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ABSTRACT

Two studies were conducted during 1971 and 1972 in the green-
house and in the field to determine the photosynthetic and aboveground
respiration rates of blue grama (Bouteloua gracilis) and western
wheatgrass (Agropyron smithii) as affected by several ecological
variables. The major objective was to provide carbon dioxide (002)
exchange rates for these two species for use Iin the ecosystem mod-
eling efforts of the U.S.-IBP Grassland Biome. The variables
chosen for consideration for their effects on the CO2 exchange rates
of both specles were soil water potential, temperature and irradiance,
with phenological stage added as a fourth variable affecting the 802
exchange rates of blue grama. Carbon dioxide exchange rates were
determined by infrared gas analysis using separate systems in both
the greenhouse and in the field.

The CO2 exchange rates of both species were significantly af-
fected (p < 0.01) by each of the variables considered. Light satur-
ation of the C4 species, blue grama, was evident only at very high
irradiances accompanied by high temperatures and soil water stress.
The C3 species, western wheatgrass, was light saturated at relatively
low irradiances. The optimum photosynthetic temperature for blue
grama ranged from about 26°C to 33°C. Optimum conditions of soil
water potential and irradiance resulted in an optimum temperature

near 33°C, while soil water stress and low irradiance resulted in
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lower optimum temperatures for photosynthesis of blue grama. The
optimum temperature for photosynthesis of western wheatgrass was
lower than the lowest temperature of 20°C included in the experi-
mental design. Increasing soil water stress resulted in significant
decreases in the photosynthetic rates of both species. Aboveground
dark respiration for both species increased with increasing temper-
ature and decreased with increasing s0il water stress.

Four 24-hour ambient simulations of abiotic conditions for in
situ blue grama sods in the field during the 1972 growing season
provided integrated net photosynthetic rates of from 1.7 to 4.3 g
CHZO':nq2 ground area'day-l. The greater photosynthetic rates were
noted during near optimum conditions of soil water potential, visible
irradiance, and temperature.

A dynamic seasonal primary productivity model for blue grama
was constructed utilizing the CO2 exchange data set determined in
the field study. The model predicted a total net érimary production
for blue grama of 714 g CHzO-m-2 ground area-year—l, which compared
favorably with 809 g-m—2 ground .au:eal‘ye.':lr“1 determined through har-
vesting techniques by Lauenroth (1973) for the same growing season

(1972) and which included other species on the shortgrass prairie site.



INTRODUCTION

Photosynthesis is the basic process determining primary pro-
duction, which, in sequence, determines all secondary production.
Photosynthesis, through the fixation of carbon dioxide (002) from
the atmosphere, is usually considered to be the first step in the
process of the flow of carbon through the ecosystem. The importance
of photosynthesis in nature makes an understanding of the process
essentlal for any ecosystem analysis and modeling endeavor.

The primary objective of this study was to determime the
effects of several abiotic driving variables on photosynthetic
rates of two important shortgrass species. Additional objectives
included monitoring of 002 exchange of the shortgrass dominant in
the field as influenced by plant phenological development and abiotic
variables, and terminally, to utilize the data in a primary produc-
tivity simulation model.

Two species of the shortgrass prairie were chosen for consid-
eration in the study. The first, and most important species, was
blue grama (Bouteloua gracilis(H.B.K.) Lag.). According td Weaver
and Albertson (1956) blue grama is the dominant species of the short-
grass prairie, which is the largest grassland assoclation on the
North American continent. Blue grama is also the major native
forage species on the continent and, according to Uresk (1971),
comprises about three-fourths of the graminous vegetation of the
Pawnee Intensive Study Site of the Grassland Biome of the U.S.
International Biological Program. Blue grama is a warm season

grass which exhibits the C4, dicarboxylic acid biochemical pathway



of CO2 fixation (Williams and Markley, 1973). The second species

chosen for study was western wheatgrass (dgropyron emithii Rydb.).
Western wheatgrass is a sub~dominant of the shortgrass prairie and
is a cool season grass exhibiting the C3, Calvin-Benson pathway of
CO2 fixation (Williams and Markley, 1973).

Although blue grama and western wheatgrass have different path-
ways of CO2 fixation, both species are well adapted to the semi-
arid shdrtgrass prairie in eastern Colorado. Therefore, an extensive
comparison of the 002 exchange rates of the two species will be made
in terms of C3 and C4 ecophysiological characteristics.

Four variables deemed most important in influencing the photo-
synthetic rates of plants were chosen for consideration in the present
study. They were soil water potential, temperature, visible irrad-
iance, and phenology. The effects of these variables on photosynthetic
rates for several species have been documented in the literature, but
most of the species previously studied have been gingle stem crop
varieties. Photosynthetic rates of single stem plants are much
more easily measured utilizing 002 exchange systems because an assimi-
lation chamber can easily be sealed around a stem. Multi-stem species,
such as forage grasses, have been little studied to date because of
the complexities involved in eliminating CO2 evolution from the scil.
It is necessary to either seal the soil surface to prevent CO2 dif-
fusion from the soil, or to subtract out the CO2 enrichment from the
soil by making various supplemental measurements.

Carbon dioxide exchange studies were carried out in both the

greenhouse and in the field with two separate 002 exchange systens.



The greenhouse study involved both blue grama and western wheatgrass.
The field study was conducted on in situ blue grama vegetation only.

The greenhouse 002 exchange system allowed photosynthetic
determinations to be made at a constant phenological stage of develop-
ment for each species. The study provided data on CO2 exchange
rates for steady state conditions of abiotic variables, but more
importantly, it provided direct determinations of net photosynthetic
and aboveground respiration rates for each species. Net photosyn-
thetic and aboveground respiration rates were impossible to measure
directly in the field.

A portable 002 exchange system was utilized during the 1972
growing season at the Pawnee Site to determine 002 exchange rates
of in situ blue grama vegetation. Two types of experiments concerning
CO2 exchange rates of blue grama in the field were made. The first
experiment involved collecting data for steady state conditions.
This required the manual recording of 002 exchange rates, and all
values of other variables, when all environmental conditions were
constant. Both greenhouse and field steady state determinations
provided information on photosynthetic rates of blue grama for wvar-
ious levels of each variable and for a variety of combinations of
the wariables, and should, therefore, be of greatest walue for
modeling purposes.

The second type of field experiment was the determination of
CO2 exchange rates of in situ blue grama sods for 24-hour periods
during several times throughout the 1972 growing season. These

detetrminations allowed integration of photosynthetic values for



24-hour periods, thereby providing illustrative daily production
values for the shortgrass prairie.

The greenhouse experiments were used to supplement the field
experiments. A combination of both field and greenhouse experiments
gave a thorough understanding of 002 exchange characteristics of

two major grasses of the shortgrass prairie.



REVIEW OF LITERATURE

Biotic Factors Affecting Carbon Dioxide Exchange Rates

The 03 Pathway

Benson and Calvin (1947), and many subsequent publications by
them and their co-workers, determined the basic cycle of 002 fixation
by plants. The cycle is variously referred to as the photosynthetic
carbon reduction cycle, the Calvin-Benson cycle, or the C3 cycle
(because the initial product is a three-carbon compound)}. The
entire cycle of reactions was reported by Zelitch (1971) and is
too complex for the purposes of this paper. Suffice it to say that
the initial reaction is the catalysis of ribulose-1,5-diphosphate
with 002, forming two molecules of 3-phosphoglyceric acid. The
C3 cycle can be thought of as the common denominator of all photo-

synthetic pathways.

The 04 Pathway

The C4 cycle, termed the C4 dicarboxylic acid cycle by Hatch
and Slack (1966, 1968 and 1970) enhances the C3 cycle by acting
as a mechanism for concentrating 002 for the carboxylation step in
the C3 pathway. The initial reaction is the catalysis of phospho-
enolpyruvic acid with 002 forming an intermediate four-carbon
compound, oxaloacetate, which immediately goes to either malate or
aspartate. Both malate and aspartate form CO2 in subsequent reactions
in the thick-walled bundle sheath cells of C, plants. This co, is
not lost because of the thick walls that act as physical barriers
to 002 diffusion. Therefore, CO2 is concentrated for the initial

reaction of the C3 cycle. This results in high rates of CO2



fixation at high light intensities and temperatures. In addition,
reductions in the detrimental effects of high plant water stress
are often observed for C4 plants (Downton, 1971).

The 03 cycle requires three adenosine triphosphate molecules
(ATP) and two nicotinamide adenine dinucleotide phosphate molecules
(NADPH) from the light reaction of photosynthesis for the energy
source and reducing power to reduce one molecule of CO.. In con-—

2
trast, the C4 cycle requires five ATP's and three NADPH's for

.

reduction of each molecule of C02. Superficially, the additional
enexrgy requirement for the C4 cycle implies that the C3 cycle is
more efficient than the C4 cycle. This is not the case because C4
plants are capable of utilizing higher light intensities than 83
plants. Although C4 plants require more energy to facilitate their

reactions, they are capable of utilizing the energy available to

them at higher light intensities.

Morphology, Anatomy and Evolution

Some of the morphological characteristics of plants affect the
photosynthetic rates by serving to dampen the effects of gsome abiotic
driving variables such as temperature. Morphology will be discussed
in each subsequent section where appropriate.

Grass leaves have been divided into two major anatomical groups
by Prat (1936) and Brown (1958). The two groups are referred to as
the Panicoid and Festucoid groups. The chlorenchyma cells of the
Panicolds are radially arranged around the vascular bundles. This
radial arrangement is termed "Kranz" anatomy, and is directly assoc-—

iated with the C4 pathway of CO2 fixation (Downton, 1971). 1In



addition, the bundle sheath cells of Panicoids have numerous chloro-
plasts. The chlorenchyma cells of the Festucolds are irregularly
arranged between adjacent vascular bundles. This irregular arrange-~

ment is assoclated with the C, pathway (Downton, 1971).

3
There has been much disagreement as to the value of leaf
anatomy as a tool for determining which photosynthetic pathway a
plant possesses. Downton (1971) was a strong proponent of the use
of leaf anatomy as the most rapid and unambiguous means of photo-
synthetic pathway identification. Even with such a positive statement,
it is still generally felt that the most reliable method for pathway
determination is the analysis of products of the initial photosynthetic
reaction (Williams and Markley, 1973). Williams and Markley (1973)
developed a technique for rapid identification of the initial products
which was used for determining the photosynthetic pathways of western
wheatgrass, blue grama, and four other shortgrass prairie species,
The 04 dicarboxylic acid synthesls initially occurs in the
mesophyll layer. From there the acids malate and aspartate are
actively translocated to the bundle sheath where they are decarboxyl-

ated providing co, for the initial C, reactions (Hatch, 1971). The

3
C3 plants lack the highly evolved parenchyma bundle sheath cells
containing specialized chloroplasts which facilitate the fixation
of CO2 from both the atmosphere and respiration (Downton, 1971).
Downton (1971) speculated that the C4 system in grasses first
evolved from the Festucoid (C3) leaf type to a leaf type something

similar to that of the Bambusoid of today. Bambusoids possess

thin-walled bundle sheaths containing unspecialized chloroplasts.



Next, Downton (1971) speculated that the cell walls could have
thickened causing a concomitant reduction in mesophyll air space
and a consequent radlal arrangement of the mesophyll cells.

Ancther indication that C4 species might have evolved from C3
species comes from the findings of Downton, Barry and Tregunna
(1969) that members of the Dichanthelium sub-genus of Panicum be-
haved as C3 pPlants even though they belong to a predominantly C4
group.

Troughton (1971) took advantage of the fact that higher plants
discriminate against the heavier isotope of carbon, 13C. He studied
numerous specles of plants and found the extent of discrimination
to be directly correlated with the photosynthetic pathway, C4
specles being less discriminatory than C3 species. Analysis of
coal samples taken from America and Australia dating back to the
Cambrian Period indicated that C3 plants formed the coal.

Evans (1971) in a thorough assessment of the taxonomic dig-
tribution of plants, also concluded that the C3 cycle was the more
primitive photosynthetic pathway.

Certainly one of the most important considerations involved
in determining the evolution of C4 plants must be the fact that
all plants today rely on the C3 mechanism for the ultimate steps
in CO2 fixation. The greater 002 fixation rates of 04 plants are
probably important in terms of survival and adaptation, but more
importantly, the performance of these plants under extreme conditions
of stress is definitely of selective advantage in many parts of the

world (Bjorkman, 1971). The C4 specles survive and may be better



adapted than many C3 species under conditions of high water stress,
high temperature, high oxygen concentrations, low 002 concentrations
and high irradiances (Bjorkman, 1971). These conditions were prob-
ably not typical during the evolution of higher plant life on this
planet. The C3 plants must have been the first higher plants to
evolve in the low oxygen, high CO2 atmosphere of the earth at that
time. The C4 pathway probably evolved as an adaptive mechanism
of plants originally native to moist tropical regions and climates,
which immigrated to temperate regions and more temperate climates
in tropical regions. Because of the evolutionary trends, grasses
possgessing the C4 cycle are commonly referred to as warm season or
tropical grasses, whereas those exhibiting the C3 cycle are referred
to as cool season or temperate grasses (Downton, 1971).

Originally, the C4 pathway was shown by Hatch and Slack (1966)
to be present in a few tropical grasses. To date, the C4 pathway
is known to exist in hundreds of monocotyledous and dicotyledous
species comprising nearly 100 genera and at least ten plant families

(Bjorkman and Berry, 1973).

Photorespiration

Photorespiration is light-stimulated respiration. Photores-
piration differs biochemically from normal dark respiration (which
also occcurs in light) and is specifically associated with the oxi-
dation of immediate photosynthetic products. It is variously defined
as either the total amount of respiration occurring in light, or as
the amount of respiration due only to light. According to Zelitch

(1971) photorespiration'rates can be three to five times greater
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than dark respiraticn rates. The significance of photorespiration
becomes more clear when it is realized that the decrease in dry
welght galn because of dark respiration alone can be very high.
Respiration is probably the single most important factor limiting
the dry weight gain of plants.

Respiration rates of both C3 and 04 species are usually greater
in light than in darkness, but photorespiration cannot be measured
directly by conventional CO2 exchange apparatus under normal con-
ditions. The biochemical source of photorespiratory 002 is not
definitely known, but according to Zelitch (1968), the source is
probably glycolate which has been synthesized from ribulose-1,5-
diphosphate (RuDP). Light is necessary for the regeneration of
RuDP in all plants, thus light leads to the production of photo-
respiratory COZ' Plants possessing the 84 photosynthetic pathway
are capable of immediately reassimilating this 002 because the bundle
sheath cells of C4 Plants have thicker walls which provide a barrier
to CO2 diffusion. Therefore, the C4 plants probably possess, but
do not exhibit, photorespiration.

According to Samish and Koller (1968) the lack of measurable
photorespiration for 04 plants is also caused by a low mesophyll
resistance to COz_diffusion. Low mesophyll resistance of C4 plants
is associated with the greater amount of energy available to them
for CO2 fixation. The lack of apparent photorespiration in C4
plants might account for the greater net photosynthetic rates ob-

served in these species,
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The limiting effect of normal atmospheric oxygen concentrations
on the net photosynthetic rates of C3 plants is directly associated
with photorespiratrion. The C4 plants are not limited by oxXygen
concentrations normally found in the environment (Mulchi, Volk and
Jackson, 1971). Gauhl and Bjorkman (1969) determined the photo-
synthetic rates of Solamum duleamora and Atriplex patula spp. hastata
(both lacking the C4 pathway) to be approximately 50 percent greater
at 1.5 percent oxygen than at 21 percent oxygen. The photosynthetic
rate of Atriplex rosea, a 04 species, was not significantly greater
at the lower oxygen concentration.

The inhibitory effect of oxygen on photosynthetic rates of C3
plants varies with both light intensity and temperature. Bjorkman
(1966) determined that the net photosynthetic rate of Pantago lace-
olata was inhibited by normal oxygen concentrations at a very low
light intensity, and that the inhibitory effect increased with in-
creasing light intensity. Increasing temperatures also caused
increases in photorespiration.

The lack of apparent photorespiration in CQ species along with
the trait that they do not release measurable 002 into a C02-free
atmosphere has been associated with very low 002 compensation
points in these specles (El-Sharkawy and Hesketh, 1965). The CO2
compensation point is considered to be the CO2 concentration below
which a plant can no longer take up CO2 from the atmosphere. Downton
and Tregunna (1968) pointed out that plants with high, photosynthetic

rates, 40-60 mg COz-dm-z-hr—l, had CO2 compensation points very

near zero parts per million (ppm), while plants with low photosynthetic
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rates, 20~30 mg COz-dmfz-hrhl, had CO, compensation points of 39 ppm
or greater,

Kruger and Moss (1969) determined low 002 compensation points
for eight species of the genus Panicum, and high CO2 compensation
points for two other species of the same genus. The genus A¢riplex
exhibits a similar variation in photosynthetic pathway. Wallace et
al. (1971) reported on variations in photosynthetic pathway within
the same species and Caldwell et al. (1972) determined a very broad
range of optimum photosynthetic temperature over a growing season
for Atriplex confertifolia. This might at first be construed to
indicate a transition from the C3 to the C4 photosynthetic pathway
during the growing season for the same Plant. However, Atriplex
confertifolia is a C, species.

Another variation among C3 and C4 plants in relation to photo-
respiration is the observation by Moss (1966) that C3 plants exhibited
a post-illumination burst of CO2 upon both i1llumination and darkening.
He found that the rate of CO2 released from the leaves of five species
of C3 plants decreased when they were first illuminated, then passed
through a minimum, and then increased to a higher rate than the
original dark rate. Upon darkening, the rate of C02 evolution rapidly
increased to a rate greater than that when under illumination. The
evolution rate then gradually decayed to the original steady dark
respiration rate. Light probably enhanced a reaction which produced
more CO2 than normal dark respiration. A further explanation for
the post-illumination burst of CO2 was proposed by Tregunna, Krotkov,

and Nelson (1964). They theorized that either CO2 trapped in the



13

stomate was immediately rejected and released upon darkening or
that there was an immediate breakdown of a recent photosynthate.
The C4 specles do not exhibit a burst of C02 because they form less
glycolate and do not photorespire as much, which is directly re-

lated to the greater rhotosynthetic efflciency observed in C4 species,

Ageing

Jewiss and Woledge (1967) studied the effect of age on the
rate of apparent photosynthesis of leaves of tall fescue (Festuca
arundinacea). Thelr results showed a progressive decline in the
photosynthetic rates of leaves as the leaves aged. Woledge and
Jewiss (1969) discussed the temperature-age interactien effect on
tall fescue. They reported that plants grown at the higher tem-
peratures aged faster, with a concomitant decrease 1in photosynthetic
activity, than plants grown at cooler temperatures.

Treharne, Cooper and Taylor (1968) determined that the photo-
synthetic rates of orchardgrass (Dactylis glomerata) increased for
15 te 20 days and then declined sharply. Further examination showed
that the photosynthetic rates per unit of chlorophyll changed very
little throughout the life of the leaf which indicated that fluctu-
ating chlorophyll content was the cause of the change in photosyn-
thetic rates. -

Wright and Lemon (1966) calculated the vertical distribution
of photosynthetic CO2 fixation at different levels within corn (Zea
mays} crop. Their results demonstrated both the importance of the
younger upper leaves and the increased fixation by the lower

leaves during periods of high light penetration. Tripathy, Eastin
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and Schrader (1972) compared photosynthate export from two leaf
positions in a corn canopy. They determined that the rate of
export of photosynthate from older leaves was slower than from
younger leaves, but that the direction of export from a given
leaf position changed as phenology changed. Trgnsport from upper
leaves was predominantly downward, whereas direction of export
from lower leaves changed from downward to upward as the ear be-
came the dominant sink.

Geronimo and Beevers (1964) determined the effects of ageing
on the respiration of pea (Pisum sativum) leaves. They found that
respiration rates were greatest in the youngest leaves, and decreased
40 to 60 percent as the leaves aged about ten days. Hadley and
Bliss (1964) reported that the respiration rates of Cagrex bigelowii
early in the season were approximately double the rates later in
the growing season; They attributed much of this reduction in
respiration with advancement of season to a completion of leaf ex-
pansion and reduction of terminal growth. Consequently, Carex
bigelowii showed no positive net photosynthesis until spring growth,

flowering, and fruiting were completed.

Ablotic Factors Affecting Carbon Dioxide Exchange Rates

Light

Not all of the incident solar radiation is available for photo-
synthetie capture. It is generally agreed that only the total solar
radiation within the 400 to 700 nm wave band should be considered as
photosynthetically active irradiance (Botkin and Malone, 1968; Locmis

and Williams, 1963).
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Voskresenskaya et al. (1970) experimented with the effect of
light quality on the photosynthetic rates of tobacco and three
other C3 species. They found that the photosynthetic rate in blue
light was greater than or equal to that in red light, They also
found that low intensities of blue light sometimes inhibited photo-
synthesis, but by adding red light, allowing prolonged exposure to
blue light, or by lowering the oxygen concentration, inhibition
was avoided. Balegh and Biddulph (1970) determined the action
spectrum for bean (Phaseolus vulgaris) leaves and found great
similarity between it and the absorption spectrum for six species
determined by Moss and Loomis (1952).

Many C4 plants show no light saturation while most C3 plants
generally saturate at 20 to 30 percent of full sunlight. Hesketh
and Moss (1963) determined that the photosynthetic rate of corn,

a C4 species, increased 20 to 60 percent as the light intensity
was raised from 0.5 to 1.0 langley'min-l. Sunflower, an exceptional
03 plant in this respect, responded similarly.

Bjorkman and Holmgren (1963) and Bjorkman (1968) studied the
adaptability of the photosynthetic apparatus to light intensity of
ecotypes of Solidago viraurea from exposed and shaded habitats.
They found that stromg light actually decreased the photosynthetic
rate of the shade ecotype. Low light intensities decreased the
photosynthetic rates of the sun ecotype, but the shade ecotype had
higher rates of photosynthesis than the sun ecotype at low light
intensities. However, each ecotype exhibited adaptability to the

new light regime in which it was placed.



1g

The quantity and quality of light absorbed by a single leaf
is very important in determining the photosynthetic rate of the
leaf. However, when productivity is considered, the amount of light
available for photosynthesis is also dependent upon the leaf area
index (LAI). The LAI is defined as the ratio between the amount
of leaf area (one side of the leaf) and the amount of ground surface
area (Knight, 1973). Brown, Blaser and Dunton (1966) found that
apparent photosynthesis of individual leaves of three forage species
was light saturated at lower intensities than were intact swards.

Pearce, Brown and Blaser (1967a) found that an increase in
LAL resulted in an exponential decrease in light penetration in
swards of barley. Net photosynthesis increased with increasing LAT
until the optimum LAI was reached, after which net photosynthesis
decreased.

Leaf angle also becomes an important factor for production
because the quantity of light intercepted is dependent upon the
angle of the leaf in relation to the angle of incident radiation.
Leaf angle interacts with LAI in its effects on productivity,
Pearce, Brown and Blaser (1967b) found that leaf angle had little
effect on the net photosynthetic rate of barley up to an LAI of
2.5, but as the LAI increased above 2.5 the net photosynthetic
rate was higher for more vertically-oriented leaves.

Knight (1973) reported maximum LAI's of Q.55 and 0.37 for
the Pawnee Site during 1970 and 1971, respectively. He attributed
this difference to the mid-summer drought of 1971, and indicated

that water was the primary limiting factor for LAI on the shortgrass
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prairie. He also indicated that nitrogen fertilization was required
to obtain an LAY much greater than 0.5. It is improbable that
photosynthetic rates of shortgrass species based upon leaf area

are greatly affected by changes in LAI, since LAI is usually less

than one.

Temperature

Different plant species demonstrate a wide range of optimum
photosynthetic temperatures. Wolf (1969), in a study on the effects
of temperature and light intensity on 30 species, found that one
or more of the species demonstrated greatest rates of photosynthesis
at each of the three temperatures of 23°C, 30°C, and 35°C. General
optimum temperatures for Cy and C, species are 10°C to 25°C and 30°C
to 40°C, respectively. Most C3 plants become chlorotic and die
around 35°C, while many C4 species can withstand temperatures as
high as 50°C (Downton, 1971). Conversely, some C3 speciles are
quite active at 5°C, while most 04 specles are generally inactive
at that temperature (Downton, 1971).

Woledge and Jewiss (1969) found that tall fescue adapted to
the temperature regime in which it was grown. Plants grown in high
temperatures had high optimum temperatures for photosynthesis and
those grown at low temperatures had low optimum temperatures. When
Plants grown in high temperatures were transferred to cooler growing
conditions, the optimum temperature decreased as the plants adapted
to the cooler environment.

Bjorkman et al. (1972) determined an optimum photosynthetic

temperature of 47°C for Tidestromia oblongifolia growing in Death
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Valley, California. They attributed this very high optimum photo-
synthetic temperature to the C4 photosynthetic pathway and a high
thermal stability of the biochemical photosynthetic apparatus. This
is the highest reported optimum photosynthetic temperature recorded
to date for a higher plant, and is very high even for C4 plants.

Taylor and Rowley (1971) measured the effects of chilling
stress under various light and time treatments of assorted C3 and
C4 species. The photosynthetic rates of all specles decreased when
subjected to the chilling stress of 10°C, but the photosynthetic
rates of the C4 species declined to negligible levels after two to
three days. The photosynthetic rates of the 03 specles studied de-~
creased more slowly and maintained a positive net photosynthesis at
the 10°C temperature.

Mooney and Billings (1961) compared the physiological ecology
of arctic and alpine populations of Oxyria digyra. They found that
plants from northern populations had higher respiratory rates at
all temperatures than plants from southern alpine populations. The
northern plants also had higher photosynthetic rates at low temper-
atures and a lower optimum photosynthetic temperature than the

southern plants.

Water
All vital chemical reactions and all life processes take place
in water. Soil acts as an absorbent and reserveir for the water
necessary to maintain plant life. Water in an unsaturated soil
exists as films around the soil particles and as vapor in the gag~

filled spaces between the particles. The thinner the film of water
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around the soll particles, the more tightly the water is held, and
the less available it 18 for plant uptake and use. The plant must
provide energy to remove water from the soil and the amount of
energy required is partially dependent upon the thickness of the
layer of water around the soil particles. The total energy required
for uptake is a function of the free energy status of the soil water,
often referred to as the soil water potential.

According to Brown (1970), the most important forces affecting
water potential are the additive forces of matric, osmotic and
pressure potentials. Matric potential is the term applied to the
adsorption of the water film on the soil particle. Osmotic potential
is a function of the presence of dissolved substances in the solu-
tion, while pressure potential is the effect of pressure on the
total water potential. Temperature and gravity also affect soil
water potential.

The free energy, or potential, of pure water is zero. Matric
and osmotic components of soil water potential additively decrease
the potential of the water. The pressure component can act only to
raise the total water potential since at normal atmospheric pressure
(considered zero) there 1s a balance of pressures canceling each
other out. Positive pressures will increase the water potential
and should be considered for plants only when such things as turgor
pressure in cells will have an effect. Considering these relative
values, soil and plant water potentials will always be negative.

The driving force for water movement in the soil-plant-atmosphere

continuum is the decreasing energy gradient of water in the system.
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The most important biotic and abiotic factors responsible for
maintenance of the decreasing energy gradient (and therefore the
dynamics of water in the system) are transpirationm, evaporation,
temperature, and atmospheric vapor pressure gradients., Each factor
serves to create a type of energy vacuum which is filled by the
dynamics of high emergy soil water flowing toward an area of low
energy. According to Wiebe et al. (1971), water in the soil-plant
continuum is rarely, if ever, in equilibrium with surrounding water.

According to Black (1968), the traditional values given for
soil water potential at field capacity and permanent wilting per-
centage are -0.3 and -15.0 bars, respectively. These values were
considered soll water constants identifying the upper and lower
1imits of soll water available to plants. According to Kozlowski
(1964) these values were first questioned by Taylor, Blaney and
McLanghlin (1934) who visualized a "wilting range" rather than a
wilting point, and later by Slatyer (1957) when he indicated that
the permanent wilting point is determined by the osmotic charac-
teristics of the plant rather than the soil.

The most commonly observed effect of water stress on plants
is the general decrease in growth or size because of a reduction
in cell elongation and cell turgor (Kramer, 1969). Size reduction
can easlly be measured for trees and shrubs and can be observed
in grasses when the leaves involute under water stress. Water
stress directly or indirectly affects all physiological processes.

The effect of water stress on photosynthesis is very complex.

Perhaps the most important single effect of low s0il water potentials
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is low cell turgor which leads to stomatal closure and eventually

to reduced leaf area. Stomates must be open for the rapld exchange
of CO2 and oxygen. Water stress, therefore, reduces the capacity

of the plant to carry on photosynthesis. Translocation is also
affected by water stress as it is related to tramspiration which

is highly correlated with photosynthetic rate (Zelitch and Waggoner,
1962). It appears that much water lost through transpiration is

not necessary. Most of the water lost through transpiration 1s a
compromise for the necessary CO2 diffusion into the stomates (Kozlowski,
1964). The relative humidity inside the leaf is essentially 100 per-—
cent and when the stomates open for gaseous exchange, water vapor
diffuses out.

According to Stalfelt (1959), the size of the stomatal aperture
is regulated by both photoactive and hydroactive processes. The
photoactive process is stomatal closure at sundown and opening at
dawn. Most research conducted on the effect of soil water on photo-
synthesis is related to stomatal response to stress caused by low
soil water. Brown and Rosenberg (1970) found a linear relatiomship
between decreasing soil water potential from -0.35 bars to -0.52
bars and stomatal resistance to gaseous diffusion in the C3 plant
sugar beets (Beta vulgaris). A significantly detrimental effect
of high temperatures on plants often results from increased evapo-
transpiration demand. According to Kramer (1969), when two climates
with similar amounts of precipitation are compared, the cool climate
might support a forest, whereas the hot climate might result in a

grassland. The most striking adaptation of grasses to xeric conditions
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is their ability to roll or involute their leaves, thus reducing

the transpiration surface to a minimum. The resultant high
humidity within the leaf roll reduces the amount of transpiratiom
within the roll (Shields, 1950). Convolutions of the leaf surface
are a particular adaptation of the cool season grass, western wheat-
grass, to xeric conditions. Cammon (1921) pointed out that strong
parallel veination of the leaf surface formed comnvolutions which
reduced the effect of wind on the boundary layer resistance.

The gray, rough-textured leaf surface of western wheatgrass
also prevented some transpiration loss by decreasing light absorption
and iIncreased boundary layer resistances to transplration. These
morphologlic characteristics of the C3 species western wheatgrass
help explain its survival on the shortgrass prairie (Cannon, 1921).

Ghorashy et al. (1971) studied the effect of leaf pubescence
on transpiration, photosynthetic rate and seed yield of three near-
isogenic lines of soybeans (Glycine maxr). They found that the seed
yields and the photosynthetic rates were not significantly affected
by dense pubescence but that the transpiration rate was significantly
lower. Their data suggested that breeding for pubescence would
increase the water use efficiency of soybeans. Very small decreases
of only —0.5 bars lead to partial stomatal closure and caused a
decrease in photosynthetic activity indicating not only a linear
response, but also an extremely sensitive response to increasing
soil water stress.

Bielorai and Mendel (1969) found that the rate of both photo-

synthesis and transpiration gradually decreased as the soll water
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potential was reduced from -0.2 bars to -3.0 bars, but rapidly
decreased as soil water decreased from -3.0 te -15.0 bars. Very
low soil water potentlals have a greater effect on photosynthesis
than on transpiration. Bierhuizen, Nunes and Ploegman (1969) found
that net photosynthesis was almost negligible at a soll water po-
tential where transpiration was still 45 percent of the amount of
transpiration at field capacity. Hellmuth (1970) determined an
approximate average decrease because of water stress of 60 percent
in net photosynthetic rate in arid and semi-arid species in Australia.
The water stress was not measured, but only stated as late summer,
as opposed to optimal water in the spring.

I11jin (1957) found that potassium caused breakdown of starch
accumulated in guard cells, thus inducing stomatal opening. The
loss of water by the plant when the wilting point was passed re-
sulted in the hydrolysis of the starch in the guard cells., After
the starch was hydrolyzed, sugars accumulated. These are some of
the biochemical effects caused by soll water stress. Photosynthetic
activity can thus be decreased by chemical effects causing physical
change of the stomates. In addition, chemical changes of the photo-
synthetic tissues because of low soil water potential cause a
decrease in the photosynthetic rate. Plants respond to a history
of water stress due to biochemical disruptions. It is not uncommon
for five to seven days to elapse before net photosynthesis is re-
stored to pre-drought rates (Brown, 1968).

Growth is more affected by soill water stress than is photosyn-

thesis. Wardlaw (1969) found that while growth of Lolium temulentum
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had almost ceased at a relative turgidity of 75 percent {(~25 bars),
photosynthetic activity was still about one-third of the maximum
rate. According to Kozlowski (1964), Staple and Lehane (1941} found
that although growth of wheat (Triticum aestiyum) had ceased and

the plant had been desiccated beyond the ability to respond to
watering at the permanent wilting point of approximately -15 bars,
the plant continued to take up water from the soil to tensions ex-
ceeding -26 bars. This continued uptake of water increased both

the yleld and quality of the grain.

Wind also has an interaction effect on photosynthesis during
water stress. If the so0il water potential is not optimal during
a period of potential fast growth, dry wind can cause an increase
in stomatal resistance by causing a greater water vapor pressure
deficit (Kramer, 1969). If the humidity of the air is high, wind
can increase diffusion by breaking down the boundary layer of gaases
that surround the leaf,

The effect of low soil water potential on plant respiration is
less complicated than on photosynthesls. Kaul (1966) found that
slight water deficits increased respiration of wheat by about 20
percent, while greater water stress decreased respiration up to
approximately 50 percent.

Soil water potential also affects leaf water potential.

Boyer (1970a) found that leaf enlargement was inhibited earlier
and more severely than was photosynthesis or respiration as the
leaf water potential decreased in corm, soybean, and sunflower

(Helianthus annus). Dark respiration was directly proportional to
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leaf water potential to -16 bars where it leveled off. Boyer
(1970b) found that pnotosynthesis in soybean was not reduced until
1eaf water potential dropped below -1l bars, while photosynthesis
of corn was affected anywhere below -3.5 bars. Therefore, corn,

which has the C, pathway, was more sensitive to desiccation than

4
the C3 plant soybean. This 1s contrary to the hypothesis that
Ca pathway plants have greater drought resistance than C3 plants.

Boyer (1971) found that two factors inhibited recovery of
photosynthetic rates of sunflower after a period of low leaf water
potential: 1) incomplete recovery of leaf water potential, and
2) incomplete return to full stomatal opening in the light. Desic-
cation at -10 to -12 bars permitted full recovery of photosynthesis
within six hours after rewatering under both high and low light
intensities. After desiccation to -16 bars, photosynthesis under
high light intensity did not return to pre-desiccation levels of
photosynthesis, even though the leaves did return to the original
water potential.

Chen, Mederski and Carry (1971) determined that the rate of
decrease for photosynthesis of soybeans appeared to be greater
when the relative leaf water content decreased from 90 to 75 per-
cent than when the relative leaf water content was less than 70
percent. This was again attributed to stomatal closure.

Generally, C4 plants require approximately one—half as much

water per gram of dry matter produced as C, plants (Downton, 1971).

3
The low mesophyll resistance of C4 plants permits relatively high

stomatal resistance to CO2 and water vapor diffusion. The two-staged
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anatomical and biochemical apparatus of C4 plants for CO2 reduction
in first the mesophyll and next the bundle sheath cells maintains a
very large partial pressure gradient of 002 from the atmosphere to
the bundle sheath. Therefore, many C4 plants require less stomatal
area than 03 plants to permit the same valume of water wvapor diffusion
out of the leaf. |

Shearman et al. (1972) determined that the net photosynthetic
rate of the C4 plant sorghum (Sorghum bicolor) was not significantly
decreased until soill water stress was increased below about ~20 bars.
The soil water stress resistance was attributed more to leaf resis-
tance than to a decrease in enzyme activity.

Wuenscher and Kozlowski (1971) determined that stomatal resis-
tance and water-use efficiencies increased along an ecological

gradient from mesophytic to xerophytic types of deeiduous trees.

Computer Simulation Models of Biological Systems

There are many different types and levels of models for bio-
logical systems. Some models encompass large areas of land such
as the forest productivity model prepared by Botkin, Woodwell and
Tempel (1970). They monitored net photosynthetic rates of the
three dominant tree species of an oak-pine forest of central Long
Island. Incorporation of the results into a model predicted a
gross primary production of 2950 g-m_2 for one growing season which
was 10 to 22 percent higher than previous estimates based on har-

vest techniques.
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Another modeling effort that covered a large geographical area
was the ELM model of Innis et al. (1972) prepared for the Grassland
Biome, U.S. International Biological Program. The ELM model was
far more complex than the one prepared by Botkin, Woodwell and
Tempel (1970) because it incorporated more species and many more
processes and state variables of the grassland ecosystems it described.

In contrast to the models referred to above, some models have
been constructed of very specific parts of blological systems such
as a model of the mesophyll resistance of a leaf. The degree of
complexity of these models can be just as high as the degree of
complexity of an ecosystem model. The ultimate model of a blological
system might be one which would express each of the specific chemical,
physical and bilological components of all of the compartments and
sub—compartments of an ecosystem or biome. This would be the ideal
model, and probably cannot be attained because of the lack of quan-
titative data and inability of present day computers to handle such
a tremendous task.

Waggoner (1969a) developed a single leaf model utilizing an
electrical resistance analogy for the various resistances encountered
by 002 during photosynthesis. This model was then expanded (Waggoner,
1969b) to simulate the activities of plants in stands. Radiation
and crop extinction coefficients, temperature, humidity, wind speed,
canopy architecture, leaf angle, plant physiology, biochemistry,
boundry layer, and stomatal resistance were all included in this
later model (Waggoner, 1969b) along with the resultant interactions.

Among other things, the model predicted that greatest photosynthetic
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rates occurred with an LAI (leaf area index) of near 4.0 for
horizontal leaves and 8.0 for more erect leaves. Photorespiration
was also accounted for in the biochemical components of the model
and illustrated the different photosynthetic rates expected between
03 and 04 species.

The effect on crop growth rate caused by the angle of incident
solar radiation was modelled by de Wit (1965). The model assessed
the distribution of light within a canopy of leaves and predicted

2'day-1 for a grass or small grain crop with the

28, 40, or 44 g-mf
angle of the sun held at 30, 60, or 90 degrees from the horizontal.
Connor, Brown and Trlica (1974) utilized the basic approach
to stand structure and light penetration developed by Warren-Wilson
(1967) to develop a functional primary productivity model of the
shortgrass prairie. The model described the relationship between
community photosynthesis, leaf area index, irradiance, ambient tem~
perature and soil water potential and was compared with several
statistical models of the photosynthetic rates of blue grama. The
statistical models were not accurate when environmental conditions
were introduced which were beyond the range of conditions used to
determine the equations. The functional model provided biologically-
reasonable predictions of the productivity of blue grama. Pro-
portionality factors were used to delineate the effects of tempera-
ture and soil water stress on the photosynthetic rates of blue grama,
Stephens and Waggoner (1970) characterized the photosynthetic
nature of components of a Costa Rican tropical rainforest by

measuring the relation between illumination and photosynthesis. A
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coméanion study by Lemon, Allen and Muller (1970) utilized the data
reported by Stephens and Waggoner (1970) to determine typical
diurnal 002 budgets of the forest., They found photosynthetic

and respiration rates to be about one-tenth of the peak rates

of temperate region forests and agricultural crops. The resultant
low productivity was not typical of other tropical forests (Hesketh
and Baker, 1967) and they theorized that the forest might have been
at maturity.

Brown (1969) developed a model for the relationship between
net photosynthetic rate and light intensity at a given concentration
of CO2 in the air. He used compatible photosynthetic data from
many sources In the literature for 11 different species, most of
which were crops. The model provided a prediction of the sum of
the diffusion resistances, the capacity of the leaf to fix 002, the
concentration of 002 at the photosynthesis sites and the respiration
rate. The resultant rates of photorespiration of wheat were twice
the dark respiration rates at the same temperature. The sum of the
diffusion resistances was inversely related to the maximum rate of
photosynthesis for all species investigated.

Curry (1971) developed a model of plant growth utilizing the
simulation language CSMP (Continucus System Modeling Program). The
model predicted photosynthesis, respiration and transpiration from
driving variable inputs of light, COZ’ wind, temperature and soil
moisture. The model was tested against data collected by Williams
et al. (1968) for corn and proved to be biologically reasonable.

This model was later expanded and modified to utilize actual daily
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weather data (Curry and Chen, 1971). Among other things, this
later model was a good predictor of the effects of season, compe-
tition and plant density on the productivity of corn.

Stapleton and Meyers (1971) modelled the growth of cotton
(Gossypium hirsutum) in relation to the total production and marketing
gystem of the commercial product. In addition to the normal environ-
mental inputs, they incorporated such things as human intexvention
with growth, and the grower's decision process, experience and
resources.

Duncan and Barfield (1971) improved on an earlier community
photosynthesis model by Duncan et al. (1967) to compute the effects
of 002 concentration variations on photosynthesis of stratified
crop canopies. Of particular interest was the investigation of

the possible effect of CO, fertilization from substantial soil

2
block C02 evolution. A two - percent Iincrease in photosynthetic
rates caused by this CO2 fertilization was calculated. This indi~-

cated little contribution of additional CO2 to enhanced yields
observed on highly organic soil. Leaf orientation to the sun

(phototropism) was also investigated in the model.



METHODS AND MATERIALS

Units for Expressing CO, Exchange Rates
&

Carbon dioxide exchange rates reported in the literature
are based on a wide variety of units. A quantity of carbon,
COZ, or even oxygen per unit of leaf weight or area, or soil sur-
face area, per unit of time are usually the basic units reported.
However, the units for each component have not been Internationally
standardized. Carbon has been reported as grams, milligrams, or

micrograms; CO, and oxygen have been reported as grams, milligrams,

2
micrograms, microliters or millimoles; and time ranges from
seconds to days. Most of the quantity and time components are
easily interconvertible, but the units of leaf weight or area,

or soil surface area, present a somewhat more complicated problem.
Typical measurements have been grams dry weight green (DWG)} plant
material, grams dry weight total aboveground (DWT) plant material,
ground area (GA) and leaf area (LA). These measurements can all
be interconverted if the relationships are known among weight,
leaf area, and ground area, but there is disagreement as to which

unit provides the most accurate representation of CO_, exchange rates.

2

Carbon dioxide exchange rates based on GA are desirable for
many reasons. First, they can be easily compared to other produc-
tivity determinations such as clipping data. Also, when the ex-
change rate of an actual GA is determined, it intrinsically

incorporates the integration of the variability among such factors

as sun and shade leaves, young and old leaves, stem and leaf 002
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exchange, and the effects of mutual shading of leaves. The main
problem encountered in a;tempting tc base CO2 exchange rates on a
GA basis has been the physical limitation of the size of CO2
assimilation chambers. For example, it 1is very difficult to place
an assimilation chamber over an entire shrub or tree: therefore,

a branch or two is usually measured and the values obtained must

be extrapolated to the entire shrub or tree. The same analogy

can be used when considering smaller plants. It is much easier to
place a portion of a leaf or a whole leaf in an assimilation

chamber than the entire plant. This process is desirable because

it eliminates the necessity of contending with any belowground
contribution of‘CO2 to the assimilation chamber and requires a
smaller air conditioning subsystem. For these treasons, CO2 ex-—
change rates of most plants have been reported on a leaf area basis.

At times it is necessary to base CO2 exchange rates on a
foliage weight, or even a volume basis. For example, the leaf areas
of such species as Artemisia tridentata, Eurotia lanata and Atriplex
confertifolia are very difficult to determine. For this reason,
Caldwell et al. (1972) reported their findings on these species on
a weight basis. Ronco (1970) reported CO2 exchange rates of Piceqg
engelmannii and Pimus contorta on a foliage volume basis.

In an effort to further explore the units controversy, 1
calculated many CO2 exchange determinations on the basis of DWT.
This was done because it eliminated the tedious and uncertain
process of separating dead from live plant material. It was hoped

that 002 exchange rates based on DWT would be consistent with CO2
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exchange rates based on leaf area or soil surface area. This did
not prove to be the case. Carbon dioxide exchange rates based on
DWI proved to be far too variable and were not analyzed further,
Although CO2 exchange rates on the basis of DWC were consistent
with data based on leaf area, they were of less value for herbaceous
species because most values found in the literature have been re-

ported on the basis of leaf area.

The Greenhouse Study

Sod Collection and Greenhouse Procedures

Approximately 20 undisturbed sods of both blue grama and
western wheatgrass were cut at the Pawnee Site, potted in no. 10
cans, and brought into the Range Science greenhouse on the Colorado
State University campus. The sods of each species were collected
at the Pawnee Site in the same afternoon from an area of Ascalon
sandy loam soil of approximately 100 mz. The collection area was
purposely kept small so that scil type and water content of each
sod would be similar. Blue grama sods were collected during late
summer, 1971, and western wheatgrass during January, 1972. These
collection dates provided sods of each species that were in a state
of quiescence. Both species were grown for approximately four
weeks in the greenhouse to an early reproduction stage of phenology.

One calibrated thermocouple psychrometer wasg installed in
the spacial center of each sod for measurement of soii water po-
tential. The potted sods with thermocouple psychrometers are

shown in Figure 1 along with the microvoltmeter used for reading
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Figure 1. Potted sods of blue grama (Bouteloua gracilie) in the greenhouse
with thermocouple psychrometers installed in the spacial center
of each sod. The instrument shown in the foreground is a micro-
voltmeter used for reading the psychrometers to determine soil
water potential.
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the psychrometers, The sods were then weighed and watered. The
original weight of each sod was used throughout the growth period

to determine (by subsequent weighing) the exact amount of water
present in relation to the original amount. This procedure was
followed to provide a check on the sometimes erratic readings
obtained from the thermocouple psychrometers. The thermocouple
psychrometers were read twice daily and plotted agalnst the rela-
tive water content of the sod for conformity. The sods were allowed
to dry to about -30 bars, then rewatered to zero bars soil water
potential to provide the cycling of soil water normally encountered
on the shortgrass prairie. Thermocouple psychrometer readings

were not recorded until the third day after each watering, thus
allowing even distribution of water throughout the sod and insuring
an accurate representation of the seil water potential of the sod.
Each sod was watered three to four times before gas exchange measure-

ments were made.

Greenhouse CO, Exchange System Description

The CO2 exchange system utilized for photosynthetic and respir-
ation rate determinations in the greenhouse studies was developed
by Ronco (1969). Basically, it was a closed 002 exchange system
consisting of three components: (1) an assimilation chamber with
very sensitive temperature control that allowed maintenance of
constant temperatures from approximately 15.0°C to 45.0°C, T 2°C,
(2) a bank of seven 300 W reflector spotlights capable of producing
irradiances of up to 1.54 langleys per minute between 400 and 700 nm

after being filtered through an eight—centimeter deep continuous flow
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water bath for removal of much of the infrared radiation, and (3)

an infrared analyzer (IRGA) and a gas injection unit allowing the
operator to reestablish CO2 concentrations without opening the system
to the surrounding atmosphere.

The closed CO2 exchange system is diagrammed in Figure 2 and
is pictured in operation in Figure 3. A fan provided continuous
internal air circulation within the assimilation chamber. This
air circulation eliminated variations in rate determinations that
were observed by Decker (1947) to have been caused by fluctuations
in air flow rates. The temperature control system utilized a modi-
fied drinking fountain cooler as a coolant reservoir. A three-way
valve regulated the amount of coolant circulated through 12 m of
copper tubing between the walls of the assimilation chamber, thus
maintaining the desired air temperature within the chamber. The
three-way valve was electronically controlled by both an air tem-—
perature thermistor in the chamber and a water temperature thermistor
in the coolant line. This dual temperature control provided a high
degree of temperature sensitivity to the system.

The light bank was the main source of heat for the assimilation
chamber; however, the heat given off by the lights was not suffic-
ient to maintain the chamber temperature above 35°C. Therefore,
the system was modified so that the coolant liquid could be heated
to obtain the desired 40°C temperatures during part of the experiments.
For a more detailed description of the system refer to Ronco (1967

and 1969).
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The closed system of CO, exchange used to measure photosyn-
thesis and respiration rates of blue grama (Bouteloug gracilis)
and western wheatgrass (Agropyron smithii) in the greenhouse
study. The various discernible components are the light
source (LS), temperature controller (TC), assimilation chamber

(C), gas injection unit (GSU), and indicating drierite
column (ID).
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Carbon dioxide concentrations were measured with a differential
infrared gas analyzer (IRGA). The 802 exchange rates were recorded

on a single point strip chart recorder.

Experimental Procedures

The CO., exchange system used in the greenhouse was a closed

2

system; therefore, the CO, concentration in the system could not

2
be maintained at one level., Photosynthesis caused a decreaseée

in the CO2 concentration of the system, and coﬁveraely, the 002
concentration of the system was enhanced by respiration. Therefore,
steady states of photosynthesis and respiration were measured by

steady rates of CO, concentration decreases or increases, respec-~

2
tively. The rate was trecorded as a diagonal straight line on
the strip chart recorder paper.

Prior to initiation of experiments with both blue grama and
western wheatgrass, pre-trial determinations showed the photosyn-
thetic rates of both species to be essentially unaffected by CO2
concentrations between 370 and 190 parts per million (ppm). This
wag in direct contradiction to the findings of some other researchers.
Hesketh (1963) demonstrated approximately a two-fold increase in
net photosynthesis of both a 63 and C4 species with an increase in
002 concentration from 150 to 300 ppm. He observed similar rate
increases when the'CO2 concentration was raised to 600 ppm. Hesketh
and Moss (1963) showed that the net photosynthetic rate of maize

in full sunlight was 50 percent greater at 500 ppm of 002 than at

300 ppm. This response by plants to C02 concentration was thoroughly
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discussed by Wittwer and Robb (1964) and is the basis for 002

fertilization used by many commercial greenhouse operators.

Browm (1968) criticized closed CO, exchange systems for their

2
continuously changing 002 concentrations. Conversely, Hew, Krotkov
and Canvin (1969) obtained similar results from both an open and
a closed system. Decker (1957) determined net photosynthetic
responses of tobacco (Nictotiana langsdorfii) to C0, concentrations
to be nearly linear up tc about 400 ppm.

Assuming a totally linear response in net photosynthesis be-
tween 280 and 360 ppm COZ’ with an average net photosynthetic rate
of 15.0 mg COz'dm-z'hr_l, the net photosynthetic rate would be about

3.0 mg (.‘.Oz-d*m,mz-hr_1 greater at 360 ppm CO, than at 280 ppm. This

2
range of 002 concentrations (280 to 360 ppm) was the greatest dif-
ferential between which any of the greenhouse 002 exchgnge rate
determinations were made, This example might leave one with the
impression that there must have been a 20 percent error involved

in the greenhouse determinations. However, the error could not
have been this great because the photosynthetic rate determinations
were begun at about 360 ppm 602, which is about 40 ppm above
ambient concentrations, and were terminated at no less than 280 ppm,
which is about 40 ppm below ambient CO, concentrations. This pro-

2

cedure provided a cancelling effect for the recorded rate of 002

exchange because the rate recorded was the average over the entire
range of CO2 concentration. This approach to measurement of CO2
exchange rates with a closed system should have provided results

with negligible error.
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The determination of photosynthetic rates of plants requires

that only the CO, exchange of the ahoveground portions of the

2
plant be taken into consideration. This provides the net photo-
synthetic rate (in light) and requires the exclusion of the below-

ground contribution of CO According to Zelitch (1971), net CO

27 2
assimilation (sometimes called "apparent" photosynthesis) is equal
to the gross photosynthesis (sometimes referred to as "true"
photosynthesis} minus the loss resulting from respiration. More
comnonly, net photosynthesis (Pn) equals gross photosynthesis (Pg)
minus aboveground respiration (AGR). Net photosynthesis was
measured as a CO2 assimilation rate in light, and foliage respir-
ation was measured as a 002 production rate in total darkness.
Gross photosynthesis (Pg) was determined by the addition of these
two rates (Pn + AGR).

Contribution of CO2 to the system from the soil was excluded
by sealing the sods at the scil-atmosphere interface with heavy
mineral oil. Previous experimentation showed mineral oil to be
impervicus to 002 diffusion and to be nontoxic to either species.
Mineral oil had no detectable influence on CO2 assimilation rates
for up to 15 hours after application.

Polyethylene glycols (carbowax) of different molecular weights
(and consequently, different melting points) have been used by
Lawlor (1970) and others in an attempt to seal the soil surface.
However, it was found in this study that carbowax acted as a desiccant,
absorbed water from the plants and thereby affected the physiology of

the plants. For this reason, mineral o1l was used as a sealant instead

of carbowax.
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Normal photoperiods were allowed and no artificial lighting
was used during the growth period in the greenhouse. Day and
night temperatures within the greenhouse were maintained at about
40°C/15°C for blue grama and 25°C/5°C for western wheatgrass.

These temperature regimes were representative of the respective
growing season for each species.

At the end of the growth period, a sod was randomly selected
which was at one of the three desired soil water potentials (0,
-15, or ~30 bars, L) bars), the soil surface was sealed with
heavy mineral oil, #ﬁd a sequence of net photosynthetic and res—
plration rate determinations were made for the aboveground foliage.
The sequence of determinations consisted of measuring the net
photosynthetic rate of the foliage of one sod (at one of the three
soll water potentials) at the three levels of irradiance (0.30,
1.12, and 1.54 ly°min_1) and at three levels of temperature (20°C,
30°C, and 40°C). 1In an experimental determination, irradiance was
varied first while temperature was held constant. Dark respiration
rates were concurrently determined in the sequence at each tempera-
ture. Thus a total of 12 002 exchange rate determinations were
recorded for each sod. Three sods at each of the three soil water
potentials provided the triple replication to the statistical
design. A split-plot factorial design was utilized for data analysis.

All determinations were made at night to eliminate variations
in irradiance caused by sunlight. A physiological equilibration

period of approximately 15 minutes was allowed between each change in
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irradiance, while 30 minutes equilibration was allowed between
changes in temperatures.

Leaf water potential was determined as an external variable
at the beginning and at the end of each set of 12 rate determinations.
The cans in which the sods were potted had only 186 c.m2 soil surface
area, thereby making it impractical to make more leaf water potential
measurements.

The foliage of each sod was clipped at the conclusion of each
set of determinations. The foliage was hand separated into green
and nongreen material and the leaf area (LA) of the green (photo-
synthetically-active) grass blades and sheaths was determined. The
samples were then oven dried at 60°C and weighed. Both net and
gross photosynthetic rates were calculated on the basis of square
decimeters of leaf area (one side), dry weight of green photosyn-
thetically-active material (DWG), and dry weight of total aboveground
biomass of both photosynthetic and nonphotosynthetic plant material
(DWT).

Leaf areas for western wheatgrass were carefully calculated
from manual measurements. One-way analysis of variance of the
leaf areas showed non-significant differences (p > 0.10) among
the nine sods.

The determination of the LA for blue grama sods was more
difficult because of the smaller, more numerous leaves. An air fiow
planimeter was constructed similar to that described by Mayland
(1969) 1in an attempt to provide LA determinations. The air flow

planimeter proved to be unsatisfactory for measurement of LA for
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the grasses, therefore, a correlation between LA and DWC was de-
termined by linear regression on measurements taken in the field
throughout the 1972 growing season at the Pawnee Site. The LA
was determined using the inclined point quadrant method developed
by Warren-Wilson (1963) and adapted to the shortgrass prairie by
Knight (1973). The regression analysis provided the prediction

equation:

LA = 0,0 + 0.527 (DWG) (r2 = ,82)

where: LA = leaf area of one side (dmz)

DWG = dry welght of green photosynthetically-
active material (g).

This coefficient was used to convert the dry weights of the blue

grama foliage in the greenhouse study to square decimeters of LA

(0.527 dm2 LA/g DWG). One-way analysis of variance was then per-

formed on the resultant LA data and indicated no significant

differences (p > 0.10) among LA of the blue grama sods used in

the greenhouse study.

Irradiance produced by the variable light source of the CO2
exchange system was measured at plant height using an Eppley
pyranometer equipped with a KG-3 filter which provided values in
the visible spectrum only. One 300 W spotlight provided 0.30 ly-min_l,
while all seven 300 W spotlights produced 1.54 1y-min_1. The high
intensities were used for the purpose ol demonstrating the presence
or absence of light saturation of the species studied.

All photosynthetic and respiratory rates determined in the

greenhouse study were computed by the equation:
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Pn or AGR = [(MVT,P/LT P,) (Appm/br x 107°)] / DWG or DWT
or LA,

where: Pn = net photosynthesis (mg CO -g_l-hrql) on

dry weight green (DWG) or“total aboveground
biomass basis (DWT), or on leaf area (LA)
basis (mg CO,-dm~2-hr-1) 1 -1
aboveground 3ark respiration (mg COz'g *hr
Or mg COz-dm‘z-hr‘l)

mole weight of CO, (44,010 mg)

volume of closed system (34.48 g)

273°K

average barometric pressure (635 mm Hg)

mole volume of COo (22.414 1)

chamber air temperature (°K)

standard barometric pressure (760 mm Hg)

€Oy exchange rate in parts per million

per hour converted to the volume fraction

of CO2 by multiplying by 10~6

dry weight green aboveground biomass (g)

dry weight total green and non-green above-
ground biomass (g) 9
leaf area of one side (dm

AGR
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The method of determining gross photosynthetic rates by
addition of Pn and AGR for plants possessing the C3 pathway of CO2
fixation (western wheatgrass) is probably in error because photo-
respiration was probably occurring. However, the net photosynthetic
rate determinations for western wheatgrass should not be in error
because all aboveground respiration was avtomatically accounted for
in the determinations of net photosynthetic rates. Both net and
gross photosynthetic rate determinations on blue grama are believed

to be accurate and valid since blue grama is a specles that exhibits

negligible photorespiration (C4 species).
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The Field Study

Site Description

The field study was conducted at the Pawnee Site, which is
part of the Pawnee National Grasslands, administered by the Forest
Service and Agriculture Research Service, U.S. Department of Agri-
culture. It is located in northeastern Colorado, near the town of
Nunn, Colorado, in Weld County. The Pawnee Site is approximately
40 km west of the Rocky Mountains and is, therefore, a part of the
western edge of the Central Great Plains. The average annual pre-
cipitation is 30 cm, but it varies between 10 and 50 em with about
75 percent occurring between May and September (Jameson, 1969).
Most of the summer precipitation is in the form of afternoon thunder-
showers with occasional intemse thunderstorms. Winter precipitation
is usually in the form of snow. The climate is semi-arid with warm
sumners and cold winters. Wind blows almost contiuously throughout
the year, and is especially prevalent during the spring. The
highest temperatures gemerally occur in July and August, and lowest
temperatures during December, January, and February. The average
frost free period is about 135 days. The mean maximum temperature
during July is 29.5°C. According to Lauenroth (1973), the major
species of the Pawnee Site are: blue grama, fringed sagewort
(Artemisia frigida), scarlet globemallow (Sphaeraleea coccinea),
plains pricklypear (Opuntia polyacantha), broom snakeweed (Gutier-
rezia sarothrae) and needleleaf sedge (Carex eleocharis). A
more detailed description of the Pawnee Site is given by Jameson

(1969).
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Field 802 Exchange System Description

Moir et al. (1969), Dye and Moir (1971), and Dye (1972) de-
veloped the basic field 002 exchange system and pioneered the first
measurements of 002 exchange of shortgrass In the field. Those
studies had little control of temperature, no control of irradiance,
no soll water potential measurements, and no phenological observa-
tions and analysis. The studies were done almost entirely on blue

grama, and were essentially continuous monitoring of CO exchange

2
rates of blue grama sods under natural conditions on the shortgrass
prairie. They had relatively inadequate instrumentation for measure~
ment of irradiance and air flow rates.

Instrumentation of the field CO2 exchange system was expanded
in the present study to provide instantaneous irradiance monitoring,
better temperature control, and accurate, continuous recording of
air flow rates. The system was made motre mobile, a resistance
heater was added to the heat exchanger unit, automatic and manual
gas switching systems were installed, phenological determinations
were made, and soil water potentials were determined daily, In
addition, a l6-channel automatic analog-digital data acquisition
system was constructed which recorded all electronically-measured
observations on cassette tape for conversiom to computer—-compatable
magnetic tape.

Field CO2 exchange determinations for this study were made
for pure in situ blue grama sods at the Pawnee Site utilizing the
lmproved CO2 exchange system described in detail by Trlica et al.

(1973). The basic design of a transparent dome situated over a
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graminous sod was similar to the CD2 exchange system used by Redmann
(1973), but that was the only similarity between the two systems.
The system used at the Pawnee Site was an open system of CO2 exchange.
An open system differs from a closed system (utilized for photosyn-
thetic determinations in the greenhouse) in that air is continuously
flowing into and out of the assimilation chamber from the atmosphere.
The entire system consisting of the dome assimilation chamber, a
heat exchanger, a refrigeration unit and a modified trailer house
housing the instrumentation is shown in Figure 4. The dome enclosed
.2919 m2 of vegetation. The heat exchanger, the dome and some of
the abiotic sensors are shown in operation in Figure 5. A schematic
diagram of the entire system is shown in Figure 6. Figures 7 and 8
show the instrument panel within the trailer and the automatic data
acquisition system, respectively.

Ambient air was pumped into the system from the atmosphere
at six meters above the soil surface. A sample of this air was
routed through the reference cell of the TRGA for the determinatioﬁ
of a base line (zero differential) CO2 concentration, The remainder
of the air, an amount varying from about 40 to 75 E-min—l, was
routed to the dome assimilation chamber. An air sample was then
withdrawn from the dome by a separate pump at a lesser flow rate
to insure only outward air leakage from the system. The sample
from the dome was routed through the sample cell of the IRGA. The
IRGA was used to determine the differential CO2 concentration (Appm

COZ)’ between ambient and dome 002 concentrations. This Appm C02,
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Figure 4. The open COp exchange system utilized for measuring gas
exchange in the field. The photograph shows the refrigera-
tion unit (a), the heat exchanger (b), and their metal covers
(¢). The ambient air intake (d) is at the top of a 6-m
mast to the right of the trailer. The dome assimilation
chamber cannot be seen in this photograph.



Figure 5,

50

The heat exchanger (a) connected to the dome assimilation
chamber. The silicon cell and thermistors are visibie under-
neath the dome. The large hose on the right of the heat
exchanger is the coolant line from the refrigeration system,
The other hoses connected to the dome are incoming and out-
going air lines. Electrical umbilical cords from trailer

can also be seen in the foreground.
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Photograph of equipment and instrumentation housed within
the trailer including dew point hygrometer (a), mass flow
meter (b), manual Bas switches (c), temperature controller
unit (d), gas sample flow meters (e), 24-channel strip chart
recorder (f), IRGA amplifier control section (g), automatic
gas switch (h), standard gasses (i), and air pumps .



Figure 8,

The 16-channel automatic data acquisition system with attached

cassette tape recorder for recording incoming data plus date
and time.
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along with the flow rate of ambient air entering the dome, was

used to calculate the CO2 exchange rate of the sod under the dome.

Experimental Procedures

The method for determining photosynthetic rates from field
measurements of CO2 exchange was fairly intricate because of en-
richment of CO2 within the dome environment contributed by below-
ground respiration. During a normal daylight photosynthetic rate
determination in the field, only two 002 exchange values could
be measured utilizing this system. The first value was a differential
in 002 concentration between incoming ambient air and a sample of
air withdrawn from the dome environment. This value was arbitrarily
labelled net carbon dioxide exchange {NCE). The NCE value was not
the net photosynthetic rate (Pn) because of the belowground contri-
bution of 602 to the dome environment from belowground root and
soil microbial respiration (BGR). The second value determined
was dark respiration (RESP) which was obtained by covering the
dome to exclude all irradiance and allowing the system to reach
a steady state of CO2 exchange. This value was the sum of BGR and
aboveground foliage respiration (AGR). Steady state conditions
were reached when all abiotic variables and CO2 exchange rates
remained constant for 10 to 15 minutes.

The NCE values could have been positive, negative or zero
depending upon the rate of gross photosynthesis (Pg) in relation

to RESP. That is, NCE would have been zero if Pg = RESP. The NCE

values were recorded as negative if Pg was greater than RESP. All
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RESP rates were recorded as positive. Thus, Pg was determined by:

Pg = - (NCE) + RESP, or Pg = - (NCE) + AGR + BCR.

Gross photosynthetic rates are not as meaningful as Pn values
because Pg is not as directly related to net primary productivity
as is Pn. The AGR could not be measured with the field system
because it was not possible to seal the large soil surface. Con~
sequently, Pn could not be directly determined in the field study.

To obtain Pn data from the field Pg data, a two-way interaction
graph of soil water potential and temperature effects on photosyn-
thetic rates of blue grama was prepared utilizing the CO2 exchange
rates determined in the greenhouse study. The ordinate of the
graph was the percentage of Pg accounted for by Pn. It was believed
that this relationship between Pg and Pn in the greenhouse could
provide a direct conversion for 002 exchange in the greenhouse
study to the CO2 exchange in the field study. It was possible to
test this relationship 1n the field by measurements of 002 ex—
change of sods before and after clipping at different soil water
potentials and temperatures. These measurements separated the
AGR and BGR components in the field. It was found that the per-
centage relatlonship between Pg and Pn under field conditions
was similar, but not identical, to the relationship determined in
the greenhouse study. Therefore, the original percentage graph
determined for the greenhouse study was adjusted by using data
from the field study for field conditions. The graph was also
enlarged to the temperature range (15°C to 45°C) encountered in

the field, The final adjusted graph is shown as Figure 9, and
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The two—wav interaction graph of the el fects of Lempera-
ture and soil water potential on net photosynthesis as

a percentage of gross photosynthesis. The basic curves
(20°C-40°C) were determined from greenhouse data., Carbon
dioxide exchange determinations on clipped sods in the
field allowed the curves to be enlarged to the 15°C to
45°C temperature range and corrected for fleld conditions.
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was used to convert field Pg determinations to what has been
termed calculated net photosynthesis of blue grama in the field.
Calculated net photosynthetic rates are, therefore, the Pn rates
reported for the field study. This conversion also allowed for
further reduction of the data into the BGR and AGR components by
using the following assumptions:

if Pg = Pn + AGR with Pg measured and Pn calculated,

then AGR = Pg - Pn,

and since RESP = AGR + BGR with RESP measured and AGR

calculated, then BGR = RESP - AGR.

All Pg and NCE rates were calculated by the following

equation:

Pg or NCE = (MF/L) (Appm x 10"6) { DWG or DWT or LA,

where: M = mole weight of CO, (44,010 mg)

F = ambient air flow Fate into the dome
assimilation chamber (£-hr-1)
L = mele volume of 002 (22,414 ).
This equation and all the symbols and units used are similar to
the equation used for calculating 002 exchange rates in the green-
house study with the exception that ambient air flow rate (F) re-
placed the known volume (V) of the closed system used in the green—
house study. No temperature and pressure corrections were necessary
in the calculation of 002 exchange rates in the field because the
flow rates were automatically corrected for temperature and
pressure by the flow meter used.
Temperatures in the field were measured by using linear

thermistors. Temperatures were controlled by the heat exchanger
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and refrigeration unit of the system. Air temperatures within the
plant canopy both inside and outside the dome were continuously
recorded. The temperature within the dome enviromment could be
either manually controlled, or made to slmulate the ambient temper-
ature (¥ 2°C) by the electromechanical feedback system of the
temperature controller located inside the trailer. As with the
closed system utilized in the greenhouse, radiant energy was the
main source of heat, with the source being the sun in the field
study. Therefore, cooling of the dome environment was required
almost continuously when the sun was shining because of the green-
house effect within the dome environment, If ambient temperature
simulation was desired, the controller electronically activated
cooling by pumping a mixture of water and ethylene-glycol from

the refrigerated coolant reservoir through radiator cores in the
heat exchanger unit. Air within the dome system was continuously
circulated by a squitrel cage fan through the heat exchanger and
across the radiator cores in a closed circuit, thereby providing
cooling when required.

Dark respiration rates were obtained by covering the dome
with a thick daeron sleeping bag to eliminate incoming shortwave
radiation. This would normally cause the air temperature within
the dome to decrease 4°C to 5°C. This decrease in temperature was
compensated for by the addition of an electrical resistance heater
located in the closed air stream as part of the heat exchanger
unit. Switching the heater on prior to covering the dome allowed

dark respiration rates to be determined at the same temperature
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that NCE rates had been determined a few minutes before. It
usually took only about 15 minutes to reach steady state condi-
tions of CO2 exchange for dark respiration, indicating almost
immediate stomatal closure in response to darkness. Resumption
of a steady state NCE rate when the dome was again uncovered
required about 30 minutes, indicating a relatively slower stomatal
opening in response to light. Similar stomatal responses were
reported by Kuiper (1961).

Solar irradiance was continuously monitored with two instru-
ments: (1) a silicom solar cell placed under the dome, and (2)
an Eppley pyranometer placed on top of the trailer which housed
the instrumentation. No attempt was made to obtain accurate
measures of irradiance with the solar cell. It was used only to
indicate complete darkness under the dome, thereby delineating
dark respiration determinations.

The Eppley pyranometer with a KG-3 filter provided a measure-
ment of irradiance in the 400-700 nm range in units of langleys
. minute—l. Solar irradiance under the dome was controlled in
Some experiments by shading the dome with a variable number of
layers of aluminum window screening. The average percent trans-
mittance of visible irradiance into the dome at various times of
the day and with varying layers of screening had been previously
determined with the Eppley pyranometer. These values were then
used to convert solar irradiance measured on the roof of the
trailer to irradiance under the dome with one, two, or three

layers of screening.
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Soil water potentials were manually recorded each day within
a few meters of the sod being measured on that day. Calibrated
thermocouple psychrometers were placed at 5-, 10- and 20-cm depths
in the soil very early in the growing season with minimum disturbance
to the soil. The psychrometers were geﬁerally read only once a
day; however they were read more often if the soil was drying rap-
idly from -10 to -50 bars. The psychrometers were found to be
inaccurate at soil water potentials of less than -50 bars. Regres-—
sion analysis indicated that soil water Potentials at the 10-cm
depth were best for predicting photosynthetic rates, therefore
only these values were used throughout the analyses. Figure 10
1llustrates the influence of rainfall on soil water potentials at
5-cm and 10-cm depths through the 1972 growing season at the Pawnee
Site.

Phenological development of blue grama was determined by
visual observation throughout the growing season. Phenology was
coded according to the following descriptions:

Code Number Phenology

1st leaf stage

2nd leaf stage

3rd leaf stage

4th leaf stage

5th leaf stage

seed stalk elomgation
anthesis

seed development
seed shatter-fall regrowth.

L= e BN - I, R S PO N

Code numbers 1 through 5 and 9 were pooled and termed vegetative
phenological status for the final statistical analysig, while code

numbers 6 through 8 were termed reproductive phenological status.
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Combining phenological stages into two categories was done to
reduce the degrees of freedom to a reasonable level for statistical
analysis,

Leaf area indices of green foliage were determined by the non-
destructive inclined point quadrat technique described by Warren-
Wilson (1963) (Figure 11). The technique was adapted to the shortgrass
prairie by Knight (1971, 1972, and 1973). Leaf area indices of
sods under consideration were determined at about weekly intervals.
In addition, the aboveground foliage of six sods was clipped during
the 1972 growing season for determination of foliage dry weights
and for measurements of belowground respiration. The clipping pro-
cedure allowed CO2 exchange rates of blue grama to be based on
either dry weights or leaf area and provided the indirect method
for obtaining calculated net photosynthetic rates in the field.
Figure 12 shows the leaf area indices of each sod until clipped
throughout the growing season at the stgdy site. Sod number 1 was
never clipped, and is an example of the leaf area dynamics of blue
grama throughout the 1972 growigg season.

Two kinds of field experiments on CO2 exchange rates of blue
grama were made during the 1972 growing season. The first experiment
was gomewhat similar to the greenhouse experiment where the effects
of varying levels of soil water potential, temperature and irradiance
on 002 exchange rates of blue grama were examined. However, phen-
ological status was added as the fourth variable in the field experi-
ment. The major effort during the 1972 growing season was expended

on collecting CO2 exchange data for steady state conditions of the



Figure 11.

The inclined point quadrat used for nondestructive determina-
tions of leaf area index (LAI) at the Pawnee Site, The

point frame is shown in position over one of the 0.29 m2

blue grama sods used in the field experiments, The metal
covers in the background were used as a wind break while
measuring LAI. To the left of the sod are three counters
used for recording the number of hits encountered by the

pin.
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above variables. This was done because this type of data was
believed to be of great value in modeling and understanding
primary productivity of the shortgrass prairie. The procedure
was to obtain NCE and RESP rates of blue grama sods when each of
the four variables was held relatively constant. Phenology and
s0il water potential were comstant over short time periods, but
temperature and irradiance were sometimes very difficult to main-
tain at one level for 20 to 30 minutes. Scattered cloudiness
caused irradiance and temperature to vary rapidly. A small cloud
could reduce the irradiance to one-half the original value, and
in turn, cause the temperature of the air within the folaige to
decrease by perhaps 5°C within one to two minutes. Perfectly
clear conditions allowed data on steady state conditions of CO2
exchange to be collected at the rate of approximately three deter-
minations per hour.

At the beginning of the 1972 growing season it was hoped that
a sample size of 400 to 500 steady state conditions could be
attained. However, because of unusually cloudy conditions on the
shortgrass prairie during the 1972 growing season, only about 250
steady state rates were actually recorded.

The second type of field CO2 exchange experiments conducted
during the 1972 season was continuous 24-~hour ambient simulations.
The naturally fluctuating levels of temperature and irradiance
encountered on the shortgrass prairie were simulated within the
dome environment. These experiments were repeated periodically

throughout the growing season at various constant levels of
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phenological development and soil water potential. All the com
ponents of photosynthesis (Pg, Pn, and NCE) and regpiration (AGR
and BGR) were calculated, plotted, and integrated over each 24-
hour period. These experiments provided typical examples of
daily production for the dominant species of the shortgrass

prairie throughout the growing seasgon.



RESULTS AND DISCUSSIOR

Comparison of Results of Photosynthetic Rates
of Blue Grama and Western Wheatgrass on the
Basis of Dry Weight and Leaf Area

All 002 exchange rates determined in the greenhouse study
for blue grama on a DWG basis were reported by Dye, Brown, and
Trlica (1972). Similar analysis was done (but not reported) on
the exchange rates for western wheatgrass. All statistical rela-
tionships of each species based on both LA and DWG were similar.

On the basis of LA, the grand means of blue grama and western
wheatgrass in the greenhouse study were 9.6 and 4.5 ng Coz'dm—z'hr—l,
respectively, while on the basis of DWG, the grand means were 5.1
and 6.1 mg COz-g_l-hr—l, respectively. Therefore, on the basis
of DWG, the photosynthetic rates of western wheatgrass were slightly
greater than the photosynthetic rates of blue grama over the ranges
of the variables considered. This was surprising because photosyn-
thesis of blue grama, a C4 species, woulﬂ be expected to far exceed
the photosynthetic rates of most C3 species. However, blue grama
photosynthetic rates were definitely greater than western wheat—
grass photosynthetic rates when based on LA. The reason for this
difference was found in the relationship between LA and DWG for
each species. As previously mentioned, the ratioc of LA to DWG for
blue grama was 0,53 dmz-g-l. The ratio of LA to DWG for western
wheatgrass was 1.43 dmz-g_l. Thus, western wheatgrass leaves ex-
hibited more LA per unit of dry weight than did blue grama leaves,
and consequently, photosynthetic rates based on DWC were proportionately

greater for western wheatgrass as compared with blue grama.
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The Greenhouse Study

All 002 exchange rates will be discussed in units of mg Coz'dm_2
LA-hr_l. The three-way interaction means and standard errors of net
and gross photosynthetic rates and aboveground dark respiration
rates for blue grama and western wheatgrass in the greenhouse study
are shown in Appendix A, Table 1. All 002 exchange measurements
were replicated three times at three levels each of soil water po—~
tential, irradiance and temperature. A reproductive stage of phen-
ology was constant throughout all determinations for both species.

It should be stressed that the irradiances used in the green-
house study (0.30 ly-min-l = low, 1.12 ly'min-'l = medium, and 1.54
ly-min—l = high) were not actually low, medium, and high in terms
of normal ambient conditions of irradiance. The highest ambient
visible irradlance recorded in the field during the 1972 growing
season was about 0.82 1y'min_1. This occurred during partly cloudy
conditions when reflections from clouds resulted in a significant

increase in irradiance for short periods of time.

Net Photosynthesis (Pn)

The analyses of variance of Pn rates of both blue grama and
western wheatgrass at three levels each of soil water potential,
irradiance and temperature are shown in Appendix A, Table 2. The
analyses showed that each of the three main treatments gignificantly
affected (p < 0.01) the Pn rates of both species (Appendix A, Table 2).
Each species was also significantly affected (p < 0.01) by the two-

way Interactions of soil water potential and irradiance, and soil
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water potential and temperature (Appendix A, Table 2). An irrad-
iance and temperature interaction affected Pn for both blue grama
(p < 0.10) and western wheatgrass (p < 0.05) (Appendix A, Table 2).
The three-way interaction of soil water potential, irradiance and
temperature significantly affected blue grama (p < 0.01) Pn, but
had no significant affect on Pn of western wheatgrass (Appendix A,
Table 2).

Intergction Effects of Soil Water Potential and Irradiance
on Net Photosynthesis of Blue Grama and Western Wheatgrass .

The Pn rates of blue grama at the medium and high irradiances
decreased almost linearly with increasing soil water stress from
zero to -30 bars (Figure 13). The Pn rates at the highest {irrad-
iance were greater than the Pn rates at the medium irradiance until
soil water stress of -30 bars was reached. This indicated that
blue grama had not reached light saturation at the medium irradiance
of 1.12 ly-min_l. The Pn rates of blue grama were similar at both
high and medium irradiances at -30 bars soll water potential, indi~
cating that this species was probably light saturated at 1.12 ly-m:i.nf'1
when subjected to high water stress. There was very little effect
on the Pn rates of blue grama when the s0il water stress was increased
from zero to -15 bars at the low light intensity (Figure 13). How-
ever, further water stress, from -15 to -30 bars resulted in a
sharp decrease in the Pn rates of blue grama.

The effects of increasing the soil water stress from zZero to
=30 bars on the Pn rates of western wheatgrass were almost identical

at the medium and high irradiances (Figure 13). This indicated that
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éhis C3 species had reached light saturation at 1.12 ly-m:f.n_l or
lower. The Pn rates at all three irradiances were similar from
~15 to -30 bars, indicating probable light saturation of western
wheatgrass very near the low irradiance of 0.30 ly'u:l:l.n_1 at these
water stresses, The effect of increasing soil water stress from
zero to -30 bars resulted in a nearly linear decrease in the Pn
rate of western wheatgrass at the low irradiance.

Increasing soil water stress generally caused sharp decreases
in the Pn rates of both blue grama and western wheatgrass at all
irradiances. The large differences among Pn rates of the C3 and
the C4 Species were probably caused by the ability of the blue
grama to utilize the higher irradiances more fully at all of the
soil water stresses considered (Figure 13). Also, blue grama demon-
strated less response to increasing soil water stress at the low

irradiance than did western wheatgrass.

Interaction Effects of Soil Water Potential and Temperature
on Net Photosynthesis of Blue Grama and Wesiern Wheatgrass

Generally, the Pn rates of blue grama decreased with increasing
s0il water sgtress at all temperatures (Figure 14). The initial soil
water stress increment from zero to -15 bars caused greater de-
creases in the Pn rates of blue grama with each increase in temper-
ature. The effects of increasing soil water stress were less at
20°C than at the two higher temperatures of 30°C and 40°C. The
Pn rates of this 04 species were greatest at 30°C until the high
s0il water stress of -30 bars was attained. At -30 bars soil water

potential the Pn rates were greatest at 20°C. This illustrated the
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variable range of optimum temperature for Pn of blue grama. The
optimum temperature was nearest 30°C at the two lower levels of
soll water stress, but decreased as the high soil water stress

of -30 bars was approached. The Pn ratas of blue grama at 40°C
were lowest at all soil water stresses, indicating the increasing
effect of aboveground dark respiration on Pn at higher temperatures,

The Pn rates of western wheatgrass also decreased with in-
creasing soil water stress at all temperatures (Figure 14). The
Pn rates of this C3 species were greatest at 20°C at all levels of
s0ll water, but decreased almost linearly with increasing soil
water stress. At 30°C and 40°C the Pn rates of western wheatgrass
were most affected by an increase in soil water stress from zero
to =15 bars. Increasing the soil water stress further to -30 bars
caused the Pn rates of western wheatgrass to be reduced to a lesser
degree,

The effects of the interaction of soil water potential and
temperature on the Pn rates of both blue grama and western wheat-
grass clearly illustrated the detrimental effect of soil water
stress (Figure 14). The large differences among the Pn rates of
the C3 and C4 species at all respective levels of so0il water poten-
tial reflected the greater resistance to water stress exhibited by
04 species. The relative Pn rates of the two species at each
temperature illustrated the different optimum Pn temperatures

generally encountered among 63 and C4 species.
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Interaction Effects of Irradiance and Temperature on Net
Photosynthesis of Blue Grama and Western Wheatqrass

The optimum Pn temperature for blue grama at the medium and
high levels of irradiance was obviously nearest 30°C (Figure 15).

The Pn rates at the low irradiance were essentially unchanged between
20°C and 30°cC, indicating the possibility that the optimum Pn tem~
perature for blue grama might be between 20°C and 30°C at low irrad-
iances. The Pn rates at 20°C under both the medium and high irrad-
iances were essentially the same, indicating possible biochemical
limitations of Pn for blue grama at the low temperature. The Pn
rates decreased sharply at all irradiances with the temperature
increase from 30°C to 40°C.

The Pn rates of western wheatgrass at all three levels of
irradiance decreased almost linearly with increasing temperature,
indicating the optimum temperature to be nearest 20°C (Figure 15).
The Pn rates at both the medium and high irradiances and all tem-
peratures were not significantly different, again indicating that
western wheatgrass had reached light saturation at or below 1.12 ly-min_l.'

The effects of both temperature and irradiance om the 04 species,
blue grama, were quite different from the effects of these variables
on the 03 species, western wheatgrass (Figure 15). The overall Pn
rates for blue grama were greater than Pn rates for western wheat—
grass because blue grama generally exhibited no light saturation.

As previously mentioned, the Pn grand means for blue grama and
western wheatgrass were 9.6 and 4.5 mg COz-dm-ZLA'hrﬁl, respectively.
Therefore, under the conditions of the experiments the Pn rates

for western wheatgrass were only about 45 percent of the Pn Trates
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for blue grama. This overall relationship is reflected in each
of the interaction comparisons.

It is estimated that the optimum Pn temperature for blue
grama under optimum conditions of soil water potential and high
irradiance was between 30°C and 36°C. Low irradiances and high
soil water stress reduced the optimum Pn temperature to less than
30°C. Experimentation with western wheatgrass indicated its op-

timum Pn temperature to be less than 20°C.

Aboveground Dark Respiration (AGR)

The analyses of variance of AGR rates in the greenhouse study
for both blue grama and western wheatgrass at three levels each of
soil water potential and temperature are shown in Appendix A, Table 3.
The analyses showed that both of the main treatments of soil water
potential and temperature significantly affected (p < 0.01) AGR
rates of blue grama (Appendix A, Table 3). The main treatments
of soill water potential and temperature also significantly affected
the AGR rates of western wheatgrass (p < 0.05 and P < 0.01, respec-
tively) (Appendix A, Table 3). The AGR rate of each species was
significantly affected (p < 0.05) by the two-way interaction of
s80il water potential and temperature (Appendix A, Table 3).
Interaction Effects of Soil Water Potential and Tem erature on
Tovegroud Dok esiraster of paoiial and Tenperature on

The AGR rates of blue Brama generally decreased with increasing

so0il water stress, and increased with increasing temperature (Figure
16). At all three temperatures, the decrease in the AGR rates were

rapid with the increase of soil water stress from zero to ~15 bars.
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Further increased water stress to —30 bars resulted in lesser de-
creases in the AGR rates of blue grama.

The overall response of the AGR rates for the C3 species,
western wheatgrass, to soil water stress and temperature were similar
to the responses exhibited by blue grama (Figure 16). Increasing
soll water stress and decreasing temperature resulted in decreasing
AGR rates of western wheatgrass. The magnitude of the responses
to these variables were less for western wheatgrass than for blue
grama. In addition, the AGR rates of western wheatgrass were
lower than those for blue grama at all soil water potentials at
30°C and 40°C. The AGR rates of western wheatgrass were also
less than those of blue grama at zero soil water potential and 20°C.
However, the AGR rates of western wheatgrass at 20°C were greater
than the AGR rates for blue grama at -15 and —30 bars soil water
potential.

The grand means of the AGR rates of blue grama and western
wheatgrass were 4.5 and 2.0 mg C02-dm'2-hr_1, respectiﬁely. Therefore,
the AGR rates of western wheatgrass were only about 44 percent of
the AGR rates of blue grama at the levels of variables chosen for
study.

Hofstra and Hesketh (1969) determined the AGR rate of Zea Mays,
a G, species, to be 3.0 mg Coz-dm-z-hr-l. Osmond, Troughton and
Goodchild (1969) reported ACR rates of 3.3 and 4.4 mg CO,-dn™2-hr !

3
species, respectively. The AGR rate of sunflower, a C3 specles, was

for Atriplex spongicsa, a C, species, and Atriplex hastata, a C

determined to be 2.1 mg COz'dm—2°hr_1 by Hew, Krotkov and Canvin (1969).
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Gross Photosynthesis (Pg)

As stated previously, Pg rates were calculated by combining
(adding) Pn and AGR rates for each species. This approach was felt
to be valid for the C4 species, blue grama, but probably invalid
for the C3 species, western wheatgrass. Gross photosynthesis of
blue grama is reported here because Pn was impossible to determine
directly in the field study and it was important to be able to com-
pare the Pg rates determined in the greenhouse study with the Pg
rates determined in the field study for this species. Also, it is
interesting to compare the Pg and Pn rates of blue grama in the
greenhouse study to illustrate energy losses in the respiration
process. The Pg rates of western wheatgrass are reported simply
for C3 - C4 comparative purposes, realizing that the Pg rates of
western wheatgrass should be greater by the amount of undetermined.
photorespiration occurring in chis C3 species. Because Pg 1s a
combination of Pn and AGR, Pg will not be discussed in great detail
for either species.

The analyses of variance of the Pg rates in the greenhouse study
for both blue grama and western wheatgrass at three levels each of
soil water potential, irradiance, and temperature are shown in
Appendix A, Table 4. As with Pn rates, the Pg rates of both species
were significantly affected (p < 0.01) by all three main treatments
of soil water potential, irradiance anpd temperature. The two-way
interaction effects of soll water potential and irradiance, and soil
water potential and temperature were also highly significant (p < 0.01)

for both species (Appendix A, Table 4). However, the irradiance and
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temperature interaction did not significantly affect the Pg rates

of blue grama and was of lesser significance (p < 0.10) for the

Pg rates of western wheatgrass (Appendix A, Table 4). The three-
way intefaction effect of soil water potential, irradiance and
temperature was highly significant (p < 0.01) for the Pg rates of
blue grama, but did not significantly affect the Pg rates of western
wheatgrass (Appendix A, Table 4).

Interaction Effects of Soil Water Potential and Irradiance on
M@%m

The Interaction effects of soil water potential and irradiance

on the Pg rates of blue grama (Figure 17) were generally similar to
the effects of these variables on the Pn rates of blue grama (Figure
13). An exception was noted in that a lipear decrease in the Pg
rate of blue grama at the low irradiance with increasing soil
water stress was found. The interaction effects of soil water
potential and irradiance on the Pg rates of western wheatgrass (Fig-
ure 17) produced graphic results which were similar in shape to the
Pn rates, but of course, of different magnitude (Figure 13). This
indicated that the AGR rates of western wheatgrass were affected by
the interaction to the same extent as the Pn rates throughout the
various levels of the variables.

The grand means of the Pg rates of blue grama and western wheat-

z'dm-z'hr_l, respectively. Therefore,

grass were 1l4.1 and 6.5 mg CO
the overall Pg rates for western wheatgrass were only about 46 per-
cent of the Pg rates for blue grama, which of course compares favor-

ably with the combined AGR and Pn relationships between the species.
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It is suspected that the actual Pg rates of western wheatgrass
{inclusive of photorespiration) would in fact be much closer to
the Pg rates determined for blue grama,

Interaction Effecte of Soil Water Potential and Temperature
on Grogs Photosynthesis of Blue Grama and Western Wheatgrass

The Pg rates of blue grama (Figure 18) declined much the same
as the Pn rates (Figure 14) with increasing soil water stress,
but there was a change in the rates with respect to the various
levels of temperature. The Pg rates of blue grama at 30°C were
greatest at all levels of soil water stress. The Pg rates at 40°C
were greater than the rates at 20°C at zero bars soil water poten~
tial. These changes in Pg rates of blue grama were all attributable
to the significant effect (p < 0.01) of temperature on AGR rates of
blue grama (Appendix A, Table 3).

Once again, the graphic representations of the Pg rates of
western wheatgrass as affected by soil water potential and tempera-
ture {Figure 18) are nearly identical to the shapes of the curves
representing Pn rates for this species as affected by the interaction
(Figure 14). Any shifts in the estimated Pg rates are also attri-
butable to the significant effect (p < 0.01) of temperature on the
AGR rates of western wheatgrass (Appendix A, Table 3).

The Pg rates of blue grama were more gsensitive to increasing
80il water stress than the Pg rates of western wheatgrass. This
is indicated by the relative slopes of the curves (Figure 18). How-
ever, this observation could be misleading because the Pg rates for
blue grama remained greater than the Pg rates for western wheatgrass at

all comparable levels of soil water potential and temperature.
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Interaction Effects of Visible Irradiance and Temperature on
Groes mtoaynt%ﬁsw of Blue Grama Weetern Wheatgrass

The two-way interaction effects of irradiance and temperature

did not significantly affect the Pg rates of blue grama and only
slightly affected (p < 0.10) the Pg rates of western wheatgrass
(Appendix A, Table 4). Therefore, the effects will not be discussed,
but are shown in graphic form in Figure 19 for the benefit of the

reader,

The Field Study

Steady State Determinations

All steady state CO2 exchange rates determined for in situ
blue grama sods in the field were calculated in units of leaf area
(LA) and ground area (GA), but will be discussed only in units of
mg COz'dm_zLA-hr—l. The approach to €0, exchange rate determina-
tions in the field was unique in that an entire 0.29 m2, in situ
sod of blue grama grass was taken into consideration. Statistical
analysis performed on the determinations provided similar relation-
ships whether calculated in terms of GA or LA,

All field steady state 002 exchange rate determinations for
blue grama for the various conditions of phenology, soil water poten-
tial, visible irradiance and temperature encountered throughout the
1972 growing season at the Pawnee Site are reported in Table 5 of
Appendix A. The four-way interaction means and standard errors of
the steady state Pg and calculated Pn determinations for in situ
blue grama sods as influenced by phenology, soil water potential,

irradiance and temperature throughout the growing season are reported
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in Appendix A, Table 6. The photosynthetic and respiratory rates
reported (Appendix A, Table 5) in units of LA can be transformed
to GA (mz) by the following equation:

2

mg CO,'m 2GA*hr™ = (mg CO,-du 2LA*hr™L) (LAI x 100),

2
where: LAT is the leaf area index.
Some measurements were also taken on clipped sods and are reported in
Appendix A, Table 5, in units of mg Coz-m_zGA'hr-l.
Analyses of covariance of Pn and Pg rates of blue grama as affected
by four levels each of irradiance and temperature, three levels of
soil water potential, and two levels of phenology as the covariate
are given in Appendix A, Table 7. All three of the main variables
and the covariate were highly significant (p < 0.01) for both Pn and
Pg rates except for the effect of temperature on Pg which was signi-
ficant at the 0.05 level of probability (Appendix A, Table 7). As
in the greenhouse study, the two-way interaction effect of soil water
potential and temperature was highly significant (p < 0.01) on both
Pn and Pg rates of blue grama (Appendix A, Table 7). Unlike the re-
sults of the greenhouse study, the interaction of soil water potential
and irradiance did not significantly affect the Pn and Pg rates of
blue grama in the field. The effect of the irradiance and temperature
interaction on Pn and Pg rates of blue grama in the field study were
similar to the effects of that interaction on blue grama in the green-~
house study. That is, there was no significant effect on Pg and a

slightly significant (p < 0.10) effect on Pn rates caused by the

interaction (Appendix A, Table 7).
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Interaction Effects of Soil Water Potential and Temperature
on Caleulated Net Photosynthesis of Biue Grama

The two-way interaction effects of soil water potential and
temperature on the Pn rates of blue grama are graphically illustrated
in Figure 20. Increasing soil water stress produced nearly the
same linear decreases in the Pn rates of blue grama in the field
that were evident in the greenhouse study. A somewhat similar
optimum Pn temperature range was also evident for blue grama when
subjected to different soil water stresses. The optimum temperature
range decreased with increasing soil water stress. Low scil water
Stress again resulted in optimum Pn temperatures near 30°C.

Interaction Effects of Irradiance and Temperature
on Caleulated Net Photosynthesis of Blue Grama

The two-way interaction effects of irradiance and temperature
on the calculated Pn rates of blue grama in the field are illustrated
in Figure 21. It was impossible to maintain a temperature in the
15.0°C-22.5°C range under high irradiance conditions, but the other
data again illustrated a near 30°C optimum Pn temperature. Blue grama

exhibited no light saturation.

Continuous 24-Hour Ambient Simulations

One 24-hour ambient simulation experiment was conducted each
month on a different blue grama sod throughout four months of the
1972 growing season. The first experiment was conducted during
June 28-29, 1972, and is illustrated in Figure 22. The figure clearly
shows the combined effects of temperature and irradiance on the photo-
synthetic rates of blue grama. The effect of temperature on the

aboveground dark respiration rate is also evident. Both Pn and Pg
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rates increased from 06:00 Mountain Standard Time (MST) with in-
creasing irradiance and temperature until temperature began to sig-
nificantly increase AGR about 08:00 MST. The Pg rates continued to
increase with increasing irradiance and temperature, but Pn rates
began to level out. At 12:00 MST the sharp increase in temperature
from 35°C to 38°C resulted in ar increase in Pg, but a decrease in
Pn rates because of the effect of greater AGR rates at the higher
temperatures. At about 13:00 MST there was a sharp increase in
both Pn and Pg rates because of a decrease in the temperature and
continuing high irradiance. At 14:00 MST afternoon c¢loudiness
increased which resulted in decreases in Pn, Pg and AGR rates.

As visible irradiance approached zero at about 18:30 MST, Pn be-
came negative because of the relationship of Pn with Pg and AGR
rates (Pn = Pg - AGR). The AGR continued at a fairly constant rate
through the nighttime hours.

The net carbon dioxide exchange (NCE) rates closely followed
the photosynthetic rates throughout the 24-hour period, while below—
ground respiration rates (BGR) were primarily dependent upon tem-—
perature (Figure 22), There was no way to ascertain root respira-
tion from the CO2 exchange measurements; therefore, net primary
productivity of the continuous 24-hour ambient simulations could
not be calculated.

Although all CO2 exchange rates represented in Figure 22
through 25 are in terms of mg COz-dm-zLA'hr_l, the curves were in-
tegrated in terms of g CHZOzm_ZGA-day-l. The Pg, Pn, and AGR daily

values for June 28-29 were 16.4, 14.3, and 2.1 E CHZO-mnzGA-day-l,
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respectively. All continuous 24-hour ambient simulation values are
reported in Appendix A, Table 8, along with aboveground biomass
determinations and productivity calculations from the computer
model of seasonal blue grama productivity (to be discussed later).
Figure 23 illustrates the 24-hour ambient simulation during
July 6-7, 1972. The effect of afternoon cloudiness is apparent.
The irradiance dropped so low at about 13:30 MST that Pn was
actually slightly negative for a short time during this potentially
productive day. The integrated values of Pg, Pn and AGR were 11.6,
10.8, and 0.8 g CHZO'm-zGA'day-l, respectively (Appendix A, Table 8).
The continuous 24-hour ambient simulation of August 11-12, 1972,
is shown in Figure 24. This was a generally hazy day with typical
afternoon cloudiness. The day was almoét totally unproductive
because of the high temperatures, high soil water stress and a re-
productive stage of phenology. The integrated values of Pg, Pn and
AGR were 3.9, 1.7, and 2.2 g CHZO'mfZGA'dayql, respectively (Appendix
A, Table 8). The BGR was greater throughout the day in relation to
the other 24-hour simulations. The large BGR rates were believed to
have been caused by near ideal conditions for microbial activity
throughout the soil profile. The soil water potential at the 10-cm
depth decreased from -12 to -32 bars during the 24-hour period.
This indicated fast drying at that depth, although previous records
for soil water showed ideal conditions throughout the profile two
or three days earlier. This woul& indicate a probable soil water
potential of zero at the 20-cm depth and lower, providing conditions

which were neither too dry nor too wet for microbial activity.
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Inspection of the calculated and measured BGR rates in Appendix A,
Table 5, showed wide variation in BGR rates with respect to temper-
ature, time of day, and soil water potential at the 10-cm depth.

The continuous 24~hour ambient simulation for September 22-23,
1972, 1s illustrated in Figure 25. The results of this late season
simulation were quite different from the three previous simulationms.
It was a relatively cloud-free day, but the visible irradiance
reached a high of only about 0.57 ly'min © and the daylight lasted
only about ten and one-half hours. The soil water potential was
zero, the phenological stage was vegetative (because of fall regrowth},
and the temperatures were generally ideal. Productivity was, how-
ever, relatively low becasue of the low irradiances and shortened
day length. The integrated values of Pg, Pn, and AGR were 6.1, 5.6,
and 0.5 g CHZO-m_ch-day_l, respectively.

Efficiency of Energy Capture for the
24-Hour Ambient Stmulations

There are many ways of calculating the efficiency of the capture
of solar energy by green plants. It would be best to be able to
calculate total efficiency of net primary production, but this is
impossible to do for the 24-hour ambient simulations because of the
lack of root respiration data. Therefore, the percent efficiency
of Pg and Pn of visible irradiance was calculated using 4000 (:al-g”l
as the calorie content of blue grama foliage taken from Sims and
Singh (1971).

The total visible irradiance received during the June 28-29
ambient simulation was 3.33 x 10° cal-m™2GA. Utilizing this value,

and the integrated values of Pg and Pn for June 28-29, the calculated
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efficlency of Pg and Pn was 1.97 and 1.72 percent, respectively.
(The percent efficiency based on total incoming radiation would
be approximately 55 percent less than the above.)

Similar calculations for the percent efficiency for the other
24-hour periods during the 1972 growing season provided the follow-
ing values: July 6-7, Pg = 1.70 and Pn = 1.58 percent; August 11-12,
Pg = 0.56 and Pn = 0.24 percent; September 22-23, Pg = 0.99 and Pn =
0.91 percent. Thus, as would be expected, the lowest energy con-
version efficiencles occurred during the relatively high water stress
conditions of August 11-12.

These values compare favorably with a total net primary produc-
tion efficiency of 0.57 pPercent for an entire season on an ungrazed
pasture at the Pawmee Site reported by Sims and Singh (1971). They
also compare favorably with 1-2 percent efficiency of total visible
energy reported by Salisbury and Ross (1969) for many crops, forest
trees and herbaceous species.

Comparison of Gross and Net Photosynthetic Rates
of Blue Grama in the Field Study

The singular effects of the three variables of soil water poten-
tial, irradiance and temperature on the Pg and Pn rates of blue grama
as determined in the field study are depicted in Figures 26 through
28. All values reported in the main effects graphs (Figures 26, 27,
and 28) of photosynthetic rates for blue grama were averaged over
all levels of the other three variables. The graphs illustrate the
same overall effects of each of the variables on the photosynthetic

rates of blue grama that were reported earlier. Values in Figure 9
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were used to determine the relationship betwe:n Pg and Pn. Because
Figure 9 was derived from measurements made in both the greenhouse
and field studies, Pn rates for the field study are termed calculated
net photosynthesis.

The effects of soil water potential and irradiance on the photo-
synthetic rates of blue grama showed anp essentially constant relation-
ship between Pg and Pn in absolute values (Figures 26 and 27). Con-
currently, the percentage of Pg accounted for by Pn decreased with
increasing soil water Stress but remained fairly constant with
increasing irradiance. Figure 28 shows the significant divergence
of the Pn rates in relation to the Pg rates with increasing temper-
atures as would be expected from Figure 9.

The effects of phenological Stage on the photosynthetic rates
of blue grama are not 1llustrated because the variable was reduced
to only two levels. This produced two paraliel straight lipes,

Pg and Pn, with a constant absclute difference of about 6.0 mg 002'
dm~ 2 peL, Mean Pg and Pn rates were 46.0 and 40.0 mg Coz°dm“2-hr_l,
respectively, at a vegetative stage of phenology and 22.5 and 16f5 mg
COz-dmhz‘hr_l, respectively, at a reproductive stage of Phenology.
Thus, the percentage of Pg accounted for by Pn was much less for

the reproductive phenological stage. Although it was not possible

to test the statistical significance of the interactions of soi]l
water potential, temperature, and irradiance with phenology, Figures

29 and 30 illustrate the probable significant interactions of tem-
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Comparison of Photosynthetic Rates for Blue Grams
from Both the Greenhouse and the Field Studies

Photosynthetic rates for in situ blue grama sods at Pawnee Site
were greater thanthe comparable rates determined for the potted
sods of blue grama grown in the greenhouse. Photosynthetic rate
determinations for 26 species of Gossyptum made by El-Sharkawy,
Hesketh and Muramoto (1965) also showed that plants grown in the
growth chamber or greenhouse did not photosynthesize as rapidly as
those in the field. An overall comparison of the Pn and Pg rates
determined in the present studies could not be made because of the
different ranges for each of the variables considered in the greenhouse
and field studies. Therefore, a strict comparison between rates at
comparable levels of each variable of soll water potential, irradiance,
temperature and phenology was necessary (Appendix A, Tables 1 and 6).
This type of comparison indicated that the Pn and Pg rates of blue
grama determined in the greenhouse study were approximately 65 per-
cent of the comparable rates determined in the field study.

The maximum mean Pn rates determined for blue grama in the
greenhouse and field studies were 24.3 and 65.3 mg COZ-dm-z‘hr-l,
respectively (Appendix A, Tables 1 and 6). These two values are not
directly comparable because they reflect Pn rates of blue grama at
a reproductive phenological stage in the greenhouse and a vegetative
stage in the field. Dye (1972) reported a maximum Pn rate for blue
grama of 48 mg C02'dm—2°hr-1. Heichel and Musgrave (1969) reported
Pn rates of 15 inbreds and hybreds of Zeq maize, a C4 specles, ranged

from 28 to 85 mg C02'dm_2'hr_1. Murata and Iyama (1963) reported
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Pn rates of Bermuda grass (Cynodon dactylon), also a C4 apecies,

ranged from 35 to 43 mg COz-dmfz'hr-l.

Regression Analyses for Both the Field and

Greenhouse Study Steady State Experiments

Several stepwise linear multiple regression analyses were per-—
formed on all steady state experiments for both the field and the
greenhouse studies. The regression equations for the field steady
state blue grama Pg and Pn rates in terms of LA and GA are Presented
in Appendix A, Table 9. The regression equations developed from the
greenhouse study of Pn, Pg and AGR rates in terms of LA for both
blue grama and western wheatgrass are presented in Appendix A, Table 10.

The multiple regression equations developed are essentially
biologically uninterpretable, but are feported because of their
value in the determination of the more important variables affecting
the CO2 exchange rates of the specles studied. Regression equations
were also helpful in determining the amount of variation in the
dependent variable (Pn, Pg, or AGR) which could be accounted for by
the independent variables (multiple rz). The equations also allowed
further comparison within and between species.

Soil water potential was the most important independent variable
affecting the Pn rates of blue grama in the field study, while phen-
ology was most important for the Pg rates (Appendix A, Table 9).

The independent variables generally accounted for more of the varia-
bility in Pn rates of blue grama in the field than the Pg rates

(Appendix A, Table 9). Also, more of the variability in both Pn and
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Pg rates was accounted for by the independent variables when based
on LA than when based on GA (Appendix A, Table 9).

Soll water potential was the most important independent variable
affecting both Pn and Pg rates of both blue grama and western wheat-—
8rass in the greenhouse study. The independent variable of tempera-
ture most affected the AGR rates of blue grama while soll water
potential was most important in affecting the AGR rates of western

wheatgrass.

Primary Productivity Model for Blue Grama

A primary productivity model utilizing difference equations was
written in FORTRAN for the purpose of describing the dynamics of
blue grama growth throughout a growing season. The model can be
described as a mechanistic model to the extent that some of the flows
are represented by mathematical functions of experimental results.
However, the major attribute of the model is that the main flows of
biomass are determined directly from CO2 exchange data collected in
the field photosynthesis study. The objective was to produce a bio-
logically-oriented computer model.

Models described by Innis_gglgl. (1972), Parton and Marshall
(1973), Connor, Brown and Triica (1973), and Connor (1973) have
utilized the 002 exchange data collected in the field or greenhouse
studies to some extent. However, each of these models has used the
trends in photosynthetic rates to develop mathematical functions which
describe the approprilate flows. This approach was necessary because

these models described communities or ecosystems which were composed
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of several different species, and CO2 exchange data were not com-
plete for each species. In fact, a complete set of CO2 exchange
data was not available for any of the species, including blue grama,
until completion of the data analyses included in this report.

In contrast to the models previously referred to, the approach
taken here was species specific for blue grama. A more simplified
approach was possible because a relatively complete set of 002 ex-—
change data was provided by the present study of the dominant
species of the shortgrass prairie. All of the steady state Pg
determinations from the field study were grouped into several
ranges for each of the four variables: soil water potential, irrad-
iance, temperature and phemology. The range of groupings for the
variables were the same as those used for the analysis of covariance
(Appendix A, Table 7) and for the discussion of the field study in-
teraction and main effects on the photosynthetic rates of blue grama
(Figures 20, 21, 26, 27, 28, 29, and 30). Twenty-four graphs depic-
ting four-way interaction effects of the variables on Pg were plotted
with temperature on the abscissa and Pg on the ordinate. These
graphs provided Pg rates for blue grama at all daytime temperatures
normally encountered during the growing season on the shortgrass
prajirie for any one of 24 different combinations of the three re—
maining variabies of soil water potential, irradiance and phenology.

There were some missing CO2 exchange data, and some data with
no replicates. Therefore, no data were used in the interaction
graphs unless replicated. In addition, some visual estimates of the

Pg rate were necessary to complete the data set. The temperature
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range for which Pg rates were determined in the field study was from
15°C to 45°C. However, temperatures above and below this range are
sometimes encountered during the growing season on the shortgrass
prairie. Therefore, estimates of Pg were made to complete a range
of temperatures from 3.8°C to 48.8°C for each of the 24 sets of the
three remaining variables.

In addition, three two-way interaction graphs were prepared in
the same manner for data from the field study that described the
effects of soil water potential and temperature on the AGR rates of
blue grama within the temperature range of 3.8°C to 48.8°C. Root
respiration estimates were provided by D. Coleman (personal communica-
tion) and considered in the model by utiiizing three more two-way
interaction graphs depicting the effects of soil water potential
and soill temperature on root respiration.

Thus, a total of 30 interaction graphs wére utilized in the
computer program, in the form of data statements, to provide the
dynamics of the major flows of biomass in the model.

The flow diagram of the primary productivity model is shown in
Figure 31. The state variables are depicted by rectangular boxes,
the driving variables by circles and the irregular figures represent
the source and sinks of 002 in the system. The solid lines in Figure 31
represent the flows of biomass among state variables, while the dashed
lines represent informational flows from driving variables regulating
the flow of biomass among state variables. Valve symbols regulating
flows are labeled (F2 through F7) to define each particular biomass
flow in the system. Biomass (g CHZO-mfZGA°hr*1) is common to all flows

in the system.
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Figure 31.

Flow diagram for the primary productivity model for blue
grama (Bouteloua gracilis). The flows are:
photosynthesis, F3 =

F2 = gross
aboveground dark respiration, F4 =

translocation, F5 = root respiration, Fé = shoot death,

and F7

= root death.
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Driving Variable Data

Data for irradiance, air temperature within the canopy and
soil temperature at 10-cm depth for the 1972 growing season at
Pawvnee Site was obtained from the IBP Grassland Biome Data Bank.
Most of the soil water potential and alil phenology values were per-
sonally recorded throughout the 1972 growing season at the Pawnee
Site. Some of the early and late season soil water potential data
utilized to drive the model were predicted from a sub-model. This
sub-model utilized daily pan evaporation rates to arrive at a daily
evapotranspiration rate which, with daily preéipitation, resulted
in a flux of soil water that was then transformed to scil water
potential.

The primary productivity model operated on a three~hour time
increment throughout the 1972 growing season. The growing season
was arbitrarily determined to be 154 days in length, beginning on
May 16 and ending on October 16. Each of the values for the five
major driving variables Previously referred to were hourly averages.
Therefore, hourly averages of each variable were read into the pro-
gram, for each three-hour iteration of the model.

The model was Initialized utilizing state variable values of
aboveground live (photosynyhetically—active) blomass (AGB) of 15.0
g CH,0'n GA and a live (functional) root biomass (BGB) of 517.0 g
CH,0-m 2GA determined for that date (May 16, 1972) by Lauenroth (1973).

The Computer Program

The computer program (Appendix B) initially required performing

Some necessary transformations of the abiotic driving variables.
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The addition of 5°C to the air and soil temperatures was deemed
necessary to make the abiotic data more comparable with similar
measurements made during the field study. Abiotic data were col-
lected at a different site location and at a slightly different
height above the canopy than in the field study. A basic transfor-
nmation of blue grama biomass (AGB) to LA was necessary because all
CO2 exchange data in the interaction graphs were interms of LA (mg
coz-dm"zLA-hr'l). The value, 0.53 dm’+g™!, was determined for blue
grama by regression analysis. The program was then required to per-
form an extensive IF STATEMENT search utilizing the given driving
varlable data to determine the appropriate interaction graphs from
which to extract Pg, AGR and root respiration rates. At this point
a linear interpolation subroutine (FUNCTION TABLE) was called which
linearly interpolated along the abscissa (temperature) to obtain the
CO2 exchange rates dictated by all four driving variables. The Pg
and AGR rates, which are flows F2 apd F3, respectively, were then

2GA'3hr_l. The

transformed from mg Coz'm,--ZGA-hr_1 to g CH20°m”
estimates of root respiration rates, flow F5, in the interaction graphs
were in terms of mg COz'g_l-day_l, from D. Coleman (personal communi-
cation). Therefore, the root respiration values required a slightly
different transformation to arrive at g CHZO'mszA'Bhr-l. All three

of the preceeding transformations are simple arithmetic manipulations
utilizing molecular weights of c, 002, and CH20 of 12,01, 44.01 and
30.0 g-moleﬁl, respectively.

Flows F2, F3 and F5 (Figure 31) are not only regulated by the

various driving variables, but are regulated by the amount of biomass
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in each respective state variable. An obvious example is that the
Pg rate per unit of LA would be constant, given certain ablotic and
biotic conditions, but the rate of Pg per unit of GA must be pro-
portional to the LA°GA_1. Therefore, a greater AGB‘m-ZGA would
result in a greater Pg-GAfl until an optimum LAI was reached. Of
course, this relationship would not be linear at high LAI's and
the effects of LAI could be accounted for by utilizing a light ex-
tinction coefficient such as that used by Saeki (1963). Because of
low LAI encountered on shortgrass prairie, a linear relationship
between Pg and AGB was assumed and the model did not make use of a
light extinction coefficient. Total light penetration into the can-
opy was considered to be a valid approach toward modeling productivity
of the shortgrass prairie because the LAI seldom exceeded 0.5 or 0.6,
and normally was in the range of 0.2 to 0.4 (Knight, 1973).
Translocation from AGB to BGB is flow F4 in Figure 31. This
flow rate was based directly on 14C translocation experiments con-
ducted by Singh and Coleman (1973) on blue grama-dominated (90 percent
by cover) sods during the 1972 growing season at the Pawnee Site.
The informational input for F4 is from the phenological stage driving
variable because the experiments were conducted only during May, July
and September of 1972. Each of these dates provided a translocation
value which represented the proportion of photosynthate transiocated
to the roots and crowns during that period of the growing season.
The values were: May = 0.70, July = 0.80, and September = 0,88,
Linear interpolation between the May and July values was used to

obtain a June value of 0.75. The August value of 0.55 is more uncertain
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and open to criticism because linear interpolation was not used.
The translocation value for August was simply based on an estimate
that a lesser proportion of the photosynthate would be translocated
to BGB during a reproductive phenological stage.

Flows F6 and F7 (Figure 31) for shoot and root death rates,
respectively, are the least important flows of the model because they
had only a small effect on the net primary productivity of blue grama,
The shoot death rate, F6, and the aboveground litter state variable
(AGLIT) are, however, definitely necessary to the gystem. From a
biclogical standpoint, AGLIT is necessary for obvious reasons. From
a modeling standpoint, AGLIT is necessary because the accumulation
of aboveground litter must be accounted for and the relationship
between AGB and productivity previously referred to must be considered.
In other words, if no AGB died throughout the growing season, a large
amount of potentially productive foliage would be present in the
winter. This is obviously not the ecase for the shortgrass prairie
in the northern hemisphere.

The functions controlling the shoot death rate, F6, in:the
program (Appendix B) are based on soil water potential, air temper-
ature, and AGB. Simply stated, if the soil water potential is less
than =35 bars and the air temperature is greater than 39.0°C, shoot
death will occur at a rate proportional to the difference between
the actual temperature and 39.0°C. Also, if the temperature is
below 4.0°C, shoot death will occur at the rate of five percent of

the AGB for each °C below 4.0°C.
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The function controlling root death rate, F7, and the state
variable of belowground litter (BGLIT) are necessary to the model
for accounting purposes only (Figure 31). The flow rate from BGB
to BGLIT is based simply on general estimates (Inmnis et al., 1972)
that the root bilomass replacement rate of blue grama is about 25
percent per year.

After computation of each of the flows, F2 through F7, simple
difference equations are used to calculate ongoing values of AGB,
BGB and total live biomass (TOTBIO). After completion of these
calculations, the program is returned to the next three-hour iter-
ation.

Output of the Computer Model

At the end of each three-hour iteration, the values of all
driving and state variables are printed out along with the date
and time (Appendix B), Each flow is summed and printed after eight
iterations (one day). Six examples of the printed output of the
model, one example from each of the six months of 1972 under con-
sideration, are also given in Appendix B,

Graphic representations of the model output was accomplished
by using another subroutine (PLOTIT) and are shown in Figures 32
through 38. Figure 32 illustrates Pg and net primary productivity
of blue grama throughout the 1972 growing season at the Pawnee Site.
Net primary productivity (NPP) was determined by: NPP = Pg - AGR -
root respiration. Totals for each of the flows in the model for
the season are shown in Appendix B and in Appendix A, Table 11.

The total NPP of blue grama, 714 g CH20°m_2GA-yr—1, is comparable
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to the 809 g'm_2°yr_l total NPP determined by Lauenroth (1973) for
all species of the Pawnee Site for the same season. The total Pg
for the season was 1412 g CH20'm72'yr_1. Therefore, the difference
between NPP and Pg, 698 g CHZO'm“Z'yr_l, represents the yearly ex-
penditure of biomass for respiration purposes. This represented
approximatel} 49 percent of the total energy transformed by blue
grama.

Figures 33 and 34 show the modelled Pn rates for blue grama
throughout the growing season as affected by mean daily visible
irradiance (Figure 33) and by mean daily soil water potential and
air temperature within the plant canopy (Figure 34). A detailed
comparison of Figures 33 and 34 provides the effects of those three
variables on Pn rates of blue grama throughout the season. Optimum
levels of all three variables such as observed during most of the
month of June resulted in high Pn rates. Low irradiance with the
concomitant low temperatures on about September 2 resulted in a
sharp decrease in Pn, whereas high soil water stress was the limiting
factor for Pn from about August 15 to August 20. The total Pn of
blue grama for the season (Appendix A, Table 11 and Appendix B) was

2 -1

1188 g CH,0'm “-yr

2
Figure 35 shows the modelled dynamics of AGB and AGLIT for
blue grama throughout the 1972 growing season. The peak standing
green blomass as depicted by the model was 99 ¢ CH20'111-'2 and
occurred during the middle of September following fall regrowth
caused by precipitation received during the last part of August

and the first part of September (Figure 10). The depressions in
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AGB during the middle of the season were primarily caused by high
soil water stress and a reproductive stage of phenology.

Figure 36 shows the modelled dynamics of total aboveground bio-
mass (TOTBIO) and BGB for blue grama throughout the 1972 growing
season. The peak TOTBIO occurs at the same time as the peak AGB,
with the peak BGB occurring slightly later. BGB built up rapidly
after the first of September, while AGB remained fairly constant
because 88 percent of the photosynthate was being translocated
belowground from that time on.

Figures 37 and 38 depict the modelled AGR and root respiration
rates for blue grama throughout the 1972 growing season, respectively.
Both rates are shown as affected by mean daily soil water potentials
and the respective temperatures (air and soil). The effect of the
respective variables on AGR and root respiration can easily be seen
in Figures 37 and 38. The total AGR and root respiration for blue
grama for the season (Appendix A, Table 11 and Appendix B) were
224 and 474 g CHZO'm_z-yr_l, respectively.

A comprehensive comparison of model output, continuous 24-hour
ambient simulations and clipping data is shown in Appendix A, Table 8.
Discrepancies between Lauenroth's (1973) data and the model predic-
tions could be caused by the abundance and growth of Carex eleocharis
and Ariemisia frigida during the early and late parts of the season,
respectively, which were not accounted for in the primary productivity

model.
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Sensitivity Analysis of the Primary Productivity Model

An assessment of the sensitivity of the model was performed by
changing various abiotic variables or mathematical constants in the
model, T@e results are shown in Appendix A, Table 11. The analysis
clearly indicated the impact of rather drastic abiotic perturbations
on the modelled description of a biological system. The addition of
5°C to ali temperatures through the season reduced NPP from 714 to

31 g CH O-m_z'yr_l, whereas the reduction of all temperatures by

2
5°C increased the NPP to 1107 g CH,0'm >*yr™l. This trend was
caused by the exponential effect of temperature on respiration rates.
The ecophysiological implications of these results indicated that
NPP of the shortgrass prairie could possibly be greater during a
cooler season, even though it is dominated by a C4 species with a
high optimum photosynthetic temperature. However, a cooler season
would probably not occur without a concomitant reduction of irradiance,
which would tend to reduce NPP,

The addition of 10°C to all temperatures resulted in negative
NPP (Appendix A, Table 11). The exponential effect of temperature
on respiration rates coupled with low Pg rates were the causes for
the negative NPP. Negative NPP caused by the subtraction of 10°C
from all temperatures resulted from very low Pg rates at the low
temperatures.

Optimum soil water potentials throughout the season (Appendix A,
Table 11) resulted in extremely high NPP, demonstrating the eco-
physiological significance of this abiotic driving variable for

primary productivity of the shortgrass prairie. Extremely limiting
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soll water potentials resulted in an anticipated negative NPP. A
ten percent reduction in visible irradiance also resulted in an
anficipated reduction of NPP (Appendix A, Table 11).

The constant determined for converting weight of AGB to LA
was changed from the original 0.53 to 0.56 to assess its sensitivity
on the biological system (Appendix A, Table 11). This resulted in

an increase in NPP of 156 g CH O-m_z'yr_l, indicating the importance

2
of this constant.

The percentage of photosynthate translocated to BCR during
reproductive phenology was changed from 0.55 to either 0.45 or 0.65
(Appendix A, Table 11). These ten percent changes resulted in an
approximately equal decrease and increase of 22 percent, respectively,
in NPP for the season. These results indicated the importance of

translocation and the need for more research in this area.

Critique of the Model

The model, as presently constructed, is relatively simple. It
could be made more comprehensive with the inclusion of more variables
such as the effect of nutrients on Photosynthetic rates, or with
the inclusion of more flows such as decompositioﬁ. I have chosen
to leave it in its present form because of the lack of comprehensive
validated data. Each addition of unknowns to the model adds more
uncertainty to the results. Indeed, there are already a sufficient
number of estimates included in the model. The temperature data
obtained from the Grassland Biome Data Bank required extensive
editing and repletion and the sensitivity analysis (Appendix A,

Table 11) clearly demonstrated the importance of temperature to
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the biological system. An accurate and comprehensive abiotic data
set would, therefore, be a prerequisite to any further refinements
of the model.

The need for more comprehensive translocation data is evident
from the sensitivity analysis (Appendix A, Table 11). More accurate
and comprehensive root respiration data are also needed, but are
simply not available because of the complexity involved in the de-—
termination of this flow of biomass in the ecosystem. The shoot
and root death rates in the model could also be better represented.
The photosynthesis and aboveground respiration data set could even
be more complete to provide a gr%ater degree of accuracy to the model.

Withstanding these criticisms, the model is still a fair approx-
imation of the primary productivity of blue grama for the 1972 growing
season. The comparable values determined by Lauenroth (1973) (Appen-
dix A, Table 8) provide some test of the validity of the model. Similar
abiotic data sets with slight modifications to the program would allow
predictive output to be determined for other seasons. Considering
the dominance of blue grama in the shortgrass prairie, the predictions
of net primary productivity of blue grama might even be extrapclated

to NPP for the shortgrass prairie.



SUMMARY AND CONCLUSIONS

Two studies were conducted during 1971 and 1972 on the carbon
dioxide (COZ) exchange rates of a dominant and a sub~dominant grass
of the shortgrass prairie. The greenhouse study involved the deter-
mination of photosynthetic rates and the aboveground dark respira-
tion rates for blue grama (Bouteloua gracilis), a C, species, and
western wheatgrass (Agropyron smithii), a C3 species, as each was
affected by similar levels of soil water potential, temperature and
visible irradiance. Undisturbed sods of each species were taken
from the field and grown in the greenhouse under conditions some-
what similar to those which the plants experience in .the field.
Carbon dioxide exchange rates were measured using a closed system
and an infrared gas analyzer. Contribution of 002 to the system
from the soil was excluded by sealing the sods at the soll-atmosphere
interface with heavy mineral oil.

The fleld study involved the determination of gross photosyn-
thetic rates for in situ blue grama sods as affected by soil water
potential, temperature, visible irradiance and phenological stage.
The field study was conducted on an undistubed portion of the short-
grass prairie at the Pawnee Site of the U.5.-1IBP Grassland Biome in
northeastern Colorado. A portable open system of 602 exchange was
used along with an infrared gas analyzer and an automatic data
acquisition system. One field experiment was conducted to determine
gross photosynthetic rates of blue grama at different levels of each

of the above four variables. Another type of experiment was
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conducted to monitor the CO2 exchange of in situ blue grama sods
during four 24-hour periods throughout the 1972 growing season.

It was found that all four of the main treatments (soll water
potential, temperature, visible irradiance and phenological stage)
significantly affected the photosynthetic rates of blue grama, All
three main treatments (soil water potential, temperature, and
visible irradiance) significantly affected the photosynthetic rates
of western wheatgrass. Varying so0il water pctential and temperature
also significantly affected the aboveground dark respiration rates
of both species. Interactions among most of the above variables
also significantly affected the CO2 exchange rates of both species.

Blue grama was not light saturated under any but severe stress
conditions for photosynthesis. High temperatures and high soil -
water stress resulted in light saturation of blue grama at very
high irradiances. Western wheatgrass demonstrated light satura-
tion at relatively low irradiances. The optimum temperature for
photosynthesis of blue grama varied between 26°C and 33°C, depending
on soil water stress and irradiance. High soil water stress and
low irradiances resulted in lower optimum photosynthetic tempera-—
tures of blue grama. The optimum photosynthetic temperature of
western wheatgrass was not determined because it was lower than
the lowest (20°C) used in the greenhouse study. Increasing soil
water stress resulted in decreasing rates of photosynthesis and
aboveground dark respiration for both species. Aboveground dark
respiration of both species increased with increasing temperatures.

A reproductive stage of phenology caused significant decreases in
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the photosynthetic rates of blue grama. The effect of phenology on
photosynthetic rates of western wheatgrass was not determined.

A comparison of the photosynthetic rates of blue grama and
western wheatgrass on a dry welght basis showed western wheatgrass
to be slightly superior to blue grama. However, when compared on
.the more traditional basis of leaf area, the C4 species, blue grama,
demonstrated far superior photosynthetic rates to the C3 species,
western wheatgrass,

A comparison among gross photosynthetic rates for blue grama
in the field and greenhouse studies showed the rates determined
in the greenhouse to be about 65 percent of the rates of the in
situ blue grama sods in the field study.

Integration of daily net photosynthesis throughout each of
four 24-hour continuous ambient simulations studied during the 1972
growing season at the Pawnee Site provided values ranging from 1.7
to 14,3 g CHZO'm._2 ground area-dayﬁl. The greater photosynthetic
rates were noted during near optimum conditions of soil water poten-
tial, visible irradiance and temperature.

Multiple linear regression analyses were performed on gross
and net photosynthesis and aboveground respiration rates for both
blue grama and western wheatgrass. With transgenerations, 81 to
91 percent of the variability in the 002 exchange rates were accounted
for by the three variables of soll water potential, temperature and
visible irradiance. Similar regression analyses on gross and net
photosynthetic rates of blue grama in the field study showed 64 to

81 percent of the variability in the Photosynthetic rates to be
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accounted for by the variables of soil water potential, temperature,
visible irradiance and phenological stage.

A primary productivity simulation model of the seagonal dynamics
of blue grama was constructed making use of the fairly complete set
of 002 exchange data collected in the field study. The model oper-
ated on a three-hour time increment for a 154-day growing season
during 1972, Total net pPrimary production of 714 g CH20°mf23round
area-yr_l for blue grama was predicted using the model, which is
comparable to clipping data of 809 g'm-z'yrfl determined by Lauenroth

(1973) for the same growing season, which included all species.
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phenology, soil
gracilis) sods

ge rates for the various conditions of

Field steady state carbon dioxide exchan

Table 5.

perature for in situ blue grama (Bouteloua

throughout the 1972 growing season at the Pawnee Site.

water potential, {rradiance and tem
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.
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[T ——

————
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00 .000 rep
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.24

0
0
0
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:00 .315 wveg
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1217.1
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Table 9. Prediction equations developed for blue grama (Bouteloua
gracilis) field steady state net and gross photosynthetic
rates as determined from regression analyses using soil water
potential, visible irradiance, ailr temperature within the
canopy and phenological stage as independent variables.

Symbol Definition Measur?ment Range of data

or units
Dependent variables

Pn (LA) Net photosynthesis mg COz -« dm—2 hr-1

Pn (GA) Net photosynthesis mg €0 « m~2 . hr-l

Pg (LA) Gross photosynthesis mg COp + dm=2 - hr-l

Pg (GA) Gross photosynthesis mg CO2 * m™% . hr-l

Independent variablest

W Soil water potential - bars 0 to -50 (or less)

at -10.0 cm

I Visible irradiance 1y min~! 0.10 to 0.76

T Air temperature within °c 15.0 to 45.0

the canopy

P FPhenological stage vegetative = 1 vegetative to

reproductive = 2 reproductive
Number of observations = 204
1. Linear regressions 2
a. Pn (LA) = 37.9 + 0.62 (W) (r™ = .43)
b. Pn (GA) = 1347.5 + 21.1 (W) (r2 = .37)
c. Pg (LA) = 69,8 - 23.5 (P) (r2 = .45)
¢. Pg (GA) = 3022.7 - 269.0 (P) (r2 = .37)

2. Multiple linear regressions (no interactions)

a. Pn (LA) = 65.2 + 0,36 (W) - 12.3 (P) + 37.7 (I) - 0.89 (E)

(r¢ = .72)
b. Pn (GA) = 2642.5 + 14.2 (W) - 167.9 (P) + 1166.2 (I) - 2;.4 (T)

(r- = .66)
c. Pg (LA) = 53,8 - 15.5 (P) + 42.8 (I) + 0.23 (W) - 0.32 (T)

(r2 = .70)
d. Pg (GA) = 2163.6 - 195.6 (P) + 1324.3 (I) + 10.7 (W) (r2 = .62)

3. Multiple linear regressions (with interactions)
a. Pn (LA) = 18.7 + 0.005 (TxW) - 0.93 (P) + 82,0 (I) - 0.06 (T)
+ 0.02 (IxIxW) + 3.04 (T) - 24.9 (PxI) (r? =
b. Pn (GA) = -1753.6 + 0.17 (TxW) + 76.8 (P) + 1424.1 (I) - 2.39

.81)

(T)2 + 195.3 (T) + 0.68 (TxIxW) - 8.30 (PxT) (r2 = .77
c. Pg (LA) = -9.6 ~ 4.5 (P) + 117.7 (1)1/2 + 0,02 (TxIxW) - 27.2
(PxI) - 0.003 (T)2 (r2 = .75)
d. Pg (GA) = 292.0 - 98.5 (P) + 3658.8 (I)1/2 + ¢.38 (TXIXW%
(r L64)

lVariables in all
as determined by

equations are listed in the order of their importance
stepwise multiple regression.
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Table 10. Prediction equations developed from regression analyses of
data from the greenhouse study of blue grama (Bouteloua
gracilis) and western wheatgrass (Agropyron smithii) net
and gross photosynthetic rates and aboveground dark respir-
ation rates. Soil water potential, visible irradiance, and
air temperature within the canopy were consldered as indepen-
dent variables in the analyges. _All rate:values are in terms
of mg CO2 + dm~2 leaf area - hr-l.

Measurement
Symbol Definition or units Range of data
Dependent variables

Pn Net photosynthesis mg COp - dm'g - hel

Pg Gross photosynthesis mg COy + dm™ hr—1

AGR Aboveground dark mg CO, - dm~2 . hr-1

respiration
Independent variables’

W Soil water potential - bars 0 to -30

I Visible irradiance ly « min-1l 0.30 to 1.54

T Air temperature within °c 20.0 to 40.0

the canopy

Yumber of observations, 81 for gross and net photosynthesis
and 27 for respiration

Blue grama
l. Linear regressions 2
a. Pon=15.2 4+ 0.37 (W) (r™ = .38)
b. Pg = 21.9 + 0.52 (W)
c. AGR = -4,27 + 0.29 (T) (2 = .52)
2. Multiple linear regressions (no interactions)
a. Pn = 18.5+ 0.37 (W) + 5.11 (I) - 0.28 (T) (r? = .60)
b. Pg=16.9 + 0.52 (W) + 5.11 (I) (r2 = .64)
c. AGR = -1.98 + 0.29 (T) + 0.15 (W) (r2 = .84)
3. Multiple linear regressions (with interactions)
a. Pn=47.9 4 0.001 (TxW) + 2,14 (1)1/2 + 0.01 (TxIxW) - 0,02 (T)2
- 664.0 (1/T) + 0.30 (TxI) (rZ2 = .81)
b. Pg = 114.1 + 0.17 (W) + 2.14 (1)1/2 + 0,01 (TxIxW) - 1356.3 (1/T)
- 1.18 (T) + 0.31 (TxI) (r2 = ,83)
c. AGR =15.7 - 232.2 (1/T) - 1.37 (1n W) (r2 = .91)
Western whea;gpass
1. Linear regressions
a. Pn = 9.34 + 0.32 (W) (r2 = .61)
b. Pg = 12.1 + 0.37 (W) (2 = .75)
c. AGR = ~1.87 + 0.13 (W) (r2 = .59)
2. Multiple linear regressions (no interactions) 2
a. Pn = 15,4+ 0.32 (W) - 0.26 (T) + 1.77(I) (r° = .82)
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Table 10. Continued

b. Pg = 14.37 + 0.38 (W) - 0.13 (T) + 1.77 () (22
¢. AGR = -1.08 + 0.13 (T) + 0.05 (W) (r2

Multiple linear regréssions (with interactions)
a. Pn =10.14 - 0.01 (TxW) - 0.0L (T)2 + 0.41 (W) + 6.35 (1)1/2 4

.82)
.81)

36.3 (1L/w) + 0.12 (WxI) (r2 = ,91)

b. Pg=9.00-2.21 (In W) - 0.002 (T)2 + 6.39 (D)l/2 4 0.1§ (WxI)
(r« = .88)

C. AGR = -2.48 + 0.18 (T) + 0.003 (TxW) + 20.6 (1/W) + 0.642(ln W)
(z% = .89)

lVariables in all equations are listed in the order of their importance
as determined by stepwise multiple regression.
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