
THESIS 

 

 

 

 

DIVERSE DEVELOPMENTAL TRAJECTORIES OF PERINEURONAL NETS DURING 

VERTEBRATE NERVOUS SYSTEM CONSTRUCTION 

 

 

 

 

 

 

Submitted by 

Jacob Edwards 

Department of Biology 

 

 

 

 

 

In partial fulfillment of the requirements 

For the Degree of Master of Science 

Colorado State University 

Fort Collins, Colorado 

Spring 2018 

 

 

 

Master’s Committee: 

 

 Advisor: Kim Hoke 

 

 Charles Anderson 

 Deborah Garrity 

 Rachel Mueller 



Copyright by Jacob Aaron Edwards 2018 

 

All Rights Reserved



	 ii 

ABSTRACT 

 

 

 

DIVERSE DEVELOPMENTAL TRAJECTORIES OF PERINEURONAL NETS DURING 

VERTEBRATE NERVOUS SYSTEM CONSTRUCTION 

 

 

In the central nervous system, aggregated extracellular matrix compounds known as 

perineuronal nets (PNNs) shape patterns of neural connectivity over development. Removing 

PNNs restores juvenile-like states of neural circuit plasticity and subsequent behavioral 

plasticity. Our current understanding of the role of PNNs in plasticity has resulted in promising 

therapeutic applications for many neurodegenerative diseases. To ensure safety and efficacy in 

such applications, we require a broad understanding of PNN function in the nervous system. The 

current data suggest that PNNs stabilize fundamental features of neural connectivity 

progressively in an ascending, or “ground-up”, fashion. Stabilizing lower input processing 

pathways establishes a solid, reliable foundation for higher cognition. However, data on PNN 

development exists almost exclusively for mammals. Is, then, the ground-up model of circuit 

stabilization a general feature of PNNs across vertebrates? I found that developmental patterns of 

PNNs in fish (Poecilia reticulata), amphibians (Rhinella yunga), and reptiles (Anolis sagrei) 

follow diverse trajectories, often emerging first in higher forebrain processing pathways. 

Similarly, they associate with diverse cell populations and vary widely in structural 

characteristics both within and across species. While my data do not invalidate a ground-up 

model for mammal PNNs, they do suggest that this pattern may be an evolutionary innovation in 

this group, and that the broad roles of PNNs in circuit stability and neuronal physiology are 

complex and lineage-specific. 
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CHAPTER 1: OVERVIEW 

 

 

 

Neural networks that drive animal behavior develop under the guidance of an inherited 

genetic program, yet are simultaneously susceptible to rewiring following sensory experience or 

learning. Decades of research have identified mechanisms that explain the balance of neural 

connection updating (plasticity) with maintenance, or homeostasis (stability), from long-term 

potentiation and depression at the synapse level (Malenka & Bear 2004), modification of ion 

channel parameters at the cellular level (O’Leary et al. 2013), to synaptic scaling that results in 

stability across circuits (Turrigiano 2008). Such a dynamic interplay of stabilizing and 

destabilizing forces points to an intricate balance of neural plasticity and stability in the central 

nervous system (CNS), achieved by cells and the types of input they receive (Schulz 2006).  

Mechanisms that permit plasticity, such as strengthening or weakening of synaptic 

partnership due to spike-timing-dependent activity, drive neural systems into patterns of 

excitation or inhibition that adapt an individual to its environmental demands. But models 

including plastic changes alone demonstrate that systems tend toward extremes, with a result of 

over-excitation or -inhibition to stimuli, leading to irresolvable overload by the time signals 

reach higher processing areas, or complete loss of signal transduction (Abbott & Nelson 2000; 

Mermillod 2013). So-called “homeostatic” mechanisms enter to stabilize and tune neural systems 

such that plasticity is possible along with maintenance of signal integrity (Turrigiano 2008). 

 While much of our understanding of the balance of plasticity and stability in the CNS 

rests on the behavior of neurons and their supportive glial cells, recent years have seen the neural 

extracellular matrix (ECM) as a key player in maintaining plasticity/stability balance over 

developmental time (Celio et al. 1998; Takesian & Hensch 2013; Miyata & Kitagawa 2017). 
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Highly structured, lattice-like ECM compounds envelop specific neuronal subtypes in specific 

brain regions during development. Cells expressing the membrane-bound protein hyaluronan 

synthase secrete a hyaluronic acid chain into the extracellular space, which binds chondroitin 

sulfate proteoglycans, link proteins, and tenascins to create a web of coating around neurons, 

known as the perineuronal net (PNN; Kwok et al. 2011). Work in mammalian visual, 

somatosensory, and auditory systems has identified that PNNs preferentially surround the soma 

and proximal dendrites of large, fast-spiking, inhibitory, parvalbumin-positive (PV+) 

interneurons upon exposure to orthodenticle homeobox 2 protein (Otx2) synaptically transmitted 

from sensory input cells, such as retinal ganglion or whisker cells (Friauf 2000; Hensch 2005; 

McRae et al. 2007; Sugiyama et al. 2008). Thus, PNN development is dependent on signal 

transduction between neurons. PNNs further protect their neurons from firing-induced oxidative 

stress, provide an ionic buffering environment, and enhance excitability. In sum, they enable 

rapid and prolonged bursting behavior that has strong influence on participating neural circuits 

(Härtig et al. 1999; Cabungcal et al. 2013; Hu et al. 2014; Balmer 2016).  

Critically, however, PNNs act as a physical and chemical blockade for approaching 

axonal growth cones, thereby ending developmental periods of activity-dependent rewiring. 

PNNs are impenetrable physical structures for growth cones, harbor repulsive molecules such as 

semaphorins, and spatially corral neurotransmitter receptors (Sorg et al. 2016). By and large, 

then, the emergence of PNNs in a given brain region has been taken as a sign of a “mature” 

circuit component, one that is no longer capable of establishing new synaptic partners regardless 

of the strength, frequency, or source of input (see e.g. Köppe et al. 1997). 

 An ever-growing body of literature spanning multiple animal species, brain regions, and 

behavioral assays supports the role of circuit stabilization by PNNs. The end result of most 
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empirical studies removing PNNs in adulthood is a return of functional neural and behavioral 

plasticity. In 2002, Pizzorusso et al. were the first to demonstrate that degrading PNNs with the 

enzyme chondroitinase ABC (ChABC) restored ocular dominance plasticity to visual circuits in 

adult rats, a feat typically possible only during a critical period of development that ends in the 

third week of life. Since then, numerous experiments have reported a ChABC-induced return of 

critical period-like plasticity and learning capacity in adult animals and in a variety of behaviors, 

including fear memory extinction (Gogolla et al. 2009), fear learning (Hylin et al. 2013), object 

recognition memory (Romberg et al. 2013), auditory tone reversal learning (Happel et al. 2014), 

and motor recovery from spinal cord injury (Wang et al. 2011). 

 These studies among others have inspired promise of PNN manipulation for improving 

human learning capacity, therapy for addiction, and CNS damage. However, because they have 

almost exclusively been studied in mammals, it has been largely ignored that PNNs may be a 

fundamental feature of vertebrate biology and a critical regulator of CNS plasticity over 

development. While PNNs are found broadly throughout the mammalian CNS (Figure 1.1), 

Brückner et al. (1994; 1998) and Mueller et al. (2016) have been among the few to observe and 

consider species and sex differences in PNN expression, finding stark differences between even 

closely related rodent species both within and between brain regions (Brückner et al. 1994), and 

between rodents and primates (Mueller et al. 2016), possibly representing differences in 

environmental and behavioral demands for plasticity. Along this line, one study reported that 

PNNs in the avian (zebra finch; Taenioypygia guttata) song-learning and song-production 

system emerge likewise in an experience-dependent and developmentally regulated fashion 

(Balmer et al. 2009). While preliminary experiments with ChABC PNN removal failed to restore 

the song-learning critical period in this species, further observations by Cornez et al. (2017)  
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Figure 1.1. Distributions of PNNs in mouse, Mus musculus. Black circles indicate regions 

containing PNNs. Based on 
1
Horii-Hayashi et al. (2015), 

2
Brückner et al. (2000). Sagittal 

view with PNN-containing regions positioned roughly into major brain divisions, collapsed 

along medial-lateral axis, using Allen Brain Atlas (2008). Anterior/rostral regions leftmost, 

posterior/caudal regions rightmost. OB, olfactory bulb; Ctx, cortex; SP, subpallium; Hip, 

hippocampus; Th, thalamus; Hyp, hypothalamus; Mes, mesencephalon; Cb, cerebellum. See 

Table 1.1 for list of abbreviations. 

  

demonstrated that PNNs are present, though significantly less dense, in songbird species capable 

of seasonal song updating versus those that pass through a critical period for song-learning (such 

as zebra finches). Further supporting the concept that PNNs may contribute directly to the 

plasticity of learned, ecologically relevant behaviors was the finding that PNNs are also greatly 

reduced in female zebra finches, who do not learn to sing or produce song-like vocalizations 

(Meyer et al. 2014; Cornez et al. 2015). In sum, there remains immense potential to explore the 

evolution of animal neural and behavioral development by considering how the neural ECM, 

particularly PNNs, contribute to the balance of plasticity and stability in the vertebrate CNS.
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Table 1.1.  List of abbreviations used in figures and text for brain regions across taxa. Mammalian abbreviations from Horii-

Hayashi et al. (2015), others from Nieuwenhuys et al. (1998). 
 

Mammals 

A Amygdala LH Lateral hypothalamus Rt Reticular thalamic nucleus 

APT Anterior pretectal nucleus LM Lateral mammillary nucleus S1 Primary somatosensory cortex 

aPVN Anterior paraventricular nucleus LPO Lateral preoptic area S2 Secondary somatosensory cortex 

Arc Arcuate nucleus LS Lateral septum SC Superior colliculus 

Au Primary auditory cortex M1 Primary motor cortex SN Substantia nigra 

BNST Bed nucleus of the stria terminalis M2 Secondary motor cortex Sp5 Spinal trigeminal nucleus 

CA Hippocampus, CA1-3 mRt Mesencephalic reticular formation V1 Primary visual cortex 

Cb Cerebellum MS Medial septum V2 Secondary visual cortex 

Cg Anterior cingulate O Orbital cortex Ve Vestibular nuclei 

Cpu Caudate putamen Pa4 Paratrochlear nucleus VMH Ventromedial hypothalamic nucleus 

DG Hippocampus, dentate gyrus Pir Piriform cortex VP Ventral pallidum 

FrA Frontal association cortex Pn Pontine reticular nuclei VTA Ventral tegmental area 

Gi Gigantocellular reticular nucleus prCnF Precuneiform area ZI Zona incerta 

IC Inferior colliculus PrL Prelimbic cortex   

InC Interstitial nucleus of Cajal RN Red nucleus   

LHb Lateral habenular nucleus RS Retrosplenial cortex   

 

Fish 

CH Caudal hypothalamus DH Dorsal hypothalamus rets Medullar reticular nuclei 

CG Central (periaqueductal) grey nMLF Nucleus of the MLF MLF Medial longitudinal fascicle 

 

Frogs 

A Amygdala MP Medial pallium TP Posterior tuberculum 

DH Dorsal hypothalamus Pr Principal nucleus of the torus semicircularis VL Ventrolateral thalamic nucleus 

Iflm Interstitial nucleus of the MLF rets Medullar reticular nuclei MLF Medial longitudinal fascicle 

LP Lateral pallium SC Suprachiasmatic nucleus   

 

Reptiles 

Alh Lateral hypothalamic area Lte Lentiform nucleus of the thalamus Sel Lateral septum 

Cb Cerebellum Pb Parabrachial nucleus sgc Stratum griseum centrale (optic tectum) 

CMN Cranial motor nuclei Rai Inferior raphe nucleus SO Supraoptic nucleus 

Iflm Interstitial nucleus of MLF Ri Inferior reticular nuclei Vest Vestibular nuclei 

Inst Bed nucleus of the stria terminalis Rm Medial reticular nuclei VI Nucleus of the abducens nerve 

LC Locus coeruleus Rs Superior reticular nuclei Vlt Ventrolateral thalamic nucleus 

Ll Lateral lemniscus SC Subcoeruleus area VTA Ventral tegmental area 
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The emerging model of PNNs over CNS development is that they stabilize fundamental 

neural connections in the developing animal in a ground-up fashion. Lower sensory input 

connectivity is established and maintained by PNNs, which provides a reliable source of input 

for higher processing areas (Takesian & Hensch 2013). However, whether this is a feature of 

vertebrate CNS development in general, or simply an observation from studying mammals has 

yet been challenged. In this thesis, I test two major hypotheses regarding the broad roles of PNNs 

across vertebrates: (1) PNNs envelop the same brain regions and cell types (putative fast-firing 

PV neurons) across species, and (2) stepwise circuit stabilization across development is a 

conserved feature of PNN expression. I characterize the spatial, structural, and temporal 

emergence of PNNs, and their PV-cell associations, across the CNS of fish, amphibians, and 

reptiles; three major vertebrate clades which have received little to no attention in the neural 

ECM literature. I found (1) that PNNs envelop neurons in a wide range of brain regions, take on 

diverse architectures, and variably associate with putative fast-firing PV-positive neurons. I then 

map the developmental trajectories of PNNs across development of each species, showing (2) 

that PNN development is region- and lineage-specific, and that the vertebrates studied here 

develop PNNs in a fashion contrasting the model inspired by mammalian research. I found that 

PNNs, in contrast to the ground-up model, emerge first in fore- and mid-brain regions 

responsible for modulating behavioral states, and only later develop in lower processing regions 

that route incoming sensory and outgoing motor signals.
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CHAPTER 2: SPATIAL, STRUCTURAL DIVERSITY, AND CELLULAR ASSOCIATIONS 
OF PERINEURONAL NETS 

 
 
 
Introduction 

 Perineuronal nets (PNNs) are structured extracellular matrix (ECM) compounds that 

envelop neurons during postnatal development (Celio et al. 1998; Hensch 2005; Miyata & 

Kitagawa 2017). They are composed of a hyaluronan backbone tethered to chondroitin-sulfate 

proteoglycans, and are found throughout the central nervous system (CNS) of mammals (see 

Figure 1.1; Brückner et al. 2000; Kwok et al. 2011; Horii-Hayashi et al. 2015). PNNs appear to 

have two key biological functions. First, they restrict neuronal plasticity by stabilizing synaptic 

connectivity, and second, they support the metabolism of highly active cell types (Karetko & 

Skangiel-Kramska 2009). Yet, many brain areas are rich in active cells but devoid of PNNs 

(Celio 1990; Crespo et al. 1999), and the CNS has a variety of other mechanisms to regulate 

neural plasticity (Nabel & Morishita 2013). So, why do some brain regions have PNNs while 

others do not? 

PNNs emerge at the end of developmental time windows of heightened plasticity, and 

contribute to the maturation and maintenance of excitation/inhibition balance within neural 

circuits (Hensch 2005). Their enzymatic digestion deconstructs blockades to synaptic 

connectivity and restores juvenile-like plasticity in adult rodents (Pizzorusso et al. 2002; Gogolla 

et al. 2009). PNNs further support the metabolic requirements of fast-spiking, inhibitory, 

interneurons that express the calcium-binding protein parvalbumin (PV), which are among the 

most important regulators of excitation/inhibition balance in the CNS (Hensch 2005; McRae et 

al. 2007; Hu et al. 2014). PV cell fast-firing behavior requires a constant source of ions and a 

sink for reactive oxygen species generated by cellular metabolism (Härtig et al. 1999). The  
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charged glycosaminoglycan chains of PNNs solve both demands by buffering local calcium, 

sodium, and potassium (Morawski et al. 2004), and sequestering free radicals (Cabungcal et al. 

2013). Despite conflicting evidence (Vitellaro-Zuccarello et al. 2001; Wegner et al. 2003; 

Mueller et al. 2016), this is widely cited as an explanation for why PNNs envelop up to 90% of 

PV cells in some brain regions (Karetko & Skangiel-Kramska 2009; Mueller et al. 2016).  

 To understand what drives PNN distributions requires considering what drives their 

variation, and one place to begin studying such variation is to compare systems where it occurs 

naturally. The few studies to observe species differences in PNNs have found evidence of both 

conservation and divergence. Rat and gerbil cortices show strong similarity in PNN location but 

differences in staining intensity and neuropil labeling (Brückner et al. 1994). Comparisons to the 

distantly related marsupial, the gray short-tailed opossum (Monodelphis domestica), reveal 

similar PNN distributions to placentals in subcortical regions, but in cortex they surround only 

non-PV pyramidal neurons (Brückner et al. 1998). In monkeys, PNNs throughout the CNS 

variably associate with PV cells and envelop primarily motor regions (Mueller et al. 2016). 

PNNs further take on diverse architectures, from sharply-defined reticulate structures, to diffuse 

“cotton wool-like” ECM that spreads into the neuropil (Wegner et al. 2003). These results offer 

enticing evidence that the brain-wide functions of PNNs are labile throughout development and 

evolution, but together they represent only a clustered few data points on the vertebrate 

phylogeny. 

 Sparse literature describes PNN spatial patterns, structure, or cell type associations 

outside of mammals and birds (Murakami et al. 1994; Balmer et al. 2009). But, because they are 

present throughout vertebrates, their patterns of variation may provide clues as to why some 

regions have them and others do not. Here, I test the hypothesis that PV cell metabolism support 
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is a broad, and therefore conserved function of PNNs. Alternatively, brain regions may develop 

PNNs primarily to regulate synaptic plasticity, in which case PV support is a secondary function. 

I mapped the adult distributions of aggregated ECM throughout the CNS of fish, amphibians, 

and reptiles, quantified parameters of their structure, and measured their association with 

putative fast-spiking PV cells. I found that PNNs envelop neurons in all major brain divisions, 

take on a striking diversity of architectures, and have highly variable associations with PV cells.   

Materials & Methods 

 I performed triple-label immunofluorescent staining on frozen sections of animals 

representing three major vertebrate classes: Poecilia reticulata (Trinidadian guppy; 

Actinopterygii; n=6), Rhinella yunga (beaked toad; Amphibia; n=4), and Anolis sagrei (brown 

anole; Reptilia; n=5). For all animals, I recorded age, location of capture, full-body weight, and 

length. The Colorado State University Institutional Animal Care and Use Committee approved 

care and use of any live animals (Protocol #16-6541AA). 

Poecilia reticulata 

We acquired wild-caught fish from Trinidad during the year 2015 from the Garden Grove 

(N 10º35'21.5" W 61º21'18.8") site (collection and export permission granted by the Republic of 

Trinidad and Tobago, Ministry of Food Production), and maintained breeding colonies in our lab 

at Colorado State University. Fish developed in social housing on a 12h light: 12h dark regimen 

and consumed age-appropriate amounts of fish paste and brine shrimp on alternating days. I 

selected fish as available from second or third generation offspring of these populations. I 

prepared fish for immunostaining by euthanizing in overdose immersion of MS-222 (Millipore-

Sigma; Darmstadt, Germany), decapitating, fixing in 4% paraformaldehyde in 0.01M phosphate 
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buffered saline (PBS) (Electron Microscopy Sciences; Hatfield, PA) for 4-6 hours, and 

cryoprotecting in 30% sucrose and 0.1% azide overnight or until heads sank. 

Rhinella yunga 

Our lab obtained wild-caught toads from Peru captured during the year 2015 (collection 

and export permits 0071-2015-SERFOR-DGFFS/DGEFFS; 195-2015-SERFOR-DGGSPFFS). 

Whole bodies were fixed in 4% paraformaldehyde and preserved in 70% ethanol. In preparation 

for immunohistochemical analysis, I decapitated toads and rehydrated heads in a decreasing 

ethanol/0.01M PBS solution gradient prior to cryoprotection in 30% sucrose and 0.1% azide 

until heads sank. 

Anolis sagrei 

I received wild-caught adult lizards from the Cayman Islands and Bahamas shipped live 

from Harvard University overnight to Colorado State University (Harvard IACUC Protocol #26-

11; Collection and export permission granted by Cayman Islands Department of Environment, 

Bahamas Environment, Science, and Technology Commission, and Bahamas Department of 

Agriculture). I euthanized lizards on the day of arrival with an anesthetic dose followed by 

overdose of MS-222 (Millipore-Sigma), following Conroy et al. (2009). I decapitated heads, 

fixed them in 4% paraformaldehyde overnight, and cryoprotected them in 30% sucrose and 0.1% 

azide until heads sank. I manually extracted brains from the skull prior to sectioning. 

Immunohistochemistry 

I stored whole heads or dissected brains in 30% sucrose and 0.1% azide solution at 4°C 

until sectioning. At the time of sectioning, I flash froze head material in OCT embedding 

compound (Tissue-Tek; Torrance, CA) in a dry ice isopentane bath. I sectioned head material in 
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a cryostat at -20°C at thickness 16 "m for P. reticulata, 20 "m for R. yunga, and 50 "m for A. 

sagrei. 

 To visualize PNNs, I applied standard fluorescent lectin staining procedures with 

biotinylated Wisteria floribunda agglutinin (WFA; 1:500; Vector Laboratories; Burlingame, 

CA). WFA binds specifically to the N-acetylgalactosamine residues of the PNN hyaluronan 

backbone and is a widely established probe for PNNs (Brückner et al. 1994; 1998). To visualize 

parvalbumin-positive cells (PV), I used a rabbit anti-PV primary (1:1000 0.01M PBS; 

Invitrogen; Carlsbad, CA). For fluorescent markers, I used Streptavidin-conjugated Texas Red 

(1:100 0.01M PBS; Vector Laboratories) and goat anti-rabbit Alexa Fluor 488 (1:300 0.01M 

PBS; Invitrogen). To confirm that WFA- and PV-labeling were associated with cells and to 

delimit brain regions and neuronal populations, I stained cell nuclei using DAPI (1:500 0.01M 

PBS; Millipore-Sigma) in the secondary antibody cocktail. In brief, slides were washed three 

times in PBS, incubated in primary solution overnight at 4°C, washed again three times in PBS, 

incubated in secondary solution for two hours at room temperature, washed again three times in 

PBS, and coverslipped in Fluoromount-G (SouthernBiotech; Birmingham, AL). Negative 

controls excluded the primary or secondary antibody preparation and did not show WFA- or PV-

labeling. 

 I photographed stained sections on an Olympus BX51 microscope (Shinjuku, Tokyo, 

Japan) under UV excitation wavelengths 358 nm, 488 nm, and 561 nm. Therefore, DAPI, PV, 

and WFA staining emitted fluorescent signal in the blue, green, and red channels respectively. I 

captured and merged multi-channel images with an Olympus DP71 camera and Olympus DP2-

BSW acquisition software. 
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Sampling design 

For all species, I randomly selected three images (r=3; where possible) per brain 

region/cell population per individual for quantification. I made effort to photograph consistently 

in a single brain hemisphere for a given region, except when tissue destruction, folding, or small 

region size precluded gathering three samples for that region, in which case region data may 

represent a mix of left and right hemispheres. During microphotography, I selected sections that 

represented the maximum cross-sectional area of the region/nucleus, such that I avoided 

underrepresenting the PNN population by counting at the edges of regions. I aimed to take all 

photos for a region in the same orientation, such that the centroid of the region was located at the 

center of the photograph. For wide, flattened regions (such as the anterior central grey in P. 

reticulata), I anchored photographs such that the medial edge of the region was adjacent to the 

edge of the photograph. I took WFA and PV photos at a constant exposure time for all images 

(52.99 ms for A. sagrei and P. reticulata, and 86.63 ms for R. yunga), except in regions of highly 

dense staining, where I reduced exposure times such that the brightest PNNs were 

distinguishable from the background. In cases of faint PV-labeling, I used a longer exposure time 

to provide sufficient contrast for identification. 

 For all species, I delimited brain regions using the atlases of Nieuwenhuys et al. (1998). I 

deemed a region PNN-positive if more than five cells were surrounded by PNNs (or if WFA-

labeling was exceptionally prominent around a few cells), and absent if less than five. I used 

DAPI labeling to confirm region identity based on region morphology, relative position to 

landmarks (e.g. ventricles, fiber tracts, other conspicuous nuclei), and consistency within and 

across individuals.  
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Quantitative analysis of WFA-labeling 

For R. yunga and A. sagrei, where WFA labeled discrete pericellular structures, I used a 

region of interest (ROI) approach to quantify the area and intensity of WFA staining. I used 

ImageJ (NIH; v1.50i) to select square ROIs such that all four borders were approximately 

tangent to the outer edge of WFA-labeling around the cell soma (Figure 2.1A-D). I counted a cell 

as PNN-positive if WFA-labeling was prominently distinguishable from background and at least 

two-thirds of the cell body within the focal plane of the image was surrounded by WFA staining.  

All visible WFA-labeled pericellular structures in each image were subject to analysis, unless 

they were clearly outside the boundaries of a nucleus. For these species, I measured the total size 

of the ROI and the average intensity of stain within the ROI to quantify PNN size and brightness. 

All images were processed by investigators blind to brain region. 

For P. reticulata, exceptionally dense WFA-labeling demanded a different analysis 

technique. To quantify WFA-labeling, I measured the fraction of thresholded area of WFA stain 

covering each brain region (Figure 2.1E-H). I first outlined the total area of the cell population in 

WFA photographs based on DAPI staining, transformed images to 16-bit grayscale, then applied 

an auto-thresholding algorithm to binarize the image. The Renyi Entropy thresholding algorithm 

(Kapur et al. 1985) provided the most consistent and accurate thresholding, however in cases of 

strong background staining, I applied a set threshold value of 60, which gave similar results as 

auto-thresholding on images with low background. I then retrieved the percent area of above-

threshold staining for the area of the selected region. I used the threshold value reported by the 

auto-thresholding algorithm as a proxy for quantification of PNN brightness as measured by 

intensity of WFA staining. 
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Figure 2.1. Quantification of PNNs in ImageJ. (A, B) Lateral hypothalamic area in A. sagrei. 
(C, D) Nucleus of medial longitudinal fascicle in R. yunga. (E-H) Periaqueductal grey in P. 

reticulata. (A, C, E) Raw images prior to analysis. (B, D) Images after completion of region of 
interest (ROI) selection. (F) Selection of neuronal population. (G) Transformation to 16-bit 
grayscale. (H) Result of auto-thresholding with Renyi Entropy algorithm (Kapur et al. 1985). 
All images taken at 200x mag. 

 

I used the R software package (https://www.r-project.org; v3.3.1) to visualize measures 

of PNN size (total area of coverage in the case of P. reticulata), and PNN brightness. 

A	 B

	

C	 D
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Qualitative analysis of PNN-PV co-localization 

 To determine association of PNNs with PV cells, I used merged-channel images acquired 

as above. Because PNN-PV co-staining tended to be a many-or-none response, I characterized 

regions as either PV-positive or not. I counted a cell as PNN-PV if it clearly showed discernable 

PV labeling within the confines of WFA label (Figure 2.2A). While I observed variation in 

intensity of PV-staining, I did not quantify these differences. Some regions in A. sagrei   

demonstrated the presence of small pockets of PV-staining in the “gaps” of the reticulate PNN, 

which I interpreted as PV-positive presynaptic boutons (Figure 2.2B). Thus, these cells appeared 

to receive input from PV neurons. I labeled these regions “PV-in”. 

   

   
Figure 2.2. Association of PNNs with PV neurons in Anolis sagrei. (A) PV-PNN cells were 
determined with co-localization of staining, without regard to variation in stain intensity. Arrows 
indicate PV staining. Region is lateral hypothalamic area (Alh). (B) Some PNN cells were 
negative for PV staining in the cell body, but showed strong PV label in the spaces of the 
perineuronal net (arrows). Region is subcoerulean area (Sc). Images at 200x magnification.	
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Results 

 I found unique and diverse patterns of WFA- and PV-staining throughout the CNS of all 

species studied. Table 2.1 contains a summary of the major areas containing WFA-labeled ECM 

structures across species. Figure 2.6 summarizes distributions and PV-PNN associations for all 

species. 

Table 2.1. Distributions of PNNs across vertebrates. (+) indicates presence, (  ) indicates 
absence. Presence determined by observation of at least five PNNs or prominent staining in a 
brain region. Mus musculus data from 1Seeger et al. (1994), 2Brückner et al. (2000), 3Miyata 
et al. (2004), 4Costa et al. (2007), 5Horii-Hayashi et al. (2015). 
 
Region P. reticulata R. yunga A. sagrei M. musculus 

Septum   + +
5
 

Amygdala  + + +
5
 

Suprachiasmatic nucleus  + + +
3
 

Dorsal hypothalamus + + + +4 
Ventral thalamus  + + +1 

Optic tectum   + +
5
 

Nucleus of the medial longitudinal fascicle + + + +5 
Periaqueductal grey +     

4
 

Ventral tegmental area   + +
5
 

Reticular formation + + + +
5
 

Locus coeruleus   +   
4
 

Vestibular nuclei + + + +
5
 

Cranial nerve nuclei + + + +
5
 

Cerebellum   + +
3
 

 

Poecilia reticulata 

 Telencephalon. WFA-labeling was absent in the telencephalon. 

 Diencephalon. WFA-labeling was present in the dorsal hypothalamus. 

 Mesencephalon. WFA strongly labeled pericellular structures in the nucleus of the medial 

longitudinal fascicle. 

 Medulla. WFA strongly labeled pericellular structures in the periaqueductal (central) grey 

matter. WFA-labeling was absent in the cerebellum. WFA labeled dense ECM in reticular and 

cranial nerve nuclei of the medulla (Figure 2.6A). 
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PNN structure.  

In the dorsal hypothalamus, WFA labeled dense ECM in the center of neuronal 

populations that I interpreted as neuropil, which spread to surround the innermost layer of cell 

bodies. In the nucleus of the medial longitudinal fascicle and the periaqueductal grey, WFA 

stained a dense layer of ECM, surrounding neurons but also spreading thickly into the space 

between DAPI-labeled nuclei, comprising a “field” of WFA-labeled ECM, with cells scattered 

throughout (Figure 2.3A). In the reticular and cranial nerve nuclei, PNNs resembled the discrete 

perineuronal staining pattern observed in mammals, but with notable diffuse spillover into the 

neuropil. The fraction of region area covered by WFA stain was greatest in the nucleus of the 

medial longitudinal fascicle (nMLF) and the periaqueductal, or central, grey (CG) (Figure 2.3B). 

Brightness of PNNs, as measured by threshold values of WFA staining, was largely consistent 

across brain regions (Figure 2.3C). 

 Association with PV cells. PV-staining labeled PV neurons throughout the CNS, however 

only in the brainstem reticular and cranial nerve nuclei did I observe PNN-PV co-labeling. PNNs 

in the dorsal hypothalamus, nucleus of the medial longitudinal fascicle, and periaqueductal grey 

were devoid of PV cells in all individuals (Figure 2.6A). 

Rhinella yunga 

Telencephalon. WFA-labeling was present in the medial pallium, and the medial and 

lateral amygdala. 

 Diencephalon. WFA-labeling was strongly present in the ventrolateral thalamus, and the 

suprachiasmatic nucleus, posterior tuberculum, and dorsal regions of the hypothalamus. 

 Mesencephalon. WFA labeled structures in the nucleus of the medial longitudinal 

fascicle. Rarely, I observed WFA staining in the principal nucleus of the torus semicircularis.  
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Figure 2.3. Perineuronal nets in P. reticulata. (A) Field-like PNNs in P. reticulata 
periaqueductal grey. Note cell nuclei (blue; DAPI) interspersed among dense ECM (red; 
WFA), and blood vessel labeling by PV (green) (630x magnification). (B) Fraction of region 
area covered by above-threshold PNN stain. (C) Thresholded value of PNN stain intensity. (B-
C) Each point is the average across reps for one individual for a given brain region. 
Anterior/forebrain regions topmost, posterior/hindbrain regions bottommost. 
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Medulla. WFA labeled structures in the brainstem reticular and cranial nerve nuclei 

(Figure 2.6B). 

 PNN structure. In contrast to the reticulate form typical of PNNs, WFA staining in this 

species was characterized by a “granular” pattern reminiscent of immature PNNs in mammals 

(Figure 2.1C; Brückner et al. 2000). WFA-staining resulted in clusters of small, brightly-stained 

spheres that surrounded the perimeter of cell bodies. Often these sphere clusters were localized 

to one side of the cell body. Many of these clusters were associated with a field of weaker WFA 

stain around the cell, sometimes extending and filling into the spaces between cells (Figure 

2.4A). Sizes of PNNs and WFA stain intensity did not vary strongly within and across brain 

regions (Figures 2.4B and 2.4C). 

 Association with PV cells. I found weak association of PNNs with PV-staining only in the 

brainstem reticular and cranial nerve nuclei (Figure 2.6B). PNNs occasionally seemed to 

associate with a few large PV cells in these regions, but did not envelop the entirety of the cell 

body. 

Anolis sagrei 

Telencephalon. WFA-labeling revealed a small number of densely-staining PNNs around 

soma, axons, and dendrites of neurons in the lateral septum, the supraoptic nucleus, and the bed 

nucleus of the stria terminalis. 

 Diencephalon. WFA labeled PNNs in the ventrolateral, medial, and lenticular nuclei of 

the thalamus, and the lateral hypothalamic area. 

 Mesencephalon. WFA labeled PNNs in the optic tectum, the nucleus of the medial 

longitudinal fascicle, the ventral tegmental area, and rarely in the central nucleus of the torus 

semicircularis.  
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Figure 2.4. Perineuronal nets in R. yunga. (A) Granular, possibly immature, PNNs in R. yunga 
brainstem reticular nuclei. Note cell nucleus (arrow; blue; DAPI) covered by extensive ECM 
(red; WFA), and background PV staining (green) (630x mag.). (B) Average sizes of PNNs in 
each region. (C) Intensity of PNN stain in each region. (B-C) Each point is the average across 
reps for one individual for a given brain region. Anterior/forebrain regions topmost, 
posterior/hindbrain regions bottommost. 
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Medulla. WFA labeled numerous large cells in the brainstem reticular formation, 

including the raphe nuclei. WFA densely labeled cells in the locus coeruleus, subcoerulean area, 

lateral lemniscus, vestibular nuclei, and cranial nerve motor nuclei. WFA-labeled nets 

surrounded most PV-positive Purkinje neurons in the cerebellum (Figure 2.6C). 

PNN structure. PNNs in this species were discrete, reticular structures reminiscent of 

mammalian PNNs (Figure 2.5A). Many regions contained defined PNNs with bright borders, 

whereas others showed distinct spread into the neuropil or along neuronal processes, making 

individual cell bodies difficult to identify. In the locus coeruleus, WFA labeled the boundaries of 

large cells, as well as the neuropil which gave the appearance of a rough-textured field of ECM. 

PNN size (Figure 2.5B) and staining intensity (Figure 2.5C) both varied across brain regions. 

 Association with PV cells. I found variable association of PNNs with PV cells throughout 

the brain, as well as regions in which PV-labeling occurred in the “gaps” of the PNN, indicating  

PNN-enveloped cells receiving input from PV cells (Figure 2.6C). These results are summarized 

in Table 2.2. 

Discussion 

Variation in PV-PNN association 

 I found that, across species, PNN associations with PV cells varied widely. In P. 

reticulata and R. yunga, only the brainstem reticular and cranial nerve nuclei showed PNN-PV 

co-staining. In A. sagrei, PNNs and PV cells associated in the thalamus, midbrain, and some 

reticular, vestibular, and cranial nerve nuclei. These regions comprise fewer than half of all 

regions in which I found PNNs, therefore I cannot conclude that PNN-PV associations are broad, 

conserved features of PNNs across vertebrates. 
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Figure 2.5. Perineuronal nets in A. sagrei. (A) Reticulate PNN in A. sagrei nucleus of medial 
longitudinal fascicle. Note lattice-like pericellular staining (red; WFA) around cell body and 
nearby processes. While obscured by dense WFA-staining in this image, this cell is PV-
positive (630x magnification). (B) Average sizes of PNNs in each region. (C) Intensity of PNN 
stain in each region. (B-C) Each point is the average across reps for one individual for a given 
brain region. Anterior/forebrain regions topmost, posterior/hindbrain regions bottommost. 
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Table 2.2. Association of PV with PNNs in A. sagrei. (+) indicates PV-WFA co-labeling. 
Presence determined by at least one of three representative images showing robust PV-WFA 
co-labeling. (in) indicates PNN cell receiving input from PV-positive presynaptic bouton. 
  

 Individual 

Region BC1♂ BC3♂ LC1♀ UK1♀ UK2♀ 

SO      

Sel      

Inst      

Vlt  +    

Lte  + +  + 

Alh  +   + 

sgc + + +  + 

Iflm  + + + + 

Sn +     

VTA + + + + + 

Lc  +  +  

Sc in in in in  

Rub  + +   

Rs +     

Rsl + +  +  

Rm      

Ri      

Rai + + +   

Ll  in    

VI + + +   

Veds   +   

Vedl     in 

Vmd in  in in  

Vmv + +  +  

Cb + + + + + 

Ico +     

Prmc +     

Pb      
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Figure 2.6. PNN and PNN-PV co-staining across adult vertebrates. Images are sagittal brain 
sections, with anterior/rostral at leftmost, and posterior/caudal at rightmost, collapsed along the 
medial-lateral axis. Dashed lines roughly define borders between major regions. Black circles 
indicate regions containing PNNs. Green-outlined circles represent areas with PNN-PV co-
labeling. Cyan-filled circles contain PNN cells receiving PV presynaptic input. (A) P. 

reticulata. (B) R. yunga. (C) A. sagrei. Tel, telencephalon; Di, diencephalon; Mes, 
mesencephalon; Cb, cerebellum. 

A	

B	

C	
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There is strong evidence that PNNs contribute to the prolonged bursting behavior of PV 

cells by buffering the ionic microenvironment and providing a sink for reactive oxygen species 

(Ohyama & Ojima 1997; Härtig et al. 1999; Cabungcal et al. 2013; Balmer 2016). However, 

most regions with PNNs in the animals I studied do not express PV, and I observed abundant PV 

cells without PNNs. I suggest that cellular metabolism support may be a novel role for PNNs,  

while their original role in nervous system function may have been as a regulator of synaptic 

plasticity. Alternative explanations for the lack of co-staining include fast-spiking behavior 

without expression of PV (Celio 1990), or that PV-positive neurons in other vertebrates are not 

fast-spiking. Future studies could determine the firing properties of PNN cells in non-PV regions 

using electrophysiological recordings or more general markers of cellular metabolism, such as 

cytochrome oxidase activity (Hevner et al. 1995). 

I observed that the subcoerulean area and the dorsomedial nucleus of the trigeminal nerve 

in A. sagrei contained PNN cells receiving PV presynaptic input. Whether these cells are 

interneurons or projection neurons remains unknown, but in either case this finding of PNN cells 

as targets of PV input differs from the current picture of PNN cells as generators of PV output. 

Crook et al. (2007) found similar results in the macaque cerebellum, with PNN cells as targets of 

inhibitory output associated with cells expressing the calcium-binding protein calbindin, though 

they did not stain for PV. By regulating the level of inhibitory input, I speculate that PNNs in 

these regions could protect the firing output of their associated cells from over-inhibition, 

thereby regulating synaptic plasticity rather than supporting metabolism of their neurons. 

Conservation in PNN expression 

 In all species, I found PNNs in the nucleus of the medial longitudinal fascicle (here, 

“nMLF”), and the brainstem reticular nuclei. PNNs associated with PV cells in these regions 
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only in some reticular nuclei, and in the nMLF of A. sagrei. The nMLF is a pre-motor region that 

sends burst signals to motoneurons that direct eye movement and spinal control in mammals 

(Wada et al. 1996; Horn et al. 2003), and tail locomotion in zebrafish and Xenopus (Nordlander 

et al. 1985; Thiele et al. 2014). In the monitor lizard, projections between the nMLF and 

vestibulo-oculomotor and vestibulospinal regions suggest similar head and eye control (ten 

Donkelaar et al. 1985). Horn et al. 2003 did not quantify the total proportion of PNN-enveloped 

cells in this nucleus in macaques and humans, but did show that all cells expressing either PV or 

calretinin (another marker of putative fast-spiking neurons) co-stain with PNNs. Similarly, in 

cats, this region is associated with dense cytochrome oxidase activity, indicative of cellular 

metabolism (Chen & May 2002). Again, due to PNN-PV variability I observed across species, I 

speculate that nMLF PNNs primarily stabilize inputs to neurons in this region, with support of 

PV cells as a possible co-opted function.  

The only regions I found to consistently express both PNNs and associated PV neurons 

were the brainstem reticular nuclei. Steullet et al. (2017) found PNN-PV associations in both 

human and mouse reticular nuclei, and found that genetic knockout mice for an enzyme involved 

in antioxidant production exhibited decreases in PV cell counts and decreased bursting output 

from those cells, supporting a role in cellular metabolism. Due to the observed conservation of 

PNN-PV co-expression across species and evidence of metabolic support in mammals, future 

electrophysiological studies combined with PNN removal could disentangle the relative roles of 

synaptic stabilization and metabolic support in these interesting nuclei. 

Divergence in PNN expression 

 I found that PNNs take on a variety of staining patterns, intensities and sizes across 

species and brain regions. PNNs are clearly a heterogeneous class of ECM structures, and while 
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many of their core components have been well-described (Miyata & Kitagawa 2017), future 

work should address how interactions between these components determines PNN architecture. 

For example, Brückner et al. (2000) found that tenascin-knockout mice have PNNs that persist in 

an immature, granular state. Carulli et al. (2010) likewise found that cartilage link protein 

knockout mice have attenuated PNNs. My characterization of PNN structural diversity suggests 

that PNN capacity to regulate plasticity or support metabolism could vary across brain regions. 

 In P. reticulata, I found that WFA labeled unusually dense field-like ECM in the nMLF 

and central, or periaqueductal, grey (here, “PAG”). The PAG is implicated in defensive 

behaviors in mammals (Assareh et al. 2016; Deng et al. 2016) and vocal signaling a species of 

fish (Kittelberger et al. 2006; Kittelberger & Bass 2013). Due to prominent WFA-labeled ECM 

in the PAG of this species, guppies represent an interesting system to explore both the roles of 

PNNs in plasticity of behavior, as well as molecular processes that drive PNN structure. I also 

noted that the nMLF and PAG are situated adjacent to the ventricle, and speculate that this dense 

field of ECM could regulate diffusion of ions and molecules from the cerebral spinal fluid. 

However, why dense ECM selectively surrounds these and not other exposed regions is unclear. 

 In R. yunga, I found that PNNs took on a granular structure reminiscent of immature 

PNNs in mammals (Brückner et al. 2000). While this result contrasts the observations of Matesz 

et al. (2005) in the brainstem and spinal cord of Rana, who observed discrete pericellular 

structures, they targeted the specific PNN components hyaluronan, tenascin C, phosphacan, 

fibronectin, and laminin. They did not stain with WFA, which binds the N-acetylgalactosamine 

residues of the hyaluronan backbone of the PNN. One interpretation of this difference is that R. 

yunga PNNs have a different arrangement of chemical components. My observations are more in 

line with Gaál et al. (2014), who found a similar pattern of small, bright spheres of WFA staining 
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in the cerebellar neuropil of Rana esculenta. While they observed WFA-staining only in the 

neuropil, I observed clear pericellular concentrations of WFA stain throughout the CNS, 

indicative of possibly immature PNNs. One alternative interpretation is that dehydrating the 

tissue in ethanol altered PNN staining, however the consistency of my results between 

individuals suggests that WFA accurately indicates regions containing PNNs.  

 In A. sagrei, the reticulate, lattice-like PNN structure resembled that seen typically in 

mammals. One interesting exception was the locus coeruleus, where I observed intense WFA-

staining in the neuropil that was difficult to visually distinguish from pericellular concentrations 

of stain typical of PNNs. This region, in mammals as well as reptiles, is a catecholaminergic 

neuromodulatory center that generates switches in behavioral states in response to unexpected 

stimuli (Lopez et al. 1992; Bouret & Sara 2005). Due to the intense WFA-staining I observed in 

this species, I speculate that PNNs and ECM could stabilize synaptic inputs into this region, 

thereby fixing responses to salient stimuli that are established during early-life experience.  

Summary 

 Spatial and structural diversity characterize vertebrate PNNs. Their regional distributions 

and variation in size and intensity suggest they are broadly poised to regulate CNS plasticity in 

diverse neuronal populations. Their support of PV cell metabolism, while not understated in 

importance, is region- and lineage-specific and may represent an adaptive evolutionary co-option 

of structures already involved in regulating synaptic plasticity.
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CHAPTER 3: DIVERSE DEVELOPMENTAL TRAJECTORIES OF PERINEURONAL NETS 
 
 
 

Introduction 

 The properties of neurons that dictate animal behavior confer the capacity for learning 

and memory by being both capable of updating (plasticity) and maintaining reliable patterns of 

activity (stability). Yet, while youth is characterized by great plasticity, maturity is dominated by 

stability. What, then, regulates the balance of neural plasticity and stability over an animal’s 

lifetime? Recent years have seen the neural extracellular matrix (ECM) as a key player in 

maintaining plasticity/stability balance over development (Celio et al. 1998; Takesian & Hensch 

2013; Miyata & Kitagawa 2017). In contrast to the loose, diffuse neural ECM, structured, lattice-

like ECM compounds envelop various neuronal subtypes in specific brain regions during 

development (Wegner et al. 2003). Cells expressing the membrane-bound protein hyaluronan 

synthase secrete a hyaluronic acid chain into the extracellular space, which binds chondroitin 

sulfate proteoglycans, link proteins, and tenascins to create a thick, organized, web of coating 

around neuronal soma and nearby processes, known as the perineuronal net (PNN) (Kwok et al. 

2011).  

A key feature of PNNs is that they are physical and chemical blockades for approaching 

axons (Carulli et al. 2013; Vo et al. 2013; Sorg et al. 2016). The emergence of PNNs in a brain 

region closes windows of activity-dependent rewiring and is indicative of a mature circuit 

component (Hockfield et al. 1990; Hensch 2005; Bikbaev et al. 2015). Experiments digesting 

PNNs with the enzyme chondroitinase ABC support a causal role in circuit stabilization, 

resulting in a return to juvenile levels of plasticity and learning capacity in adult rodents 

(Pizzorusso et al. 2002; Gogolla et al. 2009; Wang et al. 2011; Hylin et al. 2013; Romberg et al.  
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Figure 3.1. First appearance of PNNs in mouse, Mus musculus. P# indicates postnatal day. 
Based on (1) Horii-Hayashi et al. (2015), (2) Brückner et al. (2000), and (3) Friauf (2000). 
Circles with two colors indicate author disagreement, however there was strong consensus 
among authors. Sagittal view with PNN-containing regions positioned roughly into major 
brain divisions, collapsed along medial-lateral axis, using Allen Brain Atlas (2008). 
Anterior/rostral regions leftmost, posterior/caudal regions rightmost. OB, olfactory bulb; Ctx, 
cortex; SP, subpallium; Hip, hippocampus; Th, thalamus; Hyp, hypothalamus; Mes, 
mesencephalon; Cb, cerebellum. See Table 1.1 for region abbreviations. 

 

2013; Happel et al. 2014). PNNs have therefore earned the suitable title of “molecular brakes” 

on developmental neural plasticity (Nabel & Morishita 2013). 

 Mammalian and avian literature points to a wide and regulated spatiotemporal 

distribution of PNNs. In rodents and primates, they are present throughout cortical, subcortical, 

and diencephalic regions, brainstem, and spinal cord (Brückner et al. 1994; 1998; Bertolotto et 

al. 1996; Mueller et al. 2016). Roughly, PNNs develop from medullar to sensory input nuclei, 

then progress to higher association regions in the cortex and subpallium (Figure 3.1) (Brückner 

et al. 2000; Friauf 2000; Horii-Hayashi et al. 2015). PNNs develop postnatally, and in 

mammalian sensory and avian motor cortices require sensory experience for maturation 
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(Pizzorusso et al. 2002; McRae et al. 2007; Balmer et al. 2009; Yamada & Jinno 2013). Taken 

together, the role of PNNs as brakes on developmental plasticity and their pattern of expression 

over time from lower sensory input to higher associational regions suggests that they stabilize 

neural connectivity in a “ground-up” fashion. This pattern of development led Takesian & 

Hensch (2013) to hypothesize that PNNs establish a reliable low-level processing foundation that 

provides flexibility for high-level association layers, thus maintaining stable circuits as input for 

remaining plastic pathways. 

 If the ground-up model is true across vertebrates, it may represent a fundamental 

principle of PNN biology. If the model is unique to mammals, it may represent a key innovation 

in mammalian evolutionary history that facilitated the rapid evolution of complex cognitive 

abilities. While aggregated perineuronal structures are known to exist in other vertebrate 

lineages, no comprehensive or brain-wide studies examine their developmental trajectories or 

interpret them in context of broad features of CNS construction (Murakami et al. 1994; Matesz et 

al. 2005; Gaál et al. 2014). I therefore tested whether a progressive, ground-up circuit 

stabilization model inspired by mammalian research is generalizable across vertebrates. 

I characterized the spatial and temporal emergence of PNNs across the CNS throughout 

development of fish, amphibians, and reptiles. I found a striking diversity of spatial distributions, 

as well as temporal differences in PNN expression. Broadly, PNNs, in contrast to the ground-up 

model, emerge first in fore- and mid-brain regions responsible for modulating behavioral states, 

and only later develop in lower processing regions that route incoming sensory and outgoing 

motor signals. 
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Materials & Methods 

 
 The methods reported here largely parallel those described in Chapter 2, but I will repeat 

some details here for clarity, along with additional information pertinent to this experiment. I 

performed double-label fluorescence lectin staining on frozen sections of animals of varying 

developmental ages in species representing three major vertebrate classes: Poecilia reticulata 

(Trinidadian guppy; Actinopterygii), Rhinella yunga (beaked toad; Amphibia), and Anolis sagrei 

(brown anole; Reptilia).  

Poecilia reticulata 

I selected fish as available from second or third generation offspring of the populations 

described in Chapter 2. I prepared fish for immunostaining by euthanizing in overdose 

immersion of MS-222 (Millipore-Sigma; Darmstadt, Germany), decapitating, fixing in 4% 

paraformaldehyde in 0.01M phosphate-buffered saline (PBS) (Electron Microscopy Sciences; 

Hatfield, PA) for 4-6 hours, and cryoprotecting in 30% sucrose and 0.1% azide overnight or until 

heads sank. I studied fry (<2 days old; n=4), 3-week-olds (n=3), 5-week-olds (n=6), and sexually 

mature adults (>130 days old; n=6). 

Rhinella yunga 

Our lab obtained wild-caught toads, tadpoles, and individuals in metamorphic transition 

as described in Chapter 2. Whole bodies were fixed in 4% paraformaldehyde in 0.01M PBS and 

preserved in 70% ethanol. In preparation for immunohistochemical analysis, I decapitated 

animals and rehydrated heads in a decreasing ethanol/0.01M PBS solution gradient prior to 

cryoprotection in 30% sucrose and 0.1% azide until heads sank. I studied individuals in late 

metamorphic climax (n=3; Gosner (1960) stages 40-44), toads aged six weeks (n=2), and two 

months (n=2) post-metamorphosis. We found recently that PNNs undergo rapid deconstruction 
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during early metamorphosis (unpublished observations), therefore I used late metamorphic 

climax as a baseline measure for PNN circuitry relevant to the toad life stage. 

Anolis sagrei 

I obtained wild-caught lizards, and offspring bred from these individuals as described in 

Chapter 2. I euthanized lizards on the day of arrival with an anesthetic dose followed by 

overdose of MS-222 (Millipore-Sigma), following Conroy et al. (2009). I decapitated heads, 

fixed them in 4% paraformaldehyde in 0.01M PBS overnight, and cryoprotected them in 30% 

sucrose and 0.1% azide until heads sank. I manually extracted adult and sub-adult brains from 

the skull prior to sectioning. I studied hatchlings (2 days old; n=2 unknown sex), juveniles (30-

45 days old; n=4 unknown sex), sub-adults (127-187 days old; n=4 males), and adults (>1 year 

old; n=2 males, 3 females). 

Immunohistochemistry 

For this component of the experiment, I used the same immunohistochemically prepared 

slides as described in Chapter 2. In brief, I flash froze heads in OCT embedding compound 

(Tissue-Tek; Torrance, CA) and sectioned head material at -20°C in a cryostat at thickness 16 

"m for P. reticulata, 20 "m for R. yunga, and 50 "m for A. sagrei. To visualize PNNs, again, I 

applied the biotinylated lectin Wisteria floribunda agglutinin (WFA; 1:500 0.01M PBS; Vector 

Laboratories; Burlingame, CA), which binds specifically to the N-acetylgalactosamine residues 

of the PNN hyaluronan backbone (Brückner et al. 1994; 1998). As a fluorescent marker, I used 

Streptavidin-conjugated Texas Red (1:100 0.01M PBS; Vector Laboratories). To confirm that 

WFA-labeling was associated with cells and to delimit brain regions and neuronal populations, I 

stained for cell nuclei using DAPI (1:500 0.01M PBS; Millipore-Sigma) in the secondary 
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antibody cocktail. I described the slide preparation protocol in Chapter 2. Negative controls 

excluded the primary or secondary antibody preparation and did not show WFA-labeling. 

I photographed stained sections on an Olympus BX51 microscope (Shinjuku, Tokyo, 

Japan) under UV excitation wavelengths 358 nm and 561 nm. Therefore, DAPI and WFA 

staining emitted fluorescent signal in the blue and red channels respectively. I captured and 

merged multi-channel images with an Olympus DP71 camera and Olympus DP2-BSW 

acquisition software. 

Sampling design 

The sampling design here follows that described in Chapter 2. For all species, I randomly 

selected three images (r=3; where possible) per brain region/cell population per individual for 

quantification. I made effort to photograph consistently in a single brain hemisphere for a given 

region, except when tissue destruction, folding, or small region size precluded the gathering of 

three samples for that region, in which case region data may represent a mix of left and right 

hemispheres. During microphotography, I selected sections that represented the maximum cross-

sectional area of the region/nucleus, such that I avoided underrepresenting the PNN population 

by counting at the edges of regions. I aimed to take all photos for a region in the same 

orientation, such that the centroid of the region was located at the center of the photograph. For 

wide, flattened regions (such as the anterior central grey in P. reticulata), I anchored 

photographs such that the medial edge of the region was adjacent to the edge of the photograph. I 

took WFA photos at a constant exposure time for all images (52.99 ms for A. sagrei and P. 

reticulata, and 86.63 ms for R. yunga), except in regions of highly dense staining, where I 

reduced exposure times such that the brightest PNNs were distinguishable from the background. 
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For all species, I delimited brain regions using the atlases of Nieuwenhuys et al. (1998). I 

deemed a region PNN-positive if more than five cells were surrounded by PNNs (or if WFA-

labeling was exceptionally prominent around a few cells), and absent if less than five. I used 

DAPI labeling to confirm region identity based on region morphology, relative position to 

landmarks (e.g. ventricles, fiber tracts, other conspicuous nuclei), and consistency within and 

across individuals.  

Quantitative analysis of WFA-labeling 

For R. yunga and A. sagrei, where WFA-labeling revealed discrete pericellular structures, 

I used a region of interest (ROI) approach to quantify number, area, and intensity of WFA 

staining. I used ImageJ (NIH; v1.50i) to select square ROIs such that all four borders were 

approximately tangent to the outer edge of WFA-labeling around the cell soma (see Figure 2.1A-

D above). I counted a cell as PNN-positive if WFA-labeling was prominently distinguishable 

from background and at least two-thirds of the cell body within the focal plane of the image was 

surrounded by WFA staining. All visible WFA-labeled pericellular structures in each image were 

subject to analysis, unless they were clearly outside the boundaries of a nucleus. All images were 

processed by investigators blind to brain region. 

For P. reticulata, exceptionally dense WFA-labeling demanded an overall intensity 

analysis, whereas cell count data were not possible. To quantify WFA-labeling, I measured the 

fraction of thresholded area of WFA stain covering each brain region (see Figure 2.1E-H). I first 

outlined the total area of the cell population in WFA photographs based on DAPI staining, 

transformed images to 16-bit grayscale, then applied an auto-thresholding algorithm to binarize 

the image. The Renyi Entropy thresholding algorithm (Kapur et al. 1985) provided the most 

consistent and accurate thresholding, however in cases of strong background staining, I applied a 
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set threshold value of 60, which gave similar results as auto-thresholding on images with low 

background. I then retrieved the percent area of above-threshold staining for the area of the 

selected region.  

Statistical analysis 

I fit PNN count and area data to a generalized linear model with a Poisson error 

distribution and scaled Pearson’s chi-square to account for overdispersion. I compared models 

including developmental stage, brain region, and their interaction, as predictors using likelihood 

ratio testing, and performed pairwise comparisons adjusted with Tukey’s HSD. I used R software 

including the multcomp package (https://www.r-project.org; v3.3.1) for statistical analysis and 

visualization. 

Results  

 In all species, PNNs across the brain tended to increase in abundance throughout 

development. In P. reticulata, PNNs remained sparse during the first seven weeks of life, but 

increased sharply during adulthood. In R. yunga, PNNs increased between metamorphic climax 

and 2 months of age. In A. sagrei, PNNs increased slightly from hatchling to juvenile stages, and 

strongly from juvenile to subadult stages. 

Regional PNN differences 

For both P. reticulata and R. yunga, an additive model including brain region and 

developmental stage was sufficient to predict PNN percent area and count, respectively (P. 

reticulata: #$%
& =146.94, p=0.144; R. yunga: #$'

& =20.662, p=0.228). For A. sagrei, the interaction 

model between brain region and developmental stage could not be reduced to an additive model 

(#(%
& =133.31, p=0.001), therefore, the number of PNNs in a given region depended both on 

region identity and developmental stage. 
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P. reticulata. In fish, region-specific PNN developmental trajectories largely mirrored the 

brain-wide pattern of sharp increase after five weeks of age and into sexual maturity. However, 

the magnitude of coverage increase was different between regions. All regions began at less than 

10% WFA-cover, but the central, periaqueductal, grey (CG) reached coverages of over 60%, 

while other regions (DH, rets) reached only 10-20% (Figure 3.2A). Overall, the pattern of  

progression proceeded from the medullar reticular nuclei (rets), to the rest of the brain regions in 

which I observed them (Figure 3.2B). 

R. yunga. In toads, while PNNs on average tended to increase over development, region-

specific trajectories showed markedly different patterns (See Appendix Figure A1.2 for all 

regions). For example, PNNs in the medial pallium (Mp) appeared at the end of metamorphic 

climax and increased in abundance through two months post-metamorphosis. Similarly, PNNs in 

the principal nucleus of the torus semicircularis (Pr) were not detectable in any individuals prior 

to two months post-metamorphosis. In contrast, PNNs in the lateral pallium (Lp) disappeared at 

the end of metamorphic climax, and did not return even two months post-metamorphosis (Figure 

3.3A). Overall, I detected PNNs throughout all major brain divisions early in development, 

however their early emergence in forebrain areas and late appearance in Pr, along with loss in 

other regions, contrasts a ground-up progression (Figure 3.3B). 

 A. sagrei. In lizards, PNNs trended toward overall increase throughout development, but 

the magnitude and direction of change depended on brain region (See Appendix Figure A1.3 for 

all regions). For example, PNN increase in the ventrolateral thalamus (Vlt) increased to mature 

levels by the sub-adult stage, whereas counts in the lateral septum (Sel) remained stable 

throughout life. In contrast, PNNs in the medial reticular nucleus (Rm) increased sharply in 

adults, while those in the parabrachial nucleus (Pb) only arose in adulthood (Figure 3.4A).  
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Figure 3.2. Development of PNNs by brain region in Poecilia reticulata. (A) Developmental 
trajectories by region. Means ± SEM. DH, dorsal hypothalamus; CG, central grey; nMLF, 
nucleus of the MLF; rets, medullar reticular nuclei. (B) Schematic of PNN development, 
oriented anterior/forebrain (leftmost) to posterior/hindbrain (rightmost), collapsed along the 
medial-lateral axis. Tel, telencephalon; Di, diencephalon; Mes, mesencephalon; Cb, 
cerebellum. 

A	
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Figure 3.3. Development of PNNs by brain region in Rhinella yunga. (A) Developmental 
trajectories by region. Means ± SEM. TP/SC, posterior tuberculum/suprachiasmatic nucleus; 
Mp, medial pallium; Lp, lateral pallium; Pr, principal nucleus of the torus semicircularis. (B) 
Schematic of PNN development, oriented anterior/forebrain (leftmost) to posterior/hindbrain 
(rightmost), collapsed along the medial-lateral axis. Tel, telencephalon; Di, diencephalon; 
Mes, mesencephalon; Cb, cerebellum. 
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Overall, I found the earliest detectable PNNs throughout all major brain divisions except the 

cerebellum. The next-earliest-emerging PNNs occurred in mid- and fore-brain structures, and the 

cerebellum (Cb) and the nucleus of the abducens nerve (VI). Only in later development did the 

remaining diencephalic, mesencephalic, and medullar nuclei regions express PNNs (Figure 

3.4B). 

Discussion 

My results show that PNNs occur with developmental trajectories that are brain region- 

and lineage-specific. PNNs occur broadly in diencephalic, brainstem reticular and cranial nerve 

nuclei, and the nucleus of the medial longitudinal fascicle. In amphibians and reptiles, PNNs 

extend into forebrain regions, including the medial pallium, amygdala and septal nuclei. In 

contrast to the mammalian model of progressive, ascending circuit stabilization, I found that 

PNNs emerge during development in divergent patterns across vertebrates. 

Postnatal development of PNNs 

While I did not manipulate animal experience, my results show that PNNs undergo 

substantial increases in abundance weeks after birth or hatching. Because of this developmental 

delay in PNN maturation, I suggest that they are poised to stabilize early-life memories that are 

integral to an individual’s behavioral repertoire. Postnatal manipulations of animal experience 

show mixed effects on PNN development and behavioral plasticity. In mammalian visual and 

somatosensory cortices, sensory deprivation prior to PNN development leads to delayed PNN 

maturation and a corresponding delay in critical period closure (Pizzorusso et al. 2002; McRae et 

al. 2007; Nowicka et al. 2009; Ueno et al. 2017). Similarly, songbirds that lack auditory 

experience have delayed closure of the song-learning critical period and reduced overall PNN 

stain intensity (Balmer et al. 2009). In contrast, work in the chick visual system showed that  
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Figure 3.4. Development of PNNs by brain region in Anolis sagrei. (A) Developmental 
trajectories by region. Means ± SEM. Vlt, ventrolateral thalamus; Sel, lateral septum; Rm, 
medial reticular nucleus; Pb, parabrachial nucleus. (B) Schematic of PNN development, 
oriented anterior/forebrain (leftmost) to posterior/hindbrain (rightmost), collapsed along the 
medial-lateral axis. Tel, telencephalon; Di, diencephalon; Mes, mesencephalon; Cb, 
cerebellum. 
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PNNs develop regardless of sensory input (Gáti et al. 2010).  Continued investigation linking 

sensory input and PNN development with the stability of their involved circuits will illuminate 

the extent to which PNNs are influenced by experience. 

Early development of PNNs in social decision-making network regions 

 While I observed PNN development in brainstem nuclei as expected, I found that PNNs 

in forebrain processing centers emerged at the same time or earlier than many brainstem regions. 

In all species, I detected PNNs in some hypothalamic nuclei, and in reptiles and amphibians I 

found early emergence of PNNs in amygdalar and thalamic regions. In reptiles, septal PNNs 

formed as early as two days post-hatch, and in amphibians, PNNs formed in the medial pallium, 

a putative homolog of the mammalian hippocampus (González & López 2002), at the end of 

metamorphic climax. While the issue of homology remains under debate (Goodson & Kingsbury 

2013), many of the brain regions in which I observed early PNN development comprise 

important nodes in the vertebrate social decision-making network (SDM). Evidence points to the 

SDM as a vertebrate-wide circuit responsible for determining salience of stimuli and generating 

adaptive motor output (O’Connell & Hofmann 2011). Why might PNNs emerge first in these 

regions, then later in brainstem pathways? Experiments in mammalian amygdala and 

hippocampus demonstrate that maintenance of early-life fear memories depend on PNN 

development in these regions, and that removing PNNs or genetic knockout of PNN components 

leads to enhanced or altered synaptic plasticity (Gogolla et al. 2009; Hylin et al. 2013; Shah & 

Lodge 2013; Jansen et al. 2017), resulting in fear memory extinction and enhanced dopamine 

activity. Likewise, PNNs occupy hypothalamic regions with bidirectional connectivity to the 

septum and known involvement in defensive behavior (Horii-Hayashi et al. 2017). Anterior 

dorsal lateral hypothalamic PNN digestion with chondroitinase similarly prevented the formation 
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of place preference memories driven by cocaine use in rats (Blacktop et al. 2017). Again, 

establishment of homologies in these regions, and their link to actual behavior (Hoke et al. 

2007), is needed for non-mammalian taxa (Goodson & Kingsbury 2013). However, given PNN 

presence in many SDM nodes across vertebrates and their demonstrated roles in mammalian 

behavior, I speculate that PNNs in the SDM could stabilize early-life memories of highly salient 

stimuli. One possible explanation for the late development of PNNs in these regions in rodents is 

their limited experience during early life due to maternal care (Champagne et al. 2008). 

Summary 

 The progressive, ascending, “ground-up” model of circuit stabilization by PNNs is a 

mode of PNN development unique to mammals. In the fish, amphibians, and reptiles studied 

here, PNNs follow a pattern more resembling “top-down” stabilization. Further, their 

developmental trajectories differ across brain regions within each species, with some regions 

developing PNNs late in life, whereas others are lost over time. Because the progressive, 

ascending, ground-up development of PNNs appears unique to mammals, one intriguing 

hypothesis is that this mode of circuit stabilization facilitated the evolution of complex cognitive 

processing in the mammalian pallium. This would imply that PNNs, or at least aggregated ECM, 

existed as a neuronal stabilizing mechanism in the common ancestor of all vertebrates. Key 

questions regarding fundamental properties of PNNs include: How dynamically regulated are 

PNNs over time, and what happens to neural circuits when PNNs are lost or degraded (Slaker et 

al. 2016)? And how are long-term “memories” of salient early-life events maintained by PNNs 

(Tsien 2013)? My results demonstrate that the species studied here offer important insight into 

fundamental features of PNN biology, and offer enticing, natural systems to address these 

remaining questions. 
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APPENDIX 
 
 
 

 
 

Figure A1.1. PNN trajectories for all regions in Poecilia reticulata. Means ± SEM. This figure 
is identical to Figure 3.3A, but is placed here for convenient comparison with other species. 
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Figure A1.2. PNN trajectories for all regions in Rhinella yunga. Means ± SEM. See Table 1.1 
for list of abbreviations for region names. 
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Figure A1.3. PNN trajectories for all regions in Anolis sagrei. Means ± SEM. See Table 1.1 
for list of abbreviations for region names.	

Developmental	Stage	

M
e
a
n
	P
N
N
	C
o
u
n
t	



	 55 

	
 

 

Figure A1.3. Continued from previous page.	
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