop) = @(p) + 7hBLe 1 T (p)- (R . (2.48)
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where g*(p) is the saturation value of q at level p, hW*(p) is the

saturated moist static energy at level p and y(p)zzél-[%%:] (cf.
p

Arakawa, 1969). In order to determine the individual sub-ensemble
budgets, knowledge of the fractional entrainment rate k(ﬁ) is required.
This entrainment rate is given by the vanishing bouyancy condition

~ —

s, (psp) =s,(p) , (2.49)
c

or using the definition of the virtual dry static energﬂ

sy, (P+P) = S(p) +¢,T(p) 6lac(p,) -(p)] (2.50)

where § = 0.608 .

The sub-ensemble horizontal momentum Wh(p,ﬁ) must be determined
as a function of the large-scale dynamic and thermodynamic fields.
This is a more difficult problem, since Wc(p,ﬁ) is not a conserved
quantity as are some thermodynamic properties. Convective-scale
pressure gradients, as well as stresses produced by the large shears
present between the updraft and environment motions, are likely to
produce some modification to the 'in cloud' horizonta'! momentum. Hcw-
ever, here we follow the simple alternative (e.g. Ooyama, 1971; Arakawa,
Mintz et al., 1974; Schneider and Lindzen, 1976) of assuming that “2
is conservative. This leads to the sub-ensemble budget equation for

momentum
= In(p.P) W (p.P)] = -A(B)n(p,P) Wlp) . (2.51)

Thus, the static control part of the interaction loop consists of

the six equations (2.45)-(2.48), (2.50), and (2.51) in the six unknown

]The effects of 1iquid water have been neglected.



27

variables n(p,p), sc(p,ﬁ), q.(p.0), 2(p,p), A(B). and Wc(p,ﬁ). Since
(2.45)-(2.47) and (2.51) are differential equations which are solved
upward from Pg > they require the appropriate boundary conditions which
are n(py.B) =1, h_{pg.B) =hy, a.(pg.P) =qy, £(pz.P) =0 and W (py.P) =
WM .
2.2.3 Dynamic control and the optimal adjustment method

The last remaining problem is the determination of the mass flux
distribution function mB(B) since once it is known, the time variation
of the temperature, moisture and momentum fields can be predicted from
(2.33), (2.34), (2.37) and (2.40)-(2.42). 1In order to determine
mB(B), Arakawa and Schubert first introduce the cloud work function

Pg

M= [ nieB) [, (B -5, 2 (2.52)

pp(P) ¢
an integral measure of the bouyancy force associated with sub-ensemble
D, with the weighting function n(p,p). Physically, A(P)>0 can be
thought ¢f as a generalized criterion for moist convective instability,
while A(p)< 0 is indicative of a neutral or stable situation. It is
also a measure of the efficiency of kinetic energy generation by buoy-
ancy forces for sub-ensemble B. Since the variables in the integrand
of (2.52) are either prognostic variables, or are related diagnostically
to prognostic variables, the time rate of change of A{pP) can be written
in terms of the time derivatives of Sys Gy s(p), and q(p) (we here-
after refer to barred and mixed layer quantities as 'large-scale'
quantities). Thase time derivatives are in turn related toc two types
of terms: convective-scale terms which are proportional to the cloud

base mass flux distribution mB(E), and the large-scale terms which
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include horizontal and vertical advection, radiation, and surface
eddy fluxes (see equations (2.26), (2.27) and (2.40)-(2.41)). Thus,
the time rate of change of A(p) can be expressed as tfe sum of convec-
tively induced changes and large-scale changes (in wrich we have in-

cluded surface eddy fluxes), or

3A(P) . 3A(p)] 3A(p)
3t 5% |5 Ot I g (2.53)

Since the convective-scale terms depend Tinearly on mB(E) and all

A, -

sub-ensembles participate in determining Q%%Bl’ s We can write
C.S.
~ 0
3A(E’ = _ AA A ~, ~ .
3t K(P,p ) mB(p ) dp + FL.S.(p) ’ (2.54)
pB-pT

where the kernel K(p,p”) and the forcing FL.S.(ﬁ) are known. The
kernel represents either a destruction or generation of A(p) by sub-
ensemble p” if sub-ensemble P” has unit cloud base mass flux.
Arakawa and Schubert proposed a closure hypothesis, referred to
as quasi-equilibrium, which requires balance between the large-scale
generation of A(p) and the convective-scale destructich of A(p) for
all sub-ensembles. Mathematically this closure hypoth2sis takes the

form
0

-f K(P.p”) my(p”) dp” + F ¢ (B) = 0. (2.55)
pB'pT

It is appropriate at this point to consider the use of B (pressure
depth) as the spectral parameter, rather than ) (fractional entrainmert
rate) as in the original theory. Because we will be incorporating

the parameterization scheme in a vertically discrete model atmosphere,
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the use of X\ as the spectral paramcter must be reconsidered since in
order to Ffollow sub-ensemble X irn time, the detrainment pressure Tevel
pD(k) (and hence the detrainment sigma level cD(k)) would become a
function of time. Since the vertical coordinate is fixed for all time
at a finite number of points, XA could be retained only with interpola-
tion of the cloud work function in A-space which would introduce sig-
nificant errors in the application of the theory. Thus we have chosen
p, the cloud depth pressure as the spectral parameter since the cal-
culation of é%%ﬁl~poses much less of a computational problem.

We now note that this change in the spectral parameter somewhat
9A(p)  3A(A)

alters quasi-equilibrium as originally formulated, since

ot ot
The exact relationship between the two forms can be written
3A(D) _ [2A(R)) , [3A(R)) fan(p))
3t [at J, T U Uet ) (2.56)

The use o° P as the spectral parameter gives rise to a second term
which was not present in the original theory. This involves the time
rate of change of the fractional entrainment rate of sub-ensemble ﬁ,
since A 1s now an independent variable. The selection of the spectral
parameter is one of the arbitrary aspects of the cloud model, and it
is not clear that the choice of A has any more physical significance
than the choice of P; i.e. the choice of p as the spectral parameter
may be just as reasonable as the choice of A. As one example, Lord
(1978) has recently assembled observational evidence which shows the
cloud work function to be a quasi-universal function of detrainment

level pD1. Since this is yet an unresolved aspect of the cioud model,

7In ~he absence of surface pressure variations, our spectral
parameter of sub-ensemble pressure depth reduces to sub-ensemble
> £y moy
detrainment pressure level as suggested by Lowrd {1372}.
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and since from a computational point of view we are forced to use a
spectral parameter other than fractional entrainment rate, we proceed
with our use of ﬁ noting the modification this makes to the original
formulation of quasi-equilibrium.

Requiring balance between the large-scale generation and convec-
tive-scale destruction of A(P) means that our equation for mB(ﬁ) takes
the form of a Fredholm integral equation of the first kind. The
various schemes suggested for solving this type of equation do not
guarantee a non-negative mass flux distribution which is a necessary
constraint if the solution is to be regarded as physically reasonable.
In order to avoid the difficulties associated with obtaining negative
cloud base mass fluxes in the solution, we have chosen tc restate the
quasi-equilibrium hypothesis as an optimization problem (Hack and
Schubert, 1976) which can be written in the following form. Let E

represent the subset of the p domain for which Fl s (p)>0. We wish

then to
minimize ’j c(p) é%%El dp i ,
P
subject to
BA 3 = AN A, ~, A
JEL% ) K(p,p”)mg(p7)dp” + F < (p) ,
p
me(p) 20,
) g . (2.57)

Formulating the problem in this way requires quasi-equilibrium to be
satisified as closely as possible while constraining th2 cloud base

mass flux distribution to be non-negative. This particular formulation
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of the problem is referred to as the 'overadjustment case' by Silva
Dias and Schubert (1977) who have investigated other formulations of
the optimation problem (underadjustment and free variable cases). In
(2.57) both E%%El and mB(ﬁ) are regarded as unknowns while c(p),

K(p,p~) and F {p) are regarded as knowns. The weighting function

L.S.
c(p) is defined to be negative in order to maintain a mathematically
well posec minimization problem. The discrete form of (2.57) turns
out to be a Tinear programming problem which is readily solved using
the simplex method (Dantzig, 1963; Luenberger, 1973) and is discussed
in the following paragraphs as the optimal adjustment method.

As we saw in section 2.2.1, the processes which contribute to
changes in the large-scale temperathre, moisture, and momentum fields
can be divided into two parts: Tlarge-scale terms, consisting of large-
scale horizontal and vertical advection, large-scale pressure gradient
and Corjo is accelerations, radiation and surface eddy fluxes; and
convective-scale terms, consisting of convective-scale flux divergence
and source/sink terms (see equations (2.26), (2.27), (2.28), (2.40)-
(2.42)). In the tropical cyclone model, the Targe-scale terms and
convective-scale terms are computed separately using different time
steps. Tupically these time steps are 20 seconds for the large-scale
terms and 300 seconds for the convective-scale terms. Thus, it is
convenient from a computational point of view to formulate the cumulus
parameterization in terms of an adjustment process. Although we have
used the word 'adjustment' our procedure should not be confused with
the moist convective adjustment methods used in many numerical models.
The adjus:ment process we will discuss is purely a conseguence of the

time discretization associated with the numerical model.
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Let us define the atmosphere to be stable to sub-ensemble p if
the cloud work function A(p) is smaller than some critical value Ac(ﬁ).
Thus, the atmosphere is considered to be respectively neutral or un-
stable to each sub-ensemble depending on whether A(p) aquals or exceeds
this critical value. If the large-scale terms push th2 atmosphere into
an unstable state, it is the job of the dynamic control (2.57) to
determine a mass flux distribution which will adjust the atmosphere
back at least to (but at the same time as close as possible to) the
neutral state for each B subject to the constraint that each sub-
ensemble mass flux be non-negative (see Fig. 2.4). Th’s is the dis-
crete analogue of (2.57) which we will discuss in mathematical form
in the remainder of this section.

Suppose we have n cloud types (where a 'cloud-type' is the dis-
crete analogue of 'sub-ensemble'). Let Mg . be the clouvd base mass
flux of the ith cloud type and bi be the a;ount that the ith cloud
work function exceeds the neutral (or critical) value (bﬁ> 0). If
cloud type j contributes an amount Kij per unit mass flux to the re-
duction of bi (where K1.j is the discrete analogue of the kernel
K(B,B’)), we can write

K11mB]+ K]2m82+ ceo t K]nt 3_b1
n
K™, " Koot -oo * Kong 2 b

+ K

: + Kn m, >b ,

nB —n

K .m m, + ...
nl B ne 82 n

>0, my >0 ... my, >0. (2.58)
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Equation (2.58) states that an adjustment greater thar or equal to b.
must occur for each i and that each sub-ensemble (cloud type) mass flux
must be non-negative.

Each inequality in (2.58) can be converted to an 2quality by
introducing a 'surplus variable' x. For inequality i, the surplus
variable X; represents the surplus adjustment done to work function 1.

Thus, inequality i takes the form

Ki]mB + K-ZmB + DY + Kint - X. = b- . . (2.59)

1 1278, n 1
The objective is to minimize some measure of the surplus adjustment.

Assuming that this measure is linear and gross in character we can

write
n
minimize l CX;
i=1
subject to
Kiym, + K, m, + + K, m, - X4 = Db
11 B] 12 B2 n Bn 1 1
1 2 n
KnlmB * KanB + * Ko = %y = bn .
1 2 n
and
m, >0, my >0 my >0,
By = B, By
X3 20,%20 ... x >0 (2.60)

where C; are the weights. In more compact vector notation we can

write
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> >
minimize <¢-x ,
subject to

=3,

>+

IK mB -

>
m

w
|v
o
w

0. (2.61)

¥
|v

Thus we have ne minimization objective, n adjustment constraints and
Zn non-negativity constraints. Solution of the problem yields the n
unknown sub-eisemble mass fluxes, the n unknown surplus adjustments,
and the value of our objective function, g C;X

j=
measure of the surplus adjustment. The optimization problem as for-

i which is a 