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ABSTRACT OF DISSERTATION 

SPATIAL MODELS WITH APPLICATIONS IN COMPUTER EXPERIMENTS 

Often, a deterministic computer response is modeled as a realization from a 

stochastic process such as a Gaussian random field. Due to the limitation of sta­

tionary Gaussian process (GP) in inhomogeneous smoothness, we consider modeling 

a deterministic computer response as a realization from a stochastic heteroskedastic 

process (SHP), a stationary non-Gaussian process. Conditional on a latent process, 

the SHP has non-stationary covariance function and is a non-stationary GP. As 

such, the sample paths of this process exhibit greater variability and hence offer 

more modeling flexibility than those produced by a traditional GP model. We use 

maximum likelihood for inference in the SHP model, which is complicated by the 

high dimensionality of the latent process. Accordingly, we develop an importance 

sampling method for likelihood computation and use a low-rank kriging approxi­

mation to reconstruct the latent process. Responses at unobserved locations can 

be predicted using empirical best predictors or by empirical best linear unbiased 

predictors. In addition, prediction error variances are obtained. The SHP model 

can be used in an active learning context, adaptively selecting new locations that 

provide improved estimates of the response surface. Estimation, prediction, and 

adaptive sampling with the SHP model are illustrated with several examples. 

Our spatial model can be adapted to model the first partial derivative pro­

cess. The derivative process provides additional information about the shape and 

smoothness of the underlying deterministic function and can assist in the prediction 

of responses at unobserved sites. The unconditional correlation function for the 

m 



derivative process presents some interesting properties, and can be used as a new 

class of spatial correlation functions. For parameter estimation, we propose to use a 

similar strategy to develop an importance sampling technique to compute the joint 

likelihood of responses and derivatives. The major difficulties of bringing in deriva­

tive information are the increase in the dimensionality of the latent process and the 

numerical problems of inverting the enlarged covariance matrix. Some possible ways 

to utilize this information more efficiently are proposed. 

Ke Wang 
Department of Statistics 
Colorado State University 
Fort Collins, Colorado 80523 
Summer 2008 
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Chapter 1 

INTRODUCTION 

This dissertation proposes a new approach for modeling the code output of 

computer experiments. The use of computer experiment has been an emerging al­

ternative for studying many complicated physical phenomena, which are usually 

described by a mathematical model. There often is no analytical solution to the 

quantity of interest in the mathematical model. Fortunately, numerical solutions 

can be obtained by implementing the mathematical model through computer sim­

ulations. For any given input value x € Kd, running the computer simulation 

gives one or more outputs, defining a mapping from the input space to output re­

sponses. This is called a computer experiment. Computer experiments have been 

widely applied in many scientific fields and engineering. For example, many human 

diseases are epidemics and have the potential to affect large segments of a popu­

lation. An epidemic is a complicated matter, but the danger posed by new and 

uncontrollable diseases compels us to learn as much as we can about the nature 

of epidemics. Mathematics offers a way to help the understanding of the spread 

of disease. Susceptible-Infected-Resistant (SIR) model is a class of epidemiological 

models that describes the dynamics of disease spread through a system of ordinary 

differential equations relating at time t, the number of susceptible people S(t), the 

number of infected people I(t), and the number of resistant people R(t). The re­

sults from such an experiment would help prediction of an outbreak, i.e., when the 

infected population hits its peak. 
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In a typical computer experiment, the input is usually high-dimensional and 

the output y is deterministic, i.e., running the code with the same input x would 

give the same output. Most computer codes are expensive to execute though it 

is easy to control and cheaper compared with physical experiments. The limited 

expense of running complex computer code leads to some interesting problems in 

the study of computer experiments. The SIR model in Estep and Neckels (2006) 

can be used as an illustrative example. The model is seven-dimensional and over 

the time interval [0,T]. There are three responses of interest: the average number 

of susceptible individuals q{x)\ = -f jQ S(s,x)ds, the average number of infected 

individuals q(x)2 = ^ fQ 7(s, x)ds, and the average number of resistant individuals 

q(x)s = f J0 R(s, x)ds. These responses are linear functionals of the solutions from 

the model. The method that Estep and Neckels (2006) use provides not only the 

response but also the first partial derivatives of the response. Supposing this model 

is expensive to execute, the natural questions that may arise are: 

1. Which data points in the high-dimensional input space should be selected to 

run the computer code? The data set cannot be large due to the expense of 

running the code, but the input space needs to be fully explored. 

2. How to predict the responses at untried locations? That is, how to model the 

relationship between response and input based on observed computer runs? 

3. Which input factors are more important to explain the variation in the re­

sponse? 

4. The derivatives of the response may provide additional useful information 

about the shape of the response surface. How can we bring the derivative 

information into modeling and prediction? 

5. If the inputs have known distribution, how does the variation in the inputs 

impact the variation in the outputs? 



3 

The first question is the problem of design in computer experiments. A lot 

of study has been done in this area. The Latin hypercube design and maximin 

distance design are used in this study. A brief introduction of this is given in Section 

1.1. The second and fourth questions relate to the modeling problem in computer 

experiments. There are several classes of models that can be used to model the 

computer code outputs. The objective of this work is to propose a new model, 

called stochastic heteroskedastic process (SHP) model, that has more flexibility in 

capturing the salient features of computer code outputs and does a better job in 

quantifying uncertainty in the selection of new data points. 

1.1 Design of Computer Experiments 

Traditional statistical design of experiments (DOE) are based on observations 

from physical experiments in which the random error exists due to nuisance fac­

tors. Since most computer experiment outputs are deterministic, the statistical 

approaches for design in physical experiments such as replicates, blocking, and ran­

domization cannot be directly applied to the output from the computer experiment 

(Santer et al. (2003)). Among the classical DOE methods in physical experiments, 

the central composite design and full- and fractional-factorial design arc the most 

widely used in practice. In traditional DOE, people assume some knowledge of the 

trend of a true response surface and the objective is to minimize the random error. 

This goal is followed in traditional DOE methods by placing several sample points on 

the boundary of the input space and a few sample points in the interior of the input 

space (Myers and Montgomery (1995)). In the design of computer experiments, the 

true response trend is unknown. This requires one to place the sample points on the 

interior of the input space. Despite the difference of observations from physical and 

computer experiments, the experimental designs share the common goal of extract­

ing as much as information as possible from the experiments. Some approaches in 

design of computer experiments are briefly summarized in the following subsections. 
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1.1.1 Latin hypercube design 

Since Mckay et al. (1979) originally developed the Latin hypercube sampling 

(LHS) method, LHS has been one of the popular methods in the design of computer 

experiments. Under certain assumptions, the LHS provides a more accurate estimate 

for the mean than simple random sampling. Another attractive aspect of LHS is 

that there is no restriction on the sample size with increasing dimensionality in the 

input space. The algorithm that generates Latin hypercube samples is described 

in detail by Santer et al. (2003). Suppose the input space has been standardized 

into [0, l]d. To obtain a LHS of size n, divide each axis [0,1] into n equally-spaced 

intervals. Fill the cells with integers 1,..., n in such a way that each integer appears 

exactly once in each row and column. The algorithm for generating LHS with n 

points is: 

Xjfc = , 2 = 1, . . . , T I ; fc = I , ...a, 

n 

where Xik is the kth component of a;*, n = (Hik) is an n x d matrix containing in each 

column an independent random permutations of the sequence of integers 1,..., n and 

U is the uniform random value on [0,1] (Santer et al. (2003)). 

One property of LHS is that the sampled points are spread evenly over the do­

main of each input variable. But the sample from LHS is not guaranteed to spread 

evenly over the whole input space. To overcome this limitation, some variations of 

LHS design have been studied, such as orthogonal array (OA) sampling. An orthog­

onal array produces a sample that yields uniform sampling in any t—dimensional 

projection of a d—dimensional input space where t < n. But one restriction on OA 

sampling is that there are only certain values of n, t for which the orthogonal arrays 

exists (Wu and Hamada (2000)). 

1.1.2 Maximin and minimax designs 

A design can be selected based on a distance measure that quantifies how spread 

out a set of points are. Let P C x C R4 be a design of size n and p be a metric on 
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X- A design that maximizes the smallest distance between any two points in V is a 

maximin distance design and denoted by T>Mm (Santer et al. (2003)): 

min p(xi,X2) = max min p(xi,X2)-

A maximin strategy for sampling would ensure that no two points are too close to 

each other so that the sampled points spread out over the space. 

A design that minimizes the maximum distance between arbitrary points x € x 

and the candidate design Vmu over all designs V C x is called a minimax distance 

design (Santer et al. (2003)): 

maxp(x,VmM) = minm&x p(x,T>). 
«ex vex *ex 

A minimax strategy would ensure that every point x e x is n ° t too far from some 

point in V. The minimax design will generally lie in the interior of the design 

space and the maximin design will be more likely to place the sample points on the 

boundary to make points further away from each other. Even though the minimax 

distance design provides better coverage on the input space, the maximin distance 

design is more popular in design of computer experiments because it is easier to 

implement than minimax design. For more details about the maximin and minimax 

design, refer to Santer et al. (2003). 

Each of the design methods produces certain attractive properties, but none 

of them is completely satisfactory. Combining two or more methods together can 

generate an approach that has several attractive features simultaneously. One pop­

ular way is to restrict the set of candidate designs to LHS and then using a max­

imin distance-based criterion to select a design from this restricted class (Gramacy 

(2005)). This combined strategy is used in the several applications of this study. 
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1.1.3 Adaptive sampling designs 

Adaptive sampling, also called sequential design of experiments or active data 

selection in the world of machine learning, aims at finding a set of sample points 

that yield a desired accuracy with minimal computational cost. Active learning 

studies how to query data points based on previously obtained training data so as 

to incorporate as much new information into the model as possible. Active learning 

is important in the situation when data are expensive or difficult to obtain. In 

computer experiments, each training point may take days to compute and cost 

thousands of dollars. Optimally sampled points save time and cost. 

There are different goals in computer experiments using active learning. One 

primary interest of computer experiments is optimization. Sequential experimental 

designs have been proposed for locating those interesting x that optimize the output 

or a function of the output of a computer code (Santer et al. (2003)). The idea 

of these methods is to obtain some information about the whole surface through 

an initial set of sampled points, while additional points may be sampled in some 

subregions until some criterion is met. In the traditional DOE, many researchers 

use the following criteria (Fang et al. (2006)) in adaptive sampling: 

• .D-optimality: maximize the determinant of M 

• A-optimality: minimize the trace of M^ 1 

• E-optimality: minimize the largest eigenvalue of M " 1 

where M is the information matrix for the chosen model. When the model is true, 

these optimal designs are the best under the criterion, but they lack robustness to 

model misspecification. 

In computer experiments, entropy and mean square prediction error are two 

most-often studied criteria. Mean square error designs aim at minimizing the ex­

pected mean square error; more details are discussed in Sacks et al. (1992). The 
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integrated mean squared prediction error (IMSPE) and maximum mean square pre­

diction error (MMSPE) can be used as optimality criteria. In a Gaussian process 

model, a maximum entropy design is equivalent to maximizing the determinant of 

the covariance matrix of y. These criterion-based designs require the knowledge 

of the correlation function of y (for more technical details, see Santer et al. (2003) 

and Koehler and Owen (1996)). Due to the lack of easily accessible of software to 

generate these designs, LHS design is still a more popular choice. 

In contrast to the goal of optimization, the goal of this study on adaptive 

sampling is to efficiently and accurately predict y for a given x0. Instead of using 

the above sequential design criteria, we consider two useful algorithms for active data 

selection in machine learning. The first one is developed by Mackay (1992), called 

ALM for Active Learning Mackay, and has been aimed to maximize the expected 

information gain about the model parameter values -0 when we receive the new 

data x. Shannon's entropy is used as the information measure. Mackay proved that 

we will learn most about the model by selecting the data x with largest predictive 

variance in the input space. One non-ideal property of this criterion is that the error 

bars are largest at the most extreme points where data have been gathered for most 

models. This leads us to repeatedly sample data at the edges of the input space 

(Mackay (1992)). But this disadvantage can be reduced by querying data from a 

set of candidates X in a defined region of interest or spread out over the space. 

The second approach suggested by Cohn (1996), called ALC for Active Learning 

Cohn, is to select the data x to minimize the expectation of the mean square error 

over input space x- More technical details are described in Chapter 4, on adaptive 

sampling. 

1.2 Stationary Gaussian Process Model 

In a typical computer experiment, a high-dimensional vector x € M.d is used as 

input to a computer code, yielding an output y(x). Because the code is expensive 



to execute, one of the major goals of computer experiments is to seek an approx­

imation model (metamodel) which is close to the true code but faster to run. A 

statistical approach to the problem is to model the response y(x) as a realization 

from a stochastic process and to construct a predictor appropriate for that process. 

For example, a stationary Gaussian process (GP) leads to kriging, or empirical best 

linear unbiased prediction (BLUP), which is a popular technique in computer ex­

periments. A closely-related approach is Bayesian prediction of the deterministic 

function under a GP model, which has also been studied extensively during the past 

twenty years. 

A GP, Z(x), is a collection of random variables indexed by x, on some prob­

ability space {^l,T,V), x € x C M.d, The finite dimensional distributions of a GP 

are multivariate normal for every n and every collection {Z(xi), Z(x2),..., Z(xn)}. 

A GP is completely specified by its mean and covariance functions. Let x and x' be 

two inputs in the space and denote the mean function as fi(x) and the covariance 

function as C(x, x'). Then 

ti{x) = E[Z(x)\, 

C{x,x') = E[(Z(x)-n(x))(Z(x')-n(x'))], 

and the corresponding correlation function is: 

C(x, x1) 
R{x,x') = 

a{x)a{x')' 

where a{x) — C(x,x). Thus, a GP can be written as 

Z(x) ~ GP(n(x),C(x,x')) 

A stationary GP in the wide sense (weak stationarity) is defined as 

(Banerjee et al. (2003)): 

• /i(a:) = V 
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• E\Z{x)\2 < oo 

• E[(Z(x) - n(x))(Z(x') - n(x'))] = C(x - x') = C(h), where h = x-x'. 

If, in addition, E[(Z(x) - fi(x))(Z(x') - fi(x'))] = C(\\x - x'\\) = C{h), then the 

covariancc function is solely a function of the distance between two locations and 

the GP is isotropic. The isotropic GP has been widely used in spatial statistics 

(Banerjee et al. (2003)). 

Sacks et al. (1989) brought GP in computer experiments. The classic GP model 

has the form 

y(x)=g(x)Tp + aZ(x), a > 0, (1.1) 

where g(x) = [gi(x), ...,gp(x)]T are known regression functions, (3 = (/?i, ...j3v)
T is a 

vector of unknown regression coefficients, and aZ(x) is a stationary GP with mean 

0, variance a2 and correlation function R. The term g(x)Tj3 captures the large-scale 

variation in the process, while Z(x) captures the small-scale variation. 

1.2.1 Covariance functions 

A process can possess different levels of smoothness. In a GP, a2 and the corre­

lation function R characterize the distributional properties of the spatially correlated 

error process Z(x), so the choice of a GP can be reduced to that of a covariance 

or correlation function that has desired differentiability and smoothness characteris­

tics. In this section, we give two examples of correlation functions: the power family 

and Matern family. 

Power family 

A popular family of correlation functions is the power family. The isotropic 

correlation function in the power family can be written as 

R(x,x') = exp{-<t>\\x-x'\\p}, (1.2) 
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where <f> is referred to as the range parameter, and the correlation increases as </> 

decreases. The power 0 < p < 2 determines the smoothness of the underlying 

process, which can either be chosen in advance or estimated. Every process for 

0 < p < 2 is continuous at the origin but not differentiable at the origin. When 

p—1, the power correlation function is actually an exponential correlation function. 

When p — 2, the correlation function is called the Gaussian correlation function, 

which is infinitely times differentiable at the origin. In computer experiments, p — 2 

is a popular choice since the response function is assumed to be smooth. 

An extension of the isotropic power family is to allow different values of the 

range parameter (fik in each dimension (k — l,...,d). The resulting d-dimensional 

separable version of the power correlation has the form 

R(x,x') = exp< - ^(f)k\xk-x'k\
p > , (1.3) 

which is a legitimate correlation function since it is a production of correlation 

functions. With the separable power family, one can allow for different strengths of 

correlation in each dimension. But extra parameters have been introduced into the 

model, which will reduce the efficiency of the implementation if the true underlying 

correlation structure is isotropic. 

Figures 1.1 and 1.2 show the effects of changing the power parameter p and 

range parameter <f> on the sample path from a GP with power correlation function. 

As we can see from the top two panels in Figure 1.1, the sample paths are not 

differentiable for p < 2, and the sample paths in the bottom panel are infinitely 

differentiable for p = 2.0. As the range parameter (ft decreases, the sample path 

becomes more smoother since the correlation between two fixed locations increases. 

As (j) decreases to 0, the correlation becomes 1 and the sample paths becomes more 

constant. 
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Figure 1.1: Effect of varying the power parameter p on a GP with power correlation 
function. Correlation function (left panels) and two realized sample paths (right 
panels) for a zero mean, unit variance GP with power correlation having fixed 0 = 1 
with p = 0.1 (top plots), p = 1 (middle plots), and p — 2 (bottom plots). 



Figure 1.2: Effect of varying the range parameter 4> on a GP with a power correlation 
function. Correlation function (left panels) and two realized sample paths (right 
panels) for a zero mean, unit variance GP with power correlation having fixed p = 2 
with 4> = 500 (top plots), (p = 100 (middle plots), and <f> = 10 (bottom plots). 
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Matern family 

The isotropic Matern correlation function first introduced by Matern (1960) 

has the form 

p(h) = r(^)Vi(2^INirM2v/^W' (L4) 

where /C„(-) is the modified Bessel function of order v. There are two parameters in 

this correlation function. The range parameter <fi controls the correlation decay rate 

and the smoothness parameter u controls the smoothness of the sample path. As 

v increases, the smoothness of the sample paths from a GP increases. As v —> oo, 

the Matern approaches the Gaussian correlation function with form (Santer et al. 

(2003)) 

R{h) = exp(-02 / i2). 

When v = 0.5, the Matern correlation function is equivalent to an exponential 

correlation function with parameterization 

R{h) = exp(-y/2<j)h). 

The top panel in Figure 1.3 shows the marginal effect of v on the smoothness of the 

Matern correlation function. The order of differentiability of the Matern correlation 

at the origin increases as v increases. It is actually hard to tell the difference between 

the Matern correlation and a Gaussian correlation when v > 10. When v — 0.5, we 

see the overlap of the exponential correlation with the Matern correlation function. 

The sample paths become wiggly as u decreases, as shown in the bottom panel in 

Figure 1.3. 

1.2.2 Estimation and prediction 

Given observed data (a?i, y(x\)),..., (xn, y(xn)), we want to predict y(-) at an 

untried input XQ based on the stationary GP model equation in (1.1). One approach 



Figure 1.3: Effect of varying the smoothness parameter v on the correlation functions 
and sample paths of a GP with Matern correlation function. Top panel: Matern 
correlation function with fixed 4> = 1.5 and u = 0.1, 0.5,1,2,10. The dashed line is 
a Gaussian correlation function with 4> — 1.52. The dotted line is an exponential 
correlation with (f> = y/2 x 1.5. Bottom panel: Realizations from a zero mean, unit 
variance GP with Matern correlation having fixed (f> = 1.5 and v = 0.5 (exp), 1, 2, 
co(gau). 

is similar to kriging (Matheron (1963)), which essentially is the empirical best linear 

unbiased estimator (BLUP) for y(x0) given by (Sacks et al. (1989)) 

y(xQ) = g{xQ)T(3 + r(x0, x)Er\y - GTp), (1.5) 
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and mean square prediction error for the BLUP is 

MSE(y(x0)) = a2 {l - r(x0, x)R~1r(x, XQ) + hT(GTRr1G)h} , (1.6) 

where r = [R(xo,Xi),..., R(xo,xn)}
T is a n x 1 correlation vector between Z(XQ) 

and z(xi),..., z(xn), G — [g(xi), ...,g(xn)]
T is the n x p matrix of regressors for 

y, R is the n x n correlation matrix between z values at observed locations, and 

h = g{x0)-G
TR'ir. 

Alternatively, from a Bayesian point of view, the mean and variance of the 

posterior distribution p(y(xo)\y(xi),..., y(xn)) would be the best predictor and pre­

dictive variance for y(x0). Assuming that all parameters are known, the posterior 

mean and variance are given by 

E[y(xQ)\y(x1),..., y(xn)] = g(x0)
TP + rz(xQ, x)R;\y - GT(3), (1.7) 

Var[(j/(cco)|y(a:i),..., y(xn)} = <r2(l - rz(x0, x)R~1rz(x, x0)). (1.8) 

Further, if all the model parameters are known, the predictors (1.5) and (1.7) are 

identical for the GP model, but with different predictive variances. In practice, 

the model parameters /3, a2, <f) are unknown and need to be estimated. Since y is 

normally distributed, the maximum likelihood estimator (MLE) of j3 given 4> is the 

generalized least squares estimator 

P={OrR-lG)-1GTR-1y, 

and the MLE for a2 is 

a1 = • . 

n 

The MLE 0 of 0 maximizes 

--(nlog(cr2) + log|/?|. 

The values of r and R with 0 replaced by 0 will be denoted by r and R. 
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1.3 Applications of GP Model in Computer Experiments 

1.3.1 Multi-level/Multi-resolution responses 

The GP model (1.1) is not only a popular metamodeling approach for deter­

ministic computer code outputs, it can also model the bias between the multi-level 

or multi-resolution responses. The computer code can be run at different levels of 

complexity. A simple version of the code is a fast approximation to reality, which in­

cludes the most important features of the response but might be biased. A complex 

version of the code is a better approximation to reality, but is limited by expense 

of computation. There is a trade-off between the complexity of the expensive code 

and the availability of simpler approximations. Kennedy and O'Hagan (2000) in­

troduced a Baysian analysis of multilevel code using an autoregressive model to 

integrate the outputs from different levels. Each level t of the code can be modeled 

using a GP: 

Zt(x) = pt-iZt-i(x) + 5t{x), t = 2,...,s 

<$,(•) ~ GP(h(-)T0t,alp6(.,-)), 

Zi(-) ~ GP{^a\Pz{-r)). 

The problem of model validation in computer experiments can be considered as 

a two-level response: cheaper computer code outputs and expensive, real physically 

observed data. The computer model needs adjustment to fit the observed data. 

Kennedy and O'Hagan (2001) presents a Bayesian approach to the validation of 

computer models, starting from the model 

y°(x) = yT(x) + e(x), 

yT(x) = yc(x) + fc(aj), 

where yT(x) denotes the true process, yc(x) denotes the computer code output, b(x) 

denotes the model inadequacy and e(x) is measurement error. Gaussian processes 

are used to model yc(x) and b(x). 
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1.3.2 Derivative of G P 

Some computer experiments provide both y(-) and its first partial derivatives 

at observed inputs x. The derivative of a GP is still a GP and can be combined 

into the modeling paradigm. Morris et al. (1993) proposed a Bayesian modeling 

procedure that can simultaneously model the response and its derivatives. Let 

yij){x) = dy(x)/dxj denote the first partial derivative of y(x) with respect to the 

j t h component of x for 1 < j < d. If C(xi,x<}) denotes the covariance function 

for y(-) at two points X\ and x2, the covariance function for the partial derivative 

process is given by 

Cov{y»(^,y (^2)} = ^ % ^ , 

dxudx2j 

and the covariance function between response and derivative is 

Cov{y(x1),y^(x2)} 
dC(xi,x2) 

dx 2j 

The derivative information can be combined into modeling and prediction since 

the joint distribution of (yo, y, y') is 

Vo " 
y 
y'. 

/ 
~ N 

V 

" g{x0)
T 

G{x)T 

_ G'(xf 
P,a* ry(x,x0) 

ry(x0,x) ryy:(x0,x) 
ryy'\x: x) R,, 

Ry, Vy'y[X,XQ) Vyly[X,X) 

The empirical BLUP and BP for y(xo) based on y and y' easily follow. 

1.4 Other Approaches for Metamodeling 

• (1-9) 

The stationary GP model is a popular metamodeling approach in computer 

experiments because it is conceptually straightforward to implement and can pro­

duce prediction intervals. A stationary covariance function of a GP assumes uniform 

smoothness of the response surface over the input space. The stationarity assump­

tion is a severe restriction for functions whose smoothness varies considerably over 
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the input space. In computer experiments, outputs often possess heterogeneous 

features. For example, subsonic flow is quite different from supersonic flow in the 

application of computational fluid dynamics (Gramacy et al. (2004)). Using the sta­

tionary GP model will oversmooth in some regions and will undersmooth in others. 

To overcome this limitation of a stationary GP, both regression and nonstation-

ary GP techniques have been developed. Multivariate adaptive regression splines 

(MARS) have been used in the metamodeling of computer experiments by Jin et al. 

(2000) and Simpson et al. (2001a). The number of knots and locations for the 

splines are adaptively determined from the data to account for inhomogeneity. Ar­

tificial neural networks (ANN) are another approach for flexible modeling of the out­

put from computer experiments (Chen and Varadarajan (1997) and Simpson et al. 

(2001b)). The MARS and ANN approaches have implicit covariance functions, and 

both have large numbers of coefficients with no clear interpretation. Chen et al. 

(2003) gives a good review about metamodeling in computer experiments. 

Gaussian processes with nonstationary covariance functions have been 

widely studied in the fields of statistics and geostatistics (Higdon et al. (1999), 

Fuentes and Smith (2001), Gelfand et al. (2003) and Yan (2007)). Most of these 

nonstationary models work well in low-dimensional (e.g. R2 or M3) physical ex­

periments. Xiong et al. (2007) incorporate a nonstationary covariance function in 

modeling high-dimensional computer experiments. The nonstationary covariance 

function is formulated through a non-linear map with sparse parameterization, but 

the total number of model parameters may still be large in complicated cases. 

Gramacy et al. (2004) developed a tree-based Gaussian method to model nonsta-

tionarity in a response surface, by fitting individual GP models within subregions. 

The computational cost is reduced by this method, but discontinuities across sub-

regions cannot be avoided. 

There is currently no universally accepted approach to metamodeling in com­

puter experiments. It is therefore desirable to develop more sophisticated models 
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that are able to model very complex functions with respect to a large number of 

variables and are attractively interpretable. 

1.5 Motivation for Stochastic Heteroskedastic Process Model 

In order to capture the inhomogeneous features in computer experiment data, 

we adapt the idea of heteroskedasticity modeling from time series. The two classes of 

heteroskedastic models in time series are autoregressive conditional heteroskedastic­

ity (ARCH) and stochastic volatility (SV); see Shephard (1996) for a review. In an 

ARCH model, the conditional variance is modeled as a linear function of the squares 

of the past information. In an SV model, the conditional variance is modeled as a 

latent stochastic process. The most popular stochastic volatility model from Taylor 

(1986) assumes an AR(1) model for the latent process. This model is given by 

yt - e t exp(V2) , {<*} i idN(0, l ) , 

h = Ko + liht-i+Vt, {%}iidN(0,a2), 

where iid denotes independent and identically distributed. For |7i| < 1, this is a 

strictly stationary model. The bottom plot in Figure 1.5 is a sample path from 

an SV model, which looks like a realization from a nonstationary model. The ap­

parent inhomogeneity in the data comes from the conditional variance, shown in 

the middle plot. The top panel is the plot for the corresponding latent process ht. 

The conditional variance of yt given ht is eht, so that the correlated latent process 

ht captures "volatility clustering effects"; that is, positively autocorrelated condi­

tional variance. In his study of heteroskedasticity for spatial lattice data, Yan (2007) 

adapts the SV idea by introducing a spatial stochastic volatility (SSV) component 

into the widely-used conditional autoregressive (CAR) model. 

We extend the SV idea to the spatial context, where time t is replaced by a con­

tinuous (non-lattice) multi-dimensional index x, and where the uncorrelated noise 
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Figure 1.4: Laten process {/it}, conditional variance e ' and SV sample path yt. 

{et} is replaced by a random field Z. In a standard GP model for CE data, the 

random field Z is used to capture the small-scale variation in the deterministic com­

puter experiment outputs. By introducing a spatial stochastic volatility component 

into the GP model, we propose a new spatial model that allows for more flexibility 

in capturing the salient features of computer outputs. We model the deterministic 

computer response as a realization from a stochastic heteroskedastic process (SHP). 

The SHP is a stationary non-GP. Conditional on a latent process, the SHP is a GP 

with non-stationary covariancc function. As such, the sample paths of this process 

are more varied and flexible than those produced by a traditional GP model. The 

SHP model can also recover Gaussian-like sample paths for certain model parame­

ter values. We use maximum likelihood for inference, which is complicated by the 
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high dimensionality of the latent process. Accordingly, we develop an importance 

sampling method for likelihood computation and use a low-rank kriging approxi­

mation to reconstruct the latent process. Responses at unobserved locations can 

be predicted using empirical best predictors (EBP) or by empirical best linear un­

biased predictors (EBLUP). Palacios and Steele (2006) proposed a similar model 

in geostatistical modeling. Bayesian inference is performed in their study. But the 

prior distribution needs to be chosen carefully to improve the convergence and avoid 

identification problems in parameter estimation. 

This work is organized as follows. The detailed properties of the SHP model 

and estimation methods are introduced in Chapter 2. In Chapter 3, we compare the 

prediction performance of SHP with the traditional GP model via simulated and real 

computer experiment data. Similar to the GP model, the predictive variance with 

the SHP model can also be used in adaptive sampling, and the sampling efficiency 

is compared for GP and SHP models in Chapter 4. Chapter 5 introduces a low-rank 

SHP modeling of derivatives together with responses in computer experiments. 



Chapter 2 

STOCHASTIC HETEROSKEDASTIC PROCESS (SHP) MODEL 

2.1 Definition of SHP 

One of the approaches to model nonstationarity is through scaling 

(Banerjee et al. (2003)). Suppose Z(x) is a mean 0, variance 1 stationary pro­

cess with correlation function p, and cr(x) is a pre-specified deterministic function. 

Then W(x) = a(x)Z(x) is a nonstationary process. By allowing a(x) to be a 

random process, W[x) retains the nonstationary flavor in terms of sample path be­

havior but has nice probabilistic structure. In particular, if c{x) is stationary, then 

W(x) = a{x)Z[x) is also stationary, though its sample paths appear nonstationary 

(a time series version of this phenomenon is shown in Figure 1.5). 

The SHP model is defined as: 

y(x) =g{x)T(3 + W{x), 

W{x) = a e x p ( ^ p M Z(x), a > 0, r > 0, (2.1) 

where a(x) and Z(x) are two independent stationary GP with mean 0, variance 1 

and correlation functions pa and pz, respectively. For most examples in this paper, 

we take pa and pz to be isotropic correlation functions with range parameters cj)a and 

02, respectively. The overall trend is g(x)T(3 and W(x) represents the deviation 

from the trend. The latent process a(x) is used to model surface inhomogene-

ity, which is analogous to the log-volatility component in the stochastic volatility 

model. By allowing a separable covariance function for the Z process, the isotropic 

SHP model can be easily extended to a separable SHP model with different range 

parameters for each input dimension. 
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2.2 Properties of SHP 

In this subsection, we describe some of the key properties of SHP that are useful 

for modeling. 

2.2.1 Unconditional correlation function of SHP 

The y(-) process has mean g{x)Tj3, variance cr2exp(r2/2) and kurtosis 

3exp(r2). Since the kurtosis is greater than 3, the y process has tail probabilities 

that are heavier than normal. Using the independence of the a and Z processes, W 

is isotropic with unconditional correlation given by 

py(x, x') = exp ( - - T 2 + -r2pa(\\x - x'\\)j pz(\\x - x'\\). 

Equation (2.2) is derived as follows: 

(2.2) 

Cov[y(x),y(x')] = Cov[W(x),W(x')} 

= CT2COV 

= alE 

= a2E 

= a2E 

e x p | — ^ Z(a;) ,exp' 

r(a{x) + a(x'))\ , 
exp | ' n ) Z(x)Z(x') 

Z(x') 

exp 

exp 

r(a(x) + a(x')) 

T(OL{X) + a(x')) 

E[Z(x)Z(x')} 

Pz(x,x'). (2.3) 

Since a is a GP with mean 0, variance 1 and correlation function pa, a(x) + a(x') 

also follows the Gaussian distribution with mean 0 and variance 2 + 2pa(x./ x'). From 

the moment generating function of the normal distribution, we get 

' r{a{x) + a{x'Y 
E exp 

r2 r2 

exp<; — + —pa(x,x') } . (2.4) 

(2.5) 

Substituting (2.4) into (2.3), the unconditional covariance is given by 

( T2 T2 ) 
Cov[y(cc), y(x')] = a2 exp <̂  —- + —pa{x, x') \ pz(x, x'). 

Dividing (2.5) by Var(y(x)) = CT2exp(r2/2), the unconditional correlation (2.2) 

follows easily. 
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Limiting behavior of SHP model 

This unconditional correlation function in (2.2) motivates us to explore the 

limiting processes when </>Q —> 0 and 4>a —> oo. When 0 a = 0, the a process 

degenerates to a single N(0,1) random variable and the unconditional correlation 

function for y becomes pz. While the process y remains non-Gaussian, a single 

realization of y is not distinguishable from a realization of a GP. In fact it is a 

realization of a GP, multiplied by a single scale factor. On the other hand, as 

4>a —•> oo, the unconditional correlation function converges to 

/N I 1, if \\x — x'\\ = 0, , 
p(x,x') = < " " (2.6) 

\ exp( - r 2 /4 )^ (a ; , a ; / ) , if ||x - x'\\ > 0. V ; 

In modeling spatial data, one often allows for possible measurement error and mi-

croscale variability. It is sometimes called "nugget" and the correlation function 

with relative nugget 5, 0 < S < 1 is written as 

sf ,s J 1 - if ||aj - x'| | = 0, 
p (x,x) = < 

\(l-6)pz(x,x'), if \\x - x'\\ > 0. 

Thus, as 4>a —• oo, the unconditional correlation function of SHP is simply pz adding 

a relative nugget 8=1— exp(—r2/4). 

Effect of 'a 

The effect of varying the correlation parameter 4>a on the correlation function 

can be seen from Figure 2.1. The correlation decreases with cj>a increasing for each 

value of h, the distance between sample points. As <pa approaches infinity, one can 

see the emergence of "smoothed nugget", by which we mean nugget-like behavior, 

without an actual discontinuity at the origin. At 4>a — oo, we have a full-fledged 

nugget of size 1 — exp(r2/4). In the other direction, as </>a approaches zero, the 

correlation function decays smoothly. But the effect of c/>Q on the unconditional 

correlation function also relates to the value of 6,. As we increase d>, from 5 to 
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100, comparing Figure 2.1 to Figure 2.2, the decay of the correlation function is 

dominated by the large value of 4>z. The correlation function with <pa ranging from 

0 too 100 are much less varied in Figure 2.2 (4>z = 100) than in Figure 2.1 (<pz = 5). 

Figure 2.1: Effect of (f>a (with <fiz = 5 and r2 = 2) on the unconditional SHP 
correlation function. Both pa and pz are Gaussian correlation functions. 

Effect of r 2 

When r2 = 0, the SHP recovers a GP with correlation function pz. Under 

fixed values of 0Z and cj)a, the correlation decreases with r2 increasing, as shown 

in Figure 2.3. For small values of 4>z and large values of <j)a, the emergence of a 

smooth nugget gets more obvious with increasing r2 . As shown in (2.6), the value 

of r2 decides the scale of nugget in the limiting behavior. The larger the value of 

T2 , the larger the value of the smoothed nugget. As 4>z increases, the decay of the 

correlation function shown in Figure 2.4 is again dominated by the large value of 

<fiz. Correlation functions with r 2 ranging from 0 to 6 are much less varied in Figure 

2.4 (<f>z = 100) than in Figure 2.3 {<pz = 5). 
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- - phia= 100 
phia= infinity 

—r~ 
0.15 

h 

Figure 2.2: Effect of 4>a (with <pz = 100 and r2 = 2) on the unconditional SHP 
correlation function. Both pa and pz are Gaussian correlation functions. 

c: o 

— tausq= 0 
- - tausq= 1 

tausq= 3 
- tausq= 6 

0.0 0.4 

Figure 2.3: Effect of T2 (with cpz = 5 and 0Q — 200) on the unconditional SHP 
correlation function. Both pa and pz are Gaussian correlation functions. 
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Figure 2.4: Effect of r 2 (with 4>z = 100 and <f)a = 200) on the unconditional SHP 
correlation function. Both pa and pz are Gaussian correlation functions. 

Confounding effect of r2 and <fia 

From the previous correlation function plots, we sec the potential for a con­

founding effect between 4>a and r2 , i.e. the different values of <f>a and r2 can give the 

same correlation function. The overlap of two correlation functions in each panel 

of Figure 2.5 reveals the existence of this confounding effect between 4>a and r2 for 

different <f>z values. But the degree of confounding depends on the value of 4>z and 

<̂ a- If 4>z < 4>ai the confounding effect exists for a relatively small range of r2 values, 

such as those given in the correlation function plots in panels (b) and (c). The range 

of (j)a is related to the value of <pz: the larger the value of 4>z, the larger the range of 

4>a values for which the confounding effect exists. If 4>z > 4>a, the confounding effect 

between (f)a and r2 holds for a larger range of r2 values, such as those given in the 

correlation plots in panel (a) and (d). 

The confounding effect can be explained by the dominance of c/)z on the shape 

of the correlation function. As we observed in the previous section about the effect 

of model parameters on the correlation function, the decay rate of the correlation 
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function is most influenced by the value of <fiz. For small values of cpz, the values of 

(pa and T2 have more influence on the shape of the correlation function. But values 

of <pa and T2 have much less influence on the shape of the correlation function for 

larger values of <pz. This confounding effect will lead to identification problems in 

estimating SHP model parameters. 

(b) 

tausq- 2 phia= 60 
tausq= 1.5 phia= 90 

~i r~ 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 

— tausq=4 phia= 10 
- - - tausq= 1 phia= 50 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 

(c) (d) 

Figure 2.5: Confounding effect between </>Q and r2 for unconditional SHP correlation 
function, (a) <\>t = 10. (b) fa = 20. (c) <\>z - 50. (d) 4>z = 100. 
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2.2.2 Conditional covariance function of SHP 

Conditioning on the latent process a , the covariance function of the process 

between two locations is 

Cov(y(x),y(x')\a) = a2exp ( j ^ j Pz(x,x')exp f ^ 1 ^ ) • (2.7) 

Equations (2.2) and (2.7) indicate that the W process is conditionally heteroscedas-

tic and unconditionally stationary. The inhomogeneity of the conditional covariance 

function leads to versatile sample paths of SHP, which is shown in the next section. 

2.2.3 Sample paths 

In this section, we explore the versatile properties of sample paths from the 

SHP model. We generate 1-d and 2-d realizations from SHP with different model 

parameter values. These realizations are compared with realizations from GP mod­

els. For smooth GP realizations, as shown in Figure 2.6 (a), the SHP model can give 

very similar realizations with small values of <j)z, cj)a and r2 , as shown in Figure 2.6 

(b). The realizations in Figure 2.6 (c) and (d) show that for 4>z = 20 the local inho­

mogeneity of SHP realizations increases as <\>a and/or T2 increases. For rough GP 

realizations, as shown in Figure 2.7 (a), the SHP model again can produce similar 

realizations, as shown in Figure 2.7 (b). The realizations in Figure 2.7 (c) are nearly 

identical, showing that 4>a has not much influence at this large value of 4>z = 100. 

Figure 2.7 (d) again shows local inhomogeneity, as the value of r 2 is increased. 

For GP realizations similar to those from SHP in panel (a) and (b) of Figure 

2.6 or Figure 2.7, their unconditional correlation functions are quite close to each 

other, as shown in Figure 2.8. 

The above 1-d examples show that GP and SHP models can have similar un­

conditional correlation functions and can produce similar realizations. On the other 

hand, the realizations can differ from each other even with similar unconditional 
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GP phl= 20 SHP phia= 30 phiz= 20 tausq= 0.1 

(a) 

SHP phla= 500 phiz=20 tausq=0.1 

(b) 

SHP ph ia - 30 phiz=20 tausq=10 

(c) (d) 

Figure 2.6: Two 1-d realizations of GP vs SHP for small value of <pz. Gaussian 
correlation functions are used for the GP and for the latent process and random 
field in SHP. The same set of random noise sequences is used from panel to panel 
in generating the realizations. 



31 

GP phi= 200 SHP phia= 50 phiz= 200 tausq= 0.1 

(a) (b) 

SHP ph!a= 500 phiz= 200 tausq= 0.1 SHP phia= 50 phiz= 200 tausq= 6 

(d) 

Figure 2.7: Two 1-d realizations of GP vs SHP for small value of 4>z, Gaussian 
correlation functions are used for the GP and for the latent process and random 
field in SHP. The same set of random noise sequences is used from panel to panel 
in generating the realizations. 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.00 0.05 0.10 0.15 0.20 

h h 

(a) (b) 

Figure 2.8: Unconditional correlation function plots, (a) The correlation function 
plots for GP and SHP sample paths in Figure 2.6 (a) and (b): GP with 4> = 20; 
SHP with r2 = 0.1, 4>a = 30, and 4>z — 20. (b) The correlation function plots for 
GP and SHP sample paths in Figure 2.7 (a) and (b): GP with 4> = 200; SHP with 
r2 = 0.1, 4>a = 50, and <j>z = 200. 

correlation functions for GP and SHP. For example, the correlation functions for 

the GP and SHP models that generated the 2-d surfaces in panels (a) and (b) of 

Figure 2.9 are nearly identical, but the 2-d surfaces themselves are markedly differ­

ent. The realized surface from the GP has a relatively unform degree of smoothness 

over the whole input domain. In contrast, the realization from the SHP model has 

some local volatilities. The smoothness of the SHP realization varies over different 

parts of the region, which is due largely to the inhomogeneity of the conditional 

covariance function. The local volatility is less obvious in panel (d), with smaller 

'fia/^z, and least obvious in panel (c), with (j)a/4>z < 1. 

Confounding effect of model parameters on sample paths 

In the previous section, we showed the confounding effect between (pa and r 2 

on the correlation functions under certain values of 4>z. Figure 2.10 indicates the 

existence of a possible confounding effect between 4>a and (f)z. Different combinations 

of <fia and 4>z produce realizations quite similar to each other. For a finite sample 



33 

(a) (b) 

(c) (d) 

Figure 2.9: 2-d surface plots. Panel (a) is a GP surface with </> = 6.4. Panel (b) is 
a SHP surface with <pa = 8.5 and <f>z — 4.4 and r2 = 2. Panel (c) is a SHP surface 
with 4>a = 1 and <j>z = 3.3 and r2 = 2. Panel (d) is a SHP surface with (\>a — 12 and 
4>z — 11 and r2 = 2. The unconditional correlation functions for GP and SHP in 
(a) and (b) are nearly identical. All correlation functions are Matern with v = 2.5. 
The same set of random noise sequences is used from panel to panel in generating 
the realizations. 
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size, it will be difficult to tell which combination of <pz and <pa gives such a sample 

path. This confounding effect will lead to an identification problem in the parameter 

estimation. As we can see in later sections, the likelihood of the SHP model favors 

large values of <j>z. Some methods might be able to alleviate these identification 

problems, such as restricting different parameter ranges in the optimization process, 

adding a penalty in the likelihood computation for large values of 4>z or choosing 

informative priors in a fully Bayesian approach. In our study, instead of solving 

the identification problem in parameter estimation, we are more interested in model 

performance in terms of prediction accuracy. The parameter estimates are obtained 

by maximum likelihood. 

2.3 Likelihood Calculation and Parameter Estimation 

Due to the presence of the latent process a in the SHP model, there are no 

closed-form expressions for the likelihood function, and we consider simulation-based 

alternatives for its computation. We focus on importance sampling methods, which 

have been proven successful in related time series models (Danielsson and Richard 

(1993), Durbin and Koopmans (1997), Davis and Rodriguez-Yam (2005)). We de­

scribe the strategy of likelihood calculation and importance density derivation in 

Section 2.3.1 and Section 2.3.2, followed by parameter estimation and the latent 

process estimation in Section 2.3.4 and Section 2.3.5. 

2.3.1 Likelihood calculation 

Let y :— (yi,...,yn) denote the vector of observations, ex := (aj, ...,an) the 

vector of the latent process at observed locations and V : = (#> 4>a) the model pa­

rameters. Here 0 :— (a2, r2, <f>z, j3). The joint density of (y, ex) of the SHP model is 

given by 

p(y,a\i>) = p{y\<x,o)p(<x\4>a) 

= P(y\a,e)\Ra\-hxp(-^cxTR^aj(27r)-^, (2.8) 
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Figure 2.10: Confounding effect between 4>a and 4>z in sample paths. In spite of 
having different <j)a, (fiz values between the top and bottom panels, the two left 
panels have similar sample paths, as do the two right panels. 
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where Ra is the correlation matrix for a, which only depends on <pa. The conditional 

distribution p(y\a, 6) is given by 

p(y\a, 0) = N (GTf3, a2diag {exp ( ™ ) } i?2diag {exp ( ™ ) } ) , (2.9) 

where Rz is the correlation matrix of the Z process. It follows that the likelihood 

of the observed data is given by the n-fold integral 

L{i(};y)= p(y,a\ij))da= p{y\a,0)p{a\4>a)da. (2.10) 

2.3.2 Impor t ance density 

The likelihood (2.10) cannot be computed explicitly. There are some 

simulation-based procedures in the literature to approximate the likelihood (sec 

Robert and Casella (1999)). Monte Carlo integration is a straightforward way to 

approximate the likelihood. Due to the high dimensionality of the latent process in 

the SHP model, naive Monte Carlo integration is very inefficient. Importance sam­

pling is introduced to increase computational efficiency and improve the accuracy 

of the approximation. 

As mentioned in Durbin and Koopmans (1997), to achieve efficiency, the im­

portance density should be chosen to be close to the posterior density p(a\y, V)- It 

can be easily shown that if pa(a\y, if}) is exactly equal to p(oc\y, •?/?), a sample of only 

/V — 1 is required for accurate likelihood calculation. Some methodologies have been 

developed to find efficient importance densities; see Danielsson and Richard (1993) 

and Durbin and Koopmans (1997). In this paper, we refer to the likelihood approx­

imation method in Davis and Rodriguez-Yam (2005) to obtain a density pa(a\y, ip) 

as an approximation to p(a\y, xjj). Their work was applied to state-space models 

and recursive prediction algorithms, such as the Kalman recursions or innovations 

algorithm, to accelerate the calculation in finding an importance density. 
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To find the importance density pa(a\y,ij)), Davis and Rodriguez-Yam (2005) 

use a Taylor series expansion of \ogp(a\y,ip) in a neighborhood of the posterior 

mode of p(a\y,ip). The log-density of (y, a) is given by 

n \ 1 
logp(y, ct\rl>) = - - log(2vr) + - log \Ra\-

1 + 1(6; y\a) - -aTR^a, (2.11) 

where 1(0; y\a) :— \ogp(y\a,9). 

Let 
d 

where a* is the mode of p(y, cx\i/)), which solves dl(tf};y,ot)/dot — 0. From (2.8), 

it follows that k* = R~xa*. 

Hence, the second order Taylor expansion of l(0;y\oi) around a* given the 

latent process a is 

1(6; y\a) = h* + cx^R-^a - ex*) - ha - a*)TK*(a - a*) + e(a, a*), (2.12) 

where /i* := /(6>;y|a)|a=a*, K* := -Q^TKO; y | a ) | a = c r and e (a , a* ) is the 

corresponding remainder. Thus, 

r? 1 1 

/(</>; y, a ) = --log(27r) + - l o g K r 1 + / l * - - a * r
J R - 1 a * 

-\(<x- cx*)T(K* + i ? - : ) ( a - a*) + e(a, a*). (2.13) 

Let pa(a\y, ip) be the approximation of the posterior when the remainder term is 

omitted. It follows that 

pa(a\y, ip) = N (a*, (K* + R'1)-1) (2.14) 

and in the SHP model, 

K* = ^(B + diag{c}), 

B = diag | exp ( - ^ - J j diag{y - gT (3} R'1 diag{y - gT(3}di&g jexp (——J J , 

c = (exp(-ro!/2))T diag{y - gT (3}R-1d\&g{y - gT/3}dmg jexp (——J J . 

(2.15) 
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Using pa(a\y, i/>) as an importance density function to implement Monte Carlo 

integration, the integral in (2.10) can be rewritten as 

W ; y ) = / r~i—n—^ «y,-0 da 
7 pa(a\y,ip) 

\p(y\a,0)p(a\(pa) = Ea (2.16) 
PaHy.VO 

If a ^ \ . . . , a ^ are drawn from p a (a |y , -0) , then (2.16) can be approximated 

by 

W;v)*4£ 
w r ' ' « « w ™ « i 

N • 1 u 

p(y | aW,0 )p (aW|^ ) 
(2.17) 

Pa(a ( i ) |y, '0) 

We use common noise sequences to draw a^\ i = 1,..., N in order to compute 

the likelihood (2.17), that is, the replicates of a^\ . . . , a ^ generated from the im­

portance density are based on the same random noise denoted by u^\ ...,u^N\ It 

is a common practice to use "common random numbers" in likelihood calculation 

using an importance density. The common random numbers ensures that the likeli­

hood is also smooth. Due to the complexity of the likelihood calculation, we provide 

more details of the implementation in the following subsections. 

2.3.3 Finding the mode a* 

In order to get the importance density (2.14), we need to find the posterior 

mode a* by maximizing (2.11). Since the dimensionality of a is the same as the 

number of observations, it is difficult to find a* especially for a large data set. We 

adopt a low-rank approximation for the latent process a in order to reduce the 

dimensionality in this optimization procedure. 

An approach for low-rank approximation is to use process convolution (Higdon 

(2002)). One way to construct a continuous GP is through its covariance function 

c(-), so the dependence between any two points depends on the distance between 

them. Another way to construct a GP is to convolve a continuous white noise 
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process x(s), s e S with a smoothing kernel k(s) so that 

z{s)= k(fx-s)dx(fi). (2.18) 

Js 

The resulting covariance function for z{s) depends only on the displacement vector 

d = s — s' and is given by 

c(d) - Cov(z(s), z(s')) = k(n- s)k(n - s')dfi = / k(fi - d)k{y)dy.. (2.19) 

Js Js 

The convolution of this process can be equivalently defined using some covariance 

function in Rd. There is a one to one relationship between the smoothing kernel k(d) 

and the covariance function c(d), given either JRP k(s)ds < oo and JRp k2(s)ds < oo 

or c(s) is integrable and positive definite (Higdon (2002)). For example, a smoothing 

kernel k(s) oc exp{ — | | | s | | 2 } has a one-to-one relationship with Gaussian covariance 

function c{d) oc exp{ —| | | -C | | 2 } . Note this relationship is no longer one-to-one if 

the process is not isotropic. In this case, multiple kernels can give rise to the same 

covariance function. 

Higdon (2002) applies the process convolution models (2.18) in dimension re­

duction to handle large data sets. One can choose to restrict the latent process x(s) 

to be nonzero at the spatial sites Uj, ...,ujm in S. Each x(u)j) is then modeled as 

an independent draw from a iV(0, o"l) distribution. The resulting continuous GP is 

then approximated by 
m 

z(8) = Y,xMHs-Wj) (2-20) 
3 = 1 

where k(- — ojj) is a kernel centered at U)j. 

An alternative for low-rank approximation is low-rank kriging. In the context 

of nonparametric regression, the kriging method is regarded as one kind of radial 

smoothing and it is BLUP for a mixed model of the form (Ruppert et al. (2003), 

pages 238-260) : 

y = G(3 + Bcuj + e, (2.21) 
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where G is the design matrix for fixed effects, and 

^ = [(7(11^-^-11)]^ (2.22) 

for some covariance function C. The BLUP for y(x) involves linear combination of 

C(\x — Xj\), 1 < j <n. 

The above smoother is full-rank. Since the smoother involves the inverse of a 

n x n matrix Bc, the computational cost will increase dramatically as the sample size 

increases. Ruppert et al. (2003) introduce a low-rank extension for radial smoothers. 

In what follows, we describe their method with a few changes to make their notations 

to be consistent with ours. 

Let Ki,..., Kj be a set of knot locations. Then an approximation based on the 

smaller set of basis functions 

C{\x-Kj\), l<j<J, 

arises from fitting the mixed model 

y = Gl3 + Bjuj + e, Cov(u>) = alttj\ (2.23) 

where 

Bj = [C(\xi - Kj\)], and ttj = [C(\KJ - «;|)]. (2.24) 
l<i<n,l<j<J l<j,j'<J 

In this study, low-rank kriging is used to approximate the latent process a. 

Let K\,..., Kj be a set of knot locations, the resulting continuous a process is then 

approximated by 

cc = Bui, UJ ~ N (0, H^1) , (2.25) 

where B = [pa(\xi - Kj\)}i<i<n,\<j<J and ft = [pa(K' ~K'j\)]i<j,j'<J- W e substitute 

(2.25) into (2.11) and maximize the likelihood with respect to u> to get CJ . Then 

a* is approximated by Bu>. 
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2.3.4 Parameter estimation 

For the SHP model, simulation results show that the likelihood tends to be flat 

for a wide range of large a2 values. Unlike the GP model, a2 cannot be profiled out 

of the likelihood in (2.10). This suggests the difficulty of estimating a2 from the 

likelihood. We propose an alternative way to alleviate this problem. 

Consider the sample variance calculated by 

s2=
 1 srx^(..,„^ ..f„_^ ^ E E w - w 

3 k 

Incorporating the correlations in the observations, the expected value of the sample 

variance is 

= 2n(n- 1) ( 2 " V « P ( T 2 / 2 ) ~ 2 E E"»(•>• fc)j • 

Hence, a corrected a2 by incorporating the sample correlation is given by 

, n ( n - l ) e x p ( - T V 2 ) E ( s 2 ) 

" = » 2 - £ , £ , P » ( M ) ' ( M 8 ) 

In our estimation procedure, wc propose to fix a2 at the sample variance, and 

maximize (2.17) only with respect to (r2, <pa, 4>z,(3) to get estimates (f2, </>Q, <f>z, /3). 

Then, by substituting E(s2) with s2 and plugging other parameter estimates into 

(2.26), an approximately unbiased estimator for a2 is given by 

,2 n(n — l ) exp ( - r 2 / 2 ) s 2 

a" = \ ' "v ' ' . (2.27) 
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2.3.5 Es t imat ion of function of volatility 

If ip were known, a function /(•) of the latent process a at observed locations 

can be estimated as the conditional expectation E[ / (a ) |y , ?/»], given by 

E[f(a)\y,ip] = f{a)p{a\y,ip)doc 

/(« r~n\ da 

/ / (" )p(y |" . 0)p(o#a)da 

Jrvli, 7MI 
(2.28) 

Jp(y|ai,0)p(a:|0a)a!a 

E a [ / ( a )p (y | a , 0)p(a|0<*)/Pa(a|y,</>)] 
Ea[p(y|a, 0)p(a|c/)Q)/pa(a|y, i/;)] 

We are specifically interested in estimating a and exp(rai/2). Once the esti­

mates of parameters ip are obtained, we sample a^,..., a^ from p a (a |y , i/>) and 

approximate the conditional expectation in equation (2.28) by Monte Carlo integra­

tion. 

2.4 Pred ic t ion 

Given y(cci), ...,y(xn), we want to predict a and ;y at an unobserved location 

x0. 

2.4.1 Latent process predict ion 

Let aQ be the value of the latent process at unobserved location x0. Given <j>a, 

the joint distribution of (a0ja) is multivariate normal. The mean and variance of 

p(ao\ct, <f)a) are given by 

a(x0)=ra(x0,x)R-1a, (2.29) 

and 

v&ino)) = 1 - ra(x0, x)R~1ra(x, x0). (2.30) 

where ra = [r(xo, Xi),..., T(XQ, xn)]
T is a n x 1 covariance vector between a(cco) and 

a(xi) ,..., a(xn), and i?a is the nxn covariance matrix for a at observed locations. 
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Given the model parameters, we are seeking the best predictor of ao, that is, 

E[aQ\y,if)}. Note that 

E[aQ\y,il>] = E{E(a0\i>,a,y)\iJj,y} 

= E{E(a0\ip,a)\ip,y} 

= E{ra(xo,x)R-lot\y,il>} 

= ra(xQ,x)RZlE[a\y,il>). (2.31) 

We can get the latent process estimates a at observed locations by Monte Carlo 

integration of (2.28). Plugging the estimates of a and 4>a into (2.31), an empirical 

best predictor of aQ is given by 

a{x0) = fa(xQ,x)R~16c. (2.32) 

2.4.2 y process predict ion 

For observations from a multivariate normal distribution, it is well known that 

the best predictor is the same as the best linear unbiased predictor. The SHP model 

is unconditionally non-Gaussian and conditionally heteroskedastic Gaussian. Given 

the latent process and assuming the parameters in the model are known, the best 

predictor (BP) and best linear unbiased predictor (BLUP) have different forms in 

the SHP model. 

Empirical Best P red ic to r (EBP) 

Given the latent process a, the joint distribution of y(xo) and the observation 

vector y is heteroskedastic Gaussian. The conditional covariances of (yo,y) are 

given by 

Cov(y0, y\ip, ao, a ) = o2 exp(Ta0/2)rz{x0, ce)diag |exp ( — J j , 

Cov(i/, y\ip, a) = a2diag jexp ( — J J i?^diag jexp ( — J J , 

Var(y 0 | ^ ,a 0 ) = <r2 exp(ra0). (2.33) 
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It follows that the mean and variance of the conditional distribution p(yo\y, ip, «o, a.) 

are 

E(yo\y,i>,cx,a0) 

—^~)}(y -GTf3), 

(2.34) 

Var(yo|y, ijj, a0) = a2 exp(ra0)(l - rz{x0, x)R~1rz(x, x0)). (2.35) 

To remove the conditioning on a and ao, we integrate out the latent process 

from (2.34) and (2.35). Therefore, we are seeking the best predictor E(yo\y, ij>) and 

its predictive variance Va,r(yo\y,ip). We then compute 

E(yo\y,*P) = E[E(y0\y,tl>,a,a0)\y,il>] 

= E{E[E{y0\y,ip,a,a0)\y,a,i(;} \y,tp} 

= E {g(x0)
T(3 + E [exp(ro!o/2)|i/, a, V] rz(x0, x)R^ 

xdiag {exp ( - ™ ) } (y - GTf3)\y, </>} • (2.36) 

Since the joint distribution of (ctQ, a) is normal, we get 

£7[exp(roo/2)|yia] = exp ( ^ + ^ ) , (2.37) 

where jj,ao = ra(x0, x)R~1a and vao = 1 — ra(xo,x)R~1ra(x, x0) are the mean and 

variance of p(a0\a,(j)a)- Plugging (2.37) into (2.36), we can get the best predictor 

of y0. 

For V&r(yo\y,ip), it is well known that 

VarO/o|j/,V) = E{Var(y0\y,a0,il>)\y,il>} + Viu:{E(y0\y,at,ao,il>)\y,il}}, (2.38) 
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where 

E{Va,r{y0\y,aQ,i>)\y,i)} 

= E {E[Vax(yQ\y, aQ, ip)\y, a, %jj\\y, -0} 

= a2E{E[exp(TaQ)\a,y,'4>}{l - rz(x0, x)Rz
1rz(x0, x)T)\y,ip} 

a2Ehxp( T[lao + 
T^V, ao (1 - rz(x0, x)/?;V z(xo, x)1 )\y,il>\ (2.39) 

and 

Var {E(y0\y, a , a0, if>)\y, •«/>} 

= E{E [E(yQ\y, a , a0) •»/>) - E(j/o|l/, V02|y» a , </>] |y, </>} 

= £ jexp ( V ^ 0 + ^ > ) rz(xQ, x)R-1diag {exp ( - ™ ) } (y - GT/3) 

x (y - GT(3)Tdmg {exp ( - ™ ) } R^rt(x0, x)T\y, </>} 

-(£(2/o|y,V>)-<7(*o)/3)2. (2.40) 

Since (2.36) and (2.38) are functions of a , we can obtain the empirical best predictor 

(EBP) by plugging in estimated model parameters and evaluating the posterior 

means of the a functions by Monte Carlo approximation through (2.28). 

Empirical Best Linear Predictor (EBLUP) 

As an alternative to computing the best predictor, it is simpler to compute the 

best linear unbiased predictor (BLUP). The mean vector and covariance matrix of 

the unconditional joint distribution of (yo, y) is given by 

yo 

V 
9{x0) 
G{xY 

P,<r* 
1 ry(aio,a:) 

ry(x,x0) Ry 
(2.41) 

where ry and Ry are computed by (2.2). 

The BLUP (in fact, the best linear predictor) of y0 is given by 

yo = 9(xoY(3 + ry(xo,x)R (y - G(x0) /3), (2.42) 
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where ry = [ry(x0,xj), ...,ry(xo, xn)]
T i s a n x l unconditional correlation vector 

between y{x0) and y(xi), ...,y(xn), G = \g(x\), ...,g(xn)]
T is the n x p matrix of 

regressors for y, and Ry is the nxn unconditional correlation matrix of y at observed 

locations. The empirical BLUP is calculated by plugging in the estimated i/) into 

(2.42). 

The EBP is able to capture more heteroskedastic features of the process by 

incorporating the latent process. But the unconditional correlation function of SHP 

has its unique characteristics and can be used as a new class of correlation functions. 

We compare the performance of the two predictors in later chapters. 

2.5 Extension to Separable SHP Model 

In a traditional GP model, different range parameters can be allowed for differ­

ent input directions by using separable covariance functions. Similarly, we can easily 

extend the isotropic SHP model into a separable SHP model by using a separable 

covariance function for the Z process. We keep an isotropic covariance function for 

the a process so that the correlation of the scale of volatility only depends on the 

distance between two locations. The separable SHP model is more flexible than 

the separable GP model by the variety of its sample paths produced. The SHP 

model not only produces a stationary realization similar to those from separable 

GP model but also has capacity to produce apparent inhomogeneous realizations. 

The left panel in Figure 2.11 is a realization from a separable GP with (j)\ = 1 and 

02 = 20, while the surface in the right panel is a realization from a separable SHP 

process with the same range parameter (f>a — 1 in the a process and two different 

range parameters in the Z process: (pzi = 1, <j>Z2 = 20. We can see clearly the 

anisotropic behavior of both surfaces. In later sections, we will compare the predic­

tion performance of separable SHP with separable GP through some simulated 2-d 

realizations. 
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SHP 
GP 

(a) (b) 

Figure 2.11: Separable 2-d surfaces, (a) Separable GP with fa = 1 and fa = 20. 
(b) Separable SHP with r2 = 2, <pa — 1 and two different range parameters in the 
Z process: <pzi = 1, 4>Z2 = 20. 

2.6 Simulation Study 

In previous sections, we proposed the stochastic heteroskedastic process (SHP) 

model and discussed the attractive properties of the SHP model. We derived an 

importance density for likelihood computation and a low-rank kriging approximation 

for finding the mode a* in the importance density. In this section, the estimation 

method is implemented through simulated data from the SHP model. The results 

of these simulations indicate the confounding effect of the parameters in the SHP 

model. Root-mean-square error (RMSE) of prediction is used as a criterion to 

evaluate GP-based and SHP-based predictors on 1-d and 2-d simulated data from 

both GP and SHP models. 
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2.6.1 Parameter estimation 

We use 1-d simulation from SHP to explore the properties of model parameter 

estimates for different parameter combinations. The main procedure for parameter 

estimation involves: 

• Obtain importance density pa(a\y,i()). 

- Assign a set of finite grid points to r2 , (j>a and <pz respectively. Ordinary 

least squares estimator is used as the initial estimate for /3. 

- The importance density pa(a\y,ip) is chosen by maximizing the likeli­

hood of the joint log-density logp(y, a\ip) over a set of points, which are 

the combinations of all grid points r2, (fra and </>z. Meanwhile, the chosen 

T2,4>a and (f)z for pa(a\y, if)) are used as initial estimates for maximum 

likelihood estimation of model parameters. 

- The importance density p0(a:|y,i/>) is fixed for further optimization. For 

this method, future iteration is not necessary according to our simulation 

study. 

• Draw a'1) , . . . , a ^ from pa(a\y,tp), compute the marginal likelihood L{ip\y) 

and maximize to get r2, </)a, (j)z and J3. The estimate of a2 is obtained by (2.27). 

We simulate 200 realizations from the SHP model for 6 different parameter 

combinations listed in Table 2.1. The same values of a2 — 0.3 and (5 = 0 are used 

in all models. The true realizations are based on 80 equally-spaced points on [0, 2]. 

Gaussian correlation functions are used for both the Z and a processes. The mean 

and standard deviation of the maximum likelihood parameter estimates are given 

in Table 2.1. 

For models with parameters <pa — 30 and cj)z = 100, (i.e., the true latent a 

process is smoother than the Z process), the parameter estimates are quite accurate. 
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For other models where the latent process is at least as rough as the Z process, 

the estimates for 4>z are positively biased and the estimates for </>a are negatively 

biased. This is because of the dominance of </>2 in the likelihood, so that the Z 

process accounts for the major roughness of the y process. In previous sections, we 

have discussed the possible confounding effect between <f>a and (f>z from the simulated 

sample path. For a finite sample size, the likelihood favors the model with a rougher 

Z process and a smoother latent a process. 

A slight negative relationship might exist for estimates of (pa and r2 , which 

can be explained by their confounding effects in correlation plots in Chapter 2. An 

increase in <pa or T2 leads to correlation decrease. But the major confounding comes 

from (f)a and <j)z. For such a flexible model with a finite sample size, we cannot expect 

highly accurate estimates for model parameters based on likelihood estimation. The 

confounding effect might be able to be reduced in applications if a Bayesian approach 

were applied with informative priors. Such priors might come from some pilot study 

or expert opinion. This will be an interesting direction for future research. 

The parameter estimation procedure is different from 

Davis and Rodriguez-Yam (2005) or Durbin and Koopmans (1997). In their 

approaches, iteration is taken until the parameter estimates converge. In our 

approach, the procedure stops after one iteration. We do not continue the iteration 

until the estimates converge. But even with iteration until likelihood value 

converges, there is not much improvement on parameter estimation. For concerns 

of computation time, we ignore further iteration steps in this study. 

2.6.2 1-d simulation assessment 

In our study, we aim at finding a flexible model that can capture more inho-

mogeneous features of a surface than the traditional GP model. Out of 80 data 

points, we sample 30 regularly-spaced points as training data and use the remaining 
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Table 2.1: Mean and standard deviation of parameter estimates for 1-d SHP simu­
lation based on 500 realizations. Sample size is n — 80. 

True 
Mean 
Stdev 

True 
Mean 
Stdev 

<r2 

0.3 
0.28 
0.13 

0.3 
0.25 
0.15 

T 2 

0.3 
0.38 
0.33 

0.3 
0.58 
0.38 

(/>a 

30 
27.02 
13.86 

100 
66.52 
19.70 

<t>z 

100 
100.87 
9.57 

30 
71.22 
13.11 

0 
0 

0.0008 
0.17 

0 
0.0026 

0.25 

True 0.3 4 30 100 0 
Mean 0.32 3.66 24.83 104.21 -0.003 
Stdev 0.62 1.65 9.01 12.95 0.17 

True 
Mean 
Stdev 

True 
Mean 
Stdev 

True 
Mean 
Stdev 

0.3 
0.28 
0.43 

0.3 
0.50 
0.97 

0.3 
0.29 
0.44 

4 
4.23 
1.84 

4 
3.18 
1.61 

4 
4.19 
1.94 

100 
56.55 
11.96 

30 
22.73 
7.62 

100 
58.19 
15.58 

30 
120.06 
17.80 

30 
46.54 
7.57 

100 
164.46 
20.54 

0 
-0.0083 

0.21 

0 
-0.0033 

0.15 

0 
-0.0017 

0.16 

50 points as test data. Both GP and SHP models are used to fit the training data 

and RMSE of predicted values at test locations is computed for each realization. 

For SHP modeling, we use EBP and EBLUP. The RMSE ratios of GP/SHP(EBP 

or EBLUEP) are summarized in Table 2.2. The RMSE boxplots for GP modeling 

and SHP modeling are plotted in Figure 2.12. 

For the SHP simulated data, the GP sometimes performs comparable to SHP, 

but most of the time it is worse than the SHP. When r2 = 0.3, <fia = 100 and 

4>z — 30, the smoothness of realizations from SHP are similar to that from GP 

with (f> = 30, as shown in the top panels in Figure 2.13. When r2 = 0.3, (f>a = 30 

and 4>z — 100, the smoothness of realizations from SHP are similar to that from 
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GP with 4> = 100 shown in the bottom panels in Figure 2.13. Since the SHP model 

produces realizations that have homogeneous features similar to features from a GP, 

the Gaussian prediction accuracy is close to that of the SHP model for these two 

cases. See Figure 2.12 (a) and (b) and Table 2.2. 

On the other hand, when r2 increases, the inhomogeneous appearance of real­

izations increases (Figure 2.14), and the stationary GP lacks the flexibility to handle 

the inhomogeneous. Thus, the SHP model performs better in prediction. For all the 

realizations, the SHP model with EBLUP has similar RMSE values as GP model as 

shown in Figure 2.12. This assures that the unconditional SHP covariance function 

can be used as a new class of stationary covariance functions in GP modeling. 

To have a fair comparison, we simulate 200 realizations from smooth and rough 

stationary GP models. We want to evaluate the performance of the SHP modeling 

and prediction when the true model is a stationary GP. Gaussian correlation func­

tions are used in the simulation of the GP. The true realizations are based on 80 

equally-spaced points on [0, 2]. Out of 80 data points, we sample 30 regularly-spaced 

data points as training data and use the remaining 50 points as test data. Both 

GP and SHP models are used to fit the training data and the RMSE of predicted 

values at test locations is computed for each realization. For SHP modeling, we use 

EBP and EBLUP. The RMSE ratios of GP/SHP(EBP or EBLUP) are summarized 

in Table 2.3. The RMSE boxplots for GP modeling and SHP modeling are plotted 

in Figure 2.15. We can see that SHP model performs almost identically in predic­

tion to stationary GP model. We conclude from the simulation results that SHP 

performs similar to GP for homoskedastic 1-d functions and outperforms GP model 

for heteroskedastic 1-d functions. 

2.6.3 2-d separable simulation 

In this subsection, we want to compare the prediction accuracy for a 2-d sep­

arable GP model with a separable SHP model. In a separable model, the surfaces 



52 

Table 2.2: Summary of RMSE ratios (GP/SHP) for 200 realizations generated from 
1-d SHP model. For all realizations, a2 = 0.3 and f3 = 0. The true realizations 
are based on 80 equally-spaced points on [0,2]. A sample of 30 regularly-spaced 
points is used as training data. The out-of-sample RMSE is computed for each 
realization. The 6-number summary statistics of RMSE ratio for GP/SHP are listed. 
EBP represents the empirical best predictor for SHP and EBLUP represents the 
empirical best linear predictor for SHP. The last column is the percentage of the 
200 realizations preferring SHP model. 

T2 4>a 4>z rnin 25% median mean 75% max percent 

98 
99 

90 
98 

91 
98 

00 
97 

22 
95 

89 
97 

1.00 

1.00 

1.02 

1.01 

1.09 

1.00 

1.25 

1.01 

1.73 

1.01 

1.08 

1.00 

1.00 

1.00 

1.05 

1.02 

1.31 

1.03 

1.42 

1.01 

2.34 

1.01 

1.20 

1.02 

1.01 

1.01 

1.17 

1.07 

1.42 

1.05 

1.72 

1.04 

3.07 

1.09 

1.37 

1.02 

1.75 

1.18 

1.97 

1.45 

6.99 

4.72 

5.31 

1.50 

15.93 

1.78 

7.53 

4.45 

56 
52 

57 
60 

65 
53 

74 
57 

87 
55 

62 
50 

are allowed to have different smoothness in different input directions. We first gen­

erate 200 realizations from separable SHP model with a2 — 0.3, r2 = 8,4>Q = 0.1, 

(f)z\ = 0.1,0Z2 = 5 and (5 = 0. Gaussian correlation functions are used for the a 

and Z processes. The true surface is based on 21 x 21 grid points on [0,8] x [0,8]. 

Fifty randomly sampled points from the surface are used as training data and the 

rest as test data. Both GP and SHP models are used to fit the training data and 

RMSE of predicted values at test locations is computed for each realization. For 

SHP prediction, we use EBP and EBLUP. The RMSE ratios of GP/SHP(EBP or 

EBLUEP) are summarized in Table 2.4. The separable SHP model with BP has 

0.3 30 100 

0.3 100 30 

4 30 100 

4 100 30 

4 30 30 

4 100 100 

GP/EBP 0.43 
GP/EBLUP 0.74 

GP/EBP 0.35 
GP/EBLUP 0.72 

GP/EBP 0.20 
GP/EBLUP 0.41 

GP/EBP 0.33 
GP/EBLUP 0.51 

GP/EBP 0.37 
GP/EBLUP 0.25 

GP/EBP 0.15 
GP/EBLUP 0.67 
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SHP.BP SHP.BLUP GP SHP.BP SHP.BLUP GP SHP.BP SHP.BLUP 

(a) (b) 

GP SHP.BP SHP.BLUP GP SHP.BP SHP.BtUP GP SHP.BP SHP.BLUP 

(d) (e) (f) 

Figure 2.12: RMSE boxplots for GP and SHP modeling and prediction of modeling 
SHP realizations, (a) r2 = 0.3, c/>Q = 30 and (pz = 100. (b) r2 = 0.3, fa = 100 and 
4>z = 30. (c) r2 = 4, fa = 30 and fa = 100. (d) r2 = 4, fa = 100 and cf>z = 30. (e) 
r2 = ^ ( j ) a = 30 and 0Z = 30. (f) r2 = 4, 0„ = 100 and <j>z = 100. For (a) — (f), 
cr2 = 0.3 and 0 = 0. 

smaller RMSE in 148 out of the 200 trials. The RMSE boxplots for GP and SHP 

models are plotted in panel (a) of Figure 2.16. We can see that separable SHP 

model performs better than stationary separable GP model. 

We also check the prediction performance of separable GP and separable SH-

Pfor 200 realizations from a 2-dimensional GP, which uses a separable Gaussian 

correlation function with a2 = 0.3, fa = 0.1, fa = 5 and constant mean (3 = 0. 

The RMSE ratios of GP/SHP(EBP or EBLUEP) prediction with GP realizations 

are summarized in Table 2.5 and the RMSE boxplots are plotted in panel (b) of 
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GP phi-30 tausq=0.3 phia=100 phiz= 30 

GP phi= 100 tausq=0.3 phia=30 phiz-100 

Figure 2.13: Two realizations from 1-d GP and SHP model with different model 
parameters. The same set of random noise sequences is used from panel to panel in 
generating the realizations. 

Figure 2.16. The separable SHP model performs comparable with the separable GP 

model, indicating that the separable SHP model can recover the realizations from 

the separable GP model. 
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tausq= 4 phia- 30 phiz= 100 tausq=4 phia= 100 phiz=100 

0.0 0.5 1.0 1.5 2.0 

tausq= 4 phia= 100 phiz= 30 tausq= 4 phia= 30 phiz= 30 

Figure 2.14: Two realizations from 1-d SHP model with different model parameters. 
The same set of random noise sequences is used from panel to panel in generating 
the realizations. 
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Table 2.3: Summary of RMSE ratios (GP/SHP) for 200 realizations generated from 
1-d GP model. For all realizations, a2 — 0.3, <fi — 100 and (3 = 0. The true 
realizations are based on 80 equally-spaced points on [0,1]. A sample of 30 regularly-
spaced points is used as training data. The out-of-sample RMSE is computed for 
each realization. The 6-number summary statistics of RMSE ration for GP/SHP are 
listed. EBP represents the empirical best predictor for SHP and EBLUP represents 
the empirical best linear predictor for SHP. The last column is the percentage of the 
200 realizations preferring SHP model. 

<j) min 25% median mean 75% max percent 

30 

100 

GP/EBP 
GP/EBLUP 
GP/EBP 
GP/EBLUP 

0.61 
0.36 
0.90 
0.90 

0.96 
0.96 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 

0.99 
0.99 
1.00 
1.00 

1.03 
1.03 
1.00 
1.00 

1.26 
1.29 
1.37 
1.38 

48 
48 
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Figure 2.15: RMSE boxplots for GP and SHP modeling and prediction of GP real­
izations, (a) (p = 30. (b) 4> = 100. 
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Table 2.4: Summary of RMSE ratios (GP/SHP) for 200 realizations generated from 
2-d separable SHP model with a2 = 0.3, r2 — 8 and (3 = 0. The true realization is 
based on 21 x 21 grid points on [0,8] x [0,8]. Fifty randomly sampled points are used 
as training data. The out-of-sample RMSE is computed for each realization. The 6-
number summary statistics of RMSE ratios for GP/SHP are listed. EBP represents 
the empirical best predictor for SHP and EBLUP represents the empirical best 
linear predictor for SHP. The last column is the percentage of the 200 realizations 
preferring SHP model. 

(f)a <f)z\ 4>z2 min 25% median mean 75% max percent 

T~ ~ I GP/EBP 0.40 1.00 YW l7l9 1.23 4.73 74 
' ' GP/EBLUP 0.71 0.99 L03 1.18 1.13 6.51 70 

Table 2.5: Summary of RMSE ratios (GP/SHP) for 200 realizations generated from 
2-d anisotropic GP model with a2 = 0.3 and (3 = 0. The true realization is based 
on 21 x 21 grid points on [0, 8] x [0, 8]. Fifty randomly sampled points are used as 
training data. The out-of-sample RMSE is computed for each realization. The 6-
number summary statistics of RMSE ratios for GP/SHP are listed. EBP represents 
the empirical best predictor for SHP and EBLUP represents the empirical best 
linear predictor for SHP. The last column is the percentage of the 200 realizations 
preferring SHP model. 

<f>i 4>2 min 25% median mean 75% max percent 

GP/EBP 0.69 0.99 1.00 1.01 1.01 1.40 51 
GP/EBLUP 0.69 0.99 1.00 1.00 1.00 3.17 53 
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Figure 2.16: RMSE boxplots for GP and SHP model fitting and prediction of sep­
arable GP and SHP realizations, (a) SHP: a2 = 0.3, r 2 = 8, <f>a = 0.1, <f>zi = 0.1, 
(j)Z2 = 5 and (3 = 0. (b) GP: a2 = 0.3, </>a = 0.1, </>2 = 5 and 0 = 0. 



Chapter 3 

APPLICATIONS 

In this section, we use a two-dimensional mathematical function and higher-

dimensional computer experiment examples to compare the prediction accuracy of 

the SHP model with GP model. RMSE of prediction is used as the criterion to 

assess the prediction performance. 

3.1 Two-Dimensional Test Function 

The true function is f(x) = 10a; i exp(—x\ — x\), which is ten times the function 

used in Gramacy et al. (2004) to evaluate the treed GP fitting procedure of that 

paper. The function is evaluated on a uniform 21 x 21 grid on [—2,6] x [—2, 6]. The 

surface is plotted in Figure 3.1 (a). 

GP fitted SHP fitted 

(a) (b) (c) 

Figure 3.1: (a) True response surface, (b) GP predicted surface based on 20 inputs. 
(c) SHP predicted surface based on 20 inputs. 
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To compare the prediction accuracy of SHP with GP, a training data set of size 

20 was chosen from the grid points. We used Latin hypercube sampling (LHS) to 

place 12 points in the quadrant [—2,2] x [—2,2] and 8 points in other areas. The 

sampling was implemented through the R package tgp (Gramacy (2007)). After 

fitting the 20 points with a GP model and a SHP model (using isotropic Gaussian 

covariance functions for the GP and for a and Z in the SHP), we predicted the 

other 421 grid points and computed the RMSE. This process of sampling, fitting, 

and predicting was repeated 100 times. We then computed the 100 RMSE ratios of 

GP/SHP. The summary statistics of the 100 RMSE ratios are summarized in Table 

3.1. The SHP model with BP given by (2.36) has smaller RMSE in 83 of the 100 

trials. We give an example of fitted surfaces in Figure 3.1 (b) and (c). The plots 

show that the SHP model is able to catch peaks better than the GP model. In 

this example, the latent process a does a good job of capturing the inhomogeneous 

features of the function. 

Table 3.1: Summary statistics for 100 replicates of RMSE ratios for GP/SHP(EBP). 
The third column indicates the percentage of RMSE ratios being greater than 1 out 
of 100 replicates. 

n -
MEDIAN 

= 20 1.302 
MEAN 
1.474 

PERCENT 
75 

AVE(GP RMSE) 
0.513 

AVE(SHP RMSE) 
0.418 

The GP model is a popular approach for metamodeling in computer exper­

iments not only because it can fit complex functional forms, but also because it 

provides a measure of prediction uncertainty given by the prediction error variance. 

The prediction error variance of SHP model can be obtained by (2.38). These pre­

diction error variances can be used in adaptive sampling to select the subsequent 

sample points. We systematically explore adaptive sampling schemes with SHP in 

Chapter 4, and compare the efficiency of SHP adaptive sampling to GP adaptive 

sampling. 
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3.2 Four-Dimensional Computer Experiment 

To illustrate the potential of SHP in metamodeling, we consider an example of a 

computer simulation experiment given in Qian et al. (2006). The data consist of the 

outputs from computer simulations for a heat exchanger used in electronic cooling 

applications. The response y of interest is the steady heat transfer rate depending 

on four inputs: the mass flow rate of entry air rh, the temperature of entry air 

Tin, the temperature of heat source Twau and solid material thermal conductivity k. 

There are two types of simulations used in their study: an approximate simulation 

(AS) for 64 input points and a detailed simulation (DS) for 22 out of these 64 input 

points. Following their notation, ya represents the AS outputs and yd represents 

the DS outputs. 

To explore the relationship between the design factors and heat transfer rate, 

Qian et al. (2006) proposed a two-step approach to build a surrogate model that can 

produce predictions close to the DS data. The first step uses 64 AS data to build 

a base surrogate model and the second step is to adjust the fitted model in step 

1 with 22 DS data to create the final surrogate model for DS runs. The two-step 

models are given by 

d 

ya{x) = (3aQ + Y2 PahXh + £a(x), 
h-\ 

Vd{x) = p(x)ya(x) + S(x), (3.1) 

where ea(x) is a stationary GP with zero mean and separable Gaussian covari-

ance function, 5(x) is a stationary GP with unknown constant mean and separable 

Gaussian covariance function, and p(x) = po + YIJ^IPJXJ- F° r more modeling and 

engineering details, see Qian et al. (2006). 

Qian et al. (2006) use 64 AS data to build their base surrogate model. We use 

these same 64 AS data to build base surrogate models using isotropic and separable 
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GP models and the SHP model. We compare the three approaches using leave-one-

out cross-validation. The RMSE boxplot for 64 leave-one-out data sets is plotted in 

Figure 3.2. The cross validation score for SHP model with EBP is 0.311, which is 

39% smaller than the isotropic Gaussian model (0.509) and 52% smaller than the 

separable Gaussian model (0.642). The cross validation score for SHP model with 

EBLUP is 0.427, which is 16% smaller than the isotropic Gaussian model (0.509) 

and 33% smaller than the separable Gaussian model (0.642). The mean and and 

standard deviation of SHP model parameter estimates across the 64 leave-one-out 

data sets are listed in Table 3.2. 

— i 1 1 1 — 
gp.tso gp.aniso shp.bp shp.blup 

Figure 3.2: RMSE boxplots of different models for leave-one-out cross-validation of 
64 AS data ya. 

Table 3.2: Mean and standard deviation for parameter estimates of SHP modeling 
64 leave-one-out data sets of AS data ya. 

T 2 (pa <t>z A) Pi @2 /?3 At 
mean 8.772 0.153 0.572 21.169 0.333 -2.304 0.359 5.575 
sd 2.219 0.021 0.288 0.075 0.041 0.041 0.050 0.065 
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Qian et al. (2006) use a separable GP model in their study. For AS data ap­

proximation, the separable GP model performs worse than the isotropic GP model 

in terms of prediction accuracy. This is due to the three additional model parameters 

in the separable model, resulting in increased variation in estimation and prediction 

with this small data set. 

However, one important advantage of the separable GP model is that it allows 

different correlation information of different design factors with respect to responses. 

The choice of model depends on the objective of the study. The goal of this example 

is to build a good final surrogate model for DS runs. The mathematical model for 

DS data is different from the mathematical model for AS data. The correlation of 

each input variable for AS data may not be exactly the same as DS data. In the final 

surrogate model, the accuracy for AS data is related to the accuracy of DS data. This 

is why we only fit the isotropic SHP model with AS data. We will use the same model 

in Qian et al. (2006) for DS data approximation. The bias term (5) between AS and 

DS data is modeled as a GP with separable Gaussian covariance function. Note the 

advantage of isotropic SHP model used in this paper: it offers a sensitivity study 

on volatile areas, leading to a more effective quantification of prediction uncertainty 

and sampling strategy like we showed in Section 4.2. Moreover, the isotropic SHP 

model can be easily extended to a separable structure by using a separable covariance 

function in the Z process. 

The goal in Qian's study is to combine AS information into modeling to improve 

the prediction accuracy of DS data. Among the 64 AS data, 22 of them have DS 

simulation results. From equation (3.1), we can see that conditioning on ya, the 

distribution of yd is multivariate normal. Once parameter estimates are obtained, 

Qian et al. (2006) compute the bias term S(x) at 22 observed DS locations by 5(x) = 

yd(x) — p(x)ya(x). EBLUPs for 8(x) at test locations are easily obtained. We fit the 

original 64 AS data with the SHP model and predict 14 set-aside AS data. We then 
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plug the 14 predicted AS values into the final surrogate model of Qian et al. (2006), 

given in equation (3.1), to predict 14 DS values. The proposed SHP model provides 

significant improvement in terms of prediction accuracy for both the 14 AS and 14 

DS values. For AS, the RMSE based on SHP is 2.073, which is 20% smaller than 

the RMSE from Qian's result (2.588). For DS, the RMSE based on SHP-predicted 

inputs is 3.133, which is 17% smaller than Qian's result (3.795). 

Using the SHP model to fit AS data improves the prediction accuracy for DS 

data. This example illustrates the potential of SHP modeling in application of 

multi-level computer experiments and model validation. The SHP model cannot 

only be used to model lower-level outputs but also the bias term among different 

level outputs or the bias between computer code output and physical data in model 

validation. We did not use SHP to model the bias term in this example because 

there are only 22 DS data in a 4-dimensional space. For a very small data set evenly 

distributed over input space, the GP model can do a comparable job to the SHP 

model. 

Sensitivity analysis 

To evaluate the sensitivity of the four inputs on the fitted approximate data, 

we use the 64 approximated runs as a training set and create a test set of 2000 input 

values for sensitivity analysis. The extended fast method proposed in Satelli et al. 

(1999) was used to compute the first-order and total sensitivity indices Si and 7* for 

the fitted GP and SHP models. The sensitivity analysis is implemented using the R 

package s e n s i t i v i t y (Team (2005)). Table 3.3 lists the first-order sensitivity index 

and total sensitivity index for each input. The importance of order of inputs agrees 

for the GP fitted model and SHP fitted model. The most important factors are the 

two temperatures Tin and Twau since the sum of their first-order sensitivity indices 

is over 90% of the total variation in the response. Even though the main effect of 
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the mass flow rate of entry air rh is not significant, as its first-order sensitivity index 

is less than f % of the total variation, its interaction with other variables is about 

4% of the total variation, indicating that the mass flow rate of entry air rh may also 

be an important variable and has a more complex relationship with the response. 

Table 3.2 lists the maximum likelihood estimates for model parameters. The 

values of the estimated coefficients are large for Tj„ and Twau, assuring significant 

main effects for these two factors. The small values of <pa and 4>z indicate large 

correlation between two nearby points. Since the sensitivity and coefficient values 

don't indicate the main effect of the mass flow rate of entry air rh and the solid 

material thermal conductivity k, we assume the relationship between the response 

and these two factors is non-linear. 

Table 3.3: First-order and total sensitivity indices for predicted AS data of GP and 
SHP models. 

Input Symbol 
Mass flow rate of entry air rh 
Temperature of entry air Tin 

Solid material thermal conductivity k 
Temperature of heat source Twau 

GP 
5, Ti 

0.00876 0.0375 
0.195 0.229 

0.0147 0.0389 
0.717 0.720 

SHP 
Si Ti 

0.00709 0.0429 
0.154 0.167 

0.000648 0.0156 
0.767 0.803 

3.3 SIR Model 

An SIR (Susceptible-Infected-Resistant) model describes the time dynamics of 

a contagious disease through a system of ordinary differential equations, with one 

equation for susceptible individuals, one for infected, and one for resistant. We use 

one example from Estep and Neckels (2006) to investigate the behavior of an SIR 

model that allows for birth, death due to natural causes, death due to disease, and 

the possibility that the offspring of the resistant class may inherit the resistance. 
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This SIR model is described by 

(S = r n ( l - £)(S + I + (1 - pR)R) - dnS - rrSI, 

I = nSI - (dn + d/) / - aRI, 

R = 7Wn(l - f ) # - d„i? + aRI, 
[S(0) = So,I(0)^Io,R(0) = Ro, 

where 

• £(£) = the number of susceptible individuals in the population at time t, 

• I(t) = the number of infected individuals in the population at time t, 

• R(t) = the number of resistant individuals in the population at time t, 

• N = S(t) + I(t) + R(t), the population size, 

• 5, /, R, denote time derivatives, 

• and x = (a,R, rn, k,pR, dn, rj, dj)' are input parameters. 

The input space for this SIR model is seven-dimensional with domains for each 

input parameter specified in Table 3.4. Responses of interest for the SIR could be 

some functional of S, I, R. We consider three responses: the average number of 

infected individuals, the average number of susceptible individuals and the average 

number of resistant individuals over a time interval [0, T] with T = 10: 

rT 
i r 

<l(x)i = Tf, J S(s,x)ds, 

i rT 

0(3)2 = j , / I(s,x)ds, 

1 r 
q(x)3 = — / R(s,x)ds. 

1 ./o 
Note that these responses are not expensive to compute, so exact results can be 

obtained and compared to predictions based on models fitted to samples of inputs. 

We model the three quantities of interest individually. 
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Table 3.4: Domains for input parameters of SIR model. 

Input 
Recovery rate 
Natural growth rate 
Carrying capacity 
Probability of inheriting resistance 
Natural death rate 
Contraction rate 
Death rate from disease 

Symbol 
dR 

rn 

k 

PR 
dn 

rj 

di 

Domain 
[0.1,0.3] 
[0.3,1.7] 
[95,105] 

[0.09,0.11] 
[0.1,0.3] 
[0.1,0.3] 
[0.3,1.7] 

Using the generalized Green's function and a variational analysis, 

Estep and Neckels (2006) compute not only the quantity of interest but also 

the derivatives at sampled input points. This derivative information is used in 

Estep and Neckels (2006) to create what they refer to as the "higher-order parame­

ter sampling" method, or HOPS, to approximate the quantity of interest at untried 

locations. We compare stochastic modeling using GP and SHP to the HOPS method. 

We first use Latin hypercube sampling to select 70 data points at random from 

the input domain, which is standardized to [0, l ] 7 . We then fit using HOPS, GP 

and SHP and predict values of the quantities of interest at 1000 points uniformly 

distributed in the input domain. These predictions are compared to the true val­

ues of the quantities for those 1000 points. The process of sampling, fitting, and 

predicting is repeated 100 times. Table 3.5 shows the summary statistics for 100 

replicates of RMSE ratios for each response variables. 

Table 3.5 shows that the SHP model outperforms the traditional GP model 

and HOPS globally for each quantity of interest. It is also of interest to investigate 

the performance of predictors locally, for sub-domains in the parameter space. In 

the SIR setting, a potential sub-domain of interest might be a "good population" 

with high recovery rate, high natural growth rate and high probability of inheriting 

resistance, but low natural death rate, low contraction rate and low death rate from 
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Table 3.5: Summary statistics of 100 replicates of RMSE ratios for HOPS/SHP and 
GP/SHP for ql, q2 and q3. 

min 25 median mean 7 5 h max percentage 

q\ 

q2 

q3 

HOPS/SHP 4.280 6.348 
GP/SHP 0.747 1.072 
HOPS/SHP 0.985 1.374 
GP/SHP 0.868 1.042 
HOPS/SHP 1.663 2.444 
GP/SHP 0.665 0.990 

7.160 
1.242 
1.551 
1.118 
2.709 
1.064 

7.385 
1.260 
1.556 
1.135 
2.751 
1.081 

8.385 
1.426 
1.743 
1.209 
3.088 
1.148 

11.540 
1.848 
2.313 
1.504 
3.979 
1.519 

100 
89 
99 
83 
100 
70 

disease. Another sub-domain of interest might be a "bad" population with low 

recovery rate, low natural growth rate and low probability of inheriting resistance, 

but high natural death rate, high contraction rate and high death rate from disease. 

Among the 1000 test data values, there are 11 in the good sub-domain and 9 in 

the bad sub-domain. For the 100 repeated training data sets, the ratios of RMSEs 

for GP/SHP for each quantity of interest in the good and bad sub-domains are 

summarized in Table 3.6. In this example, the SHP predictions outperform GP not 

only globally but also locally. 

Table 3.6: Summary statistics of 100 RMSE ratios for GP/SHP in the "good" and 
"bad" sub-domains for the three quantities of interest. 

min 25th median mean 75th max percentage 
gl.good 0.529 0.990 1.241 1.369 1.629 3.604 72 ~~ 
ql. 
q2 
q2 
q3 
q3 

bad 0.588 0.967 1.058 1.128 1.261 2.394 63 
good 0.375 0.937 1.116 1.122 1.303 1.736 67 
bad 0.521 1.045 1.348 1.392 1.569 4.116 79 
good 0.385 0.923 1.120 1.178 1.320 2.463 64 
bad 0.499 0.871 1.188 1.366 1.668 3.663 63 

An important problem in science and engineering is the determination of the 

effect of variation in input parameters on the uncertainty of output. This kind of 

uncertainty analysis is a major objective in Estep and Neckels (2006). In particular, 
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Estep and Neckels (2006) use a 64-point HOPS to approximate the distribution of 

q2 when the input parameters are independently distributed as uniform on their 

respective ranges. The exact cumulative distribution function (cdf) for the quantity 

of interest was approximated by Estep and Neckels (2006) with a massive Monte-

Carlo simulation of 30,000 points. We used LHS to select 64 points from the SIR 

model (input and output), fitted the 64 data points with HOPS, SHP and GP, and 

then predicted the 30,000 randomly selected points. Figure 3.3 shows the log-odds 

ratio of the empirical cdf's for the "exact" distribution (MC30000) and the three 

approximation methods. Compared to the MC30000 distribution, the two-sample 

Kolmogorov-Smirnov (K-S) test statistics max\Fg — Fs\ for HOPS, GP, and SHP are 

0.057, 0.053 and 0.044, respectively. Thus, the SHP model outperforms GP and 

HOPS, indicating the potential of stochastic modeling in the uncertainty analysis. 

Sensitivity analysis on SIR model 

The extended fast method proposed in Satelli et al. (1999) was used to compute 

the first-order and total sensitivity indices 5» and Tt for the three quantities of 

interest in the SIR model. We use maximin LHS design to generate a data set of 

size 70 as training data. We fitted the training data with GP and SHP models, 

predicted the responses at 7000 test locations, and then performed the sensitivity 

analysis on each quantity of interest. The test data set and sensitivity analysis 

were implemented using the R package s e n s i t i v i t y (Team (2005)). The estimated 

Si and Ti are listed in Tables 3.7 and 3.9. The sensitivity results from the fitted 

GP model are very similar to the fitted SHP model. For the average susceptible 

population gl, the important factors are contraction rate rj and death rate from 

disease dj. For the average infected population q2, the important factors are recovery 

rate CLR, natural growth rate rn and death rate from disease dj. For the average 

resistant population q3, the important factors are recovery rate a^, natural growth 
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Figure 3.3: Log-odds ratio of empirical cumulative distribution functions, 
log(F$/(l - Fg)), for "exact" (MC30000) and three approximation methods (HOPS, 
GP and SHP). 

rate rn, natural death rate dn and death rate from disease d\. Though the important 

factors are different for different quantities of interest, the probability of inheriting 

resistance pn and carrying capacity k are not important for any of them. For further 

study of SIR model with parameter ranges given in Table 3.4, the probability of 

inheriting resistance PR and carrying capacity k might be fixed at their reference 

values. Studies could focus on varying the other five input dimensions. 
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Table 3.7: First-order and total sensitivity indices for ql by fitting GP and SHP 
model. 

Input Symbol 
Recovery rate a# 
Natural growth rate rn 

Carrying capacity k 
Probability of inheriting resistance PR 
Natural death rate dn 

Contraction rate 77 
Death rate from disease dj 

GP 
Si Ti 

0.01 0.014 
0.024 0.036 

0.0009 0.011 
0.00007 0.006 
0.003 0.011 
0.599 0.635 
0.296 0.328 

SHP 
Si Ti 

0.0081 0.015 
0.0283 0.045 
0.0012 0.011 

0.00005 0.004 
0.0034 0.010 
0.612 0.66 
0.284 0.319 

Table 3.8: First-order and total sensitivity indices for q2 by fitting GP and SHP 
model. 

Input Symbol 
Recovery rate a# 
Natural growth rate rn 

Carrying capacity k 
Probability of inheriting resistance pR 

Natural death rate dn 

Contraction rate 77 
Death rate from disease dj 

GP 
Si Ti 

0.0024 0.0073 
0.701 0.740 

0.00017 0.0022 
0.00019 0.0035 
0.0198 0.0247 
0.0016 0.0048 
0.234 0.274 

SHP 
Si Ti 

0.003 0.012 
0.673 0.721 
0.0007 0.0065 
0.0001 0.0038 
0.0209 0.0275 
0.001 0.0047 
0.241 0.288 

Table 3.9: First-order and total sensitivity indices for q3 by fitting GP and SHP 
model. 

Input Symbol 
Recovery rate CLR 
Natural growth rate rn 

Carrying capacity k 
Probability of inheriting resistance pR 

Natural death rate dn 

Contraction rate 77 
Death rate from disease dj 

GP 
St Ti 

0.096 0.128 
0.588 0.648 

0.0002 0.0032 
0.0007 0.0036 
0.095 0.118 

0.0006 0.004 
0.158 0.194 

SHP 
Sl Ti 

0.098 0.132 
0.589 0.649 

0.0002 0.0022 
0.0003 0.0026 
0.0964 0.116 

0.00052 0.0032 
0.155 0.192 



Chapter 4 

ADAPTIVE SAMPLING 

Given a set of training data points D = {(Xi, 2/i)}"=1, the GP and SHP models 

provide the best predictor y(xo) for the response at an untried location XQ. Fur­

thermore, the GP and SHP provide the estimate of the predictive variance for y(xo) 

under the respective models. The predictive variances can be used to quantify the 

model uncertainty, which in turn can suggest where to sample more points to learn 

about the model behaviors. 

4.1 An Motivating Example 

Recall the two-dimensional example used in the last chapter. We have compared 

the prediction accuracy of SHP and GP based on 100 data sets of size 20. We next 

want to compare the effectiveness of adaptive sampling when prediction uncertainty 

is quantified by GP or SHP models. We fit each of the 100 data sets of size 20 with 

the SHP model and quantify the prediction error variances. Another 20 points are 

adaptively selected from the grid with probabilities proportional to the SHP model 

prediction error variances. This sampling without replacement is implemented by 

the R function sample (Team (2005)). Once we update the sample size to 40, we 

fit the 40 points with SHP and GP models, compute the RMSE at the remaining 

401 grid points for each model, and select an additional 20 points with probabilities 

proportional to the updated SHP prediction error variances. We fit the 60 points 

with the SHP and GP again and compute their RMSE at the remaining 381 grid 

points. These results are displayed in rows SHP40 and SHP60 of Table 4.1. The 
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whole process was repeated using GP model prediction error variances in increasing 

the sample from 20 to 40 and then to 60. These results arc displayed in rows GP40 

and GP60 of Table 4.1. 

Regardless of the way the points are adaptively sampled, SHP dominates GP 

by producing smaller RMSEs. Further, the SHP does an excellent job of guiding 

the selection of new points in adaptive sampling. SHP adaptive sampling produces 

smaller RMSEs, regardless of whether predictions are computed from GP or SHP. 

The paired boxplots of RMSEs in Figure 4.2 give a graphical, side-by-side compar­

ison of the performance of GP and SHP for prediction and adaptive sampling. 

Table 4.1: Summary statistics for 100 replicates of RMSE ratios for GP/SHP(EBP) 
with different sample sizes and sampling strategies. The third column indicates the 
percentage of RMSE ratios being greater than 1 out of 100 replicates. 

tgp20a 

GP40 
SHP40 
GP60 
SHP60 

MEDIAN 
1.302 
1.889 
1.414 
1.767 
1.08 

MEAN 
1.474 
2.133 
1.566 
2.272 
1.477 

PERCENT 
75 
83 
66 
80 
57 

AVE(GP RMSE) 
0.513 
0.371 
0.165 
0.274 
0.075 

AVE(SHP RMSE) 
0.418 
0.221 
0.114 
0.172 
0.060 

We give an example of fitted surfaces in Figure 4.1: (a) is GP-predicted surface 

based on 20 inputs, (b) is GP-prcdicted surface based on 40 inputs with the extra 

20 points selected via GP adaptive sampling, (c) is SHP-predicted surface based 

on 40 inputs in (b), (d) is SHP-predicted surface based on 20 inputs in (a), (c) is 

Hgp20 refers to GP modeling (GP20) versus SHP modeling (SHP20) using 20 initial data points 
sampled through R package tgp (Gramacy (2007)). GP40 refers to RMSE ratio of GP to SHP with 
40 data points where the extra 20 points are adaptively sampled using GP20 prediction variance, 
and SHP40 with the extra 20 points adaptively sampled using SHP20 prediction variance. GP60 
refers to RMSE ratio of GP to SHP with 60 data points where the extra 20 points are adaptively 
sampled using GP40 prediction variance, and SHP60 with the extra 20 points adaptively sampled 
using SHP40 prediction variance. We also predict the data by SHP model with EBLUP. The 
prediction behavior is not much different from GP model. 
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GP-predicted surface based on 40 inputs with the extra 20 points selected via SHP 

adaptive sampling, (f) is SHP-predicted surface based on 40 in (e). The plots show 

that the SHP model is able to catch peaks better than the GP model. Furthermore, 

the GP fitted surface shows considerable improvement with SHP adaptive sampling. 

In this example, the latent process a does a good job of capturing the inhomogeneous 

features of the function. 

GP fitted GP fitted GP40 SHP fitted GP40 

(a) (b) (c) 
SHP fitted GP fitted SHP40 SHP fitted SHP40 

(d) (e) (f) 

Figure 4.1: (a) is GP-predicted surface based on 20 inputs, (b) is GP-predicted sur­
face based on 40 inputs with the extra 20 points selected via GP adaptive sampling, 
(c) is SHP-predicted surface based on 40 inputs in (b), (d) is SHP-predicted surface 
based on 20 inputs in (a), (e) is GP-predicted surface based on 40 inputs with the 
extra 20 points selected via SHP adaptive sampling, (f) is SHP-predicted surface 
based on 40 in (e). 

The plots in Figure 4.3 and Figure 4.4 illustrate how GP and SHP, respectively, 

generate adaptive samples. Figure 4.3(a) is the image plot of true absolute errors 
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\y — y\ for the GP model based on one set of 20 inputs, and Figure 4.3(b) is the 

image plot of the GP prediction error variances, which are fairly uniform away from 

initial sample locations. Accordingly, GP adaptive sampling selects 20 new inputs 

in a fairly uniform way across the previously unsampled part of the input space. 

This pattern is repeated in the second row of plots, Figures 4.3(c) and (d), as the 

sample is extended from 40 to 60 via GP adaptive sampling. 

Similarly, Figure 4.4(a) is the image plot of true absolute errors \y — y\ for the 

SHP model based on one set of 20 inputs, and Figure 4.4(b) is the image plot of 

the SHP prediction error variances. In contrast with Figure 4.3(b), these prediction 

error variances are far from uniform away from initial sample locations, and instead 

have hot spots of high uncertainty. Accordingly, SHP adaptive sampling selects 20 

new inputs intensively in the hot spots. This pattern is repeated in the second row 

of plots, Figures 4.4(c) and (d), as the sample is extended from 40 to 60 via SHP 

adaptive sampling. In this example, with clear inhomogeneity in the surface, the 

SHP not only produces better predictors but also provides a much better adaptive 

sampling scheme. 

The above example shows the potential of using SHP predictive variances in an 

adaptive sampling scheme, which motivates us to explore it in a more systematic 

way. In this study, we restrict the problem of adaptive sampling as following: given 

an initial set of training data points D — {(aJj, J/i)}"=i, where Xi £ X, a model is 

selected to describe the relationship between input x and output y. The model is 

able to iteratively select a new input x, observe the corresponding output y, and 

incorporate the new example (x, y) into its training set. 

The adaptive sampling involves several choices. The choice of initial set of 

sample points is one important decision. This can be regarded as the first-stage 

data from which we obtain initial information on the entire response surface. Since 

the maximin distance LHS designs, discussed in Section 1.1, have a "space-filling" 
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Figure 4.2: Boxplots of 100 RMSEs for GP and SHP model with different sample 
sizes and sampling strategies. 
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(b) 

~ Q <J 

(c) 

Figure 4.3: (a) Image plot of absolute error \y — y\ from the GP model using 20 
initial sample points given by the open circles, (b) Image plot of GP prediction 
error variance based on the 20 initial locations (open circles). Solid dots are the 20 
locations adaptively sampled using GP. (c) Image plot of absolute error from GP 
model based on 40 points in (b). (d) Image plot of GP prediction error variance 
based on the 40 input locations (open circles) in (c). Solid dots are the next 20 
locations adaptively sampled using GP. 
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Figure 4.4: (a) Image plot of absolute error \y — y\ from the SHP model using 20 
initial sample points given by the open circles, (b) Image plot of SHP prediction 
error variance based on the 20 initial locations (open circles). Solid dots are the 20 
locations adaptively sampled using SHP. (c) Image plot of absolute error from SHP 
model based on 40 points in (b). (d) Image plot of SHP prediction error variance 
based on the 40 input locations (open circles) in (c). Solid dots are the next 20 
locations adaptively sampled using SHP. 
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property in higher-dimensional space and are easy to implement, they are used to 

obtain the initial data sets in this thesis. 

Another important choice is a set of candidate points from which to select 

the additional sample points. One major goal of computer experiments is to build 

the functional relationship between the response of a computer code and input 

variables. The candidate points need to have a good coverage of the entire space. 

The candidate set can come from a dense grid, which is not feasible in higher-

dimensional input space. Again, maximin distance LHS designs are used to create 

a set of candidate points in this work. This candidate set can also be used as a test 

data set to evaluate the model prediction accuracy. 

Last but not least, we must choose a strategy or algorithm to guide the deci­

sion for adaptive sampling. There are many ways to choose x, including choosing 

locations where there is no data, where the model performs poorly, or where the 

model is expected to change (Cohn et al. (1996)). Statistical criteria for optimal 

design of experiments such as D-optimality can be adopted in the sequential design, 

but they are usually computational intense due to the involvement of inverses and 

determinants of large covariance matrices (Gramacy et al. (2004)). In our study, we 

consider two criteria, ALM and ALC, in active data selection. 

4.2 Two Active Learning Algorithms 

There are two useful algorithms for active data selection in machine learning. 

The first one, called ALM for Active Learning Mackay (Mackay (1992)), has been 

aimed to maximize the expected information gain about the model parameter values 

tp when we receive new data at location x. Mackay proved that we will learn most 

about the model by selecting the data location x with largest predictive variance 

in the input space. One non-ideal property of this criterion is that the error bars 

are largest at the most extreme points where data have been gathered for most 
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models. This lead to us to repeatedly sample data at the edges of the input space 

(Mackay (1992)). But this disadvantage can be reduced by querying data from a set 

of candidates X in a defined region of interest or spread out over the space. Thus 

the candidate point x is selected by 

x = argmaxcr?(cc). 

The second approach, called ALC for Active Learning Cohn (Cohn (1996)), 

is to select the location x to minimize the expectation of the mean square error 

over input space \- Let yn(£) be the predicted value of y at a reference point £ 

given current data set {(a3j, yj)}™=1 and let yn+i{0 be the predicted value of y at 

a reference point £ when a new input x is added to current data set. The mean 

square error of y„(£) and yn+i(£) are given by 

MSE{yn(£)} = M(?)n(0~y(0)>(*i),---,yK)], 

MSE{yn+1(£)} = E[(yn+1(Z)-y(t))2\y(x1),...,y(xn)M*)]. 

The mean square error can be decomposed into a variance and bias term, then 

MSE {#„(£)} 

= E [(UO - E(yn(Z)))2\y(xi),...,y(xn)} + [(£(y„(0) - y(Ob(*i), -,y(*«))]2 

= <7?n(£) + bias(yn(0)2> 

and 

MSE{yn+1(£)} = 4 + 1 ( 0 + bias(yn+1(0)2, (4.1) 

where cr?n(£) is the predictive variance of y„(£) and cr? (£) is the predictive variance 

of yn+i(0- Assuming the bias in the model is small compared to the variance, we 

neglect the bias term. The expected mean square error is then approximated by the 

expected predictive variance, i.e., 

E[MSE(yn(m * E[alm 

E[MSE(yn+l(C)} « £[<+ 1(0]-
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The ALC algorithm aims at selecting x to minimize the expected mean square 

error, which is equivalent to maximizing the expected reduction in variance by 

adding a new input x. Let Acr|(ic) be the reduction in predictive variance at ref­

erence location £ given that location x is added into the data, then the expected 

reduction in predictive variance can be obtained by averaging over the reduction in 

predictive variance at other referenced locations: 

Aa2{x) = E[A<rf(x)] 

= E[ol{i) - *i+1(i)]. (4.2) 

Equation (4.2) is a function of the candidate location x and it must integrate £ 

over the input domain to compute the integrated average change in variance of the 

model. In practice, Monte Carlo approximation of this integral is used to compute 

equation (4.2) at a number of reference points drawn according to the distribution of 

x. For simplicity, the set of reference points can be chosen the same as the candidate 

set X. 

4.2.1 Active learning in GP regression 

The two active learning criteria have been used in GP regression and treed GP 

model (see Seo et al. (2000) and Gramacy et al. (2004)). The GP model provides 

the distribution of a predictor response y at an untried location Xo given a training 

set. The conditional mean and variance are used as the predictor and predictive 

variance for y(xo): 

y(x0) = g(x0)
T/3 + r(x0,x)R-1(y-GT(3), 

af(x0) = a2(l-r(x0,x)R'1r(x,x0)). (4.3) 

Since the variance in (4.3) can be easily computed, implementation of the ALM is 

straightforward. One merely selects the input x with greatest predictive variance. 
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In the ALC algorithm, the predictive variances &%tf) and o~? rc)(x) with a new 

input x are defined as: 

< + ! ( « ( * ) = ^ ( l - ^ i ( 0 ^ i r » + i ( f l ) , 

where r„ = [7(221, £), ...,j(xn,^)} is the correlation between the training data and 

response at a reference location £ and rn+\ — [7(2:1, £), •••,l(xn, £)> li&i £)]> ^n is 

the correlation matrix of the training data and i?„+i is the correlation matrix of 

training data with new response at location x. Since the correlation matrix RN+I 

can be expressed in terms of Rn, the change of variance A c r | ^ ( i ) at a reference point 

bm£ if the candidate x is added to the training set can be calculated as (Seo et al. 

(2000)): 

A4o<*> - *«> - *•,«,<*> - ^ ! ^ ^ ' (4-4) 

where kn — [7(2:1, £), ...,7(cc„,£)] 6 K™ is the vector of covariances between the 

training data and a response at reference data point £, m = [7(2:1, £), . . . , 7(scn, cc)] G 

M^ is the vector of covariances between the training data and a candidate data point 

at x, 7(2:, £) is the covariance between the response y(x) at a candidate point and 

the response y(£) at a reference point, 7(35, x) is the variance of response y(x) at a 

candidate point, and Cn is the covariance matrix for observed data a?i, ...,a:n. The 

average reduction in variance, given that x is added to the data, is obtained by 

averaging Aa%^(x) over all other locations in x-

[Aa2
m(x) 

( f c n C ^ m - 7 ( * , 0 ) 2 

,x (7 ( i , i ) -mTC-lm)' 

In practice, the expected reduction is averaged over a test data set. The candidate 

data set X can be used as the test data set. 
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4.2.2 Active learning in SHP model 

As we noted in the previous section, the two active learning criteria ALM 

and ALC have been used in GP regression and treed GP model (Seo et al. (2000), 

Gramacy et al. (2004)). Given the latent process a, the SHP is a nonstationary GP 

with covariance function (2.7). The conditional mean (2.34) and variance (2.35) are 

used as predictor and predictive variance of y at untried location x0. Hence, the 

ALM and ALC algorithm used in GP regression (Seo et al. (2000)) can be easily 

extended to the SHP model if a is known. For the ALM algorithm, we select a x 

from candidate set X with largest value of predictive variance (2.35). 

In a SHP model, given the latent process a and model parameters i\) = 

(a2, T2 , <j>a, (j)z, (3), we have 

kn = Cov[y(€),y\az,a,ip] = a 2exp(ra f /2)r 2(^ , x)diag | exp ( — J J , 

Cn = Cov[y, y\a, ij>} = a2diag {exp(ra/2)} i?2diag jexp ^ — J j , 

m = Cov[y(x) ,y |a 5 ,a ,V] = cr2exp(ro;5/2)r2(xo, x)diag jexp (—- ) \ , 

7 ( x , i ) = Cov[y(i),2/(x)|ai,V] = o-2exp(rai), 

7(x,£) = Cov[y(x),y(^)\ai)ai,ip] = a2exp(TaS:/2)rz(x^)exp(Tai/2). 

Substituting the above equation into (4.4), the change of variance at a reference 

point £ if x is added into training set for SHP model is 

= ̂ ^Nfll^'^V^'^r , (4-5) 2 ,_ ^.(r.t^W-i^O)2 

{l-rz(x)R^rz(x)^ 

where rz(£) = [rz{x\, £), ..., rz(xn,£)] € R™ is the vector of covariances between 

the Z process at training locations and the Z value at a reference data points £, 

rz(x) = [rz(xi,x), ...,rz(xn, x)] € M" is the vector of covariances between the Z 

process at the training locations and the Z value at a candidate data points x, 
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rz(x,£) is the covariance of the Z process at a candidate point x and a reference 

point £, rz(x,x) is the variance of the Z process at a candidate point x, and Rz is 

the covariance matrix for the Z process at x\, ...txn. The ALC value for SHP can 

be obtained by averaging Ao~|(cc) over a reference data set. 

To illustrate the potential of SHP model in active data selection, a realization 

from SHP with known parameters and latent process is generated. The true real­

ization, as shown in Figure 4.5, is simulated based on 500 equally-spaced points on 

[0,3]. We randomly select 200 points out of 500 and use them as candidate data, X. 

Another set of 300 randomly selected points out of 500 is used as reference data set 

in ALC algorithm. The test data set contains 400 randomly selected points out of 

500 and is used to compare the performance of ALM, ALC with random selection. 

To initiate either algorithms, the first point was chosen randomly from the 

candidate set X. Given the known model parameters and latent process a, the 

conditional SHP predictive variances are calculated by at the rest of 199 candidate 

locations. The next sampling point is selected either with the largest predictive 

variance (ALM) or with the largest reduction of average variance over the reference 

locations (ALC). We continue sampling through ALM or ALC until a sample size 

of 50 is achieved. 

The entire process above was repeated 20 times with different initial sample 

locations, candidate data set and test data set. The two sampling strategies, ALM 

and ALC, are compared by the average (across 20 replicates) of the average (across 

locations) of the predictive variance, and the average (across the 20 replicates) of the 

RMSE for the test data set. The adaptive sampling methods are also compared with 

random selection of the sample points from candidate locations. Figure 4.6 shows 

the relative efficiency of adaptive sampling to random sampling. The top panel is 

the average RMSE ratio for ALM/Random and ALC/Random at each sample size. 

The bottom panel is the ratio for the average of mean predictive variances over 
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the test locations at each sample size. The ALC, ALM and random selection have 

the same performance at the first stage since they start with the same initial point. 

The adaptive sampling methods obviously outperform the random sampling method 

when sample size increases. The efficiency of the adaptive sampling methods keep 

increasing until a large sample size is achieved. The ALC method performs similar 

to ALM in this example. 

Figure 4.5: A realization from SHP with (5 = 0, a2 = 0.1, r2 = 1, cpa — 10, (fiz = 5. 

To see how the adaptive sampling outperforms random sampling, Figure 4.7 — 

Figure 4.12 give one example of the first 18 points sampled by different methods. 

In each subplot, the open circles are the current-stage data set {(a:*, 2/i)}"=1 and the 

solid dot is (jcn+i, yn+i), which is going to be sampled next. The simple random sam­

pling method, also known as pseudo-Monte Carlo sampling (Metropolis and Ulam 

(1949)), is very easy to implement but exhibits some clustering and fails to explore 

a large proportion of the input domain. In Figure 4.7 — Figure 4.12, if dominant 

features of the model are likely to be in one part of the space as in other parts, a 

design with points that are evenly spread out is preferable. The ALM and ALC 

agree on the interesting area of large volatility most of the time. But sampling 

differences exists on where exactly to be sampled next. For ALM, the sample data 
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Figure 4.6: Plots for relative efficiency of adaptive sampling with respect to random 
sampling. Top panel: The ratio of average RMSE over 20 replicates as a function of 
sample size. Bottom panel: The ratio of the average of the mean predictive variance 

function of sample size. 
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point is placed at the largest volatility. In this example, since the large volatility 

area is closer to the boundary, for a small sample size, the ALM is more likely to 

place the sample points close to the boundary while the ALC has a better coverage 

over the interior region of the input space. 
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Figure 4.7: The 1s t to 9th randomly selected points. The gray line is the true latent 
curve. In each subplot, the open cycles are the current-stage data set, and the solid 
dot is the latent process of response to be sampled next. 
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Figure 4.8: The 10"1 to 18t/l randomly selected points. The gray line is the true 
latent curve. In each subplot, the open cycles are the current-stage data set, and 
the solid dot is the latent process of response to be sampled next. 
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Figure 4.9: The 1st to 9*'1 ALM selected points. The gray line is the true latent 
curve. In each subplot, the open cycles are the current-stage data set, and the solid 
dot is the latent process of response to be sampled next. 
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Figure 4.10: The 10t/l to 18t/l ALM selected points. The gray line is the true latent 
curve. In each subplot, the open cycles are the current-stage data set, and the solid 
dot is the latent process of response to be sampled next. 
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Figure 4.11: The 1st to 9th ALC selected points. The gray line is the true latent 
curve. In each subplot, the open cycles are the current-stage data set, and the solid 
dot is the latent process of response to be sampled next. 
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Figure 4.12: The 10t/l to 18</l ALC selected points. The gray line is the true latent 
curve. In each subplot, the open cycles are the current-stage data set, and the solid 
dot is the latent process of response to be sampled next. 
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4.2.3 Adaptive sampling procedure with SHP 

In the previous subsection, we illustrate the potential of the SHP model in active 

data learning using the conditional mean (2.34) and variance (2.35). Unfortunately, 

the latent process is unknown in reality. We need to integrate out the latent process 

from (2.34) and (2.35). Therefore, we use the best predictor E(yo\y,ip) with its 

predictive variance Var(yo\y, ip) in adaptive sampling. Recall that the best predictor 

E(y0\y,ip) is given by 

E(yo\y,il>) = E[E(y0\y,ij),a,ao)\y,il>] 

= E {g{x0)
T/3 + E [exp(ra0/2)|y, a xjj] rz{xQ, x)R~l 

xdiag {exp ( - ™ ) } (y - GT(3)\y, ^ } , (4.6) 

where fiag = ra(x0, x)R~1a and vao = 1 — ra(xo, x)R~lra{x, x0) are the mean and 

variance of p(ao\a, <pa). 

The predictive variance is given by 

Var(y0|2/,V>) = E{Vav{y0\y,a0,ip)\y,ip}+ V&v{E(yo\y,a,a0,tp)\y,i>}, (4.7) 

where 

E{Va.r(yo\y,a0,xf))\y,i/)} 

2E j cxp (r»ao + ^ ) (1 - rz(x0,x)R;1rz(xQ,x)T)\y,^ (4.8) a 

and 

V&r{E(y0\y,cx,a0)\y,ip} 

E{E [E(yo\y,oc,a0,^) - E(y0\y,ip)2\y, a, V>] \y,tp} 

E |exp(r/iQ0 + T2vao/2)rz(x0, x)R;ldi&g {exp (——J j (y - GT(3) 

x (y - GTf3)Tdmg {exp ( - ™ ) } R~xrz{xQ, x)T\y, ^ } 

-(E(y0\y^)-g(x0)(3)2. (4.9) 
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Given the maximum likelihood estimates, the best predictive variance (4.7) can 

be approximated by Monte Carlo integration. Thus, the ALM procedure can be 

easily implemented and the next candidate point is selected by 

x = argmaxa|(ai) 

where o^{x) = Var(y(cc)|j/,i/>) is the predictive variance of y(x) given in equation 

(4.7). 

As for ALC procedure, the change of variance at a reference point £ if x is 

added into training set for SHP model is 

ACT|(X) - Var(j / c |yn >V)-Var(y€ | j /n + 1 ,V) 

= E{Vax(yo\yn,a0,il>)\yn,il>} - E {Var(y0\yn+l,a0,ip)\yn+1,ip} + 

V&v{E(y0\yn,an,a0)\yn,i>} - Var {E(yQ\yn+1, an+1,a0)\yn+vijj} 

(4.10) 

Unlike the GP, the change of variance in the SHP using best predictive variance 

involves the response values at all candidate locations. This is impossible in practice. 

The advantage of ALC is that it provides a better coverage of the interior of the 

input space while ALM is more likely to place points on the boundary. But ALM 

can perform similarly to ALC if the candidate data set is chosen uniformly over the 

domain (Gramacy et al. (2004)). In this study, the candidate set in the example is 

chosen by maximin distance LHS design which has a good coverage over the input 

space. Therefore, we only implement ALM strategy in the SHP model and compare 

its performance with GP ALM and GP ALC. 

Because of the computational cost of the ALM with the SHP model, the model 

is not updated at every increased sample size. Instead, the model is updated each 

time the sample size equals a multiple of k > 1. Thus, the computation time can 

be reduced by updating the model on at every kth step. Another reason for doing 
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so is due to the curse of dimensionality. For a small data set in a high-dimensional 

input space, the data points are far away from each other so there is not enough 

information for reconstructing the latent process and quantifying the uncertainty in 

specific regions. A single new data point added by ALM at the current stage will not 

help much in improving the model in a high-dimensional space. In this study, we 

choose k = 10. The ALM procedure for fitting data with SHP model is summarized 

as follows: 

1. Choose a set of initial sample points and a set of candidate points. The 

initial sample is used to get preliminary information about the entire response 

surface. The set of candidate points for further sampling needs to cover the 

input space in order to have a good exploration over the domain. 

2. Fit the current data set (xi,y1),...,(xn,yn) with the SHP model, record the 

parameter estimates ifi, the importance samples a ^ \ . . . , a ^ and the cor­

responding importance weights p(y\a^l\ 0)p(tx^\(f)a)/pa(cx^\y, ip) for % = 

1,...,N. 

3. Choose xn+i with the largest predictive variance, i.e. 

xn+i = argmaxVar(y(a;)|2/,'i/>), 

4. Fix estimated model parameters, augment the latent process from n to n + 1 for 

each Monte Carlo sample Q W , I = 1,..., N. The augmentation is implemented 

by predicting o4+i at sampled candidate location x given a^ and t/>, that is, 

for each i, 

a%(x)^r^(x)TC-()^. 

5. Use the same importance weights for each augmented a'1 ' and compute the 

predictive variance at other candidate locations based on the increased sample. 

Choose xn+2 with the largest predictive variance. 
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6. Repeat steps 4 and 5 until the sample size increases t o n + f c . 

7. Update model parameters at sample size n + k, repeat step 2, 3, 4 and 5 until 

the desired sample size is achieved or the prediction accuracy is met. 

For fair comparison, the GP model is also updated at every 10t/l increased 

sample size. 

4.3 Results and Discussion 

In this section, adaptive sampling based on ALM criterion is used for previous 

2-d test function data with the SHP model. The efficiency is compared with the 

GP model using ALM and ALC criteria. Finally, the motivating SIR example is 

revisited with GP and SHP ALM adaptive sampling. 

4.3.1 2-d example revisited 

In Section 4.1, we have done the "ALM-like" adaptive sampling in which instead 

of sampling one at a time with largest predictive variance, we sampled 20 at a 

time using selection probabilities proportional to the predictive variances. Two 

observations were obtained: one is that the SHP model has a better prediction 

accuracy than the GP model in terms of smaller RMSE values; the other is that 

given a latent process a, the SHP model provides a better quantification of model 

uncertainty, leading to a more efficient sampling scheme. In this subsection, we 

explore the adaptive sampling of the SHP model using ALM criterion. The results 

are compared with the adaptive sampling of GP model using both ALM and ALC 

criteria. 

To compare the sampling efficiency of the SHP with the GP, a training data set 

of size 20 was chosen. We use a D-optimal design to place 12 points in the quadrant 

[—2, 2] x [—2, 2] and 8 points in other areas. A candidate date set of size 100 was 

chosen evenly by D-optimal design over the domain [—2,6] x [—2,6]. The sampling 



97 

was implemented through the R package tgp (Gramacy (2007)). The 21 x 21 grid 

points on [—2,6] x [—2,6] were used as a test data set to evaluate the prediction 

performance. 

After fitting the 20 points with a SHP model, we compute the predictive vari­

ances at 100 candidate locations and select the next point with largest predictive 

variance. We keep increasing the sample size until it achieves 60. For each increased 

sample size, we fit the data with a GP model and a SHP model, predict the 441 test 

points and compute the RMSE. This process of ALM adaptive sampling, fitting, 

and prediction was repeated 20 times. A different random seed is used at each time 

to generate the initial data set and the candidate data set. We compute the average 

RMSE over 20 replicates at different sample sizes. The average RMSE curves as a 

function of sample size for SHP and GP model fitting with SHP ALM adaptively 

sampled data points are plotted in Figure 4.13. 

Similarly, we fit the each of the 20 initial data sets with the GP model and 

increase the sample size to 60 using ALM and ALC with GP-computed predictive 

variances. The whole process of fitting and predicting was repeated for 20 replicates. 

The average RMSE curves as a function of sample size for SHP and GP model fitting 

with GP ALM and GP ALC adaptively sampled data points are plotted in Figure 

4.13. 

Figure 4.13 gives a graphical comparison of the performance of GP and SHP 

for adaptive sampling and prediction. In this figure, RMSE is plotted as a function 

of sample size for SHP and GP models over 20 replicates. Strategies arc denoted by 

[adaptive sampling method]-[prediction method]. For example, GP(ALM)-GP uses 

GP ALM adaptive sampled data, and fits a GP model for prediction. 

Regardless of the way the points are adaptively sampled, SHP dominates the 

GP by producing smaller RMSEs. Further, the SHP model does an excellent job 

of guiding the selection of new points in ALM adaptive sampling. SHP adaptive 
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sampling produces smaller RMSEs, regardless of whether predictions are computed 

from GP or SHP. 

Figure 4.13 tells us that adaptive sampling with GP model guided by ALC 

criterion performs slightly differently than when guided by ALM criterion. The 

average RMSE curve for ALC adaptively sampled points decreases faster than ALM 

adaptively sampled points at a smaller sample size, i.e., 30, while the average RMSE 

curve for ALM adaptively sampled points has a faster decrease than ALC adaptively 

sampled points at a larger sample size, 50. As for SHP model, the RMSE curves 

with SHP ALM adaptive sampling decreases faster than those with GP adaptive 

sampling procedures. The rates of decrease of RMSE curve relate to the sampling 

efficiency. The faster the RMSE curve decreases, the better the adaptive sampling 

efficiency. 

T 1 1 1 r~ 
2 0 3 0 4 0 5 0 6 0 

s a m p l e s i z e 

Figure 4.13: RMSE plots as a function of sample size for SHP and GP models over 
20 replicates. Strategies are denoted by [adaptive sampling method]-[prediction 
method]. For example, GP(ALM)-GP uses GP ALM adaptive sampled data, and 
fits a GP model for prediction. 

We give an example of the initial data set, candidate data set and test data set 

in Figure 4.14. The open squares are the locations for the initial data set. The solid 
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dots are the 100 candidate locations for further adaptive sampling and the gray dots 

are the test locations. The data points in the candidate set are evenly spread out 

over the input space by the property of D-optimal design. Figure 4.15 plots the 

GP and SHP fitted surfaces for the initial data set. Even though the fitted surfaces 

capture the major feature of the true function, there is still room for improvement. 

Figure 4.14: Data locations for 2-d test function. The open squares are the 20 
locations for initial data set. The solid dots are the candidate locations for adaptive 
sampling and the gray dots are the test locations. 

The ALM criterion was used in the SHP model to guide further sampling, while 

both ALM and ALC criteria were used in the GP model to guide further sampling. 

Figure 4.16 (a) and (b) are the ALM and ALC surface for the GP model based 

on 20 initial inputs. The ALM and ALC surfaces for the GP model agree on the 

area of large predictive variances, which arc fairly uniform away from initial sample 

locations. But difference exists about which point to sample next. That location is 

marked by 1 in Figure 4.17 (a) and (b). Even though these two points are located 

at different places, they are away from the initial sample data points. 

Figure 4.16 (c) is the ALM surface for the SHP model based on 20 initial 

inputs. In contrast with Figure 4.16 (a) and (b), these prediction error variances 
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GPALM20 SHPALM20 

(a) (b) 

Figure 4.15: (a) Fitted surface for SHP model based on 20 initial data points, (b) 
Fitted surface for GP model based on 20 initial data points. 

are far from uniform away from initial sample locations, and instead have hot spots 

of high uncertainty. The SHP selects its next sample point, marked by 1 in Figure 

4.17 (c), within this hot spot. 

As the sample size increases from 20 to 30, the more differences arise among 

GP ALM, GP ALC and SHP ALM in this example. The SHP model puts all extra 

points in the area of interest, i.e. the first quadrant. GP ALC puts 10 extra points 

both in the first quadrant and some locations away from previous sample points. 

And GP ALM puts all 10 extra points in a fairly uniform way across the previously 

unsampled part of the input space. This results confirms that ALC algorithm is 

more likely to put the data points inside the input space than ALM does. These 

10 extra points in Figure 4.17 explains why the average RMSE curves for different 

sampling methods have different rate of decrease at sample size 30. 

As the sample is extended, the difference between ALC and ALM for GP di­

minishes since the candidate data set is evenly distributed over the input space; the 

SHP ALM starts to select the sample points at unsampled parts of the input space. 

This can be seen from the ALM and ALC surfaces in Figure 4.18. 

We stop sampling the process at sample size 60 (40 adaptively sampled points). 

These 40 sampled locations with different methods are marked and ordered with 
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Figure 4.16: (a) ALM surface for GP model fitted with 20 initial data points, (b) 
ALC surface for GP model fitted with 20 initial data points, (c) ALM surface for 
SHP model fitted with 20 initial data points. 

numbers in Figure 4.19. As we mentioned before, even though the ALM method is 

more likely to place the data points around the boundary than the ALC method, 

this difference can be reduced by using a candidate data set that is evenly spread 

out over the input space. In this example, with clear inhomogeneity in the surface, 

the SHP provides a much better adaptive sampling scheme than the GP. The ALM 

or ALC adaptive sampling with a GP selects the new inputs in a fairly uniform way 

across the previously unsampled part of the input space, while the ALM adaptive 

sampling with SHP selects the new input in the area of large volatility, i.e. the first 

quadrant. 

4.3.2 SIR model revisited 

The previous examples show the potential of adaptive sampling with the SHP 

model in low-dimensional cases. We now look at adaptive sampling with SHP in 

a higher-dimensional example, the SIR model of Section 3.3. Recall that the SIR 

model is a 7-dimensional example with three quantities of interest: the average 

number of susceptible individuals q(x)i = f J0 S(s,x)ds, the average number of 
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(a) G P A L M 

(b) G P A L C 

10 1 

(c) S H P A L M 

Figure 4.17: Locations for the first 10 adaptively sampled points via GP ALM 
(top), GP ALC (middle) and SHP ALM (bottom) methods. The solid dots are the 
locations for the 20 initial points. The numbers represent the 10 adaptively sampled 
locations in order of selection. 
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GP 50 ALM GP 50 ALC SHP 50 ALM 

(d) (e) (f) 

Figure 4.18: (a) ALM surface for GP model based on 30 points with 10 extra points 
adaptivcly sampled by GP ALM. (b) ALC surface for GP model based on 30 points 
with 10 extra points adaptively sampled by GP ALC. (c) ALM surface for SHP 
model based on 30 points with 10 extra points adaptively sampled by SHP ALM. 
(d) ALM surface for GP model based on 50 points with 30 extra points adaptively 
sampled by GP ALM. (e) ALC surface for GP model based on 50 points with 30 
extra points adaptively sampled by GP ALC. (f) ALM surface for SHP model based 
on 50 points with 30 extra points adaptively sampled by SHP ALM. 
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(a) G P A L M 

(b) G P A L C 

(c) S H P A L M 

Figure 4.19: Locations for the 40 adaptively sampled points via GP ALM (top), GP 
ALC (middle) and SHP ALM (bottom) methods. The solid dots are the locations 
for the initial 20 points. The numbers represent the 40 adaptively sampled locations 
in order of selection. 
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infected individuals q{x)i = ^ Jo ^ (s> x)ds, and the average number of resistant 

individuals q(x)3 = ~ f R(s, x)ds over a time interval [0, T]. 

We use a random LHS design to sample 40 points in the input space as the initial 

sample. A set of 1000 data points sampled by maximin distance LHS design is used 

as candidate data for further adaptive sampling. The candidate data set is also used 

as the test data set. Given the design we choose, the candidate data are spread out 

over the 7-dimensional space. Even though the ALM method is more likely to place 

the sample points close to the boundary (Gramacy et al. (2004)), it can be similar 

to ALC method if the candidate data points are spread out. For simplicity, we only 

use ALM method to do the adaptive sampling in this high-dimensional example. 

The three response variables are studied separately. The model is updated each 

time the sample size equals a multiple of 10. 

For each quantity of interest, we fit the 40 initial points with a SHP model, 

compute the predictive variances at 1000 candidate locations and select the next 

point with largest predictive variance. We keep sampling other points sequentially 

through the ALM procedure as described above until the sample size increased to 

100 locations. With each new sample observation, we re-compute the predictors for 

the remaining test points using the GP model and the SHP model, and compute the 

RMSE. This process of SHP ALM adaptive sampling, fitting, and prediction was 

repeated 20 times, with different random seeds used at each time to generate the 

initial data set. We compute the average RMSE over the 20 replicates at different 

sample sizes. 

Similarly, we fit each of the 40 initial data sets with the GP model and increase 

the sample size to 100 using the ALM criterion with GP model predictive variances. 

The whole process of fitting and predicting was replicated 20 times. The average 

RMSE curves as a function of sample size for SHP and GP model fitting with 

SHP and GP ALM adaptively sampled data points for each quantity of interest are 

plotted in Figure 4.20 to Figure 4.22. 
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Figure 4.20 to Figure 4.22 give a graphical comparison of the performance of 

GP and SHP for prediction and adaptive sampling of each quantity of interest. In 

each figure, strategies are denoted by [ALM sampling method]-[prediction method]. 

For example, GP(ALM)-SHP is SHP model fitting and prediction with GP-ALM 

adaptively sampled data. 

For each quantity of interest, the SHP model fitting with SHP ALM adaptively 

sampled data outperforms the GP model fitting with GP ALM adaptively sampled 

data. However, the SHP ALM is not as efficient as with the previous 2-d test 

function. One reason is that there do not exist obvious inhomogeneities on the 

true surfaces for ql, q2, and q3. For homogeneous surfaces, the GP can perform 

similarly to SHP. Another reason is that 1000 evenly-distributed test data points 

are not dense enough in the 7-d input space. The adaptive sampling methods would 

require more dense test data to capture local behavior. 

q 1 A L M 

—I 1 1 1 1 1 H 
4 0 5 0 SO TO SO 9 0 1 0 0 

Figure 4.20: Average RMSE as a function of sample size for SHP and GP models for 
ql in SIR. The GP and SHP models are updated each time the sample size equals 
a multiple of 10. Strategies are denoted by [ALM sampling method]-[prediction 
method]. For example, GP(ALM)-SHP is SHP model fitting and prediction with 
GP-ALM adaptively sampled data. 
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Figure 4.21: Average RMSE as a function of sample size for SHP and GP models for 
q2 in SIR. The GP and SHP models are updated each time the sample size equals 
a multiple of 10. Strategies arc denoted by [ALM sampling method]-[prediction 
method]. For example, GP(ALM)-SHP is SHP model fitting and prediction with 
GP-ALM adaptively sampled data. 
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Figure 4.22: Average RMSE as a function of sample size for SHP and GP models for 
q3 in SIR. The GP and SHP models are updated each time the sample size equals 
a multiple of 10. Strategies are denoted by [ALM sampling method]-[prediction 
method]. For example, GP(ALM)-SHP is SHP model fitting and prediction with 
GP-ALM adaptively sampled data. 



Chapter 5 

MODELING LOCAL SENSITIVITY 

Some computer experiments provide both y(-) and its first partial derivatives 

at observed inputs x. These partial derivatives are also called local sensitivities. 

These local derivatives can provide additional information about the surface that 

is useful in reconstructing the whole surface. In the computer experiments, most 

mathematical models are based on systems of differential equations. The system 

usually has a large number of input parameters and is expensive to execute. Local 

sensitivity provides the slope of the calculated model output at a given set of values 

in the input space. The information is useful as a cheap approximation for the 

output from the model. In their study, Estep and Neckels (2006) introduce the 

procedure Higher Order Parameter Sampling (HOPS) for approximating a quantity 

of interest based on a system of differential equations using local sensitivity. Section 

5.1 reviews HOPS method. 

In Section 5.2, we introduce the traditional GP simultaneous modeling of re­

sponse and derivatives. Similarly, we can extend the SHP to model the response and 

its derivative. Properties of SHP derivatives are discussed in section 5.3. Due to 

the high-dimensional integration in the likelihood calculation, we propose the low-

rank SHP model for fitting the response and derivatives in Section 5.4. A low-rank 

importance density is developed to improve the efficiency of likelihood computation 

and the estimation of the latent process. In Section 5.5, EBP is used for predicting 

the response at an untried location based on the combined information of response 

and derivatives. For using derivative information, we evaluate the performance of 
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HOPS approximation, GP model and SHP model through two 1-dimensional and 

two 2-dimensional test functions. Wc also revisit the SIR example. The stochas­

tic modeling of response and derivative outperforms HOPS, and the SHP model 

outperforms the GP model. 

In the work of Estep and Neckels (2006), the authors develop an adaptive sam­

pling method, Fast Adaptive Parameter Sampling (FAPS), using derivative informa­

tion. The method of FAPS also provides sensitivity analysis of input variables and 

can be used as a sampling method in stochastic modeling of response and deriva­

tives. The method is illustrated via the SIR model. We use SHP and GP to fit the 

response and derivatives at the FAPS adaptively sampled locations and compare the 

results from the HOPS approximation. One of the disadvantages of stochastic mod­

eling is the existence of numerical problem associated with calculating determinant 

of the large joint covariance matrix of response and derivatives in the optimization 

process for the high-dimensional case. Some approaches to alleviate this problem 

are proposed. 

5.1 High Order Parameter Sampling (HOPS) 

Estep and Neckels (2006) provide a fast and reliable method for approximating 

the model output from a set of differential equations. The following is a detailed 

description of their method. We use their notation in the description. 

Consider the problem of determining the effects of variations in inputs on a 

quantity of interest computed from the solution of the initial value problem 

x(t;X) = / ( * ( £ ; A); Ax), t>0, 

a>(0;A) = A 0 , 

where x G W1 and / : Rn+P -> Rn. The parameter A = (Aj,Ao)T G Rd with 

d = n + p, where Ai G Rp represents parameters in the model / and Ao G K 

represents the initial conditions (which also are considered as parameters, though 
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they are sometimes fixed). The goal is to quantify how variation in A affects the 

solution to (5.1). 

We consider the practical goal of computing a quantity of interest, which can 

be represented linear functional of the form 

q(X)= [ (x(s;\),<4>(s))ds, (5.2) 

Jo 

where (•, •) represents the inner product. We consider A = A(w) as a random vector 

on a probability space (0, £>, V) and xp is a function of time corresponding to the 
quantity of interest. Some common choices for V arc 

• ip — 5(s — i)(0,..., 1,0,...)', which yields the ith component of x(t,u) at time 

t. 

• if) = (1, . . . , 1)'/T, which yields the time average over [0, T] of the sum of all 

components. 

• i/> = (0,..., 1,0, •••)'/T, which yields the time average over [0, T] of a particular 

component of the solution. 

The generalized Green's function is introduced to solve the adjoint problem to 

the linearized equation 

(-4>(t)-AT{t)4>(t) =ij>(t), T>t>0, 

where 

s (5.3) 
\<KT) - 0 , 

A(t) = Dxf(y(t);^) 

dxi ' dxn 

djn_ dfn 
dx\ ' ' ' dxn 
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Estep and Neckels have shown that the quantity of interest can be approximated by 

q(\) = / (x,ii))ds 
Jo 

{y,ip)ds + (A0-A*O,0(O)) 

+ f' (Dxf(y;fx1)(\1-vi1),<t>(tJ.))ds. (5.4) 

Jo 

The representation in (5.4) is a linear approximation to the quantity of interest q at 

the reference value /i. Then the one-point HOPS approximation can be written as 

g(A)«<7(/z) + (V9(/x), ( A - / i ) ) , (5.5) 

and the local sensitivity can be computed as 

rT 
Vq(fx) = [ (DX f (y;M l) ,0( /x))dS 

JO 

D\J(y;tJ>i)T<t>(v)ds. 

We can use (5.4) to obtain a good approximation of the distribution of g(A), pro­

vided A has small variance about /i. and the function q is approximated well by its 

linearization at [x. In order to obtain an accurate global approximation, we need to 

combine HOPS approximations computed at multiple reference values, which leads 

to the multi-point Higher Order Parameter Sampling approximation. 

We choose a sample { / i j^ j of the parameter space and partition the parameter 

space into a collection of generalized rectangles {Rij^Lj with /Lt4 € Ri for all i. The 

corresponding piecewise linear HOPS approximation is defined by 

N 

9(A) « q(X) = ]T>(Mi) + (Vg(^ ) , (A - AO»x*,.(A). (5.6) 

The implementation procedure of multi-point HOPS approximation is summa­

rized as following: 

• Choose multiple reference points {M;}J=I 
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• Solve the forward system (5.1) to get the solution y(t; fa},..., y(l; fiN) 

• Calculate Dxj{Vi\A*») and D^Jiy^fa) for i = 1,...,N 

• Solve the adjoint system (5.4) to get <j)(t; fa),..., (j)(t; fay) 

• Calculate the gradient information fQ D^ f'(y^, fa)7'(f>(fa)ds for i = 1, ...,N 

• Sample A from input space and use equation (5.6) to calculate q(X) 

HOPS is a very cheap approximation for the quantity of interest. If the response 

surface is very smooth, HOPS might be a good metamodel since derivatives can help 

prediction a great deal when data set is small. However the computer code output 

can be nonlinear and inhomogeneous. The equation for the HOPS approximation 

has the form of the first-order Taylor expansion around the reference value fa This 

leads to one disadvantage of HOPS, which requires many reference points in general 

to have a good global approximation. A large data set is not feasible for expensive 

computer experiments. But HOPS provides a way to compute the local estimate of 

the error. 

If we write the one-point HOPS approximation as 

«7(A)-<7(A*)«<Vg(/x) )(A- /u)) ) 

we see that the derivative information (Vq(fa), (A — fa)) provides a local estimate of 

the error that results from using the sample value q(fa) in place of the actual value 

<?(A) for A near fj,. 

If we view a sample as a piecewise constant approximation, then 

N 

9(A) = £ > ( M i ) + <V<7(AO, (A - fa)))XR,W- (5-7) 

Using a Taylor expansion in each of the Ri as in HOPS, we obtain an approximation 

of the expected value of the error in the Ll norm, 

N 

epc = V / KVq(^) , (z - fa))Wx{z). (5.8) 
i=i JR* 
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5.1.1 Fast adaptive parameter sampling (FAPS) 

The accurate estimate of the error for a given sample offers the possibility of 

optimizing the sample process in order to reach a desired accuracy with minimal 

computational cost. The adaptive strategy works in an iterative fashion. Given a 

current set of sample points, we estimate the local contribution to the error for the 

sample and choose additional sample points in regions in which the contributions to 

the error are estimated to be largest. 

One approach of adaptive sampling described in Estep and Neckels (2006) is 

analogous to the standard /i-refmement strategy in adaptive finite element methods. 

Define e^c to be approximate contribution to the error bound from rectangle Ri, i.e., 

eT= / |<Vg(^),(z-AO)|^A(z). 

The adaptive strategy is to refine some fraction of the rectangles on which ef3 is 

largest. We refine along one dimension at a time since q may be very sensitive to 

changes in one parameter, but not in others. To measure the contribution to the 

error bound from each dimension, we define e?°k, k = 1,..., d by 

€k= [ \dxM^)(zk-rf)\d^(z), (5.9) 
J Ri 

where z = (z1,..., zd)T and \i{ — (//*,..., /^f)T so 

N N d 

: , f e -^pc<E£r^EE^ 
i = l i = l fc=l 

For a rectangle where e^c is large enough for refinement, the maximum contri­

bution e^°k,k = 1,..., d is identified and the rectangle is divided along this dimension. 

Since the value at the center of the rectangle is known, we split in thirds along this 

dimension, compute the values at the centers of the two new rectangles and iterate 

till a given error tolerance level (TOL) or a desired sample size is achieved. By 

looking at number of splits by input dimension, we can obtain sensitive analysis of 
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input variables. But the FAPS method is limited by the dimensionality of the input 

space since the number of partitions will increase exponentially as the dimension of 

the parameter space increases. 

5.2 GP Modeling of Derivatives 

The alternative to HOPS is to use stochastic modeling of response and deriva­

tives. As we have mentioned in the introduction, given the differentiability of the 

covariance function, the derivative of a GP is still a Gaussian covariance and can 

be modeled simultaneously with the response (Morris et al. (1993)). In this sec­

tion, we will give the equations for GP modeling responses and derivatives in the 

one-dimensional case with constant mean. For simplicity, we consider a GP with 

constant mean and Gaussian covariance function. Denote the vector of the first par­

tial derivatives at sampled points as y'(x). The model for response and derivative 

is: 

y(x) = 0 + Z{x) 

y'(x) = Z'(x), 

where COV(Z(XJ), Z(XJ)) = exp(—<f>(xi — Xj)2). By taking the derivative of the 

covariance function with respect to x, wc can get the covariance function of y and 

y' and the covariance function of y' as 

Cov(y(.xl), y'(xj)) = 2<t>(xi - Xj) exp(-</>(:r; - Xj)2) 

Cav(y'(xi), y{xj)) = -2<j)(xi - Xj) exp(-(p(xi - Xj)2) 

Cow{y'{Xi),y\xj)) = (20 - A<t>(xi - xtf) exp(-<Kxi - Xj)2)- (5.10) 

Given a data set at a coarse grid locations {(#,, yi, y0}"=i> Xi ^ ^ w e want to 

predict the responses at an unobserved location XQ. Since the joint distribution 

of response and derivative is still multivariate GP, the conditional distribution of 
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y(x0) given responses and derivatives is normal. The mean and variance of the 

conditional distribution can be used as predictor and predictive variance for y(xo). 

This approach can be easily extended to higher dimensional space (Morris et al. 

(1993)). 

5.3 SHP Modeling of Derivatives 

As with the GP, the derivatives of the SHP can also be modeled jointly with 

the response y. For simplicity, we consider the model for y' in 1-dimensional space: 

y'(x) = g'{x)T(3 + o exp[ra{x)/2)Z'{x) + a exp(ra(:r)/2) Ta'(x)ZW. ( 5 . U ) 

The derivative process has mean g'(x)T/3} variance <72exp(r2/2){72/(0) + ^Ja'ity}-

By taking the partial derivative of the unconditional SHP covariance function for 

the response, the unconditional correlation function of the SHP derivative is 

M*0 = exp
y
{~J+

+l^){lz'Ah) + T'wCih.'.W + $i*a{h)lzAh) (512) 
2 2 

+ ^[la'a'{h) + x 7 Q ' a ( / l ) 7 a a ' ( / i ) ] 7 ^ ( ^ ) } -

The effect of varying the correlation parameter (j)z on the unconditional corre­

lation function can be seen from Figure 5.2. For a relatively smooth a process (4>a 

is small), panels (a) shows unconditional correlation function for the SHP deriva­

tive y', and panel (b) shows unconditional correlation function between response 

y and derivative y'. For a relative rough a process (</>a is large), panel (c) shows 

unconditional correlation function for the SHP derivative y' and panel (d) shows 

unconditional correlation function between response y and derivative y'. Compar­

ing these with the correlation plots for the Gaussian derivative (Figure 5.1), we can 

see that for small 4>a and r2 values, the pattern of 4>z effects on the unconditional 

correlation function for the SHP derivative is similar to the pattern of 4> effects on 

the correlation function for the GP derivative. As <pz increases, the correlation for 

the derivative goes to zero more quickly and the sign of correlation changes more 
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quickly. The magnitude of the strongest negative correlation does not change with 

(f)z. On the other hand, the magnitude for the strongest negative correlation does 

change with 4>a and r2 in SHP model as shown in Figure 5.3 and Figure 5.4. The 

correlation function decays smoothly for small values of 4>a. For large values of <pa, 

increasing r2 increases the variety of correlation functions. The effect of (f)a on the 

unconditional correlation function relates to the value of cj>z. As we increase <pz from 

10 to 100, as shown in Figure 5.3, the decay of correlation function is dominated by 

the large value of <f>z, and the small range of 0Q values has no very obvious effect on 

the correlation functions. 

The unconditional correlation plots for the SHP derivative show unique char­

acteristics, implying that (5.12) can be used as as a new class of isotropic oscillating 

correlation functions in the GP model. We will illustrate the application of this new 

function in a traditional GP model with 1-d and 2-d test functions in later sections. 

GP: cor(Y.V') 

•xy — phi=l 
— phi=1D 
- phi=100 

phi=1000 

Figure 5.1: Effect of <fi on correlation function for GP. The left panel shows correla­
tion functions of GP derivative. The right panel shows correlation functions between 
response and its derivative for GP. Gaussian covariance function are used in all the 
plots. 

5.4 Low-Rank Modeling of SHP Derivatives 

For the SHP model, the derivatives add extra information into modeling but 

the dimensionality of the latent process also increases. The latent process and its 

GP: cor(Y') 

phi=1 
phi=10 

•— phi=100 
phMIOOO 
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SHP: cov(Y') tausq= 1 phla= 1 SHP: cor(Y.Y') tausq= 1 phia= 1 

(b) 

SHP:cov(Y') tausq=1 phia=100 SHP: cor(Y.Y') tausq= 1 phia= 100 

(c) (d) 

Figure 5.2: Effect of <pz on unconditional correlation function for SHP. (a) Correla­
tion functions of SHP derivative with cf)a = 10. (b) Correlation functions between 
SHP response and derivative with <fia — 10. (c) Correlation functions of SHP deriva­
tive with (j)a — 100. (d) Correlation functions between SHP response and derivative 
with (pa = 100. In all plots, Gaussian covariance function is used for a and Z 
processes and r2 = 1. 
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SHP:cov(Y') tausq=1 phiz= 10 SHP: cor(Y.Y') tausq= 1 phiz= 10 

(a) 

SHP: cov(Y') tausq= 1 phlz= 100 

-0.5 

SHP: 

0.0 

distance 

(b) 

cor(Y.Y') tausq= 1 phiz; 

0.5 

= 100 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.0 

phia= 1 
— phia= 50 

phia= 100 
phia= 500 
phia= 10000 

0.1 0.3 

(c) (d) 

Figure 5.3: Effect of <f>a on unconditional correlation function for SHP . (a) Corre­
lation functions of SHP derivative with <fiz = 10. (b) Correlation functions between 
SHP response and derivative with (j>z = 10. (c) Correlation functions of SHP deriva­
tive with (j)z = 100. (d) Correlation functions between SHP response and derivative 
with (f)z — 100. In all plots, Gaussian covariance function is used for a and Z 
processes and r2 = 1. 
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SHP:cov(Y') phia=20 SHP: cov(Y, Y') phia* 20 

tausq= 0 
tausq= 0.1 
tausq= 0.5 
tausq= 1 
tausq= 5 

(a) 

SHP: cov(Y') phla= 200 

(b) 

SHP: cov(Y, Y') phia= 200 

(c) (d) 

Figure 5.4: Effect of r2 on unconditional correlation function for SHP. (a) Correla­
tion functions of SHP derivative with 4>a = 20. (b) Correlation functions between 
SHP response and derivative with <pa = 20. (c) Correlation functions of SHP deriva­
tive with (pa = 200. (d) Correlation functions between SHP response and derivative 
with <fia — 200. In all plots, Gaussian covariance function is used for a and Z 
processes and (f>z — 10. 
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derivative has same dimensionality as the joint vector of response and derivatives. 

To avoid the high-dimensional integration problem in the likelihood computation, 

we propose a low-rank SHP modeling of response and derivatives and use it in the 

procedure of likelihood computation and prediction. 

We consider a 1-dimensional SHP model for the response and derivative. The 

model can be written in matrix form as 

y = GT/3 + a d i a g { e x p ( ^ ) } z 

y' = G'T/3 + a d i a g { e x p ( ™ ) } { ^ d i a g { a ' } Z + Z ' } (5.13) 

Since the low-rank kriging approximation for the latent process a is written as 

a = Buj and a' = B'u>, the low-rank SHP model of responses and derivatives is 

given by 

y — GTj3 + a diag < exp 

V 

TBU 

GIT(5 + a diag jexp {^f\ } {^dmg{B'u;}Z + Z'} , (5.14) 

where u; ~ N(0, Q, 1). If using a Gaussian covariance function in the a process, 

B(i,j) = exp(-0 a(xi - Kj)2), i = l,. . . ,n, j = l,..., J 

and 

£l(i,j) = exp(-0Q(«i - Kj)2), i = 1,..., J, j = 1,..., J. 

The conditional joint distribution of p(y, y'\ip, w) is multivariate normal, i.e., 

y 
y' 

\UJ, ip ~ N 
GIT P, a2 R Kyyl yy (5.15) 
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where 

Kyy = 

Hyyl ~ 

Kyly -

Ky'yt = 

= diag < 

= diag < 

= diag < 

= diag < 

exp 

exp 

exp 

exp 

TBUJ 

2 

TBUJ 

2 

TBUJ 

2 

T B W 

fl^diag <̂  exp 
TBU 

TBUJ 
\-Rzzdiag{B'uj} + Rzz.j diag S exp 

(^diag{£'u;}/?„ + Rz,g) diag jexp f l | ^ ) } 

jdiag{B'u}Rzzdiag{B'uj} + ^diag{B'u}Rz 

+ ^RZ'zdiag{B'u} + Rz,z,j diag <̂  exp f ——- j 

5.4.1 Likelihood calculation for low-rank model 

(5.16) 

Let y := (y(x\), ...,y(xn), y'(xi), ...,y'(xn)) denote the vector of observations 

and derivatives and ijj := (0,^>a) the model parameters. Here 6 := (a2, r2 , (pz,/3). 

The joint density of (y, y',u)) of the low-rank model (5.14) is given by 

p{y, y1, w|i/>) - p(y, y'\u, 0)p(w|0a). (5.17) 

It follows that the likelihood of the observed data is given by the n-fold integral 

L{il)\y,y')= p{y,y',u\il))du>= p{y,y'\uj,0)p(uj\(i)a)du>. (5.18) 

The likelihood (5.18) cannot be computed explicitly. Low-rank importance sam­

pling pa(u}\y, y'ip) needs to be introduced to increase computational efficiency and 

improve the accuracy of the approximation. The integral in (5.18) can be rewritten 

as 

L(^;y,y') 

K 

p(y,y'\u,e)p(u\cj)a) 

Pa{u\y,y',ip) 

p(y,y'\u},e)p(u\(f)a 

pa{v\y,y',*l>)du 

(5.19) 
Po(w|y,y',V) 

Suppose u}^\ ...,u/N) are drawn from an importance density pa(u)\y, t/>). Then 

(5.19) can be approximated by 

LW;y,y>)~±Yl 
p(y,y'\u>,6)p(u\(t)a) 

Pa(u\y,y',ip) 
(5.20) 

Maximizing (5.20) with respect to if), we can get maximum likelihood estimates ip. 
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5.4.2 Importance density for low-rank modeling of derivatives 

The importance density should be chosen to be close to the posterior density 

p(u\y,y\ V)- ^ Pa{w\y, y', I/J) is exactly equal to p(w\y, ip), a sample of only N = 1 

is required for accurate likelihood calculation. 

The importance density pa(u)\y, y',ip) for low-rank SHP model has the form 

Pa(w\y,v',il>) = N(u>*,V:), (5.21) 

where the mean w* is the mode of the log-density of p(y, y', uj\tp) 

n i l 
logp(yty'M1>) - -~log(2n) + -\og\Rr\--(y*-^)TR-}(y*-tx*) 

- | log(27r) + ^loglfT1! - ^ r f t u > , (5.22) 

V* = {y,y'), and/i* = 
G 
G 

(3. The covariance matrix for the importance density 

is V* — (-H) 1, where H is the Hessian matrix 

d2 

For the low-rank SHP model, there is no analytical form for the Hessian matrix. 

Instead, we use a numerical solution of the Hessian matrix in the optim function in 

R. 

5.4.3 Estimation of function of volatility 

If xjj were known, a function /(•) of u> at observed locations can be estimated 

as the conditional expectation E[/(u>)|y, y'.ip], given by 

E t / M J y . y ' . V ] = / /(w)p(w|i / ,y ' ,V)rfw 

p(y,y'\^e)p(^a) 
n } P (V ,VW 

J f(u)p(y, 2 /V, 0)p(u}\4>a)du} 

J,.,\l, 7|' i M l 
-. (5.23) 

f p(y,y'\u,d)p{u}\(j)a)duj 

K[f(u)p(y, y'\u, d)p(u)\(pa)/pa(u}\y, y', ip)] 

K[p{y, 2 /V. ®)p(w|0Q)/Po(w|y, y', V)] 
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If / is the identity function, we are interested in estimating a. Once the estimates 

of the parameters tp are obtained, we can sample u}^\ ..., w ^ from pa(u>\y, y', ip) 

and get estimate UJ through (5.23) using a Monte Carlo approximation. Then a 

and oc' can be obtained by 

a = BUJ 

a' = B'GJ. (5.24) 

5.4.4 Empirical best predictor (EBP) for y 

The prediction of a response at an unobserved location XQ is obtained based 

on the low-rank SHP model. Given the latent process u>, the joint distribution 

of p(y,y'\u:,ip) is multivariate normal. Therefore, the conditional distribution of 

yQ at unobserved location x0 given the observation vector (y, y') is heteroscedastic 

Gaussian with mean 

E(y0\y, y', u>, V>) = g(x0)
T(3 + ry(x0, x)Ry}{y* - /**), (5.25) 

and variance 

Var(y0|y, y\ u , if)) = CT2(1 - ry(x0, x)R~}ry(x, xQ)), (5.26) 

where ry(xo, x) is the conditional covariance vector between yo and (y, y') and 

Cov(yo,y|w,'0) = cr2exp(r50w/2)rz(a;o,x)diag< exp 

Cov(yo,y'|u>>'0) = a2exp(r50u>/2)(r2(a;o,cc)diag{5aj'} 

+r«/(a;o,a;))diag<exp 

To account for the uncertainty in estimating u>, we seek the best pre­

dictor E(y0\y:ip) and its predictive variance ~Va,r(y0\y, I/J). If we write y* = 

m 
m 
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(y,y')T, Ry* = diag{exp(T#w/2)}#*,diag{exp(r£a;/2)} and ry(x0,x) --

a2 exp(TB0u/2)r*(x0, x)diag{exp(r5a;/2)}, the best predictor can be written as 

E(yQ\y*^) 

= E[E(y0\y;<*>,xl>)\y;ii>] 

g{x0)
Tp + exp(r50cj/2)r*(x0 , x)R*y, Miag <̂  exp = E 

x(v*-^)\v;i>], 

where r*(xQ, x) = (rz(xQ, x),rz{x0, x)diag{Bu>'} + rzz>)T and 

/ r r i T 1 

TBUJ 

r>* 
Ky. G'T 

r>* r>* 
yy yy' 

R*, R*, , 
y'y y'y' J 

with 

R* 
nyy 

R* 
yy' 

R* 
y'y 

R* 
nyly, 

= 

= 

= 

= 

Rzz 

(£' 
(§< 
a 

Rzzdmg{B'u>} + Rz 

dmg{B'uj}Rzz + Rz 

•di&g{B'u>}Rzzdi&g{B'u} + ^di&g{B'u)}Rz 

+ -Rz,zdmg{B'u:} + Rz 

The predictive variance is 

(5.27) 

(5.28) 

Vaj:(i/o|y*)'0) = £?[Vai(yo|y*,w,'0)|y*,^]+Var[E(yo|i/* )u;,V)|y*,^]. (5.29) 

where 

E[V8,v(y0\y*,u;^)\y*^} 

= a2E[eKp(TB0u)(l-r*y(x0,x)Ry1r*y(xo,x)T)\y*,^] (5.30) 
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and 

Var[£?(2/o|y*,w,^)|2/*,V'] 

E [(E(y0\y*,tJ,^) - E(y0\y*^))2 \y\ij,] 

= E exp(TB0u>)r*y(x0,x)R*r Miag jexp f - ^ - y ^ J } (.V* ~ »*)(v* ~ V* 

TBU 
xdiag | exp ( - 1 - 2 ~ J > Rl* ^ f c o , x)T\y*, </> 

- [^ (yo | l / * , ^ ) -5 (^o ) /9 ] 2 . (5.31) 

Since the best predictor of yo (5.27) and its predictive variance (5.29) are functions of 

u>, we can compute them using (5.23) through Monte Carlo integration. In practice, 

we plug in the maximum likelihood estimates of if) into (5.23). We refer to this 

predictor as the empirical best predictor (EBP) for yo. 

5.5 Application 

In this section, SHP modeling of responses and derivatives is illustrated through 

two 1-dimensional test functions and two 2-dimensional test functions. The SHP 

prediction performance is compared with GP model and HOPS approximation. At 

the end, we revisit the SIR model. The Gaussian covariance function is used in the 

a and Z processes in all examples. 

5.5.1 1-d test functions 

We use two 1-d test functions as examples to compare the stochastic modeling 

of response with and without derivatives. The first function is 

/ = 2cos(77nr/2)e-3a\ x G [0,2], 

which is rescaled by a factor of 2 from the original function in Santer et al. (2003). 

The left panel in Figure 5.5 is the true function and the right panel is the corre­

sponding true derivative. The true function is based on 200 equally-spaced data 

file:///y/ij
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points on [0, 2]. We consider sample sizes of 5, 10, 15 and 20 regularly-spaced points 

out of 200 as training data. The response and derivative are computed at each 

observed location. Six different models are fitted with the training data points and 

out-of-sample RMSE is computed for each model. The six models are categorized 

into two groups. One group is modeling response without derivative, including the 

GP model with Gaussian covariance function and the SHP model. The other group 

is modeling response with derivative, including the GP model with Gaussian covari­

ance function (GP.old), the GP model with SHP unconditional covariance function 

as a new covariance function (GP.new), the SHP model and HOPS approximation. 

Table 5.1 lists the RMSE for different models with different sample sizes. In 

general, the SHP model outperforms the GP model with or without derivative infor­

mation. For example, the RMSEs for the SHP model with and without derivatives 

are 0.151 and 0.0028 when n is 10, which are 35% and 54% smaller than those with 

the GP model. 

When the sample size is small, neither GP and SHP modeling with responses 

only reconstruct the curve well. The left panel in Figure 5.6 is the fitted curves by 

the GP and SHP models, based only on 5 observations. Neither of them has a good 

fitted curve. The right panel plots the fitted curves by modeling with derivative 

information. Even though the fitted curve is not perfect, the derivative does give 

local slope information and helps the local prediction of the function shape. This is 

also the reason why the HOPS approximation can do a comparable job to stochastic 

modeling for a very small sample size. As the sample size increases, stochastic 

modeling is more flexible in capturing the curvature of the function than is the 

HOPS linear approximation. 

As we discussed in the previous section, the unconditional covariance function 

for SHP and its derivative have unique characteristics and can be used as a new class 

of covariance functions in a GP model. The RMSEs for the GP model with this 



127 

new covariance function are the same or better than the RMSEs for the GP model 

with Gaussian covariance function. This confirms the potential of the unconditional 

SHP covariance function as a new class of covariance functions. 

Figure 5.5: First 1-d test function. Left panel: true curve. Right panel: derivative 
curve. 

Table 5.1: RMSE for the first 1-d test function under different models and sample 
sizes. GP.old is the GP model using Gaussian covariance function. GP.new is the 
GP model using unconditional covariance function of SHP and its derivative as a 
new covariance function. 

n = 
n = 
n = 
n = 

-- 5 
= 10 
= 15 
= 20 

w/o derivative 
GP 

0.670 
0.229 
0.017 
0.0049 

SHP 

0.579 
0.151 
0.0038 
0.0034 

GP.old 

0.328 
0.0060 
0.0016 
0.00050 

with derivative 
GP.new SHP 

0.328 0.223 
0.0060 0.0028 
0.0013 0.00038 
0.00042 0.00014 

HOPS 

0.350 
0.145 
0.055 
0.031 

The second test function is from Xiong et al. (2007): 

f{x) = sin(30(x - 0.9)4) cos(2(:c - 0.9)) + (x - 0.9)/2, x G [0,1]. 

The left panel in Figure 5.7 is the true function and right panel is the corresponding 

true derivative curve. The true function is based on 200 equally-spaced data points 
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Figure 5.6: Fitted curve and derivative for the first 1-d test function using different 
models. 

on [0,1], We consider sample sizes of 12, 18, and 24 regularly-spaced points out of 

200 as training data. The sample sizes are greater than with the second function 

since it is rougher and more inhomogeneous. Again, six different models are fitted 

with the training data points and out-of-sample RMSE is computed for each model. 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.7: Second 1-d test function. Left panel: true curve. Right panel: derivative 
curve. 

Table 5.2 lists the RMSEs for different models with different sample sizes. Sim­

ilar results are obtained as with the first test function. SHP model is more able to 

capture the local behavior than GP model. The stochastic models outperform the 
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HOPS approximation. Figure 5.5.1 plots the fitted curves for modeling with and 

without derivatives at sample size 12. 

Table 5.2: RMSE for the second 1-d test function under different models and sample 
sizes. GP.old is the GP model using Gaussian covariance function. GP.new is the 
GP model using unconditional covariance function of SHP and its derivative as a 
new covariance function. 

w/o derivative 
GP SHP 

n = 12 0.066 0.058 
n = 18 0.046 0.045 
n = 24 0.032 0.026 

with derivative 
GP.old GP.new SHP HOPS 

0.050 0.042 
0.011 0.011 
0.0022 0.0022 

0.028 0.078 
0.0078 0.037 
0.0010 0.013 

n=12 w/o der 

,", ., 

> 
) i 
1 , ) , ! ( 
• 1 

true 
- - GP 
- - GP.new 

SHP 
HOPS 

,-~** 

0.0 0.2 0.4 0.6 0.8 1.0 

caption [Fitted curve and derivative for the second 1-d test function.] Fitted curve 
and derivative for the second 1-d test function using different models. 

As we can see from Figure 5.5.1, the second function has varying volatility over 

[0,1]. The function in region [0,0.3] is more volatile than it is in region [0.3,1]. 

Table 5.2 shows that the SHP model outperforms the traditional GP model and 

HOPs approximation globally. It is also of interest to investigate the performance 

of predictors locally, for sub-regions in [0,0.3] and [0.3,1]. For the training data of 

size 12, 18 and 24, the RMSEs are listed in Table 5.3. In this example, the SHP 

predictions outperforms GP and HOPS not only globally but also locally. 
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Table 5.3: RMSE for the second 1-d test function in subregion [0,0.3] and [0.3,1] 
under different models and sample sizes. GP.old is the GP model using Gaussian co-
variance function. GP.new is the GP model using unconditional covariance function 
of SHP and its derivative as a new covariance function. 

[0,0.3] 

[0.3,1] 

n=12 
n=18 
n=24 
n=12 
n=18 
n=24 

w/o derivative 
GP 

0.120 
0.084 
0.059 
0.0046 
0.0035 
0.0013 

SHP 

0.121 
0.083 
0.047 
0.0013 
0.0011 
0.0003 

GP.old 

0.091 
0.019 
0.0039 
0.0075 
0.0003 
0.0003 

with derivative 
GP.new 

0.077 
0.019 
0.0039 
0.0080 
0.0003 
0.0003 

SHP 

0.051 
0.014 
0.0019 
7.94e-05 
1.64e-05 
7.90e-05 

HOPS 

0.131 
0.065 
0.0232 
0.0373 
0.0095 
0.0232 

One further observation can be made from Table 5.1. The RMSE for SHP mod­

eling with derivative at sample size 5 is comparable to the RMSE of SHP modeling 

without derivative at sample size 10; the RMSE for SHP modeling with derivative 

at sample size 10 is comparable to the RMSE of SHP modeling without derivative 

at sample size 20. Similar observations can be made for Table 5.2: adding derivative 

information is like doubling the response-only sample size. 

A question arises from the above observations: Shall we use more responses 

without derivatives in modeling or less responses but with derivatives in modeling? 

There is no universal answer for this question. We need to first compare the cost of 

producing response and derivatives. Even though the cost for derivatives is in general 

less than response, obtaining derivatives can also be expensive for an expensive 

forward model, such as some climate models with a large number of parameters. 

Modeling with derivative is more complicated and time consuming. Therefore, for 

a standard expensive computer experiment, modeling with more responses may be 

preferred. On the other hand, derivative provides useful local information about 

the curvature, modeling with derivative is preferred if we have some background 

information about the volatility of the underlying physical process. 
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The derivative can be used in adaptive sampling. The FAPS method proposed 

by Estep and Neckels (2006) is an adaptive sampling method using derivative infor­

mation. One important byproduct of the FAPS method is the sensitivity analysis of 

input variables. This allows model dimensionality reduction and model evaluation 

in a reduced input space by sampling more responses only in sensitive directions, 

with other non-effective inputs fixed at some reference values. 

5.5.2 2-d test functions 

For a 2-dimensional example, the low-rank SHP model for response and deriva­

tives is 

y = GTp + adiag{exp(TBuj/2)}Z 

y\ = G?(3 + adiag{exp(r5u;/2)} {^dia.g{B[u>}Z + Z\} 

y'2 = G2
T(3 + admg{exp(TBuj/2)}{^di&g{B'2u;}Z + Z2} (5.32) 

where B[ = dB/dxi and B'2 = dB/dx2. The parameter estimation and prediction 

is based on this low-rank model. 

The first 2-dimensional function is given by Paciorek (2003): 

f(xux2) = 1.9(1.35 + eXl 8^(13(3;! - 0.6)2)e~X2 s i n ^ ) ) , xux2 6 [0,1]. 

The true surface is based on 21 x 21 grid points on [0,1] x [0,1] and is plotted in 

Figure 5.9(a). 

To compare the prediction performance of SHP with GP and HOPS approxi­

mation, the six models that are used in the 1-dimensional application are again used 

here to fit the training data. We use maximin LHS design to sample 10 points over 

the input domain as training locations. The sampling was implemented through the 

package lhs in R (Team (2005)). After fitting the responses y with and without 

derivatives C2/x > S/2) 5 w e Predict 21 x 21 grid points and compute the RMSE. The 
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process of sampling, fitting and predicting was repeated 20 times. We then com­

pute the 20 RMSE ratios of GP/SHP with and without derivatives. The summary 

statistics of the 20 RMSE ratios are given in Table 5.4. When modeling response 

without derivative, the SHP model performs similarly to the GP model with such 

a small sample size. When modeling response with derivatives, the SHP model has 

smaller RMSE in 18 out of 20 trials compared with the GP model. The boxplots of 

RMSEs in Figure 5.8 gives a graphical comparison of the performance of GP, SHP 

and HOPS for prediction with and without derivatives in the model. 

We give an example of fitted surfaces in Figure 5.9 (b), (c) and (d). The 

plots show that the derivative information helps the SHP model to catch peaks and 

valleys. HOPS approximation does not perform well even compared with stochastic 

modeling without derivatives. This is because HOPS uses linear approximation 

and the true function is nonlinear. HOPS method is a very cheap approximation 

method for computer outputs, but requires more data points to achieve satisfactory 

prediction accuracy. 

Table 5.4: Summary statistics of 20 RMSE ratios for the first 2-d test function with 
sample size 10 under different models. The last column is the percentage of RMSE 
ratios being greater than 1 out of 20. 

min 25^ median mean 75th max percentage 
GP/SHP 0.664 0.926 L00 L00 L08 L30 50 
GP/SHP (w/der) 0.860 1.059 1.100 1.130 1.206 1.536 90 

The second function is the two-dimensional example f(x\, x2) = 10.x j exp(—T\ — 

x\) used in Chapter 3. This function shows more inhomogeneous behavior than the 

first 2-dimensional test function. We already know from previous results that SHP 

has a better prediction accuracy than a GP when modeling without derivatives. In 

this section, we want to evaluate how SHP performs when modeling with derivatives. 
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Figure 5.8: RMSE Boxplots over 20 replicates for the first 2-d test function with 
sample size 10 for modeling with and without derivatives. 

The true surface is again based on 21 x 21 grid points on [—2,6] x [—2,6]. 

Responses y and the first partial derivatives y'i,y'2 at 12 sampled locations are used 

as training data. We use LHS to place 6 points on the first quadrant [—2, 2] x [—2, 2] 

and 6 points on other areas. The sampling was implemented through the R package 

tgp (Gramacy (2007)). The six models in previous examples are used again to 

fit the training data and the RMSE of predicted values at 21 x 21 grid points is 

computed. The process of sampling, model fitting and prediction was repeated 20 

times. The summary statistics of the 20 RMSE ratios are given in Table 5.5. When 

modeling response without derivative, the SHP model performs similarly to the GP 

model with such a small sample size. When modeling response with derivative, 

the SHP model has smaller RMSE in 14 out of 20 trials comparing with the GP 

model. The boxplots of RMSEs in Figure 5.10 gives a graphical comparison of the 

performance of GP, SHP and HOPS for prediction with and without derivatives in 

the model. 
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true function without derivative SHP n=10 

(a) (b) 

with derivative SHP n=10 with derivative HOPS n=10 

(c) (d) 

Figure 5.9: First 2-d test function and fitted surfaces, (a) The true function, (b) 
SHP model fitted surface with responses only, (c) SHP fitted surface with responses 
and derivatives, (d) HOPS approximated surface. 

5.5.3 SIR. model revisited 

Using the generalized Green's function and a variational analysis, Estep and 

Neckels (2006) compute not only the quantity of interest but also the derivatives 

at sampled input points. This derivative information is used in Estep and Neckels 
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Table 5.5: Summary statistics of 20 RMSE ratios for the second 2-d test function 
with sample size 12 under different models. The last column is the percentage of 
RMSE ratios being greater than 1 out of 20. 

min 2 5 t / l m e d i a n mean 75th max percentage 
GP/SHP 0.407 0.915 1.029 1.003 1.116 1.429 60 
GP/SHP (w/der) 0.548 0.932 1.267 1.418 1.601 3.271 70 

(2006) to create what they refer to as FAPS, to adaptively sample the data points 

over input space and then use HOPS to approximate the quantity of interest at 

untried locations. We want to compare the prediction performance of GP and SHP 

to the HOPS method fitting with FAPS sample points. 

FAPS in computer experiments 

Estep and Neckels (2006) pointed out in their study that FAPS not only gies an 

adaptive sampling method, placing more points in the region of large error, but also 

provides an important byproduct that is the sensitivity analysis of input variables. 

e x p 2 d f u n n = 1 2 

—p-

o 

- y -

o 

—p-

I 

—p-

I 

o o 

E3 
! 1 1 | | | 

GP SHP GP.o ld GP.new SHP.der H O P S 

Figure 5.10: Boxplots of RMSE over 20 replicates for the second 2-d test function 
with sample size 12. 
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Since most computer models are systems of differential equations, FAPS can be used 

in design and sensitivity study of computer experiments. 

The FAPS method was implemented in the SIR model. The 100 FAPS adap-

tively sampled points for three quantities of interest in SIR model are plotted in 

Figure 5.11, Figure 5.12 and Figure 5.13. The splitting direction of these FAPS 

sample points provides a measure of sensitivity to the input variables for the quan­

tities of interest. For the average susceptible population gl, the important factors 

are contraction rate rj and death rate from disease dj. This is clear from Figure 

5.11 because nearly all splitting in FAPS occur on these input dimensions. For the 

average infected population q2, the important factors are recovery rate a/j, natural 

growth rate rn, natural death rate dn and death rate from disease dj. For the av­

erage resistant population q3, the important factors are recovery rate an, natural 

growth rate rn, natural death rate dn and death rate from disease d]. Though the 

important factors are different for different quantities of interest, the probability of 

inheriting resistance pn and carrying capacity k are not important for any of them: 

FAPS never splits along these dimensions. 

Figure 5.11: Scatter plots of 100 FAPS points on each dimension for ql variable. 
The x axis is the index for the sequence of sampled points. 
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Figure 5.12: Scatter plots of 100 FAPS points on each dimension for q2 variable. 
The x axis is the index for the sequence of sampled points. 
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Figure 5.13: Scatter plots of 100 FAPS points on each dimension for q2> variable. 
The x axis is the index for the sequence of sampled points. 

The above results confirm the two applications of FAPS in computer exper­

iments. One is that FAPS can be used in computer experiments as an adaptive 

sampling method since most mathematical models implemented in computer exper­

iments are systems of differential equations. The other application is the sensitivity 

results offered by FAPS, which can be used in dimension reduction in computer 

experiments. For example, we can fix carrying capacity and the probability of in-
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heriting resistance in SIR model at their mean values and vary the other 5 variables. 

The disease study can be reduced from 7-dimensional space to 5-dimensional space 

and SIR model evaluation can be performed in the effective 5-d space. This will 

reduce the cost and time to help management decision for further disease control. 

The quantity of interest in Estep and Neckels (2006) is the average infected 

population q2. In following subsections, we want to use the reduced 5-dimensional 

SIR model as an example to explore the performance of SHP modeling with deriva­

tives. To compare the performance of SHP and GP with HOPS methods, a test 

data set of 1000 data points in 5-d space was sampled by maximin distance LHS 

design. We fit three models with FAPS points and predict q2 at test locations. The 

RMSEs are computed and are used to compare the prediction performance. 

Simultaneously modeling with responses and derivatives 

We fit responses and derivatives simultaneously at 10 and 20 FAPS sampled 

locations with HOPS approximation, GP model and SHP model and predict the 

average infected population at 1000 test locations in 5-dimensional space. 

Table 5.6 lists the RMSEs for the q2 variable with different models. The SHP 

model performs better than the GP model in terms of smaller RMSE. The results 

support the flexibility of SHP and its derivative process. The stochastic modeling 

with derivatives has smaller RMSE than the HOPS approximation. The RMSEs 

for the GP and SHP models are 26% and 40% less than the RMSE for the HOPS 

approximation at sample size 10. The RMSEs for the GP and SHP models are 19% 

and 41% less than the RMSE for the HOPS approximation at sample size 20. Even 

though the HOPS is cheaper to implement than stochastic modeling, it requires more 

training data to achieve good prediction performance. For an expensive computer 

experiment, the computational cost for stochastic modeling may be negligible. 
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Table 5.6: RMSE for g2 variable at 1000 test locations using 10 and 20 FAPS sam­
pled points as training data sets. The responses and derivatives are simultaneously 
fitted with HOPS, GP and SHP models. 

HOPS GP SHP 
n = 10 0.821 0.607 0.492 
n = 20 0.705 0.570 0.414 

Two-stage modeling with responses and derivatives 

As sample size n increases, the data vector combining response and first-order 

partial derivatives increases quickly, especially for computer experiments with a 

high-dimensional (<i-dimensional) input space. When using stochastic modeling 

with derivatives, the joint covariance function for response and derivatives has size 

n(d + 1) x n(d + 1). Numerical challenges, such as computing the determinant of 

the covariance function, occur in the optimization process of maximum likelihood 

estimation. Therefore, obtaining parameter estimates for larger sample sizes may 

be difficult or impossible. 

To avoid this problem, we develop a two-stage approach for using response and 

derivatives in model fitting. At the first stage, parameter estimates are obtained 

based only on responses, which is the situation we described in Chapter 2. The 

derivative information is then used in the prediction at the second stage with pa­

rameter estimates from the first stage. We illustrate the methodology for q2 in the 

5-d SIR model. We implement the two-stage approach with GP and SHP models 

fitted with FAPS sampled data sets of size 30 to 70. 

The RMSE for 1000 test locations of different models with different sample 

sizes are listed in Table 5.7. Both stochastic modeling approaches beat the HOPS 

approximation. Not shown in the table is the fact that RMSEs for the GP and SHP 

at sample size 30 are comparable with the HOPS approximation at sample size 100 

or even 200. The SHP model performs better than the GP model at different sample 
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sizes in this 5-d example. The cost of this increase efficiency is that the SHP model 

takes longer to implement than the GP model. 

Table 5.7: RMSE for ql variable using different models and using FAPS sampled 
points as training data. For GP and SHP model fitting, the two-stage prediction 
strategy is used to avoid numerical problems in optimization process: response-only 
data are used for model fitting, and derivatives are included for prediction. 

FAPS 
HOPS 
GP+der 
SHP+der 

30 
0.561 
0.377 
0.322 

40 
0.504 
0.352 
0.290 

50 
0.494 
0.347 
0.276 

60 
0.458 
0.313 
0.256 

70 
0.461 
0.294 
0.249 

5.5.4 Summary of modeling with derivative 

From the above examples, we can see that the HOPS method in 

Estep and Neckels (2006) is not comparable to the GP and SHP models in pre­

diction performance for small or moderate sample sizes. But their FAPS method 

can be introduced into design and analysis of computer experiments since most 

mathematical models implemented in the computer experiments are systems of dif­

ferential equations. The procedure of stochastic modeling with FAPS data points is 

summarized as follows: 

• Run FAPS m times to obtain an optimum sample. 

• Use the splitting direction of FAPS sample points as sensitivity information 

for the d input variables. Choose the effective input dimensions x e l , xe2, ...,xei 

and fix the non-effective inputs at their reference values. The analysis of d-

dimensional computer outputs is thus reduced to the analysis in /-dimensional 

space. 

• Fit a stochastic model with FAPS sample in effective /-dimensional space. 
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To implement FAPS, we need to solve not only the forward system but also 

the adjoint problem. The adjoint problem is less expensive to execute since it is 

linear. However it also can be expensive if the forward system is expensive with a 

high-dimensional input space. So for an expensive model, it will cost much more to 

get m sampled data points from FAPS than from just solving the forward system m 

times. For a standard computer experiment, modeling with more responses may be 

preferred since modeling with derivatives is more complicated and time consuming. 

However, the FAPS method offers an important by-product, the sensitivity anal­

ysis of input factors from the splitting directions of FAPS-sampled data. Meanwhile, 

the FAPS method has the potential to provide an initial set of data points in the 

design of computer experiments. Further sequential or adaptive sampling method of 

the GP and SHP models can be implemented in the reduced input space. This will 

save time and cost and improve prediction performance for computer experiments. 



Chapter 6 

CONCLUSIONS A N D F U T U R E WORK 

The need for a more flexible and efficient metamodel in computer experi­

ments outputs motivates the work in this dissertation. The deterministic com­

puter response is modeled as a realization from a stochastic heteroskedastic process 

(SHP), a stationary non-Gaussian process with conditionally non-stationary covari-

ance function. Comparing to the traditional Gaussian process models, the SHP 

model presents more flexibility in capturing the salient features of computer experi­

ments and better quantification for guiding the next sampling point in an adaptive 

sampling scheme. 

The contributions of this dissertation are grouped into Chapters 2 — 5. Chapter 

2 introduces the SHP model as a new metamodeling approach in modeling determin­

istic computer experiments. The unique properties of SHP correlation functions and 

sample paths are studied. By introducing a spatial stochastic latent process into 

the GP model, the SHP model produces the sample paths with greater variabil­

ity and hence offers more modeling flexibility than those produced by a traditional 

GP model. We use maximum likelihood for inference, which is complicated by the 

high dimensionality of the latent process. Accordingly, we develop an importance 

sampling method for likelihood computation and use a low-rank kriging approxima­

tion to reconstruct the latent process. Responses at unobserved locations can be 

predicted using empirical best predictors or by empirical best linear unbiased pre­

dictors. Prediction error variances are also obtained. In examples with simulated 

and real computer experiment data in Chapter 3, the SHP model is superior to 
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traditional GP models. In addition, the SHP model can be used in an active learn­

ing context to select new locations that provide improved estimates of the response 

surface. Chapter 4 implements active learning via the SHP model, which appears 

to work better than other traditional approaches in several simulated examples. 

For the motivating SIR model, we can obtain both responses and the first-order 

partial derivatives. Chapter 5 develops a low-rank SHP for modeling responses 

and derivatives. The model efficiency improves a lot by combining derivative into 

the response. A new importance sampling method was proposed for likelihood 

computation. In examples with simulated data and in the SIR example, the low-

rank SHP model is superior to GP in modeling responses and derivatives. 

Even though this study explores SHP model in many aspects, there is always 

more work that can be done in the future. The SIR model is a simple example of a 

computer experiment. It would be interesting to use SHP as a surrogate model in 

more complex computer experiments. 

Another area of future research in computer experiments is model validation 

where data come from both a computer experiment and a "real" experiment. The 

SHP can be used to not only model computer code outputs, but also the bias term 

between computer experiment outputs and real experimental data. 

The SHP model can be easily extended to a general regression context by adding 

measurement error terms. Palacios and Steele (2006) proposed a similar model in 

geostatistical modeling. Bayesian inference is performed in their study. But the prior 

distribution needs to be chosen carefully to improve the convergence and avoid the 

identification issues in parameter estimation. In computer experiments, a similar 

Bayesian approach may be adopted for the SHP model. If we have information on 

prior distribution, the Baysian approach of SHP model may solve the identification 

difficulties in parameter estimation. 

The SHP model presents more flexibility than the GP model. Not surprisingly, 

the increased flexibility comes at the price of increased computational cost. There is, 
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however, a trade-off between computational cost and accuracy. Further exploration 

on improving the computational efficiency and accuracy is desired. 



Bibliography 

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2003). Hierarchical Modeling and 

Analysis for Spatial Data. Chapman and Hall/CRC. 

Chen, V., Tsui, K., Barton, R,, and Allen, J. (2003). A review of design and 

modeling in computer experiments. Handbook of Statistics, 22:231-261. 

Chen, W. and Varadarajan, S. (1997). Integration of design of experiments 

and artificial neural network for achieving affordable concurrent design. 38th 

AIAA/ASME/ASCE/AHA/ASC Strctures, Structural Dynamics, and Materials 

Conference and AIAA/ASME/AHS Adaptive Structures Forum, 2:1316-1324. 

Cohn, D. A. (1996). Neural network exploration using optimal experimental design. 

Advances in Neural Information Processing Systems, pages 679-686. Morgan 

Kaufmann Publishers. 

Cohn, D. A., Ghahramani, Z., and Jordon, M. J. (1996). Active learning with 

statistical models. Journal of Artificial Intelligence Research, 4:129-145. 

Danielsson, J. and Richard, J. F. (1993). Accelerated Gaussian importance sampler 

with applications to dynamic latent variable models. Journal of Applied Econo­

metrics, 8:153-173. 

Davis, R. A. and Rodriguez-Yam, G. (2005). Estimation for state-space models: an 

approximate likelihood approach. Statistica Sinica, 15:381-406. 

Durbin, J. and Koopmans, S. J. (1997). Monte Carlo maximum likelihood estimation 

for non-Gaussian state space models. Biometrika, 84:669-684. 



146 

Estep, D. and Neckels, D. (2006). Fast and reliable methods for determing the evo­

lution of uncertain parameters in differential equations. Journal of Computational 

Physics, 213:530-556. 

Fang, K. T., Li, R., and Sudjianto, A. (2006). Design and Modeling for Computer 

Experiments. Boca Raton, FL : Chapman and Hall/CRC. 

Fuentes, M. and Smith, R. L. (2001). Modeling nonstationary processes as a con­

volution of local stationary processes. Technical report, North Carolina State 

University, Dept. of Statistics. 

Gelfand, A. E., Kim, H. J., Sirmans, C. F., and Banerjee, S. (2003). Spatial mod­

eling with spatially varying coefficient processes. Journal of American Statistical 

Association, 98:387-396. 

Gramacy, R. B. (2005). Bayesian Treed Gaussian Process Models. PhD thesis, 

Univeristy of California, Santa Cruz, U.S.A. 

Gramacy, R. B. (2007). tgp: An R package for Bayesian nonstationary, semipara-

metric nonlinear regression and design by treed Gaussian process models. Journal 

of Statistical Software, 19(9). 

Gramacy, R. B., Lee, H. K. H., and Macready, W. G. (2004). Parameter space 

exploration with Gaussian process trees. Proceedings of the 21st Internatioinal 

Conference on Machine Learning, pages 353-360. 

Higdon, D. (2002). Space and space-time modeling using process convolutions. 

Quantitative Methods for Current Enviromental Issues, pages 37-56. London: 

Springer-Vcrlag. 

Higdon, D., Swall, J., and Kern, J. (1999). Non-stationary spatial modeling. In 

Bayesian Statistics 6, pages 761-768. Oxford: Oxford University Press. Bernardo, 

J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M. (Eds.). 



147 

Jin, R., Chen, W., and Simpson, T. W. (2000). Comparative studies of metamodel-

ing techniques under multiple modeling criteria. 8th AIAA/NASA/USAF/ISSMO 

Symposium on Multidisciplinary Analysis and Optimization. AIAA, Long Beach, 

CA, AIAA-2000-4801. 

Kennedy, M. C. and O'Hagan, A. (2000). Predicting the output from a complex 

computer code when fast approximations are available. Biometrika, 87:1-13. 

Kennedy, M. C. and O'Hagan, A. (2001). Bayesian calibration of computer mod­

els. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 

63:425-464. 

Koehler, J. R. and Owen, A. B. (1996). Computer experiments. Handbook of 

Statistics, 13 (S.Ghosh and C.R.Rao(eds)):261-308. 

Mackay, D. J. C. (1992). Information-based objective functions for active data 

selection. Neural Computation, 4:589-603. 

Matern, B. (1960). Spatial Variation. PhD thesis, Meddelanden fran Statens Skogs-

forskningsinstitut. Vol 49, Num. 5. 

Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58:1246-1266. 

Mckay, M. D., Beckman, R. J., and Conover, W. J. (1979). The comparison of three 

methods for selecting values of input variables in the anlysis of output from a 

computer code. Technometrics, 21:239-245. 

Metropolis, N. and Ulam, S. (1949). The Monte Carlo method. Journal of the 

American Statistical Association, 44:335-341. 

Morris, M. D., Michtchell, T. J., and Ylvisaker, D. (1993). Bayesian design and 

analysis of computer experiments: Use of derivatives in surface prediction. Tech­

nometrics, 35:243-255. 



148 

Myers, R. H. and Montgomery, D. C. (1995). Response Surface Methodology: Process 

and Product Optimization Using Designed Experiments. John Wiley and Sons, 

Inc., New York, NY. 

Paciorek, C. J. (2003). Nonstationary Gaussian Processes for Regression and Spatial 

Modelling. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, U.S.A. 

Palacios, M. B. and Steele, M. F. J. (2006). Non-Gaussian Bayesian geostatistical 

modeling. Journal of the American Statistical Association, 101:604-618. 

Qian, Z., Seepersad, C , Joseph, R., Allen, J., and Wu, C. F. J. (2006). Building 

surrogate models with detailed and approximate simulations. AMSE Journal of 

Mechanical Design, 128:668-677. 

Robert, C. P. and Casella, G. (1999). Monte Carlo Statistical Methods. Springer-

Verlag, New York, 2nd edition. 

Ruppcrt, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression. 

New York: Cambridge University Press. 

Sacks, J., Schiller, S. B., and Welch, W. J. (1992). Design for computer experiments. 

Technometrics, 31:41-47. 

Sacks, J. W., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and 

analysis of computer experiment. Statistical Science, 4:409-423. 

Santer, T. J., Williams, B. J., and Notz, W. I. (2003). The Design and Analysis of 

Computer Experiments. Springer. 

Satelli, A., Tarantola, S., and Chan, K. (1999). A quantitative model-independent 

method for global sensitivity analysis of model output. Technometrics, 41:39-56. 



149 

Seo, S., Wallat, M., Graepel, T., and Obermayer, K. (2000). Gaussian process 

regression: Active data selection and test point rejection. Proceedings of the 

International Conference on Neural Networks, pages 241-246. IEEE. 

Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility. In Time 

Series Models in Econometrics, Finance and Other Fields, pages 1-67. Chapman 

and Hall, London. In: Cox, D. R., Hinkley, D. V. and Barndorff-Nielsen, O. E. 

(Eds.). 

Simpson, T. W., Lin, D. K. J., and Chen, W. (2001a). Sampling strategies for 

computer experiments: Design and analysis. International Journal of Reliability 

and Applications, 2(3):209-240. 

Simpson, T. W., Peplinski, J. D., Koch, P. N., and Allen, J. K. (2001b). Metamod-

els for computer-based engineering design: survey and recommendations. The 

Journal of Engineering with Computers, Special Issue Honoring Professor Steven 

J. Fenves, 17:129-150. 

Taylor, S. J. (1986). Modelling Financial Time Series. Chichester: John Wiley. 

Team, R. D. C. (2005). R: A language and environment for statistical computing. 

R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0. 

Wu, C. F. J. and Hamada, M. (2000). Experiments: Planning, Analysis, and Pa­

rameter Design Optimization. John Wiley, New York. 

Xiong, Y., Chen, W., Apley, D., and X., D. (2007). A non-stationary covariance-

based kriging method for metamodelling in engineering design. International 

Journal for Numerical Methods in Engineer, 71:733-756. 

Yan, J. (2007). Spatial stochastic volatility for lattice data. Journal of Agricultural, 

Biological, and Environmental Statistics, 12(l):25-40. 


