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ABSTRACT 

 

 

 

MODEL POST-PROCESSING FOR THE EXTREMES: IMPROVING FORECASTS OF LOCALLY EXTREME 

RAINFALL 

 

 

This study investigates the science of forecasting locally extreme precipitation events over the 

contiguous United States from a fixed-frequency perspective, as opposed to the traditionally applied 

fixed-quantity forecasting perspective.  Frequencies are expressed in return periods, or recurrence 

intervals; return periods between 1-year and 100-years are analyzed for this study.  Many different 

precipitation accumulation intervals may be considered in this perspective; this research chooses to 

focus on 6- and 24-hour precipitation accumulations.  The research presented herein discusses the 

beginnings of a comprehensive forecast system to probabilistically predict extreme precipitation events 

using a vast suite of dynamical numerical weather prediction model guidance. 

First, a recent climatology of extreme precipitation events is generated using the 

aforementioned fixed-frequency framework.  The climatology created generally conforms with previous 

extreme precipitation climatologies over the US, with predominantly warm season events east of the 

continental divide, especially to the north away from major bodies of water, and primarily cool-season 

events along the Pacific coast.  The performance of several operational and quasi-operational models of 

varying dynamical cores and model resolutions are assessed with respect to their extreme precipitation 

characteristics; different biases are observed in different modeling systems, with one model 

dramatically overestimating extreme precipitation occurrences across the entire US, while another 

coarser model fails to produce the vast majority of the rarest (50-100+ year) events, especially to the 

east of the Rockies where most extreme precipitation events are found to be convective in nature.  
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Some models with a longer available record of model data are employed to develop model-specific 

quantitative precipitation climatologies by parametrically fitting right-skewed distributions to model 

precipitation data, and applying these fitted climatologies for extreme precipitation forecasting.  Lastly, 

guidance from numerous models is examined and used to generate probabilistic forecasts for locally 

extreme rainfall events.  Numerous methods, from the simple to the complex, are explored for 

generating forecast probabilities; it is found that more sophisticated methods of generating forecast 

probabilities from an ensemble of models can significantly improve forecast quality in every metric 

examined when compared with the most traditional probabilistic forecasting approach.  The research 

concludes with the application of the forecast system to a recent extreme rainfall outbreak which 

impacted several regions of the United States.  
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1 Introduction, Motivation, and Overview 

 

 

 

Heavy precipitation and associated flooding and flash flooding have an enormous impact on many 

different facets of society.  As a weather hazard, with 81 average annual deaths, floods are responsible 

for more deaths in the United States over the last 30 years than any other single weather hazard, 

including tornadoes, hurricanes, lightning, and other windstorms.  Floods can heavily damage or destroy 

buildings, roads, crops, and other property; in 2014, flash floods were responsible for more economic 

damage than any other weather hazard, with nearly $2.5B in reported flash flood damages occurring 

that year.  Though some damages from extreme rainfall and flooding are inevitable, appropriate 

preparedness can greatly alleviate damages and almost completely eliminate flood fatalities.  As such, 

accurate forecasts of extreme precipitation and flooding are of immense value to society. 

Ultimately, flood forecasting is what most directly addresses societal impacts associated with 

heavy precipitation.  Flood forecasting is performed by forcing a hydrologic model with precipitation 

forecasts from an atmospheric model, or numerical weather prediction (NWP) model.  Both 

observations and modeling has shown that hydrologic response is extremely sensitive to the amount of 

precipitation, the location where the precipitation falls, and antecedent conditions.  Thus, even what is 

often considered a fairly good precipitation forecast may produce a very inaccurate response in the 

hydrologic model, resulting in a poor flood forecast.  Due to these high sensitivities, using hydrologic 

models for real-time flood and especially flash flood forecasting is presently exceedingly difficult, and 

perhaps not yet feasible.  There nevertheless exists a strong correlation between precipitation amount 

and associated impacts.  This correspondence is not uniform, however.  In some areas, such as the 

southeast United States, an inch or two of rain over a day-long period is commonplace, and both the 

native ecosystem/soils and man-made infrastructure are adapted to accommodate this rainfall with 
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minimal impacts.  In areas of the arid west, this amount of precipitation is much rarer, and much larger 

flood impacts may be experienced.  Typically, due to adaptation to the local precipitation climatology, 

local impacts associated with precipitation are more closely tied to the rarity of receiving a given 

amount of precipitation over a specified period than impacts being simply associated with a fixed 

precipitation amount.  It therefore follows that, without performing hydrologic modeling, a useful proxy 

for the impacts of extreme precipitation is the quantification of the rarity of forecasted precipitation 

accumulation at a given location over a particular length of time.  Often in fixed frequency applications 

when concerned only with rare events, event frequency is expressed by means of return periods (RPs) 

or, equivalently, average recurrence intervals (ARIs).  In this context, an N-year RP refers to a long term 

average occurrence of once per every N years for the specified location and precipitation accumulation 

interval (AI), though there will of course be N-year periods experiencing several events and other 

periods experiencing no events at all.  For a given location and AI, the precipitation accumulation 

required yielding an ARI of exactly N-years is termed the N-year RP threshold.  Because of the impacts 

associated with extreme precipitation, the utility of accurate locally extreme precipitation forecasts, the 

immense challenges associated with real-time hydrologic modeling, and the utility of precipitation 

accumulation rarity on hydrologic impacts, the research conducted and presented here seeks to 

improve real-time forecasts of locally extreme precipitation from the return period framework. 

There exist many plausible routes to seek in attempting to achieve the goal of improving 

forecasts of locally extreme precipitation.  The question is which avenue or avenues will best achieve 

this goal given the NWP models and forecast products in place today.  More than a decade ago, Fritsch 

and Carbone (hereafter FC04) laid out some of the leading challenges in quantitative precipitation 

forecasts (QPFs) at the time, and many remain true today.  They argued that QPF, and in particular 

warm-season QPF, is the worst forecast predictand of interest in all forecast systems of the time, and 

the performance gap with other predictands was increasing since warm-season QPFs were not 
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improving as quickly as other areas.  They argue that the warm-season QPF challenge will continue for 

the foreseeable future, and given the extent of the societal impact of precipitation and especially heavy 

precipitation, great effort must be invested towards alleviating the QPF deficiencies that existed then 

and remain today.  The article presented a targeted research and development plan for moving forward 

as a community.  Their first key goal was the generation and dissemination of forecast guidance in 

probabilistic form.  FC04 argues that this is critical for several reasons: 1) the importance of probabilistic 

forecast information for end user decision scenarios and risk management; 2) the limited skill and lead 

times over which deterministic guidance exhibits skill argue for a probabilistic framework on top of a 

deterministic foundation; 3) the incomplete representation of moist convection, especially in models 

which by necessity apply a cumulus presentation fails to adequately capture the statistical properties of 

moist convection; and 4) statistical post-processing of model forecasts can alleviate inherent model bias 

and quantify forecast uncertainty, even absent an improved understanding of the physical precipitation 

processes.  FC04 also proposed several additional specific areas that are critical to target and improve 

going forward: 1) acquiring an improved understanding of the economic and social aspects of QPFs so 

that the full value of the available meteorological information may be realized; 2) develop new models 

and refine existing models to better represent physical processes such as cloud microphysics and moist 

turbulence; 3) improving understanding of microphysics and convective systems, particularly the 

mechanisms for propagation, dissipation, and regeneration; 4) improving atmospheric observations, 

with particular emphasis on widening precipitation coverage both at the surface and aloft, and properly 

observing aerosol extent and composition; 5) improving data assimilation; 6) improving probabilistic 

forecast guidance through a combination of observationally-derived, model-derived, and blend-derived 

guidance, depending on the lead time and application; 7) improving QPF verification methods, especially 

in relation to end user goals; and 8) develop products of use to end users, with a particular emphasis on 

hydrologic modeling and forecasting.  Lastly, FC04 outlined a roadmap for how to best accomplish these 
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goals. TheǇ sepaƌated these aĐtioŶ iteŵs iŶto ͚eaƌlǇ͛ aŶd ͚ĐoŶtiŶuiŶg͛ aĐtiǀities; ŵaŶǇ iteŵs, eǀeŶ in the 

͚eaƌlǇ͛ stage ĐategoƌǇ, aƌe still ǀeƌǇ ŵuĐh oŶgoiŶg, aŶd some still in preliminary phases.  Important 

action items that have received considerable improvement since the publication of this manuscript 

iŶĐlude: ϭͿ ͞Đoŵpil[iŶg] a high-quality, high-resolutioŶ dataďase of pƌeĐipitatioŶ pƌopeƌties͟; ϮͿ 

͞deǀelop[iŶg] iŵpƌoǀed ŵetƌiĐs foƌ ǀeƌifǇiŶg ŵesosĐale pƌeĐipitatioŶ foƌeĐasts iŶ ďoth tiŵe aŶd spaĐe, 

espeĐiallǇ foƌ guidaŶĐe pƌoǀided iŶ gƌidded pƌoďaďilistiĐ foƌŵ͟; aŶd ϯͿ ͞eǀaluat[ing] the benefit from 

very-high hoƌizoŶtal aŶd ǀeƌtiĐal ƌesolutioŶ oďseƌǀatioŶs oǀeƌ the ĐoŶtiŶeŶt͟.  These advancements 

have made the ability to advance in many of the other target areas much more feasible than it was a 

decade ago.  While it is not realistic for a single research project to address all of these goals or all of the 

recommended action items, the research proposed and explored herein attempts to address many of 

these points which, to date, have been neglected and/or underexplored.  In particular, with respect to 

the pƌoposed aĐtioŶ iteŵs, this studǇ aiŵs to: ϭͿ ͞ĐoŵďiŶe eŶseŵďle teĐhŶiƋues aŶd tƌaditioŶal 

statistical postprocessing techniques to provide calibrated probabilities, ensemble fields, and unbiased 

eŶseŵďle statistiĐs͟; ϮͿ fuƌtheƌ ͞deǀelop iŵpƌoǀed ŵetƌics for verifying mesoscale precipitation 

foƌeĐasts … foƌ guidaŶĐe pƌoǀided iŶ gƌidded pƌoďaďilistiĐ foƌŵ͟; ϯͿ ͞deteƌŵiŶe appƌopƌiate 

methodologies to evaluate case-depeŶdeŶt uŶĐeƌtaiŶtǇ foƌ pƌeĐipitatioŶ eǀeŶts͟; and to a lesser extent 

ϰͿ ͞ĐoŶstƌuĐt ŶoǁĐasting techniques that utilize high-resolution observations and numerical model 

output to geŶeƌate ĐategoƌiĐal pƌoďaďilistiĐ QPFs͟; ϱͿ ͞assess the feasiďilitǇ of peƌiodiĐallǇ pƌoduĐiŶg a 

retrospective archive of the high-ƌesolutioŶ … ŵodel output aŶd eŶseŵďle ƌuŶs of that ŵodel͟; aŶd ϲͿ 

͞deǀelop teĐhŶiƋues to iŶtegƌate eŶseŵďle pƌeĐipitatioŶ foƌeĐasts fƌoŵ different forecast systems 

ranging from nowcasts to regional to medium range to climate into a seamless and consistent set of 

eŶseŵďle foƌĐiŶg͟.  IŶ addƌessing so many of these action goals, it is hoped that this research will 

significantly advance the field towards improved probabilistic QPF prediction and in so doing, contribute 

to the forecasting community at large.   



5 

 

As FC04 alluded, human forecasting in the modern age, despite substantial advances in both 

numerical models and our physical understanding of atmospheric processes, presents new challenges.  

There is an overwhelming amount of model guidance produced each day.  Many nations and/or regions 

have their own operational center with their own global model and global ensemble, in addition to 

possible regional modeling efforts as well.  These often run two to four times daily, and operational 

global ensembles often range in size from 10-50 members- each a distinct run to consider.  In the United 

States, the National Centers for Environmental Prediction (NCEP) runs a full-scale regional 21-member 

ensemble four times daily as well. In addition to operational products, centers often also have 

experimental products running on a regular cycle as well: upgrades to existing models running in 

parallel, high-resolution implementations of existing models, or completely new modeling frameworks.  

The amount of modeling produced solely from the operational centers around the globe is already 

daunting for a forecaster to exhaustively inspect and ingest, but it is still only a portion of the total 

modeling data available.  Specialized forecast centers such as the National Severe Storms Laboratory 

(NSSL) and research institutions such as the National Center for Atmospheric Research (NCAR) have their 

own modeling efforts, both with deterministic runs and high-resolution ensembles.  Many universities 

also run real-time model simulations with varying levels of dedication, from daily runs of a coarse model 

to full-scale regional ensembles or multiple runs per day of very high resolution NWP models.  All told, 

there are often hundreds of model runs a forecaster has at his or her disposal to inform their forecast.  

The forecasteƌ͛s ĐhalleŶge is to iŶtelligeŶtlǇ use all of this guidaŶĐe to pƌoduĐe the ďest possiďle 

forecast.  But with the amount of data available and new guidance constantly emerging, it is nearly 

impossible for a human to thoroughly inspect and sort through the full suite of information at their 

disposal.  Challenges exist for the modern forecaster on the actual forecasting front as well.  Forecasting 

is not limited to simply making a single deterministic forecast and hoping to minimize the error of that 

forecast. A robust forecast must also include uncertainty quantification, and a probabilistic assessment 
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of event likelihood, particularly for rare, high-impact events for which most end users are highly 

sensitive to the verifying outcome.  A computer can ingest this large magnitude of forecast data much 

more quickly than a human; the question is whether an automated algorithm can use the forecast 

information as effectively as a skilled human forecaster.  The forecast system (FS) developed herein 

seeks to examine this question in the limited capacity of probabilistic locally extreme precipitation 

forecasting.  The FS will not generate traditional QPF predictions.  Instead, it seeks to ingest a large 

quantity of NWP model guidance from numerous sources and utilize it to generate probabilistic 

forecasts of locally extreme precipitation of varying degrees of rarity, or extremeness.   

 

Figure 1.1: Schematic of forecast system pipeline. 

 

Figure 1.1 provides a rough overview of the steps involved with this FS.  The process begins with 

ingesting NWP guidance from different sources and of different scales and resolutions.  After providing 

necessary background in Chapter Two, an examination of the performance and characteristics of these 
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individual modeling systems with respect to locally extreme precipitation prediction is presented in 

Chapter Three.  As will be discussed in more detail later, individual modeling systems each exhibit biases 

associated with precipitation; with extreme events, it is often the case that these biases are exacerbated 

or new biases emerge (e.g. Marzban 1998).  These biases vary from model to model.  An examination 

and evaluation of approaches to correct for these individual model biases is made in Chapter Four.  For 

reasons to be explained in more detail later, performance and bias explored in Chapters Three and Four 

only examine bulk behavior- in the case of bias, forecasts that are always too high or always too low.  

But for numerous reasons, models can also have different biases under different meteorological 

regimes, and also perform more or less skillfully on average depending on the meteorological context.  

Model training uses past forecasts from all members of the ad-hoc ensemble to attempt to identify 

these dynamic biases and patterns and make appropriate corrections based on historical performance.  

These methods can also correct for persistent displacement errors more readily than the bulk methods 

of Chapter Four.  Now, having ingested all model guidance and optionally performed any bias correction 

to the members or the ensemble as a whole, the forecast information is applied towards generating 

probabilistic forecasts of locally extreme rainfall framed in the context of return periods.  Various 

techniques for probability generation and the ensemble training methods are explored in Chapter Five.  

An application of the forecast system, including examining the effects of the individual pipeline 

ĐoŵpoŶeŶts, oŶ a ƌeĐeŶt eǆtƌeŵe ƌaiŶfall ͚outďƌeak͛ is used to synthesize and solidify the discussion of 

the previous chapters and is presented in Chapter Six.   The overall results of the research will be 

summarized in Chapter Seven. 
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2 Background 

 

 

 

The research conducted in this study is somewhat technical, borrowing from knowledge of many 

different fields including meteorology, statistics, mathematics, and computer science.  Due to the 

breadth of the information and knowledge used, this chapter aims to present a concise but sufficiently 

thorough overview from all of the background fields in order for any scientifically and mathematically 

inclined reader to adequately comprehend and appreciate the research presented in subsequent 

chapters.  This chapter is laid out in seven sections, each covering a different background area.  Section 

2.1 presents a brief overview of underlying principles and history of NWP, with an emphasis on 

statistical forecasting techniques and those methods which pertain to extreme precipitation post-

processing.  Section 2.2 concerns specific NWP models that will be used as input data for the research 

presented in future chapters.  Section 2.3 provides an introduction to probabilistic forecasting and 

ensemble prediction systems (EPSs).  Section 2.4 gives an introduction to extreme value theory (EVT) 

and associated applications, while Section 2.5 describes observational precipitation datasets used by 

this research and a brief overview of the United States extreme precipitation climatology.  Section 2.6 

provides a brief description of machine learning algorithms applied in subsequent research, and Section 

2.7 concludes with a targeted presentation of the forecast validation methods used for this study. 

2.1 Numerical Weather Prediction and Statistical Forecasting 

2.1.1    Dynamical and Statistical Modeling 

There exists a dichotomy of sorts in atmospheric modeling.  Traditionally, atmospheric modeling 

and forecasting is separated into two camps: dynamical modeling and statistical modeling.  Both 

methods have a long history of research and numerous approaches to application.  However, all 

approaches share some commonalities.  In dynamical modeling, one begins with a numerical 
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representation of the current state of the atmosphere.  Often, this is represented by having current 

numerical values for a suite of atmospheric variables on a three-dimensional grid.  Equations governing 

the evolution of the atmosphere are then used in conjunction with the initial state to ascertain a 

representation of the atmosphere at future times.  The process of taking observational data and 

previous model forecasts to generate a new representation of the current atmospheric state is known as 

data assimilation; using the equations to predict future states from there is termed model integration.  

Model resolution refers to the smallest scale physical processes that the dynamical model is able to 

adequately resolve.  Model resolution is largely a function of model grid spacing; an approximate rule-

of-thumb being that dynamical models can begin to resolve phenomena occurring on scales at least four 

to five times the model grid spacing in the dimension of interest.  Obtaining an accurate representation 

of the atmosphere may require these smaller-scale phenomena being represented; this is done by 

means of parameterization.  Common examples include cumulus, microphysics, and land surface 

parameterizations; these and others will be discussed in more detail in section 2.2.   

Statistical modeling does not directly simulate the atmosphere.  Instead, it uses historical 

observations to derive statistical relationships between fields of interest, predictands, and other 

observables, or predictors.  There are a plethora of approaches to implementation, including regression, 

clustering, and more advanced machine learning approaches.  Some of these will be discussed in more 

detail in section 2.6.  Statistical-Dynamical modeling, often considered a subset of statistical modeling, is 

in essence the application of statistical forecasting approaches to dynamical model variables.  This is 

primarily the approach that will be used in this research.  Targeted historical and current developments 

in statistical-dynamical modeling will be discussed in the subsequent subsections of this section.     
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2.1.2    Model Output Statistics and Linear Regression 

Model Output Statistics, or MOS, is the first major operational implementation of a statistical 

forecasting system for general-purpose forecasting.  Initially developed beginning in 1965, and 

implemented operationally from 1976 onwards, MOS has been the operational state-of-the-art for four 

decades.  It is based on the simple, yet effective, technique known as multivariate linear regression 

(Glahn and Lowry 1972). 

In multivariate linear regression, one begins with a set of predictands of interest.  For MOS, this 

includes temperature, dew point, wind speed, wind direction, precipitation, ceiling, visibility, and cloud 

cover at a variety of lead times separated by three to twelve hour intervals, depending on the specific 

MOS product.  Associated with each predictand is a set of candidate predictors.  For MOS, there is a vast 

suite of N ĐaŶdidate pƌediĐtoƌs; soŵe aƌe ͚statiĐ͛, suĐh as statioŶ eleǀatioŶ, latitude, aŶd loŶgitude; 

sinusoid functions of the time of day and time of year; and climatological weather at the station, while 

otheƌs aƌe ͚dǇŶaŵiĐ͛, ĐhaŶgiŶg fƌoŵ daǇ to daǇ aŶd Ǉeaƌ to Ǉeaƌ.  ͚DǇŶaŵiĐ͛ ǀaƌiaďles ŵaǇ iŶĐlude ďoth 

current observations in addition to predictions from an operational dynamical model.  It should also be 

Ŷoted that soŵe pƌediĐtoƌs aƌe ͚deƌiǀed͛; theǇ͛ƌe functions of a base predictor, such as the square of the 

dǇŶaŵiĐal ŵodel͛s teŵpeƌatuƌe foƌeĐast (Glahn and Lowry 1972).  Fitting a regression model involves 

using training data to fit an equation of the form: ࢟ = �� + �, where y is a vector of length m, with 

each element corresponding to a unique observation for the predictand of interest, X an n by m matrix 

populated by the n predictor values corresponding to each of the m predictand observations, � a 

weights vector of length n relating each predictor to the predictand, and � an error vector of length m, 

effectively the residual between the predictand and the corresponding result of the product of �� for 

each observation (Wilks 2011).  The goal in fitting a linear regression model is to minimize the sum of 

the squared residuals: SSR(ߚሻ = ∑ ሺݕ௤ − ሻଶெ௤=ଵ��࢞ = ∑ ௤ଶெ௤=ଵߝ .  The weights, or equation coefficients, 
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�, are fixed to minimize this function:  �̂ =  ሺ�ሻ൯.  The minimum can be obtained byܴܵܵ)݊݅݉݃ݎܽ

differentiating the SSR function and equating it to zero: 

Ͳ = ݀݀�∑ ሺݕ௤ − ሻଶெ௤=ଵ��࢞ = ݀݀�∑ ௤ଶݕ − ெ௤=ଵ��࢞௤ݕʹ + � ���࢞
=∑ ݀݀�ሺݕ௤ଶ − +��࢞௤ݕʹ ሻெ௤=ଵ� ���࢞ = ̂���࢞)ʹ −  ൯�࢞௤ݕ

̂��࢞ =  (note: x is mxn, y is 1xm) ࢞࢟

�̂ = ሺ࢞�࢞ሻ−ଵ࢟�࢞ 

Once coefficients for the � vector have been computed, using the statistical model to generate 

predictions is trivial; the new predictor values are gathered, and the inner product of the predictor 

vector x with � yields the model prediction for the predictand of interest, ̂ݕ.  However, one important 

step of the model development process has been overlooked: the selection of predictors to use in the 

statistical model.  In statistics and machine learning, the bias-variance tradeoff refers to the problem of 

minimizing two sources of error in fitting a statistical model.  Error from bias occurs due to erroneous- 

often too simple- assumptions about the behavior of the predictand relative to the predictand.  

Variance, in contrast, refers to the statistical ŵodel͛s seŶsitiǀitǇ to the training data; a high variance 

model will change drastically when trained on two different samples extracted from the same 

population, while a low variance model will not.  High variance models are often said to be overfit- the 

model is fitting the noise in the training data rather than just the underlying predictor-predictand 

relationship- while high bias models are often said to be underfit.  Ultimately, one aspires to have a 

model that is both low bias and low variance; however, the bias-variance tradeoff dictates that 

decreasing model bias results in increasing variance, and decreasing variances increases model bias. In 

the context of linear regression, the model assumption is that the model predictand may be described 
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by a linear combination of the model predictors.  As fewer predictors that are used, stronger 

assumptions are made on the predictive capability of the retained predictors, resulting in an increasingly 

biased model.  In contrast, increasing the number of predictors increases the propensity to fit noise in 

the training data, resulting in higher variance solutions.  For this reason, it is not desirable to simply use 

all available candidate predictors; doing so will often lead to a high variance, overfit model solution.  The 

challenge is to select a subset of the candidate predictors that have a strong predictive relationship with 

the predictand, but is sufficiently small to avoid overfitting (Murphy 2012).  This procedure is known as 

feature selection.  MOS implements feature selection through a fairly simple scheme known as the 

forward stepwise implementation of screening regression.  Screening regression is a greedy algorithm 

that operates by, beginning from the pool of candidate predictors, retaining the one with the highest 

correlation with the predictand.  Next, the predictor from the remaining set of candidate predictors 

that, combined with the set of already-retained predictors, explains the largest proportion of predictand 

variance, is selected and retained.  This procedure is repeated until a termination criterion is satisfied, 

typically either a fixed number of predictors have been selected, or until further predictor selection fails 

to explain a specified threshold of additional variance (Glahn and Lowry 1972).   

MOS is run one, two or four times daily, for numerous atmospheric variables enumerated in part 

above, at lead times from 6 hours after initialization to approximately one week, with detailed guidance 

being available out to 84 hours past initialization.  This procedure is used for approximately 1700 

stations nationwide, with independent equations being used at each station.  Model equations are 

retrained periodically, and different equations are often applied for different seasons.  MOS output 

trained from the operational Global Forecast System (GFS) and a separate MOS trained from the North 

American Mesoscale (NAM) model are run and publicly disseminated by the National Weather Service 

(NWS).  Operational MOS products do make quantitative precipitation forecast (QPF) predictions.  

However, rather than predict QPF directly, the MOS QPF predictand is discretized into categories, or 
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bins.  Category 0 is defined as zero measurable precipitation, Category 1 one hundredth to less than one 

tenth of an inch, Category 2 from one tenth to less than one quarter of an inch, Category 3 from one 

quarter to less than one half of an inch, Category 4 from one half to less than one inch, Category 5 from 

one to two inches, and Category 6 refers to at least two inches of precipitation over the accumulation 

interval (Dallavalle and Cosgrove 2005; Gilbert et al. 2008).  While this has use in ascertaining the 

geŶeƌal ͚ǁetŶess͛ of the daǇ, foƌ a ǀaƌietǇ of ƌeasons, it has limited use in many direct, quantitative 

applications of QPF.  First, it has no regional awareness of the precipitation climatology in its 

foƌŵulatioŶ; Ϯ͟ of ƌaiŶ ŵaǇ ďe eǆĐeediŶglǇ ƌaƌe iŶ soŵe paƌts of the ĐouŶtƌǇ, ǁhile ƌelatiǀelǇ ĐoŵŵoŶ in 

other area.  Second, for extreme precipitation issues, haǀiŶg aŶ uŶďouŶded thƌeshold at Ϯ͟ ŵaǇ Ŷot ďe 

high eŶough; it ŵaǇ ďe the Đase foƌ soŵe appliĐatioŶs that Ϯ͟ of ƌaiŶ ǁill Ŷot Ǉield aŶǇ pƌoďleŵs, ďut ϲ͟ 

of rain can cause a catastrophe.  The MOS QPF formulation has no resolution under these 

circumstances.  Third, even the bounded categories can present substantial problems in these sorts of 

situations.  Suppose a user is interested in 24-hour accumulations, and MOS QPF variables are presented 

in 12-hour accumulations (as they are, in the short-range message).  In the continuous QPF prediction 

context, this is not a problem: the user simply sums Q121 and Q122 to determine Q24.  However, in the 

categorical reality, Q121 and Q122 ŵaǇ ďe ͞CategoƌǇ ϱ͟ aŶd ͞CategoƌǇ ϱ͟, ǁhiĐh Đould ĐoƌƌespoŶd to a 

QϮϰ aŶǇǁheƌe ďetǁeeŶ Ϯ͟ aŶd ϰ͟.  AgaiŶ, this diffeƌeŶĐe ŵaǇ ďe ǀeƌǇ sigŶifiĐaŶt, ǁith a Ϯ͟ 

accumulation not requiring any pƌepaƌatiǀe aĐtioŶ, ǁhile a ϰ͟ aĐĐuŵulatioŶ does.  

Despite its strengths, MOS does have several limitations which this research attempts to 

overcome. As noted above, MOS does not attempt to make numerical QPF predictions, limiting its utility 

in many forecasting applications.  Is this simply a flaw in design?  No, probably not; linear regression, 

while powerful, does have limitations.  First, it is likely that the relationship between model predictors 

and continuous QPF predictand are complex, and the relationships may be non-linear.  Second, linear 

regression is not especially well equipped for handling rare or extreme cases; it can be over-influenced 



14 

 

by outliers, leading to poor predictions throughout the QPF spectrum.  These reasons, among others, 

likely motivated the decision to have QPF be a categorical, rather than continuous, predictand.  

Nevertheless, there is a need for continuous QPF prediction, and also a need for forecasts that can 

robustly handle extreme cases.  Statistical systems research geared towards these forecast applications 

are explored in the following sections.  MOS also does not directly provide any uncertainty information 

about its QPF values, instead only giving uncertainty by means of the pre-determined categorical ranges 

above.  As will be discussed in sections to follow, probabilistic and uncertainty information can be of 

immense value to decision-making end users (Wilks 2011; Fritsch and Carbone 2004).   

2.1.3    Other Precipitation Post-Processing 

Many different methods and techniques exist for QPF post-processing.  As alluded in the 

discussion of MOS above, even in the context of a single algorithm, there are often many different 

options, including but not limited to how define the QPF predictand (e.g. categorical vs. discrete), the 

selection of predictors, and the optimization and/or verifying function.  Despite the vast array of yet 

unexplored algorithms and applications, many approaches have already been attempted and pursued.  

This subsection will discuss a few of the most significant developments, at least in the context of the 

research conducted herein.  It should be noted that this should not be taken as a completely 

comprehensive literature review, as the full development of precipitation post-processing is too 

involved to discuss completely here. 

A lot of early work on precipitation forecasting had little focus on calibration and post-

processing.  In the early years of operational global ensembles, more research effort focused on 

ensemble prediction system (EPS) design and comparing raw EPS derived forecasts, either via the 

ensemble mean or probabilities based on the proportion of ensemble members exceeding a threshold, 

to traditional deterministic products.  One example of this is Buizza et al. (1999), which verified the 



15 

 

ECMWF ensemble for different seasons, thresholds, and resolutions.  Later work (e.g. Clark et al. 2011; 

Mullen and Buizza 2011) looked at the effect of ensemble size and model resolution on raw ensemble 

PQPF skill.  Other very early work in this area focused on the relationship between probability of 

precipitation (PoP) and QPF.  Wilks (1990) considered categorical QPFs and conditional precipitation 

distributions, either conditioned on whether measurable precipitation occurred, or conditioned on the 

approximate subjective PoP issued for a given forecast.  A discernable PoP-QPF relationship was 

identified over all sites examined, namely higher PoPs corresponded to a distribution of precipitation 

accumulations shifted towards higher amounts.  This relationship was exploited to improve probabilistic 

QPF skill.  The concept of using exploiting the PoP-QPF relationship for the purpose of predicting QPF 

has evolved and been refined over the years, such as in Bremnes (2004).  In Schaffer et al. (2011), the 

relationship was applied in the opposite direction; QPFs were used to generate calibrated PoP forecasts.  

The authors again demonstrated the utility of this relationship for forecasting purposes, and further 

demonstrated the utility of using neighborhoods- forecasts values surrounding a given forecast point- to 

inform the local PoP forecast.  The neighborhood concept was perhaps first demonstrated to be a 

computationally-efficient way to generate probabilistic information from a deterministic system in Theis 

et al. (2005).  Here, neighborhoods were applied both spatially and temporally in generating 

probabilistic QPFs.  This technique was also applied to a high-resolution ensemble in Schwartz et al. 

(2010), and robust result were seen here as well.  Neighborhood-based approaches are seen as a 

method to increase forecast information without the added computational expense of an additional 

dynamical model run; the idea shows great promise, and will be further explored in detail in Chapter 5. 

Hamill et al. (2004) was perhaps the first paper to discuss and advocate using model reforecasts- 

historical re-runs of a new model- to improve (statistical) forecasts for a variety of fields, including 

precipitation.  Hamill and Whitaker (2006) demonstrated the value of reforecasts for QPF using an 

extremely coarse T62 version of the Global Forecast System (GFS) model.  The authors used forecast 
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analogs, identifying historical cases that were deemed similar to the current forecast, to generate an 

ensemble of similar historical cases.  The observations from these cases could then be used to predict 

and/or modify the current QPF, and the authors were able to do so in a way that significantly enhanced 

forecast skill at a variety of accumulation thresholds.  Wilks and Hamill (2007) used the same dataset to 

compare three different methods- Logistic Regression, Nonhomogeneous Gaussian Regression, and 

Gaussian Ensemble Dressing- on their ability to make probabilistic forecasts for medium range 

precipitation.  All methods showed some utility at different locations and lead times, and using a long 

15-25 year reforecast dataset for training as opposed to a shorter 1-2 year training period significantly 

improved forecast skill for all algorithms tested, resulting in approximately a one-day improvement in 

forecast skill.  This work was furthered with an Extended Logistic Regression implementation on ECMWF 

ensemble reforecast data in Roulin and Vannitsem (2012).  Further reforecast work continued in Hamill 

et al. (2008) considered reforecasts both from the GFS used previously in addition to those from the 

European Center for Medium Range Forecasting (ECMWF).  The authors examined multiple ways for 

geŶeƌatiŶg foƌeĐast pƌoďaďilities usiŶg these ƌefoƌeĐasts.  TheǇ fiƌst ĐoŶsideƌed ͚ƌaǁ͛ eŶseŵďle 

probabilities (termed Point Democratic Voting in Chapter 5) and found these to be very unreliable and of 

minimal or negative skill for both forecast systems examined.  Calibration with reforecasts was able to 

improve reliability substantially and yield forecasts with positive skill.  The difference between skill 

comparing forecasts calibrated with long and short training samples was greatest at higher 

accumulation thresholds, suggesting the particular importance of increased training data for rare or 

extreme events.  All this research, among others, demonstrating the value of reforecasts for improving 

forecast skill via post-processing led to the creation of a much higher resolution, albeit still very coarse, 

T254 11-member global ensemble based on the 2012 version of the Global Ensemble Forecast System 

(GEFS; Hamill et al. 2013).  As will be discussed in more detail, this dataset will be used extensively 

throughout this research. 
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Other forecast calibration approaches have been explored as well.  Applequist et al. (2002) was 

one of the earliest studies to comprehensively evaluate numerous methods for generating forecast 

probabilities (FPs) for precipitation from a deterministic model.  While only examining fairly low 

accumulation thresholds, the study compared linear regression, logistic regression, neural networks, 

discriminant analysis, and a classifier system for generating FPs.  Logistic Regression was found to be the 

best performing algorithm in this study, with traditional linear regression performing the poorest for the 

QPF problem.  Raftery et al. (2005) introduced the Bayesian Model Averaging (BMA) technique to the 

field and applied it to the application of ensemble FP calibration; this approach was extended to PQPF in 

Sloughter et al. (2007).  The same group of authors went on to compare other calibration methods (e.g. 

Gneiting et al. 2007).  Yussouf and Stensrud (2008) demonstrated the utility of a simple 12-day running 

average binning technique for calibrating probabilistic QPFs for a multi-model ensemble.   

Many other techniques and applications have been explored.  The next section will discuss a 

subset of those which have targeted extreme event forecasting. 

2.1.4    Rare Event Forecasting and Extreme Value Post-Processing
1
 

Early work in this area that has been refined and improved in more recent years is the Extreme 

Forecast Index (EFI) developed at the European Center for Medium Range Forecasting (ECMWF).  The 

EFI, first described in Lalaurette (2003), does not directly forecast any atmospheric field; instead, it 

attempts to quantify how the probabilistic forecast from an Ensemble Prediction System (EPS) compares 

with the model climate distribution for the prescribed atmospheric variable, location, and time.  In so 

doing, the EFI acts as a qualitative forecasting tool in alerting forecasters to the potential for highly rare 

and anomalous occurrences.  The EFI is used operationally at the ECMWF today. 

                                                           
1
 This sub-chapter makes extensive references to material presented in subsequent background chapters, 

particularly Section 2.4.  Refer there for more information. 



18 

 

Friederichs and Hense (2007) developed censored quantile regression methodology to statistically 

downscale extreme precipitation over Germany.  Regression is performed and performance assessed for 

events as rare as the 99th percentile.  This is then applied in Friederichs and Hense (2008) towards 

generating PQPFs for 12-hour precipitation accumulations based on the operational GFS at that time. 

These concepts are further refined in Friederichs (2010), and later in Bentzien and Friederichs (2012), 

where the authors use a parametric mixture model approach to aid PQPFing over Germany using a high-

resolution time-lagged ensemble.  They apply fitted gamma, lognormal, and inverse Gaussian 

distributions and apply a generalized Pareto tail to aid in forecasting extreme precipitation amounts.  

This work affirmed previous findings that large amounts of data are needed for extreme precipitation 

quantiles, and that the behavior in the extremes being different than more typical deficiencies, with the 

base distributions performing acceptably until the extreme quantiles are reached, when the GPA tail is 

found to significantly improve model skill. 

Various other techniques have been employed for forecasting extremes.  Marsh et al. (2012), 

extending work from Sobash et al. (2011), uses historical model spatial error characteristics in a 

convection allowing model (CAM) to fit a kernel density function, which is then applied to calibrate 

probabilistic QPFs from a deterministic simulation.  Roebber (2013) used evolutionary program (EP) 

techniques in a mildly-to-highly idealized frameworks and compared the EP-derived ensemble 

characteristics with those of a dynamical ensemble.  He found that the EP ensemble performed better 

than the dynamical model ensembles at the extremes; specifically, he noted that EP forecasts had higher 

resolution (see Sections 2.3, 2.7).  Williams et al. (2014) compared many of the techniques employed in 

papers discussed in Section 2.1.3- logistic regression, nonhomogenous Gaussian regression, BMA, and 

ensemble dressing- in a highly idealized framework and assessed their ability to appropriately perform 

bias correction in extreme cases.  Most methods (except logistic regression) performed similarly well, 
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but great value was identified in allowing the bias correction to vary as a function of the predictand 

mean of an EPS.  Many other related studies exist. 

Recently published Scheuerer and Hamill (2015) is among the first studies to begin investigating 

the quantitative diagnosis of model QPF climatologies to enhance QPF forecasting.  Scheuerer and 

Hamill use a complex algorithm on the Global Ensemble Forecast System Reforecast (GEFS/R) model, 

described in Section 2.2 below, to generate probabilistic forecasts over the contiguous United States 

(CONUS) for 1, 10, and 25 mm exceedance probabilities over 12 hours.  They identify the unique 

challenges faced with QPF post-processing, which will also be conducted in the research to be presented 

herein: 1) QPFs have a unique probability distribution, with a positive probability of exactly zero 

precipitation and a continuous distribution of some flavor for positive amounts; 2) Forecast uncertainty 

is positively correlated with QPF magnitude; and 3) Infrequent occurrence of high precipitation amounts 

necessitates a vast amount of training data to appropriately handle these cases.  They argue that the 

demand for training data associated with the third challenge is greatly alleviated using parametric, as 

opposed to non-parametric methods, provided the necessary assumptions made in the application of a 

parametric technique are sufficiently accurate.  This distinction will be discussed in more detail in 

Section 2.4.  Consequently, to combat challenges (1) and (3), they fit censored, shifted gamma 

distributions (CSGDs) to observed precipitation accumulations.  Gamma distributions will be described in 

more detail in Section 2.4.3; these distributions are shifted such that the valid interval (see Table 2.2 

below) may begin below 0, and are censored such that the probability of zero precipitation is the 

integral of the probability density function (see 2.3.3) from -∞ to Ϭ.  A regression model is then fit to link 

local observed CSGD parameters to the ensemble statistics of the GEFS/R, and this is used to generate 

PQPFs.  The authors found that this approach significantly outperformed the analog method discussed 

aďoǀe.  TheǇ also assessed the algoƌithŵ͛s seŶsitiǀitǇ to tƌaiŶiŶg data leŶgth ďǇ testiŶg ϭ-year and 3-year 

periods in addition to the primary 12-year dataset; it was found that shorter datasets where highly 
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prone to overfitting, resulting in significantly diminished forecast skill, reliability, and sharpness (see 

Sections 3.3 and 3.7), but the problem could be at least moderately improved by the inclusion of points 

exhibiting similar characteristics in the model training.  The study did not, however, investigate truly 

extreme precipitation thresholds; the highest precipitation threshold examined was 25 mm over 12 

hours, which is below the 1-year return period threshold for the same accumulation interval over most 

regions of the country.  Since the algorithmic design and implementation is thought and argued to be 

appropriate for forecasting extremes, it is presented in this section of the discussion. 

2.2 Model Information and History 

Table 2.1: Dynamical models used or being planned for use in this research.  Data availability, 

information about horizontal and vertical resolution, and the various parameterizations used in each 

model is included.  Some ensemble systems are grouped into a single entry; for these, the number of 

members using a particular parameterization is included in parentheses or, if absent, applies to all 

members.  Horizontal grid spacings with slashes denote a nested grid. 
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A suite of different NWP models are used throughout this study in different capacities; the details 

of their use will be further described in subsequent sections.  A summary of each model is depicted in 

Table 2.1.   The models used are available through a combination of archived operational runs and 

reforecasts.  Reforecasts have the advantage of model staticity which is often not upheld in operational 

settings, where models are often updated and revised to manually correct for particular perceived 

model errors and biases.  Substantial model revisions change the bias characteristics and behaviors of 

the model in different atmospheric scenarios, and it can therefore be difficult to use for accurate, 

calibrated model post-processing.   

Many of the models appearing in Table 2.1 come from the NWS NWP suite.  Their global model, 

the GFS, has evolved over decades of research and computing advancements, from the Global Spectral 

Model (GSM) beginning in 1980 to the Nested Grid Model (NGM) from 1987-2000, and later the Aviation 

(AVN)/Medium Range Forecast (MRF) model which morphed into the modern global system used today.  

The National Centers for Environmental Prediction (NCEP) also run a global ensemble based on the GFS, 

known as the Global Ensemble Forecast System (GEFS).  The GEFS is a 21-member ensemble which, 

along with the GFS, is run four times daily out to 384 hours past initialization; ensemble members are 

perturbed only in their initial conditions (ICs), and not in their model physics.  Both the GFS and GEFS 

undergo periodic changes to correct for observed biases and to improve bulk error characteristics.  

Major changes occur sporadically, roughly every two years.  The most recent major upgrade to the GFS 

occurred in January 2015; many updates were made, but the most significant was a substantial increase 

iŶ ŵodel ƌesolutioŶ to Tϭϱϯϰ fƌoŵ Tϱϳϰ.  PƌeǀiouslǇ, a ŵajoƌ upgƌade to the ŵodel͛s data assimilation 

(DA) system occurred in May 2012.  Both of these updates significantly impacted the performance and 

bias characteristics of the operational GFS; for this reason, the GFS has been separated into GFS-OLD 

and GFS-NEW in Table 2.1 to reflect the model specifications before and after the most significant 1/15 

upgrade.  The GEFS will undergo a similar upgrade in 2015 or 2016, but has not yet done so at the time 
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of writing this manuscript.  Additionally, a recent project to create a long, consistent record of model 

data used the February 2012 version of the GEFS to generate daily reforecasts for an eleven member 

ensemble beginning from December 1984 to present.  This GEFS-derived dataset will be termed GEFS-

RFCST, in order to distinguish it from the operational version, GEFS-RT.  The GFS and its derivatives are 

spectral models, which have a different formulation than the grid-point formulation used in many 

models; the GFS and derivatives are the only spectral models used in this research.  The GFS and 

especially the GEFS are rather course; none of them are convection-allowing, meaning that they all 

require a cumulus parameterization.  Other implementation details can be surmised from Table 2.1. 

NCEP also runs numerous regional models, also frequently called limited area models (LAMs), 

which are used operationally by the NWS.  North American regional modeling began with the Limited-

area Fine Mesh (LFM) model in 1971, which was used until the implementation of the NGM in 1987.  In 

1993, the ETA model was implemented for regional modeling, and this improved over numerous 

upgrades and eventually became the North American Mesoscale (NAM) model used operationally since 

2006.  The NAM is also run four times daily, out to 84 hours past initialization, and has a horizontal grid 

spaĐiŶg of ϭϮ kŵ, Đoŵpaƌed ǁith the ŵodeƌŶ GF“͛s appƌoǆiŵatelǇ ϭϯkŵ eƋuiǀaleŶt hoƌizoŶtal gƌid 

spacing (Rogers et al. 2009).  This is still too coarse to begin to resolve convection, and requires a 

cumulus parameterization.  However, a 4-km grid spacing one-way nested grid (NAM-NEST), which 

requires very little by means of a cumulus parameterization, has somewhat recently been embedded 

within the original North American NAM domain to cover the contiguous United States; data from this 

nest has been stored for this research since May 2014.  NCEP also runs two high resolution runs twice 

daily out to 48 hours using two different dynamical cores, the Weather Research and Forecasting: 

Nonhydrostatic Mesoscale Model B (WRF-NMMB) core used in the operational NAM, and the WRF: 

Advanced Research WRF (WRF-ARW; Skamarock and Klemp 2008) core; these are called HIRESW-NMMB 
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and HIRESW-ARW, respectively.  Both of these are convection allowing grid point models; their 

parameterizations are summarized in Table 2.1.  

Lastly, there are two other operational products at NCEP being used for this study.  The first is a 

short-term, high-resolution- 3 km horizontal grid spacing- system, the High Resolution Rapid Refresh 

(HRRR) that is run hourly out to 15 hours, with experimental runs out to 24 hours.  This system 

developed from the NAM-based Rapid Update Cycle (RUC) model implemented in 2005 (Benjamin et al. 

2004), and the Rapid Refresh (RR) that replaced it in 2012.  Due to its limited forecast duration, it cannot 

be used for forecasting 24-hour accumulation events, but still has great utility in forecasting near-term, 

short-duration events.  The HRRR was operationally implemented recently, in September 2014, and as 

such, the HRRR has received numerous major upgrades and changes during its development over the 

last few months and years (Waxberg 2015).  The last NCEP system used here is the Short Range 

Ensemble Forecast (SREF) system, run four times daily out to 87 hours.  With a 16km horizontal grid 

spacing, the SREF is notably higher resolution than the current GEFS, but still too coarse to allow for 

explicit convection.  Like the GEFS, the SREF consists of 21 members; however, the SREF is perturbed not 

only in ICs, but has three different DCs- NMM, NMMB, and ARW- with seven ensemble members for 

each DC.  Each of those seven member groups has different ICs and different MPs.  Thus, although 

summarized as one system in Table 2.1, the SREF is in reality 21 different model runs with different 

numerics, physics, and initial conditions. 

Lastly, some NWP models used in this study are not operational, and are run in-house at 

universities or research institutions.  These models often, though not always, have the advantage of 

more staticity for statistical analysis than the operational models; when the models are left undisturbed, 

their bias characteristics remain the same from season-to-season and year-to-year, allowing for a longer 

and more robust model dataset to analyze.  For example, the National Severe Storms Laboratory (NSSL) 
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runs a convection-allowing 4km WRF-ARW model once daily out to 36 hours (NSSL-WRF).  Since June 

2009, this model has been run with very limited alterations, with the only one of note being an upgrade 

in WRF version from 3.1.1 to 3.4.1 in April 2013.  The last set of models, the Colorado State University 

(CSU) 12km WRF ensemble, has been run once daily with the same configuration for its first four 

members since February 2012.  Those members have been or are being reforecasted back to June 2009 

to match the data record length of the NSSL-WRF. 

2.3 Probabilistic Forecasting and Ensemble Prediction System Fundamentals 

2.3.1    Motivation: Uncertainty and Predictability 

There are a vast number of sources that yield uncertainty in a dynamical model simulation and 

ultimatelǇ lead to foƌeĐast eƌƌoƌ.  Eƌƌoƌ iŶ a ŵodel͛s aŶalǇsis, oƌ staƌtiŶg poiŶt, is oŶe ŵajoƌ souƌĐe of 

uncertainty, and many different factors contribute to inaccuracies in assessment of the current 

atmospheric state.  First, it is important to realize that a perfect, error-free analysis would accurately 

place the position and movement of every particle in the atmosphere.  Recognizing this, a perfect 

analysis of the atmospheric state is, at present, woefully unrealistic, as we do not have atmospheric 

observations on the particulate scale; even in the immediate vicinity of an observing station, uncertainty 

is introduced solely from observation resolution.  Further, even somehow attaining an accurate record 

of eǀeƌǇ paƌtiĐle͛s positioŶ, ǀeloĐitǇ, etĐ. iŶ the Eaƌth-atmosphere system (EAS), current dynamical 

models do not keep track of every particle within the model either, so the information would 

undoubtedly be accordingly coarsened during the process of model initialization, and this finite model 

resolution would yield model analysis uncertainty as well.  It must be further noted that observation 

instruments are not perfect either, and errors in their measurements, even where we do have them, 

introduce uncertainty as well.  Other error in the data assimilation process of translating the true 
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atmospheric state to the model atmosphere presents a further source of analysis uncertainty (Kalnay 

2003).   

Initial conditions (ICs) are one major source of uncertainty, but boundary conditions (BCs) can 

yield erred representations of the atmospheric state as well.  In limited area models (LAMs), the error 

associated with lateral boundary conditions can introduce error to the model solution even with perfect 

ICs.  However, in all models, top and bottom boundaries exist that can present issues.  On the bottom 

level, improperly resolved topography, incorrect soil moisture measurements, and incorrect 

representations of the surface characteristics are all possible source of uncertainty.  Improper, artificial 

upper boundaries in the model present an additional source, and any interaction of the EAS with space 

is likely to be improperly handled as well (Kalnay 2003). 

Even with a perfect analysis of the initial atmospheric state that manages to be represented 

without error or simplifiĐatioŶ, aŶ iŵpeƌfeĐt ŵodel ǁill still ƋuiĐklǇ iŶtƌoduĐe sŵall eƌƌoƌs to the ŵodel͛s 

projection of the atmospheric state, and from there, non-linear error growth due to chaos will continue 

to increase the departure of the model solution from reality (Lorenz 1963).  Firstly, even neglecting 

issues with model physics, there are numerous direct problems associated with model numerics.  

Floating point operations on modern computers have finite precision, and this can lead to error both in 

how the numbers are stored and in their finite size leading to truncation error.  In fact, explicit 

truncation error was what first led to the discovery of non-linear error growth in modeling the 

atmosphere. Further, many equations governing the atmosphere involve derivatives, integrals, and 

other mathematical constructs which may only be approximated by using nearby values in the context 

of various numerical approximation schemes; these too, introduce error.  The finite resolution of 

numerical models also prevents accurate representation and simulation of many small-scale physical 

processes.  Additionally, problems with model physics compound the problem of model error.  Not all 
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atmospheric processes are yet fully understood, and thus not completely accurately represented in 

numerical models.  Additional assumptions are often necessary, which each add a source of uncertainty, 

aŶd aŶǇ phǇsiĐs paƌaŵeteƌizatioŶs iŶheƌeŶtlǇ aƌe Ŷot a ͚puƌe͛ ƌepƌeseŶtatioŶ of the siŵulated pƌoĐess 

and contribute further error as well (Kalnay 2003).   

Despite these sources of uncertainty and non-linear error growth, dynamical systems, the 

atmosphere included, do not evolve randomly or unboundedly throughout parameter space.  Physical 

laws and relationships between the model variables prevent certain theoretical values, or combination 

of values, from being obtained.  For example, though valid temperatures, it is exceedingly unlikely- 

nearly impossible even- that surface temperatures anywhere on Earth will be less than 100K or higher 

than 400K anytime in the foreseeable future.  Similarly, while surface temperatures of 250K and 300K 

are both observed on Earth with moderate frequency, it is virtually impossible that two adjacent 

locations only a kilometer or two apart and at similar elevations will simultaneous possess these two 

values.  Instead, absent a major change in external forcing to the system, the atmosphere will evolve in 

oŶlǇ a sŵall ƌegioŶ, oƌ suďspaĐe, of the total phase spaĐe; this is kŶoǁŶ as the sǇsteŵ͛s attractor.  

Forecast error Ef can be thought of quantitatively as the distance in phase space between the forecast 

aŶd tƌue atŵospheƌiĐ state foƌ aŶǇ giǀeŶ lead tiŵe ʏ.  Error growth can be similarly characterized at lead 

tiŵe ʏ as 
ௗா೑ௗ௧ ሺ߬ሻ.  Further, the intrinsic limit of predictability may be defined as the critical lead time ߬∗ 

satisfying: ߬∗ = min(߬ א [௙ሺ߬ሻܧ]ܧ} >  ൯, the first time that the expected forecast error for{[௖௟௜௠ܧ]ܧ

robust, unbiased forecasts exceeds the expected error from using climatology as a forecast.   Lastly, 

error saturation is defined here to occur at lead time ߬† when 
ௗா[ா೑]ௗ௧ (߬†൯ ≈ Ͳ, and the corresponding 

saturation value is denoted ܧ௙† (Eckel 2003).   

For these reasons, despite the theoretical capability of a perfect forecast of the state of a 

deterministic, chaotic system for all time just through a single dynamical simulation, in practice, this, or 
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anything close to it, will not occur in the envisionable future with respect to the atmosphere.  

Deterministic forecasts will continue to begin with errors that will grow in expectation with lead time 

until it saturates to twice the mean squared error of the climatological mean.  The chaotic nature of the 

atmosphere sharply limits the utility of directly using deterministic dynamical model output for the 

purpose of forecasting.  Given this, the question is: can we do better, and, if so, how much better can we 

do?  Theƌe is Ŷo tƌaĐtaďle ͚Đuƌe͛ foƌ the pƌoďleŵs iŶheƌeŶt ǁith foƌeĐastiŶg a ĐhaotiĐ sǇsteŵ.  

Recognizing the limitations, there are, however, effective mechanisms to cope with the errors and 

uncertainty as best as possible.  Specifically, in addition to minimize forecast error, it should be noted 

that there is great utility in accurately quantifying expected forecast error, or forecast uncertainty, and 

attempt to accomplish both forecast error minimization and uncertainty quantification simultaneously.  

This can be effectively accomplished by using a combination of different, but realistic, model ICs, 

possibly in addition to varied, plausible model physics for approximating how the true atmosphere 

behaves.  Repeating this many times yields many different plausible dynamical model forecasts; this 

collection of model forecasts is termed an ensemble, and the process is known as ensemble forecasting 

(Leith 1974).  Ensemble forecasting goals and design considerations are discussed in the following 

sections.   

One simple motivation for use of ensemble forecasting comes from the consideration of 

predictability limits and error saturation.  The expected climatological error Eclim for a single forecast can 

be expressed in a mean square error sense over a long record of T observations: ܧ[ܧ௖௟௜௠] = ௖௟ప௠̅̅ܧ ̅̅ ̅̅ ̅ =
ଵ்∑ ௝ߤ) − ௝൯ଶ௝்=ଵ݋ , ǁheƌe ʅ deŶotes the ĐliŵatologiĐal ŵeaŶ aŶd oj denotes the observation at time j.  

This can be readily converted to the framework of forecast anomalies a- departures from the 

climatologiĐal ŵeaŶ ʅ- as: ܧ[ܧ௖௟௜௠] = ଵ்∑ (ሺߤ௝ − ௝ሻߤ − ሺ݋௝ − ௝ሻ൯ଶ௝்=ଵߤ = ଵ்∑ (Ͳ − ௝ܽ൯ଶ௝்=ଵ = ܽଶ̅̅ ̅ ≡   .∗௙ܧ
A forecast system in this context is said to be unbiased if its forecasts yield climatology-relative forecast 
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anomalies ܽ̂ that have a long term expected value of zero.  The expected forecast mean square error in 

the context of anomalies can then be expressed for an unbiased deterministic forecast as: ܧ[ܧ௙೏೐೟](߬ௗ௘௧†൯ = ଵ்∑ ( ఫ̂ܽ − ௝ܽ൯ଶ௝்=ଵ = ଵ்∑ ( ఫ̂ܽ − ௝ܽ൯( ఫ̂ܽ − ௝ܽ൯௝்=ଵ = ଵ்∑ ఫ̂ܽଶ + ௝ܽଶ − ʹ ఫ̂ܽ ௝ܽ௝்=ଵ .  Because 

these forecasts are assumed to be unbiased, ఫ̂ܽ and ௝ܽ are independent and have long term mean values 

of zero, leading the last covariance term to vanish.  Again, the forecasts being unbiased means the 

variance characteristics are identical over a large number of samples, meaning ܧ[ ఫ̂ܽ] = ]ܧ ௝ܽ].  Thus, we 

find that the expected mean squared error of an unbiased deterministic forecast at the deterministic 

forecast lead time of error saturation ߬ௗ௘௧† may be expressed by: ܧ௙೏೐೟† ≡ ௗ௘௧†൯߬)[௙೏೐೟ܧ]ܧ =ଵ்∑ ఫ̂ܽଶ + ௝ܽଶ௝்=ଵ = ଵ்∑ ʹ ௝ܽଶ௝்=ଵ = ʹܽଶ̅̅ ̅ =  ௙∗.  For a single deterministic forecast, error saturation isܧʹ

thus found to occur at twice the mean climatological error, or twice the limit of predictability.  However, 

consider instead an ensemble of n unbiased deterministic forecasts.  The ensemble mean climatology-

relative forecast anomaly can be denoted ܽ̂̅, and the mean squared error at saturation ܧ[ܧ௙೐೙ೞ](߬௘௡௦†൯ = ଵ்∑ ( ఫ̂̅ܽ − ௝ܽ൯ଶ =௝்=ଵ ଵ்∑ ఫ̂̅ܽଶ + ௝ܽଶ − ʹ ఫ̂̅ܽ ௝ܽ௝்=ଵ = ଵ்∑ ఫ̂̅ܽଶ + ௝ܽଶ௝்=ଵ . Since the last term 

is again zero by the same arguments above.  ఫ̂̅ܽଶ behaves as: 

ఫ̂̅ܽଶ = ଵ௡∑ ܽ௞௡௞=ଵ ଵ௡∑ ܽ௞௡௞=ଵ = ଵ௡మ∑ ܽ௞௡௞=ଵ ∑ ܽ௞௡௞=ଵ = ௡௡మ ܽଶ̅̅ ̅ = ଵ௡ ܽଶ̅̅ ̅, we can write: 

†௙೐೙ೞܧ ≡ ௘௡௦†൯߬)[௙೐೙ೞܧ]ܧ = ଵ்∑ ఫ̂̅ܽଶ + ௝ܽଶ௝்=ଵ = ቀͳ + ଵ௡ቁ ܽଶ̅̅ ̅ = ቀͳ + ଵ௡ቁܧ௙∗.  From this, it is readily seen by 

inspection that error saturation for an ensemble of forecasts (n > 1) occurs with less error than a 

deterministic forecast.  Noting this, and further noting that both deterministic and ensemble based 

forecasts begin at lead time zero with no baseline error (aside from analysis error), given that expected 

forecast error increases smoothly and monotonically, it follows that there exists some window of lead 

times ʏ where the expected ensemble forecast error is less than both an expected deterministic forecast 

error and climatology: ܧ[ܧ௙೐೙ೞ]ሺ߬ሻ < ሺ߬ሻ[௙೐೙ೞܧ]ܧ ݀݊ܽ ሺ߬ሻ[௙೏೐೟ܧ]ܧ <  ௙∗.  The set of lead times satisfyingܧ

this condition is referred to as the ensemble window of utility, and this is where ensemble forecasting is 
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of particular value.  It is posited that, for the extreme precipitation forecasting problem examined in this 

work, the set of lead times examined herein fall within the ensemble window of utility (Eckel 2003).   

2.3.2 Goals of Ensemble Prediction 

Qualitatively, there are numerous desired outcomes from the use of ensemble forecasting.  A 

deterministic forecast gives one sense of how the atmosphere may evolve from present; an ensemble 

aims to give an accurate assessment of the range of possible future evolutions of the atmosphere.  

Some scenarios have lower sensitivity and are thus more predictable than other situations; the use of 

ensembles gives a sense of the flow-dependent error growth, or predictability-of-the-day.  Use of only 

deterministic forecasting, in contrast, yields only information on long-term average predictability, with 

no information specific to the uncertainty associated with the current forecast.  One of the objectives, 

then, of ensemble forecasting is forecast-specific uncertainty quantification.  Additionally, as illustrated 

in section 2.3.1 above, the ensemble mean or consensus forecast can be shown to, on average, have 

lower forecast error than the use of a single deterministic forecast.  While not a major objective of 

ensemble forecasting, this result is a beneficial side-effect.  Ultimately, the chief objective of an 

ensemble prediction system (EPS), or more generally, a probabilistic forecast system (PFS), is to create 

the sharpest possible output forecast (OF) PDF, while still maintaining forecast reliability and statistical 

consistency.  As a further requirement, the PFS PDF output must be accessible to end users in a useful 

and understandable format.  Without this, despite having very high theoretical utility, the practical 

utility of the EPS will be relatively low (Wilks 2011; Eckel 2003). 

Statistical consistency requires that the OF PDF corresponds to the true forecast (TF) PDF.  The 

TF PDF is not the PDF of the atmosphere at a known future time given the current atmospheric state; 

assuming that the atmospheric system is deterministic (which we are), then this function would always 

be a delta function with infinite probability density at the verifying state and zero probability density 
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elsewhere.  Let this PDF be denoted the verifying PDF (VPDF).  Rather, the TF PDF is a function of both 

the analysis of the current atmospheric state and the model itself.  If the analysis and model are both, in 

fact, perfect, then the TF PDF is the VPDF.  However, both analysis error and model error and the 

associated uncertainty that each source of error introduces act to both shift and broaden the TF PDF.  

An ideal ensemble would have infinitely many ensemble members, with appropriate perturbations to 

accurately capture all sources of uncertainty, and would employ either a perfect dynamical model, or if 

the dynamical model has error, would employ perfect post-processing to appropriate re-map ensemble 

member atmospheric states to true atmospheric states.   In reality, none of this is possible; finite 

computing resources limits the number of ensemble members, not all sources of uncertainty are fully 

understood or accurately quantified, and for reasons explained in 2.3.1, dynamical models are far from 

perfect.  More formally, statistical consistency requires that the mean squared error (MSE) of an 

ensemble mean equal the mean ensemble member variance: 

௫̅ܧܵܯ = �௫̅̅ ̅ 
ܰܰ + ͳ ͳܦ∑(ͳܰ ௡ௗேݔ∑

௡=ଵ − ௗ)ଶ݋ = ͳܦ∑ ͳܰ − ͳ∑(ݔௗ௜ − ͳܰ ௡ௗேݔ∑
௡=ଵ )ଶே

௜=ଵ
஽
ௗ=ଵ

஽
ௗ=ଵ  

Forecast reliability is a related metric that is also a necessary but insufficient condition for 

forecast skill.  Reliability refers to the correspondence between forecast probability (FP) and observed 

relative frequency (ORF).  Ideally, probabilistic forecasts should be reliable: when an 80% probability of 

event occurrence is forecast, it is desirable that the event actually occur 80% of the time.  However, this 

is not enough.  Having a forecast PDF be the climatological PDF for every forecast means forecasting the 

climatological frequency of event occurrence ̅݋ for any possible event; this is by definition reliable (the 

ORF over all forecasts is by definition the climatological frequency of occurrence), but has no utility to 

any end users, as it presents them with no new information.  Forecasts must also exhibit some 
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sharpness- ability to forecast towards extremes, away from ̅݋.  The combination of sharp and reliable 

forecasts leads to high resolution forecasts- those which distinguish events from non-events by 

forecasting relatively higher FPs when events occur (Wilks 2011). 

2.3.3 Probability Density Functions, Cumulative Density Functions, and Quantile Functions 

In probability theory, there are three primary ways of expressing the distribution of values that a 

continuous random variable may take: a probability density function (PDF), cumulative density function 

(CDF) and quantile function (QF).  For a discrete random variable, the corresponding distributions are 

termed mass functions: probability mass functions (PMFs) and cumulative mass functions (CMFs).  The 

axioms of probability specify that the total probability of a random variable possessing some value be 

unity, and further, the probability of an event outcome must be non-negative.  By definition, a 

continuous variable is one of an infinite number of possible values; thus the probability of a continuous 

random variable having any given value is zero (if the probabilities were non-zero the total probability 

being unity could not be satisfied).  Thus, when discussing the probability of a continuous random 

variable͛s ǀalue, oŶe ŵust fƌaŵe the disĐussioŶ iŶ the ĐoŶteǆt of the ǀaƌiaďle takiŶg oŶ one of infinitely 

many values within a range.  This motivates the use of PDFs, which will typically be denoted f 

throughout unless otherwise specified.  A PDF satisfies the following properties: 1) ∀ݔ ݂ሺݔሻ ൒ Ͳ; 2) ∫ ݂ሺݔሻ݀ݔ∞−∞ = ͳ; 3) ܲሺܽ ൑ ݔ ൑ ܾሻ = ∫ ݂ሺݔሻ݀ݔ௕௔ .  Higher probability density at a value x indicates higher 

probability for the variable possessing a value near x; but ܲሺݔ = ܽሻ ≠ ݂ሺܽሻ.  The PDF framework is 

often helpful in quantifying rarity of double-bounded events, e.g. between 1 and 2 inches of 

precipitation in the context of the QPF problem.  However, often problems are framed in the context of 

exceedance thresholds, or single bounded events; in this framework, it is often more desirable to 

examine the probability distribution in a cumulative framework by means of a CDF.  A CDF F is defined as 

a function of the corresponding PDF: ܨሺݔሻ = ∫ ݂ሺݑሻ݀ݑ௫−∞ .  F(x) then corresponds to ܲሺܷ ൑  ሻ, theݔ
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probability that the observed value will be less than the input argument.  Lastly, in some applications, 

including many relevant to this study, it is more value to look at the inverse CDF, or QF, x(F).  In the 

ĐoŶteǆt of pƌeĐipitatioŶ aĐĐuŵulatioŶ, a CDF aŶsǁeƌs the ƋuestioŶ ͞hoǁ ƌaƌe is it to eǆpeƌieŶĐe a 

pƌeĐipitatioŶ aŵouŶt  _?͟, ǁhile the QF aŶsǁeƌs the ƋuestioŶ ͞hoǁ ŵuĐh precipitation accumulation is 

required to attain an event of raritǇ _?͟  “iŶĐe it is ofteŶ ŵoƌe useful to haǀe the ƌaƌitǇ fiǆed thaŶ the 

threshold, the QF presents advantages over use of the CDF in many instances (Wilks 2011). 

2.3.4 Ensemble Configuration 

There are many factors to consider in the configuration of an EPS.  It is essential that, before 

making any ensemble configuration decisions, the EPS objectives and resources are first specified.  What 

are the forecast applications?  Who are the end users, and what information do they most care about?  

How powerful of computing resources are available?  The optimal EPS configuration may be very 

different depending on the answer to these sorts of questions.  Perhaps the most obvious ensemble 

configuration parameter is the ensemble size n.  Required computing power scales linearly with the 

ensemble size.  If available computing resources are effectively infinite, a very large number of ensemble 

members is, of course, desirable.  However, in a limited-resource environment, the desire for a large 

ensemble must be balanced with the quality of the individual members, quality of any initial condition 

perturbations, time for ensemble post-processing and calibration, and other computational tasks.  A 

small number of members, perhaps 3-12, is often enough to yield a reasonable ensemble mean for fairly 

common or routine events, and also give a qualitative sense of relative forecast uncertainty.  A larger 

ensemble size, say 20-30 members, is often necessary to use the ensemble to generate sharp and 

reliable forecast PDFs.  For rare events, many more members are needed to adequately sample the true 

foƌeĐast PDF͛s tail, ǁith peƌhaps ϱϬ-100 members desired for skilled probabilistic forecasts, perhaps 

even more for extremely rare events (Eckel 2003).  At the same time, individual member forecast skill 

may be substantially degraded if, to compensate for the increase in ensemble size, ensemble members 
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are coarsened.  In a very approximate sense, model run time can be thought to scale inversely 

proportional to the cube of the model grid spacing g.  Going from a deterministic run to a 100-member 

ensemble, for example, would require coarsening the grid spacing by a factor of approximately 4, 

perhaps slightly more, to conserve use of the computing resource C.  Processes that are barely resolved 

in the deterministic run then, will not be resolved at all in any of the ensemble members, instead likely 

depending on parameterization of the phenomenon of interest, likely resulting in both worse individual 

forecasts and substantially worse sampling of candidate true atmospheric solutions.  This tradeoff must 

always be carefully considered in ensemble design.  Another major consideration is how to best 

generate member perturbations so that all member forecasts are still realistic candidate forecast 

solutions while still generating sufficient ensemble spread to avoid an overconfident EPS with associated 

overconfident forecasts.  Spread can be achieved through IC perturbations, model physics (MP) 

perturbations, dynamical core (DC) changes, and other less common alterations such as model terrain 

and model resolution.  It is often desirable for the purpose of ensemble statistics to have each ensemble 

member be equally likely to verify as truth; changes to MP and DC have the disadvantage of frequently 

not satisfying this property, giving credence to the use of IC-perturbed ensembles.  However, research 

has found that IC-perturbed ensembles tend to result in an ensemble that is unrealistically underspread 

due to inability to capture all of the true sources of uncertainty, requiring either unrealistically large IC-

perturbations or an attempt to broaden the forecast PDF artificially via post-processing.  A combination 

of these perturbations tends to result in a more realistic forecast PDF, at the cost of complicating the 

generation and interpretation of the ensemble output (Kalnay 2003, Wilks 2011).  Again, these 

considerations must be handled carefully, and final choices should be optimally tailored to the end users 

and their relevant forecast applications which will make use of the ensemble information.  The research 

in this study is concerned with extreme precipitation occurring on a variety of scales from the meso-ɶ to 
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synoptic.  For this reason, it is considered desirable to use as large of an ensemble as possible, with less 

emphasis on the associated complication to the ensemble statistics.   

2.4 Extreme Value Theory 

Extreme Value Theory (EVT) can be a bit misleading in its name; this body of statistical theory 

does not strictly concern the modeling of very rare events, but describes the behavior of extremes from 

groups- the distribution of block maxima or minima.  Directly modeling the distribution of right-skewed 

phenomena, such as daily precipitation, is also of great importance for applications in meteorology, 

hydrology, and other fields.  Distributions explored in this thesis will all be characterized as Right-

Skewed Distributions (RSDs), but only a subset of such distributions applies directly to EVT. 

In EVT, the ultimate goal for this application is to obtain accurate QF estimates for large return 

periods (RPs); that is, for a given RP, obtain an accurate estimate for the precipitation amount 

corresponding to that frequency of occurrence.  In many cases, including in the research discussed 

herein, the RPs of interest extend well beyond the length of the data record.  There exist many 

approaches to estimate event probabilities and QFs from a data record; the approaches can be classified 

into either parametric or non-parametric techniques.  Parametric techniques make more assumptions 

than their non-parametric counterparts; principally, at least when model fitting on raw data, they 

assume that the input data comes from a known underlying probability distribution, and seek to use the 

data to optimize estimates for the parameters of underlying probability distribution.  As will be seen 

below, EVT exercises the advantage of not needing to know the underlying probability distribution; raw 

data is manipulated in such a way that, provided that certain conditions are satisfied, the probability 

distribution of the manipulated series is known, regardless of the underlying initial distribution.   Non-

parametric methods, in contrast, do not assume that the training data comes from a known underlying 

probability distribution, and the number and values of all model parameters are determined dynamically 
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based on the training data.  Both classes of approaches have advantages and disadvantages.  In general, 

due to making weaker assumptions, non-parametric techniques are often considered more robust, and 

several components of the greater forecast model applied in this study are non-parametric algorithms.  

However, non-parametric approaches tend to extrapolate poorly to data much rarer than what is seen; 

estimates for events rarer than the data record length tend to be quite poor (Murphy 2012; Scheuerer 

and Hamill 2015).  For this reason, generating estimates based on an assumed underlying probability 

distribution is considered necessary for this component of the forecast pipeline. 

2.4.1 Fisher-Tippett-Gnedenko Theorem 

Much of the foundation of EVT makes use of the Fisher-Tippett-Gnedenko (FTG) Theorem.  The 

theorem will be derived briefly here, and summarized below.  Let there be a set of n independent and 

identically distributed random variables (IIDRV) {X1,…,Xn}; that is, data values which are independent of 

each other, and sampled from the same probability distribution.  Let each IIDRV have CDF F: ܨሺݔሻ =ܲሺܺ௞ < ௡ܯ ሻ.  Further, letݔ = max{ ଵܺ, ܺଶ, … , ܺ௡}.  ܲሺܯ௡ < ሻݔ = ܲሺ ଵܺ < ଶܺ & ݔ < ௡ܺ &…& ݔ <   .ሻݔ
Thus, by assuming independence, it can be shown that ܯ௡~ ܨ௡ሺݔሻ, where the ~ notation is used here to 

ŵeaŶ ͞is distƌiďuted as͟. 

Let x* be the set of values for x satisfying F(x) < 1: ݔ∗ = sup{ݔ: ሻݔሺܨ < ͳ} 
It can be readily shown:  lim௡→∞ ܲሺܯ௡ ൑ ሻݔ = {Ͳ  ݔ < ݔ ͳ∗ݔ > ∗ݔ .  This, taken in the limit of large n, is termed 

an asymptotic distribution; and because it is single-valued, it is said to be degenerate. 

To avoid a degenerate asymptotic distribution, random variable ܯ௡ can be normalized using coefficients 

an and bn, subject to an > 0, as: ௡ܻ = ெ೙−௕೙௔೙ .  Given how Mn is distributed, shown above, it can be readily 

shown that ௡ܻ~ܨ௡ሺܽ௡ݔ + ܾ௡ሻ.  Suppose there exist a series of coefficients for an and bn such that the 

asymptotic distribution of Yn is non-degenerate distribution function G(x).  Then:  
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lim௡→∞ܨ௡ሺܽ௡ݔ + ܾ௡ሻ =  ܩ

lim௡→∞ ݊ logܨሺܽ௡ݔ + ܾ௡ሻ = logܩ, taking the logarithm of both sides 

lim௡→∞ ଵ௡(ଵ−ிሺ௔೙௫+௕೙ሻ൯ = −ଵlogீ, noting log ݔ ≈ ݔ − ͳ ݂ݔ ݎ݋ ≈ ͳ 

The full FTG proof is too involved to show here, but it can be shown that the statement above is 

equivalent to saying that: 

lim௡→∞ ௎←ሺ௡௫ሻ−௕೙௔೙ = ←ܩ ቀ݁−ଵ ௫⁄ ቁ, where ܷ ≡ ଵଵ−ி, and ← denotes the left-continuous inverse of a 

function, defined as: ݂←ሺݔሻ ≡ inf{ݕ: ݂ሺݕሻ >  .where inf denotes the infimum of a set ,{ݔ

We can continuize this and define a function D: 

ሻݔሺܦ ≡ lim௧→∞ܷ←ሺݔݐሻ − ۂ௧ہܽۂ௧ہܾ  

Assuming without loss of generality that D is continuous at 1, we can further define a function E: 

ሻݔሺܧ ≡ lim௧→∞ܷ←ሺݔݐሻ − ܷ←ሺݐሻܽہ௧ۂ = ሻݔሺܦ −  ሺͳሻܦ
It can be shown that, because a non-degenerate solution is mandated: 

ሻݕݔሺܧ = ۂ௬ہሻܽݔሺܧ +  ሻݕሺܧ
Define two new functions: 

ሻݔሺܪ ≡ ;ሺ݁௫ሻܧ ܳሺݔሻ ≡  ሺͲሻ′ܪሻݔሺܪ
ሻݕݔሺܧ = ሺlogܪ ݔ + log ሻݕ = ሺlogܪ ۂ௘೤ہሻܽݔ + ሺlogܧ  ሻݕ

Using the definition of E, ܧሺͳሻ = Ͳ = ሺ݁଴ሻܧ =  ሺͲሻܪ
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Subtracting ܪሺlog  :ሻ from both sides and dividing by log(x) yieldsݕ

ሺlogܪ ݔ + log ሻݕ − ሺlogܪ ሻlogݕ ݔ = ሺlogܪ ሻݔ − ሺͲሻlogܪ ݔ  ۂ௬ہܽ
Differentiating: ܪ′ሺlog ሻݕ  =  ۂ௬ہሺͲሻܽ′ܪ
From this, by inspection: ܳሺͲሻ = Ͳ;ܳ′ሺͲሻ = ͳ 

Further manipulation gives rise to the following differential equation for Q: 

ܳ′ሺݖሻ − ͳ = ܳሺݖሻܳ′′ሺͲሻ, subject to ܳሺͲሻ = Ͳ;ܳ′ሺͲሻ = ͳ 

Denote ߦ ≡ ܳ′′ሺͲሻ.  Solving yields ܳ′ሺݖሻ = ݁�௭ 

Re-writing in terms of D: ܦሺݖሻ = ሺͳሻܦ + ሺͲሻ′ܪ ௭�−ଵ�  

Taking the left-continuous inverse: ܦ←ሺݖሻ = ቀͳ + ߦ ௭−஽ሺଵሻு′ሺ଴ሻ ቁଵ �⁄  

By the definition of D and the definition of left-continuous inverse: 

ሻݖሺܩ = ݁−ଵ ஽←ሺ௭ሻ⁄ = ݁−ଵ ቀଵ+�೥−ವሺభሻ�′ሺబሻ ቁభ �⁄⁄
 

This can be expressed as: 

ݔሺͲሻ′ܪሺܩ + ሺͳሻሻܦ = ݁−ଵ (ଵ+�ு′ሺ଴ሻ௫+஽ሺଵሻ−஽ሺଵሻு′ሺ଴ሻ )భ �⁄⁄ = ݁−ଵ ሺଵ+�௫ሻభ �⁄⁄
 

Or, more generally: 

ݔሺܽܩ + ܾሻ = ݁−ሺଵ+�௫ሻ−భ �⁄  
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This is the FTG Theorem.  More plainly, FTG states that block maxima of renormalized IIDRVs, 

regardless of the underlying distribution of the individual block elements, converge in distribution to 

oŶe of the Guŵďel, FƌéĐhet, oƌ Weiďull faŵilies of pƌoďaďilitǇ distƌiďutioŶs, depeŶdiŶg oŶ the ǀalue of ʇ 

iŶ the aďoǀe deƌiǀatioŶ.  A positiǀe ʇ iŶdiĐates belonging to the Fréchet family, negative values indicate 

ŵeŵďeƌship iŶ the Weiďull faŵilǇ, aŶd ʇ=Ϭ iŵplies a Guŵďel distƌiďutioŶ.  Moƌe suĐĐiŶĐtlǇ, FTG states 

that block maxima are distributed as the Generalized Extreme Value distribution, ܯ௡~ܸܧܩሺߤ, �,  ሻ (Deߦ

Haan and Ferreira 2007). 

2.4.2 Approaches to Application 

2.4.2.1 Annual Maximum Series 

This FTG theorem is integral to EVT, including the application to extreme precipitation, 

streamflow, and flooding.  In meteorology and hydrology, the most frequent application is to construct 

an Annual Maximum Series (AMS), with each element being the block maximum of daily precipitation 

(or streamflow, etc.) over each year in the data record.  By FTG, this series will follow a GEV distribution 

(i.e. a GEV distribution can be accurately fit to these maxima), and the GEV can be employed to derive a 

relationship between Annual Exceedance Probability (AEP) and precipitation threshold by means of the 

QF.  AEPs are readily converted to quantiles and Average Recurrence Intervals (ARIs), via the relation: ܳݐ݊ܽݑ = ͳ − ܲܧܣ = ͳ − ଵ஺ோூ.  So the 2-year ARI corresponds, for example, to a 50% AEP and the 

median of the distribution.  It should be noted that the ARI is distinct from the RP in that in this 

framework, the ARI interval is discretized into years- the period does not get shortened for having 

multiple exceedances in the same year. This is a shortcoming of the AMS framework, at least when the 

year-independent RP framework is desired.  However, a relation does exist relating AMS-based 

exceedance probabilities and those derived from the year-independent framework described below: 
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ܴܲ = ଵா௉ುವೄ = ଵଵ−௘−�ಶು�ಾೄ.  This relation can be used to relate AMS-derived estimates into the desired 

framework (e.g. De Haan and Ferreira 2007; Bonnin et al. 2004). 

2.4.2.2 Partial Duration Series 

An alternative approach to AMS used in EVT is the Partial Duration Series (PDS) or Peaks-over-

Threshold (POT) approach.  Instead of simply constructing a time series of annual maxima and fitting a 

distribution to those values, in PDS, all independent values, or peaks, exceeding a particular specified 

threshold are extracted from the data record to form a time series, and an RSD is fit to this time series.  

Recall from the FTG proof that EVT requires that the original random variables be independent.  This is a 

problem in time series applications, as oŶe daǇ͛s pƌeĐipitatioŶ, foƌ eǆaŵple, is highlǇ Đoƌƌelated ǁith the 

surrounding days.  This is why, when extracting values to form a derived time series, it is important to 

take values that are sufficiently temporally separated so as to be considered independent.  The other 

important variable in PDS analysis is the choice of threshold.  One popular choice that will be explored in 

this study is the minimum value of the AMS derived from the same data record. 

As FTG establishes, ܲሺܯ௡ < ;ݔሺܸܧܩ~ሻݔ ,ߤ �,  ሻ.  But in this case, we are interested in individual baseߦ

random variables ܺ௞~ܨሺݔሻ eǆĐeediŶg soŵe thƌeshold Θ.  The eǆĐeedaŶĐes ĐaŶ ďe eǆpƌessed as ݕ = ݔ −  :and a CDF E of exceedances may be constructed ,ߠ

ሻݕሺ�ܧ ≡ ܲሺܺ < ߠ + ܺ|ݕ > ሻߠ = ߠሺܨ + ሻݕ − ሻͳߠሺܨ − ሻߠሺܨ   
Though the proof will not be shown here, it ĐaŶ ďe ƌeadilǇ shoǁŶ that, foƌ suffiĐieŶtlǇ laƌge Θ, the 

asymptotic distribution of EΘ is: 

;ݕሺܣܲܩ~ሻݕሺ�ܧ ,ߤ  �,  .ሻ, where GPA denotes the Generalized Pareto Distributionߦ
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The geŶeƌal pƌoĐeduƌe iŶ PD“ afteƌ seleĐtiŶg a thƌeshold Θ aŶd appƌopƌiatelǇ eǆtƌaĐtiŶg aŶ iŶdepeŶdeŶt 

series S from the complete daily series, a GPA can be fit to the exceedances to yield a conditional 

distribution: ܲሺܺ > ߠ + ܺ|ݕ > ሻߠ = ͳ − ;ݕሺܣܲܩ ,ߤ �,  .ሻߦ
The law of total probability may then be applied to back out the unconditional distribution: 

ܲሺܺ > ߠ + ሻݕ = ܲሺܺ > ߠ + ܺ|ݕ > ሻܲሺܺߠ > ሻߠ + ܲሺܺ > ߠ + ܺ|ݕ < ሻܲሺܺߠ < ሻߠ
≈ (ͳ − ;ݕሺܣܲܩ ,ߤ �, ሻ൯ߦ ݈݁݊ሺܲܵܦሻ݈݁݊ሺܽݐܽܦሻ + Ͳ ∗ ͳ − ݈݁݊ሺܲܵܦሻ݈݁݊ሺܽݐܽܦሻ
= (ͳ − ;ݕሺܣܲܩ ,ߤ �, ሻ൯ߦ ݈݁݊ሺܲܵܦሻ݈݁݊ሺܽݐܽܦሻ 

RP thresholds can then be derived using the QF of the unconditional distribution (De Haan and Ferreira 

2007). 

2.4.2.3 Direct Fits (DF) 

The third approach, not directly an application of EVT, is, instead of using threshold exceedances 

or block maxima, to simply attempt to guess the underlying distribution of the base random variables Xk, 

which in this study is model QPF values over accumulation interval T.  Heƌe, ǁe ĐaŶ͛t ƌelǇ too heaǀilǇ on 

theoƌǇ, siŶĐe, aďstƌaĐtlǇ, if ŶothiŶg is kŶoǁŶ aďout the data ƌeĐoƌd, it ĐaŶ͛t ďe eǆpeĐted a priori to follow 

any particular distribution.  However, the probability distribution of accumulated precipitation is and has 

been of great interest to the scientific community for a long time.  Approaches have been employed 

parametrically fitting various probability distributions to precipitation observation records, both Full 

Wet Series (FWS), which includes only days with measurable observed precipitation, and Full Dry Series 

(FDS), which includes the entire record, including days without measurable precipitation.  This approach 

is quite simple to apply; simply take the FDS, filter it as necessary in the case of an FWS, and then use 

the FDS or FWS to estimate appropriate parameter values for an RSD of choice.  Unlike the previous 
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approaches, this gives daily exceedance probabilities, so the RPs are given by: ܴܲ = ଵଷ଺ହ.ଶହ∗ொ௨௔௡௧, so the 

quantile for a 100-year precipitation event, for example, is 0.999973.  The challenge here is choosing the 

correct underlying distribution, and coming up with accurate parameter estimation.  The best approach 

with the former is to create a list of candidate distributions and test fits on all of them.  Parameter 

estimation will be discussed more in section 2.4.4. It should be noted that very little, if any, work has 

been done assessing the underlying probability distribution of model QPF (as opposed to precipitation 

observations); though it may not be strictly necessary, it is the hope of the authoƌ that eaĐh ŵodel͛s 

attƌaĐtoƌ is Đlose eŶough to the tƌue atŵospheƌe͛s attƌaĐtoƌ suĐh that the pƌoďaďilitǇ distƌiďutioŶ of 

model QPF is in the same family as observed precipitation, even if the parameters vary substantially at 

local scales. 

2.4.3 Right-Skewed Distributions 

The tables below summarize the mathematical properties of the RSDs employed in this research 

(Hosking 1997; Hosking and Wallis 1987; Hosking and Wallis 1993; De Haan and Ferreira 2007).  

Mathematical intuition on the differences in the distributions may not be readily apparent by inspection 

of the defining equations; more graphical comparisons will be provided in Chapter 4. 
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Table 2.2: RSDs used in this research.  Full name, abbreviated name, valid interval, and equations for 

eaĐh distƌiďutioŶ͛s PDF aŶd CDF aƌe iŶĐluded.  L-moment estimators for each model are included as 

applicable aŶd possiďle.  All eƋuatioŶs eǆpƌessed suĐh that ʅ deŶotes the loĐatioŶ paƌaŵeteƌ, σ deŶotes 
the sĐale paƌaŵeteƌ, aŶd ʇ deŶotes the shape paƌaŵeteƌ. 

Distribu

tion 

Name 

Exponent

ial 

Gamma Generalized Extreme 

Value 

Abbrevi

ation 

EXP GAM GEV 

Valid 

Interval 

[Ͳ,∞ሻ [Ͳ,∞ሻ 
{  
ߤ]   − ߦ� ,∞) ߦ   > Ͳሺ−∞,∞ሻ       ߦ = Ͳ(−∞, ߤ − [ߦ� ߦ < Ͳ 

PDF ݂ሺݔ; ,ߤ  �ሻ= ͳ� ݁−௫−��  

݂ሺݔ;  �, ሻߦ = ͳ�ሺߦሻ��  �ଵ݁−௫−�ݔ

With �ሺߦሻ = ∫ ∞ݖଵ݁−௭݀−�ݖ
଴  

݂ሺݔ; ,ߤ  �, =ሻߦ ͳ�  ሻ�+ଵ݁−௧ሺ௫ሻݔሺݐ
With ݐሺݔሻ
= {ቀͳ + ቀݔ − �ߤ ቁ �ቁ−ଵߦ ߦ  ≠ Ͳ݁−௫−�� ߦ                          = Ͳ

CDF ܨሺݔ; ,ߤ  �ሻ= ͳ− ݁−௫−��  

;ݔሺܨ  �, ሻߦ = ͳ�ሺߦሻ ߛ ቀߦ,  ቁ�ݔ

With �ሺߦሻ as above; ߛሺܽ, ܾሻ = ௕ݖ௔−ଵ݁−௭݀ݖ∫
଴  

;ݔሺܨ ,ߤ  �, ሻߦ = ݁−௧ሺ௫ሻ 
t(x) as above 

L-

Momen

ts 

Estimat

ors 

=ߤ̂ ݈ଵ− ʹ݈ଶ �̂ = ʹ݈ଶ 

ߤ̂
=
{  
  
   
 (ͳ − ݈ଶ݈ଵ) Ͳ.͹ʹͳ͵ − Ͳ.ͷͻͶ͹ቀͳ − ݈ଶ݈ଵቁቆͳ + ቀͳ − ݈ଶ݈ଵቁ ቀͳ.ʹͳͳ͵ቀͳ − ݈ଶ݈ଵቁ − ʹ.ͳͺͳ͹ቁቇ  

݈ଶ݈ଵ ൒ Ͳ,ͷ
ͳ − Ͳ.͵Ͳͺ� ቀ݈ଶ݈ଵቁଶ� ቀ݈ଶ݈ଵቁଶ (ͳ + � ቀ݈ଶ݈ଵቁଶ ቆͲ.Ͳͳ͹͸ͷ� ቀ݈ଶ݈ଵቁଶ − Ͳ.Ͳͷͺͳʹቇ) 

݈ଶ݈ଵ < Ͳ.ͷ
�̂ = ݈ଵ̂ߤ  

* 
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Table 2.3: Continuation of Table 2.2 

Distributio

n Name 

Generalized Logistic Generalized Normal Generalized Pareto 

Abbreviati

on 

GLO GNO GPA 

Valid 

Interval 

ሺ−∞,∞ሻ ሺ−∞,∞ሻ {[ߤ,∞ሻ        ߦ ൒ Ͳ[ߤ, ߤ − [ߦ� ߦ  < Ͳ 

PDF ݂ሺݔ; ,ߤ  �, ሻߦ
=
{   
   
  ቀͳ + ݔ − �ߤ ��ቁ−ଵ−ଵߦ (ͳ + ቀͳ + ݔ − �ߤ ߦ  ቁ−ଵ/�)ଶߦ ≠ Ͳ  

݁−ቀ௫−�� ቁ� (ͳ + ݁−ቀ௫−�� ቁ)ଶ ߦ                    = Ͳ
݂ሺݔ; ,ߤ  �, ሻߦ = ��ʹߦ ቀͳߦቁ ݁−(|௫−�|� )�

 
݂ሺݔ; ,ߤ  �, =ሻߦ ͳ� ቀͳ+ ݔ − �ߤ  ቁ−ଵ�−ଵߦ

CDF ܨሺݔ; ,ߤ  �, ሻߦ
= {  
  ͳͳ + ቀͳ + ݔ − �ߤ �/ቁ−ଵߦ ߦ  ≠ Ͳͳͳ + ݁−ቀ௫−�� ቁ ߦ                    = Ͳ

;ݔሺܨ ,ߤ  �, ሻߦ
= ͳʹ + ݔ − ݔ|ߤ − |ߤ ߛ ቆͳߦ , ݔ|) − �|ߤ )�ቇʹ� ቀͳߦቁ  

;ݔሺܨ ,ߤ  �, =ሻߦ ͳ− ቀͳ + ݔ − �ߤ  �ቁ−ଵߦ

 

L-

Moments 

Estimators 

=ߤ̂ ݈ଵ− ݈ଶ sinሺ−�݈ଷሻ�݈ଷ ͳ + �݈ଷsinሺ−�݈ଷሻ݈ଷ  �̂ = −݈ଶ sinሺ−�݈ଷሻ�݈ଷ ߦ̂  = −݈ଷ 

=ߦ̂̂ −݈ଷଶ (ʹ.ͲͶ͸͹ + ݈ଷଶ ቀ−͵.͸ͷͶͶ + ݈ଷଶ(ͳ.ͺ͵ͻ͹ − Ͳ.ʹͲ͵͸݈ଷଶ൯ቁ)ͳ + ݈ଷଶ ቀ−ʹ.Ͳͳͺʹ + ݈ଷଶ(ͳ.ʹͶʹ − Ͳ.ʹͳ͹Ͷ݈ଷଶ൯ቁܧ = ݁଴.ହ�̂మ �̂ = ݈ଶ̂ܧߦ ∗ erf ቆ̂ʹߦቇ 

ߤ̂ = ݈ଵ + �̂ሺܧ − ͳሻ̂ߦ  

=ߤ̂ ݈ଵ− ݈ଶ (ʹ + ͳ − ͵݈ଷͳ + ݈ଷ ) �̂= ݈ଶ (ͳ+ ͳ − ͵݈ଷͳ + ݈ଷ )(ʹ+ ͳ − ͵݈ଷͳ + ݈ଷ ߦ̂ ( = ͳ − ͵݈ଷͳ + ݈ଷ  
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Table 2.4: Continuation of Table 2.2 

Distribution 

Name 

Gumbel Kappa Weibull 

Abbreviation GUM KAP WEI 

Valid 

Interval 

ሺ−∞,∞ሻ 

{  
  
   
ߤ]  + �ሺͳ − ߙሻ−ఈߚ , ߤ + [ߙ� ߚ  > Ͳ, ߙ > Ͳ [ߤ + � lnߚ ,∞ሻ                    ߚ > Ͳ, ߙ = Ͳ[ߤ + �ሺͳ − ߙሻ−ఈߚ ,∞) ߚ        > Ͳ, ߙ < Ͳቀ−∞, ߤ + ቁߙ� ߚ                       ൑ Ͳ, ߙ > Ͳሺ−∞,   ∞ሻ                              ߚ ൑ Ͳ, ߙ = Ͳ[ߤ + ߙ� ,∞ቁ ߚ                            ൑ Ͳ, ߙ < Ͳ

 

[Ͳ,∞ሻ 

PDF ݂ሺݔ; ,ߤ  �ሻ= ͳ� ݁−(௫−�� +௘−ೣ−�� )
 ݂ሺݔ; ,ߤ  �, ,ߙ ሻߚ = ൮(ͳ

− ߚ ቀͳ − ߙ ݔ − �ߤ ቁଵఈ)ଵఉ)ଵ−ఉ 

݂ሺݔ;  �, =ሻߦ �ߦ ቀݔ�ቁ�−ଵ ݁−ቀ௫�ቁ� 

CDF ܨሺݔ; ,ߤ  �ሻ= ݁−௘−ೣ−�� ;ݔሺܨ  ,ߤ  �, ,ߙ ሻߚ = (ͳ − ߚ ቀͳ − ߙ ݔ − �ߤ ቁଵఈ)ଵఉ 

;ݔሺܨ  �, =ሻߦ ͳ − ݁−ቀ௫�ቁ�  

L-Moments 

Estimators 
ߤ̂ = ݈ଵ − ߛ ݈ଶln ʹ �̂ = ݈ଶln ʹ 

* * 

*: These distributions do not apply a closed form solution for parameter estimation, instead using an 

iterative scheme 

2.4.4 Parameter Estimation 

One of the principal challenges in the application of parametric techniques concerns the 

question of how to best estimate distribution parameters.  Considerable scientific inquiry has been 

devoted to this research question; several of the most prominent methods are presented here, including 

the method of moments (MoM), method of L-moments (MoLM), maximum likelihood estimation (MLE), 

and direct solve (DS). 
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2.4.4.1 Method of Moments (MoM) 

The MoM was the first commonly used method for parameter estimation, and it is now 

considered rather antiquated for most applications.  A brief description is, however, presented here for 

historical background and as a baseline for other methods.  Again, let X denote a random variable.  Then 

the nth
 moment of X, with PDF fX is defined as: 

௡ሺܺሻܯ = [௡ܺ]ܧ = ∫ ௡ݔ ௑݂ሺݔሻ݀ݔ∞
−∞  

For a finite sample of size s, a moment can be estimated as: 

௡̂ሺܺሻܯ = ଵ௦ ∑ ௜௡௦௜=ଵݔ ≈ ݃௡ሺߠଵ, … ,  ௉ሻ, ǁheƌe Θ͛s deŶote the distƌiďutioŶ paƌaŵeteƌs aŶd g͛s deŶoteߠ

explicit functions of the population parameters.  For example, for a normal distribution with parameters 

ʅ aŶd σ, ݃ଵሺߤ, �ሻ = ,ߤand ݃ଶሺ ,ߤ �ሻ = ଶߤ + �ଶ.  The MoM algorithm starts with the first moment, and 

uses the approximate equality between the sample moment and the explicit formula for the true 

moment as a function of the distribution parameters to form an equation.  This is repeated P times 

down to the Pth moment, yielding a system of P equations and P unknowns.  This system of equations 

can then be solved analytically to yield parameter estimates ߠଵ̂, …  ௉̂.  The primary appeal of thisߠ

method is that it is very tractable without requiring any additional, external information beyond the 

initial input data.  The estimators are consistent, that is, as the sample size gets large, the parameter 

estimate converges to the true population parameter.  However, MoM estimators are often biased, 

meaning that for any finite sample, the difference between the expected value of the true population 

parameter and parameter estimate is often non-zero (Hansen 1982). 
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2.4.4.2 Method of L-Moments (MoLM) 

The use of sample L-Moments, rather than traditional moments, has been found in many 

applications to improve the quality of estimates of distribution parameters.  From a sorted sample of 

size s, with x1 being the smallest element of the sample, the sample L-moment of order n may be 

computed as:   

௡̂ሺܺሻߣ = ͳ݊(௦௡൯∑ቌ∑−ͳ௕ ቀܾ݊ቁ௡
௕=଴ ( ݅ − ͳ݊ − ܾ) ݏ) − ͳܾ )ቍݔ௜௦

௜=ଵ  

The true L-moment of order n, may be expressed using an ordered, ascending, independent sample of 

size s (X1 smallest, Xs largest) as: 

௡ሺܺሻߣ = ͳ݊∑−ͳ௜ (݊ − ͳ݅ ௡−ଵ[௡−௜ܺ]ܧ(
௜=଴  

Since the expected value for an ordered statistic can be readily computed from a known distribution, 

this equation can be used to derive L-moments as a function of population parameters.  Using sample L-

moments as population L-moment estimates, much like the MoM, increasing orders of L-moments can 

be employed until P equations relating the sample L-moments and their parameter-dependent 

equations are generated.  The P unknown parameters can then be solved analytically to yield parameter 

estimates.  The L-ŵoŵeŶt ŵethod͛s pƌiŵaƌǇ adǀaŶtage oǀeƌ the tƌaditioŶal MoM is it͛s iŶĐƌeased 

robustness.  This appears in two key ways.  First, the constraints on the existence of high order L-

moments is much looser than those for traditional moments; specifically, the only requirement on the 

existence of high-order L-moments is that the distribution have a finite mean, while traditional moments 

require stricter conditions be upheld.  More importantly, while still not resistant statistics, L-moments 

are much more robust to outliers or extremes in the sample data when compared with the use of 

traditional moments.  This makes the MoLM especially attractive for extreme value applications 
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(Hosking 1992; Hosking 2006; Hosking and Wallis 1993; Hosking and Wallis 2005; Pilon and Adamowski 

1992; Guttman et al. 1993). 

2.4.4.3 Maximum Likelihood Estimation (MLE) 

The MLE approach to parameter estimation considers the problem from a Bayesian framework.  

Specifically, given a sample X of s IID observations, X={x1,…,ǆs}, and a vector of distribution parameters 

Θ, the joiŶt deŶsitǇ fuŶĐtioŶ ĐaŶ ďe ƌeadilǇ Đoŵputed: ݂ሺܺ|ߠሻ = ∏ ݂ሺݔ௜|ߠሻ௦௜=ଵ  (using the IID 

assumption).  This is related to ܲሺܺ|ߠሻ, often expressed as the likelihood function ι thƌough BaǇe͛s ‘ule: ܲሺߠ|ܺሻ = ௙ሺ௑|�ሻ௉ሺ�ሻ௉ሺ௑ሻ .  Exploiting the monotonicity of the logarithm and applying logarithm identities, this 

can also be re-written as: ln ιሺθ|Xሻ = ∑ ݂ሺݔ௜|ߠሻ௦௜=ଵ .  The MLE estimator ߠெ௅ா̂, is then: 

ெ௅ா̂ߠ = argmax�ሺln  ሻߡ
MLE, like the methods above, is a consistent estimation method- as the sample size gets large, the 

parameter estimates converge to the true population parameters.  With finite sample sizes, evidence 

suggests that MLE often produced better estimates for a fixed sample size than moment-based 

methods.  However, MLE is more expensive, often lacking an analytical solution and requiring numerical 

iteration to converge to an estimate.  Further, in some instances, no MLE solution exists; this occurs 

when ι continues to increase without attaining a maximum, or supremum, value.  Still, MLE is a very 

powerful and general method that can be effectively applied to the parameter estimation challenge in 

many different contexts (Murphy 2012). 

2.4.4.4 Direct Solving (DS) 

The DS method is a very straight-forward and viable approach to parameter estimation, but 

appears very infrequently in the literature due to practical constraints on its use.  The idea is quite 

simple: given a distribution D of P parameters, since the equatioŶ foƌ D͛s CDF is kŶoǁŶ as a fuŶĐtioŶ of 
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its parameters, specifying P precipitation threshold, quantile (or CDF-value) pairs yields a system of P 

equations with P unknown parameters.  The system of equations, often with extensive algebra, can then 

be analytically solved to yield estimates for each of the P parameters.  The quality of the estimates is 

directly proportional to the accuracy of the given quantile, threshold pairs; if each of those is perfect, 

the parameter estimates will necessarily also be perfect.  The challenge, then, is obtaining accurate 

(quantile, threshold) pairs; it is often infeasible to obtain sufficiently accurate pairings to yield 

ƌeasoŶaďle paƌaŵeteƌ estiŵates, ǁhiĐh liŵits the ŵethod͛s utilitǇ iŶ ŵaŶǇ settiŶgs.  Hoǁeǀeƌ, at ŵoƌe 

common thresholds, where the event ARI is small relative to the data record length, obtaining accurate 

threshold rarity estimates may be possible, and this would make the use of this method quite attractive. 

2.5 Extreme Precipitation and Precipitation Datasets 

2.5.1 Precipitation Datasets 

2.5.1.1 Stage IV Precipitation 

NCEP Stage IV Precipitation Analysis products (Lin and Mitchell 2005) have been created daily in 

an official capacity since December 2001.  Stage IV provides precipitation analyses over the contiguous 

United States (CONUS) by with hourly and 6-hourly accumulation analyses, and 24-hour accumulation 

analyses by means of summing four 6-hourly accumulations.  Analyses are given on an approximately 4 

km grid.  Stage IV uses both rain gauge observations and radar-derived rainfall estimates to generate an 

analysis, and is further quality controlled via NWS River Forecast Centers (RFCs) to assure stray radar 

artifacts and other spurious anomalies do not appear in the final product.  Even with these procedures, 

Stage IV has numerous deficiencies that will be discussed in further detail in subsequent chapters.  

However, despite its limitations, the combination of its data record length and analysis quality and 

resolution are deemed to make it superior to alternative available products for this research, and will be 

used as the pƌeĐipitatioŶ ͚tƌuth͛ foƌ the puƌposes of this studǇ.   
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2.5.1.2 Atlas 14 and Prior Work 

The National Oceanic and Atmospheric Administration (NOAA), and specifically the 

Hydrometeorological Design Studies Center (HDSC), is currently developing an updated assessment of 

precipitation accumulations to occurrence frequency equivalences for rare events with RPs of 1 to 1000 

years over CONUS.  In so doing, events may be studied in the context of their climatological rarity rather 

than a fixed threshold which has different implications over the geographically and 

hydrometeorologically diverse CONUS.  This product, known as Atlas 14, is an update of work done by 

Hershfield in 1961, published that year in Technical Paper 40 (TP-40; Hershfield 1961), which spanned 

ŵuĐh of the UŶited “tates east of the ĐoŶtiŶeŶtal diǀide, aŶd NOAA͛s Atlas Ϯ, ƌeleased iŶ ϭϵϳϯ foƌ the 

western states.  Atlas 2, using AMS methods to convert to PDS statistics, fit a 2-parameter GUM 

distribution to station gauge data for 6- and 24-hour accumulation intervals to derive 2- to 100-year 

return period estimates.  Topographically-aware formulas were then derived and applied to extend 

those estimates to all points (Miller et al. 1973).  However, only 2- and 100-year return period 

thresholds have been digitized; the author manually calculated other RP thresholds using the DS method 

(see 2.4.4.4) for the Gumbel distribution.  Atlas 2 frequency estimates remain the most up to date 

estimates for five northwestern states: Idaho, Montana, Oregon, Washington, and Wyoming.  TP-40 

methods are nearly identical, also using AMS to PDS conversion and the GUM distribution (Hershfield 

1961).  TP-40 estimates are the most recent in place for Texas and New England, including New York.  In 

all other states, Atlas 14 updates have superseded the Atlas 2 and TP-40 estimates in place previously.  

In addition to having several decades of new data with increased station density to improve 

precipitation frequency estimates, Atlas 14 uses more sophisticated methods for deriving estimates than 

its predecessors. A suite of different RSDs were fit to precipitation data, using the MoLM for parameter 

estimations; goodness of fit tests such as Kolmogorov-Smirnov were conducted and used to assess the 

optimal choice of distribution.  To date, all Atlas 14 updates have selected the GEV distribution as the 
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distribution which most often had an acceptable fit to the observational data, and have chosen to apply 

it uniformly so as to avoid large spatial discontinuities.  A more sophisticated regionalization technique 

was employed to use data from multiple nearby stations to inform a point rainfall frequency estimate.  

RPs also extended from 1-year up to 1000-years, and estimates are available for accumulation intervals 

ranging from minutes to months (Bonnin et al. 2004; Bonnin et al. 2006; Perica et al. 2011; Perica et al. 

2013). 

2.5.2 Modes of Extreme Precipitation 

Precipitation accumulation can be described as 

ܲ = ∫ ܴሺݐሻ݀ݐ௧೑
௧೚ = ௙ݐ)ܴ̅ − ௢൯ݐ =  ܦܴ̅

where P is the precipitation accumulation and R is the instantaneous precipitation rate (Doswell et al. 

1996).  It follows that, in order to receive large precipitation accumulations P, the product of average 

precipitation rate and precipitation duration must be very high; either instantaneous rain rates must be 

exceptionally high, or moderate rain rates must exist for a long duration, or somewhere in between.  

The moderate rate, high duration (MRHD) events require a source of ample moisture and an additional 

source for persistent lift.  This class of event, as will be discussed in more detail in the section below, is 

most often seen in association with atmospheric river events along the US west coast, where an 

atmospheric river acts to transport tropical moisture poleward to the mid-latitudes, and the coastal 

topography acts as a constant forcing for ascent with tropical moisture from the atmospheric river being 

brought directly into mountainous topography (Ralph and Dettinger 2011).  However, atmospheric 

instability in these regimes is typically insufficient to develop the very high rain rates required for the 

high rate, moderate duration (HRMD) event class.  Unlike the predominantly stratiform precipitation 

observed in MRHD events, HRMD events are almost exclusively convective in nature.  Extreme 
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precipitation has been observed in a wide variety of convective regimes, from Mesoscale Convective 

Systems (MCSs) to Squall Lines to High Precipitation (HP) Supercells (Schumacher and Johnson 2006).  All 

of these phenomena occur somewhat routinely without producing extreme precipitation, often because 

theiƌ stoƌŵ/sǇsteŵ ŵotioŶ is too high, ƌesultiŶg iŶ a pƌeĐipitatioŶ duƌatioŶ that͛s too shoƌt foƌ aŶǇ giǀeŶ 

location to receive extreme precipitation amounts.  Receiving extreme amounts from convective 

sǇsteŵs ofteŶ ƌeƋuiƌes that the sǇsteŵ͛s pƌopagatioŶ opposes its Đell ŵotioŶ ;ǁhiĐh is stƌoŶglǇ ƌelated 

to the mean flow/wind) to yield slow storm motions (Schumacher and Johnson 2006).  Extreme 

precipitation can also occur in association with Tropical Cyclones (TCs); for reasons that will not be 

discussed in detail here, TCs generate rainbands with very intense thunderstorms which constitute the 

TC eyewall.  TCs, despite being very different in nature to most events in the same class, would usually 

be most accurately classed as HRMD events, but if a TC stalls over land due to interaction with 

topography or some other reason, TC rainfall can often be accurately classified as high rate, high 

duration.   

2.5.3 Extreme Precipitation Climatology 

One of the most comprehensive studies of extreme precipitation climatology from the RP 

framework was conducted by Stevenson and Schumacher (2014).  The study focused exclusively on 

states lying entirely east of the continental divide, and due to the timing of the analysis, Atlas 14 data 

was not yet available, and the TP-40 grids were used instead.  The study looked at accumulation 

intervals of 1, 6, and 24 hours, and RPs of 50 and 100 years.  By inspection of the grids (see Figure 3.1 

later), it is apparent that use of the RP framework departs substantially from the traditional fixed 

threshold framework; for a given RP, the ratio between the highest and lowest precipitation thresholds 

is often two to three or more.  The general patterns exhibited are largely what one would intuitively 

expect; higher precipitation accumulations are required for the same frequency of occurrence near the 

Gulf Coast, with notably less accumulation required near the Canadian border to the north and 
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approaching the Rocky Mountains to the west.  Higher thresholds are, of course, ubiquitously observed 

for the higher 100-year RP compared with 50-years.   

In terms of event analysis over a 10-year period from 2001-2011, 24-hour events at both RP 

thresholds examined exhibit a broad peak in frequency over the summer months, which precedes a 

somewhat sharp decline in frequency during the autumn and follows a sharp ascent in the late spring.  

Almost no 24-hour events were found to occur during the winter months.  There was found, however, to 

be some regional variation, with the Plains region exhibiting an earlier peak in May and June; the 

identified Southeast events occurring almost exclusively in August and September in association 

primarily with tropical cyclone activity; the Northeast region occurring in August, September, and 

October; and the Ohio-Mississippi Valley region experiencing two peaks in frequency- in May and 

September- with moderate frequency of occurrence throughout the summer months.  Identified events 

were classified into three categories: 1) Mesoscale Convective System (MCS), 2) Synoptic, and 3) 

Tropical; it was found that a substantial majority of CONUS heavy precipitation events east of the 

continental divide occurred in association with MCSs.  6-hour events exhibited a fairly similar pattern to 

the 24-hour events, except that: 1) OH-MS Valley no longer showed a bi-modal peak pattern, instead 

with a single broad summertime peak; 2) the Plains peak shifted more towards the summer, instead 

centered about June; 3) the Northeast October maximum largely disappeared; and 4) while August and 

especially September remained the Southeast peak, events did occur in that region outside those 

months.  1-hour events occurred again similarly to 6-hour events, but the Northeast region event 

frequency shifted further towards the summer months with a July-August maximum and very few 

September-October events, and the Southeast peak continued to broaden, with many one-hour events 

occurring in July in that region.  The one-hour events were also examined with regard to time of day; 

though there were some minor regional variations, all regions experienced most 1-hour 50- and 100-

year events during the late afternoon, evening, or early nighttime hours, from roughly 16:00 to local 
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midnight.  While few or no studies have looked in depth at the climatology of extreme precipitation 

events west of the continental divide in an RP framework, similar studies in a fixed-threshold framework 

suggest that extreme events over the US west coast occur primarily in association with synoptic systems  

and atmospheric river events in the cool season- autumn and winter- and do not occur through the MCS 

or Tropical modes that dominate much of the rest of the country. 

2.6 Machine Learning 

All machine learning algorithms used in this study are, at least as applied here, supervised 

learning models used for the purpose of classification.  The prediction problem here is said to be 

supervised because each predictive model is being trained and tuned on labeled data, that is, historical 

data from which the outcome- observed RP exceedances- are known.  In the case of categorical RP 

exceedance forecasting, a finite number of possible observations exist: 100-year exceeded, 50-year 

exceeded but not 100, 25 exceeded but not 50, 10 but not 25, 5 but not 10, 2 but not 5, 1 but not 2, 1-

year RP not exceeded.  This can also be reduced to a series of binary problems with regards to a 

particular RP threshold exceedance (e.g. two classes: 10-year RP exceeded, 10-year RP not exceeded).  

Because the forecast problem involves predicting a discrete category rather than a quantified, numeric 

predictand, the machine learning task is deemed to be a classification problem rather than a regression 

problem.  As a broad overview, each of these supervised predictive models ingests as input numerous 

labeled training examples and uses these to train a final predictive model, which serves as the output of 

the training phase of this process.  Specifically, the outputted, trained model ingests one or more 

unlabeled examples and outputs a prediction- either a single best-guess classification or assigns a 

verifying probability to each possible classification category for the true label of each input example.  

Aside from the label, each training example also possesses with it a representation of the information 

available on which to make a prediction.  This is typically formatted as a list of predictors, or features, 

which altogether comprise a feature vector (Murphy 2012).  For this forecasting application, the features 
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are forecast variables from NWP ŵodels used iŶ the PF“͛s NWP eŶseŵďle, with each individual feature 

corresponding to a specific atmospheric field forecast at a given latitude and longitude for a specific 

NWP model, depending on what information is being used to train the predictive model.   

2.6.1 Logistic Regression 

 Perhaps the most basic, fundamental method for developing a statistical model is linear 

regression, as used in MOS and elsewhere.  The idea is to express the predictand of interest as a linear 

combination of the input predictors, or features.  Suppose one has n records, or training examples, of 

the form: < ௜ݕ , ௜ܨ⃑ = [ͳ, ,ଵݔ … , [௠ݔ >, with each example possessing a vector of m features, along with 

the verifying observation y.  The idea of linear regression is to express the predictand of interest as a 

linear combination of the input predictors, or features: ݕ௜ = ߚ⃗ ∙ ప⃗⃗⃗ܨ +  ௜, ǁheƌe β is a ǀeĐtoƌ of pƌediĐtoƌߝ

ĐoeffiĐieŶts, aŶd ɸ is aŶ eƌƌoƌ teƌŵ.  This algoƌithŵ is poǁeƌful foƌ ŵaŶǇ appliĐatioŶs, ďut has its 

limitations.  Principally, linear regression produces predictand estimates on the spectrum ሺ−∞,∞ሻ, 
while probabilities occur on the spectrum [0,1], and observations are members of the set {0,1}.  For this 

reason, linear regression is fundamentally a theoretically flawed approach for the application of 

probabilistic prediction.  This is because it belongs to a class of algorithms for the purpose of regression- 

prediction of a continuous predictand, which is the wrong class of algorithms to apply to the forecast 

problem examined here.  Instead, one seeks robust classification algorithms- those that predict which of 

a discrete set of categories an example belongs.   

 The Ŷaŵe ͞logistiĐ ƌegƌessioŶ͟ is Ƌuite a ŵisŶoŵeƌ, siŶĐe iŶ faĐt it is Ŷot a ƌegƌessioŶ algoƌithŵ 

but instead a classification algorithm.  Logistic regression (LOG_REG) does, however, share a great deal 

in common with linear regression.  Both techniques are instantiations of the Generalized Linear Model 

(GLM); the two approaches simply have different underlying assumptions.  Three requirements must be 

satisfied for any instantiatioŶ of the GLM.  Fiƌst, a liŶeaƌ pƌediĐtoƌ η is ƌeƋuiƌed; that is, the pƌediĐtaŶd 
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ŵaǇ ďe eǆpƌessed as a fuŶĐtioŶ of η, ǁhiĐh iŶ tuƌŶ ŵaǇ ďe eǆpƌessed as a liŶeaƌ ĐoŵďiŶatioŶ of the 

input features ߟ = ߚ⃗ ∙  There must also be an identified probability distribution, or distribution  .ܨ⃗

function, of the predictand mean.  Lastly, there must be a link function ĐoŶŶeĐtiŶg the pƌediĐtoƌ η ǁith 

mean of the distribution function, ʐ.  In linear regression, the distribution function is the normal 

distribution: ݂ሺߤ|ݔ, �ሻ = ଵ�√ଶ� ݁−ሺೣ−�ሻమమ�మ , aŶd the liŶk fuŶĐtioŶ is the ideŶtitǇ fuŶĐtioŶ: ʐ = η.  IŶ LOG_‘EG, 

the Bernoulli distribution serves as the distribution function: ݂ሺ݌|ݔሻ = ݔሺߜ)݌ − ͳሻ൯ + ሺͳ −  ,ሻ൯ݔሺߜ)ሻ݌
ǁheƌe ɷ;Ϳ deŶotes the DiƌaĐ Delta Function, and p is the input parameter indicating the probability of 

oĐĐuƌƌeŶĐe.  LOG_‘EG͛s liŶk fuŶĐtioŶ is the logit, oƌ iŶǀeƌse sigŵoid fuŶĐtioŶ, ǁhiĐh ĐaŶ ďe ƌe-written as 

the inverse link function: ߭ = ௘�ଵ+௘�.  As desired, for any real value foƌ η, ʐ Ŷoǁ possesses a ǀalue oŶ the 

interval [0,1], corresponding to the probability of the feature vector ⃗ܨ ĐoƌƌespoŶdiŶg to η ďeloŶgs to the 

positive verification category (Wilks 2011).    

2.6.2 Decision Trees and Random Forests 

2.6.2.1 Decision Trees 

Decision trees are one fairly basic method for approaching classification problems.  Decision trees, 

for the purposes of this study, consist of a network of two types of nodes: decision nodes and leaf nodes.  

Decision nodes each have exactly two children, which may be either decision nodes or leaf nodes, with a 

ďiŶaƌǇ split ďased oŶ the ŶuŵeƌiĐ ǀalue of a siŶgle featuƌe fƌoŵ the aŶ iŶput eǆaŵple͛s featuƌe ǀeĐtoƌ.  

A leaf node has no children and instead, makes a categorical prediction of the verifying class of the input 

eǆaŵple ďased oŶ the leaf͛s ƌelatioŶship to its aŶĐestoƌ Ŷodes.  Foƌ a giǀeŶ iŶput eǆaŵple, oŶe alǁaǇs 

ďegiŶs at a deĐisioŶ tƌee͛s root, and at each decision node, compares the value of its feature to the 

critical threshold of the corresponding feature pƌesĐƌiďed foƌ that deĐisioŶ Ŷode.  If the eǆaŵple͛s 

featuƌe eǆĐeeds the Ŷode͛s ĐƌitiĐal thƌeshold, the tƌee is tƌaǀeƌsed to the Ŷode͛s ƌight Đhild; otheƌǁise, 

the tree is traversed to the left child.  This process is repeated until a leaf node is reached; at this point, 
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the value corresponding to the leaf becomes the predicted verifying category for the input example.  In 

this way, the predictive model acts to make a categorical prediction by means of a conjunction of 

boolean variables derived from an exaŵple͛s featuƌe ǀeĐtoƌ.  OŶĐe a deĐisioŶ tƌee is ďuilt, deteƌŵiŶiŶg a 

prediction given a feature vector is rather straight-forward; the challenge comes in the training phase in 

constructing the tree. 

The two primary questions that must be addressed in constructing a decision tree are:  

1a) At a given juncture, how is it determined what feature to split on? 

1b) After determining a splitting feature, what determines the critical threshold? 

2) What determines when to stop node splitting, and thus create a leaf node? 

Suppose a decision tree is trained on n training examples, each with a feature vector F of length 

m.  At a given node k, the candidate splits S consist of a feature f and threshold ߠ,  ܵ = ሺ݂,  ሻ.    The setߠ

of training examples that traverse the developing tree to reach k is denoted Q.  S partitions Q into Qleft 

and Qright by: ܳ௟௘௙௧ = ,ݕۃ∀ [݂]ܨሺۄܨ < ሻ; ܳ௥௜௚ℎ௧ߠ = ,ݕۃ∀ [݂]ܨሺۄܨ ൒  ሻ.  There is said to be impurity I at kߠ

based on S; that is given by ܫሺܳ, ܵሻ = ௟௘௡(ொ೗೐೑೟൯௟௘௡ሺொሻ ܪ ቀܳ௟௘௙௧ሺܵሻቁ + ௟௘௡(ொೝ೔೒ℎ೟൯௟௘௡ሺொሻ ܪ ቀܳ௥௜௚ℎ௧ሺܵሻቁ, where H is the 

impurity function.  Among the candidate splits S at k, the chosen split S* is the split satisfying: ܵ∗ = ,ሺܳܫ)ௌ݊݅݉݃ݎܽ ܵሻ൯.  This process of greedy split selection is continued recursively until the 

termination criterion is satisfied. 

Traditionally, the termination criterion is simply that a node k is a decision node unless ݈݁݊ሺܳሻ =ͳ, in which case a leaf node with prediction y0 (ܳ = ,௢ݕۃ  However, recursing this deep is very  .(ۄ௢ܨ

susceptible to fitting the noise of the training data, thereby overfitting the predictive model and 

degrading its generalized skill.  To alleviate this concern, often more liberal termination criterion are 
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applied, such as creating a leaf node whenever ݈݁݊ሺܳሻ ൑ ݈݁݊௠௜௡;  ݈݁݊௠௜௡ > ͳ, or by imposing a 

maximum allowable depth D of the tree ݀݁ݐ݌ℎሺ݇ሻ ൑  .ܦ

 

2.6.2.2 Random Forests (RAND_FOR) 

Decision trees can be a powerful approach for a wide array of applications, but they also have 

several significant drawbacks.  First, they are widely regarded as low bias, high variance solutions.  That 

is, minimal error is introduced by erroneous or oversimplistic assumptions in the model formulation, but 

the model formulation is very sensitive to the input data upon which it trains, which results in large 

error when extrapolating to other test data.  More succinctly, decision trees are very prone to 

overfitting the training data: fitting to the noise of the training data rather than just the underlying 

relationships.  This flaw substantially diminishes the utility of decision trees as a general predictive 

model.  Second, the decision tree framework does not robustly extend to a probabilistic framework, 

since leaf nodes make deterministic predictions based on the mode verifying category of the subset of 

the training data reaching each respective node; applying a probabilistic prediction to individual leaf 

nodes greatly compounds the overfitting problem.  It has been demonstrated that using many different 

decision trees to form, in aggregate, a predictive model can significantly decrease the model variance 

with only a slight increase to the model bias, provided the trees are sufficiently uncorrelated.  This is the 

idea behind random forests (Breiman 2001).   

The challenge with random forests is: how does one generate a large set (forest) of reasonably 

skillful decision trees that are not strongly correlated?  The procedure described above for generating a 

decision tree from training data is deterministic, that is, a given set of training data will always produce 

the same decision tree via that algorithm.  A forest of identical decision trees adds no value over using a 

single decision tree.  The extra process for random forest generation is twofold: tree bagging and 
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feature bagging.  To generate a forest of size B from the n training examples, tree bagging involves the 

application of a simple bootstrapping procedure.  Specifically, one samples, with replacement, n training 

examples from the original set, and uses this derived set to construct a decision tree using the method 

described above.  This process is repeated B times to form a forest.  Overfitting due to correlated trees 

can still occur under this approach if a small subset of the original feature space are much more robust 

predictors of the verifying category than the rest.  To overcome this problem, only a random subset of 

the m original input features are considered at each decision node; the size of the random subset is 

denoted here as ܼ; ͳ ൑ ܼ ൑ ݉. 

2.6.3 K-Nearest Neighbors Classification 

Applying straightforward clustering techniques for classification problems can prove highly 

effective despite its simplicity.  Perhaps the best known, the K-nearest neighbors clustering algorithm is 

explored here.  KNN and other clustering algorithms have the unique property, compared with the other 

machine learning algorithms discussed here, that it is non-generalizing; test example predictions are 

made purely based on the proximity to training examples, rather than applying a fitted model which is 

extrapolated based on the training data.  This is very advantageous when decision boundaries are highly 

erratic and non-linear, as other methods will tend to produce biased solutions in these instances.  

However, its inability to identify patterns in the training data can also cause it to use training data less 

efficiently than other algorithms in many instances.     

K-Nearest Neighbors classification makes predictions based on a weighted vote of the K training 

examples judged most similar to the test example.  Similarity of two data points is determined by a 

distaŶĐe ŵetƌiĐ D applied to the poiŶts͛ featuƌe ǀeĐtoƌs  F1 and F2, smaller distances being more similar.  

The most commonly used distance metric is also the most intuitive, the Euclidean Distance: 
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,ଵܨா௨௖௟௜ௗሺܦ ଶሻܨ = √∑ሺܨଵ[݅] − ଶ[݅]ሻଶ௠ܨ
௜=ଵ  

Distances between the test example and all training examples are computed, and the training examples 

associated with the K smallest computed distances comprise the set of voting neighbors.  Each neighbor 

votes in accordance with its associated verifying observation in the training data to yield a set of votes, 

or predictions, V.  The final prediction of the KNN algorithm is then the product of matrix V and a 

Ŷoƌŵalized ǁeights ǀeĐtoƌ W.  TƌaditioŶallǇ, W͛s eleŵeŶts aƌe all ϭ/K, so that eaĐh ŵeŵďeƌ has aŶ eƋual 

vote, but may be chosen to instead vary with weights inversely proportional to distance (Murphy 2012). 

2.6.4 Boosting 

The basic concept of boosting (Friedman 2001) is that a large ensemble of weak learners- very 

high bias, very low variance models- can form a strong learner.  Decision trees are a popular choice of 

weak learner for boosting, and were selected as the ensemble members for this study.  Decision trees 

may be thought of as partitioning the m-dimensional feature space ܴ௠ into different segments, and 

then assigning a verifying category to each fragment based on the mode verifying category of the 

training data in that subspace.  Each decision tree b can thus be characterized by its basis, or predictive, 

function h: ℎ௕ሺܨሻ = ∑ ܴ ௕ܲ௝ܺ௕௝௃௝=ଵ , ௕௝ܺ ݁ݎℎ݁ݓ = {ͳ ܨ א  ܴ௕௝Ͳ ܨ ב ܴ௕௝ , where J is the number of segmented 

regions of feature space, RPbj is the ƌetuƌŶ peƌiod ĐategoƌǇ assigŶed to the j͛th segŵeŶt of featuƌe spaĐe 

foƌ the ď͛th tƌee, and Rbj refers to that corresponding region. F here is the feature vector, which specifies 

a location in feature space.  The net model M can then be expressed as a weighted sum of the basis 

functions: 

ሻݔሺܯ = ∑ ℎ௕ሺܨሻߛ௕஻௕=ଵ , where ߛ௕͛s are coefficients.   

At any step b-1, the bth tree is constructed so as to minimize the loss function L satisfying: 
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ሻܨ௕ሺܯ = ሻܨ௕−ଵሺܯ + ௜ݕ)ܮ∑ℎ݊݅݉݃ݎܽ , ௜ሻܨ௕−ଵሺܯ − ℎሺܨሻ൯௡
௜=ଵ  

In gradient boosting, this minimization problem is accomplished by gradient descent: 

ሻܨ௕ሺܯ = ሻܨ௕−ଵሺܯ + ௜ݕ)ܮெ׏∑௕ߛ , ௜ሻ൯௡ܨ௕−ଵሺܯ
௜=ଵ  

Where yi corresponds to the verifying category of the ith training example, and with: 

௕ߛ = ௜ݕቆܮ∑ఊ݊݅݉݃ݎܽ , ௜ሻܨ௕−ଵሺܯ − ߛ ௜ݕ)ܮ� , ௜ሻܨ௕−ଵሺܯ�௜ሻ൯ܨ௕−ଵሺܯ ቇ௡
௜=ଵ  

For this study, the chosen loss function for probabilistic QPF recurrence interval classification was 

multinomial deviance. 

This process is repeated B times to form an ensemble of size B.  Lastly, two extensions of this 

procedure attempting to reduce the variance of the final ensemble are explored in this study.  The first 

is a learning rate where the iterative model avoids over-adjusting to new members by applying a 

daŵpeŶiŶg ĐoeffiĐieŶt ʆ: ܯ௕ሺܨሻ = ሻܨ௕−ଵሺܯ +  ሻ.  The second approach is taken from the ideaܨ௕ℎ௕ሺߛߥ

of random forest creation: use only a subset of the total training data for each new decision tree.  

Instead of creating a new sample of size n, sampled with replacement from the original dataset, 

hoǁeǀeƌ, αŶ- ǁheƌe α is the subsampling coefficient between 0 and 1- training examples are sampled, 

without replacement, from the original training data. 

2.6.5 Support Vector Machines (SVM) 

Despite being rather abstract and difficult to interpret, both in the formulation and the output, 

Support Vector Classification (SVC; Cortes and Vapnik 1995) is an extremely powerful method which 

presents numerous advantageous.  Due to its versatility, it generally extends to high dimensional feature 
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spaces better than the other algorithms employed in this study, and can still work effectively even when 

the dimensionality of the feature space is larger than the number of training examples.  Aside from the 

difficulty in physically interpreting the output of the fitted model, the primary drawbacks of this 

approach are that it cannot directly solve a multi-class classification problem, and also cannot directly 

assign probabilities to its predictions.  These limitations suggest at first glance that this method may be a 

poor choice for the problem of probabilistic forecasting of categorical RP exceedances, but due the 

power of the technique in addition to available workarounds, SVC is still examined here.   

Support vector machines (SVMs) aim to define the hyperplane(s) which separates the training 

examples according to their respective labels and maintains as large of a margin as possible from any 

training example so as to minimize generalization error.  Consider a two class problem, where, without 

loss of generality, all training examples can be associated with either class A, with a value of 1, or class B, 

with a value of -1.  Each of the n training examples has an associated observation y; these may be 

assembled to a single observation vector Y of length n, which is thus comprised of elements ݕ௜ ⃗⃗݊ :Any hyperplane in the m-dimensional feature space can be described by  .{ͳ,−ͳ}א ∙ ܨ⃗ − ܾ = Ͳ, where 

b is a scalar and ݊⃗⃗ is a vector normal to the hyperplane.  In the event that the training data are linearly 

separable in the feature space, then a set of two hyperplanes may be considered: ݊⃗⃗ ∙ ܨ⃗ − ܾ = ͳ and ݊⃗⃗ ∙ ܨ⃗ − ܾ = −ͳ; these planes correspond to the nearest boundaries corresponding to each class.  As 

stated above, SVMs are maximum-margin classifiers, that is, they seek to maximize the margin, or 

distance, between these two bounding planes.  It can be readily shown that the margin between these 

hyperplanes may be expressed as: 
ଶ‖௡⃗⃗‖, where ‖݊⃗⃗‖ denotes the norm of the vector defining the 

hyperplane.  Thus, to maximize the separation margin, ‖݊⃗⃗‖ must be minimized, subject to the constraint 

that no training example is misclassified.  This can be readily expressed as an optimization problem: 

Minimize ‖݊⃗⃗‖ subject to: ݕ௜(݊⃗⃗ ∙ ప⃗⃗⃗ܨ − ܾ൯ ൒ ͳ, ∀݅ א {ͳ,… , ݊} 
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This problem can be readily solved (Cortes and Vapnik 1995); the implementation details will not be 

discussed here. 

The approach above works well for training data that are linearly separable in feature space, but 

in general, this is not the case.  The SVC approach may be generalized to allow for misclassifications; this 

is aĐĐoŵplished ďǇ ĐƌeatiŶg a slaĐk ǀeĐtoƌ Ξ, ǁhose eleŵeŶts ʇi, allow misclassification by changing the 

constraints to the minimization problem to: 

Minimize ‖݊⃗⃗‖ + ܥ ∑ ξ௜௡௜=ଵ  subject to: ݕ௜(݊⃗⃗ ∙ ప⃗⃗⃗ܨ − ܾ൯ ൒ ͳ − ξ௜, for ∀݅ א {ͳ,… , ݊} 
In the expression above, C corresponds to the penalty term, or inverse regularization coefficient; it 

determines how smooth the decision surface should be, with a low value implying a highly regularized, 

low variance, high bias solution with smooth classification boundaries, while a high value implies a high 

variance, low bias solution that attempts to classify all of the training examples as they are actually 

labeled.   

Even the extension above only allows for linear classification: the hyperplane must be defined as a 

linear combination of the original features.  However, in many problems, a non-linear decision boundary 

better captures the true relationships between the input features and true classifications.  This 

limitation can be solved too by use of kernels and the kernel trick (Murphy 2012).  The mathematics of 

kernel theory and the kernel trick in particular are interesting, but not fundamental to an elementary 

understanding of SVC and thus will not be discussed here.  Succinctly stated, the kernel trick exploits the 

fact that for some non-liŶeaƌ tƌaŶsfoƌŵatioŶ φ to a featuƌe ǀeĐtoƌ F, ߮ሺܨሻ, the inner product of two 

such transformed vectors Fi and Fj may be expressed by a kernel k: ݇(ܨ௜, ௝൯ܨ = ߮ሺܨ௜ሻ ∙  ௝൯.  This canܨ)߮

be applied to transform the data into a much higher dimensional space, sometimes even infinite-

dimensional, where the optimal decision boundary is linear in the transformed space.  Applying this 
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transformation, the problem formulation stays the same, except the kernel function replaces the inner 

product in the optimization constraints.  Many different choices of kernels exist; some popular choices 

that will be explored in this study are: 1) Linear ݇(ܽ⃗, ܾ⃗⃗൯ = ܽ⃗ ∙ ܾ⃗⃗, 2) Polynomial of degree d ݇(ܽ⃗, ܾ⃗⃗൯ =
⃗ܽ)ߛ) ∙ ܾ⃗⃗൯ + ,⃗ܽ)݇ ൯ௗ, 3) Radial basis function (RBF)ݎ ܾ⃗⃗൯ = ݁−ఊ‖௔⃗⃗−௕⃗⃗‖మ, and 4) Sigmoid ݇(ܽ⃗, ܾ⃗⃗൯ = tanh(ߛ(ܽ⃗ ∙ ܾ⃗⃗൯ +    .and r are scalar constants that may be tuned ߛ ൯, whereݎ

The final limitations, namely (1) inability to extend to multi-class problems, and (2) inability to 

eǆteŶd to pƌoďaďilistiĐ output, pƌeseŶt ŵoƌe geŶuiŶe pƌoďleŵs iŶ that theǇ doŶ͛t haǀe ͚puƌe͛ solutioŶs.  

The former limitation has numerous possible workarounds.  The approach utilized in this study applies a 

͞oŶe-versus-oŶe͟ appƌoaĐh ǁheƌe Ŷclasses(nclasses-1)/2 classifiers are fit to the training data, with each 

classifier corresponds to a unique pair of classification labels.  The aggregate of classifiers is then used to 

make final class predictions.  Probability estimates are made using a version of Platt Scaling; the method 

as applied here is both quite esoteric and ad hoc.  As such, the method does have some known 

theoretical issues; principally, the predicted class in the deterministic problem may not have the 

plurality of the probability assignment in the probabilistic output.  The details of the probability 

assignment phase will not be discussed here; for more information, see the Sci-Kit LeaƌŶ Useƌ͛s Guide 

(Pedregosa et al. 2011). 

2.7 Forecast Verification 

2.7.1 Skill Scores 

2.7.1.1 Brier Skill Score 

The Brier Score (BS) is defined over N evaluation points as 

ܵܤ = ଵே∑ ሺܧ௝ − ܨ ௝ܲሻଶே௝=ଵ , with an observed event E defined by 
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௝ܧ = {ͳ      ௝ܲ ൒ ௝Ͳ     ௝ܲߠ < ௝ߠ  and forecast probability ܨ ௝ܲ = ܲ( ௝ܲ ൒  ௝൯ corresponding to the event of whether theߠ

observed precipitation at point j, Pj, eǆĐeeds the ĐƌitiĐal pƌeĐipitatioŶ thƌeshold at that poiŶt, Θj, and the 

corresponding forecast probability (Brier 1950; Wilks 2011).  Extending this to a latitude longitude grid 

of Φ latitudes aŶd L loŶgitudes oǀeƌ D eǀaluatioŶ peƌiods, the aggƌegated Bƌieƌ “Đoƌe ďeĐoŵes: ܵܤ௔௚௚ = ∑ ∑ ∑ ௬௫ௗܧ) − ܨ ௬ܲ௫ௗ൯ଶ௅௫=ଵ�௬=ଵ஽ௗ=ଵ .   

The Brier Score can be expressed as a skill score (BSS) by comparing with the Brier Score 

obtained from a reference forecast: 

ܵܵܤ = ͳ −  ௔௚௚ೝ೐೑ܵܤ௔௚௚ܵܤ

Two common choices of reference forecast are climatology (ܨ ௬ܲ௫ௗ = ܨ ௬ܲ௫೎೗೔೘ ≈ ଵ஽∑ ௬௫ௗ஽ௗ=ଵܧ ), which 

with a known R-year recurrence interval can simply be expressed as ܨ ௬ܲ௫ௗ = ଵଷ଺ହ.ଶହ∗ோ, and the worst 

possible forecast (ܨ ௬ܲ௫ௗ = ͳ −  ௥௘௙ܵܤ ௬௫ௗ).  The resulting aggregated Brier Scores will be referred to asܧ

and ܵܤ௪௢௥௦௧, respectively, with corresponding skill scores of ܵܵܤ and ܵܵܤ௕௘௦௧.  Taking note that ܵܤ௪௢௥௦௧ = ௕௘௦௧ܵܵܤ ,ܦܮ� = ͳ − ஻ௌೌ೒೒�௅஽  (Wilks 2011). 

The BS can also be decomposed into distinct components (Murphy 1973), each with a physical 

interpretation.  Let the total number of N forecasts be subdividable into T distinct subcollections, with 

each forecast belonging to exactly one subcollection.  The climatological frequency of event occurrence 

can be expressed as ̅݋ = ଵே∑ ௝ே௝=ଵܧ , and  ݋௧̅ = ଵ∑ {ଵ ௝א௧଴ ௝ב௧ೕಿ=భ ∑ ௝ܧ}  ݆ א ݆   Ͳݐ ב ே௝=ଵݐ = ଵே೟∑ ௝௧ே௝=ଵܧ . 
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ܵܤ = ͳܰ ∑ ௧ܰ∑{(ܨ ௝ܲ − ܨ)௝൯ܧ ௝ܲ − ௧̅൯݋ ௝ሺͳܧ + − ݆ ௧̅ሻ݋ א ݆                                                                 Ͳݐ ב ேݐ
௝=ଵ

்
௧=ଵ

= ͳܰ∑ ௧ܰ∑{(ܨ ௝ܲ − ܨ)௝൯ܧ ௝ܲ − ௧̅൯݋ ̅݋ + − ݆  ௧̅ଶ݋ א ݆                                                            Ͳݐ ב ேݐ
௝=ଵ

்
௧=ଵ

= ͳܰ∑ ௧ܰ∑{(ܨ ௝ܲ − ܨ)௝൯ܧ ௝ܲ − ௧̅൯݋ ሺͳ̅݋ + − ሻ̅݋ − ௧̅ଶ݋) − ݆  ଶ൯̅݋ א ݆                                                                                        Ͳݐ ב ேݐ
௝=ଵ

்
௧=ଵ

= ሺͳ̅݋ − ሻ̅݋ + ͳܰ ∑ ௧ܰ∑{(ܨ ௝ܲ − ܨ)௝൯ܧ ௝ܲ − ௧̅൯݋ − ௧̅ଶ݋) + ଶ̅݋ − ݆  ଶ൯̅݋ʹ א ݆                                                                               Ͳݐ ב ேݐ
௝=ଵ

்
௧=ଵ =

= ሺͳ̅݋ − ሻ̅݋ + ͳܰ ∑ ௧ܰ∑{ܨ ௝ܲଶ − ܨ ௝ܲܧ௝ − ܨ ௝ܲ݋௧̅ + ௧̅݋௝ܧ − ௧̅ଶ݋) + ଶ̅݋ − ݆  ௧̅൯݋̅݋ʹ א ݆                                                                                              Ͳݐ ב ேݐ
௝=ଵ

்
௧=ଵ

= ሺͳ̅݋ − ሻ̅݋ + ͳܰ ∑ ௧ܰ∑{ܨ ௝ܲଶ − ܨʹ ௝ܲ݋௧̅ + ௧̅ଶ݋ − ሺ݋௧̅ − ݆  ሻଶ̅݋ א ݆                                                             Ͳݐ ב ேݐ
௝=ଵ

்
௧=ଵ

= ሺͳ̅݋ − ሻ̅݋ + ͳܰ ∑ ௧ܰ∑{ሺ݋௧̅ − ݆  ሻଶ̅݋ א ݆                  Ͳݐ ב ேݐ
௝=ଵ

்
௧=ଵ + ͳܰ∑ ௧ܰ∑{(݋௧̅ − ܨ ௝ܲ൯ଶ  ݆ א ݆                      Ͳݐ ב ேݐ

௝=ଵ
்
௧=ଵ= ݕݐ݊݅ܽݐݎܷ݁ܿ݊ + ݊݋݅ݐݑ݈݋ݏܴ݁ +  ݕݐ݈ܾ݈ܴ݅݅ܽ݅݁

This decomposition to the BS can be seen in reliability diagrams, as will be shown in section 2.7.3. 

2.7.1.2 Fractions Skill Score 

Though the Brier Skill Score allows for a simple and intuitive metric for evaluating forecast skill 

in a probabilistic framework, it does have several limitations.  Principally, the BSS only compares the 

forecast probability assigned in direct collocation with event occurrence.  Small displacement errors 

associated with a feature in a forecast may thus yield a skill score just as poor as a feature that misses 

the existence of the feature completely, but the former forecast still has much more utility to decision-

makers and represents a solution much closer to reality than the latter forecast.  The Fractions Skill 

Score was developed by Roberts and Lean (2008), motivated in part to address some of the limitations 



67 

 

of the BSS.  Unlike the BSS, the Fractions Skill Score approach outlines a neighborhood within a fixed 

distance of an evaluation point.  Within this neighborhood, the fraction of points within the 

neighborhood observed to have a verifying event is compared with the summed FP of all points within 

the neighborhood.  In this way, a model is not penalized for displacing FPs slightly away from the 

verifying area, so long as the observed events and probabilities occur within the same neighborhood.  

This is advantageous in that a forecast is credited for assigning higher FPs in the vicinity of a verifying 

observation.  It does, however, have the corollary disadvantage that a forecast is not credited for getting 

the exact positioning of an event correct; it will receive the same score as the displaced forecast 

provided that the summed FPs are identical and both occurring entirely within the neighborhood, or 

evaluation region, of the evaluation point. 

For an evaluation radius r, over N evaluation points and D evaluation times, the Aggregated 

Fractions Skill Score (FSS) is given by: 

ܵܵܨ = ͳ − ∑ ∑ ሺைೕ೏−ெೕ೏ሻమೕಿ=భವ೏=భ∑ ∑ ைೕ೏మ+ೕಿ=భ ெೕ೏మವ೏=భ , where 

 ௝ܱௗ = ଵሺଶ௥+ଵሻమ∑ ∑ ௬௫ௗ௟௢௡ೕ+௥௫=௟௢௡ೕ−௥௟௔௧ೕ+௥௬=௟௔௧ೕ−௥ܧ  and ܯ௝ௗ = ଵሺଶ௥+ଵሻమ∑ ∑ ܨ ௬ܲ௫ௗ௟௢௡ೕ+௥௫=௟௢௡ೕ−௥௟௔௧ೕ+௥௬=௟௔௧ೕ−௥ , with 

௬௫ௗܧ = {ͳ      ௬ܲ௫ௗ ൒ ௬௫Ͳ     ௬ܲ௫ௗߠ < ௬௫ߠ .  Here, ௬ܲ௫ௗ denotes the observed precipitation at latitude y and longitude x 

accumulated over the period corresponding to observation record d, while ߠ௬௫ corresponds to the 

critical precipitation threshold, in this case the Z-year T-hour return period threshold of interest for the 

location indicated by latitude y and longitude x.  ܨ ௬ܲ௫ௗ corresponds to the forecast probability of the 

observed rainfall exceeding the critical precipitation threshold of interest at location (y,x) ܲ( ௬ܲ௫ௗ ൒ߠ௬௫൯. 
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The Fractions Skill Score exhibits interesting limiting behavior in both limits of evaluation radius.  

In the limit of small evaluation radius, where the evaluation radius is zero, the FSS reduces to simple 

point-by-poiŶt ĐoŵpaƌisoŶs ǁith oďseƌǀed ͚fƌaĐtioŶs͛ as eitheƌ ϭ if the eǀeŶt ǁas oďseƌǀed at that poiŶt, 

and 0 if it was not.  Thus the FSS at evaluation radius 0 is simply the BSS with a reference forecast as the 

worst possible forecast, assigning zero probability whenever an event occurred, and probability one 

whenever an event did not occur (see BSSbest above).  As such, the numerator of FSS for a single 

observation record, ∑ ሺ ௝ܱௗ ௝ௗሻଶே௝=ଵܯ− , is referred to as the Fractions Brier Score (FBS), while the 

denominator ∑ ௝ܱௗଶ +ே௝=ଵ  ௝ௗଶ is called the Worst Possible Fractions Brier Score (FBSWorst).  In the limitܯ

of large evaluation radius, the FSS reduces to a function of the Frequency Bias 
௙೚௙೘, namely: ܵܵܨ௥→∞ =

ଶ௙೚௙೘௙೚మ+௙೘మ, where ௢݂ is the total frequency of observed events and ௠݂ is the total frequency of forecast 

events. 

2.7.1.3 Rank Probability Skill Score 

The FSS and BSS metrics are designed for a forecast problem which aims to predict an event 

ǁith a ďiŶaƌǇ outĐoŵe: eitheƌ it oĐĐuƌs, oƌ it doesŶ͛t.  Foƌ soŵe puƌposes, this is ĐeƌtaiŶlǇ hoǁ Ǉou want 

to verify your forecast.  For example, if something is very sensitive to the air temperature dropping 

ďeloǁ fƌeeziŶg, the useƌ oŶlǇ Đaƌes aďout ǁhetheƌ the teŵpeƌatuƌe dƌopped ďeloǁ fƌeeziŶg; if it didŶ͛t 

dƌop ďeloǁ fƌeeziŶg, it doesŶ͛t ŵatteƌ ǁhether the minimum temperature was 33ᵒF or 40ᵒF, and the 

ǀeƌifiĐatioŶ ŵetƌiĐ should ƌefleĐt this aŵďiǀaleŶĐe.  IŶ the ĐoŶteǆt of this ƌeseaƌĐh, it isŶ͛t Ƌuite so Đleaƌ-

cut; the impacts will be different and change at different thresholds for different users, but will generally 

increase monotonically with increasing local rainfall amount.  For this reason, there may be some 

ŵotiǀatioŶ to peŶalize ͞Ŷeaƌ-ŵiss͟ foƌeĐasts less thaŶ Đoŵplete ďusts.  Foƌ eǆaŵple, at a giǀeŶ poiŶt 

with a critical rainfall threshold of 100 mm over some fixed period, with two forecasts issuing identical 

FPs of exceeding this threshold, and in one case 0 mm fall over the forecast period and 95 mm fall within 
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the other forecast period, there is reason to think that, in this forecast case, the latter forecast should be 

ĐoŶsideƌed ͞ďetteƌ͟ thaŶ the foƌŵeƌ.  At the saŵe tiŵe, hoǁeǀeƌ, the pƌoďleŵ of foƌeĐastiŶg eǆpliĐit 

QPF values adds a new layer of difficulty and complexity- compared with simply forecasting probabilities 

of exceeding various thresholds- that are beyond the scope of this present research.   

The Rank Probability Score (RPS; Epstein 1969) presents an alternative which compromises 

between the all-or-nothing nature of the BSS and FSS, and the absolute error metrics such as root mean 

squared error or mean absolute error which require explicit precipitation accumulation forecasts and 

have many additional errors with the non-linear scaling occurring with extreme precipitation.  The RPS 

metric is designed for a forecast problem where 1) the forecasts are probabilistic rather than 

deterministic, 2) there are several possible discrete verifying categories, and 3) those categories are 

ordinal rather than nominal, that is, they have a natural ordering.  The forecast problem specific to this 

research can be framed in a way that satisfies all of these criteria.  In the contexts of using the BSS or 

FSS, a separate calculation is made for each recurrence interval R of interest, with each FP simply 

corresponding to the ܲ ቀ ௬ܲ௫ௗ >  ோ೤ೣ೏ቁ.  But iŶ this ͞all-or-ŶothiŶg͟ fƌaŵeǁoƌk, a foƌeĐast foƌ a Ϯϱ-yearߠ

event where a 10-year event verifies (but a 25-year event does not) will be treated the same as a case 

where a 1-year event does not verify.  Given the high uncertainty, high impact, small-scale nature of 

many of these locally heavy rainfall events, it seems that giving partial credit for the 10-year event is a 

desirable verification property.  Instead of viewing the forecast system as a series of binary probabilistic 

forecast problems, the forecasts can instead be framed in a single multi-category probabilistic forecast 

problem.  For a set of return periods {1-year, 2-year, 5-year, 10-year, 25-year, 50-year, 100-year}, 

instead of making seven independent forecasts for the probability of exceeding each threshold and 

verifying each separately, the FS can instead predict a single eight-element probability vector, with the 

contents being ݂ = ܲۃ ቀ ௬ܲ௫ௗ < ଵ೤ೣቁߠ , ܲ ቀߠଶ೤ೣ > ௬ܲ௫ௗ ൒ ଵ೤ೣቁߠ , ܲ ቀߠହ೤ೣ > ௬ܲ௫ௗ ൒ ଶ೤ೣቁߠ , ܲ ቀߠଵ଴೤ೣ >
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௬ܲ௫ௗ ൒ ହ೤ೣቁߠ , ܲ ቀߠଶହ೤ೣ > ௬ܲ௫ௗ ൒ ଵ଴೤ೣቁߠ , ܲ ቀߠହ଴೤ೣ > ௬ܲ௫ௗ ൒ ଶହ೤ೣቁߠ , ܲ ቀߠଵ଴଴೤ೣ > ௬ܲ௫ௗ ൒ߠହ଴೤ೣቁ , ܲ ቀ ௬ܲ௫ௗ ൒  and the vector sum always totaling unity.  The corresponding observation ۄଵ଴଴೤ೣቁߠ

vector ݋ = ଵ೤ೣ>ܧۃ , ଵ,ଶ೤ೣܧ , ଶ,ହ೤ೣܧ , ହ,ଵ଴೤ೣܧ , ଵ଴,ଶହ೤ೣܧ , ଶହ,ହ଴೤ೣܧ , ହ଴,ଵ଴଴೤ೣܧ ,  with ,ۄଵ଴଴೤ೣ<ܧ

௔,௕ܧ = {ͳ                      ߠ௕೤ೣ > ௬ܲ௫ௗ ൒ ௔೤ೣߠ  Ͳ     ௬ܲ௫ௗ > ௕೤ೣߠ ௬ܲ௫ௗ ݎ݋  ௔೤ೣߠ >   
For the general case for a forecast problem with K ordered categories, the RPS may be expressed as: 

ܴܲܵ = ∑ (∑ ௝݂௠௝=ଵ − ∑ ௝௠௝=ଵ݋ ൯ଶ௄௠=ଵ , and this can be further aggregated over all evaluation points and 

forecast periods and compared with climatology to expressed as a Rank Probability Skill Score (RPSS):  

ܴܲܵܵ = ͳ.Ͳ − ோ௉ௌோ௉ௌ೎೗೔೘ = ͳ.Ͳ − ∑ ∑ ∑ ∑ ቀ∑ ௙ೕ೤ೣ೏೘ೕ=భ −∑ ௢ೕ೤ೣ೏೘ೕ=భ ቁమ೘಼=భಽೣ=భ�೤=భವ೏=భ∑ ∑ ∑ ∑ ቀ∑ ௙೎೗೔೘ೕ೤ೣ೏೘ೕ=భ −∑ ௢ೕ೤ೣ೏೘ೕ=భ ቁమ೘಼=భಽೣ=భ�೤=భವ೏=భ . 

The RPS is also an extension of the BS, reducing to it in the case of K=2 categories.  This also means it 

suffers from the same spatial displacement errors as the BS that motivated the use of the FSS.  However, 

the FSS and RPSS can be readily combined to form the Fractions Rank Probability Skill Score (FRPSS) 

which combines the advantages of both approaches.  The FRPSS can be expressed by: 

ܴܵܵܲܨ
= ͳ.Ͳ − ∑ ∑ ∑ ∑ (∑ ͳሺʹݎ + ͳሻଶ∑ ∑ ௕௔ௗ௫+௥௔=௫−௥௬+௥௕=௬−௥௠௝=ଵܧ − ∑ ͳሺʹݎ + ͳሻଶ∑ ∑ ܨ ௕ܲ௔ௗ௫+௥௔=௫−௥௬+௥௕=௬−௥௠௝=ଵ )ଶ௄௠=ଵ௅௫=ଵ�௬=ଵ஽ௗ=ଵ∑ ∑ ∑ ∑ (∑ ͳሺʹݎ + ͳሻଶ∑ ∑ ௕௔ௗ௫+௥௔=௫−௥௬+௥௕=௬−௥௠௝=ଵܧ −∑ ͳሺʹݎ + ͳሻଶ∑ ∑ ܨ ௖ܲ௟௜௠್ೌ೏௫+௥௔=௫−௥௬+௥௕=௬−௥௠௝=ଵ )ଶ௄௠=ଵ௅௫=ଵ�௬=ଵ஽ௗ=ଵ  

2.7.2 Forecast Value and Value Scores 

Forecast skill, though important, is not the end-all for forecast evaluation.  Skill quantifies 

forecast accuracy- hoǁ ͚good͛ the foƌeĐasts aƌe.  It does Ŷot, hoǁeǀeƌ, ƋuaŶtifǇ hoǁ valuable the 

forecasts are, and ultimately, if the forecasts add no value, it does not really matter how skillful they are; 

theǇ͛ƌe siŵplǇ Ŷot of use to end users.  Assessing forecast value is ultimately the most important metric 
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to assess whether the forecasts are actually benefitting the end users, which in many instances is society 

at large.  However, it is also one of the most difficult aspects of a forecast to objectively quantify.  

Different users have varying sensitivity and risk tolerance.  Users have different critical impact 

thresholds; one farm may be on the 5-year floodplain, a second farm is on the 10-year floodplain but off 

the 5-year plain, and a third may be in between, with the farm flooding at an 8-year return period.  

“oŵe useƌ͛s losses ǁill ďe Đloseƌ to the all-or-nothing framework, while others may incur additional 

losses monotonically with increasing rainfall.  A general framework to assess the forecast value with 

every possible theoretical user is untenable; however, a simple cost/loss contingency table based 

framework provides a useful, tangible means to assess forecast value and utility (Wilks 2011). 

The Cost/Loss Model is predicated on two basic premises: 1) Given a preparation action A and 

observed precipitation accumulation P, the cost or damages are known, static, and quantifiable; 2) The 

costs/damages are a scaled Heaviside step function in the P dimension- that is, there are no costs until a 

certain critical threshold Pcrit is exceeded, at which point some non-zero loss L is inflicted, and no 

subsequent precipitation beyond  Pcrit will result in costs different from L.  These premises allow for the 

use of a basic contingency table framework.  In one dimension, either Pcrit was exceeded or it was not.  

In the other dimension, either the user can take protective action or not.  Suppose taking protective 

action will cost $C, but then no further costs will be inflicted regardless of whether Pcrit is exceeded.  If 

protective action is not taken and Pcrit is exceeded, $L losses are inflicted, with L > C.  The contingency 

table (CT) can then be expressed as: 
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Table 2.5: Classic cost-loss model contingency table.  C denotes the cost of preparing, L the loss 

burdened when the event occurs given no preparation. 

Cost to User Observed Not Observed 

Prepare C C 

DoŶ͛t Pƌepaƌe L 0 

Under this, the expected cost E[$] with a probability of affirmative verification p is: 

௣௥௘௣௔௥௘[$]ܧ = ,ܥ ௣௥௘௣௔௥௘¬[$]ܧ =  ݌ܮ

The break-even point between the two action points occurs when ܥ = ݌ܮ → ݌ = ஼௅ = ߙ ≡ Cost-Loss 

‘atio.  The ͚iŶteƌestiŶg͛ Đases aƌe ƌestƌiĐted to useƌs satisfǇiŶg Ͳ < ߙ < ͳ, otherwise one strategy strictly 

dominates the other.   

In this framework, forecast value may be quantified by means of a value score (VS).  For all 

cases, which may be enumerated as all latitudes Y, longitudes X, and times D, generate a suite of 

contingency tables for different user sensitivities as expressed through the cost-loss ƌatio α, ǁith α 

ranging from 0 to 1.  Each constructed table assumes rational users, who will prepare when the FP 

exceeds their cost-loss ratio, and not take mitigative action otherwise.  

ܲܧܴܲ = {ͳ                ܲ݁ݎܽ݌݁ݎͲ   ݁ݎܽ݌݁ݎܲ ݐ′݊݋ܦ = {ͳ   ܨ ௬ܲ௫ௗ ൒ ܨ   Ͳߙ ௬ܲ௫ௗ <  ߙ

The jargon of contingency tables is most often expressed as: 

Table 2.6: Traditional contingency table terminology, as will be used in this research. 

Contingency Table Observed Not Observed 

Prepare Hits (HITs) False Alarms (FAs) 

DoŶ͛t Pƌepaƌe Misses (MISSs) Correct Rejections 

(CRs) 

The VS aims to quantify, in the CT framework, how the long-term expected economic cost of an 

end user of interest, with a specific cost-loss ƌatio α, Đoŵpaƌes ǁith ďoth aĐtiŶg ďased oŶ the 
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climatological frequency of event occurrence ̅݋ = ுூ்௦+ெூௌௌ௦்ை் ;  ܱܶܶ = ݏܶܫܪ + ݏܣܨ ݏܵܵܫܯ+ +  ,ݏܴܥ

and a perfect forecast in which the user prepares for the event when and only when it occurs.  The 

general form can be expressed as: ܸܵ = ா೎೗೔೘−ா೑೎ೞ೟ா೎೗೔೘−ா೛೐ೝ೑.  Like a skill score, the VS is unity when the 

predictions of a forecast system cannot be improved, and zero when using the forecasts does not save 

the user of interest anything relative to acting based on climatological frequency of occurrence. 

Using climatology as a forecast, a user will either always prepare or never prepare, whichever is 

cheaper in the long-run.  This can be expressed for a single case, using the cost table above, with an 

expected cost of: ܧ௖௟௜௠ = minሺܥ,  ሻ, with the first argument corresponding to the protection cost, andܮ̅݋

the last as the expected non-protection cost. 

It is readily seen that the perfect forecast has an expected cost of ܧ௣௘௥௙ =  .per forecast ܥ̅݋

The cost of using the forecast system being analyzed over the forecast period from which the 

contingency table is simply the product of the contingency table counts with the cost table: ܧ௙௖௦௧ ݏܶܫܪ= ∗ ܥ + ݏܣܨ ∗ ܥ ݏܵܵܫܯ+ ∗  ܮ

Multiplying the Eclim and Eperf expressions by the total number of cases in the forecast period, TOT, yields: 

ܸܵ = TOT ∗ minሺܥ, ሻܮ̅݋ − ሺݏܶܫܪ ∗ ܥ + ݏܣܨ ∗ ܥ ݏܵܵܫܯ+ ∗ ሻTOTܮ ∗ minሺܥ, ሻܮ̅݋ − ܱܶܶ ∗ ܥ̅݋  

Defining ℎ = ுூ்௦்ை் ; ݂ = ி஺௦்ை் ;݉ = ெூௌௌ௦்ை் ; ݎ = ஼ோ௦்ை் and dividing out TOT*L yields: 

ܸܵ = minሺߙ, ሻ̅݋ − ሺℎ + ݂ሻߙ −݉minሺߙ, ሻ̅݋ − ߙ̅݋  

Afteƌ ĐoŵputiŶg V“͛s foƌ a suite of α͛s, a plot of V“ as a fuŶĐtioŶ of α ĐaŶ ďe Đƌeated; this tǇpe of figuƌe is 

known as an Economic Value Diagram (EVDG). 
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In many cases, but especially in the instance of extreme events, it is often unrealistic that a user 

can fully protect against the event; if it occurs, in many instance one would still expect to endure more 

losses thaŶ if it didŶ͛t, eǀeŶ ǁheŶ pƌepaƌed.  The CT framework introduced above can be readily 

generalized to include a baseline loss L0, in addition to an extra loss Lext.  The cost table is modified to 

read: 

Table 2.7: Modified contingency table to accommodate a mitigated loss.  L0 denotes the base loss, Lext 

denotes the additional loss beyond the base loss if prepared, and C denotes the cost of preparing. 

Cost to User Observed Not Observed 

Prepare C + L0 C 

DoŶ͛t Pƌepaƌe L0 + Lext 0 

In this framework, the new costs are: ܧ௖௟௜௠ = TOT ∗ minሺܥ + ,଴ܮ̅݋ ଴ܮ̅݋ + ௘௫௧ሻܮ̅݋ ௣௘௥௙ܧ ; = ܱܶܶ ∗ሺܥ̅݋ + ௙௖௦௧ܧ ;଴ሻܮ̅݋ = ݏܶܫܪ ∗ ܥ + ݏܶܫܪ ∗ ଴ܮ + ݏܣܨ ∗ ܥ ݏܵܵܫܯ+ ∗ ଴ܮ ݏܵܵܫܯ+ ∗  ௘௫௧ܮ
And the associated VS formula: 

ܸܵ
= TOT ∗ minሺܥ + ,଴ܮ̅݋ ଴ܮ̅݋ + ௘௫௧ሻܮ̅݋ − ሺݏܶܫܪ ∗ ܥ + ݏܶܫܪ ∗ ଴ܮ + ݏܣܨ ∗ ܥ ݏܵܵܫܯ+ ∗ ଴ܮ ݏܵܵܫܯ+ ∗ ௘௫௧ሻTOTܮ ∗ minሺܥ + ,଴ܮ̅݋ ଴ܮ̅݋ + ௘௫௧ሻܮ̅݋ − ܱܶܶ ∗ ሺܥ̅݋ + ଴ሻܮ̅݋
= minሺܥ + ,଴ܮ̅݋ ଴ܮ̅݋ + ௘௫௧ሻܮ̅݋ − ሺℎܥ + ℎܮ଴ + ܥ݂ ଴ܮ݉+ ܥ௘௫௧ሻminሺܮ݉+ + ,଴ܮ̅݋ ଴ܮ̅݋ + ௘௫௧ሻܮ̅݋ − ሺܥ̅݋ + ଴ሻܮ̅݋
= minሺܥ, ௘௫௧ሻܮ̅݋ − ሺℎܥ + ܥ݂ ,ܥ௘௫௧ሻminሺܮ݉+ ௘௫௧ሻܮ̅݋ − ܥ̅݋ = minሺߙ௘௫௧ , ሻ̅݋ − ሺሺℎ + ݂ሻߙ௘௫௧ +݉ሻminሺߙ௘௫௧ , ሻ̅݋ − ௘௫௧ߙ̅݋ , 
With ߙ௘௫௧ = ஼௅೐ೣ೟ 
Noting that the break-even point in this framework occurs when: 

ܥ  + ݌଴ܮ = ݌଴ܮ + ݌௘௫௧ܮ → ߙ ≡ ݌ = ஼௅೐ೣ೟ =  ௘௫௧, it is noted that the addition of a baseline loss does notߙ

change the VS metric (Zhu et al. 2002; Mylne 2002). 
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2.7.3 Reliability Diagrams 

As explained in section 2.3.2, forecast reliability, namely the ability for FP = ORF, is a desirable 

property of a PFS.  PFS reliability is most often assessed by means of a reliability diagram.  Over a large 

number of verification records, forecasts are binned into clusters of approximately equal FP for an event 

of interest.  For each bin, the fraction of corresponding event occurrences is computed; this 

appƌoǆiŵates the PF“͛s ORF for that FP.  Then, mean bin FP is plotted against bin ORF, with ORF on the 

ordinate and FP on the abscissa, and (FP,ORF) points are connected to form a reliability line (RL).  The 

closer the reliability line tracks to the one-to-one FP=ORF line, the more reliable the PFS (Wilks 2011).  

Hoǁeǀeƌ, the ƌeliaďilitǇ liŶe ŵaǇ also ďe used to ŵake ŵoƌe speĐifiĐ diagŶoses.  AŶ ͚“͛ shape ƌeliaďilitǇ 

liŶe iŶdiĐates aŶ oǀeƌspƌead eŶseŵďle ǇieldiŶg uŶdeƌĐoŶfideŶt pƌediĐtioŶs; ĐoŶǀeƌselǇ, aŶ ͚iŶǀeƌted “͛ 

line corresponds to an underspread EPS with overconfident probabilities.  Further, ∫ ሻݔሺܮܴ − ଵ௫=଴ݔ݀ ݔ >
Ͳ indicates a negatively biased PFS, issuing too low of FPs.  Similarly, ∫ ሻݔሺܮܴ − ଵ௫=଴ݔ݀ ݔ < Ͳ suggests a 

positively biased PFS, thinking events are more likely to occur than they actually are.  Some additional 

features frequently accompany an RL on an RD.    Often, a horizontal line is placed through the RD 

iŶdiĐatiŶg the ĐliŵatologiĐal eǀeŶt O‘F; this liŶe also ĐoƌƌespoŶds to the ͞zeƌo ƌesolutioŶ͟ liŶe, since if 

the RL falls along this line, it does not distinguish at all between events and non-events.  An extension of 

this is to draw the line which tracks the mid-point between the zero resolution line and the one-to-one 

line; this line is referred to the ͞Ŷo skill͟ liŶe, siŶĐe poiŶts aloŶg this liŶe Ŷeitheƌ add Ŷoƌ suďtƌaĐt to the 

BSS, which as shown in 3.7.1.1, is readily decomposable in the framework of a reliability diagram.  To 

give the reader better context, a normalized histogram of bin sizes also typically accompanies an RL.  A 

ƌeliaďilitǇ diagƌaŵ ǁith all of these additioŶal pƌopeƌties iŶĐludes is ofteŶ ƌefeƌƌed to as aŶ ͞attƌiďutes 

diagƌaŵ͟ (Hsu and Murphy 1986).    
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3 Model Diagnostics and Evaluation 

 

 

 

Given the impact of extreme precipitation on life, property, and industry, it is critical to forecast 

locally extreme precipitation events as well as current resources allow.  In order to do this, it is 

necessary to understand how contemporary modeling systems perform in different extreme 

precipitation scenarios in order to best correct for model biases and ascertain which forecast 

information should be given the most credence. This study will attempt to build on the state of 

knowledge in this area by using a variety of methods to both qualitatively and quantitatively assess the 

ability of operational and experimental/research NWP models to forecast locally extreme rainfall events.   

3.1 Data & Methods 

Analysis of model performance in the return period (RP)/recurrence interval framework first 

requires establishing the actual numerical thresholds corresponding to the RPs of interest for all 

locations of interest. This paper seeks to assess model performance in all regions of the contiguous 

United States (CONUS); thus nationwide threshold grids are required.  RPs of 1-, 2-, 5-, 10-, 25-, 50-, and 

100-years were evaluated for this verification work.  Due to the immense importance of local RP 

estimates for hydrology and other applications, substantial work has been conducted using a long 

record of observations- primarily gauge data- to estimate RPs for various accumulation intervals (AIs).  

Over the past several years, NOAA has made a major effort to update these estimates via the Atlas 14 

project.  At the time of this writing, Atlas 14 has updated previous RP estimate for the majority of 

CONUS; however, the northwest: Washington, Oregon, Idaho, Montana, and Wyoming; northeast: New 

York, Vermont, New Hampshire, Maine, Massachusetts, Connecticut, and Rhode Island; and Texas have 

not yet received published updated estimates from Atlas 142.  For these areas, older estimates using 

                                                           
2
 After conducting this research and writing this manuscript, it was reported that updated Atlas 14 estimates for 

the northeastern states would be released on 10/1/2015. 
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older data and methods were used to complete the map of CONUS estimates.  For more specific details 

about each of the datasets used, consult section 2.5.1.2 of this document. 

After establishing CONUS-wide RP thresholds for the 6- and 24-hour AIs, these were used as the 

basis for determining the climatology of locally extreme precipitation events as discernable from Stage 

IV precipitation analysis (see section 2.5.1.1 for description) over the last several years.  Further, 

forecasts of several numerical weather prediction (NWP) models were used to assess individual model 

characteristics and biases in the forecasting of extreme precipitation and also to quantify model skill.  

Depending on model availability, either the 09 June 2009 to 30 August 2014 period or the shorter 12 

August 2014 to 11 August 2015 period was selected for evaluation and comparison.  The Global 

Ensemble Forecast System Reforecast Version 2 (GEFS/R) and National Severe Storms Laboratory 

Weather Research and Forecasting (NSSL-WRF) models were evaluated for the 24-hour AI over the 

longer 2009-2014 period for 12Z-ϭϮ) foƌeĐasts off of eaĐh ŵodel͛s ϬϬ) iŶitializatioŶ; the N““L-WRF was 

also quantitatively evaluated over the same evaluation period for 6-hour forecasts for four different 

times of day: 00-06Z, 06-12Z, 12-18Z, and 18-00Z.  The beginning of this period coincides with the 

implementation of a significant update to the NSSL-WRF model.  The GEFS/R, by design, has no model 

changes of any kind during this analysis period; the NSSL-WRF has only one change of note: an update of 

the WRF version from 3.1.1 to 3.4.1 in April 2013.  A broader comparison of several Convection Allowing 

Models (CAMs) was conducted over the shorter 2014-2015 period comparing the NSSL-WRF, the North 

American Mesoscale 4km Nest (NAM-NEST), and experimental version of the High Resolution Rapid 

Refresh (HRRR). The beginning of this period coincides with a major update to the NAM-NEST which is 

thought to have sigŶifiĐaŶtlǇ alteƌed the ŵodel͛s ďias ĐhaƌaĐteƌistiĐs iŶ QuaŶtitatiǀe PƌeĐipitatioŶ 

Forecasts (QPFs).  More details about all of these models can be found in Section 2.2. All of these 

forecasts were compared with Stage IV analysis over the respective periods.  Beyond struggles with data 

coverage in complex terrain, Stage IV analysis, despite the internal quality control (QC) prior to public 
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release, exhibits several additional aberrations which require additional QC procedures.  Specifically, 

additional QC procedures are performed to alleviate two significant problems. First, some points 

frequently and persistently report very large precipitation totals, usually because they are located in 

complex terrain and continuously report very large radar reflectivity from the nearest radar, resulting in 

very high associated automated accumulated precipitation amounts.  Due to other priorities with the 

iŶteƌŶal QC pƌoĐess ďǇ ‘FCs, this is Ŷot alǁaǇs QC͛d out iŶ the fiŶal “tage IV pƌoduĐt.  “eĐoŶd, oŶ soŵe 

days, large regions of exceptionally high precipitation totals are reported and, for whatever reason, are 

not removed from the final product.  A combination of automated and manual means is used to combat 

these issues.  As RPT exceedances, by definition, for any given instance occur with some known specified 

frequency p.  Correlations of model QPF time series was performed to very crudely approximate E-

folding times (in days) and distances (in grid points) beyond which one can assume independence of 

events.  Given this, for any return period examined, one can readily formulate a forecast day or set of 

forecasts at a point as a series of independent Bernoulli trials in which the event occurs with probability 

p.  Using the binomial distribution, the a priori probability of experiencing at least k events may be 

readily tabulated.  For each RP examined and for all days and points, any occurrence that exceeded the 

99.99% percentile for the expected event count from the binomial distribution was flagged for removal 

from the dataset.  These were subsequently manually perused to ascertain whether the rejection was 

legitimate, and if so, the recorded events from that day or location where removed from the dataset. O

 Over the extended period analysis, quantitative assessments of model skill were also conducted 

by means of the Fractions Skill Score (FSS).  Details on this skill metric are provided in Section 2.7.1.2. 

3.2 Results 

Model analysis and verification is presented first in a broad, qualitative context to give an 

appreciation for approximate model performance and characteristics for as many models as possible, in 

addition to providing an overview of the characteristics of the climatology of extreme precipitation in 
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the US in the context of datasets used in this study.  Later results will attempt to quantify model bias 

characteristics and model skill.   

The composite threshold maps for a 24-hour AI appear in Figure 3.1.  Panels (a), (b), (c), (d), (e), 

(f), (g) correspond to the 1-, 2-, 5-, 10-, 25-, 50-, and 100-year RPs, respectively.  As expected, the 

thresholds increase monotonically with increasing RP.  For the 1-year RP, several parts of the country, in 

particular areas of the arid and intermountain west, have 24-hour RPTs of less than 25 mm, or one inch.  

A few locations even have 2-year 24-hour RP thresholds below one inch.  In contrast, much wetter 

regions of the country such as the Pacific coastal mountains and southeast Gulf Coast region experience 

one-year average recurrence intervals (ARIs) at much higher precipitation thresholds of around 150 and 

100 mm, respectively.  Spanning nearly an order of magnitude, this highlights the stark contrast the RP 

framework brings relative the traditional FT analysis approach.  The relative regional relationships 

between RP thresholds tend to stay fairly similar at different RPs, with the intermountain west 

remaining the lowest and the Pacific and Gulf coasts remaining the highest with respect to required 

precipitation accumulation for a fixed frequency of occurrence.  At the 100-year RP threshold there are 

parts of the west with thresholds below 50 mm- lower than the 1-year RP in other parts of CONUS- and 

other places where the thresholds are in excess of 500 mm.  Lastly, close inspection reveals some spatial 

discontinuities when changing data sources for RP estimates.  For example, TP-40 RP estimates for the 

south and northeast appear to have been higher than for the updated Atlas 14 estimates; this can be 

clearly seen by inspection of the TX/OK and NY/PA borders in Figure 3.1d.  Though the complex terrain 

makes the comparison more difficult, Atlas 2 estimates in the northwest appear to be much lower than 

their updated neighbors in places; inspect for example the eastern borders of MT and WY in Figure 3.1a. 

Corresponding grids for the 6-hour AI appear in Figure 3.2.  Unsurprisingly, many of the patterns 

seen here are very similar to those seen in Figure 3.1, just with all-around lower thresholds due to the 
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shortened AI.  1-year RP thresholds range from roughly 10 to 100 mm, now with the highest thresholds 

seen in the Gulf Coast area rather than the Pacific coast; similarly, 100-year RP thresholds range from 

near 30 mm to approximately 300 mm accumulations.  However, the biggest qualitative differences 

between this figure and Figure 3.1 relate to regional differences in the nature of extreme precipitation 

events.  In the west, extreme precipitation events are predominantly long-duration stratiform events in 

which abundant moisture is advected from the ocean to the land and precipitates out from lift by the 

coastal topography.  Because extreme precipitation events in this area tend to be long duration, low-

moderate intensity, there is a large difference between the 6- and 24-hour AI thresholds.  In contrast, 

many extreme precipitation events in the east are driven by convective cells or convective systems, and 

tend to be shorter-duration, higher-intensity events than seen in the west.  As such, the difference 

between the 6- and 24-hour thresholds is not as large, since many of the heavy precipitation events 

occur predominantly within a 6-hour window anyways.  For example, the 1-year RP for the Olympic 

Mountains of Washington reach nearly 200 mm for the 24-hour AI, but is reduced to roughly 80 mm at 

the same location for the 6-hour AI.  Compare with central IA, where the 1-year 24-hour thresholds are 

near 65 mm, but the 1-year 6-hour thresholds are down to only near 55 mm.  Many of the data source 

contrasts still exist in Figure 3.2; the NY/PA difference is significantly amplified in the 6-hour thresholds 

compared with the 24-hour threshold differences. 

Figure 3.3 compares forecasted 2-year 6-hour threshold exceedances for the NSSL-WRF, HRRR, 

and NAM-NEST in panels (a), (b), and (c), respectively, against the observed exceedances as discerned 

from Stage IV precipitation analysis appearing in panel (d).  Figure 3.3 analysis is confined to the 00-06Z 

valid period for each day from 12 August 2014 through 11 August 2015.  The plots illustrate the 

established climatology of extreme precipitation events over CONUS.  Most events, both forecast and 

observed, occur during the cool season months of October through March in the Pacific coast states.  In 

contrast, to the east of the Rockies, the vast majority of events occur in the warm season months from 
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April through September.  In particular, the central US from TX up through ND is seen to experience 

most events during the early part of the warm season- primarily from April through July, while the 

eastern states have almost no identified events in April and May, with almost all events seen between 

June and September.  The southeast US has perhaps the most diverse collection of identified events 

seasonally, with several events being identified in both the warm and cool seasons.  However, there is a 

distinct maximum in identified events during the mid-to-late hurricane season, from August through 

October, as many extreme precipitation events in this region are associated with tropical cyclone 

activity.  Over the plains and Midwest, it is also of note that, as identified in previous studies and 

observations, precipitation systems tend to shift north climatologically throughout the warm season, 

with many of the observed events in the upper Midwest occurring in August.  Lastly, some data 

anomalies are worth noting.  There is a stark decline in the number of observed events crossing from PA 

into NY and further into New England; this is also reflective of the dramatic increase in 2-year 6-hour RP 

thresholds noted in Figure 3.2b.  Given that the number of events in PA and surrounding states to the 

south and west is in rough proximity to the number of 2-year events one would anticipate seeing over a 

one-year period for a given 6-hour interval, this suggests that the 6-hour thresholds derived from TP-40 

data are likely too high.  There is also only a small number of identified observed events in the 

southwest US in AZ, UT, NV, and SE CA.  Unlike the NE US disparity, this local minimum in events is seen 

only in the Stage IV verification and not in the model forecasts.  This minimum is likely attributable not 

to unrealistic thresholds in the here Atlas 14 threshold estimates, but instead due to poor precipitation 

verification estimates due to the complex terrain and poor radar coverage of this region. 

Comparing the model forecasts, it is immediately apparent upon inspection of Figure 3.3 that 

the NAM-NEST forecasts many more 2-year 6-hour events over the 00-06Z time of day compared with 

either other convection allowing model (CAM) analyzed here, in addition to the Stage IV analysis.  This is 

true essentially throughout CONUS, but is especially amplified over much of the western US.  As noted in 
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the methods, a fair amount of HRRR data is missing from the verification period, and as a result, Figure 

3.3b underrepresents the number of events forecasted.  All the models have similar seasonal 

characteristics to event forecasts to the truth seen in Stage IV analysis.  The NSSL-WRF plot, Figure 3.3a, 

looks closest to the verification plot, Figure 3.3d, perhaps suggesting that this model performed the 

most skillfully over CONUS for the prediction of 2-year 00-06Z events over the verification period.  

However, the analysis performed here is only qualitative, and no such conclusions about model skill may 

be definitively reached.  It does, however, appear to have the best frequency bias characteristics, with 

NAM-NESTs frequency bias being very large.  The seasonality of local extreme precipitation events in the 

CAMs assessed here appears to be in approximate agreement with observations at each location, 

though springtime events appear to be especially overforecast in many of the CAMs in the 

intermountain west, southeast, and Mid-Atlantic regions.   

Figure 3.4 shows analysis of forecasted and observed 50-year 6-hour events over the same 1-

year analysis period as above, again for the 00-06Z time of day.  While some of the overall patterns and 

comparisons discerned from Figure 3.3 continue here, the differences between the plots are more 

profound.  Observed events from Stage IV analysis are found to occur for this time of day predominantly 

in a corridor just to the east of the Rocky Mountains, with many events identified in New Mexico, west 

Texas, Oklahoma, Kansas, North Dakota, and the eastern halves of Colorado, Wyoming, and Montana.  

While some events are identified outside this region, the vast majority of identified events occur in this 

corridor during the warm season, likely due to convective storms developing off the mountains during 

warm season afternoons, around 20-23Z.  This signature is not nearly as apparent in any of the CAMs.  

The NSSL-WRF, in Figure 3.4a, has a slight concentration of events in the same areas as observations, 

but tends to predict many more events in the west and, to a lesser extent, areas in the east.  The HRRR 

(Figure 3.4b) does not have a concentration to the immediate east of the Rockies at all, with more 

events identified in the west, in the Ohio River Valley, and in the upper southeast and southern Mid-
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Atlantic regions than to the immediate east of the Rockies.  Like in Figure 3.3c, the NAM-NEST in Figure 

3.4c has so many identified events that it obscures the slight enhanced concentration of events to the 

east of the Rockies, as many events are also forecasted to the east and west as well.  With many fewer 

identified events, it is also possible to identify the quality of some specific model forecasts for individual 

events, such as extreme rainfall in Texas in May 2015- the HRRR and NSSL-WRF tended to handle the 

eastern TX flooding event reasonably well, while the western TX event was more poorly forecasted.  The 

January 2015 Washington extreme rainfall was best predicted by the NSSL-WRF and NAM-NEST, though 

the NAM-NEST produces so many false alarms that the signal is not as apparent.  The June 2015 

Montana event is also seen in the NSSL-WRF and HRRR forecasts in addition to appearing in the Stage IV 

analysis. 

Figures 3.5 and 3.6 present the same information as Figures 3.3 and 3.4, respectively, except for 

the 06-12Z valid period instead of 00-06Z.  The seasonality is still much the same as in the 00-06Z period, 

but the concentration of identified events to the east of the Rockies has shifted further east, with most 

points now appearing in the Great Plains region from Texas north through South Dakota and east into 

Arkansas into Indiana.  Most major identified 50-year events as seen in Figure 3.6d, such as the event in 

September 2014 in S AZ, the event in the same month in E TX, the event in E IN in August, and some of 

the west coast events during various months, were reasonably well predicted with corresponding circles 

appearing in most or all of the CAMs in each of these cases.  However, the CAMs appear to have several 

major false alarm forecast busts; the NSSL-WRF for example predicts a large 50+ year 6-hour event in E 

MT and another in E NC/VA, neither of which verify.  All three models predict an event in W OR in 

Noǀeŵďeƌ ϮϬϭϰ that doesŶ͛t ǀeƌifǇ, aŶd the NAM-NEST, like in the 00-06Z analysis, predicts many 

events all over CONUS that do not verify.  In general, there also appears to be slightly fewer events seen 

at both the 2- and 50-year RP compared with the 00-06Z period, perhaps in association with diminished 

convection associated with the absence of solar heating.      
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The 12-18Z analysis is depicted in Figures 3.7 and 3.8 for the 2- and 50-year RPs, respectively.  

Panels 3.7b and 3.8b should be interpreted with great caution, since a substantial amount of 12Z 

initialized HRRR data was not available to the author at the time of this writing, including entire months 

of autumn 2014.  As such, far fewer forecast events will appear on these plots than were likely actually 

forecast by the model during the analysis period.  Unsurprisingly, the fewest number of events are seen 

in this morning period, both in the model forecasts and in observations.  The locations of event 

occurrence in Figure 3.8d are also considerably shifted; contrasting, for example, the period 12 hours 

apart- as seen in Figure 3.4d- one sees that the region immediately east of the Rockies- highlighted in 

the 00-06Z period- has very few events in the 12-18Z period.  The locations of event occurrence are 

considerably more scattered in the 12-18Z period, with the most events seen in the northern high plains 

and in the south and southeast.  As seen in previously discussed periods, the NAM-NEST continues to 

considerably overforecast the number of extreme precipitation events for both RPs over almost all of 

CONUS, with a smaller, but still positive, bias observed in the NSSL-WRF.  This appears to be especially 

true in the west, where both models have multiple significant false alarms- even at the 50-year RP- 

during west coast cool season events.  The NSSL-WRF appears to have reasonable frequency bias 

characteristics over the eastern two thirds of CONUS, though the bubble correspondence between in 

particular Figures 3.8a and 8d appears to be poorer than in the 00-06 and 06-12Z periods.   

Finally, analysis from the last six hour period- from 18-00Z- appears in Figures 3.9 and 3.10, 

again for the 2-year and 50-year return period thresholds.  This period sees a considerable uptick in 

events relative to the six hours prior, and appears to be more on-par with the two other six-hour periods 

analyzed here.  Two regions stand out as particularly vulnerable to extreme precipitation during this 

time of day.  The first region exists along and immediately to the east of the Rocky Mountains, even to 

the west of the region identified in the 00-06Z period.  As discussed there, as the Rockies frequently act 

as a source for convective initiation, and this is the first period in the west with considerable solar 
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heating after sunrise, it makes intuitive sense that heavy precipitation is seen developing in this region in 

the 18-00Z period, and then propagating progressively to the east in the 00-06 and 06-12Z periods.  For 

18-00Z, there are almost no observed events in the Mississippi Valley region at the 50-year RP, and a 

considerable decline in event density is seen in Figure 3.9d for the 2-year RP as well.  However, to the 

east near and along the Atlantic coast, a considerable number of events are seen from Florida up 

through Maine predominantly during the summer.  This signature is well-captured in each of the CAMs 

analyzed here, each having a local minimum in the Mississippi Valley region; however, all of the models 

again had too many forecasted events in the west relative to Stage IV.  This is likely a combination of 

model bias and poor observational coverage in the complex terrain of the intermountain west leading to 

an underrepresentation of actual events in the Stage IV analysis.  The very large bubble sizes in Figures 

3.9c and 10c indicate that the NAM-NEST is particularly biased during this period relative to the others, 

especially in the intermountain west and southwest. 

Results for 24-hour 12-12Z precipitation events using the longer 09 June 2009-30 August 2014 

analysis period is depicted in Figure 3.11.  As explained in Section 3.2, the GEFS/R replaces the NAM-

NEST and HRRR for the 24-hour accumulation analysis.  It is immediately apparent that the coarse 

GEFS/R model forecasts far fewer events at both the 10-year and particularly the 100-year RP than are 

actually observed.  This is in stark contrast to the CAMs in the six-hour analysis, which all tended to be 

positively biased.  This is likely attributable to the GEFS/R being unable to resolve many small-scale 

processes that contribute to the development of locally extreme precipitation events.  Closer inspection 

of, for example, Figure 3.11d confirms this: almost all of the GEFS/R forecasted events occur either in 

the west coast during the cool season, where the vast majority of heavy precipitation events occur in 

association with synoptic-scale systems supplying ample moisture to the region with stratiform 

precipitation occurring in association with lift from major, large-scale topographic features.   All of these 

processes can be adequately handled even by a coarse model, and in fact, the Oregon and California 
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coastal mountains are one of the only areas where the GEFS/R is seen (compare Figures 3.11c and e) to 

overforecast extreme precipitation by forecasting events that did not verify.  Outside of the synoptic 

driven west-coast systems, the events that GEFS/R appears to be able to forecast appropriately extreme 

precipitation amounts only in cases with very strong synoptic scale forcing, such as Tropical Cyclones 

Irene and Lee in August and September 2011, respectively, whose tracks and associated swaths of 

heaviest precipitation are clearly outlined in Figure 3.11d and less clearly in Figure 3.11f.  Other events 

include the major September 2009 southeast flooding which involved exceptional synoptic-scale 

moisture transport into the region, the Arizona flooding of January 2010, and a stretch of exceptionally 

wet systems in Montana during May and June 2013.  The intensity of other synoptic-scale systems that 

produced 100-year 24-hour precipitation events, such as Hurricane Sandy in October 2012 (see red 

bubbles in Figure 3.11f) were not forecasted by GEFS/R.  The NSSL-WRF (Figure 3.11b) still performed 

better with some of the tropical cyclones, more adequately forecasting the rainfall amounts associated 

with both Sandy and also with Tropical Storm Debby, which affected northern Florida in June 2012.  

However, no system on the plains or in the Midwest, regardless of whether it was observed to have 

actually occurred, is forecasted by the GEFS/R model, in spite of the fact that many events were 

observed in the Stage IV analysis.  The NSSL-WRF has much more robust forecast characteristics, 

correctly forecasting many August/September events in New Mexico and a smattering of isolated events 

throughout the warm season across the plains.  The relative minimum of events in the southern plains 

(Figure 3.11e) is also well captured (Figure 3.11a).  As in the six hour analysis, the NSSL-WRF does tend 

to forecast many events in the intermountain west that do not verify, but again, this may be at least 

partially attributable to poor precipitation verification in this region.  The general seasonality of model 

events is in accord with the true 24-hour locally extreme precipitation analysis as discerned by Stage IV 

precipitation analysis. 
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The frequency bias characteristics of the CAMs compared in Figures 3.3-3.10 is summarized 

quantitatively in Figure 3.12. Confirming what was seen in Figures 3.3-3.10, for all four times of day, the 

most events are seen during the warm season months, with less events per month witnessed during the 

cool season.  In the 00-06 and 06-12Z periods the number of events per month varies on average by 

approximately an order of magnitude.  In contrast, in the 12-18Z period, which is by far the least driven 

by warm-season convection, the difference is much smaller, with the December event count even being 

higher than many of the warm season months in the Stage IV analysis. This result is especially 

pronounced at the 50-year RP, as many cool-season months have few or no observed events during the 

1-year analysis period.  As previously indicated, the 12-18Z period is found to have the fewest number of 

observed events, with 00-06Z being the largest.  Also, despite large month-to-month variability, the 

average ratio of 2-year events to 50-year events is approximately 25, as should be anticipated.   

Comparing models, the NAM-NEST does indeed forecast many more events than are observed.  

In the 00-06Z period, the NAM-NEST predicts more events than were observed for each month at the 2-

year RP; in the warm season months, the NAM-NEST forecasts roughly 3-4 times as many events as are 

observed during the 00-06Z period, while for the 50-year RP the difference is often a factor of 5-6 and is 

as large as an order of magnitude difference for some warm-season months.  The bias is roughly similar 

for the 06-12Z and 12-18Z periods, but is further amplified in the 18-00Z period, with most warm season 

months having an order of magnitude more forecasted events than are observed, and in some cases the 

difference is larger than a factor of 20 for the 50-year RP.  Except in some cool season months, the NSSL-

WRF forecasted fewer events than the NAM-NEST each month over the analysis period for both the 2- 

and 50-year RPs.  For most warm-season months, it is seen to be slightly positively biased relative to 

Stage IV at the 2-year RP, but the difference is typically less than a factor of two.  Though the month-to-

month results are more variable for the 50-year RP, the NSSL-WRF exhibits an even smaller positive bias, 

with several warm-season months having fewer forecasted events than were observed.   Too few 50-
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year events were observed during the cool season months to draw any definitive conclusions about the 

bias characteristics of the CAMs during this period.  Though re-scaled in proportion to the fraction of 

forecasts missing from each months, due to the amount of missing data, HRRR forecast characteristics 

must be interpreted with care, especially for the 12-18Z and 18-00Z periods where more forecasts are 

missing.  However the bias characteristics appear to be quite good, with the HRRR event count lines 

most closely tracking the Stage IV lines during the 00-06Z period.  During the other periods, the HRRR is 

seen to be the only analyzed CAM to consistently underpredict events during the winter and spring, with 

the NSSL-WRF having the best bias characteristics during these months for all times of day, but the HRRR 

still generally has the frequency bias closest to unity during the late spring and summer of the three 

models assessed here. 

Similar analysis for the 24-hour accumulation interval is illustrated in Figure 3.13, with lines for 

all seven RPs included.  The seasonal cycle of events is similar to that of the 6-hour accumulation 

intervals, with more events per month typically observed during the warm season months, but the 

signal is considerably attenuated.  The signal does, however, amplify with increasing return period; that 

is, the difference between the number of events during the cool season and warm season months 

increases with increasing RP.  At low RPs, the bias characteristics of both the GEFS/R and NSSL-WRF are 

both fairly good- within a factor of two from unity each month.  However, at higher RPs, some 

discernable biases begin to emerge.  The NSSL-WRF overforecasts high RP 24-hour locally extreme 

precipitation events during the cool season months, with observed biases of approximately 3-5 during 

this period.  Figure 3.11 correctly gives the impression that GEFS/R greatly underpredicts high RP events.  

Figure 3.13 reveals that the overall bias characteristics, while almost always underpredicting, are not 

terrible for most months.  In July however, GEFS/R underforecasts the number of events by an 

exceptional two orders of magnitude relative to the reasonably large number of events observed during 

that month over the five-plus year analysis period. 
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The remaining analysis quantitatively evaluates model skill over the longer 09 June 2009-30 

August 2014 analysis period.  Fraction skill score results at each RP assessed in this study for 6-hour 

NSSL-WRF forecasts between forecast hours 12 and 36 on the 00Z initialization are depicted in Figure 

3.14.  As expected, FSS generally increases with increasing evaluation radius, and the highest scores are 

seen at lower RPs, which- being on average less extreme- are typically more predictable.  There are 

some exceptions; for example, the results for the 10-year RP are almost uniformly lower than the 

corresponding 25-year RP FSS results at each forecast period.  This anomaly is likely attributable to a 

combination of random sampling and issues associated with the automated QC of the Stage IV analysis 

yielding a superior representation of reality at the 25-year RP relative to the 10-year RP observations.  At 

all evaluation radii and RPs, the highest scores by a considerable amount are observed with the 12-18 

hour forecast period.  This is likely attributable to the combination of 1) the fact that, as previously 

noted, a lower proportion of events in this six-hour period is convectively driven than the other periods, 

and the events caused by smaller convective cells with weaker large-scale forcing tend to be inherently 

less predictable; and 2) this is the earliest forecast period analyzed with respect to forecast initialization 

time and thus has had the least time for non-linear error growth.  In a similar vein, the FSSs at all 

evaluation radii are very low for the 50- and 100-year RPs at the 24 and 30 hour lead times, probably 

due to these periods being the farthest from model initialization and these both being convectively 

active times of day.  The low values at high evaluation radii also highlight that errors were not merely in 

spatial displacement, but primarily to completely missing events that occurred and forecasting 

widespread extreme events that did not verify.  The FSSs are considerably better for the 12 and 18 hour 

forecast lead times, better even than the 5-year RP verification for the last periods at the high 

evaluation radii.   

A graphical representation of NSSL-WRF model skill for 6-hour locally extreme rainfall forecasts 

over CONUS appears in Figure 3.15.  These plots have been aggregated over all four individual forecast 
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periods.  The general trend of decreasing forecast skill with increasing RP is immediately apparent by 

inspection of the figure.  However, these figures allow one to discern the impact of a particular regioŶ͛s 

forecast on and in comparison with overall model performance.  At low RPs, several events often impact 

a given region over the analysis period, resulting in a smoother FSS field as seen in Figure 3.15a.  In 

contrast, at the high RPs, for example in Figure 3.15d, often none or just one event occurred over a 

given region during the 5-year analysis period, resulting in the plot highlighting areas where the model 

handled one event well.  Panels 15a and b illustrate that the broad areas of extreme precipitation, as 

determined by low RP exceedances, in the California and New England systems that occurred during this 

period were very well handled by the NSSL-WRF model, with skill scores not too far from unity.  Areas of 

the mountain and desert west and southwest were not well handled; this was seen qualitatively in many 

of the bubble plots.  The same two events reappear in panels c and d as well, indicating that the severity 

of the systems was also appropriately forecast by the model.  Two other regions are also highlighted in 

the high RP panels, Montana and the Mid-Atlantic, in association aforementioned May Montana floods 

and Tropical Storm Lee, respectively; this suggests that the NSSL-WRF may have forecast the severity of 

the events well, but did not perform quite as well on forecasting the extent of locally extreme rainfall.  

Other events, such as Tropical Storm Debby, were reasonably well forecast during the 25-year RP, but 

not at the 100-year RP.  On the less extreme spectrum of extreme rainfall events, areas of the mountain 

and desert west and southwest were not well handled; this was seen qualitatively in many of the bubble 

plots.  For the most extreme event threshold, the Floridian peninsula and the central plains were the 

areas with the worst verifying forecasts. 

Figure 3.16 provides regional skill analysis for different times of day as opposed to the different 

RPs shown in Figure 3.15.  Much of the variance in the northeast comes from the largely coincidental 

timing of tropical cyclone lanfall for the storms that impacted the region during this period.  However, 

some trends can be more definitively discerned.  Though 2-year, 6-hour events were observed during all 
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four periods (see Figures 3.3d, 3.5d, 3.7d, and 3.9d) in the Pacific Northwest, skill was observed to be 

notably higher during 06-18Z than 18-06Z.  In regions that experience extreme precipitation events from 

various types of systems and meteorological conditions, such as the southeast US, one sees substantially 

elevated skill during the less convective 12-18Z period in comparison to the other three.  To the east of 

the Rockies, in particular eastern Colorado and western Kansas and Nebraska, the lowest skill is seen 

during the 06-12Z period, likely attributable to the loally anomalous time of occurrence of these types of 

events; typically ongoing convection is well to the east of this region at this time.  The highest forecast 

skill in the upper midwest is seen in the 00-06Z period, while across CONUS in the desert southwest, skill 

is higher at this time and lowest six hours later in the 06-12Z period.  Splotches of relatively high and low 

skill appear at various locations and times in the lower Mississippi Valley in association with particular 

extreme rain producing storm systems that were well and poorly forecast, respectively. 

Summary agregated FSS analysis for 24-hour accumulations at all RPs is provided for both the 

GEFS/R and NSSL-WRF models in Figure 3.17.  The general findings are again as expected, with FSS 

generally increasing with increasing evaluation radius, and generally decreasing with increasing RP.  

Comparing Figures 3.14 and 3.17, skill scores are generally higher for the 24-hour accumulation interval 

compared with any of the 6-hour periods.  The higher skill at longer accumulation intervals is likely 

attributable to the decreased sensitivity to temporal and to a lesser extent spatial displacement error, in 

addition to a larger proportion of 24-hour events occurring in association with longer-lived, larger-scale 

processes as opposed to some 6-hour events which occur at higher frequency in association with 

isolated convective cells.  At low and very high RPs, the NSSL-WRF appreciably outperforms the GEFS/R 

at all evaluation radii examined here.  This should be anticipated, as, all else equal, the improved model 

resolution and ability to explicity simulate convection without use of a cumulus parameterization should 

tend to produce more realistic andskillful representation of clouds and pecipitation.  However, at the 

middle RPs- from 10 to 50 years- the GEFS/R is competitive with and often even outperforms the 
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GEFS/R.  This may have to do with the types of systems that are found to exeed thresholds in this 

frequency range, but not higher or lower: to generate precipitation of this rarity, strong large-scale 

forcing is required.  Generating the most extreme events, with a 100-year RP or greater, may often 

require a combination of large scale forcing and meso- and smaller scale forcing which can not be 

adequately simulated by GEFS/R and other models of similar horizontal resolution. 

Regional representation of model performance for 24-hour events appears in Figures 3.18 and 

3.19 for the NSSL-WRF and GEFS/R, respectively; and regional model performance is directly compared 

via Figure 3.20.  Inspecting the 1-year RP verification, which provides a broader perspective of general 

model performance with locally heavy rainfall, it is apparent that slightly elevated skill is seen over much 

of the west and east coast, while skill over the plains, midwest, and southeast is depressed.  Though 

local fluctuations are seen, the FSS field remains relatively smooth with skill scores remaining between 

0.1 and 0.9.  Larger FSS gradients are observed at the 5-year RP in association with forecast quality of 

individual events;  California, Arizona, Montana, the Mid-Atlantic, the IA/MO/IL region, and various parts 

of the southeast US begin to stand out as areas of locally enhanced forecast skill.  These regions are 

further highlighted moving to the 25-year RP in Figure 3.18c; Montana and the Florida panhandle in 

association largely with Tropical Storm Debby are particularly notable, with FSSs approaching unity.  The 

Mid-Atlantic, California, and Arizona skill occur in association primarily with particular extreme 

precipitation events discussed with Figure 3.11.  Previous research has found that the highlighted region 

of enhanced skill in the midwest here coincides with a local maximum in Lagrangian persistence (e.g. 

Germann et al. 2006)- that is, the tendency for storm motion, both speed and direction, to remain the 

same.  The elevated Lagrangian persistence here is reasonably associated with locally enhanced 

precipitation forecst skill.  The 100-year RP sees a further degredation of forecast skill overall, with 

particular impact on the California, Arizona, and midwest regions; skill in MT and FL remains rather high.   
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The trends in the GEFS/R are rather similar.  Comparing the two at the 1-year RP (Figure 3.20a), 

it is apparent that, despite point-to-point fluctuations, both the GEFS/R and NSSL-WRF perform about 

equally well in the western states.  In the eastern two-thirds of CONUS, with the exception of some 

areas of areas near the Gulf Coast, the NSSL-WRF exhibits higher skill than the GEFS/R, particularly over 

the convection-dominated regions of the plains, midwest, and Mississippi Valley.  The region of 

enhanced Lagrangian persistence in the midwest also sees the local area of largest skill difference 

between the NSSL-WRF and GEFS/R, with the NSSL-WRF performing notably better.  It is logical that, 

with the higher model resolution, the NSSL-WRF has more realistic representations of convection, and is 

thus able to better take advantage of the enhanced persistence, as opposed with the GEFS/R which does 

not benefit much from this property.  Inspecting the 5-year and 25-year comparisons in Figures 3.20b 

and 3.20c, particular events can be identified: the NSSL-WRF better handled Tropical Storm Debby, the 

New Mexico flooding of September 2013, and to a lesser extent the Montana floods, while GEFS/R had 

better forecasts for the aforementioned January 2010 and September 2009 events in Arizona and the 

southeast United States, respetively, in addition to better TC forecasts in the Mid-Atlantic and New 

England.  With the exception of the northeast CONUS, where the model performances become more 

similar, these differences are exacerbated at the 100-year RP (Figure 3.20d). 
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Figure 3.1 Return period thresholds over CONUS for a 24-hour accumulation interval.  Panels (a)-(g) 

correspond to 1, 2, 5, 10, 25, 50, and 100 year return period thresholds, respectively.  Threshold sources 

come from a combination of Atlas 14, TP-40, and Atlas 2 data as described in the paper text. 
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Figure 3.2: Return period thresholds over CONUS for a 6-hour accumulation interval.  Panels (a)-(g) 

correspond to 1, 2, 5, 10, 25, 50, and 100 year return period thresholds, respectively.  Threshold sources 

come from a combination of Atlas 14, TP-40, and Atlas 2 data as described in the paper text. 
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Figure 3.3 Forecasted and observed events of exceedances of the 2-year return period for a 6-hour 

accumulation interval, as illustrated in Figure 3.2b, over the 00-06Z period from 12 August 2014 through 

11 August 2015.  Circles indicate an observed or forecasted event at the location of circle center; circle 

size is proportional to number of events, with a larger circle indicating more events at that location.  

Black circles in the lower left indicate the circle size corresponding to a given number of events at a 

particular point.  Panel (a) corresponds to forecasted events from the NSSL-WRF 24-30 hour 

precipitation accumulation from 00Z initialization.  Panel (b) corresponds to the 0-6 hour forecast of the 

HRRR from 00Z initializations.  Panel (c) corresponds to forecasted events from the 24-30 hour forecast 

of the operational 4km NAM-NEST initialized at 00Z.  Panel (d) corresponds to observed exceedances of 

the local 2-year 6-hour threshold based on Stage IV Precipitation Analysis during the same evaluation 

period.  Circle colors indicate the mode month of event occurrence as depicted in the figure legend.  

Every other grid point in each dimension is assessed in constructing circles; thus, only one quarter of the 

total number of grid points is analyzed. 
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Figure 3.4: As in Figure 3.3, but for the 50-year return period thresholds. 
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Figure 3.5: As in Figure 3.3, but for the 06-12Z period.  NSSL-WRF, NAM-NEST, and HRRR forecasts are 

taken from the 6-12 hour precipitation forecast from the 00Z initialization.   
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Figure 3.6: As in Figure 3.5, but for the 50-year return period thresholds.   
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Figure 3.7: Same as Figure 3.3, but for the 12-18Z period.   NSSL-WRF and NAM-NEST forecasts are taken 

from the 12-18 hour precipitation forecast from the 00Z initialization.  HRRR forecasts are taken from 

the 0-6 hour forecast from the 12Z initialization. 
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Figure 3.8: Same as Figure 3.7, but for 50-year return period thresholds. 
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Figure 3.9: Same as Figure 3.3, but for the 18-00Z period.   NSSL-WRF and NAM-NEST forecasts are taken 

from the 18-24 hour precipitation forecast from the 00Z initialization.  HRRR forecasts are taken from 

the 6-12 hour forecast from the 12Z initialization. 
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Figure 3.10: Same as Figure 3.9, but for 50-year return period thresholds. 
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Figure 3.11: Forecasted and observed events of exceedances of two return period thresholds for a 24-

hour accumulation interval, as illustrated in Figure 3.1(d) and (g), over the period from 09 June 2009 

through 30 August 2014.  Circles indicate an observed or forecasted event at the location of circle 

center; circle size is proportional to number of events, with a larger circle indicating more events at that 

location.  Panels (a) and (b) correspond to forecasted events from the NSSL-WRF 12-36 hour 

precipitation accumulation from the 00Z initialization at the 10- and 100-year return period thresholds, 

respectively.  Panels (c) and (d) correspond to 12-36 hour forecasts from the 00Z initialization of the 

GEFS control member, again for 10- and 100-year return periods, respectively.  Panels (e) and (f) 

correspond to observed exceedances of the local 10-year and 100-year thresholds based on Stage IV 

Precipitation Analysis during the same evaluation period.  Circle colors indicate the mode month of 

event occurrence as depicted in the figure legend. 
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Figure 3.12: Total number of events forecasted or observed over the 12 August 2014-11 August 2015 

verification period for 6-hour precipitation accumulations for the NSSL-WRF, HRRR, and NAM-NEST 

models compared against Stage IV Precipitation Analysis.  Counts for the 00-06Z time of day is plotted in 

panel (a), 06-12Z in panel (b), 12-18Z in panel (c), and 18-00Z in panel (d).  Event count is plotted on a 

logarithmic scale; return periods of 2 and 50 years are shown for each data source for each 6-hour 

accumulation period.  A discontinuity in a line indicates that no event was forecasted or observed for 

the data source and return period in question over the verification period for that month.  Significant 

amounts of HRRR data are missing from the verification period; HRRR event counts have been naively 

rescaled in proportion to the number of missing dates in each respective month. 
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Figure 3.13: Total number of events forecasted or observed over the 06 June 2009-30 August 2014 

verification period for 24-hour 12-12Z precipitation accumulations for the NSSL-WRF and GEFS models 

compared against Stage IV Precipitation Analysis.  Event count is plotted on a logarithmic scale; return 

periods of 1, 5, 25, and 100 years are shown for each data source.  A discontinuity in a line indicates that 

no event was forecasted or observed for the data source and return period in question over the 

verification period for that month. 
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Figure 3.14: Aggregated Fractions Skill Scores for the NSSL-WRF for the 6-hour accumulation interval for 

the 1-, 5-, 25-, and 100-year return periods.  Verification is performed over the 09 June 2009-30 August 

2014 period.  Forecasts taken from the 00Z initialization; ergo, lines indicated in the legend to have a 

lead of 12 correspond to the 12-18Z forecast period, leads of 18 to the 18-00Z period, 24 to the 00-06Z 

period, and 30 to the 06-12Z period. 
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Figure 3.15: Gridded Aggregated Fractions Skill Scores for the NSSL-WRF for 6-hour precipitation 

forecasts aggregated over each of the 12-18, 18-24, 24-30, and 30-36 hour forecast periods for the 00Z 

model initialization.  Panel (a) corresponds to verification on the 1-year return period thresholds, (b) to 

the 5-year return period threshold verification, (c) to 25-year return period verification, and (d) to 100-

year return period verification.   Verification is performed over the 09 June 2009-30 August 2014 period.  

Fractions Skill Scores on plots shown correspond to an evaluation radius of 40 grid boxes on the Stage IV 

HRAP grid. 
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Figure 3.16: Aggregated Fractions Skill Scores for the 00Z initialization of the NSSL-WRF for 6-hour 

accumulated precipitation forecasts verified for 2-year return period thresholds.  Panel (a) corresponds 

to verification over forecast hours 12-18 (12-18Z), (b) to 18-24 (18-00Z) hour forecasts, (c) to hours 24-

30 (00-06Z), and (d) to hours 30-36 (06-12Z).  Verification is performed over the 09 June 2009-30 August 

2014 period.  Fractions Skill Scores on plots shown correspond to an evaluation radius of 40 grid boxes 

on the Stage IV HRAP grid. 
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Figure 3.17: Aggregated Fractions Skill Scores for the GEFS and NSSL-WRF for the 24-hour accumulation 

interval for the 1-, 2-, 5-, 10-, 25-, 50-, and 100-year return periods.  Verification is performed over the 

09 June 2009-ϯϬ August ϮϬϭϰ peƌiod.  FoƌeĐasts takeŶ fƌoŵ eaĐh ŵodel͛s ϬϬ) iŶitializatioŶ. 
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Figure 3.18: Gridded Aggregated Fractions Skill Scores for the NSSL-WRF for 24-hour precipitation 

forecasts from the 12-36 hour forecasts of the 00Z model initialization.  Panel (a) corresponds to 

verification on the 1-year return period thresholds, (b) to the 5-year return period threshold verification, 

(c) to 25-year return period verification, and (d) to 100-year return period verification.   Verification is 

performed over the 09 June 2009-30 August 2014 period.  Fractions Skill Scores on plots shown 

correspond to an evaluation radius of 40 grid boxes on the Stage IV HRAP grid. 
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Figure 3.19: Same as Figure 3.18, but for the GEFS. 
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Figure 3.20: Same as Figure 3.18, but instead shows the difference between NSSL and GEFS performance 

over the verification period.  Greens indicate that the NSSL-WRF performed better over the region, 

while reds indicate that the GEFS performed better. 

3.3 Discussion & Conclusions 

NWP model verification and diagnosis from the fixed-frequency recurrence interval/return period 

perspective was performed for a suite of dynamical models of varying spatial scales, from the global, 

convection-parameterized GEFS/R to regional, convection-permitting models such as the NSSL-WRF, 

NAM-NEST, and HRRR.  CONUS-wide RP-threshold grids for 6- and 24-hour AIs were assembled from 

existing observational estimates for RPs between 1 and 100 years.  Bulk and regional bias characteristics 

were assessed individually for each modeling system.  Major differences were identified in the behavior 

of locally extreme precipitation production between models.  The most recent (as of August 2014) NAM-
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NEST was found to have a strong positive forecast bias nationwide, forecasting many more events at all 

return periods than were actually observed.  This effect was particularly evident in the southwestern 

states, where the NAM-NEST over a 1-year period forecasted an order of magnitude more events than 

were actually identified via Stage IV precipitation analysis.  Of the four 6-hour accumulation periods 

centered about 00Z, the NAM-NEST was found to exhibit the largest bias during the convective initiation 

period of 18-00Z, and the least in the minimally convective 12-18Z period.  Other CAMs- the NSSL-WRF 

and HRRR- exhibited similar tendencies, also tending to overforecast extreme events from 1-year to 

100-year RPs, and tended to have the strongest tendency to overforecast in areas of the west and 

southwest, but both demonstrated greatly reduced overall frequency biases when compared with the 

NAM-NEST, with the HRRR actually being negatively biased at times.  The NAM-NEST and to a much 

lesser extent other CAMs tended to be slightly more biased for both high and low RPs during the warm 

season months.  At the 24-hour AI, the NSSL-WRF was found to exhibit rather similar extreme 

precipitation characteristics to those seen in the 6-hour AI.  The coarser GEFS/R, however, had much 

different characteristics than the CAMs; GEFS/R produced almost no events at the higher RPs outside of 

the cool season Pacific Coast synoptic systems and tropical cyclones from the Atlantic basin, resulting in 

almost no very extreme events forecast by the GEFS/R over the Great Plains and Midwest.  With regards 

to model skill, models are unsurprisingly found to make most skillful prediction of the less extreme 

(lower RP) events, with the worst skill typically observed in forecasting for the rarest of event 

thresholds.  For 6-hour periods, the 12-18 hour period stood out as the most skillful period for the NSSL-

WRF, likely attributable to this period having the lowest proportion of low predictability, small-scale 

convective events, and this period coinciding with the shortest forecast lead time of the four verification 

periods.  Both the GEFS/R and NSSL-WRF were verified for the 24-hour AI; at low RPs, locally higher skill 

was generally seen in both models in the west and Mid-Atlantic/New England, and the NSSL-WRF 

demonstrated superior forecast skill over most of CONUS, particularly over the Great Plains and 
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Midwest, and Mississippi Valley.  At higher RPs, typically one event dominated the regional skill score, 

allowing comparison of model performance for individual recent extreme precipitation events but 

leaving insufficient data to robustly compare regionally compare model skill for highly extreme cases.  In 

a bulk sense, however, the NSSL-WRF was still found to verify statistically significantly better than the 

GEFS/R, even at high RPs. 
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4 Developing Model Precipitation Climatologies 

 

 

 

4.1 Methods 

Fitting model RP thresholds (RPTs) is performed here through a many step process.  As in chapter 

3, all model data is first regridded onto the same grid- the Stage IV HRAP ~4.75 km grid using first order 

conservative regridding.  Using the ŵodel͛s threshold training record, RSDs are fit point-by-point to the 

model precipitation record.  Three types of distribution fitting- AMS, PDS, and DF-FDS- are applied and 

assessed.  Throughout this study, cross validation is used to assess algorithm validity. The verification 

period is split into four consecutive chunks; three of the four chunks are used for model training, and 

the remaining quarter is used for verification.  This process is repeated four times in order to apply 

cross-validation verification over the entire verification period.   

This study applies model climatology fitting methods to two models: 1) the NSSL-WRF, and 2) 

the control member of GEFS/R.  There are three periods to note.  The verification period for both 

models is 09 June 2009 to 30 August 2014.  However, GEFS/R has a model precipitation record, or 

threshold training record- extending back to 01 December 1984.  This also allows GEFS/R training to take 

advantage of the extended Stage IV period: 01 January 2002 to 08 June 2009.  The exact use of this 

extended period will be elucidated below.  The verification period, which is also the NSSL-WRF threshold 

training period, amounts to 1908 days; ¾ of this- the amount used for threshold training in cross-

validation- results in 1431 days, or just under four years.  The challenge is how to use such a relatively 

short training record to extrapolate events more than an order of magnitude rarer than the training 

record length, with no especially rare events occurring at all at many locations in the record.   

AMS, PDS, and DF-FDS RP thresholds are fit for the 2-, 5-, 10-, 25-, 50-, and 100-year RPs for ten RSDs: 

Exponential (EXP), Gamma (GAM), Generalized Extreme Value (GEV), Generalized Logistic (GLO), 
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Generalized Normal (GNO), Generalized Pareto (GPA), Gumbel (GUM), 4-parameter Kappa (KAP), 

Pearson Type 3 (PE3), and Weibull (WEI).  Parameter estimation for all distribution fits is performed 

using the Method of L-Moments (MoLM).  A comparison between AMS, PDS, and DF-FDS fits is shown in 

Figure 4.1 for some select locations.  Given that the predictand of interest of in this study, daily 

exceedance forecasts with respect to average recurrence intervals (ARIs) or return periods as opposed 

to annual exceedance probabilities (AEP), PDS/DF-FDS based analysis more directly addresses the 

pertinent forecast question when compared with AMS analysis, which would require numerical 

correction to the PDS framework.  From this, and by manual subjective inspection of the distribution fits 

(presented in part in Figure 4.1), PDS-based fits were found be the most appropriate and sensible fits to 

model QPFs, and were selected for further investigation (DF-FDS fits were found to be very unrealistic 

for many RSDs at many locations).  Two aspects that were explored in further detail were the PDS cutoff 

threshold and block size, traditionally one year in association with AMS applications.  Having only four 

years of training data in the case of the NSSL-WRF makes the one-year block size rather problematic, as 

distribution fits may be based on as few as four data points.  To alleviate this problem, a block size of ½ 

year was explored, with every eighth day being included in a given block so as to alleviate block maxima 

being biased by inclusion or exclusion of a particular climatologically favored season.  This would allow a 

minimum of eight data points in each distribution fit, ostensibly appreciably reducing model variance, 

while also allowing for a potentially much more realistic estimate of the 1-year RPTs.    Ultimately, the ½-

year alternating block was selected for the NSSL-WRF data and the traditional 1-year annual block was 

selected for GEFS/R distribution fitting; this distinction was made based on the 4-year threshold training 

period for the NSSL-WRF vs. the 28+ year period for the GEFS/R.  The inclusion cutoff threshold for each 

PDS series was the minimum block maximum (block minimaxͿ usiŶg eaĐh ŵodel͛s ƌespeĐtiǀe ďloĐks.  

In spite of these efforts to reduce fit variance in the NSSL-WRF, the combination of the short data record 

and convective allowing capability producing local, small-scale convective precipitation features results 
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in unrealistic model RPT estimates.  The latter problem was combatted by applying threshold 

smoothing.  Smoothing RPT fields requires a balance between eliminating spurious highs and lows 

associated with where convective cells happened to be simulated in the model with the legitimate 

differences in the climatology of the model.  This is especially true in areas of complex terrain where the 

climatology may change sharply and significantly over short distances.  A smoothing method was 

designed in an attempt to balance these two goals: progressive point by point smoothing was applied 

such that no gradient between adjacent grid points ever exceeds five times the gradient of the 

respective gradient witnessed in the observationally-derived Atlas thresholds for the corresponding RP.  

This preserves realistic gradients in the RPTs in association with complex terrain, since those gradients 

appear in observational thresholds as well, while eliminating the spurious features associated with 

coincidental placement of convective cells.  Additionally, the challenges presented by the short 

threshold training data record are alleviated through a modified regionalization technique.  Owing to the 

short data record, not only may extreme events not occur at a given grid point, but may not occur 

anywhere in the vicinity of such a grid point.  Deducing extremes in such a situation then requires either 

exceptional extrapolation from common events, or use of information about extreme events occurring 

at remote locations.  The extrapolation required in the former case is not considered to be practically 

obtainable; instead, an assumption is made to allow sensible use of remote extreme precipitation 

events when possible.  Namely, distribution fits at two locations that are similar in the observational 

thresholds are assumed here to also be similar at the corresponding locations in the model thresholds.  

For each grid point, a list of grid points with similar distribution parameters (measured here as within 2 

mm for the 1-year RPT with tolerance increasing progressively with increasing RP up to a tolerance of 6 

mm for the 100-year RPT) is constructed.  Often, the vast majority of these points are local to the grid 

point in question, but occasionally spatially distant points satisfy these criteria as well.  This assumption, 

while it may not hold perfectly, allows for a method to artificially increase sample size and thereby 
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reduce the variance of the algorithm.  For each grid point, the fits corresponding to each similar grid 

point are averaged to form RPT estimates. 

OŶe ŵetƌiĐ to ƋuaŶtifǇ the algoƌithŵ͛s ǀaƌiaŶĐe is to plot the coefficient of variation (CoV) of the 

model climatological RPTs between the four individual cross-validation threshold trainings.  This is 

shown in Figure 4.2.  CoVs for the NSSL-WRF model RPT estimates for the 100-year RP from the EXP 

distribution fitted based solely on the local point data (2a) are generally quite high with many locations 

experiencing a CoV in excess of 0.2; this is reduced considerably through the smoothing process (2b), 

and reduced even further through the similar points regionalization (2c).  The smaller CoVs, a measure 

of mean-relative variability, indicate more stable RTP estimates that are less sensitive to the subsample 

of data on which they are trained, suggesting an algorithm less prone to overfitting and thus hopefully 

experiencing less generalization error.  In comparison, the GEFS/R model climatology CoVs with no 

smoothing or regionalization are shown in Figure 4.2d.  As can be seen comparing 2c and 2d, the CoVs 

are lower than those of the NSSL-WRF even after smoothing and regionalization, illustrating the side 

effect of the incapability of the underlying dynamical model to resolve convective elements and, 

perhaps more significantly, the added benefit of the greatly extended- seven to eight times longer- 

threshold training period. 

Once candidate RPT estimates are obtained through RSD-fitting the model precipitation data, it 

is next explored to what extent, if at all, the fitted model climatological thresholds may be applied 

towards improved deterministic predictions of locally extreme rainfall.  The question is not trivial since 

there exists a disconnect between the RPT estimates and the prediction thresholds that maximize model 

skill.  The RPT estimates seek to aĐĐuƌatelǇ addƌess the ƋuestioŶ: ͞Hoǁ ƌaƌe is it foƌ the giǀeŶ ŵodel to 

foƌeĐast a pƌeĐipitatioŶ aĐĐuŵulatioŶ of X at loĐatioŶ Y?͟, oƌ ŵoƌe diƌeĐtlǇ ͞What is the ŵiŶiŵuŵ 

precipitation accumulation forecast X at location Y in the model in order to occur with a long-term 
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average frequency of once every Z-Ǉeaƌs?͟  EǀeŶ a peƌfeĐt estiŵate of this aŵouŶt doesŶ͛t ŶeĐessaƌilǇ 

correspond to the threshold which maximizes skill at predicting observed events of the same frequency, 

however.  A coarse model like the GEFS/R, for example, may fail to forecast hardly any of the observed 

extreme events in regions such as the US Great Plains where extreme precipitation events are almost 

exclusively convective.  The heaviest accumulated precipitation forecasts over this region may all be 

associated with synoptic systems, with forecast associated with the highest precipitation totals in reality 

receiving very small accumulation forecasts.  In this case, using the true model 100-year RPTs may yield 

very poor forecast skill, since the effect will be to incorrectly forecast 1-5 year RP event-creating 

synoptically driven systems as 100-year events, while still failing to forecast the true 100-year events, 

which are convectively driven, as extreme events at all.  For this reason, it is not guaranteed that good 

RPT estimates will enhance forecast skill, but given the great value of even small improvements in 

forecast skill in the extremes, the question is still very worthy of investigation. 

Given this disconnect, why use RSD fits for determining the most skillful thresholds at all?  

Considering the events being forecasted are often an order of magnitude or more rarer than the data 

record length, it is essential to preserve an appropriate extrapolation from the common events- those 

one can reasonably anticipate to observe within the training record- to the rare events that one can not 

anticipate observing in the training record.  RSD fits provide a theoretically sound relationship from the 

low RPs to the high RPs and by selecting an RSD, rather than individual RPTs, for a given location, one 

preserves a logical relationship between the RPT estimates across the RPs.  There is also substantial 

research (e.g. Coe and Stern 1982, Wilson and Toumi 2005, Bonnin et al. 2004, Hershfield 1961, Miller et 

al. 1973) in the literature exploring appropriate RSD fits to observed precipitation data.  Different 

studies reach different conclusions about the most appropriate RSD to use for fitting accumulated 

precipitation, and a synthesis of the literature suggests that it is likely that different RSDs are 

appropriate over different regions of CONUS.   
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Recognizing these properties, each RSD fit, in addition to the observationally-derived Atlas 

thresholds, is considered a candidate set of RPTs; the goal is to select the RPT set (RSD fit) which 

maximizes forecast skill.  In order to do this, each of the four sets of RSD fits corresponding to the four 

cross-validation sections is validated over the three quarters in which they were trained.   In the case of 

the GEFS/R, since the necessary model data is available, the extended verification period- from 01 

January 2002 to 08 June 2009- is employed for this stage as well. The local Fractions Skill Score (FSS) is 

computed at each grid point aggregated over each quarter.  Then, for a given cross-validation RSD set, 

the RSD fit which maximizes the global FSS is selected: 

,ݕሺܶܵܫܦ ሻݔ = ݇ ቆargmax௞ (ͳ.Ͳ − ி஻ௌ೅ೀ೅+ி஻ௌ(஽ூௌ்ೖሺ௬,௫ሻ൯ி஻ௌௐைோௌ்೅ೀ೅+ி஻ௌௐைோௌ்(஽ூௌ்ೖሺ௬,௫ሻ൯)ቇ  

It should be noted that this is distinct from simply selecting the distribution corresponding to the 

maximum local FSS.  Assume that, absent the global FSS contribution from point (y,x), the FBS_TOT from 

other points is 79 and FBSWORST_TOT from other points is 99.  One distribution at (y,x) produces a 

verification with a local FBS of 1 and local FBSWORST of 1, for a local FSS of 0.  A second distribution 

produces a verification with a local FBS of 10 and FBSWORST of 11, for a local FSS of 0.091.  But the 

global FSS by inclusion of the former distribution is 1.0 – (80/100) = 0.2, versus the latter distribution, 

which has a higher local FSS, yields a lower global FSS: 1.0 – (89/110) = 0.191. 

This process was conducted at each point to determine locally most skillful RSDs and, by 

association, RPTs for all RPs of interest.  These are then validated for each quarter of the verification 

period applying the identified best RSDs based on the thresholds derived and tested without the use of 

the same validation quarter.  So doing provides a conservative estimate for how well the method will 

extrapolate to future forecasts ďeǇoŶd the ǀalidatioŶ peƌiod; the estiŵate is likelǇ ͚ĐoŶseƌǀatiǀe͛ 

because the amount of training data used here in cross-validation is considerably less than what would 
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be available for real-time forecasting, and it is believed that increased training data may substantially 

improve algorithm performance.  Many algorithmic details were also determined via cross-validation 

verification.  The RP or RPs to use for FSS maximization and best RSD fit are examined; verification may 

be performed over a single RP, over all available RPs, or over some chosen subset.  The FSS evaluation 

radius to use may also be tuned; similar to the RP selection, a combination of evaluation radii may also 

be applied, with the best FSS being determined based on an average of results corresponding to 

verification over a single evaluation radius.  It can also be noted by inspection of the quantitative Stage 

IV event values in Figure 3.13 that the number of observed events for each RP over the verification 

period is roughly one half to two fifths what one would expect to observe a priori based on the number 

of grid points, the length of the verification period, and the frequency definition of the return period.  

This can likely be primarily attributed to a combination of two factors.  First, Stage IV analysis is gridded, 

and does not directly correspond to point estimates.  The smoothing inherent in upscaling from point 

observations to a 4.75km grid results in less occurrences of extreme precipitation amounts, particularly 

in instances where extreme precipitation is occurring at highly local spatial scales.  Second, the limited 

radar coverage and sparsity of rain gauges in areas of complex terrain- particularly in the intermountain 

west- lead to an underestimate of the number of observed events in those areas.  Accordingly, model-

derived RPTs for a given RSD fit may more appropriately be taken from the threshold corresponding to 

aŶ ‘P appƌoǆiŵatelǇ tǁiĐe the giǀeŶ oďseƌǀatioŶal ‘P.  These thƌesholds ǁill ďe teƌŵed ͞distƌiďutioŶ 

offset thresholds͟, aŶd ǁill ďe aďďƌeǀiated ǁith aŶ ͚O͛ suffiǆiŶg the RSD abbreviation.  The inclusion and 

exclusion of these thresholds from consideration is explored.  In order to avoid an overfitting model, a 

tuŶaďle ͚ƌegulaƌizatioŶ͛ teƌŵ ǁas added to the ŵodel.  The idea behind this term is to not attempt to 

adjust in accordance with a small signal that may be attributable to noise in the sampling data.  As such, 

applying the regularization term, the algorithm will not suggest an adjustment at a given point unless 

the selection of the distribution improves the global FSS when compared against the use of the Atlas 
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threshold at that point by at least a specified regularization threshold R.  The last major factor explored 

in RSD selection is the use of regions.  The short data record makes determination of the most 

appropriate RSD at a single point rather difficult to accurately discern.  Use of neighboring points within 

a similar geographic/topographic/meteorological region allows for an expansion of the data record used 

for determine the most appropriate RSD fit.  Applying a single RSD fit to an entire region with similar 

meteorological characteristics also makes sense in the sense that the true distribution family of 

precipitation is likely the same for all points within a given region, but not necessarily across regions.  

Results for using regions as opposed to point-by-point analysis are compared and evaluated.  CONUS 

regions are subjectively broken down into 27 regions exhibiting similar climatological characteristics, as 

depicted in Figure 4.33. 

4.2 Results 

An example of RSD fits near some select cities scattered across CONUS is presented in Figure 4.4 

for the GEFS/R and 4.5 for the NSSL-WRF.  Not too surprisingly, the observational thresholds are mostly 

much higher than the model-fit precipitation climatologies for GEFS/R; that is, less precipitation is 

required to be forecast in GEFS/R for the same frequency of occurrence.  The one exception for the 

cities appearing here is near Phoenix, AZ (4.4e), where a few of the fitted distributions do exceed the 

Atlas thresholds.  It is of note that the thresholds for all RSDs are lower even in Seattle (4.4a), where 

most locally extreme precipitation is stratiform and caused by large-scale forcing.  The characteristics of 

the RSD fits exhibit some similarities across regions and even across models.  All of the distributions 

produce very similar RPTs for the low RPs- 5-years or less.  It should be noted that the values to which 

model RSD fits converge at low RPs often differs significantly from the Atlas-based thresholds (e.g. 4.4c).  

At the higheƌ ‘Ps, the distƌiďutioŶs͛ ‘PTs diǀeƌge, aŶd thus the ĐhoiĐe of distƌiďutioŶ ďeĐoŵes ŵoƌe 

                                                           
3
 The use of similar points, as described with threshold derivation at the beginning of this chapter, was considered 

too computationally expensive to realistically examine through cross-validation procedures here.   
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significant.  The GLO and GEV distributions unequivocally yield the highest and second highest RPTs, 

respectively, at the higher RPs among the RSD fits.  Often they are very similar (see 4.5b, 4.5f), though 

they do diverge in other places.  On the other end, the GAM distribution almost always produces the 

lowest RPT estimates, followed by the GUM distribution, though in Phoenix for the NSSL-WRF (4.5e), 

GUM produced lower estimates than GAM.  The behavior of the KAP distribution was perhaps the most 

erratic, but tended to produce the third lowest estimates, though occasionally at some higher 

thresholds (4.5c, 4.5f) was the lowest, and other times was among the highest (4.5e). The remaining five 

distributions- EXP, GNO, GPA, PE3, and WEI- tend to produce middling estimates.  Among these, GNO 

and GPA tend to produce higher estimates, and EXP tends to produce the lowest RPTs.  All distributions, 

with the possible exception of KAP, tend to produce precipitation/frequency curves of approximately 

similar shapes; KAP occasionally produces very sharp precipitation limits, where its estimates at low RPs 

follow a similar path to the ͞high estiŵate͟ thƌesholds, ďut at soŵe poiŶt, fƌeƋueŶĐǇ ďegiŶs iŶĐƌeasiŶg 

rapidly with precipitation nearly constant (4.5c).  In contrast, the Atlas thresholds often exhibit a very 

different shape, and RPTs from Atlas cross the model-derived RPTs at some high RP.  Minneapolis (4.5c) 

and Houston (4.5f) in the NSSL-WRF illustrate examples of this. 

Figure 4.6 provides CONUS-wide graphical comparisons of the distributions at the 100-year RP 

for the GEFS/R, and using point-by-point threshold estimates, absent smoothing or regionalization.  One 

can see the particular reduction in model-climatological thresholds relative to the observational ones in 

the GEFS/R in the convective regions of the country, with the most and darkest reds seen to the east of 

the Rockies over the plains and Midwest.  There appears to be the most variation in thresholds along the 

Atlantic coast, with the GAM distribution producing thresholds roughly  100mm or more lower than the 

observational thresholds along much of the coast, while the GLO is actually notably higher than Atlas in 

many scattered places along the coast.  The NSSL-WRF thresholds appear in Figure 4.7 for the same RP.  

Most striking is the highly erratic nature of the RPT estimates using only point by point methods.  One 
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location has an RPT threshold estimate 100 mm higher than Atlas; go 50 km away, and the model-

estiŵated thƌeshold is ϭϬϬŵŵ loǁeƌ, aŶd aŶotheƌ ϱϬ kŵ aŶd it͛s ϭϬϬŵŵ higheƌ agaiŶ.  This uŶƌealistiĐ 

behavior is surely influenced by the location of convective elements in various forecasts throughout the 

training record.  Figures 4.8 and 4.9 illustrate the corresponding smoothed thresholds for GEFS/R and 

NSSL-WRF, respectively.  The effect of the smoothing on the GEFS/R fields may be seen comparing 

Figures 4.5 and 4.7, but the differences are not especially glaring.  For the NSSL-WRF, however, the 

effect of smoothing is very considerable, resulting in a field of estimates that seem much more plausible, 

and largely uninfluenced by individual connective elements appearing in the training data. 

In cross-validation, due to the very different characteristics associated with the two underlying 

dynamical models, it was judged that the two could very realistically have different optimal algorithmic 

parameters, and as such, the algorithm was tuned separately, rather than jointly, on each model.  With 

respect to RPs to use for RSD selection, in general, middling RPs among those studied here tended to 

produce the best resolution at identifying skillful RSD fits.  At low RPs, the RSD fit RPTs tended to be very 

similar, or at least clustered between the offset and non-offset fits, meaning all of the fits verify similarly 

at those thresholds and the method then lacks the resolution to distinguish the differences between the 

various fits.  At the highest RPs, solutions tend to be very high variance due to the small sample size, 

deciding thresholds based on the performance of the underlying modeling system in a single event.  

Middling RPs tended to balance these challenges, as there is sufficient separation among the RSD fits to 

yield different verification results, but also sufficient events in the verification record to avoid being 

unduly swayed but model performance for a single event.  For both models, the use of just the 10-year 

RP produced the best cross-validation results.  Because GEFS/R thresholds were based on 1-year 

chunked PDS fitting, 1-year RPTs were not considered reliable and were not used in this study; however, 

the NSSL-WRF used a half-year block size, allowing for examination of the 1-year RPTs.  Evaluation radii 

of 10, 20, 30, 40, and 50 grid boxes were examined, as well as using a weighted average of all five 
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evaluation radii.  The use of only the 50 grid box radius produced the best cross-validation results for 

both models.  No non-zero regularization threshold was applied in the NSSL-WRF; regularization 

improved GEFS/R results, and were maximized at a threshold of a mean global FSS improvement of 5e-7 

per grid point.  Both NSSL-WRF and GEFS/R included both offsetted thresholds and regional, as opposed 

to local, RSD applications.  Results were most sensitive to RP set choice, and secondarily to evaluation 

radius; effects of other choices tended to be of second order importance. 

The identified most skillful RSD fits for each iteration of cross-validation for the NSSL-WRF 

appears in Figure 4.10.  Panel (a) is trained and evaluated from 29 September 2010 to 30 August 2014 

and applied to 9 June 2009 to 28 September 2010, panel (b) is trained using 9 June 2009 to 28 

September 2010 and 19 January 2012 to 30 August 2014, (c) uses 9 June 2009 to 18 January 2012 and 10 

May 2013 to 30 August 2014, and (d) uses 9 June 2009 to 9 May 2013 and is applied to the final quarter.  

Since the forecast predictand is based on the Atlas thresholds, it is not terribly surprising that the Atlas 

thresholds are most often identified as the best verifying model.  For an unbiased model, though one 

would expect different distributions to occasionally be identified as most skillful due to sampling noise, 

in expectation, one would always anticipate the Atlas thresholds being identified as the RSD fit of 

choice. The second most employed RSD fit is the highest threshold, the offsetted GLO, or GLOO 

distribution.  It makes some sense that this is often identified, as GLOO almost uniformly produces the 

highest thresholds.  When no events are observed, the highest thresholds will strictly dominate lower 

ones, since contribution to global FSS is then solely determined by false alarm rate.  The one region that 

is consistently identified as needing adjustment is the Mid-Atlantic region.   In the first, third, and fourth 

segments, the non-offsetted EXP distribution is identified as maximizing forecast skill.  For the second 

segment, where Tropical Storm Lee is absent from the training data, higher thresholds associated with 

the GNO distribution are selected instead.  Many of the adjustments from Atlas appear in three out of 

four segments, excluding the one segment where a major extreme rainfall occurred in the region.  
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Examples of this include the eastern Colorado flooding of September 2013, which occurred during 

segment 4; the other three segments adjust to higher thresholds in association with the GNOO or GLOO 

fits. The Montana flooding of August 2014 is another example; Atlas thresholds apply to this region in 

segment 4, but higher GPAO or PE3O thresholds are deemed best when this event is included for the 

other three segments.  Montana did experience two events of significance, the other occurring during 

segment 1 (spring 2010); it is of note that this did not result in an adjustment of thresholds in segment 

4.  Another location of interest is in the southeast US in the vicinity of the Tennessee valley.  This region 

was experienced several major events during the verification record: the historic southeast floods of 

September 2009 (Segment 1), the similarly impactful flooding in and near Nashville in May 2010 

(Segment 1), Tropical Storm Lee during September 2011 (Segment 2), and several slightly less impactful 

events.  The results of verification over segment 1 resulted in an adjustment to the WEIO fit for segment 

2 and the PE3O for segment 4.  Another area of note is eastern Florida, which is adjusted to the GLOO fit 

in all but segment 3 in association with Tropical Storm Debby, which affected the region during that 

time.  

Bulk cross-validation verification for the NSSL-WRF is presented in Figure 4.11.  The impact of 

using the model thresholds selected here is negligible for the 1- and 2-year RPs.  The change is generally 

positive, but by less than 1% and the change is not statistically significant.  At the 5-year RP, a 2-3% 

improvement in aggregated FSS is observed at all evaluation radii; at most of the evaluation radii, this 

improvement is not found to be statistically significant, but it is significant at a few of them.  At the 10-

year RP, thresholds from the algorithmically determined best RSD fits enhance forecast skill by 3-5%, 

with more skill improvement witnessed at the lower evaluation radii.  Here, the improvements are 

found to be statistically significant at all evaluation radii.  The improvement is even larger at the 25-year 

RP- approximately 5-6% depending on the evaluation radius chosen- but due to the decreased number 

of events at this RP, the uncertainty associated with skill comparisons corresponding increases, and this 
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improvement is not statistically significant.  The 50-year RP, the highest evaluated for the NSSL-WRF, 

saw a lesser improvement over the Atlas thresholds than compared with the 25-year RP, with 1-3% 

improvements observed.  With the very large error bars in association with the rarity of the event, none 

of these improvements were found to be statistically significant. 

Lastly for the NSSL-WRF graphical CONUS-wide verification is presented in Figure 4.12.  At the 2-year RP 

(4.12a), no major differences are seen, but slight improvements in skill are observed in the upper Mid-

Atlantic/southern New England and over much of the high plains, but is degraded in Virginia and vicinity, 

over much of the Ohio Valley, and over eastern Colorado and vicinity.  At the 5-year RP (4.12b), the Mid-

Atlantic/New England area skill enhancement is substantially further improved, and new areas of 

improvement are seen in Louisiana from northern Georgia through far southwestern Virginia.  The 

degradation in forecast skill seen in Virginia and vicinity for the 2-year RP is greatly alleviated for the 5-

year RP verification.  At the 10-year RP, four major regions of skill improvement are seen: 1) all of the 

Mid-Atlantic corridor and southern New England; 2) the southeast, particularly Georgia, the Carolinas, 

and Tennessee; 3) the high plains in the vicinity of South Dakota; and 4) northern California.  On the 

negative side, forecasts for the Ohio Valley and Colorado Plains regions are significantly harmed by 

applying the identified best RSD fits.  Finally, for the 50-year RP, major improvements are seen in the 

southeast region and over West Virginia, southern Pennsylvania, and western Maryland.  Moderate 

improvements are also retained over northern California.  However, FSS degradations are seen along 

parts of both the Gulf Coast and Atlantic Coast, limiting the potential improvement by applying the 

identified best RSD fits. 

The identified most skillful distributions from cross-validation for the GEFS/R model appear in 

Figure 4.13.  Unlike the NSSL-WRF best fits, which varied considerably across cross-validation segments, 

the identified adjustments here are identical across segments, in part due to the regularization.  Many 
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fewer adjustments are seen in general, with only one region- the Mid-Atlantic- identifying model-

derived thresholds as verifying more skillfully than the Atlas thresholds.  Here, the EXPO fit was found to 

be the most skillful fit over each validation period. 

Figure 4.14 presents bulk GEFS/R verification using the identified best thresholds alongside the 

Atlas threshold based verification.  2-3% improvements are observed at the 2-year RPs over all the 

evaluation radii examined; all of these improvements are found to be statistically significant.  At the 5-

year RP, however, larger improvements of 3-8% are observed with the application of the model RSD fit 

RPTs, with the larger improvements at smaller evaluation radii; these are also found to be statistically 

significant.  Like in the NSSL-WRF verification, the model RPTs improve over the Atlas thresholds even 

more at the 10-year RP, with 12% improvements decreasing to approximately 6% at the largest 

evaluation radii.  In spite of increasing error bars in association with the decreased sample size, these 

improvements are largely found to be statistically significant.  Though the 25-year RP sees the largest 

skill improvements, with mostly 10-25% enhancements over the Atlas thresholds, the uncertainty 

associated with the sample size renders the results not statistically significant.  Though noisy, similar but 

still insignificant improvements of mostly 10-25% are seen at the highest RPs, 50- and 100-years.  This 

behavior at the higher RPs is consistent with what is seen in the NSSL-WRF. 

Regional FSS changes with the implementation of the model best fits is depicted in Figure 4.15.  

Since the only threshold changes (see 4.13) occurred in the Mid-Atlantic/southern New England region, 

this is the only region that experiences non-zero skill changes.  Slight improvements are seen in forecast 

skill at the 2-year RP in Virginia, increasing to moderate improvements over West Virginia and eastern 

Ohio.  Conversely, moderately negative changes are seen over much of New York and southern New 

England.  The trend continues for the 5-year RP, with two major areas of improvement seen over the 

Virginia/North Carolina coast and in northeastern Ohio complemented by continued degradation in 
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forecast skill to the north.  The pattern is similar but amplified at the 10-year RP, except with forecasts 

over much of Pennsylvania now harmed by the switch to model RPTs.  By the 50-year RP, very large FSS 

improvements are seen for essentially the entire modified region from Maryland south, with moderately 

worse performance over much of Pennsylvania. 

Final application of the developed algorithms over the entire verification period was applied, 

and a portion of those results appears in Figure 4.16.  The final NSSL-WRF verification (4.16a) identifies 

the GLO distribution as the most skillful fit over the Mid-Atlantic region, and the GLOO as the best 

distribution over the northern Great Plains and intermountain northwest.  The GEFS/R verification 

(4.16b) is nearly identical to all of its cross-validation components, with the only adjustment from Atlas 

thresholds being the PE3 and WEI implementation in the Mid-Atlantic region.  The corresponding 

changes to the model precipitation thresholds at the 50-year RP appear in Figure 4.16c and 4.16d for the 

NSSL-WRF and GEFS/R, respectively.  It is evident that the NSSL-WRF adjustments have the effect of 

raising the thresholds moderately in the Montana vicinity, and raising the thresholds slightly in the Mid-

Atlantic.  The GEFS/R, in contrast, corresponds to a slight downward adjustment in the Mid-Atlantic 

thresholds.  These are the grids that would be applied towards evaluating the utility of the algorithm on 

a test sample.   
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Figure 4.1: An example at an arbitrary point comparing DF-FDS and PDS fits to GEFS/R data using 01 

December 1984-09 May 2013 data.  Precipitation accumulations are plotted on a logarithmic scale as 

shown. 
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Figure 4.2: Coefficient of variation obtained by comparing the cross-validation RPT estimates for the 

100-year RP from the EXP distribution.  Panel (a) corresponds to estimates for the NSSL-WRF obtained 

from point-by-point fitting; panel (b) corresponds to the estimates after application of the smoothing 

procedure discussed in-text; panel (c) corresponds to the estimates after additional regionalization step 

discussed in-text; and panel (d) corresponds to GEFS/R estimates without smoothing or regionalization. 
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Figure 4.3: Plot of different regions used for discerning best regional RSD fits; each color indicates a 

distinct region. 
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Figure 4.4: GEFS/R fits for grid points near select cities around CONUS.  Distribution fits are from PDS-

derived thresholds for GEFS/R control run thresholds for initializations from 01 December 1984 to 09 

May 2013. 
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Figure 4.5: NSSL-WRF fits for grid points near select cities around CONUS.  Distribution fits are from PDS-

derived thresholds for initializations from 09 June 2009 to 09 May 2013. 
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Figure 4.6: RPTs at the 100-year RP for various RSD fits for GEFS/R smoothed using PDS fits performed 

point-by-point on the point precipitation data. Panels (a)-(i) provide the EXP, GAM, GEV, GLO, GNO, 

GPA, GUM, PE3, and WEI fits relative to the Atlas thresholds at the same RP, respectively.  Fits 

correspond to those excluding the 10 May 2013-30 August 2014 portion of the verification period. 
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Figure 4.7: Same as Figure 4.6, but for the NSSL-WRF. 
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Figure 4.8: RPTs at the 100-year RP for various RSD fits for GEFS/R smoothed using the algorithm 

described in the text. Panels (a)-(i) provide the EXP, GAM, GEV, GLO, GNO, GPA, GUM, PE3, and WEI fits 

relative to the Atlas thresholds at the same RP, respectively.  Fits correspond to those excluding the 10 

May 2013-30 August 2014 portion of the verification period. 
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Figure 4.9: Same as Figure 4.8, but for the NSSL-WRF. 
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Figure 4.10: Identified best distributions for the NSSL-WRF for the four cross-validation trainings.  Panel 

(a) corresponds to the best distributions identified for the first quarter of the verification period using 

thresholds derived from the second, third, and fourth quarters and evaluated over those same quarters.  

Panel (b) is the same as panel (a), except for the second quarter; panel (c) identifies best distributions 

foƌ the thiƌd Ƌuaƌteƌ, aŶd paŶel ;dͿ foƌ the fouƌth.  ͚ATLA“͛ iŵplies the loĐal oďseƌǀatioŶallǇ-derived 

thresholds were deeŵed the ŵost skillful.  DistƌiďutioŶ Ŷaŵes ǁith aŶ ͚O͛ appeŶded aƌe offset ďǇ a 
factor of two, meaning, for example, that the 50-year RPT estimates from that distribution are used for 

the 25-Ǉeaƌ ǀeƌifiĐatioŶ.  ͚N/A͛ ǁould iŶdiĐate that the ĐhoiĐe of distribution was immaterial for that 

location.   
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Figure 4.11: NSSL-WRF Fractions Skill Score verification for 1-50 year return periods.  Top panel shows 

actual FSSs; solid lines depict verification using the ATLAS thresholds, while dash lines correspond to 

verification against the model climatology derived thresholds.  The bottom panel indicates the percent 

change in FSS, as a function of evaluation radius, by applying the model climatology thresholds.  Error 

bars are 90% confidence bounds obtained by bootstrapping. 
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Figure 4.12: Graphical representation of NSSL-WRF FSS verification by applying model climatology RPTs.  

Differences are with respect to ATLAS threshold-based verification; greens indicate local improvement 

by switching to the model thresholds, reds indicate degradation.  Panel (a) corresponds to the 2-year RP, 

panel (b) to the 5-year RP, panel (c) to the 10-year RP, and panel (d) to the 50-year RP.  All plots 

correspond to verification using an evaluation radius of 40 grid boxes, and over the entire verification 

period, from 09 June 2009-30 August 2014. 
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Figure 4.13: Same as Figure 4.10, except for the GEFS/R. 
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Figure 4.14: GEFS/R Fractions Skill Score verification for 2-100 year return periods.  Top panel shows 

actual FSSs; solid lines depict verification using the ATLAS thresholds, while dash lines correspond to 

verification against the model climatology derived thresholds.  The bottom panel indicates the percent 

change in FSS, as a function of evaluation radius, by applying the model climatology thresholds.  Error 

bars are 90% confidence bounds for the skill difference obtained by bootstrapping. 
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Figure 4.15: Graphical representation of GEFS/R FSS verification by applying model climatology RPTs.  

Differences are with respect to ATLAS threshold-based verification; greens indicate local improvement 

by switching to the model thresholds, reds indicate degradation.  Panel (a) corresponds to the 2-year RP, 

panel (b) to the 5-year RP, panel (c) to the 10-year RP, and panel (d) to the 50-year RP.  All plots 

correspond to verification using an evaluation radius of 40 grid boxes, and over the entire verification 

period, from 09 June 2009-30 August 2014. 
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Figure 4.16: Final identified best RSD fits and corresponding thresholds trained and evaluated over the 

full verification period.  Panel (a) corresponds to NSSL-WRF verification best RSD identification, and (b) 

the same for the GEFS/R.  Panels (c) and (d) correspond to the precipitation threshold comparison vs. 

Atlas thresholds at the 50-year return period for the NSSL-WRF and GEFS/R, respectively. 

 

4.3 Discussion & Conclusions 

Applying model precipitation climatologies toward locally extreme rainfall forecasting was able to 

improve forecast skill over simply using the true predictand thresholds derived from observations.  The 

results were especially robust at medium RPs of 5 and 10 years, where the improvement was generally 

found to be statistically significant.  Larger improvements were generally seen in the GEFS/R, but the 
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uncertainty was also higher in association with the GEFS/R not being able to resolve many extreme 

events reducing the effective extreme precipitation event sample size for that model.  

  There is strong evidence to suggest that the validation of the algorithm presented here suffers 

from insufficient model and verification data.  The region that experienced the most unique extreme 

rainfall events is almost undoubtedly the Mid-Atlantic and New England, with an anomalous number of 

tropical cyclones impacting the region during the verification period. This is also one of the areas where 

the biggest average improvement in skill is observed.  The methodology used here does extrapolate 

thresholds for very rare events from the characteristics and distribution of more common precipitation 

forecasts, but it is very difficult to discern differences in the skill of using particular thresholds in 

forecasting when there is no relevant event to verify against.  Often times, the higher thresholds end up 

being deemed most skillful, since when there are no events in the record, the highest thresholds are the 

best since they produce the fewest false alarms.  From the northeast US, we see that when there are 

multiple events to compare against, thresholds are often able to be sensibly adjusted from the Atlas 

thresholds to enhance model predictive skill.  The extrapolation from distant points to local verification 

struggles between being too small to bring in new useful forecast information, and being too large such 

that the local verification results are no longer representative of the true model behavior at that 

location.  Unfortunately, model data will almost always fall well short of this data length objective, and 

the verification period length issue is likely to remain in future work in this realm.  However, GEFS/R 

data has a uniquely long consistent model data record- now over 30 years.  Stage IV precipitation 

analysis was used for verification in this study, which limited even the extended verification period back 

to only 01 January 2002.  There are coarser precipitation analyses, such as the Climate Prediction 

CeŶteƌ͛s UŶified PƌeĐipitatioŶ AŶalǇsis, pƌoǀided at Ϭ.Ϯϱ°-0.25° grid spacing.  This is much coarser than 

the Stage IV analysis, the grid on which Atlas 14 thresholds are calculated, which may render verification 

of extreme precipitation using this dataset unreliable and inaccurate.  However, if verification can be 
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reliably obtained with a coarser dataset (Stage IV is not without its own major problems), then using this 

entire record may be able to significantly enhance identification of the most skillful thresholds.  This may 

be a fruitful avenue of future research to pursue, though it may suffer from a lack of generalizability in 

operations, since no other model has a constant data record nearly as long.  It would also be worth 

exploring regionalization in the threshold selection phase to appropriately enhance local verification 

with threshold-specific model performance at more distant venues where possible.   

The verification period length is also too short relative to the event frequency to be able to draw 

many firm conclusions about algorithm skill.  At the high RPs, error bars are so large that 15-20% 

improvements seen at the 25-year RP in the GEFS/R are insufficient to yield statistical significance; there 

simply are not enough events to be able to tell, in light of the fact that changing the thresholds does not 

uniformly enhance forecast skill.  A longer verification record could appreciably reduce the skill 

uncertainty and allow a more definitive acceptance or rejection of the proposed algorithm for high RP 

exceedance forecasting.  At its face, a 10+% improvement in deterministic forecast skill is quite 

encouraging, and could easily add tremendous value to end users.  The statistically significant 

improvements seen for the 5- and 10-year RPs for both the GEFS/R and NSSL-WRF, in addition to the act 

that positive improvements are seen for the vast majority of RPs and evaluation radii provide further 

evidence that the algorithm can enhance locally extreme precipitation forecast skill. 

Several additional avenues of further research in this area persist.  It is certainly of interest to 

examine the applicability of the technique proposed here to the 6-hour accumulation interval, which has 

Ŷot ďeeŶ eǆploƌed heƌe.  AdditioŶallǇ, the GEF“/‘͛s foƌeĐast skill suffeƌs pƌiŵaƌilǇ fƌoŵ its iŶaďilitǇ to 

resolve many heavy precipitation features, and, from chapter 3, the NSSL-W‘F͛s ďiases ǁeƌe ƌelatiǀelǇ 

tame relative to some other CAMs.  Perhaps model climatologies can add more skill, even with a shorter 

training record, applied  to a model without the inherent deficiencies of the GEFS/R, but with more 
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pronounced biases than  the NSSL-WRF, such as the NAM-NEST.  This would be of interest for further 

research as well. 
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5 Techniques for Locally Extreme Rainfall Post-Processing: Model Development and Training 

 

 

 

5.1 Methods 

This investigation will explore several classes of algorithms for using raw NWP guidance to 

generate a probabilistic forecast.  The first class will be termed Naïve Algorithms (NIVAs), so termed 

because they assume no knowledge about the characteristics of any of the ensemble members used to 

generate the FPs; they simply take each forecast at face value.  Most ensemble-based probabilistic 

guidance generated in real time is generated by NIVA methods.  Making no specific assumptions about 

ensemble members has both benefits and drawbacks.  It allows the use of a very large amount of model 

guidance, and thus a large number of ensemble members, to inform the FPs, since no prior training or 

eǀaluatioŶ of eŶseŵďle ŵeŵďeƌs is ƌeƋuiƌed aŶd thus ŵodels ĐaŶ ďe used eǀeŶ if theǇ͛ƌe Ŷeǁ oƌ 

recently modified.  As discussed in Section 2.3, a large number of ensemble members may be required 

to appƌopƌiatelǇ gauge the eǆtƌeŵe PDF tail. TheǇ͛ƌe also siŵple to applǇ aŶd iŶteƌpƌet, aŶd siŶĐe Ŷo 

model training is required, NIVA application is computationally inexpensive.  On the negative side, NIVAs 

make no attempt to correct for model biases, and so systematically biased input will yield biased, 

unreliable FPs.  Since NIVAs make no effort to discern model skill, the addition of poor, unskillful 

guidance will substantially degrade the performance of the output FPs.  On a related note, the FPs will 

also be overly influenced by redundant forecast data.  This may appear to be more of a theoretical issue 

than a practical one, but many operational EPSs are only IC-perturbed and systematically 

underdispersive, resulting in member solutions that are inappropriately correlated.  Using many 

members from such an EPS to inform these FPs may thus overemphasize EPS-based solutions compared 

to deterministic runs which may be equally or more skillful.  No direct calibration of FPs may result in 

them being unreliable (see Sections 2.3 and 2.7).  These algorithms also inherently make no effort to 
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discern relationships between other forecast variables and observed precipitation, and useful 

information may be contained in these relationships.  

The second FP-generation algorithm class will be termed Intermediate Algorithms (INTAs).  

These algorithms operate like NIVAs, except that ensemble members are weighted based on their 

historical performance.  Single weights may be assigned to each ensemble members, or weights may be 

allowed to vary based on location and/or potentially time (of year or, if applicable, of day).  This 

approach has the capability of alleviating many of the aforementioned problems associated with NIVAs.  

Less skillful models may be assigned lower weights so as not to degrade FP estimates; further, 

redundant (highly correlated) members may be assigned lower weights so that the forecast information 

each contains is not overrepresented.    Not all problems are solved, however: there is still no 

mechanism in place to address model bias, and no FP calibration in place to ensure forecast reliability.  

New issues are introduced as well.  Weighting members requires estimates of model skill, which 

requires historical model data to verify.  This limits the amount of forecast guidance that can inform the 

FP estimation, since new models, models that have recently been changed and have acquired new 

biases and skill characteristics, and models with limited or no access to historical model data become 

difficult to use.  Weights may ostensibly be assumed or crudely estimated, but poor performance 

estimates or assumptions can result in worse results than having assumed no weights at all.  

The last FP-generation algorithm class will be termed Advanced Algorithms (ADVAs).  The aim of 

this class is to directly derive historical relationships between model predictors and the forecast 

predictand of interest, which in this case is the exceedance probability for various RP thresholds.  Unlike 

NIVAs and INTAs, ADVAs do not take the NWP output at face value, and can theoretically correct for 

meteorological dependent biases, displacement biases, and other issues in the underlying models 

comprising the ensemble members that simpler algorithms lack the complexity to achieve.  These 
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methods also much more directly calibrate the FPs, and should ostensibly result in a more reliable PFS 

than results emerging from either of the previous two algorithm classes.  The primary drawback of this 

method is that deriving these relationships requires a long, consistent, robust record of historical model 

data; this is especially true here when the forecast predictand is, by definition, a (very) rare event.  It is 

unknown exactly how long of a data record is required to accurately discern such relationships, but it is 

certainly sufficiently long to, at a minimum, drastically reduce the number of models that can be 

realistically used, since relatively few models run for several years without changes that significantly 

impact the necessary predictor-predictand relationships.  ADVAs can also be rather computationally 

expensive to train, at least relative to the other two approaches; however, relative to a single high 

resolution dynamical model, the cost is still quite low and does not appear to be a substantial 

consideration in any operational setting.  The next subsections will explore some of the algorithmic 

details that will be explored. 

5.1.1 Naïve Algorithms (NIVAs) 

5.1.1.1 Point Democratic Voting (PDV) 

Consider an ensemble of size n.  For a given location (y,x) and accumulation period AP specified 

by forecast lead time (FL) and accumulation interval (AI), a given ensemble member k͛s QPF ŵaǇ ďe 

denoted ܳ௬௫௞.  The threshold required to be met or exceeded for a specified event of interest to be 

forecasted to occur in the model- in this case, the exceedance of an N-year precipitation RP- may be 

denoted ߠே೤ೣሺೖሻ.  The subscript k in parentheses is added to indicate that the threshold may optionally 

vary as a function of ensemble member if Quantile Mapping Bias Correction (QMBC) as described in 

Chapter 4 is applied to the members.  A binary predictand E may then be defined to describe whether an 

ensemble member k is forecasting the event of interest at point (y,x): 
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௬௫௞ܧ = {ͳ            ܳ௬௫௞ ൒ ே௬௫ሺ௞ሻͲ            ܳ௬௫௞ߠ <  ே௬௫ሺ௞ሻߠ
The PDV method then simply generates FPs by taking the mean forecast E at each point: 

ܨ ௬ܲ௫ሺܸܲܦሻ =  ∑ ௬௫௞௞ܧ ݊  

PDV is the traditional ŵethod of deƌiǀiŶg FP͛s fƌoŵ aŶ EP“; ŵost ƌeal-time ensemble FP 

products are generated using the PDV algorithm.  It does have the advantage of being straightforward, 

intuitive, and very inexpensive.  However, as previous authors have elucidated (e.g. Eckel 2003, , there 

are several theoretical issues with PDV probabilities.  Most obviously, the probabilities are unrealistically 

discretized into n+1 bins, when, in reality, true FPs lie continuously on the interval [0,1].  This problem is 

exacerbated at small ensemble sizes where each bin consumes a larger proportion of probability space.  

PDV is known to be overconfident in its probability estimation, biasing to the extremes.  For example, 

when no member forecasts an event to occur, PDV assigns an FP of 0, when in reality, there may very 

well be a small non-zero probability of event occurrence for any finite-sized ensemble.  Lastly, PDV 

makes inefficient use of forecast information; it only considers the binary relation of QPFs to the critical 

threshold ߠே without regard to how close the QPF lies to the threshold.  In general, forecasts farther 

from the threshold are known to be more confident than those which are close (with respect to a 

threshold of 10mm, typically a 100mm forecast results in a more confidence in a 10mm exceedance 

than a 12mm QPF).   

5.1.1.2 Point Uniform Ranks (PUR) 

Point Uniform Ranks attempts to alleviate some of the glaring issues with PDV by using the 

quantitative (as opposed to binary) Q-Θ ƌelatioŶship to geŶeƌate ĐoŶtiŶuous FP estiŵates and reduce 

some of the associated FP overconfidence.  Instead of just using the fraction of members exceeding Θ, 

PUR adjusts the PDV FP based on how close the surrounding members are to the threshold.  Here, the 
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surrounding members at a point (y,x) are defined to be the ensemble member with the highest ܳ௬௫ not 

exceeding ߠே೤ೣ  and the member with the lowest ܳ௬௫ exceeding ߠே೤ೣ.  These will be denoted ܵܯ௟௢௪ and ܵܯℎ௜௚ℎ, respectively.   

Before calculating any FPs, ensemble member QPFs are normalized with respect to their local 

critical thresholds: ܳ′௬௫௞ = ொ೤ೣೖ�೤ೣሺೖሻ.  This is done both to appropriately rescale members in the event that 

different local thresholds are applied when member-by-member QMBC is applied, but also because the 

ratio tends to have a better correspondence with the departure from a critical threshold for positive 

definite variables than would an absolute difference.  An event and the surrounding members are 

accordingly redefined as: 

௬௫௞′ܧ = {ͳ            ܳ′௬௫௞ ൒ ͳͲ            ܳ′௬௫௞ < ͳ ௟௢௪′ܯܵ ; = ܳ௬௫ௌெ೗೚ೢߠே௬௫ௌெ೗೚ೢ ; ℎ௜௚ℎ′ܯܵ  = ܳ௬௫ௌெℎ೔೒ℎߠே௬௫ௌெℎ೔೒ℎ  

Following the PUR goal to adjust PDV FPs based on member proximity to the critical threshold, it should 

never be the case that the FP(PUR) adjustment results in assigning a probability higher or lower than the 

surrounding PDV-based probabilities.  For example, if two of ten ensemble members forecast an event, 

resulting in FP(PDV)=0.2, FP(PUR) should never be less than 1/10 or greater than 3/10, as this would 

imply a different number of members forecasting the event. There are always n+1 possible PDV 

probabilities, resulting from 0 to n members forecasting the event of interest.  According to these 

principles, FP(PUR) should be FP(PDV)*
௡௡+ଵ + 

ଵ௡+ଵ*some measure of proximity to ܵܯ′ℎ௜௚ℎ relative to ܵܯ′௟௢௪.  IŶ the ĐoŶteǆt of ƌatios, as “M͛s aƌe defiŶed, deteƌŵiŶiŶg pƌoǆiŵitǇ iŵplies the use of 

logarithms rather than absolute difference (10 being equally close to 1 as 0.1, for example).  The set of 

surrounding members (SMs) is said to be deficient when no member satisfies the criterion of either the 

SMlow or SMhigh definition, or equivalently, if all or no member(s) exceeds the critical threshold.  When 

the SMs are not deficient, the PUR FP may be readily assigned: 



155 

 

ܨ ௬ܲ௫ሺܷܴܲሻ =  ∑ ௬௫௞௞݊′ܧ + ͳ + ͳ݊ + ͳ log ℎ௜௚ℎlog′ܯܵ ௟௢௪′ܯℎ௜௚ℎܵ′ܯܵ  

When the SMs are deficient, the same formula cannot be applied, since the latter term on the right 

hand side is not defined.  It is first necessary to define the desired FP behavior in these intervals of 

probability space.  First, it is intuitively desirable that ܨ ௬ܲ௫(ܷܴܲ| ∀௞ሺܳ௬௫௞ = Ͳሻ൯ = Ͳ; when no member 

forecasts any precipitation at all, the FP reduces to 0.  In the event of no member forecasting 

exceedance, it is desirable that as the highest QPF member approaches the critical threshold, the FP 

approaches 
ଵ௡+ଵ to ensure no discontinuity in probability space: ܨ ௬ܲ௫(ܷܴܲ| lim→ଵ ௟௢௪൯′ܯܵ = ଵ௡+ଵ.  

Similarly, when all members forecast exceedance, as the lowest QPF member approaches the critical 

threshold, the probability should reduce to 
௡௡+ଵ: ܨ ௬ܲ௫(ܷܴܲ| lim→ଵ ℎ௜௚ℎ൯′ܯܵ = ௡௡+ଵ.  Lastly, although 

loosely defined, it is desirable that the change on the intervals [0,1/(n+1)] and [n/(n+1),1] is continuous, 

ŵoŶotoŶiĐ, aŶd pƌopoƌtioŶal as “M͛low aŶd “M͛high ǀaƌǇ ďetǁeeŶ [Ϭ,ϭͿ aŶd [ϭ,∞], ƌespeĐtiǀelǇ.  Right-

Skewed Distributions (RSDs) (see section 2.4) may be reasonably and appropriately applied to ensure 

this smooth transition, and to ensure the 0 FP limit when all QPFs are 0, an RSD defined only for 

nonnegative values must be employed.  The Gamma Distribution meets these criteria and is chosen 

here.  The Gamma CDF is reproduced here in the nomenclature of this chapter from section 2.4.3 for 

convenience: 

;ݔఊሺܨ ,ߙ  ሻߚ = ,ߙሺߛ  ሻߙሻ�ሺݔߚ = ∫ ∫ఉ௫଴ݍఈ−ଵ݁−௤݀ݍ ଴∞ݍఈ−ଵ݁−௤݀ݍ  

The Gamma CDF parameters may be estimated using the method of moments (MoM; section 2.4.4.1) 

and the ensemble member QPFs:  
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௬௫̂ߙ = ܳ′௬௫̅̅ ̅̅ ̅̅ ଶݏொ′೤ೣଶ ௬௫̂ߚ            = ܳ′௬௫̅̅ ̅̅  ொ′೤ೣଶݏ̅̅

Combining all of the above yields the following equation summarizing PUR-based FP estimation: 

ܨ ௬ܲ௫ሺܷܴܲሻ =
{   
  
   ( ͳ݊ + ͳ) ͳ − ;ఊሺͳܨ ௬௫̂ߙ  , ௬௫̂ሻͳߚ  − ;௟௢௪′ܯఊሺܵܨ ௬௫̂ߙ  , ௬௫̂ሻߚ  ௬௫௞௞ܧ∑         = Ͳ∑ +௬௫௞௞݊ܧ ͳ + ͳ݊ + ͳ log ℎ௜௚ℎlog′ܯܵ ௟௢௪′ܯℎ௜௚ℎܵ′ܯܵ             Ͳ ௬௫௞௞ܧ∑> < ݊

݊݊ + ͳ + ( ͳ݊ + ͳ) ቆͳ − ;ఊ(ͳܨ ௬௫̂ߙ  , ;ℎ௜௚ℎ′ܯܵ)ఊܨ௬௫̂൯ߚ  ௬௫̂ߙ  , ௬௫̂൯ቇߚ  ௬௫௞௞ܧ∑       = ݊
 

A schematic comparing the PDV and PUR methods is shown in Figure 5.1 for visualization.  Eight 

ensemble member forecasts are shown; it is evident how the PUR method (appropriately) reduces the 

foƌeĐast͛s shaƌpŶess. 

 

Figure 5.1: Schematic comparison of the PDV and PUR methods.  PDV forecast quantities are shown in 

red, while PUR forecast quantities are shown on the bottom in blue.  Adapted from Eckel (2003). 

5.1.1.3 Neighborhood Democratic Voting (NDV) 

As previously noted, models often have displacement errors in the location of precipitation 

features.  Both PDV and PUR use only model QPFs collocated with the forecast location, and as such, FPs 
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may be too low when models correctly predict the existence of an extreme precipitation feature, but 

incorrectly displace it in space.  They may conversely be too high over locations where the model 

solutions forecast an event, since PDV and PUR methods assume complete confidence in the feature 

location predicted in the model.  Nearby, or neighboring, points often have very similar characteristics 

and due to the unpredictability of extreme precipitation, forecast values at these points can often serve 

as nearly or even equally good forecasts as the QPF collocated with the forecast point.  This notion- 

using neighborhoods of radius r about the forecast location and, in a sense, forming an ensemble of 

forecasts from a single model run in so doing- has been used effectively in previous applications in the 

literature (e.g. Theis et al. 2005, Schwartz et al. 2010), and will be explored in more detail here. 

Neighborhood Democratic Voting (NDV) is a simple extension of PDV by applying neighborhoods 

to each of the original ensemble members.  NDV probabilities are a function of the neighborhood radius 

r; the choice of r can substantially affect FPs and must be tuned with care.  Under NDV, an event for an 

ensemble member may be redefined as: 

௬௫௞′ܧ = ∑ ∑ ௔௕௞௫+௥௕=௫−௥௬+௥௔=௬−௥ܧ ଶݎ  

And the associated FP becomes: 

ܨ ௬ܲ௫ሺܸܰܦሻ =  ∑ ௬௫௞௞′ܧ ݊  

NDV still produces discrete probabilities like PDV, but the number of FP options increases from n+1 to 

nr
2, often two orders of magnitudes larger as a function of the increase in effective ensemble members.  

This greatly alleviates the discretization problem and results, at least theoretically, in more appropriately 

smoothed probability fields that more closely reflect sampling from the true PDF.  Like PUR, NDV 
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theoretically reduces forecast sharpness when it is appropriate to do so, and substantially improves 

forecast reliability. 

NDV does have a few drawbacks.  NDV can incorrectly smooth the FP field when spatial 

uncertainty on a precipitation feature is low.  It can also inappropriately influence FPs by applying 

forecasts from a neighboring point that dos not exhibit similar characteristics to the forecast location.  

This can occur in complex terrain, near bodies of water, or when the neighborhood radius becomes too 

large.  Appropriately tuning the neighborhood radius requires performing cross-validation or some 

similar technique.  Doing this requires the availability of historical forecast data, and can be 

computationally expensive to accurately tune. NDV is also more computationally expensive than PDV in 

real-time forecasting, but this is negligible in most settings. 

5.1.1.4 Neighborhood Uniform Ranks (NUR) 

Analogous to NDV, Neighborhood Uniform Ranks (NUR) is a simple neighborhood extension to 

the PUR algorithm.  NUR can theoretically combine some of the individual advantages presented by the 

PUR and NDV algorithms.  However, implementation of the neighborhood extension is not quite as 

straightforward as with democratic voting; some design choices must be considered.  Unlike NDV, 

whose FP estimates are not altered with the addition of redundant data so long as such data is 

proportionally sampled (such as taking adjacent grid points which are so correlated so as not to provide 

sufficient new forecast information), in the limit as number of effective ensemble members gets large, 

NUR FPs reduce to NDV FPs, thereby eliminating some of the PUR-based advantages.  In order to 

appropriately retain these, it is important that each ensemble member be sufficiently uncorrelated with 

other members so as to be introducing new information to the ensemble.  To accomplish this, in 

addition to a neighborhood radius r, a spacing s between sampled grid points may be instituted.  This 
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also must be tuned, most effectively through cross-validation, and can thus be more expensive to 

implement.   

There are three basic approaches to applying neighborhoods to PUR.  The first approach applies 

a neighborhood to each ensemble member individually, forming n ensembles of size ቀଶ௥௦ + ͳቁଶ.  PUR is 

then applies to each ensemble member individually to form member-by-member FPs.  These are then 

averaged to generate the final FP; this method is termed Deterministic Neighborhood Uniform Ranks 

(DNUR).  The second approach treats each neighborhood point separately, with the point-by-point QPFS 

of the diffeƌeŶt ŵodels foƌŵiŶg the eŶseŵďle ŵeŵďeƌs of eaĐh ͚ŵiŶi-eŶseŵďle͛.  This thus geŶeƌates 

ቀଶ௥௦ + ͳቁଶ ensembles of size n.  Applying PUR to each mini-ensemble yields ቀଶ௥௦ + ͳቁଶ FPs; these are 

averaged to yield the final FP.  This method will be denoted Neighborhood Point Uniform Ranks (NPUR).  

Finally, the last approach, called Ensemble Neighborhood Uniform Ranks (ENUR), places all candidate 

forecasts in the same ensemble, forming a single ensemble of size ݊ ቀଶ௥௦ + ͳቁଶas in NDV.  PUR is applied 

to this ensemble to determine the FP.  It should also be noted that ENUR, which operates on the largest 

size ensemble, is therefore the fastest to converge to NDV. 

5.1.2 Intermediate Algorithms (INTAs) 

Unlike NIVAs, INTAs relax the assumption that ensemble member solutions are equally likely to 

verify as truth.  This is not a good assumption when ingesting guidance from a vast array of different 

data sources; models have different resolutions, numerics, physics, and initializations which all affect 

model skill and can determine whether a model can simulate certain extreme precipitation features at 

all.  As such, developing weights to quantify the discrepancy in predictive power between the models 

comprising the ensemble has the potential to significantly improve FP-derived ensemble skill.  

Determining appropriate weights requires only a historical record of model performance for each 
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member comprising the ensemble; simple binary forecast and observed hit/miss records are all that is 

required for this training.  So, though a longer data record is still advantageous in improving the skill 

assessment of the ensemble members, in general it is hypothesized that acceptable weights may be 

obtained using less historical data than is required for ADVAs, discussed below.   

A multitude of possible ways exist to weight the ensemble members.  It is instructive in 

designing a weighting scheme to considered desired behavior, particularly in limiting cases.  Ultimately, 

it is desirable that member weights are a function of two factors: 1) how skillful is the model, and 2) how 

much new, independent forecast information is the member bringing to the PFS?  Intuitively, more 

skillful models should be allocated more weight, and those models which are introducing more new 

information- information which is not redundant with that provided by another member- should also be 

given more weight.  Considering the limiting cases of member skill, a perfect model should receive all of 

the weight; if one member is perfect, there is no reason to consider any guidance, as it can only degrade 

forecast skill.  Conversely, a model with no skill should receive no weight, since its forecast by definition 

has no bearing on the potential verification.  With regard to limiting cases for new forecast information, 

inserting a carbon copy of another ensemble member, which thus introduces no new forecast 

information to the PFS, should have no effect on the total weight of that model run.  Using historical 

correlation coefficient between ensemble member precipitation time series as a proxy for the new 

information introduced by an ensemble member, it follows that the insertion of a carbon copy of an 

existing member (which then have a correlation coefficient of unity) should result in both the original 

member and its copy having their weights accordingly halved so as to preserve the weight of the 

underlying model in the ensemble.  Applying these concepts gives rise to the following equations for an 

ensemble member m͛s ǁeight iŶ an ensemble of size n, with α aŶd β eǆpoŶeŶts tuŶaďle ǀia Đƌoss 

validation: 
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௖ܹ௢௥௥೤ೣ೘భ೘మ = ͳ.Ͳ − ,ݕଵሺ݉)ݎݎ݋ܿ ,ݔ : ሻ,݉ଶሺݕ, ,ݔ : ሻ൯ఈʹ  

௖ܹ௢௥௥೤ೣ೘ =∏ ௖ܹ௢௥௥೤ೣ೘ೖ
௡
௞=ଵ  

௙ܹ௦௦೤ೣ೘ = ͳ.Ͳሺͳ.Ͳ − ௬௫೘ሻఉܵܵܨ − ͳ.Ͳ 

ܹ′௬௫೘ = ௖ܹ௢௥௥೤ೣ೘ ௙ܹ௦௦೤ೣ೘  

௬ܹ௫೘ = ܹ′௬௫೘∑ ܹ′௬௫ೖ௡௞=ଵ  

5.1.3 Advanced Algorithms (ADVAs) 

ADVAs have the unique ability to directly calibrate FPs and to directly correct for model biases: 

displacement biases, quantitative biases, and meteorological biases and errors.  They can be expensive 

to train, much more so than NIVAs or INTAs, and accurate calibration and bias correction requires a long 

consistent data record of both observations and model simulations for each ensemble member.  ADVA 

algorithms can be quite complex and unintuitive.  The ADVA techniques examined here are described in 

detail in Section 2.6; please refer there for details about algorithm design and the parameters that 

require tuning in each case. 

5.2 Results
4
 

Figure 5.2 shows FSS results for DV methods at a variety of evaluation and neighborhood radii, 

and for different ensemble compositions.  It should be noted that the 1 member ensemble corresponds 

to the inclusion of just the NSSL-WRF in the ensemble, with increasing ensemble sizes including 

                                                           
4 Results for the research described in this chapter are still forthcoming.  Cross-Validation training and 

tuning is incomplete; results are presented to the extent available.) 
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additional GEFS/R members, beginning with the control member.  There are numerous important 

aspects to glean from inspection of this figure.  One apparent observation is the aforementioned 

downside of NIVAs: excessively adding new information with positive, but lower skill than the existing 

forecast information will degrade system performance.  This is seen here by inspecting FSSs as a 

function of ensemble composition.  Regardless of the neighborhood or evaluation radius examined, the 

same general trend is observed.  Adding the control member to the ensemble improves forecast skill 

over just using the NSSL-WRF; having no GEFS/R members in the ensemble, the insertion of one adds 

considerable new forecast information to the ensemble and skill is enhanced in spite of the inferior skill 

of the GEFS/R control member to the NSSL-WRF.  However, adding subsequent GEFS/R members, each 

of similar skill to the control run (see Figure 5.3), begins to degrade forecast system skill back towards 

the skill of an individual deterministic GEFS/R member, since the weight applied to GEFS/R is continually 

increased with the addition of each new member.  Thus, when applying a NIVA in a PFS, it is essential 

that care is applied to avoid needlessly degrading system skill with the addition of redundant or inferior 

forecast information.  At the highest neighborhood radii, even adding one GEFS/R member degrades 

forecast skill at the lowest evaluation radii (Figure 5.2a). 

A second important observation is the impact of applying neighborhoods. The pattern is 

strikingly similar to the behavior as a function of ensemble composition.  Changing from PDV to NDV 

with a small neighborhood radius, for example 10 grid boxes, considerably enhances PFS skill.  However, 

at some larger radius, the trend reverses, and continuing to increase neighborhood radius harms PFS 

skill.  Among the neighborhood radii examined, for small ensemble compositions, skill was maximized at 

a neighborhood radius of 20 grid boxes, while for the larger ensembles, a radius of 10 optimized results.  

There are two likely reasons that higher neighborhood radii are more effective at smaller ensemble 

sizes. First, here, smaller ensemble size indicates a higher proportion of forecast information coming 

from the NSSL-WRF, which almost certainly exhibits different spatial bias characteristics than the 
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GEFS/R.  Further, owing to its smaller horizontal grid spacing, resolves more precipitation features, and 

thus expanding the neighborhood radius yields inclusion of more new forecast information for the NSSL-

WRF than the GEFS/R.  Secondly, at larger ensemble sizes, the PFS has already included collocated 

forecasts from new model simulations that are often- at least in expectation- more likely to verify as 

truth than some forecast value that is never forecasted in collocation with the forecast point.  Increasing 

the Ŷeighďoƌhood ƌadius foƌ these laƌge eŶseŵďles thus eǆpeƌieŶĐes a ͞satuƌatioŶ effeĐt͟ of soƌts; ďǇ 

virtue of the larger ensemble size, you already have ample and sufficient forecast information to work 

from, and the inclusion of more distant points that are less likely to verify as truth and thus of inferior 

skill will inevitably result in a decline in overall skill.  At the highest neighborhood radii, NDV actually 

underperforms PDF as a result of these effects. 

Lastly, it is important to note the skill effects as a function of evaluation radius.  Because the 

application of neighborhoods does not actually change the total probability, instead simply acting to 

redistribute it, the effect of neighborhoods at the large evaluation radii are small since the effects of 

probability redistribution are small (the redistributed probability still gets summed in the same box).  At 

small evaluation radii, however, where probability redistribution more often affects what probability is 

included in each evaluation box, the effects of neighborhood application are large.  This can be seen in 

Figure 5.2, where in panel (a) at an evaluation radius of 4 grid boxes, changes from the deterministic 

NSSL-WRF forecasts are as large as 25%, but at the larger 40 grid box radius in panel (d), changes are no 

larger than 8%.  It should also be noted that optimal neighborhood radius changes as a function of 

evaluation radius.  As noted above, at the lowest 4 grid box evaluation radius (Figure 5.2a), the optimal 

neighborhood radius was 10 or 20, depending on ensemble size.  However, at the 40 grid box radius as 

seen in Figure 5.2d, higher 30 or 20 grid box neighborhood radii were found to maximize forecast skill.  

In contrast to NDV, UR does act to directly alter, rather than simply redistribute, probability, and thus 

the implications for PUR and NUR in contrast to PDV are different than seen with NDV here.   
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Figure 5.2: Fractions Skill Score differences compared against the deterministic NSSL-WRF, expressed as 

a percent change.  Panel (a) corresponds to a 4 grid box evaluation radius, (b) to a 16 grid box evaluation 

radius, (c) a 28 grid box evaluation radius, and (d) a 52 grid box evaluation radius.  The ͞ϭ ŵodel͟ 
column corresponds to forecasts just based on the deterministic NSSL-WRF model, with increasing 

model numbers including additional members of the GEFS/R, beginning with the control member.  

Neighďoƌhood ƌadii oŶ eaĐh paŶel͛s oƌdiŶate aǆis ĐoƌƌespoŶd to Ŷeighďoƌhood gƌid ďoǆ ƌadius.  The dark 

contour denotes the 0% change line.  
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Figure 5.3: Fractions Skill Score comparison of the deterministic models used in this study (also the 

forecast obtained by PDV on just that one model).  The dark blue corresponds to verification on the 

GEFS/R control, light blue for the NSSL-WRF, and grays correspond to other members of the GEFS/R. 

 

Reliability diagrams themselves do not provide an especially effective mechanism to 

quantitatively compare many different probabilistic forecast systems; visualization is cumbersome (one 

line is necessitated for each forecasting method), and comparison is traditionally performed 

qualitatively.  Nevertheless, forecast reliability, is a highly important property of probabilistic forecasts.  

To aid with reliability analysis and comparison, several summary statistics have been developed. 
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Figure 5.4: An example schematic of a reliability diagram, for reference. ̅݋ corresponds to the 

climatological frequency, f is the reliability curve, and the light gray line is the one-to-one FP=ORF line. 

First, is the reliability skill score (RSS), defined as: 

ܴܵܵ = ͳ.Ͳ − ܴܴܵܵ௥௘௙ = ͳ.Ͳ − ∫ |݂ሺݔሻ − ∫ଵ଴ݔሻ݀ݔሺ݃|ݔ | ௥݂௘௙ሺݔሻ − ଵ଴ݔሻ݀ݔ௥௘௙ሺ݃|ݔ  

Where fref(x) is a reference forecast method, and g(x) refers to the probability density of the forecast 

system assigning FP x.  By definition then, ∫ ݃ሺݔሻ݀ݔଵ଴ = ∫ ݃௥௘௙ሺݔሻ݀ݔଵ଴ = ͳ. 

Second, is the reliability bias score (RBS), defined as: 
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ܵܤܴ = −∫ ሺ݂ሺݔሻ − ଵݔሻ݀ݔሻ݃ሺݔ
଴  

Last, is the reliability confidence score (RCS), defined as: 

ܵܥܴ = −∫ ሺ݂ሺݔሻ − ሻݔ ݔ − ݔ|̅݋ − |̅݋ ݃ሺݔሻ݀ݔଵ
଴  

Of course, we do not have an actual function specifying ORF as a function of FP.  Instead, bins are used, 

and the statistics are approximated by means of a Riemann sum: 

ܴܵܵ = ͳ.Ͳ − ∑ ሺ݅ሻ൯ݔ̅)݂̅| − ሺ݅ሻ|௡௜=ଵݔ̅ ∑ሺ݅ሻݔ∆ሺ݅ሻ൯ݔ̅)ܩ | ௥݂௘௙̅̅ ̅̅ ሺ݅ሻ൯ݔ̅)̅ − ሺ݅ሻ|௡௜=ଵݔ̅  ሺ݅ሻݔ∆ሺ݅ሻ൯ݔ̅)௥௘௙ܩ
Where G() is now the probability mass function and Δǆ;Ϳ is the bin width: ∑ ሺ݅ሻ൯௡௜=ଵݔ̅)ܩ = ∑ ሺ݅ሻݔ∆ =௡௜=ଵͳ. 

ܵܤܴ = ሺ݅ሻ൯ݔ̅)݂̅∑− − ሺ݅ሻ௡ݔ̅
௜=ଵ  ሺ݅ሻݔ∆ሺ݅ሻ൯ݔ̅)ܩ

ܵܥܴ = −∑ቀ݂̅(̅ݔሺ݅ሻ൯ − ሺ݅ሻቁݔ̅ ሺ݅ሻݔ̅ − ሺ݅ሻݔ̅|̅݋ − ௡|̅݋
௜=ଵ  ሺ݅ሻݔ∆ሺ݅ሻ൯ݔ̅)ܩ

The schematic drawn in Figure 5.4 could be characterized, assuming |A|=|B| and the FP 

distribution is approximately uniform, as an unbiased, but underconfident; it forecasts FPs too close to 

climatology (̅݋ሻ resulting in ORFs corresponding to near-climatology FPs deviating more from it than the 

FPs.  This would be reflected in the statistics, since, assuming the PMF and bins are fairly symmetrical, 

RBS reduces to an approximation proportional to A + B = 0, indicating no bias, while RCS reduces 

proportionally to approximately -1*(-1*A + B) < 0, indicating underconfidence.  The RS, approximately 

proportional to |A|+|B|, is positive, reflecting that the forecast system is not completely reliable- 

deviations are observed between FP and ORF.  RSS behaves as any skill score- a perfectly reliable 
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forecast system exhibits an RSS of 1, and the reference by definition has an RSS of 0, with smaller RSS 

values indicating less reliability.  RBS has a sign convention such that positive numbers indicate positive 

bias (FP > ORF) and negative numbers indicate negative bias.  RCS has a sign convention such that 

positive numbers indicate overconfidence, and negative numbers indicate underconfidence.   

Examining the summary statistics for DV forecasts in Figure 5.5, unsurprisingly, the pattern is 

very different than with PDV.  Here the deterministic NSSL-WRF, inherently unreliable due to its binary 

forecasting capability, is used as the reference forecast.  RSS can be seen in Figure 5.5a; in general 

continuously improved by increasing neighborhood radius.  This makes sense: high FPs in large radius 

NDV indicate very large extreme precipitation features, and owing to less sensitivity to spatial or 

temporal displacement errors, these will correspondingly have higher ORFs than small-scale 

precipitation features which happen to be collocated in several models.  PDV would not be anticipated 

to yield especially reliable forecasts unless the ensemble size was both exceedingly large, and all 

members were sampled from the true forecast PDF.  As a function of ensemble composition, the RSS 

behavior is more like the FSS as seen in Figure 5.2.  Improvement in RSS is seen with the addition of the 

first few GEFS/R members. After this point, at low neighborhood radii, little change is seen with respect 

to RSS with the addition of subsequent GEFS/R members into the ensemble.  At higher neighborhood 

radii, PFS reliability is actually slightly degraded by more GEFS/R members, as reflected by the reduced 

RSS.  The actual reliability diagrams and their corresponding sharpness diagrams appear in Figure 5.6.  

All PDV forecasts exhibit the same qualitative behavior: negative bias at the lowest RPs (frequent FP of 

0, but occasionally events do occur despite an FP of 0, resulting in a non-zero corresponding ORF), and 

positive bias at most non-zero FPs.  The low end FP behavior holds, but is alleviated, with increasing 

neighborhood radius in NDV (see Figure 5.6b2).  The behavior at high FPs is still fairly monotonic, but is 

much more pronounced, and at the highest neighborhood radii of 40 and 50 grid boxes, high FPs above 

25-30% actually occur at a higher ORF than the FP (Figure 5.6a).  Thus, by simply inspecting the reliability 
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diagrams from afar as in Figure 5.6a, one would anticipate that the RSS should be the highest for 

middling neighborhood radii, as this yields the best calibration along the FP=ORF line for most 

probabilities.  However, inspecting any of the sharpness diagrams (Figures 5.6c-5.6h), it is, unsurprisingly 

given the climatological event frequency, evident that the vast majority of forecasts issue an FP of 0, 

regardless of the forecast algorithm employed.  Thus, scrutiny of the ORF when an FP of 0 is issued is of 

considerable importance, despite being undiscernible from Figure 5.6a.  A blowup of the full reliability 

diagram for smaller FPs is provided in Figure 5.6b, and an even larger zoom to when FP=0 is provided in 

Figure 5.6b2.  From close scrutiny of Figure 5.6b2, one sees that the ORF at FP=0 for the deterministic 

NSSL-WRF is 3e-4, while it is nearly an order of magnitude lower near 5e-5 for a full ensemble using NDV 

with a 50 grid box neighborhood radius.  A middling radius of 20 yields an ORF around 1e-4, still twice 

that of NDV50, and quite considerable when noting that this difference accounts for approximately 99% 

of forecasts, depending on the exact forecasting algorithm.    

Bias, as discerned from RBS in Figure 5.5b, is positive for almost all DV forecasts, indicating that, 

in general, events occur at a lower ORF than the corresponding FPs would indicate.  Looking at PDV on 

the deterministic NSSL-WRF, for example, this is not at all surprising; when an FP of 1 is issued (simply 

indicating that the NSSL-WRF QPF exceeded the 2-year RPT at that point), the event is only observed to 

occur about 10% of the time (see Figure 5.6a).  This staggering discrepancy more than compensates for 

the comparatively miniscule negative bias seen at FP=0 (0.9 vs. 3e-4), even despite the greatly increased 

frequency of FP=0 forecasts compared with FP=1.  Even with small neighborhood radii, the positive bias 

at high FPs is exceedingly large, and ends up dominating the bias despite low frequency of occurrence 

(see Figures 5.6d-5.6f).  By the highest neighborhood radii, despite a change back towards a positive bias 

at low non-zero FPs (see Figure 5.6b), the now neutral (NDV30, NDV40) to even negative (NDV50) bias at 

the high FPs results in a near-zero bias, and a small negative net bias is observed for some ensemble 

compositions for a neighborhood radius of 50.  The confidence scores, or RCS, as depicted in Figure 5.5c, 
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are very similar to the bias scores in these cases.  The values do, however, stay positive for all DV 

composition/radii pairings assessed, indicating ubiquitous overconfidence from DV.  Overconfidence 

here refers to {ܲܨ < ܲܨ ℎ݁݊ݓ  ܨܴܱ < ܲܨ̅݋  > ܲܨ ℎ݁݊ݓ ܨܴܱ > ̅݋  .  This is not a particularly surprising outcome based on theory 

discussed surrounding Figure 5.1.  However, use of neighborhoods does greatly improve the 

overconfidence, with overconfidence near 0 at the highest radius NDVs.   

 

Figure 5.5: Summary statistics for DV algorithms forecast reliability.  Panel (a) plots RSS, (b) plots RBS, 

and (c) RCS; all are described in text.  Axes are as described in Figure 5.3.  Solid contour in panel (b) 

corresponds to RBS = 0. 
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Figure 5.6: Reliability and sharpness diagrams for each of the Democratic Voting forecast methods 

discussed in text.  Panel (a) plots the reliability diagrams, (b) is a version of (a) zoomed for small FPs, and 

panel (b2) is further zoomed for when FP=0.  Panels (c)-(h) are sharpness diagrams, indicating the 

frequency of the each forecasting algorithm generating a forecast within each specified probability bin.  

The panels (c)-(h) correspond to PDV, NDV with a neighborhood radius of 10 grid boxes, NDV with radius 

20, NDV with radius 30, NDV with radius 40, and NDV with radius 50, respectively. 
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 Finally, forecast value for the DV ensemble configurations are assessed by means of the Value 

Score (VS) discussed in section 2.7.  As with reliability, forecast value can be summarized by means of a 

Riemann sum of VSs over the spectrum of end user cost/loss ratios.  This statistic, termed the summary 

value score (SVS) is formulated as: 

  

ܸܵܵ =∑ܸܵ̅̅̅̅ ሺ݅ሻ൯௡ߙ̅)
௜=ଵ  ሺ݅ሻߙ∆ሺ݅ሻ൯ߙ̅)ܩ

Wheƌe α is the Đost-loss ratio (CLR), n is the number of discrete cost-loss thresholds considered, and G 

denotes the PMF of all candidate end users in cost-loss space.  Here, we will assume all user CLRs are 

equally likely, meaning that G will be uniformly distributed.  Value statistics appear in Figure 5.7, with 

Economic Value Diagrams (EVDGs, to distinguish from Right-Skewed Distributions) appearing in a log 

scale in Figure 5.7a, and the SVS statistics appearing in Figure 5.7b.  It is evident that users acting based 

solely on the deterministic NSSL-WRF forecasts would mostly do much better basing decisions off 

climatology, with users with CLRs above 0.15 and below 0.00035, or roughly one third of the 

climatological frequency, being negatively affected by use of the forecasts.  For no user is the use of the 

point deterministic forecasts anywhere approaching the optimal score of unity; VS peaks below 0.2 for 

users with a CLR equal to the climatological event frequency.  This is reflected in the SVS with a 

staggering -4.25 value reported.  Adding in GEFS/R members to the aggregate ensemble assists the SVS 

considerably (see Figure 5.7b), but the overall VS patterns remain siŵilaƌ at the loǁ eŶd of α͛s.  Foƌ PDV, 

where FPs are highly discretized, large discontinuities in VS are observed when crossing new allowed FPs 

under the PFS.  For example, PDV with the NSSL-WRF and GEFS/R control member jumps from a VS of 

under -6 to neaƌlǇ Ϭ ǁheŶ ĐƌossiŶg the α=Ϭ.ϱ liŶe ;light ƌed ĐiƌĐle liŶe, Figuƌe ϱ.ϳaͿ.  This is ǁheƌe the 

largest benefit from the addition of new dynamical models into the ensemble is observed: the highly 

insensitive users for whom protecting against extreme rainfall is nearly as costly as the losses endured 
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when extreme rainfall occurs and the user is not prepared.  The addition of neighborhoods makes a 

generally larger impact across the gamut of user CLRs, with VS continuously increasing with increasing 

neighborhood ƌadius foƌ αs ďeloǁ Ϭ.Ϭϭ.  At the higheƌ CL‘s aďoǀe Ϭ.Ϭϭ, a diffeƌeŶt soƌt of ďehaǀioƌ is 

observed, with the algorithms clustering more by dynamical model composition than by neighborhood 

radius, diverging again at the highest CLRs where each configuration exhibits different behavior in the 

high CLR tail.   

 

Figure 5.7: Value score comparisons for the DV algorithm ensemble configurations.  Panel (a):Economic 

value diagrams with cost/loss ratio plotted on a logarithmic axis for clarity; panel (b) summary value 

scores for the configurations assuming a uniform distribution of end user CLRs.   

 

Beyond DV approaches, results are still very much forthcoming.  However, preliminary results 

are provided here for the interested reader.  Fractions Skill Score comparisons for a variety ensemble 

and algorithmic configurations are presented in Figure 5.8.  It can be seen by comparison of the maroon 

and red lines that PUR generally improves FSS when compared with PDV.  The differences, however, are 

quite marginal except at the smallest evaluation radii, where approximately a 2% improvement is 

observed.  A bigger difference is observed between UR and DV in a neighborhood context.  FSS results 

for NDV are reproduced in Figure 5.8 on the magenta line; the fuchsia line, representing DNUR at the 
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same 20 grid box neighborhood radius as the magenta line, strictly dominates NDV at each evaluation 

radius.  Similar findings hold at the 40 grid box radius comparing the yellow and lime green lines, though 

the results here are notably inferior to PDV on the 3-member ensemble, consisting with the findings 

presented in Figure 5.2.  Some preliminary experiments with individual member weighting were also 

conducted.  Weights were generated using the procedure discussed in Section 5.1.2 for a 3-member 

ensemble consisting of the NSSL-WRF and two GEFS/R members.  The results of a subset of the 

weighting experiments appear in the blue lines in Figure 5.8.  Weights for these experiments were 

obtained through cross-validation; as an example, the weights obtained for the NSSL-WRF in this 

ensemble when generated over the entire August 2009-August 2014 validation period are presented in 

Figure 5.9.  Though, absent any smoothing as is shown here, there are some spurious anomalies, the 

general result is that the NSSL-WRF typically is afforded more than the a priori one-third weight that 

would be assigned to it, likely in association to the superior skill evidenced in Figure 5.3, and the fact 

that its forecasts differ from GEFS/R forecasts more than GEFS/R members vary between each other 

(not shown).  The other striking feature is the generally higher weight assigned to the NSSL-WRF in the 

east, owing likely to its unique ability to resolve many of the small-scale convective extreme 

precipitation features occurring in this half of the nation when compared with the GEFS/R model.  FSS 

being one of the two components determining the weights, the spatial gradients in the NSSL-WRF 

weights seen in Figure 5.9 line up well with the model skill score comparison shown in Figure 3.20 (see, 

for example, the Gulf Coast FSS differences).  The weights in general produce mixed results at higher 

evaluation radii compared with not using any weights, but a several percent improvement is observed at 

the lowest, <50 km, evaluation radii.  Shown here are results of both DNUR and ENUR at a 20 grid box 

neighborhood radius; both perform remarkably similarly, but DNUR does outperform ENUR at all 

evaluation radii.  Lastly, a proof-of-concept logistic regression model was trained based on a three 

member ensemble consisting of the NSSL-WRF and two GEFS/R members.  Each training example had 10 
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features: 3 predictors per model and a final feature.  The predictors from each underlying ensemble 

member were: 1) the mean QPF/RPT ratio within a 20-grid box radius of the forecast point, 2) the 

QPF/RPT ratio standard deviation within a 20-grid box radius of the forecast point, and 3) the fraction of 

points within a 20-grid box radius of the forecast point with a QPF/RPT ratio greater than unity.  The 

total standard deviation of all candidate forecast ratios for the entire ensemble represents the tenth 

feature5.  The results, shown in the aqua line in Figure 5.8, indicate that this primitive logistic regression 

model did not improve over PDV for any evaluation radius examined. 

Reliability characteristics for the same suite of configurations are presented in Figure 5.10.  It is 

evident by inspection of Figure 5.10c and comparison with Figure 5.6 that UR methods are able to 

generate FPs in the smallest non-zero probability bins when DV, even with the use of neighborhoods, 

cannot.  PUR exhibits some unusual characteristics in the reliability diagram in Figure 5.10a; 

discontinuities are observed in the ORF when FP crosses a threshold indicating exceedance by another 

ensemble member.  This is likely attributable to an issue with the UR formulation; when k of n members 

forecast an event, and none of the n-k members not forecasting the event forecast a near-event, the 

event is intuitively less probable than if k-1 members forecast an event, and the remaining n-k-1 

members all forecast a near-event.  UR is, however, constrained to never create FPs above or below 

certain thresholds based on the proportion of ensemble members forecasting an event at the forecast 

location, resulting in this behavior as these FP thresholds are crossed.  Aside from this, UR-based 

reliability diagrams tend to track quite closely with their corresponding DV reliability diagram lines.  

Weighting ensemble members tended to have relatively little effect at low FPs, but result in a stronger 

positive bias at the higher FPs, resulting in slightly inferior reliability overall as reflected in the RSS values 

depicted in Figure 5.10d.  The ensemble configuration yielding the most unique reliability characteristics 

                                                           
5
 Updated ADVA implementations for the full suite of ML algorithms discussed in Chapter 2.6 is in progress, using 

an updated feature set and training individually on different geographic regions using those depicted in Figure 4.3.  

Results thus far appear promising, but are too preliminary to include here. 
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is the logistic regression model, which displays excellent calibration at low FPs up to about 0.2 before 

becoming increasingly positively biased at the higher FPs, approaching that of PDV at the highest FP bin. 

However, it has very low frequency of forecasting these FPs, with much- several orders of magnitude- 

higher frequency of forecasting in the FP region in which it is well calibrated, as evidenced by Figure 

5.10c.  As a result, despite inferior FSS results, the logistic regression forecasts are the best in all 

summary reliability statistics presented in Figure 5.10d, with the highest RSS and bias and confidence 

scores closest to zero. 

 

Figure 5.8: PFS FSS for a suite of various algorithmic configurations as a function of evaluation radius.  

Results are presented with respect to PDV on the three member ensemble consisting of the NSSL-WRF, 

GEFS/R control member, and GEFS/R perturbation 1. 
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Figure 5.9: Preliminary weights for the NSSL-WRF model for those algorithms employing weights.  

Weights generated using the methodology described in the Section 5.1.2 of the text. 



178 

 

 

Figure 5.10: PFS reliability for a suite of various algorithmic configurations.  Panel (a) shows the 

traditional reliability diagrams, (b) is zoomed for low FPs, panel (c) shows the corresponding sharpness 

diagram, and panel (d) shows the reliability summary statistics described in-text for the various 

algorithms.  The reference for RSS in panel (d) is the 3-member ensemble PDV instead of the 

deterministic NSSL-WRF as used previously. 
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5.3 Discussion & Conclusions 

Numerous findings of note may be gleaned from this preliminary work.  An unsurprising but 

nonetheless critical aspect to note is the discrepancy in the assessment of PFS quality reached when 

comparing forecast skill versus reliability versus value.  Inspection of just forecast skill in the DV PFSs 

assessed here would indicate that the best PFS uses a small neighborhood radius around 10 and includes 

only one of the individually inferior GEFS/R members.  But evaluation of PFS reliability would reach a 

very different conclusion, namely that a much larger neighborhood radius of around 50 grid boxes will 

yield better PFS performance, as will the inclusion of a larger number of GEFS/R members (though even 

reliability analysis suggests that the inclusion of the full GEFS/R yields suboptimal performance). Finally, 

with respect to forecast value, a drastic improvement was seen in increasing from PDV to NDV with a 10 

grid box radius.  At low neighborhood radii, increasing the ensemble size also dramatically improves 

SVSs.  SVS is rather insensitive to both neighborhood radius and ensemble composition at high radii, but 

the highest scores are obtained for a middling radius of approximately 30 grid boxes and an ensemble 

consisting of the NSSL-WRF and two GEFS/R members.  In light of these contrasts, it is thus essential to 

clearly define system priorities when designing an EPS or PFS.  Despite these discrepancies, there are 

still several overarching conclusions that may be reached.  Switching from PDV to NDV with a small 

neighborhood radius and application of uniform ranks improve PFS performance in all statistics 

examined.  The era of inspecting EPS information by means of traditional PDV probabilities has passed.  

Simple, inexpensive methods such as UR and neighborhoods can improve PFS information in every 

conceivable metric.  There is no rational reason to apply strictly dominated probabilistic techniques 

when such simple and superior alternatives are so readily available. 

Future work in this realm first and foremost includes three expansions.  First, investigation of the 

NIVA and INTA methods which have been preliminarily explored herein must be completed.  Results 

thus far, in addition to past literature (e.g. Eckel 2003, Theis et al. 2005), suggest that UR based 
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approaches can appreciably outperform their corresponding DV counterparts, both for point and 

neighborhood methods.  Both intuition and preliminary findings also suggest ensemble member 

weighting can substantially improve PFS skill and reduce sensitivity to inferior or redundant forecast 

information, but insufficient research has been, as of yet, devoted to this subject.  Second, a much more 

thorough exploration of the application of machine-learning based ADVAs towards this forecast problem 

is warranted.  Research in this realm is currently in progress, and the results thus far, such as the first 

results from a highly oversimplified logistic regression model presented here, illustrate the capability of 

this class to do what no other algorithm classes can do.  This is evidenced, for example, by the superior 

reliability statistics presented by the logistic regression model over any other approach of the same 

ensemble composition.  The results from this model are considered to be approximately the baseline for 

ADVA-based PFS performance, and it is thought that further work in this realm will prove highly fruitful.  

Third, this research must be extended to other RPs.  Here, only the 2-year RP has been examined, and it 

is certainly possible that observed performance characteristics will change for rarer events at higher RPs. 
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6 Forecast System in Action: A Case Study 

 

 

 

6.1 Meteorological Overview 

A confluence of factors came together to make late May of 2015 one of the wettest periods on 

record for the southern Great Plains, with widespread devastating flooding and flash flooding.  As can be 

seen by inspection of Figure 6.1, even from the first three weeks of the month, much of the southern 

plains had been much wetter than normal, with the vast majority of the region having received at least 

150% of normal precipitation and many areas, particularly northern Texas and southern Oklahoma, 

receiving upwards of 300% of normal precipitation.  To the northwest, the central Rockies of Colorado 

and Wyoming were also running in the vicinity of 200% of normal precipitation over this period.  These 

antecedent conditions led to anomalously saturated soils during late May 2015 in the south and central 

US, leading to increased susceptibility to flooding and flash flooding in association with heavy rainfall.  

As discussed in Section 2.5.2 and in Doswell et al. 1996, the necessary ingredients for strong, flash flood-

inducing convective storms are: 1) moisture, 2) atmospheric instability, and 3) a lifting mechanism.  By 

inspection of Figure 6.2d, one sees that precipitable water values, a column integration of the 

atmospheric moisture content, were very high over much of the southern plains, with widespread 

values over 35 mm and several areas with over 50 mm (2 in.) of precipitable water at 0000Z on 24 May 

2015.  This can also be seen in the Oklahoma City, OK and Corpus Christi, TX soundings from the same 

time (Figures 6.3b and 6.3c), where 44 and 46 mm of precipitable water was observed, respectively.  

This suggests that ample moisture was present- certainly sufficient to cause flooding concerns.  

Furthermore, low level southerly flow (Figure 6.2c) is helping to continue the advection of warm, moist 

air into the southern plains region.  Up in the central Rockies, precipitable water readings were much 

lower- the Riverton, WY sounding (Figure 6.3a) at 0000Z on 24 May indicates only approximately 16 mm 

of precipitable water- this is still much moister than climatology for this location.  This is illustrated in 
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Figure 6.ϰ, ǁheƌe it is seeŶ that the appƌoǆiŵatelǇ Ϭ.ϲϯ͟ pƌeĐipitable water reading was over the 90th 

percentile for that location and date.  Returning to Figures 6.2a and 6.2b, it is evident that the upper 

level pattern is rather disturbed, with strong troughing over the western CONUS, and an amplified ridge 

to the east.  Additionally, there is a pronounced shortwave embedded in the upper level pattern; this 

feature is most evident over south central Texas, with an associated 500 mb vorticity maximum seen in 

Figure 6.2a.  As is most evident in Figure 6.2b, the southern plains region also falls broadly in the right 

entrance region of a reasonably straight upper level jet streak.  The upper level divergence and positive 

vorticity advection associated with the right entrance region of this jet streak, in addition to that being 

advected by the incoming shortwave trough, support synoptic scale forcing for ascent in this region.  

Inspecting the OUN and CRP soundings in Figures 6.3b and 6.3c, one sees modest, but certainly 

sufficient, convective available potential energy (CAPE) values in the vicinity of 1500 J/kg.  Thus, all the 

necessary synoptic-scale ingredients for strong, flood-producing storms are present over the southern 

plains at this time.  The mechanisms are somewhat different in the central Rockies of WY, with the 

topography serving as an important source of lift in this region, but the ingredients are in place here as 

well. 

These ingredients came together to produce intense rainfall and catastrophic flood impacts over 

these regions between 1200Z on 23 May 2015 and 1200Z the subsequent day (and numerous notable 

events followed in the same region later in the month).  Stage IV Precipitation Analysis over this period 

is indicated in Figure 6.5.  Three areas of particularly heavy rainfall were observed: 1) over south central 

Teǆas iŶ the AustiŶ/“aŶ AŶtoŶio ǀiĐiŶitǇ, ǁheƌe oǀeƌ ϮϬϬ ŵŵ ;ϴ͟+Ϳ ǁas oǀeƌ oďseƌǀed oǀeƌ a ƌelatiǀelǇ 

large area; 2) over much of Oklahoma, with widespread accumulations over 80 mm and two small areas 

over the western half of the state receiving in access of 200 mm; and 3) in central Wyoming, where 

several storms produced in excess of 75 mm in this region- a highly unusual occurrence in this part of 

the country.  It is should also be noted that these extreme rainfall regions span all three observational 
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return period datasets; Oklahoma thresholds are determined in Atlas 14, Texas thresholds are specified 

by the TP-40 data, and Wyoming thresholds are taken from Atlas 2.  This may result in some 

discrepancies in precipitation frequency analysis, since, for example, Atlas 2 thresholds tend to be lower 

than neighboring Atlas 14 thresholds (see Figures 3.1, 3.2).  An example of the dramatic impacts the 

Texas rainfall had on area rivers is depicted in Figure 6.6; a gauge on the Blanco River rose from 5 feet to 

over 40 feet in approximately four hours, and the associated impacts were devastating to the region, 

with numerous fatalities recorded.  Similar flash flood impacts were witnessed in Oklahoma, and though 

less publicized- likely in part due to the smaller population in the region- major flooding impacts were 

observed in Wyoming as well, prompting the declaration of a federal disaster for state flooding 

beginning on this date. 
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Figure 6.1: Antecedent precipitation expressed in proportion to local climatology from 01 May 2015-20 

May 2015, approximately covering the three-week period prior to the 23-24 May 2015 extreme 

pƌeĐipitatioŶ eǀeŶts.  TakeŶ fƌoŵ Beau DodsoŶ͛s Weatheƌ Talk Blog: http://talk.weathertalk.com/may-

23-2015-a-beautiful-saturday/ 

http://talk.weathertalk.com/may-23-2015-a-beautiful-saturday/
http://talk.weathertalk.com/may-23-2015-a-beautiful-saturday/
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Figure 6.2: Synoptic-scale conditions over the central United States at 0000 UTC on 24 May 2015.  Panel 

(a) contours 500 hPa heights with colored vorticity and plotted wind barbs at the same pressure level; 

panel (b) mirrors panel (a) for the 250 hPa level except that colors reflect 250 hPa isotachs; panel (c) 

reflects the 850 hPa conditions with colored isotherms; and panel (d) contours mean sea level pressure 

and colors precipitable water, with wind barbs reflecting 10-meter winds.  All fields based on Rapid 

Refresh (RAP) analysis. 
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Figure 6.3: Observed soundings plotted on skew-T diagrams taken at several sites at 0000 UTC on 24 

May 2015.  Panel (a) reflects the Riverton, WY (RIW) sounding, panel (b) plots the Norman, OK (OUN) 

sounding, and panel (c) illustrates the Corpus Christi, TX (CRP) sounding.  Images taken from the 

University of Wyoming sounding database: http://weather.uwyo.edu/upperair/sounding.html. 

http://weather.uwyo.edu/upperair/sounding.html
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Figure 6.4: Climatological precipitable water values for Riverton, WY, shown here for contextual 

reference.  Black dot indicates the approximate location on the diagram of the corresponding sounding 

in Figure 6.3a.  Lines depict climatological percentiles in the color scheme noted at the bottom of the 

figure.  Iŵage takeŶ fƌoŵ “toƌŵ PƌediĐtioŶ CeŶteƌ͛s souŶdiŶg ĐliŵatologǇ ǁeďpage: 
http://www.spc.noaa.gov/exper/soundingclimo/. 

http://www.spc.noaa.gov/exper/soundingclimo/
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Figure 6.5: Stage IV precipitation analysis for the 24-hour period ending at 1200 UTC 24 May 2015. 
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Figure 6.6: Hydrograph of the Blanco River at Wimberly, TX from 19 May 2015 to 29 May 2015, 

indicating the peak river level near 0500 UTC (0000 CDT) on 24 May 2015.  Plotted values after this time 

reflect forecast values at that time, and not observed values.  Image taken from: 

http://www.srh.noaa.gov/ewx/?n=memorial_weekend_floods_2015. 

6.2 Member Forecasts 

As discussed in section 6.1, the synoptic-scale ingredients were certainly in place for locally 

extreme rainfall in the places that observed it on this day.  This suggests high predictability of the 

general notion of heavy precipitation in the region.  However, several mesoscale features helped 

pinpoint the exact locations of heaviest rainfall, which had an enormous effect on the local impacts.  

Given this, how did the numerical models perform with their forecasts for extreme precipitation on this 

day?  This question will be explored in this section. 

http://www.srh.noaa.gov/ewx/?n=memorial_weekend_floods_2015
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Figure 6.7 depicts the 1200-1200Z 23-24 May 2015 precipitation accumulation forecast for the 

eleven members of GEFS/R based on the 0000Z 23 May initialization.  The eleven members are shown in 

panels (a)-(k), and the Stage IV verification is repeated in Figure 6.7l for convenience.  Perhaps due to 

the coarseness of the model (see section 2.2), in addition to the well-documented tendency for 

underdispersion, the GEFS/R members depict rather similar solutions, all differing from each other much 

less than they differ from the verifying solution.  All of the runs do an acceptable job at forecasting 

relatively heavy precipitation in the general vicinity of where it was observed.  A couple of members, 

and in particular member 2, depict locally heavy precipitation over central Wyoming.  However, most 

members put the heavy precipitation in that region in SW South Dakota, to the northeast of where it 

was actually observed.  Though GEFS/R provides some indication of a threat for heavy precipitation in 

Wyoming, a forecaster looking at only this guidance would rightly place more emphasis and attention to 

South Dakota.  With regards to the precipitation over the southern plains, all the members correctly 

show an axis of heavy precipitation extending into SE Kansas.  Most members do have two regions of 

enhanced precipitation embedded along this axis, one generally in northern Texas (to S OK) and the 

other somewhere in Oklahoma (to SE KS).  These are displaced well to the north, and somewhat to the 

east of the observed maxima, though the eastern displacement does not appear to be associated with 

displacement error in the precipitation axis.  The axis depicted in GEFS/R is apparent in the observations, 

but is quite weak with minimal surrounding precipitation in northern Texas and far southern Oklahoma.  

This distinction is seen to an extent in members 3 and 4 (Panels d and e), but is not nearly as apparent as 

in the observations.  None of the members accurately predict the intensity of the precipitation west of 

the main axis in Oklahoma, which ended up being the location of heaviest precipitation in the state.  

Member 2 is the only one to really show this feature at all, but has the precipitation much weaker 

outside the primary N/S axis.  Figure 6.8 presents the same information as in Figure 6.7, but framed in 

the context of return periods using the Atlas 14 thresholds.  This presentation really highlights the 
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displacement errors with the Oklahoma and especially with the Texas precipitation maxima.  

Additionally, all the members are quantitatively much too weak, with members forecasting at most 5-

year RP exceedances; most members only forecast 1- or 2-year events.  This framework also highlights 

the importance of the Wyoming precipitation much more than the traditional QPF plots in Figure 6.7.  

Inspecting Figure 6.ϳ fƌoŵ a ŶatioŶal peƌspeĐtiǀe, oŶe͛s atteŶtioŶ is dƌaǁŶ ŵuĐh ŵoƌe to the 

precipitation over the southern plains than what is happening in the north.  But the impacts of the 

precipitation were substantial there, and this is evident looking at the verification in Figure 6.8l, where 

the Wyoming precipitation and TX/OK events are given somewhat similar emphasis.  This is also seen in 

the GEFS/R member forecasts, where this is perhaps even more emphasized than the southern plains 

precipitation, with 5-year events forecast in several members.  Again the severity of the precipitation 

was underforecast in the GEFS/R members, but Figure 6.8 highlights the value of considering heavy 

precipitation from the RP framework. 

Turning to CAMs, a sampling of high-resolution model guidance initialized at the same time as 

GEFS/R is shown in Figure 6.9.  The NSSL-WRF, shown in Figure 9a, gives a fairly realistic looking broad 

depiction of the southern plains precipitation, with two areas of heavy precipitation, one over south-

central Texas, and the other over Oklahoma, with scattered lighter precipitation in-between.  The NSSL-

WRF also shows some heavy rain-producing convective cells over the mountains of Wyoming, even 

showing some of the lesser cells that were observed in NE AZ and NE NV.  The NSSL-WRF seems to do 

quite well with both location and magnitude with the Texas precipitation.  In Oklahoma, like the GEFS/R, 

it fails to capture the very significant precipitation seen over the western part of the state, instead 

showing no significant precipitation at all in that area.  The QPF magnitudes in the WY mountains look 

reasonable as well, accurately highlighting the threat in that area.  The NAM-NEST (Figure 6.9b) 

exemplifies its typical behavior described in Chapter 3; very high precipitation maxima are seen in all the 

regions in which it is observed.  Over SE WY, a large region of locally very heavy precipitation is 
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observed.  The corresponding RP exceedance forecast plots are shown in Figure 6.10; the WY 

precipitation in the NAM-NEST is especially evident in Figure 6.10b, with a very large area of 50+ year RP 

exceedances.  Unlike the NSSL-WRF, the NAM-NEST also forecasts, albeit to a lesser extent than in 

Wyoming, 50+ year exceedances in Idaho, Utah, and Nevada, none of which are seen to verify.  Like the 

NSSL-WRF and especially GEFS/R, the NAM-NEST produces an axis of very heavy precipitation over the 

southern plains.  In this case, the model accurately captures the intensity of the areas of heaviest 

rainfall, but the spatial structure of the precipitation is largely off, failing to forecast the heavy 

precipitation west of the main axis, having a westward displacement and clockwise rotation to the main 

axis relative to what is observed, and failing to capture the lack of precipitation in northern Texas, 

instead forecasting some high RP exceedance events in this area.  Inspecting the HIRESW solutions 

(Figures 6.9c and 6.9d), the HIRES-ARW run does quite well in the north, doing an excellent job of 

pinpointing the locations of heaviest precipitation, and only underforecasting the precipitation by a bit.  

To its further credit, it correctly forecasts a strong cell in NE CO which produced rather heavy rainfall in 

the area- the only model to really forecast this event.  In the south, however, it performs considerably 

worse.  It does show heavy precipitation in Texas, but it is displaced too far to the south.  It also predicts 

the local minimum in precipitation over northern Texas, but the precipitation over Oklahoma and 

vicinity is of the wrong character and far too weak.  A forecaster looking at just this piece of guidance 

would not be likely to appropriately perceive the extreme rainfall threat in Oklahoma.  They would at 

least have some notion though; Figure 6.10c shows some scattering of 10+ year events in OK.  The main 

precipitation is also displaced too far to the NE, again along the main precipitation axis seen in all the 

model guidance.  The HIRES-NMM (9d) performed very poorly overall.  Some evidence of the Wyoming 

precipitation threat appears in the model solution, but it is underplayed both in magnitude and spatial 

extent.  The precipitation over Oklahoma and Texas is so woefully underrepresented that it provides 
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almost no indication of the severity of the rainfall threat; this is especially apparent in the RP context 

shown in Figure 6.10d. 

 

Figure 6.7: All GEFS/R precipitation accumulation forecast for the 24-hour period ending 1200 UTC on 

May 24 2015 based on the 0000 UTC 23 May 2015 initialization appear in panels (a)-(k) for the control 

and subsequently members 1 to 10, in sequence.  Panel (l) reproduces the Stage IV precipitation analysis 

over the same period shown in Figure 6.5, and is reproduced here for convenience.   
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Figure 6.8: Same as Figure 6.7, but precipitation values plotted with respect to maximum return period 

(among 1-year, 2-year, 5-year, 10-year, 25-year, 50-year, 100-year) exceedance forecast or observed. 
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Figure 6.9: Precipitation forecasts for the 24-hour period ending 1200 UTC on 24 May 2015 based on 

eaĐh ŵodel͛s ϬϬϬ UTC Ϯϯ MaǇ ϮϬϭϱ iŶitializatioŶ.  PaŶel ;aͿ depiĐts the N““L-WRF forecast, (b) 

corresponds to the NAM-NEST, (c) do the HIRESW-ARW, and (d) to the HIRESW-NMM. 
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Figure 6.10: Same as Figure 6.9, except precipitation values plotted with respect to maximum return 

period (among 1-year, 2-year, 5-year, 10-year, 25-year, 50-year, 100-year) exceedance forecasted. 

6.3 Using the Forecast System: Probabilistic Forecasts  

Probabilistic forecasts for this case using some of the basic NIVA methods outlined in Chapter 

5.1.1 are depicted in Figure 6.11.  All FPs in that figure are derived from an ensemble consisting of all the 

member forecasts shown in Section 6.2: the full GEFS/R (11 members), the NSSL-WRF, the NAM-NEST, 

HIRES-ARW, and HIRES-NMM.  PDV, as shown in Figure 6.11a, is about what one would expect from a 

simple synthesis of 6.8 and 6.10.  Very noisy FPs with three areas of particularly high (> 0.5) probability 

of exceeding the 2-year 24-hour return period thresholds are seen: one in north-central Texas, one in 

northeast Oklahoma, and one in central Wyoming.  Comparing with the verification in Figure 6.8l, we 

see that the aggregate of forecasts did quite well with the Wyoming system, even having a probability 
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bullseye in the approximate area that the most extreme precipitation occurred.  FPs to the south were 

not nearly as skillful, with the emphasized region in Oklahoma being one of the areas of the state with 

the least coverage of 2-year RPT exceedances, and the region which had the highest coverage has very 

low PDV FPs.  Furthermore, no 2-year RPT exceedances were observed in the high FP zone in north-

central Texas, and where locally extreme rainfall was observed well to the south, FPs were very low.  

Admittedly there was some local enhancement in FPs to the immediate east of where extreme 

precipitation was observed in south-central Texas, with FPs as high as 0.25.  Ultimately, the raw 

guidance, as synthesized with the PDV FPs, performed so-so at predicting extreme rainfall in this case, 

but there was certainly considerable room for improvement, particularly with the southern systems.  

PUR FPs (Figure 6.11c), at first glance, appears very similar to PDV, and rightly so; PU‘ ĐaŶ͛t ĐhaŶge loĐal 

FPs by more than 
ଵ௡, where n is the ensemble size, from PDV FPs.  But upon closer inspection (e.g. 6.11d), 

there are some minor differences.  Principally, PUR acts to raise FPs slightly in the regions where 

precipitation is observed iŶ soŵe ŵeŵďeƌs, ďut Ŷo ŵeŵďeƌs͛ QPF eǆĐeeds the Ϯ-year RPT.  This is most 

evident in the mountainous west, and on the peripheries of model heavy precipitation features, where 

the model QPF is near, but just under the critical event threshold, thus leaving PDV to assign no weight, 

but PUR to assign a large fraction of the total possible FP contribution from the relevant ensemble 

member.   One can see that PUR correctly enhanced FPs over southern Texas and over west-central 

Oklahoma, and decreased the magnitude of the FP bullseye over north-central Texas. 

A variety of neighborhood based probability methods are compared for this case in Figure 6.12. 

As in Figure 6.11 going from PDV to NDV20, increasing the neighborhood radius further in NDV50 

(6.12b) greatly smooths out the point FPs, with no FP exceeding 0.3 using NDV50, but probabilities in 

excess of 1% covering almost all of Oklahoma, Wyoming, and north and central Texas.  It is evident by 

comparison of Figures 6.11a, 6.11e/6.12a, and 6.12b that, unsurprisingly, increasing neighborhood 

radius decreases forecast sharpness.  It is less clear, just from inspection, what choice of neighborhood 
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radius maximizes forecast skill; that requires bulk analysis as assessed in Chapter 5.  In this case, the 50 

grid box neighborhood radius clearly results in a worse forecast, with the highest probabilities seen in 

the local observation minimum in north Texas, and lower probabilities over Oklahoma and south Texas.  

DNUR, with a neighborhood radius of 20, appears to operate, at least in this case, similarly to increasing 

the neighborhood radius: FPs are increased at the outskirts of regions of locally high FPs, while FPs are 

slightly decreased in the center.  This makes sense- in DV, a precipitous drop in FP occurs crossing from a 

point where an ensemble member exceeds the critical threshold to one where it does not.  In UR, there 

is no such discontinuity, and thus FPs are accordingly higher on the non-exceedance side and lower on 

the exceedance side.  The same phenomenon is true for ENUR20, and the effect is actually amplified, 

likely due to the deceased number of points considered; in ENUR applied here, the spacing s was 10 grid 

boxes versus 5 for DNUR, and no post-smoothing was applied to either FP field.  It should also be noted 

that, in areas of low probabilities, generally where ܲܨ < ଵ௡, where n is the ensemble size, both DNUR 

and ENUR act to enhance FPs slightly.  This is evident, for example, near the NV/ID/UT intersection. 
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Figure 6.11: Comparison of several basic NIVA methods for generating point forecast probabilities. 

Probabilities correspond to the event of exceeding 2-year, 24-hour return period thresholds via the PDV 

method for the 12-36 hour forecasts of the 0000 UTC 23 May 2015 forecasts initialization.   Panel (a) 

applies PDV; panel (b) applies logistic regression to a 3-member ensemble as discussed in Chapter 5; 

panels (c) and (d) plot PUR FPs and the difference from PDV, respectively; and panels (e) and (f) depict 

NDV FPs with a neighborhood radius of 20 grid boxes (NDV20), and its departure from PDV FPs. All 

methods, unless specified otherwise, are applied to an ensemble consisting of full GEFS/R, NSSL-WRF, 

NAM-NEST, and the HIRESWs, for a total of 15 ensemble members.  
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Figure 6.12: Comparison of several neighborhood methods for generating point forecast probabilities.  

Probabilities correspond to the event of exceeding 2-year, 24-hour return period thresholds via the PDV 

method for the 12-36 hour forecasts of the 0000 UTC 23 May 2015 forecasts initialization. Panel (a) 

applies NDV with a neighborhood radius of 20 grid boxes (NDV20), and panel (b) applies NDV with a 

neighborhood radius of 50 grid boxes (NDV50).  Panel (c) plots FPs from DNUR with a 20-box radius 

(DNUR20), and (d) depicts the probability difference from NDV with the same radius.  Panels (e) and (f) 

plot ENUR20 FPs and the corresponding probability difference from NDV20, respectively.  All methods 

applied to ensemble consisting of full GEFS/R, NSSL-WRF, NAM-NEST, and the HIRESWs, for a total of 15 

ensemble members. 
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7 Summary, Conclusions, and Future Work 

 

 

 

A forecast system for applying NWP model guidance from a plethora of sources and on different 

scales towards the important forecast problem of locally extreme rainfall framed in the context of 

probabilistic return period exceedance forecasting has been presented.  Numerous models, both 

convection-parameterizing and convection-allowing -have been individually evaluated to discern 

historical model skill in forecasting extreme rainfall, both in regional and bulk senses, as well as to 

determine model bias characteristics for extreme precipitation thresholds.  Coarser models largely failed 

to adequately simulate small-scale convective events, while often adequately handling extra-tropical 

cyclones impacting the US west coast during the cool season, and tropical cyclone induced events 

impacting the eastern and southeastern US.  High-resolution models produced a spectrum of skill and 

bias characteristics; most tended to overforecast extreme events relative to what was observed in Stage 

IV analysis, but some, notably the NAM-NEST, dramatically overforecasted events all across CONUS, 

while others were much more tempered.  Overall, high resolution models tended to perform slightly 

better than the coarser models, though the skill differential was perhaps less than one might expect.   

The two models with the longest data record- the GEFS/R and NSSL-WRF- had model precipitation 

climatologies fitted based on their data record, and these climatologies were used to create model-

specific RP precipitation thresholds which correct for the model biases relative to the observationally 

derived thresholds.  A number of right-skewed distributions were employed to assess the model bias 

characteristics with respect to extreme precipitation.  GEFS/R distribution fits almost unequivocally 

produced RP thresholds much lower than those seen in observations as a result of failing to resolve 

many of the extreme precipitation events which have occurred.  NSSL-WRF derived thresholds were 

highly sensitive to the choice of right-skewed distribution and exact methodology employed to generate 

the fits, but were generally much more in line with the observationally-derived thresholds.  A variety of 
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techniques were then assessed in order to diagnose the deterministic RPT thresholds, among the 

available options, which maximized model predictive skill.  Using a combination of observational and 

model-derived thresholds was found to improve model skill at predicting locally extreme rainfall at all 

return periods assessed, and the improvements were statistically significant for the medium RPs.   

Lastly, preliminary work at using an ensemble of models to generate probabilistic locally extreme 

rainfall forecasts by means of point exceedance probabilities was presented.  Raw methods using the 

quantitative precipitation values rather than a simple binary relationship between model QPFs and the 

event threshold, employing model neighborhoods to inform point probabilities, and use of ensemble 

weighting to alter forecast probabilities from the traditional fraction of members exceeding the event 

threshold at a point method were explored.  Forecasts were assessed in terms of skill, reliability, and 

value.  Though each class of metric resulted in different conclusions about the best ensemble 

configuration, all metrics agreed that substantial forecast improvement over the simple point 

democratic voting approach could be achieved easily and efficiently.  

Extensive ongoing and future work is anticipated in association with this project.  Initial 

methodology presented here will be refined.  Many of the more involved methods discussed in Chapter 

2 such as more involved machine learning applications for FP generation will be examined in much more 

depth than the very limited treatment given here.  More sophisticated and theoretically sound methods 

for distribution fitting model data and choosing appropriate model-specific RP thresholds that more 

intelligently make use of known or derivable spatial relationships between precipitation distributions 

will be examined in further depth.  This is especially important for operational applications since so 

many existing models have notably shorter data record lengths than the models examined in detail here.  

The initial inquiries examined here will also be considerably extended; it is desired that the complete 

forecast system, incorporating the entire methodology framework discussed herein, be applied to: 1) 
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both 6- and 24-hour AIs; 2) 1-, 2-, 5-, 10-, 25-, 50-, and 100-year RPs; 3) 0000 and 1200 UTC model 

initializations, perhaps incorporating multiple model cycles as ensemble members to yield a time-lagged 

ensemble; and 4) lead times beyond those examined here, perhaps out to forecast hour 60 for 6-hour 

accumulations (days 1 and 2) and 84 for 24-hour accumulations (days 1, 2, and 3).  It is hoped to 

implement these models and apply them in a publicly accessible, real-time setting as a tool for 

forecasters, decision makers, and the interested public.  This may also provide an avenue to explore 

forecast communication issues and nuances unique to extreme events, a highly important interface 

between atmospheric science, statistics, and social sciences which has historically been underexplored.   

As discussed in Chapters 1 and 2, the performance gap between human and automated forecast 

skill has been decreasing over recent decades and years.  It is frequently noted that the instances where  

forecasters are able to consistently improve over the automated guidance occurs during rare and 

extreme events.  Forecasters are able to recognize rare event potential and unusual meteorological 

situations in general and appropriately adjust their forecasting framework and mindset to produce a 

better forecast.  Most existing operational automated guidance cannot do this; most guidance is trained 

to perform well on most (typical) days, and with no training examples in the model residing near the 

potential verification in feature space, most models do not extrapolate well into extreme scenarios, 

resulting in poor predictions.  The exacerbation of dynamical model biases in extreme scenarios makes 

dynamical guidance an unreliable source for automated predictions as well.  It is my belief that 

automated guidance could be significantly enhanced by first quantifying the anticipated rarity of the 

meteorological situation, likely on a regional scale, and then using this to apply appropriate automated 

forecast methodology to generate a forecast.  This could be used in the context of the forecast system 

presented here in making automated traditional QPFs.  Some work towards the rarity quantification has 

alƌeadǇ ďeeŶ doŶe: it is doŶe iŶdiƌeĐtlǇ heƌe, aŶd ECMWF͛s eǆtƌeŵe foƌeĐast iŶdeǆ ;EFIͿ, aŵoŶg otheƌs, 

attempts to do this.  But there is not, to my knowledge, yet an existing connection between this and 
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automated forecast methodology; this connection is where I believe immense forecast value may be 

added.  Lastly, though an effort was made in the forecast system framework presented here to use a 

forecast predictand as impact-proportional as possible in an atmosphere-only modeling framework, the 

connection is still less direct than desirable.  Extending this work towards probabilistic hydrologic 

modeling, either dynamically or possibly statistically, could go a long way towards furthering this goal, 

and may prove a highly productive avenue to pursue.   
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