
SIGNIFICANCE AND APPLICATION OF 

FROUDE AND REYNOLDS NUMBERS 

A S C R I T E R I A F O R S I M I L I T U D E 

by 

II. K, LIU" -

and 

M, L, ALI3ERTS0N 

Department of Civil Engineering 

COLORADO STATE UNIVERSITY 

Fort Collins, Colorado 

Jun~, 1959 

CR59HKL20 

ERl~G 

MAR 12 '74 



3 

8 

17 

19 

20 

25 

31 

Line 

9 down 

8 up 

10 down 

9 up 

3 down 

10 down 

6 up 

4up 

19 down 

20 down 

4up 

10 up 

CORRECTIONS 

Read 

The subscript m denotes the model 
and the subscript p denotes the ••• 

Leonhard Euler 

The celerity of the gravity wave 

(density) currents 

Shear velocity V * 

~(34) 

Lacey 

involve the parameter 

Straub and others (27) 

2,000 to 3,000 

~Craya 

The f.crces of: gravity predominate 



SIGNIFICANCE AND APPLICATION OF 
FROUDE AND REYNOLDS NUMBERS 
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Many phenomena in fluid mechanics, including the stress and strain relationship for 

fluid motion and its accompanying energy loss, are so complex that mathematical analysis 

is normally unattainable except in special cases. Hence, practical solutions for hydrau-

lic engineering problems have relied heavily upon experimental investigations and model 

studies, The development of experimental studies of hydraulic problems bas taken place 

almost entirely since the Froude's law of similitude and that of Reynolds' were discov-

ered . Since then these laws of similitude have been extended to many phases of hydraulic 

problems, and a considerable number of variations of the laws have been formulated . Num-

erous textbooks of fluid mechanics, scientific papers, and technical reports have been 

written which include discussion of the basic principles and applications of these laws 

of similitude, Although the basic concepts are in general simple and straight forward, 

applications are sometimes confusing and debatable. The purpose of this paper is to 

examine the laws of hydraulic similitude together with certain applications in an attempt 

to help in their ultimate clarification. 
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** Associate Civil Engineer, Colorado State University, Fort Collins, Colorado, 

*** Director, Colorado State University Research Foundation and Professor of Civil Enginee-
ring, Colorado State University, Fort Collins, Colorado. 

IIIHHIH!HIII 
U18401 3297593 



-2-

Dimensional Considerations 

Since fluid motion is basically a problem of mechanics, it is sufficient to restrict 

the study to the four fundamental dimensions of mechanics--that is, length, L, time, T, 

mass, M, and force, F. Furthermore, these four dimensions can be related by the use of 

Newton's second law of motion: 

F (1) 

in which;: is a vector denoting the resultant of all forces acting on a body which has 

a total mass of M, a is a vector denoting the acceleration of the body, and C>( is a 

universal positive constant--the magnitude of which depends only on the units employed 

and the dimensions of which are l~ F 1 2 J Leaving the uni ts of mass, M, length, L, and 
ML 

time, T unchanged, the magnitude of o!... can be made equal to the pure number 1, by suit-

able choice of the unit of force; thus: 

F Ma. (2) 

According to Eq 2 the dimensions of force, length, time and mass can be interrelated 

= I (3) 

In which any one of L,T,F, or M can be regarded as the depend~nt dimension. It is custo-

mary to choose either L,T,F, or L,T,M, as the three fundamental dimensions for problems 

of mechanics. 
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Principles of Hydraulic Similitude 

Complete similitude of two flow systems requires that the systems in consideration be 

geometrically, kinematically, and dynamically similar. 

Geometric similarity exists between two systems with the ratios of all corresponding 

linear dimensions equal. This relationship only involves similarity in shape and form. 

That is, 

8_p -
f5m - - - - - (4) 

in which L denotes the geometri c ratio, L the horizontal length, D the flow depth, and r 
8 the flow width. 

prototype. 

The subscript p denotes the model and the subscript m denotes the 
I 

Kinematic similarity is a similarity of motion. When the ratios of the components 

of velocity and acceleration of all homolqgous points in two geometrically similar systems 

are equal, the two states of motion are kinematically similar. The paths of homologous 

Particles will then also be geometrically 

and 

in which 

½= 

a,= 
Vr denotes the velocity ratio, 

similar. 

0, -
V111 

a_'° 
am 

That is, 

ltp Up a) f' 
-

()/YI v;,, w/#1 
(5) 

ar the acceleration ratio, V the mean velocity, 

u, v, and w the velocity components along x, y and ~ directions respectively. 

Dynamic similarity between two geometrically and kinematically similar systems requi-

res that ratios of all homologous forces in the two systems be the same. In the case of 

flow of real fluids, the forces acting on an element of the fluid are F_ due to pressure p 
variation, F;. f due to viscosity, and F, due to gravity, s 

(In this paper the forces due 

to surface tension and elastic compression are neglected,) Accordingly, the equation of 

Motion can be written as 

/via (6) 
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Eq 6 can be changed into 

(7) 

Which is the condition for dynamic equilibrium, in which F, denotes the inertia force 
(.. 

and is equal to ( - M /i. ) . 

Eq 7 can be represented by Fig. la which is a force polygon, The condition of dynamic 

similarity for incompressible homogenous fluid motion is 

( 0)p 

( F., )/YI 
L 

( ~)f == 

( 1 )rr1 
rr;~ F 
( F) 

m 

r 

The force polygon for the model is shown as Fig. lb. It can be shown that if 

~~ 
or 

(~ )n, 

then 

-~Fi·), 
{0,)m 

( /-)0 
f' I 
-----· 
( ;:::..- ) 
F f 

(8) 

(9) 

(10) 

The proof of which is based upon the condition that similarity of two force systems means 

not only similarity in magnitude but also similarity in direction. F denotes the ratio 
r 

of corresponding individual forces. 

(a) Prototype Fig. 1 (b) Model 

The foregoing illustration indicates that the pressure force is not an independent qua-

ntity. In other words, if the gravitational force and viscous force are similar in two 



-5-

systems and the resulting motion is also s i milar, then t he force due to pressure variation 

also must be similar. In the case of compressible fluid flow, such as flow of air or 

other gases, the pressure is affected by the thermal condition as well as the density of 

the fluid, Therefore, for compressible fluids, the statement that the pressure force 

depends upon the viscous force, gravitational force, and inertia force must by modified. 

In addition to the geometrical similarity, kinematic similarity, and dynamic similarity, 

a thermal similarity is also required. (l) 

The inertia force on the fluid element, by definition, is equal to the negative of 

the product of mass and acceleration; that is, 

- ;=, 
( 

in which u,v,w are velocity components along t he x,y,z directions, ~f-the elementary 

volume ( dx d y cJ 2. ) , ~nd / the density of t he fluid. For steady motion, the term of 

local acceleration ,)U is zero, and the inertia force can be wri t t en approximately as 
df 

-

(11) 

-/~, = fV {J;)U (lla) 
<- <:/ >< 

The other two convective acceleration terms have been neglected for simplicity. The ratio 

of the inertia force between the two systems can be written as 

( FL)/' , f d r{ ) ( pf LI c))( t° ( · d ui) p-lf '='~ (-z) ? 

f;- +I {/ ~ l{ )/YJ - / v~ d l/i) ( ~· Jm f -(-) uX .)'>(_ z_ /Y) 

Since 

u C)(, \/ / -v oC L3 and ,I'< oG L 
the foregoing equation becomes 

( Fr_· )p ( f' L 2 V L) p 2 1/ 2.. fr L,,. (12) 
(Ft, Jm ( L2 v2) /' 

f Ir} 



in which fr is the density ratio. Eq 12 has been considered by Oirkoff (2), as the 

principle of inertial modelling. 

The viscous force per unit volume can be represented as 

therefore, the ratio of the viscous force between the two systems can be written as 

( F;)r 
( ,;:.f),n 

The gravitational force~ unit volume is 

The ratio of the gravitational force between the two systems is 

The pressure force.!?.!!~ volume along the x-direction is 

The ratio of the pressure force between the two systems is 

-= 
,1J I Z rr /.....,_ 
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(13) 

(14) 

(15) 

According to the definition of "dynamic similarity," (see Eq 8) the inertia force 

ratio can be put equal to the viscous force ratio, 

f;- · )o 
I I 

( G_· }/YI 

Equating Eq 12 and Eq 13 

---- or 
(- F.·) 
. F, p 

f 
(16) 
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which means 

I 
(17a) 

and (17b) 

The dimensionless term 

is known as the Reynolds number, which is a dimensionless number introduced by Osborne 

Reynolds in connection with his study of turbulence in pipe flow (3). 

On the other hand, if the ratio of the inertia force is put equal to that of the 

gravitational force 

or 
) 

Equating Eq 12 and Eq 14 
2. 

L 2 ,_ tL 3 f, \1 ~1 fr f" ~ ::::: r r- r r / tr Lr 
or 2. 2 

f V ) (P V ) 17Lt rt- m 

the dimensionless term 

(18) 

(19) 

is called the Froude number in honor of William Froude who first discovered its importance 

in his model studies of ships (4). 

If the inertia force ratio is put equal to the pressure force ratio 

(20) 
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Equating Eq 12 and Eq 15 

-= I (21) 

which, in terms of model and prototype is 

This dinensionless 

If ) 
r f V .. f 

parameter (_!_ )1is knows as 
f' V2.. 

t :v~ )yr1 
the pressure coefficient (5). 

With an incompressible fluid, the change of pressure will not affect the density 

of the fluid and t he whole pressure field can be increased or decreased without changing 

the motion. In other words, it is not necessar~ly the absolute pressure intensity but 

rathe~ the pressure gradient which is related to the flow pattern--therefore, L1fcan be 

use~!~ Eq 21, that is 

(21a) 

According to Fig, 1, the pressure force will affect the inertia force. On the other 

hand~ once the inertia force, the gravitational force, and the viscous force a·re given, 

then ~he cor r e sponding pressure is fixed, This explains why the pressure force is not 

considered as an independent variable in hydraulic similitude. 
I ev2. 

'!'h3 inverse of the pressure coefficient J ~ r has been termed the "local Euler Number" 

by Rouse (6 ) in honor of Leonlard Euler, a Swiss mathematician of the eighteenth century. 

Accprding to Rouse the discharge coefficient of an orifice and the resistance coefficient 

of pipe flow are particular forms of the Euler number, The coefficient of drag for a 

submexged body such as sphere was considered by Rouse as a modified Euler number, From 

Eqs 9 and 10, the "pressure coefficient" depends on the Reynolds number and Froude number, 

In case the effect due to viscosity and gravity is nil, then the Euler number alone will 

deter m:1.ne the fl ow pattern, as is the case for ideal fluid flow. (Note that the Euler 

number does not ~nvolve fluid properties other than the density.) 
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Sometimes the cavitation number is eroneously considered as a type of "Euler number". 

This is not justified because the cavitation number is related to t he difference between 

the minimum pressure intensity, which depends upon the absolute pressure in the flow, and 

the vapor pressure which is a property of the liquid and depends upon its temperature, In 

modelling cavitation phenomena, the model size, the free stream velocities, t he dissolved 

air content, the free nuclei content, the roughness of the body surface, and the cavitatio1 

number are all considered to assume simi larity. 

The foregoing dimensionless numbers- -such as the pressure coefficient, the Froude 

number, and the Reynolds number--can be obtained also from dimensional analysis by use 

of the 7T -theorem. There are many references written on the ~ -theorem and dimensional 

analysis (5). Therefore, it is not presented in t his paper. rrowever, the method of 

dimensional analysis is not always adequate because in order to use dimensional analysis 

most effectively, considerable experience with physical interpretation is needed. This 

requirement can cause considerable difficulty . 

The dimensionless numbers, Froude number, Reynolds number, and Pressure coefficient, 

can also be obtained (7) through the appli cation of the Navier-Stoltes equation of motion, 

The Navier-Stokes equation for prototype flow in vector form is 

in which V is the velocity vector, q- the gravitational 
2. .)"l. d2 d 1.. 

, and V- + - + -- ax ... dt),, d~<-

1 17 = L,. L rn 
...L 
\Ip ::: V,._ \/ n'} 

lr == p,_ Pm 

for length 

for velocity 

for pressure 

(22) 

D -~-1-LJJ -1- ;y Jt st.-force, ])t - Jt Jx II dJ ,- U d-i , 

Let 

f or gravitational force (23) 

{p = fr f n? 

-1:r ==- "t"r- t-m 
for 

for 

density 

time 
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?,p =- /Ur /'( ff/ for dynamic viscosity 

for undi£torted model 

therefore 

(24) 

Substituting Eqs 23 into Eq 22 yields 

(25a) 

or 

(25b) 

In order fov the model flow to be dynamic~lly s~milar to the prototype flow, the coeffi-

cients of the gravitational force ,, the pressure .:force, and t.he viscous forqe must all be 

unity. 

For the gravitational force 

<=fr tr-
?, Vr r 

=I (26) 

Since i = Lr and 6 can be considered as the ratio of the specific weight of the fluid, 
r 'v;- 1,-

that is (. , then 

' 
Whicb becomes 

I 

(19) 
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Therefore, the Froude criterion of model law, as given by Eq 19 previously, is again ob-

tained. It should by noted that the Froude law of similitude is required wherever a 

body force is present in the system. 

For the viscv'!s force :· 

or 
Pr 

fl 11,'..L,_ 

== I 
(27) 

which is the relationship between the Reynolds number for the prototype and the model 

(17) 

For the pressure force 

(28) 

or = I (21) 

In the case of an incompressible fluid, Eq 21 can be written as 

I LS.p ) 
l-f V'- m 

(21a) 

for reasons given previously. 

Since the model flow is considered a miniature of the prototype flow, the specific 

forms of equations necessary for the prototype flow--such as, the equation of motion, 

the equation of continuity, and the boundary conditions--must also describe the model 

flow. Since energy is a product of force and distance, it can be shown that if the two 

systems of flow are geometrically, kinematically, and dynamically similar, the energy 

equation pertaining to the prototype flow should also pertain to the model flow. In 

case the compressibility of the flow is important, the equation of state and the energy 
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equatiorl arb also needed in fijtmui ~t ing coHditions of stm1 l itude t 2 : 

In case the equation of state follows the adiabatic relationship, that is, 

(29} 

/ 

the pressure coefficient can be changed into a Mach number as follows (7): 

/oj f - k /od f = Cr'1 1-'Jsfanl 

df' -- k d[_ = 0 
/J ! (30} 

k_ k dt t f 

-¥- = k:dt - I:: or _q_t (31} 

t 
in Which E is the modulus of elasticity 

Hence !5__}!_ 1::::- CZ (32) - - = l r 
in which C is wave celerity 

or _j_ C '2.. 

- -( k. (33) 

Substituting Eq 33 into Eq 21 yields 

(34) 

The Mach number is also known as the "Cauchy number," It is also the ratio of the kinetic 

energy to the intrinsic energy (1), An introduction of the Mach number here is for the 

purpose of discussing the Froude number in the next section, The complete similarity 

princip,le of compressible fluid flow is omitted here because it is not essential to the 

problem of hydraulic similitude, 



-13-

Froude Criterion 

The Froude number as shown in the foregoing pages can be obtained by combining the 

inertia force and the gravitational force. In case the flow is unlimited; that is, there 

is no interface, and the density of the fluid is homogenous, the gravitational force is 

counter-balanced by the bouyance force due to hydrostatic pressure. Therefore, the fluid 

motion can be considered as independent of the effect of gravity. Also, in case of con-

fined flow, such as flow in pipes, the flow pattern is determined by the boundary condi-

tions. The effect of fluid weight is only in the determination of the piezometric head--

that is, the effect of gravity is to change the pressure intensity from point to point 

in direct proportion to the change in elevation. Under these conditions, the Froude 

number plays no part. 

If the fluid is unconfined in any zone, the form of the free surfac~ and therefore 

the form of the entire flow pattern, will be subjected to gravitational influence . It 

can be. seen readily that the extent of the influence is a relative matter. This point haE 

been well illustrated by Rouse (6): 

"consider, for instance, the efflux of the fluid from the boundaries shown 
in Fig ~51 (Authorst remark - See Fig. 2). The inertia of the fluid tends to 
make it continue in the longitudinal direction after leaving the orifice, but 
the effect of gravity is to deflect it in the vertical direction; evidently, 
the greater the density and the velocity, the smaller the deflection in a 
given distance; whereas, the greater the difference in specific weight between 
the moving fluid and the surrounding medium, the greater the deflection will 
tend to be. A jet of air emerging into the atmosphere ~r a submerged jet of 
water) would thus remain symmetrical around the longitudinal axis, regardless 
of how small the velocity or density might be, as indicated by profile A in 
Fig.51, that is, the gravitational effect must be nil so long as there is no 
difference in, specific weight, nut a jet of a fluid of greater specific 
weight than that of the surrounding medium, would not remain symmetrical, 
the asymmetry becomes more pronounced (profiles n and C) the lower the 
velocity and density or the greater the relative specific weight of the 
moving fluid." 

Fig. 2 
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In view of the fact that the gravitational force is necessary for consideration only 

if there exists an interface, such as a free surface, the gravitational force is best 

represented by 4r instead of f Therefore, the Froude number can be written as 

V F,_ -= .1.zsr (3s> 
r-L 

F in which Lis a characteristic length. In case of flow having a free surface the Froude 

number is commonly written as 

,J:;- V 
- vfL (36) 

As mentioned earlier, in case the influence of the discharge of the flow is only the 

fluid density, velocity, and pressure difference, the Euler number is constant. Similarly 

in case of the discharge coefficient for flow over a weir, the gravitational effect is im-

portant. Any one of the weir equations is reducible to a dimensionless number of a combi-

nation of velocity, length, and acceleration of gravity, which is similar to Froude number . 

In this case a fixed numerical value of Froude number corresponds to a fixed coefficient of 

discharge, regardless of boundary scale. 

Following the initial formulation of the Froude parameter, various forms of Froude 

number have appeared in the literature. In the following, certain of these forms of 

Froude number are discussed in connection with their common usage. 

Ship models 

In the study of ship models the Froude number used is 

in which Vis the velocity of the ship and Lis the length of the ship L, This parameter 

was originally used by Froude in his shi p model study. Since Lis along the direction of 

motion, which can be considered proportional to dx of Eq lla, it is very clear that this 

form of Froude number can be considered as the ratio of the inert:l.a force to the gravi ta-

tional force. Froude reasoned that for a ship traveling on the water surface, there are 

several kinds of energy losses: 1. Those due to boundary resistance 
2. Those due to eddy formation 
3. Those due to wave formation 
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The boundary resistance loss and the eddy loss can be cons i dered as a function of the 

Reynolds number and the form of the ship, and the loss due to wave f or mation can be con-

sidered as a function of the Froude number and the f orm of the ship. Therefore, Froude 

proposed the model law for ships as v;_oe(Lr . Detail of ship model technique can be 

found eleswhere. The name Reech is often associ ated with Froude number. Reech (8) pro-

posed the Froude law in 1831 and Froude proposed the same law in 1874. However, Froude 

separated the energy loss according to the boundary resistance loss, eddy formation loss, 

and wave formation loss, which Reech did not do. Therefore, the name of Froude law is 

preferred(2). 

Open channel~ - using depth 

Study of flow in open channels involves the following Froude number 
V ;; = \!!h 

in which V is the mean velocity of 
VL 

number is sometimes written as jh 
flow, /2 is the depth of flow. This form of Froude 

which Ilakbmeteff (9) has called the "kinetic flow 

factor". Desides being recognized as a form of Froude number, V 
Vjh can also be inter-

preted as proportional to the square root of the ratio of kinetic energy to poteptial 

energy . of the flow. The energy-ratio concept can be shown as follows: 

-tfuJlf AX 
"I 2. v2.. 

Et' oC G· ·L~·x f ....:!... ( u ) L5 K 
oC 

f r;))( 
r;,C, c)X 2. oG 

.EJ ;; 'Ll/1 +;-Y4!f th Jh 
Since 

/-;d ~ I; ll oL \/,, and 

'!'he conditions of ·geometric .. andJkinemat i c similarity are -used 1n ·cbangfng .the·~sign of 

(37) 

vz " " equal:J.ty to propoi't~onality;·C.:The form Jh can be calle d a Dernoulli number which indi-
C/ 

cates an energy ratio. 

It is well known that the denominator vj.h in the Froude number is the celerity of a 

gravity wave of small amplitude in shallow f low. The significance of this parameter in 

open channel flow is that when the paramet er is equal to 1, the flow is called critical 

flow--that is, for a given discharge, the specific energy of the flow at the critical 
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stage is a maximum. When this number is equal to 1 the mean velocity of fiow is equal to 

the celerity of the disturbance, Therefore, the disturbance is. stationary. If the Froude 

number is less than 1, the flow is classified as tranquil or subcritical In tranquil 

flow the disturbance can travel upstream. If the Froude number is greater than 1, it is 

called rapid flow, shooting flow, or supercritical flow. In this case, the disturbance 

cannot travel upstream but will be swept downstream. 

Since the term /if; is the celerity of the surface wave, this form of Froude number 

can be considered as a velocity ratio. In case of a compressible fluid, this ratio is 

V known as the Mach number z which is also the ratio of the kinetic energy to the intrin-

sic energy. There is a striking similarity between the supercritical flow and the super-

sonic flow. 

It should be noted that the greater the Froude number, the greater the inertia 

effect and the kinetic energy, On the other hand, the smaller the Froude number the 

larger the relative effect of gravity and the potential energy. For example in the case 

of a hydraulic jump, the greater the Froude number of the approaching flow, the greater 

the energy loss through the hydraulic jump, When the Froude number is between 1 and 2, 

on the other hand, undular waves develop on the water surface instead of the hydraulic 

jump. In this case, the loss of energy is due mainly to formation of surface waves and 

gravitational effects are relatively important . 

The hydraulic jump can be created also by relative flow between two fluids of diff-

erent density such as demonstrated by Rouse and others (10). This is an excellent ex-

ample of the significance of the difference in specific weight L::if of the two fluids, 

Hydraulic structures 
V 

In model and prototype studies of hydraulic structures, the Froude number ism ai 
in which Vis the characteristic velocity and ~

0 
the characteristic depth, The character-

istic length in this case is designated as any length characterizing the flow condition. 

For instance, in case of a hydraulic jump in a sloping channel the depth 
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Y of approaching flow measured perpendicular to the apron is often used as the character-

istic length. Or in case of a submerged jet from a sluice gate, the height of the gate 

opening is often used as the characteristic length The Froude number based on 

these characteristic lengths is not necessarily the energy ratio, or the velocity ratio . 

Furthermore, it is difficult to visualize these as ratios of the inertia force to the 

gravitational force. As long as the model and the prototype are not distorted, however, 

this form of Froude number will give a correct similarity criterion. 

The depth of flow perpendicular to the apron cannot be used in computing the celerity 

of the approaching flow. This can be shown in the following way. If the inclination of 

the apron is 90 degrees, obviously the celerity of the small gravity has no meaning since 

they cannot travel vertically. Should the celerity of the waves be used as the denomina-

tor, the length parameter is !) t ,.sBin which 5 is the inclination angle of the sloping 

channel. 

Gravity currents 

Flow of one fluid under another fluid of smaller specific gravity requires a special 

Froude number ~v 
J ~x, ( 

-d 
F' 

in which .t:,.V is a differential velocity at the interface J is the thickness of the inter-

face or the amplitude of the waves. This form of Froude number used in modelling gravity 

density currents is well known. Extensive work on gravity currents has been done by 

Ippen snd Ilarleme.n (11), and Keulegan , (12) and Y:ih (12). 

Open channel flow--using hydraulic radius 
V --In the study of energy loss for flow in open channel a dimensionless number ~jR 

bas often been used, in which Vis the mean velocity of flow and R the hydraulic radius. 

This form of Froude number was first proposed by Engel (13), he called this the noussinesq 

number which he used in correlating his data on flow in a venturi flume. The argument (14) 

against this form of Froude number is that it does not have the physical meaning as an 

energy ratio, a force ratio, or a velocity ratio. Engel (15) argued that by the 
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introduction of hydraulic radius, the effect of nonuniforn velocity distributiononthe 

kinetic energy term can be corrected. > Such an effect is more logically related to the 

Reynolds number. 

The difficulty of interpreting this dimensionless number is due chiefly to the 

hydraulic radius which is a derived and hypothetical length. Uowever, the use of a hypo-

thetical length in Fr~ude number is not new. For example, in case the channel is not rec-

tangular, the average depth of flow is commonly used as the characteristic length in 

forr,1ing the Froude number. The average depth is defined as the total flow area divided 

by the top width. Whether the celerity of surface waves based upon an average depth 

has any physical meaning is not known. 

A comparison between the use of hydraulics radius and the use of mean depths for 

flow in pipes is interesting. In the limit for pipe flowing full the Froude number 

based upon the mean depth is zero, because the mean depth of pipe flow is infinity 

since the top width is zero. However, it is not conceivable that the celerity of surface 

waves of flow in a pipe not flowing full depends upon only the top width cxl the flow, 

and is independent of the shape of the conduit. The hydraulic radius of a pipe flowing 

full is¼ of the diameter. In case the hydraulic radius is used as the characteristic 

length in the Froude number, the Froude number of the pipe flow has a definite value 

but no physical significance. 
V 

It should be noted that the Froude criterion VyL. is based upon the condition that 

there exists geometric and kinematic similarity. Otherwise, the Froude criterion may 

not be adequate for dynamic similarity. For example, if the width-depth ratios of two 

open channels are not the same, the Froude criterion may not be sufficient to describe 

the similarity completely because the velocity distrt~ution in the two systems may not 

be the same. The Doussinesq number has been introduced to correct the boundary effect on 

the velocity distribution . Hence, on the one hand, the Froude law is not exact and on 

the other hand the Doussinesq number is not truly a Froude criterion but may serve a 

purpose of correlating flow conditions of two or more systems. 
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The use of the Doussinesq number is to replace the Froude number. The physical 

meaning of the Ooussinesq number for flow in open channels m~ght be more appealing if it 

is written as the conbination of velocity V shear velocity and energy gradient, 

(38) 

which shows that the surface waves ffect not only the energy dissipation, but also on 

the velocity distribution, and the boundary shear. In case the bed roughness is not the 

same as the wall roughness, the wall effect on t~e flow can be approximately eliminated 

by substituting f(b for R.. in Eq 38, in which (~ is the hydraulic radius pertaining to 

the bed. This concept has been used by Liu and Hwang in their paper "A discharge formula 

for flow in straight alluvial channels"(15). 

The use of the Doussinesq number is mainly in connection with flow energy loss. The 

application of Eq 38 can be shown by the following example. The energy loss for flow 

in pipes is normally written as 

L 
=: f D 

r v2. 
r_L 
8 jR 

Vi'? in which f is a function of -- , and relative roughness. 
,;, 

Substitution 

(39) 

v2 \I 2-. 

of qR by c;;--·5 
(! :J RS 

into Eq 39 does not i~troduce any new variable, since 5 = .:!_{ 
L. 

On the other hand, 

the coefficient f for flow in open channels is a function of V , 
v2 v~-

and relative roughness. Substitution of CIA' by -;-.,· 5 will give f as a function of 
d '' ;f-t?..., 

vR 
V 

relative roughness, ands in which sis a factor representing the gravitational force. 

Froude number of this type is quite often used for flow in open channels. Lacy 
\/1... vz 

called /JR. , a silt factor (16), and Dlench called JJ) (17) the bed factor. 

Alluvial channels 
lb 

Studies of alluvial channels involve the following parameter --v-~-
.Ll ,J < < L 

in which /1., 

is the shear force per unit area pertaining to the movable bed LlYs the difference in 

specific weight between sediment and fluid, and d the sediment size. This dimensionless 
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number is used very often in studying sediment transport. It is similar to the type of 

Froude number mentioned above if the boundary shear is written 

(40) 

If the boundary condition and the velocity distribution is similar, the motion having the 

same value of this number will have similar relative motion between the fluid and the 

sediment, This number has been called the coefficient of tractive force by Shields ClaJ·; 

flow intensity by Einstein (19), and the "channel stability factor" by Dogardi (20), 

It has been used extensively in modelling movable beds. 

Fall velocity 

Study of sediment transported by fluid involves the following parameter 

in which VV is the terminal velocity of a falling particle, and dis the particle size. 

On accqunt of the fact that the fall velocity is a function of the specific gravity and 

the size of the material, this parameter should be considered as a drag coefficient. 
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Reynolds Criterion 

The Reynolds number normally involves only the molecu ar viscosity of the flow, the 

mean steady- state velocity, a,1d a characteristic length . A more complete consideration 

of the Reynolds cri tei.'ion, !1owever, shows it to have two important areas of significance: 

1, When the Reynold.a n u ,;1;JeT is not lar·ge, til.e dynamic sim:i lari ty of flow can 
be attained by mainta.'. ning the Reynolds number of the flow the same. 

2. At 1arge Reynold.s numbe1·s fo r which the flow is not only :fully turbulent, 
but the Reyno lds strasses also are large compared with the mean viscous 
stresses. ( SiIJlilarity of flow under these ccndi tions is considered by 
Dirkhoff (2) to be inertial modelling. ) 

At la?ge Reynolds nm;f;:,ers, the mean motion, and the motion of the 
energy-conta:'.ning ·~omponents of the turbul ence, are determined by the 
boundary conditions of the flow alone and are independent of the fluid 
viscosi ty . '!'i.1is pr::i.::i.cip::..e involves t:ie hypcthesis that the flow structure 
is sim.~la~ t'.t all ~.arge ReynoJ.ds numbers . 

The general fo;.'m of th£ Re!r.ao lcs numbeX' 
\;'/__. -v indicates that it may be 

similar to the rat io ol the eddy viscosity ~o the molecular vi3cosity. T~is is reason-

able because the intensity of turbulence Vv 12 can be considered proportional to the mean 

!' velocity of flow V, and the scale of turbulence .l depends upon the scale of model L. 

It is not easy to model large Reyno lds numbers on a small scale. Difficulty arises 

beca~se, for a given fluid , r~ducing the scale requires ~ncrcasing velocities in the same 

ratio. Unvortunately, there oeems to be no liquid fo~ wb.icl1 kiner.iatic viscosity is 

much less than that of ,11eter altr:iough !!'any have much great0r kinematic viscosity. Hence, 

wind tunnels are knovm to i.::;:-r::n,·:i.de the only economical Reyno·· ds models of phenomena of 

water flow. 

In using the Reynolds cri te:don for mode:.ling, t·;vo precautions must be taken. 

1, The models must !'.'.ave a similar surf~ce roughne Gs to insure complete geometric 
similarity. ?he onset of t urbu!.mt fJ.ow, and the tx·ansi tion of the boundary 
laye:"" fro::1 lamina;,· tc turbulent flew , a::ce greatly influenced by this factor. 
For example, the critic al Reynolc'n nu;,1ber of tb.e crag of a sphere can be 
g:reatly "J:ed1.c1.;;d by rougheni::ig i'c suitably , 

2, The turbulence of the free stream must be the same in them: lel as in the 
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prototype. For example, it bas been found that the critical Reynolds number 
of the sphere in wind tunnels, can vary by a factor of two depending on the 
turbulence of the wind tunnel. 

One important phenomenon in Reynolds modelling is separation. When separation occurs, 

the approaching flow separates from the boundary. Consequently the velocity distribution 

and drag along the boundary are affected appreciably. Changes in the point of separation 

generally cause the pressure drag to be increased and the shear drag to be reduced, or 

vice-versa. Fully-developed separation involves the formation of eddies in the zone of 

separation which are associated with increased energy loss. For turbulent flow along a 

boundary, the separation phenomenon is responsible for changing the smooth boundary to a 

rough boundary. 

In view of the foregoing facts, it is important in Reynolds modelling to maintain 

complete similarity of the shape, the location, and the flow pattern of the separation 

zone. For flow around sharp corners of a body, the point or points of separation to-

gether with the associated flow are rather fixed and easily predicted. Therefore, the 

modelling of separation under these conditions does not present a great problem. For 

flow around a blunt rounded body, however, the shape and location of the separation zone 

may change appreciably with Reynolds number--so that modelling special techniques must be 

employed to overcome such difficulties. 

As indicated in the foregoing, a complete understanding of the Reynolds similarity 

requires a knowledge of turbulence structure and the boundary layer theory. Without 

such information, the investigator frequently finds himself in a very confusing position. 

The following is a discussion of transitions and velocity distributions involved in 

modelling. The reader is referred to standard references on these subjects as a supple-

ment. (1) (6) (22) 

Transitions involved in modelling problems 

There are three types of transition problems involved in Reynolds modelling. 

a. Zone of flow establishment 

b, Laminar to turbulent flow 

c, Hydraulically smooth to hydraulically rough boundaries. 
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The first involves the development of the boundary layer with respect to distance in 

the direction of flow, the second involves the nature of the flow within the boundary 
-layer, and the third depends upon the relationship between the flow and the boundary . 

These three transitions are interrelated with each other and the transition problem 

is further related to velocity distribution and ultimately to resistance and drag 

coefficients. 

Zone of flow ·establishment: - The zone of flow establishment is the region in 

which the characteristics of flow such as velocity distribution,,turbulence and energy 
tii~xii1r1g 

loss are along the flow direction. For complete dynamic similarity in the model, both 

the zone of flow establishment and that of established flow must be made similar to those 

of the Prototype. In general, the characteristics of flow in the zone of flow establish-

ment depend.upon the history of the flow and the entrance condition. Specifically, they 

depend upon the boundary geometry, and scale, the velocity and the properties of the fluid. 
than 

Modelling of the zone of flow establishment is usually more difficult modelling of the 

established flow. Frequently in the prototype the length of flow is so long that the 

zone of flow establishment is insignificant compared with the length of the zone of es-

tablished flow, In this case the model design is usually concerned with modifying the 

influence of the zone of flow establishment. Sometimes this can be achieved to some 

extent by increasing the roughness of the approach boundary and the scale and intensity 

of the turbulence in the approaching flow. 

For pipe flow, the zone of established flow begins at the section where the boundary 

layer reaches the center line of the pipe. The boundary layer can be either laminar or 

turbulent. For flow in wide open channels, the zone of established flow begins at the 

section where the boundary layer reaches the water surface. In order to predict the zone 

of flow establishment and the zone of established flow, a thorough knowledge of the boun-

dary layer growth is necessary. 

Laminar to turbulent flow: - In general, prototype flow encountered in hydraulic 

engineering is turbulent. Therefore, because of the small scale of the model, one of 

the important requirements of a model study is to insure dynamically similar flow 
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conditions. The critertion for transition from laminar to turbulent flow in a pipe 

was found by Reynolds (3). If the pipe diameter Dis used as the characteristic length 

in the Reynolds number, the critical Reynolds number is approximately 2,000. If the 

hydraulic radius is used as the characteristic length, then the critical number is about 
turbulent 

500, For Reynolds numbers less than these, the flow is laminar and is not possible. 

However, the upper limit of Reynolds number, beyond which the flow is alway turbulent 

and laminar flow is not possible, is extremely variable depending upon the internal 

movement within the fluid. Reynolds numbers as large as 75,000 (25) have been found 

possible for laminar flow--largely as the result of increasing the stilling time, im-

proving the rounding of the inlet, and eliminating all possible vibrations. This 

upper limit of Reynolds number is important because it shows that the flow is not 

necessarily turbulent even whenR~is greater than 2,000, 
for pipe flow 

Although various conclusions about the critical Reynolds number have been report-

ed, the transition problem from laminar to turbulent flow in open channels has not been 

thoroughly investigated, For two-dimensional open-channel flow, the depth of flow is the 

same as the hydraulic radius. Therefore, the hydraulic radius used in pipe flow can be 

substituted for the depth in two-dimensional open-channel flow, 

Owen (26) found that the lower critical leynolds number for open-channel flow is 
and others 

4,000, Straub (27) reported that the range of transition of the Reynolds number for a 

rectangular channel is from 2,800 to 3 ,ooo. Other experimenters have found somewhat 

different values and have conclusively shown that the precise value of the Reynolds 

number at which turbulent flow becomes established is variable--depending upon the 

shape of the cross-section and the free turbulence or movement within the fluid. 

The characterisitcs of boundary-layer devel9pment of flow along a flat plate have 

been studied extensively. The results of these studies can be used as a guide to turbulen1 

flow along a rigid boundary. It has been found(22) that in a laminar boundary layer 

along a plate with zero pressure gradient turbulent motion is incipient at certain 
¼.~ Reynolds number ( -) in which V, is the velocity of the free stream outside the 
~ C -



boundary layer, and~ is the thickness of the laminar layer. Prandtl (21) has shown 

that the Reynolds number (¼. ~ ) 
y c.. 

magnitude as the critical value 

in the case of pipe flow is of the same order of 

for transition from laminar to turbulent flow. 

It can be reasoned that the mean velocity of a laminar flow Vo is equal to one half 

its maximum velocity which corresponds to the free stream velocity I/~ ( ~ = j ( ) 
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and the maximum thickness of laminar boundary layer is equal to the pipe radius< Z: = ~. $ ) 

layer depends upon the distance 
V, :r w_S 

necause the growth of the laminar boundary 

from the entrance, there is a distance Reynolds number ( !:::_. l corresponding ( ':--JJ ) 
),? Jc_ C 

at which laminar flow becomes turbulent. In this number, xis the distance from the 

leading edge. According to Schlichting ( ~ ;r) varies from about Jx;os-lo $;(lo': 
V 

Prandtl (21) has shown how to estimate the distanceXwhich is the required transition 

length for a given Reynolds number of the flow. 

Transition from hydraulically smooth to hydraulically rough boundaries:--The 

criterion can be used to determine whether the main flow along a boundary is 

laminar or turbulent, but it cannot be used to determine the effect of the laminar sub-

layer on the velocity distribution. In case of turbulent flow near a boundary there may 
I 

exist a laminar layer known as the laminar sub-layer S. The thickness of the laminar 

sub-layer can be estimated by use of the following equation. 
I i) 

~ = //.6 I/ 
Y-,f. 

(41) 
According to Nikuradse'·s data for pipe flow (6); 

1. The 
ly 

V¥k boundary is hydraulically smooth is -rF < 3.5 that ls, approximate-Y, <. * in which k is the roughness height. 

2. The boundary is hydrualically rough if 
approximately _fS_ ;;, 6. 

J I 

~ ~ > 70, that is 

This concept of boundary roughness is based upon Karman's hypothesis of tur-

bulent flow near a boundary. Therefore the Reynolds number has been called 

by Danel (23) the Karman number. In modelling the boundary roughness, the Karman num-

ber '¾-( should be used. The boundary of prototype flow can usually be considered as 

hydraulically rough. Therefore, precaution should be taken to make the boundary 

condition in the model also hydraulically rough. In this case, the boundary should 



be modelled according to the relative roughness K 
.P 

Velocity distributions near a boundary in model and prototype 

Reynolds law of similitude is necessary in modelling velocity distribution near a 

boundary. In laminar flow there are many cases in which the velocity distribution can 

be found by solving the Navier-stokes equation by approximation for given boundary 

conditions, In the case of turbulent flow, the velocity distribution for certain 
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boundary conditions has been found mostly by laboratory investigation with the aid of 

dimensional analysis, this has resulted in the "Wall-law" and the "Velocity-defect law" (24J 

In any turbulent flow near a solid boundary, there is a region adjacent ot the wall 

within which the total shear stress is nearly constant and the motion is determined al-

most entirely by the shear stress and the fluid viscosity. This is !mown as the "wall 

law" which is due to Prandtl by use of dimensional analysis, and can be written as 

;) f -;, 0 (42) 

in which /, is the height of the roughness, y is measured from the boundary. 

For a smooth boundary, it reduces to 

J -;,, 0 (43) 

The velocity-defect law is applicable near the outer edge of the boundary layer. 

The general form of the velocity defect law is 

d - V -.: f 3 ( -./I ) < 44 > 
¼ '-t 

in which u is the local velocity measured at a distance y from the boundary, £ the 
~ 

thickness of the turbulent boundary layer. This law has been attributed to Karman (1). 

In the over-lapping zone in which both the "Wall-law" and the "velocity-defect law" 

are applicable, the logarithmic law of velocity distribution is known to be applicable 

that is 

(45) 

in which K is the so called universal constant and y' depends upon the boundary roughness, 

Although the logarithmic law was first discovered by Prandtl by use of bis mixing length 
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hypothesis, it has been shown by Clauser (24 ) that it can also be derived by comparing 

the "wall-law" and the "velocity-deficit law". Various forms of formulas have been 

proposed to suit various velocity measurements. Uowever, there is no single formula which 

can be used to decide the velocity distribution for turbulent flow near a boundary. 

Fortunately, the logarithmic law can be used for a large part of the flow near a 

boundary. Equation (45) can be expanded to various forms depending upon the boundary 

roughness which can be classified as smooth, transition, and rough according to the 

Karman number Detail discussion of the logarithmic law can be found 

elsewhere ( 6). 

Particular attention should be given to the resistance coefficient fas a function 

of Reynolds number \//? 
J.) 

and relative roughness .K. 
D 

A thorough understanding of this 

relationship is helpful for interpreting data concerning resistance of flow in conduits. 

The constants involved in the logarithmic law for turbulent flow in pipes have 

been determined by Nikuradse and accepted by scientists as standard values. Although 

the application of Equation (45) to flows in open channels bas been partly successful,(28) 

there are some uncertainties about the constants and coefficients. Uncertainties are 

due to many factors, such as the presence of a free surface, surface waves and irregular 

and s:>metimes movable boundary conditions for example, sand dunes and vegetable growth 

along the banks. Despite the fact that the great strides are being made on the velocity 

distribution of open-channel flow, study should be not only continued but also intensi-

fied. 

Drag coefficient 

Another type of flow in which t he Reynolds similarity is important is related to 

the drag of submerged bodies. Considerable experimental and theoretical analyses have 

been done for two kinds of immersed bodies, namely cylinders and spheres. In these 

cases, the velocity of the approaching flow, ¼ , the size of the cylinder or sphered, 

and kinematic vi$~osity of the flow V are often used to obtain the Reynolds number 

For very small Reynolds numbers the interial effect is negligible and the flow 
).I 

is purely laminar. For laminar flow around spheres, the Stokes law is valid which can 



be written as 

therefore 

For very large Reynold's numbers between 
)J 5-

,2 )(//)£/. and ~/v the drag coefficient is 
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(46) 

(47) 

approximately constant at . ,,,, .s-At the Reynold's number of approximately X.X/0 the 

drag coefficient drops abruptly. Prandtl has demonstrated that such change of 

drag coefficient is due to the free turbulence, and the roughness of the surface. 

Considerable discussion on drag coefficient of spheres and other forms of bodies has 

been presented in textbooks on Fluid Mechanics and hence will not be represented here. 

Again, however, a thorough understanding of the fundamental principles related to such 

items as: 

1. Distribution of shear and pressure, their relation to drag, and their 
relative importance for a given flow system. 

2. Formation and influence of separation zones 

3. Types and influence of boundary roughness are absolutely essential to the 
proper design and interpretation of model studies 
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Simultaneous Froude and Reynolds Criteria 

According to the Reynolds criterion, a reduction of the scale requires an increase 

of velocity. On the other hand, according to the Froude criterion a reduction of scale 

requires a reduction of velocity, It is evident that the simultaneous fulfillment of the 

two similitude criteria with the same fluid is impossible. That is, for the same fluid 

there cannot exist a law of similarity considering inertia forces, frictional forces, 

and gravity forces simultaneously. Using two fluids of different kinematic viscosity, 

however, it is possible theoretically to make both laws of similarity valid as ·shown in 

the following: 

Froude law (19a) 

Reynolds law V, ::: (17a) 

Equating Eq. 19a and 17a 
4r -= ( r,.. /... r-

L,- {;- fr 
d ' - r; L 3 
f ,- - /Jr r 

Since . the gravitational .conditions for model and prototype- are· usually the same, the 

gravitational factor becomes one and can be dropped from the foregoin~ equation. There-

fore, the dynamic viscosities and the densities of the two fluids bear the r~lationship 

2 
~(' = 
f;. (41) 

Despite this relationship which shows that modelling by both the Froude and Reynolds laws 

is theoretically possible, it is practically impossible because fluids of the required 

viscosity and density do not exist. 

Various techniques can be employed in a given model study to meet the difficult pro-

blem of Reynolds number and Froude number being significant simultaneously. The first 

step is to establish the ranges of conditions in both the maiel and the prototype · 

for which: 

1. Reynolds number is of primary importance. 



2. Froude number is of primary importance, and 

3, Doth Reynolds and Froude numbers are important 

Ranges 1 and 2 cause relatively little difficulty. In Range 3 an at tempt can be 

made to: 

1. Compute by theory the influence of Reynolds number and subtract this 
from the total combined effect. 
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2, Eliminate or reduce the Reynolds effect by destroying the laminar 
sublayer with excessive roughness or turbulence, or by bleeding it off 
just upstream from the test area. 

3. Create the same viscous effect in the model by other means such as dis-
torting certain parts of the model or installing special control 
systems. 

4. Extrapolate Ranges 1 and 2 into the transition Range 3 to determine the 
order of magnitude of effect of Reynolds number and Froude number 
separately. 

The following are a few examples for which both the Reynolds and Froude 

criteria are significant. 

Ship models:- A ship experiences both shear drag and pressure drag. The shear drag 

follows very closely with that which is predicted from the boundary layer theory. 

Tbe pressure drag, however, arises from two sources--the shape of the ship and the 

intluence of the waves. The pressure caused by waves readily follows the Froude 

criterion, but the shear drag depends upon the Reynolds number. Since these cannot 

both be made the same in the model as in the prototype, the drag on the model is 

determined for the combination of the shear and pressure drag and then the shear 

drag is calculated and subtracted from the total drag to determine the pressure 

drag only. This pressure drag can then be changed to the pressure drag for the 

prototype and a new shear drag, computed for the prototype, can be added to the 

prototype pressure drag to determine the prototype total drag. This technique 

has been developed so that total drag can be determined, 

Sediment transport: In this case, the surface waves in natural channels and the 

interface between the movable bed and the flow are usually important; therefore, 

factors containing gravitational effect V 7i, becomes involved. On the other &.. / .t;Y.Jc{ 
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hand, there may exi st a laminar sublayer along the stream bottom (for example 

along the upstream face of a long sand bar) so that the vi scous effect also may be 

important . Furthermore, i n the case of f i ne sediment transported, the Reynolds 

number of the sediment is also important. The model technique for studying the 

sediment transport and scour problems for natural streams are very compli cated. 

Additional research is badly needed on this subject. 

Conduits associated~ ~-surface ~:Frequently, structures (such as a dam) 

need to be studied for uhich both free-surface and closed conduit flow are i n-

volved. In this case, the Froude number i s usually assumed to be of greatest 

significance and special steps must be taken to compensate for Reynolds number 

effects. This is usually done by adjusting the length and size of the condui t 

in accordance with computati ons based on standard .information regarding flow i n 

closed conduits. Consequently, steps must be taken to compensate for thi s situ~ 

ation. Generally, the forces of gravity and predominate in free-surface flow and 

Froude number governs. In the prototype the surface energy i s usually insigniw 

ficant because of the large s i ze 'of flow system. Furthermore, the Reynolds 

number is frequently l nsignificant in the prototype because the laminar sublayer 

is destroyed as a result of the large Reynolds number and/or the extreme roughness. 

In a model study, the model must be suff~ciently large so that the influence of 

surface energy is not significant. Eliminating the influence of the Reynolds 

number i n the model, however, j_s not as easy as eliminating the Weber number. 

FurtLermore, reproduci ng the same relative roughness i n the model as in the 

prototype is not always convenient. These vari ous factors should be considered 

with respect to speci fic model studies. 
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SUMMARY 

Models in which either the Reynolds criterion or the Froude criterion or both are 

significant are the most common in hydraulic engineering. Success in coping with pro-

blems associated with such models depend not only upon familarity of similitude principles 

but in large measure upon a sound and complete understanding of the basic principles of 

fluid mechnics involved. These include principles of free-surface flow, wave motion, 

interfacial flow, laminar and turbulent flow, laminar and turbulent boundary ~ayers, 

smooth and rough boundaries, transitions from one condition to another, separation zones, 

closed conduit flow, open channel flow, sediment transport, jet diffussion and wake pro-

blems . 

On the basis of fundamental principles of fluid mechanics, special techniques can 

be employed to modify or eliminate the effect of one similarity criterion, such as 

Reynolds number when more than one is significant. 
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