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ABSTRACT

Although it is known that all spatial scales are nonlincarly interrelated in any prediction model of the
atmosphere, truncation demands a limit to scale resolution. One is therefore compelled to parameterize
sub-resolution scales, hopefully in such a manner that they describe observed statistics. Such statistics
have been shown frequently as energy spectra of synoptic scales in terms of the planetary wavenumber.
An alternate representation is the presentation of the encrgy in terms of the degree of a Legendre poly-
nomial expansion ; this representation may be more advantageous insofar as it presents a two-dimensional
spectralindex. Arguments arve presented which indeed suggest the appropriateness of the index. Two months
of atmospheric wind data at five pressure levels and on a hemispheric grid were analyzed to establish energy
spectra. The spectra are described both as a function of time and as a function of wavenumber for time
averages. Using a five-level linear baroclinic model, stability characteristics for each wave component for
the observed zonal and vertical profiles were established. Based on these results, the energy data were fit
logarithmically by least squares to the wavenumber (both planetary wavenumber and Legendre polynomial
degree). Energy slopes show values close to ~3 when utilizing the two-dimensional index in the non-baro-
clinically forced scale range. These results suggest the use of this index in studying scale parameterization,

1. Introduction the scale domain (usually the shorter scales), a pro-
cedure sometimes termed closure, and recently con-
sidered by Leith (1968).

If then—and we assert as a necessitv—the shorter
scales must be parameterized so that the longer scales
may be satisfactorily predicted for a specified time,
we must first have observational knowledge concerning
some statistical properties of the shorter scales. Finding
such statistics by random search clearly would be
futile. Fortunately, recent advances in two-dimensional
turbulence theory (Kraichnan, 1967) suggest a possibly
meaningful statistic. This theory states that in a two-
dimensional viscous fluid with an energy source con-
fined to a narrow scale region, the energy distribution
in scales shorter than the forcing scale will decrease
logarithmically with the two-dimensional scale index
with a slope of —3. Should the atmosphere manifest
two-dimensional behavior in part of the scale range, by
analogy with turbulence theory, the energy distribution

The question of atmospheric predictability has
artracted the attention of meteorologists with increas-
ing urgency over the past few vears, concomitant with
the development of model sophistication and applicable
computer technology. Indeed, the proposals of GARP
relating to prediction periods have catapulted the
(uestion into international prominence. Nevertheless,
no definitive answers have vet been forthcoming al-
though valuable contributions have been made on
both the positive and negative sides, notably by
Robinson (1967), Lorenz (1969), Smagorinsky (1969)
and Leith (1971). These arguments range from the
possibility of satisfactory long-range prediction with
improved computing power to ehsolute limits on pre-
diction due to error propagation.

Although it is not the purpose of this paper to
speculate on the prospects of atmospheric predicta-
bility, we do wish to clarify at least one factor which

15 clearly involved and suggest a representation which
will lead to a better understanding of this factor and
hopefully assist in the subsequent evaluation of the
prediction process. It s common knowledge that be-
cause the atmosphere is a nonlinear system, all scales
are Interactive. However, despite superior computing
puwer, no model calculation can hope to resolve all
scales. One is consequently led to the unhappy but
inevitable alternative of parameterizing a portion of

! Present affiliation: Depurtment of Meteorology and Ocean-
spraphy, The University of Michigan, Ann Arbor.

in this scale range can be assessed from observation and
may vield just the desired statistic sought for closure
purposes. The atmosphere is certainly a three-dimen-
sional fluid. However, baroclinic stability theory sug-
gests that the predominant three-dimensionality tends
to assert itself in a limited scale range (principally in
planetary waves 6-10) and that in shorter scales there
is little vertical overturning. Thus, one might speculate
that the scales shorter than planctary waves 10 behave
in a quasi two-dimensional sense and, by analogy with
Kraichnan’s theory, have an encrgy source in the range
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F16. 1. Distribution of the two-dimensional scale index in terms
of the two one-dimensional indices for both Cartesian and spheri-
cal domains.

of waves 6-10. The observational data analyses of
Wiin-Nielsen (1967) and Julian et ¢l. (1970) tend to
substantiate a —3 energy distribution in the planetary
wave distribution.

Despite these apparently favorable observations,
they are based on a one-dimensional analysis and are
therefore not comparable to the expectations from
two-dimensional theory ; consequently, they also cannot
provide a satisfactory closure condition. We must find
a two-dimensional representation for the atmosphere
which vields observations corresponding to two-dimen-
sional turbulence theory. Such a representation has
been used by Lilly (1969) to calculate the energy
distribution vs two-dimensional scale in a simple tur-
bulence model with remarkable success, i.e., he calcu-
lated the anticipated —3 slope. The geometry utilized
by Lilly in his model is unfortunately inapplicable to
the largest atmospheric scales because of the earth’s
curvature.

It is the purpose of this study to present a two-
dimensional scale representation applicable to varia-
bles in atmospheric surfaces (pressure or geopotential)
and to describe observed energy distributions in terms
of this scale. The appropriateness of the scale repre-
sentation will be assessed, the region of two-dimen-
sionality with regard to this scale will be established,
and the —3 distribution of energy in terms of the
scale index will be highlighted. Based on the successful
comparison of observed energy distributions with two-
dimensional turbulence theory in terms of our pro-
posed two-dimensional scale representation, that repre-
sentation should lead to a suitable parameterization
of shorter scales with known statistics and thereby ad-
vance our understanding of the predictability question.

2. An appropriate two-dimensional index

To establish an index which characterizes scales in
a two-dimensional surface and which will permit an
expansion of variables in those scales, let us consider
a two-dimensional differential operator as it operates
on a normalized function. Such an operator, say the
Laplacian (V?), would by simple scale analysis have the
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dimensions

1\ /m\2
(3~
As s
where s? is the overall area of the region and 7 is an
index (the sought after two-dimensional index) repre-
senting the number of subregions (As)? in the total
domain; i.e., (As)2= (s/m)>
Let us now apply this operator to a rectangular
region described in a Cartesian representation Wherein
the function to be operated on is periodic in both

dimensions. The characteristic functions with these
properties are clearly given as

f)=exp(ik-1),

where k=ki+k,j and r is the radius vector in the
surface. By application of the Laplace operator

Vif=—k*f, where A*=k’ +k/7,

and we see from m?=Fk%® that the appropriate two-
dimensional index for this domain is 2% Indeed this is
the index which was used by Lilly (1969) in his nu-
merical simulation of two-dimensional turbulence. The
distribution of %2 as it depends on k. and k, is depicted
graphically on the left-hand side of Fig. 1. Note that
k. and k, represent one-dimensional indices of scale
in the x and y directions, respectively.

For problems dealing with representation in a
spherical surface (obviously applicable to the earth’s
atmosphere), the appropriate characteristic functions
are the solid spherical harmonics

Y o(A\p) =exp(ilad) P a(p), 1)

where a=nq+ily is a complex wave vector describing
the two one-dimensional scales; i.e., l, represents the
planetary (longitudinal) scale index and #.—[« the
ordinal (latitudinal) index, defining the number of
zeros between the poles. The longitude is represented
by A, u describes the sine of latitude, and the associated
Legendre polynomials (P,) are polynomials in p of
order n,. Application of the Laplace operator to these
functions leads to the well-known characteristic equation

VY o= —na(at 1)V o (2)

The appropriate two-dimensional scale index is here
seen to be mi=mn.(n.+1)s%, which depends not only
on 7 alone, but is linearly proportional to #. for
indices not too close to unity. It is this index then, the
order of the Legendre polynomial, which we wish to
explore as a possible alternative scale index for two-
dimensional representation in a spherical surface. By
suggesting our scale index as an alternative, we imply
that atmospheric variables have traditionally been de-
scribed by the one-dimensional index I, alone and
hemispheric averages have been extracted by integra-
tion over latitude of the variables as a function of /e
and p. This procedure may be observed in the analyses
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I'1i6. 2. Example of different cell contigurations all having the same two-dimensional in-
Jex, in this case n=35. The cells are defined by their nodal lines and are presented on a

Mollweide-type projection.

of Sultzman and Fleisher (1962), Wiin-Nielsen (1967),
Julian ef al. (1970) and others.

The distribution of the index iz, in terms of the two
onc-dimensional indices la, n.—Fl, 18 described graphi-
callv on the right-hand side of Fig. 1. Note the simi-
larity: of distribution between this index and the A*
index of the Cartesian plane. The cells included in a
given value of the two-dimensional index in both
Cartesian and spherical domains also may be seen
from Fig. 1. The total amplitude of a given variable
for iuch value of an index would require the summation
of all amplitudes at allowed intersections along a curve
of constant index value (£ or n.)--see Fig. 1. We shall
discuss the kinetic energy as such a variable in more
detzil subsequently. Although the structure of cells for
fixedd £ in the Cartesian domain is well known, such
May not be the case for cells in a spherical surface.
We therefore present as an example the allowed cell
structures for i,=3 in Fig. 2. By use of the Mollweide-
Wpe projection (Steers, 1965), all 360° of longitude may
be displaved. It should be evident from this example
how the cell structure depends upon the zeros in longi-
wde (/) and the zeros in latitude (12,—L.). The limit in
tell configurations is based on the condition for Legendre

polynomials that n,2/.. Finally, with regard to the
conventional representation in terms of /, alone, only
the structure for /=35 in Fig. 2 would come under
consideration, i.e., no wave structure with latitude is
generally considered.

The argument for selecting the two-dimensional index
presented above is based essentially on dimensional
analysis. It is of some interest to note, however, that
the wave components of a given scale (e.g., Fig. 2) will
not interact nonlinearly with one another in a two-
dimensional turbulent flow, thus suggesting their scale
independence and supporting our choice of index. As
an extension of the results of Neamtan (1946) and
Platzman (1960) indicating the existence of an exact
solution to the nonlinear barotropic vorticity equation
subject to suitable wave truncation, the non-interaction
of wave components with fixed scule (two dimensional)
may be elucidated. Considering the flow to be repre-
sented by a strecamfunction, and letting that stream-
function be separated into a zonal part (¢) comprising
an arbitrary number of zonal components in an ex-
pansion of zonal harmonics and a wave part (') com-
prising an arbitrary number of planetary wave com-
ponents of fixed ordinal index (12)-—this latter choice
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based on our desire to investigate the interaction of
wave components of given scale—the vorticity equa-
tion may be written in a spherical surface as

A _
—(;(@-hﬁ’) =J(VHA)+T (VYY) T (VY P)
+I (V) FT ([P )+LE), ()
where
¢<I“'y ) __, m(t)l)m(ﬂj (=0

m

l///G\,/.L,Z) :‘?‘: lpn(lt) Ya(‘\,v“')

X{a=n4il,, nfixed, <0} (4)

In (3) the usual notation applies; J is the Jacobian
operator, f the Coriolis parameter (a linear function
of ), and L a lincar operator in the surface coordinates.
We have included a linear function for generality to
allow energy sources and sinks, since the argument
holds for this condition as well. lee first two Lu obians
in (3) and the Jaccbian of f and ¢ vanish by virtue of
the fact that ¢ depends only on x [Eq. (4)] and, since
we have chosen only one scale n, the Laplacian of ¢/
is proportional to ¥, ie., V4'=—n(n+ 1)y’ [Egs. (2)
and (4) .

Let us first consider the time changes of the zonal
components, ¥, (£). Multiplving (3) by P,(x) and sub-
stituting the expansions {rom (4), we find, by utilizing
the orthogonality properties of the surface harmonics,
that all terms remaining on the right-hand side of (3)
vanish on integration over longitude. This result is
also a consequence of applying the selection rules for
nonlinear interacting waves presented for the spectral
vorticity equation by Baer and Platzman (1961).
Noting, therefore, that the zonal field ¥ (i) is invariant
in time, let us consider the time changes of the wave
components ().

We now multiply (3) by the conjugate of the surface
harmonic for component y =+ il,, utilizing an asterisk
to denote conjugation, and after introducing (4) inte-
grate over the unit sphere. Expanding the Jacobians
in terms of derivatives, performing the differentiation
with regard to A as indicated by (1), noting the time
invariance of ¢ and combining terms, we find that

d il,Gy )
— g =) 5
P ’)n(n—i-l)

where

‘ S PN ,
G | P [V nt D —tg) (s, (0)
1 1 du I

and g(v) depends on the linear operator L. The solution
of (5) shows that each wave component y propagates
at its own constant rate with frequency vy=0,G,/
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2in(n+1), and the amphtude and ‘conscquently energy
in each wave component 1s invariant with time. ’”us
conclusion is indeed the result stated earlier that ware
components of qzuen scale (i) will not interact nonlinearly
with one another in a two-dimensioncl turbulent flow.

We shall show in Section 4, moreover, that growth
of energy in spectral components due to barotropic-
baroclinic instability tends to disappear bunultamoml\
for all components of a given scale, when we utilize the
index 7 as the two-dimensional scale indicator.

3. Data and representation

To assess the utility of our proposed index and also
to establish some spectral statistics of atmospheric
data, we have selected to represent the wind field
twice daily (0000 and 1200 GMT) for the months of
]anudrw and February 1969 at five levels (7, 3, 3, 2.5,
2 db) in terms of their spectral components. The data
were taken from both the NMC grid analyses andthe
tropical (Bedient) analyses, thereby providing complete
hemispheric coverage. The two analyses were numeri-
cally merged by a linear weighting process and were
then translated to the Kuri-grid (Kurihara and Eollo-
way, 1967).2 The Kuri-grid has 4705 points on the
hemisphere including the pole and equator; it is effec-
tively a latitude-longitude grid, beginning with one
point at the pole, incrementing 1.875° in latitude,
increasing the number of equidistantly spaced points
on each latitude circle by four, and continuing to the
equator with 192 points, thereby yielding the set of
points on 49 equally spaced latitude circles.

Once the data are available on the Kuri-grid, they
may be converted to a set of spectral coefficients; the
method for performing this transformation has been
detailed by Ellsaesser (1966a) and will only be outlined
here. We have analyzed both the zonal (#) and merid-
ional (v) wind components. In describing the generation
of coefficients for the zonal wind, the reader should bear
in mind that the meridional coefficients were derived
in an identical manner. Given the data at longitudes
A= jAX where 0< < p and AN=2x/p, and at latitudes
wi where 1< k<97 to include the Southern Femisphere,
we first expzmd about a latitude circle in Fourier series

u(jaAN ) =32 () exp(il jAN), (@)
1
yielding by inversion
b 1 . . 4]
wi(ur) == 20 u(jAN i) exp(—i2xlj/p). )
p i

Note that we have suppressed time and height as
independent variables although the functions do mdced
depend upon them. The l\metlc energy Ei(u;) at each

® The merging and translation of this data were programmed ¢ and
camed out for us by Dr. K. Miyakoda, GFDL/NOAA, Princeton,
- 1.
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Jatitude circle g n the ~wave may be calculated from
the coethcients generated by (8) and represented as

Loo(pe) = g 3o, (9)

The traditional approach to a spectral representation
of atmospheric encrgy generally ends here. The energy
/i 18 presented as a function of / for different latitude
circles or a numerical integration of £ over a specified
hutitnde belt is performed to yield averages, some
approaching hemispheric.

The general expansion in solid harmonics of which
we have so far completed only the longitudinal part, is
clven as

‘l/(_/-A'\;#L:) :“:Z o I‘ﬂu(‘,/.A/\:#/r), == 7711+i/z‘(! (1())

@

where the functions T, are defined by (1). Completing
the inversion, we [ind

U™ E Z i ”L'(I-l/;) ])u(/i);)

1
== 3 2wt FAN ) Vo ¥ (AN ). (11)
2p ik
1
n (11) we have made use of the Neumann weights
which orthogonalvze the Legendre polynomials on
summation; Le., they are generated from the equations
(sce Ellsaesser, 1906)

q =
2 @il o) Pl = / PPyl =280,p.

k=1

The total kinetic energy over the surface is given in
terms of the amplitudes of the coefficients a, and @, as

|
/ (124 d A =3 Y (it v ava”)
9 @
=¥ &, (12)

with the energy in each a-component being given by
the a-term on the right-hand side of (12). The hemi-
spheric average in cach planetary wave (1) is determined
from the total expansion by the sum over n, e,

EQ)=Y Eo=3 Fifus). (13)
k

Na

"The cquivalence in (13) of £2(/) with the sum of encrgies
senerated from (9) (which has been veritied by utiliza-
tion of sample data) shows the correspondence between
the total spectral expansion (10) and the partial ex-
pansion (7) when only the distribution with planetary
wavenumber (a one-dimensional index) is desired. The
distribution of energy in terms of a two-dimensional
index is possible only by utilizing the complete spectral
expansion, which in terms of the index u is given by

BAER 633

the sum

B, =% B (4)

la

It may be noted that the spectral expansion requires
data over the entire spherical surface. Since we have
data only over the Northern Hemisphere, some as-
sumption on its distribution over the Southern Hemi-
sphere must be made. Consistent with observation, we
have assumed the zonal (u) ficld to be symmetric and
the meridional (z) field to be antisymmetric across the
equator. Calculations of the total energy and the
energy in different scale groups for alternate choices
of symmetry show negligible differeaces from values
arrived at by the above defined symmetry. The chosen
symmetry does, however, eliminate any possible cor-
relation in the wind components, effactively imposing
a condition of isotropy.

For analysis purposes, we have calculated separately
the contributions from zonal and meridional energies,
£on(u) and E,(v), respectively, as well as the total
defined by (12). Furthermore, we have calculated the
energy in cach planetary wave [see (13)] and in cach
two-dimensional scale component [see (14)7]. Finally,
these energies have been established at cach available
pressure level and for all time periods. For some
analyses vertical averages of data sufficed. The aver-
ages were performed linearly with regard to pressure
by first establishing values at 1 and 9 db through
quadratic interpolation, assuming vanishing wind at
zero and 1000 mb. These values, the 1-db value de-
pending on those at 2 and 2.5 db and the 9-db value
depending on the 7- and 5-db values, thereby served
a double purpose, as thev were needed for the linear
analysis to be discussed in the following section.

Although our primary concern in this paper is with
the energy distribution in terms of / or n, the reader
may be interested to see how the individual components
(E.) distribute. We have prepared for this purpose
Fig. 3, in effect two spectral maps, with planetary
wave index on the abscissa and zeros-in-latitude index
on the ordinate, similar to the chart on the right-hand
side of Fig. 1. On these maps we have plotted and
analyzed the fime-averaged and vertical mean kinetic
cnergy as a percent of the total encrgy, for both the
zonal and meridional winds. Of principal interest, one
obscrves from these maps that for smaller scales (larger
n index) the isopleths of constant energy tend to follow
lines of constant two-dimensional index considerably
more closely than the coordinate lines which define the
one-dimensional indices. This result may support the
contention that the appropriate truncation for speciral
integrations should be triangular rather than rhom-
boidal (see Ellsaesser, 1966b), especially if one aceepts
the 7 index as the appropriate two-dimensional index
in the spherical domain. Nevertheless, a comparison of
Iig. 3 with a similar figure describing a recent spectral
integration of a general circulation model (Baer and
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F1e. 3. Average kinetic energy’ (both in height and time) as a percent of total in each two-dimensional wave component, a=n-7l,
plotted and analyzed as a spectral map.

Alyea, 1971, Fig. 9) shows remarkable correspondence
and suggests that with adequate spectral resolution even
rhomboidal truncation will yield successful integrations.

4. Linear analysis

If we have selected a reasonable two-dimensional
index, as argued in Section 2, we may hope to find some
meaningful statistical distribution in our analyzed
energy data as a function of that index. A correspon-
dence of distribution in our data with the two-dimen-
sional turbulence theoryv as predicted by Kraichnan
(1967) would necessitate an investigation of the data
distribution in the spectral region beyond the scale of
forcing. Since we may relate the spectral domain of
baroclinic instability with the region of forcing result-
Ing from energy transformation, we must establish the
baroclinically unstable wave region in terms of our
two-dimensional index. If there exists a cutoff index
value beyond which no instability exists, we might
consider the spectral region bevond that point as
exhibiting a two-dimensional turbulent structure pre-
dominantly driven by nonlincar momentum exchange,
and with its energy source in the region of baroclinic
instability.

In terms of the one-dimensional planetary wave
index, most linear baroclinic stability studies (Charney,
19047; Eady, 1949; Phillips, 1954; etc.) and the more
recent barotropic-baroclinic stability studies (Brown,
1969; Simons, 1970) indicate that the region of maxi-
mum instability is between waves 6—10. Since current
data accuracy deteriorates seriously for waves /2> 18

[and even for longer waves according to Julian ef al.
(1970)], one is left with few waves to analyze for
spectral statistics. Nevertheless both Julian et al.
(1970) and Wiin-Nielsen (1967) find that their data
show a logarithmic decrease of kinetic energy with
planetary wavenumber with a slope near —3.

To establish the corresponding longwave cutoff to
instability (barotropic-baroclinic) in terms of our two-
dimensional index, we have solved the linearized po-
tential vorticity equation in five atmospheric pressure
levels (1, 3, 5, 7, 9 db) with both the vertical and
latitudinal zonal distributions specified for each time
period of available data as the zero-order state. This
equation was solved in the spectral domain and each
wave component was independently superposed on the
ground state and its growth rate, if existent, was
calculated. The model and its program were taken
from Simons (1970) and will be outlined only briefly
below; for details, the reader is referred to Simon’s
report.

The potential vorticity equation studied has the form
(also discussed by Phillips, 1963)

) d /10y
_[Vlz‘l/_i_joz*(H —‘>}
atl dp\a dp

a /10y
+J[¢, AR f&—(- —~>] =0, (15)
dp\o dp

where the usual notation obtains; ie., Y=y (\u,p,)
represents the stream field, fy is a mean value of the
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F1e. 4. Zona! wind profiles as a function of latitude and height (numbers on curves denote decibar levels)
for two observation times and for two averaged periods.

Coriolis parameter, o=0c(p) is a standard static sta-
Lility variable depending only on pressure with values
chosen for average winter conditions given by Gates
(1961), and pressure coordinates are utilized. The
horizontal coordinates are latitude and longitude,
detined symbolically in Section 2, and as stated above,
(15) is evaluated at five pressure levels with finite
differencing used in place of pressure derivatives. The
linearization hypothesis is imposed by considering the
zonal field constant in time and introducing only one
wive component; then, we have for the stream field,

Y=yo(u,p)+2 Re[Yu(p)Va(\u) ], (16)

where o i1s the zonal field and « represents any wave
vector in the range, 1</, <16 and [, <#n,< L.+ 15, sub-
ject to the constraint that #.-+!. be odd. The zonal
stream field was determined by numerical integration

LA
g
= / 5 300
é /// 207
Q /] o
15 5. % 0
TIME 24 AVE, DA L THR HONTH _1YEAR 60 a3
\\ i
45°
L5
A )
é/ // 20°
/// 10°
~15 1 0 4 0
NS X
of the stream equation
@ (k)
Wnpd== [ wlwpdis (10
0

at all £ latitudes of the Kuri-grid and the five pressure
levels considered—note here why it was necessary to
interpolate values at 1 and 9 db from the given data.
The zonal expansion coefficients were then computed
by the inversion method discussed in Section 3 from

Yom-1(p:) =§ ol i) Pane-1(ur) (18)

for 1<m <8, thus yielding eight coefficients for each
pressure level. The wave coefficients ¥, (p,f) may also
be evaluated at each of the pressure surfaces, thus
yielding a five-element vector when the values at the
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F1e. §. Stability diagrams showing growth rates (e-folding time in inverse days) for wave components « interacting with the zonal
distributions described in Fig, 4.

pressure surfaces are listed as

Ye(t)= {Yalps)}. (19)

Substituting (19) and (18) into (15) in their appropriate
series expansion, performing the necessary derivatives,
and eliminating the horizontal space dependence by
using the orthogonality properties of the Legendre
polynomials (this process also involves the dis-allowance
of self-interaction by the wave components), one arrives
at the linear differential equation in time for the a-wave
stream coefficient,

’:btx = lAa—‘lza (20)

The (5XS5) matrix A, depends both on the static
stability distribution and the zonal stream coefficients
Yam-1(p;) for all allowed m and j, which incorporate
the vertical and horizontal structure of the zonal field.
The roots of A, specify the stability of the a wave and
its growth rate. The largest imaginary component is
then plotted on an (/, n—1I) or (/, n) diagram--both
maps are used to familiarize the reader with these
coordinates—and the calculation is performed for each
wave component within the allowed range specified
above; the plotted maps are then analyzed in terms
of these growth rates. The process is repeated for each

of the available data sets as well as for time averaged
data.

Fig. 4 describes the zonal configuration for 0000
GMT 10 January 1969, 1200 GMT 18 January 1969,
averaged data for January 1969, and averaged data for
January and February 1969, with the integers on the
curves denoting decibar levels. We have chosen the
two daily profiles because of their pronounced differ-
ence, one representing a single zonal jet, the other a
double jet. The loss of the double jet at 100 mb on 18
January is caused by the interpolation from the 250-
and 200-mb levels. The corresponding growth rates
associated with these distributions are shown in Iig.
S, which represents the diagrams prepared from the
stability analysis discussed above. The positions of the
diagrams in Figs. 4 and 5 correspond in time; thus, one
can readily assess the impact of zonal distribution on
stability.

The regions marked stable show no wave growth and
indicate that all waves for #>16 are effectively un-
involved in the baroclinic energy conversion process.
The maximum growth rates (units of inverse e-folding
time in days) appear for planetary waves /=7—9 In
agreement with the one-dimensional theory. However,
these growth rates apply principally to the lowest
modes (largest scale) in latitude. Indeed, the decay of
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coowth rate with mdex 1s of such a nature as to vield
cpleths of zero growth which correspond very closely
x\“}, isopleths of constant two-dimensional scale
ereept for some deviation in the case of a double jet.
ppears, therefore, that a cutoll index value related
1o baroclinic processes does exist in our data, and that
o measonable cutoff index value may be chosen in the
ronee s 14160 This result, the confluence of zero
crowvth with o constant value of index #, tends to
suhatantiate our argument for sclecting this index as
i appropriate two-dimensional index, an argument

alinded to in Section 2.

5. Scale limit on data accuracy

We have already indicated, hased on the analvsis of
Juiian et al., that the reliability limit of current atmo-
spheric data in terms of planetary wavenumber is in
the vicinity of l==16-18, corresponding to wavelengths
in middle latitudes of 1500 k. Should this numerical
limit apply also to the two-dimensional index », using
the results of the pl't‘Vi()ll\‘ section for a lower cutoff
te three-dimensional forcing, virtually no scale data
woutld be available to test for statistical equilibrium in
the quasi two-dimensional spectral range. Fortunately,
we do not helieve that the limit of resolution for the

two-dimensional index and the planetary-scale index
are identical, as we shall now attempt to show.

Let us set the limit to reliability of data in terms of
plunetary scale at wavenumber 18, based essentially on
th: results of Julian e/ al., hut with a slight relaxation
of index value. On the assumption that data reliability
1 comparable in both latitude and longitude for the
shorter scales, we shall also set the limit of reliability

latitude, represented by the one-dimensional scale
index =1, at 18. The implication of these scale limits
is that, for both latitudinal and longitudinal waves
shorter than wavenumber 18, serious smoothing has
heen applied which consequently distorts the data to
the point where interpretation hecomes questionable.

The number of wave components o which con-
tribute to a single two-dimensional scale 1 is n+1, s
may be clearly seen from an (I, n—/) diagram such as
Fig. 1. Indeed, Fig. 2 gives an example of the included
waves for n=3§, also describing their nodes. For any
stade 2, one may caleulate the number of components
which are in the range of allowed scides, [, n—1< 18,
'”11\‘ number is 3’7—'/1 and must be comp;ti'cd to the

stal mumber n41. Clearly for scales n <18 all com-
Ponents are in the ac (,cpld,blc range, whereas if 122 37,
no components have acceptable dara according to the
mequirements set forth above. The ratio (percent) of
srceptable components to total components has been
tibulated in Table 1 for two-dimensional scale values
falso denoted as ordinal index) of 18<7<29, and
vhows that for 1= 29 only 279, of the components are
teceptable. However, ncarly half or more of the com-
ponents may be acceptable for values of #2<25. In

Tarir 1. Percent of waves with acceptable observational data
in each of the ordinal index groups for 18 <7 €29 together with the
])crcem of agcc‘pl.mh encrgy at ﬂnree prusu:e ](\(Js

Percent
of waves
Ordinul with Percent energy in waves with €18
index nel IR 700 mh 600 ml, 200 mb
1R ]()(l 100. 100.
10 90 0%. e U 80.7 £ 9.2
20 81 29, 0.8 88.2:4: 6.8
21 2.0 81.8 + &5 7704 9.1 66,6+ 9.3
29 65.2 TT.3:4 9.9 7 - 0.4 71.74:10.2
23 58.3 69.54- 9.7 7 * 9.7 65.7:411.2
24 2. <7 10,9 838118 S49:£10.2
28 46.2 53824113 3434111 43.6 4.10.2
26 40.7 40.0:4.10.8 45.5411.6 42,0-+£11.1
27 38,7 40018 94 40.1:4 8.8 30.4:4 8.0
28 31 35.94: 8.7 38.0-¢11.0 30.9+& 9.2
29 26.7 33.7:4 10.6 3264+ 9.5 2814 0.3

Table 1, m represents both / and #—1, i.c.. both must
satisfy the conditions m < 18,

Since data are available for & two-month period, we
may also determine the percent of data in the accept-
able scale range, a value which will undoubtedly differ
from the percent of acceptable components listed in
Table 1. After time-averaging the kinetic energy in
cach wave component for all data at levels 700, 500
and 200 mb, we compute and list in Table 1 Lhc percmt
of energy data in the acceptable scale range (m< 18) to

the total energy, together with the standard deviation

for the same range of scale values, 18<2<29. We note
from the table that in excess of 509, of the data is
acceptable for scales #< 25 except at 200 mb.

Based on the results of this section and the last, we
propose that a recsonable sccle range for lesting two-
dimensional turbudent  energy exchange from  current
atmospheric data is 14<n< 25, In this region we may
anticipate both no baroclinic energy transformation
and rcasonably accurate observational data. Analyses
of data to be presented subsequently will substantiate
this contention.

6. Spectral distributicn

To describe the energy in different scale components
as a function of the scale index, we have prepared
several charts (Fig. 6) wherein energy amplitude is
plotted against wavenumber on a log-log scale. The
energy groups include both Z(Z) and %, for comparison
[see Eqs. (13) and (14) for definitions] with £, plotted
above £(/) on each chart. We have computed the zonal
and meridional energies sepuaratelv, defined as U and ¥
respectively, and presented them as well as the total
energy, U+ V. Three levels, 7, 5 and 3 db, arc repre-
sented and the heavy curve characterizes Lhc vertical
mean. The periods chosen correspond to those utilized
in the linear analysis presented in Section 4. Solid lines
denote the —3 slope.

A casual glance at Fig. 6 will show that we have
plotted energy in the scale range 3 </, #<40. However,
our previous assessment of data accuracy clearly im-

s T T e R A
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F1c. 6. Spectral distributions of zonal (U), meridional (V) and total (U+V) kinetic energy for the vertical mean and decibar
levels 3, 5, 7, for the two-dimensional index (n)—upper curves—and the planetary wave index (/)—lower curves. Sections a—d corre-
spond to dates utilized in Figs. 4 and 5. Solid lines denote the —3 slope.

plies that much of the data presented, indeed that for
I>18 and »>23, is not representative. Since these
extra data are available from our source, namely NMC,
and are utilized as initial data in the NMC numerical
prediction model, we attempt to show in Fig. 6 not
only atmospherically relevant energy distributions, but
also those distributions consequent on smoothing which
are utilized in numerical forecasting. Lest the reader
misinterpret this presentation as a criticism, this writer
feels that little is known about the influence of the
shortest scales in a numerical prediction model, espe-
cially as a function of the time period of integration,
and the availability of actual initial conditions utilized

may assist in assessing the impact which the shortest
scales have on predictability in terms of their spectral
distribution. Our predominant interest in the shorter,
non-baroclinically influenced, sczles led us to neglect
the longest waves, those less than wavenumber 5. All
amplitudes in this and subsequent analyses are normal-
ized by the total energy and the results are presented
in percent.

On comparing Figs. 6a and 6b with 6¢ and 6d, one
is immediately impressed with the variability in energy
from one wavenumber to another, a variability which
effectively disappears on time averaging. Although
these fluctuations are large, the energy amplitude does
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Ire. 7. Time dependence of wave energy as a percent of total in
wales with indices 4, 7. 15 (7a-c, respectively), for both one-
Jdimensional (Z) and two-dimensional (1) indices for all ohscrved
beights and the vertical mean. Time runs from 1 January to 28
February, 1969, with pip marks denoting missing data. See text
tor further discussion.

end to decay with wavenumber, and statistics of this
decay will be presented in quantitative form subse-
-ently. Morcover, there is some indication, in the
range of data acceptability as previously defined, that
the distribution of energy approaches the line repre-
senting 3, if not for the planetary wave distribution,
at least for that of our two-dimensional index. The
“lope steepens sharply for scales shorter than accepta-
ble, an indication that perhaps the smoothing operator
«pplied to the data tends to remove energv; however,
this interpretation must be subjected to test with data
sccurate in the shortest scales.

We note further that the energy amplitude is sys-
rematically Jarger for all described waves as one pro-
ceeds to pressure levels closer to the ground. This result
rorroborates our more qualitative observation that up-
per levels appear more zonal than lower levels and that
cvclone amplitudes are relatively larger at the surface.
Since our data are normalized, there is no indication
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here of absolute amplitude; indeed the higher levels do
attain Jarger energy amplitudes, of which the Jongest
waves of planetary scale have a disproportionate share.

Perhaps the most interesting ohservation from Iig. 6
is the significantly larger energy amplitude for all but
the largest scales in the # relative to [ index, implying
that wave for wave, more energyv resides in the two-
dimensional scale. Although we do not propose to
explain this fact, we do note that each two-dimensional
scale includes a number of planctary scales [see Eq.
(14)7]. This effect holds true for the ¢ and V' compo-
nents of the energy as well as the total energy although,
whereas the U and V' components show an equiparti-
tion of energy in the two-dimensional scales outside of
the actively baroclinic region, the 1 components show
larger amplitudes than the 7 components in the
planetary wave distributions. The latter observation
may add another positive argument for selecting n as
the appropriate scale index.
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F16. 8. Time dependence of vertical mean energy as a percent of total for waves 4, 7, 15, for both 7 and # describing the
contributions from the zonal (&) and meridional (V) components.

7. Time variation of energy by scale

Let us now turn our attention to the detailed varia-
tion with time of the energy in the individual scale
groups, £(/) and E,, their distribution with pressure,
and their U and V component contributions. Since it is
impossible to show all scales, we have selected three
waves to represent what might be considered long,
medium and short waves and given, respectively, by
index numbers 4, 7 and 15. On Fig. 7 we present the
time variation of these three waves—Fig. 7a for wave-
number 4, 7b for 7, and 7c¢ for 15-—the left-hand chart
representing the planetary index (7) and the right side
depicting the ordinal index (7). The abscissa denotes
time in days extending over the period from 1 January
to 28 February 1969, and the ordinate represents com-
ponent energy as percent of total for each of the five
observed levels and the vertical mean (the uppermost

‘curve). Pip marks on curves of this and subsequent
figures indicate times when data were unavailable.

We see from this figure that the oscillations for the
I and » indices are uncorrelated in time, regardless of
scale. Although such a result is perhaps obvious for
the longer waves, on the assumption of isotropy in

the wave domain for the smaller scales, one might
anticipate some correlation between the one and two-
dimensional representations. That the observations do
not bear this correlation out indicates that for the
indices chosen, the one-dimensional index (herein the
planetary wavenumber) is nof a suitable substitute for
describing the two-dimensional scale characteristics.
This fact will also be apparent from the remaining
presentation. As noted also on Fig. 6, the amplitude
of the energy in the ordinal index is significantly larger
than that in the planetary index for the shorter scales,
an observation which Is true at all atmospheric levels.

Whereas we have seen from Fig. 6 that the relative
energy amplitude in the waves is larger at higher
pressure levels (closer to the surface), we see from
Fig. 7 that this result occurs in conjunction with larger
amplitude fluctuations near the surface, although there
is no significant change in the frequency of oscillation.
One may conclude that energy exchange processes are
more pronounced at lower levels, an effect undoubtedly
related to the proximity of the visccus boundary layer.
Although the energy fiuctuations at higher levels are
less pronounced than near the surface, they are by no
means negligible; indeed, perhaps the principal ob-

SErv
of 1
erra
T
the
seen
the
only
indi
thos
witk
rela
com
the
nent
wav
of e
inde
the
tude
scale
ener
appt
Ti
pres
of tl
incl
U, 1
cally
ordi
valu
7 an
the
shor
Voo
amp.
than
the ¢
Fig.

senteé




BAER 601

ME 29 Ay 1972 FERDINAND
Tapre 2. Time averages and standard deviations of percent energy in scale components 0 </, 7 15 with
contributions from the zonal (&) and meridional (V) parts.
Wave- Planetary index Ordinal index
number o a U+V U 7 U+1v
‘ 0 390 247 3.74 £0.78 429 +5.1 200 =23 0 200 =£2.3
1 540 +£1.8 1.03 £0.33 6.43 £1.9 0.267+0.19 1.41 £0.31 1.67 £+0.38
2 438 £1.3 1.92 £0.91 6.29 £1.8 0.81340.52 0.12740.091 0.940-:0.52
3 2,70 £1.2 i.00 40.74 431 +£1.7 0.63140.44 0.74240.24 1.37 £0.45
R 317 £1.8 2.15 #=0.83 5.32 £2.1 12.0 £33 0.344£0.14 124 433
3 203 £1.1 217 1.0 4.20 £1.9 1.69 £0.59 1.32 £0.54 3.01 £0.77
0 1.13 £4.0 2.03 =0.94 3.16 +1.3 7.08 +3.2 1.30 40.58 3.98 +3.2
7 1.07 £0.39 219 212 3.19 £1.6 244 414 2.66 =4=1.0 5.10 £1.69
3 0.003+0.26 1.08 +0.50 1.68 30.71 1.94 +0.96 1.85 40.84 3.79 +0.96
0 0.442:4-0.18 0.91740.51 1.36 £0.04 1.72 £0.64 1.78 £0.73 3.50 =0.97
10 0.3+1£0.144 0.69940.30 1.04 £0.39 244 +0.95 1.68 £0.57 4.11 +0.89
11 0.247 4:0.10 0.558+0.26 0.8052-0.34 1.85 +0.71 1.33 +0.38 3.18 =40.75
12 0.182:£0.009 0.38440.18 0.5662=0.22 1.27 £0.50 1.19 =0.63 245 £0.95
13 0.12740.043 0.299+0.14 0.462:£0.16 0.960+0.33 0.988:£0.32 1.95 +0.52
14 0.102:+0.034 0.223£0.071 0.325+0.089 0.85440.30 0.780+0.32 1.63 +£0.46
13 0.0834-0.028 0.19440.079 0.2774+0.097 0.754+0.23 0.6294-0.21 1.38 +0.31
servation to be made from Fig. 7 is the non-constancy — defining the deviation limits of the time averaging.
i the scale energy in time and its significant and  Although the variability is again seen to be large,
crratic variability. there is a tendency toward a —3 slope in part of the
The relative influence of the I and V components to  scale region, a tendency which will now be c¢xplored in
the time variation of the total scale energy may be  greater detail.
wen from Fig. 8. Because we have already observed
the variation in pressure from Fig. 7, we present here 8. Energy distribution by scale
only the vertical mean distributions for scales with 0 b iy £ Croe mmein Eatey ditibutione
e, i = . I » " servations 2 1ed nerey dist ‘10115
ndices 4, 7 and 15 and with coordinates identical to ... ur observations ot U etk Nt -
Tha rg ] - S 7 (Figs. 6 and 9) suggest that a power relationship may
B%8 A (T 1, Loy Thie LUSCIES RERGUS BRR IS QLR ist betw the energy data and the scale index in
. - X st Batsase , enerov data and the scale
with 15 days per interval. As before, we note no cor- e;%bf _L B0 RS elierg) ! . =
welation between the [ and 2 clements of the wind ¢ ™™ . 5 5
components. For the long wave, with index equal to 4, Lop=Am?, (21)
the cncrgy }SHPI'CL_I‘”“I}mﬂtl.\' 1”.“16 z_onal (_b> Compo-  where m represents the scale index (2 for one dimen-
vat., ‘fBP(}‘]L{‘L ¥ _TOI the two-dimensional index. 'I.he sional and 2 for two dimensional), -4 and b are con-
waves wit indices 7 and 135 show rough]_v_' equlpamt.lon stants, and [5,, represents the energy in the m-scale
ight ot energy between the two components for the ordinal component. In (21), b clearly represents the slope on
wo- ‘dex with no pronounced correlation in time, although 4 1og-log graph of E, with m, and describes the ob-
s do the components ({" and 1) terd to have larger ampli-
the ‘ude fluctuations than the total (U4 V) for the shortest 556 i » Bl 156G
. . . ’ e . en.
the =cale. The dominance of amplitude in the V-component :
for cnergy for the scales 7 and 15 is again apparent and Ay
ics. appears for all times during the analysis period.
ing To assure the representativeness of the three scales 2
ude presented in Figs. 7 and 8, we have prepared statistics o 28
‘ger of the first fteen scales in Table 2. These statistics 5
les, include the time mean and standard deviation for the 5
cls. I, V and total wave component energies of the verti- g ;‘;
ive cally averaged data for both the planetary (1) and o
her ordinal or two-dimensional () indices. These tabular s -
om values do indeed compare to the observations of Figs. 2 04
ger 7 and 8; there is large variability in time for all scales, ¥
ere the U7 and V contributions are roughly cqual for the z
. shorter waves associated with the n-index whereas the = &
ire V' contribution dominates for the [-index, and the
1y amplitude of the n-components is significantly larger gl .
er. than that of the /-components for indices >7. Finally 10 15720 2530
ure the statistics for the scales 102 <30 are presented in ORDINAL INDEX ()
no Fig. 9, with the time and vertics et ata repre-
b 7 : ) ] L I.“ B R \:,1 tcal mean data repre I1¢. 9 Time and vertical mean kinetic energy with standard
) sented by the solid curve, tlarked by dotted curves deviation in two-dimensional scales 10 <x < 30.
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(N I N
23 25 27 29

F1g. 10. Statistical slope of energy with scale (both 7 and ») for different spectral regions.
Abscissa denotes terminal index value and number following curve denotes initial index.
Slopes of meridional and zonal components are also represented.

servational analog to the energv-scale relationship
anticipated from two-dimensional turbulence theory.
If we define the scale region over which & is to be
established from data by m;<m<m, where m; is the
initial scale index and #, the terminal index, and all
N=m,—m+1 values in the allowed scale range are
utilized, then by the process of least squares the data
may be fit to the function (21) yielding 4 in terms of
m; and my, le.,

N (Inm)2— (3 Inm)?

.’\/—Z (lnm IﬂEm) —Z lnlm'z lIlEm

The summations in (22) go over the allowed range of
m as defined above.

The scale limits within which we might discover
distributions (slopes) comparable to those anticipated
from turbulence theory have been defined in Section 3.
Nevertheless, both because we have data over a wide
scale range (and utilized as initial conditions for nu-
merical integration of atmospheric models), we have
chosen to calculate b for a wide range of values of m;
and m.. We show in Fig. 10 some values of slopes ()
for vertical mean time-averaged data, for the U and
V' energy components as well as the complete energy,
and for both indices / and n. The abscissa represents
the terminal index (#2,) and the numbers to the right
of each curve specify the initial indices (m;).

It is immediately apparent, in terms of meaningful
atmospheric data, that only a few points on all the

curves describing the /-scales are applicable, those
points having values /;=8, 10, 12 and /,=17. In terms
of previous investigations with this procedure, the
point /;=8, [,=17 approaches a value b=-—3 and
compares favorably with the calculations of Wiin-
Nielsen (1967) and Julian ef al. (1970). The remaining
values for the l-scales indicate the effect of smoothing
on the initial data, and highlight the rapid reduction
with scale of the zonal (U) energy relative to the
meridional (7') energy, an observation noted previously.

Diverting our attention now to the slopes computed
for the two-dimensional scale index (1), we note that
for the acceptable index region previously defined,
14<n< 25, the slope values are close to —3, and
indeed do not vary significantly for variations of the
terminal index in the range 23<#,<27. If one pro-
ceeds into the actively baroclinic region, n,<14, the
slope becomes less steep; if one neglects some baro-
clinically inactive two-dimensional scales, n;> 14, the
slope becomes more steep. These results thus tend to
corroborate our earlier contention that the range
14<n<25 is the most reasonable for testing with
respect to two-dimensional turbulence theory. A sys-
tematic difference between the slope of the U and V
contributions does appear, with the zonal (U) compo-
nent energy decreasing somewhat more rapidly with
scale.

Although the slope values described herein are
promising by comparison to turbulence theory, large
sariability in time exists for these values (already
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. 11, Time variation of slopes in the scale region 14 <n <23 for all reported levels and vertical mean, with contributions

from the U, V components. Time period is the same as in Iigs. 7 and 8.

anticipated from Iig. 6) and is expressed by the con-
fidence limits (deviations) drawn for all points on the
jto= 14 curve of Fig. 10. This variability is described in
areater detail in Fig. 11 which shows the time variation
of slope (b) for the range 14<n< 25, including both
the {7 and V contributions, and all reported levels
including the vertical average. It is hardly necessary
to ¢emphasize the large amplitude variability in time,
o variability which does not differ from one pressure
level to another, and which may actually amplify
somewhat for the individual U/, V' contributions. Con-
trary to our observation of the energy fluctuations,
there appears to be some positive correlation in slope
between the U and 1V components, principally for the
larger time period fluctuations which, if signiticant

U+Vv U \4

{Ma:

PRESSURE

1210181416 10 1214 1618
U T S v SR R § R ¥ S O

r 1012 141618
N il Y I LS
-28 -32 -3.6

SLOPE (&)

F16. 12. Vertical variation of statistical slope (time averaged)
for the two-dimensional index with terminal value of 25 and
initial value at hottom of curve. Both energy components (I/ and
1) are described and the dot on each curve denotes the vertical
average.

enough, might allow the use of either of the contribu-
tions as an indicator of the total fluctuation.

Fig. 11 also suggests a steepening of slope with
height in the atmosphere. This effect is shown more
clearly in Iig. 12 where we have plotted the slope for
the #n-index in the range of #, specified at the bottom
of the curves and terminating at =235 (similar results
were found for 7,=23 and 27). The dot on the curves
denotes the slope of the vertical mean data, all data
utilized here having been averaged in time. One sces
again, as in Fig. 10, the lower values of slope for the
V relative to the U component of energy. The result
of primary interest seen, however, is the significant
increase in slope with altitude, especially at the 250-mb
level. One is again led to the interpretation of weaker
wave activity at higher levels, but the predominance
of the 250-mb level with regard to its steep slope is as
vet unexplained.

9. Conclusion

To draw an analogy between quasi two-dimensional
atmospheric Bow in a spherical surface with the theory
of two-dimensional turbulence, we have presented a
scale representation bhased on the expansion of atmo-
spheric variables in spherical harmonics. The two-
dimensional scale index in this case is given by the
order of the Legendre polynomials, and we have shown
that this index is not only appropriate in terms of
dimensional analysis, but that waves of the same scale
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will not interact novlinearly with one another in a
turbulent flow.

We have analyzed two months of wind data at five
pressure levels and described the resulting kinetic
energy in terms of the proposed index. Baroclinic
stability calculations show that beyond index values
of 14, little instability occurs and the remaining spec-
trum may be considered quasi two-dimensional. Further
analysis of the data in terms of ¢ accuracy suggests that
mmmngiul calculations may be performed with current
data to index values of 25. Considering the energy
distribution of our data sample as a function of the
index under consideration, and in the acceptable region
of quasi two-dimensionality, we find a logarithmic de-
crease of energy with a slope near — 3, in correspondence
with the expectations from the theory of two-dimen-
sional turbulence,

Based on this result we recommend that the pro-
posed two-dimensional representation be adopted for
describing atmospheric fields and be considered in the
development of suitable parameterization of the shorter
scales. A word of caution, however, is in order with this
latter recommendation. Although the statistics on data
distribution correspond vrell with theory, the data also
show large variability in time. Whether this time
variability is of importance in affecting the larger
scales or may be eliminated by parameterization is not
clear and must be explored.
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