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ABSTRACT 

LONG-TERM-ROBUST ADAPTATION STRATEGIES FOR RESERVOIR OPERATION CONSIDERING 

MAGNITUDE AND TIMING OF CLIMATE CHANGE: APPLICATION TO DIYALA RIVER BASIN IN IRAQ 

Vulnerability assessment due to climate change impacts is of paramount importance for 

reservoir operation to achieve the goals of water resources management. This requires accurate 

forcing and basin data to build a valid hydrology model and assessment of the sensitivity of model 

results to the forcing data and uncertainty of model parameters. The first objective of this study 

is to construct the model and identify its sensitivity to the model parameters and uncertainty of 

the forcing data. The second objective is to develop a Parametric Regional Weather Generator 

(RP-WG) for use in areas with limited data availability that mimics observed characteristics.  The 

third objective is to propose and assess a decision-making framework to evaluate pre-specified 

reservoir operation plans, determine the theoretical optimal plan, and identify the anticipated 

best timeframe for implementation by considering all possible climate scenarios. 

To construct the model, the Variable Infiltration Capacity (VIC) platform was selected to 

simulate the characteristics of the Diyala River Basin (DRB) in Iraq. Several methods were used to 

obtain the forcing data and they were validated using the Kling–Gupta efficiency (KGE) metric. 

Variables considered include precipitation, temperature, and wind speed. Model sensitivity and 

uncertainty were examined by the Generalized Likelihood Uncertainty Estimation (GLUE) and the 

Differential Evolution Adaptive Metropolis (DREAM) techniques. The proposed RP-WG was based 

on (1) a First-order, Two-state Markov Chain to simulate precipitation occurrences; (2) use of 

Wilks’ technique to produce correlated weather variables at multiple sites with conservation of 
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spatial, temporal, and cross correlations; and (3) the capability to produce a wide range of 

synthetic climate scenarios.  

A probabilistic decision-making framework under nonstationary hydroclimatic conditions 

was proposed with four stages: (1) climate exposure generation (2) supply scenario calculations, 

(3) demand scenario calculations, and (4) multi-objective performance assessment. The 

framework incorporated a new metric called Maximum Allowable Time to examine the 

timeframe for robust adaptations. Three synthetic pre-suggested plans were examined to avoid 

undesirable long-term climate change impacts, while the theoretical-optimal plan was identified 

by the Non-dominated Sorting Genetic Algorithm II.  

The multiplicative random cascade and Schaake Shuffle techniques were used to 

determine daily precipitation data, while a set of correction equations was developed to adjust 

the daily temperature and wind speed. The depth of the second soil layer caused most sensitivity 

in the VIC model, and the uncertainty intervals demonstrated the validity of the VIC model to 

generate reasonable forecasts. The daily VIC outputs were calibrated with a KGE average of 

0.743, and they were free from non-normality, heteroscedasticity, and auto-correlation. Results 

of the PR-WG evaluation show that it exhibited high values of the KGE, preserved the statistical 

properties of the observed variables, and conserved the spatial, temporal, and cross correlations 

among the weather variables at all sites. Finally, risk assessment results show that current 

operational rules are robust for flood protection but vulnerable in drought periods. This implies 

that the project managers should pay special attention to the drought and spur new technologies 

to counteract. Precipitation changes were dominant in flood and drought management, and 

temperature and wind speed changes effects were significant during drought. The results 
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demonstrated the framework’s effectiveness to quantify detrimental climate change effects in 

magnitude and timing with the ability to provide a long-term guide (and timeframe) to avert the 

negative impacts. 
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

1.1.  Objective and Expected Significance 

Water resources planning and management are being affected by climate change 

impacts, and assessment of its risk is an important task for hydrologists and scientists. To 

approach this task, the overall goal of this dissertation is to develop and test a probabilistic 

decision-making framework for application under a non-stationary hydroclimatic assumption to 

evaluate the magnitude and timing of climate change for management of water resources 

systems. Basic data analysis and testing of results are on the Diyala River Basin (DRB) reservoir 

system in Iraq.    

The framework can aid decision makers to adapt system operational rules to long-term 

climate change and help them gain insights about risk characteristics. It is also capable of 

identifying the long-term-robust management plans that avoid undesirable climate change 

impacts among pre-specified plans, and of implementing an optimization technique to provide 

the best plan for multi-objective operational purposes. Although the framework is applied for a 

paradigm in Iraq, it is effective to use in other basins for quantifying detrimental climate change 

effects and providing a long-term guide for water resources management and planning in similar 

basins with limited data.  

The study involved the following specific objectives: 

1) Build a valid hydrologic model to project future water availability in the DRB by addressing 

data scarcity issues. The observed forcing data, obtained from the Iraqi Ministry of Water 

Resources (MoWR), were augmented by data from the Tropical Rainfall Measuring 
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Mission (TRMM) and the Global Implemented Data (GIDAL) [Adam and Lettenmaier, 2003 

and Adam et al., 2006]. The validity and applicability of these datasets were examined 

through comparing with ground observation data. Then, the sensitivity and uncertainty 

of the selected model platform, the Variable Infiltration Capacity (VIC) model, were 

investigated to identify model applicability in the region. The approaches used to address 

the sensitivity and uncertainty are the Generalized Likelihood Uncertainty Estimation 

(GLUE) proposed by Beven and Binley, (1992) and the Differential Evolution Adaptive 

Metropolis (DREAM) [e.g., Vrugt et al., 2009a; Vrugt et al., 2009b; and Vrugt, 2016].   

2) Develop a Parametric Regional-Multivariate Statistical Weather Generator (PR-WG) to 

produce a wide range of possible climate scenarios in the basin. The suggested PR-WG is 

straightforward to develop and can employ any distribution function for variables such as 

precipitation or temperature. The model developed is capable of conserving the spatial, 

temporal, and cross-correlations among the variables, producing scenarios beyond the 

range of the observations and applying to periods longer than the observation period.  It 

also enables relatively simple alteration of statistical parameters.  

3) Model a probabilistic decision-making framework, with new performance indicators and 

approaches to assess climate change impacts in both magnitude and timing. The 

framework utilizes the VIC model and PR-WG developed in objectives 1 and 2. The 

framework is capable of evaluating different pre-suggested alternative plans to select the 

most robust adaptation plan, implementing an optimization technique to suggest the 

theoretical-optimal adaptation plan, and identifying the optimal timeframe to start 

applying the robust plan(s) to minimize the negative climate change impacts.  The 
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framework is also capable of evaluating the impact of different weather variables 

including wind speed change on the decision-making process.  

1.2.  Background 

Assessment of climate change impacts on water resources infrastructure performance, 

including reservoirs and regulatory controls, is a growing concern in water resources 

management and creates a need for new strategies or adaptations to avert undesirable impacts 

and cope with shifting climate regimes [Kundzewicz et al., 2008; Azhoni et al., 2018]. 

In this content, there have been extensive efforts to develop approaches to assess climate 

change impacts. These can be divided into two main groups: top-down and bottom-up. Top-down 

is considered as the traditional approach, where the performance of a water resources system is 

examined under specific scenarios that are usually obtained from GCM outputs. Although the 

top-down approach is widely used, it limits the decision-making abilities since the GCM scenarios 

represent only specific discrete scenarios for climatic variability and lead to uncertain 

conclusions. Therefore, it is not suitable to evaluate the risks and examine the degree of 

undesirable system performances in these scenarios [Wilby and Dessai, 2010; Hallegatte et al., 

2012; Brown and Wilby, 2012; Stephenson et al., 2012; Whateley et al., 2014; Culley et al., 2016; 

Taner et al., 2019]. Moreover, GCMs are spatially coarse to capture the high-intensity at which 

precipitation occurs at fine spatial scales, thus leading to difficult selection for an adaptation 

strategy [Spence and Brown, 2016; Van Tra et al., 2018]. 

The second group of “bottom-up” approaches is considered as an alternative to overcome 

the “top-down” approach drawbacks. Using this approach, a wide range of plausible synthetic 

future scenarios is generated using SWG and including values beyond the GCMs bounds. Those 
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scenarios are fed into hydrologic models to produce the corresponding water supply scenarios. 

Afterwards, the system response against each supply scenario can be evaluated. The bottom-up 

approach provides more insights regarding system performance under climate change and 

enables better testing and selecting for robust alternative management [Weaver et al., 2013; 

Turner et al., 2014; Steinschneider et al., 2015a; Zhang et al., 2018]. Furthermore, Moody and 

Brown, (2013); Steinschneider et al., (2015b); and Taner et al., (2017) linked SWG scenarios with 

GCM scenarios so that a probability of occurrence of each scenario generated by SWG can be 

estimated. This weighting procedure enables better identification for robust alternative 

management.  

An example of a simple comparison between the outputs of GCM and SWG is shown in 

Figure 1.1. It is seen that some internal weather conditions cannot be obtained by the GCMs, 

while SWG can generate any condition of interest including for those beyond the GCM bounds, 

which demonstrates the importance of the SWG usage.  

 

Figure 1.1: Comparison of the GCM outputs versus SWG outputs.  
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However, system performance can be evaluated using different indicators. For example, 

Whateley, et al., (2014) developed a binary performance function called the Robustness Index 

(RI). In it, the binary performance function returns a value of 1 (acceptable performance) or 0 

(unacceptable performance) for each climate scenario by comparing the system performance 

with the threshold value, Z, as follows: 

 𝛬 (𝑡, 𝑗) = 1               𝑖𝑓    𝑍𝑡𝑗 ≤ 0 (1.1) 

 𝛬 (𝑡, 𝑗) = 0                  𝑖𝑓    𝑍𝑡𝑗 > 0 (1.2) 

 𝑅(𝑗) =  
∑ 𝛬(𝑡, 𝑗) 

𝑇𝑡=1 𝑇  (1.3) 

In these equations, Λ is the system performance function, j is the climate scenario index, 

t is the time index in month, Z(t,j) is the system performance threshold corresponding to the 

given scenario j at time step t (𝑍(𝑡, 𝑗) = 0.8 𝐷(𝑡, 𝑗)  − 𝑆(𝑡, 𝑗)), R is the system Reliability, and T 

is the scenario time length in months. Dam performance is assigned “acceptance” if the water 

supply (S) meets 80% or more of the demand (D) at the time step t. Then, the RI is computed by 

integrating the performance function over the range of climate scenarios and dividing by the 

entire climate change space: 

 𝑅𝐼 = ∫ 𝑅 (𝑗) 𝑑𝑗𝐽1 ∫  𝑑𝑗𝐽1  (1.4) 

The RI can be used to evaluate the system performance of the system status quo relative 

to climate change effects and then used to compare different adaptation strategies. An example 

of the RI is shown in Figure 1.2.  
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Figure 1.2: Climate response surfaces over climate change space for water supply reliability under (a) 
standard operation (RI=0.55) and (b) alternative operation (RI= 0.7) for Connecticut River Basin 

[Whateley, et al., 2014]. 

Steinschneider et al., (2015b) modified the Whateley, et al., (2014) approach to account 

for the probability of each scenario and developed an indicator called “Robustness Score”, as 

follows: 

 𝑅 − 𝑆𝑐𝑜𝑟𝑒𝑧 = ∑𝑤(𝑗) 1𝐵 ∑ 𝑅𝑧(𝑡, 𝑗, 𝑏)𝐵
𝑏=1

𝐽
𝑗=1  (1.5) 

Here w(j) is the weight of each scenario for a given climate condition, B is the number of 

internal realizations for a given scenario j, and z is the index of adaptation strategies. Let Ф-1(.) 

and ψ(.) be the density and distribution function of a standard normal random. The weights 

based on the probabilities of occurrence, Pr, for each realization of future variability can be 

calculated as: 

 𝑤𝑗 = Ф[𝜓−1 (𝑝𝑗)]∑ Ф[𝜓−1 (𝑝𝑗)]𝐽𝑗=1  (1.6) 
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In this way, the adaptation strategy (or the status quo) performance is considered 

acceptable if the R-Score is greater than a threshold value, which is assumed to be 0.7. An 

example is shown in Figure 1.3. 

 

Figure 1.3: (Color) Robust Management plans; A0: the status quo plan, (Gray) no plan is; 19 
projections of climate models projections, and future water demand from BRA and TWDB scenarios, 

for Belton Lake watershed [Steinschneider et al., 2015b]. 

Similarly, Culley et al., (2016) modified an approach to assess the optimal operation of 

the system. Instead of calculating a value using a performance function, an objective function is 

used to evaluate the system performance to be either “Success” or “Failure”, as follows:  
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 𝑂𝐹 = Success 𝑖𝑓 (𝑅𝑓 ≤ 𝑇𝑓 𝑎𝑛𝑑 𝑅𝑠 ≤  𝑇𝑅) (1.7) 

 𝑂𝐹 = Failure 𝑖𝑓 (𝑅𝑓 > 𝑇𝑓 𝑜𝑟 𝑅𝑠 >  𝑇𝑅) (1.8) 

 𝐶𝑍 =  
∫ 𝑆𝑁𝑧𝐽1∫ 𝑆𝑁0𝐽1  (1.9) 

Rf and RS are the magnitude of flood and irrigation deficit, respectively, TF and TR are the 

thresholds for flood (100 m2/day of flooded area) and irrigation (400 kL2 of squared water deficit), 

respectively.  SN is the number of success scenarios for the system under the adaptation strategy 

z, SN0 is the number of success scenarios under the status qua of the system, and C is the 

maximum operational adaptive capacity. So, the system performance is considered “fail” if its 

operations result in the daily average flooded area exceed TF and/or a daily average deficit 

exceeds TR. Then, the adaptation strategy that maximizes the system performance (e.g., 

maximum CZ) can be identified. This indicator can allow the decision maker to examine all optimal 

adaptation strategies as well as to identify the limits of them according to the indicator C. An 

example is shown in Figure 1.4.  

Other indicators were also suggested for the climate change assessment such as the 

“vulnerability” approach. Foti, et al., (2014) defined it as the probability of demand D exceeding 

the supply S, as follows: 

 𝑉 =  𝑃𝑟[𝑆 <  𝐷] =  𝑃𝑟[𝑆 − 𝐷 <  0] (1.10) 

Let Z be the difference between supply and demand (S-D), then equation), then equation 

(1.10) becomes, 
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 𝑉 = 𝑃𝑟[𝑍 > 0] = 𝑃𝑟[𝑍 − 𝜇𝑍𝜎𝑍 < − 𝜇𝑍𝜎𝑍 = − 𝜇𝑍𝜎𝑍] (1.11) 

In this equation, 𝜇𝑍 = 𝜇𝑆 − 𝜇𝐷, 𝜎𝑍 2 = 𝜎𝑍 2 − 𝜎𝑍 2 −  𝐶𝑂𝑉(𝑆, 𝐷) , and 𝜇𝑆, 𝜇𝐷, 𝜎𝑆, 𝜎𝐷, and  𝐶𝑂𝑉(𝑆, 𝐷), are the mean, standard deviation and covariance of water supply and water demand. 

If the supply and demand are assumed normally distributed, equation (1.11) yields: 

 𝑉 = 𝑃𝑟 =  [2 𝜋 𝜎  𝑍2  ]−0.5  ∫ 𝑒− (𝑍− 𝜇𝑍)22𝜎  𝑍2  𝑑𝑍0
−∞  (1.12) 

 

Figure 1.4: The operational adaptive capacity for Lake Como watershed for an adaptation strategy 
with C = 3.23 [Culley et al., 2016].  

However, Zhang et al., (2018) defined the vulnerability as a three-parameter function: 

exposure, sensitivity, and adaptive capacity based on the conceptual model developed by Dong 

et al., (2015), as follows; 
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 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×  𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐷𝑒𝑔𝑟𝑒𝑒  𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  (1.13) 

Here, Sensitivity is the degree to which the system influenced by climate change, Adaptive 

Capacity is the capability of a system absorb or recover from the effects, and Exposure Degree is 

the presence of people and infrastructure in the place of being affected. These are computed as 

follows; 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 1 +  
𝑊𝐴𝑐,𝑚𝑎𝑥 −  𝑊𝐴𝑐,𝑚𝑖𝑛𝑊𝐴𝑇,𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑  (1.14) 

 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  
𝑊𝐴𝑇,𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑 ∓  𝑊𝑇𝑊𝐴𝑇,𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑  (1.15) 

 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐷𝑒𝑔𝑟𝑒𝑒 =  
12  × ( √ 𝑃𝐷𝑃𝐷0 +  √ 𝐺𝐷𝑃𝑃𝐺𝐷𝑃𝑃,0) (1.16) 

Where, 𝑊𝐴 is the water availability, 𝑊𝐴𝑇  is the long-term average component of 𝑊𝐴, 𝑊𝐴𝑐 is a fluctuating component affected by climatic factors, 𝑊𝐴𝑡 is the volume of water 

availability at year t, 𝑊𝐴𝑐,𝑡 is climate affected water availability at period t, 𝑊𝐴 is the volume of 

water transferred into or out of the region, and 𝐺𝑃𝐷 is population density (𝑃𝐷) per capita. The 

runoff series is divided into two periods: natural period (𝑊𝐴𝑇,natural) and impacted period 

(𝑊𝐴𝑇,impacted). The donor region was set (an average of region 1 and 2) by using population 

density (𝑃𝐷0) and per capita GDP (𝐺𝑃𝐷𝑃,0) as benchmarks to facilitate a comprehensive 

comparison among all regions. 

Tuner et al., (2019) proposed Bayesian Networks Decision Scaling to examine the water 

resources system or investment plans across the pre-specified set of environmental, 

demographic, and financial uncertainties.  
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It can be concluded from those studies, in essence, that there is still a need for other 

indicators regarding the optimal time to start applying the adaptation(s). i.e., besides specifying 

the robustness of the system or the vulnerability for a specific period.  It is of utmost essential to 

compute the time when the system cannot exceed the minimum acceptance performance, then 

compare the adaptation strategies to cope the climate change effects on the system. 

1.3.  River Systems in Iraq 

Iraq has two main rivers, the Tigris and Euphrates, and depends mainly on surface water 

for irrigation. There are about 120 irrigation projects in Iraq and about 15% of the land is irrigable. 

Any changes on water availability will have bad consequences on agricultural activities and the 

life quality of farmers. Therefore, the future of the water supply is a major concern for project 

developments upstream across the national border and climate change impacts [Waheed, 2013]. 

Table 1.1 illustrates the reduction in water amounts in the Euphrates and Tigris rivers. As seen, 

future water availability is subject to large reductions, which require new management strategies 

as a result of project developments in the upstream countries and climate change influences.  

Table 1.1: Total annual amount of water in Tigers and Euphrates Rivers (MoWR, 2011; unpublished 

data) 

 
Duration Total annual water Remarks 

Ti
gr

is
 

R
iv

er
 1932 - 1998 49.2 billion m3 Natural streamflow 

1999 - 2010 33.1 billion m3 After dam construction in the upstream 

Eu
p

h
ra

te
s 

R
iv

er
 

1932 - 1972 30.4 billion m3 Natural streamflow 

1973 - 1989 26.2 billion m3 After construction of Kipan dam in the upstream 

1990 - 2000 19.7 billion m3 After filling Ataturk dam 

2001 - 2010 12.8 billion m3 After building more dams in the upstream 



12 
 

The Diyala River is the third largest tributary of Tigris River in Iraq. It is a transboundary 

river between Iran and Iraq starts from the Zagros Mountains in Iran and crosses the Iran-Iraq 

border with a confluence with the Tigris River in south of Baghdad, as shown in Figure 1.5. The 

total river length is about 445 km with total watershed area of 32,600 km2, of which 43% lies in 

Iraq. The basin is situated between 33.216° N and 35.833° N, and 44.500° E and 46.833° E. The 

main sub-tributaries of the river are the Sirwan, Tanjeru and Wand Rivers. Two large dams were 

built within the Iraqi part of the watershed: Derbendikhan and Hemrin [Hamza, 2012; Al-Faraj 

and Scholz, 2014; Al-Faraj et al., 2015; Abbas et al., 2016]. 

Only a few studies to investigate climate change impacts on the water availability in DRB 

were identified. Waheed, (2013) studied the effects of climate change on water availability for 

the period (1990-2010) using the Hydrologic Engineering Center's Hydrologic Modeling System 

(USACE-HEC, 1998). The analysis removed the trend in the weather variables, then compared the 

resultant runoff with the observed. The results showed an increment in the monthly 

evapotranspiration of 4% to 13%, and a decrement in the surface runoff of 4.7 %. Al-Faraj et al., 

(2014) examined the sensitivity of the runoff reduction due to climate change. The results 

showed a change in the median flow between +5.3% to -62.7% for the period (1983–2013), and 

-28.2% to -77.5% for (1999–2013) and -23.6% to -76.8% for (2004–2013), as a comparison with 

the period (1955–1982). Abbas et al., (2016) studied the climate impact and the Reconnaissance 

Drought Index using the Soil and Water Assessment Tool (SWAT) with different six GCM outputs 

(e.g., top-down approach). With comparison to the period between 1979 and 2004, the results 

showed a decrease of 56%, 50% and 39% under A2, A1B and B1, respectively; and an increase of 

14% under A2 and A1B scenarios. Al-Khafaji and Al-Chalabi, (2019) studied the impact of climate 



13 
 

change on the streamflow and sediment yield with aid of SWAT for the period until 2050 of five 

GCM scenarios. Results showed a decrease in average monthly streamflow up to 49% as 

compared with the historic period 1948 to 2013. Neither Abbas et al., 2016 nor Al-Khafaji and Al-

Chalabi, 2019 studied or removed the bias in the GCM scenarios, which can explain the huge 

decrease in the future water availability.  

 

Figure 1.5: Location of the study area in Iraq.  
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Al-Jawad et al., (2019a) developed and applied a comprehensive optimal operation 

technique for a multiple-objective function. The methodology was applied for the historic period 

from 1981 and 2013 and projected two future scenarios by including the trends in the last seven 

years and the entire 33 years period. Although their results show improvement in the dam 

operation using the proposed model to decrease water deficit and recommended guidance to 

cope with it, the authors did not provide a framework to compare different plans to overcome 

the climate change impact.  

It can be inferred from the above studies that a more comprehensive study using a 

bottom-up approach is required to evaluate the climate change impacts as well as a comparison 

of different adaptation scenarios to examine the most promising plan. In addition, more analysis 

is needed to examine the most probable future scenarios that may occur to help the decision 

makers to determine the desirable adaptation strategy. However, one of the most significant 

issues the researchers encountered in Iraq is data limitation to apply the bottom-up approaches. 

Therefore, the major part of this study is to overcome the data scarcity issues in Iraq and suggest 

valid hydrology models and SWG to make the bottom-up approach applicable. Then, the bottom-

up framework will have more features to examine climate change impact in both timing and 

magnitude, identify optimal timeframe of the robust plan(s), and evaluate the impact of wind 

speed change and variation on the system performance. 

1.4.  Identified Issues and the Research Contributions 

1) There is a limitation in the Historic daily forcing data availability, they are often missing 

in the basin. Therefore, two data sources were used to augment the ground 

observations of MoWR and obtain complete daily forcing data. These were the Tropical 
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Rainfall Measuring Mission (TRMM) data and Global Implemented Data (GIDAL) [Adam 

and Lettenmaier, 2003 and Adam et al., 2006]. A framework was suggested to provide 

complete and accurate daily forcing data in Iraq to make facilitate decision-making 

studies. This produced the first complete daily forcing dataset for DRB using different 

sources and is the first study in Iraq to identify the applicability of the hydrology model 

by uncertainty analysis of the model parameters and to build a valid-calibrated model 

to generate synthetic future scenario supply.    

2) There is a need for a more functional and adaptable SWG to conserve spatial, cross, and 

temporal correlation as well as independence of the observational record length, since 

the developed weather estimates are not applicable in areas with limited data 

availability. The projected forcing data length is limited to the historic length and 

inability to preserve correlations among the forcing data. A SWG for the bottom-up 

approach was developed that is capable of conserving all correlations and is 

independent of the historic record length.  It is easy to alter statistical parameters and 

the frequency distribution function of the forcing data can be changed so that it can be 

used according to the scope of the study as well as the data availability. 

3) It is required to develop new approaches to examine the climate change impact in both 

timing and magnitude and suggest the most promising (robust) plan to cope with the 

negative impacts, as well as the optimal time of applying the best plan. These were 

achieved by developing a framework with new techniques and performance indicators 

under the probabilistic and non-stationary assumptions. The impact of wind speed 

change and variation were also examined on the decision-making studies since they 
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were not considered previously. The study represented the first attempt to provide a 

time frame to apply the robust adaptation plan, beside comparing the plan 

effectiveness for long-term, so as to avert the negative climate change influence.  Also, 

this is considered as the first study to develop and apply a framework that utilizes the 

bottom-up approach in DRB and in Iraq. Moreover, the novelty of the developed 

framework is the consideration of the non-stationary assumption in simulating the 

future water supply, demand, and system losses’ scenarios.  

1.5.  Organization of the Dissertation  

The main part of the dissertation is organized in four chapters. CHAPTER 1 discusses the 

background and objectives of the study. CHAPTER 2 reports construction of a hydrology model 

through preparation of datasets and studying the model sensitivity and parameter uncertainty 

of the hydrology model. CHAPTER 3 develops a SWG, that is capable to preserve the observed 

statistical properties and to assess climate change impacts on water resources systems for cases 

of limited data availability. CHAPTER 4 suggests a bottom-up decision-making framework under 

nonstationary hydroclimatic conditions to evaluate the long-term water resources system rules 

for multi-objective purposes. CHAPTER 5 presents the overall conclusions of the study and 

recommendations for future work.   
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CHAPTER 2 

Variable Infiltration Capacity Model Sensitivity, Parameter Uncertainty, and Data Augmentation 

for the Diyala River Basin in Iraq1 

Chapter Synopsis 

construct a valid model, hydrologists face challenges in determining sensitivity to the 

forcing data and the uncertainty of model parameters. These require basin data and forcing data 

from different sources, which may be incommensurate. The study reported here calibrated the 

Variable Infiltration Capacity (VIC) platform to quantify sensitivity of model results to model 

parameters and the uncertainty of the parameters. The modeled basin was the Diyala River in 

Iraq, above the Derbendikhan Dam. The study produced the first complete set of daily forcing 

data for the study basin using different sources. Besides ground observations from the Iraqi 

Ministry of Water Resources, two additional data sources were tested: Tropical Rainfall 

Measurement Mission (TRMM) and the Global Implemented Data (GIDAL). Several methods were 

implemented to adjust the data, and the model sensitivity and parameter uncertainty were 

examined by the Generalized Likelihood Uncertainty Estimation (GLUE) and the Differential 

Evolution Adaptive Metropolis (DREAM) techniques. Neither of these techniques has been 

applied before in Iraq. Then, the VIC model was calibrated manually using Kling–Gupta efficiency 

(KGE). The analyses indicate that neither TRMM nor GIDAL data are adequate for gridded 

precipitation analysis in the study basin. TRMM tends to underestimate and GIDAL tends to 

 

1 Published in American Society of Civil Engineers, Journal of Hydrologic Engineering Saddam Q. Waheed, Neil S. 
Grigg, Jorge A. Ramirez, (2020). DOI 10.1061/(ASCE)HE.1943-5584.0001975 
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overestimate actual data. The multiplicative random cascade and Schaake Shuffle methods were 

used to determine daily precipitation data. A set of correction equations was developed to adjust 

GIDAL temperature and wind speed. Results of the GLUE and DREAM analyses imply that the 

depth of the second soil layer is the parameter that causes most sensitivity in the model. The VIC 

model outputs were calibrated on a daily time scale with KGE average of 0.743. 

2.1.  Introduction 

To obtain reliable information for planning and management of water resources systems 

under climate change, hydrologic models are needed to simulate the rainfall-runoff relationship 

[Pradhan and Indu, 2019]. These require valid basin and forcing data and knowledge about model 

sensitivity to and uncertainty of its parameters. This study built and calibrated a hydrologic model 

to generate streamflow time series to examine climate change impact on future reservoir 

operation and management, in a follow up paper. Forcing data considered were precipitation, 

temperature, and wind speed, and soils and vegetation data comprised the basin data, in addition 

to topographic parameters.  

In some countries, data are scarce and must be augmented. This study addresses data 

and modeling issues in Iraq where data are scarce. The study site is the Diyala River Basin (DRB), 

a tributary of the Tigris River in eastern Iraq with upstream length and basin area about 216 km 

and 16,764 km2, respectively. The in situ forcing data were obtained from the Iraqi Ministry of 

Water Resources (MoWR). These were augmented by data from: 1) the Tropical Rainfall 

Measuring Mission (TRMM) and 2) the Global Implemented Data (GIDAL) [Adam and 

Lettenmaier, 2003 and Adam et al., 2006]. The validity and applicability of these two datasets 
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were tested by comparing them with the in situ in the DRB. The study produced the first complete 

daily forcing dataset for DRB using different sources. 

Besides the forcing data, the parameter sensitivity and model output uncertainty are 

essential to assess the model applicability in the region. Ignoring them in the calibration process 

will lead to non-unique parameter estimates, a problem known as Equifinality, which makes 

identifying the optimal model parameter sets impossible [e.g., Beven, 2006]. In addition, the 

parameter sensitivity and model uncertainty should be determined in any basin before starting 

the calibration process, especially in studying climate change impacts [Surfleet et al., 2012] as 

this will provide useful information regarding system responses and relationships among model 

parameters [Vrugt and Bouten, 2002; Benke et al., 2008; Liu, 2019].  

With this in mind, this study also examines the model sensitivity and parameter 

uncertainty of the Variable Infiltration Capacity (VIC) model version 4.2 in the DRB. VIC is a 

physically based model that has been used in a number of river basins. The approaches used in 

this study to address the sensitivity and uncertainty are the Generalized Likelihood Uncertainty 

Estimation (GLUE) proposed by Beven and Binley, (1992) and the Differential Evolution Adaptive 

Metropolis (DREAM) [e.g., Vrugt et al., 2009a; Vrugt et al., 2009b; and Vrugt, 2016]. Neither GLUE 

nor DREAM has been applied before in any region inside Iraq. 

2.2.  Literature Review 

Hydrologic modeling to simulate real world systems has been a major concern for water 

resource system planning and management in recent years. Even though the actual processes 

are more complex than model representations, predictive capabilities can be improved through 

calibration to find optimal model parameters for the best fit between simulated and observed 
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characteristics. [Guo et al., 2014; Yen et al., 2019]. Typically, model parameters obtained from 

observations may not require calibration [Choi et al., 2014], but with the limited soil and 

vegetation information in the DRB, it is necessary. Usually, model outputs are calibrated with 

observed discharges at basin outlets [Xue et al., 2015]. In all cases, study of model sensitivity and 

parameter uncertainty is of importance paramount to avoid biased results in the predictions 

especially for climate change impact analysis [e.g., Surfleet et al., 2012; Yen et al., 2014]. 

Most hydrologic models incorporate many parameters to characterize hydrological 

processes. These are measured or estimated from watershed characteristics [e.g., Montanari and 

Young, 2013; Sood and Smakhtin, 2015; Guse et al., 2017; Patnaik et al., 2019]. Measuring all 

parameters is practically infeasible, so they are usually estimated through the calibration process 

[Abbaspour and Rouholahnejad, 2015; Shafii et al., 2015; Pagliero et al., 2019].  

Model studies in the DRB using the Soil and Water Assessment Tool (SWAT) with data by 

the Climate Forecast System Reanalysis (CFSR) have been reported by Abbas et al., (2016), Alwan 

et al., (2018), Al-Khafaji and Al-Chalabi, (2019). Among them, only Al-Khafaji and Al-Chalabi, 

(2019) examined the reliability of CFSR precipitation data in one station in DRB, but this cannot 

indicate data applicability in the region for other data such as temperature and wind speed. No 

studies of constructing the VIC model have been identified. Many studies have used TRMM and 

GIDAL data for other regions and purposes [e.g., Chen et al., 2012; Duan  et al., 2012; Nastos et 

al., 2013; Moazami et al., 2014; Maggioni et al., 2016; Tarek et al., 2017; Medhioub et al., 2019; 

Song et al., 2019] but none have studied their applicability in Iraq.  

TRMM provides observation data of the tropical and subtropical regions of earth. It is 

managed by the U.S. National Aeronautics and Space Administration (NASA) and the Japan 
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Aerospace Exploration Agency. TRMM data are available on a daily time scale for the period 

between 2000 and 2015 with spatial resolution of 0.25o. GIDAL, however, was implemented 

globally by Adam and Lettenmaier, (2003) and Adam et al., (2006) on a daily time scale for the 

period 1940 to 2007 on a gridded basis with spatial resolution of 0.5o. The GIDAL dataset was 

developed by inverting generated runoff at 524 global stations into precipitation amounts using 

the water balance equation and considering climate data [maximum temperature, minimum 

temperature, and wind speed] obtained from the National Centers for Environmental Prediction 

and Climate Prediction Center [Adam and Lettenmaier, 2003]. For consistency purposes, these 

data are referred to as GIDAL.  

The VIC model is a semi-distributed, physically based hydrology model that solves the 

water and surface energy balances in each grid cell [Gao et al., 2009]. The VIC model framework 

is described in studies such as Liang et al., (1994) and Liang et al., (1996). The reader should refer 

to Gao et al., (2009); NASA (2013); and Mehta and Markert (2018) for more details of VIC and an 

example of model set-up and running. Of interest for this study, VIC generates surface runoff and 

baseflow while accounting for vegetation heterogeneity in each grid cell, different soil layers with 

variable infiltration, land topography to capture the precipitation and temperature variation in 

relation to land elevation, coupled water and energy fluxes between the land surface and 

atmosphere, snow accumulation, melting and ablation, and non-linear base flow. In addition, a 

streamflow routing model, RVIC, [Lohmann et al., 1996; Lohmann et al., 1998] is used to route 

the runoff and base flow generated by VIC to the basin outlet based on the unit hydrograph 

convolution equation coupled with the linearized Saint Venant equations.  
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Only a few papers exist on the VIC parameter sensitivity and  model uncertainty using the 

GLUE technique [e.g., Demaria et al., 2007; Sun and Yuan, 2013; He and Pang, 2014; Pang, et al., 

2014], which is a widely technique [e.g., Quan et al., 2012]. Demaria et al., (2007) showed that 

VIC outputs are sensitive to the infiltration parameter (B_inf) in dry areas only, to the exponent 

of the Brooks-Corey drainage equation, and to the second soil layer depth. Sun and Yuan (2013) 

results indicated that the second soil layer depth are the most sensitive parameter followed by 

B_inf in Huaihe catchment in China using GLUE. He and Pang (2014) analyzed VIC parameter 

sensitivity using the GLUE method in the Heihe River Basin (HRB) in the Gansu Province of China. 

Results showed that the maximum velocity of baseflow or the fraction of the maximum soil 

moisture where non-linear baseflow occurs and first soil layer depth are the most sensitive 

parameters. Others including B_inf are not sensitive. Pang et al., (2014) studied the sensitivity 

using GLUE in Xitiaoxi catchment in China. Results showed that only B_inf and first soil layer depth 

are sensitive. From these studies, it is apparent that parameter sensitivity differs by region and 

climate.  

In summary, the main objective of this study is to implement a validated and calibrated 

VIC model in DRB to be used for climate change assessment in a follow-up study. This main 

objective was achieved by (1) augmenting the forcing data using other data sources such as 

TRMM and GIDAL, and (2) examining the VIC model sensitivity and parameter uncertainty by 

GLUE and DREAM techniques.  

2.3.  Methodology 

The Diyala River is a principal tributary of the Tigris River in Iraq. Two large dams are 

constructed within Iraq, Derbendikhan Dam and Hemrin Dam [Hamza, 2012; Abbas et al., 2016; 
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Al-Khafaji and Al-Chalabi, 2019]. The transboundary study-reach between Iran and Iraq is 

upstream of Derbendikhan Dam with a length of 217 km and area about 16,760 km2, as shown 

in Figure 2.1. Derbendikhan Dam was constructed between 1956 and 1961 and is located about 

285 km northeast of Baghdad (Coordinates 35.107o N and 45.704o E). The dam provides irrigation 

water, flood control, recreation, and hydroelectric power production [Tofiq and Guven, 2014]. 

Daily discharge data upstream of Derbendikhan Dam are available from 1960 until 2014. 

 

Figure 2.1: Location of Diyala River and its basin. 
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2.3.1. Data Preparation  

The main basin data inputs for the VIC and RVIC models are topography, soils, and 

vegetation. Due to the limited measured basin data in the study area, and after validation as 

explained below, the soil and vegetation data used were obtained from studies by Nijssen et al., 

(2001a) and Nijssen et al., (2001b) with spatial resolution of 0.5o, referred to as NND. Forcing 

data are precipitation, temperature and wind speed. Station data from MoWR (DMWR) are usually 

on a monthly time-scale (and some daily) ranging from 1940 to 2014 inside Iraq and some 

adjacent areas.  

Study of the validation of TRMM and GIDAL was through comparing their monthly values 

with DMWR. Since TRMM and GIDAL are in gridded format, DMWR was transformed into gridded 

format, hereafter referred to as GMWR, using ordinary co-kriging with elevation as a secondary 

variable. Ordinary co-kriging is superior to other approaches such as Inverse Distance Weighting, 

Multi-Quadratic, ordinary kriging, and kriging with an external drift techniques [e.g., Ishida and 

Kawashima, 1992; Luo et al., 2007; Chahouki et al., 2014; Adhikary et al., 2017]. The metrics for 

validation were the Coefficient of Determination (R2) and Kling–Gupta efficiency, KGE, [Gupta et 

al., 2009] as follows: 

 𝐾𝐺𝐸 = 1 − √(𝜇𝑐𝑎𝑙µ𝑜𝑏𝑠 − 1)2 + (𝜎𝑐𝑎𝑙𝜎𝑜𝑏𝑠 − 1)2 + (𝜌 − 1)2   (2.1) 

The parameters µobs, σobs, µcal, σcal are the mean and standard deviation of GMWR and 

calculations (e.g., with other data sources GIDAL or TRMM), respectively. The variable ρ is the 

correlation coefficient between GMWR and the calculations. KGE is considered superior to the 

Nash–Sutcliffe (1970) coefficient efficiency (NSCE) because it examines the bias of mean, 
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standard deviation, and correlation [Steinschneider et al., 2015]. If both of TRMM and GIDAL 

metric values are low (i.e., KGE < 0.5), the monthly DMWR will be downscaled to daily using the 

micro-canonical version of the discrete multiplicative random cascade (MRC) [e.g., Gupta and 

Waymire, 1993; Over and Gupta, 1994; Over and Gupta, 1996]. The MRC preserves the rainfall 

mass exactly at all cascade levels and has few parameters [Molnar and Burlando, 2005]. The main 

idea of this method is to partition the variable (e.g., precipitation depth) at level-m into b=2 

branches (j and j+1) depending on the probability of intermittency po, such that: 

 𝑃̅(∆𝑚𝑖 ) =  𝑟𝑜   ∏𝑊𝑗 (𝑖) 𝑚
𝑗−1     𝑓𝑜𝑟 𝑖 = 1,2,… . 𝑏𝑚 ;𝑚 > 0 (2.2) 

Where ∆mi  denote the ith interval after m levels of sub-division, ro is the initial monthly 

precipitation depth (in mm), and Wj is the cascade generator, which is a random variable 

distributed as a Beta distribution Wj  ∼ (α, β). To implement this method, the daily rainfall must 

be up-scaled with the same b and m parameters in order to verify the self-similarity of the data 

by calculating the moments of order 0.5 to 4 in each level [e.g., Molnar and Burlando, 2005; Kang 

and Ramirez, 2010]. In case no daily data is available at a DMWR station, the MRC parameters are 

obtained from the nearest station(s).  

The resultant daily values of MRC are randomly distributed in time. i.e., the highest 

precipitation may occur in the 5th day while the actual timing is the 25th. This randomness will 

affect the peak time and will misrepresent extreme events since high runoff discharge in one sub-

basin can be offset by other low runoff discharge in the adjacent sub-basins [e.g., Li, 2014]. 

Therefore, we used a re-ordering technique called Schaake Shuffle, SS, [e.g., Clark et al., 2004; 

Vrac and Friederichs, 2015; Li and Babovic, 2018] to rank the downscaled precipitation values. SS 
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was chosen because it preserves the correlation structure between station pairs and between 

climate variables [e.g., Clark et al., 2004].  

The ranking values for SS reference rank matrix, R, can be obtained from GIDAL. An 

illustration of applying SS is given here. Suppose that the GIDAL of four days and three grid cells 

of resolution 0.5o of the study area are as shown below. R is obtained by assigning ascending rank 

to the values of each column independently. Now suppose the gridded downscaled daily 

precipitation, GDPMWR, of the same grid cells are given below. The ranked GDPMWR, RGDPMWR, 

was obtained by re-ordering the values corresponding ranks given in R, as shown below. Note 

that ranking values for days of no precipitation were assigned randomly to re-order the cases 

when the number of precipitation days are not equal in both GIDAL and GDPMWR. In summary, 

the final forcing data for the analysis were obtained by (1) applying MRC and SS for DMWR 

precipitation; and (2) developing sets of adjustments equations to implement temperature and 

wind speed data from GIDAL. 

𝐺𝐼𝐷𝐴𝐿 =  [ 0 0 5.514.8 12.8 7.30 0 010.2 0 9.8] ;                       𝑹 =  [2 3 24 4 31 2 13 1 4]            
𝐺𝐷𝑃𝑀𝑊𝑅 = [8.1 9.2 00 0 8.61.9 3.6 4.60 1.3 0 ] ;       𝑅𝐺𝐷𝑃𝑀𝑊𝑅 = [ 0 3.6 08.1 9.2 4.60 1.3 01.9 0 8.6] 

2.3.2. Model Sensitivity and Parameter Uncertainty 

these data preparation techniques, the sensitivity of VIC parameters and the output 

uncertainty can be tested. GLUE and DREAM techniques were implemented for seven of VIC 

model parameters as shown in Table 2.1, by following the suggestions of Demaria et al., (2007), 

He and Pang, (2014), and Pradhan and Indu, (2019). The GLUE steps are [see Figure 2.2]: 
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1- Draw a sample of points Θ of size N (2000 sets in this study) using the specified prior 

distribution, p(𝜃), depending on the feasible range of each parameter (ζ), as shown in 

Table 2.1. Given that p(𝜃) are unknown, they are assumed as uniform distributions.  

2- Calculate the likelihood 𝐿𝑖 = 𝐿(𝜃𝑖| 𝑄𝑡, 𝑄̅𝑡, 𝜁) to test the VIC model performance of each 

parameter set θi, i=1,2, …. 2000. Where Qt and 𝑄̅𝑡 are the observed and calculated 

streamflow for the time index t in day. In this study, the likelihood was computed using 

KGE as defined in equation (2.1).  

3- Define a threshold value c (e.g., KGE =0), discard all 𝐿𝑖  < 𝑐 and retain the rest of size k as 

k ≤ n. Lk were then normalized to construct the posterior CDFs, in which  ∑ 𝐿(𝜃𝑘 | 𝑄𝑡, 𝑄̅𝑡, 𝜁) = 1𝑘1 , and the posterior distribution was calculated as ℎ(𝜃𝑘) = 𝐿(𝜃𝑘 | 𝑄𝑡, 𝑄̅𝑡, 𝜁) /∑ 𝐿(𝜃𝑘 | 𝑄𝑡, 𝑄̅𝑡, 𝜁)𝑘1 .    
4- Interpret the results from the shape of ℎ(𝜃𝑘). That is, if ℎ(𝜃𝑘) differs little from the 𝑝(𝜃𝑘), the parameter is considered to have a small sensitivity. If it is quite different, then 

the parameter is considered as highly sensitive. Otherwise, the parameter is non-sensitive 

[e.g., Beven and Freer, 2001; Sun et al., 2012].  

Because no clear approach to differentiate between categories of parameter sensitivity is 

available, for this study a metric of parameter sensitivity was chosen that compares the quantiles 

of ℎ(𝜃𝑘) and 𝑝(𝜃𝑘). The criteria are for a difference is more than 10% but less than 25%, the 

parameter is considered as low sensitive; if more than 25%, it is high sensitive; otherwise the 

parameter is insensitive. Afterwards, the model prediction uncertainty intervals of VIC are given 

by the median of ℎ(𝜃𝑘) and the 5 and 95% prediction quantiles [Vrugt et al., 2009]. 
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Vrugt et al., (2009a), Vrugt et al., (2009b), and Vrugt, (2016) argued that the residual of 

the GLUE technique does not account for the error structure using the posterior distribution 

conditional on the model behavior (i.e., the analysis of GLUE may not distinguish the parameter 

distribution other than uniform distribution). Therefore, they developed a new technique, 

DREAM, using Bayesian inference to evaluate the differences between the calculated and 

corresponding observed streamflow, following the steps of GLUE. With the assumption that the 

residuals are uncorrelated and normally distributed, the likelihood function (alternative to KGE) 

for the model performance is: 

 𝐿 = ∏ 1√2 𝜋 𝜎𝑡2
𝑛

𝑡=1 𝑒𝑥𝑝  [− 12 ( 𝑄̅𝑡 − 𝑄𝑡𝜎𝑡2 )2] (2.3) 

Table 2.1: Description and range of VIC model parameters used in the calibration and uncertainty 
processes. 

Parameter Unit Description   Limits 

B_inf - Controlling factor of the variable infiltration curve     0.4 - 0.001 

Dsmax mm/hr Maximum velocity of baseflow for each grid cell 30 - 0.001 

Ds - Fraction of Dsmax at which non-linear baseflow takes place 2 - 0.001 

Ws - Maximum soil moisture fraction where non-linear baseflow occurs 2 - 0.001 

Depths  M Depth of the three soil layers (e.g., first, second, and third)  2 - 0.001 

Where σt is the standard deviation vector of observed streamflow error. A further 

development for equation (2.3) was done by including the correlation of the residual and 

applying auto-regressive model of order 1, AR (1); the log-likelihood function of DREAM 

technique becomes, 



33 
 

 

𝐿 =  −𝑛2 𝑙𝑜𝑔(2𝜋) + 12 𝑙𝑜𝑔(1 − Ф2) − 12 (1 − Ф2)  𝜎12 𝜀12 − ∑𝑙𝑜𝑔𝜎𝑡𝑛
𝑡=2  

−  12∑[𝜀𝑡 −  Ф 𝜀𝑡−1𝜎𝜀 ]2𝑛
𝑡=2  

(2.4) 

 

Figure 2.2: Steps in GLUE and DREAM procedures. 

2.3.3. Model Calibration Process 

Given the condition that direct measurement of all VIC model parameters is not always 

possible especially in DRB, those parameters shown in Table 2.1 were estimated by the 

calibration process for the best fit of model outcomes to the observed behavior. The calibrated 

model is then deemed applicable for simulating periods outside of the used historical record [e.g., 

Vrugt et al., 2009a]. The calibration process was performed manually using a two-stage process: 

1) performance assessment and 2) residual term evaluation. In the first stage, the allowable 

simulation period was divided into two equal parts, while the first two years were set as a warm-

up period to minimize the effect of uncertain initial conditions [e.g., Pang et al., 2014; Xue et al., 

2015]. The objective function of the first stage was set to maximize the model performance in 

these two periods using KGE. The second stage was to examine the model residuals using the 

procedure proposed by Schoups and Vrugt, (2010), Evin et al., (2013), and Evin et al., (2014), as 
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explained below. The streamflow observations Q(t) can be expressed as a function of the 

calculated streamflow 𝑄̅(𝑡) and the residuals, ϵ(t), as follows: 

 𝑄𝑡 = 𝑄̅𝑡  (𝜃, ∆𝑡) + є(𝑡) (2.5) 

where Δt represents forcing data. The standardized residuals, referred to as innovations 

δ(t), should be zero-mean, uncorrelated, homoscedastic, and normally distributed, and can be 

determined using the following system: 

 𝜂𝜖(𝑡) = є(𝑡) / 𝜎𝜀(𝑡) (2.6) 

 𝜎(𝑡) = 𝛾𝑜 𝑄̅(𝑡) + 𝛾1 (2.7) 

 𝜂𝜖(𝑡) =  Ф 𝜂𝑒(𝑡−1) + 𝛿(𝑡) (2.8) 

where Δt represents forcing data. The standardized residuals, referred to as innovations 

δ(t), should be zero-mean, uncorrelated, homoscedastic, and normally distributed, and can be 

determined using the following system.   

2.4.  Results and Discussion  

2.4.1. Precipitation Data Implementation 

A comparison of GMWR against the other data sources (GIDAL and TRMM) is made, as 

shown in Figure 2.3 (b), (c), (d), and (f) for grids number 9 and 10 since they are located in the 

heart of the basin. A 1-1 line was also plotted to ease the comparison. The grid-cells were 

numbered consecutively for grid-cells located inside the basin, and continued for those located 

outside, as shown in Figure 2.3 (a). GIDAL overestimates both the precipitation amount and its 

variation while TRMM underestimates them. In addition, R2 and KGE for GIDAL and TRMM are 

0.618, 0.264, 0.219, and -0.227, respectively which are low. Adam et al., (2006) explained that in 
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some areas, such as the Middle East, where insufficient information was available to the authors 

to develop GIDAL, precipitation was estimated using the information from the adjacent regions 

which caused inadequate estimation. As for TRMM, our results are in line with Duan  et al., (2012) 

and Medhioub et al., (2019) that TRMM data tends to underestimate the monthly ground 

precipitation in some areas due to the high influence of orographic and climatic properties of the 

region and suggest an adjustment for TRMM data.  

 
Figure 2.3: (a) MoWR stations and GIDAL grid centroids in DRB. (b), (c), (d), and (e) GMWR precipitation 

versus GIDAL and TRMM for grids 9 and 10. (f) Histogram comparison of the observed and 
downscaled, and (g) the moment scaling of observed precipitation data at Derbendikhan station. 

Therefore, in order to develop daily precipitation data for DRB in this study, MRC was 

used to downscale DMWR into daily data, DDMWR. The DMWR in Derbendikhan station was tested 
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for self-similarity, where the data completeness is 96.6%, and compared the histograms of 

original daily DMWR with DDMWR by calculating R2 [0.936], as shown in Figure 2.3 (f) and (g), 

respectively. The result obtained here is superior to that of Al-Khafaji and Al-Chalabi, (2019) for 

Khanaqeen gauge station for the period 1984 to 2002 [e.g., R2 = 0.705]. Afterwards, co-kriging 

and SS were used to obtain RGDPMWR, where R matrix is obtained from GIDAL due to its better 

performance than TRMM (e.g., higher KGE value) and longer coverage years. 

2.4.2. Temperature and Wind Speed Data Implementation 

Since GIDAL was used partially in implementing precipitation data, it was evaluated to 

implement temperature and wind speed data. The MoWR ground-stations are shown in Figure 

2.4 (a). GMWR temperatures were compared to the GIDAL dataset, as shown in Figure 2.4. (b) and 

(c) for grids number 9 and 10, and a regression line between GMWR and GIDAL was plotted. It is 

seen that GMWR and GIDAL are well correlated; but they do not lie on a 1-1 line. Therefore, GIDAL 

was adjusted to be on a 1:1 line where the adjusted GIDAL and GMWR are nearly the same. 

However, the coefficients of linear regression (𝜅0 and 𝜅1 as shown in equation (2.9)] between 

GMWR and GIDAL were plotted against the average grid elevation (Elev), as shown in Figure 2.4 (d) 

and (e) ), which suggest a relationship between 𝜅1 and Elev, while the relationship between 𝜅0 

and Elev is not as strong and its range is very small (e.g., between 1.02 and 0.98). Therefore, 

including it in the correction procedure is not very important. A general regression equation to 

adjust the GIDAL temperature was developed, as follows. Let Y be the raw GIDAL data and X be 

GMWR, the regression equation is: 

 𝑌 = 𝜅𝑜 𝑋 + 𝜅1 (2.9) 
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In order to make the relationship Y=X (a perfect relationship), Y was subtracted by 𝜅1 and 

divided by 𝜅0. Letting Y be the TGIDAL and X be the Tadj, the relationship becomes; 

 𝑇𝑎𝑑𝑗 = (𝑇𝐺𝐼𝐷𝐴𝐿 − 𝜅1) / 𝜅0 (2.10) 

 𝜅𝑜 = 2 × 10−6 𝐸𝑙𝑒𝑣 + 1.002   (2.11) 

 𝜅1 = −0.002 𝐸𝑙𝑒𝑣 − 0.921 (2.12) 

Where, Tadj and TGIDAL are the adjusted and raw GIDAL temperatures (Co), respectively. 

Again, the range of 𝜅0 values is very small [1.02-0.98], thus 𝜅0=1 was assumed. The KGE values 

for TGIDAL and Tadj are 0.73 and 0.97, respectively, as shown in Figure 2.4 (b) and (c). 

 

Figure 2.4: (a) and (b) GMWR temperature versus GIDAL before and after adjustment for grids 1 and 2. 
(c) and (d) β1 and β0 versus Elev. (e) and (f) GMWR wind speed versus GIDAL before and after 

adjustment for grid 3’ and 6’. (g), and (h) CV of GIDAL wind speed for winter and spring seasons. 

The number of MoWR stations for wind speed in the study area is 10, as shown in Figure 

2.4 (a), and only five stations have consistent and complete monthly data for about 14 years and 

located slightly outside the basin. Therefore, the gridded GIDAL wind speed were used in those 
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grids for the selected five stations applying similar procedure as done for temperature, but the 

data was split seasonally. Then, the differences between the means were determined and plotted 

against elevation. The Correction Values (CV) for each season were developed (as shown Figure 

2.4 (h) and (i) for winter and spring), as follows: 

 𝑊𝑆𝑎𝑑𝑗 = 𝑊𝑆𝐺𝐼𝐷𝐴𝐿 − 𝐶𝑉 (2.13) 

 𝐶𝑉𝑤𝑖𝑛𝑡𝑒𝑟 = −0.543 𝑙𝑛(𝐸𝑙𝑒𝑣) + 3.998       ; 𝑓𝑜𝑟 𝑤𝑖𝑛𝑡𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛 𝑚𝑜𝑛𝑡ℎ𝑠 (2.14) 

 𝐶𝑉𝑠𝑝𝑟𝑖𝑛𝑔 = −0.576 𝑙𝑛(𝐸𝑙𝑒𝑣) + 3.117        ; 𝑓𝑜𝑟 𝑠𝑝𝑟𝑖𝑛𝑔 𝑠𝑒𝑎𝑠𝑜𝑛 𝑚𝑜𝑛𝑡ℎ𝑠 (2.15) 

 𝐶𝑉𝑠𝑢𝑚𝑚𝑒𝑟 = −0.543 𝑙𝑛(𝐸𝑙𝑒𝑣) + 3.428      ; 𝑓𝑜𝑟 𝑠𝑢𝑚𝑚𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛 𝑚𝑜𝑛𝑡ℎ𝑠 (2.16) 

 𝐶𝑉𝑎𝑢𝑡𝑢𝑚𝑛 = −0.54 𝑙𝑛(𝐸𝑙𝑒𝑣) + 3.431         ; 𝑓𝑜𝑟 𝑎𝑢𝑡𝑢𝑚𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑚𝑜𝑛𝑡ℎ𝑠 (2.17) 

Where, WSadj and WSGIDAL are the adjusted and raw GIDAL wind speed magnitude, 

respectively. The overall KGE for adjusted and raw GIDAL are 0.48 and -0.11, respectively. If the 

CVs were determined without splitting into seasons, KGE for the adjusted data would be 0.01 

which demonstrates the importance of splitting the wind speed data seasonally. Even though this 

procedure does not produce a perfect relationship between adjusted GIDAL and GMWR, it 

improves the GIDAL wind speed through increasing the KGE value. In summary, the general 

framework presented above to develop a complete gridded-daily dataset to be used in a 

hydrology model in the study area and in Iraq is shown in Figure 2.5. 
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Figure 2.5: Flowchart of forcing data implementation. 

2.4.3. GLUE and DREAM Analyses 

GLUE and DREAM techniques were applied to VIC daily streamflow at DRB outlet driven 

by daily forcing data of 0.5o grid spatial resolution from January 1st 1960 to October 31st 2007, 

with a prior two years for model warm-up. Figure 2.6 and DREAM techniques were applied to VIC 

daily streamflow at DRB outlet driven by daily forcing data of 0.5o grid spatial resolution from 

January 1st 1960 to October 31st 2007, with a prior two years for model warm-up.: 

1- High: The posterior distribution of the second soil layer depth is very different from its 

prior distribution. The quantile differences are 52.0% and 53.1% for GLUE and DREAM, 

respectively. Therefore, the depth of the second soil layer has a great influence on the 

generated streamflow. 
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2- Low: The posterior distributions of B_inf, Dsmax, and first soil layer depth are not very 

different from the prior. The quantile differences are 10.1%, 12.2%, and 10.3% for GLUE, 

and 9.1%, 9.5%, and 8.4% for DREAM, respectively. 

3- Insensitive: Ds, Ws, and third soil depth posterior distributions are the same as the prior 

distribution. The quantile differences are 7.8%, 5.9%, and 5.9% for GLUE, and 7.0%, 6.4%, 

and 6.3% for DREAM, respectively. 

Given that DRB is considered as a dry semiarid zone according to the Koppen classification 

(Pidwirny, 2006), the result here is in line with Demaria et al., (2007) who found that the VIC 

model is more sensitive to the second soil layer depth in dry areas. In addition, they found that 

the B_inf sensitivity is significant in dry areas, whereas it is not in wet. They also indicated that 

the first soil layer depth and saturated hydraulic conductivity Ks are low sensitive in all climate 

regions, which is consistent with our results for first soil layer depth and Dsmax, which is equal to 

Ks multiplied by the grid slope. Moreover, our result is similar to theirs for the third soil layer 

depth; it is insensitive in all climatic regions. Results obtained here are in line with Sun and Yuan, 

(2013), as they found that the second soil layer depth is the most sensitive parameter followed 

by B_inf using GLUE for Huaihe basin in China for the period 1970 to 1999. Our results are also 

consistent with those of He and Pang, (2014) who found that the third soil layer depth and Ds are 

insensitive; while B_inf, Dsmax, and Ws are low sensitive in HRB in China. Nevertheless, He and 

Pang, (2014) found that the second soil layer depth is insensitive while it is very sensitive in our 

case. In addition, they found that the first soil layer depth is the most sensitive. These differences 

might be due to inequality of the simulation length period, their simulation period is 3 years while 

ours is 47 years. Moreover, the climate zone of HRB is different than DRB, as it is considered as 
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polar tundra in the south and arid desert in the north of HRB [e.g., Peel et al., 2007] according to 

Koppen classification, which can also explain the discrepancies in the results according to 

Demaria et al., (2007). Furthermore, our results differ than Pang et al., (2014). They found that 

the B_inf and first soil layer depth are the most sensitive parameters in Xitiaoxi basin in China. 

They also indicated that all other parameters are insensitive. These discrepancies might due to 

their different used range for the soil layers (e.g., from 0.1 to 1.5 m while it is from 0.001 to 2 m 

in this study), the simulation period is only 6 years spanning from 1995 to 2000, or the basin 

climate type is subtropical monsoon which is different than DRB. Finally, Vrugt et al., (2009a) and 

Jin et al., (2010) revealed that the DREAM and GLUE results can be similar to each other. 

Therefore, it is not surprising that our results demonstrate the similarity between the two 

techniques.   

Finally, the 90% predictive bounds were generated for the VIC model, as shown in Figure 

2.7 (a), which represent the 90% uncertainty in the VIC model outputs using the 5% and 95% 

quantile estimates of the parameters. The analysis shows that these predictive intervals contain 

about 93.1% of the observed streamflow which indicates a significant capture of the GLUE and 

DREAM methods for the model error and uncertainty. Therefore, the VIC model is valid in 

performing acceptable streamflow forecasting since it can well represent the hydrological 

behavior of DRB [e.g., Vrugt et al., 2009a; Jin et al., 2010; Beven and Binley, 2014; Pang et al., 

2014]. 
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Figure 2.6: The prior and posterior CDFs of the model parameters with the 5 and 95% quantile 
estimates for GLUE and DREAM. 

2.4.4. Model Calibration and Verification 

The main objective of the calibration and verification process here is to find the best 

estimates of the seven calibration parameters shown in Table 2.2 with the original values from 

NND. The maximum KGE for the calibration and verification period was found to be 0.743 (0.761 

and 0.725), as shown in Figure 2.7 (a). Furthermore, the evaluation of the standardized residual 

term (see equations 5, 6, 7, and 8) are shown in Figure 2.7 (b), (c) and (d). The results glimpsed 

that the innovations are uncorrelated, normally distributed with zero mean, and homoscedastic 

(no specific pattern can be detected), as shown in plots (b), (c), and (d) of Figure 2.7, respectively. 
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The calibrated parameter values are shown in Table 2.2 as well as the quantile estimates from 

both GLUE and DREAM techniques for the active grid-cells only [see Figure 2.3 (a)].  

Table 2.2: The calibrated parameter values of VIC model and the quantile estimates of 5 and 95% 

percentile using GLUE and DREAM techniques. 

Grid B_inf Ds Dsmax Ws 
First soil 

layer depth 
Second soil 
layer depth 

Third soil 
layer depth 

1 0.203 0.857 20.753 0.881 0.461 0.918 1.437 

2 0.39 0.263 13.71 0.125 0.2 1.31 0.214 

3 0.131 0.098 29.467 0.801 0.977 1.855 1.795 

4 0.275 0.242 14.81 0.999 0.598 1.838 1.999 

5 0.317 0.326 20.383 0.726 1.072 1.072 0.424 

6 0.293 0.78 3.419 0.394 0.835 1.237 1.887 

7 0.347 0.456 22.503 0.391 1.205 1.205 1.17 

8 0.394 0.7 16.822 0.494 0.096 1.392 1.828 

9 0.309 0.15 5.482 0.091 0.097 1.454 1.352 

10 0.187 0.996 21.725 0.854 0.391 1.341 0.608 

11 0.168 0.709 20.683 0.999 0.251 0.996 1.053 

12 0.187 0.283 20.093 0.531 0.735 0.862 0.696 

13 0.314 0.466 22.013 0.176 0.174 1.542 1.752 

14 0.392 0.999 22.795 0.707 0.296 1.311 1.446 

15 0.394 0.055 16.946 0.598 0.971 1.406 1.824 

16 0.389 0.197 2.92 0.495 0.465 0.645 1.999 

17 0.302 0.035 29.999 0.199 1.027 1.786 0.231 

18 0.196 0.81 9.719 0.328 0.789 0.789 0.453 

19 0.183 0.728 20.184 0.337 0.613 0.811 0.538 

NND 0.4 0.1 30 1 1 1 0.25 

   Quantile estimates (GLUE\DREAM)       

5% 0.025\0.022 0.054\0.054 2.21\1.78 0.05\0.053 0.106\0.106 0.521\0.515 0.110\0.114 

95% 0.379\0.378 0.950\0.952 28.54\28.52 0.964\0.965 1.846\1.886 1.935\1.942 1.906\1.917 

It can be seen that only 15 of the calibrated values, out of 140 (e.g., 11%), are beyond the 

quantile 5 and 95% quantile estimates, as shown in Table 2.2 in bold style. Due to the limited 

availability of soil and vegetation information for the basin, it is hard to investigate the 

physiographic and hydrometeorological characteristics of these values. However, the calibrated 

values are different form the initial values obtained from NND which demonstrates the 

importance of the calibration and verification process. Comparing with Al-Khafaji and Al-Chalabi, 
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(2019) our results are superior in calibrating the model. Their NSCE values are 0.61 and 0.53 for 

the calibration (Jan- 1984 to Dec-2004) and validation (Jan-2005 to Dec-2013) periods, 

respectively, whereas our values are higher and we used KGE, a superior performance efficiency 

to NSCE [e.g., Steinschneider et al., 2015]. Furthermore, the simulation period implemented in 

this study of 47 years is longer than their simulation length of 30 years. 

 

Figure 2.7: (a) streamflow hydrographs for the calibration and verification periods with the 
uncertainty bands. (b) and (c) correlogram and distribution of the innovations. (d) innovations versus 𝑸̅𝒕. 

2.5.  Conclusions 

The objectives of the study were to develop accurate forcing data for DRB and to evaluate 

the VIC platform model parameter sensitivity and uncertainty of outcomes using GLUE and 
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DREAM methods. These will enable construction of a suitable hydrologic model for future 

management purposes. The study is the first attempt to implement GLUE and DREAM techniques 

in Iraq. 

To augment the available data, the TRMM and GIDAL sources were evaluated. They 

proved inaccurate for precipitation. TRMM data exhibits smaller means and standard deviations 

than the ground observed data and GIDAL showed higher values. R2 were 0.618 and 0.219 while 

KGE were 0.264 and -0.227 for GIDAL and TRMM, respectively, which indicated they should not 

be applied without further investigation for adjustment. This is in line with the findings of Duan et 

al., (2012) and Medhioub et al., (2019). To correct this, the daily precipitation data were 

developed for DMWR using the MRC and SS techniques. The MRC technique for the Derbendikhan 

station showed R2 at 0.936, a higher value than the 0.705 result from Al-Khafaji and Al-Chalabi, 

(2019). A set of equations was proposed to adjust the temperature and wind speed of GIDAL to 

be statistically indistinguishable from the ground observed data and to implement daily gridded 

forcing data. The KGE values for temperature and wind speed before and after adjustment were 

0.73, -0.11, 0.97, and 0.48 respectively, which demonstrate the applicability of the proposed 

procedure. These results comprise a framework to implement daily gridded forcing data in the 

DRB so that hydrologic analysis can be performed. This framework can also be used in other 

basins in the region.  

GLUE and DREAM techniques revealed that the second soil layer depth parameter causes 

most sensitivity in model outputs, with the first soil layer depth, B_inf, and Dsmax causing much 

less sensitivity. Also, the Ds, Ws, and third soil layer depth are insensitive parameters. The results 

are consistent with Demaria et al., (2007) and He and Pang, (2014). The uncertainty results show 

https://ieeexplore.ieee.org/author/38503989800
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that 93.1% of the observed streamflow values are within 5 and 95% predictive intervals 

demonstrating the validity of the VIC model to generate reasonable forecasts.  

The VIC model outputs were calibrated on a daily time scale with KGE values of 0.761 and 

0.725 (average of 0.743) for the calibration and verification period, respectively. The calibrated 

model residual was free from non-normality, heteroscedasticity, and auto-correlation, which 

adds trust to the calibrated model. Results are superior to the calibrated model by Al-Khafaji and 

Al-Chalabi, (2019), and based on longer period as well as using a more efficient performance test.  
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CHAPTER 3 

Development of a Parametric Regional Multivariate Statistical Weather Generator for Risk 

Assessment Studies in Areas with Limited Data Availability2 

Chapter Synopsis 

Risk analysis of water resources systems can use statistical weather generators coupled 

with hydrologic models to examine scenarios of extreme events caused by climate change. These 

require multivariate, multisite models that mimic the spatial, temporal, and cross correlations of 

observed data. Existing weather generator models have impressive features, but are limited by 

dependence on length of historic observations, incapable of preserving all correlations, and 

inability to produce synthetic climate scenarios that exceed the range of the observations. This 

study developed a statistical weather generator to assess climate change impacts on water 

resources systems for cases of limited data. The weather generator is straightforward to 

implement and can employ any distribution function for variables such as precipitation or 

temperature. It is based on (1) a First-order, Two-state Markov Chain to simulate precipitation 

occurrences; (2) use of Wilks’ technique to produce correlated weather variables at multiple sites 

with conservation of spatial, temporal, and cross correlations; and (3) the capability to vary the 

statistical parameters of the weather variables. The model was applied to studies of the Diyala 

River Basin in Iraq, which is a case with limited observed records. Results show that it exhibits 

high values of the Kling–Gupta efficiency, preserves the statistical properties of the observed 

 

2 Under Review in Climate Dynamics Journal, Saddam Q. Waheed, Neil S. Grigg, Jorge A. Ramirez 
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variables, and conserves the spatial, temporal, and cross correlations among the weather 

variables at all sites with good agreement with observations.  

3.1.  Introduction 

Climate change impacts are of increasing concern to hydrologists who assess risks in the 

management of water resources systems. Their models of climate scenarios for extreme events 

can be derived from Global Climate Models (GCMs); statistical weather generators (SWGs); or a 

combination. GCM scenarios are inadequate and limit decision-making options because they 

represent only specific scenarios for climatic variability and have large uncertainties [Wilby and 

Dessai, 2010; Hallegatte et al., 2012; Brown and Wilby, 2012; Stephenson et al., 2012; 

Steinschneider and Brown, 2013; Whateley et al., 2014; Culley et al., 2016]. To address this 

limitation, SWGs can be used to produce a wide range of scenarios to study system responses 

and provide more insights about the system performance under climate change [Weaver et al., 

2013; Turner et al., 2014; Steinschneider et al., 2015a; Zhang et al., 2018]. Moody and Brown 

(2013) and Steinschneider et al. (2015b) linked SWG and GCM scenarios to assign a probability 

of each SWG scenario by fitting a normal distribution to the GCM outcomes. SWG can then be 

used to generate probabilistic synthetic scenarios that are statistically similar to observed data 

and used to investigate which climate states cause system failure [Wilks, 1998, 2009; 2011; Furrer 

and Katz, 2008; Khalili et al., 2011; Steinschneider and Brown, 2013; Chen et al., 2014; Chen and 

Brissette, 2014a; Chen and Brissette, 2014b; Breinl et al., 2015; Acharya et al., 2017; Mukundan 

et al., 2019; Verdin et al., 2019]. Where historic records are limited, synthetic weather sequences 

based on SWGs are especially suitable [Mehrotra et al., 2012]. The main objective of this paper 

is to develop a SWG that can be used to generate synthetic scenarios in order to evaluate impacts 
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of long-term climate change on system performance and suggest robust adaptations to cope with 

anticipated negative impacts. Emphasis is placed on areas with low data availability, and the 

model is demonstrated for Diyala River Basin in Iraq for the four historic weather variables [e.g., 

precipitation, maximum and minimum temperature, and wind speed magnitude] with daily time 

step from 1948 to 2006. 

3.2.  Literature Review 

Generally, SWG can be grouped into parametric, non-parametric, and semi-parametric 

methods. In the parametric method, the weather variables are assumed to fit one continuous 

probability distribution or two combined distributions. The parameters are usually estimated 

from historic observations [e.g., Richardson, 1981; Nicks and Gander, 1994; Wilks 1998; Qian et 

al., 2002; Fowler et al., 2005; Brissette et al., 2007; Burton et al., 2008; Ailliot et al., 2009; Khalili 

et al., 2009; Serinaldi, 2009; Pegram, 2009; Bardossy and Pegram, 2009; Baigorria and Jones, 

2010]. In the non-parametric method, the weather variables are resampled from historic 

observations, using techniques such as are empirical distributions, neural networks, and 

maximum entropy bootstrap [e.g., Rajagopalan and Lall, 1999; Beersma and Buishand 2003; 

Wilby et al., 2003; Burton et al., 2008; Leander and Buishand 2009; King et al., 2014; King et al., 

2015; Srivastav and Simonovic, 2015]. Whereas the semi-parametric method is a mixture 

between the parametric and non-parametric methods [e.g. Fowler et al., 2005; Apipattanavis et 

al., 2007; Cannon, 2008; Breinl et al., 2013; Steinschneider and Brown, 2013; Mehrotra et al., 

2015; Marcon et al., 2017]. 

The parametric method is more suitable because the parameters can be altered to 

simulate different weather scenarios and facilitate climate change studies [Wilks, 2009]. Khalili 
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et al., (2011); Buishand and Brandsma, (2001); Furrer and Katz, (2008); and Verdin et al., (2019) 

noted that the non-parametric method has limitations in generating extreme events because 

values can only be in the range of the observations. Besides violating the climate change impact 

in altering intensities of the variables, using only the observation sequences, where the extreme 

events do not change over the time, is insufficient in assessing the future response of water 

resources system since it leads to single result corresponding only for those observed sequences.   

[e.g., Richardson ,1981; Mehrotra et al., 2015; Acharya et al., 2017; Seneviratne et al., 2017; Li 

and Babovic, 2018; Wang et al., 2018; Mukundan et al., 2019].  

Most existing SWGs are for single sites and cannot capture the spatial and cross 

correlations between the variables, which are essential for generating realistic climate change 

scenarios. Schaake et al., (2010) stated that “relationships between physically dependent 

variables like precipitation and temperature should be respected”. Single site SWGs can miss-

capture the extreme events of the generated runoff, which are essential to develop realistic 

adaptation strategies to cope with flood and drought events, where high runoff in one sub-basin 

can be offset by low runoff in adjacent sub-basins [e.g., Qian et al., 2002; Li, 2014; Mehrotra et 

al., 2015].  

Moreover, misrepresentation of spatial and cross correlations (e.g., correlations between 

the precipitation and temperature) leads to biased generated streamflow as this correlation 

determines the water availability for evapotranspiration and snowmelt [e.g., Li et al., 2014a; 

Srivastav and Simonovic, 2015; Chen et al., 2018]. Therefore, SWG should capture the 

characteristics of each site and the spatial dependence among them.  
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Recently, multi-site and multi-variable SWGs have been developed using different 

approaches. Steinschneider and Brown, (2013) developed a semi-parametric model using a k-

nearest-neighbor resampling scheme to simulate multiple spatially distributed variables using 

wavelet decomposition and autoregressive model to account for low-frequency oscillations. They 

used a Markov chain of first order with three states to identify the precipitation states [e.g., dry, 

wet, and extremely wet]. This model had difficulty in preserving the weather statistics besides 

the cross correlation. Also, it is not clear how to diagnose the differences between the 

precipitation states [e.g., wet and extremely wet].  

Srivastav and Simonovic, (2015) developed a non-parametric model using the maximum 

entropy bootstrap technique to capture the time-dependent structure and the statistical 

characteristics. They used an orthogonal transformation to capture the spatial correlations. Even 

though the model preserves the historical characteristics very well, Davidson and Monticini, 

(2014) and Verdin et al., (2019) showed that the maximum entropy bootstrap technique is limited 

to the historical data range leading to inadequacy in climate change studies. It is difficult to 

employ this model to create different climate scenarios through direct parameter changing.  

Li and Babovic, (2018) proposed a two-stage parametric model using an empirical copula 

to generate spatial distribution templates. Then, they developed a rank ordering technique that 

depended on historic data ranks with empirical copula technique to preserve the correlations 

between the variables. The model preserves correlations between the variables and sites but is 

limited to the historic record length. For example, the model cannot generate more than 30 years 

of simulation if the historic observations are 30 years. Therefore, the model is not useful in areas 
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with limited data length as insufficient projection length may lead to wrong conclusions in risk 

assessment studies [e.g., Dresen, 2011; Haugen et al., 2018]. 

Verdin et al., (2019) presented a model using Bayesian hierarchical technique. The 

precipitation amounts are modeled using gamma distributions and maximum and minimum 

temperatures are modeled using a normal distribution. The statistical coefficients within them 

are modeled as spatial Gaussian processes to account for the correlations. Besides the complexity 

of model structure, the model has difficulty in preserving the statistical properties of the variables 

(especially the standard deviation of minimum temperature is extremely underestimated by the 

model). Also, the model underestimates the spatial correlation between the variables. 

Furthermore, their results do not demonstrate the model ability to preserve the cross correlation 

between the variables as well as the temporal correlation.   

In this study, our objective is to develop a Parametric Regional Weather Generator (PR-

WG) that preserves the statistical parameters (e.g., mean, standard deviation, … etc.) of the 

weather variables as well as spatial, temporal, and cross correlations among them. It should be 

easy to implement and adapt by altering the statistical parameters to generate synthetic future 

climate scenarios. The generated scenario must exceed the historic record length and 

observation range.   

3.3.  Model Description 

The novel contribution here is to use the parametric approach to create a flexible model 

that can adapt to any continuous probability distribution. This will enable use of the most 

accurate distribution for each weather variable, and the user can employ other distributions 

according to data availability and scope of the study.  
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3.3.1.  Precipitation States 

The first step in developing the PR-WG is to establish the precipitation states. They are 

defined here as: wet days if the daily amounts equal or exceed 0.1 mm and dry days otherwise. 

This is similar to the approach by Li and Babovic, (2018); Verdin et al., (2019). The approach is to 

use the First-order Two-state Markov Chain (FTMC), which is the most popular method to 

produce dry and wet precipitation occurrences. It works well in different climate types and 

performs as well as higher Markov chain orders [Chen and Brissette, 2014b; Acharya et al., 2017].  

Let S(k, t, m) denote the precipitation state (S=0 is a dry day and S=1 is a wet day) at spatial 

location k ∈ ℕ, time index t ∈ ℕ in days, and month index m = {1,2, … 12}. The dry or wet day 

occurrence is obtained from the following conditional probabilities: 

 𝑃𝑟 (𝑆(𝑘,𝑡,𝑚 = 0 |𝑆𝑘,𝑡−1,𝑚 = 0) =   𝜅0         ;        𝑃𝑟 (𝑆(𝑘,𝑡,𝑚 = 1 |𝑆𝑘,𝑡−1,𝑚 = 0) = 1 − 𝜅0 (3.1) 

 𝑃𝑟 (𝑆(𝑘,𝑡,𝑚 = 1 |𝑆𝑘,𝑡−1,𝑚 = 1) =  𝜅1           ;        𝑃𝑟 (𝑆(𝑘,𝑡,𝑚 = 0 |𝑆𝑘,𝑡−1,𝑚 = 1) =  1 − 𝜅1 (3.2) 

Where, 𝜅0 is the probability of a dry day following a dry day, and 𝜅1 is the probability of 

a wet day following a wet day. These probabilities were estimated from the daily historical 

precipitation observations for each month. 

3.3.2.  Precipitation Amount 

Precipitation amounts were calculated by using the joint probability distribution between 

the occurrence and amount. For example, once a wet day is predicted from the FTMC, the 

precipitation amount is calculated. A skewed normal distribution (SN) was selected because it 

estimates the daily precipitation amount better than other distributions such as exponential, 

Gamma, Weibull, mixed-exponential, and generalized Pareto in capturing the mean, standard 

deviation, and extreme values, and recommended by other researchers [e.g., Li et al., 2014b; 
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Chen and Brissette, 2014a; Chen and Brissette, 2014b; Mehan et al., 2017; Wang et al., 2018]. 

Let P denote the precipitation amount in [mm/day] and 𝕝Ψ denote the indicator of precipitation 

state condition ψ. In which, P returns to a value (obtained implicitly form equation (3.4); Nicks 

and Gander, 1994) if the condition ψ holds (𝕝[𝑆=1]) and returns to zero otherwise (𝕝[𝑆=0]), as 

follows: 

 𝑃(𝑘,𝑡,𝑚) = { 𝑆𝑁 (𝜇𝑃 , 𝜎𝑃 , 𝛾𝑃)         𝑓𝑜𝑟    𝕝[𝑆(𝑘,𝑡,𝑚)=1] 0                                  𝑓𝑜𝑟    𝕝[𝑆(𝑘,𝑡,𝑚)=0]  
(3.3) 

𝜃(𝑘,𝑡,𝑚) = 6𝛾𝑝(𝑘,𝑚)  { [ 𝛾𝑝(𝑘,𝑚)2  (𝑃(𝑘,𝑡,𝑚) − 𝜇𝑝(𝑘,𝑚)𝜎𝑝(𝑘,𝑚) ) + 1]13 − 1} + 𝛾𝑝(𝑘,𝑚)6  (3.4) 

Where θ is the matrix of the standard normal deviates θ ~ N(0,1) ϵ ℝ; and µp, σp, and γp, 

are the mean, standard deviation, and skew coefficient of the precipitation for month m. Values 

of the parameters µp, σp, and γp were estimated from the daily historical observations.  

3.3.3.  Maximum and Minimum Air Temperature 

The maximum and minimum daily air temperature are usually modeled by the normal 

distribution (N) [e.g., Harmel et al., 2001 and Harmel et al., 2002]. Let TX and TN denote the 

maximum and minimum daily air temperature in [oC], respectively. In which, TX is (and TN) is: 

 𝑇𝑋(𝑘)~ 𝑁(𝜇𝑋(𝑘), 𝜎𝑋(𝑘)) (3.5) 

Where μX and σX are the mean and standard deviation of TX, respectively. Solving equation 

(3.5) for each month m according to 𝕝Ψ (to account for precipitation state effects), Tx and TN can 

be computed as; 𝑇𝑋(𝑘,𝑡,𝑚) = 𝜇𝑥0(𝑘,𝑚) + 𝜎𝑋0(𝑘,𝑚)  × ʋ(𝑘,𝑡,𝑚)          𝑓𝑜𝑟    𝕝[𝑆(𝑘,𝑡,𝑚)=0] (3.6) 𝑇𝑋(𝑘,𝑡,𝑚) = 𝜇𝜇𝑥1(𝑘,𝑚) + 𝜎𝑋1(𝑘,𝑚)  × ʋ(𝑘,𝑡,𝑚)        𝑓𝑜𝑟    𝕝[𝑆(𝑘,𝑡,𝑚)=1] (3.7) 
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𝑇𝑁(𝑘,𝑡,𝑚) = 𝜇𝜇𝑁0(𝑘,𝑚) + 𝜎𝑁0(𝑘,𝑚)  ×  𝛿(𝑘,𝑡,𝑚)       𝑓𝑜𝑟    𝕝[𝑆(𝑘,𝑡,𝑚)=0] (3.8) 𝑇𝑁(𝑘,𝑡,𝑚) = 𝜇𝜇𝑁1(𝑘,𝑚) + 𝜎𝑁1(𝑘,𝑚)  ×  𝛿(𝑘,𝑡,𝑚)       𝑓𝑜𝑟    𝕝[𝑆(𝑘,𝑡,𝑚)=1] (3.9) 

Where, μX0, μX1, μN0, μN1, σX0, σX1, σN0, and σN1 are the monthly mean and standard 

deviation for maximum and minimum air temperature [oC/day] for S= 0 and 1, respectively, and 

ʋ and δ are the matrices of standard normal deviates, such that ʋ and δ ~ N (0,1) ϵ ℝ. Parameter 

values of equations (3.6), (3.7), (3.8), and (3.9) were estimated from the historic observations. 

3.3.4.  Wind Speed Magnitude 

Pobocikova et al., (2017) showed that the most accurate function to simulate the daily 

wind speed magnitude (WS) is Weibull with 3 and 2 parameters, respectively, followed by 

Gamma. Given the condition that wind speed is affected by precipitation states and amount [Back 

and Bretherton, 2005], the selected distribution must be decomposed into the same distribution 

type. As the Weibull distribution cannot be decomposed into two Weibulls (although Gamma can 

be) [Nadarajah, 2008], wind speed magnitude was modeled by the Gamma distribution (GM) in 

this study. Let WS denote the daily wind speed magnitude [m/s] for k locations, as follows: 𝑊𝑆(𝑘)~ 𝐺𝑀 (𝛼(𝑘), 𝛽(𝑘)) (3.10) 

Where α and β are the shape and scale parameters, respectively. Similarly for the 

temperature, WS for each month m and according to 𝕝Ψ was estimated implicitly from the 

following equations: 

𝜆(𝑘,𝑡,𝑚) =  
𝛽0(𝑘,𝑚)−𝛼0(𝑘,𝑚)Γ (𝛼0(𝑘,𝑚))  ∫  ℎ𝛼0(𝑘,𝑚)−1

 𝑒−ℎ/𝛽0(𝑘,𝑚)  𝑑ℎ     𝑓𝑜𝑟    𝕝[𝑆(𝑘,𝑡,𝑚)=0]𝑊𝑆(𝑘,𝑡,𝑚)0  (3.11) 

𝜆(𝑘,𝑡,𝑚) =  
𝛽1(𝑘,𝑚)−𝛼0(𝑘,𝑚)Γ (𝛼1(𝑘,𝑚))  ∫  ℎ𝛼1(𝑘,𝑚)−1

 𝑒−ℎ/𝛽1(𝑘,𝑚)  𝑑ℎ𝑊𝑆(𝑘,𝑡,𝑚)0          𝑓𝑜𝑟    𝕝[𝑆(𝑘,𝑡,𝑚)=1] (3.12) 
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Where α0, α1, β0, and β1 are the shape and scale parameters for S=0 and 1, respectively, 

for each month m, h is an independent parameter, and λ is the cumulative probability, which is 

distributed uniformly;  λ~ U [0, 1], ϵ ℝ. 

3.4.  Model Implementation   

The parametric SWG should conserve the spatial, temporal, and cross correlations of 

historic observations of the four weather variables. The concept is to study the behavior of the 

variates θ, ʋ, δ, and λ, hereafter referred to as anomalies. The correlations between those 

anomalies should be identified so the generated weather values are statistically similar to 

observed values and conserve spatial, temporal, and cross correlations. The implementation of 

the PR-WG consists of two stages, namely preprocessing and postprocessing. 

3.4.1.  Preprocessing: Parameter Estimation and Matrix Preparation  

In order to specify the wet and dry occurrences, a random uniform variate y ~U[0, 1] must 

be drawn and compared with transition probabilities obtained from equations (3.1) and (3.2). For 

multi-site precipitation, their anomalies (referred to as Y ϵ ℝ) that identify the states in k locations 

must be correlated so that the generated states S are correlated as the historic observations. 

Wilks’ method was selected to generate correlated anomalies Y~ N(0,1) at multiple sites. It is 

simple and more efficient than hidden Markov and k-nearest neighbor methods [Mehrotra et al., 

2006], accurate in generating the correlations of monthly interstation [Khalili et al., 2007], and 

the most cited method comparing with other approaches [Chen et al., 2015].  

Assume S (1,m) and S (2,m) are the precipitation states on month m at sites k=1 and k=2. 

To generate realistic sequences of precipitation states at these two sites, the correlation (ω) 

between their corresponding anomalies Y, ω(1,2) = corr (Y(1,m), Y(2,m)), must be computed. The 
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parameter ω was determined by generating different sets of Ý at the two sites with different 

arbitrary correlation values {ώ1, ώ2, …}, ώ1 =corr(Ý (1,m), Ý (2,m), identifying the precipitation states 

at the two locations Ś1 and Ś2, and calculating the corresponding correlation {έ1, έ2, …}, έ1(1,2) = 

corr (Ś(1,m), Ś (2,m)). Then, a regression line between έ and ώ sets is fitted to identify the 

relationship between them. Using this regression equation with the observed precipitation state 

correlation ξ, the parameter ω can then be found. An example is shown in Figure 3.1 a., in which 

selecting 0.858 correlation between the pair anomalies (ω) will produce 0.785 correlation 

between the pair states (ξ) at the two locations.  

The process should be repeated for each station pair and lead to the number of 

realizations of k (k-1)/2 and repeated for each month m to create the anomalies matrix ωs ∈ ℝ. 

The ωs matrix is then used to develop Y that produces correlated precipitation states in k 

locations for month m, using the multi-variate normal distribution as follows:  

𝑌 = 𝑓 (𝜇𝑦,  𝛴) =  
1√𝛴 (2𝜋)𝑑 𝑒𝑥𝑝 (−12  (𝑦 −  𝜇𝑦) 𝛴−1

 (𝑦 − 𝜇𝑦)) (3.13) 

The variable µy denotes the 1-D mean vector for the anomalies Y, Σ denotes the 

covariance matrix, and d is an independent parameter. In this case, µ = [0, 0, … , 0]k×1 and the 

variance is 1, so the covariance matrix Σs becomes the correlation matrix ωs. 

The matrix ωs must be a positive-definite matrix (e.g., symmetric and all eigenvalues are 

positive) to be implemented in equation (3.13). Since the elements of ωs were calculated 

empirically, ωs is usually a non-positive matrix. Comparing to the work of others, the most precise 

method to obtain a positive-definite matrix is the Iterative Spectral with Dykstra’s Correction 

(ISDC) [Maree, 2012], as follows: 
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1- Assume ω𝑖 =  ω, ΔΩ𝑖 = 0, and 𝑖 = 1, in which ω is a non positive-definite correlation 

matrix. 

2- Let 𝑅𝑖 = 𝜔𝑖 − 𝛥𝛺𝑖. 
3- Find 𝐿𝑖  and Ω𝑖, such that 𝑅𝑖 = 𝛺𝑖 𝐿𝑖 𝛺𝑖𝑇. 

4- Replace the negative eigenvalues of 𝐿𝑖  by a small positive value to construct 𝐿𝑖+.  

5- Set ω𝑖+1 = 𝛺𝑖 𝐿𝑖+ 𝛺𝑖𝑇 and ΔΩ𝑖+1 = ω𝑖+1 − 𝑅𝑖. Then, replace all ω𝑖+1 diagonal elements 

by 1.  

6- Test whether ω𝑖+1 is a positive-defined matrix or not. If not, repeat the steps from 2 to 

6 by making 𝑖 = 𝑖 + 1 and ω𝑖 = ω𝑖−1.  
After generating the matrix S at k and m, the next step is to simulate the weather variables 

(e.g. P, TX, TN, and WS). The idea here is to examine the anomalies of those variables and generate 

the weather variables with same observation properties. To account for all spatial and cross-

correlation between the variables, their anomalies (θ, ʋ, δ, and λ) must be correlated. The 

temporal correlation, identified by auto-correlation lag-1 day, for TX, TN, and WS must also be 

considered. Since the precipitation amount is an intermittent variable, the auto-correlation is not 

considered. The following procedure was suggested to achieve the purpose. First, arrange the 

weather variable matrix V as follows: 

[   
 𝑉1,11𝑉2,11 𝑉1,21𝑉2,21 ⋯ 𝑉1,𝑘𝑛𝑉2,𝑘𝑛⋮         ⋮ … ⋮𝑉𝑡,11 𝑉𝑡,21 ⋯ 𝑉𝑡,𝑘𝑛 ]   

 
 (3.14) 

Where, V represents the observed weather variable value and n denotes the weather 

variable rank (P, TX, TN, and WS), n= {1, 2, 3, 4}. The total number of the rows will be T = month 
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days × year numbers, the columns will be K × N, and the aisle will be M. This matrix arrangement 

enables us to consider all spatial and cross correlations between the weather variables. Next, 

extract the anomalies matrix Z ∈ ℝ from V using equations (3.3) and (3.4) for P; (3.6), (3.7), (3.8), 

and (3.9) for Tx and TN; and (3.11) and (3.12) for WS after estimating their parameters (e.g., µp, 

σp, γp for P, μX0, μX1, σX0, σX1 for TX , μN0, μN1, σN0, σN1 for TN, and α0 ,α1 β0,, β1 for WS).  

The Z matrix represents the anomalies of the weather variables and their elements have 

spatial, cross, and auto correlation magnitudes. To generate the Z matrix with same observation 

properties, those correlations must be preserved. The first step done here was to estimate 

autoregressive model of order 1, AR(1), coefficients for the anomalies (φz) so that generated 

variables have the observed AR(1) value (φv) applying the Wilks’ technique. For example, let 

assume the μX0, μX1, σX0, σX1 are 11.72, 9.12, 3.71, 2.21 [Co/day], respectively, and φv is 0.82 at 

station k of month m. The adopted procedure for obtaining the φz, as follows: 

1) Generate standard normal random deviate set y; y ~ N (0,1). 

2) Use equations (3.1) and (3.2) to identify the dry and wet days.  

3) Generate standard normal random deviate set x; x ~ N (0,1). 

4) Apply the AR of arbitrary values between -1 and 1 (e.g., φ’z). 

5) Obtain the anomalies z by standardizing x of step 4. 

6) Apply equations (3.6) and (3.7) to obtain T’X.  

7) Calculate AR (1) of TX (e.g., φ’v) and plot versus the φ’z, then regress them. 

8) Use the regression equation obtained in step 7 with the observed value φv (e.g., 0.82) to 

determine φz. In this case 0.88 (as shown in Figure 3.1 b). 
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This procedure has to be done for all TX and TN of each k and m. For WS, the procedure is 

same except step 5, converting x into uniform distributed to get WS anomalies. For example, let 

us assume α0, α1, β0, and β1 are 4.04, 3.22, 0.62, 0.71 respectively, and the φv is 0.54. The 

corresponding φz will be 0.56, as shown in Figure 3.1 c. This procedure allows us to preserve the 

auto-correlation of Tx, TN, and WS. 

The final step of the preprocessing stage is to construct the positive-definite correlation 

matrix of variable anomalies ωV, as done for precipitation states using ISDC. Building ωV allows 

us to preserve all spatial, temporal, cross correlations between the variables. 

 

Figure 3.1: (a) An example of Wilks’ technique for precipitation states. (b) and (c) examples of Wilks’ 
technique to obtain φz for TX and WS, respectively for station k of month m. 

3.4.2.  Post-processing Stage: Variable Generation 

After building all matrices and estimating the parameters in the preprocessing stage, the 

four weather variables can be generated for any time length of interest, as follows:  

1) Use equation (3.13) with ωs to generate Y anomalies that denote S. The length of Y 

denotes the day’s number of the generated time series. In this case, the user can generate 

any length (independently on the historic observation length). 
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2) Use equations (3.1) and (3.2) with the estimated FTMC parameters (𝜅0 and 𝜅1) to identify 

the dry and wet day occurrences.  

3) Apply equation (3.13) with ωv to generate Z anomalies that denote the variable values. 

Off course, the length of Z must be the same of Y.   

4) Obtain P for the wet days using equations (3.3) and (3.4) with the estimated parameters 

µp, σp, and γp. This will make sure the generated P have similar observed statistics. 

5) Apply AR (1) with coefficients Фz for TX, TN, and WS anomalies to consider the auto-

correlation magnitude for the variables. 

6) Re-standardized the anomalies for TX and TN, as follows:  

𝑍𝑠𝑡𝑑(𝑘) =  
𝑍(𝑘) −  𝜇(𝑍(𝑘))𝜎 (𝑍(𝑘))  (3.15) 

Where, Zstd is the standardized anomalies Z of step 5, and µ(Z) and σ(Z) are the mean and 

standard deviation of Z, respectively.  

7) Apply Zstd in equations (3.6), (3.7), (3.8), and (3.9) with the estimated parameters (μX0, μX1, 

μN0, μN1 ,σX0, σX1, σN0, and σN1) to calculate TX and TN.  

8) Convert the anomalies Z of WS to be uniform distributed between 0 and 1 ZU, as follows; 

𝑍𝑈(𝑘) =  0.5 × 𝑒𝑟𝑓 (𝑍(𝑘) −  𝜇( 𝑍(𝑘))√2  𝜎( 𝑍(𝑘))  ) + 0.5 (3.16) 

9) Apply ZU in equations (3.11) and (3.12) with the estimated parameters (α0, α1, β0, and β1) 

to calculate WS. Steps 3 to 9 enable us to preserve observation statistics of TX, TN and WS 

and the auto, spatial, and cross correlations with consideration of the precipitation states 

effects through decomposing their distribution functions. 



71 
 

10) Repeat steps 1 to 9 for all months m. 

3.5.  Case Study and Data 

The developed PR-WG was tested in the Diyala River Basin, which is a transboundary basin 

between Iran and Iraq with total stream length of 217 km and basin area of 16,760 km2 above 

Derbendikhan Dam, as shown in Figure 3.2. In previous work, Waheed et al., (2019) implemented 

the daily weather data [e.g., precipitation, maximum and minimum temperature, and wind 

speed] in this basin at 0.5o spatial resolution from 1948 to 2006 and explained the 

implementation procedure. 

 

Figure 3.2: Diyala River basin in Iraq with grid numbers. 

3.6.  Results and Discussion 

3.6.1.  Model Performance Evaluation 
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The PR-WG was tested for its daily performance with historic observations for the period 

between 1948 and 2006 in a grid composed of 24 grid-cells. The Kling–Gupta efficiency [KGE; 

Gupta et al., 2009], was used to evaluate the PR-WG’s ability to produce spatially correlated 

precipitation states S similar to the observed values. The KGE examines the bias of mean, 

standard deviation, and correlation [Steinschneider et al., 2015a], as follows: 

𝐾𝐺𝐸 = 1 − √(𝜇𝑠𝑖𝑚µ𝑜𝑏𝑠 − 1)2 + (𝜎𝑠𝑖𝑚𝜎𝑜𝑏𝑠 − 1)2 + (𝜌 − 1)2   (3.17) 

Where µobs, σobs, µsim, and σsim are the mean and standard deviation of the observations 

and simulations (e.g., the PR-WG outcomes), respectively, and ρ is the correlation coefficient 

between the observations and simulations.  

Figure 3.3 shows the comparison of 10 daily simulations of PR-WG of monthly dry and 

wet occurrences in gray color dots, and the average of those 10 simulations is plotted in blue 

dots. It is evident that the model works well to produce the number of dry and wet days, with a 

KGE of 0.97. This result demonstrates the ability of FTMC to produce the precipitation states well 

[e.g., Chen and Brissette, 2014b; Acharya et al., 2017]. Figure 3.4 shows a comparison of pairwise 

correlations of precipitation states for each calendar month with a 1-1 line for reference. It can 

be seen that the correlations are captured well by the PR-WG. The overall KGE value is 0.98. 

Figure 3.5 demonstrates the PR-WG performance to produce the statistical parameters 

(e.g. mean, standard deviation, and skewness) of the four weather variables. The comparisons 

were done on monthly basis for the 24 grid-cells with a 1-1 line for reference. A series of 1000 

years was generated to reduce the sampling bias and uncertainty in the simulations. However, 

the monthly means of all variables and the standard deviations for TX, TN and WS perfectly 
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produced by the model (KGE ≈1), while σp, and γp are reasonably preserved (KGE =0.97 and 0.89). 

The slight discrepancies are due to the stochastic nature of the process [Chen et al., 2012].  

 

Figure 3.3: Comparison of the precipitation states between the observations and simulations for all 
months with 1-1 line for reference. 

 

Figure 3.4: Comparison of the precipitation state correlation between the observations and 
simulations for each month with 1-1 line for reference. 
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Figure 3.5: Comparisons of the monthly statistic parameters of the observations and simulations with 
1-1 line for reference. (a), (b), and (c) mean, standard deviation, and skewness of P. (d), (e) (f), and (g) 

mean and standard deviation of TX and TN. (h) and (i) mean and standard deviation of WS. 

Figure 3.6 shows the spatial and cross correlation coefficient matrices of the observations 

and simulations for one month (e.g., m=1), while Figure 3.7 show the spatial and cross correlation 

comparison for all variable for each m. The number of columns of V matrix [see section 3.4.1. ] 

are 4 × 24 = 96. Therefore, the V dimensions are 96 × 96, in which, 1 to 24 for P, 25 to 48 for TX, 

49 to 72 for TN, and 73 to 96 for WS. It can be observed from Figure 3.6 that the observed 
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correlation among the variables varies greatly across them. P and WS are slightly less spatially 

correlated as compared with TX and TN. Those facts are in line with Srivastav and Simonovic, 

(2015) and Verdin et al., (2019). It is also noticeable form Figure 3.6 and Figure 3.7 that the model 

preserves well the spatial and cross correlation among the variables. The overall KGE value is 

0.96. 

 

Figure 3.6: Spatial and cross correlation coefficients of observed and simulated variables. 

Finally, Figure 3.8 demonstrates the performance of the PR-WG to preserve the lag-1 day 

auto-correlations of TX, TN, and WS. It is noticeable that the values differ from month to month, 

and less for WS comparing with TX and TN. However, the PR-WG captures those monthly 

variations very well regardless of their magnitudes with overall KGE value of 0.97.  

3.6.2.  Model Validation 

In some cases, the proposed SWG produces negative values for precipitation. Meyer, 

(2011) indicated that the SN is not suitable when the skewness is greater than 4.5. However, in 

the study area, values of the skewness have not exceeded 4.5 [see Figure 3.5 c], ], therefore SN 

is applicable. The negatives were checked and found to be less than 3% of the whole 1000-year 
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time series in the 24 grid-cells. The suggestion of Srivastav and Simonovic (2015) to round the 

negative values to zero was considered, but it affects the number of wet and dry calculations and 

the statistical parameters of precipitation. Instead, the negatives were rounded to 0.1 mm/day, 

which is assumed to be the minimum precipitation amount [see Section 3.3.1. ]. This correction 

approach for negative values illustrates the slight differences in the simulated σp, and γp [see 

Figure 3.4 b and c]. The user could apply another distribution function in cases where SN is not 

applicable such as mixed-exponential [Roldan and Woolhiser, 1982; Wilks, 1999], log-normal, 

gamma, … etc. The key advantage of PR-WG is its flexibility in adopting any distribution of 

interest, such as these.  

 

Figure 3.7: Spatial and cross correlation comparison of the weather variables for each month with 1-1 
line for reference. 
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Figure 3.8: Autocorrelation Lag-1 of the weather variables of the weather variables Tx, TN, and WS, 
respectively for all months with 1-1 line for reference. 

The second validation was done by checking if TN is greater than TX and found to be less 

than 1% of the whole 1000-year time series in the 24 grid-cells. Li and Babovic, (2018) suggested 

to force TX to be greater than TN through setting TN equal to TX minus 1. This procedure will affect 

the auto-correlation of the TN. Instead, Chen et al., (2012) approach was applied as follows, If TX 

˂TN then, 

𝑇𝑋(𝑘,𝑡,𝑚) = 𝑇𝑁(𝑘,𝑡,𝑚) + (𝜇𝜇𝑥(𝑘,𝑚) − 𝜇𝜇𝑁(𝑘,𝑚)) + √𝜎𝑋(𝑘,𝑚)2 − 𝜎𝑁(𝑘,𝑚)2 × 𝑧𝑠𝑡𝑑(𝑘,𝑡,𝑚) 𝑓𝑜𝑟  𝕝[𝜎𝑋 (𝑘,𝑡,𝑚)≥𝜎𝑁 (𝑘,𝑡,𝑚)] 
(3.18) 

𝑇𝑋(𝑘,𝑡,𝑚) = 𝑇𝑁(𝑘,𝑡,𝑚) + (𝜇𝜇𝑥(𝑘,𝑚) − 𝜇𝜇𝑁(𝑘,𝑚)) + √𝜎𝑋(𝑘,𝑚)2 − 𝜎𝑁(𝑘,𝑚)2 × 𝑧𝑠𝑡𝑑(𝑘,𝑡,𝑚) 𝑓𝑜𝑟       𝕝[𝜎𝑋 (𝑘,𝑡,𝑚)<𝜎𝑁 (𝑘,𝑡,𝑚)] 
(3.19) 

Equations (3.18) and (3.19) are conditioned on the precipitation states. For example, the 

σ and μ will turn to condition 0 if S=0. In this case, the TX is guaranteed to be greater than TN and 
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the auto, spatial, and cross correlations are preserved since they are multiplied by the anomalies 𝑧𝑠𝑡𝑑.  

3.7.  Conclusions  

It was shown that PR-WG accurately preserves the statistical properties (mean, standard 

deviation, and skewness coefficient) of the weather variables (overall KGE test value was 0.98). 

The PR-WG also preserves the spatial, temporal, and cross correlations among the weather 

variables. While other SWGs may have more features, the one developed in this study enables 

the risk assessment study to be implemented in areas subjected to limited data availability.  

PR-WG effectively estimates the dry and wet day occurrences using FTMC with an overall 

KGE value of 0.97, a result that is in line with those of Chen and Brissette, (2014b) and Acharya 

et al., (2017). The results also demonstrate the effectiveness of Wilks’ technique to produce 

spatially correlated precipitation states (KGE of 0.98) and spatially and cross correlated weather 

variables (KGE of 0.96) beside the temporally correlated (KGE of 0.97).  

While the PR-WG was validated in the Diyala River basin, it should be effective and 

applicable in other places and with other weather variables, such as solar radiation. The 

advantages of PR-WG are its flexibility to select any distribution function for each weather 

variable, ability to simulate any number of years within or beyond the historic observation length, 

capability to generate values outside the observation range, and ability to produce synthetic 

scenarios through alteration of the weather variable parameters for study of climate change 

impacts. The PR-WG is easy to construct and understand with little computational intensity to 

build spatial and cross correlation matrices of the anomalies. Increasing computational power 

will facilitate the work. 
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CHAPTER 4 

Nonstationary-Probabilistic Decision Framework to Assess the Long-Term Water Resources 

System Vulnerability under Climate Change and Quantify the Robust Plan and Timing3 

Chapter Synopsis 

Multi-objective water resources systems require long-term operational plans that 

consider vulnerability to failure under nonstationary conditions due to climate change. The paper 

presents a probabilistic decision-making framework under nonstationary assumptions to 

evaluate the robustness of the pre-selected plans and identify the optimal plan using a genetic 

algorithm approach. The framework incorporates a new metric for maximum allowable time to 

apply the adaptations and maintaining operational targets without penalties. The framework has 

four stages for climate exposure identification, production of water supply scenarios, generation 

of water demand scenarios, and evaluation of system performance. Hydrologic variables 

considered include precipitation, temperature, and wind speed. The Diyala River Basin in Iraq 

was used as a case study to test the effectiveness of the framework. Three synthetic pre-selected 

plans were developed by reducing the demand ratios of the system. Results indicate that current 

operational rules are robust for flood protection but vulnerable in drought periods. Precipitation 

changes were dominant in flood and drought management, and temperature and wind speed 

change effects were significant during drought. Results demonstrated the framework 

effectiveness to quantify detrimental climate change effects, provide long-term guides for 

 

3 Under Review in Hydrologic Processes Journal, Saddam Q. Waheed, Neil S. Grigg, Jorge A. Ramirez (2020) 
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operational planning, and identify the upper limit application time of the adaptation strategies 

in the system to avert the climate change impact. Framework application suggests an optimal 

adaptation strategy, robustness examination of the pre-suggested plans, and identify the 

maximum allowable time for the robust plans. The study represents the first attempt to consider 

nonstationary hydroclimatic conditions in simulation of supply, demand, and system loss 

scenarios. 

4.1.  Introduction 

Climate change affects the availability and quality of water in space and time and the 

frequency of floods and droughts. It requires risk analysis for reservoir operations because 

conflicts between water supply and demand are increasing and affecting both performance and 

equity [Wang et al., 2019; Tian et al., 2019]. The resulting non-stationarity in hydroclimatic 

statistics may invalidate assumptions upon which systems were planned and new approaches 

may be stimulated [Solomon et al., 2007; Milly et al., 2008; Stocker et al., 2013; Paton et al., 2013; 

Villarini et al., 2009; Whateley et al., 2014; Culley et al., 2016; Spence and Brown 2016]. Impetus 

to improve system performance under climate variations and use existing infrastructure better 

is driven by the high cost of upgrading systems [e.g., Paton et al., 2014; Beh et al., 2015; 

Steinschneider et al., 2015a; Giuliani et al., 2016].  

To address system vulnerability, adaptation strategies such as changes in demand 

management can reduce risks and avert undesirable impacts [Turner et al., 2014; Whateley et 

al., 2014; Culley et al., 2016; Azhoni et al., 2018]. In practice, decision makers aim to achieve 

multiple objectives by evaluating the robustness of the pre-suggested plans and the decision-

making process should provide the best strategy from a set of pre-specified possible options 
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[Herman, et al., 2015; Golfam et al., 2019]. Optimization methods can indicate non-inferior 

alternatives to maximize performance [Spence and Brown, 2016; Zhang, et al., 2018; Zhu et al., 

2019; Taner et al., 2019].  

Efforts to develop approaches for climate change impact assessments and adaptation 

suggestion are either top-down or bottom-up. In the traditional top-down approach, the 

performance of the water resources system is examined under discrete climate scenarios, often 

from the Global Climate Model (GCM) outputs. These scenarios are fed into a hydrologic model 

to generate future water supply scenarios and the performance of a water resources system is 

tested over those scenarios. GCM scenarios limit decision-making choices because they 

represent only specific discrete climate scenarios and lead to uncertain decisions [Wilby and 

Dessai, 2010; Hallegatte et al., 2012; Brown and Wilby, 2012; Stephenson et al., 2012; Whateley 

et al., 2014; Culley et al., 2016; Taner et al., 2019]. Moreover, GCMs are spatially coarse and do 

not capture the high-intensity precipitation that occurs at fine spatial scales [Spence and Brown, 

2016].  

To overcome this problem, a bottom-up approach uses a statistical weather generator 

(SWG) to produce a range of scenarios including some beyond the GCM bounds. These scenarios 

are implemented in hydrologic models to produce supply scenarios, and the system responses 

are evaluated. This provides insights into expected system performance under climate change, 

enables better testing and leads to the most robust management alternative [Weaver et al., 

2013; Turner et al., 2014; Steinschneider et al., 2015a; Zhang et al., 2018]. SWG scenarios can be 

linked with GCM scenarios and a probability of each scenario generated by the SWG can be 

estimated [e.g., Moody and Brown, 2013; Steinschneider et al., 2015b; and Taner et al., 2017].   
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The current approaches quantify climate change impact magnitudes, but not the timing. 

No study has been found to estimate the best timing (timeframe) to apply adaptation strategies. 

Also, wind speed magnitude effects have been considered in wind energy production [Pryor and 

Barthelmie, 2010; Jiang et al., 2010; Najac et al., 2011; Moemken et al., 2017; 2018], but no study 

was located in decision-making process. Previous work by the writers included preparation of 

weather data and development of a SWG (Waheed et al., 2020a; Waheed et al., 2020b). This 

paper builds on the past work to propose a decision-making framework under nonstationary 

assumptions to examine the robustness of pre-selected plans. The framework bolstered the 

previous work by Brown, et al., (2011); Whateley et al., (2014); Steinschneider, et al., (2015b); 

Culley, et al., (2016); Spence and Brown, (2016); Zhang, et al., (2018); Taner et al., (2019). It 

represents an advance by introducing new performance indicators to identify the timing and 

magnitude effects of climate change on water resources systems and consider the nonstationary 

in simulating the future water scenarios. The study includes new indicators and procedures to 

analyze of the impact of wind speed changes on evaluation of options. The study represents the 

first attempt to consider the nonstationary assumption on estimating the future water supply, 

demand, and system loss scenarios.  

The proposed approach is also able to identify the theoretical optimal adaptation strategy 

and suggest the optimal timeframe for all possible climate scenarios and multiple performance 

objectives. The framework is capable in defending the applicability timeframe of the robust plans 

and provide the upper limit time of the adaptation strategies in the system to avert the climate 

change impact.  The aim is to help optimize infrastructure operation as part of efforts to cope 

with negative climate change influences. The goal is to use a probabilistic approach under non-



92 
 

stationarity hydroclimatic conditions to select the most efficient and robust alternative from 

Pareto-optimal sets. The paradigm is demonstrated for a case study of the Diyala River Basin 

(DRB) above Derbendikhan dam, located in Iraq. 

4.2.  Study Area and Previous Climate Change Studies in DRB 

The Diyala River is the third largest tributary of the Tigris River in Iraq. It is transboundary 

and starts from the Zagros Mountains in Iran and crosses the Iran-Iraq border until its confluence 

with the Tigris River south of Baghdad. The total river length is about 445 km with total basin 

area of 32,600 km2, of which 43% lies in Iraq. The basin is situated between 33.216° N and 35.833° 

N, and 44.500° E and 46.833° E. The main tributaries are the Sirwan, Tanjeru and Wand Rivers.  

Two large dams are constructed within Iraq namely: Derbendikhan and Hemrin Dam 

[Hamza, 2012; Al-Faraj and Scholz, 2014; Al-Faraj et al., 2015; Abbas et al., 2016]. Derbendikhan 

Dam is one of the largest dams in Iraq, constructed between 1956 and 1961, and located about 

285 km northeast of Baghdad (Coordinates 35°06′46″N and 45°42′23″E). It is a multi-purpose 

system for drinking, irrigation, flood control, hydroelectric power production, and recreation; and 

the total reservoir storage is about 3 billion m3 [Tofiq and Guven, 2014; Al-Jawad et al., 2019; Al-

Khafaji and Al-Chalabi, 2019]. This paper is based on a study of the upper part of DRB to examine 

the operation of Derbendikhan dam. The total river length until Derbendikhan Dam is about 217 

km and its basin area is about 16,760 km2, as shown in Figure 4.1.  

Forcing data for the basin was developed by Waheed et al., (2020a) with a daily time step 

and spatial resolution of 0.5o, as shown in Figure 1 Figure 4.1 ©. Information on the dam and 

demand were obtained from the Iraqi ministry of Water Resources (MoWR) and Al-Jawad et al., 

(2019).  
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Figure 4.1: DRB location in Iraq with its grid numbers. 

Few notable studies were located to investigate climate change impacts on the water 

availability in DRB. Waheed, (2013) studied the effects of climate change on water availability for 

the period (1990-2010) using the Hydrologic Engineering Center's Hydrologic Modeling System 

(USACE-HEC, 1998). The analysis removed the trend in the weather variables, then compared the 

resultant runoff with the observed. The results showed an increment in the monthly 

evapotranspiration of 4% to 13%, and a decrement in the surface runoff of 4.7 %. Al-Faraj et al., 

(2014) examined the sensitivity of the runoff reduction due to climate change. The results 

showed a change in the median flow between +5.3% to -62.7% for the period (1983–2013), and 

-28.2% to -77.5% for (1999–2013) and -23.6% to -76.8% for (2004–2013), as a comparison with 

the period (1955–1982). Abbas et al., (2016) studied the climate impact and the Reconnaissance 

Drought Index using the Soil and Water Assessment Tool (SWAT) with different six GCM outputs 

(e.g., top-down approach). With comparison to the period between 1979 and 2004, the results 

showed a decrease of 56%, 50% and 39% under A2, A1B and B1, respectively; and an increase of 

14% under A2 and A1B scenarios. Al-Khafaji and Al-Chalabi, (2019) studied the impact of climate 

change on the streamflow and sediment yield with aid of SWAT for the period until 2050 of five 

GCM scenarios. Results showed a decrease in average monthly streamflow up to 49% as 
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compared with the historic period 1948 to 2013. Neither Abbas et al., (2016) nor Al-Khafaji and 

Al-Chalabi, (2019) studied or removed the bias in the GCM scenarios, which can explain the huge 

decrease in the future water availability. Al-Jawad et al., (2019) developed and applied a 

comprehensive optimal operation technique for a multiple-objective function. The methodology 

is applied for the historic period from 1981 and 2013 and projected two future scenarios by 

including the trends in the last seven years and the entire 33 years period. Although their results 

show improvement in the dam operation using the proposed model to decrease water deficit 

and recommended guidance to cope with it, they did not provide a framework to compare 

different plans to overcome the climate change impact. From review of these studies, it is 

apparent that a more comprehensive study using a bottom-up approach is required to evaluate 

the climate change impacts as well as to compare adaptation scenarios. In addition, more analysis 

is needed to examine the future scenario probabilities to help decision makers determine the 

desirable adaptation strategies. 

4.3.  Methodology and Proposed Framework 

The suggested framework is categorized in four stages: (1) generation of climate exposure (2) 

calculation of water supply scenarios, (3) calculation of water demand scenarios, and (4) multi-

objective assessment of system performance, as shown in Figure 4.2.  

4.4.1.  Generation of Climate Exposure   

The first step is to identify the space of future climate exposure (Θ) in the study area. 

Climate exposure is defined as the sets of the hydro-climatological scenarios in the study area 

that will confront the system in the future [Culley et al., 2016]. These exposures were obtained 

from the GCM outputs in the area. To obtain GCM outputs for the area, the Coupled Model 



95 
 

Intercomparison Project 5 (CMIP5) data were selected for recommended models in the region 

[e.g., Bucchignani et al., 2016a; 2016b; 2018; Zolghadr-Asli et al., 2018; Ongoma et al., 2019], as 

shown in Table 4.1.  

 

Figure 4.2: Conceptual flow chart of the proposed framework of infrastructure assessment for 
planning alternatives under climate change and nonstationary assumption. 

Table 4.1: The selected CMIP5 assemble of GCMs, institutions, countries, and runs 

Model Institution Country Runs 

CMCC Centro Euro-Mediterraneo per I Cambiamenti Climatici Italy 5 

CSIRO-MK3.6.0 CSIRO-QCCCE Australia 40 

CanESM2 Canadian Centre for Climate Modelling and Analysis Canada 15 

  Total runs 60 

Bias correction is necessary as the GCMs are afflicted with the systematic errors due to 

model formulation which precludes their direct application [Ehret et al., 2012; PaiMazumder and 

Done, 2015]. An empirical distribution correction (EDC) method with 100 integral quantiles was 

recommended [Lafon et al., 2013; Smitha et al., 2018; Gao et al., 2019]. The main idea of the EDC 

is to establish the relationship between observed and GCM-simulated daily data at the historical 

period then apply it to the projected GCM data.  
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Let gm and ob be the GCM and observed data, respectively with cumulative distribution 

functions (CDF) FGM and FOB. EDC remaps gm to ob so that their distributions are equivalent [𝐹𝐺𝑀(𝑔𝑚) = 𝐹𝑂𝐵(𝑜𝑏)]. The corrected gm values are obtained as [𝑔𝑚 = 𝐹𝐺𝑀−1[𝐹𝑂𝐵(𝑜𝑏)]] where 𝐹−1 is the inverse function of CDF, as shown in Figure 4.3. 

 

Figure 4.3: Schematic of the EDC with observed (red), simulated-GCM (blue) CDF of daily rainfall and 

the 𝑭−𝟏 (black-dashed lines) is used for the correction [adopted from Lafon et al., 2013]. 

Insights about the total range of change and yearly increment of the weather variables 

were obtained from the unbiased GCM outputs. In this study, the nonstationary changes in four 

variables were examined: non-zero daily precipitation mean and its coefficient of variation (CV), 

temperature mean, and wind speed mean with linear function assumption [Spence and Brown, 

2016]. The key innovation was to study the effect of wind speed effect on the decision-making 

process. Instead of comparing the historic data with the projected data to identify the change in 

each variable as suggested by other researchers [e.g., Whateley et al., 2014; Steinschneider et 
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al., 2015a; 2015b; Spence and Brown, 2016; Taner et al., 2017; 2019], a moving average function 

was applied to remove the noise in the projected data obtained from the EDC. Although the 

window length of the moving average is an open research question, a 30-year function was 

applied following the suggestion by Carter et al., (2000) and Ummenhofer and Gerald, (2017). To 

consider all the future variations, a linear regression line was applied to obtain the yearly 

increment in the four weather variables. Such that, 𝜇 (𝑡) =  𝜇𝑜 + 𝛼𝜇 𝑡 and 𝛾 (𝑡) =  𝛾𝑜 + 𝛼𝐶𝑉 𝑡 where 𝜇𝑜 and 𝛾𝑜 are the intercepts, and 𝛼𝜇 and 𝛼𝛾  are the slope of the regression line for 

the mean and CV, respectively which represent their yearly increments. Then, multiplicative 

factors (for the precipitation mean and CV and wind speed mean) were used starting from 0% 

change in the historical precipitation and linearly increasing (or decreasing) up to the specified 

value in the final period (e.g., +30% of the historical value). For temperature changes, additive 

factors are applied starting from 0 °C and linearly increasing to the specified temperature 

increase value in the final period (e.g., +6 °C). According to the obtained range of total change in 

80 years (α × 80) for each weather variable [see section 4.5.1. ], the climate condition scenarios 

were suggested. In addition, 10 simulations (I) of each climate condition j were generated to 

examine the effects of internal climate variability [e.g., Whateley et al., 2014; Steinschneider et 

al., 2015a; 2015b]. The total number of climate exposures is K = J × I; Θ = {θ1, θ2, …. Θk}; Θ ∈ Ω.  

4.4.2.  Calculation of Water Supply Scenarios 

study utilized a SWG developed by Waheed et al., (2020b) to produce the future climate 

scenarios using the climate exposure Θ. The key benefit of the SWG is its ability to change the 

parameter according to the climate exposure Θ over the study area with linearly increment, as 

defined before in section 4.4.1.  following the nonstationary assumption. These climate scenarios 
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were then implemented in Variable Infiltration Capacity (VIC) and routing (RVIC) models built and 

calibrated by Waheed et al., (2020a) to generate time series of streamflow at the basin outlet. 

These streamflows represent the water supply scenarios (S; Ɐs ={s1,s2 … sk}) for Derbendikhan 

reservoir simulation. Relative weights (W) were assigned to each of the climate exposure J using 

a fat‐tailed Cauchy distribution, which is superior to the widely used multi-variate normal 

distribution [Taner et al., 2017; Taner et al., 2019]. With uniform distribution assigned for the 

internal climate iteration I [Steinschneider et al., 2015b], W was obtained as follows:  

 𝑊(𝑗,𝑖) =  
𝜙𝑐  [Ф𝑐−1

 (𝜃𝑗)]∫ 𝜙𝑐[Ф𝑐−1
 (𝜃𝑗)] 𝐽1   ×  1𝐼  (4.1) 

Where  𝜙𝑐(.) and Ф𝑐−1(.) are the density and distribution function of the fat‐tailed Cauchy 

distribution. 

4.4.3.  Calculation of Water Demand Scenarios 

The first step in this stage is to identify the demand stakeholder categories, which are: 

municipality demand per capita, irrigation, industry, and the environmental requirement (using 

Tennant 1975 method) for the next downstream dam in the basin (e.g., Hemrin dam). Then, the 

future developments were examined for each sector and their corresponding demands were 

calculated. The key innovation here is to combine the water supply condition exposure with the 

demand exposure. This enables the analyst to consider the nonstationary assumption in the 

demand simulation to capture nonlinear relationship and monotonic interactions between them. 

The impact of climate change for each sector was also considered by changing the water need. 

For the population demand, Opalinski, (2018) showed that 1 Co increase in temperature causes 

3.2 and 3.9% demand increases in winter and summer months, respectively in dry regions. This 
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increment ratio was assigned for all climate exposure Θ with linearly increment. Similarly, the 

water demand was calculated for the irrigation projects using Penman-Monteith equation for 

each crop. Then, the future demand scenarios for all climate exposure Θ were obtained by 

applying the linearly increment in each variable using Penman-Monteith equation for each crop.  

4.4.4.  Assessment of System Performance 

The first step for this stage is to identify the dam reservoir capacity and its operational 

rule (rule curve) obtained from MoWR. The water balance of the reservoir was modeled as: 

 𝑆𝑇𝑡+1  = ( 𝑆𝑇𝑡  +  𝑆𝑡 ) − (𝑅𝐸𝑡  + 𝑅𝑡  +  𝐸𝑡  +  𝑆𝐿𝑡)     , Ɐ𝑡 =  1,2, . . . . 𝑇;  𝑡 Є ℕ (4.2) 

Where ST is the reservoir water storage, RE is the water release, R is the direct rainfall on 

the reservoir, E is the evaporation of the reservoir, and SL is the seepage loss. E was modeled 

using the Penman equation. E and R were calculated simultaneously according to the climate 

exposure linearly increment under the nonstationary assumption, similarly to the crop demand 

for the irrigation projects. This enables the analyst to consider the nonlinear relationship and 

monotonic increment (or decrement) in future scenarios estimating K of supply, demand and 

system losses. 

Then the system performance was evaluated to provide an understanding of how specific 

climate conditions from the exposure lead to vulnerable outcomes according to multiple system 

performance. This involved an assessment of the dam’s ability to regulate the available water 

and release enough to meet all stakeholder demands (D) at each month t during the system 

design life (SDL). The definition of Whateley et al., (2014); Steinschneider et al., (2015b); Taner 

et al., (2019) of reliability, a ratio of number of months that the reservoir meets the specified 

demand threshold (ψ) divided to the total simulated number of months (T), was extended. A new 
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term was introduced called First Deficit Occurrence (FDO), defined as the first time [in months] 

in T when the water release cannot meet ψ of the demand, as follows: 

 𝐹𝐷𝑂(𝑖, 𝑗) = 𝑚𝑖𝑛𝑡(𝜓 𝐷(𝑖, 𝑗, 𝑡) >  𝑅𝐸(𝑖, 𝑗, 𝑡)) (4.3) 

The assumed value of ψ is 1. The key innovation here is to consider the system design life 

(SDL) in the calculation, as follows: 

 𝐹𝐷𝐼(𝑖, 𝑗) = { 1,                   𝑖𝑓 𝐹𝐷𝑂 (𝑖, 𝑗) ≥ 𝑆𝐷𝐿         𝐹𝐷𝑂 (𝑖, 𝑗)𝑆𝐷𝐿 , 𝑖𝑓 𝐹𝐷𝑂 (𝑖, 𝑗) < 𝑆𝐷𝐿 (4.4) 

Where FDI is an indicator of FDO in years; FDI Є [0,1]. Then, the Demand Meeting 

Efficiency (DME); DME Є [0,1], is calculated as:  

 𝐷𝑀𝐸 = ∫ ∫ 𝑊(𝑖, 𝑗)  ×  𝐹𝐷𝐼(𝑖, 𝑗) 𝑑𝑗 𝑑𝑖𝐽
𝑗=1

𝐼
𝑖=1  (4.5) 

This assumes that if a deficit occurs at time t there will be higher probability of deficit in 

the following period due to the monotonic increment and the non-linear relationship between 

the supply, demand, and system losses. The idea of this indicator is to avoid encountering a 

failure during SDL. Similarly, the second indicator for Flood Protection Efficiency (FPE) in years, is 

developed using the following system: 

 𝐹𝐿𝑂(𝑘) = 𝑚𝑖𝑛𝑡(𝑆𝐸𝑡+1  >  𝑆𝐸𝑚𝑎𝑥 | 𝑅𝐸𝑡 =  𝑅𝐸𝑚𝑎𝑥 ) (4.6) 

 𝐹𝐿𝐼(𝑖, 𝑗) = { 1,                   𝑖𝑓 𝐹𝐿𝑂 (𝑖, 𝑗) ≥ 𝑆𝐷𝐿         𝐹𝐿𝑂 (𝑖, 𝑗)𝑆𝐷𝐿 , 𝑖𝑓 𝐹𝐿𝑂 (𝑖, 𝑗) < 𝑆𝐷𝐿 (4.7) 

 𝐹𝑃𝐸 =  ∫ ∫ 𝑊(𝑖, 𝑗)  ×  𝐹𝐿𝐼(𝑖, 𝑗) 𝑑𝑗 𝑑𝑖𝐽
𝑗=1

𝐼
𝑖=1  (4.8) 
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Here, FLO is the First Flood Occurrence [month], STmax and REmax are the maximum storage 

(or the conservation level) and release of the reservoir respectively, and FLI is the FLO indicator, 

with FLI and FPE Є [0,1]. The two objective functions (DME and FPE) can be used to evaluate the 

status quo performance and compare different pre-specified adaptation strategies. The plan is 

considered robust if 𝐷𝑀𝐸 ≥  𝑇ℎ𝐷 and 𝐹𝑃𝐸 ≥  𝑇ℎ𝐹, and vulnerable otherwise. 𝑇ℎ𝐷 and 𝑇ℎ𝐹 are 

the minimum threshold values of DME and FPE respectively and assumed 0.5. However, with the 

procedure applied to calculate the supply and demand monotonically and probabilistically, the 

time-probability of the system to encounter a failure in DME and FPE can also be evaluated, as 

shown later in the results section.  

Once the pre-specified plans are examined, the maximum allowable time (MAT) to start 

applying the plan(s), conjugated on maintain 𝐷𝑀𝐸 ≥  𝑇ℎ𝐷 and 𝐹𝑃𝐸 ≥  𝑇ℎ𝐹, can be identified. 

i.e, MAT is defined as the maximum operational time to switch from the status quo rules into the 

selected adaptation strategy rules (Ruo → Ruz) and the expected DME and FPE exceed their 

minimum thresholds during SDL, as follows (an illustration example is shown in Figure 4.4): 

 𝑀𝐴𝑇 =  𝑚𝑎𝑥𝑡  (𝑅𝑢𝑜  →  𝑅𝑢𝑧  | 𝐷𝑀𝐸 ≥ 𝑇ℎ𝐷 & 𝐹𝑃𝐸 ≥ 𝑇ℎ𝐹) (4.9) 

  

 

Figure 4.4: Schematic of the MAT definition. The symbol  𝑹𝒖𝒐  →  𝑹𝒖𝒛 represents the time to switch 
from the status quo rules to the alternative rules. 
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In this study, the demand reductions for each sector were considered as alternative plans 

[e.g., Pareto sets]. Consequently, a third objective function to rank the solution economically was 

used. As the water is priceless in some sectors in Iraq, the default economic indicators are not 

applicable. To overcome, the Net Economic Return term (NER) of Tian et al., (2019) was modified 

by assigning a power to rank the importance of each demand sector, as follows: 

 𝑁𝐸𝑅(𝑧)  = ∑ 𝑀𝑅(𝑚, 𝑧)1+𝑚/𝑀    × 𝐴𝑚 𝑀
𝑚=1  (4.10) 

Where MR is the Meeting Ratio, m is the index of the water sector (higher number 

represents the higher priority), z is the index of adaptation plan; Ɐz= 0,1,2 … Z; 0 represents the 

system status quo, and A is the net water allocation portion for mth sector (after subtracting the 

conveyance loss); ∑ 𝐴𝑚 = 1.𝑀  MR was calculated by dividing the meeting ratio after the 

adaptation is applied by the status quo. For example, if the z plan is to reduce the irrigation sector 

water allocation by 10%, MR is (10-100)/100= 0.90. Furthermore, A was calculated according to 

the exposure condition effect on each sector. For example, increment in temperature mean 

causes increment in the water allocations for municipality and irrigation comparing to the 

industry and environmental requirements. However, applying an adaptation strategy may affect 

the corresponding generation of hydropower. Therefore, the hydropower generation efficiency 

(HPE) was calculated by dividing the average of hydropower (HP) produced after applying the 

adaptation (HPz) by the HP of the status quo (HPo), as follows: 

 𝐻𝑃𝐸(𝑧) =  ∫ ∫ 𝐻𝑃𝑧(𝑖, 𝑗)𝐻𝑃𝑜(𝑖, 𝑗)  ×  𝑊(𝑖, 𝑗) 𝑑𝑗 𝑑𝑖𝐽
𝑗=1

𝐼
𝑖=1  (4.11) 
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 𝐻𝑃𝑧(𝑖, 𝑗) =  1𝑚𝑖𝑛[𝐹𝐷𝑂𝑧(𝑖, 𝑗), 𝐹𝐿𝑂(𝑖, 𝑗)] ∫ 𝛽 𝜌 𝐻𝑧(𝑖,𝑗,𝑡)  𝑅𝐸𝑧(𝑖,𝑗,𝑡)  𝑑𝑡𝑚𝑖𝑛[𝐹𝐷𝑂𝑧(𝑖,𝑗),𝐹𝐿𝑂(𝑖,𝑗)]
1  (4.12) 

Where β is the hydropower efficiency, H is the net water head [m], and ρ is the water 

density.   

The fast Non-dominated Sorting Genetic Algorithm (NSGA-II) developed by Deb and 

Pratap (2002) was employed to identify the optimal adaptation strategy. NSGA-II is highly capable 

in performing complex multi-objective water resources optimization problems and recognized as 

one of the most efficient and adequate multi-objective evolutionary algorithms [e.g., Yusoff et 

al., 2011; Yu et al., 2015; Delgarm et al., 2016; Zheng et al., 2016; Roach et al., 2018; Tian et al., 

2019]. NSGA-II is a heuristic search technique for solving mono-criterion optimization problems 

based on the biological evolution (inheritance, crossover, and mutation operators) with non-

dominated and a crowding distance sorting procedure. First, NSGA-II generates initial population 

(size Z) based on each sector range (e.g., 0.7 ≤ MR ≤1); and sorts them based on non-domination 

criteria (e.g., DME, FPE, NER, HPE, and MAT). Then, the crowding distance, measure of how close 

each individual is to the neighbors, is calculated. The high values called parents (size Z/2) are 

selected, which represent high diversity degree. Then, the crossover and mutation processes are 

applied to the parents to generate their children (size Z/2). The parents and children are 

combined to form the next generation set (size Z). The process is repeated G iterations (number 

of generations) and the final set is obtained which represents the optimal solution. Further 

explanation of the NSGA-II can be found in Deb and Pratap (2002). The general flowchart of the 

suggested top-down methodology (demand, supply, and dam losses model + reservoir simulation 
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model) with NSAG-II is shown in Figure 4.5. In this study, G is assumed 40, Z is 100. However, 

mutation and crossover probabilities are assumed 0.2 and 0.7, respectively [Roach et al., 2018].  

 

Figure 4.5: The general flowchart of the study to identify the best (optimal) adaptation strategy. 
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In summary, the objective functions are to maximize the vector of 5 indicators: 

 𝐹(𝒛) = 𝑚𝑎𝑥 {𝐷𝑀𝐸(𝑧), 𝐹𝑃𝐸(𝑧), 𝐻𝑃𝐸(𝑧) 𝑁𝐸𝑅(𝑧),𝑀𝐴𝑇(𝑧)} (4.13) 

Subject to, 

 1 ≥ 𝑀𝑅(𝑚)  ≥ 0.7  ;   Ɐ𝑚 = 1,2,3,4  (4.14) 

 𝐷𝑀𝐸 ≥ 𝑇ℎ𝐷 (4.15) 

 𝐹𝑃𝐸 ≥  𝑇ℎ𝐹 (4.16) 

However, in order to achieve a single optimum solution form NSGA-II after implementing 

G iteration, the following equation is used [Delgarm et al., 2016]: 

𝑍𝑜𝑝𝑡 = 𝑚𝑎𝑥(1𝛬 ∑ 𝑓𝜆(𝑧) − 𝑓𝜆(𝑧)𝑚𝑖𝑛𝑓𝜆(𝑧)𝑚𝑎𝑥 − 𝑓𝜆(𝑧)𝑚𝑖𝑛  )𝛬
1  (4.17) 

Where Zopt is the optimal solution (Z), Λ is the number of objective functions given in 

equation (4.14) which is 5, 𝑓𝜆(𝑧)𝑚𝑎𝑥 and 𝑓𝜆(𝑧)𝑚𝑖𝑛 are maximum and minimum values of each 

objective function λ. However, for consistency purposes as all objectives are unitless, MAT is 

normalized by dividing by the upper limit value of 𝑀𝐴𝑇 (e.g., 𝑀𝐴𝑇𝑚𝑎𝑥), 𝑓𝑀𝐴𝑇(𝑧) =𝑀𝐴𝑇𝑧/𝑀𝐴𝑇𝑚𝑎𝑥. 

4.4.  Results and Discussion 

The analysis leads to results about the GCM outputs, climate change risk assessment 

under the status quo rules, and the multi-objective robustness evaluation of the pre-suggested 

alternatives and the optimization process, as follows. 

4.5.1.  GCM outputs 
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Figure 4.6, Figure 4.7, and Figure 4.8 show the analyzed CMIP5 ensemble of GCM outputs 

of the 3 selected models (60 outputs) after applying EDC then a moving average of 30 years. It is 

seen that the precipitation mean change ranged from -37.4% to +31.3% (average of -4.8%) and 

precipitation CV change ranged from -38.2% to 34.0% (average of +2.5%), temperature mean 

change ranged from +0.4 oC to +5.1 oC (average of +2.3 oC), temperature CV change ranged from 

-45.8% to +30.8% (average of -8.2%), wind speed magnitude mean change ranged from -22.3% 

to 11.7% (average of -4.9%), and wind speed magnitude CV change ranged from -29.1% to 32.2% 

(average of -0.1%). However, these results are in line with other studies of analysis the future 

change in different locations around the world, as summarized in Table 4.2.  

Table 4.2: Summary of some literatures of analyzing GCMs in different locations. 

Author Location 
Model  
Phase 

Comparison Periods 
(Projected/Historic) 

Precipitation 
Mean [%] 

Temperature 
Mean [oC] 

Turner et al., 
(2014b) 

Thomson & Yarra River 
Basins, Australia 

CMIP3 
(2040 - 2070)/ 
(1974 - 2004) 

-25 to +5 +0.5 to +2.5 

Whateley et al., 
(2014)  

Connecticut River 
Basin, US  

CMIP3 & 
CMIP5 

(2025 - 2075)/ 
(1950 - 1999) 

-5 to +10 +1.5 to +3.5 

Steinschneider et 
al., (2015a)  

Coralville Basin, US CMIP3 & 
CMIP5 

(2041 - 2070)/ 
(1970 - 2000) 

-15 to +20 +0.5 to +4 

Steinschneider et 
al., (2015b)  

Belton Lake, US  
CMIP3 

(2041 - 2070)/ 
(1971 - 2000) 

-10 to +13.7 +1.6 to +3.3 

Abbas et al., 
(2016) 

DRB, Iraq 
CMIP3 

(2046 - 2064)/ 
(1980 - 2010) 

-26 to +40 +1 to +2.7 
  

 (2080 - 2100)  -80 to +25 +1.2 to +5.7 

Taner et al., (2017) 
 

CMIP5 
(2016to 2050)/ 
(1974 to 2008) 

-0.2 to +2.5 -30 to +18 

    Precipitation CV [%] 
 

Steinschneider et 
al., (2015b)  

Belton Lake, US  
CMIP3 

(2041 - 2070)/ 
(1971 - 2000) 

-24 to +91 

 

    Wind Speed [%] 
 

Pryor et al., (2006) Europe  CMIP3 (1960 -1989)/ 
(2065 - 2094) 

-5 to +12 

 

Moemken et al., 
(2018) 

Europe  CMIP5 
(2071-2100)/ 
(1970 – 2000) 

-10 to +15 
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Figure 4.6: The analyzed 60 outputs of the three selected GCMs for the precipitation corresponding to 

their Representative Concentration Pathway (RCP) values. (a) the plot of the mean versus the CV 
change; (b) and (c) the histogram of the mean change and C.V change. 

 

Figure 4.7: The analyzed 60 outputs of the three selected GCMs for the temperature corresponding to 
their RCP values. (a) the plot of the mean versus the CV change; (b) and (c) the histogram of the mean 

change and C.V change. 
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Figure 4.8: The analyzed 60 outputs of the three selected GCMs for the wind speed magnitude 
corresponding to their RCP values. (a) the plot of the mean versus the CV change; (b) and (c) the 

histogram of the mean change and C.V change. 

However, based on those ranges, the climate exposure Θ was identified as follows. (1) 

precipitation mean alteration ranged from -40% to +30% with 10% increment (8 alterations); (2) 

precipitation CV alteration ranged from -40% to +40% with 20% increment (5 alterations); (3) 

temperature mean alteration ranged from 0 to 6 Co with 2 Co increment (4 alterations); (4) wind 

speed mean alteration ranged from -50% to 25% with 25% increment (4 alterations). The total 

number of alterations (J) is 8 × 5 × 4 × 4 = 640, and the total number of climate exposures is K = J 

× I = 640 × 10 = 6400. However, a test was done for the temperature and wind speed CV and 

results indicated their insignificant effect. Therefore, they were not included. 

4.5.2.  Climate Change Risk Assessment 

The suggested bottom-up methodology was used to parse the capability of system status 

quo to manage the flood and drought occurrence against the climate exposure. Figure 4.9 shows 
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the cumulative probability of the system status quo with respect to FLO, equation (4.6), and FDO, 

equation (4.3), as the time propagates, and different findings emerge from this figure. First, it is 

apparent that the system status quo rules to manage the flood risks promote robustness. They 

can foresee across wide swath of climate trajectories to hedge against flood risk. The FLO is 

anticipated to occur after 18 years with probability of 3.7%. The inherent FPE is 0.605, which is 

deemed to be acceptable as it is above the threshold value. Thus, for long-term the operation 

dam is well managed to maintain adequate performance against the flood occurrence and able 

to handle a wide range of climate scenarios during the SDL. In contrast, the system status quo is 

vulnerable with respect to drought management. The FDO is anticipated to occur after 3 years 

with probability of 1.7%. The probability rises very sharply and reaches 31.2% after 10 years. Also, 

after 23 years the probability reaches 90.2%. Thus, there is a significant deficit chance that system 

performance will encounter under the status quo plan. Moreover, the system is no longer viable 

after 48 years. The inherent DME is 0.178, which signaling a risk as it is much below the minimum 

acceptable threshold value. This implies that it is utmost urgency for the decision-makers to pay 

special attention to drought and water scarcity for sustainable water management.  

Figure 4.10 shows the results of FDO and FLO response surfaces of the status quo under 

the range of climate exposure. The change in precipitation mean and CV are represented in the 

x-axis and y-axis, respectively in a and c. The temperature mean change and wind speed mean 

are represented in the x-axis and y-axis, respectively in b and d. The obtained values of FDO and 

FLO due to internal climate variability (I) were averaged out and represented in the z-axis. Also, 

the analyzed GCM outputs are shown in white dots. Many interesting insights can be learned 

from this figure. First, the system is most sensitive to changes in mean precipitation for drought 
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and flood occurrences, it has relatively sharp changes over all other variables. This suggests that 

the precipitation mean change dominates the system response to both flood and drought risks. 

With no change in other variables, the range of FDO and FLO are 8 to 33 and 80 to 20 years, 

respectively for the rate change of -40 to +30%. In other words, 10% reduction in precipitation 

mean can degrade the system performance to meet the demand by 3.5 years (on average). 

Similarly, 10% reduction can improve the flood protection by 8.5 years (on average). As the 

precipitation amount falls, higher demands would be expected for the irrigation sector, in 

conjunction with supply reduction, leading for faster demand deficit. This is because the demand 

requirements were generated dependently with the supply. In contrast, flood mostly occurs with 

increase in precipitation volume due to the augmented rainfall from the large rainfall events. 

 

Figure 4.9: Cumulative probability of FLO and FDO of the system under status quo rules during the 
SDL. 
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Figure 4.10: FDO and FLO response surfaces over climate exposure for precipitation mean, CV, 

temperature mean, and wind speed mean alterations. 

Interestingly, the system is more sensitive for the precipitation CV changes for floods 

compared with the droughts. With no change in other variables, the range of FDO and FLO is 15 

to 19 and 54 to 32 years, respectively for the rate change of -40 to +40%. On average, 10% 

reduction in precipitation CV can degrade the system performance to meet the demand by 0.5 

years. Likewise, 10% reduction can improve the flood protection by 2.7 years. With higher daily 

precipitation variability, caused by CV increment, more runoff would be generated in the 

upstream basin, leading to increases in flood occurrence and deficit; although to a lesser degree. 
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This means that the system is more capable to buffer out the precipitation variability effects to 

allocate the demand requirement than the flood protection. This might be because the 

precipitation variability has more influence on the supply compared to the demand, since the 

reservoir operation [see equation (4.2)] and demand calculations were done on a monthly basis 

while the runoff generation by VIC and RVIC [Waheed et al., 2020a] was performed on daily basis. 

Therefore, CV is less sensitive for drought management comparing with flood risk.   

Contrastingly to the precipitation CV, the system is more sensitive for the temperature 

mean increment for droughts compared to the floods. With no change in other variables, the 

range of FDO and FLO are 17 to 10 and 54 to 43 years, respectively for the change of 0 to +6 Co. 

On average, 1 Co increment can degrade the demand meet ability 1.7 years and can help the flood 

protection by 0.3 years. Likewise, the system is more sensitive for the wind speed mean change 

for the droughts compared to the floods. With no change in other variables, the ranges of FDO 

and FLO are 19 to 14 and 44 to 45 years, respectively for the rate change of -25 to +12.5%. On 

average, 10% increment can degrade the system performance to meet the demand by 1.3 years 

and improve the flood protection by 0.3 years. When the temperature and wind speed increase, 

the corresponding evapotranspiration magnitude increases. Also, the temperature increment 

leads to less precipitation held as snow. Then, the generated runoff would experience less 

availability from snowmelt. Therefore, with the warm and windy condition, the water demands 

would increase substantially, in conjunction with supply reduction, leading to faster deficit 

occurrence especially in the system with big majority for irrigation projects. 

It is inferred from above that the precipitation amount change is dominant for flood and 

drought occurrences, followed by precipitation CV, then temperature change and wind speed. 
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Also, it would be more important to include the temperature and wind speed mean effects in 

drought management purposes. The results of precipitation and temperature effects obtained 

are consistent with other studied [e.g., Whateley et al., 2014; Steinschneider et al., 2015a; 2015b; 

Culley et al., 2016; Spence and Brown., 2016; Taner et al., 2017; 2019; Zhang et al., 2018; Van Tra 

et al., 2018], while wind speed influence is considered an innovative analysis in this study. 

4.5.3.  Multi-objective Robustness Evaluation of the Alternatives 

Figure 4.11 (a) illustrates the system performance measures under the status quo rules 

for the four objectives: DME, FPE, HPE, and NER. The MR for the four sectors is 1, since no 

reduction for any sector was applied yet. Therefore, NER is 1. It is seen that the status quo 

operation rules provide adequate performance for FPE across a wide range of future changes but 

the DME is below the threshold target. Therefore, an alternative plan is needed to cope with 

drought effects. The case study focused on three synthetic pre-specified plans of reducing the 

MR of the demand sectors to demonstrate the framework ability to evaluate their robustness. 

Plan 1 is to reduce the water requirement for municipality and industry by 30% (MRMun = MRInd = 

0.7). Plan 2 is to reduce the irrigation water requirement by 20% (MRIrr is 0.8). Plan 3 is to reduce 

the environmental water requirement by 20% (MREnv is 0.8), as shown in Figure 4.11 (b). 

However, the MAT of each robust plan was divided by 14 to convert into a dimensionless ratio 

ranging from 0 to 1 and to be consistence with the other performances [e.g., DME, FPE, and NER]. 

It is noticed that the Plan 1 is insufficient to improve the system DME to maintain the minimum 

threshold value. Its corresponding DME is found of 0.461. This is due to the small water allocation 

portion for the municipality and industry. However, Plan 2 and Plan 3 are considered acceptable 

plans to provide adequate performances. The MAT for Plan 2 and Plan 3 are 6 and 8 years, 
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respectively. Interestingly, the HPE is improved when an adaptation plan is applied. The HPE for 

Plan 1, 2 and 3 are 1.127, 1.161, and 1.210 respectively. This because the DME value is increased 

after applying the reduction ratio, the system will have more flexibility to generate HP and for 

longer time before encountering a failure of FDO or FLO [see equation (4.12)]. Importantly, the 

Plan 3 is superior to 2 in most performances and has more time window (e.g., MAT) to apply it, 

but the its NER is less [0.879 and 0.901, for Plan 3 and Plan2, respectively]. Therefore, care must 

be taken before selecting the best adaptation plan. Interestingly, the upper limit of MAT for 

system is found to be 14 years where all MR is 0.7. This indicates that an adaptation strategy has 

to be applied within 14 years to cope with the negative climate change impact.  

Figure 4.11 (c) shows the optimal Pareto set obtained from NSGA-II and applying equation 

(4.17). The optimal MR for municipality, irrigation, industry, and environmental requirement are 

0.985, 0.900, 0.915, and 0.925 respectively. The MAT for the optimal set is 9 years. Ultimately, 

the optimal set is superior to all pre-specified plans. In any cases, the suggested framework of 

this study is able to suggest the best alternative plan in case the re-specified plans are absent, or 

to compare with it in selecting the preferred future plan.  

Finally, the study focuses on reducing the water requirements of each sector, as one can 

also study the effect of changing the rule curve as alternative plans to react the negative impact 

of the climate change. The results of this study are not meant to reduce the productivity of each 

sector, but to spur new technologies with using less water such as improving the water 

conveyance efficiency from the dam to each sector, using mechanized irrigation systems … etc.  
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Figure 4.11: Multi-objective robustness assessment of the system. (a) evaluation of the status quo 
rules. (b) evaluation of the three pre-specified plans. (c) Optimal plan obtained from NSGA [see Figure 

4.5]. 

4.5.  Conclusions 

This study presented a decision-making framework to evaluate the status quo of the 

system to long-term climate change influence and gain insight about the risk characteristics. The 

framework is designed to facilitate identifying the optimal-robust (or the best among pre-

suggested plans) to alleviate the anticipated future vulnerability. New approaches were used to 

analyze the future change and project the number of future realizations of climate change 

conditions. Also, new robustness metrics (FPE, DME, HPE, NER) were presented to examine long-
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term planning alternatives that are robust under difference climate changes with a nonstationary 

assumption. The case study focused on demand ratio reduction as an adaptation to long-term 

climate examination to urge water resources managers to focus on sustainable water 

management, such as increasing water use efficiency to ensure higher reliability and lower 

vulnerability among different sectors. Moreover, the study presented a novel term MAT to 

identify the theoretical time window of the plan to maintain the threshold target value of each 

objective. However, the study represents the first attempt to evaluate the wind speed magnitude 

effect in decision-making processes, and first bottom-up case study inside Iraq.  

Results obtained of analyzing the GCM outputs show that the precipitation mean are 

subject to vary from -37.4% to +31.3% (average of -4.8%); precipitation CV change will vary from 

-38.2% to 34.0% (average of +2.5%), temperature mean change will increase from +0.4 Co to 5.1 

Co (average of +2.3 Co), temperature CV change will vary from -45.8% to 30.8% (average of -8.2%), 

wind speed magnitude mean will vary from -22.3% to 11.7% (average of -4.9%), and wind speed 

magnitude CV will vary from -29.1% to 32.2% (average of -0.1%). 

However, parsing the system status quo capability to manage flood and drought 

occurrence against the climate exposure showed that the system is vulnerable in drought 

management and robust for flood protection for long-term future climate exposure. The overall 

DME and FPE are 0.178 and 0.605, respectively. This implies that the project managers should 

comprehensively pay attention to the drought and water scarcity management. 

The analysis of system to the weather variable changes show that the precipitation mean 

is most sensitive parameter followed by precipitation CV, then temperature change and wind 

speed. The results also show that including wind speed is important in the decision-making 
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process especially in drought management. However, the analysis also indicated insignificance of 

the temperature and wind speed CV change in DRB. Further investigation is recommended to 

investigate their effects on other basins. One suggestion is to reduce the operation time step 

from monthly to bi-weekly or weekly.  

Three synthetic plans were evaluated to improve the system performance in meeting the 

demand ratio and maintain an acceptable performance for the other objectives (e.g., FPE, DME, 

HPE, and NER). The study considered the reduction of demand sectors as alternative plans. 

Results reveal that reducing the MR for municipality and industry by 30% is not sufficient to 

improve the DME above the threshold value of 0.5, while the other two plans of reducing MR for 

irrigation or environment requirement by 20% can maintain the minimum threshold value for 

DME and FPE. Of interest of this study, the suggested framework is able to identify the maximum 

time (MAT) to apply each plan and still achieve the target values of all objectives. The optimal 

pareto set using NSGA-II was obtained by reducing the MR for municipality, irrigation, industry, 

and environmental 0.985, 0.900, 0.915, and 0.925 respectively. The DME, FPE, HPE, NER, and 

MAT were 0.502, 0.599, 1.099, 0.896, and 9 [years] respectively. The analysis glimpsed that the 

MAT upper limit is 14 years which indicates that an adaptation strategy must be applied within 

14 years to avoid with the undesirable climate change influence. 

This paper presented a novel approach that bridges the nonstationary assumption of the 

climate exposure with the supply, demand, and system losses for the multi-objective function to 

assess the water resources system vulnerability across wide trajectories to investigate the long-

time-robust plans. It represents the first attempt to consider the full nonstationary hydroclimatic 

representation for all supply, demand, and system loses in simulation their suture scenarios. The 
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future work of this study is to consider nonstationary in the hydrology model parameter changes 

and consider full uncertainty of the model parameters and forcing data. 

  



119 
 

References 

Abbas, Nahla, Saleh A. Wasimi, and Nadhir Al-Ansari. "Impacts of Climate Change on Water Resources in 

Diyala River Basin, Iraq." Journal of Civil Engineering and Architecture 10.9 (2016): 1059-1074. 

Adams, Richard M., and Dannele E. Peck. "Effects of climate change on water resources." Choices 23.1 

(2008): 12-14. 

Al-Faraj, Furat AM, and Miklas Scholz. "Assessment of temporal hydrologic anomalies coupled with 

drought impact for a transboundary river flow regime: the Diyala watershed case study." Journal of 

hydrology 517 (2014): 64-73. 

Al-Faraj, Furat AM, Miklas Scholz, and Dimitris Tigkas. "Sensitivity of surface runoff to drought and climate 

change: Application for shared river basins." Water 6.10 (2014): 3033-3048.  

Al-Jawad, Jafar Y., Hassan M. Alsaffar, Douglas Bertram, and Robert M. Kalin. "A comprehensive optimum 

integrated water resources management approach for multidisciplinary water resources 

management problems." Journal of environmental management 239 (2019a): 211-224. 

Al-Khafaji, Mahmoud S., and Rana D. Al-Chalabi. "Assessment and Mitigation of Streamflow and Sediment 

Yield under Climate Change Conditions in Diyala River Basin, Iraq." Hydrology 6.3 (2019): 63. 

Azhoni, Adani, Simon Jude, and Ian Holman. "Adapting to climate change by water management 

organisations: Enablers and barriers." Journal of Hydrology (2018). 

Beh, Eva HY, Holger R. Maier, and Graeme C. Dandy. "Scenario driven optimal sequencing under deep 

uncertainty." Environmental Modelling & Software 68 (2015): 181-195. 

Brown, Casey, and Robert L. Wilby. "An alternate approach to assessing climate risks." Eos, Transactions 

American Geophysical Union 93.41 (2012): 401-402. 

Bucchignani, E., P. Mercogliano, G. Rianna, and H‐J. Panitz. "Analysis of ERA‐Interim‐driven COSMO‐CLM 

simulations over Middle East–North Africa domain at different spatial resolutions." International 

Journal of Climatology 36.9 (2016b): 3346-3369. 



120 
 

Bucchignani, E., L. Cattaneo, H-J. Panitz, and P. Mercogliano. "Sensitivity analysis with the regional climate 

model COSMO-CLM over the CORDEX-MENA domain." Meteorology and Atmospheric Physics 128.1 

(2016a): 73-95. 

Bucchignani, Edoardo, Paola Mercogliano, Hans-Jürgen Panitz, and Myriam Montesarchio. "Climate 

change projections for the Middle East–North Africa domain with COSMO-CLM at different spatial 

resolutions." Advances in Climate Change Research 9.1 (2018): 66-80. 

Carter, T. R., M. Hulme, and M. Lal. "Guidelines on the use of scenario data for climate impact and 

adaptation assessment v1." (1999). 

Culley, Sam, S. Noble, A. Yates, M. Timbs, S. Westra, H. R. Maier, Matteo Giuliani, and Andrea 

Castelletti. "A bottom‐up approach to identifying the maximum operational adaptive capacity of 

water resource systems to a changing climate." Water Resources Research 52.9 (2016): 6751-6768. 

Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan. "A fast and elitist 

multiobjective genetic algorithm: NSGA-II." IEEE transactions on evolutionary computation 6.2 

(2002): 182-197. 

Delgarm, Navid, Behrang Sajadi, Saeed Delgarm, and Farshad Kowsary. "A novel approach for the 

simulation-based optimization of the buildings energy consumption using NSGA-II: Case study in 

Iran." Energy and Buildings 127 (2016): 552-560. 

Ehret, Uwe, Erwin Zehe, V. Wulfmeyer, K. Warrach-Sagi, and J. Liebert. "HESS Opinions" Should we apply 

bias correction to global and regional climate model data?"." Hydrology and Earth System 

Sciences 16.9 (2012): 3391-3404. 

Gao, Jungang, Aleksey Y. Sheshukov, Haw Yen, Kyle R. Douglas-Mankin, Michael J. White, and Jeffrey G. 

Arnold. "Uncertainty of hydrologic processes caused by bias-corrected CMIP5 climate change 

projections with alternative historical data sources." Journal of hydrology 568 (2019): 551-561. 



121 
 

Giuliani, Matteo, Daniela Anghileri, Andrea Castelletti, Phuong Nam Vu, and Rodolfo Soncini-Sessa. "Large 

storage operations under climate change: expanding uncertainties and evolving 

tradeoffs." Environmental Research Letters 11.3 (2016): 035009. 

Golfam, Parvin, Parisa-Sadat Ashofteh, Taher Rajaee, and Xuefeng Chu. "Prioritization of Water Allocation 

for Adaptation to Climate Change Using Multi-Criteria Decision Making (MCDM)." Water Resources 

Management 33.10 (2019a): 3401-3416.  

Hallegatte, Stéphane, Ankur Shah, Robert Lempert, Casey Brown, and Stuart Gill. "Investment decision 

making under deep uncertainty." Policy research working paper 6193 (2012): 1-41.  

Hamza, Nahida H. "Evaluation of water quality of Diyala River for irrigation purposes." Diyala Journal of 

Engineering Sciences 5.2 (2012): 82-98. 

Herman, Jonathan D., Patrick M. Reed, Harrison B. Zeff, and Gregory W. Characklis. "How should 

robustness be defined for water systems planning under change?." Journal of Water Resources 

Planning and Management 141.10 (2015): 04015012. 

Jiang, Ying, Yong Luo, Zongci Zhao, Ying Shi, Yinlong Xu, and Jinhong Zhu. "Projections of wind changes for 

21st century in China by three regional climate models." Chinese Geographical Science 20.3 (2010): 

226-235. 

Lafon, Thomas, Simon Dadson, Gwen Buys, and Christel Prudhomme. "Bias correction of daily precipitation 

simulated by a regional climate model: a comparison of methods." International Journal of 

Climatology 33.6 (2013): 1367-1381. 

Milly, Paul CD, et al. "Stationarity is dead: Whither water management?." Science 319.5863 (2008): 573-

574. 

Moemken, Julia, Mark Reyers, Hendrik Feldmann, and Joaquim G. Pinto. "Wind speed and wind energy 

potentials in EURO-CORDEX ensemble simulations: evaluation, bias-correction and future 

changes." EGU General Assembly Conference Abstracts. Vol. 19. 2017. 



122 
 

Moemken, Julia, Mark Reyers, Hendrik Feldmann, and Joaquim G. Pinto. "Future changes of wind speed 

and wind energy potentials in EURO‐CORDEX ensemble simulations." Journal of Geophysical 

Research: Atmospheres (2018). 

Moody, Paul, and Casey Brown. "Robustness indicators for evaluation under climate change: Application 

to the upper Great Lakes." Water Resources Research 49.6 (2013): 3576-3588. 

Najac, Julien, Christine Lac, and Laurent Terray. "Impact of climate change on surface winds in France using 

a statistical‐dynamical downscaling method with mesoscale modelling." International Journal of 

Climatology 31.3 (2011): 415-430. 

Ongoma, Victor, Haishan Chen, and Chujie Gao. "Evaluation of CMIP5 twentieth century rainfall simulation 

over the equatorial East Africa." Theoretical and Applied Climatology 135.3-4 (2019): 893-910. 

Opalinski, Nicole. "Response of municipal water use to weather across the contiguous US." PhD diss., 

Colorado State University. Libraries, 2018.. 

PaiMazumder, Debasish, and James M. Done. "The roles of bias-correction and resolution in regional 

climate simulations of summer extremes." Climate dynamics 45.5-6 (2015): 1565-1581. 

Paton, F. L., H. R. Maier, and G. C. Dandy. "Including adaptation and mitigation responses to climate 

change in a multiobjective evolutionary algorithm framework for urban water supply systems 

incorporating GHG emissions." Water Resources Research 50.8 (2014): 6285-6304. 

Paton, F. L., H. R. Maier, and G. C. Dandy. "Relative magnitudes of sources of uncertainty in assessing 

climate change impacts on water supply security for the southern Adelaide water supply 

system." Water Resources Research 49.3 (2013): 1643-1667. 

Pryor, Sara C., and R. J. Barthelmie. "Climate change impacts on wind energy: A review." Renewable and 

sustainable energy reviews 14.1 (2010): 430-437. 



123 
 

Roach, Tom, Zoran Kapelan, and Ralph Ledbetter. "A resilience-based methodology for improved water 

resources adaptation planning under deep uncertainty with real world application." Water resources 

management 32.6 (2018): 2013-2031. 

Smitha, P. S., B. Narasimhan, K. P. Sudheer, and H. Annamalai. "An improved bias correction method of 

daily rainfall data using a sliding window technique for climate change impact assessment." Journal 

of Hydrology 556 (2018): 100-118. 

Solomon, Susan, Martin Manning, Melinda Marquis, and Dahe Qin. Climate change 2007-the physical 

science basis: Working group I contribution to the fourth assessment report of the IPCC. Vol. 4. 

Cambridge university press, 2007. 

Spence, Caitlin M., and Casey M. Brown. "Nonstationary decision model for flood risk decision 

scaling." Water Resources Research 52.11 (2016): 8650-8667. 

Steinschneider, Scott, Sungwook Wi, and Casey Brown. "The integrated effects of climate and hydrologic 

uncertainty on future flood risk assessments." Hydrological Processes 29.12 (2015a): 2823-2839. 

Steinschneider, Scott, Rachel McCrary, Sungwook Wi, Kevin Mulligan, Linda O. Mearns, and Casey Brown. 

"Expanded decision-scaling framework to select robust long-term water-system plans under 

hydroclimatic uncertainties." Journal of Water Resources Planning and Management 141.11 

(2015b): 04015023. 

Stephenson, David B., Matthew Collins, Jonathan C. Rougier, and Richard E. Chandler.  "Statistical 

problems in the probabilistic prediction of climate change." Environmetrics23.5 (2012): 364-372. 

Stocker, Thomas F., Dahe Qin, Gian-Kasper Plattner, Melinda Tignor, Simon K. Allen, Judith Boschung, 

Alexander Nauels, Yu Xia, Vincent Bex, and Pauline M. Midgley. "Climate change 2013: The physical 

science basis." (2013). 

Taner, Mehmet Ümit, Patrick Ray, and Casey Brown. "Robustness-based evaluation of hydropower 

infrastructure design under climate change." Climate Risk Management 18 (2017): 34-50. 



124 
 

Taner, Mehmet Ümit, Patrick Ray, and Casey Brown. "Incorporating Multidimensional Probabilistic 

Information Into Robustness‐Based Water Systems Planning." Water Resources Research (2019). 

Tennant, Donald Leroy. "Instream flow regimens for fish, wildlife, recreation and related environmental 

resources." Fisheries 1.4 (1976): 6-10. 

Tian, Jing, Shenglian Guo, Dedi Liu, Zhengke Pan, and Xingjun Hong.  "A Fair Approach for Multi-Objective 

Water Resources Allocation." Water Resources Management 33.10 (2019): 3633-3653. 

Tofiq, F. A., and A. Guven. "Prediction of design flood discharge by statistical downscaling and General 

Circulation Models." Journal of hydrology 517 (2014): 1145-1153. 

Turner, Sean WD, David Marlow, Marie Ekström, Bruce G. Rhodes, Udaya Kularathna, and Paul J. 

Jeffrey.  "Linking climate projections to performance: A yield‐based decision scaling assessment of a 

large urban water resources system." Water Resources Research 50.4 (2014b): 3553-3567. 

Ummenhofer, Caroline C., and Gerald A. Meehl. "Extreme weather and climate events with ecological 

relevance: a review." Philosophical Transactions of the Royal Society B: Biological Sciences 372.1723 

(2017): 20160135. 

Van Tra, Tran, Nguyen Xuan Thinh, and Stefan Greiving. "Combined top-down and bottom-up climate 

change impact assessment for the hydrological system in the Vu Gia-Thu Bon River Basin." Science 

of The Total Environment 630 (2018): 718-727. 

Villarini, Gabriele, Francesco Serinaldi, James A. Smith, and Witold F. Krajewski. "On the stationarity of 

annual flood peaks in the continental United States during the 20th century." Water Resources 

Research 45.8 (2009). 

Waheed, Saddam Q. 2013. ”Effects of climate change on water availability in Diyala basin in Iraq”, 2nd 

International Conference on Hydrology & Groundwater Expo. NC, USA. 



125 
 

Waheed, Saddam Q., Neil S. Grigg, and Jorge A. Ramirez. “ Variable Infiltration Capacity Model Sensitivity, 

Parameter Uncertainty, and Data Augmentation for the Diyala River Basin in Iraq”. Journal of 

American Society of Civil Engineers (2020a), Under Review.  

Waheed, Saddam Q., Neil S. Grigg, and Jorge A. Ramirez. “Development of a Parametric Regional 

Multivariate Statistical Weather Generator for Risk Assessment Studies in Areas with Limited Data 

Availability”. Journal of Climate Dynamics (2020b), Under Review. 

Wang, Keyi, Haiyun Shi, Ji Chen, and Tiejian Li. "An improved operation-based reservoir scheme integrated 

with Variable Infiltration Capacity model for multiyear and multipurpose reservoirs." Journal of 

hydrology 571 (2019): 365-375. 

Weaver, Christopher P., Robert J. Lempert, Casey Brown, John A. Hall, David Revell, and Daniel 

Sarewitz.  "Improving the contribution of climate model information to decision making: the value 

and demands of robust decision frameworks." Wiley Interdisciplinary Reviews: Climate Change 4.1 

(2013): 39-60. 

Whateley, Sarah, Scott Steinschneider, and Casey Brown. "A climate change range‐based method for 

estimating robustness for water resources supply." Water Resources Research 50.11 (2014): 8944-

8961. 

Wilby, Robert L., and Suraje Dessai. "Robust adaptation to climate change." Weather 65.7 (2010): 180-

185. 

Yu, Wei, Baizhan Li, Hongyuan Jia, Ming Zhang, and Di Wang. "Application of multi-objective genetic 

algorithm to optimize energy efficiency and thermal comfort in building design." Energy and 

Buildings 88 (2015): 135-143. 

Yusoff, Yusliza, Mohd Salihin Ngadiman, and Azlan Mohd Zain. "Overview of NSGA-II for optimizing 

machining process parameters." Procedia Engineering 15 (2011): 3978-3983. 



126 
 

Zhang, Enze, Zhihao Xu, and Zhifeng Yang. "Bottom-up quantification of inter-basin water transfer 

vulnerability to climate change." Ecological Indicators 92 (2018): 195-206. 

Zheng, Feifei, Aaron C. Zecchin, Holger R. Maier, and Angus R. Simpson. "Comparison of the searching 

behavior of NSGA-II, SAMODE, and Borg MOEAs applied to water distribution system design 

problems." Journal of Water Resources Planning and Management 142.7 (2016): 04016017. 

Zolghadr-Asli, Babak, Omid Bozorg-Haddad, Parisa Sarzaeim, and Xuefeng Chu. "Investigating the 

variability of GCMs' simulations using time series analysis." Journal of Water and Climate 

Change 10.3 (2019): 449-463. 

Zhu, Feilin, Ping-an Zhong, and Yimeng Sun. "Multi-criteria group decision making under uncertainty: 

Application in reservoir flood control operation." Environmental modelling & software 100 (2018): 

236-251.  



127 
 

CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

The results of the study comprise a framework to help the government optimize the 

operation of existing water resources infrastructure as part of an ongoing effort to cope with 

negative influences of climate change.   Developing this framework was established as the main 

goal of the dissertation, to develop and test a probabilistic decision-making model under non-

stationary hydroclimatic conditions to assess the magnitude and timing of climate change effects 

for management of water resources systems.  

The research included data augmentation to overcome data scarcity issues in the test 

region and to build valid hydrologic models. It led to a new statistical weather generator to apply 

in areas subject to data limitation. The study explored selection of the most robust alternative 

over a set of pre-specified plans using the probabilistic framework and the non-stationarity 

conditions anticipated in the future.  The approach was demonstrated in part of the Diyala River 

Basin, and while analysis of additional basin areas will be more computationally-intensive, we 

hope to expand the scope of this framework to all of the basin and other river basins in Iraq in 

the future. 

The main work was reported in Chapters 2, 3 and 4, which will be summarized next.  Then, 

the full implications of the study and future work will be explained. 

5.1.  Conclusions about Variable Infiltration Capacity Model Sensitivity, Parameter 

Uncertainty, and Data Augmentation for the Diyala River Basin in Iraq 
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In Chapter 2, the main objectives were to augment the in situ forcing data and quantify 

sensitivity of the Variable Infiltration Capacity (VIC) platform to forcing data and parameter 

uncertainty. These enabled us to implement a valid hydrologic model for management purposes. 

Accurate forcing data for the basin were developed with the aid of TRMM data and GIDAL data 

(Adam and Lettenmaier, 2003 and Adam et al., 2006). Analysis of the coefficient of determination 

R2 and Kling-Gupta Efficiency (KGE) were performed to evaluate TRMM and GIDAL performances. 

The GLUE and DREAM techniques methods were used for sensitivity and uncertainty analysis, 

which is the first attempt to implement them in Iraq.  

Results of TRMM data performance exhibited smaller means and standard deviations 

than the ground observed data while GIDAL showed higher values. R2 and KGE for GIDAL and 

TRMM were 0.618, 0.219, 0.264 and -0.227, respectively, indicating their inaccuracy without 

adjustment. To overcome this issue, the daily gridded precipitation data were implemented for 

DMWR using multiplicative random cascade downscaling and Schaake Shuffle techniques. 

Evaluation of the MRC technique for the Derbendikhan station showed R2 at 0.936, a higher value 

than the 0.705 result from Al-Khafaji and Al-Chalabi, (2019). However, a set of adjustment 

equations was proposed for the temperature and wind speed of GIDAL to be statistically 

indistinguishable from the ground observed data. The KGE values were 0.73, -0.11, 0.97, and 0.48 

for temperature and wind speed before and after adjustment, respectively. These can 

demonstrate the validity of the proposed procedure and enable comprise a framework to 

implement daily gridded forcing data in the DRB.  
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Among the seven candidate VIC model parameters, the second soil layer depth is the most 

sensitive according to GLUE and DREAM techniques. On the other hand, the uncertainty analysis 

results glimpsed the validity of the VIC model to generate reasonable forecasts.  

The VIC model outputs were calibrated on a daily time scale with KGE values of 0.743 with 

residuals free from non-normality, heteroscedasticity, and auto-correlation. The calibrated 

model performance was superior to the Al-Khafaji and Al-Chalabi, (2019) model and was 

examined on longer period using a more comprehensive test.  

5.2.  Conclusions about Development of a Parametric Regional Multivariate 

Statistical Weather Generator for Risk Assessment Studies in Areas with Limited Data 

Availability 

In Chapter 3, a Parametric Regional Weather Generator (PR-WG) was developed to assess 

climate change impacts on water resources systems for cases of limited data with the ability to 

mimic the statistical characteristics of observed data.  

The PR-WG features are its flexibility to select any distribution function for each weather 

variable, ability to produce scenarios within or beyond the historic observation length with wider 

range, and ability to produce synthetic scenarios through direct parameter alteration. 

Results showed that PR-WG accurately preserves the statistical properties (mean, 

standard deviation, and skewness coefficient) of the weather variables, and the overall KGE test 

value was 0.98. PR-WG effectively estimates the dry and wet day occurrences using a First-order, 

Two-state Markov Chain (FTMC) with an overall KGE value of 0.97. The results also confirmed the 

effectiveness of Wilks’ technique to produce spatially correlated precipitation states (KGE of 
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0.98) and spatially and cross-correlated weather variables (KGE of 0.96) besides the temporal 

correlation (KGE of 0.97).  

Although the PR-WG was tested and validated in the DRB, it is applicable in other places 

and can be easily extended for other climate variables. The PR-WG is unsophisticated and can 

effectively facilitate the implementation of risk assessment study in areas with limited data 

availability. 

5.3.  Conclusions about Nonstationary-Probabilistic Decision Framework to Assess 

the Long-Term Water Resources System Vulnerability under Climate Change and 

Quantify the Robust Plan and Timing 

In Chapter 4, a decision-making framework was developed to evaluate the assess 

responsiveness of the system to long-term climate change and to gain insight about risk 

characteristics. The framework bridged the nonstationary assumption of the climate exposure 

with the supply, demand, and system losses for the multi-objective function across wide climate 

trajectories. The framework is designed to identify the optimal-robust (or the best among pre-

suggested plans) to alleviate the anticipated future vulnerability. 

New approaches were proposed to analyze the future climate trajectories. Also, new 

robustness metrics (FPE, DME, HPE, NER) were derived for the long-term robustness examination 

under wide range of climate changes. Moreover, a novel term MAT was presented to distinguish 

the theoretical time window of the robust plan(s) under multiple objectives. The reduction of 

demand ratio (MR) was modeled as an adaptation so as to urge water resources managers to 

focus on sustainable water management. The study represents the first attempt to evaluate wind 
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speed magnitude effects in decision-making process.  It is also the first bottom-up case study 

inside Iraq. 

Analyzing the GCM outputs showed that the precipitation mean are subject to vary from 

-37.4% to +31.3% (average of -4.8%); precipitation CV change will vary from -38.2% to 34.0% 

(average of +2.5%), temperature mean change will increase from +0.4 Co to 5.1 Co (average of 

+2.3 Co), temperature CV change will vary from -45.8% to 30.8% (average of -8.2%), wind speed 

magnitude mean will vary from -22.3% to 11.7% (average of -4.9%), and wind speed magnitude 

CV will vary from -29.1% to 32.2% (average of -0.1%). 

Analysis of the status quo system capability glimpsed that the system is vulnerable in 

drought management and robust for the flood protection. The computed DME and FPE are 0.178 

and 0.605, respectively, which implies that project managers should pay attention to drought 

and water scarcity management comprehensively. 

The analysis of weather variable effectiveness indicated that the precipitation mean 

alteration is the dominant parameter, followed by precipitation CV and then by temperature 

change and wind speed. The results also show that considering wind speed change is essential in 

drought management.  

Three synthetic adaptations were suggested to improve the system performance in 

meeting the demand ratio and maintain an acceptable performance for the other objectives (e.g., 

FPE, DME, HPE, and NER). Results revealed that reducing the MR for municipality and industry by 

30% is vulnerable, while the other two plans of reducing MR for irrigation or environment by 20% 

are robust. Of interest of this study, the upper limit time to apply a robust adaptation is 14 to 

avoid with the undesirable climate change influence. The optimal pareto set using NSGA-II is 
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obtained by reducing the MR for municipality, irrigation, industry, and environmental 0.985, 

0.900, 0.915, and 0.925 respectively. The DME, FPE, HPE, NER, and MAT were 0.502, 0.599, 1.099, 

0.896, and 9 [years] respectively. 

5.4.  Future work 

Many applications were left for future work since running of the models is very time 

consuming, requiring even months to get the results. The future possible work can be 

summarized as follows: 

1) Examining the applicability of the proposed forcing data framework in other basins in 

Iraq. Also, examination the applicability of other data sources of finer special 

resolution than 0.5 degree is of interest, such as Climate Forecast System Reanalysis 

(CFSR) dataset for spatial resolution of 1/3 degree.  

2) The coefficient of variation for temperature and wind speed were not significant in 

the DRB. Their significance could be examined using a smaller time step for the dam 

operation plan such as weekly, or bi-weekly.  

3) Extend the suggested decision-making framework for all DRB by including the 

operation rules of Hemrin dam. Also, other indicators can be added to the framework, 

such as water quality, water pollutant restrictions, sediment transport, and ecosystem 

requirements, among others. Further assumptions and simplifications are required to 

facilitate the work in order to reduce the running time of the models. Furthermore, 

more information and assumptions about the upstream project development are 

needed to obtain realistic results to plan for the future adaptation strategies for 

sustainable water uses in Iraq. 
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4) Examine the effect of the spatial and cross correlations on the suggested decision-

making framework. One possible solution to simplify the suggested framework to 

include only the significant correlations in the weather generator preprocessing stage. 

5) Consider the nonstationary in the hydrological model parameters and include the 

uncertainty of the model parameters and forcing data. 
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APPENDIX A 

Description of Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model  

This section describes the VIC model processes and the mathematical formulations. The 

overall VIC model framework is shown in Figure A.1. First, VIC can be run in two approaches: 

Water Balance and full water-energy balance. In water balance approach, it assumes that the soil 

surface temperature is equal to the air temperature for the current time step. This will eliminate 

the solution of ground heat flux and the iterative processes required to close the surface energy 

balance, therefore it requires less computational time. This simplification is suitable on daily time 

step that is the typical of water balance mode simulations, yields a substantial savings in 

computational time. The full water-energy balance mode solves the complete water balance as 

well as also minimizing the surface energy balance error through iterative processes to find the 

surface temperature that yields surface energy fluxes (sensible heat, ground heat, ground heat 

storage, outgoing longwave and indirectly latent heat) so that balance the incoming solar and 

longwave radiation fluxes. This mode requires more computational time than the water balance 

mode as well as requiring a sub-daily simulation time step. Given the condition that we have daily 

time step time series and we use VIC for thousands or run, we use the water balance approach 

in our study, and we describe only it here.  

A.1.  Water Balance Component 

The water balance that is used in the VIC model follows the continuous equation for each 

time-step:  
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𝜕𝑆𝜕𝑡 = 𝑃 − 𝐸 − 𝑅 (A.1) 

where dS/dt, P, E, and R are the change of water storage, precipitation, 

evapotranspiration, and runoff, respectively and all in mm. Over vegetated areas, the water 

balance equation in the canopy layer (interception) is: 

 
𝜕𝑊𝑖𝜕𝑡 = 𝑃 − 𝐸𝑐 − 𝑃𝑡 (A.2) 

where Wi is canopy intercepted water (mm), Ec is evaporation from canopy layer (mm), 

and Pt is througfall (mm). 

 

Figure A.1: The general schematic framework of the VIC model (Adapted from Gao et al., 2010). 

A.2.  Evapotranspiration Component 

VIC model computes three different types of evaporation: 1) evaporation from the canopy 

layer corresponding to each vegetation type, 2) transpiration, Et, from each of the vegetation 
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type, and 3) evaporation from the bare soil ,E1. The Total evapotranspiration over a grid cell is 

calculated as the sum of the three components multiplied by the weights of the area fractions, 

as follows: 

 𝐸 =  ∑ 𝐶𝑛  ×  (𝐸𝑐,𝑛 + 𝐸𝑡,𝑛 ) + 𝐶𝑁+1  ×  𝐸𝑙𝑁
𝑛=1  

(A.3) 

Where Cn is the vegetation fractional area for the nth vegetation type and CN+1 is the bare 

soil fraction in which ΣCn = 1.  

The canopy evaporation reaches the maximum value, E*
t, when the intercepted water is 

present on the canopy and as follows: 

 𝐸𝑡∗ = ( 𝑊𝑖𝑊𝑖𝑚 )2/3 𝐸𝑃  𝑟𝑤𝑟𝑤 + 𝑟𝑜 (A.4) 

Where Wim is the maximum amount of water the canopy can intercept, 𝑟o and 𝑟𝑤 are 

architectural and aerodynamic resistance respectively, and Ep is the potential evapotranspiration 

rate using Penman-Monteith equation. Dickinson, (1984) estimated Wim to be the leaf area index, 

LAI, by 0.2. Deardorff, (1978) described the power of the equation (2/3).  

If the intercepted water is not enough to meet the demand within one-time step, the 

canopy evaporation, Ec, will be: 

 𝐸𝑐 = 𝑓 × 𝐸𝑐∗ (A.5) 

where f is the fraction of the time step for canopy evaporation to evaporate the 

intercepted water and calculate by: 

 𝑓 = 𝑚𝑖𝑛 (1 ,   𝑊𝑖 + 𝑃 + ∆𝑡𝐸𝑐∗ . ∆𝑡 )  (A.6) 
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However, VIC uses the equation developed by Blondin, (1991) and Ducoudre et al., (1993) 

to compute the transpiration, as follows: 

 𝐸𝑡 = (1 − ( 𝑊𝑖𝑊𝑖𝑚 )2/3) 𝐸𝑃  𝑟𝑤𝑟𝑤 + 𝑟𝑜 + 𝑟𝑐 (A.7) 

Where rc is the canopy resistance and calculate as: 

 𝑟𝑐  =  𝑟𝑜𝑐   𝑔𝑇  𝑔𝑣𝑝𝑑  𝑔𝑃𝐴𝑅  𝑔𝑠𝑚𝐿𝐴𝐼  (A.8) 

where r0c is the minimum canopy resistance in s m-1, and gT, gvpd, gPAR, and gsm are the 

temperature factor, vapor pressure deficit factor, photo-synthetically active radiation flux (PAR) 

factor, and soil moisture factor, respectively. 

Finally, the bare soil evaporation is calculated according to Franchini and Pacciani, (1991) 

equation and takes place only form the top soil layer. 

 𝐸1 = 𝐸𝑝( ∫ 𝑑𝐴 + ∫ 𝑖𝑜𝑖𝑚  (1 − (1 − 𝐴) 1𝑏𝑖)  𝑑𝐴1
𝐴𝑆

𝐴𝑆
0  (A.9) 

where As is the fraction of the bare soil that is saturated, i0 is the point infiltration capacity, 

im is the maximum infiltration capacity, A is the fraction of the area for which the infiltration 

capacity is less than i, and bi is the infiltration shape parameter. i and im are expressed as [Zhao 

et al., 1980]: 

 𝑖 =  𝑖𝑚 (1 − (1 − 𝐴) 1𝑏𝑖) (A.10) 

 𝑖𝑚 = (1 + 𝑏𝑖)  𝜃𝑠  |𝑧| (A.11) 

where θs is the soil porosity, and z is the soil depth (m). 
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A.3.  Runoff Component 

The surface runoff can occur from the upper two soil layers when the precipitation plus 

the soil moisture storage at the end of the previous time step are more the soil storage capacity.in 

which, the surface runoff, Qd, is generated f using the variable infiltration curve [see equation 

(A.7)] with accounting for the spatial heterogeneity of runoff generation. The subsurface runoff, 

Qb, is calculated using Arno model developed by Franchini and Pacciani, (1991) and Todini, 

(1996), as follows; 

 𝑄𝑑 =   𝑃 − 𝑧2 (𝜃𝑠 − 𝜃2) + 𝑧2 𝜃𝑠  (1 − 𝑖𝑜 +  𝑃𝑖𝑚 )1+ 𝑏1          𝑖𝑓 𝑃 + 𝑖𝑜  ≤  𝑖𝑚 (A.12) 

 𝑄𝑑 =   𝑃 − 𝑧2 (𝜃𝑠 − 𝜃2)         𝑖𝑓 𝑃 + 𝑖𝑜  ≥  𝑖𝑚 (A.13) 

 𝑄𝑏 = 𝐷𝑆𝐷𝑀𝑊𝑆𝜃𝑆   𝜃3                                                                         𝑖𝑓   0 ≤  𝜃3 ≤ 𝑊𝑠𝜃𝑠 (A.14) 

 𝑄𝑏 = 𝐷𝑆𝐷𝑀𝑊𝑆𝜃𝑆   𝜃3   + ( 𝐷𝑚 − 𝐷𝑆𝐷𝑀𝑊𝑆  )  ( 𝜃3− 𝐷𝑆𝐷𝑀𝜃𝑠− 𝑊𝑆𝜃𝑆  )2          𝑖𝑓   0 ≤  𝜃3 ≤ 𝑊𝑠𝜃𝑠 (A.15) 

where Dm is the maximum subsurface flow (mm d-1), DS is a fraction of Dm,, and WS is the 

fraction of maximum soil moisture (soil porosity) θs. The base flow recession curve is linear below 

a threshold (WS θs) and nonlinear above the threshold. Therefore, the total runoff, Q, is computed 

for each nth land cover tile as: 

 𝑄 = ∑ 𝐶𝑛( 𝑄𝑑,𝑛 + 𝑄𝑏,𝑛)𝑁+1
𝑛=1  

(A.16) 

VIC model assumes that there is no lateral flow in the top two soil layers and uses one-

dimensional (vertical) Richard’s equation to characterize the soil moisture movement. Then 

Mahrt and Pan, (1984) included the atmospheric forcings into Richard’s equation to get an 

integrated equation of soil moisture for top two soil layers: 
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𝜕𝜃𝑖𝜕𝑡  𝑍𝑖 = 𝐼 − 𝐸 − 𝐾(𝜃)|−𝑍𝑖 +  𝐷(𝜃) 𝜕𝜃𝜕𝑍 |−𝑍𝑖        𝑓𝑜𝑟  𝑖 = 1 𝑜𝑟 2 (A.17) 

where θ is volumetric soil moisture content, z is the soil layer depth, I is the infiltration 

rate and computed as the difference between the precipitation and surface runoff, (θ) is the 

hydraulic conductivity, and D(θ) is the soil water diffusivity. However, the soil moisture of the 

lower soil layer (third) is modeled using water balance with the diffusion between the soil layers: 

 
𝜕𝜃3𝜕𝑡  (𝑍3 − 𝑍2) = 𝐾(𝜃)|−𝑍2 +  𝐷(𝜃) 𝜕𝜃𝜕𝑍 |−𝑍2 − 𝐸 − 𝑄𝑏 (A.18) 

In case it is bare soil, the evapotranspiration term turns to is zero since no evaporation 

from the lower soil layer. Otherwise, if the vegetation roots reach the lower (third) soil layer, the 

evapotranspiration is considered. 

A.4.  Snow Component 

Although we only perform VIC on water balance approach, snow model still solves an 

energy balance between the snowpack; forest canopy and atmosphere using scheme of 

Andreadis et al., (2009) and Gao et al., (2010), as shown in Figure (A.1). The spatial resolution of 

model usually ranges from 10 km and up, therefore the snow processes may not be modeled 

adequately as the spatial resolution of model is larger than characteristic scales of snow 

processes. Therefore, the VIC model employs a mosaic type representation of each grid cell to 

model the subgrid variability of topography, vegetation and precipitation through dividing the 

grid cell by the number of elevation bands. Herein, each elevation band contains N+1 land cover 

tiles. Then, the energy and mass balance models the snow processes for each land cover tile 

within each band. In addition, the fluxes of energy and mass are estimated as area averages of 

the tiles. 
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Figure A.2: Schematic framework of snow process of VIC model (Adapted from Gao et al., 2010). 

However, the snowpack is processed as a two-layer medium: the surface layer and pack 

layer. Energy and mass balance is performed for both layers. But, the energy exchange between 

the atmosphere, forest canopy, and snowpack takes place within the surface layer only. The 

energy balance of the surface layer is modeled as: 

𝑝𝑤 𝑐𝑠  𝑑𝑊𝑇𝑠𝑑𝑡 =  𝑄𝑟 + 𝑄𝑠+𝑄𝐼 + 𝑄𝑝 + 𝑄𝑚 (A.19) 

where cs is the specific heat of ice (J/kg/K), ρw is the density of water (kg/m3), W is the 

water equivalent (mm), Ts is the temperature of the surface layer (°C), Qr is the net radiation flux 

(W m-2), Qs is the sensible heat flux (W m-2), Ql is the latent heat flux (W m-2), Qp is the energy flux 

advection to the snowpack by rain or snow (W m-2), and Qm is the energy flux given to the pack 

due to liquid water refreezing or removed from the pack during melt (W m-2). 
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When the snow accumulates on the ground, it goes through a metamorphism process 

and causes compaction and density increment over time. This compaction is computed as the 

sum of two fractional compaction rates: compaction due to metamorphism and overburden. 

However, the snow albedo is assumed to decay with time propagation as: 

 𝑎𝑎 = 0.85 𝜆𝑎𝑡𝑑0.58
 (A.20) 

 𝑎𝑚 = 0.85 𝜆𝑚𝑡𝑑0.58
 (A.21) 

where αa, αm are the albedo during the accumulation and ablation seasons, td is the time 

since the last snowfall (in days), λa = 0.92, and λm = 0.70. Accumulation and ablation seasons are 

assigned according to the absence or presence of liquid water in the snow surface layer.  

During snowmelt, the atmosphere above the snow surface will get warmer. When parcels 

of cooler air near move upward by turbulent eddies, they tend to infiltrate back into the surface 

where turbulent exchange is occurred. The aerodynamic resistance of the snow cover is typically 

corrected for atmospheric stability using the bulk Richardson’s, a dimensionless ratio of the 

buoyant and mechanical forces acting on a parcel of air.  

The snow interception is the canopy interception, snowmelt, and mass taking place at the 

spatial scales of distributed hydrology models. Snowfall is intercepted by the overstore and it 

reaches the maximum storage capacity according to: 

 𝐼 = 𝑓 𝑃𝑠   (A.22) 

where I is the water equivalent of snow intercepted during a time step (mm), Ps is the 

snowfall over the time step (mm), and f is the efficiency of snow interception. Storck et al., (2002) 
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suggested the efficiency of snow interception to be 0.6. The maximum interception capacity 

(mm), B, is given by:  

 𝐵 = 𝐿𝑟 𝑚(𝐿𝐴𝐼) (A.23) 

where LAI is the single-sided leaf area index of the canopy, m can be found from the  

observations of maximum snow interception capacity (mm), and Lr is the leaf area ratio as a 

function of temperature. 

The snowmelt is calculated directly from a modified energy balance, similar to that 

applied for the ground snowpack. A new intercepted rainfall is computed according to the water 

holding capacity of the intercepted snow. The intercepted snowpack may contain both ice and 

liquid water. Snowmelt that excesses of the liquid water holding causes meltwater drip. Mass 

release of snow from the canopy takes place when sufficient snow is available. A 0.4 ratio of 0.4 

is derived by Storck et al., (2002) using observations of the ratio of mass release to meltwater 

drip. 

Bowling et al., (2004) developed a blowing snow model to evaluate topographically-

induced sub-grid with accounting for the magnitude of wind speed, snow transport, and 

sublimation. It considers the energy advected by rainfall, throughfall, net radiation, ground heat 

flux, and sensible and latent heat fluxes. In case the canopy is found, the incoming shortwave and 

longwave radiation as well as the wind speed are attenuated through the canopy. The time rate 

of snow water change (We) for each vegetation fraction inside the grid cell is calculated as:    

 
𝑑𝑊𝑒𝑑𝑡 = 𝑃 − 𝑀 − 𝑝 𝑄𝑣 − 𝑄𝑒 (A.24) 
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 where dWe/dt is the rate of snow water accumulation, M is snowmelt and drainage, Qv 

is the sublimation from blowing snow, and Qe is evaporation and sublimation from the snowpack, 

for a time increment dt. 
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APPENDIX B 

Description of Routing Model (RVIC) 

The routing model (RVIC) is developed by Lohmann, et al., (1996) and Lohmann, et al., 

(1998) as a post-processor with VIC model to route the total generated runoff by VIC in each grid 

into the basin outlet(s). The general framework of the RVIC model is shown in Figure B.1. The 

model assumes that the generated runoff moves inside the grid cell into the channel network 

before it moves out into another grid cell until it reaches the outlet. The Flow directions can exist 

in eight possible directions form a grid cell into another and weighted by the fraction of the grid 

cell that is inside the basin border. i.e, the runoff is first transported to the outlet of the cell using 

a unit hydrograph and then routed to in the river network up to the basin outlet.  Therefore, two 

routing approaches are exist here: cell routing and channel (river) routing and both are assumed 

as simple linear transfer functions. They use First Differenced Transfer Function-Excess Rainfall 

and Unit Hydrograph by a Deconvolution Iterative Technique with a time scale separation and a 

simple linear routing model [Duband et al., 1993]. The runoff is transported is as a linear, causal, 

stable, and time invariant with a positive impulse response function.  

B.1.  Cell Grid Routing 

The runoff movement is divided into fast and slow components of the measured 

discharge with the linear model explained by Duband et al., (1993) in order to simulate the 

dynamics of the horizontal routing process as: 

 
𝑑𝑄𝑠 (𝑡)𝑑𝑡 =  −𝑘 𝑄𝑠(𝑡) + 𝑏 𝑄𝐹(𝑡) (B.1) 
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 𝑄(𝑡)  =  𝑄𝑆(𝑡)  + 𝑄𝐹(𝑡) (B.2) 

where QS(t) is the slow flow component, QF(t) is the fast flow component, and Q(t) is the 

total flow. The parameters b and k are assumed constant for each basin over the period of 

simulation. The ratio of b over k is the ratio of slow flow water over the fast flow. Both slow and 

fast flow components are analytically linked by the following expression: 

 

Figure B.1: The overall schematic framework of RVIC model (Adapted from Gao et al., 2010). 

 𝑄𝑠(𝑡) = 𝑄𝑆(0) 𝑒𝑥𝑝(−𝑘𝑡) +  𝑏 ∫ 𝑒𝑥𝑝(−𝑘 (𝑡 − 𝜏))𝑄𝐹(𝜏)𝑑𝜏𝑡
0  (B.3) 
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The initial condition QS (0) is decayed exponentially with the mean residence time of 

water in the flow (1/k). The half-life decay is then equal to (ln2)/k. the total discharge for the 

discrete values will then be: 

 𝑄𝑠(𝑡) =  𝑒𝑥𝑝 (−𝑘 ∆𝑡)1 + 𝑏 ∆𝑡  𝑄𝑠 (𝑡 − ∆𝑡) 𝑏 ∆𝑡1 + 𝑏 ∆𝑡  𝑄(𝑡) (B.4) 

The linearity assumption between the streamflow and effective precipitation leads to the 

impulse response function between the fast flow and effective precipitation based on equation 

(B.4) and by solving the following equation iteratively: 

 𝑄𝐹(𝑡) =  ∫ 𝑈𝐻𝐹 (𝜏) 𝑃𝑒𝑓𝑓 (𝑡 − 𝜏)𝑑𝜏𝑡𝑚𝑎𝑥
0  (B.5) 

Where UHF (τ) is the impulse response function, the unit hydrograph, for the fast flow 

component, tmax is the time taken for all fast processes to decay, and Peff is the effective 

precipitation. The fast flow can then be expressed in discrete format with n data points at the 

time step of Δt, and tmax = (m-1) Δt and solved iteratively for the of UHF
i as follows: 

 (𝑄𝑚𝐹𝑀𝑄𝑛𝐹) = (𝑃𝑚𝑒𝑓𝑓 𝛬 𝑃1𝑒𝑓𝑓𝑀 𝑂 𝑀𝑃𝑛𝑒𝑓𝑓 𝛬 𝑃𝑛−𝑚+1𝑒𝑓𝑓 )( 𝑈𝐻0𝐹𝑀𝑈𝐻𝑚−1𝐹 ) (B.6) 

            The following constrain is held is each iteration: 

 ∑ 𝑈𝐻𝑖𝐹 = 11 + 𝑏/𝑘       𝑤𝑖𝑡ℎ    𝑈𝐻𝑖𝐹  ≥ ∀𝑖 𝑚−1
𝑖=0  (B.7) 

The UHF is then be solved for the effective precipitation as:   
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 (𝑄𝑚𝐹𝑀𝑀𝑄𝑛𝐹) = ( 𝑈𝐻𝑚−1𝐹 𝛬 𝑈𝐻0𝐹 0  𝛬 00             𝑜      𝑜     𝑜  𝑜  𝑀𝑀           𝑜     𝑜    𝑜    𝑜   00       𝛬 0    𝑈𝐻𝑚−1𝐹 𝛬 𝑈𝐻0𝐹
) ( 

 𝑃1𝑒𝑓𝑓𝑀𝑀𝑃1𝑒𝑓𝑓) 
 

 (B.8) 

The model keeps holding the constrain (0 ≤ Pi
eff ≤ P ≤ ∀i) in each iteration step. Then, the 

newly computed effective precipitation is inserted back, and the deconvolution procedures are 

repeated until reaching the convergence. However, the UH of that grid cell is found through the 

catchment and the river network impulse response function corresponding to the catchment. 

B.2.  River Routing 

A simple linear model based on the linearized Saint-Venant equation is employed to route 

the computed generated runoff in the basin channel (river) in to the outlet, as follow: 

 
𝜕𝑄𝜕𝑡 = 𝐷 𝜕2𝑄𝜕𝑥2 − 𝐶 𝜕𝑄𝜕𝑡  (B.9) 

where C is a parameter denoting the wave velocity and D is a parameter denoting the 

diffusivity. Both C and D characterize the water transport within the cell. They can be found from 

the measurements or estimated from the bed river data for each gird cell due to their 

effectiveness and variance in each geographic location. Equation (B.9) is then solved with aid of 

the convolution integral, as follows: 

 𝑄(𝑥, 𝑡) = ∫𝑈(𝑡 − 𝑠)  ℎ(𝑥, 𝑠)𝑑𝑠𝑡
0  

(B.10) 

And, 

 ℎ(𝑥, 𝑡) =  𝑥2𝑡 √𝜋 𝑡 𝐷 𝑒𝑥𝑝(− (𝐶 𝑡 − 𝑥)24𝐷𝑡 ) (B.11) 
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The function h (x,t) represents the impulse response function of the Saint-Venant 

equation with h(x,0)=0 at  x>0, and h(0,t) = δ(t) for t ≥ 0. 
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APPENDIX C 

Ground Observation Gages in the Study Area 

Table C.1: The ground gage stations for precipitation in the Diyala River Basin, coverage ranges, and completeness percentages (MoWR, 2011; 
unpublished data). 

No Station Longitude Latitude Country Monthly Coverage 
Monthly 

Completeness 
(%) 

Daily Coverage 
Daily 

Completeness 
(%) 

1 Sarpolzohab 45.86 34.45 Iran Jan/1986 Dec/2005 26.2 Jan/1996 Dec/1999 7.7 

2 Sanandaj 47 35.33 Iran Sep/1959 Dec/2000 40.3 Jan/1971 Dec/1999 28.7 

3 Marivan 46.2 35.51 Iran Jan/1992 Dec/1999 10.6 Dec/1959 Dec/2008 23.4 

4 Eslamabadgharb 46.43 34.13 Iran Jan/1991 Dec/2000 13.2 - - 0 

5 As Sulaymaniya 45.45 35.55 Iraq Nov/1935 Dec/2011 98.9 Nov/2000 May/2011 17.6 

6 Chwarta 45.57 35.71 Iraq Feb/1942 Sep/1970 26.7 Oct/2001 May/2011 17.1 

7 Derbendikhan 45.69 35.11 Iraq Feb/1957 Sep/1971 70 Dec/1961 Jun/2011 94.2 

8 Dokan 44.95 35.92 Iraq Jan/1959 Sep/2009 67.4 Jan/1959 May/2011 96.6 

9 Halabcha 45.98 35.17 Iraq Jan/1941 Sep/1987 48.3 Oct/2001 May/2011 17.1 

10 Kifri 44.96 34.68 Iraq Feb/1957 May/2011 29.1 - - 0 

11 Penjween 45.94 35.62 Iraq Oct/1939 Sep/1979 29.5 Jan/2001 May/2011 17.3 

12 Qaradagh 45.4 35.3 Iraq Feb/1958 Sep/1981 8 Oct/2001 May/2011 17.1 

13 Hemrin 44.97 34.11 Iraq May/1936 Sep/2009 24.5 Oct/2003 May/2011 13.9 

14 Jalawla 45.15 34.27 Iraq Nov/1935 Sep/2006 65.8 Oct/2003 May/2011 8.2 

15 Khanaqin 45.43 34.3 Iraq Aug/1937 Dec/2008 91.5 Jan/2001 Dec/2010 20.8 

16 Mansuriya El Jabal 45 34.05 Iraq Jan/1940 Sep/1981 43.5 - - 0 
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APPENDIX D 

TRMM and GIDAL Performances. 

 

Figure D.1: The monthly precipitation plots observation data (GMWR) data versus TRMM data in the 24 
basin grids in blue dots with KGE and R2 values for the overlap period years (Mar 2000 to Dec 2011). 

The red line is the regression line between GMWR and TRMM. The black line is a 1:1 line for comparison 
purpose. 
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Figure D.2: The monthly precipitation plots of GMWR versus GIDAL in the 24 basin grids in blue dots 
with KGE and R2 values for the overlap period years (Jan 1948 to Oct 2007). The red line is the 

regression line between GMWR data and GIDAL. The black line is a 1:1 line for comparison purpose. 
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Figure D.3: The monthly temperature plots of GMWR versus the GIDAL (before and after adjustment) in 
the 24 basin grids, with R2 and KGE (before and after adjustment) values. The red line is the regression 

line between GMWR and GIDAL. The black line is a 1:1 line for comparison purpose. 

 

Figure D.4: Relationship of GMWR and GIDAL (temperature) with the average grid elevation DRB.  
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Figure D.5: The monthly wind speed plots of GMWR versus the GIDAL (before and after adjustment) in 
the 12 basin grids [see Figure 2.4], with R2 and KGE (before and after adjustment) values. The red line 

is the regression line between GMWR and GIDAL. The black line is a 1:1 line for comparison purpose. 

 

Figure D.6: Correction Value (CV) of GIDAL wind speed, for summer (a) and autumn (b), versus the 
average grid elevation in DRB.  
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Figure D.7: Relationship of GMWR and GIDAL (wind speed) with the average grid elevation DRB.  
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APPENDIX E 

Statistics of the implemented forcing data of Chapter 2. 

 

Figure E.1: Conditional probability of precipitation states in the for each grid in DRB.  
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Figure E.2: Monthly precipitation statistics for each grid.  
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Figure E.3: Monthly temperature statistics for each grid.  
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Figure E.4: Monthly wind speed statistics for each grid. 


