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ABSTRACT

MODELING AND CONTROLLING NANOSCALE PATTERNS FORMED BY

BOMBARDMENT WITH A BROAD ION BEAM

For over half a century it has been known that bombarding a solid surface with a broad ion beam

can produce periodic nanoscale structures. Given the virtually limitless promise of nanotechnology,

the potential of ion bombardment to produce nanopatterned surfaces over large areas in a simple

and economical way has attracted substantial interest. In the decades since its discovery, there has

been a wealth of experimental and theoretical work examining the phenomenon in detail, with the

eventual goal of using ion beam sputtering (IBS) to produce useful nanostructures.

Despite the body of work, there are many open questions and unsurmounted challenges remain-

ing. In this thesis, I present work that I have conducted in collaboration with my advisor, Mark

Bradley, with whom I addressed some of these challenges. I show how we developed a formalism

which connects information about single ion impacts to the evolution of a surface which sustains

> 1016 such impacts per square centimeter. We have also produced theoretical results for the case

of a binary material being bombarded while rotated azimuthally, with some unexpected findings. I

also discuss some very exciting theoretical predictions for the case in which an elemental target

is bombarded while the polar angle of ion incidence periodically changes. In this case we find

the temporal driving can induce a surface pattern which is nearly perfectly periodic in the long

time limit. I also discuss our work on using templated surfaces in conjunction with IBS to produce

high quality blazed gratings and multilayer blazed gratings. This work is the subject of a current

collaboration with Carmen Menoni and her students.
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CHAPTER 1

OVERVIEW OF MATERIAL PRESENTED

Generating and controlling nanoscale patterns has been the subject of decades of work among

countless researchers and across many disciplines. Applications as broad ranging as magnetic

thin films,1 linear and nonlinear optical components,2, 3, 4, 5, 6, 7, 8 nanowire fabrication,9 bioimaging

devices,10 and templates for growing carbon nanotubes11 are evidence that this subject is anything

but esoteric. One promising technique for developing such patterns is bombardment of a solid surface

with a broad ion beam. It has long been known that under certain conditions such bombardment may

spontaneously produce nanoscale patterns in the surface height. While the length scales of these

patterns, which are typically on the order of tens to hundreds of nanometers, are accessible by direct

lithographic methods such as electron beam lithography, ion bombardment has the tremendous

advantage that it is a "bottom up" fabrication technique. If the experimental conditions can be

arranged such that a desirable pattern forms on the surface, such a pattern may be easily formed

on a surface whose area is enormous compared to the characteristic length scale of the pattern.

This is in contrast to "top down" fabrication techniques, in which every surface feature must be

individually etched. For a summary of the history of this field and its applications, see Chapter

2. While the potential upside of this method is significant, there has been substantial difficulty in

precisely controlling the patterns are formed by ion bombardment. In this thesis I describe the

research I have done with the goal of understanding and controlling these patterns.
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In Chapter 3, we develop an improvement on an extant theoretical proposal. The aim of this

work was to use atomistic simulations to produce a model of a macroscopic ion bombarded surface.

Heuristically, if one had sufficient information about the average crater left by a single ion impact,

one could extract from this a prediction for the overall surface evolution. The work done previously

on this problem was the development of a mathematical formalism that takes the average crater

resulting from a single ion impact and produces a continuum equation of motion for the entire

surface.12 This average crater may come either from atomistic simulations or from a microscopic

theory. The latter case represents a means to test the formalism itself, as it should reproduce other

theories based on the same assumptions. Despite the explicit claims of the authors in Ref. [12],

their formalism did not reproduce the results of the Bradley-Harper (BH) theory. The BH theory

is in turn based on the Sigmund model of ion sputtering.13, 14 Crucially, the analysis in Ref. [12]

neglected the dependence of the average crater on the curvature of the surface. This neglect stems

from an inconsistency of assumptions in their approximation of the average crater. To correct this,

we developed our own formalism which accounts for the dependence of the crater on local surface

curvature. Our formalism does reproduce the results of the BH theory.

In Chapter 4 we generate predictions for the evolution of a binary surface which is undergoing

discrete, regular, azimuthal rotations. These results are surprising and unforeseen. Azimuthal

rotation has been considered before, primarily in the context of suppressing the formation of surface

patterns.15, 16, 17, 18, 19 For applications such as secondary ion mass spectroscopy, it is desirable

that the surface remain as flat as possible to optimize the depth resolution. However, for the case

of a binary material or bombardment with concurrent deposition of a second atomic species, we

show that unexpected and novel effects may occur as a result of azimuthal rotation. In Chapter

4, we develop a general formalism which takes an equation of motion valid for a single angle of
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incidence and develops predictions for how the surface will evolve if it is discretely rotated by

180� azimuthally at a frequency w . We apply this general result to a particular equation of motion

which is relevant for ion bombardment with co-deposition of impurities. Among the surprising

results is that the wavelength of the resulting pattern may be tuned by adjustment of the rotation

frequency. Furthermore, the wavelength of the pattern may even jump discontinuously as a result of

a continuous variation in rotation frequency.

In Chapter 5 we show numerical evidence that periodic variation of the polar angle of incidence

can produce nanoscale patterns which are virtually free of defects. If confirmed experimentally,

this would constitute a major breakthrough in the field, as the primary obstacle to the widespread

use of ion bombardment as a nanofabrication tool is the high density of defects in the patterns that

typically form. This discovery is also of interest to mathematicians, as the equation used to model

the ion bombarded surface is widely studied because it exhibits spatiotemporal chaos. The fact that

temporal driving can induce nearly perfect spatial periodicity is both exciting and invites further

study. In this work we investigate the necessary and sufficient conditions for the formation of nearly

perfect ripple structures. In particular, we examine influence of the rocking frequency and amplitude

on the resulting morphology, and verify that undesirable additional terms likely to occur due to

physical considerations do not constitute a substantial impediment to the suppression of chaos.

In Chapter 6 we study the time evolution of surfaces which have been pre-patterned, and are

subjected bombardment with an obliquely incident ion beam. This goal of this work is to guide

experimentalists working to produce blazed gratings (BGs). Such gratings are extremely valuable

in the field of spectroscopy,20 and there has been much work on developing new methods for

improving the efficiency of their operation and production.3, 4, 5, 6, 7, 8 We propose a new method of

fabrication in which a periodic surface modulation is first induced by more conventional means
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such as optical lithography or electron beam lithography. This prepatterned, or “templated”, surface

is then bombarded by a broad ion beam with precisely selected characteristics to change the shape

of the periodic modulation into a diffraction grating with well defined faces (i.e. a blazed grating).

The idea of using ion bombardment on templated surfaces with the aim of producing blazed

gratings has been around for decades, but all previously proposed methods rely on a very specific

initial pattern shape and primarily make use of shadowing effects.3, 4, 5, 6, 7, 8 The theoretical analysis

of Refs. [7] and [8] is also extremely simplistic, neglecting a wide array of physical effects that are

likely to be relevant. We seek to improve on their theoretical analysis to develop a new approach

to blazed grating fabrication as well as an approach which may be useful in developing multilayer

blazed gratings. This work is described in detail in Chapter 6.

In Chapter 7 we consider an extension of the method proposed in Chapter 6 to the case of

multilayer blazed gratings (MBGs). For light in the soft X-ray regime, most materials lack sufficient

reflectivity to function effectively. One way to partially circumvent this limitation is to deposit many

layers of material, the composition of which alternates between two species, D and B. Constructive

interference from reflections from the surface and subsurface interfaces allows an MBG to operate

with efficiencies far in excess of what a BG could produce.

The BG profile of the surface of a MBG has been seen to degrade during the deposition of

the multilayers without an ion assist.21, 22, 23, 24 Given that the method proposed in Chapter 6

spontaneously produces a good BG profile given a sinusoidal initial condition, it is natural to think

that bombarding a MBG surface which has been smoothed by deposition with an ion beam might

result in it returning to a good BG profile. In Chapter 7 we present numerical evidence that this is

indeed the case, and show that for appropriately chosen conditions, an arbitrary number of layers

may be deposited without significant degradation of the surface profile.
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CHAPTER 2

BACKGROUND

2.1 Experimental History of Ion Beam Sputtering

The experimental record of nanoscale patterns produced by ion beam sputtering (IBS) is long, rich

and, at times, confusing. In this section I provide an overview of some of the major experimental

developments in this area.

The fact that bombardment of a solid surface with a broad beam of inert ions can spontaneously

produce nanoscale patterns in the surface topography has now been known for over half a century.

Early work by Cunningham et al.25 showed in 1960 that Ar+ ion bombardment of metals could

produce disordered rough surfaces or ripple patterns. Two years later, some of the most important

elements of this phenomenon were identified by Navez et al.26 by studying ion bombardment of

glass with a beam of ionized air. In particular, for intermediate angles of ion beam incidence, they

observed ripple patterns, the wavevector of which was parallel to the projection of the incident ion

beam onto the surface. In what follows I will call these patterns "parallel mode ripples", and refer to

ripple patterns whose wavevector is perpendicular to the wavevector of parallel mode ripples as

"perpendicular mode ripples". Figure 2.1 shows a simulation in which the surface develops parallel

mode ripples, while Fig. 2.2 shows an experimental example. Figure 2.3 shows a simulation in

which the surface develops perpendicular mode ripples.
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Fig. 2.1 An example of a simulation displaying parallel mode ripples. The arrow indicates the
direction of the projected ion beam.

Teichmann et al. Nanoscale Research Letters 2014, 9:439 Page 4 of 8
http://www.nanoscalereslett.com/content/9/1/439

Figure 3 AFM images of Xe+ ion beam-eroded Si surfaces for Eion = 1, 200 eV, jion = 300 µA/cm2 and ion incidence angle of αion = 75°
for increasing fluences. (a) φ = 1.12 × 1017 cm−2, (b) 5.62 × 1017 cm−2, (c) 1.12 × 1018 cm−2, (d) 3.37 × 1018 cm−2, and (e) 1.35 × 1019 cm−2.
The image size is 1 × 1 µm2 (a to e) and 10 × 10 µm2 for the zooming of the 1.35 × 1019 cm−2 sample (f). The different height scales of the images
are specified in each image. The white arrow indicates the projection of the ion beam direction.

normal. This can be seen in the height profile along these
triangular depressions (Figure 4a) and the distribution
of the facet angles (Figure 4c). They form an angle of
about 8.5° towards the global surface on the downstream
side which corresponds to a local angle of incidence of

83.5°. The local angle of incidence on the upstream side
is approximately 67°. Furthermore, the ripple structure
between the depressions is also faceted (Figure 4b and
4d). The angle of the downstream facet is similar whereas
the upstream side strongly differs. Based on the calculated

Figure 4 Height profiles and distribution of the surface gradient angles of Figure 3f. The profiles are along the triangular depressions (a) and
in region where only ripples exist (b). The arrows indicate the direction of the ion beam incidence. The angular distribution are evaluated for the
entire AFM image (c) and in the region where only ripples occur (d). α < 0° correspond to the upstream side and α > 0° to the downstream side of
the facets.

Fig. 2.2 Experimental results reported in Ref. [27]. Panels (a) - (e) display parallel mode ripples,
while panel (f) shows a topography which cannot be classified as a kind of ripple pattern. These
images represent AFM scans of Si surfaces subjected to 1.2 KeV Xe+ ion bombardment with an
incidence angle of 75�. The fluence steadily increases from 1.12⇥1017 ions/cm2 in (a) to
1.35⇥1019 ions/cm2 in (f).
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Fig. 2.3 An example of a simulation displaying perpendicular mode ripples. The arrow indicates the
direction of the projected ion beam.
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In order to clearly explain the plethora of experimental results on patterns formed by IBS, it

is necessary to start with some of the most recent results and work backwards. This is because

virtually all early IBS pattern formation experiments suffered from an uncontrolled factor: The

unintentional deposition of impurities onto the sample. The critical influence of these impurities

was first identified by Ozaydin et al.,28 who performed in situ analysis of Mo islands grown on a

Si substrate during 1 keV Ar+ bombardment at normal incidence. When there was a large atomic

flux of Mo incident on the surface, the experimenters observed disordered Mo dots spontaneously

forming on the surface. When the atomic flux was set to zero, however, no patterns were formed.

This strongly implied that the presence of Mo at the surface was a necessary condition for nanodot

patterns to form.

There are many possible origins for inadvertent contamination fluxes. One common culprit is a

highly divergent ion beam. If the ion beam spreads enough en route to the sample, stray ions strike

the walls of the chamber, sputtering material from them. Typically the chambers are made from

stainless steel, in which case a divergent beam would produce a deposition current of Fe atoms onto

the surface. In Subsection 2.1.2 we will show experimental evidence that Fe deposition has a very

strong effect on pattern formation. Due to this effect, it was once thought that the divergence of the

ion beam had a strong influence on the surface morphology.29 The device used to hold the sample

can also introduce problems. Just as for the chamber walls, sputtering of the sample holder can

produce a significant deposition flux, even if it is made of the same material as the sample.30 Finally,

even the grids used to accelerate the ions themselves can be struck by ions, and consequently sputter

material onto the surface. However, experiments with controlled Fe deposition suggest that the

atomic flux expected from this mechanism is below the threshold needed to influence the surface
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topography in many cases.31, 32 The influence of impurities has been explored extensively since the

breakthrough work of Ozaydin et al.31, 33, 34, 35

2.1.1 Experiments on Elemental Targets

Given the influence of impurity deposition on the dynamics of ion induced pattern formation, it

is difficult to draw rigorous conclusions from experiments which did not take careful precautions

to avoid impurities. I will first focus on experiments in which care was taken to avoid impurity

deposition, and discuss experiments in which impurities were intentionally incorporated in Subsec-

tion 2.1.2. Additionally, I will initially focus primarily on noble gas ion bombardment of Si targets

for simplicity.

Careful experiments on noble gas IBS on Si have revealed the existence of a critical angle of

incidence, qc. For incidence angles below qc, no significant patterns are observed. Experiments

performed by Madi et al.36, 37 suggest that for 250 eV Ar+ bombardment of Si qc ' 48�, and other

experiments suggest similar values for qc.38, 39, 40 The existence of a significant critical angle is

at odds not just with previous experiments (in which impurites played a strong role) but also BH

theory.13 As explored later in this chapter, the BH theory predicts that ripple patterns should form

spontaneously for all nonzero angles of incidence. The mass redistribution theory proposed by

Carter and Vishnyakov41 predicts a critical angle of qc = 45�.

Another phenomenon observed in low energy (<20 KeV) IBS of Si substrates is the transition

from parallel mode ripples to perpendicular mode ripples as the angle of incidence is increased.

Experiments by Madi et al.36, 37, 42 suggest that the critical angle for this transition is approximately

q = 80�. However, in those works, experiments were performed for incidence angles below 75� and

at 85�, but not angles in between, so this value is not terribly precise. The transition between the
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two ripple modes at higher incidence angles is predicted by BH theory13 and cannot be accounted

for by the Carter-Vishnyakov (CV) effect.41

Broadly speaking, a typical ion bombardment experiment progresses through three distinct

regimes.43 We shall refer to these regimes as the linear, coarsening, and saturation regimes. The

duration of each regime in real time is inversely proportional to the ion flux, but depends upon the

incidence angle, ion energy, temperature, and other parameters in a less straightforward way. The

points of transition between these regimes are not precise, but these three regimes form a useful

framework for discussing IBS experiments.

During the linear regime, the surface roughness grows exponentially in time. The rate of growth

of structures on the surface depends strongly on their periodicity. This is in very good agreement

with the predictions of linear theories discussed later in this work, and has been investigated in detail

by in situ grazing incidence small angle X-ray scattering (GISAXS).44, 45, 46, 47 In the linear regime,

patterns typically have relatively simple sinusoidal profiles and tend to exhibit up-down symmetry.

Futhermore, the characteristic length scale does not change appreciably in this regime. The duration

of the linear regime is expected to depend on the ion flux, the strength of the nonlinearities present,

and the linear growth rate. Experiments have shown that for IBS on Si just above the critical angle

qc, the linear regime is longer than for experiments with an incidence angle well above qc.36, 48

Since the linear growth rate is expected to pass through zero at qc, it is reasonable to conclude that

the increased linear regime duration near qc is due to a decreased linear growth rate. While there is

substantial variation, a reasonable fluence below which one might expect to still be in the linear

regime for 1 keV Ar+ bombardment of Si would be on the order of 1016 ions/cm2. Semiconductor

surfaces at room temperature are typically amorphized during the linear regime as well.
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As the surface width continues to grow, the sample eventually enters the coarsening regime. In

this regime, nonlinearities start to have a large influence on the surface topography. The exponential

amplitude growth observed in the linear regime slows, and the amplitude growth is seen to follow

a power law scaling.36, 37, 49, 50 Additionally, the lateral length scale is seen to increase over time

during the coarsening regime. Like the amplitude, the characteristic lateral length scale also

typically grows in a power law fashion during this regime.36, 37, 49, 50 Figure 2.4 shows the results of

a simulation in which coarsening was observed. Figure 2.5 shows a subset of the Fourier transform

of the surface shown in Fig. 2.4.

Fig. 2.4 A typical simulation in which coarsening is observed. Note that the characteristic
horizontal and vertical length scales grow as the simulation proceeds. The horizontal and vertical
scales are dimensionless.

The evolution of the shape of the patterns formed by IBS during the coarsening regime depends

strongly on the angle of incidence. For angles less than approximately 75�, the nearly sinusoidal

ripples grown during the linear regime typically coarsen into humps.49, 50, 51, 52 These humps

resemble parabolic arcs connected by small regions of large positive curvature. In addition to the
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Fig. 2.5 A plot of the Fourier amplitudes of the surfaces shown in Fig. 2.4. As the simulation
proceeds, the maximum in the Fourier spectrum grows and moves towards the origin.

power law scaling, the influence of nonlinearities is evident from the lack of up-down symmetry in

the patterns that develop in this regime.

For higher angles of incidence, an ion bombarded surface has been observed to coarsen into ter-

raced structures.53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 51, 52, 27, 64 These surfaces typically have two selected

slopes. A variety of explanations have been proposed for the existence of terraced topographies,

including ion reflection and redeposition,53 shadowing,51, 52 or the formation of undercompressive

shocks.65, 66 Examples of simulated surfaces exhibiting terrace formation are shown in Figs. 2.6

and 2.7, and experimental examples are shown in Figs. 2.8 and 2.9.

Fig. 2.6 A typical 1D terraced surface cross section in the saturation regime.
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Fig. 2.7 A typical 2D terraced surface in the saturation regime.

Eventually the surface amplitude and characteristic length scale saturate and do not grow any

further. The saturation regime is by far the least explored of the three regimes discussed here because

it can take a very long time for an experiment to exit the coarsening regime and the dynamics

during ripple growth are generally considered to be more interesting. Nevertheless, it is important

to note that the vertical and horizontal length scales do not grow without limit. The existence of a

saturation regime following a coarsening regime is referred to as the phenomenon of "interrupted

coarsening".67, 43, 68, 69

2.1.2 IBS with Multiple Atomic Species

In this section we expand the discussion of patterns formed by IBS to the case in which there is

more than one non-noble-gas atomic species present at the surface. Such a situation can result from

deposition of a second atomic species onto an elemental sample during ion bombardment or ion

bombardment of a binary material with a noble gas ion beam. While the effects of noble gas ion

implantation can affect the morphology of the bombarded surface, the influence of ion implantation
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case of 70° and the fluence of 1 × 1017 ions cm−2

where the calculated value of 2πh0/λ turns out to be
0.369, whereas tan(π/2 − θ) is 0.364. Thus, 2πh0/λ is
slightly above the limiting condition which indicates
the shadowing effect to start playing a role at this
fluence itself. In the case of 2 × 1017 ions cm−2, the
shadowing effect becomes more prominent since
2πh0/λ turns out to be 0.551. As a result, crests of
the ripples should undergo more erosion compared
to troughs, and hence, there is a likelihood of
mounds/facets to evolve. This explains the observa-
tion of mounds at this fluence. Similar behaviour is
observed in the case of 72.5°. For instance, in the
case of 1 × 1017 ions cm−2, 2πh0/λ equals to 0.242,
while tan(π/2 − θ) turns out to be 0.315. Thus, the
condition for no shadowing, i.e. tan(π/2 − θ) ≥
2πh0/λ gets satisfied here, and ripples are expected
to be seen. The observation of sinusoidal ripples in
Figure 4a supports this theoretical prediction. On the
other hand, shadowing sets in at the fluence of 2 ×
1017 ions cm−2 since in this case tan(π/2 − θ) be-
comes smaller than 2πh0/λ (=0.465). This leads to
the formation of small mound-like entities (in the
form of broken ripples) appearing on the corrugated
surface.
For further investigation on the role of shadowing ef-

fect in morphological evolution, we extracted line pro-
files of the observed structures along the direction of
incident ion beam onto the surface as shown by the
arrow marks on the respective AFM images. Line pro-
files obtained from Figures 3b,c and 4a,b are shown
in Figures 5 and 6, respectively. It is observed from
Figures 5b and 6b that at the beginning of shadowing
transition, the line profiles are still sinusoidal in nature.
As discussed previously, beyond shadowing transition,
one would expect signature of sawtooth-like waveform.

The fact that for both incidence angles sawtooth-like
waveform is not yet formed may be attributed to early
stage of shadowing where h0/λ ratios are very close to
the limiting values or little above. To check this, line
profiles obtained from Figures 3d and 4c (corresponding
to a higher fluence of 5 × 1017 ions cm−2) are shown in
Figures 5c and 6c which clearly show a transition to
sawtooth-like waveform. This is due to the fact that h0/λ
ratios (in both cases) are well beyond the respective
shadowing limits (0.767 and 0.741, respectively). Thus,
we can infer that the effect of ion beam shadowing plays
a dominant role in the transition from rippled surfaces

Table 1 Calculated values of ripple wavelength (λ), feature height (h), and base width of mounds/facets
Angle of incidence Fluence (ions cm−2) λ (nm) Average feature height (nm) Average base width (nm)

70° 1 × 1017 34 2 -

2 × 1017 57 5 -

5 × 1017 - 16 131

10 × 1017 - 22 152

15 × 1017 - 30 199

20 × 1017 - 56 357

72.5° 1 × 1017 26 1 -

2 × 1017 27 2 -

5 × 1017 - 28 237

10 × 1017 - 50 363

15 × 1017 - 78 486

20 × 1017 - 90 525

Figure 5 Line profiles extracted from the AFM images of
ion-exposed samples at 70°. Various fluences: (a) 1 × 1017,
(b) 2 × 1017, (c) 5 × 1017, (d) 10 × 1017, (e) 15 × 1017, and (f) 20 ×
1017 ions cm−2, respectively. Arrow indicates the direction of ion
beam onto the surface.

Basu et al. Nanoscale Research Letters 2013, 8:289 Page 5 of 8
http://www.nanoscalereslett.com/content/8/1/289

Fig. 2.8 Experimental cross sections demonstrating coarsening and terrace formation. These results
were taken from Ref. [52]. The height profiles were extracted from AFM scans of a Si surface
subjected to 500 eV Ar+ ion bombardment with an incidence angle of 72.5�. The fluence increases
from top to bottom, ranging from 1⇥1017 to 20⇥1017 ions/cm2.

is expected to be much weaker than the influence of the presence of multiple chemically reactive

elements at the surface layer.70 The presence of multiple atomic species at the surface simultaneously

increases the difficulty of accurately modeling the surface morphology and greatly expands the

range of patterns which emerge from IBS. In Section 2.7 I will discuss various theoretical models

which have been proposed to deal with this complicated situation. In this section I will provide an

overview of some of the experimentally observed patterns which may form for the case in which

there are multiple non-volatile atomic species present on an ion bombarded surface.
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FIG. 9. (Color online) (a)–(e) In situ STM topographs and (f) ex situ AFM image (image size 1 µm × 1 µm, inset size 0.3 µm × 0.3 µm)
after 2 keV Kr+ ion exposure with ϑ = 75◦ after ion fluences of (a) F = 3.0 × 1019 (z scale 10 nm), (b) 1.0 × 1020 (z scale 20 nm),
(c) 3.0 × 1020 (z scale 20 nm), (d) 1.0 × 1021 (z scale 30 nm), (e) 3.0 × 1021 (z scale 35 nm), and (f) 3.0 × 1022 ions/m2 (z scale 70 nm).
(g) Derivative of (f) in horizontal direction that highlights the corrugation on downwind faces. (h) Large scale ex situ AFM 5 µm × 5 µm image
after F = 3.0 × 1022 ions/m2 (z scale 100 nm). The projected ion beam direction is indicated by an arrow in each case. (i)–(k) Height profiles
along lines parallel to ion beam direction as indicated in (b), (c), and (f), respectively. Note different scales for x and z that exaggerate the
surface roughness by a factor of 5.5. Arrows indicate the direction of ion beam incidence properly scaled.

[Figs. 10(c)–10(f)] that appear in the topographs as large,
terracelike areas separated by the steep, steplike upwind
faces. Initially, the ridge line of the ripples is wavy with
some v-shaped tips [Fig. 10(c)]. With increasing fluence
[Figs. 10(d)–10(f)] v-shaped tips pointing in the direction
of the ion beam become more prominent. The downwind
faces develop grooves in the ion beam direction leading to
a broadening of the slope angle distribution perpendicular
to the ion beam direction [most pronounced in Fig. 10(d)].
The pattern becomes less regular as short and long downwind
faces are formed. At the fluence of F = 3.0 × 1022 ions/m2

[Figs. 9(f) and 9(h)], the downwind faces—the extension of
the tiles in the roof-tile structure—amount up to 1µm length.
They display a local incidence angle of θd = 82◦ and are
often separated by stairlike bunches of alternating upwind and
downwind faces. An additional ripple pattern with a periodicity
of ≈50 nm on the extended downwind faces is highlighted by
the derivative Fig. 9(g). We note that strong coarsening and the
formation of a roof-tile structure has already been observed
by Zhang et al. [36] after 5 keV Xe+ exposure at ϑ = 80◦

on Si(001), by Basu et al. [11] after 500 eV Ar+ exposure
at ϑ = 72.5◦ on Si(001), and by Teichmann et al. [42] after
1.2 keV Kr+ and Xe+ exposure at ϑ = 75◦ on Ge(001).

The evolution of the surface roughness is plotted in
Fig. 8(a). Compared to the 63◦ case, σ increases much faster
with F for the 75◦ case. Initially, for F < 1.0 × 1021 ions/m2,
the roughness displays exponential growth and can be fitted
by σ ∝ exp(F/F0) with F0 = (1.8 ± 0.1) × 1020 ions/m2. For
higher fluences, σ displays a power-law behavior σ ∝ Fp

with p = 0.36 ± 0.03. Also for the 63◦ case, a power-law
behavior may be fitted to the high-fluence regime, while an
exponential fit to the low-fluence data yields only a moderate
match [compare Fig. 8(a)].

Initially, up to a fluence of F = 3.0 × 1020 ions/m2, the
characteristic feature separation along the ion beam direction
(wavelength) increases only moderately with F [compare
Fig. 8(b)] and the pattern disorder δλ/λ remains below 0.3
[Fig. 8(c)]. Beyond this critical fluence, a rapid coarsening up
to the highest analyzed fluences is observed, in striking contrast
to the 63◦ case. This coarsening coincides with a dramatic
increase in pattern disorder, apparently beyond any bound.

The fluence dependence of the local incidence angles θu
and θd of the ion beam onto upwind and downwind faces,
respectively, are shown Fig. 8(d) as red triangles. Up to the
critical fluence of F = 3.0 × 1020 ions/m2, the faces of the
pattern disperse away from the red line in Fig. 8(d) that

245412-7

Fig. 2.9 Experimental cross sections demonstrating coarsening and terrace formation. These results
were taken from Ref. [64]. The height profiles were extracted from AFM scans of a Si surface
subjected to 2 KeV Kr+ ion bombardment with an incidence angle of 75�. The fluence increases
from left to right, ranging from 1⇥1016 to 3⇥1018 ions/cm2.

One of the most striking results from some such experiments is the formation of somewhat

regular arrays of nanodots.71, 72 The first experimental evidence for arrays of nanodots resulting

from IBS on a binary material was provided by Facsko et al.73 in 1999. In that work, a normally

incident beam of 420 eV Ar+ ions bombarded a GaSb surface. The surface was observed to develop

a disordered hexagonal array of nanodots whose diameter was approximately 30 nm. An SEM

image of these dots and their autocorrelation function is shown in Fig. 2.10. A short time after this,

Frost et al.74 obtained similar results for 500 eV Ar+ bombardment of InP. Rather than using a

normally incident ion beam, Frost et al. employed an obliquely incident beam at 40� off normal,

and concurrently rotated the sample azimuthally. These experiments demonstrated that IBS could

be a useful and economical way to produce ordered arrays of nanodots on semiconductor surfaces.

In Chapter 4 we investigate the effects of azimuthal rotation during IBS of a binary target in the

linear regime.

Other experiments ostensibly demonstrated the formation of arrays of nanodots on pure Si

surfaces with 1.2 keV normal incidence Ar+ sputtering.75 However, this work proved difficult to

reproduce, with some researchers finding arrays of dots under similar conditions,76, 77 and others

finding only flat surfaces.44, 78 As discussed previously, the inconsistencies in experimental results

are almost certainly due to the inadvertent deposition of a second atomic species. There is no
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that the stoichiometry is that of bulk GaSb.
Our data confirm the following picture. In

the first seconds of the sputtering process a
primary irregular roughness of the surface is
induced by the stochastic nature of the ion
bombardment (10, 13), by the preferential sput-
tering of Sb, and by the associated accumula-
tion of Ga atoms on the surface. The amplifi-
cation of the random amplitudes by the nega-
tive surface tension competes with processes
such as surface diffusion and viscous flow that
smooth the surface (8). Under certain condi-
tions (10) these processes lead to the formation
of a regular surface pattern by the exponential
growth of a characteristic wavelength ! " #D/
$v$, where D is a positive constant related to the
surface diffusivity (14) and $v$ the largest ab-
solute value of the negative surface tension
coefficient (8, 15). The surface diffusion can be
thermally activated or induced by ion bombard-

ment. Observation of dot formation with nearly
the same period at sample temperatures of 60°C
and %60°C reveals that, for the (100) GaSb
surface, the ion-induced surface diffusion dom-
inates in this temperature range (12). Similar
processes have been identified to be the rele-
vant mechanism for the formation of coherent
ripples during ion bombardment. Under normal
incidence, no orientation is distinguished by the
sputtering process. As a consequence, ripples
with all possible orientations could, in principle,
evolve. The most stable solution under these
circumstances is the formation of a hexagonal
packed arrangement of dots as observed in our
experiments.

Nanodot formation by ion sputtering of epi-
taxial GaSb layers grown by molecular beam
epitaxy on higher bandgap materials, ideally on
AlSb, opens the way to generate isolated dots
with a three-dimensional confinement. We pro-

duced GaSb quantum dots on AlSb by sputter-
ing a 500-nm GaSb layer down to the interface.
Etching back to the interface was accomplished
with high accuracy by monitoring the appear-
ance of Al atoms with a mass spectrometer
during the propagation of the steady-state pat-
tern. The dots exhibit the same regularity and
size distribution as the dots produced on bulk
GaSb. Comparison of the photoluminescence
of the dots on AlSb to that of bulk GaSb
measured at low temperature (Fig. 4) reveals a
weak and broad peak in the spectrum of the
GaSb dots blue-shifted by &300 meV as com-
pared with the GaSb band edge luminescence.
We attribute the blue shift to the quantum con-
finement in the dots. A residual line at the
photon energy of bulk GaSb at 0.8 eV stems
from the edge of the sputtered region. We at-
tribute the fine structure on the spectrally broad
peak to noise and not to the photoluminescence
from single dots. The dot spectrum shows a

Fig. 1. SEM images of highly ordered cones on a (100) GaSb surface show the temporal evolution
of dot formation during ion sputtering. The nanoscale patterns are depicted for different ion
fluences (exposure times) of (A) 4 ' 1017 cm%2 (40 s), (B) 2 ' 1018 cm%2 (200 s), and (C) 4 '
1018 cm%2 (400 s). The corresponding size distributions of the dot diameters are extracted from the
images (D). The dotted lines represent Gaussian fits to the dot diameter histograms.

Fig. 2. (A) The extract of a SEM
image and (B) the correspond-
ing two-dimensional autocor-
relation reveal the regularity
and hexagonal ordering of the
dots, which extends over more
than six periods.

Fig. 3. Cross-sectional transmission electron mi-
croscope image of the nanostructures on a GaSb
surface produced with the same parameters as in
Fig. 1C. The dots are crystalline without a disrup-
tion to the crystal lattice of the GaSb bulk. An
amorphous layer of &2 nm, which is the pene-
tration depth of the low-energy ions into the
material, covers the dots. The base and the height
of the dots measure 30 nm.

Fig. 4. The low-temperature (15 K) photolumi-
nescence spectrum (in arbitrary units) of GaSb
dots on an AlSb substrate shows a broad, weak
spectrum. The solid line is the photolumines-
cence (PL) of the dots scaled up by a factor of
50 relative to the GaSb bulk spectrum, which is
drawn as a dashed line.
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Fig. 2.10 An SEM image of the disordered hexagonal dot pattern produced in Ref. [73]. The left
panel shows the real space image, while the right panel shows the autocorrelation function of the
surface. These experiments were performed with 420 eV Ar+ ion bombardment of a GaSb surface
at normal incidence.

concrete experimental evidence that Si surfaces form nanodot arrays when only one non-noble-gas

species is present at the surface.

One of the best demonstrations of the variety of morphologies possible with multiple atomic

species present on the surface, as well as the sensitivity of those morphologies to experimental

conditions, is the review published by Ziberi et al. in 2009.79 Although the authors of that work

believed they were studying noble gas ion bombardment of Si and Ge targets, their results suggest

that unintentional impurity deposition was an extremely important factor. In Ref. [79], the authors

observe parallel and perpendicular mode ripples with a high degree of order, as well as nanodots that

form into hexagonal and square arrays. As we will see below, these results can likely be explained

by the formation of iron silicides or similar compounds due to unintentional Fe deposition from

sputtering the chamber walls and/or sample holder.
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More recently, as the importance of impurity deposition during IBS has become clearer, there

have emerged several papers which systematically investigate the effect of such deposition. In the

case of inadvertent deposition, it is believed that the impurity flux originates from ions sputtering

Fe atoms off of the chamber walls or sample holder. Because of this, many of the systematic studies

in the literature have focused on the deposition of Fe and similar metals during IBS.

Macko et al.80 chose to investigate the effects of deposition in a clever fashion that was first

introduced by Hofsass and Zhang.81 They began by verifying that for angles of incidence less than

approximately 45�, 2 keV Kr+ bombardment of Si does not produce any patterns, provided that

the vacuum of the chamber is high and the ion beam only strikes the sample. The experimenters

subsequently introduced a known source of impurities, namely a stainless steel plate mounted at

one end of the sample. Ions striking this plate will sputter Fe atoms onto the surface. In a single

run, the experimenters could investigate a range of deposition fluxes and angles, since points on the

surface close to the plate would receive a much greater deposition flux than would points far from

the plate. See Fig. 2.11 for an illustration of their experimental setup.

Fig. 2.11 An illustration of the experimental setup used in Refs. [31], [80], and [81] . The relative
distances to the various topographies are not to scale.
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The results Macko et al. obtained after introducing the stainless steel plate are striking. Close

to the plate, the surface developed into an array of nanoholes, a topography which had previously

been observed during ion bombardment using an alternating cold cathode source.34 Further from

the plate, they observed clear ripple patterns. At greater distances from the plate, they observed

weakly ordered arrays of nanodots. At the greatest distances, where the Fe deposition was expected

to be negligible, only surface smoothing was observed.

These results constitute strong evidence that a great number of patterns that have been observed

in IBS experiments could be generated simply by adjusting the impurity deposition flux and/or

incidence angle. Along with the results of Ozaydin et al.28 and other systematic studies of

deposition to be discussed below, Macko et al. helped to bring clarity to the apparently contradictory

experimental IBS results obtained previously.

Another excellent systematic study of the effect of impurity flux and incidence angle was

provided the following year by Zhang et al.31 In that work, the authors examined normal incidence

5 keV Xe+ ion bombardment of Si. Like Macko et al., they mounted a stainless steel plate to

one end of the sample, and additionally allowed the angle of this plate to vary with respect to the

surface normal of the Si sample. The qualitative results of this study agreed with Macko et al.,

and additionally the experimenters were able to identify a threshold deposition fluence for pattern

formation on the order of 1015 ions per cm2.

While the work in Refs. [80] and [31] helped to clarify the role of Fe impurities in IBS pattern

formation, both experiments suffered from the same fundamental limitation: the deposition flux

was due to sputtering from the fixed stainless steel plate, and thus the deposition flux was always

dependent on the bombardment flux. In 2011, Macko et al.33 circumvented this limitation by

evaporating Fe directly onto the surface, allowing the authors to investigate the effects of ion and
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impurity fluence independently. In addition to confirming the qualitative dependence on deposition

fluence found previously, the authors of Ref. [33] demonstrated through ex situ transmission electron

microscopy (TEM) images that iron compounds were building up on the side of the nanostructures

facing the deposition source, as had been suggested previously. Furthermore, they verified that these

results apply over the range of temperatures 140� C <T< 440� C.

At this point, it was clear to researchers in the IBS field that Fe co-deposition was an important

factor in determining surface morphologies, and that many of the ostensibly contradictory results

obtained previously could be explained by inadvertent deposition of impurities. However, the

question "why does Fe deposition affect the surface morphology so much?" had yet to be con-

clusively answered. The experimental setups described so far have left open the possibility that

shadowing played a crucial role, since Refs. [80] and [31] had some deposited atoms impacting the

surface at grazing angles of incidence, and even Ref. [33] had a deposition angle of �75�, which is

large enough to admit the possibility of shadowing for some of their observations. Other proposed

mechanisms included phase separation of materials at the surface or preferential sputtering due to

silicide formation. We will discuss theories of phase separation and preferential sputtering in this

context in Section 2.7.

The importance of silicide formation was established conclusively by Hofsass et al.82 and Engler

et al.83 In the case of the former, an experimental setup similar to previous work81, 80, 33, 31 was

employed using a variety of metals. When this plate was composed of Fe, Ni, or Cu (metals which

spontaneously form silicides), the patterns were qualitatively similar to those observed previously.

However, when the plate was composed of W, Pt, or Ag (metals which do not form silicides), only

surface smoothing was observed. Similarly, Engler et al.83 used ion sputtering to deposit Pd, Ir, Ag,

and Pb onto an ion bombarded Si surface. Although Pd and Ir have similar masses to Ag and Pb
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respectively, only the former pair form silicides. The experimenters determined that the tendency

of the deposited species to form a silicide was a necessary but not sufficient condition for pattern

formation to occur.

Finally, it is worth noting that many of the conclusions reached in this section only apply provided

the temperature is not too high. While Ref. [31] did not observe a strong temperature dependence

over the range considered, if the thermal mobility of atoms on the surface exceeds their ion-induced

mobility a strong temperature dependence will emerge.84 Furthermore, experiments done at very

high temperatures have displayed many morphologies not observed at lower temperatures, and

appear to be strongly influenced by the underlying crystal structure. In Ref. [85], for example,

bombardment and deposition at T= 660� C produced sponge, segmented wall, and pillar structures

with very high aspect ratios. More recent work by Ou et al.86 has shown that low energy IBS of

GaAs at elevated temperatures (T = 410� C) can produce extremely regular patterns. At lower

temperatures, the ion beam produces an amorphous surface layer. By contrast, patterns obtained at

elevated temperatures frequently reflect the underlying crystal structure.

2.2 Selected Uses for Patterns Made by IBS

It is impossible to say what the true breadth of application that patterns formed by IBS may

someday be. The potential of IBS to create nanoscale order in an economical way over large areas

is unmatched. In what follows, I give a description of a number of ways in which IBS is already

being used, as well as potential future applications. While not all of the work cited in this section is

directly applicable in industrial settings, my intention is to provide a subset of the ways in which

IBS is used to further other materials science research.
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a

40 nm

b

30 nm

FIG. 5. TEM images of two films grown on the rippled Si
substrates under normal (a) and grazing incidence (b), respectively.
In (b) the particle flux was impinging onto the sample from the right.

structure is revealed with no apparent texture. Thus, the
substrate topography is almost perfectly replicated, although
the amplitude of the ripples at the film surface is slightly
reduced compared to the substrate. The TEM image further
shows a slight asymmetry of the substrate ripples which has
already been observed in the GISAXS spectra of Fig. 3 and is
also reproduced by the film topography [cf. Fig. 5(a)].

In order to fabricate one-dimensional nanowires on the
rippled substrates, e.g., for plasmonic applications, grazing
incidence deposition perpendicular to the ripples can be
applied.28 Under this condition, part of the incident particle
flux is shadowed by the height of the ripples which leads to a
decoration of the ridges instead of the growth of a continuous
film [see Fig. 2(c)]. In the current experiment, this has been
achieved by deposition under 77◦ with respect to the surface
normal onto the steeper slope of the ripples. The corresponding
GISAXS spectra are shown in Figs. 3(d)–3(f). At 1.5 nm
coverage [Fig. 3(d)], the GISAXS spectrum looks similar to
the normal incidence case [Fig. 3(b)] but with a significantly
reduced intensity of the satellite peaks.

In order to assess the shadow deposition growth under
grazing incidence deposition, transversal cuts of the GISAXS
spectra, i.e., in horizontal direction, at the position of the
critical angle have been taken and are depicted in Fig. 4(d).
Prior to deposition, the asymmetry of the substrate surface
is clearly reflected in the transversal spectrum with the left
satellite peak having higher intensity. At a film thickness of
1 nm, however, the asymmetry of the spectrum is reversed with
the right peak now being higher in intensity. This indicates
a change of the shape of the ripples due to geometrical
shadowing at grazing incidence, resulting in a reduced slope
on the side of deposition as is depicted in the proposed
growth scheme in Fig. 2(c). In the beginning, deposition
occurs selectively only on the side of the ripples that face
the incoming particle flux, i.e., one-dimensional nanowires
are forming on the ripple crests. This growth mode lasts
surprisingly long considering the shallow ∼3 nm modulation
of the substrate pattern [cf. Fig. 4(d)]. Only at a film thickness
of >7 nm, the initial asymmetry is restored since the film is now
rather closed. In contrast, for the normal incidence deposition,

no change in the asymmetry of the spectra [see Fig. 4(b)]
is observed because here the growth occurs conformal and
homogeneous from the very beginning as is sketched in
Fig. 2(a).

With increasing film thickness, again interference fringes
are observed [Fig. 3(e)]. However, there is also some diffusely
scattered intensity appearing close to the left satellite peak.
This part of the spectrum is further increasing in intensity
with proceeding growth at the expense of the other features.
At a film thickness of 26 nm [Fig. 3(f)], this diffusely
scattered intensity is the dominant feature of the spectrum
and the interference fringes are barely visible anymore. The
longitudinal cuts along the right satellite peak shown in
Fig. 4(c) still exhibit few intensity oscillations at a film
thickness of 26 nm but the damping of the oscillations is
significantly increased compared to normal incidence. At a
thickness of 47 nm, however, no pronounced oscillations are
observed anymore, indicating that the correlation between
the substrate topography and the film surface has already
been lost in contrast to the normal incidence case where well
pronounced intensity oscillations are still visible [cf. Fig. 4(a)].
This interpretation is also supported by the AFM image
depicted in Fig. 1(c) which reveals only a random rough
surface morphology with no trace of the substrate pattern
left.

The TEM image in Fig. 5(b) shows the reason for the
decreased conformity compared to the normal incidence
deposition. For grazing incidence, a columnar film structure
is observed. The columns are inclined toward the incoming
particle flux with an angle of inclination as determined from
the TEM image of about 50◦ with respect to the surface normal.
For such a columnar film structure, noncoplanar scattering
leads to the appearance of a feature similar to a surface
truncation rod in the scattering spectra as observed at the left
side of the GISAXS spectra in Figs. 3(e) and 3(f). The
fact that the truncation rod is rather broad indicates that the
surfaces of the columns parallel to the incoming particle flux
are not ordered. The surface truncation rod should appear
under the same angle as the columns which is confirmed
from the GISAXS spectra where the angle between the
center peak and the diffusively scattered intensity is again
about 50◦. From the empirically established Tangent Rule42

(tan α = 2 tan β, with α the incident angle and β the angle
of the column axis with respect to the substrate normal),
this column inclination angle is expected at a deposition
angle of 71◦, which is smaller than the actual 77◦. However,
from Fig. 2(c), it is evident that the effective deposition
angle of the substrate is reduced due to the slope of the
ripples.

A closer inspection of the TEM image depicted in Fig. 5(b)
reveals that the columns are not distributed homogenously
on the surface but rather seem to grow with a higher
density on the side of the ripples that faces the incident
particle flux. This results in rows of columns on the steeper
ripple slopes that are separated by regions with a lower
number of columns on the smaller slopes. This indicates
that the columns originate from the nanowires that formed
in the early growth stage and act as seeds for the columnar
growth.

035423-4

Fig. 2.12 TEM images of Al nanowires grown on a prepatterned substrate made by ion
bombardment. The deposition beam was impinging on the sample at grazing incidence (from the
right) and normal incidence in panels (a) and (b), respectively. Taken from Ref. [9].

One of the most common uses for Si surfaces with rippled topographies is as a template

for developing patterns in other materials. Directional deposition on rippled surfaces has been

used to create Al nanowires (see Fig. 2.12),9 Co thin films which exhibited anisotropic island

coalescence consistent with the anisotropy of the underlying ripples,87 and Fe/Cr multilayer films.1

The lattermost is an example of using IBS patterns as templates for magnetic thin films. The periodic

structure makes the thin film’s magnetic properties anisotropic.88, 89, 90 Other groups have focused

on making Si nanowires on insulators using IBS.91 Ripple patterns are also a good template for

growing carbon nanotubes.11

Some experiments have used Ag vapor deposition on rippled Si targets produced by IBS to fabri-

cate an array of Ag nanoparticles which exhibit anisotropic plasmon absorption (see Fig. 2.13).92, 93
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plasmon resonance peak red shifts by approximately
0.21 eV. This effect has been reported in a number of
articles [8, 10] and is ascribed to the coupling of the
plasmon resonances in adjacent particles. The critical
distance for interparticle coupling is proposed to be of the
order of the diameter of the particles [13]. From the SEM
images it is clear that this criteria is achieved in both
directions; however, the coupling is stronger in the
direction parallel to the ripples. The contribution of the
elongated particles is to red shift the resonance yet further
[8]; however, the effect is not distinct due to the particle
size dispersion.

The sample was prepared for cross-sectional transmis-
sion electron microscopy (XTEM) by coating with carbon,
followed by face-to-face gluing, polishing, dimpling, and
argon sputtering. Figure 4 shows an XTEM image of the
silver particles on the template surface. A native oxide layer
of thickness approximately 3 nm is evident on the silicon.
The particles are slightly flattened, appearing as oblate
spheroids, as is often observed for PVD island films [14].
The location of the larger particles is in the ripple valleys,
with some smaller particles having nucleated on the ripple
peaks and a number of still smaller particles having
dissociated and becoming embedded in the carbon coating.
Compared to flat substrates, the influence that the increased
amount of dielectric substrate material between the particles
has on the plasmon resonance is not known. The effect of
the substrate itself breaking the dielectric symmetry around
the particle already introduces complicated phenomena,
such as image charges and higher order multipoles, into the
plasmonic resonance [15, 16].

Discussion

The preferential location of the particles in the ripple
valleys may be caused by kinetic or by thermodynamic
effects. Unlike aligned particles on vicinal surfaces [10],
there are no distinct step edges on the amorphous oxide
surface of the rippled substrates, where adatoms would
preferentially nucleate. It is well documented that the
nucleation density depends on the ratio of adatom surface
diffusivity and the flux of particles arriving at the surface
[2]. From this, there might exist optimum deposition
conditions for a given ripple periodicity whereby the
nucleation density is of the order of the ripple periodicity.
However, the particle flux varies only weakly across the
ripples, due to their small height compared to their period,
and is identical on the crest and in the valley. There is also
no obvious reason for a reduced surface diffusivity in the
valleys. Hence, we tend to exclude any kinetic mechanism
of the preferred nucleation in the valleys.

Alternatively, the growth of the silver particles will also
be governed by the surface free energies, leading to
preferential ripening in the valleys. As can be seen clearly
in Figure 4, the nanoparticles exhibit an oblate shape, thus
forming an increased contact area with the substrate. The
driving energy for the deformation of the particles is the
difference in the surface free energy of the silver and silicon
oxide and the interface free energy. Because the shape of
the particles is determined by the minimum of the surface
free energy, one might also expect that the location of the
particles is driven by the same effect. The surface free

Figure 3. Polarized reflection spectra of the sample shown in Figure 2
for light polarized parallel (red circles) and perpendicular (blue
triangles) to the direction of the ripples. A red shift of 0.21 eV is
observed in the peak energy of the surface plasmon resonance for
parallel polarization due to interparticle coupling of the resonances.

Figure 4. Cross-sectional TEM image of silver particles on the
rippled silicon substrate with a native oxide surface layer. The larger
particles, oblate spheroidal in shape, are located in the ripple valleys.
A number of smaller particles, having dissociated from the surface, are
embedded in the carbon coating. The scale bar is 50 nm.

Plasmonics (2007) 2:47–50 4949

Fig. 2.13 TEM images of Ag nanoparticles on a rippled surface. Note that the nanoparticles tend to
accumulate near the local minima in the surface height. The scale bar is 50 nm. Taken from Ref. [
92].

In this case, because the Ag nanoparticles tend to bead up in the ripple valleys, they have a relatively

consistent spacing in the direction parallel to the ripple wavevector. Because there is a well defined

characteristic length in this direction, it is possible to observe resonance phenomena for incident

light with the correct polarization to excite plasmons in the parallel direction. The reflectivity of a

rippled Si surface with Ag beads has been seen to depend on the incident light polarization and angle

of incidence in a way that is consistent with the expected behavior of a surface with anisotropic

plasmon absorption. For a very similar reason, Ag vapor deposition on rippled Si surfaces has also

been shown to exhibit enhanced Raman scattering.94 Other Ag nanoparticle arrays are useful for

investigating nonlinear optical properties.2

Some IBS experiments produces arrays of nanodots which resemble cones.95, 96, 97, 98 Arrays

of these so-called “sputter cones” have found utility as anti-reflection coatings.98, 99, 97 Rippled

Si and TiO2 surfaces have been used for biological applications since they are good at adsorbing
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proteins.100 Other researchers have demonstrated that ripple patterns in Si produced by IBS may be

transferred onto organic compounds.101 Other biological applications include fabricating nanofluidic

channels,102 making ultra-thin membranes,103 and generating luminescent quantum dots for imaging

cancer cells.10

IBS has been employed to produce blazed gratings for optical applications (see Fig. 2.14).3, 4, 5, 6, 7, 8

Later in this thesis I will explore recent theoretical work we have done towards the aim of using

IBS to produce high efficiency multilayer blazed gratings. Our proposed fabrication procedure is

currently being implemented by Professor Carmen Menoni and her collaborators.

3.2 Native Substrate Grating Mask

On the basis of the above simulation, a photoresist grating
mask with an 833 nm period is fabricated on the fused silica
substrate by conventional holographic exposure and devel-
opment, which is shown in Fig. 5. The duty cycle of this
mask is 0.32 and its depth is 440 nm. Then the photoresist
grating mask is etched by IBE with Ar for 180 s followed by
RIBE with CHF3 for 240 s, and then the native substrate

Fig. 7 SEM photographs of the blazed grating. (a) Etching time is 240 s and (b) etching time is 350 s.

Fig. 8 Simulation of ion beam etching in trapezoidal structure in experiment. (a) Etching time is 240 s and (b) etching time is 350 s.

Table 2 Comparison between the results of simulation and
experiment.

Etching time
(s)

Blazed angle
(deg)

Antiblazed angle
(deg)

Simulation 350 19.2 78

Experiment 360 20 68.5 Fig. 9 Simulation of ion beam etching in trapezoidal structure
(10 deg).
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Fig. 2.14 SEM images of a blazed grating made using ion bombardment. Panel (a) is after 240
seconds of bombardment, panel (b) is after 350 seconds. Taken from Ref. [8].

The complete scope of the applications of the nanopatterns produced by IBS has yet to be fully

explored. As theory and experiment continue to improve, our ability to control the patterns is

similarly expanded. It is my hope that the small subset of applications cited here is compelling

enough reason to motivate the work contained in this thesis.
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2.3 Theoretical Overview

Motivated by the multitude of experiments demonstrating the great promise of using IBS to

produce highly ordered self organized nanoscale structures, there has been a great deal of theoretical

work done in this field. In very broad terms we may organize theoretical approaches into three

categories.

On the very finest level of analysis are molecular dynamics (MD) simulations. These simulations

treat the solid surface being bombarded as a collection of atoms or molecules which interact via

a particular potential. The specific form of this potential varies depending on the material being

bombarded, ion energy, etc., but is generally the result of a detailed quantum mechanical calculation

or ab initio methods.104 In MD simulations, a specific collection of atoms or molecules (this

collection is referred to as the ’target’) is simulated in such a way that it has the desired macroscopic

quantities (i.e. overall strain, crystallographic orientation, etc.). This target is then subjected to one

or more ion impacts with assumed interaction potentials between the target constituents and the

incident ion.

While MD simulations represent a description of ion bombardment on very small time and length

scales, the computational power required for their implementation is substantial. Consequently, MD

simulations are limited in their scope to targets which are small compared to the length scale of a

typical pattern and time scales which are short compared to the running time of a typical experiment.

In Chapter 3 we will see how some of the results of MD simulations can be extended to larger time

and length scales.

A slightly coarser method of simulating an ion bombarded surface is known generically as the

Monte Carlo (MC) method. In this approach, the complicated atom-atom and ion-atom interactions
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considered in MD simulations are replaced with a discrete number of ‘reactions‘, such as the

production or translation of a crystal defect. Rather than computing pairwise interactions for a large

number of particles, MC methods statistically sample these reactions to model the overall evolution

of the sample. This approach has the advantage of a substantial improvement in computation time,

but requires a significant amount of information (or assumed information) about the motion of

defects in the surface. A very successful implementation of MC methods is Transport of Ions in

Matter,105 which is based on the Binary Collision Approximation.106

At the largest length scales and longest timescales are the continuum theories. These theories

suppress the discrete nature of the target and impacting ions and instead describe the surface above a

point (x,y) at time t as a continuous height field h(x,y, t). The dynamics of the surface are governed

by its spatial derivatives according to a local equation of motion (EOM) of the form

ht =�v0 + v00hx +Sxhxx +Syhyy + ... (2.1)

where the subscripts on h denote partial derivatives. The coefficients v0,v00, etc. and the particular

spatial derivatives considered are determined by a microscopic analysis of various physical effects.

In the following section, we will give a detailed account of some of the continuum theories that

have been proposed.

Continuum theories have several advantages over the MD and MC approaches to IBS surface

science, not least of which is that they are frequently amenable to mathematical analysis. While most

simulation techniques are capable of predicting the evolution of a surface given a particular initial

condition and parameter set, some continuum theories may be solved generally. A general solution

is valuable because it may be used to predict the surface morphology for any initial condition.
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Furthermore, even when the EOM is sufficiently intractable that numerical integration is required,

the continuum approach gives predictions for the surface over a large domain. This is essential for

describing and controlling self organizing patterns, since our description of the surface must be at

least of the same length scale as the pattern if it purports to describe the pattern in detail.

Despite these advantages, there are limitations to the continuum approach. For one, there is

undoubtedly an error made in treating the surface as continuous, since the discrete nature of the

atoms and impacting ions is a physical reality. Continuum approaches have been extended to

incorporate nonlocal effects such as redeposition of the sputtered material and shadowing. In most

cases, however, this is done at the expense of analytical tractability. There is also some amount of

error resulting from retaining only a finite number of terms in the EOM. The retained terms are

typically derived using an assumption that the surface height is slowly varying or that the theory

applies only at early times. However, for patterns formed by IBS, these conditions do not always

hold. Finally, as we will explore in the following section, the derivation of the EOM used for a

particular theory is frequently based on an assumed microscopic model, and thus the continuum

theory is likely only as good as the model upon which it is based. We will see in Chapter 3 how it is

possible to generate a continuum model based on the results of MD simulations, which represents a

promising way to circumvent this limitation.

2.4 Theories of Bombardment of Elemental Materials

2.4.1 Sigmund Model

Any discussion of IBS theory must begin with the work of Peter Sigmund.14 In his seminal

paper in 1973, he introduced a model for ions striking a solid surface and sputtering material

26



away. For ions with energy less than approximately 20 KeV, the Sigmund model predicts that the

energy of an impacting ion is on average distributed among the atoms surrounding the impact point

in an ellipsoidal fashion. Crucially, this ellipsoid is centered a distance below the solid surface

comparable to the width of the ellipsoid.

Fig. 2.15 An illustration of an ellipsoid described in the Sigmund model. The longitudinal and
transverse length scales a and b , respectively, are labelled.

The exact theoretical prediction for the energy distribution of a single ion impact is in general

quite complicated. As an ion penetrates the solid surface, its interaction with any given atom in

the surface is determined by the scattering cross section of that atom. This process is inherently

probabilistic. On average one expects that the ion will penetrate a finite nonzero distance before it

is likely to significantly interact with any atoms in the solid. A typical ion-atom interaction leaves

the affected atom with significant kinetic energy. This energetic atom is expected to move a short

distance through the solid, losing energy due to atom-atom scattering events. A typical impacting
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ion will collide with many atoms, which will in turn impact many more atoms. This process is

known as a ‘collision cascade’. This collision cascade constitutes the physical underpinnings for

much of ion bombardment theory.

In the Sigmund model of sputtering, the collision cascade is assumed to adopt an ellipsoidal

profile. For the special case in which an ion strikes a solid surface at normal incidence, the average

energy distribution may be written as

ED(x,y,z) =
e

(2p) 3
2 ab 2

exp


�(z+a)2

2a2 � x2 + y2

2b 2

�

, (2.2)

where e is the ion energy, a, a , and b are material constants with dimensions of length, and the

(x,y,z) = (0,0,0) is the point at which the ion begins to penetrate the surface. In order to make

predictions for the sputtering of the target, Sigmund introduced the reasonable assumption that the

rate at which material is sputtered at a point on the surface is proportional to the amount of power

deposited at that point. Based on the exact shape of the ellipsoidal energy distribution he could then

develop a prediction for the sputter yield as a function of incidence angle.

It is worth noting that despite the great success of the Sigmund model, it does not apply to

all experimental situations. For high incident ion energies the dominant mode of interaction with

the solid becomes electronic, rather than nuclear, stopping. In this energy regime, the so-called

’thermal spike’ model is more appropriate.107, 108, 109, 110, 111 For materials which maintain a high

degree of crystallinity during IBS, such as metals, the crystallographic orientation can have a

significant impact on the sputter yield due to effects such as ion channeling.112 For high angles of

incidence, effects such as ion reflection limit the accuracy of the Sigmund description.113 Finally, the

parameters describing the precise dimensions of the ellipsoids are difficult to access experimentally,
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somewhat limiting the model’s predictive capacity. For a quantitative investigation into the accuracy

of the Sigmund model, see Ref. [114]. Despite its limitations, since its introduction nearly half a

century ago the Sigmund model has been a very successful and widely cited description of IBS.

2.5 Linear Continuum Theories

2.5.1 Bradley-Harper Theory

While the Sigmund model established an atomic-scale model by which ions sputter material

from a solid surface, the formation of nontrivial patterns by IBS remained an unsolved mystery

for another two decades. In 1988 the unveiling of the Bradley-Harper (BH) theory13 marked a

substantial breakthrough and the start of continuum theories being used to describe self organized

patterns made by IBS. This foundational work continues to be cited by nearly every researcher

in the field. The truly revolutionary aspect of the BH theory was that it was able to explain how

a nominally flat surface could spontaneously evolve into a rippled structure with a characteristic

length scale. It was also able to explain the rotation of these ripples at a finite angle of incidence as

well as their propagation along the surface. In the years since the BH theory was introduced it has

been extended in a variety of ways.115, 116, 117, 118, 119, 120, 121, 122, 123, 124

The essence of the instability described by the BH theory relies on three properties of the

Sigmund model: The energy is deposited in an ellipsoidal fashion about a point in the solid, these

ellipsoids are not centered on the surface itself, and the rate of material sputtering is proportional

to the energy deposited at the surface. An illustrative simple case is the sputtering of a sinusoidal

crest (see Fig. 2.16) or trough (see Fig. 2.17) due to normal incidence IBS. The centers of energy

deposition due to off-center impacts are closer to the base of the trough than the pinnacle of the
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crest. Consequently, the sputtering is greater at low points than high points, and the amplitude of a

ripple pattern will grow in time.

Fig. 2.16 An illustration of the BH mechanism at a local maximum of the surface. The center of the
ellipsoid below the point P’ is further from the point P than for the case shown in Fig. 2.17.

Fig. 2.17 An illustration of the BH mechanism at a local minimum of the surface. The center of the
ellipsoid below the point P’ is closer to the point P than for the case shown in Fig. 2.16.

In order to make quantitative predictions for the patterns which result from IBS, Bradley and

Harper began with the Gaussian energy deposition given by Eq. (2.2) and applied it to a surface

with a slowly varying height and with nonzero local curvature. We shall reproduce the results of

their original analysis using the more recent approach developed by Bradley in 2011.125 We are

interested in the recession velocity of a surface point~r ⌘ xx̂+ yŷ+ h(x,y, t)ẑ due to nearby ion

impacts. Let �ê be the unit vector corresponding to the direction of the incident ion flux, and let

~r0 ⌘ x0x̂+ y0ŷ+h(x0,y0, t)ẑ be the location of a given ion impact. Denoting the ion energy as e , we
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may write the energy deposited at~r due to an impact at~r0 as

ED(x,y,z) =
e

(2p) 3
2 ab 2

exp

"

�
r2
k

2a2 �
r2
?

2b 2

#

, (2.3)

where

~r ⌘~r�~r0+aê, (2.4)

rk ⌘~r · ê, (2.5)

and

r? ⌘
q

r2 �r2
k . (2.6)

Having determined the energy per ion impact as a function of~r and~r0, we may now write the

power per unit volume at~r and time t as a result of ions impacting an area element dA0 centered on

~r0. This power is denoted P(~r,~r0, t)dA0, and the ion beam flux is denoted by J. Defining

X ⌘ x� x0,

Y ⌘ y� y0,

and

H ⌘ h(x,y, t)�h(x0,y0, t), (2.7)

we have

P(~r,~r0, t) =
Je

(2p) 3
2 ab 2

⇥

cosq �hx0(x0,y0, t)sinq
⇤

⇥exp


�(a+X sinq +H cosq)2

2a2 � (X cosq �H sinq)2 +Y 2

2b 2

�

, (2.8)
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where q is the angle of incidence of the ion beam with respect to the global surface normal. Equation

(2.8) is the average power deposited at a point~r due to an impact at a point~r0 on a surface described

by the function h(x,y, t). The recession velocity at the point~r is assumed to be proportional to

the total power deposited at~r due to all ions impacting the surface. To determine the total power

deposited at~r, we must integrate the right hand side (RHS) of Eq. (2.8) over all possible impact

points (x0,y0,h(x0,y0, t)). We may write

ht =�L
q

1+(—h)2
Z •

�•
dx0
Z •

�•
dy0P(~r,~r0, t), (2.9)

where L is the constant of proportionality between the power deposited and the erosion velocity.

The term
p

1+(—h)2 appears because the surface recedes in the direction of the local surface

normal, and we must project this recession onto the z axis. Inserting Eq. (2.8) into Eq. (2.9), we

obtain

ht =� LJe
(2p) 3

2 ab 2

q

1+(—h)2
Z •

�•
dx0
Z •

�•
dy0
⇥

cosq �hx0(x0,y0, t)sinq
⇤

⇥exp


�(a+X sinq +H cosq)2

2a2 � (X cosq �H sinq)2 +Y 2

2b 2

�

. (2.10)

Equation (2.10) is the fully nonlinear equation of motion for a surface governed by the Sigmund

model. While it is accurate to all orders in the surface height, Eq. (2.10) is not amenable to analysis.

In order to generate a theory which could accurately generate predictions about the patterns formed

by ion bombardment, Bradley and Harper assumed that the surface height varied slowly over the

range of a typical ion impact. In particular, they performed a Taylor expansion of h = h(x,y, t) up to

second order in x and y, centered around the point~r.
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While this method was successful in producing a theory which predicted the spontaneous

formation of ripples, and the prevalence of perpendicular mode ripples above a critical angle of

incidence, there is a more efficient and less restrictive way to perform this calculation. We continue

to follow the method demonstrated Bradley in 2011125 by assuming that h(x,y, t) has the form

h(x,y, t) = A0 exp
h

ı~k ·~x+s(~k)t
i

, (2.11)

where~k ⌘ kxx̂+kyŷ is the wave vector of a ripple pattern and s(~k) is the growth rate of the amplitude

of such a pattern. Instead of assuming that the surface may be approximated by a Taylor expansion

in real space, we assume that A0 is small. Put another way, it is assumed that each Fourier mode of

the surface is sufficiently small that it does not affect the time evolution of any other mode. It is this

assumption that permits us to consider a single mode at a time (i.e. Eq. (2.11) is not a sum over all

possible modes).

The task at hand is now to determine the value of s(~k) for all~k. We are most interested in the

growth of long wavelength modes, since experiments suggest that the ripple patterns which typically

form have a very long wavelength relative to their amplitude. Any experiment which begins with a

nominally flat initial condition satisfies this restriction at early times. Consequently, we perform

a Taylor expansion in powers of kx, ky, and A0. Our assumption of no interaction between modes

requires that we truncate this expansion at first order in A0. We are free to carry out the expansion

to arbitrary orders in kx and ky. However, we will primarily be interested in the long wavelength

(small |~k|) terms.
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The details of this expansion are somewhat lengthy, and will not be reproduced here. Schemati-

cally, the result of this analysis will be the coefficients amn in the expression

s(~k) =
N

Â
n=0

N

Â
m=0

amn(ıkx)
n(ıky)

m, (2.12)

where N is the desired expansion order. Equation (2.12) may also be written as a real space equation

of motion as

ht =

"

N

Â
n=1

N

Â
m=0

amn(∂x)
n(∂y)

m

#

h. (2.13)

The values for amn derived by this method are equivalent to those found by the original BH derivation

for N  2. Additionally, this method allows one to determine arbitrary amn without computing a

higher order Taylor expansion of h in space.

The curvature dependent instability resulting from this analysis of the Sigmund model is only

half of the story. Carrying Eq. (2.12) out to second order, and noting that a01 = 0 by symmetry we

obtain

s(~k) = a10ıkx �a20k2
x �a02k2

y . (2.14)

If either a20 or a02 are negative the theory becomes ill-posed. In this case the growth rate becomes a

strictly increasing function of kx or ky. This implies that infinitesimally short ripples will have an

infinite growth rate. This violates our assumption that the amplitude of the patterns is small, the

assumption that the wavelength of the pattern is large, and the assumption that we may approximate

the atoms of our solid surface by a continuous height field.

In order to formulate a well posed theory, Bradley and Harper considered the effects of surface

self-diffusion.126 Physically, this effect results from atoms diffusing on the surface. Surface self-
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diffusion causes surfaces to smooth over time, and affects short wavelengths much more than long

wavelengths. The effect on the EOM is to add a term proportional to �(k2
x + k2

y)
2 to the RHS of

Eq. (2.14) (or equivalently a term �—2—2h to the RHS of Eq. (2.13)). In the years since the BH

theory was introduced it has been suggested that a fourth order smoothing term of this form could

originate from ion-induced viscous flow.127

Regardless of its physical origin, the addition of a fourth order term changes the predictions of

the theory significantly. Rather than a strictly increasing function of kx or ky for the case of negative

a20 or a02, respectively, the growth rate is now a fourth order polynomial that goes to �• as |~k|

goes to •. The value of (kx,ky) which maximizes this polynomial is referred to as the "selected

wavevector", and we expect, at least at early times, that the surface will develop a ripple pattern

with this wavevector.

In one paper, BH developed a convincing explanation for two of the biggest outstanding

mysteries in the field of ion bombardment pattern formation: Why do ripples of a particular

wavelength spontaneously form, and why do these ripples rotate by 90� at a finite angle of ion beam

incidence? The former is explained by a balance between a curvature dependent instability due to

the Sigmund model of energy deposition and surface self diffusion. The latter is explained by the

fact that a02 becomes more negative than a20 at a finite angle of incidence, which implies a rotation

of the selected wavevector by 90�.

Despite these great triumphs, there still existed many outstanding questions following the

introduction of BH theory. Experiments suggest that for near normal ion bombardment there is not

any ripple formation (except for experiments in which a second atomic species was present at the

surface). The BH theory predicts that ripples should spontaneously form under such conditions.

Furthermore, as a linear theory, the BH theory is inherently unable to deal with intermediate or long
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time dynamics. Clearly, the amplitude of the ripple patterns which form do not continue to grow

exponentially without limit. By what mechanism is the growth of these patterns limited? We shall

see some proposed answers to these issues in the following sections.

2.5.2 Carter-Vishnyakov Theory

Another linear continuum theory of ripple formation was proposed by Carter and Vishnyakov

in 1996.41 In this model, a nominally flat surface develops a rippled topography with increasing

amplitude due to direct momentum transfer from the incident ions to the atoms near the surface of

the solid. For the general case of an ion striking a surface, there is some projection of the momentum

of the ion onto the surface tangent plane. Through collisions with the atoms as the ion is slowed to

a stop, the ion transfers its momentum to the surface layer. This momentum transfer results in a

net mass flux "uphill" on average if the global angle of incidence is > 45�. The surface atomic flux

uphill is greater than the flux downhill for angles > 45� because the uphill faces are struck by more

ions on average due to the experiment geometry, as shown in Fig. 2.18. The effective flux for uphill

faces is greater than the effective flux for downhill faces by a sufficient amount to overcome the fact

that ion impacts on the downhill faces transfer a greater fraction of their momentum to the surface

current. When the ion beam is normally incident, the CV mechanism is purely stabilizing (see

Fig. 2.19). For all angles of incidence the CV mechanism is stabilizing in the transverse direction.

The Carter-Vishnyakov (CV) model produces an EOM that is similar to that of BH [Eq. (2.13)],

but the expressions for the coefficients a20 and a02 differ substantially. In particular they may be

written

a02 =CVy cos2(q) (2.15)
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Fig. 2.18 An illustration of the CV mechanism when the incidence angle exceeds qc = 45�.

Fig. 2.19 An illustration of the CV mechanism when the ion beam is normally incident.

and

a20 =CVx cos(2q) (2.16)

where CVx and CVy are positive constants that depend on the specific material, ion species, and ion

energies involved. The CV model offers an explanation for the observed critical angle of incidence,

below which the flat surface remains stable.36, 37, 42 While the details of the instability will depend

on the particular material being considered, if mass redistribution is the dominant destabilizing

mechanism, the critical angle qc is expected to be universal. One criticism of the CV mechanism is

that it cannot account for the formation of perpendicular-mode ripples, since a02 > 0 for all angles

of incidence in the CV model.
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In recent years there has been a great deal of discussion regarding the relative importance of

sputtering (BH instability) and mass redistribution (CV instability) in describing pattern forma-

tion.128, 129, 130, 131, 46, 132, 40, 133, 134, 135, 136, 82, 137, 138 Some have gone as far as claiming sputtering is

irrelevant,132 while others have reached the opposite conclusion.139 It seems certain that in all cases

both mechanisms will be present, and that their relative importance is strongly dependent on the

incident ion energy. In fact, below a certain energy threshold there can be no sputtering at all, so

redistribution must dominate.130, 140 In the opposite limit, there is evidence that sputtering is far

more important.139

2.6 Nonlinear Continuum Theories

While the linear BH and CV models provide descriptions of how a surface roughens from a

nominally flat initial condition at early times, they both are incapable of describing the dynamics

of the surface at later times. Since the EOMs produced by these models are linear, they predict

a constant growth rate independent of ripple amplitude. This leads to ripple amplitudes which

grow without limit, which is clearly unphysical. In reality, surfaces are typically observed to

roughen exponentially at early times, followed by a period of coarsening and ripple amplitude

saturation,68, 67, 43 as discussed in Subsection 2.1.1. In what follows, we will describe some of the

most successful attempts to incorporate nonlinear terms into models of IBS.

2.6.1 Kuramoto-Sivashinsky Equation

The most natural route to extending the linear BH model (subsection 2.5.1) is to carry out the

expansion of the Sigmund model (subsection 2.4.1) to second order in —h, resulting in the well
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known Kuramoto-Sivashinsky141, 142 (KS) equation,

ht =�v0 + v00hx +Sxhxx +Syhyy +B—4h+lxh2
x/2+lyh2

y/2. (2.17)

Explicit expressions for the coefficients in Eq. (2.17) in terms of physical parameters in the Sigmund

model were first determined by Cuerno and Barabasi.115 This expansion may be obtained by first

making the approximation that

h ' b10X +b01Y +
b20

2
X2 +b11XY +

b02

2
Y 2. (2.18)

Next, one inserts Eq. (2.18) into Eq. (2.10). The resulting equation is then expanded to second

order in b01 and b10, and to first order in b20, b11, and b02. The coefficients of this Taylor expansion

correspond to the coefficients in Eq. (2.17). This Taylor expansion may be written

ht ' v0 +b10v00 +b20Sx +b02Sy +b2
10lx +b2

01ly, (2.19)

and all odd powers of b01 and b11 do not contribute due to symmetry. By explicitly performing this

expansion for the Sigmund model, Cuerno and Barabasi115 obtained explicit expressions for the

coeficients in Eq. (2.17). For notational convenience we consider the special case that a = b ⌘ s ,

and define

s ⌘ sin(q),

c ⌘ cos(q),

as ⌘ a
s
,

39



and

F ⌘ eJLp
2p

exp


�a2
s
2

�

. (2.20)

For the definitions of the physical quantities in Eqs. (2.20) see Subsections 2.4.1 and 2.5.1. For the

special case being considered, the coefficients in Eq. (2.17) are given by

v0 =
Fc
s

,

v00 =
Fs
s
�

a2
s c2 �1

�

,

lx =
F
s

c
⇥

a2
s
�

3s2 � c2��a4
s s2c2⇤ ,

ly = �Fc
s

a2
s c2,

Sx = �Fas
2
⇥

2s2 � c2 �a2
s s2c2⇤ ,

and

Sy =�F
2

as c2

Since the work of Cuerno and Barabasi the KS equation has been extensively studied in the

context of ion bombardment116, 117, 119, 120, 121, 122, 123 The KS equation captures some of the essential

features seen in ion bombardment experiments. It generates patterns that have a characteristic length

scale, but which are not perfectly ordered. The amplitude of solutions to the KS equation saturates

and averages to a constant in the long-time limit. There are many similarities between solutions to

the KS equation and surfaces observed in ion bombardment experiments. These include apparently

chaotic motion in space and time which nevertheless has a characteristic length, the scaling of the

surface width as a function of time, and the absence of u !�u symmetry in the resulting patterns.
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The KS equation will be prominently featured in Chapter 5. In that chapter we will see that the

spatio-temporal chaos which is characteristic of solutions to the KS equation may be suppressed by

periodically changing the value of the coefficient lx. In physical terms, this corresponds to rocking

the sample periodically during ion bombardment.

2.6.2 Pearson-Bradley Theory

One common morphology observed in experiments is the so-called terraced state. Rather than a

ripple pattern, at high fluences some surfaces develop into a state with two selected surface slopes.

Furthermore, these surfaces seem to coarsen in time, increasing their amplitude and characteristic

length according to a power law scaling for a finite time, after which they approach fixed values.

Finally, they tend to propagate along the surface in a direction which is opposite that predicted by the

BH theory.53, 54, 56, 57, 143, 58, 59, 60, 62, 63, 52, 27 For a discussion of experimental results demonstrating

these phenomena, see Subsection 2.1.1.

Some have argued that carrying through the sputter yield to arbitrary angles of incidence is

sufficient to explain the formation of terraced structures.144, 145, 146, 143 However this approach does

not explain how the surface destabilizes in the first place.

Since these terraced topographies emerge for high fluence bombardment, it is unquestionable

that the surface is in the regime where nonlinearities dominate the dynamics. There have been

additional nonlinearities proposed to be relevant for IBS. The term ∂ 2
x h2

x , for instance, produces

surfaces which coarsen in time.147, 120 However this equation has been criticized due to the potential

for the nonlinear terms to cancel out,148 and the topographies which emerge from such a term are

humps, not terraces. Therefore this term does not explain the phenomenon. This term has also been

studied in the context of Aeolean sand dune formation.149
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By carrying through the approximation of the sputter yield to third order in the surface slope hx,

Pearson and Bradley65 obtained a modified version of the KS equation for IBS,

ht =�v0 + v00hx �khxx �Bhxxxx +
c1

2
h2

x +
c2

6
h3

x , (2.21)

where h is the height of the surface, v0 is the erosion velocity of the unperturbed steady state, v00,

k , B, c2, and c3 are constants, and the subscripts x and t on h denote partial derivatives. This

equation is frequently referred to as the “3KS” equation. The solutions to this equation reproduce

the essential features seen in experiments: The surface coarsens in time, with low amplitude, short

wavelength ripple structures giving way to large amplitude, long wavelength sawtooth formations.

This coarsening ceases at a finite time. The sawteeth have two clearly defined slopes which depend

on the angle of incidence. At a finite time, the ripple propagation velocity may reverse direction as

the cubic nonlinearity overtakes the linear term hx. The terraced state emerges from a low amplitude

noisy initial condition.

For the 1D case, Pearson and Bradley were able to show analytically that solutions to Eq. (2.21)

develop undercompressive shocks. The predicted slopes and propagation velocities were in excellent

agreement with numerical simulations. In Chapters 6 and 7, I will provide an extensive description

of how the surface evolution predicted by this model of ion bombardment may be used to fabricate

blazed gratings in a novel way.
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2.7 Theories Regarding Systems With Multiple Atomic Species

As discussed previously, two of the most exciting areas of development in the IBS field are the

closely related problems of bombarding a binary material and bombarding an elemental material

with atomic co-deposition of a second species. The methods used to analyze these two situations are

functionally nearly identical, and the two situations are very similar physically. In both cases it is

important the the ions beam is composed of noble gas ions. A surface layer of altered composition

also plays an important role when an elemental material is bombarded with a beam of non-volatile

ions.

The phrase "surfactant sputtering" was coined by Hofsass81 in 2008 to describe the co-deposition

of material onto a bombarded elemental surface. Surfactant sputtering has received much theoretical

interest. Kree et al.150 explored the problem using Monte-Carlo simulations, while Bradley151 ana-

lytically investigated the effect of compound formation on the morphology. Recent experiments152

have shown that bombarding Ga with an Au ion beam can produce extremely well ordered ripple

patterns. Other work suggests that surfactant sputtering can produce ripple instabilities which do not

rely on a curvature dependent sputter yield153 or that normal incidence IBS of a multicomponent

surface may cause regular oscillations in the sputter yield.154

Virtually all of the theoretical work that has been done analyzing these multicomponent systems

relies on the "two-field model". In this approach, the surface height (u) and chemical composition

(f ) are two fields which describe the surface and their time evolution is in some way coupled. This

coupling typically arises either from preferential sputtering (the chemical composition f influences

the local surface velocity ut) or from amplification of the local deposition flux due to the local

surface slope (regions of the surface with a local normal close to parallel to the deposition beam
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will have more material deposited upon them than the average surface element, and will therefore

be subject to a change in chemical composition f and surface height u due to the increased effective

deposition flux).

The first application of this particular two-field approach was provided by Shenoy et al.,124 but

was limited to a linear approximation. A significant improvement in this work was provided by

Bradley and Shipman,155, 156, 157 who were able to analyze the fully nonlinear equations of motion.

Besides characterizing the qualitative behavior as a function of the free parameters, they were

able show that for a critical range of a bifurcation parameter, the formation of ordered hexagonal

arrays of nanodots could be predicted for normal incidence bombardment of a binary material, in

agreement with experiment. In what follows I explore one theoretical explanation for the formation

of nanoscale patterns in multi-component systems.

2.7.1 Preferential Sputtering

One proposed physical mechanism for ion-bombarded multi-component systems is the preferen-

tial sputtering of one material over another. It has long been known that different atomic species

in a compound sputter at different rates under otherwise identical conditions. Suppose we have a

binary compound of 50% material A and 50% material B, and that the sputter yield of A is strictly

greater than the sputter yield of B. As the bombardment proceeds, atoms of material A are sputtered

more often than those of material B. The result is an increase of the surface concentration of atoms

of species B. The erosion rate of a point on the surface depends on the surface concentration in

this case. A region which is rich in material A will recede more quickly than a region rich in

material B. Because of this, we say that the surface height and composition are coupled to one

another.158, 155, 156, 159, 124
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To see how the coupling between the surface height and the composition may influence the

surface morphology, I will follow a derivation provided by Bradley in 2012.153 In this case, even if

the instabilities due to mass redistribution, curvature dependent sputtering, and phase separation are

absent, ripples may spontaneously form on the surface due entirely to preferential sputtering. This

particular model is relevant to this thesis because it is considered as a special case in Chapter 4.

The situation we wish to consider is the following: A solid surface of material B is bombarded

obliquely by a broad beam of noble gas ions at an angle q . Concurrently, a beam depositing atomic

species A is incident on the surface with angle qd . The fluxes of these two beams are such that, on

average, the surface recedes. Define the quantities

f ⌘ c� c0 (2.22)

and

u ⌘ h�h0 + v0t, (2.23)

where c0 is the steady state concentration of material A, c is the local concentration of material A,

h is the surface height, h0 is the average height of the surface at t = 0, and v0 is the steady state

erosion velocity when c = c0. The steady state is defined to be the case in which hx = 0 for all t. In

what follows, we will work to first order in u and f . Furthermore, for simplicity we will suppress

the dependence of the sputter yield Y on the local surface curvature. Denoting the deposition flux

Jd , we may write the flux of material B onto the surface at any point as

Fd = Jd(cosqd �ux sinqd). (2.24)
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Furthermore, we may write the flux of atoms of materials A and B sputtered by the ion beam as

FA = J(ê · n̂)(c0 +f)YA(qlocal) (2.25)

and

FB = J(ê · n̂)(1� c0 �f)YB(qlocal), (2.26)

respectively, where J is the ion beam flux, n̂ is the local surface normal, ê is the unit vector

antiparallel to the incident ion beam, and Yi(qlocal) is the sputter yield of species i evaluated at the

local angle of incidence (i.e. cosqlocal = ê · n̂). Working to first order in u and f , Eqs. (2.25) and

(2.26) may be written as

FA = c0 fA(q)+ fA(q)f + c0 f 0A(q)ux (2.27)

and

FB = (1� c0) fB(q)+ fB(q)f +(1� c0) f 0B(q)ux, (2.28)

where

fi(q)⌘ J cosqYi(q). (2.29)

Finally, we consider the effects of radiation enhanced viscous flow near the surface.127 This effect

gives rise to a current for i =A,B which is given by

~Ji = Kci——2h, (2.30)
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where cA = c0, cB = 1� c0, and K is a constant which depends on material parameters of the solid

surface and the attributes of the ion beam. Using mass conservation, we may combine all of these

physical effects into a pair of coupled equations of motion, given by

ut = �W
h

FA +FB �Fd +— · (~JA + ~JB)
i

(2.31)

and

ft = �W
D
[FA �Fd +— · JA] , (2.32)

where D is a characteristic length on the order of the ion penetration depth and W is the atomic

volume (taken to be the same for A and B for simplicity). Inserting Eqs. (2.24), (2.27), and (2.28)

into Eqs. (2.31) and (2.32) results in a coupled pair of EOMs for the variables u and f . The

substitutions required to render these EOMs dimensionless are rather straightforward, but are

somewhat lengthy and do not offer additional insight into the effect being considered. Interested

readers are directed to Ref. [153] for the omitted steps. The dimensionless forms of Eqs. (2.31) and

(2.32) after the substitutions described above are

ũt̃ = f̃ + ṽũx̃ � D̃—̃2—̃2ũ (2.33)

and

f̃t̃ = �f̃ + ũx̃ � D̃0—̃2—̃2ũ, (2.34)

where D̃, D̃0, and ṽ are dimensionless constants. In what follows we will suppress the tildes. In

order to find solutions to Eqs. (2.33) and (2.34), we look for sinusoidal oscillations in the surface
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height and composition which have the same periodicity. The composition and height fluctuations

may have different amplitudes and phases, however. Our ansatz takes the form

(u,f)T = (u⇤,f⇤)T exp(ı~k ·~x+st), (2.35)

where u⇤ and f⇤ are complex constants,~k is the wavevector of the sinusoidal perturbation, the

superscript T denotes the matrix transpose, and s = s(~k) is the linear growth rate. Inserting this

ansatz into Eqs. (2.33) and (2.34) results in a quadratic equation for s . The roots of this quadratic,

and thus the two possible growth rates for a mode with wavevector~k = (kx,ky)T , are given by

2s± =�(1� vıkx +Dk4)±
q

(1� vıkx +Dk4)2 +4(ıkx �D0k4), (2.36)

where k ⌘ |~k|. Remarkably, for v >�1, the real part of s+ is greater than zero. This implies that

for small values of kx there exists a linear instability. Purely due to the coupling between the surface

composition and the surface height, ripple patterns will spontaneously form on the solid surface.

While this is of course not true for all materials, it is a strong indication that the coupling between

the composition and the surface height can have a strong influence on the surface morphology. This

particular model is explored in greater detail in Chapter 4.

2.8 Numerical Methods

In what follows I provide a description of the method of numerical integration used widely

throughout this work. While this method itself does not represent an original contribution, I did

implement the 1D method from scratch in Python. Furthermore, given the extensive use of this

algorithm in this work, I would be remiss in omitting a general description.
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The method used is a particular extension of the exponential time differencing (ETD) scheme

first developed by Cox and Matthews,160 which is applicable to an equation of the form

∂u
∂ t

= L̂u+ N̂(u, t), (2.37)

where u = u(x, t) is the dependent variable, t is time, L̂ is a linear differential operator, and N̂(u, t)

is a nonlinear operator. Since L̂ is a linear differential operator, its eigenfunctions are plane waves.

In what follows we will use the matrix representation of L̂ in Fourier space. The goal is to find a

solution for some time interval t0 < t < t1 given an initial state u(x, t0). The first step is to act from

the left on Eq. (2.37) with the integrating factor e�L̂t . This gives

e�L̂tut � e�L̂t L̂u = e�L̂t N̂(u, t). (2.38)

Using the definition

v ⌘ e�L̂tu, (2.39)

Eq. (2.38) may be written as

vt = e�L̂t N̂(eL̂tv, t). (2.40)

These transformations have the effect of transforming Eq. (2.37) from a form which has a stiff

linear part to one which is purely nonlinear. Since the left hand side (LHS) of Eq. (2.40) may be

integrated exactly, the only approximations which must be made in this method is the integral over

the right hand side (RHS) of Eq. (2.40) over one timestep. We will follow the notation of Cox and

Matthews, and denote the length of one timestep by h. The integral from tn to tn +h of Eq. (2.40)
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may be written as

u(x, tn +h) = eL̂hu(x, tn)+ eL̂h
Z h

0
e�L̂t N̂(u(x, tn + t), tn + t)dt. (2.41)

The matrices e±L̂h need only be calculated once for a given simulation, and thereafter the propagation

of the linear terms is simply matrix multiplication. This makes this approach exceedingly fast

compared to other methods without sacrificing accuracy. In order to approximate the integral on the

RHS of Eq. (2.41), Cox and Matthews made use of the standard Runge-Kutta method.

While analytically the method developed by Cox and Matthews is well behaved for a general L̂,

it suffers from a numerical instability for linear operators which have very small eigenvalues. This

particular numerical instability is well known to the community, and was efficiently surmounted by

Kassam and Trefethen.161 To understand the nature of the problem they circumvented, consider the

expression

g(z) =
ez �1

z
(2.42)

for z ⌧ 1. In the explicit prescription provided by Cox and Matthews, there appear many terms

of this form (or terms which are similar and exhibit the same issue) where z corresponds to an

eigenvalue of L̂. Analytically one may Taylor expand g(z) in powers of z and see that this term

gives a finite result for all finite z. Numerically, however, issues arise due to the limits of floating

point precision. If z is smaller than a threshold value, ez incorrectly evaluates to 1, and so g(z)

evaluates to 0, and massive inaccuracies or overflows can result. If all of the eigenvalues of L̂ are

small, this problem may be corrected by replacing ez with a Taylor series, truncating at the desired

level of precision. However, a general operator L̂ may have eigenvalues which are not all small, and

thus any truncated series will be inaccurate for some eigenvalues. In the particular application of
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models of an ion bombarded surface, the eigenvalues correspond to growth rates of different Fourier

modes. Thus we expect some will be very close to zero while others will be large in magnitude.

The solution discovered by Kassam and Trefethen is to evaluate expressions of the form of g(z)

which appear in Cox and Matthews’ expressions by means of contour integration. In particular, they

use the expression

f (L̂) =
1

2pi

Z

G
f (t)(t Î � L̂)�1dt, (2.43)

where G is a contour in the complex plane that encloses the eigenvalues of L̂. This integral is

easily approximated discretely, and sidesteps the numerical cancellations. Equation (2.43) may

be used throughout the exponential time differencing algorithm, including accurately calculating

the elements of the matrix eL̂h [in this case f in Eq. (2.43) is given by f (x) = exp(hx)]. With this

innovation, one can take the explicit formulae provided by Cox and Matthews, accurately calculate

the relevant matrices therein, and produce an algorithm which is very fast and accurate for a general

L̂ and N.

In order to solve 1D problems of the form of Eq. (2.37), I implemented this scheme in Python.

Quantitative comparison was made with an existing form of this method implemented in Matlab,

with very good agreement. This method offers a tremendous speed advantage over other methods,

such as using built in ODE solvers on the associated dynamical system. In order to solve 2D

equations, I have made use of the Python code developed by Dan Pearson. I am grateful for his

willingness to share his work with me, and this 2D implementation has proven to be very fast and

accurate as well.
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CHAPTER 3

CRATER FUNCTIONS

3.1 Introduction

In Chapter 2 we explored the linear continuum theories of BH and CV, which are based on simple

models of sputtering and mass redistribution, respectively. It has been unclear just how good these

models are and in what circumstances they can be reasonably applied. Moreover, the predictions of

the BH and CV theories depend on a number of phenomenological parameters but give no means of

computing their values.

Recently, there has been considerable interest in incorporating the results of molecular dynamics

(MD) simulations into a continuum theory of ion-induced surface dynamics. The so-called crater

function formalism (CFF) utilizes the average result of many ion impacts at a single point to generate

a Green’s function, which is then used to determine the response of a surface to bombardment with

a broad ion beam.12, 132 This approach has the advantage that it takes into account both sputtering

and ion-induced mass redistribution and does not rely on simple models of these phenomena. The

formalism yields estimates of the constant coefficients that appear in the continuum equation of

motion based on input from MD simulations. In the first application of this method to a specific

physical problem, Norris et al. carried out MD simulations of the bombardment of a silicon surface

with 100 and 250 eV Ar+ ions and then used their CFF to obtain estimates of some of the coefficients

in the equation of motion.132
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The Green’s function, which is usually referred to as the “crater function,” depends on the

complete shape of the surface surrounding the impact point.12 However, because it is not possible

to find the crater function for an arbitrarily shaped surface using MD, the shape dependence of the

crater was simply neglected in Norris et al.’s study of the erosion of Si with an Ar+ beam.132 In

particular, the crater function for a flat surface was used to estimate the coefficients in the equation

of motion (EOM), even though the accuracy of such a procedure is questionable. The dependence

of the crater on the shape of the surface has also been neglected in more recent applications of the

CFF.162, 163

In this chapter, we extend the CFF so that it includes the dependence of the crater function on

the curvature of the surface at the point of impact. We give explicit expressions for the coefficients

in the equation of motion which reduce to the expressions given by Norris et al.132 only if the

curvature dependence of the crater function is neglected. We then demonstrate that our extended

CFF yields the exact BH coefficients for the Sigmund model. In contrast, the BH coefficients are

not recovered if the curvature dependence of the crater function is neglected. This uncontrolled

approximation instead results in coefficients that are off by a factor of two for normal-incidence

bombardment. Our results therefore strongly suggest that if reliable estimates of the coefficient

values are to be obtained using the CFF, the curvature dependence of the crater function must be

taken into account.

This chapter is organized as follows. We introduce the crater function and its arguments in

Section 3.2. In Section 3.3, we use the crater function to determine the coefficients in the EOM for

the special case in which the surface height does not vary in the direction transverse to the plane

of the beam. In Section 3.4, we develop the geometric preliminaries required to extend our theory

to fully three-dimensional surfaces. Section 3.5 generalizes the results of Section 3.3 to the case
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in which the surface height varies in both the transverse and longitudinal directions. Section 3.6

contains an explicit demonstration that our extended CFF is in accord with the BH theory in the

case of the Sigmund crater. In Section 3.7, we compare our theory to the CFF of Norris et al.132 and

demonstrate that for the Sigmund crater the latter produces coefficients that can differ significantly

from their exact values. Additionally, we discuss the implications of our work, and place its results

in context. Our findings are summarized in Section 3.8.

3.2 The Crater Function

Consider the bombardment of a solid elemental material with a broad ion beam. We will assume

that the material is amorphous, or, if it is crystalline, that a layer at the surface of the solid is

rendered amorphous by the ion bombardment. The sample surface will be taken to be nominally

flat before the irradiation begins.

We define the ẑzz direction to be the global vertical, normal to the macroscopic surface. x̂xx is taken

to be the direction of the projection of the incident ion beam onto the macroscopic surface, and ŷyy is

taken to be normal to the x� z plane. The incident ion flux is JJJ = J(x̂xxsinq � ẑzzcosq), where the

angle of incidence q is the angle between the global vertical and the incident beam, as shown in

Fig. 1. An arbitrary point on the surface P is given by rrr = xx̂xx+ yŷyy+h(x,y)ẑzz, where h(x,y) is the

height of the point above the x� y plane. (For convenience, we will suppress the time dependence

of h unless it is necessary to explicitly display it.)

Our goal is to evaluate ∂h/∂ t at an arbitary point O on the solid surface at an arbitrary time

t > 0. To that end, we will place the global origin at the position of O at time t, as shown in Fig. 1.
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The global origin will be taken to be stationary, and it so will remain fixed as the surface point O

moves either up or down.

x

z

u

w

O

P

q

fJ

J

solid surface

h(x’)

H(u’)
P’

x’

u’

Fig. 3.1 The solid surface at time t. The points O, P and P’ lie on the surface. The global frame of
reference has its origin at O and has axes x, y and z, while the local frame of reference has its origin
at P and has axes u, v and w. JJJ is the incident ion flux. q and f are the global and local angles
of incidence, respectively. The height of the point P’ is h(x0) in the global frame but is H(u0) in
the local frame. For simplicity, the figure has been drawn for the special case in which h(x,y) is
independent of y.

The collision cascade that an impinging ion produces in the solid has a characteristic lateral

length scale that we will denote by l. We will assume that a smoothing mechanism ensures that

the surface height varies only a little over this length scale; in practice, the smoothing mechanism

could be thermally activated surface diffusion (as in the BH theory) or ion-induced viscous flow

within a thin surface layer.127 It is important to note that the equation of motion we will derive will

not include the effects of the smoothing mechanism, since we will include only terms up to second

order in the wave number k and the smoothing mechanism produces terms of order k4.

Our first step in finding the surface velocity at O will be to determine the contribution to it

coming from ions striking the surface an arbitrary surface point P. In fact, we may restrict our

attention to points P that have a distance to O that is on the order of a few times l or less because ions
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arriving at more remote points make a negligible contribution to the value of ∂h/∂ t for x = y = 0.

The height h is small for these points P. We will accordingly work to first order in h and its spatial

derivatives throughout the remainder of the chapter.

In addition to the global coordinates x, y and z, it is convenient to introduce a set of local

coordinates whose origin is the point P. Following Norris, Brenner and Aziz,12 we define the vector

n̂nn to be the local surface normal at P and t̂ttu to be the local downbeam direction projected onto the

surface. Explicitly,

n̂nn =
ẑzz�———h

p

1+(—h)2
(3.1)

and

t̂ttu =
�JJJ+(JJJ · n̂nn)n̂nn
|� JJJ+(JJJ · n̂nn)n̂nn| . (3.2)

t̂ttv is defined to be the cross product of n̂nn and t̂ttu. The unit vectors n̂nn, t̂ttu and t̂ttv form an orthonormal

basis and t̂ttu and t̂ttv are tangent to the surface at P. The local angle of ion incidence, which will be

denoted by f , is given by J cosf = �JJJ · n̂nn. To first order in the spatial derivatives of the surface

height,

f(x,y) = q �hx(x,y), (3.3)

where the subscript denotes a partial derivative with respect to x. Finally, we define u, v, and w to

be the coordinates along the directions t̂ttu, t̂ttv and n̂nn, respectively.

For surface points that have a distance to O that is on the order of l, we may approximate h by

discarding terms of third order and higher terms from its Taylor series: We set x1 = x, x2 = y, and

h(x,y) = S1x+S2y+
1
2

K11x2 +K12xy+
1
2

K22y2, (3.4)
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where

Si ⌘
∂h
∂xi

(0,0) (3.5)

and

Ki j ⌘
∂ 2h

∂xi∂x j
(0,0) (3.6)

for i, j = 1,2. While an arbitrary number of terms in the expansion (3.4) could in principle be

retained, we will only keep terms up to quadratic order in x and y because the length scale of the

height variation is assumed to be much larger than l. Note that the quantities Si and Ki j are both of

first order in h. This will be exploited later in our analysis.

We may also parameterize the surface in terms of the local coordinates u, v, and w. Close to P,

the height of the solid surface above the u� v plane is given by

H(u,v) =
1
2

E11u2 +E12uv+
1
2

E22v2, (3.7)

to second order in u and v. Here

Ei j ⌘
∂ 2H

∂ui∂u j
(0,0), (3.8)

where u1 ⌘ u, u2 ⌘ v and i, j = 1,2. Terms that are linear in u and v do not appear on the right-hand

side of Eq. (3.8) because the u and v axes are tangent to the solid surface at the point P. The

expansion (3.7) gives a good approximation to the value of H for O because the distance between O

and P is of order l.

We now introduce the crater function

F = F(u,v,f ,E11,E12,E22), (3.9)
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which is defined to be minus the average change in the local surface height H above the point (u,v)

in the u� v plane as a result of a single ion impact at u = v = 0, i.e., the point P. While two impacts

may produce very different craters, by taking the statistical average of a great number of craters, we

develop an expected response. The information required to construct F is assumed to be known

a priori from another theory or from MD simulations.

The crater function F(u,v,f ,E11,E12,E22) is defined in the local coordinate system of the point

of impact P. Its first two arguments are the lateral coordinates u and v in that coordinate system.

The third argument of F is the local angle of incidence f . Finally, we have included the dependence

of the crater on the local curvatures E11, E12 and E22. This dependence was neglected by Norris et

al.,132 but, as we will discuss in Section 3.7, evidence from experiments164 and MD simulations165

suggests that it can have a significant effect.

Note that while the Ei j’s refer to second derivatives of H with respect to the local coordinates u

and v at the point P, it is shown in Section IV that to first order they are equal to the corresponding

second derivatives of h with respect to the global coordinates x and y at the point O, i.e.,

Ei j = Ki j (3.10)

for i, j = 1,2. We may therefore rewrite Eq. (3.9) as

F = F(u,v,f ,K11,K12,K22). (3.11)
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3.3 The Extended Crater Function Formalism in Two Dimensions

The goal of our analysis is to derive an EOM of the form

1
J

∂h
∂ t

= C0(q)+C1(q)hx +C2(q)hy

+C11(q)hxx +C12(q)hxy +C22(q)hyy, (3.12)

and to write the coefficients C0, C1, . . . ,C22 in terms of the crater function F . The first step in our

analysis will be to determine the contribution to the normal velocity of the surface at O due to

impacts at the point P. Having found this, we will perform a flux weighted integral over all possible

impact points P to determine the overall response.

To make the analysis as transparent as possible, we will begin by considering the special case in

which the surface height h has no dependence on y. In this case, Eq. (3.12) reduces to

ht

J
=C0(q)+C1(q)hx +C11(q)hxx, (3.13)

where ht ⌘ ∂h/∂ t. This problem is equivalent to a two-dimensional (2D) problem in which h

depends only on x and t and ions are incident in the x� z plane with an angle of incidence q . The

effective crater function for this 2D problem is

g(u,f ,E11)⌘
Z •

�•
F(u,v,f ,E11,0,0)dy. (3.14)

We will study the equivalent 2D problem for the remainder of this section.

Consider an impact at the point P whose position in the global coordinate system is rrr =

xx̂xx+h(x)ẑzz. The lateral position of the global origin O in the local reference frame of the impact
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point is to first order

u = t̂ttu(x) · (000� rrr) = [x̂xx+hx(x)ẑzz] · [�xx̂xx�h(x)ẑzz] =�x. (3.15)

Thus, to first order, we may replace the first argument of the crater function g(u,f ,E11) by �x.

Similarly, the height of the origin O relative to the local frame of the impact point P is to first order

H(u)⌘ n̂nn(x) · (000� rrr) = [�hx(x)x̂xx+ ẑzz] · [�xx̂xx�h(x)ẑzz] = xhx(x)�h(x). (3.16)

Recall that the crater function gives the change in surface height in the direction of the local

normal n̂nn, and so we must project the local normal velocity along the global vertical direction in

order to find the velocity of the surface point O along the global vertical direction. However, because

n̂nn(x) · ẑzz = 1 (3.17)

to first order, this projection has no effect on the linearized EOM we will obtain.

This analysis permits us to write the time derivative of the surface height at O in terms of the

crater function g and the ion flux J:

ht(0, t) =�J
Z

g(�x,f ,E11)cosfdx, (3.18)

where the factor of cosf comes from projecting the ion flux onto the local normal at the point P.

Finally, because only points P within a distance on the order of l from the origin give a significant

contribution to the integral on the right-hand side of Eq. (3.18), we may replace E11 by K ⌘ K11 in

the integral.
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We are now in a position to begin analyzing the integrand in Eq. (3.18). To do so, we will

linearize in the quantities S ⌘ S1 and K, which, as we noted earlier, are first order in h. This will

yield expressions for the coefficients in the EOM (3.13). Making use of f = q �hx = q �S�Kx,

we see that

�J�1ht(0, t) =
Z

g(�x,q ,0)cosqdx

+S

"

d
dS

Z

g(�x,q �S,0)cos(q �S)dx

#

�

�

�

�

�

S=0

+K

"

d
dK

Z

g(�x,q �Kx,K)cos(q �Kx)dx

#

�

�

�

�

�

K=0

. (3.19)

The first term on the right-hand side of Eq. (3.19) is particularly simple, and gives the steady-

state erosion velocity. Notice that we may perform a change of variable x !�x without changing

the overall sign of this term, i.e.,

Z

g(�x,q ,0)cosqdx =
Z

g(x,q ,0)cosqdx. (3.20)

Therefore, the steady-state erosion velocity for the undisturbed flat surface is

V0(q) = J cosq
Z

g(x,q ,0)dx. (3.21)

The second term on the right-hand side of Eq. (3.19) is somewhat more involved. Noticing that

the only dependence of g upon S comes from the the local angle of incidence f , it is clear that we

may write the second term on the right-hand side of Eq. (3.19) as

S

"

d
dS

Z

g(�x,q �S,0)cos(q �S)dx

#

�

�

�

�

�

S=0

=�S
∂

∂q

Z

g(x,q ,0)cosqdx =�S
J

∂
∂q

V0(q). (3.22)
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Finally, we turn to the dependence of ht on K. The last term on the right-hand side of Eq. (3.19)

becomes

K

"

d
dK

Z

g (�x,q �Kx,K)cos(q �Kx)dx

#

�

�

�

�

�

K=0

= K
Z

dx
h

� xsinq g (x,q ,0)+ xcosq ∂g
∂q

(x,q ,0)+ cosq ∂g
∂K

(x,q ,K)
�

�

�

K=0

i

, (3.23)

where we have once again used the change of variable x !�x.

Inserting Eqs. (3.21), (3.22) and (3.23) into Eq. (3.19), we arrive at an EOM of the form (3.13).

Defining

MK(q) =
Z

g(x,q ,K)dx (3.24)

and

M(n)
x (q) =

Z

g(x,q ,0)xndx, (3.25)

we obtain

ht(0, t) = �JM(0)
x cosq + J

∂
∂q

(M(0)
x cosq)hx(0, t)

�J

"

∂
∂q

(M(1)
x cosq)+ cosq ∂

∂K
MK

�

�

�

K=0

#

hxx(0, t). (3.26)

Comparing this to Eq. (3.13), we see that

C0(q) =�M(0)
x cosq , (3.27)

C1(q) =
∂

∂q
(M(0)

x cosq) =� ∂
∂q

C0(q), (3.28)
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and

C11(q) =� ∂
∂q

(M(1)
x cosq)� cosq ∂

∂K11
MK11

�

�

�

K11=0
. (3.29)

The first term on the right-hand side of Eq. (3.29) stems from the fact that a nonzero surface

curvature gives rise to a local angle of ion incidence that depends on the point of impact. The second

is a direct result of the curvature dependence of the crater function itself.

3.4 Geometric Preliminaries In Three Dimensions

The extension of the analysis of the previous section to three dimensions (3D) is subtle and

requires care. In this section, we delve into the relationship between the local and global coordinate

systems before turning to the CFF in 3D. As discussed in Section II, the local coordinate system is

defined using the local surface normal and the projection of the ion beam onto the local tangent

plane.

To first order in h, the local unit vectors may be expressed in terms of their global counterparts

as follows:

t̂ttu = x̂xx� (hy cotq)ŷyy+hxẑzz, (3.30)

t̂ttv = (hy cotq)x̂xx+ ŷyy+hyẑzz, (3.31)

and

n̂nn =�hxx̂xx�hyŷyy+ ẑzz. (3.32)

The partial derivatives of h are to be evaluated at the point (x,y) in the x�y plane in these expressions.

The coordinates of the point O in the local coordinate system (u, v and w) can now be found using

Eqs. (3.30) - (3.32). The vector leading from P to O is �rrr. Recalling that rrr = xx̂xx+yŷyy+h(x,y)ẑzz, we
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obtain

u =�rrr · t̂ttu =�x+ yhy cotq , (3.33)

v =�rrr · t̂ttv =�y� xhy cotq , (3.34)

and

w =�rrr · n̂nn = xhx + yhy �h (3.35)

to first order. We may use Eq. (3.4) to eliminate h from Eqs. (3.33) - (3.35) because the surface

height varies slowly between O and P. In particular, Eq. (3.35) yields

w =
1
2

K11x2 +K12xy+
1
2

K22y2. (3.36)

We are now prepared to demonstrate that Eq. (3.10) is valid. Inversion of Eqs. (3.33) and (3.34)

gives

x =�u� vhy cotq (3.37)

and

y =�v+uhy cotq . (3.38)

Since H = w and the Ki j’s are first order in h, Eq. (3.36) may now be written

H(u,v) =
1
2

K11(u+ vhy cotq)2 +K12(u+ vhy cotq)(v�uhy cotq)

+
1
2

K22(v�uhy cotq)2

=
1
2

K11u2 +K12uv+
1
2

K22v2. (3.39)

Taking the partial derivatives of H with respect to ui and u j, we arrive at the desired result, Eq. (3.10).

64



3.5 The Extended Crater Function Formalism in Three Dimensions

We will now utilize the results of Section 3.4 to obtain the coefficients of the EOM in three

dimensions. To extend the formalism to the general case in which the surface height depends on y as

well as x, we return to the crater function F(u,v,f ,E11,E12,E22), the generalization of g(u,f ,E11)

to three dimensions. The EOM is

ht =�J
Z

dx
Z

dycosfF(u,v,f ,E11,E12,E22). (3.40)

Using Eqs. (3.3), (3.10), (3.33) and (3.34), we see that this may be written

ht =�J
Z

dx
Z

dycos(q �hx)F(�x+ yhy cotq ,�y� xhy cotq ,q �hx,K11,K12,K22). (3.41)

We now expand this to linear order in h and its derivatives, and let Fi denote the partial derivative of

F with respect to its ith argument. This gives

� ht

J cosq
=
Z

dx
Z

dy
n

F(�x,�y,q ,0,0,0)+F1(�x,�y,q ,0,0,0)(yhy cotq)

+F2(�x,�y,q ,0,0,0)(�xhy cotq)

�secq ∂
∂q
⇥

cosqF(�x,�y,q ,0,0,0)hx
⇤

+K11F4(�x,�y,q ,0,0,0)+K12F5(�x,�y,q ,0,0,0)

+K22F6(�x,�y,q ,0,0,0)
o

. (3.42)
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To simplify this expression, we will examine it term by term and employ Eq. (3.4). The second term

on the right-hand side of Eq. (3.42) is

I2 ⌘
Z

dx
Z

dyF1(�x,�y,q ,0,0,0)ycotq(S2 +K12x+K22y). (3.43)

I2 is in fact zero. To see this, recall that we have assumed that the solid surface is amorphous.

Independent of the details of the crater function F(u,v,f ,K11,K12,K22), therefore, symmetry

demands that it be an even function of v if K12 = 0. Thus, the terms which are proportional

to odd powers of y in the integrand of Eq. (3.43) integrate to zero. The remaining term in the

integrand vanishes upon integration over x since

Z

dxF1(�x,�y,q ,0,0,0) = F(�x,�y,q ,0,0,0)|x=•
x=�• = 0. (3.44)

The third term on the right-hand side of Eq. (3.42) may be written

I3 ⌘�
Z

dx
Z

dyF2(�x,�y,q ,0,0,0)xcotq(S2 +K12x+K22y). (3.45)

Again using the symmetry of F , we see that F2(�x,�y,q ,0,0,0) is an odd function of y, and thus

the terms in the integrand that are proportional to even powers of y will integrate to zero. This leaves

I3 = �cotqK22

Z

dx
Z

dyF2(�x,�y,q ,0,0,0)xy

= cotqK22

Z

dx
Z

dyF(x,y,q ,0,0,0)x

= cotqK22M(1)
x , (3.46)

66



where we have integrated by parts and changed the dummy variables of integration from x to �x

and from y to �y.

The fourth term on the right-hand side of Eq. (3.42) is identical to the analogous term in the 2D

case, except that hx now contains the additional term K12y. However, since F(�x,�y,q ,0,0,0) is

an even function of y, this term makes no contribution.

Without additional assumptions or specific information about the crater function, the fifth and

seventh terms on the right-hand side of Eq. (3.42) cannot be simplified further. However, we may

eliminate the dependence of ht on K12 using a symmetry argument. Notice that a surface described

by h(x,y) = K12xy is invariant under the transformation y !�y, K12 !�K12. We may thus write

F(x,y,q ,0,K12,0) = F(x,�y,q ,0,�K12,0). (3.47)

It follows that I6, the sixth term on the right-hand side of Eq. (3.42), is given by

I6

K12
=

"

∂
∂K12

Z •

�•
dx
Z •

�•
dyF(�x,�y,q ,0,K12,0)

#

�

�

�

�

�

K12=0

=

(

∂
∂K12

"

Z •

�•
dx
Z •

0
dyF(�x,�y,q ,0,K12,0)

+
Z •

�•
dx
Z •

0
dyF(�x,�y,q ,0,�K12,0)

#)

�

�

�

�

�

K12=0

. (3.48)

The quantity in the square brackets in the later expression is an even function of K12. As a

consequence, I6 vanishes and C12 = 0. We could have reached this conclusion a priori from

Eq. (3.12): since the system is invariant under a reflection about the x� z plane, ht must also remain

invariant under this transformation, which implies that C12 = 0.
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We define

MK11 =
Z Z

F(x,y,q ,K11,0,0)dxdy, (3.49)

MK22 =
Z Z

F(x,y,q ,0,0,K22)dxdy, (3.50)

and

M(n)
x =

Z Z

F(x,y,q ,0,0,0)xndxdy. (3.51)

Collecting terms, we arrive at a simpler form of Eq. (3.42),

�ht(0,0, t)
J cosq

= M(0)
x �S1 secq ∂

∂q
(cosqM(0)

x )

+K11

"

secq ∂
∂q

⇣

cosqM(1)
x

⌘

+
∂

∂K11
MK11

�

�

�

K11=0

#

+K22

"

cotqM(1)
x +

∂
∂K22

MK22

�

�

�

K22=0

#

. (3.52)

Comparing this with Eq. (3.12), we conclude that Eqs. (3.27) - (3.29) remain valid, but the moments

MK11 and M(n)
x are now given by Eqs. (3.49) and (3.51). We also have found that C2 =C12 = 0 and

that

C22(q) =�cosq cotqM(1)
x � cosq ∂

∂K22
MK22

�

�

�

K22=0
. (3.53)

The first term on the right-hand side of Eq. (3.53) is present because if hy is nonzero at the point of

impact P, the local normal n̂nn and the local downbeam direction t̂ttu have nonzero components along

the y-direction. The second term results from the explicit dependence of the crater function on the

curvature in the y-direction.
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Despite the appearance of the factor of cotq in Eq. (3.53), C22(q) is well behaved in the limit

q ! 0. To see this, note that for small q ,

M(1)
x (q)⇠= R0 +R1q , (3.54)

where R0 and R1 are finite constants. Symmetry demands that M(1)
x (0) = 0, and thus R0 = 0.

Therefore, in the limit of small q , the lowest order term M(1)
x is proportional to q . It follows that

lim
q!0

h

cosq cotqM(1)
x (q)

i

= R1. (3.55)

The value of the constant R1 of course depends on the specifics of the crater being considered, but it

is finite.

3.6 Application of the Formalism to the Sigmund Model

In this section, we demonstrate explicitly that our crater function formalism yields the exact

BH coefficients for the Sigmund model. The crater function for the Sigmund model is given by

Eq. (8) of Ref. [125]. For convenience, we will adopt the same notation that was used in that

work. On average, an impact at the origin produces a crater whose negative depth at the point

rrr = xx̂xx+ yŷyy+h(x,y)ẑzz is

F(x,y,q ,K11,K12,K22) =
eL

(2p)3/2ab 2 exp

 

� 1
2a2 [a� xsinq +h(x,y)cosq ]2

� 1
2b 2 [xcosq +h(x,y)sinq ]2 � 1

2b 2 y2

!

. (3.56)
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If the distance between the origin and rrr does not exceed a few times l, then we may set

h(x,y) =
1
2

K11x2 +K12xy+
1
2

K22y2 (3.57)

in Eq. (3.56). The dependence of the crater for the Sigmund model on the components Ki j of the

curvature tensor becomes manifest once Eq. (3.57) has been inserted into Eq. (3.56).

For brevity, let

D ⌘ a2eL
(2p)3/2ab 2 . (3.58)

We readily obtain

M(0)
x = D

Z Z

exp
⇣

� 1
2

a2
a(1� xsinq)2 � 1

2
a2

b x2 cos2 q � 1
2

a2
b y2
⌘

dxdy

= De�a2
a/2
Z Z

exp
⇣

� B1

2
x2 +Ax�

a2
b
2

y2
⌘

dxdy

= De�a2
a/2 2p

ab
p

B1
exp
✓

A2

2B1

◆

(3.59)

and

M(1)
x = aDe�a2

a/2
Z Z

xexp

 

�B1

2
x2 +Ax�

a2
b
2

y2

!

dxdy

=
aA
B1

M(0)
x . (3.60)

To find C11 and C22, we need the partial derivatives of the curvature dependent moments MK22 and

MK22 with respect to K11 and K22, respectively. Since the Ki j’s do not depend on x and y, we may
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exchange differentiation with respect to the Ki j’s with integration over x and y. This gives

∂
∂K11

MK11

�

�

�

K11=0
=
Z Z ∂

∂K11
F(x,y,q ,K11,0,0)

�

�

�

K11=0
dxdy

=�aDe�a2
a/2
Z Z

exp

 

�B1

2
x2 +Ax�

a2
b
2

y2

!

✓

B2

2
x2 +Cx3

◆

dxdy

=�aM(0)
x

✓

A2B2

2B2
1
+

A3C
B3

1
+

B2

2B1
+

3AC
B2

1

◆

. (3.61)

Similarly,

∂
∂K22

MK22

�

�

�

K22=0
=
Z Z ∂

∂K22
F(x,y,q ,0,0,K22)

�

�

�

K22=0
dxdy

=�aDe�a2
a/2
Z Z

exp
⇣

� B1

2
x2 +Ax�

a2
b
2

y2
⌘⇣B2

2
y2 +Cxy2

⌘

dxdy

=�M(0)
x

a
a2

b

⇣B2

2
+

AC
B1

⌘

. (3.62)

We must also compute the derivative of M(1)
x cosq with respect to q . We obtain

∂ (M(1)
x cosq)
∂q

=
∂

∂q

✓

aA
B1

M(0)
x cosq

◆

= �aM(0)
x

"

Asinq
B1

� cosq
✓

B2

B1
+

6AC
B2

1
+

A2B2

B2
1

+
2A3C

B3
1

◆

#

. (3.63)

Finally, we will need the identity

1
a2

b

⇣

B2 +
2AC
B1

⌘

= cotq A
B1

. (3.64)

Inserting Eqs. (3.61) and (3.63) into Eq. (3.29) yields

C11(q) = aM(0)
x

"

Asinq
B1

� cosq
2

✓

B2

B1
+

6AC
B2

1
+

A2B2

B2
1

+
2A3C

B3
1

◆

#

. (3.65)
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Similarly, inserting Eqs. (3.60) and (3.62) into Eq. (3.53) and applying the identity (3.64), we have

C22(q) = �aM(0)
x

"

� 1
a2

b

 

B2

2
+

AC
B1

!

+ cotq A
B1

#

cosq

= �M(0)
x

a
a2

b

 

B2

2
+

AC
B1

!

cosq . (3.66)

Note as well that explicit expressions for C0 and C1 can be obtained by inserting Eq. (3.60) into

Eqs. (3.27) and (3.28). The resulting expressions for C0 and C1 and Eqs. (3.65) and (3.66) for C11

and C22 agree with the results obtained by BH for the Sigmund model.

3.7 Discussion

The key results of this chapter are given by Eqs. (3.29) and (3.53). These equations give a

means of computing the coefficients C11 and C22 if the curvature dependent crater function is known.

These coefficients play a key role in determining whether parallel-mode or perpendicular-mode

ripples form or if the surface remains flat.

In their 2011 paper, Norris et al.132 gave explicit expressions for C11 and C22, namely

C11(q) =� d
dq

h

M(1)
x (q)cosq

i

, (3.67)

and

C22(q) =�M(1)
x (q)cosq cotq . (3.68)

Our results Eqs. (3.29) and (3.53) show that Eqs. (3.67) and (3.68) are a good approximation only if

the curvature dependence of the crater function is negligible.
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In the Sigmund model of ion sputtering, the form of the crater depends on the curvature of

the surface at the point of impact, despite a statement to the contrary in Ref. [12]. This point has

been discussed in detail by Nietiadi and Urbassek.165 The second terms on the right-hand sides of

Eqs. (3.29) and (3.53) therefore yield nonzero contributions to C11 and C22. These contributions

were computed explicitly in the preceding section.

For normal-incidence ion bombardment, the values of C11 and C22 obtained by neglecting the

curvature dependence of the crater function [Eqs. (3.67) and (3.68)] differ by a factor of two from

the exact values for the Sigmund model [Eqs. (3.65) and (3.66)]. In fact, Norris et al.’s result for

C22 is equal to twice the exact value for all angles of incidence q .

To get an idea of how much Eq. (3.67) differs from the exact result for the Sigmund model for

nonzero values of q , see Fig. 2. The values of a, a and b used in that figure are for 1 keV Ar+

bombardment of silicon.46 The ratio of C11 as given by Eq. (3.67) to the exact value is greater than

two for a broad range of q values. For q = 45�, for example, the ratio exceeds 3.5. The angle where

the switch from parallel- to perpendicular-mode ripples occurs is 50.8� but, if we use Eqs. (3.67)

and (3.68), this angle is found to be 66.7�, fully 15.9� higher than the correct value.

Recently, Nietiadi and Urbassek carried out MD simulations of the bombardment of an amor-

phous silicon target with a normally-incident 500 eV Ar+ beam.165 They found that the craters for

curved surfaces are substantially different than those for a flat surface. These observations and our

results for the Sigmund model lead us to the conclusion that the errors incurred by neglecting the

curvature dependence of the crater function are typically not small.
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Fig. 3.2 The coefficients C11 and C22 as functions of q for the Sigmund model. The exact results for
C11 and C22 are shown with a solid and dashed curve, respectively. The results obtained for C11 and
C22 if the curvature dependence of the crater function is neglected are shown with long dashes and
with a dash-dotted curve, respectively. The values of a, a and b employed are for 1 keV Ar+
bombardment of silicon. The coefficients are in units of 2

p
2p/(Lea3

aab ) and q is given in
degrees.

The contribution to Cii that comes from the curvature dependence of the crater function is

Fi cosq , where

Fi ⌘� ∂
∂Kii

MKii

�

�

�

Kii=0
(3.69)

for i = 1, 2. If Kii is initially zero and then becomes negative, the surface of the solid nears the core

of the collision cascade and the amount of sputtered material increases for an arbitrary choice of

target and ion beam. MKii is a decreasing function of Kii for i = 1 and 2 as a result. We conclude

that both F1 and F2 are positive, which means that the curvature dependence of the crater function

yields a smoothing contribution to the dynamics that is neglected in Eqs. (3.67) and (3.68).

Equations (3.61) and (3.62) give the values of F1 and F2 for the Sigmund model. It is a simple

matter to verify that F1 and F2 are indeed positive using these formulae, in accord with our general
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observation. In addition, for the Sigmund model, F1 is greater than F2 for all q > 0. To see this, note

that because the collision cascade is elongated along the direction of the incident ion, the lateral

straggling length b exceeds the longitudinal straggling length a . Thus, aa ⌘ a/a < a/b ⌘ ab and

B1 ⌘ a2
a sin2 q +a2

b cos2 q < a2
b for q > 0. The constants A, B1, B2 and C are all positive for q > 0

and M(0)
x > 0 as well. Hence

F1 =
aM(0)

x

B1

 

B2

2
+

3AC
B1

+
A2B2

2B1
+

A3C
B2

1

!

>
aM(0)

x

a2
b

 

B2

2
+

AC
B1

!

= F2. (3.70)

For the Sigmund model, therefore, the smoothing effect that comes from the curvature dependence

of the crater function is greater for parallel-mode ripples that it is for perpendicular-mode ripples,

except of course for the degenerate case of normal-incidence bombardment.

Nietiadi and Urbassek noted that for normal-incidence ion bombardment, the common value of

MK11 and MK22 is a decreasing function of K11 = K22 for both the Sigmund model and for their sim-

ulations of sputtering of amorphous silicon.165 From these observations, they correctly concluded

that the curvature dependence of the crater function produces a smoothing effect. However, Nietiadi

and Urbassek then went on to assert that this effect “counteracts the main effect of Bradley-Harper

theory, since it leads to increased sputtering on crests and decreased sputtering in troughs.” In fact,

as we have seen, the curvature dependence of the crater function must be taken into account if the

exact BH values of the coefficients C11 and C22 are to be reproduced by the CFF. The smoothing

effect produced by the curvature dependence of the crater function is therefore included in the BH

theory.

Perkinson et al.164 have recently pointed out some apparent inconsistencies in the coefficients

given by Norris et al., Eqs. (3.67) and (3.68). Because Norris et al.’s expression for C11 is a
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derivative with respect to q of a function which vanishes at q = 0 and p/2, the integral of C11 is

Z p/2

0
C11(q)dq =�M(1)

x (q)cosq
�

�

�

q=p/2

q=0
= 0 (3.71)

for their theory. Additionally, using Norris et al.’s expressions (3.67) and (3.68), we obtain

C11(q) =
d

dq
�

C22 tanq
�

. (3.72)

Perkinson et al.’s experiments provide evidence that the actual values for C11 and C22 do not satisfy

either Eq. (3.71) or (3.72). This again suggests that the errors incurred by neglecting the curvature

dependence of the crater function are significant. When one includes the curvature dependence,

however, Eqs. (3.29) and (3.53) result, and Eqs. (3.71) and (3.72) do not apply. Our CFF therefore

does not suffer from the same difficulties as that of Norris et al.132

Perkinson et al.’s experimental results indicate that there is “a surfeit of stability relative to

instability compared to the prediction of crater-function theory,” i.e., the actual values of C11 and

C22 are larger than the theoretical values obtained using Eqs. (3.67) and (3.68). It seems likely that

this discrepancy was the result of omitting the smoothing effect of the curvature dependence of the

crater function.

As Eq. (3.27) shows, the crater function for a flat surface is all that is needed to compute C0.

Our expression for C0 agrees with that of Norris et al. as a consequence. Our extended CFF also

yields an expression for C1, Eq. (3.28). Norris et al. did not give an explicit formula that relates C1

to a crater function moment.132 This coefficient is needed if one wishes to find the velocity with

which parallel-mode ripples propagate over the solid surface.
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Norris, Brenner and Aziz introduced their CFF in 2009 but did not apply it to estimate the

coefficients in the EOM for a particular target material or choice of ion beam.12 Subsequently,

Norris et al. carried out MD simulations of the bombardment of a flat silicon surface with 100 and

250 eV Ar+ ions and then used Eqs. (3.67) and (3.68) to obtain estimates of C11 and C22.132

The results of Norris et al. have some puzzling aspects. For angles of incidence q below a critical

value qc, the surface remains flat. For q > qc, on the other hand, ripples develop as the bombardment

proceeds. The experimental value of qc Norris et al. obtained for 250 eV ions (48�) is approximately

10� larger than the theoretical value they obtained. Moreover, for q = 50�, the measured ripple

wavelength was roughly twice as large as the theoretical value. The difference between the measured

and theoretical wavelength declined for larger values of q , but remained appreciable up until q

had reached 65�. Finally, a switch from parallel-mode ripples to perpendicular-mode ripples was

observed for incidence angles near grazing in the experiments of Norris et al. but no such transition

was found by inputting their MD results into Eqs. (3.67) and (3.68).

Plausible explanations for these discrepancies between theory and experiment emerge if the

curvature dependence of the crater function is taken into account. The smoothing effect of the

curvature dependence of the crater function clearly increases the theoretical value of qc. Moreover,

the wavelength of parallel-mode ripples is inversely proportional to |C11|1/2, and so when the

contribution to C11 that comes from the curvature dependence of the crater function is included, the

predicted wavelength increases. Finally, recall that for the Sigmund model the curvature dependence

of the crater function has a greater smoothing effect on parallel-mode ripples than it does for

perpendicular-mode ripples. It seems likely that this is also true for Ar+ bombardment of silicon,

since the Sigmund model provides a good description of the spatial distribution of the deposited

energy.166 It is therefore possible that if the curvature dependence of the crater function had been
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taken into account by Norris et al. in their theoretical work, then they might have found a transition

between parallel- and perpendicular-mode ripples as q nears 90�.

If the correct formulae (3.29) and (3.53) are to be used in combination with MD simulations

to obtain accurate estimates of C11 and C22, it is not sufficient to find the crater function for a flat

surface. Instead, to find C11, craters on a curved surface of the form h(x,y) = K11x2/2 must be

found for a range of small values of K11 so that the derivative ∂MK11/∂K11 can be computed for

K11 = 0. Naturally, an analogous statement applies to determining C22. In that case, craters on a

surface that has the form h(x,y) = K22y2/2 are needed. This means that the computational resources

necessary to find accurate values of the coefficients C11 and C22 are considerably greater than it was

previously thought.

3.7.1 Binary Materials

In 1999, a series of fascinating experiments by Facsko et al. revealed that normal-incidence

bombardment of the binary compound GaSb with an argon ion beam can produce a densely packed,

highly regular hexagonal array of nanodots.73 Bradley and Shipman (BS) subsequently introduced a

theory that accounts for the formation of orderly hexagonal arrays of nanodots when the flat surface

of a binary compound is subjected to normal-incidence ion bombardment.155, 156, 157 In their theory,

the coupling between the topography of the surface and a thin surface layer of altered composition

is the key to the observed pattern formation. In addition, in the BS theory, the curvature dependence

of the sputter yields is responsible for the instability that leads to the formation of the nanodots.

In an effort to test the BS theory, Norris and co-workers extended their CFF to binary materi-

als.163 They then performed MD simulations to find the craters produced by argon ion bombardment

of GaSb and input the results into their CFF. The resulting estimated parameter values do not lead
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to the formation of ordered arrays of nanodots in the BS model. These results have led Norris

to suggest that the instability that leads to the formation of the nanodot arrays stems from phase

segregation rather than the curvature dependence of the sputter yields, and to generalize the BS

theory to include the former effect.167

Norris et al. neglected the curvature dependence of the crater function in extending their CFF to

binary target materials.163 Accordingly, it is possible that the errors in their estimated parameter

values are quite large, and that improved estimates would in fact lead to the emergence of ordered

arrays of nanodots from the BS model. Additional analytical work is needed in which the curvature

dependence of the crater function is taken into account when the CFF is extended to binary materials.

MD simulations that yield the crater function for curved GaSb surfaces would then permit significant

improvements in the estimated parameter values, and would indicate whether curvature dependent

erosion or phase segregation is responsible for the formation of the nanodots.

3.8 Conclusions

In principle, the crater function F depends on the entire shape of the surface in the vicinity

of the point of impact. In this chapter, we extended the crater function formalism to include the

dependence of F on the curvature of the surface at the point of impact. Explicit expressions for

the constant coefficients in the continuum equation of motion were derived; these reduce to the

results given by Norris et al.132 only if the curvature dependence of the crater function is negligible.

Our extended crater function formalism yields the exact coefficients for the Sigmund model of ion

sputtering. In contrast, if the curvature dependence of the crater function is neglected, substantial

errors in the estimated values of the coefficients typically ensue.
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Our results show that accurately estimating the coefficients in the equation of motion using

craters obtained from molecular dynamics simulations will require significantly more computational

power than was previously thought. They also lead us to question the reliability of the coefficient

estimates that have been obtained using the version of the crater function formalism in which the

curvature dependence of the crater function is neglected.
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CHAPTER 4

AZIMUTHAL ROTATION OF BINARY TARGETS

4.1 Introduction

It has recently become apparent that ion bombardment of binary materials is able to produce

a much richer variety of patterns than bombardment of elemental materials can. Examples of

patterns that can form include nearly defect-free surface ripples,158 hexagonal and square arrays of

nanodots,73, 77, 155, 156 and a hybrid “dots-on-ripples” topography in which dots that form a hexagonal

array sit atop a ripple pattern.159 The key to understanding the emergence of these novel patterns

is the observation that the surface composition and topography are coupled.158, 155, 156, 159, 124 This

coupling also plays an important role in “surfactant sputtering,” i.e., pattern formation on an initially

elemental material that is subjected to ion bombardment and concurrent deposition of a second

atomic species.168, 169, 125, 153, 170

The formation of surface ripples is problematic in a variety of applications, including secondary

ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES), and ion milling. SIMS is one of

the most widely used techniques for dopant profiling of semiconductors, while AES is an important

tool in the structural characterization of multilayers. In the simplest kind of SIMS or AES apparatus,

the primary ions are obliquely incident on the stationary surface of the sample. Thus, as sputtering

proceeds, ripples can be formed, and this leads to rapid degradation of the depth resolution.
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Zalar first demonstrated that this problem can often be overcome by rotating the sample with a

constant angular velocity about its surface normal as the depth profiling proceeds.171 Zalar rotation

has subsequently been used by many other groups, who found that in many cases, the surface

actually becomes flatter as the solid is eroded.16 Consequently, ion sputtering with concurrent

sample rotation has also been used as a means of preparing ultra-smooth surfaces for optical

applications.19 Sample rotation does not always prevent surface roughening, however. In some

instances, the sample roughens while it is simultaneously eroded and rotated, albeit at a slower rate

than it does when it is stationary.16, 17

Some understanding of the effects of sample rotation during ion bombardment of an elemental

material has been achieved. In the early time linear regime,172 the rate with which the surface

roughens or smooths is independent of the angular velocity w so long as w is nonzero. The same is

true of the characteristic length scale of the patterns that form. In the longer time nonlinear regime,

if the surface is unstable, it is governed by the Kuramoto-Sivashinsky equation in the limit that w is

large.173 The surface roughness asymptotes to a finite steady-state value in that event.

In recent years it has been discovered that mass redistribution plays an important role in

nanoscale pattern formation on ion-bombarded Si and Ge targets, and it has been speculated that

this may true of other elemental materials as well.46, 132, 47 Mass redistribution was not taken into

account in Refs. [172] and [173], but incorporating this phenomenon into the theory does not alter

the predictions mentioned in the preceding paragraph.

Kinetic Monte Carlo simulations of the ion bombardment of elemental materials indicate that the

surface roughness depends on w in the nonlinear regime if the sample rotation is not rapid.174 This

has since been confirmed experimentally,175 even though the effect of mass redistribution was not

included these simulations. Very recently, kinetic Monte Carlo simulations which utilize crater func-
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tions computed using molecular dynamics have been performed.176 Mass redistribution was taken

into account in these simulations, although the curvature dependence of the craters165, 177, 178, 179

was not. The results of these simulations suggest that the patterns formed in the nonlinear regime

strongly depend on the angular velocity w .

It is now known that sample rotation during oblique-incidence ion sputtering of binary materials

can produce intriguing surface patterns that would not otherwise appear. In particular, hexagonal,

square and rectangular arrays of nanodots have been observed in experiments.74, 180 If the rotation is

sufficiently rapid, the equations of motion have the same form as for normal-incidence bombardment

but the values of the coefficients are altered.156 The Bradley-Shipman theory therefore predicts that

hexagonal arrays of nanodots will form for a range of parameter values,155, 156 in accord with the

experiments of Frost and co-workers.74, 180 It is not currently understood how square and rectangular

arrays arise, however.

The object of the present chapter is to explore the effects of sample rotation with a finite angular

velocity w during ion sputtering of binary materials. We will also consider surfactant sputtering

of a rotating sample. These are challenging problems which we will simplify by restricting our

attention to times early enough that linear equations of motion apply. We will also concentrate on

the case in which the sample is periodically rotated in discrete steps of 180�. As we shall see, this

problem is quite rich but it can nonetheless be solved analytically. We find that the rate with which

the surface roughens or smooths depends on the frequency of rotation w , in contrast to the behavior

of elemental materials in the linear regime. In addition, the characteristic length scale of the patterns

that form changes as the value of w is increased, and can even exhibit a jump discontinuity. Our

numerical work shows that this unexpected behavior carries over to the case in which the sample is

rotated continuously rather than discretely.
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The chapter is organized as follows. In Section 4.2, we introduce the equations of motion that

describe the coupled dynamics of the surface composition and morphology for a stationary sample

and show how they can be solved. The general solution of the equations of motion for a sample

rotating periodically in discrete steps of 180� is obtained in Section 4.3. We apply these results to a

simplified model of surfactant sputtering in Section 4.4 to illustrate the types of behavior that can

occur as a result of sample rotation during concurrent ion bombardment and impurity deposition. In

Section 4.5, we study the case of continuous sample rotation with a constant angular velocity and

show that the interesting features of our solution for discrete rotation are also found in this case.

We discuss our results further in Section 4.6. We place our results in a mathematical context in

Section 4.7. Finally, we summarize this chapter in Section 4.8.

4.2 Stationary Samples

The theory developed in this chapter is applicable to two types of experiments which are

physically different yet which yield similar equations of motion. In particular, it applies to

I. a binary material that is bombarded with a broad ion beam with the angle of incidence q , and

to

II. an initially elemental material being bombarded by a broad ion beam with incidence angle q

while undergoing concurrent deposition of a second atomic species at an angle qd with respect

to the vertical.

J will denote the ion flux in both Problems I and II. In Problem II, we require the atomic beam to

have the same azimuth as the ion beam, and the atomic flux will be denoted by Jd .
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In order to make the analysis of rotating samples as clear as possible, we will first review how

to evaluate the linear stability of a solid surface for the non-rotating case. We define the x direction

to be the projection of the ion beam onto the plane of the surface, the z direction to be normal to

that plane, and the y direction to be orthogonal to both the x and z directions so as to follow the

right-hand convention. We define

u(xxx, t) = h(xxx, t)+V0t, (4.1)

where h(xxx, t) is the height of the surface above a point xxx = (x,y) in the x�y plane at time t and V0 is

the steady-state erosion velocity of a flat surface. In the case of Problem I, we will call the elements

that make up the binary material A and B and take A to be the species with the lower of the two

sputter yields. For Problem II, on the other hand, the atoms that make up the elemental material will

be species B and the atomic species that is concurrently deposited will be species A. In both cases,

we let f(xxx, t) denote the deviation of the surface concentration of A atoms from its steady-state

value above the point xxx at time t. It will be assumed that the sample is amorphous or that a surface

layer of the sample is amorphorized by the ion bombardment. We will also assume that the solid

surface is close to being flat and that the deviations of the surface composition from its uniform

steady-state value are small. These last two assumptions allow us to use linearized equations of

motion.
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The linearized equations of motion for Problem I take the form

ut = a10ux +a20uxx +a02uyy + . . .

+b00f +b10fx +b20fxx +b02fyy + . . . (4.2)

ft = c10ux + c20uxx + c02uyy + . . .

+d00f +d10fx +d20fxx +d02fyy + . . . , (4.3)

where the subscripts on u and f denote partial derivatives.158, 155, 156, 159, 157 The ai j’s, bi j’s, ci j’s,

and di j’s are real constant coefficients which in general depend on the sample material, the sample

temperature, and the characteristics of the ion beam. Explicit expressions which relate these

coefficients to the underlying physical parameters may be found in Refs. [158, 155, 156, 159, 157].

The terms proportional to ux in Eqs. (4.2) and (4.3) describe the dependence of the sputter yields

on the angle of incidence, while those proportional to f stem from the dependence of the yields

on the surface composition. Both curvature-dependent sputtering13 and mass redistribution132, 41

contribute to the terms proportional to uxx and uyy. Mass redistribution also gives rise to the terms

proportional to fx. Finally, the terms proportional to fxx and fyy are the result of surface diffusion.

Notice that some terms cannot appear in Eqs. (4.2) and (4.3) due to the symmetries of the system.

In particular, the transformed surface height u cannot appear undifferentiated due to translational

invariance in the z direction, and all terms must be invariant under the transformation y !�y due

to the reflectional symmetry of the system about the x� z plane.

Equations (4.2) and (4.3) are also the equations of motion for Problem II.125, 153, 170, 157 In this

case, however, the coefficients in the equations of motion also depend on the atomic species that
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is being deposited and on the values of Jd and qd . The dynamics of the surface morphology and

composition are in general coupled in both Problems I and II.

We may simplify Eqs. (4.2) and (4.3) by considering the equation of motion for a single Fourier

mode with wavevector kkk. We set

0

B

@

u(xxx, t)

f(xxx, t)

1

C

A

=

0

B

@

ũ(t)

f̃(t)

1

C

A

exp(ikkk · xxx)⌘ X̃XX(t)exp(ikkk · xxx), (4.4)

which gives rise to the matrix equation

d
dt

X̃XX(t) = ÂX̃XX(t). (4.5)

The 2⇥2 matrix Â = Â(kkk) is given by

Â ⌘

0

B

@

a b

c d

1

C

A

, (4.6)

where

a ⌘ a10ikx �a20k2
x �a02k2

y + . . . (4.7)

b ⌘ b00 +b10ikx �b20k2
x �b02k2

y + . . . (4.8)

c ⌘ c10ikx � c20k2
x � c20k2

y + . . . (4.9)

d ⌘ d00 +d10ikx �d20k2
x �d02k2

y + . . . (4.10)

. (4.11)

The solution to Eq. (4.5) is

X̃XX(t) = exp(Ât)eee, (4.12)
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where eee = eee(kkk) is a constant vector that is determined by the initial conditions. Clearly, if Â(kkk) has

an eigenvalue whose real part is positive, the surface is unstable with respect to perturbations of

wavevector kkk. If it does not, the surface is either neutrally stable or stable with respect to such a

perturbation. It is sufficient to determine the stability of perturbations with height and composition

that vary sinusoidally in space because an arbitrary surface disturbance can be written as a linear

combination of this type of mode.

As a concrete example of the use of our formalism, we will later consider a particular version of

Problem II in some detail. In this version of Problem II, a number of simplifying assumptions are

made.153 In particular, it is assumed that curvature dependent sputtering and mass redistribution

can be neglected. The sample temperature is also taken to be low enough that thermally activated

surface diffusion is negligible, but radiation-induced viscous flow near the surface of the solid127 is

taken into account. Finally, it is assumed that no chemical reactions between the target atoms and

the impurities take place.

The rescaled equations of motion for this problem are

ut = f + vux � D̃—4u (4.13)

ft =�f +ux � D̃0—4u. (4.14)

As shown in Ref. [153], the terms proportional to f on the right-hand side of Eqs. (4.13) and (4.14)

arise because the sputtered fluxes of the two atomic species depend on the surface composition. The

terms proportional to ux, on the other hand, stem from the angular dependence of the sputter yields

and the atomic flux being deposited on the surface. Finally, radiation-induced viscous flow is the

origin of the terms proportional to —4u.
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The general expression for the parameter v (which is given in Ref. [153]) is quite complex.

However, if the ion beam is normally incident on the solid surface, then v is just YA/(YB �YA),

where YA is the sputter yield of species A for normal-incidence bombardment and YB is defined

analogously.

The solid surface is stable for v <�1.153 For v >�1, on the other hand, the surface is unstable

and ripples develop. The instability criterion v >�1 reduces to the requirement that YB be greater

than YA for normal-incidence ion bombardment and oblique-incidence deposition of the atomic

species A. Physically, the instability is a result of the coupling between the surface composition

and topography. This coupling arises because the flux of A atoms onto the surface depends on the

surface slope and because the erosion rate depends on the surface composition.

Equations (4.13) and (4.14) are a special case of Eqs. (4.2) and (4.3). In this case, the matrix Â

is given by

Â =

0

B

@

ivkx � D̃k4 1

ikx � D̃0k4 �1

1

C

A

⌘ Â0. (4.15)

This is the matrix Â for the example that we will analyze in detail later.

4.3 Samples Rotating in Discrete Steps

Consider the surface of a binary material which is being bombarded with an ion beam while

undergoing periodic discrete rotations of 180� about the z-axis. We will choose a frame of reference

that rotates with the sample. In that frame, the incidence angle of the ion beam switches back

and forth between the values q and �q for a total time T . After each rapid switch, the angle of

incidence remains fixed for a dwell time Dt before it switches once more. Our goal is to analyze the

linear stability of the surface for all possible values of Dt. As mentioned previously, our analysis is
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equally applicable to the bombardment of an initially elemental material with concurrent deposition

of a second atomic species.

The equations of motion that apply after the beam switches direction are obtained from Eqs. (4.2)

and (4.3) simply by replacing x by �x everywhere that it appears. In Fourier space, this is equivalent

to replacing ikx by its complex conjugate �ikx. Notice that only even powers of iky appear in the

matrix Â and that these factors are not affected by complex conjugation. The equation of motion for

X̃XX that applies after the beam switches direction is therefore

d
dt

X̃XX(t) = Â⇤X̃XX(t), (4.16)

where Â⇤ denotes the complex conjugate of the matrix Â.

Clearly, whenever the angle of incidence is q , Eq. (4.5) holds. Conversely, Eq. (4.16) is valid

when the angle of incidence is �q .

We may now write down the solution to the problem in which the incidence angle of the ion

beam periodically switches back and forth between q and �q with a dwell time of Dt in each

orientation. If the total time T is 2nDt where n is an integer, then

X̃XX(T ) =
h

exp(Â⇤Dt)exp(ÂDt)
in

eee. (4.17)

For notational convenience, we define

L̂ ⌘ exp(Â⇤Dt)exp(ÂDt). (4.18)
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Equation (4.17) then assumes the succinct form

X̃XX(2nDt) = L̂neee. (4.19)

More generally, if 2nDt  T  (2n+1)Dt for some integer n, then

X̃XX(T ) = exp(Â(T �2nDt))L̂neee (4.20)

and for (2n+1)Dt  T  (2n+2)Dt,

X̃XX(T ) = exp(Â⇤[T � (2n+1)Dt])exp(ÂDt)L̂neee. (4.21)

Let l+ and l� denote the eigenvalues of L̂, where |l+|� |l�|. In addition, let vvv+ and vvv+ be

the associated eigenvectors. These vectors form a basis if l+ and l� are distinct. In that case,

eee = e+vvv++ e�vvv+, where e+ and e� are complex constants. Equation (4.19) then shows that

X̃XX(2nDt)⇠= e+l n
+vvv+ (4.22)

for large n. Thus, |X̃XX(2nDt)| grows exponentially with n if and only if |l+|> 1. More generally,

the mode’s amplitude |X̃XX(T )| grows exponentially with the time T if and only if |l+|> 1, although

oscillations of period 2Dt are superimposed on this overall exponential increase. The growth rate of

the mode’s amplitude is R ⌘ ln(|l+|)/(2Dt).

The analysis just given shows that surface disturbances of wavevector kkk are unstable if and only

L̂ = L̂(kkk) has an eigenvalue whose magnitude is greater than 1. Thus, our next task will be to find

the eigenvalues of L̂. This is a nontrivial undertaking because the matrix Â is not diagonal except if
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the surface composition and morphology are completely decoupled. Moreover Â and L̂ are not in

general Hermitian.

We define

g ⌘ tr(Â)
2

(4.23)

and

D ⌘ g2 �det(Â), (4.24)

so that the eigenvalues s+ and s� of the matrix Â may be written

s± = g ±
p

D. (4.25)

The associated eigenvectors are

zzz± =

0

B

@

F±

1

1

C

A

(4.26)

where

F± ⌘ s±�d
c

. (4.27)

It will be helpful to place zzz+ and zzz� in the columns of a 2⇥2 matrix: we set

Û ⌘ (zzz+,zzz�) =

0

B

@

F+ F�

1 1

1

C

A

. (4.28)

We shall now use Û to diagonalize the matrix exponentials in L̂. This will enable us to compute

the eigenvalues of L̂. Due to the complexity of the final expression for these eigenvalues, it is

preferable to express l+ and l� in terms of the trace and determinant of L̂, which take on somewhat

simpler forms. Having found the trace and determinant, we will obtain the eigenvalues from the
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simple identity

l± = t/2±
q

t2/4�det(L̂), (4.29)

where

t ⌘ tr(L̂). (4.30)

In fact, it is easy to show that the determinant is given by

det(L̂) = |det(exp(ÂDt))|2 = |exp(2(s++s�)Dt)|= exp(4Re(g)Dt). (4.31)

The primary difficulty therefore arises in evaluating the trace of L̂.

The matrix Û is composed of the eigenvectors of Â. As long as the eigenvalues of Â are distinct,

then Û�1 exists and is given by

Û�1 =
c

2
p

D

0

B

@

1 �F�

�1 F+

1

C

A

. (4.32)

Let

G± ⌘ es±Dt , (4.33)

Gg ⌘ egDt , (4.34)

and

GD ⌘ e
p

DDt . (4.35)

Noting that

Û�1ÂÛ =

0

B

@

s+ 0

0 s�

1

C

A

, (4.36)
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and therefore that

exp(Û�1ÂDtÛ) =

0

B

@

G+ 0

0 G�

1

C

A

, (4.37)

we may write

L̂ = Û⇤ exp((Û⇤)�1Â⇤DtÛ⇤)(Û⇤)�1Û exp(Û�1ÂDtÛ)Û�1

= Û⇤

0

B

@

G⇤
+ 0

0 G⇤
�

1

C

A

Û⇤�1Û

0

B

@

G+ 0

0 G�

1

C

A

Û�1. (4.38)

Through explicit matrix multiplication, the trace of L̂ is found to be

t =
|c|2

4|D|

h

|F+G+�F�G�|2 + |F+G��F�G+|2 �2|G+�G�|2Re(F+F�)
i

= 2|Gg |2
h |g �d|2

|D| |sinh(
p

DDt)|2

+|cosh(
p

DDt)|2 + |sinh(
p

DDt)|2 Re(bc⇤)
|D|

i

, (4.39)

where we have used the identities

|x1 + x2|2 + |x1 � x2|2 = 2(|x1|2 + |x2|2) (4.40)

valid for arbitrary complex x1 and x2 and

|c|2Re(F+F�) =�Re(bc⇤). (4.41)
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We now break up the arguments of the hyperbolic trigonometric functions in Eq. (4.39) into

their real and imaginary parts using the identities

|cosh(x1 + ix2)|2 =
1
2
[cosh(2x1)+ cos(2x2)] (4.42)

and

|sinh(x1 + ix2)|2 =
1
2
[cosh(2x1)� cos(2x2)] (4.43)

that are valid for arbitrary real x1 and x2. Setting

z =
cos(2DtIm(

p
D))

cosh(2DtRe(
p

D))
(4.44)

and

G = |D|�1
h |a�d|2

4
+Re(bc⇤)

i

, (4.45)

we finally arrive at a convenient expression for the trace of L̂:

t =
1
2

h

exp(2Re(s+)Dt)+ exp(2Re(s�)Dt)
i

[1+ z+(1� z)G] . (4.46)

This may also be written

t = exp(Re(2Dtg))
h

cosh(Re(2Dt
p

D))(1+G)+ cos(Im(2Dt
p

D))(1�G)
i

. (4.47)

The eigenvalues of L are obtained by inserting Eqs. (4.31) and (4.46) into Eq. (4.29). Equations

(4.29), (4.31) and (4.46) may therefore be used to evaluate the stability of the surface, and are

analyzed in greater detail in the following sections.
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Notice that nowhere in this derivation have we used specific expressions for the constant

coefficients that appear in the equations of motion (4.2) and (4.3). Our formalism therefore allows

us to determine whether the initially flat surface with uniform surface composition is stable or

unstable for an arbitrary problem of type I or II. Moreover, if the surface is unstable, our results

can be used to find the selected wavevector and the growth rate of the associated mode. We have

therefore obtained a very general result which may be used to analyze a wide variety of problems in

which the sample is periodically rotated in discrete steps of 180�.

The limiting case in which Dt tends to zero is quite simple. If Dt is small, then to first order in Dt

L̂ = (I+ Â⇤Dt)(I+ ÂDt) = I+2Re(Â)Dt = exp(2Re(Â)Dt), (4.48)

where I is the 2⇥2 identity matrix. Let r+ and r� be the eigenvalues of Re(Â), where r+ � r�.

Equation (4.48) shows that the growth rate R = ln(|l+|)/(2Dt) reduces to r+ in the Dt ! 0 limit.

In the limit that Dt tends to zero, we expect the behavior of the surface in Problem I to be the

same as if the sample were stationary and there were two diametrically opposed ion beams with

incidence angles ±q that each have flux J/2. To confirm this expectation, we note that for the

problem with diametrically opposed beams, the coefficients of all of the terms with odd powers of

∂x vanish in Eqs. (4.2) and (4.3). Equation (4.5) is therefore replaced by

d
dt

X̃XX(t) = Re(Â)X̃XX(t), (4.49)

which shows that Re(Â) plays the role of Â in the dual-beam problem. We conclude that the growth

rate R is r+ in the dual beam problem, which is precisely the growth rate we found for the single

beam problem with discrete rotation in steps of 180� in the Dt ! 0 limit.
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We can proceed in a similar fashion to obtain an analogous conclusion for Problem II in the

limit that the dwell time Dt tends to zero. In that limit, the surface behaves as if there were two

diametrically opposed ions beams with flux J/2 and incidence angles ±q and two diametrically

opposed atomic beams with flux Jd/2 and incidence angles ±qd .

It is instructive to compare the result given by Eqs. (4.29), (4.31) and (4.46) with the solution

of a related but much simpler problem. Suppose that an elemental material is bombarded with an

broad ion beam at oblique incidence, and there is no co-deposition of a second atomic species. The

linearized equation of motion13, 41, 117 takes the form

ut = a10ux +a20uxx +a02uyy �B—2—2u. (4.50)

If the sample is periodically rotated in discrete steps of 180� with a dwell time of Dt, the growth rate

of the amplitude of the mode with wavevector kkk is simply �a20k2
x �a02k2

y �Bk4. This is precisely

the same growth rate we would have if the sample were not rotated at all. Therefore, if the surface

is unstable, the discrete rotation does not alter the selected wavelength or its growth rate. The only

effect that the sample rotation has is that when the ripple is viewed in the co-rotating frame of

reference, it translates back and forth as its amplitude grows or decays.

Our result for the growth rate for Problems I and II with periodic discrete rotations of 180� is

much more complex and has an intriguing feature. D depends on the wavevector kkk but not on the

dwell time Dt. If the real part of
p

D is small compared to its imaginary part for a particular value

of kkk, the value of t will oscillate as Dt is increased from zero [see Eq. (4.47)]. This in turn leads to

oscillations of the growth rate R = ln(|l+|)/(2Dt) as Dt is varied. These oscillations have no analog
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in the simple problem we discussed in the preceding paragraph — indeed, for that problem, the

growth rate does not depend on Dt at all.

In Section 4.7, we will place the solution obtained in this section in mathematical context.

Floquet theory applies to systems of ordinary differential equations with coefficients that vary

periodically in time.181 We will demonstrate that our solution can be written in the canonical

Floquet form in the Section 4.7.

4.4 An Example

In this section, we will explore the implications of the solution we found in the previous section

by considering a special case. In particular, we will study the simplified version of Problem II in

which the equations of motion are given by Eqs. (4.13) and (4.14). The matrix Â for this problem

(Â0) appears in Eq. (4.15).

Recall that the ripple amplitude grows with time for |l+|> 1 and that it decays for |l+|< 1.

The dependence of |l+|�1 on the dwell time Dt is shown in Fig. 1 for two values of the parameter

v and for a particular choice of the wavevector kkk and the parameter D̃. In contrast to the behavior

for an elemental material, |l+| does depend on the value of Dt. Moreover, as Dt is increased from

zero, there is a switch from stability to instability for both values of v. For the case in which v is

close to the critical value �1, there is a narrow interval in which the ripple is again stable as Dt is

increased further. This behavior is a result of the weak oscillations superimposed on the overall

increasing trend in |l+| for Dt greater than about 0.2.

In the linear theory, the experimentally observed wavevector kkkmax is the wavevector with the

highest growth rate. We have just seen that the growth rate of a sinusoidal surface disturbance
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Fig. 4.1 A plot of |l+|�1 vs Dt for v =�0.923 (blue curve) and v = 0.5 (orange curve). For both
curves, kx = 11.46, ky = 0, D̃ = 10�4 and D̃0 = 0. Points where the curves are greater than zero
correspond to locations in parameter space which produce a surface instability.

depends on the dwell time Dt. It follows that the experimentally observed ripple wavevector depends

on Dt as well.

In our example, the mode with the fastest growth rate has its wavevector along the x-direction.

The value of the selected wavenumber kmax is plotted as a function of the rotational frequency

w ⌘ 2p/t0 = p/Dt in Fig. 2 for a particular choice of the parameters v and D̃. This plot shows that

the observed wavenumber kmax indeed depends upon w or, equivalently, on Dt. From a practical

standpoint, this means that the ripple wavelength can be tuned by adjusting the value of the rotational

frequency.

0 5 10 15

2
4
6
8
10
12
14
kmax

Fig. 4.2 A plot of the selected wavenumber kmax vs. w for the parameters D̃ = 10�4, D̃0 = 0 and
v =�0.8. Notice that by a suitable choice of w the wavelength of the resulting pattern can be tuned
through a wide range of values.
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Fig. 4.3 A plot of |l+|�1 vs. kx for the parameters D̃ = 10�4, D̃0 = 0 and v =�0.8 for w = 8.0
(blue curve) and w = 8.7 (orange curve). We can see the origin of the discontinuous jump in the
selected value of kx.

Figure 4.2 also demonstrates that kmax is not a monotone function of w , and that it may even

exhibit a jump discontinuity as w is varied. The latter behavior is quite unexpected — at first blush,

one would anticipate that a small change in the rotational frequency would always result in a small

change in the selected wavenumber, but this is not so.

One can understand the origin of such discontinuous jumps by considering how |l+|�1 depends

on kx — see Fig. 4.3. For w = 8.0, the global maximum is at approximately kx = 12 and a local

maximum is present near kx = 5. As w is increased, higher kx values are suppressed to a greater

extent than lower ones, and the result is that the local maximum at kx ⇠= 5 becomes the global

maximum. Thus, even though the dispersion relation is continuous, we can obtain discontinuous

jumps in the wavenumber of the resulting pattern through a continuous change in the rotation

frequency.

If the sample is stationary,153 the growth rate of a long wavelength mode with wavevector kkk is

R = (v+1)k2
x . (4.51)
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This result — which is valid to second order in kx and ky — shows that there is an instability for

small kx and ky if and only if v >�1.

How does Eq. (4.51) change if the sample is rotated periodically in discrete steps of 180�? We

find that to second order in kx and ky

l+ = 1+(v+1)[1+ coth(Dt)]H(Dt)k2
x , (4.52)

where

H(Dt)⌘ Dt[1� exp(�2Dt)]�2[1� exp(�Dt)]2. (4.53)

The function H(Dt) is positive for all Dt > 0. As a consequence, there is an instability for small

kx and ky if and only if v >�1, just as in the case in which the sample is stationary. However, the

rotation does reduce the growth rate if v >�1. To see this, note that to second order in kx and ky,

R = (v+1)[1+ coth(Dt)]
H(Dt)

2Dt
k2

x . (4.54)

This is less than the growth rate in the absence of discrete rotation because H(Dt)[1+ coth(Dt)]<

2Dt for all Dt > 0.

In the small Dt limit, H(Dt) = (Dt)4/6+O((Dt)5) and Eq. (4.54) becomes

R ⇠=
1

12
(v+1)(Dt)2k2

x (4.55)

The growth rate R is therefore small when Dt ⌧ 1. We conclude that although the sample rotation

does not entirely suppress the long-wavelength instability for v >�1, it does drastically reduce the

growth rate of the Fourier modes with small wavenumbers if the frequency of sample rotation is
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high. In the opposite limit in which Dt ! •, the ratio H(Dt)/Dt tends to unity and R reduces to its

value for a stationary sample, as it must.

It is possible to gain physical insight into some of the results obtained in this section. For

simplicity, we will consider the case in which the ion beam is normally incident upon the sample

surface. We assume that YB > YA and that qd is nonzero, so that there is an instability.153 If the

sample is stationary, the surface ripple propagates toward the source of A atoms as its amplitude

grows. The surface composition is spatially modulated with the same period as the oscillation in the

surface height. However, the concentration of A atoms is highest on the surface slopes that face the

source of the A atoms, and so these oscillations are not in phase.

Now suppose that the sample is rotated in discrete steps of 180�. We will discuss what happens

from the perspective of the frame of reference that moves with the sample. Just after the direction

of the atomic beam is switched, the highest concentration of A atoms is on the slopes that face away

from the incident beam of A atoms, i.e., the regions of highest concentration are on the “wrong” side

of the ripples. In this situation, the rate of growth of the amplitude of the surface ripple declines.

However, while this is occurring, the concentration of A atoms on the surface slopes that face the

beam of A atoms increases. The concentration on the opposite side of the ripple crests, on the

other hand, declines as sputtering continues. Once the concentration of A atoms on the slopes that

face the atomic beam has risen sufficiently, the amplitude of the surface ripples begins to climb

more rapidly. Thus, each time the beam direction switches, there is a period in which the surface

concentration adjusts to the new beam direction and the growth rate of the ripple amplitude is

reduced (see Fig. 4.4).

This discussion clearly shows that the growth rate of the ripple amplitude R depends on the

rotation frequency w . It is also apparent that R must be smaller when there are repeated discrete

102



Fig. 4.4 The natural logarithm of the ripple amplitude vs time for the case in which Dt = 0.5 (blue
curve) and for the case in which the sample is stationary (orange curve). The parameter values are
v = 1.0, D̃ = 10�4 and D̃0 = 0 for both cases.

rotations in 180� increments than when the sample is stationary. Both of these observations are in

accord with the results of our analytical work.

4.5 Samples Rotating with Constant Angular Velocity

Are the intriguing results obtained in Section 4.4 special features of the problem with periodic

discrete 180� rotations? To address this question, we will now consider the case in which the

sample is rotated continuously with constant angular velocity w . To begin, we will provide a brief

description of how the equation of motion for a continuously rotated sample can be derived. This

derivation closely parallels the derivation given in Sections 4.2 and 4.3 for the case of discrete

sample rotation.

We will again study the growth or decay of the Fourier modes with wavevector kkk. By simply

rotating our coordinate system if necessary, we can arrange to have kkk = kx̂xx.

Let us suppose once more that the behavior of the stationary sample is governed by Eqs. (4.2)

and (4.3). To obtain the equations of motion that apply when the sample is rotating with constant

103



angular velocity, we transform to a frame of reference which rotates with the sample: we set

X = xcos(wt)+ ysin(wt) (4.56)

Y = �xsin(wt)+ ycos(wt) (4.57)

as in Ref. [173]. Equations (4.2) and (4.3) remain valid but with x and y replaced by X and Y . We

then use the relations

∂X = cos(wt)∂x + sin(wt)∂y (4.58)

∂Y = �sin(wt)∂x + cos(wt)∂y (4.59)

to obtain the equations of motion in the laboratory frame of reference.

We next seek a solution of the form (4.4) with kkk = kx̂xx. We find that Eq. (4.5) still applies, but

the 2⇥2 matrix Â now depends on both the wavenumber k and the time t. That matrix is still given

by Eq. (4.6), but in Eqs. (4.7) - (4.10) we must make the replacements

kx ! k cos(wt)

ky ! �k sin(wt). (4.60)

The resulting time-dependent matrix Â = Â(k, t) has period t0 = 2p/w .

As a concrete example, we once again turn our attention to the simplified version of Problem II

in which the equations of motion for the stationary sample are given by Eqs. (4.13) and (4.14). For
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the case in which the sample is rotating with angular velocity w ,

Â =

0

B

@

ivk cos(wt)� D̃k4 1

ik cos(wt)� D̃0k4 �1

1

C

A

. (4.61)

Our task at this point is to solve the system of two ordinary differential equations (4.5) with the

matrix Â given by Eq. (4.61). This was done numerically using Mathematica. Figure 4.5 — which

is the continuous analog of Fig. 4.1 — shows the critical influence of the period t0 on the stability

of a mode with a particular value of k. Figure 4.6 demonstrates that the selected wavenumber kmax

depends on w and that it can exhibit jump discontinuities as w is varied, just as in the case of

repeated discrete rotations by 180�. These results establish that the effects described in Section 4.4

are not anomalous features of the case of discrete rotation.

Fig. 4.5 Plots of |l+|� 1 vs t0 for v = �0.9 (blue points), �0.8 (orange) and �0.7 (green). For
each of the three plots, D̃ = 10�4, D̃0 = 0 and k = 11.46. Just as for the discrete case, a particular
wavenumber k may be made either stable or unstable by a suitable choice of t0.

4.6 Discussion

In sequential ion beam sputtering (SIBS), a target is bombarded by a sequence of ion beams.

Each beam may have a distinct ion energy and direction of incidence. SIBS permits the fabrication

of patterns that cannot be obtained by bombarding with a single ion beam. For example, oblique-
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Fig. 4.6 A plot of the selected wavenumber kmax vs. w for the parameters D̃ = 10�4, D̃0 = 0 and
v =�0.92. Notice that by a suitable choice of w the wavelength of the resulting pattern can once
again be tuned through a wide range of values.

incidence bombardment of an Au (100) surface with an Ar+ beam followed by a period of normal-

incidence bombardment resulted in the formation of a novel topography in which the surface

was covered by parallel chains of nanodots.182, 183 Another type of SIBS produces ripples with

substantially fewer defects than bombardment with only one beam.184

An experimental study of a particularly simple type of SIBS was carried out by Kim et al.,

who first bombarded a sample for a time with an obliquely-incident ion beam, and then rotated the

sample azimuthally by 90� before bombarding for a second time interval.185, 186 Kinetic Monte Carlo

simulations of this process are in qualitative agreement with the results of these experiments.174

In this chapter, we explored the effect of periodic discrete rotations of a binary target material

by 180� during oblique-incidence ion bombardment. This too is a type of SIBS. To the best of

our knowledge, our study is the first in which the effect of SIBS on a binary material has been

investigated.

Concurrent bombardment of an elemental material with multiple ion beams has also been

studied in the hope that it too could lead to new types of pattern formation. Carter was the first to

consider the effect of bombardment with two identical diametrically-opposed ion beams, although
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he came to the conclusion that this could produce temporally-oscillating standing waves through

the interference of counter-propagating ripples.187 In fact, it is easy to see that this simply leads to a

ripple pattern that does not propagate, and this has been confirmed in simulations.174 Vogel and Linz

later investigated the effect of bombardment with four identical beams with their azimuthal angles

differing by 90�.188 Adopting the damped anisotropic Kuramoto-Sivashinsky as the equation of

motion, they found that well-ordered square arrays of nanodots could form for a range of parameter

values.

It would be both expensive and impractical to bombard a sample with four identical ion beams.

Vogel and Linz therefore suggested that much the same effect could be achieved by bombarding

the sample surface with a single obliquely-incident ion beam if the sample was periodically and

discretely rotated by 90� increments, provided that the dwell time Dt was small. Arguing in the

same way, one could conclude that the effect of bombarding with dual diametrically-opposed ion

beams could be reproduced with a single obliquely-incident ion beam if the sample was periodically

and rotated by steps of 180� provided that Dt was small. This is certainly true for elemental target

materials. However, this statement is not valid in general if two atomic species are present in a layer

at the surface of the solid. To see this, note that in the case of the example we studied in Section 4.4,

Eq. (4.55) shows that there is an instability no matter how small the dwell time Dt is if the parameter

v is greater than �1. In contrast, if there are two diametrically-opposed beams and the sample is

stationary, the terms proportional to ux drop out of the equations of motion (4.13) and (4.14). There

is no instability as a consequence.153

In the case of an elemental material, the only effect that periodic, discrete rotations by 180�

have is that in the frame of the sample, the ripples move back and forth as their amplitude grows.

The wavelength of the ripples has exactly the same value as it would if the sample were stationary.
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Surprisingly, this is not necessarily so if two different atomic species are present at the sample

surface. In particular, as we saw for the example we studied in Section 4.4, the wavelength of the

ripples depends on the dwell time Dt. In general, therefore, the wavelength has a different value

for a particular finite Dt than it does for Dt = •. This behavior is a consequence of the coupling

between the surface topography and composition.

For the sake of simplicity, here we have confined our attention to the early time regime in

which the surface is nearly flat and consequently the linearized equations of motion are valid. This

permitted us to obtain the exact solution to the coupled equations of motion for a sample rotating in

discrete increments of 180� for arbitrary values of the model parameters. At longer times, nonlinear

terms in the equations of motion must be taken into account if the sample surface is unstable.

4.7 Comparison to Floquet Theory

In this section, we will make a connection between the solution constructed in Section 4.3 and the

Floquet theory of systems of ordinary differential equations with coefficients that vary periodically

in time.181 In that theory, solutions of the matrix equation

dY
dt

= Ĵ(t)Y (4.62)

are sought, where Ĵ(t) is an N⇥N matrix that has entries that are periodic functions of t with period

t0 and YYY = YYY (t) is an N-component column vector. The fundamental solution matrix F̂ = F̂(t) for

this equation is an N ⇥N matrix whose columns are solutions to Eq. (4.62) and that reduces to the

identity matrix for t = 0. One of the key results of the Floquet theory is that F̂(t) may be written in
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the canonical form

F̂(t) = P̂(t)exp(B̂t), (4.63)

where P̂(t) is an N ⇥N matrix with period t0 and B̂ is a constant N ⇥N matrix.

The matrix Ĉ ⌘ exp(B̂t0) is known as the monodromy matrix; its eigenvalues are called the

characteristic multipliers. Each eigenvalue l of Ĉ has an associated characteristic exponent k

defined by the relation

l = exp(kt0). (4.64)

Let kmax be the characteristic exponent with the largest real part. The growth rate R is then Rekmax.

In the problem considered in Section 4.3, N = 2, the period t0 is 2Dt, and

Ĵ(t) =

8

>

>

<

>

>

:

Â for 2nDt  t  (2n+1)Dt

Â⇤ for (2n+1)Dt  t  (2n+2)Dt,
(4.65)

where n is an arbitrary integer. The general solution given in Eqs. (4.20) and (4.21) shows that

F̂(t) = exp(Â(t �2nDt))L̂n (4.66)

for 2nDt  t  (2n+1)Dt and that

F̂(t) = exp(Â⇤[t � (2n+1)Dt])exp(Â(Dt))L̂n (4.67)

for (2n+1)Dt  t  (2n+2)Dt, where n is again an arbitrary integer. Setting t to zero in Eqs. (4.63)

and (4.66), we immediately find that P̂(0) = I. Because P̂(t) is periodic with period 2Dt, it follows

that P̂(2Dt) is also the identity matrix. Therefore, when we set t to 2Dt in Eqs. (4.63) and (4.66), we

109



obtain

F̂(2Dt) = L̂ = exp(2DtB̂) (4.68)

and hence

B̂ =
1

2Dt
ln(L̂). (4.69)

The monodromy matrix Ĉ is therefore L̂. Finally, we compare Eq. (4.63) to Eqs. (4.66) and (4.67)

for 0  t  2Dt. This yields

P̂(t) =

8

>

>

<

>

>

:

exp(Ât)exp(�B̂t) for 0  t  Dt; and

exp(Â⇤(t �Dt))exp(ÂDt)exp(�B̂t) for Dt  t  2Dt.
(4.70)

P̂(t) is obtained for all times simply by recalling that it is a periodic function of t with period 2Dt.

A serious limitation of Floquet theory is that no general method of finding P̂(t) or the character-

istic multipliers is known.181 Each differential equation with periodic coefficients must be analyzed

from scratch, and in many cases that have been studied an analytical solution has not been found. In

the case of our problem, however, we have succeeded in finding both P̂(t) and the characteristic

multipliers l+ and l�.

4.8 Conclusions

In this chapter we explored the effects of sample rotation with a finite angular velocity during ion

sputtering of binary materials. We also studied pattern formation on an initially elemental target that

is rotated while being subjected to ion bombardment and concurrent deposition of a second atomic

species. The early time regime in which linearized equations of motion are valid was investigated in

detail.

110



An analytical general solution was obtained for the case in which the sample is periodically

rotated in discrete steps of 180�. This solution revealed that it is possible to change the wavelength

of the emergent ripple pattern by changing nothing but the frequency w with which the discrete

rotations of the sample are made. Moreover, a small change in w can lead to a large change in

the wavelength. The rate with which the surface roughens or smooths also depends on w . Our

numerical work shows that analogous phenomena occur if the sample is rotated not discretely, but

instead with a constant angular velocity. All of these intriguing kinds of behavior are consequences

of the coupling between the surface morphology and composition and cannot occur if two atomic

species are not present at the surface of the solid.
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CHAPTER 5

SAMPLE ROCKING

5.1 Introduction

Ion bombardment has the potential to be an extremely useful and economical way of producing

patterns which have a characteristic length of tens of nanometers and which are well ordered over

much longer distance.168 A longstanding issue in this field, however, is the high density of defects

in the patterns that typically form. This problem is the primary obstacle that prevents widespread

use of ion bombardment as a nanofabrication tool, and much work has been done toward the goal of

producing very well ordered patterns.189, 190, 77, 184, 158, 191, 152, 86 To date, no experiment has yielded

highly ordered patterns on an elemental sample using a noble gas ion beam.

In this chapter, we present the results of numerical simulations of an elemental surface that is

bombarded by a broad beam of noble gas ions with a polar angle of incidence that varies periodically

in time. In an experiment, this could be achieved by rocking the sample about an axis orthogonal to

the surface normal and the incident ion beam. We assume that the target material is amorphous, or

that a surface layer is amorphized by the ion bombardment. We take the equation of motion in the

absence of rocking to be the usual anisotropic Kuramoto-Sivashinsky (AKS) equation.115, 117, 168

For a discussion of the history and physical interpretation of the AKS equation see Subsection 2.6.1.

Several of the coefficients in this equation depend on the angle of incidence, and so periodic sample
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rocking has the effect of making these coefficients periodic in time. We show that a remarkable and

unforeseen degree of order emerges for a broad range of parameters in both one-dimensional (1D)

and two-dimensional (2D) simulations. Thus, temporally periodic driving can lead to near perfect

spatial periodicity.

5.2 Results in One Dimension

The equation of motion for the unrocked solid surface is the much-studied AKS equation,141, 142, 192, 193

ut = v00ux �Auxx +A0uyy �B—4u+
�

lu2
x +l 0u2

y
�

/2, (5.1)

where u is the deviation of the surface height from its unperturbed steady-state value; x and y are the

horizontal coordinates parallel and perpendicular to the projection of the ion beam direction onto the

surface, respectively; t is the time; and the subscripts x, y, and t denote partial derivatives. All of the

constant coefficients A, A0, l , l 0 and B will be taken to be positive save for l . The AKS equation has

long been used as a model for the time evolution of an ion bombarded surface115, 117 and expressions

that relate the coefficients to the underlying physical parameters have been given.13, 41, 117 v00 in

Eq. (5.1) may be eliminated by transforming to a moving frame of reference, and so will be dropped

for the remainder of this chapter.

In this section, we specialize to the case in which u is independent of y. This reduces Eq. (5.1)

to the 1+1 dimensional Kuramoto-Sivashinsky (KS) equation,

ut =�Auxx �Buxxxx +lu2
x/2. (5.2)
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For the case of time-independent coefficients, the KS equation can be rescaled to a completely

parameter-free form by setting

u = (A/l ) ũ, t = (B/A2) t̃, and x =
p

B/A x̃, (5.3)

where ũ, t̃, and x̃ are the dimensionless surface height, time, and lateral coordinate, respectively.

To investigate the effects of periodic rocking on the pattern formation, we focus on the special

case in which the sample is bombarded for a time t = p/w at an angle of incidence q1, then for an

equal time at an angle of incidence q2, and so forth. Without loss of generality, we may express the

values of A and l at these angles as

l (q1) = l0 (1+ r1), A(q1) = A0 (1+ r2), (5.4)

l (q2) = l0 (1� r1), and A(q2) = A0, (5.5)

where r1 > 0 and r2 are dimensionless parameters and l0 and A0 are constants. While A(q) and

l (q) are not simple functions of the angle of incidence q , because we are switching the angle of

incidence discretely, we only need the values of A and l at two angles.

Because neither l (q) nor A(q) is a monotone function117 of q , it is possible to choose values of

q for which A(q1) = A(q2) and l (q1) 6= l (q2). Thus, by a suitable experimental setup, a periodic,

discrete variation in l can be achieved while minimizing or eliminating any variation in A. As

shown below, oscillations in A can be detrimental to the formation of highly ordered patterns, and

should be minimized when possible. For simplicity, we assume that B is independent of q . This is

the case for sample temperatures high enough that the surface diffusion is thermally activated.168
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Using exponential time differencing,160, 161 we have performed numerical integrations of

Eq. (5.2) with l and A periodically and discretely switching between the values given by Eqs. (5.4)

and (5.5). We employed the rescaling given by Eq. (5.3) with A and l replaced by A0 and l0,

respectively. The initial condition was low amplitude spatial white noise. The results are nothing

short of astonishing. Figures 5.1 and 5.2 show the results of two simulations, one with rocking

and one without, in real space and Fourier space. While the KS equation without rocking yields

a surface which has a high degree of disorder, albeit with a characteristic length scale, the rocked

KS equation with dimensionless frequency w̃ ⌘ wB/A2
0 = 0.15p produces ripples that are almost

perfectly periodic. Figure 5.3 shows spacetime plots of time sequences taken from the same sim-

ulations. These demonstrate that without rocking the system exhibits the spatio-temporal chaos

characteristic of the KS equation.141, 142 On the other hand, following a brief transient state, the

rocked sample displays an extremely high degree of order which persists over time. Larger domain

sizes L, finer spatial and temporal discretizations, and much longer simulation times have been

investigated numerically, and give comparable results to those shown in Figs. 5.1 - 5.3.

Fig. 5.1 Plots of the rocked surface in real space (inset) and in Fourier space for r1 = 2, r2 = 0,
dimensionless frequency w̃ ⌘ wB/A2

0 = 0.15p , domain length L = 100, and t̃ = 103.
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Fig. 5.2 Plots of the unrocked surface in real space (inset) and in Fourier space for r1 = r2 = 0,
L = 100 and t̃ = 103.

The oscillations in ripple amplitude evident in Fig. 5.3(a) may be explained by a scaling

argument. As discussed above, if A and l are time-independent constants, then Eq. (5.2) may

be written in a parameter-free form via the rescaling given by Eq. (5.3). This shows that the

characteristic ripple amplitude is proportional to |A/l |. For the case in which the sample is rocked

and r2 = 0, we therefore expect that after a sudden change in the value of l , the amplitude of the

ripple pattern will evolve toward the amplitude associated with the new value of l . When |l |

decreases the ripples grow larger in amplitude, and when |l | increases the amplitude attenuates.

An intuitive understanding of the order produced by rocking may be gained by a heuristic

argument. Consider what happens to the surface when |l | changes from a large value to a small

value at a time t1. In the moments before the switch, the term proportional to lu2
x in the rocked KS

equation is on average comparable to the linear terms �Auxx �Buxxxx since in the steady-state limit,

the ripple growth rate averages to zero. Immediately after the switch, therefore, the term lu2
x/2 will

typically be small compared to the linear terms. Consequently, we expect the Fourier transform of

the surface height Ũ(k, t) to grow approximately as

Ũ(k, t)' Ũ(k, t1)exp
�

(Ak2 �Bk4) (t � t1)
�

, (5.6)
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Fig. 5.3 Spacetime plots of the surface for (a) r1 = 2 (rocked), and (b) r1 = 0 (unrocked)
respectively with w̃ = 0.15p and r2 = 0. A shorter time scale was used for the unrocked case so
that the finer structure is visible. For clarity, these plots show the deviation of the surface height
from its average value.

where k is the wave number. Thus, periodically reducing the value of |l | allows the surface to

periodically grow roughly as it would in the linear approximation. Ripples described by Eq. (5.6)

become increasingly well ordered because the peak in the Fourier spectrum becomes higher and

narrower as time passes. Conversely, when the value of |l | is increased, the amplitude gained

during the stage of approximately linear growth attenuates according to the scaling argument given

above. This ensures that the ripple amplitude does not become so large that higher order nonlinear

effects would have to be taken into account. This explanation suggests that good order will not be
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obtained if l oscillates about an average value of zero, since then there is no opportunity for nearly

linear growth to take place.

The excitation of Fourier modes which are multiples of the selected wave number seen in Fig. 5.1

arises as a consequence of the coupling between modes induced by the nonlinear term lu2
x/2. A

large amplitude mode with wavenumber k will directly excite the mode of wavenumber 2k. The

coupling between these two modes will then excite the mode of wavenumber 3k, and so on.

To characterize the quality of the order produced by the rocking procedure, we fit the peak

surrounding the highest amplitude wavenumber in the Fourier spectrum to a Gaussian and record its

width. In order to avoid sampling at the same point in each rocking cycle, the fits were performed at

hundreds of randomly selected times throughout a given simulation and then averaged.

Figure 5.4 shows the width of the highest peak in the Fourier spectrum as a function of the

rocking frequency for two values of r1. It is clear that the effect of rocking is strongly dependent

on the frequency with which the sample is rocked. However, within a broad range of frequencies,

the surface becomes highly ordered for r1 = 4, making this procedure feasible to implement

experimentally. One important conclusion drawn from our simulations is that, just as our heuristic

argument suggested, it is essential that r1 > 1 (so that l changes sign periodically) for good order

to form. This is also illustrated by Fig. 5.4, since good order is not obtained for r1 = 0.5. Increasing

r1 further than r1 = 4 has the effect of slightly narrowing the band of frequencies which produce

good order and reducing the amplitude of the resulting ripples. Nevertheless, for 1.5 . r1 . 15,

scaled frequencies f̃ ⌘ w̃/2p between 0.06 and 0.08 produce exceptionally good order.

An important physical consideration is the effect that a periodic variation of the coefficient A

in Eq. (5.2) has on the order obtained by rocking. Since this coefficient depends on the angle of

incidence, it is likely to vary in general unless q1 and q2 are carefully selected. For l and A given
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Fig. 5.4 Fourier peak width as a function of the scaled rocking frequency f̃ ⌘ w̃/(2p) for two
values of r1 and with r2 = 0. Each point represents a single simulation, and the average for each
value of the frequency is shown. Note that for r1 = 0.5 (upper, lighter line), l always has the same
sign, while for r1 = 4 (lower, darker line), it changes sign.

by Eqs. (5.4) and (5.5), the characteristic width of the highest Fourier peak for r1 = 4 and a range of

r2 values is shown in Fig. 5.5. For small positive values of r2, the surface still becomes well ordered,

but larger positive values of r2 do not result in a well ordered surface. If r2 < 0, on the other hand,

the high degree of order develops even for relatively large values of |r2|. Thus, the variation in A

due to the rocking procedure is not expected to be a significant impediment to producing virtually

defect free ripples by sample rocking.

Fig. 5.5 Fourier peak width for r1 = 4 and w̃ = 0.15p for opposite signs of r2. For r2 < 0 the
surface continues to form nearly perfect ripples for relatively large values of |r2|.
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If the order seen in our simulations is to be achieved experimentally, it is crucial that the

rocking frequency be chosen within the frequency range discussed above. Fortunately, finding the

correct rocking frequency only requires that the linear growth rate be determined for one of the

two angles of incidence. The dimensional and nondimensional rocking frequencies are related by

f = 4s f̃ , where s is the linear growth rate of the fastest growing mode for that angle of incidence.

Experimentally, s may be approximated by the rate at which the surface roughens at early times,

since this roughening will be dominated by the most linearly unstable mode. Simulations indicate

that the growth rate during the period where |l | is a minimum determines the optimal rocking

frequency. Therefore, if r1 is greater (less) than zero, then s should be evaluated at q2 (q1).

As we have seen, for the rocking procedure to be effective, l must change sign. There is strong

theoretical and experimental evidence that l passes through zero at a critical angle qc for unrocked

samples.117, 64 Typically, 60� < qc < 80�. Given that the amplitude of the surface roughness scales

as |l |�1, we expect that l will vanish at the angle of incidence which maximizes the surface

roughness. Note that while solutions to the KS equation grow without limit for a spatial white noise

initial condition when l = 0, the amplitude remains finite in an experiment because a finite ion

fluence is used.

The case in which A and l vary sinusoidally in time has been explored numerically, and

was found to produce order comparable to discrete switching. Fig. 5.6 shows the results of two

simulations with sinusoidal and discrete variation in l , respectively. It is clear that discrete switching

is not necessary to achieve the improvement in order. More complicated time dependencies are

beyond the scope of this chapter, but are not expected to produce substantially different results.
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Fig. 5.6 Real space plots of surfaces produced by (a) a sinusoidal and (b) a discrete variation of l ,
respectively. For both surfaces w̃ = 0.15p , r2 = 0, L = 100, and t = 103. In (a) l = 1+5sin(wt)
whereas in (b) l = 1+5sgn(sin(wt)).

5.3 Results in Two Dimensions

Given the degree of order that can form on a rocked surface in 1D, it is natural to ask whether a

2D rocked surface will produce similar results. Physically, this means we are no longer requiring

that h be independent of y. We return to Eq. (5.1), keeping v00 = 0. With temporally periodic

coefficients, Eq. (5.1) is the rocked AKS equation. Panels (a)-(c) of Fig. 5.7 show the surface for

a particular set of parameters for which l oscillates between the values 10 and �6. As in 1D,

the unrocked equation of motion displays spatio-temporal chaos with a characteristic length scale

(see Fig. 5.7 (d)). The rocked AKS equation, on the other hand, initially forms a transient state

which contains numerous defects. The rocking procedure causes these defects to move together and

annihilate. Eventually, even long wavelength Fourier modes are suppressed.

The rocked AKS equation has more parameters than the rocked KS equation, and the com-

putational time required for a complete investigation of the parameter space of the rocked AKS

equation would be prohibitively long. However, variation in the coefficient l 0 is likely unavoidable

during rocking, since this coefficient also depends on the angle of incidence q . We therefore

considered the effect of simultaneously varying l 0 and l . The results of a simulation for which
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l 0 = 2+ 0.2sign(sin(wt)) and l = 2+ 8sign(sin(wt)) are shown in Fig. 5.8. This simulation

reveals that periodic oscillations of l 0 with this amplitude do not have a detrimental effect on the

resultant order for A, A0, B, and l equal to their values in the first three frames of Fig. 5.7.

Fig. 5.7 (a) - (c) A time series of a surface for a square domain of side length L = 120 with
A = A0 = 1, B = 1, l = 2+8sign(sin(w̃ t̃)), l 0 = 2, and w̃ = 0.15p at times t̃ = 106,330, and
1840. (d) A simulation with the same parameters as in (a) - (c) but with l = 2 so that there is no
rocking. The time is t̃ = 1840.

5.4 Discussion

The consequences of a time-periodic coefficient in the KS equation have been considered in

the context of annular fluid flow.194 Due to computational limitations at the time of that work, the
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Fig. 5.8 A plot of the surface for a square domain of side length L = 120 with A = A0 = 1, B = 1,
l = 2+8sign(sin(w̃ t̃)), l 0 = 2+0.2sign(sin(w̃ t̃)), and w̃ = 0.15p at time t̃ = 1840.

phenomenon reported here was not discovered. In the first theoretical study of a periodically rocked,

ion bombarded surface,195 several important physical contributions to the dynamics were neglected,

including curvature dependent sputtering.13 In a later theoretical treatment of ion bombardment

with sample rocking,196 nonlinear terms were omitted from the equation of motion and consequently

no increase in order was found. Experiments have not yet been performed in which a sample was

bombarded while being periodically rocked. Our results give a compelling motivation for conducting

experiments of that kind. By contrast, azimuthal sample rotation during ion bombardment has been

studied intensively, and gives a means of producing ultra-smooth surfaces,171, 172, 173, 19 generating

hexagonal order,74 and controlling ripple patterns.197

5.5 Conclusion

Our simulations demonstrate that if a sample is bombarded with a broad noble gas ion beam

while simultaneously being rocked, nearly perfect nanoscale ripples can result. Unlike other

methods,152, 86 ours can be used to produce highly ordered surface ripples on an elemental material

and does not require the implantation of an undesirable second atomic species or a high sample
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temperature. We also discussed how optimal values of the rocking frequency and the angles of

incidence may be determined in an experiment.

124



CHAPTER 6

BLAZED DIFFRACTION GRATINGS

6.1 Introduction

A blazed grating (BG) is a special type of diffraction grating that is optimized to achieve

maximum efficiency in a given diffraction order. It is engineered so that the maximum optical

power is concentrated in the desired diffraction order while the residual power in the other orders is

minimized. Like every optical grating, a BG has a constant line spacing. However, the lines in a BG

have a triangular, sawtooth-shaped cross section, and so the surface has a terraced form. Figure 6.1

shows an example of a typical BG cross section.

Producing high quality BGs for use in optical applications has been an important technological

goal for decades.20 BGs must have feature sizes on the order of hundreds of nanometers, and

yet must be well ordered over much longer length scales. In addition, the flatness of the blazed

facets is critical to the efficiency of the grating. High efficiency BGs are an essential component in

performing some forms of high-precision spectroscopy, which itself has a wealth of applications.20

In this chapter, we introduce and analyze a new method of fabricating high quality blazed

gratings which combines conventional lithographic techniques and bombardment with a broad ion

beam. When a nominally flat solid surface is bombarded with a broad ion beam at oblique incidence,

nanoscale ripples often develop on the surface.168 The surface typically develops a
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3.2 Native Substrate Grating Mask

On the basis of the above simulation, a photoresist grating
mask with an 833 nm period is fabricated on the fused silica
substrate by conventional holographic exposure and devel-
opment, which is shown in Fig. 5. The duty cycle of this
mask is 0.32 and its depth is 440 nm. Then the photoresist
grating mask is etched by IBE with Ar for 180 s followed by
RIBE with CHF3 for 240 s, and then the native substrate

Fig. 7 SEM photographs of the blazed grating. (a) Etching time is 240 s and (b) etching time is 350 s.

Fig. 8 Simulation of ion beam etching in trapezoidal structure in experiment. (a) Etching time is 240 s and (b) etching time is 350 s.

Table 2 Comparison between the results of simulation and
experiment.

Etching time
(s)

Blazed angle
(deg)

Antiblazed angle
(deg)

Simulation 350 19.2 78

Experiment 360 20 68.5 Fig. 9 Simulation of ion beam etching in trapezoidal structure
(10 deg).

Optical Engineering 091706-4 September 2013/Vol. 52(9)

Liu, Wu, and Chen: Fabrication of blazed grating by native substrate grating mask

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 04/28/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

Fig. 6.1 Cross section of a BG made using ion bombardment. This SEM image was taken from
Ref. [8]
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terraced form at the late stages of its time evolution for high angles of ion incidence, i.e., for near

grazing incidence.53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 51, 52, 27, 64 A height profile taken along the projected

ion direction is not sinusoidal. Instead, as we trace along the height profile, the surface slope is

nearly equal to a constant value m+ for a long spatial interval. At some point, the slope changes

rapidly, and then is nearly equal to a constant negative value m� for a long interval. The slope once

again changes rapidly at some point, and then is approximately equal to m+. The height profile

continues in this fashion, and so takes on an irregular sawtooth form in which most of the surface

has a slope that is nearly equal to one of the two selected slopes m+ and m�. For examples of

simulated terraced topographies, see Figs. 2.6 and 2.7. For an example of an experimental result

displaying terrace formation, see Fig. 2.8.

Our proposed fabrication method is a two-stage procedure for producing high efficiency BGs

which takes advantage of the near perfect periodicity produced by conventional lithography and

the slope selection that results from bombardment with a broad ion beam at a relatively high

angle of incidence. In the first stage, conventional lithography is used to produce a periodic height

modulation on the surface of the sample. The second stage consists of bombarding this pre-patterned

or “templated” surface with a broad ion beam of noble gas ions at a high angle of incidence. As we

shall see, this serves to transform the periodic pattern into a sawtooth form.

Simply bombarding a nominally flat surface is not sufficient to produce an efficient BG, since

the surface does not evolve into a state which is nearly periodic.53, 54, 56, 57, 55, 58, 59, 60, 62, 63, 52, 27, 64

By contrast, conventional lithographic methods produce nearly perfectly periodic structures, but

normally fail to achieve the regions of nearly constant slope and the sharp slope transitions char-

acteristic of a high quality BG. Our proposed fabrication method overcomes the shortcomings of

broad beam ion bombardment and conventional lithography by wedding the two.
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Because traditional lithographic techniques are highly developed, stage one of our procedure

does not pose a significant challenge. Suitable periodic patterns have been produced by light

interference lithography combined with ion etching as well as by e-beam lithography.198, 4, 5, 6, 7, 8

Consequently, we will focus on stage two in this work. In accord with this and for the sake of

simplicity, we will refer to the topography that results from the first step of our procedure as the

initial surface.

Our simulations give compelling evidence that initial periodic patterns with a broad range of

amplitudes and wavelengths may be used to produce a high quality BG. It is important to choose

an angle of ion incidence that is large enough that the effect of the key cubic nonlinearity in the

equation of motion is significant. By the same token, the amplitude of the initial pattern must be

sufficiently large. Most of our simulations of our proposed method of BG fabrication were carried

out with sinusoidal initial conditions because any periodic structure of sufficiently high amplitude

may be effectively reduced to a sinusoid by annealing the sample.126 We will, however, demonstrate

that both sinusoidal initial conditions and a variety of periodic initial structures can lead to high

quality BGs. It is therefore not necessary to precisely tailor the surface produced by the first step of

our procedure. Low amplitude surface roughness may also be superimposed on the initial periodic

pattern without compromising the efficiency of the resulting BG. Finally, we show that even if

additional linear and nonlinear terms are present in the equation of motion for the surface, our

method can still produce high quality BGs.

In Sec. 6.2, we will begin by investigating the special case in which the surface is independent

of the transverse coordinate y. We will call this the one-dimensional case. In Sec. 6.3, we will

extend this analysis to the full two-dimensional problem in which the surface height depends on
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both x and y and demonstrate that our conclusions continue to hold in this more general setting. We

place our results in context in Sec. 6.4 and present our conclusions in Sec. 6.5.

6.2 One-dimensional Results

Consider a solid surface that has height h(x,y, t) above the arbitrary point (x,y) in the x� y

plane at time t. A broad ion beam with the uniform flux JJJ = �Jêee is incident upon the surface,

where êee ⌘ x̂xxsinq + ẑzzcosq and q is the angle of incidence. Thus, x and y are the horizontal

coordinates parallel and perpendicular to the projection of the ion beam direction onto the x� y

plane, respectively.

For simplicity, we first consider the special case in which the surface height h does not depend on

the transverse coordinate y, hereafter referred to as the 1D case. We take the time evolution of the ion

bombarded surface to be described an extension of the Kuramoto-Sivashinsky (KS) equation141, 142

that includes an additional nonlinear term. The KS equation has been widely used168, 115 as a

model of ion sputtering of surfaces, but is not sufficient to describe experiments in which terraced

topographies develop. In order to better model the surface, a term proportional to u3
x is appended to

the KS equation.65 The resulting equation of motion is

ht =�v0 + v00hx �khxx �Bhxxxx +
c2

2
h2

x +
c3

6
h3

x , (6.1)

where v0 is the erosion velocity of an unperturbed flat surface, v00, k , B, c2, and c3 are constants,

and the subscripts x and t denote partial derivatives. The constant B is positive, and we restrict our

attention to the case in which k > 0 so that ripples form if a nominally flat surface is bombarded.
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Equation (6.1) has been has been shown to model the terracing and coarsening behavior seen

in experiments quite well.65 From a physical standpoint, the terms proportional to v0, hx, h2
x ,

and h3
x result from an expansion of the sputter yield of the surface to third order in the slope hx.

The term proportional to k on the right-hand side of Eq. (6.1) represents a curvature dependent

instability, which is in general due to a combination of curvature dependent sputtering13 and the

Carter-Vishnyakov41 mechanism. The term proportional to B accounts for the effects of thermally

activated surface diffusion126 and ion-induced viscous flow.127 For more background on Eq. (6.1),

see Subsection 2.6.2. The solutions to Eq. (6.1) are propagating trains of undercompressive shocks

at sufficiently long times. The shocks are the regions in which the slope changes rapidly; they are

separated by regions of nearly constant slope. Undercompressive shocks have been observed in

other models of ion bombardment as well.143, 146, 145, 144

To simplify the equation of motion (6.1), we transform to a moving frame of reference given by

x0 = x+ v00t (6.2)

and

u = h+ v0t, (6.3)

which eliminates the first two terms on the right-hand side of Eq. (6.1). Further simplification is

achieved by introducing the dimensionless quantities

ũ ⌘ c2

k
u,

t̃ ⌘ k2

B
t,

x̃ ⌘ sgn(c3)

r

k
B

x0, (6.4)
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and

g ⌘ |c3k 3
2 |

c2
2
p

B
. (6.5)

Substituting Eqs. (6.4) and (6.5) into Eq. (6.1) and suppressing the tildes results in the nondimen-

sional 3KS equation,199

ut =�uxx �uxxxx +
1
2

u2
x +

g
6

u3
x . (6.6)

A single non-negative free parameter g remains in the equation of motion. The parameter g may

be interpreted as an indication of the relative strength of the cubic and quadratic nonlinearities,

or as an indication of the degree to which the lack of reflectional symmetry about the y � z

plane influences the surface evolution. Since the nonlinear terms render this equation resistant to

analytical techniques, we will impose periodic boundary conditions and integrate it numerically

using exponential time differencing.160 This method has been widely used to integrate nonlinear

partial differential equations, and is both accurate and efficient.161

We will use the first-order diffraction efficiency as a gauge of the quality of the BGs that our

fabrication method produces. The first-order diffraction efficiency is defined to be the fraction of

the incident power that is diffracted into the first-order diffraction mode. To evaluate the efficiency

of the gratings produced by our simulations, we implemented a numerical simulation of diffraction

using the scalar diffraction approximation.200 For low blaze angle gratings, polarization effects are

negligible and this approach is quite accurate.20, 200

For the efficiencies reported here, we use the first-order Littrow configuration, which means that

the location of the first-order diffraction peak coincides with the light source itself. For brevity, the

first-order diffraction efficiency in the first-order Littrow configuration will be referred to as the

efficiency for the remainder of this chapter.
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The scalar diffraction approximation assumes coherent monochromatic light is incident on the

BG from a single angle of incidence. Each point on the BG’S surface is considered to be a source

of spherical waves whose initial phase depends on the phase of the light incident at that point

on the surface. Similarly, the amplitude of this spherical source is proportional to the projected

incident intensity at that point. In order to determine the diffraction pattern of the grating as a whole,

the contributions of the spherical waves emanating from each discretized point on the surface are

combined to yield the intensity at a plane of constant z. The distance between this plane and the BG

is much greater than the width of the BG. If the incidence angle and wavelength of the light are

chosen appropriately, a good BG produces a spatially narrow band of high intensity centered on a

particular position in this plane.

There is an important subtlety that must be addressed before we compute the diffraction

efficiencies of surfaces generated by numerically integrating Eq. (6.6). The dimensionless equation

of motion (6.6) was obtained by scaling vertical and horizontal distances in different ways, as seen

in Eq. (6.4). Before we simulate the diffraction of light using the scalar diffraction approximation,

however, we must rescale the surface so that the horizontal and vertical scales are the same.

If all of the coefficients in Eq. (6.1) are known, we can restore the dimensions and transform a

dimensionless surface obtained from a simulation to the corresponding dimensional one. However,

it is actually sufficient to specify the quantity
q

k3/(c2
2B), since this is the dimensionless ratio

between the vertical and horizontal scales. Blaze angles on the order of 6� are typically observed

in experiments in which terraced surfaces develop.61, 51, 52, 64 In order to obtain comparable blaze

angles in our simulations, we chose
q

k3/(c2
2B) = 3⇥10�3 for all simulations described in this

chapter. The quantity
q

k3/(c2
2B) is the ratio of the characteristic height and width of the structures

which result from the ion bombardment. All other things being equal, experiments in which this
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combination of parameters is large will have steeper features than experiments in which this ratio is

small.

To evaluate the quality of the BG produced by the two-step procedure in a way that is invariant

under rescaling, we define a slope fraction quality factor Q as follows:

1. Determine the slope ux of the surface at N equally-spaced discrete points.

2. Produce a histogram of slopes with NB bins such that the bin centers are evenly spaced, every

point has a corresponding bin, and the bins corresponding to the greatest magnitude slopes

are not empty. Identify the most populated bin. NB = 16 for all results shown here.

3. Find the total number of points on the surface which fall inside the most populated bin.

4. Divide this total by the total number of surface points N to obtain the fraction of the surface

that has a slope close to the most common slope. The Q value is this fraction expressed as

a percentage, so that a perfect sawtooth surface with vertical antiblazed faces would have

Q = 100% and a completely noisy surface will have on average Q = 100%/NB.

While our choice of NB is not fundamental, we have chosen NB = 16 so that computing Q produces

results similar to the first-order diffraction efficiency calculated using the scalar diffraction approx-

imation. Furthermore, Q has the desirable property that it is invariant under a change of aspect

ratio.

In order to determine the optimal initial conditions for producing a blazed grating, we performed

many simulations for different values for the wave number K0 and amplitude A0 of an initially

sinusoidal surface. For simplicity, in what follows we will refer to the nondimensional integer

K̃0 ⌘ K0L/(2p) as the wave number and suppress the tilde. Here L is the sample length. We also
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added low amplitude spatial white noise to the initial conditions. This had a maximum value of

0.01% of the amplitude of the initial condition. As asserted above, a low noise sinusoid may be

produced by annealing any periodic initial pattern provided that the initial pattern has sufficiently

high amplitude and very little long wavelength noise. We therefore expect these initial conditions to

be well within the reach of conventional lithographic methods. The impact of initial conditions with

a noise amplitude greater than 0.01% of the amplitude of the sinusoid itself is explored below.

A simulation of a typical 1D surface profile for a low amplitude white noise initial condition is

shown in Fig. 6.2. A terraced topography emerges with an inconsistent spacing between shocks.

For appropriately selected initial conditions, however, the results of ion bombarding a templated

surface are impressive. Figure 6.3 shows the initial and final state for a templated surface governed

by the equation of motion (6.6). In what follows, we will explore the necessary conditions for a

good BG to be produced by our method.

Fig. 6.2 A typical solution to Eq. (6.6) with a low amplitude spatial white noise initial condition.
Notice the preponderance of two selected slopes and the inconsistent spacing between peaks. The
parameter value was g = 1 and total bombardment time was t = 600. In addition, the domain size L
was 200 and the number of gridpoints N was 441.

Figure 6.4 shows the Q values for a range of initial conditions. For all values of K0, an increase

in the amplitude A0 results in an increase in Q, i.e., an improvement of the resulting grating. This is

readily understood, since the term proportional to u3
x in Eq. (6.6) is responsible for the formation of

terraces. The magnitude of this term scales as the cube of the initial amplitude and hence its relative
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Fig. 6.3 An example of the influence of ion bombardment on an initially sinusoidal surface
topography. The initial condition (solid blue) and final state (dotted green) are shown with a vertical
offset for clarity. The parameter value was g = 1 and the total bombardment time t was 100. The
initial condition amplitude, initial condition wave number, sample size, and the number of
gridpoints were A0 = 20, K0 = 6, L = 200 and N = 441, respectively.

importance in the dynamics grows with the initial amplitude. Conversely, for very small values of

the amplitude of the initial sinusoid, the solutions resemble those for a low amplitude white noise

initial condition.

A plot of the efficiency as a function of K0 and A0 calculated using the scalar diffraction

approximation is shown in Fig. 6.5. The surfaces analyzed in Figs. 6.4 and 6.5 are identical, and

these plots show good agreement between these two methods of evaluating the quality of BGs.

Figures 6.4 and 6.5 show that there is an optimal value of the initial wave number K0 that leads

to BGs with the highest values of Q and the efficiency. This may be understood by looking at the

growth of the Fourier modes with wave number 2K0 and 3K0. We find that a surface that has a

Fourier spectrum that has high amplitudes for the odd multiples of the fundamental (wave numbers

3K0, 5K0, . . ., etc.) has a higher value of Q than surfaces with high amplitudes for the even modes

(2K0, 4K0, . . ., etc.). To produce such a surface, K0 should be chosen so that the linear growth rate

of the mode with wave number 3K0 is larger than the growth rate of the mode with wave number
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Fig. 6.4 Q evaluated for a 1D surface and a range of initial sinusoids. The amplitude A0 and wave
number K0 of the initial condition are as labeled, g = 0.5, and the total bombardment time t was 80.
The sample size and the number of gridpoints were L = 400 and N = 381, respectively. The mode
with the highest linear growth rate has K0 = 45.

2K0. This can be arranged by choosing a value of K0 small enough that 3K0 is less than the value of

the wave number K that gives the highest linear growth rate. Thus, the initial sinusoid should have a

wavelength larger than three times the linearly selected wavelength.

The periodicity of the initial surface is not disrupted by the ion bombardment. In contrast to the

surfaces produced using a low amplitude white noise initial condition, the surfaces produced starting

from a template of sufficient amplitude have a very regular spacing between shocks. In order to

evaluate the degree of periodicity, for each simulation the highest peak in the Fourier spectrum was

fitted to a Gaussian. For small K0 or A0, the time evolution leads to an appreciable disruption of

the periodicity. However, for the region of the K0 �A0 plane which produces surfaces with a high

value of Q, the periodicity remains nearly perfect. The Gaussian fitting algorithm applied to the

simulations with parameters in the range 15 < A0 < 35 and 8 < K0 < 14 resulted in a maximum

nondimensional width of 0.156 at time t = 80. By comparison, this algorithm applied to the nearly
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Fig. 6.5 First order Littrow efficiency evaluated for a 1D surface and a range of initial sinusoids.
The surfaces analyzed are identical to those in Fig. 6.4.

perfectly periodic sinusoidal initial condition produced a nondimensional characteristic width of

0.125, implying that the surfaces remain highly periodic during the ion sputtering.

Reducing the value of the coefficient g does affect the quality of the BG produced. However,

this effect is rather small provided that g remains above a threshold value. Figure 6.6 shows Q

and the diffraction efficiency for a range of g values for surfaces which had the same templated

initial condition. Surfaces below the threshold value of g (which is approximately g = 0.27 for the

simulations shown in Fig. 6.6) typically exhibit a reduction of the period by a factor of two as a

result of the strong influence of the u2
x term relative to the u3

x term. As seen in Fig. 6.7, the even

overtones of the initial wave number are driven so strongly that the number of maxima and minima

of the surface double, and so a BG with the desired wavelength is not produced. Another feature

that Fig. 6.6 demonstrates is that Q is closely related to the diffraction efficiency of the grating.
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Although the absolute efficiency is a function of the particular rescaling chosen, the slope fraction

quality factor Q is clearly a useful way of identifying well formed BGs. The gradual decrease in

efficiency with increasing g that occurs for g > 0.27 results from the fact that the magnitude of the

slope of the antiblazed faces decreases more quickly than the magnitude of the slope for the blazed

faces when g is continually increased. As a consequence, for surfaces formed by Eq. (6.6) with a

large value of g , a smaller fraction of the incident light strikes the blazed faces.

Fig. 6.6 A plot of Q (upper green line) and the diffraction efficiency (lower blue line) for a range of
g values on surfaces which had a sinusoidal initial condition. Above a threshold value, changing the
magnitude of g has a modest effect on the quality of the BG produced. The parameters were
A0 = 30, K0 = 6, N = 641, L = 100, and the total bombardment time t was 60.

Fig. 6.7 A time sequence showing the period halving that results from an insufficiently large value
of g . In this case, shocks do not form. For this simulation g = 0.2, A0 = 7.5, K0 = 10, N = 441,
and L = 200. For clarity, downward offsets have been applied to the surfaces. These offsets
increase in magnitude as we go from t = 0 to t = 20.0.
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It has been shown previously that the coefficient g determines the values of the selected slopes.65

Since g depends on the angle of incidence and the periodicity of the pattern is selected by the initial

condition, it is likely possible to adjust the parameters of the BG to select for a particular frequency

of light and diffraction order.

Figure 6.8 shows the values for the selected slopes obtained from simulations with sinusoidal

initial conditions. The slopes are in excellent agreement with the predictions of Ref. [65]. These

results demonstrate that the slopes may indeed be varied over a wide range by varying g when

sinusoidal initial conditions are employed.

Fig. 6.8 The selected slopes for simulations with a sinusoidal initial condition and the prediction of
previous work on the 3KS equation (6.6).65 The simulation parameters were A0 = 20, K0 = 3,
L = 100 and N = 181. The total bombardment time was 120.

Simulations of the 3KS equation (6.6) with low amplitude white noise initial conditions have

revealed that increasing g leads to an increase in the density of shocks in the long time limit.66 One

might therefore ask whether changing the value of g used in simulations starting from a templated

surface would affect the shock density and therefore the overall periodicity of the final pattern. The

answer to this question is no, provided the initial amplitude is sufficiently large, g > 0.27, and the

amplitude of the superimposed noise is sufficiently low. Put simply, if the initial pattern has points

which have sufficient curvature to initiate the formation of a shock, then shocks will form only at

these locations and nowhere else. For a sinusoidal initial condition, this results in the points of
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maximal curvature sharpening into shocks. Figure 6.9 shows a spacetime plot of the local maxima

and minima during bombardment. The extrema of the initial sinusoid become the extrema of the

BG.

Fig. 6.9 A spacetime plot of the local maxima (black) and minima (yellow) for a typical templated
surface. There are transient pairs of maxima and minima during the formation of the BG, but the
initial extrema persist and become the extrema of the surface in its steady state. For this simulation,
g = 1, A0 = 20, K0 = 6, L = 100 and N = 351.

6.2.1 Possible Additional Contributions to the Equation of Motion

In the equation of motion (6.6) for the surface, we retained a term which is third order in ∂x

and u, but did not include a term proportional to uxxx, which is also third order in ∂x (although

it is only first order in u). We now consider the effect that such a term has on the evolution of a

templated surface that would otherwise develop into an efficient BG. This term has previously been

considered in the context of ion bombardment in Ref. [201]. In that work it originated from stress in

the bombarded material. A term proportional to uxuxx will not be considered because it produces

unphysical singularities.202

Figure 6.10 shows the effects of adding a term r1uxxx with nonnegative r1 to the right-hand side

of Eq. (6.6). We chose to simulate a surface with an initial condition that produced a good BG
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for r1 = 0 and g = 1. As r1 increases, the Littrow efficiency of the BG declines, but the effect is

relatively modest.

The sign of r1 is of critical importance to the success of our fabrication method. If r1 is negative,

the surface evolution is qualitatively different. As we have stated, the 3KS equation (6.6) produces

shock waves that propagate along the surface. A related equation of motion, which is obtained from

Eq. (6.6) by setting g = 0 and adding the term r1uxxx, is known as the Benney equation and may be

written

ut =�uxx �uxxxx +
1
2

u2
x + r1uxxx. (6.7)

The solutions to Eq. (6.7) for sufficiently large r1 are trains of solitons which propagate along the

surface.203 These solutions give some insight into the effect that the added r1uxxx term has on

solutions to Eq. (6.6). Both Eqs. (6.6) and (6.7) produce patterns which propagate along the surface

with velocities dependent on the values of g and r1, respectively. If the propagation directions of

the solitons and the undercompressive shocks are the same (i.e., r1 is positive), the formation of a

BG is largely unaffected by the additional term r1uxxx. If, however, these propagation directions

are opposite to one another, then we get solutions which resemble counter-propagating trains of

solitons and undercompressive shocks. The result is a surface whose Q value is periodic in time and

which is at no point suitable for use as a blazed grating. It is therefore of critical importance that the

coefficient r1 be positive or negligibly small.

Fortunately, there is reason to believe that the coefficient r1 is positive or small. Simulations of

Eq. (6.6) with the added term r1uxxx with a low amplitude white noise initial condition reveal the

same qualitative difference between the cases r1 > 0 and r1 < 0 as the templated simulations. In the

former case, we see coarsening into a steadily propagating terraced surface pattern, as observed
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experimentally. In the latter, we do not observe coarsening, terracing or an approach to a steady

state. Since the experimentally observed behavior is much better described by the case in which

r1 > 0, we fully expect this condition to be satisfied if and when our BG fabrication procedure is

implemented.

Fig. 6.10 A plot showing the effect that an additional term r1uxxx added to the equation of motion
(6.6) has on the diffraction efficiency. While the efficiency decreases with increasing r1, the overall
effect is rather small. The simulation parameters were g = 1, A0 = 10, K0 = 30, t = 60, L = 500
and N = 2051.

6.2.2 Dependence on the Form of the Initial Pattern

Fig. 6.11 The initial conditions used in the simulations that yielded the surfaces shown in Fig. 6.12.
These initial conditions were generated by discarding all but the first m Fourier modes of a square
wave and adding low amplitude white noise. The initial conditions shown have m = 1, 2, 3 and 4.
The amplitude and wave number of the square wave were A0 = 10 and K0 = 6, respectively, and the
sample length was L = 200.

We have primarily considered sinusoidal initial conditions since they may be produced from

any periodic structure of sufficiently high amplitude. A remarkable property of the equation of
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Fig. 6.12 The state of the surface corresponding to the initial conditions shown in Fig. 6.11 at
t = 200. The value of g was 0.4. For clarity, the surfaces have been phase shifted so their maxima
coincide and have also been vertically offset from one another. It is clear from these results that the
differently shaped initial conditions lead to virtually identical steady-state surface shapes.

motion (6.6) is that at long times its solutions are rather insensitive to the detailed shape of the

initial surface if it has an appropriate wavelength and amplitude. An illustration of this is shown in

Figs. 6.11 and 6.12, which show the results of using various approximations to a square wave as the

initial condition and the resulting surfaces at time t = 50. The initial conditions were generated by

taking the Fourier transform of a perfect square wave, discarding all but the first m modes, and then

adding low amplitude white noise. After the surfaces at time t = 50 have been translated laterally

so that their maxima coincide, they become virtually indistinguishable.

While it is not possible to examine all possible initial surface shapes, specific examples such

as those shown in Fig. 6.11 indicate that a great variety of periodic initial surfaces may be used to

produce a high quality BG. Other examples of initial conditions that were used as starting points

for simulations include successive approximations to a sawtooth profile, square profiles and good

BGs smoothed by annealing (not shown). In all cases considered, the final surface was virtually

unaffected by the details of the initial surface shape apart from its period and amplitude. We

expect this insensitivity to be a significant advantage of our proposed two-stage procedure for the

fabrication of BGs.
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Fig. 6.13 Sinusoidal initial conditions with added noise of various amplitudes, shown with vertical
offsets for clarity. The added noise ranges from 0.01% (lowermost, blue line) to 100% of A0
(uppermost, black line). The corresponding final states are shown in Fig. 6.14. The simulation
parameters were K0 = 3, L = 80, A0 = 20, g = 1, N = 150, and t = 500.

Fig. 6.14 The final state of the simulations with initial conditions shown in Fig. 6.13. For the
extremely noisy cases, the periodicity is somewhat disrupted, but the moderately noisy initial
conditions form excellent BG profiles. See the caption of Fig. 6.13 for the simulation parameters.

Another demonstration of this insensitivity to initial conditions is given in Figs. 6.13 and 6.14, in

which increasingly noisy sinusoidal initial conditions and the corresponding final states are shown.

The initial conditions shown in Fig. 6.13 are perfect sinusoids to which spatial white noise has been

added. The noise amplitudes chosen are 0.01%, 25%, 50%, 75% and 100% of the amplitude of

the sinusoid itself. For the noisiest initial conditions, the periodicity of the final state is somewhat

disrupted, but for a 25% level of the amplitude of the added noise, the periodicity remains almost

perfect during the ion bombardment.

To make this statement quantitative, we fit the highest peak in the Fourier spectrum of each final

surface to a Gaussian function and averaged over ten simulations. The resulting average peak width
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— which is a gauge of the degree of periodicity — increased by only 2.5% as the noise amplitude

was increased from 0.01% to 25%.

6.3 Two-dimensional Results

In this section, we analyze a two-dimensional generalization of Eq. (6.1) in which u depends on

the transverse coordinate y as well as on x and t. It is given by

ut =�k1uxx �k2uyy �B—2—2u+
c1x

2
u2

x +
c1y

2
u2

y +
c2

6
u3

x + c3uxu2
y , (6.8)

where k1 > 0, k2, B > 0, c1x, c1y, c2, and c3 are constants, and the subscripts on u = u(x,y, t) denote

partial derivatives. In writing this equation of motion, we have replaced the terms proportional

to uxx, u2
x and u3

x in Eq. (6.1) by anisotropic two-dimensional expressions. We have excluded all

terms which are not symmetric under the transformation y !�y, since the proposed experimental

setup possesses such a symmetry. Physically, the terms proportional to k1 and k2 result from a

generalization of the curvature-dependent instabilities which gave rise to the term proportional to

k in Eq. (6.6). Similarly, the terms proportional to c1x, c1y, c2, and c3 result from a small slope

expansion of the sputter yield that has been extended to two dimensions.66

If Eq. (6.8) were rescaled, four free parameters would remain. This is too large a parameter

space to be exhaustively explored. For this reason, we will begin by focusing on the nearly isotropic

case in which k1 = k2 ⌘ k > 0, c3 = 0, and c1x = c1y ⌘ c1. For this special case, Eq. (6.8) reduces

to

ut =�k—2u�B—2—2u+
c1

2
(—u)2 +

c2

6
u3

x . (6.9)
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Later in this section, we will explore the case c3 6= 0 as well as the effects of reintroducing

anisotropies in the terms in Eq. (6.9) that are proportional to —2u and (—u)2. For c2 = 0, Eq. (6.9)

reduces to the isotropic KS equation, a much-studied model for describing the evolution of a surface

bombarded by a broad ion beam at normal incidence. For c2 6= 0, Eq. (6.9) is a two-dimensional

extension of the 3KS equation.

An additional term uxyy is consistent with the symmetry of the system, and will in general appear

in the equation of motion. We performed simulations with this term appended to Eq. (6.9) with a

coefficient equal to a range of values between �2 and 2, with all other coefficients equal to unity,

and did not observe an effect on the average Q value of the resulting surface that exceeded 0.001%.

Since we wish to produce a pattern that varies in the x-direction while suppressing all variation

in the y direction, the linear instability in the y-direction should be absent or as weak as possible. In

practice, therefore, our fabrication method is expected to work well only for angles of incidence

q small enough that k1  k2. This is the regime in which terraced topographies develop from a

nominally flat initial surface. For higher values of q , ripples with their wave vector in the y-direction

will develop, compromising the efficiency of the gratings. Thus, by studying the case in which

k1 = k2, we will evaluate the efficacy of our fabrication method in an extreme situation in which it

might be expected to fail.

We produce a nondimensional form of Eq. (6.9) by setting

x = sgn(c3)

r

B
k

x̃, y =

r

B
k

ỹ,

t =
B
k2 t̃, and u =

k
c2

ũ.

(6.10)
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We take c2 to be positive without loss of generality and suppress the tildes. Equation (6.9) becomes

ut =�—2u�—2—2u+
1
2
(—u)2 +

g
6

u3
x , (6.11)

where g is once again given by Eq. (6.5). Note that g is the only free parameter that appears in this

equation of motion.

To extend the definition of the slope fraction quality factor Q to two dimensions, we modify the

four part definition of Q described in Sec. 6.2. In particular, in part 1 of the definition, we determine

the value of ux on a square grid of N points. Additionally, in part 2 of the definition, we do not

bin the ux values for any points on the surface whose transverse slope uy has a magnitude above a

threshold value. To retain the invariance of Q under rescaling, this threshold is taken to be a fraction

of the mean of the magnitude of the surface slope rather than an absolute quantity. The fraction was

taken to be 0.2 for all of the results reported here.

Once again the results of our proposed fabrication method are very encouraging. Figures 6.15

and 6.16 show two views of a surface that was obtained from a sinusoidal initial condition. There

are two selected slopes and nearly perfect spatial periodicity, as in 1D. The surface becomes terraced

before appreciable disturbances in the transverse direction have time to emerge, even though

there is an isotropic linear instability. This is brought into sharper relief if we examine the time-

dependence of the surface widths sx and sy in the x- and y-directions. These are defined to be the

average of the root-mean-square deviations of N real-space cross sections in the x- and y-directions,

respectively. Exponential growth is clearly visible in the transverse width (see Fig. 6.17). Q attains

its maximum value before sy has become an appreciable fraction of sx. The maximum value,
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Q = 36, is substantial, and so a high quality BG can be produced by stopping the bombardment at

an appropriate time.

The high quality BGs that can be produced from sinusoidal templates contrast sharply with

the surfaces that emerge from a low amplitude white noise initial condition. As seen in Fig. 6.18,

substantial variation can develop in the transverse direction, and the final state is far from being

a well ordered BG. This occurs because the time required to form a terraced state from a low

amplitude initial condition is long enough to allow ripples with their wave vector in the transverse

direction to form.

Fig. 6.15 A typical final state for a surface governed by Eq. (6.11) with a sinusoidal initial
condition. The simulation parameters were g = 1, A0 = 10, K0 = 15, L = 400 and N = 500, and
the total bombardment time was 30.

Fig. 6.16 Cross sections taken from the initial (upper blue dots) and final (lower black line) states of
the sinusoidally-templated surface shown in Fig. 6.15. These cross sections are nearly identical to
the analogous 1D plots shown in Fig. 6.3. The cross sections were taken along the line y = L/2 and
are shown with a vertical offset for clarity.
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Fig. 6.17 Surface widths sx (upper blue line) and sy (lower green line) of an initially sinusoidal
surface over time. The simulation parameters were A0 = 30, K0 = 6, L = 100, and N = 250. The
vertical red line shows the bombardment duration that gives the BG with the highest value of Q,
which was Q ' 36.

A plot analogous to Fig. 6.4 is given in Fig. 6.19. We see that the results are very similar to

those found for the 1D case. Our observations regarding the optimal initial amplitude and wave

number of the initial sinusoid carry over without change. Similarly, the dependence of Q on the

remaining free parameter in the equation of motion (g) is comparable to the result shown in Fig. 6.6.

6.3.1 Linear Anisotropy

As we have just seen, our method can produce high quality BGs if k1 = k2. We argued that our

fabrication method will work well for k1 < k2 if it works well for k1 = k2. We therefore expect

that good BGs will emerge for k1 < k2 if the initial wavelength and amplitude are appropriately

chosen. To confirm this, we carried out numerical integrations of Eq. (6.11) with g set to 1 and

with �—2u replaced by �uxx +A2uyy for a particular choice of initial sinusoid and for a range of A2

values. As shown in Fig. 6.20, Q is substantial for both A2 = �1 (the case of an isotropic linear

instability) and for A2 >�1 (the case in which the surface is less unstable in the y-direction than

it is in the x-direction). Thus, our expectation is borne out. We also argued that our method will

perform poorly if the surface is more unstable in the transverse direction than in the longitudinal
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Fig. 6.18 An untemplated surface governed by Eq. (6.11). The simulation parameters were g = 1,
L = 400 and N = 500, as in Fig. 6.15. The initial condition was low-amplitude spatial white noise,
however, and the total bombardment time was 125.

direction. This too is confirmed by Fig. 6.20, since Q drops precipitously for A2 < �1 and then

becomes rather small.

6.3.2 Nonlinear Anisotropy

We also considered the effect of making the quadratic nonlinearity in Eq. (6.11) anisotropic by

making the replacement

(—u)2 ! u2
x + r2u2

y .

We calculated the Q values for a templated surface for a range of r2 values. For the range �10 <

r2 < 10, Q varied by less than 1%. We may qualitatively understand the influence of varying the

parameter r2 by observing that for a surface that has negligibly small values of ux and its derivatives,

u satisfies 1D Kuramoto-Sivashinsky equation with y and t as the independent variables,

ut =�uyy �uyyyy +
r2

2
u2

y . (6.12)
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Fig. 6.19 The Q value for two-dimensional simulations with a range of initial sinusoids. The initial
sinusoid’s amplitude A0 and wave number K0 are as labeled, g = 1, L = 400 and N = 400. The Q
values shown were averaged over the time interval from t = 10 to t = 50 to reduce noise.

It is easy to show that the steady-state amplitude of solutions to this equation scale with |r2|�1. It is

therefore natural to conclude that if increasing r2 affects the resulting BGs at all, it improves the BGs

produced by reducing the maximum amplitude of ripples with their wave vector in the y-direction.

This conclusion is well supported by our simulations. Our simulations also show that the effect

of varying r2 is very small (not shown). Anisotropy in the quadratic nonlinearity is therefore not

expected to be an impediment to the successful implementation of our fabrication method.

6.3.3 A Possible Additional Contribution to the Equation of Motion

We now turn to the effect of nonzero c3 in the equation of motion (6.8). This leads us to append

a term r3uxu2
y to the right-hand side of Eq. (6.11). The resulting equation will be referred to as the

semi-isotropic 3KS equation. Figure 6.21 shows the results of simulations of the semi-isotropic
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Fig. 6.20 Q values for an initially sinusoidal surface for a range of A2 values. The simulation
parameters were A0 = 20, K0 = 6, L = 200, and N = 250, and the total bombardment time t was
100.

3KS equation for a wide range of r3 values. We choose the semi-isotropic case to demonstrate that

the presence of the term r3uxu2
y actually promotes the formation of a high quality blazed grating in

the case of a strong transverse instability.

Fig. 6.21 Q values for an initially sinusoidal surface for a range of r3 values. The simulation
parameters were A0 = 20, K0 = 6, L = 200, and N = 250. The Q values shown represent a
temporal average from t = 10 to t = 50.

6.4 Discussion

Pre-patterned surfaces have been bombarded with broad ion beams to produce novel or highly

ordered patterns.190, 182, 204 Blazed gratings have also been fabricated in this way.198, 4, 5, 6, 7, 8 The

basic procedure that has been used is to create regularly spaced lines of photoresist on an initially

planar solid surface, and then bombard with a broad ion beam at a high angle of incidence. The
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photoresist shadows the surface until it is itself sputtered away, yielding a periodically varying

surface height. By carefully selecting the shape of the photoresist lines, one can gradually expose

more and more of the underlying solid surface to the ion beam and produce a BG.198, 4, 5, 6, 7, 8

A distinct advantage of our two-stage method is that it could be used as the initial step in the

fabrication of multilayer-coated blazed gratings (MBGs) with unprecedented efficiency. Normally,

a MBG is produced by depositing a multilayer atop a BG. To obtain a high diffraction efficiency,

nearly perfect replication of the sawtooth profile should be achieved during the deposition of

every layer that makes up the coating. Each time a new layer is deposited, however, the profile

smooths.205, 206, 207, 208, 209, 210, 21, 22, 23, 24 Cumulatively, this results in considerable rounding and

flattening of the profile and so to a significant loss of efficiency. We propose to improve the

efficiency of a MBG consisting of alternating layers of materials A and B by first producing a BG

in a substrate composed of A. This BG would be produced using our two-stage method. Then,

after each new layer of material A is deposited, it would be bombarded briefly, partially removing

the newly deposited material. The same obliquely-incident ion beam that was originally used to

produce the terraced substrate would be used for the bombardment. A layer of material B would

then be deposited, and so forth. We expect that the bombardment will serve to sharpen the corners

in the profile and to very nearly restore it to its original sawtooth form.

Since the angles of the blazed and anti-blazed facets are determined by the choice of ion beam

and the substrate material A, the success of the proposed method of producing a MBG hinges on first

producing a BG by our two-stage method. If the initial sawtooth surface were produced using an

alternate fabrication method, ion bombardment of the layers of material A would drive the surface

to a sawtooth form with different blaze angles than the underlying substrate surface, reducing the

efficiency of the MBG.
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In the present chapter, we confined our attention to our proposed two-stage method of BG

fabrication. Ion-assisted deposition of MBGs atop these BGs will be studied elsewhere.

Recently, there has been work on using ion bombardment to produce BGs without the need for

a templating step.86 Ou et al. bombarded a single crystal GaAs target that initially had a nearly

flat surface with a normally-incident, low-energy beam of noble gas ions. The target material was

maintained at a temperature in excess of its recrystallization temperature. Ou et al. found that a

terraced surface with a remarkable degree of order emerged with a wavelength of 46 nm. When the

surface was illuminated with light of this wavelength, the first-order diffraction peak was readily

observed.

While the results of Ref. [86] are exciting, they are limited in their application to the fabrication

of blazed gratings. The efficiency of a blazed grating is heavily dependent on having precisely the

correct blaze angles and periodicity. The templating procedure described in this chapter allows

for selection of the periodicity directly, and control of the blaze angle through variation of the ion

incidence angle and energy. By contrast, the method of Ref. [86] is dependent on properties of

the underlying crystal to determine the periodicity and blaze angle, and its application is therefore

restricted to a narrow range of wavelengths. Furthermore, our method is capable of producing a

blazed grating on an elemental target material, while the method of Ref. [86] requires a GaAs or

InAs target.
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6.5 Conclusions

In this chapter, we introduced and analyzed a novel method for producing high efficiency blazed

gratings. Our simulations show that by exploiting the near perfect periodicity of patterns produced

by conventional lithography and the terraced topographies which emerge naturally from high-angle,

oblique-incidence ion bombardment, one can produce a high quality BG. The effect of the amplitude

and wave number of the initial pattern, as well as the influence of the free parameter in the equation

of motion, were investigated systematically. Finally, we demonstrated that additional terms which

may appear in the equation of motion do not pose a significant impediment to the utility of our

proposed method.
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CHAPTER 7

MULTILAYER BLAZED GRATINGS

7.1 Introduction

As described in the Chapter 6, a blazed grating (BG) is a special type of diffraction grating that

is optimized to achieve maximum efficiency in a given diffraction order. Like every optical grating,

a BG has a constant line spacing. However, the lines in a BG have a triangular, sawtooth-shaped

cross section, and so the surface has a terraced form.

For light in the extreme ultraviolet or soft X-ray regime, however, a BG often has insufficient

reflectivity to perform as desired. This issue may be addressed to some extent by depositing thin

layers of alternating composition on a BG, resulting in a multilayer blazed grating (MBG). While

MBGs have been shown to possess better efficiencies than BGs, the multilayer deposition process

has the unintended consequence of smoothing the surface profile. As a result, even if the initial

BG is shaped perfectly, the subsequent layers will become increasingly flat and imperfect as the

fabrication proceeds.21, 22, 23, 24 See Fig. 7.1 for an example of a well formed MBG.

In this chapter, we propose a method of fabricating MBGs that avoids unwanted smoothing and

attenuation of the surface profile. Our analysis suggests that by using bombardment with a broad

ion beam at oblique incidence during the multilayer deposition process, a nearly perfect BG profile

may be retained for an arbitrary number of deposited layers. This work builds upon the previously

presented simulations (See Chapter 6 and Ref. [211]) that indicated that ion bombardment could
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be used to sculpt a BG from an initially sinusoidal surface for a broad range of parameter values.

The work on BG fabrication was in turn based upon the observation that nominally flat surfaces

surfaces subjected to ion bombardment can spontaneously form terraced structures for high angles

of incidence.53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 51, 52, 27, 64

silicon lattice spacing in the ð111Þ direction, and, indeed,
many of the AFM images showed clear evidence of ð111Þ
terraces and steps.
The silicon nubs remaining after the etch step must be

removed before ML deposition, otherwise they can cause
significant perturbation of the ML structure [13]. We used
chemical oxidation of silicon with piranha solution
(H2SO4 þ H2O2) followed by an oxide etch with HF as
a nub removal process. Each oxidation/oxide etch cycle

removes an approximately 0.5-nm-thick silicon layer. In
total, 26 cycles were applied in order to remove the 25-
nm-wide nubs and to get the groove profile close to a tri-
angle (Fig. 3). The nub removal process results in a slight
increase of a high spatial frequency component of sur-
face roughness up to 0:34 nm rms [Fig. 2(b)], which is
easily smoothed out to 0:3 nm rms by the ML deposition
step that follows [Fig. 2(c)].

The ML, composed of 30 Mo/Si bilayers, was deposited
onto the blazed grating substrates by dc-magnetron sput-
tering. The ML period was targeted to 7:2 nm in order to
bring the third diffraction order of the grating to the blaze
condition and at the same time satisfy the first-order
Bragg condition for the ML. The groove profile of the
grating changes significantly during the course of the de-
position. Figure 1(c) shows a cross-section TEM image of
the ML-coated grating, and Fig. 3 shows the AFM mea-
surements of the average groove profile before and after
deposition of the ML. Coating causes the surface of the
blazed facets to become slightly convex and the apexes
of the triangle groove to become rounded significantly.

The diffraction efficiency of the ML-coated blazed grat-
ing was measured with an Advanced Light Source beam-
line 6.3.2 two-axis diffractometer [14]. The incident angle
was set to 11° from the grating surface normal, and an
angular resolution of 0:12° was used for the detector axis.
The detector scans over the diffraction angle were per-
formed at the wavelengths between 12:7 nm and 15:0 nm
with an increment of 0:1 nm. The data were normalized
to the direct beam measured over the wavelength range.

Figure 4 shows the diffraction from the Mo/Si-30
coated grating at the wavelength of 13:6 nm. The blazed
third diffraction order demonstrates efficiency as high as

Fig. 1. SEM images of the 200 nm grating (a) after KOH etch
and nitride mask removal, (b) after nub removal, and (c) cross-
section TEM image of the grating coated with the Mo/Si ML.

Fig. 2. (Color online) Morphology of the groove surface of the
blazed gratings after (a) KOH etching, (b) nub removal, and (c)
ML deposition.

Fig. 3. (Color online) Ideal profile of a silicon blazed grating
(dashed curve) and averaged profiles measured with AFM
for the grating before (dotted curve) and after (solid curve)
ML deposition.

Fig. 4. (Color online) Diffraction from the Mo/Si-30 ML-coated
grating measured at an incidence angle of 11° and wavelength
of 13:6 nm.
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Fig. 7.1 A TEM image of a portion of a typical MBG. This result has been taken from Ref. [21].

Our numerical simulations indicate that our proposed procedure is indeed effective at producing

high quality MBGs. Furthermore, for well selected experimental conditions, we find that consecutive

BG layers are very similar to one another. This implies that ion beam assisted deposition may be used

to fabricate high quality MBGs with an arbitrary number of layers. We examine the necessary and

sufficient conditions for which this procedure is successful. This includes a systematic investigation

of the influence of the templated initial condition, the material-dependent parameters in the equations

of motion, and the experimental geometry.

This chapter is organized as follows. In Sec. 7.2 we will provide background information on

MBG design and operating principles. In Sec. 7.3, we describe the proposed fabrication method,

introduce some of the equations of motion (EOMs) we will study, and identify the parameter space

to be investigated. In Sec. 7.4, we present the results of extensive numerical simulations performed

for the special case in which the surface does not vary in the transverse direction, hereafter referred
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to as the one-dimensional (1D) case. In Sec. 7.5, we extend the results of Sec. 7.4 to the case of a

surface which varies in both the longitudinal and transverse directions, hereafter referred to as the

two-dimensional (2D) case. In Sec. 7.6, we place our results in context and review our key findings.

Finally in Sec. 7.7 we provide an explicit demonstration of a technique which may be used to select

deposition beam parameters in an experiment.

7.2 Background on Multilayer Blazed Gratings

In order for a MBG to operate with high efficiency, the relative positions of consecutive layers in

the multilayer stack must be precisely controlled. In order to understand why this is the case, one

must first understand the principles govern the operation of a MBG. In what follows, we provide a

general description of these principles for a MBG composed of alternating layers of materials B and

D. For a more detailed discussion, see Ref. [20].

BGs have a sawtooth form. The nearly flat regions of the surface that face the incident light

beam are called blazed faces. Anti-blazed faces, on the other hand, are sides of the sawteeth that

face away from the incident light. BGs are optimized for a particular wavelength of light (hereafter

referred to as the selected wavelength) at a particular angle of incidence (hereafter referred to as

the selected angle of incidence). Consider a well made BG of material B that is illuminated with

monochromatic light of the selected wavelength at the selected angle of incidence. The blaze angle

is defined to be the angle between the blazed faces and the x axis. This angle is taken to be strictly

greater than zero here for simplicity. To obtain an additional simplification, we will consider a BG

with vertical anti-blazed faces so that the light exclusively strikes the blazed faces for incidence

angles qi  0. In general, light of wavelength l incident on a periodic structure of wavelength d at
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angle qi will have produce a sequence of local intensity maxima at angles qm given by

d[sin(qi)+ sin(qm)] = ml , (7.1)

where m is an integer.20 This is true for a general periodic surface pattern, not just a BG.

In order to gain an intuitive understanding of the operation of a BG, consider now the light

intensity as a function of angle from light incident on a single period of a BG. In general, due

to the relatively small size of a single grating period, an appreciable fraction of the light will be

scattered in a broad range of angles due to diffraction. However, there will also be a maximum in

the scattering intensity that corresponds to the incident beam simply reflecting from the flat blazed

face.20 While it is of course true that a complete description of the scattering of light from the

surface cannot be captured by simple ray diagrams, it is useful for heuristic purposes to think of

the flat blazed faces as simple reflecting surfaces. We will refer to the angle relative to the global

surface normal corresponding to a simple reflection from a blazed face as the "reflection angle"

(e.g. light propagating in the �ẑ direction incident on a surface with the blaze angle q would have a

reflection angle of �2q relative to the z axis).

A well made BG is constructed in such a way that, for light of the selected wavelength and

incidence angle, there exists a value for m in Eq. (7.1) such that qm is equal to the reflection angle

from a blazed face. The value of |m| for which this is true is often referred to as the order of the

grating.24 The result of the constructive interference between the diffraction due to the periodic

pattern and the enhanced reflection due to the blazed faces is that this particular diffraction mode

has a much greater intensity than any other mode.20 One common arrangement is the so-called

“Littrow Configuration,” in which the propagation direction of the incident light is parallel to the
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local normal of the blazed faces. BGs designed to operate in the Littrow configuration can be

achieved for any value of m. In general, BGs designed to operate at higher values of |m| are less

efficient than lower order gratings, but this is not always the case. In Ref. [24], for example, Voronov

et al. were able to obtain an improvement in the efficiency of a MBG by increasing |m| from 1 to 2

and doubling the period of their gratings. In this case the improvement was attributed to a reduction

of the fraction of the total illuminated area that was not a blazed face.

The principles that govern the operation of a MBG whose top layer is composed of material B

(D) are very similar to those for a BG, but now one must consider diffraction and reflection off of

three different kinds of interfaces: vacuum/B (D), B/D, and D/B. Depending on the specific material

characteristics of the materials B and D and the wavelength of the incident light, some fraction of

the incident beam will penetrate the vacuum/B interface at the top of the multilayer stack. Similarly,

some fraction of the light which penetrates the first interface will penetrate the underlying B/D

interface, and so on throughout the stack.212, 213 For a well made MBG illuminated by incident light

with the selected wavelength and angle of incidence, the diffraction and reflection from interface

layers in the multilayer stack will constructively interfere with diffraction and reflection from the

vacuum/B interface. For light in the extreme ultraviolet or soft X-ray (EUV/SXR) regime, reflection

from a single interface is not sufficient for many applications. The enhanced reflectivity of the

multilayer stack due to the constructive interference of reflected waves from within the multilayer

translates directly into enhanced efficiency of the MBG compared to a BG. Furthermore, because

the constructive interference is a wavelength-dependent effect, the multilayer stack acts to further

differentiate any incident light which does not have the selected wavelength.20

A priori one might expect that the ideal inter-layer thickness in the Littrow configuration would

be l/2 as measured in the direction normal to the blazed faces. While this satisfies the constructive
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interference condition, it in general may not be the choice which maximizes the efficiency of

the MBG. This is because for many materials, the absorption of light in the EUV/SXR regime is

significant. In many cases it is preferable to choose layer thicknesses which are not optimal with

regard to the interference criterion in order to reduce the thickness of layers of a material which

has a permittivity with a large imaginary component.212, 213 In general, the optimal values of the

thickness of layers of material B and the thickness of layers of material D will depend on many

material factors.

7.3 Proposed Fabrication Method

The goal of our proposed procedure is to create a MBG which is composed of alternating layers

of materials B and D. Ideally, the surfaces of each of these layers will have a good BG profile. In

this section, for the sake of simplicity, we will restrict our attention to the special case that the

surface does not vary in the transverse (y) direction. The more general case that the surface depends

on both x and y is considered in Sec. 7.5.

The fabrication method we propose is the following: Begin with a surface which has a periodic

height modulation in one direction with the periodicity desired for the final MBG. Suitable surfaces

have been produced by light wave interference or e-beam lithography.198, 4, 5, 6, 7, 8 In what follows,

we will take this initial periodic pattern to be a sinusoid, since any sufficiently high amplitude

periodic structure may be reduced to a sinusoid by annealing.126 This pre-patterned, or "templated",

surface is then bombarded at a high angle of incidence with a broad ion beam. During this

bombardment step, a second beam that deposits material B is also incident on the surface. We

will refer to this as stage B, the Bombardment with deposition stage. For appropriately selected
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conditions, the combined effects of these two beams result in a deposited layer of material B

with a surface that is a good BG. Both beams are to have a projection onto the surface parallel or

anti-parallel to the wavevector of the periodic initial condition, but will in general have an oblique

angle of incidence. The ion beam in particular must be obliquely incident. The time evolution of

such a surface in the absence of deposition was the primary focus of Chapter 6 and Ref. [211], and

we will not repeat that analysis here. As we will show, the addition of a deposition beam modifies

the values of some coefficients in the EOM, but does not affect which terms appear. We therefore

expect that ion bombardment with concurrent deposition will produce high efficiency BGs which

are similar to those found in Chapter 6 and Ref. [211], if appropriate beam parameters are chosen.

Once a good BG profile has been obtained, the concurrent ion bombardment and deposition of

material B is terminated, and a broad beam that deposits material D is activated. Just as for the beam

that deposits material B, the azimuthal angle of the beam depositing material D is zero relative to

the x axis, but in general it can have a nonzero polar angle. This results in a layer of material D

growing on the surface, albeit with a BG profile which degrades as this stage proceeds. We will

refer to this as stage D, or the pure Deposition stage. Once a suitably thick layer of material D has

been deposited, stages B and D are alternately and repeatedly applied. This results in a multilayer

stack of layers with BG profiles whose chemical composition alternates between materials B and D

in the vertical direction.

Simultaneous bombardment and deposition during stage B reduces our parameter space sub-

stantially since we need only consider the effective coefficients in the EOM which arise from the

combined effects of deposition and bombardment. For all results presented here, we will begin and

end with stage B. This is done so that the initial sinusoidal profile is made into a BG during the first

step, and so that the final surface profile is as close to a well formed BG as possible.
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We take the EOM for stage D to be a modification of the noiseless Kardar-Parisi-Zhang (KPZ)

equation,214 which is given by

ht = vD + v0Dhx +A2hxx �
1
2

lh2
x , (7.2)

where vD, A2, and l are positive constants, h = h(x, t) is the surface height above the point x at time

t, and v0D is a constant. The KPZ equation is a well established model for the time evolution of the

surface of a thin film during deposition.214 The terms vD and v0Dhx on the right-hand side (RHS)

of Eq. (7.2) come from a small slope expansion of the projection of the deposition current onto

the surface. The term proportional to l results from the assumption that the surface grows along

the local surface normal. Finally, the term proportional to A2 describes the curvature dependent

smoothing that occurs during deposition.

The EOM for stage B is taken to be a generalization of the Kuramoto-Sivashinsky (KS) equa-

tion141, 142 known as the 3KS equation,199, 65 which is given by

ht = vB + v0Bhx �khxx �bhxxxx +
c2

2
h2

x +
c3

6
h3

x , (7.3)

where k and c2 are determined by averaging the coefficients that would be produced by sputtering

and deposition separately, vB and b are positive constants, and v0B and c3 are constants. By assuming

that vB is positive, we are assuming that the rate of deposition of material B on average exceeds the

rate of sputtering due to the concurrent ion bombardment. The term proportional to k on the RHS

of Eq. (7.3) represents a curvature dependent instability, which is in general due to a combination

of curvature dependent sputtering13 and the Carter-Vishnyakov effect.41 The term proportional
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to b , on the other hand, accounts for the effects of thermally activated surface diffusion126 and

ion-induced viscous flow.127

The KS equation, which is obtained by setting c3 = 0 in Eq. (7.3), is the most widely accepted

model for the time evolution of an ion bombarded surface.115, 168 However, experiments with

high angles of ion incidence have shown that the surface develops terraced topographies with two

selected slopes that coarsen in time.53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 51, 52, 27, 64 In order to explain these

experimental results, Pearson and Bradley65 extended the derivation of the KS equation to account

for the effects of the angular dependence of the sputter yield to third order in the surface slope. The

terms proportional to vB, v0B, c2, and c3 on the RHS of Eq. (7.3) result from this expansion. Because

we are proposing that the surface be bombarded with an ion beam at a high angle of incidence, this

EOM is expected to produce more accurate results than the KS equation would.

During stage D we shall analyze the surface in a frame of reference that moves with a constant

velocity �v0D in the x direction and with a velocity vD in the z direction. Similarly, during stage B

we will analyze the surface in a frame of reference that moves with a constant velocity �v0B in the x

direction and velocity vB in the z direction. We consider the evolution of the variable u as a function

of x̄ and t, which are defined as

u ⌘ h� vDt

x̄ ⌘ x+ v0Dt (7.4)

during stage D, and

u ⌘ h� vBt

x̄ ⌘ x+ v0Bt (7.5)
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during stage B. In what follows, we will suppress the bar on x. The EOM for stage D takes the form

ut = A2uxx �
1
2

lu2
x , (7.6)

while the EOM for stage B is

ut =�kuxx �buxxxx +
c2

2
u2

x +
c3

6
u3

x . (7.7)

The solutions to Eq. (7.7) have been studied previously.199, 65, 211, 66 These solutions develop

small regions of rapidly changing slope separated by large regions of nearly constant slope provided

that the coefficient of the cubic nonlinearity c3 is sufficiently large. These constant slopes take

on two selected values, which are determined in part by the coefficients of the nonlinear terms.

Interested readers are referred to Refs. [65], [66], [199], and [211] for a thorough investigation of the

solutions to Eq. (7.7).

For simplicity, we will consider the special case in which the ideal thickness of layers of

materials B and D are the same, and, in addition, the desired horizontal translation between adjacent

layers is the same for materials B and D (this is the case for the MBGs fabricated in, for example,

Refs. [21] and [22]). The extension to the more general case in which the thicknesses of the layers

of materials B and D are not the same is straightforward. Let the duration of stages D and B be

denoted by TD and TB, respectively. The desired layer thickness in the z direction Dh and the desired

horizontal translation of the surface pattern between layers Dl are given by

TBvB = TDvD = Dh (7.8)

TBv0B = TDv0D = Dl. (7.9)
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(The definitions of Dh and Dl are illustrated in Fig. 7.2.) We want the spacing between layers to be

consistent as measured in the direction normal to the blazed faces. This is ensured by the condition

that Dh and Dl are the same for layers of material B and material D. Equations (7.8) and (7.9) result

from general principles of MBG design which are not covered here. Interested readers are directed

to Ref. [20] for a thorough description of MBG design considerations.

Fig. 7.2 A portion of a typical MBG with the quantities Dl and Dh labeled. See the caption of
Fig. 7.3 for the details of the simulation which produced these results. The thin horizontal lines
indicate the average value of the height of the layer they intersect. The thin vertical lines indicate
the location of a local maximum in the surface height. The red (blue) lines correspond to
boundaries between materials D and B (B and D) moving from bottom to top. The simulation
parameters were vD = 100, vB = 0.5, v0D = 6, v0B = 0.03, g = 1, r1 = 0.5, A0 = 30, K0 = 4,
TD = 0.5, TB = 100, and L = 100.

In addition to the conclusions we reach in the following sections regarding optimal values of TB

and TD, it is essential that the interlayer spacing and lateral translation between layers be carefully

chosen and precisely controlled. Fortunately, we do not expect restrictions of the form of Eqs. (7.8)

and (7.9) to be a significant impediment to implementation of our proposed fabrication method. The

parameters vB, v0B, vD, and v0D may readily be manipulated by changing the angle of incidence of

the ion beam, the incidence angles of the deposition beams, and the fluxes of these three beams.

Furthermore, we will demonstrate that the values of TB and TD which lead to good MBGs in our

simulations may be selected from a wide range of values. Equations (7.8) and (7.9) are thus not
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expected to represent a severe restriction on the range of acceptable parameter values. In Section 7.7

we demonstrate that there exist values for the angles and fluxes of the beams depositing materials B

and D such that Eqs. (7.8) and (7.9) are satisfied for a special case. The special case considered

in Section 7.7 is equivalent to the special case described in the previous paragraph, but with the

additional condition that Dl = 0. The argument for the existence of deposition angles and fluxes

which satisfy these criteria is shown to hold for any possible values of Dh, ion beam flux, ion beam

incidence angle, TD, and TB.

We now seek to eliminate as many free parameters as possible from Eqs. (7.6) and (7.7). We

cannot use a horizontal or vertical scale for stage B that is different than the scale for stage D,

but we can use a different time scale. It is advantageous to use a different time scale for stages B

and D because it serves to reduce the number of free parameters by one. We make the following

substitutions:

ũ ⌘ c2

k
u, (7.10)

x̃ ⌘
r

k
B

x, (7.11)

t̃ ⌘ k2

B
t, (7.12)

and

t̃ 0 ⌘ c2

l
t̃. (7.13)

Here t̃ is the rescaled time for stage B and t̃ 0 is the rescaled time for stage D. Suppressing the tildes,

we have

ut 0 = r1uxx �
1
2

u2
x (7.14)
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for stage D and

ut =�uxx �uxxxx +
1
2

u2
x +

g
6

u3
x (7.15)

for stage B. Here

r1 =
A2c2

lk
(7.16)

and

g =
|c3k 3

2 |
c2

2
p

B
. (7.17)

Note that g > 0, and that in order for the theory to be well posed, it is necessary that r1 > 0.

Following the rescaling given by Eqs. (7.10)-(7.13), we are left with 6 quantities that characterize

our system: Firstly, we must specify the scaled wave number K0 and amplitude A0 of the initial

condition. These may be chosen during the fabrication of the templated surface, and may therefore

be thought of as control parameters. The free parameter g in Eq. (7.15) influences the success

of our proposed method. As we showed in previous work,211 g must exceed a threshold value

for bombardment of a templated surface to result in a sawtooth profile. We must also determine

the influence of the free parameter r1 in Eq. (7.14) on the proposed procedure. This parameter

characterizes the rate at which the surface smoothes during deposition. Finally, we must consider

the duration of stages D and B, TD and TB. While Eqs. (7.8) and (7.9) give restrictions on these

parameters, we must also determine whether values of TD and TB which satisfy these conditions also

produce layers which have a good BG profile. In the following two sections, we will use simulations

to explore the influence of these six quantities on the efficacy of our proposed procedure to fabricate

high quality MBGs.
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7.4 One Dimensional Results

In this section we consider the special case in which the surface does not vary in the transverse

direction y. We begin by discussing the method that we will use to evaluate the influence of the six

simulation parameters on the quality of the MBGs produced. We introduce a quantitative measure

of how similar the surface at time t1 is to the surface at time t2. We define our "Correlation Metric"

C(t1, t2) as follows:

1. Consider the surface u(x, t) at two different times t1 and t2. u(x, t1) will be taken to be a

well formed BG surface, and will be referred to as the "reference state". We will assume

that u(x, t) may be accurately represented by its values at N evenly spaced points along the

x direction. The spacing between these points is Dx ⌘ L/N, where L is the sample length.

Periodic boundary conditions are imposed for all simulations considered here.

2. Define

C̃( j, t1, t2)⌘
N

Â
i=1

|u(iDx, t1)�u((i+ j)Dx, t2)|, (7.18)

where i, j 2 Z and 0  j < N.

3. Obtain the correlation metric by setting C(t1, t2) equal to the minimum value of
⇥

C̃( j, t1, t2)
⇤

/N,

where j ranges from 1 to N.

We divide C̃ by N in the third step so that we have an intrinsic measure of the persistence of the

surface profile which is well behaved in the limit that N ! •. We minimize C̃( j, t1, t2) with respect

to j so that surfaces which differ only by a phase shift have C = 0. In what follows, we will choose
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t1 to be a time at which a good BG surface profile has been obtained and use C(t1, t2) to determine

whether the surface has a similar profile at time t2 > t1.

One of the remarkable features of solutions to Eq. (7.15) is that once the surface has become

terraced, to a good approximation the surface pattern simply translates with constant velocity. Thus,

if the surface is in a well formed terraced state at time ts, then C(ts, t) remains small for all t > ts. The

error in approximating the surface by an unchanging travelling wave stems from small amplitude

ripples which form on the terraces. It has been shown66 that the amplitude of these ripples scales as

1/
pg , and so the accuracy of approximating the surface by a steadily propagating periodic state

improves monotonically with increasing g .

We now demonstrate that our proposed procedure can be effective in counteracting the undesir-

able smoothing of the surface brought about by deposition. We choose a particular initial condition

and set of parameters and determine the effects of alternately propagating the surface according to

Eqs. (7.14) and (7.15). Figures 7.3 and 7.4 display the results of one such simulation. The initial

condition for these simulations was obtained by applying stage B to a sinusoidal template for a

time T0 = 1000. As seen in Fig. 7.3, the spacing between layers is very consistent, and there is no

evidence of degradation in the surface profile as layers are added. Figure 7.4 shows that the value

of C(T0 + tB, t) spikes as smoothing occurs during stage D, but it quickly returns to a small value

during stage B. Our proposed fabrication procedure produces a high quality MBG in this simulation.

By contrast, Fig. 7.5 shows the results of a simulation with the same parameters as those used in

Fig. 7.3, except that TB was set to zero. Physically, this corresponds to depositing multiple layers

of the same material with no ion assist. The contrast between Figs. 7.3 and 7.5 is stark - the BG

profile rapidly attenuates if an ion beam is not employed to restore the terraced form. We therefore
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have ample motivation for a more thorough investigation into the circumstances in which ion beam

assisted deposition improves the quality of MBGs.

Fig. 7.3 A simulation of the multilayer fabrication procedure carried through the deposition of eight
bilayers. The simulation parameters were the same as Fig. 7.2. The lowermost (cyan) line shows
the templated initial condition. The red (blue) lines correspond to boundaries between materials B
and D (D and B) moving from bottom to top. The uppermost (green) line indicates the vacuum-D
interface.

To this end, we have performed extensive numerical simulations of Eqs. (7.14) and (7.15) for a

broad range of parameters. To perform these simulations, we used the method of exponential time

differencing proposed by Cox and Matthews160 and improved by Kassam and Trefethen.161 From

these simulations, we will gain insight into the robustness and potential limitations of our MBG

fabrication procedure, and how the values of the six simulation parameters influence the resulting

multilayer. Throughout this work, we will use K0 to refer to the integer number of oscillations

a pattern has in the sample length L. Furthermore, for results presented in the remainder of this

section, all simulations will be of stage B with a templated initial condition, followed by a simulation

of stage D, followed by an additional simulation of stage B. The final time for these simulations
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Fig. 7.4 A semi-log plot of C(T0 + tB, t) for the simulation shown in Fig. 7.3. The upward spikes
occur during stage D, while the return to small values occurs during stage B.

will therefore be t f = 2TB +TD. We will also use the end of the first stage B as the reference state

for the metric C, since we expect that the surface will be a good BG profile at the end of the first

stage B for appropriately chosen initial conditions and time TB.

We begin by investigating the effect that the initial amplitude A0 and scaled wave number K0

have on the multilayer. We choose to examine these parameters together since they are the only two

parameters which are determined during the formation of the templated surface. The values of A0

and K0 can be selected in an experiment, and thus represent parameters which can be tuned with

relative ease. Figure 7.6 shows the value of C(TB, t) averaged over the final 10 time units of each

simulation for a range of values of A0 and K0. Note that for all simulations considered here TB is

significantly larger than 10, and so this average is performed entirely over times close to the end of

the second stage B. A low value of the average of C indicates that the surface at time t f = 2TB +TD

is very similar to the surface at time t = TB. Figure 7.6 strongly resembles the plots of efficiency as

a function of A0 and K0 for BGs.211 This plot indicates that the ideal values for K0 for a MBG are

the same as those for a BG. The influence of A0 can be summarized simply: If A0 is large enough
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Fig. 7.5 A simulation of the multilayer deposition procedure carried through 16 layers. The
simulation parameters were identical to those used in Fig. 7.3 except that after the first stage B, TB
was set to zero. The lowermost (cyan) line indicates the templated initial condition. The red
(second to lowest) line shows the surface profile at the end of the first and only stage B. The
multiple blue lines display the surface profile at the end of each subsequent stage D, except for the
final stage D. The uppermost (green) line represents the vacuum-D interface.

that the surface has formed a good BG by the end of the first stage B, it is sufficiently large for the

proposed MBG fabrication procedure to be implemented successfully.

The next area of interest is the combined influence of the scaled wave number of the MBG K0

and the strength of the smoothing during stage D given by r1. To this end, we simulated our proposed

fabrication procedure for a range of values of these parameters. We chose to examine this pair of

parameters to verify that values of K0 which produced good MBGs in Fig. 7.6 continue to produce

good MBGs for different deposition conditions. Figure 7.7 demonstrates that the persistence of the

BG profile depends strongly on the wavelength of the pattern. In the bands of acceptable values

of K0, the degree of smoothing during the pure deposition stage D can be quite large and yet the
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Fig. 7.6 The value of C(TB, t) averaged over the final 10 time units. The parameters were g = 1,
r1 = 1, TD = 2, TB = 200, and L = 200. Black regions correspond to surfaces which are nearly
identical to the initial BG apart from a phase shift. Each cell in this figure represents an average
over 10 simulations with random initial noise of amplitude 10�4A0 added to the pre-pattern. The
final time Tf is 2TB +TD = 402.

surface almost exactly returns to the original BG state at the end of the second stage B. However,

for values of K0 outside of these bands, a much smaller degree of smoothing is required for the

surface to evolve into a state which does not resemble the initial BG profile. In particular, surface

patterns with the wavenumber values in the interval 9 < K0 < 12 have a tendency to reform into a

state with twice as many local maxima as the original state. Figure 7.8 shows an example of this

behavior for a different set of parameters than those represented in Fig. 7.7.

We will now examine the limits of a very good BG state by sweeping through values of r1 and

TD. We chose to examine this pair of parameters because together they completely characterize the

surface smoothing which occurs during stage D. Figure 7.9 shows the value of C(TB, t) averaged

over the final 10 time units for a range of values for r1 and TD. The large dark regions in Fig. 7.9

correspond to parameter sets which produce a high quality MBG. It is clear from this figure that r1

and TD can adopt a broad range of values without disrupting the proposed procedure.
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Fig. 7.7 The value of C(TB, t) averaged over the final 10 time units. The parameters were g = 1,
A0 = 30, TB = 500, TD = 2, and L = 200. Black regions correspond to surfaces which are nearly
identical to the initial BG. Each cell in this figure represents an average over 10 simulations with
random initial noise of amplitude 10�4A0 added to the pre-pattern. The final time Tf is
2TB +TD = 1002.

It is worth noting that based on experimental results on the deposition of thin films, all but the

very smallest values of TD and r1 included in Fig. 7.9 correspond to very thick deposited layers.

In order to demonstrate this, we will compare the order of magnitude of the smoothing seen in

our simulations with the smoothing observed in experiments. Since we are considering MBGs

which operate in the soft X-ray or extreme ultraviolet regime, we expect that it will be necessary

to deposit layers whose thickness is on the order of 10 nm. Experimental results directly relevant

to our proposed procedure may be found in Ref. [21]. In that work, alternating layers of Mo and

Si were deposited on a BG substrate. Comparing the results in that work to Fig. 7.5, we see that

Fig. 7.5 depicts a case of exceptionally strong smoothing. The parameters used to generate Fig. 7.5

correspond to values in the very lower left-hand corner of Fig. 7.9.

Consider also the results of Ref. [208]. In that work, layers of ZrO2 were deposited on a rough Ag

surface. For deposited layers less than 30 nm thick, there was no statistically significant reduction in

surface roughness. In Ref. [210], the smoothing of a sinusoidal surface profile during deposition was

studied. In that work, a 10 nm thick layer of C deposited on a rippled Si surface was found to reduce
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Fig. 7.8 A demonstration of the maxima doubling that results in the failure of our MBG procedure.
The lower (blue) line shows the surface profile after one stage of simultaneous bombardment and
deposition of material B. The upper (green) line shows the surface profile after a subsequent
deposition of material D followed by another stage of concurrent bombardment and deposition of
material B. The simulation parameters were g = 1, r1 = 2.38, TD = 22.5, TB = 100, A0 = 20,
K0 = 3, and L = 80.

the root-mean-square surface width by only about 5%. By contrast, consider Fig. 7.5, for which

TD = 0.5 and r1 = 0.5. In this case, the surface profile attenuates markedly after the deposition of a

few layers. Based on these experimental results, we conclude that the majority of our simulations

are in the regime in which smoothing is very strong.

We have performed numerical simulations with large values of r1 and/or TD both for the sake of

completeness and to identify the circumstances in which our method fails. Figure 7.10 demonstrates

the degree to which a smoothed surface is restored to a good BG profile as a result of stage B. The

amplitude of the pattern is greatly reduced by stage D, and yet the surface still returns to a form

very close to that produced by the initial stage of deposition and bombardment.

One somewhat surprising result of the analysis of the influence of r1 and TD is the band of

inferior results for the range TD ' 13 to TD ' 18 seen in Fig. 7.9. For somewhat larger values of TD,

we see that the surface reproduces its initial state more quickly and accurately. Inspection of the

inferior states reveals that the maxima doubling effect responsible for the band of intermediate K0
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Fig. 7.9 The value of C(TB, t) averaged over the final 10 time units as a function of TD and r1. The
parameters were g = 1, TB = 100, A0 = 20, K0 = 3, and L = 160. Black regions correspond to
surfaces which are nearly identical to the initial BG.

values which produce poor quality MBGs in Fig. 7.7 is also responsible for these inferior states.

Surface profiles at two times are shown for such an inferior MBG in Fig. 7.8. Surprisingly, in some

cases it is better to increase TD, the length of the deposition step D. Once again, however, these

values of TD and r1 correspond to extreme smoothing of the surface, and it is very likely that any

real experiment would correspond to values in the lower left corner of Fig. 7.9.

For all of the simulations presented so far, it has been the case that TB significantly exceeds

TD. Although the duration of stages B and D in real time units depends on the rescaling given by

Eqs. (7.12) and (7.13), there are two reasons why we might expect TB to exceed TD after restoring

physical units. The first is that during stage B material is sputtered away during deposition. We have

assumed that the relative fluxes of the deposition beam and the ion beam are such that a layer of
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D

Fig. 7.10 Snapshots of a simulated surface just before the deposition step (lower red line), just after
the deposition step (middle blue line), and after subsequent bombardment and deposition (upper
green line). The simulation parameters were g = 1, r1 = 1, TD = 20, TB = 100, A0 = 30, K0 = 12,
and L = 200.

material B is deposited. However, for equal thicknesses of layers B and D, the volume of material

B deposited during stage B must exceed the volume of material D deposited during stage D. If

the fluxes of the two deposition beams are equal, and the atomic volumes of materials B and D

comparable, we would expect that stage D will take longer than stage B.

The second reason why TB > TD in our simulations is that the surface profile is not degraded by

a long stage B. Consider, for example, Fig. 7.4. Following stage D, the surface rapidly returns to a

good BG profile. For the majority of time in stage B, the BG profile is not improved or degraded.

The quality of the MBG is unaffected by choosing a value of TB which is too long, but choosing one

that is too short may give poor results.

In order to investigate the minimum value of TB which may be used to successfully return a

surface to a good BG profile following the smoothing that occurs during stage D, we have simulated

a slightly different situation than we have considered so far. Previously we began with a sinusoidal

profile, then simulated stage B for a time TB, followed by stage D for a time TD, followed by stage B

for time TB. We now begin with a sinusoidal profile, simulate stage B for a time T0 = 100, followed
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by a simulation of stage D for a time TD, followed by a simulation of stage B for a time T1. From

these simulations we wish to extract the minimum value of T1 which results in the surface becoming

sufficiently similar to the BG profile obtained at time T0. In this case we will define “sufficiently

similar” to mean that C(T0,T0 +TD +T1)C⇤, where C⇤ is a threshold value and T1 > 0. Previous

work has revealed that, for a surface governed by Eq. (7.15), and with ta and tb chosen to be

sufficiently large that these times are long after a well formed terraced state has developed, the

average value of C(ta, tb) ' (2.5g)� 1
2 .66 This is true provided |ta � tb| is not very small. We will

take this average value of C to be our threshold value C⇤.

Figure 7.11 shows T min
1 , the minimum positive value of T1 for which C(T0,T0 +TD +T1)C⇤

for a range of values for r1 and TD. This should be interpreted as the minimum value of TB that

could be used to successfully restore a BG profile which has been smoothed by deposition of

material D. We have not investigated the minimum value of T0 or its influence on T min
1 . The results

which did not cross the threshold C⇤ before the simulation was terminated were assigned a value

of T min
1 = 100, but would in fact never fall below the threshold. For these simulations, the surface

formed into an approximate steady state that was not very similar to the initial BG profile, and thus

C(T0,T0 +TD +T1) never became small. These states suffered from the maxima doubling effect

seen in Fig. 7.8.

7.5 Two-Dimensional Results

It is important to verify that the encouraging results found in the preceding sections continue to

hold for surfaces which have a height h that varies in the transverse direction y [i.e. h = h(x,y, t)

and u = u(x,y, t)]. Extending our investigation to two dimensions increases the parameter space
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Fig. 7.11 A plot T min
1 vs r1 and TD. The simulation parameters were identical to those in Fig. 7.9.

The white regions have been assigned a time of T min
1 = 100, but in fact have adopted approximately

steady states that are not similar to the original BG profile, and for which C(T0,T0 +TD +T1) never
falls below the threshold C⇤ for T1 > 0. For these simulations T0 = 100.

substantially while making each simulation much more computationally intensive. The correlation

metric C(t1, t2) may be readily extended to a 2D surface on an L⇥L domain with N2 evenly spaced

gridpoints by defining

C̃2( j, t1, t2)⌘
N

Â
m=1

N

Â
i=1

|u(iDx,mDx, t1)�u((i+ j)Dx,mDx, t2)|, (7.19)

and setting C2(t1, t2) equal to the minimum value of
⇥

C̃2( j, t1, t2)
⇤

/N2, where j ranges from 1 to N.

A thorough investigation of the parameter space for the case of a BG formed by bombarding

a pre-patterned surface was provided in Ref. [211], and we will not reproduce those results here.

Instead, we focus on whether C2(TB, t) behaves in a fashion similar to C(TB, t) for the case in which

there is a linear instability in the transverse direction.

As mentioned previously, Eq. (7.3) results from extending the derivation of the KS equation

to third order in the surface slope.65 A natural extension of this equation to the case in which the

surface varies in the y direction is therefore the anisotropic KS (aKS) equation with an added cubic

180



nonlinearity. The resulting anisotropic 3KS (a3KS) equation is given by

ht = vB + v0Bhx +k (�hxx +Ayhyy)�b—2—2h+
c2

2
�

h2
x +lyh2

y
�

+
c3

6
h3

x , (7.20)

where vB, v0B, k , Ay, b , c2, ly, and c3 are constants, and the subscripts on h denote partial derivatives.

We shall take the extension of the KPZ equation (7.2) to 2+1 dimensions to be given by

ht = vD + v0Dhx +A2(hxx +R0
1hyy)�

l
2
(h2

x +R0
2h2

y), (7.21)

where the constants R0
1 and R0

2 characterize the anisotropies in the linear and nonlinear terms,

respectively. For the case of normal-incidence deposition, R0
1 = R0

2 = 1. We shall adopt the same

rescalings and frames of reference used to obtain Eqs. (7.14) and (7.15). Additionally, we define

ỹ ⌘
r

k
b

y, (7.22)

and suppress the tilde. Equations (7.20) and (7.21) reduce to

ut =�uxx +Ayuyy �—2—2u+
1
2
�

u2
x +lyu2

y
�

+
g
6

u3
x (7.23)

and

ut = r1(uxx +R0
1uyy)�u2

x �R0
2u2

y , (7.24)

respectively. The task at hand is to confirm that the conclusions of the previous section hold for

reasonable values of the new parameters ly, R0
1, R0

2, and Ay. There are some qualitative differences

between the solutions to Eq. (7.15) and the solutions to Eq. (7.23) that further complicate this

investigation. For low amplitude white noise initial conditions, solutions to Eq. (7.15) tend to form
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an approximate steady state which propagates with little change. By contrast, solutions Eq. (7.23)

may not spontaneously form such an approximate steady state, and under some circumstances they

appear to coarsen indefinitely.66

Despite this qualitative difference between solutions, simulations of the proposed MBG fabrica-

tion procedure indicate that small variations in the transverse direction may not have a significant

negative effect on the MBGs produced. For the case in which Ay � 1, the transverse direction is

very stable, and terms proportional to hy and its derivatives in Eqs. (7.20) and (7.21) are likely

to be negligible. In this limit, the 1D analysis presented in the previous section is a very good

approximation.

We therefore focus on the case in which the transverse direction is moderately stable or even

unstable. Figures 7.12 and 7.13 show snapshots of the surface and the value of C2(TB, t) respectively

during the deposition of multiple layers for a case in which Ay =�0.2 (i.e., a moderate instability

in the transverse direction). Just as in the 1D case, there is a spike in the value of C2(TB, t) during

the deposition stage, followed by a decay during the subsequent stage in which concurrent ion

bombardment and deposition occurs. Furthermore, the value of C2(TB, t) remains small until another

deposition stage begins.

In Ref. [211], it was found that even for the case of an isotropic linear instability, high quality

BGs could be produced if the time scale of transverse ripple formation was significantly longer than

the time scale of terrace formation. For MBGs, however, we would like to be able to deposit a large

number of layers without a significant deterioration of the pattern, and thus we cannot rely on such

a time scale argument.

Numerical simulations such as those summarized in Fig. 7.13 indicate that the MBG fabrication

procedure we have proposed can be successfully implemented even in the case that there is a
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Fig. 7.12 Snapshots of the simulated surface during the MBG fabrication procedure. The simulation
parameters were A2 =�0.2, ly = 1, g = 1, r1 = 1, TB = 200, TD = 5, A0 = 10, K0 = 15, and
L = 400. The labels "n layers" mean that the surface is shown after n+1 applications of stage B,
and n applications of stage D. The vertical scale ranges from -20 to 20.

transverse instability, provided that this instability is not too strong compared to the instability in

the x direction. Figure 7.14 shows the surface following the deposition of several layers for a case

in which A2 =�0.5. In this case, the transverse instability is strong enough to disrupt the formation

of a highly ordered MBG, and our proposed fabrication method fails to produce a high quality

MBG. Figure 7.15 shows the value of C2(TB, t) for the simulation shown in Fig. 7.14. In contrast to

Fig. 7.13, the average value of C2(TB, t) grows due to the strong transverse instability, eventually

reaching a state which is not at all similar to the surface at time TB.
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Fig. 7.13 The value of C2(TB, t) over the course of several stages for the simulation depicted in
Fig. 7.12. Notice that as in the one-dimensional case, C2(TB, t) exhibits rapid growth during stage
D, and subsequently returns to a small value during stage B.

7.6 Conclusion

A great deal of research has been done on improving the efficiency of multilayer blazed gratings

(MBGs).21, 22, 23, 24 Several methods exist for creating a nearly ideal blazed grating (BG) profile,

including methods which utilize bombardment with a broad ion beam.198, 4, 5, 6, 7, 8 The degradation

of this profile during the deposition of a multilayer stack remains the primary obstacle to improving

the efficiencies of MBGs, however.21, 22, 23, 24

We have proposed and analyzed a method for producing MBGs whose surface profile does not

significantly degrade in quality as additional layers are deposited. This procedure consists of two

distinct phases, B and D, which are alternately and repeatedly applied. During phase B, a surface

which has been prepatterned with a scaled wave number K0 and amplitude A0 is bombarded by

an obliquely incident noble gas ion beam. Concurrently, a deposition beam of material B is also

incident on the surface. During phase D, a beam of material D is incident on the surface. The

durations of stages B and D are TB and TD, respectively. The primary results of this study are as

follows:

184



Fig. 7.14 Snapshots of the simulated surface during the MBG fabrication procedure. The simulation
parameters were identical to those in Fig. 7.12 except that A2 =�0.5. The stronger instability in
the transverse direction leads the good BG pattern formed after the first stage B to degrade as
additional layers are deposited. The vertical scale ranges from -20 to 20.

1. Employing bombardment with oblique-incidence broad ion beam during the deposition of

thin layers on a BG profile has the potential to create a MBG whose surface profile does not

degrade during the deposition of multiple layers.

2. The wavelength and amplitude of the template must be carefully chosen in order for a BG

to form. Once a good BG has been formed, however, it is nearly always a sufficient starting

point for fabricating a high quality MGB using our proposed method. For a detailed analysis

of the A0 and K0 values which produce efficient BGs readers are directed to Ref. [211] (see, in

particular, Figs. 3 and 4 of that paper). Figure 7.6 of the present work demonstrates which of

these good initial BG states are suitable for our proposed MBG fabrication procedure.
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Fig. 7.15 A plot of C2(TB, t) for the simulation shown in Fig. 7.14.

3. The surface may be smoothed to a considerable degree during stage D and yet it can still

return to a good BG profile during stage B. As noted in the text, most of the parameter values

characterizing stage D considered here correspond to experimental conditions which strongly

favor smoothing. These extreme conditions were explored so as to identify the limits of our

proposed procedure, but related experimental results208, 210, 21 indicate that these limits will

not be an impediment to the successful implementation of our proposed procedure.

4. To nearly perfectly recover the desired BG profile, the duration of stage B needs only to

exceed a threshold value. This is provided that other conditions are chosen in such a way that

Eqs. (7.8) and (7.9) are satisfied.

5. These results extend to a surface whose height varies in the transverse direction y, provided

that the surface is stable or moderately unstable in the transverse direction.

Our numerical results strongly suggest that our proposed fabrication procedure may be used to

circumvent the primary obstacle to good MBG fabrication in the SXR/EUV regime: the smoothing

that occurs during thin film deposition. It is our hope that this work will inspire experimental work

investigating the utility of ion-assisted deposition in the fabrication of MBGs.
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7.7 Selection of Deposition Beam Parameters

To show how a judicious selection of the incidence angles and fluxes of the two deposition beams

may be used to accommodate a particular interlayer spacing Dh, we will examine a particular case in

detail. For this special case, we adopt the condition that the vertical thickness of layers of material

A is the same as the vertical thickness of layers of material B. We also require that the horizontal

translation between all layers be zero (i.e. Dl = 0). This special case is particularly relevant since

it corresponds to the geometry of the MBGs produced in Refs. [21] and [22]. We will show that,

for this special case, it is possible to choose values for the fluxes and incidence angles of the two

deposition beams to accommodate an arbitrary choice of Dh, TB, and TD for any choice of ion beam

incidence angle and flux.

Let qB, q 0
B, and q 0

D be the polar angle of the ion beam during stage B, the deposition beam

during stage B, and the deposition beam during stage D, respectively. Let us assume that the rate

with which material is deposited is proportional to the projection of the deposition flux onto the

surface normal vector. This will be the case if the density of the film remains constant during

deposition. For simplicity, we will suppress all time dependence on the surface curvature, since it

does not contribute to propagation of the surface pattern. It follows from these assumptions that the

contribution to ht due to deposition may be written

h(deposition)
t
p

1+h2
x

= WiJi cos(q 0
i,local), (7.25)

where Wi is the atomic volume of species i, Ji is the flux of species i, q 0
i,local is the angle between

the deposition beam of species i and the local surface normal, and i = D,B. Similarly, we assume
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that the rate at which material is removed by the ion beam is proportional to the sputter yield Y (q)

evaluated at the local angle of ion beam incidence qlocal . Thus

h(erosion)
t
p

1+h2
x
=�WBJionY (qlocal)cos(qlocal), (7.26)

where Jion is the flux of the ion beam. The EOM for stage B is

ht = h(deposition)
t +h(ion)

t , (7.27)

with i = B. The EOM for stage D is simply

ht = h(deposition)
t (7.28)

with i = D.

By expanding Eqs. (7.27) and (7.28) to first order in hx, we obtain the following expressions

for vB, v0B, vD, and v0D :

vB = WBJB cos(q 0
B)�WBJionY (qB)cos(qB), (7.29)

vD = WDJD cos(q 0
D), (7.30)

v0B = �WBJB sin(q 0
B)�WBJion

∂
∂q

[Y (q)cos(q)]
�

�

qB
, (7.31)

and

v0D = �WDJD sin(q 0
D). (7.32)
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Since we have assumed Dl = 0, we immediately conclude that we must have

v0D = v0B = 0. (7.33)

Hence q 0
D = 0 and

JB sin(q 0
B) =�Jion

∂
∂q

[Y (q)cos(q)]
�

�

qB
. (7.34)

Equation (7.8) yields

Dh = TB
⇥

WBJB cos(q 0
B)�WBJionY (qB)cos(qB)

⇤

, (7.35)

and

Dh = TDWDJD. (7.36)

Equation (7.36) gives simple relationship between TD and JD. Because we have chosen q 0
D = 0, we

simply deposit long enough to get a layer of the desired thickness.

We are now left with the task of choosing values for JB and q 0
B in such a way that Eqs. (7.34)

and (7.35) are satisfied. It is very likely that we would be required to choose a value of qB within a

particular range, so that the surface spontaneously forms terraces. However, for any value of qB, we

may define

a0 ⌘ Y (qB)cos(qB) (7.37)

and

a1 ⌘
∂

∂q
[Y (q)cos(q)]

�

�

qB
. (7.38)

189



Given arbitrary positive values for TB, Jion, and Dh, we may solve Eqs. (7.34) and (7.35) for the

values of q 0
B and JB. Assuming a0a1 6= 0, these are given by

tan(q 0
B) =� Jiona1

Dh
TBWB

+a0Jion
(7.39)

and

JB =� Jiona1

sin(q 0
B)
. (7.40)

Every term in the denominator of Eq. (7.39) is positive, and so q 0
B and a1 have opposite signs. This

implies that Eq. (7.40) always gives a positive value of JB, as required.

This solution is presented as a demonstration of the flexibility of our proposed fabrication

procedure. The deposition angles and fluxes are expected to be relatively easy to adjust in an

experiment, and have been shown here to accommodate arbitrary positive values of Dh, Jion, TD, and

TB, as well as an arbitrary value of qB. It will therefore always be possible to choose the deposition

beams so that Eqs. (7.8) and (7.9) are satisfied for the special case in which Dl = 0.
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CHAPTER 8

CONCLUSION

This thesis represents an account of the original contributions to the scientific literature I have

made during my time at Colorado State University. In collaboration with my advisor Mark Bradley,

we developed our own formalism for using the information of a single ion impact crater to make

predictions for the surface evolution as a whole. We furthermore demonstrated that the previous

attempts to develop such a formalism were deeply flawed and contradicted earlier work.

We examined the case in which a binary material is bombarded by a broad ion beam while the

sample is simultaneously rotating azimuthally. While limited to the early time regime, this work

made some unexpected and interesting predictions. Under certain conditions, the wavelength of the

pattern changes discontinuously through a continuous variation of the rotation frequency. These

results were shown to hold qualitatively for continuous azimuthal rotation, and were placed in the

appropriate mathematical context.

We also examined the case in which an elemental sample was bombarded with an ion beam

while periodically the polar angle of ion beam incidence was periodically varied. We demonstrated

with numerical simulations that this can suppress the spatiotemporal chaos and produce ripple

patterns which are nearly perfectly periodic and stable in the long time limit. Given that the equation

of motion considered is the most commonly adopted model of ion bombardment, this work should

be of great interest for experimentalists.
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Finally, we proposed and analyzed a new method for manufacturing blazed gratings using ion

bombardment. We demonstrated evidence that bombardment of a pre-patterned surface at a high

angle of incidence could be used to fabricate a blazed grating with high efficiency. We then extended

this method to the case of multilayer blazed gratings. We demonstrated that ion bombardment during

the deposition of the multilayer stack could be used to counteract the undesirable smoothing that has

been seen to degrade the surface profile. This proposed procedure is currently being implemented

in collaboration with Professor Carmen Menoni and her students.
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