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ABSTRACT

MODEL POST-PROCESSING FOR THE EXTREMES: IMPROVING FORECASTS OF LOCALLY EXTREME

RAINFALL

This study investigates the science of forecasting locally extreme precipitation events over the
contiguous United States from a fixed-frequency perspective, as opposed to the traditionally applied
fixed-quantity forecasting perspective. Frequencies are expressed in return periods, or recurrence
intervals; return periods between 1-year and 100-years are analyzed for this study. Many different
precipitation accumulation intervals may be considered in this perspective; this research chooses to
focus on 6- and 24-hour precipitation accumulations. The research presented herein discusses the
beginnings of a comprehensive forecast system to probabilistically predict extreme precipitation events

using a vast suite of dynamical numerical weather prediction model guidance.

First, a recent climatology of extreme precipitation events is generated using the
aforementioned fixed-frequency framework. The climatology created generally conforms with previous
extreme precipitation climatologies over the US, with predominantly warm season events east of the
continental divide, especially to the north away from major bodies of water, and primarily cool-season
events along the Pacific coast. The performance of several operational and quasi-operational models of
varying dynamical cores and model resolutions are assessed with respect to their extreme precipitation
characteristics; different biases are observed in different modeling systems, with one model
dramatically overestimating extreme precipitation occurrences across the entire US, while another
coarser model fails to produce the vast majority of the rarest (50-100+ year) events, especially to the

east of the Rockies where most extreme precipitation events are found to be convective in nature.



Some models with a longer available record of model data are employed to develop model-specific
guantitative precipitation climatologies by parametrically fitting right-skewed distributions to model
precipitation data, and applying these fitted climatologies for extreme precipitation forecasting. Lastly,
guidance from numerous models is examined and used to generate probabilistic forecasts for locally
extreme rainfall events. Numerous methods, from the simple to the complex, are explored for
generating forecast probabilities; it is found that more sophisticated methods of generating forecast
probabilities from an ensemble of models can significantly improve forecast quality in every metric
examined when compared with the most traditional probabilistic forecasting approach. The research
concludes with the application of the forecast system to a recent extreme rainfall outbreak which

impacted several regions of the United States.
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Figure 6.6: Hydrograph of the Blanco River at Wimberly, TX from 19 May 2015 to 29 May 2015,
indicating the peak river level near 0500 UTC (0000 CDT) on 24 May 2015. Plotted values after
this time reflect forecast values at that time, and not observed values. Image taken from:
http://www.srh.noaa.gov/ewx/?n=memorial_weekend_floods 2015. .........cccceeerrrererercrenns 189
Figure 6.7: All GEFS/R precipitation accumulation forecast for the 24-hour period ending 1200 UTC on
May 24 2015 based on the 0000 UTC 23 May 2015 initialization appear in panels (a)-(k) for the
control and subsequently members 1 to 10, in sequence. Panel (l) reproduces the Stage IV
precipitation analysis over the same period shown in Figure 6.5, and is reproduced here for
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Figure 6.8: Same as Figure 6.7, but precipitation values plotted with respect to maximum return period
(among 1-year, 2-year, 5-year, 10-year, 25-year, 50-year, 100-year) exceedance forecast or
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Figure 6.9: Precipitation forecasts for the 24-hour period ending 1200 UTC on 24 May 2015 based on
each model’s 000 UTC 23 May 2015 initialization. Panel (a) depicts the NSSL-WRF forecast, (b)
corresponds to the NAM-NEST, (c) do the HIRESW-ARW, and (d) to the HIRESW-NMM. ........ 195
Figure 6.10: Same as Figure 6.9, except precipitation values plotted with respect to maximum return
period (among 1-year, 2-year, 5-year, 10-year, 25-year, 50-year, 100-year) exceedance
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Figure 6.11: Comparison of several basic NIVA methods for generating point forecast probabilities.
Probabilities correspond to the event of exceeding 2-year, 24-hour return period thresholds via
the PDV method for the 12-36 hour forecasts of the 0000 UTC 23 May 2015 forecasts
initialization. Panel (a) applies PDV; panel (b) applies logistic regression to a 3-member
ensemble as discussed in Chapter 5; panels (c) and (d) plot PUR FPs and the difference from
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PDV, respectively; and panels (e) and (f) depict NDV FPs with a neighborhood radius of 20 grid
boxes (NDV20), and its departure from PDV FPs. All methods, unless specified otherwise, are
applied to an ensemble consisting of full GEFS/R, NSSL-WRF, NAM-NEST, and the HIRESWs, for
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Figure 6.12: Comparison of several neighborhood methods for generating point forecast probabilities.
Probabilities correspond to the event of exceeding 2-year, 24-hour return period thresholds via
the PDV method for the 12-36 hour forecasts of the 0000 UTC 23 May 2015 forecasts
initialization. Panel (a) applies NDV with a neighborhood radius of 20 grid boxes (NDV20), and
panel (b) applies NDV with a neighborhood radius of 50 grid boxes (NDV50). Panel (c) plots FPs
from DNUR with a 20-box radius (DNUR20), and (d) depicts the probability difference from NDV
with the same radius. Panels (e) and (f) plot ENUR20 FPs and the corresponding probability
difference from NDV20, respectively. All methods applied to ensemble consisting of full
GEFS/R, NSSL-WRF, NAM-NEST, and the HIRESWs, for a total of 15 ensemble members........ 200
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1 Introduction, Motivation, and Overview

Heavy precipitation and associated flooding and flash flooding have an enormous impact on many
different facets of society. As a weather hazard, with 81 average annual deaths, floods are responsible
for more deaths in the United States over the last 30 years than any other single weather hazard,
including tornadoes, hurricanes, lightning, and other windstorms. Floods can heavily damage or destroy
buildings, roads, crops, and other property; in 2014, flash floods were responsible for more economic
damage than any other weather hazard, with nearly $2.5B in reported flash flood damages occurring
that year. Though some damages from extreme rainfall and flooding are inevitable, appropriate
preparedness can greatly alleviate damages and almost completely eliminate flood fatalities. As such,

accurate forecasts of extreme precipitation and flooding are of immense value to society.

Ultimately, flood forecasting is what most directly addresses societal impacts associated with
heavy precipitation. Flood forecasting is performed by forcing a hydrologic model with precipitation
forecasts from an atmospheric model, or numerical weather prediction (NWP) model. Both
observations and modeling has shown that hydrologic response is extremely sensitive to the amount of
precipitation, the location where the precipitation falls, and antecedent conditions. Thus, even what is
often considered a fairly good precipitation forecast may produce a very inaccurate response in the
hydrologic model, resulting in a poor flood forecast. Due to these high sensitivities, using hydrologic
models for real-time flood and especially flash flood forecasting is presently exceedingly difficult, and
perhaps not yet feasible. There nevertheless exists a strong correlation between precipitation amount
and associated impacts. This correspondence is not uniform, however. In some areas, such as the
southeast United States, an inch or two of rain over a day-long period is commonplace, and both the

native ecosystem/soils and man-made infrastructure are adapted to accommodate this rainfall with



minimal impacts. In areas of the arid west, this amount of precipitation is much rarer, and much larger
flood impacts may be experienced. Typically, due to adaptation to the local precipitation climatology,
local impacts associated with precipitation are more closely tied to the rarity of receiving a given
amount of precipitation over a specified period than impacts being simply associated with a fixed
precipitation amount. It therefore follows that, without performing hydrologic modeling, a useful proxy
for the impacts of extreme precipitation is the quantification of the rarity of forecasted precipitation
accumulation at a given location over a particular length of time. Often in fixed frequency applications
when concerned only with rare events, event frequency is expressed by means of return periods (RPs)
or, equivalently, average recurrence intervals (ARIs). In this context, an N-year RP refers to a long term
average occurrence of once per every N years for the specified location and precipitation accumulation
interval (Al), though there will of course be N-year periods experiencing several events and other
periods experiencing no events at all. For a given location and Al, the precipitation accumulation
required yielding an ARI of exactly N-years is termed the N-year RP threshold. Because of the impacts
associated with extreme precipitation, the utility of accurate locally extreme precipitation forecasts, the
immense challenges associated with real-time hydrologic modeling, and the utility of precipitation
accumulation rarity on hydrologic impacts, the research conducted and presented here seeks to

improve real-time forecasts of locally extreme precipitation from the return period framework.

There exist many plausible routes to seek in attempting to achieve the goal of improving
forecasts of locally extreme precipitation. The question is which avenue or avenues will best achieve
this goal given the NWP models and forecast products in place today. More than a decade ago, Fritsch
and Carbone (hereafter FC04) laid out some of the leading challenges in quantitative precipitation
forecasts (QPFs) at the time, and many remain true today. They argued that QPF, and in particular
warm-season QPF, is the worst forecast predictand of interest in all forecast systems of the time, and

the performance gap with other predictands was increasing since warm-season QPFs were not



improving as quickly as other areas. They argue that the warm-season QPF challenge will continue for
the foreseeable future, and given the extent of the societal impact of precipitation and especially heavy
precipitation, great effort must be invested towards alleviating the QPF deficiencies that existed then
and remain today. The article presented a targeted research and development plan for moving forward
as a community. Their first key goal was the generation and dissemination of forecast guidance in
probabilistic form. FCO04 argues that this is critical for several reasons: 1) the importance of probabilistic
forecast information for end user decision scenarios and risk management; 2) the limited skill and lead
times over which deterministic guidance exhibits skill argue for a probabilistic framework on top of a
deterministic foundation; 3) the incomplete representation of moist convection, especially in models
which by necessity apply a cumulus presentation fails to adequately capture the statistical properties of
moist convection; and 4) statistical post-processing of model forecasts can alleviate inherent model bias
and quantify forecast uncertainty, even absent an improved understanding of the physical precipitation
processes. FC04 also proposed several additional specific areas that are critical to target and improve
going forward: 1) acquiring an improved understanding of the economic and social aspects of QPFs so
that the full value of the available meteorological information may be realized; 2) develop new models
and refine existing models to better represent physical processes such as cloud microphysics and moist
turbulence; 3) improving understanding of microphysics and convective systems, particularly the
mechanisms for propagation, dissipation, and regeneration; 4) improving atmospheric observations,
with particular emphasis on widening precipitation coverage both at the surface and aloft, and properly
observing aerosol extent and composition; 5) improving data assimilation; 6) improving probabilistic
forecast guidance through a combination of observationally-derived, model-derived, and blend-derived
guidance, depending on the lead time and application; 7) improving QPF verification methods, especially
in relation to end user goals; and 8) develop products of use to end users, with a particular emphasis on

hydrologic modeling and forecasting. Lastly, FCO4 outlined a roadmap for how to best accomplish these



goals. They separated these action items into ‘early’ and ‘continuing’ activities; many items, even in the
‘early’ stage category, are still very much ongoing, and some still in preliminary phases. Important
action items that have received considerable improvement since the publication of this manuscript
include: 1) “compil[ing] a high-quality, high-resolution database of precipitation properties”; 2)
“develop[ing] improved metrics for verifying mesoscale precipitation forecasts in both time and space,
especially for guidance provided in gridded probabilistic form”; and 3) “evaluat[ing] the benefit from
very-high horizontal and vertical resolution observations over the continent”. These advancements
have made the ability to advance in many of the other target areas much more feasible than it was a
decade ago. While it is not realistic for a single research project to address all of these goals or all of the
recommended action items, the research proposed and explored herein attempts to address many of
these points which, to date, have been neglected and/or underexplored. In particular, with respect to
the proposed action items, this study aims to: 1) “combine ensemble techniques and traditional
statistical postprocessing techniques to provide calibrated probabilities, ensemble fields, and unbiased
ensemble statistics”; 2) further “develop improved metrics for verifying mesoscale precipitation
forecasts ... for guidance provided in gridded probabilistic form”; 3) “determine appropriate
methodologies to evaluate case-dependent uncertainty for precipitation events”; and to a lesser extent
4) “construct nowcasting techniques that utilize high-resolution observations and numerical model
output to generate categorical probabilistic QPFs”; 5) “assess the feasibility of periodically producing a
retrospective archive of the high-resolution ... model output and ensemble runs of that model”; and 6)
“develop techniques to integrate ensemble precipitation forecasts from different forecast systems
ranging from nowcasts to regional to medium range to climate into a seamless and consistent set of
ensemble forcing”. In addressing so many of these action goals, it is hoped that this research will
significantly advance the field towards improved probabilistic QPF prediction and in so doing, contribute

to the forecasting community at large.



As FC04 alluded, human forecasting in the modern age, despite substantial advances in both
numerical models and our physical understanding of atmospheric processes, presents new challenges.
There is an overwhelming amount of model guidance produced each day. Many nations and/or regions
have their own operational center with their own global model and global ensemble, in addition to
possible regional modeling efforts as well. These often run two to four times daily, and operational
global ensembles often range in size from 10-50 members- each a distinct run to consider. In the United
States, the National Centers for Environmental Prediction (NCEP) runs a full-scale regional 21-member
ensemble four times daily as well. In addition to operational products, centers often also have
experimental products running on a regular cycle as well: upgrades to existing models running in
parallel, high-resolution implementations of existing models, or completely new modeling frameworks.
The amount of modeling produced solely from the operational centers around the globe is already
daunting for a forecaster to exhaustively inspect and ingest, but it is still only a portion of the total
modeling data available. Specialized forecast centers such as the National Severe Storms Laboratory
(NSSL) and research institutions such as the National Center for Atmospheric Research (NCAR) have their
own modeling efforts, both with deterministic runs and high-resolution ensembles. Many universities
also run real-time model simulations with varying levels of dedication, from daily runs of a coarse model
to full-scale regional ensembles or multiple runs per day of very high resolution NWP models. All told,
there are often hundreds of model runs a forecaster has at his or her disposal to inform their forecast.
The forecaster’s challenge is to intelligently use all of this guidance to produce the best possible
forecast. But with the amount of data available and new guidance constantly emerging, it is nearly
impossible for a human to thoroughly inspect and sort through the full suite of information at their
disposal. Challenges exist for the modern forecaster on the actual forecasting front as well. Forecasting
is not limited to simply making a single deterministic forecast and hoping to minimize the error of that

forecast. A robust forecast must also include uncertainty quantification, and a probabilistic assessment



of event likelihood, particularly for rare, high-impact events for which most end users are highly
sensitive to the verifying outcome. A computer can ingest this large magnitude of forecast data much
more quickly than a human; the question is whether an automated algorithm can use the forecast
information as effectively as a skilled human forecaster. The forecast system (FS) developed herein
seeks to examine this question in the limited capacity of probabilistic locally extreme precipitation
forecasting. The FS will not generate traditional QPF predictions. Instead, it seeks to ingest a large
guantity of NWP model guidance from numerous sources and utilize it to generate probabilistic

forecasts of locally extreme precipitation of varying degrees of rarity, or extremeness.
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Figure 1.1: Schematic of forecast system pipeline.

Figure 1.1 provides a rough overview of the steps involved with this FS. The process begins with
ingesting NWP guidance from different sources and of different scales and resolutions. After providing

necessary background in Chapter Two, an examination of the performance and characteristics of these



individual modeling systems with respect to locally extreme precipitation prediction is presented in
Chapter Three. As will be discussed in more detail later, individual modeling systems each exhibit biases
associated with precipitation; with extreme events, it is often the case that these biases are exacerbated
or new biases emerge (e.g. Marzban 1998). These biases vary from model to model. An examination
and evaluation of approaches to correct for these individual model biases is made in Chapter Four. For
reasons to be explained in more detail later, performance and bias explored in Chapters Three and Four
only examine bulk behavior- in the case of bias, forecasts that are always too high or always too low.
But for numerous reasons, models can also have different biases under different meteorological
regimes, and also perform more or less skillfully on average depending on the meteorological context.
Model training uses past forecasts from all members of the ad-hoc ensemble to attempt to identify
these dynamic biases and patterns and make appropriate corrections based on historical performance.
These methods can also correct for persistent displacement errors more readily than the bulk methods
of Chapter Four. Now, having ingested all model guidance and optionally performed any bias correction
to the members or the ensemble as a whole, the forecast information is applied towards generating
probabilistic forecasts of locally extreme rainfall framed in the context of return periods. Various
techniques for probability generation and the ensemble training methods are explored in Chapter Five.
An application of the forecast system, including examining the effects of the individual pipeline
components, on a recent extreme rainfall ‘outbreak’ is used to synthesize and solidify the discussion of
the previous chapters and is presented in Chapter Six. The overall results of the research will be

summarized in Chapter Seven.



2  Background

The research conducted in this study is somewhat technical, borrowing from knowledge of many
different fields including meteorology, statistics, mathematics, and computer science. Due to the
breadth of the information and knowledge used, this chapter aims to present a concise but sufficiently
thorough overview from all of the background fields in order for any scientifically and mathematically
inclined reader to adequately comprehend and appreciate the research presented in subsequent
chapters. This chapter is laid out in seven sections, each covering a different background area. Section
2.1 presents a brief overview of underlying principles and history of NWP, with an emphasis on
statistical forecasting techniques and those methods which pertain to extreme precipitation post-
processing. Section 2.2 concerns specific NWP models that will be used as input data for the research
presented in future chapters. Section 2.3 provides an introduction to probabilistic forecasting and
ensemble prediction systems (EPSs). Section 2.4 gives an introduction to extreme value theory (EVT)
and associated applications, while Section 2.5 describes observational precipitation datasets used by
this research and a brief overview of the United States extreme precipitation climatology. Section 2.6
provides a brief description of machine learning algorithms applied in subsequent research, and Section

2.7 concludes with a targeted presentation of the forecast validation methods used for this study.

2.1  Numerical Weather Prediction and Statistical Forecasting

2,11 Dynamical and Statistical Modeling

There exists a dichotomy of sorts in atmospheric modeling. Traditionally, atmospheric modeling
and forecasting is separated into two camps: dynamical modeling and statistical modeling. Both
methods have a long history of research and numerous approaches to application. However, all

approaches share some commonalities. In dynamical modeling, one begins with a numerical



representation of the current state of the atmosphere. Often, this is represented by having current
numerical values for a suite of atmospheric variables on a three-dimensional grid. Equations governing
the evolution of the atmosphere are then used in conjunction with the initial state to ascertain a
representation of the atmosphere at future times. The process of taking observational data and
previous model forecasts to generate a new representation of the current atmospheric state is known as
data assimilation; using the equations to predict future states from there is termed model integration.
Model resolution refers to the smallest scale physical processes that the dynamical model is able to
adequately resolve. Model resolution is largely a function of model grid spacing; an approximate rule-
of-thumb being that dynamical models can begin to resolve phenomena occurring on scales at least four
to five times the model grid spacing in the dimension of interest. Obtaining an accurate representation
of the atmosphere may require these smaller-scale phenomena being represented; this is done by
means of parameterization. Common examples include cumulus, microphysics, and land surface

parameterizations; these and others will be discussed in more detail in section 2.2.

Statistical modeling does not directly simulate the atmosphere. Instead, it uses historical
observations to derive statistical relationships between fields of interest, predictands, and other
observables, or predictors. There are a plethora of approaches to implementation, including regression,
clustering, and more advanced machine learning approaches. Some of these will be discussed in more
detail in section 2.6. Statistical-Dynamical modeling, often considered a subset of statistical modeling, is
in essence the application of statistical forecasting approaches to dynamical model variables. This is
primarily the approach that will be used in this research. Targeted historical and current developments

in statistical-dynamical modeling will be discussed in the subsequent subsections of this section.



2.1.2 Model Output Statistics and Linear Regression

Model Output Statistics, or MOS, is the first major operational implementation of a statistical
forecasting system for general-purpose forecasting. Initially developed beginning in 1965, and
implemented operationally from 1976 onwards, MOS has been the operational state-of-the-art for four
decades. Itis based on the simple, yet effective, technique known as multivariate linear regression

(Glahn and Lowry 1972).

In multivariate linear regression, one begins with a set of predictands of interest. For MOS, this
includes temperature, dew point, wind speed, wind direction, precipitation, ceiling, visibility, and cloud
cover at a variety of lead times separated by three to twelve hour intervals, depending on the specific
MOS product. Associated with each predictand is a set of candidate predictors. For MOS, there is a vast
suite of N candidate predictors; some are ‘static’, such as station elevation, latitude, and longitude;
sinusoid functions of the time of day and time of year; and climatological weather at the station, while
others are ‘dynamic’, changing from day to day and year to year. ‘Dynamic’ variables may include both
current observations in addition to predictions from an operational dynamical model. It should also be
noted that some predictors are ‘derived’; they’re functions of a base predictor, such as the square of the
dynamical model’s temperature forecast (Glahn and Lowry 1972). Fitting a regression model involves
using training data to fit an equation of the form: y = BX + &, where y is a vector of length m, with
each element corresponding to a unique observation for the predictand of interest, X an n by m matrix
populated by the n predictor values corresponding to each of the m predictand observations, 8 a
weights vector of length n relating each predictor to the predictand, and & an error vector of length m,
effectively the residual between the predictand and the corresponding result of the product of X for
each observation (Wilks 2011). The goal in fitting a linear regression model is to minimize the sum of

the squared residuals: SSR(f) = ’,;”zl(yq - xqﬁ)2 = 2’121 eqz. The weights, or equation coefficients,
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B, are fixed to minimize this function: B = argmin(SSR(B)). The minimum can be obtained by

differentiating the SSR function and equating it to zero:

0= Gy xaBP =2 > 3 - 2yB B
= — — X = — — X X
dﬁ g=1 Yq q dﬁ qzlyq Ya*q q

M _
= Zqzlﬁ(ytzz — 2y,%gB + x4°B %) = 2(x4*B — y4%x,)

xzﬁ = yx (note: x is mxn, y is 1xm)
B=(x"x)"x"Ty

Once coefficients for the B vector have been computed, using the statistical model to generate
predictions is trivial; the new predictor values are gathered, and the inner product of the predictor
vector x with B yields the model prediction for the predictand of interest, j. However, one important
step of the model development process has been overlooked: the selection of predictors to use in the
statistical model. In statistics and machine learning, the bias-variance tradeoff refers to the problem of
minimizing two sources of error in fitting a statistical model. Error from bias occurs due to erroneous-
often too simple- assumptions about the behavior of the predictand relative to the predictand.
Variance, in contrast, refers to the statistical model’s sensitivity to the training data; a high variance
model will change drastically when trained on two different samples extracted from the same
population, while a low variance model will not. High variance models are often said to be overfit- the
model is fitting the noise in the training data rather than just the underlying predictor-predictand
relationship- while high bias models are often said to be underfit. Ultimately, one aspires to have a
model that is both low bias and low variance; however, the bias-variance tradeoff dictates that
decreasing model bias results in increasing variance, and decreasing variances increases model bias. In

the context of linear regression, the model assumption is that the model predictand may be described
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by a linear combination of the model predictors. As fewer predictors that are used, stronger
assumptions are made on the predictive capability of the retained predictors, resulting in an increasingly
biased model. In contrast, increasing the number of predictors increases the propensity to fit noise in
the training data, resulting in higher variance solutions. For this reason, it is not desirable to simply use
all available candidate predictors; doing so will often lead to a high variance, overfit model solution. The
challenge is to select a subset of the candidate predictors that have a strong predictive relationship with
the predictand, but is sufficiently small to avoid overfitting (Murphy 2012). This procedure is known as
feature selection. MOS implements feature selection through a fairly simple scheme known as the
forward stepwise implementation of screening regression. Screening regression is a greedy algorithm
that operates by, beginning from the pool of candidate predictors, retaining the one with the highest
correlation with the predictand. Next, the predictor from the remaining set of candidate predictors
that, combined with the set of already-retained predictors, explains the largest proportion of predictand
variance, is selected and retained. This procedure is repeated until a termination criterion is satisfied,
typically either a fixed number of predictors have been selected, or until further predictor selection fails

to explain a specified threshold of additional variance (Glahn and Lowry 1972).

MOS is run one, two or four times daily, for numerous atmospheric variables enumerated in part
above, at lead times from 6 hours after initialization to approximately one week, with detailed guidance
being available out to 84 hours past initialization. This procedure is used for approximately 1700
stations nationwide, with independent equations being used at each station. Model equations are
retrained periodically, and different equations are often applied for different seasons. MOS output
trained from the operational Global Forecast System (GFS) and a separate MOS trained from the North
American Mesoscale (NAM) model are run and publicly disseminated by the National Weather Service
(NWS). Operational MOS products do make quantitative precipitation forecast (QPF) predictions.

However, rather than predict QPF directly, the MOS QPF predictand is discretized into categories, or
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bins. Category 0 is defined as zero measurable precipitation, Category 1 one hundredth to less than one
tenth of an inch, Category 2 from one tenth to less than one quarter of an inch, Category 3 from one
quarter to less than one half of an inch, Category 4 from one half to less than one inch, Category 5 from
one to two inches, and Category 6 refers to at least two inches of precipitation over the accumulation
interval (Dallavalle and Cosgrove 2005; Gilbert et al. 2008). While this has use in ascertaining the
general ‘wetness’ of the day, for a variety of reasons, it has limited use in many direct, quantitative
applications of QPF. First, it has no regional awareness of the precipitation climatology in its
formulation; 2” of rain may be exceedingly rare in some parts of the country, while relatively common in
other area. Second, for extreme precipitation issues, having an unbounded threshold at 2” may not be
high enough; it may be the case for some applications that 2” of rain will not yield any problems, but 6”
of rain can cause a catastrophe. The MOS QPF formulation has no resolution under these
circumstances. Third, even the bounded categories can present substantial problems in these sorts of
situations. Suppose a user is interested in 24-hour accumulations, and MOS QPF variables are presented
in 12-hour accumulations (as they are, in the short-range message). In the continuous QPF prediction
context, this is not a problem: the user simply sums Q12, and Q12, to determine Q24. However, in the
categorical reality, Q12, and Q12, may be “Category 5” and “Category 5”, which could correspond to a
Q24 anywhere between 2” and 4”. Again, this difference may be very significant, with a 2”

accumulation not requiring any preparative action, while a 4” accumulation does.

Despite its strengths, MOS does have several limitations which this research attempts to
overcome. As noted above, MOS does not attempt to make numerical QPF predictions, limiting its utility
in many forecasting applications. Is this simply a flaw in design? No, probably not; linear regression,
while powerful, does have limitations. First, it is likely that the relationship between model predictors
and continuous QPF predictand are complex, and the relationships may be non-linear. Second, linear

regression is not especially well equipped for handling rare or extreme cases; it can be over-influenced
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by outliers, leading to poor predictions throughout the QPF spectrum. These reasons, among others,
likely motivated the decision to have QPF be a categorical, rather than continuous, predictand.
Nevertheless, there is a need for continuous QPF prediction, and also a need for forecasts that can
robustly handle extreme cases. Statistical systems research geared towards these forecast applications
are explored in the following sections. MOS also does not directly provide any uncertainty information
about its QPF values, instead only giving uncertainty by means of the pre-determined categorical ranges
above. As will be discussed in sections to follow, probabilistic and uncertainty information can be of

immense value to decision-making end users (Wilks 2011; Fritsch and Carbone 2004).

213 Other Precipitation Post-Processing

Many different methods and techniques exist for QPF post-processing. As alluded in the
discussion of MOS above, even in the context of a single algorithm, there are often many different
options, including but not limited to how define the QPF predictand (e.g. categorical vs. discrete), the
selection of predictors, and the optimization and/or verifying function. Despite the vast array of yet
unexplored algorithms and applications, many approaches have already been attempted and pursued.
This subsection will discuss a few of the most significant developments, at least in the context of the
research conducted herein. It should be noted that this should not be taken as a completely
comprehensive literature review, as the full development of precipitation post-processing is too

involved to discuss completely here.

A lot of early work on precipitation forecasting had little focus on calibration and post-
processing. In the early years of operational global ensembles, more research effort focused on
ensemble prediction system (EPS) design and comparing raw EPS derived forecasts, either via the
ensemble mean or probabilities based on the proportion of ensemble members exceeding a threshold,

to traditional deterministic products. One example of this is Buizza et al. (1999), which verified the
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ECMWF ensemble for different seasons, thresholds, and resolutions. Later work (e.g. Clark et al. 2011;
Mullen and Buizza 2011) looked at the effect of ensemble size and model resolution on raw ensemble
PQPF skill. Other very early work in this area focused on the relationship between probability of
precipitation (PoP) and QPF. Wilks (1990) considered categorical QPFs and conditional precipitation
distributions, either conditioned on whether measurable precipitation occurred, or conditioned on the
approximate subjective PoP issued for a given forecast. A discernable PoP-QPF relationship was
identified over all sites examined, namely higher PoPs corresponded to a distribution of precipitation
accumulations shifted towards higher amounts. This relationship was exploited to improve probabilistic
QPF skill. The concept of using exploiting the PoP-QPF relationship for the purpose of predicting QPF
has evolved and been refined over the years, such as in Bremnes (2004). In Schaffer et al. (2011), the
relationship was applied in the opposite direction; QPFs were used to generate calibrated PoP forecasts.
The authors again demonstrated the utility of this relationship for forecasting purposes, and further
demonstrated the utility of using neighborhoods- forecasts values surrounding a given forecast point- to
inform the local PoP forecast. The neighborhood concept was perhaps first demonstrated to be a
computationally-efficient way to generate probabilistic information from a deterministic system in Theis
et al. (2005). Here, neighborhoods were applied both spatially and temporally in generating
probabilistic QPFs. This technique was also applied to a high-resolution ensemble in Schwartz et al.
(2010), and robust result were seen here as well. Neighborhood-based approaches are seen as a
method to increase forecast information without the added computational expense of an additional

dynamical model run; the idea shows great promise, and will be further explored in detail in Chapter 5.

Hamill et al. (2004) was perhaps the first paper to discuss and advocate using model reforecasts-
historical re-runs of a new model- to improve (statistical) forecasts for a variety of fields, including
precipitation. Hamill and Whitaker (2006) demonstrated the value of reforecasts for QPF using an

extremely coarse T62 version of the Global Forecast System (GFS) model. The authors used forecast
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analogs, identifying historical cases that were deemed similar to the current forecast, to generate an
ensemble of similar historical cases. The observations from these cases could then be used to predict
and/or modify the current QPF, and the authors were able to do so in a way that significantly enhanced
forecast skill at a variety of accumulation thresholds. Wilks and Hamill (2007) used the same dataset to
compare three different methods- Logistic Regression, Nonhomogeneous Gaussian Regression, and
Gaussian Ensemble Dressing- on their ability to make probabilistic forecasts for medium range
precipitation. All methods showed some utility at different locations and lead times, and using a long
15-25 year reforecast dataset for training as opposed to a shorter 1-2 year training period significantly
improved forecast skill for all algorithms tested, resulting in approximately a one-day improvement in
forecast skill. This work was furthered with an Extended Logistic Regression implementation on ECMWF
ensemble reforecast data in Roulin and Vannitsem (2012). Further reforecast work continued in Hamill
et al. (2008) considered reforecasts both from the GFS used previously in addition to those from the
European Center for Medium Range Forecasting (ECMWF). The authors examined multiple ways for
generating forecast probabilities using these reforecasts. They first considered ‘raw’ ensemble
probabilities (termed Point Democratic Voting in Chapter 5) and found these to be very unreliable and of
minimal or negative skill for both forecast systems examined. Calibration with reforecasts was able to
improve reliability substantially and yield forecasts with positive skill. The difference between skill
comparing forecasts calibrated with long and short training samples was greatest at higher
accumulation thresholds, suggesting the particular importance of increased training data for rare or
extreme events. All this research, among others, demonstrating the value of reforecasts for improving
forecast skill via post-processing led to the creation of a much higher resolution, albeit still very coarse,
T254 11-member global ensemble based on the 2012 version of the Global Ensemble Forecast System
(GEFS; Hamill et al. 2013). As will be discussed in more detail, this dataset will be used extensively

throughout this research.
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Other forecast calibration approaches have been explored as well. Applequist et al. (2002) was
one of the earliest studies to comprehensively evaluate numerous methods for generating forecast
probabilities (FPs) for precipitation from a deterministic model. While only examining fairly low
accumulation thresholds, the study compared linear regression, logistic regression, neural networks,
discriminant analysis, and a classifier system for generating FPs. Logistic Regression was found to be the
best performing algorithm in this study, with traditional linear regression performing the poorest for the
QPF problem. Raftery et al. (2005) introduced the Bayesian Model Averaging (BMA) technique to the
field and applied it to the application of ensemble FP calibration; this approach was extended to PQPF in
Sloughter et al. (2007). The same group of authors went on to compare other calibration methods (e.g.
Gneiting et al. 2007). Yussouf and Stensrud (2008) demonstrated the utility of a simple 12-day running

average binning technique for calibrating probabilistic QPFs for a multi-model ensemble.

Many other techniques and applications have been explored. The next section will discuss a

subset of those which have targeted extreme event forecasting.

2.14 Rare Event Forecasting and Extreme Value Post-Processing

Early work in this area that has been refined and improved in more recent years is the Extreme
Forecast Index (EFI) developed at the European Center for Medium Range Forecasting (ECMWF). The
EFI, first described in Lalaurette (2003), does not directly forecast any atmospheric field; instead, it
attempts to quantify how the probabilistic forecast from an Ensemble Prediction System (EPS) compares
with the model climate distribution for the prescribed atmospheric variable, location, and time. In so
doing, the EFI acts as a qualitative forecasting tool in alerting forecasters to the potential for highly rare

and anomalous occurrences. The EFl is used operationally at the ECMWF today.

! This sub-chapter makes extensive references to material presented in subsequent background chapters,
particularly Section 2.4. Refer there for more information.
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Friederichs and Hense (2007) developed censored quantile regression methodology to statistically
downscale extreme precipitation over Germany. Regression is performed and performance assessed for
events as rare as the 99" percentile. This is then applied in Friederichs and Hense (2008) towards
generating PQPFs for 12-hour precipitation accumulations based on the operational GFS at that time.
These concepts are further refined in Friederichs (2010), and later in Bentzien and Friederichs (2012),
where the authors use a parametric mixture model approach to aid PQPFing over Germany using a high-
resolution time-lagged ensemble. They apply fitted gamma, lognormal, and inverse Gaussian
distributions and apply a generalized Pareto tail to aid in forecasting extreme precipitation amounts.
This work affirmed previous findings that large amounts of data are needed for extreme precipitation
guantiles, and that the behavior in the extremes being different than more typical deficiencies, with the
base distributions performing acceptably until the extreme quantiles are reached, when the GPA tail is

found to significantly improve model skill.

Various other techniques have been employed for forecasting extremes. Marsh et al. (2012),
extending work from Sobash et al. (2011), uses historical model spatial error characteristics in a
convection allowing model (CAM) to fit a kernel density function, which is then applied to calibrate
probabilistic QPFs from a deterministic simulation. Roebber (2013) used evolutionary program (EP)
techniques in a mildly-to-highly idealized frameworks and compared the EP-derived ensemble
characteristics with those of a dynamical ensemble. He found that the EP ensemble performed better
than the dynamical model ensembles at the extremes; specifically, he noted that EP forecasts had higher
resolution (see Sections 2.3, 2.7). Williams et al. (2014) compared many of the techniques employed in
papers discussed in Section 2.1.3- logistic regression, nonhomogenous Gaussian regression, BMA, and
ensemble dressing- in a highly idealized framework and assessed their ability to appropriately perform

bias correction in extreme cases. Most methods (except logistic regression) performed similarly well,
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but great value was identified in allowing the bias correction to vary as a function of the predictand

mean of an EPS. Many other related studies exist.

Recently published Scheuerer and Hamill (2015) is among the first studies to begin investigating
the quantitative diagnosis of model QPF climatologies to enhance QPF forecasting. Scheuerer and
Hamill use a complex algorithm on the Global Ensemble Forecast System Reforecast (GEFS/R) model,
described in Section 2.2 below, to generate probabilistic forecasts over the contiguous United States
(CONUS) for 1, 10, and 25 mm exceedance probabilities over 12 hours. They identify the unique
challenges faced with QPF post-processing, which will also be conducted in the research to be presented
herein: 1) QPFs have a unique probability distribution, with a positive probability of exactly zero
precipitation and a continuous distribution of some flavor for positive amounts; 2) Forecast uncertainty
is positively correlated with QPF magnitude; and 3) Infrequent occurrence of high precipitation amounts
necessitates a vast amount of training data to appropriately handle these cases. They argue that the
demand for training data associated with the third challenge is greatly alleviated using parametric, as
opposed to non-parametric methods, provided the necessary assumptions made in the application of a
parametric technique are sufficiently accurate. This distinction will be discussed in more detail in
Section 2.4. Consequently, to combat challenges (1) and (3), they fit censored, shifted gamma
distributions (CSGDs) to observed precipitation accumulations. Gamma distributions will be described in
more detail in Section 2.4.3; these distributions are shifted such that the valid interval (see Table 2.2
below) may begin below 0, and are censored such that the probability of zero precipitation is the
integral of the probability density function (see 2.3.3) from -eo to 0. A regression model is then fit to link
local observed CSGD parameters to the ensemble statistics of the GEFS/R, and this is used to generate
PQPFs. The authors found that this approach significantly outperformed the analog method discussed
above. They also assessed the algorithm’s sensitivity to training data length by testing 1-year and 3-year

periods in addition to the primary 12-year dataset; it was found that shorter datasets where highly
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prone to overfitting, resulting in significantly diminished forecast skill, reliability, and sharpness (see
Sections 3.3 and 3.7), but the problem could be at least moderately improved by the inclusion of points
exhibiting similar characteristics in the model training. The study did not, however, investigate truly
extreme precipitation thresholds; the highest precipitation threshold examined was 25 mm over 12
hours, which is below the 1-year return period threshold for the same accumulation interval over most
regions of the country. Since the algorithmic design and implementation is thought and argued to be

appropriate for forecasting extremes, it is presented in this section of the discussion.

2.2 Model Information and History

Table 2.1: Dynamical models used or being planned for use in this research. Data availability,
information about horizontal and vertical resolution, and the various parameterizations used in each
model is included. Some ensemble systems are grouped into a single entry; for these, the number of
members using a particular parameterization is included in parentheses or, if absent, applies to all
members. Horizontal grid spacings with slashes denote a nested grid.

Horizo
ntal

Grid
Spacin
4

GEF 12/8 PRE T254 42 GFS SAS PM  Zhao, Noah RRT RRT

S- 4 S 2 Carr M M
RFC (zC)

ST

GEF 3/14 PRE T254 42 GFS SAS PM  ZC Noah RRT RRT
S-RT S 2 M2 M

GFS- 6/09 1/1 T574 64 GFS  ArSc  PM  Simple Noah RRT RRT

OLD 5 * M M
GFS- 1/15 PRE T1534 64 GDA  SAS ED ZC Noah RRT MclC
NE S S 2 MF M A

w

NA 6/09 PRE 12km 60 NDA BMJ MY  Ferrier Noah CSR CSRT
M S S J T

NA 5/14 PRE  4km 60 NA BMJ MY  Ferrier Noah CSR CSRT
M- S M S J T

20



NES
T

SREF

HIRE

NSS

WREF

CSU-
ME
M1

CSU-
ME
M2

CSU-
ME
M3

CSU-
ME
M4

HRR

3/14

5/14

5/14

6/09

6/09

6/09

6/09

6/09

* ¥

PRE
S

PRE

PRE

PRE

PRE

PRE

PRE

PRE

PRE

16km

4.2km

3.6km

4km

12/36k

12/36k
m

12/36k
m

12/36k

3km

35

40

40

35

36

36

36

36

50

NDA

GFS,
RAP;
BCs
fro

GEF
RAP

/GFS

RAP
/GFS

NA

GFS

GFS

NA

NA

RAP
/HR
RR

BMJ
(12),
KF

(5),
SAS

(4)

NA

NA

NA

KF

G3

BMJ

KF

NA

*A major upgrade to GFS DA occurred in May 2012.
** Warm seasons 2012, 2013, 2014, and sporadically from 05/14-Present.

*** Operates in a very limited context.

21

MY

(19

),
GFS

(2)

YS

MY

MY

MY

YS

MY

MY

MY
NN

Ferrier
(17),
GFS

(2),
WSM6

(2)

WSM6

Ferrier

WSM6

WSM6

Thom
pson

Godda
rd

Thom
pson

Thom
pson

Noah

Noah

Noah

Noah

Noah

Noah

Noah

Noah

RUC-
Smir
nova

GFD
L

Dud
hia

RRT

Dud
hia

Dud
hia

Dud
hia

God
dard

Dud
hia

God
dard

GFDL

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT



A suite of different NWP models are used throughout this study in different capacities; the details
of their use will be further described in subsequent sections. A summary of each model is depicted in
Table 2.1. The models used are available through a combination of archived operational runs and
reforecasts. Reforecasts have the advantage of model staticity which is often not upheld in operational
settings, where models are often updated and revised to manually correct for particular perceived
model errors and biases. Substantial model revisions change the bias characteristics and behaviors of
the model in different atmospheric scenarios, and it can therefore be difficult to use for accurate,

calibrated model post-processing.

Many of the models appearing in Table 2.1 come from the NWS NWP suite. Their global model,
the GFS, has evolved over decades of research and computing advancements, from the Global Spectral
Model (GSM) beginning in 1980 to the Nested Grid Model (NGM) from 1987-2000, and later the Aviation
(AVN)/Medium Range Forecast (MRF) model which morphed into the modern global system used today.
The National Centers for Environmental Prediction (NCEP) also run a global ensemble based on the GFS,
known as the Global Ensemble Forecast System (GEFS). The GEFS is a 21-member ensemble which,
along with the GFS, is run four times daily out to 384 hours past initialization; ensemble members are
perturbed only in their initial conditions (ICs), and not in their model physics. Both the GFS and GEFS
undergo periodic changes to correct for observed biases and to improve bulk error characteristics.
Major changes occur sporadically, roughly every two years. The most recent major upgrade to the GFS
occurred in January 2015; many updates were made, but the most significant was a substantial increase
in model resolution to T1534 from T574. Previously, a major upgrade to the model’s data assimilation
(DA) system occurred in May 2012. Both of these updates significantly impacted the performance and
bias characteristics of the operational GFS; for this reason, the GFS has been separated into GFS-OLD
and GFS-NEW in Table 2.1 to reflect the model specifications before and after the most significant 1/15

upgrade. The GEFS will undergo a similar upgrade in 2015 or 2016, but has not yet done so at the time
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of writing this manuscript. Additionally, a recent project to create a long, consistent record of model
data used the February 2012 version of the GEFS to generate daily reforecasts for an eleven member
ensemble beginning from December 1984 to present. This GEFS-derived dataset will be termed GEFS-
RFCST, in order to distinguish it from the operational version, GEFS-RT. The GFS and its derivatives are
spectral models, which have a different formulation than the grid-point formulation used in many
models; the GFS and derivatives are the only spectral models used in this research. The GFS and
especially the GEFS are rather course; none of them are convection-allowing, meaning that they all

require a cumulus parameterization. Other implementation details can be surmised from Table 2.1.

NCEP also runs numerous regional models, also frequently called limited area models (LAMs),
which are used operationally by the NWS. North American regional modeling began with the Limited-
area Fine Mesh (LFM) model in 1971, which was used until the implementation of the NGM in 1987. In
1993, the ETA model was implemented for regional modeling, and this improved over numerous
upgrades and eventually became the North American Mesoscale (NAM) model used operationally since
2006. The NAM is also run four times daily, out to 84 hours past initialization, and has a horizontal grid
spacing of 12 km, compared with the modern GFS’s approximately 13km equivalent horizontal grid
spacing (Rogers et al. 2009). This is still too coarse to begin to resolve convection, and requires a
cumulus parameterization. However, a 4-km grid spacing one-way nested grid (NAM-NEST), which
requires very little by means of a cumulus parameterization, has somewhat recently been embedded
within the original North American NAM domain to cover the contiguous United States; data from this
nest has been stored for this research since May 2014. NCEP also runs two high resolution runs twice
daily out to 48 hours using two different dynamical cores, the Weather Research and Forecasting:
Nonhydrostatic Mesoscale Model B (WRF-NMMB) core used in the operational NAM, and the WRF:

Advanced Research WRF (WRF-ARW; Skamarock and Klemp 2008) core; these are called HIRESW-NMMB
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and HIRESW-ARW, respectively. Both of these are convection allowing grid point models; their

parameterizations are summarized in Table 2.1.

Lastly, there are two other operational products at NCEP being used for this study. The firstis a
short-term, high-resolution- 3 km horizontal grid spacing- system, the High Resolution Rapid Refresh
(HRRR) that is run hourly out to 15 hours, with experimental runs out to 24 hours. This system
developed from the NAM-based Rapid Update Cycle (RUC) model implemented in 2005 (Benjamin et al.
2004), and the Rapid Refresh (RR) that replaced it in 2012. Due to its limited forecast duration, it cannot
be used for forecasting 24-hour accumulation events, but still has great utility in forecasting near-term,
short-duration events. The HRRR was operationally implemented recently, in September 2014, and as
such, the HRRR has received numerous major upgrades and changes during its development over the
last few months and years (Waxberg 2015). The last NCEP system used here is the Short Range
Ensemble Forecast (SREF) system, run four times daily out to 87 hours. With a 16km horizontal grid
spacing, the SREF is notably higher resolution than the current GEFS, but still too coarse to allow for
explicit convection. Like the GEFS, the SREF consists of 21 members; however, the SREF is perturbed not
only in ICs, but has three different DCs- NMM, NMMB, and ARW- with seven ensemble members for
each DC. Each of those seven member groups has different ICs and different MPs. Thus, although
summarized as one system in Table 2.1, the SREF is in reality 21 different model runs with different

numerics, physics, and initial conditions.

Lastly, some NWP models used in this study are not operational, and are run in-house at
universities or research institutions. These models often, though not always, have the advantage of
more staticity for statistical analysis than the operational models; when the models are left undisturbed,
their bias characteristics remain the same from season-to-season and year-to-year, allowing for a longer

and more robust model dataset to analyze. For example, the National Severe Storms Laboratory (NSSL)
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runs a convection-allowing 4km WRF-ARW model once daily out to 36 hours (NSSL-WRF). Since June
2009, this model has been run with very limited alterations, with the only one of note being an upgrade
in WRF version from 3.1.1 to 3.4.1 in April 2013. The last set of models, the Colorado State University
(CSU) 12km WRF ensemble, has been run once daily with the same configuration for its first four
members since February 2012. Those members have been or are being reforecasted back to June 2009

to match the data record length of the NSSL-WRF.

2.3 Probabilistic Forecasting and Ensemble Prediction System Fundamentals

23.1 Motivation: Uncertainty and Predictability

There are a vast number of sources that yield uncertainty in a dynamical model simulation and
ultimately lead to forecast error. Error in a model’s analysis, or starting point, is one major source of
uncertainty, and many different factors contribute to inaccuracies in assessment of the current
atmospheric state. First, it is important to realize that a perfect, error-free analysis would accurately
place the position and movement of every particle in the atmosphere. Recognizing this, a perfect
analysis of the atmospheric state is, at present, woefully unrealistic, as we do not have atmospheric
observations on the particulate scale; even in the immediate vicinity of an observing station, uncertainty
is introduced solely from observation resolution. Further, even somehow attaining an accurate record
of every particle’s position, velocity, etc. in the Earth-atmosphere system (EAS), current dynamical
models do not keep track of every particle within the model either, so the information would
undoubtedly be accordingly coarsened during the process of model initialization, and this finite model
resolution would yield model analysis uncertainty as well. It must be further noted that observation
instruments are not perfect either, and errors in their measurements, even where we do have them,

introduce uncertainty as well. Other error in the data assimilation process of translating the true
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atmospheric state to the model atmosphere presents a further source of analysis uncertainty (Kalnay

2003).

Initial conditions (ICs) are one major source of uncertainty, but boundary conditions (BCs) can
yield erred representations of the atmospheric state as well. In limited area models (LAMs), the error
associated with lateral boundary conditions can introduce error to the model solution even with perfect
ICs. However, in all models, top and bottom boundaries exist that can present issues. On the bottom
level, improperly resolved topography, incorrect soil moisture measurements, and incorrect
representations of the surface characteristics are all possible source of uncertainty. Improper, artificial
upper boundaries in the model present an additional source, and any interaction of the EAS with space

is likely to be improperly handled as well (Kalnay 2003).

Even with a perfect analysis of the initial atmospheric state that manages to be represented
without error or simplification, an imperfect model will still quickly introduce small errors to the model’s
projection of the atmospheric state, and from there, non-linear error growth due to chaos will continue
to increase the departure of the model solution from reality (Lorenz 1963). Firstly, even neglecting
issues with model physics, there are numerous direct problems associated with model numerics.
Floating point operations on modern computers have finite precision, and this can lead to error both in
how the numbers are stored and in their finite size leading to truncation error. In fact, explicit
truncation error was what first led to the discovery of non-linear error growth in modeling the
atmosphere. Further, many equations governing the atmosphere involve derivatives, integrals, and
other mathematical constructs which may only be approximated by using nearby values in the context
of various numerical approximation schemes; these too, introduce error. The finite resolution of
numerical models also prevents accurate representation and simulation of many small-scale physical

processes. Additionally, problems with model physics compound the problem of model error. Not all
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atmospheric processes are yet fully understood, and thus not completely accurately represented in
numerical models. Additional assumptions are often necessary, which each add a source of uncertainty,
and any physics parameterizations inherently are not a ‘pure’ representation of the simulated process

and contribute further error as well (Kalnay 2003).

Despite these sources of uncertainty and non-linear error growth, dynamical systems, the
atmosphere included, do not evolve randomly or unboundedly throughout parameter space. Physical
laws and relationships between the model variables prevent certain theoretical values, or combination
of values, from being obtained. For example, though valid temperatures, it is exceedingly unlikely-
nearly impossible even- that surface temperatures anywhere on Earth will be less than 100K or higher
than 400K anytime in the foreseeable future. Similarly, while surface temperatures of 250K and 300K
are both observed on Earth with moderate frequency, it is virtually impossible that two adjacent
locations only a kilometer or two apart and at similar elevations will simultaneous possess these two
values. Instead, absent a major change in external forcing to the system, the atmosphere will evolve in
only a small region, or subspace, of the total phase space; this is known as the system’s attractor.
Forecast error E; can be thought of quantitatively as the distance in phase space between the forecast
and true atmospheric state for any given lead time 1. Error growth can be similarly characterized at lead

dE
time tas d—tf (7). Further, the intrinsic limit of predictability may be defined as the critical lead time t*

satisfying: 7* = min(T € {E[Ef(r)] > E[Eclim]}), the first time that the expected forecast error for

robust, unbiased forecasts exceeds the expected error from using climatology as a forecast. Lastly,
. . . + dE[Ef] + .
error saturation is defined here to occur at lead time 77 when —ar (T ) =~ 0, and the corresponding
saturation value is denoted E}:r (Eckel 2003).
For these reasons, despite the theoretical capability of a perfect forecast of the state of a

deterministic, chaotic system for all time just through a single dynamical simulation, in practice, this, or
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anything close to it, will not occur in the envisionable future with respect to the atmosphere.
Deterministic forecasts will continue to begin with errors that will grow in expectation with lead time
until it saturates to twice the mean squared error of the climatological mean. The chaotic nature of the
atmosphere sharply limits the utility of directly using deterministic dynamical model output for the
purpose of forecasting. Given this, the question is: can we do better, and, if so, how much better can we
do? There is no tractable ‘cure’ for the problems inherent with forecasting a chaotic system.
Recognizing the limitations, there are, however, effective mechanisms to cope with the errors and
uncertainty as best as possible. Specifically, in addition to minimize forecast error, it should be noted
that there is great utility in accurately quantifying expected forecast error, or forecast uncertainty, and
attempt to accomplish both forecast error minimization and uncertainty quantification simultaneously.
This can be effectively accomplished by using a combination of different, but realistic, model ICs,
possibly in addition to varied, plausible model physics for approximating how the true atmosphere
behaves. Repeating this many times yields many different plausible dynamical model forecasts; this
collection of model forecasts is termed an ensemble, and the process is known as ensemble forecasting
(Leith 1974). Ensemble forecasting goals and design considerations are discussed in the following

sections.

One simple motivation for use of ensemble forecasting comes from the consideration of
predictability limits and error saturation. The expected climatological error E;,, for a single forecast can

be expressed in a mean square error sense over a long record of T observations: E[E jim] = Eciym =
2
%ZJT-=1(MJ- - oj) , Where p denotes the climatological mean and o; denotes the observation at time j.
This can be readily converted to the framework of forecast anomalies a- departures from the
) . 1 2 1 I
climatological mean u- as: E[Egim] = ;Z]T-zl((yj —uj) — (0j — ,uj)) = ;2};1(0 — a]-) =a? =E;.

A forecast system in this context is said to be unbiased if its forecasts yield climatology-relative forecast
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anomalies d that have a long term expected value of zero. The expected forecast mean square error in
the context of anomalies can then be expressed for an unbiased deterministic forecast as:
ElEfy)(taee") = 320-1(8 — )" = 127-1(6 - 0))(@ — @) = $2/-1 & + ¢ — 2d,q;. Because
these forecasts are assumed to be unbiased, c?j and q; are independent and have long term mean values
of zero, leading the last covariance term to vanish. Again, the forecasts being unbiased means the
variance characteristics are identical over a large number of samples, meaning E[d}] = E[aj]. Thus, we
find that the expected mean squared error of an unbiased deterministic forecast at the deterministic

forecast lead time of error saturation 74,, T may be expressed by: E]:rdet = E[Efdet](rdeﬁ) =

1aT ~2 2 1
T2j=1al +aj -

3-;1 Zaj2 =2a2 = ZEIZ". For a single deterministic forecast, error saturation is
thus found to occur at twice the mean climatological error, or twice the limit of predictability. However,

consider instead an ensemble of n unbiased deterministic forecasts. The ensemble mean climatology-

relative forecast anomaly can be denoted @, and the mean squared error at saturation

1T = 2 _1ar =2 = _lor =22 2 o
E[Efens](rensf) = ;ZFl(a] - aj) =-2j=14 *+ ai® = 2@a; = ;Z]-ﬂ a, + a;“. Since the last term

. . =2
is again zero by the same arguments above. a, behaves as:

=2 1 1 1 n — 1—~ .
a” = 52221 ay 522‘21 a, = 52221 A Dheq Qg = Faz = ;az, we can write:
_ 1 ~2 1\ = 1\ s L .
E;-Lns = E[Ef,,)(Tens™) = 22j=1 @ +a” = (1 + Z) a? = (1 + Z) E;. From this, it is readily seen by

inspection that error saturation for an ensemble of forecasts (n > 1) occurs with less error than a
deterministic forecast. Noting this, and further noting that both deterministic and ensemble based
forecasts begin at lead time zero with no baseline error (aside from analysis error), given that expected
forecast error increases smoothly and monotonically, it follows that there exists some window of lead
times t where the expected ensemble forecast error is less than both an expected deterministic forecast
error and climatology: E[Ef, 1(v) < E[Ef,,](¥) and E[Ef, ](t) < Ef. The set of lead times satisfying

this condition is referred to as the ensemble window of utility, and this is where ensemble forecasting is
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of particular value. It is posited that, for the extreme precipitation forecasting problem examined in this

work, the set of lead times examined herein fall within the ensemble window of utility (Eckel 2003).

2.3.2 Goals of Ensemble Prediction

Qualitatively, there are numerous desired outcomes from the use of ensemble forecasting. A
deterministic forecast gives one sense of how the atmosphere may evolve from present; an ensemble
aims to give an accurate assessment of the range of possible future evolutions of the atmosphere.
Some scenarios have lower sensitivity and are thus more predictable than other situations; the use of
ensembles gives a sense of the flow-dependent error growth, or predictability-of-the-day. Use of only
deterministic forecasting, in contrast, yields only information on long-term average predictability, with
no information specific to the uncertainty associated with the current forecast. One of the objectives,
then, of ensemble forecasting is forecast-specific uncertainty quantification. Additionally, as illustrated
in section 2.3.1 above, the ensemble mean or consensus forecast can be shown to, on average, have
lower forecast error than the use of a single deterministic forecast. While not a major objective of
ensemble forecasting, this result is a beneficial side-effect. Ultimately, the chief objective of an
ensemble prediction system (EPS), or more generally, a probabilistic forecast system (PFS), is to create
the sharpest possible output forecast (OF) PDF, while still maintaining forecast reliability and statistical
consistency. As a further requirement, the PFS PDF output must be accessible to end users in a useful
and understandable format. Without this, despite having very high theoretical utility, the practical

utility of the EPS will be relatively low (Wilks 2011; Eckel 2003).

Statistical consistency requires that the OF PDF corresponds to the true forecast (TF) PDF. The
TF PDF is not the PDF of the atmosphere at a known future time given the current atmospheric state;
assuming that the atmospheric system is deterministic (which we are), then this function would always

be a delta function with infinite probability density at the verifying state and zero probability density
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elsewhere. Let this PDF be denoted the verifying PDF (VPDF). Rather, the TF PDF is a function of both
the analysis of the current atmospheric state and the model itself. If the analysis and model are both, in
fact, perfect, then the TF PDF is the VPDF. However, both analysis error and model error and the
associated uncertainty that each source of error introduces act to both shift and broaden the TF PDF.
An ideal ensemble would have infinitely many ensemble members, with appropriate perturbations to
accurately capture all sources of uncertainty, and would employ either a perfect dynamical model, or if
the dynamical model has error, would employ perfect post-processing to appropriate re-map ensemble
member atmospheric states to true atmospheric states. In reality, none of this is possible; finite
computing resources limits the number of ensemble members, not all sources of uncertainty are fully
understood or accurately quantified, and for reasons explained in 2.3.1, dynamical models are far from
perfect. More formally, statistical consistency requires that the mean squared error (MSE) of an

ensemble mean equal the mean ensemble member variance:

MSE; =0,
D N D N N 2
N 1 1 1 1 1
WD 2 (W 2 e =52—N_1Z Ya =y ), e
d=1 n=1 d=1 i=1 n=1

Forecast reliability is a related metric that is also a necessary but insufficient condition for
forecast skill. Reliability refers to the correspondence between forecast probability (FP) and observed
relative frequency (ORF). Ideally, probabilistic forecasts should be reliable: when an 80% probability of
event occurrence is forecast, it is desirable that the event actually occur 80% of the time. However, this
is not enough. Having a forecast PDF be the climatological PDF for every forecast means forecasting the
climatological frequency of event occurrence o for any possible event; this is by definition reliable (the
ORF over all forecasts is by definition the climatological frequency of occurrence), but has no utility to

any end users, as it presents them with no new information. Forecasts must also exhibit some
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sharpness- ability to forecast towards extremes, away from 0. The combination of sharp and reliable
forecasts leads to high resolution forecasts- those which distinguish events from non-events by

forecasting relatively higher FPs when events occur (Wilks 2011).

2.3.3 Probability Density Functions, Cumulative Density Functions, and Quantile Functions

In probability theory, there are three primary ways of expressing the distribution of values that a
continuous random variable may take: a probability density function (PDF), cumulative density function
(CDF) and quantile function (QF). For a discrete random variable, the corresponding distributions are
termed mass functions: probability mass functions (PMFs) and cumulative mass functions (CMFs). The
axioms of probability specify that the total probability of a random variable possessing some value be
unity, and further, the probability of an event outcome must be non-negative. By definition, a
continuous variable is one of an infinite number of possible values; thus the probability of a continuous
random variable having any given value is zero (if the probabilities were non-zero the total probability
being unity could not be satisfied). Thus, when discussing the probability of a continuous random
variable’s value, one must frame the discussion in the context of the variable taking on one of infinitely
many values within a range. This motivates the use of PDFs, which will typically be denoted f
throughout unless otherwise specified. A PDF satisfies the following properties: 1) Vx f(x) = 0; 2)
ffooof(x)dx =1;3)P(a<x<bh)= f;f(x)dx. Higher probability density at a value x indicates higher
probability for the variable possessing a value near x; but P(x = a) # f(a). The PDF framework is
often helpful in quantifying rarity of double-bounded events, e.g. between 1 and 2 inches of
precipitation in the context of the QPF problem. However, often problems are framed in the context of
exceedance thresholds, or single bounded events; in this framework, it is often more desirable to
examine the probability distribution in a cumulative framework by means of a CDF. A CDF Fis defined as

a function of the corresponding PDF: F(x) = f_xoof(u)du. F(x) then corresponds to P(U < x), the
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probability that the observed value will be less than the input argument. Lastly, in some applications,
including many relevant to this study, it is more value to look at the inverse CDF, or QF, x(F). In the
context of precipitation accumulation, a CDF answers the question “how rare is it to experience a
precipitation amount _?”, while the QF answers the question “how much precipitation accumulation is
required to attain an event of rarity _?” Since it is often more useful to have the rarity fixed than the

threshold, the QF presents advantages over use of the CDF in many instances (Wilks 2011).

2.3.4 Ensemble Configuration

There are many factors to consider in the configuration of an EPS. It is essential that, before
making any ensemble configuration decisions, the EPS objectives and resources are first specified. What
are the forecast applications? Who are the end users, and what information do they most care about?
How powerful of computing resources are available? The optimal EPS configuration may be very
different depending on the answer to these sorts of questions. Perhaps the most obvious ensemble
configuration parameter is the ensemble size n. Required computing power scales linearly with the
ensemble size. If available computing resources are effectively infinite, a very large number of ensemble
members is, of course, desirable. However, in a limited-resource environment, the desire for a large
ensemble must be balanced with the quality of the individual members, quality of any initial condition
perturbations, time for ensemble post-processing and calibration, and other computational tasks. A
small number of members, perhaps 3-12, is often enough to yield a reasonable ensemble mean for fairly
common or routine events, and also give a qualitative sense of relative forecast uncertainty. A larger
ensemble size, say 20-30 members, is often necessary to use the ensemble to generate sharp and
reliable forecast PDFs. For rare events, many more members are needed to adequately sample the true
forecast PDF’s tail, with perhaps 50-100 members desired for skilled probabilistic forecasts, perhaps
even more for extremely rare events (Eckel 2003). At the same time, individual member forecast skill

may be substantially degraded if, to compensate for the increase in ensemble size, ensemble members
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are coarsened. In a very approximate sense, model run time can be thought to scale inversely
proportional to the cube of the model grid spacing g. Going from a deterministic run to a 100-member
ensemble, for example, would require coarsening the grid spacing by a factor of approximately 4,
perhaps slightly more, to conserve use of the computing resource C. Processes that are barely resolved
in the deterministic run then, will not be resolved at all in any of the ensemble members, instead likely
depending on parameterization of the phenomenon of interest, likely resulting in both worse individual
forecasts and substantially worse sampling of candidate true atmospheric solutions. This tradeoff must
always be carefully considered in ensemble design. Another major consideration is how to best
generate member perturbations so that all member forecasts are still realistic candidate forecast
solutions while still generating sufficient ensemble spread to avoid an overconfident EPS with associated
overconfident forecasts. Spread can be achieved through IC perturbations, model physics (MP)
perturbations, dynamical core (DC) changes, and other less common alterations such as model terrain
and model resolution. It is often desirable for the purpose of ensemble statistics to have each ensemble
member be equally likely to verify as truth; changes to MP and DC have the disadvantage of frequently
not satisfying this property, giving credence to the use of IC-perturbed ensembles. However, research
has found that IC-perturbed ensembles tend to result in an ensemble that is unrealistically underspread
due to inability to capture all of the true sources of uncertainty, requiring either unrealistically large IC-
perturbations or an attempt to broaden the forecast PDF artificially via post-processing. A combination
of these perturbations tends to result in a more realistic forecast PDF, at the cost of complicating the
generation and interpretation of the ensemble output (Kalnay 2003, Wilks 2011). Again, these
considerations must be handled carefully, and final choices should be optimally tailored to the end users
and their relevant forecast applications which will make use of the ensemble information. The research

in this study is concerned with extreme precipitation occurring on a variety of scales from the meso-y to
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synoptic. For this reason, it is considered desirable to use as large of an ensemble as possible, with less

emphasis on the associated complication to the ensemble statistics.

2.4 Extreme Value Theory

Extreme Value Theory (EVT) can be a bit misleading in its name; this body of statistical theory
does not strictly concern the modeling of very rare events, but describes the behavior of extremes from
groups- the distribution of block maxima or minima. Directly modeling the distribution of right-skewed
phenomena, such as daily precipitation, is also of great importance for applications in meteorology,
hydrology, and other fields. Distributions explored in this thesis will all be characterized as Right-

Skewed Distributions (RSDs), but only a subset of such distributions applies directly to EVT.

In EVT, the ultimate goal for this application is to obtain accurate QF estimates for large return
periods (RPs); that is, for a given RP, obtain an accurate estimate for the precipitation amount
corresponding to that frequency of occurrence. In many cases, including in the research discussed
herein, the RPs of interest extend well beyond the length of the data record. There exist many
approaches to estimate event probabilities and QFs from a data record; the approaches can be classified
into either parametric or non-parametric techniques. Parametric techniques make more assumptions
than their non-parametric counterparts; principally, at least when model fitting on raw data, they
assume that the input data comes from a known underlying probability distribution, and seek to use the
data to optimize estimates for the parameters of underlying probability distribution. As will be seen
below, EVT exercises the advantage of not needing to know the underlying probability distribution; raw
data is manipulated in such a way that, provided that certain conditions are satisfied, the probability
distribution of the manipulated series is known, regardless of the underlying initial distribution. Non-
parametric methods, in contrast, do not assume that the training data comes from a known underlying

probability distribution, and the number and values of all model parameters are determined dynamically
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based on the training data. Both classes of approaches have advantages and disadvantages. In general,
due to making weaker assumptions, non-parametric techniques are often considered more robust, and
several components of the greater forecast model applied in this study are non-parametric algorithms.
However, non-parametric approaches tend to extrapolate poorly to data much rarer than what is seen;
estimates for events rarer than the data record length tend to be quite poor (Murphy 2012; Scheuerer
and Hamill 2015). For this reason, generating estimates based on an assumed underlying probability

distribution is considered necessary for this component of the forecast pipeline.

2.4.1 Fisher-Tippett-Gnedenko Theorem

Much of the foundation of EVT makes use of the Fisher-Tippett-Gnedenko (FTG) Theorem. The
theorem will be derived briefly here, and summarized below. Let there be a set of n independent and
identically distributed random variables (IIDRV) {X,,...,X,}; that is, data values which are independent of
each other, and sampled from the same probability distribution. Let each IIDRV have CDF F: F(x) =
P(Xy < x). Further, let M, = max{X;,X,, ..., Xp}. PM, <x)=PX; <x&X, <x&..&X, <x).
Thus, by assuming independence, it can be shown that M,,~ F™(x), where the ~ notation is used here to

mean “is distributed as”.

Let x* be the set of values for x satisfying F(x) < 1: x* = sup{x: F(x) < 1}

0x<x*

It can be readily shown: lim,,_,, P(M,, < x) = {1 >t This, taken in the limit of large n, is termed

an asymptotic distribution; and because it is single-valued, it is said to be degenerate.

To avoid a degenerate asymptotic distribution, random variable M,, can be normalized using coefficients

Mp—b . e . .
%. Given how M, is distributed, shown above, it can be readily

n

a,and b, subjecttoa,>0,as: Y, =

shown that Y, ~F"(a,x + b,). Suppose there exist a series of coefficients for a, and b, such that the

asymptotic distribution of Y, is non-degenerate distribution function G(x). Then:
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lim F*(a,x + b,) =G
n—oo
lim,_,, nlogF(a,x + b,) =logG, taking the logarithm of both sides

. 1 -1 .
lim,,_, n(Faiby) — iogd notinglogx = x — 1 forx = 1

The full FTG proof is too involved to show here, but it can be shown that the statement above is

equivalent to saying that:

U (nx)—by,

. -1 1 . .
lim,, o =G (e x , where U = —, and < denotes the left-continuous inverse of a
n 1-F

n

function, defined as: f ~(x) = inf{y: f(y) > x}, where inf denotes the infimum of a set.

We can continuize this and define a function D:

U(tx)—b
D(x) = lim UT(ex) = by

Assuming without loss of generality that D is continuous at 1, we can further define a function E:

EGo) = lim =V ® _h b
b ale]

It can be shown that, because a non-degenerate solution is mandated:

E(xy) = E(x)ajy + E(¥)

Define two new functions:

H(x)
H'(0)

H() = E(e¥); Q(x) =

E(xy) = H(logx + logy) = H(logx)aey| + E(logy)

Using the definition of E, E(1) = 0 = E(e®) = H(0)
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Subtracting H(log y) from both sides and dividing by log(x) yields:

H(logx +logy) — H(logy)  H(logx) — H(0)

log x log x
Differentiating: H' (log ¥) = H'(0)ayy,

From this, by inspection: Q(0) = 0; Q’(0) =1

aly|

Further manipulation gives rise to the following differential equation for Q:

Q'(2) =1 =Q(2)Q"(0), subject to Q(0) = 0;Q'(0) = 1
Denote & = Q"'(0). Solving yields Q'(z) = e%?

z5-1
¢

Re-writing in terms of D: D(z) = D(1) + H'(0)

z—D(1))1/g

Taking the left-continuous inverse: D (z) = (1 + & 70)

By the definition of D and the definition of left-continuous inverse:

- 1
_ z-D(1)\ /¢
G(Z) =e 1/D‘_(Z) —=e /(1-'-f H’(Ol)-)

This can be expressed as:

- 1
H'(0)x+D(1)-D(1)\ /€
G(H'(0)x+D(1)) = e /(”5 o)

Or, more generally:

-1
G(ax +b) = e~(1+0) %
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This is the FTG Theorem. More plainly, FTG states that block maxima of renormalized IIDRVs,
regardless of the underlying distribution of the individual block elements, converge in distribution to
one of the Gumbel, Fréchet, or Weibull families of probability distributions, depending on the value of ¢
in the above derivation. A positive € indicates belonging to the Fréchet family, negative values indicate
membership in the Weibull family, and £&=0 implies a Gumbel distribution. More succinctly, FTG states
that block maxima are distributed as the Generalized Extreme Value distribution, M,,~GEV (u, g, &) (De

Haan and Ferreira 2007).
2.4.2 Approaches to Application

2.4.2.1 Annual Maximum Series

This FTG theorem is integral to EVT, including the application to extreme precipitation,
streamflow, and flooding. In meteorology and hydrology, the most frequent application is to construct
an Annual Maximum Series (AMS), with each element being the block maximum of daily precipitation
(or streamflow, etc.) over each year in the data record. By FTG, this series will follow a GEV distribution
(i.e. a GEV distribution can be accurately fit to these maxima), and the GEV can be employed to derive a
relationship between Annual Exceedance Probability (AEP) and precipitation threshold by means of the
QF. AEPs are readily converted to quantiles and Average Recurrence Intervals (ARIs), via the relation:
Quant =1—AEP =1 — ﬁ. So the 2-year ARI corresponds, for example, to a 50% AEP and the
median of the distribution. It should be noted that the ARl is distinct from the RP in that in this
framework, the ARl interval is discretized into years- the period does not get shortened for having
multiple exceedances in the same year. This is a shortcoming of the AMS framework, at least when the
year-independent RP framework is desired. However, a relation does exist relating AMS-based

exceedance probabilities and those derived from the year-independent framework described below:
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1 1

RP = = ——p—< Thisrelation can be used to relate AMS-derived estimates into the desired
EPpps 1-e AMS

framework (e.g. De Haan and Ferreira 2007; Bonnin et al. 2004).

2.4.2.2 Partial Duration Series

An alternative approach to AMS used in EVT is the Partial Duration Series (PDS) or Peaks-over-
Threshold (POT) approach. Instead of simply constructing a time series of annual maxima and fitting a
distribution to those values, in PDS, all independent values, or peaks, exceeding a particular specified
threshold are extracted from the data record to form a time series, and an RSD is fit to this time series.
Recall from the FTG proof that EVT requires that the original random variables be independent. Thisis a
problem in time series applications, as one day’s precipitation, for example, is highly correlated with the
surrounding days. This is why, when extracting values to form a derived time series, it is important to
take values that are sufficiently temporally separated so as to be considered independent. The other
important variable in PDS analysis is the choice of threshold. One popular choice that will be explored in

this study is the minimum value of the AMS derived from the same data record.

As FTG establishes, P(M,, < x)~GEV (x; u,5,¢). Butin this case, we are interested in individual base
random variables X, ~F (x) exceeding some threshold ©. The exceedances can be expressed as
y = x — 0, and a CDF E of exceedances may be constructed:

F(6+y)—F(0)

Eq(y) =PX<O0+ylX>0)= )

Though the proof will not be shown here, it can be readily shown that, for sufficiently large 0, the

asymptotic distribution of Eg is:

Eq(y)~GPA(y; u,0,&), where GPA denotes the Generalized Pareto Distribution.
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The general procedure in PDS after selecting a threshold © and appropriately extracting an independent
series S from the complete daily series, a GPA can be fit to the exceedances to yield a conditional

distribution: P(X > 0 + y|X > 0) =1 — GPA(y; u, 0,¢).

The law of total probability may then be applied to back out the unconditional distribution:

PX>0+y)=PX>0+y|X>0)PX>0)+PX>0+y|X<BO)P(X <0)

3 . len(PDS) 1 — len(PDS)
~ (1-GPA(Y; 1, 0,%)) len(Data) 0 len(Data)
~ . len(PDS)

= (1= GPAG; 1.0.9) Iparay

RP thresholds can then be derived using the QF of the unconditional distribution (De Haan and Ferreira

2007).

2.4.2.3 Direct Fits (DF)

The third approach, not directly an application of EVT, is, instead of using threshold exceedances
or block maxima, to simply attempt to guess the underlying distribution of the base random variables X,
which in this study is model QPF values over accumulation interval T. Here, we can’t rely too heavily on
theory, since, abstractly, if nothing is known about the data record, it can’t be expected a priori to follow
any particular distribution. However, the probability distribution of accumulated precipitation is and has
been of great interest to the scientific community for a long time. Approaches have been employed
parametrically fitting various probability distributions to precipitation observation records, both Full
Wet Series (FWS), which includes only days with measurable observed precipitation, and Full Dry Series
(FDS), which includes the entire record, including days without measurable precipitation. This approach
is quite simple to apply; simply take the FDS, filter it as necessary in the case of an FWS, and then use

the FDS or FWS to estimate appropriate parameter values for an RSD of choice. Unlike the previous
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approaches, this gives daily exceedance probabilities, so the RPs are given by: RP = ;, so the
365.25xQuant

quantile for a 100-year precipitation event, for example, is 0.999973. The challenge here is choosing the
correct underlying distribution, and coming up with accurate parameter estimation. The best approach
with the former is to create a list of candidate distributions and test fits on all of them. Parameter
estimation will be discussed more in section 2.4.4. It should be noted that very little, if any, work has
been done assessing the underlying probability distribution of model QPF (as opposed to precipitation
observations); though it may not be strictly necessary, it is the hope of the author that each model’s
attractor is close enough to the true atmosphere’s attractor such that the probability distribution of
model QPF is in the same family as observed precipitation, even if the parameters vary substantially at

local scales.

2.4.3 Right-Skewed Distributions

The tables below summarize the mathematical properties of the RSDs employed in this research
(Hosking 1997; Hosking and Wallis 1987; Hosking and Wallis 1993; De Haan and Ferreira 2007).
Mathematical intuition on the differences in the distributions may not be readily apparent by inspection

of the defining equations; more graphical comparisons will be provided in Chapter 4.
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Table 2.2: RSDs used in this research. Full name, abbreviated name, valid interval, and equations for
each distribution’s PDF and CDF are included. L-moment estimators for each model are included as

applicable and possible. All equations expressed such that p denotes the location parameter, o denotes

the scale parameter, and € denotes the shape parameter.

Distribu | Exponent | Gamma Generalized Extreme
tion ial Value
Name
Abbrevi | EXP GAM GEV
ation
Valid [0, c0) [0, o) [,1 - f,oo) £>0
Interval '3
(—o0,)  £=0
| ag
(o —FJe <o
. 1 X .
PDF f()i’ M’xa_l f(x; 0,8) = é,xf‘le z f(’{’ o,%)
=Ze¢ o | r¢o =—t(x) e t™
o With o
0 With
re¢ = f z5le %dz t(x) B
0 X—U E o
(509" ¢
XK
G 3
CDF F(x; u,0) _ _ 1 x F(x; p0,§) =e™t®
=1 Flx 0,8) = I“(f)y (g' a) t(x) as above
X— .
_ oo | WithT'(€) as above; .
v(a,b) = fza‘le‘zdz
0
L- f f *
Momen | =1 0.7213 - 0.5947 ( —1—2)
tS - 2[2 (1 _ l_Z) ) ’ l1
Estimat | & = 2[, L l, L,
o 1+( _E) (12113( _E)_Z'l
=< 2
1-0.3087 (5—2)
1
L\2 1\2 1\2
& (E) <1 +m (E) 0.01765m (E) — 0.05¢
. _h
0O = —
Jii
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Table 2.3: Continuation of Table 2.2

Distributio | Generalized Logistic Generalized Normal Generalized Pareto
n Name
Abbreviati | GLO GNO GPA
on
Valid (=00, ) (—, ) [pe) §=0
Interval [M U _g] £<0
R
PDF flx wo,8) [ £ 5 £ _(|x_ﬂ|)f f()f uo,§)
( _ 11 X; U, 0, = e g _
(1+754) ™ 20r () =5
1
_ -1
X— U\ X—H \F
_ e (1 + (1 +=— 5) - E)
(%)
X=p\\ 2
o(1+e7))
CDF F(x; 1,0,8) F(x; 1,0,8) F(x; p1,0,8)
: ‘ y(l (|x—u|)*‘> =1
X — -1/§ — & o —
I PRPRE S RS AL (it
= 2 |x—ul 1 o
1 ‘ 2r (?)
X—U g
14 e_(T) _
k;l t i l ¢ / l
oments =l 2 =l
estimators | nlgz l 2(2.0467+l3 (—3.6544 + 1, l (2 e 313)
sin(—m in(—ml = —!3 — 2
— 2 3) __ sin(zrl 1+ 132 (~2.0182 + 15( 1+l
s l5 - 1
=l sin(—mly) E = e%5¢
§=—20 TS : =1, (1
R 7Tl3 6' — l2€ 1 3l
= — £ — 93
(- o] e
G(E-1) 1- 313)
u=4+—m— 14+
¢ . 1-3l
§= 1+ 1,
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Table 2.4: Continuation of Table 2.2

Distribution | Gumbel Kappa Weibull
Name
Abbreviation | GUM KAP WEI
Valid (—00, ) ([ c(1-p) ¢ 0] [0, 0)
—_ s = 0 0
Interval mt a PEt Y p>0a>
[u+olnp, ) B>0a=0
_ —-a
) [u+%,oo) B>0,a<0
o
(—00,u+&) B<0,a>0
(—o, o) f<0,a=0
[u+%,00) L <0,a<0
PDF f(x; p,0) , f(x; 0,8) .
x—p, XK &-1
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*: These distributions do not apply a closed form solution for parameter estimation, instead using an

iterative scheme

2.4.4 Parameter Estimation

One of the principal challenges in the application of parametric techniques concerns the

question of how to best estimate distribution parameters. Considerable scientific inquiry has been

devoted to this research question; several of the most prominent methods are presented here, including

the method of moments (MoM), method of L-moments (MoLM), maximum likelihood estimation (MLE),

and direct solve (DS).
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2.4.4.1 Method of Moments (MoM)

The MoM was the first commonly used method for parameter estimation, and it is now
considered rather antiquated for most applications. A brief description is, however, presented here for
historical background and as a baseline for other methods. Again, let X denote a random variable. Then

the n moment of X, with PDF fy is defined as:

o)

M, (X) = E[X"] = f X7 fy () dx

— 0o

For a finite sample of size s, a moment can be estimated as:

M,(X) = %Zfﬂ X" = gn(04, ..., 0p), where @’s denote the distribution parameters and g’s denote

explicit functions of the population parameters. For example, for a normal distribution with parameters
wand o, g, (u,0) = p, and g,(u, 0) = p? + o%. The MoM algorithm starts with the first moment, and
uses the approximate equality between the sample moment and the explicit formula for the true
moment as a function of the distribution parameters to form an equation. This is repeated P times
down to the P™ moment, yielding a system of P equations and P unknowns. This system of equations
can then be solved analytically to yield parameter estimates 85, ... @p. The primary appeal of this
method is that it is very tractable without requiring any additional, external information beyond the
initial input data. The estimators are consistent, that is, as the sample size gets large, the parameter
estimate converges to the true population parameter. However, MoM estimators are often biased,
meaning that for any finite sample, the difference between the expected value of the true population

parameter and parameter estimate is often non-zero (Hansen 1982).
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2.4.4.2 Method of L-Moments (MoLM)

The use of sample L-Moments, rather than traditional moments, has been found in many
applications to improve the quality of estimates of distribution parameters. From a sorted sample of
size s, with x; being the smallest element of the sample, the sample L-moment of order n may be

computed as:

=53 (SO0

The true L-moment of order n, may be expressed using an ordered, ascending, independent sample of

size s (X; smallest, X; largest) as:

n-—1

=2y <1 (" Bl

i=0

Since the expected value for an ordered statistic can be readily computed from a known distribution,
this equation can be used to derive L-moments as a function of population parameters. Using sample L-
moments as population L-moment estimates, much like the MoM, increasing orders of L-moments can
be employed until P equations relating the sample L-moments and their parameter-dependent
equations are generated. The P unknown parameters can then be solved analytically to yield parameter
estimates. The L-moment method’s primary advantage over the traditional MoM is it’s increased
robustness. This appears in two key ways. First, the constraints on the existence of high order L-
moments is much looser than those for traditional moments; specifically, the only requirement on the
existence of high-order L-moments is that the distribution have a finite mean, while traditional moments
require stricter conditions be upheld. More importantly, while still not resistant statistics, L-moments
are much more robust to outliers or extremes in the sample data when compared with the use of
traditional moments. This makes the MoLM especially attractive for extreme value applications
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(Hosking 1992; Hosking 2006; Hosking and Wallis 1993; Hosking and Wallis 2005; Pilon and Adamowski

1992; Guttman et al. 1993).

2.4.4.3 Maximum Likelihood Estimation (MLE)

The MLE approach to parameter estimation considers the problem from a Bayesian framework.
Specifically, given a sample X of s [ID observations, X={xs,...,Xs}, and a vector of distribution parameters
0, the joint density function can be readily computed: f(X|6) = [I;-, f (x;16) (using the 11D

assumption). This is related to P(X|6), often expressed as the likelihood function « through Baye’s Rule:

PO|X) = %ﬁg(g). Exploiting the monotonicity of the logarithm and applying logarithm identities, this

can also be re-written as: In u(8|X) = Y7, f(x;10). The MLE estimator 0, is then:
HMLE = argmaxyp (ln l)

MLE, like the methods above, is a consistent estimation method- as the sample size gets large, the
parameter estimates converge to the true population parameters. With finite sample sizes, evidence
suggests that MLE often produced better estimates for a fixed sample size than moment-based
methods. However, MLE is more expensive, often lacking an analytical solution and requiring numerical
iteration to converge to an estimate. Further, in some instances, no MLE solution exists; this occurs
when L continues to increase without attaining a maximum, or supremum, value. Still, MLE is a very
powerful and general method that can be effectively applied to the parameter estimation challenge in

many different contexts (Murphy 2012).

2.4.4.4 Direct Solving (DS)
The DS method is a very straight-forward and viable approach to parameter estimation, but
appears very infrequently in the literature due to practical constraints on its use. The idea is quite

simple: given a distribution D of P parameters, since the equation for D’s CDF is known as a function of

48



its parameters, specifying P precipitation threshold, quantile (or CDF-value) pairs yields a system of P
equations with P unknown parameters. The system of equations, often with extensive algebra, can then
be analytically solved to yield estimates for each of the P parameters. The quality of the estimates is
directly proportional to the accuracy of the given quantile, threshold pairs; if each of those is perfect,
the parameter estimates will necessarily also be perfect. The challenge, then, is obtaining accurate
(quantile, threshold) pairs; it is often infeasible to obtain sufficiently accurate pairings to yield
reasonable parameter estimates, which limits the method’s utility in many settings. However, at more
common thresholds, where the event ARl is small relative to the data record length, obtaining accurate

threshold rarity estimates may be possible, and this would make the use of this method quite attractive.

2.5 Extreme Precipitation and Precipitation Datasets

2.5.1 Precipitation Datasets

2.5.1.1 Stage IV Precipitation

NCEP Stage IV Precipitation Analysis products (Lin and Mitchell 2005) have been created daily in
an official capacity since December 2001. Stage IV provides precipitation analyses over the contiguous
United States (CONUS) by with hourly and 6-hourly accumulation analyses, and 24-hour accumulation
analyses by means of summing four 6-hourly accumulations. Analyses are given on an approximately 4
km grid. Stage IV uses both rain gauge observations and radar-derived rainfall estimates to generate an
analysis, and is further quality controlled via NWS River Forecast Centers (RFCs) to assure stray radar
artifacts and other spurious anomalies do not appear in the final product. Even with these procedures,
Stage IV has numerous deficiencies that will be discussed in further detail in subsequent chapters.
However, despite its limitations, the combination of its data record length and analysis quality and
resolution are deemed to make it superior to alternative available products for this research, and will be

used as the precipitation ‘truth’ for the purposes of this study.
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2.5.1.2 Atlas 14 and Prior Work

The National Oceanic and Atmospheric Administration (NOAA), and specifically the
Hydrometeorological Design Studies Center (HDSC), is currently developing an updated assessment of
precipitation accumulations to occurrence frequency equivalences for rare events with RPs of 1 to 1000
years over CONUS. In so doing, events may be studied in the context of their climatological rarity rather
than a fixed threshold which has different implications over the geographically and
hydrometeorologically diverse CONUS. This product, known as Atlas 14, is an update of work done by
Hershfield in 1961, published that year in Technical Paper 40 (TP-40; Hershfield 1961), which spanned
much of the United States east of the continental divide, and NOAA’s Atlas 2, released in 1973 for the
western states. Atlas 2, using AMS methods to convert to PDS statistics, fit a 2-parameter GUM
distribution to station gauge data for 6- and 24-hour accumulation intervals to derive 2- to 100-year
return period estimates. Topographically-aware formulas were then derived and applied to extend
those estimates to all points (Miller et al. 1973). However, only 2- and 100-year return period
thresholds have been digitized; the author manually calculated other RP thresholds using the DS method
(see 2.4.4.4) for the Gumbel distribution. Atlas 2 frequency estimates remain the most up to date
estimates for five northwestern states: Idaho, Montana, Oregon, Washington, and Wyoming. TP-40
methods are nearly identical, also using AMS to PDS conversion and the GUM distribution (Hershfield
1961). TP-40 estimates are the most recent in place for Texas and New England, including New York. In
all other states, Atlas 14 updates have superseded the Atlas 2 and TP-40 estimates in place previously.
In addition to having several decades of new data with increased station density to improve
precipitation frequency estimates, Atlas 14 uses more sophisticated methods for deriving estimates than
its predecessors. A suite of different RSDs were fit to precipitation data, using the MoLM for parameter
estimations; goodness of fit tests such as Kolmogorov-Smirnov were conducted and used to assess the

optimal choice of distribution. To date, all Atlas 14 updates have selected the GEV distribution as the
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distribution which most often had an acceptable fit to the observational data, and have chosen to apply
it uniformly so as to avoid large spatial discontinuities. A more sophisticated regionalization technique
was employed to use data from multiple nearby stations to inform a point rainfall frequency estimate.
RPs also extended from 1-year up to 1000-years, and estimates are available for accumulation intervals
ranging from minutes to months (Bonnin et al. 2004; Bonnin et al. 2006; Perica et al. 2011; Perica et al.

2013).

2.5.2 Modes of Extreme Precipitation
Precipitation accumulation can be described as
ty
P= f R(©)dt =R(t; —t,) =RD

to
where P is the precipitation accumulation and R is the instantaneous precipitation rate (Doswell et al.
1996). It follows that, in order to receive large precipitation accumulations P, the product of average
precipitation rate and precipitation duration must be very high; either instantaneous rain rates must be
exceptionally high, or moderate rain rates must exist for a long duration, or somewhere in between.
The moderate rate, high duration (MRHD) events require a source of ample moisture and an additional
source for persistent lift. This class of event, as will be discussed in more detail in the section below, is
most often seen in association with atmospheric river events along the US west coast, where an
atmospheric river acts to transport tropical moisture poleward to the mid-latitudes, and the coastal
topography acts as a constant forcing for ascent with tropical moisture from the atmospheric river being
brought directly into mountainous topography (Ralph and Dettinger 2011). However, atmospheric
instability in these regimes is typically insufficient to develop the very high rain rates required for the
high rate, moderate duration (HRMD) event class. Unlike the predominantly stratiform precipitation

observed in MRHD events, HRMD events are almost exclusively convective in nature. Extreme
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precipitation has been observed in a wide variety of convective regimes, from Mesoscale Convective
Systems (MCSs) to Squall Lines to High Precipitation (HP) Supercells (Schumacher and Johnson 2006). All
of these phenomena occur somewhat routinely without producing extreme precipitation, often because
their storm/system motion is too high, resulting in a precipitation duration that’s too short for any given
location to receive extreme precipitation amounts. Receiving extreme amounts from convective
systems often requires that the system’s propagation opposes its cell motion (which is strongly related
to the mean flow/wind) to yield slow storm motions (Schumacher and Johnson 2006). Extreme
precipitation can also occur in association with Tropical Cyclones (TCs); for reasons that will not be
discussed in detail here, TCs generate rainbands with very intense thunderstorms which constitute the
TC eyewall. TCs, despite being very different in nature to most events in the same class, would usually
be most accurately classed as HRMD events, but if a TC stalls over land due to interaction with
topography or some other reason, TC rainfall can often be accurately classified as high rate, high

duration.

2.5.3 Extreme Precipitation Climatology

One of the most comprehensive studies of extreme precipitation climatology from the RP
framework was conducted by Stevenson and Schumacher (2014). The study focused exclusively on
states lying entirely east of the continental divide, and due to the timing of the analysis, Atlas 14 data
was not yet available, and the TP-40 grids were used instead. The study looked at accumulation
intervals of 1, 6, and 24 hours, and RPs of 50 and 100 years. By inspection of the grids (see Figure 3.1
later), it is apparent that use of the RP framework departs substantially from the traditional fixed
threshold framework; for a given RP, the ratio between the highest and lowest precipitation thresholds
is often two to three or more. The general patterns exhibited are largely what one would intuitively
expect; higher precipitation accumulations are required for the same frequency of occurrence near the

Gulf Coast, with notably less accumulation required near the Canadian border to the north and
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approaching the Rocky Mountains to the west. Higher thresholds are, of course, ubiquitously observed

for the higher 100-year RP compared with 50-years.

In terms of event analysis over a 10-year period from 2001-2011, 24-hour events at both RP
thresholds examined exhibit a broad peak in frequency over the summer months, which precedes a
somewhat sharp decline in frequency during the autumn and follows a sharp ascent in the late spring.
Almost no 24-hour events were found to occur during the winter months. There was found, however, to
be some regional variation, with the Plains region exhibiting an earlier peak in May and June; the
identified Southeast events occurring almost exclusively in August and September in association
primarily with tropical cyclone activity; the Northeast region occurring in August, September, and
October; and the Ohio-Mississippi Valley region experiencing two peaks in frequency- in May and
September- with moderate frequency of occurrence throughout the summer months. Identified events
were classified into three categories: 1) Mesoscale Convective System (MCS), 2) Synoptic, and 3)
Tropical; it was found that a substantial majority of CONUS heavy precipitation events east of the
continental divide occurred in association with MCSs. 6-hour events exhibited a fairly similar pattern to
the 24-hour events, except that: 1) OH-MS Valley no longer showed a bi-modal peak pattern, instead
with a single broad summertime peak; 2) the Plains peak shifted more towards the summer, instead
centered about June; 3) the Northeast October maximum largely disappeared; and 4) while August and
especially September remained the Southeast peak, events did occur in that region outside those
months. 1-hour events occurred again similarly to 6-hour events, but the Northeast region event
frequency shifted further towards the summer months with a July-August maximum and very few
September-October events, and the Southeast peak continued to broaden, with many one-hour events
occurring in July in that region. The one-hour events were also examined with regard to time of day;
though there were some minor regional variations, all regions experienced most 1-hour 50- and 100-

year events during the late afternoon, evening, or early nighttime hours, from roughly 16:00 to local
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midnight. While few or no studies have looked in depth at the climatology of extreme precipitation

events west of the continental divide in an RP framework, similar studies in a fixed-threshold framework
suggest that extreme events over the US west coast occur primarily in association with synoptic systems
and atmospheric river events in the cool season- autumn and winter- and do not occur through the MCS

or Tropical modes that dominate much of the rest of the country.

2.6  Machine Learning

All machine learning algorithms used in this study are, at least as applied here, supervised
learning models used for the purpose of classification. The prediction problem here is said to be
supervised because each predictive model is being trained and tuned on labeled data, that is, historical
data from which the outcome- observed RP exceedances- are known. In the case of categorical RP
exceedance forecasting, a finite number of possible observations exist: 100-year exceeded, 50-year
exceeded but not 100, 25 exceeded but not 50, 10 but not 25, 5 but not 10, 2 but not 5, 1 but not 2, 1-
year RP not exceeded. This can also be reduced to a series of binary problems with regards to a
particular RP threshold exceedance (e.g. two classes: 10-year RP exceeded, 10-year RP not exceeded).
Because the forecast problem involves predicting a discrete category rather than a quantified, numeric
predictand, the machine learning task is deemed to be a classification problem rather than a regression
problem. As a broad overview, each of these supervised predictive models ingests as input numerous
labeled training examples and uses these to train a final predictive model, which serves as the output of
the training phase of this process. Specifically, the outputted, trained model ingests one or more
unlabeled examples and outputs a prediction- either a single best-guess classification or assigns a
verifying probability to each possible classification category for the true label of each input example.
Aside from the label, each training example also possesses with it a representation of the information
available on which to make a prediction. This is typically formatted as a list of predictors, or features,

which altogether comprise a feature vector (Murphy 2012). For this forecasting application, the features
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are forecast variables from NWP models used in the PFS’s NWP ensemble, with each individual feature
corresponding to a specific atmospheric field forecast at a given latitude and longitude for a specific

NWP model, depending on what information is being used to train the predictive model.

2.6.1 Logistic Regression

Perhaps the most basic, fundamental method for developing a statistical model is linear
regression, as used in MOS and elsewhere. The idea is to express the predictand of interest as a linear
combination of the input predictors, or features. Suppose one has n records, or training examples, of
the form: < y;, ﬁi = [1, x4, ..., x;y] >, with each example possessing a vector of m features, along with

the verifying observation y. The idea of linear regression is to express the predictand of interest as a

linear combination of the input predictors, or features: y; = E . f{ + &;, where B is a vector of predictor
coefficients, and € is an error term. This algorithm is powerful for many applications, but has its
limitations. Principally, linear regression produces predictand estimates on the spectrum (—oo, ),
while probabilities occur on the spectrum [0,1], and observations are members of the set {0,1}. For this
reason, linear regression is fundamentally a theoretically flawed approach for the application of
probabilistic prediction. This is because it belongs to a class of algorithms for the purpose of regression-
prediction of a continuous predictand, which is the wrong class of algorithms to apply to the forecast
problem examined here. Instead, one seeks robust classification algorithms- those that predict which of

a discrete set of categories an example belongs.

The name “logistic regression” is quite a misnomer, since in fact it is not a regression algorithm
but instead a classification algorithm. Logistic regression (LOG_REG) does, however, share a great deal
in common with linear regression. Both techniques are instantiations of the Generalized Linear Model
(GLM); the two approaches simply have different underlying assumptions. Three requirements must be

satisfied for any instantiation of the GLM. First, a linear predictor n is required; that is, the predictand
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may be expressed as a function of n, which in turn may be expressed as a linear combination of the

input featuresn = ﬁ - F. There must also be an identified probability distribution, or distribution
function, of the predictand mean. Lastly, there must be a link function connecting the predictor n with

mean of the distribution function, u. In linear regression, the distribution function is the normal

(x—w)?

Lo 202 , and the link function is the identity function: u = n. In LOG_REG,

distribution: f(x|u, o) = e

the Bernoulli distribution serves as the distribution function: f (x|p) = p(8(x — 1)) + (- p)(S(x)),
where §() denotes the Dirac Delta Function, and p is the input parameter indicating the probability of

occurrence. LOG_REG’s link function is the logit, or inverse sigmoid function, which can be re-written as

the inverse link function: v = As desired, for any real value for n, u now possesses a value on the

14+em’
interval [0,1], corresponding to the probability of the feature vector F corresponding to n belongs to the

positive verification category (Wilks 2011).
2.6.2 Decision Trees and Random Forests

2.6.2.1 Decision Trees

Decision trees are one fairly basic method for approaching classification problems. Decision trees,
for the purposes of this study, consist of a network of two types of nodes: decision nodes and leaf nodes.
Decision nodes each have exactly two children, which may be either decision nodes or leaf nodes, with a
binary split based on the numeric value of a single feature from the an input example’s feature vector.
A leaf node has no children and instead, makes a categorical prediction of the verifying class of the input
example based on the leaf’s relationship to its ancestor nodes. For a given input example, one always
begins at a decision tree’s root, and at each decision node, compares the value of its feature to the
critical threshold of the corresponding feature prescribed for that decision node. If the example’s
feature exceeds the node’s critical threshold, the tree is traversed to the node’s right child; otherwise,

the tree is traversed to the left child. This process is repeated until a leaf node is reached; at this point,
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the value corresponding to the leaf becomes the predicted verifying category for the input example. In
this way, the predictive model acts to make a categorical prediction by means of a conjunction of
boolean variables derived from an example’s feature vector. Once a decision tree is built, determining a
prediction given a feature vector is rather straight-forward; the challenge comes in the training phase in

constructing the tree.

The two primary questions that must be addressed in constructing a decision tree are:
1a) At a given juncture, how is it determined what feature to split on?

1b) After determining a splitting feature, what determines the critical threshold?

2) What determines when to stop node splitting, and thus create a leaf node?

Suppose a decision tree is trained on n training examples, each with a feature vector F of length
m. At a given node k, the candidate splits S consist of a feature f and threshold 8, S = (f,6). The set
of training examples that traverse the developing tree to reach k is denoted Q. S partitions Q into Qe
and Quigne by: Qpefe = VY, FY(F[f] < 6); Qrigne = V¥, F)(F[f] = 6). There is said to be impurity | at k

len(Qiefe)

based on S; that is given by I(Q, S) = len(Q)

len(Qq; .
H (Qleft(s)) + lng)m)H (Qn-ght(S)), where H is the

impurity function. Among the candidate splits S at k, the chosen split $* is the split satisfying:
S* = argminS(I(Q, S)). This process of greedy split selection is continued recursively until the

termination criterion is satisfied.

Traditionally, the termination criterion is simply that a node k is a decision node unless len(Q) =
1, in which case a leaf node with prediction y, (Q = (y,, F,)). However, recursing this deep is very
susceptible to fitting the noise of the training data, thereby overfitting the predictive model and

degrading its generalized skill. To alleviate this concern, often more liberal termination criterion are
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applied, such as creating a leaf node whenever len(Q) < leny,in; lenyin > 1, or by imposing a

maximum allowable depth D of the tree depth(k) < D.

2.6.2.2 Random Forests (RAND_FOR)

Decision trees can be a powerful approach for a wide array of applications, but they also have
several significant drawbacks. First, they are widely regarded as low bias, high variance solutions. That
is, minimal error is introduced by erroneous or oversimplistic assumptions in the model formulation, but
the model formulation is very sensitive to the input data upon which it trains, which results in large
error when extrapolating to other test data. More succinctly, decision trees are very prone to
overfitting the training data: fitting to the noise of the training data rather than just the underlying
relationships. This flaw substantially diminishes the utility of decision trees as a general predictive
model. Second, the decision tree framework does not robustly extend to a probabilistic framework,
since leaf nodes make deterministic predictions based on the mode verifying category of the subset of
the training data reaching each respective node; applying a probabilistic prediction to individual leaf
nodes greatly compounds the overfitting problem. It has been demonstrated that using many different
decision trees to form, in aggregate, a predictive model can significantly decrease the model variance
with only a slight increase to the model bias, provided the trees are sufficiently uncorrelated. This is the

idea behind random forests (Breiman 2001).

The challenge with random forests is: how does one generate a large set (forest) of reasonably
skillful decision trees that are not strongly correlated? The procedure described above for generating a
decision tree from training data is deterministic, that is, a given set of training data will always produce
the same decision tree via that algorithm. A forest of identical decision trees adds no value over using a

single decision tree. The extra process for random forest generation is twofold: tree bagging and
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feature bagging. To generate a forest of size B from the n training examples, tree bagging involves the
application of a simple bootstrapping procedure. Specifically, one samples, with replacement, n training
examples from the original set, and uses this derived set to construct a decision tree using the method
described above. This process is repeated B times to form a forest. Overfitting due to correlated trees
can still occur under this approach if a small subset of the original feature space are much more robust
predictors of the verifying category than the rest. To overcome this problem, only a random subset of
the m original input features are considered at each decision node; the size of the random subset is

denoted hereas Z;1 < Z < m.

2.6.3 K-Nearest Neighbors Classification

Applying straightforward clustering techniques for classification problems can prove highly
effective despite its simplicity. Perhaps the best known, the K-nearest neighbors clustering algorithm is
explored here. KNN and other clustering algorithms have the unique property, compared with the other
machine learning algorithms discussed here, that it is non-generalizing; test example predictions are
made purely based on the proximity to training examples, rather than applying a fitted model which is
extrapolated based on the training data. This is very advantageous when decision boundaries are highly
erratic and non-linear, as other methods will tend to produce biased solutions in these instances.
However, its inability to identify patterns in the training data can also cause it to use training data less

efficiently than other algorithms in many instances.

K-Nearest Neighbors classification makes predictions based on a weighted vote of the K training
examples judged most similar to the test example. Similarity of two data points is determined by a
distance metric D applied to the points’ feature vectors F, and F,, smaller distances being more similar.

The most commonly used distance metric is also the most intuitive, the Euclidean Distance:
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Deveta(Fr F) = | (Bili] = Fy[i])?
i=1

Distances between the test example and all training examples are computed, and the training examples
associated with the K smallest computed distances comprise the set of voting neighbors. Each neighbor
votes in accordance with its associated verifying observation in the training data to yield a set of votes,
or predictions, V. The final prediction of the KNN algorithm is then the product of matrix V and a
normalized weights vector W. Traditionally, W’s elements are all 1/K, so that each member has an equal

vote, but may be chosen to instead vary with weights inversely proportional to distance (Murphy 2012).

2.6.4 Boosting

The basic concept of boosting (Friedman 2001) is that a large ensemble of weak learners- very
high bias, very low variance models- can form a strong learner. Decision trees are a popular choice of
weak learner for boosting, and were selected as the ensemble members for this study. Decision trees
may be thought of as partitioning the m-dimensional feature space R™ into different segments, and
then assigning a verifying category to each fragment based on the mode verifying category of the

training data in that subspace. Each decision tree b can thus be characterized by its basis, or predictive,

1F € Ry,

j .
0F ¢Ry;’ where J is the number of segmented

function h: h.b(F) = Z;:l RPb]Xb] , where Xb] = {
regions of feature space, RPy; is the return period category assigned to the j'th segment of feature space
for the b’th tree, and Ry, refers to that corresponding region. F here is the feature vector, which specifies

a location in feature space. The net model M can then be expressed as a weighted sum of the basis

functions:
M(x) = Y5_, hy (F)yy, where y,’s are coefficients.

At any step b-1, the b™ tree is constructed so as to minimize the loss function L satisfying:
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n

My (F) = My, (F) + argminy, ) L(ve, My1 (F) = h(F)

=1

In gradient boosting, this minimization problem is accomplished by gradient descent:
n
My (F) = My 1 (F) + 7 ) VaaL (i, My—1 (FD)
i=1
Where y; corresponds to the verifying category of the i training example, and with:
n

¥p = argmin, Z L <yi, My 1(F) —vy

i=1

oL(y;, Mb—l(Fi))>
oM, (Fy)
For this study, the chosen loss function for probabilistic QPF recurrence interval classification was

multinomial deviance.

This process is repeated B times to form an ensemble of size B. Lastly, two extensions of this
procedure attempting to reduce the variance of the final ensemble are explored in this study. The first
is a learning rate where the iterative model avoids over-adjusting to new members by applying a
dampening coefficient v: M, (F) = My,_1(F) + vy,h, (F). The second approach is taken from the idea
of random forest creation: use only a subset of the total training data for each new decision tree.
Instead of creating a new sample of size n, sampled with replacement from the original dataset,
however, an- where a is the subsampling coefficient between 0 and 1- training examples are sampled,

without replacement, from the original training data.

2.6.5 Support Vector Machines (SVM)
Despite being rather abstract and difficult to interpret, both in the formulation and the output,
Support Vector Classification (SVC; Cortes and Vapnik 1995) is an extremely powerful method which

presents numerous advantageous. Due to its versatility, it generally extends to high dimensional feature
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spaces better than the other algorithms employed in this study, and can still work effectively even when
the dimensionality of the feature space is larger than the number of training examples. Aside from the
difficulty in physically interpreting the output of the fitted model, the primary drawbacks of this
approach are that it cannot directly solve a multi-class classification problem, and also cannot directly
assign probabilities to its predictions. These limitations suggest at first glance that this method may be a
poor choice for the problem of probabilistic forecasting of categorical RP exceedances, but due the

power of the technique in addition to available workarounds, SVC is still examined here.

Support vector machines (SVMs) aim to define the hyperplane(s) which separates the training
examples according to their respective labels and maintains as large of a margin as possible from any
training example so as to minimize generalization error. Consider a two class problem, where, without
loss of generality, all training examples can be associated with either class A, with a value of 1, or class B,
with a value of -1. Each of the n training examples has an associated observation y; these may be
assembled to a single observation vector Y of length n, which is thus comprised of elements y; €
{1,—1}. Any hyperplane in the m-dimensional feature space can be described by: 7 - F—b= 0, where
b is a scalar and 71 is a vector normal to the hyperplane. In the event that the training data are linearly
separable in the feature space, then a set of two hyperplanes may be considered: 7 - F—b=1and
R-F—b= —1; these planes correspond to the nearest boundaries corresponding to each class. As
stated above, SVMs are maximum-margin classifiers, that is, they seek to maximize the margin, or

distance, between these two bounding planes. It can be readily shown that the margin between these

2

T where ||72|| denotes the norm of the vector defining the

hyperplanes may be expressed as:

hyperplane. Thus, to maximize the separation margin, ||71]| must be minimized, subject to the constraint

that no training example is misclassified. This can be readily expressed as an optimization problem:

Minimize [|7]| subject to: y;(7 - F — b)>1,vi€{l,..,n}
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This problem can be readily solved (Cortes and Vapnik 1995); the implementation details will not be

discussed here.

The approach above works well for training data that are linearly separable in feature space, but
in general, this is not the case. The SVC approach may be generalized to allow for misclassifications; this
is accomplished by creating a slack vector Z, whose elements ¢, allow misclassification by changing the

constraints to the minimization problem to:
Minimize ||| + C X, & subject to: y;(7 - F, - b)>1-§,forvi€e{l,..,n}

In the expression above, C corresponds to the penalty term, or inverse regularization coefficient; it
determines how smooth the decision surface should be, with a low value implying a highly regularized,
low variance, high bias solution with smooth classification boundaries, while a high value implies a high
variance, low bias solution that attempts to classify all of the training examples as they are actually

labeled.

Even the extension above only allows for linear classification: the hyperplane must be defined as a
linear combination of the original features. However, in many problems, a non-linear decision boundary
better captures the true relationships between the input features and true classifications. This
limitation can be solved too by use of kernels and the kernel trick (Murphy 2012). The mathematics of
kernel theory and the kernel trick in particular are interesting, but not fundamental to an elementary
understanding of SVC and thus will not be discussed here. Succinctly stated, the kernel trick exploits the
fact that for some non-linear transformation ¢ to a feature vector F, ¢ (F), the inner product of two
such transformed vectors F; and F; may be expressed by a kernel k: k(Fi,Fj) =q@(F)- (p(F]) This can
be applied to transform the data into a much higher dimensional space, sometimes even infinite-

dimensional, where the optimal decision boundary is linear in the transformed space. Applying this
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transformation, the problem formulation stays the same, except the kernel function replaces the inner

product in the optimization constraints. Many different choices of kernels exist; some popular choices

that will be explored in this study are: 1) Linear k(d, 5) = G- b, 2) Polynomial of degree d k(d, 5) =
- d - - 7 2 -
(y(& : b) + r) , 3) Radial basis function (RBF) k(&, b) = e~vlla-b| , and 4) Sigmoid k(&, b) =

tanh(y(& : l_;) + r), where y and r are scalar constants that may be tuned.

The final limitations, namely (1) inability to extend to multi-class problems, and (2) inability to
extend to probabilistic output, present more genuine problems in that they don’t have ‘pure’ solutions.
The former limitation has numerous possible workarounds. The approach utilized in this study applies a
“one-versus-one” approach where ngasses(Neasses-1)/2 classifiers are fit to the training data, with each
classifier corresponds to a unique pair of classification labels. The aggregate of classifiers is then used to
make final class predictions. Probability estimates are made using a version of Platt Scaling; the method
as applied here is both quite esoteric and ad hoc. As such, the method does have some known
theoretical issues; principally, the predicted class in the deterministic problem may not have the
plurality of the probability assignment in the probabilistic output. The details of the probability
assignment phase will not be discussed here; for more information, see the Sci-Kit Learn User’s Guide

(Pedregosa et al. 2011).
2.7 Forecast Verification
2.7.1  Skill Scores

2.7.1.1 Brier Skill Score

The Brier Score (BS) is defined over N evaluation points as

BS = % ?’=1(Ej — FPj)z, with an observed event E defined by
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1 P =0;
;= {0 P]] < 9; and forecast probability FP; = P(P] > 9]-) corresponding to the event of whether the
observed precipitation at point j, P;, exceeds the critical precipitation threshold at that point, ©;, and the

corresponding forecast probability (Brier 1950; Wilks 2011). Extending this to a latitude longitude grid

of @ latitudes and L longitudes over D evaluation periods, the aggregated Brier Score becomes:

2
BSagg = g:l Z;]:l ch:l(nyd - prxd) .
The Brier Score can be expressed as a skill score (BSS) by comparing with the Brier Score
obtained from a reference forecast:

BS
BSS =1 — —%99
agdref

Two common choices of reference forecast are climatology (FPyq = FP, = %2]3:1 Eyxa), which

YXclim

. . . 1
with a known R-year recurrence interval can simply be expressed as FPy,,q = ETET Y and the worst

possible forecast (FPyyq = 1 — E)4). The resulting aggregated Brier Scores will be referred to as BS..¢

and BS,,orst, respectively, with corresponding skill scores of BSS and BSSp.s;:. Taking note that

BSworse = LD, BSSpese = 1 — 292 (Wilks 2011).

The BS can also be decomposed into distinct components (Murphy 1973), each with a physical
interpretation. Let the total number of N forecasts be subdividable into T distinct subcollections, with

each forecast belonging to exactly one subcollection. The climatological frequency of event occurrence

Ejjet

~ _1¢nN ] — _ 1 N 1 N t
can be expressed aso = j=1Ej, and Ot_—2j=1{0 jet_NijzlEj'

N (1Jj€t
2:J'=1{0 jét
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= Uncertainty + Resolution + Reliability

This decomposition to the BS can be seen in reliability diagrams, as will be shown in section 2.7.3.

2.7.1.2 Fractions Skill Score

Though the Brier Skill Score allows for a simple and intuitive metric for evaluating forecast skill
in a probabilistic framework, it does have several limitations. Principally, the BSS only compares the
forecast probability assigned in direct collocation with event occurrence. Small displacement errors
associated with a feature in a forecast may thus yield a skill score just as poor as a feature that misses
the existence of the feature completely, but the former forecast still has much more utility to decision-
makers and represents a solution much closer to reality than the latter forecast. The Fractions Skill

Score was developed by Roberts and Lean (2008), motivated in part to address some of the limitations
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of the BSS. Unlike the BSS, the Fractions Skill Score approach outlines a neighborhood within a fixed
distance of an evaluation point. Within this neighborhood, the fraction of points within the
neighborhood observed to have a verifying event is compared with the summed FP of all points within
the neighborhood. In this way, a model is not penalized for displacing FPs slightly away from the
verifying area, so long as the observed events and probabilities occur within the same neighborhood.
This is advantageous in that a forecast is credited for assigning higher FPs in the vicinity of a verifying
observation. It does, however, have the corollary disadvantage that a forecast is not credited for getting
the exact positioning of an event correct; it will receive the same score as the displaced forecast
provided that the summed FPs are identical and both occurring entirely within the neighborhood, or

evaluation region, of the evaluation point.

For an evaluation radius r, over N evaluation points and D evaluation times, the Aggregated

Fractions Skill Score (FSS) is given by:

D N
Ya=12j=1(0ja—M;q)?

FS§=1-— where
Ya=120=1 0ja’+Mja*’
_ 1 latj+r lon]-+r _ 1 lat]-+r lon]-+r i
Oja = (2r+1)2 z:y=latj—r Zx=lon]-—r Eyxq and Mjq = (2r+1)2 Z:y=l¢7tt]-—r z:x=lonj—r FPyyq, with

E

Y

1 Pyxd = ny .. . . .
wd = { . Here, Py,4 denotes the observed precipitation at latitude y and longitude x

0 Pyyg <0y
accumulated over the period corresponding to observation record d, while 6, corresponds to the
critical precipitation threshold, in this case the Z-year T-hour return period threshold of interest for the

location indicated by latitude y and longitude x. FP,,,; corresponds to the forecast probability of the

observed rainfall exceeding the critical precipitation threshold of interest at location (y,x) P(Pyxd =

Oyx)-
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The Fractions Skill Score exhibits interesting limiting behavior in both limits of evaluation radius.
In the limit of small evaluation radius, where the evaluation radius is zero, the FSS reduces to simple
point-by-point comparisons with observed ‘fractions’ as either 1 if the event was observed at that point,
and 0 if it was not. Thus the FSS at evaluation radius 0 is simply the BSS with a reference forecast as the
worst possible forecast, assigning zero probability whenever an event occurred, and probability one
whenever an event did not occur (see BSS,..; above). As such, the numerator of FSS for a single

observation record, Z?’zl(Ojd — de)z, is referred to as the Fractions Brier Score (FBS), while the

denominator Z?’=1 Ojdz + dez is called the Worst Possible Fractions Brier Score (FBSworst). In the limit

of large evaluation radius, the FSS reduces to a function of the Frequency Bias ]]:—", namely: FSS, o =

m

Lfmz, where f, is the total frequency of observed events and f,, is the total frequency of forecast

fo?+fm

events.

2.7.1.3 Rank Probability Skill Score

The FSS and BSS metrics are designed for a forecast problem which aims to predict an event
with a binary outcome: either it occurs, or it doesn’t. For some purposes, this is certainly how you want
to verify your forecast. For example, if something is very sensitive to the air temperature dropping
below freezing, the user only cares about whether the temperature dropped below freezing; if it didn’t
drop below freezing, it doesn’t matter whether the minimum temperature was 33°F or 40°F, and the
verification metric should reflect this ambivalence. In the context of this research, it isn’t quite so clear-
cut; the impacts will be different and change at different thresholds for different users, but will generally
increase monotonically with increasing local rainfall amount. For this reason, there may be some
motivation to penalize “near-miss” forecasts less than complete busts. For example, at a given point
with a critical rainfall threshold of 100 mm over some fixed period, with two forecasts issuing identical

FPs of exceeding this threshold, and in one case 0 mm fall over the forecast period and 95 mm fall within
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the other forecast period, there is reason to think that, in this forecast case, the latter forecast should be
considered “better” than the former. At the same time, however, the problem of forecasting explicit
QPF values adds a new layer of difficulty and complexity- compared with simply forecasting probabilities

of exceeding various thresholds- that are beyond the scope of this present research.

The Rank Probability Score (RPS; Epstein 1969) presents an alternative which compromises
between the all-or-nothing nature of the BSS and FSS, and the absolute error metrics such as root mean
squared error or mean absolute error which require explicit precipitation accumulation forecasts and
have many additional errors with the non-linear scaling occurring with extreme precipitation. The RPS
metric is designed for a forecast problem where 1) the forecasts are probabilistic rather than
deterministic, 2) there are several possible discrete verifying categories, and 3) those categories are
ordinal rather than nominal, that is, they have a natural ordering. The forecast problem specific to this
research can be framed in a way that satisfies all of these criteria. In the contexts of using the BSS or

FSS, a separate calculation is made for each recurrence interval R of interest, with each FP simply
corresponding to the P (Pyxd > HRyxd)' But in this “all-or-nothing” framework, a forecast for a 25-year

event where a 10-year event verifies (but a 25-year event does not) will be treated the same as a case
where a 1-year event does not verify. Given the high uncertainty, high impact, small-scale nature of
many of these locally heavy rainfall events, it seems that giving partial credit for the 10-year event is a
desirable verification property. Instead of viewing the forecast system as a series of binary probabilistic
forecast problems, the forecasts can instead be framed in a single multi-category probabilistic forecast
problem. For a set of return periods {1-year, 2-year, 5-year, 10-year, 25-year, 50-year, 100-year},
instead of making seven independent forecasts for the probability of exceeding each threshold and

verifying each separately, the FS can instead predict a single eight-element probability vector, with the

contents being f = (P (Pyxd < Qlyx) ,P (92yx > Pyyq = Qlyx) ,P (95yx > Pyya = BZyx) ,P (910yx >
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Pyxa 2 05,,), P (625, > Pyxa = 610, ), P (650, > Pyxa = 025,, ) P (6100,, > Pyxa =
Hsoyx) ,P (Pyxd > 91ooyx)> and the vector sum always totaling unity. The corresponding observation

vector o = (Ecy, , E12 ., E25, Es 10,0 E10,25,,0 E25,50,,,0 E50,100,,0 E>100,, ), With

. [ B, > Pyxa = Oa,,,
ab — 0 Pyxd>9byx07‘Pyxd< 0

Ayx

For the general case for a forecast problem with K ordered categories, the RPS may be expressed as:

RPS =YK _ (Z 1 fi— 271:1 oj)z, and this can be further aggregated over all evaluation points and

forecast periods and compared with climatology to expressed as a Rank Probability Skill Score (RPSS):

2
RPSS = 1.0 — RPS _ 1.0 — Zg=125:1Z§:1Z%:1(Zﬁ1ijxd—z7il O]'yxd)

7.
RPS i D D L K m m
ctim 281 Sy The s SR (B Fetim )y g =X 0jyxa)

The RPS is also an extension of the BS, reducing to it in the case of K=2 categories. This also means it
suffers from the same spatial displacement errors as the BS that motivated the use of the FSS. However,
the FSS and RPSS can be readily combined to form the Fractions Rank Probability Skill Score (FRPSS)

which combines the advantages of both approaches. The FRPSS can be expressed by:

FRPSS

2
+ 1 +
Bes B0es Bher B (S 1(2T+1)22i -+ T2 Evat = ot G 137 Zhever o5 FPoaa)

1

=10— :
+ +
Zd 1Zy 1Zx 12 ( j= 1(2T+ 1)2 Zi ;—r a= arc r Epaa — Z;'n=1m2i=;_r ﬁ:;—rFPclimbad)

2.7.2 Forecast Value and Value Scores

Forecast skill, though important, is not the end-all for forecast evaluation. Skill quantifies
forecast accuracy- how ‘good’ the forecasts are. It does not, however, quantify how valuable the
forecasts are, and ultimately, if the forecasts add no value, it does not really matter how skillful they are;

they’re simply not of use to end users. Assessing forecast value is ultimately the most important metric
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to assess whether the forecasts are actually benefitting the end users, which in many instances is society
at large. However, it is also one of the most difficult aspects of a forecast to objectively quantify.
Different users have varying sensitivity and risk tolerance. Users have different critical impact
thresholds; one farm may be on the 5-year floodplain, a second farm is on the 10-year floodplain but off
the 5-year plain, and a third may be in between, with the farm flooding at an 8-year return period.

Some user’s losses will be closer to the all-or-nothing framework, while others may incur additional
losses monotonically with increasing rainfall. A general framework to assess the forecast value with
every possible theoretical user is untenable; however, a simple cost/loss contingency table based

framework provides a useful, tangible means to assess forecast value and utility (Wilks 2011).

The Cost/Loss Model is predicated on two basic premises: 1) Given a preparation action A and
observed precipitation accumulation P, the cost or damages are known, static, and quantifiable; 2) The
costs/damages are a scaled Heaviside step function in the P dimension- that is, there are no costs until a
certain critical threshold P, is exceeded, at which point some non-zero loss L is inflicted, and no
subsequent precipitation beyond P.; will result in costs different from L. These premises allow for the
use of a basic contingency table framework. In one dimension, either P.;; was exceeded or it was not.
In the other dimension, either the user can take protective action or not. Suppose taking protective
action will cost $C, but then no further costs will be inflicted regardless of whether P is exceeded. If
protective action is not taken and P is exceeded, SL losses are inflicted, with L > C. The contingency

table (CT) can then be expressed as:
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Table 2.5: Classic cost-loss model contingency table. C denotes the cost of preparing, L the loss
burdened when the event occurs given no preparation.

Cost to User Not Observed

Prepare C C

Don’t Prepare L 0

Under this, the expected cost E[S] with a probability of affirmative verification p is:
E[$]prepare = C'E[$]—|prepare =Lp

. . . c
The break-even point between the two action points occurs when C = Lp - p = T=a= Cost-Loss

Ratio. The ‘interesting’ cases are restricted to users satisfying 0 < a < 1, otherwise one strategy strictly

dominates the other.

In this framework, forecast value may be quantified by means of a value score (VS). For all
cases, which may be enumerated as all latitudes Y, longitudes X, and times D, generate a suite of
contingency tables for different user sensitivities as expressed through the cost-loss ratio a, with a
ranging from 0 to 1. Each constructed table assumes rational users, who will prepare when the FP

exceeds their cost-loss ratio, and not take mitigative action otherwise.

1 Prepare {1 FPyg =«

PREP = {0 Don't Prepare =~ |0 FPyy <a

The jargon of contingency tables is most often expressed as:

Table 2.6: Traditional contingency table terminology, as will be used in this research.

Contingency Table Not Observed

Prepare Hits (HITs) False Alarms (FAs)
Don’t Prepare Misses (MISSs) Correct Rejections
(CRs)

The VS aims to quantify, in the CT framework, how the long-term expected economic cost of an

end user of interest, with a specific cost-loss ratio a, compares with both acting based on the
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climatological frequency of event occurrence 0 = %; TOT = HITs + FAs + MISSs + CRs,

and a perfect forecast in which the user prepares for the event when and only when it occurs. The

Eclim_Efcst

general form can be expressed as: V'S = . Like a skill score, the VS is unity when the

Eclim_Eperf
predictions of a forecast system cannot be improved, and zero when using the forecasts does not save

the user of interest anything relative to acting based on climatological frequency of occurrence.

Using climatology as a forecast, a user will either always prepare or never prepare, whichever is
cheaper in the long-run. This can be expressed for a single case, using the cost table above, with an
expected cost of: E;,, = min(C, L), with the first argument corresponding to the protection cost, and

the last as the expected non-protection cost.
It is readily seen that the perfect forecast has an expected cost of E,.,.s = 0C per forecast.

The cost of using the forecast system being analyzed over the forecast period from which the
contingency table is simply the product of the contingency table counts with the cost table: E¢.q; =

HITs x C + FAs « C + MISSs * L
Multiplying the Eqim and E e expressions by the total number of cases in the forecast period, TOT, yields:

_ TOT * min(C,0L) — (HITs * C + FAs x C + MISSs * L)

vs TOT * min(C,0L) — TOT = 6C

HITs FAs MISSs CRs .. .
—f=—;m= ; 7 = —— and dividing out TOT*L yields:
TOT TOT TOT TOT

Defining h =

min(a,0) — (h+ f)a—m
S = : ———
min(a, 0) — o«

After computing VS’s for a suite of a’s, a plot of VS as a function of a can be created; this type of figure is

known as an Economic Value Diagram (EVDG).
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In many cases, but especially in the instance of extreme events, it is often unrealistic that a user
can fully protect against the event; if it occurs, in many instance one would still expect to endure more
losses than if it didn’t, even when prepared. The CT framework introduced above can be readily
generalized to include a baseline loss Ly, in addition to an extra loss L. The cost table is modified to

read:

Table 2.7: Modified contingency table to accommodate a mitigated loss. Ly denotes the base loss, Loy
denotes the additional loss beyond the base loss if prepared, and C denotes the cost of preparing.

Prepare C+lg C

Don’t Prepare Lo + Lext 0

In this framework, the new costs are: E¢j;, = TOT * min(C + 0Lg, 0Lo + 0Lext) ; Epery = TOT *

(oC + oLy); Efest = HITs % C + HITs * Ly + FAs * C + MISSs x Ly + MISSS * Ley;
And the associated VS formula:

Vs

_ TOT * min(C + 0L, 0Lg + OLey) — (HITs % C + HITS % Ly + FAs % C + MISSs * Lo + MISSS * Lgy)
- TOT * min(C + 0Lg, 0Ly + 0Lay) — TOT * (0C + 6Lg)

~ min(C + 0Ly, 0Ly + 0Leyx) — (hC + hLg + fC + mLy + MLey)
- min(C + 6Lgy, 0Ly + 0Ley) — (6C + 0Ly)

_ min(C,0Leye) — (hC + fC + mLey,) _ min(@exr, 0) — (h + ey + m)
min(C, 0L,y:) —0C mMin(Q@eyt, 0) — 0oyt

)

. c
With Aoyt = E

Noting that the break-even point in this framework occurs when:

C+Llyp=Logp+Loyp—>a=p= ﬁ = @y, it is noted that the addition of a baseline loss does not

change the VS metric (Zhu et al. 2002; Mylne 2002).
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2.7.3 Reliability Diagrams

As explained in section 2.3.2, forecast reliability, namely the ability for FP = ORF, is a desirable
property of a PFS. PFS reliability is most often assessed by means of a reliability diagram. Over a large
number of verification records, forecasts are binned into clusters of approximately equal FP for an event
of interest. For each bin, the fraction of corresponding event occurrences is computed; this
approximates the PFS’s ORF for that FP. Then, mean bin FP is plotted against bin ORF, with ORF on the
ordinate and FP on the abscissa, and (FP,ORF) points are connected to form a reliability line (RL). The
closer the reliability line tracks to the one-to-one FP=ORF line, the more reliable the PFS (Wilks 2011).
However, the reliability line may also be used to make more specific diagnoses. An ‘S’ shape reliability

line indicates an overspread ensemble yielding underconfident predictions; conversely, an ‘inverted S’

line corresponds to an underspread EPS with overconfident probabilities. Further, fx1=0 RL(x) —xdx >

0 indicates a negatively biased PFS, issuing too low of FPs. Similarly, fxlzo RL(x) — x dx < 0 suggests a
positively biased PFS, thinking events are more likely to occur than they actually are. Some additional
features frequently accompany an RLon an RD. Often, a horizontal line is placed through the RD
indicating the climatological event ORF; this line also corresponds to the “zero resolution” line, since if
the RL falls along this line, it does not distinguish at all between events and non-events. An extension of
this is to draw the line which tracks the mid-point between the zero resolution line and the one-to-one
line; this line is referred to the “no skill” line, since points along this line neither add nor subtract to the
BSS, which as shown in 3.7.1.1, is readily decomposable in the framework of a reliability diagram. To
give the reader better context, a normalized histogram of bin sizes also typically accompanies an RL. A
reliability diagram with all of these additional properties includes 